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Preface

The aim of this book is to provide, firstly, an introduction to probability and
statistics especially directed to the metrology and testing fields and secondly,
a comprehensive, newer set of modelling methods for data and uncertainty
analysis that are generally not considered yet within mainstream methods.
The book brings, for the first time, a coherent account of these newer meth-
ods and their computational implementation. They are potentially important
because they address problems in application fields where the usual hypothe-
ses that are at the basis of most of the traditional statistical and probabilistic
methods, for example, relating to normality of the probability distributions,
are frequently not fulfilled to such an extent that an accurate treatment of the
calibration or test data using standard approaches is not possible. Addition-
ally, the methods can represent alternative ways of data analysis, allowing a
deeper understanding of complex situations in measurement. The book lends
itself as a possible textbook for undergraduate or postgraduate study in an
area where existing texts focus mainly on the most common and well-known
methods that do not encompass modern approaches to calibration and testing
problems.

The book is structured in such a way to guide readers with only a gen-
eral interest in measurement issues through a series of review papers, from an
initial introduction to modelling principles in metrology and testing, to the
basic principles of probability in metrology and statistical approaches to un-
certainty assessment. Later chapters provide a survey of the newer methods,
from an introduction to the alternative approach of interval mathematics to
the latest developments in data analysis using least squares, FFT, wavelets,
and fuzzy methods; from data fusion (including decision taking and risk anal-
ysis), to tools for combining data of complex statistical structure; and from
uncertainty issues related to model imperfection, to those related to combining
testing data. The book also includes chapters on modern computational issues
related to measurement: a computer-assisted simplified rigourous approach to
data evaluation, an analysis of the strategies to adopt for measurement soft-
ware validation, an introduction to the virtual instrument approach, and an
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VI Preface

overview of the main IT applications in metrology. The book does not con-
centrate on any particular field of application, because the applications in the
frames of metrology and testing cover so broad a range that it would be diffi-
cult to make a ranking of their importance or even to attempt a grouping into
categories with homogeneous needs. On the other hand, most of the various
techniques illustrated in the chapters of the book can find application to many
different issues related to these application fields.

A DVD is attached to the book, containing software for free use (under
the specified conditions), ranging from tutorials to sample codes of the imple-
mentation of methods described in the book, to software packages with demos
of methods and tools, allowing the reader to try to see especially the newer
tools at work with the minimum effort, without the need of implementing his
or her own code.

The authors are mainly selected from an international collaborative frame-
work (http://www.imeko-tc21.org, http://www.imeko.org), established
in the early 1990s as ‘AMCTM’ (http://www.amctm.org), that has allowed
a community of metrologists, mathematicians, statisticians, and software/IT
engineers to work together, so creating a common understanding of the issues
discussed in this book.

F. Pavese, Istituto Nazionale di Ricerca Metrologica
A B Forbes, National Physical Laboratory
Torino
June 2008
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Av. Rovisco Pais 1
Lisbon, Portugal, 1049-001
octavian.postolache@ist.utl.pt

Pedro M. Ramos
Instituto de Telecomunicações,
Instituto Superior Técnico, DEEC,
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An Introduction to Data Modelling Principles
in Metrology and Testing

Franco Pavese

Istituto Nazionale di Ricerca Metrologica (INRIM), strada delle Cacce 73-91,
10135 Torino, Italy
f.pavese@inrim.it, frpavese@tin.it

Summary. The dispersion of the measured data introduces an uncertainty in the
measure of the observed phenomena. Uncertainty associated with data is specified
according to models that are different according to the underpinning assumptions,
which must adequately match the characteristic of the observed phenomena or pro-
cess. This chapter deals with the different types of description of the uncertainty
components, with a wide selection of citations from reference international doc-
uments, and then with the different models corresponding to the different data
characteristics. An extended bibliography is included.

Key words: Data modelling, uncertainty, repeatability, reproducibility, accuracy,
Type A uncertainty component, Type B uncertainty component, mixture model

1 Introduction

The modern scientific method requires that experimental evidence be obtained
whenever possible, for the validity of a theory to be considered substantiated.

Experimental evidence consists of a measure either quantitative or non-
quantitative – often called ‘qualitative’ – of the observable quantities and this
is obtained in general by means of measurement.

The degree of consistency of different measurement results, obtained by
different independent experimenters or by the same experimenter at different
times, is considered in general to provide a measure of the degree of reliability
that can be associated to the results in representing the quantity under study,
having taken into account the fact that experimental knowledge is always
imperfect to some degree.

Consequently, replication of measurements1 and the combination of obser-
vations are standard and essential practices in science.
1 The term “replicated measurements” is used in this chapter to indicate, in

a general way, the “determination of a value more than once” [ISO93]. The
term ‘repeated’ has a specific statistical meaning and potential confusion
should be avoided. In fact, replicated measurements can be either ‘repeated’ or
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This requirement places the need in all branches of ‘exact’ science to eval-
uate the degree to which different observations can correctly or safely be
compared (or combined) with each other, or, in other words, to assess the
traceability of the measurements performed by different experimenters and at
different times.

Metrology is that part of measurement science whose task is to provide
a measure of traceability and is concerned with the measured values of the
observed quantities (physical, chemical, biological, etc.); this is achieved by
providing reference measurement methods and traceable standards for each
quantity.

Testing is a contiguous area – in some respects overlapping with metrology –
devoted to provide and apply reference methods in order to obtain a measure
of the characteristics of ‘stuff’ (objects, devices, goods, foodstuffs, etc.), in
general in order to allow one to take a decision, such as assessing conformity
to specifications or to limits, often within a legal context.

An underpinning basic concept of science, and hence of measurement sci-
ence, is that, due to imperfect knowledge of the observed phenomena, the
numerical data2 that are the outcomes of measurement are affected by errors.
Irrespective of the reasons that are the causes of these errors, the resulting
dispersion of the measured numerical values that is generally observed3 is
interpreted as evidence of the imperfect knowledge.

Thus, the dispersion of the measured values introduces an uncertainty in
the measure of the observed phenomena. Uncertainty associated with data is
specified according to models that are different according to the underpinning
assumptions, which must adequately match the characteristic of the observed
phenomena or measurement process.

2 Uncertainty components of the measurement process:
Repeatability, reproducibility, accuracy

In evaluating the uncertainty associated with measurement results in metrol-
ogy (and testing), several steps can be enumerated, each characterised by the
use of different methods to fulfil correspondingly different purposes [PF06].

For a measurement process entirely taking place only within one laboratory,
the purpose of measurement replication:

‘nonrepeated’ depending on the conditions. See, for example, the statement “To
verify control of precision, the laboratory may perform a number of replicate
measurements under repeatability conditions” in [A2LA02].

2 The data associated to an observation can also be nonnumerical, for example,
lexical. In this chapter only numerical data are considered.

3 For a sufficiently high measurement sensitivity.
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(a) When performed on the same measurement standard, is primarily to ob-
tain statistical information providing a measure of the repeatability of the
measured values of the standard;

(b) When performed on the same measurement standard, is secondly to eval-
uate the increase in the total uncertainty arising from the variability of
the influence quantities affecting the standard, including those that have
a dependence on time, that is, to have a measure of the reproducibility of
the measured values of the standard;

(c) When performed on several measurement standards of the laboratory,
is finally to assess whether they have the same value or to provide a
measure of the (systematic) differences between their measured values,
and to evaluate the associated uncertainty, that is, to provide an estimate
of the accuracy of the measured values of the laboratory standards. This
step is called intralaboratory comparison.

When operation (c) is performed by directly comparing one (or more)
measurement standards provided by different laboratories, so that it is part
of a process taking place between at least two laboratories, it is then called an
inter laboratory comparison.

When operation (c) is performed to assess “periodically the overall perfor-

mance of a laboratory” [EA03], that is, to show that the laboratory can continue
to demonstrate its ability to conduct correctly a certain type of measurement,
it should be considered and used as a proficiency test (more details in [DP06]).

The term ‘repeated measurements’, involved in step (a), is long estab-
lished in general statistics: it refers to homoscedastic data (recent uses can be
found in [Dav02,LW06,LW06b]). In this respect, the latest statistical status
of the measurements performed for the different purposes (a) to (c) listed
above has been treated and defined in several reference documents in metrol-
ogy and testing since the 1980s. In this respect, some evolution of the con-
cepts can be observed. It is therefore useful to summarise the meanings of the
terms used in different documents and in the literature, before introducing
data modelling.

2.1 Basic nomenclature

Repeatability

According to the written standard ISO 3534 (–1 [ISO06] and –2 [ISO93,
ISO06b]) (similarly in ISO 5725–1 [ISO94] and VIM until 2004 [VIM04]),
“repeatability conditions” of measurement are “observation conditions where

independent test/measurement results are obtained with the same method on iden-

tical test/measurement items in the same test or measurement facility by the same

operator using the same equipment within short intervals of time”.
The VIM [VIM08] definition then changed somewhat: (2.11) “condition of

measurement in a set of conditions that includes the same measurement procedure,
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same operators, same measuring system, same operating conditions and same loca-

tion, and replicate measurements on the same or similar objects over a short period

of time” by adding “and replicate measurements on the same or similar objects”.

In other words, the values of all the influence factors/parameters are assumed
not to change during those intervals of time [PF06]. This situation is also said
to indicate that all the measurements can be considered to occur at the same
“experimental unit” [ISO94], and corresponds to the replication of measure-
ments for the purpose (a) above. However, the methods used for purpose (a)
do not provide any information about reproducibility and accuracy: purposes
(b) and (c) for data assessment are therefore essential for deriving an uncer-
tainty statement in metrology and testing. In particular purpose (c), which
concerns intra- or inter - comparisons, has assumed a critical importance af-
ter the MRA [MRA99] introduced the use of “key” inter -comparisons for the
definition of the “degree of equivalence” between metrological laboratories
(inter pares comparisons: for a review of the problems arising from the needs
prompted by MRA see [Pav06]).

Reproducibility

Reproducibility is defined by VIM [VIM08] as: (2.25) “measurement precision

under reproducibility conditions of measurements”. A reproducibility condition
is a “condition of measurement out of a set of conditions that includes different

locations, operators, measuring systems, and replicate measurements on the same

or similar objects” (2.24). Further more, it is noted that “the different measuring

systems may use different measurement procedures”. For testing, ISO 5725–1 also
includes the effects of calibration and time, states the same in (3.18), except for
the last condition related to different measurement procedures, an important
difference4.

Accuracy

In order to introduce the concept of accuracy, it is necessary to introduce first
the concept of systematic effects. However, their meaning is not unequivocally
specified in recent written standards and in the literature.

Consider first the written standards, which represent the substantial refer-
ence for the metrology and testing community. In VIM [VIM08], for example
4 There are also contrasting reproducibility definitions. For QUAM is instead

the “variability obtained when different laboratories analyse the same sample”,
whereas “intermediate precision relates to the variation in results observed when
one or more factors, such as time, equipment and operator, are varied within a
laboratory” [QUAM00] (the usual definition is given for repeatability: “variability
observed within a laboratory, over a short time, using a single operator, item of
equipment, etc.”)
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(2.18), a systematic effect is a “component of measurement error that in replicate

measurements remains constant or varies in a predictable way”5. This definition
does not explicitly involve random variables. Similarly, in [QUAM00] the sys-
tematic error is defined as: (2.4.7) “a component of error which, in the course

of a number of analyses of the same measurand, remains constant or varies in a

predictable way. It is independent of the number of the measurements made and

cannot therefore be reduced by increasing the number of analyses under constant

measurement conditions”. ISO 21749 [ISO05] states “sometimes it is difficult to

distinguish a systematic effect from random effects and it becomes a question of in-

terpretation and the use of the related statistical models. In general, it is not possible

to separate fully random and systematic effects”. According to the NIST Hand-
book, “the terms ‘bias’ and ‘systematic error’ have the same meaning in this hand-

book” [NIST06]. In ISO 5725 and, in general, in testing documents the term
‘bias’ is most commonly used, in fact, instead of ‘systematic error’. ISO 3534–
2 [ISO06b] states: (3.3.2) “Note 1 Bias is the total systematic error as contrasted to

random error. There may be one or more systematic error components contributing

to the bias. A larger systematic difference from the true value is reflected by a larger

bias value”.
The relevant literature, accordingly, reports a variety of interpretations.

For example, in [LW06b] a systematic error is said to be “neither random

nor observable” and “introduces a bias that may be estimated from other infor-

mation, mostly in the form of enclosing limits”. According to [Gra05] “unknown

systematic errors” are not treated statistically and “remain constant in time

and unknown with respect to magnitude and sign” at least “during the time

to pick up a series of repeated measurements”; they are restricted to a “con-

fining interval” defined “by worst case estimations”, and are to be combined
“arithmetically” with random errors. In [KDP03] the systematic error is re-
ferred to as “unknown bias” and considered as a random variable, with zero
expectation6 in the “random laboratory-effect model” and with nonzero expec-
tation in the “systematic laboratory-effect model”, where it is replaced with

5 But until the 2004 draft [VIM04], the VIM definition was the “mean that would
result from an infinite number of measurements of the same measurand carried
out under repeatability conditions minus a true value of the measurand” (i.e., a
random variable that carries the very same uncertainty of the repeated measure-
ments). Reference in the text to VIM 2004 draft is done solely for the purpose to
indicate recent significant changes in the definitions.

6 According to [ISO06] ‘expectation’ is the “integral of a function of a random
variable with respect to a probability measure over the sample space” (2.12).
According to [Ruh07], ‘expectation’ is “a fuzzy term in metrology”, as it is said
to have three different meaning: “synonym for the arithmetic mean value” (in
[ISO06b] “expectation, i.e. the mean of a specified set of measurements” (3.2.7d)),
“a result of the expectation operator” or, “the result of linear averaging operation
in the statistic domain using infinite effort” (“the results are never expectations
but always estimates.” See also Section 4.2).
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the known “correction for bias”. In [Wil06b], there is “no distinction made be-

tween the so-called ‘random errors’ and ‘systematic errors’; both are regarded as

being randomly distributed with respect to the set of errors that would arise under

the universe of potential measurement systems and measurements”. In [FP06] the
systematic error is considered a random variable with the characteristics il-
lustrated in Section 6, model (4), and in [For06] they have a role in decision
making.

Furthermore, DIN 1319–1 [DIN95] indicates that the total systematic er-
ror comprises two components:

— One covers the known systematic measurement error,
— The other one covers the unknown systematic measurement error.

Concerning the known systematic errors see Section 3 on GUM treatment.
Concerning the unknown systematic errors, the procedures defining repro-

ducibility (within one laboratory) only allow an estimate of the increase in
uncertainty due to the effect of the variability of the influence parameters to
be evaluated, on the basis that the procedure was itself able to randomise
them fully (an overly optimistic interpretation according to [Gra05]). In fact,
no procedure suitable to obtain measurement precision within one laboratory
can provide evidence on whether the expectation of the uncertainty compo-
nent due the total variability of the influence factors is zero or not [PF06].

Two important consequences follow.

1. When the variability occurs during a “short time interval” or otherwise
when the experimental conditions are such that most of the influence
parameters are out of control, the conceptual difference in ‘reproducibility’
and ‘repeatability’ vanishes;7

2. Should some influence factors remain constant or their mean value be
different from zero8, the bias cannot be known within the laboratory,
unless and until that standard is compared with another standard [PF06,
VIM08,Wil06b,FP06]: there is a time–scale dependence of the data model
for reproducibility.

Coming now to the term accuracy, VIM [VIM08]9 states: (2.13) “closeness

of agreement between a measured quantity value and a true quantity value of a

measurand”, noting: “1 – the concept ‘measurement accuracy’ is not a quantity

and is not given a numerical quantity value. A measurement is said to be more

accurate when it offers a smaller measurement error. 2 – the term ‘measurement

accuracy’ should not be used for measurement trueness and the term measurement

precision should not be used for ‘measurement accuracy’, which, however, is related

7 This issue is pointed out also in ISO 21749 [ISO05].
8 As in the definition of systematic error of [VIM08] and [QUAM00] reported above.
9 This is basically the definition up until the 2004 VIM draft [VIM04]. It is

worth reporting that in the 2006 VIM draft, two alternate definitions had been
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to both these concepts. 3 – ‘Measurement accuracy’ is sometimes understood as

closeness of agreement between measured quantity values that are being attributed

to the measurand.”
The true value of a quantity is: (2.11) the “quantity value consistent with the

definition of a quantity”, noting that “in the Error Approach to describing mea-

surement, a true quantity value is considered unique and, in practice, unknowable.

The Uncertainty Approach is to recognize that, owing to the inherently incomplete

amount of detail in the definition of a quantity, there is not a single true quan-

tity value but rather a set of true quantity values consistent with the definition.

However, this set of values is, in principle and in practice, unknowable”, and that
“due to definitional measurement uncertainty, there is a distribution of true values

consistent with the definition of a measurand . . . by nature unknowable”. In the
NIST Handbook “accuracy is a qualitative term referring to whether there is agree-

ment between a measurement made on an object and its true (target or reference)

value” [NIST06].
Testing applications very often show an intrinsic difference with respect

to most metrology applications, in the sense that a true value can be as-
signed to the measurand: in fact, ISO 5725–1 defines trueness (3.7) in an
operational way as “the closeness of agreement between the average value ob-

tained from a large series of test results and an accepted reference value” (ISO
5725–5 is dedicated to this issue). In testing, bias10 is defined as follows:
“the difference between the expectation of the test result and an accepted reference

value” [ISO93, A2LA02, ISO99], but as “the difference between the expectation

of a test result or measurement result and a true value” in [ISO06b]; “the bias of

a test method is usually determined by studying relevant reference materials or test

samples. . . . The uncertainty associated with the measurement of the bias is an im-

portant component of the overall uncertainty” [EA03]; “where the bias is significant

compared to the combined uncertainty, additional action is required” (i.e., elimi-
nate, correct, report, or increase uncertainty) [QUAM00]. In testing there is
also a specific term ‘method bias’. In general, according to [NIST06], “bias is

considered: (2.13) “<classical [error] approach> closeness of agreement between
a measured quantity value and a true quantity value of the measurand” and not-
ing “The concept ‘measurement accuracy’ is not given a numerical value, but a
measurement is said to be more accurate when it offers a smaller measurement
uncertainty. Measures of measurement accuracy are found in ISO 5725”; (2.14) “<
uncertainty approach> closeness of agreement between measured quantity values
that are being attributed to the measurand” and noting “the concept measure-
ment accuracy is not given a numerical value, but a measurement is said to be
more accurate when it offers a smaller measurement uncertainty”. Then, the VIM
3rd Edition [VIM08] adopted the “Uncertainty Approach”.

10 Actually, “consistent bias”, as indicated by NIST “bias that is significant and
persists consistently over time for a specific instrument, operator, or configuration
should be corrected if it can be reliably estimated from repeated measurements.”
(2.5.3.3.2.) [NIST06] (notice the incorrect use of the term ‘repeated’). See also in
this respect [ISO04].
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a quantitative term describing the difference between the average of measurements

made on the same object and its true value. In particular, for a measurement labora-

tory, bias is the difference (generally unknown) between a laboratory’s average value

(over time) for a test item and the average that would be achieved by the reference

laboratory if it undertook the same measurements on the same test item”, and “the

terms ‘bias’ and ‘systematic error’ have the same meaning in this handbook”.
Testing assumptions concerning a known true value are generally not pos-

sible in metrology as there is no authority higher in the hierarchy to determine
a true value.

3 The GUM approach to the measurement process:
Type A and Type B components of uncertainty

In order to arrive at an “expression of experimental uncertainties”, a different
classification of the uncertainty components to that arising from the three–
step procedure discussed in Section 2 has been adopted since 1980 (Recom-
mendation INC–1 (1980) [INC80, Kaa81, Gia82]). It defines two categories
“according to the way in which their numerical value is estimated”, respectively:
A —“those which are evaluated by applying statistical methods to a series of re-

peated measurements”; and B —“those which are evaluated by other means”. The
GUM [GUM95] adopted in 1995 this classification for the evaluation of the
standard uncertainty:

(Type A) “‘. . . method of evaluation of a standard uncertainty by the statistical

analysis of a series of observations” (2.3.2);
(Type B) “. . . method of evaluation of a standard uncertainty by means other

than the statistical analysis of a series of observations” (2.3.3).
With reference to the DIN distinction, GUM clearly considers only the

known systematic errors (in contrast to EA–4/16 and A2LA Guide), that is,
the recognised effects of some influence parameters. Its approach consists in
randomising the recognised systematic effects11. Therefore, it ensures only a
partial compensation of the total systematic error, which consequently could
not be declared to have zero expectation12.

11 Zero expectation after correction of ‘known’ systematic effects. The random com-
ponents of uncertainty “include components of uncertainty associated with the
corrections” [Gra05].

12 Another viewpoint is that, should unrecognised systematic effects be postulated,
the state of knowledge about these effects should be assumed to have (exactly)
zero expectation. However, this seems to contradict the usual definitions of ‘sys-
tematic effect’ as the source of ‘bias’ (see Section 2.1). In addition, postulating
that after the ‘correction’ of recognized systematic effects the expectation is zero
requires knowledge of the ‘true value’, which is not always the case.
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3.1 Basic nomenclature

Repeatability

According to VIM [VIM08], “Type A evaluation of measurement uncertainty”
arises from the “evaluation of a component of measurement uncertainty by a sta-

tistical analysis of measured quantity values obtained under defined measurement

conditions” (2.28), where the conditions can be “repeatability condition of mea-

surement, intermediate precision condition of measurement, and reproducibility

condition of measurement”. This definition represents a substantial change with
respect to [VIM04] draft13 as it now includes intermediate and reproducibility
conditions.

The GUM apparently dropped from the definition the term ‘repeated’ with
respect to INC–1 (see above), and uses instead “founded on frequency distri-

butions” (4.1.6), but it does in fact use ‘repeated’, for example, in (3.3.5):
“. . . obtained from a Type A evaluation is calculated from a series of repeated ob-

servations . . . ” 14.
In other words, the values of all the influence factors/parameters are as-

sumed not to change during those intervals of time [PF06]. This situation is
that already said to indicate that all the measurements can be considered to
occur at the same “experimental unit” [ISO99], and corresponds to the repli-
cation of measurements for the purpose (a) in Section 2. The current definition
of Type A evaluation seems only to involve the replication of measurements
for purpose (a).

Reproducibility

GUM prescribes: (3.2.4) “it is assumed that the results of a measurement have

been corrected for all recognised significant systematic effects”, effects that are
arising from “not being able to hold completely constant each influence quan-

tity” [GUM95]15. The recognised systematic errors are assumed to be random
variables with zero expectation after correction (GUM 3.2.3), but the assump-
tion that all systematic effects have zero expectation is not always valid in

13 (2.13) “A statistical analysis of the quantity values obtained by measurements
under repeatability conditions”.

14 But see Footnote 15.
15 However, GUM is referring this sentence to repeated measurements: (3.1.5) “vari-

ations in repeated observations are assumed to arise because influence quantities
that can affect the measurement results are not held completely constant”, a con-
cept that can be found also, for example, in (3.2.2). This is inconsistent according
to the prevailing definition of ‘repeated measurements’. In (F.2.4.5) GUM con-
siders the exceptional case when a correction is not applied and contributes to
the uncertainty. An extension of this procedure for “uncorrected bias” can be
found in [PEP97]. Methods for taking into account the uncertainty in the case
of uncorrected bias can be found in [Letal00] and [ME08]. See also in this book
Chapter 10, Section 3.2.1.
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metrological experiments (or even, in some cases, can never be valid16), as
explained before (but see also Footnote 12). Essentially, the GUM is “ran-

domising systematic errors”, an effect obtained when “the [experimental] setup is

frequently arbitrarily readjusted; . . . many objects, each encumbered with a specific

systematic error, are measured, . . . all other systematic influences of any relevance

are changed” 17 [Gra05].
In this latter interpretation, the GUM prescription is typical of the repli-

cation of measurements for the purpose (b) in Section 2, that is, to get a
measure of the reproducibility.

In addition, one should argue that the concept of ‘influence quantity’ vari-
ability is not a characteristic of repeatability (‘repeated observations’) but of
reproducibility (and that of ‘systematic effects’ a characteristic of accuracy).

For an influence quantity, GUM means a “quantity that is not the measurand

but that affects the result of the measurement” ([VIMII] 2.7), whereas in VIM
[VIM08] it is defined as a “quantity that, in a direct measurement, does not

affect the quantity that is actually measured, but affects the relation between the

indication and the measurement result” (2.52).
It is essential to stress that, in fact, the influence factors are all and the

only potential sources of what are called ‘systematic errors’.
GUM, as said, uses the reproducibility definition, but for “observations . . .

obtained under the same conditions of measurement” (4.2.1), and is not consistent
with the prevailing definition of reproducibility.

On the other hand, “Type B evaluation” (“of measurement uncertainty com-

ponents”) is defined by GUM as indicated above (and similarly in VIM up until
2004) and is “founded on a priori distributions”. VIM then [VIM08] changed
the definition as follows: (2.29) “evaluation of a component of measurement un-

certainty determined by means other than a Type A evaluation of measurement

uncertainty”, with examples given: “evaluation based on information associated

with authoritative published quantity values; associated with the quantity value of

a certified reference material; obtained from a calibration certificate; about drift;

obtained from the accuracy class of a verified measuring instrument; obtained from

limits deduced through personal experience”. These examples of Type B evalua-
tion seem basically involving only expert judgment.

Neither Type A nor Type B evaluations seem to fit unequivocally measure-
ments performed with purpose (b), the assessment of reproducibility, as defined
in Section 2: not Type B, because uses “method of evaluation of a standard un-

certainty by means other than the statistical analysis”, nor Type A because the
reproducibility assessment should be based on ‘not-repeated’ measurements.

16 For example, once a MRA key comparison is done and Draft A of the comparison
Report is distributed, outlying data become an evidence of “known systematic
effects that significantly influence the estimate”, so, according to GUM, should
be “corrected”: this is not allowed by MRA.

17 Obviously these “influences” are only those under the control of the experimenter.
Time is almost never an influence quantity in itself, but in time the influence
quantities can show a variability.
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Accuracy

For GUM, the situation has been illustrated above. In it “the term ‘true value’ is

not used” because it is “viewed as equivalent” to the term “value of a measurand”
(B.2.3), and it cannot be determined. However, for a definition of accuracy,
the VIM one (3.5, II edition) [VIMII] is adopted, though it resorts to the term
of ‘true value’.

EA–4/16 [EA03] indicates “this document interprets the GUM as based on

corrections included in the model to account for systematic effects; such correc-

tions are essential to achieve traceability”. A2LA Guide [A2LA02], uses the term
‘bias’, adding: “the method assumes that all significant systematic effects have

been identified and either eliminated or else compensated for by allocation of suit-

able corrections”.
In conclusion, the effect of the variability of the influence factors can be

summarised as follows.

– If the variability of (some of) the influence factors can be estimated, a
correction can be performed for the expectation according to the GUM,
and the associated variability shall be included in the random error.

– If their variability cannot be estimated and the values of some of the
influence factors vary, no correction is possible and the whole effect shall
be included in the random error.

– GUM assumes that after these operations, observed data are associated
with random variables whose expectations are zero.

4 Other approaches to errors in the measurement
process

A comprehensive discussion of contrasting viewpoints concerning the theory of
errors, namely in respect to the approach treated in Section 3 (called “rando-

matic theory of errors”) compared with an approach similar to the one treated
in Section 2, in the period between the initial recommendation [INC80] and its
adoption in [GUM95], can be found in [Col87]. See also [Eis83]. A comparison
between the two approaches of Sections 2 and 3 can be found in [ISO04]. A
treatment of bias in the context of the approach of Section 3 (GUM) can be
found in [ISO05].

Other approaches have been proposed. In Section 4.1 (and 6.1.3) one
of them is summarised. Another approach can be found in [SSC06], where
also a comparison with other approaches is performed, “based on the level

of the analytical information used to estimate the measurement uncertainty (e.g.,

supralaboratory or intralaboratory information), instead of the direction of infor-

mation flow (‘bottom–up’ or ‘top–down’) towards the level of information where the

test is performed”.
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4.1 The total error and its shared and specific components

In [Wil06b] a different approach to the components of the measurement
error in metrology has been proposed. It is based on the concept of “in-
teroperability”, that is, of the “irrelevance, for the task in question18, of the

identity of the standard to which the appropriate measurement result is traceable”.
It comes from the vision of “an approach to uncertainty analysis emphasizing a

natural expectation of a client” [Wil06d].
For this purpose, the guiding principle is that the uncertainty is related to

a “total error”, linking the measurement results and the unknown measurand
value, the latter being “the value taken by some appropriate random variable”.
“No distinction [is] made between the so–called ‘random errors’ and ‘systematic

errors’ that make up the total error; both are regarded as being randomly distributed

with respect to the set of errors that would arise under the universe of potential

measurement systems and measurements”.
A distinction is made, conversely, between “a [error] component incurred by

each laboratory” and “a [error] component incurred by a laboratory independently

of the results of the other laboratories and of the first component”, that is, specific
to each laboratory considered, when the measurements are performed within
each laboratory.

If the measurement results of at least two laboratories are considered, “the

rationale surrounding a comparison involves the possible existence of an extra error

with a magnitude that is sufficient to indicate inconsistency with other results”. Also
for this additional error component, it is supposed “the existence of shared and

individual components [of the error] . . . (possibly zero) arising from unforeseen or

incompletely assessed sources of error”. See Section 6 about the corresponding
proposed data model (6).

A distinction between shared and specific errors can also be found in this
book, Chapter 5, Section 5.1.

4.2 A distinction between measurement and measurand

Measurement results aim at accurately representing the value of the measur-
and. However, although the measurement result is conceptually different from
the value of the measurement, “for any scalar quantity, subtleties arise only when

its uncertainty is not symmetric about that quantity’s reported value [DSWH05],
so usually no distinction needs to be made between the distribution of measurements

(or gedanken measurements) and the distribution of the measurand (to which formal

uncertainty distributions refer). The formal justification for this is facilitated by the

standard practice by metrologists of using the same value to be the best representa-

tion both of the (fully corrected) measurement, and of the measurand. This ‘fiducial

18 The task in question is that concerning the “operability” of a metrological insti-
tution (NMI), defined as “the ability of the NMI to make measurements that are
sufficiently accurate for the task in question” [Wil06b].



An Introduction to Data Modelling Principles in Metrology and Testing 13

value’ [see this book, Chapter 3, Section 4 and [WI06]] simplifies, and in our

view strengthens, the fiducial argument”. [citation from this book, Chapter 11]

5 Data modelling in metrology and in testing
for intralaboratory measurements

Intralaboratory operations on a single standard comprise consideration of
both repeated and nonrepeated measurements. Though there are some ba-
sic differences in modelling for metrology and testing, it is useful to discuss
the two frames together, in order to show and discuss in a simple way the
similarities and dissimilarities.

5.1 Repeated measurements

When J replicated measurements are performed in a laboratory under re-
peatability conditions, within each ith ‘experimental unit’19 [ISO99], the data
models20 used for their results can be different for the metrology and for the
testing contexts.

In calibration, the model (called “nonexistent laboratory effect model” in
[KDP03]) is written:

yij = a+ εij i = 1, . . ., I j = 1, . . ., J21, (1)

where y, the estimate of the measurand value, is drawn from a random vari-
able Y = f(X1, . . . , XN ), Xn the “measurable quantities” [EA03], a is the value
of the measurand – always unknown by definition – and εj is the zero-mean
random error occurring at the jth measurement. The replication of the mea-
surements allows knowledge to be gained about the statistical properties of Y .
By increasing the number of repeated measurements, the standard deviation
associated with the estimate of the measurand value can be reduced.22

19 Here, I distinct ‘experimental units’, or groups of measurements, are performed
in a single laboratory at different times. Under certain special conditions, as dis-
cussed in Section 6, one can consider instead the case that I laboratories are
performing the measurements, each on their own standard, and they pertain to
the same ‘experimental unit’: in this case, the subscript i refers to the ith labo-
ratory and any reference to ‘group’ should be changed to ‘laboratory’.

20 “The statistical conclusions are conditional on the assumed model. Therefore, the
conclusions are justified only to the extent that the assumed model is justified”
[Kak04].

21 If same J for all i.
22 This model is basically the one underlying the GUM. It is also typical of the

Bayesian approach: in fact, the “beliefs prior to making observations” require
zero–mean probability distributions, because they “cannot reflect uncertainty
arising from an unknown and unobservable nonzero distribution mean” and “the
sign of a systematic error is typically unknown” [Col87].
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In testing, the model is written differently:

yij = m+ bi + εij i = 1, . . ., I j = 1, . . ., J, (2)

where “m is the general mean (expectation); b is the value of a bias component

under repeatability conditions; ε is the random error occurring under repeatabil-

ity conditions” [ISO94]23. Commonly, in testing m is known, assessed by a
hierarchically higher rank of laboratories or stipulated by consensus.

Thus, the metrology and testing models are based on different assump-
tions. This becomes evident by considering the different answers, in the two
cases, to the simple question: can the concept of ‘repeated measurements’ be
extended inter laboratories?

In testing the answer is yes, because: (i) a standard method is used; (ii)
a default uncertainty is associated to the method; (iii) the ‘true value’ is
known (‘reference value’); (iv) each laboratory must work under ‘repeatability
conditions’.

In calibration the answer is generally no, because: (i) the use of a stan-
dard method is not required; (ii) uncertainties in different laboratories can
span more than a factor ten; (iii) the ‘true value’ is, by definition, unknown
because there is no higher-ranked laboratory to assess it; (iv) each labora-
tory assumes to be working under ‘reproducibility conditions’, though this
assumption cannot be fully tested using only a withinlaboratory knowledge.

5.2 Non-repeated measurements on the same standard
within each laboratory

Before introducing the models for reproducibility, it is worthwhile remem-
bering what has been illustrated in Section 2.1, that the nature of systematic
effects and their variability is not unequivocally specified in written standards
and in the literature.

Methods for the purpose (b) (Section 2) resort to model (1) that becomes,
for these non-repeated measurements24 before any comparison takes place (i.e.,
according to the withinlaboratory knowledge; see the next Section 6 and Foot-
note 27 for the effect on the model of betweenlaboratories knowledge):

yij = a+ εij + ηij i = 1, . . ., I j = 1, . . ., J, (3)

where ε is the part of the zero-mean random error occurring at every i re-
peated measurement and η is the one arising from the additional non-repeated
measurements obtained by checking with a suitable procedure – possibly aug-
mented by expert judgement – the effect of the variability of the influence
23 Model (2) can also be written by explicitly specifying the components of bias bi

and of the random error εij [ISO94, ISO04, ISO05,PF06].
24 They are generally performed in I groups or series, corresponding to I ‘exper-

imental units’ [CCCP04, CCPR04, CCPR05, CPR02, Fil06, Pav00, Pav04, PC90,
PF06,PICBC03].
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factors: ηij = Σηijk over k influence factors. Actually, only (εij + ηij) are
measured. Should randomisation of systematic effects truly occur, both εij

and ηij would be really zero-mean errors.
In [KDP03, Kak04] (see also [For06b]) this model is called the “random

laboratory-effects model”, written as model (2), where (adapting to the chapter
notation) bi = (Xi − Yj) is the laboratory effect in xij (‘bias’ in the NIST
terminology) and εij = (xij – Xi) is the intralaboratory error in xij . Capi-
tal letters indicate the random variables from which the samples, written in
lowercase letters, are drawn. “The laboratory biases bi are regarded as random

variables having the same normal sampling distribution with expected value zero

and variance σ2
i ≥ 0, called inter laboratory variance” [KDP03].

As a matter of fact, in most cases, the data supplied by each laboratory to
its users as a calibration, or to a comparison in the case of intercomparisons,
should be considered representing the typical capability of the laboratory, that
is, as samples from the population of repeated measurements performed on the
specific laboratory standard. The laboratory value is supplied as a represen-
tative value of its (i.e., local) population; it is not a summary statistic of only
the (few) specific measurement results obtained for the calibration, or for the
comparison. It is assumed, instead, to be consistent with the expectation of
the local standard, as currently maintained. In one word, it is not a ‘special’
value nor specific of the calibration, or of the comparison. Similarly the asso-
ciated uncertainty is the laboratory typical level of capability in realising the
standard, including the reproducibility component (η) in model (3) 25, not
the uncertainty associated to the (generally few) specific measurement results
obtained for the calibration or for the comparison [Pav06].

As already stated, no intralaboratory experimental procedure on a single
measurement standard can provide any evidence that the uncertainty com-
ponent due to the total variability of the influence factors, η, is zero-mean or
not [PF06].

In general, intralaboratory comparisons of measurement standards add
limited knowledge in this respect; however, they fully change the perspective
of the measurements, as illustrated in Section 6.

6 Data modelling in metrology and in testing
for inter laboratory measurements (intercomparisons);
comparison specific problems

In order to evaluate accuracy, replicated measurements are gathered for pur-
pose (c) in Section 2 in a comparison, to perform an evaluation that includes
the analysis of the differences found between the expectations assigned to

25 Notice again that, the weaker the control on the influence factors, the less the
conceptual difference between the concepts of ‘repeatibility’ and ‘reproducibility’.
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their samples/devices/standards by the laboratory (in intracomparisons) or
by each laboratory (in intercomparisons).

In other words, common past experience suggests that one should assume,
as prior knowledge, that the comparisons (both intra and inter) are the only
means that metrologists have to obtain evidence about the differences be-
tween the measured values of the samples/devices/standards assigned by each
laboratory. In this respect, the aim of an intra or of an inter laboratory com-
parison operation, in general (and of a KC in particular), is not to increase
the number of repeated measurements for decreasing the standard deviation
associated with the measured value of the standards, but to obtain a measure
of the differences between the measured values of the participant standards;
that is, for MRA, to obtain “a quantitative measure of the degree of equivalence

of national measurement standards” [MRA99].
As said in Section 5, intracomparisons are generally of limited value for

this purpose. In fact, even if every laboratory provides values “corrected for

all known systematic effects”, this knowledge is in general insufficient to obtain
an uncertainty budget within each laboratory able to determine a reliable
assessment of accuracy without external assessment.

It is necessary to stress immediately that, contrary to precision evalu-
ation, intercomparisons do not evaluate the detailed uncertainty informa-
tion internal to each laboratory, but instead evaluate only input data pro-
vided to the comparison by each laboratory, in general a single value for
each standard and an associated uncertainty estimate. It is very seldom
that comprehensive statistical information such as a probability density func-
tion (pdf) (whose moments provide the mean, standard deviation, etc.) is
supplied.

6.1 Data modelling

The models illustrated in the following apply to the input data for an in-
tercomparison, irrespective to the intrinsic nature of the measurand. The
measurands are not all of the same nature in comparison operations. In fact,
two broad classes [Pav05] or types [KDP04] of measurands have been iden-
tified. Measurands of different nature require careful consideration when the
statistical treatment of the input data has to be decided upon and the out-
comes computed, for example, the KCRV for the MRA Key Comparisons (see
Section 6.2).

There are many approaches in the literature to model comparison data26.
However, one can basically summarise them into the two main viewpoints
labelled as “Approach A” and “Approach B” in the following applying to

26 For example, [CFH07, DP06, FP06, Gra05, IWM04, Kak04, KDP03, KDP04,
KTH06, LW98, LW06, PM82, RV98, SE91, SoSi06, Whi00, Whi04, WI06, Wil06b,
Wil06c] and references therein.
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most relevant cases, with some exceptions summarised below in “Other Ap-
proaches”.

Approach A

The prior knowledge is used, consisting of the evidence that for comparisons in
general, “when the i–th participant repeats the comparison j times, then its results

can be distributed about an expectation value differing from the measurand value

a by an amount bi with standard deviation si” [Whi00], where bi has the same
meaning as in model (2), and is normally called the ‘laboratory component of
bias’ (with risk of confusion with the meaning of this word in testing).

In other words, the basic model for a comparison operation (e.g., [Bal01,
CCCP04,Due07,KDP02,KDP03,Kak04,Pav04,Pav05,Pav06b,PF06,Whi00,
Whi04,WI06b]) is the following27:

yi = a+ bi + εi i = 1, . . . , I (4)

where the subscript i refers to the standard of the ith laboratory and bi are
random variables. Because each laboratory generally supplies a single value
to the comparison, index j is omitted, and consequently the input data to
the comparison are a set of I non-repeated measurement results. The random
variables Bi from which the values bi are drawn are assumed to not have
expectation zero.

In [KDP03] this model is called the “the systematic laboratory-effect model”
and the use of the ‘corrections’ recommended by GUM is preferred to the
use of the ‘bias’, because “the bias (XUCR – Y ) is an unknown constant but the

correction for bias, denoted by C, is a variable with a state–of–knowledge probability

distribution”, where XUCR denotes the uncorrected X and the “expected value

and standard deviation . . . [are] denoted by c and u(c), respectively”, with c not
necessarily null.

In [FP06], model (4) has been used in an apparently different way. In it, “a

represents the measurand associated with the artefact, bi a systematic [laboratory]

effect present in all measurement results from that laboratory, and εi a random

effect for that particular result: As part of the uncertainty budgeting activity, the

laboratory estimates that ei ∼ N(0, σ2
i ) and assigns a distribution Bi ∼ N(0, ρ2

i ) for

the systematic effect parameter”, where Bi are the random variables from which
the values bi are drawn. The authors “regard ρ and σ as known a priori”28 and

27 One has to note that, applied to sets of intralaboratory data, model (4) should also
become the model to be used instead of model (3) for the non-repeated measure-
ments performed for obtaining a measure of reproducibility when withinlaboratory
knowledge is supplemented by the betweenlaboratories knowledge arising, e.g.,
from a comparison operation. In model (4) εi becomes εi + ηi.

28 In “the ‘standard’ model of ISO 5725 it is assumed that ρ and σ are constant
over i” [FP06] because a standard method is used, but that does not, in general,
apply to metrology.
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this justifies the zero-expectation assumption, as indicated here in Section 5,
whereas, obviously, the related uncertainty ρ is not omitted, essentially the
situation described in Section 5 when model (2) applies. Then the comparison
is performed, and some knowledge is gained about the Bi. Therefore, the
treatment in [FP06] is simply taking into account the time scale indicated
in Section 5 concerning the effect of the variability of the influence factors
(see Footnote 27). In [FP06] only the typical case of testing is discussed,
where eventually “the reference value a is published”: in this case, each bi can
be obtained individually. In the most common case in metrology, instead, a
remains unknowable, so the situation is that depicted in Footnote 30. However,
a can be published in some cases, such as the KCRV of a key comparison (see
Section 6.2).

Approach B

Model (1) is used in this approach (e.g., [CC03,Cox02,EWC05,Lir06,LW06,
LW06b,Nie00]), disregarding the fact that comparison operations in metrol-
ogy necessarily involve non-repeated measurements (see Footnote 22). It does
not include a laboratory ‘bias’ term, and, according to Footnote 19, the in-
tercomparison index i indicates the ith laboratory:

yi = a+ εi i = 1, . . . , I, (5)

where Y ∼ N(0, σ2). Because each laboratory generally supplies a single
value to the comparison, index j is omitted, and consequently the repeated
measurement results are a set of I observation values, irrespective of the fact
that they are taken one for each laboratory29, where yi is drawn from the
random variable Yi and εi is the zero-mean error associated to it.

Other approaches

Shared and individual components of error

In [Wil06b], as a consequence of the assumptions reported in Section 4.1, the
data model is written:

yi = a+ ε+ εi + ε′ + ε′i, (6)

where:

– a is the value of the measurand, that is, “the quantity intended to be mea-

sured” according to VIM definition, “by nature unobtainable”;

29 Because these are repeated calibration measurements performed in different labo-
ratories, it may be difficult to apply them to the current ‘repeatability condition’
definition.
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– The first pair of subsequent terms are estimates performed within each
laboratory: ε is the component of the total error that is assumed to be
common to all laboratories, therefore not depending on the subscript i; εi

is the zero-mean and with variance depending on the laboratory;
– The second pair of terms, “(possibly zero) arising from unforeseen or incom-

pletely assessed sources of error”, additionally holds specifically in the case
of comparisons: ε′ is “the shared offset of which the laboratories are unaware,

be it a reflection of the state of the art, an offset due to incomplete understand-

ing of the measurement model or . . . , for instance”, which is not determined
by the comparison; ε′i are “the individual offset” for each laboratory arising
from a source unrecognised by the laboratory.

The model, according to its author’s assumptions, can be simplified:

– ε′i values “constitute a sample drawn randomly from a normal distribution with

unknown variance σ
′2, possibly contaminated by outliers”.

– E + E′ = ε+ ε′.

Thus, the expectation μ = a+ ε+ ε′ and Ei +E ∼ N(0, σ2
i + σ′2), with μ

and σ′2 being unknown parameters.

Nonprobabilistic systematic errors

Opposite to the previous approach and to GUM, in [Gra01,Gra05] the system-
atic errors are preferred to be treated as nonprobabilistic, “to make allowance

for them by introducing biases and worst–case estimations”.
The plurality of “unknown systematic errors” are supposed to bring to an

overall effect, a constant-in-time unknown systematic error f , whose value is
supposed to fall into a confining interval f1 ≤ f ≤ f2. This interval is defined
as the bound for the values of f , is not a confidence interval, and its width
is matter of expert (metrologist) judgement only. The corresponding model is
written as model (4), but in this case b ≡ f is not a random variable.

A full exploitation of the concept of using bounding intervals, particularly
useful in the treatment of systematic errors, is developed in Chapter 4 of
this book. Interval statistics, in turn, can be seen as a particular case of
fuzzy statistics ([ABF04] and this book Chapter 7). For a fuzzy approach to
the theory of measurement inexactness see, e.g., [UW03].

6.2 Specific problems and outcomes of the intercomparisons,
namely the MRA key comparisons

In Figure 1 the process, from planning to outcomes, of a comparison is sum-
marised. As can be found in more detail in [Pav06,Pav07], the basic steps of
this process are the following.
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Fig. 1. Roadmap of a (key-)comparison [MRA99], from planning to outcomes. Path
starts from top left to right, then bottom left to right

Step 1: Before planning a comparison

Preliminary issues have to be understood and decided:

– Whether a specific comparison, namely a ‘key comparison’, has to be con-
sidered a proficiency test [Pav06]

– Which is the intrinsic nature of the standards to be compared (‘classes’
or ‘types’ of standards) [CC03, Pav00, CP02, CPR02, CCCP04, CCPR05,
Due07,Pav05,KDP04,SD05]

Step 2: Identifying the measurand and writing the protocol

Actions have to be taken before starting the exercise to identify correctly the
measurand subject to the comparison [Pav07] and to write a clear protocol
allowing a correct execution of the comparison and of the subsequent data
analysis [Pav07].

Step 3: Modelling comparison input data and computing the comparison
outcomes

Input data to the comparison: The circulation scheme of the standards needs
be carefully planned and clearly identified and so needs the type and number
of input data to the comparison required from each participant [Pav07].
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Modelling of the input data is generally performed depending upon the
decisions of the consortium of participating laboratories, normally according
either Approach A or Approach B.

Approach A. After estimates of the differences between values bi are ob-
tained30, a check for the compatibility31 of the bi with each other may be
performed. Compatibility test failure for some (bh – bk) shall indicate that
the hypothesis that these values are not significantly different from zero is
false.

Approach B. A test is performed to check for consistency of the data with
the assumption of repeated measurements. Usually, a χ2 test is proposed for
this purpose, or the use of ‘normalised errors’ (“metrological ratio”) or ‘z–
score’ (e.g., see [SD06] and references therein). Test failure shall not pass the
hypothesis that the measurements are repeated. Test acceptance shall not
change the fact that they intrinsically are non-repeated measurement.

Output summaries of the (key-)comparison32. It is vital to compute cor-
rectly the summary statistics and, in the case of a MRA key comparison
(KC) [MRA99,CIPM99], the specific output parameters summarising the re-
sults obtained:

– The key comparison reference value (KCRV, when necessary [Pav07])
– The degrees of equivalence (DoE, both bilateral and with respect to the

KCRV)
– Any possible ‘significant unresolved deviation’ (SUD)
– The links between different KCs, for their repository in the BIPM database

[KCDB] and their use for the ‘calibration measurement capabilities’ (CMC).

30 In fact, in metrology bi remain as unknown as a is, only the differences (bh – bk)
of pairs of laboratories are measured.

31 According to VIM [VIM08] the definition of “metrological compatibility” is (2.47)
as “absolute value of the difference of any pair of measured quantity values from
two different measurement results is smaller than some chosen multiple of the
standard measurement uncertainty of that difference”, also noting that “metro-
logical compatibility of measurement results replaces the traditional concept of
‘staying within the error’, as it represents the criterion for deciding whether two
measurement results refer to the same measurand or not. If in a set of mea-
surements of a measurand, thought to be constant, a measurement result is not
compatible with the others, either the measurement was not correct (e.g. its mea-
surement uncertainty was assessed as being too small) or the measured quantity
changed between measurements”. Until 2004 [VIM04], it was “property satisfied
by all the measurement results of the same quantity, characterised by an adequate
overlap of their corresponding sets of quantity values”.

32 For example, [Bal01, CCPR04, Cox99, CHW05, DSWH05, DLCSD06, DBCSD06,
Due07b, EWC05, IWM04, Kak04, KDP02, KDP03, KDP04, Letal00, Lir06, Mul00,
Nie00, Pav05, Pav06, Pav07, PF06, Rat05, SD06, SD06b, SHD02, SHD04, SWD05,
SWD06,Sut04,Tom05,vC03,WD98,WI04,Wil02,Wil03,Wil06a,Wog05,ZLSS04,
ZSLS05].
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Consistency and compatibility

It is worth noting that the issue of consistency33 and compatibility should
not be confused with that of repeated or non-repeated measurements. In fact,
the latter does solely involve the assessment whether a set of measurements
is homoscedastic: in particular for Approach B, the variance of the random
variables Yi should be the same for each and all laboratories. The ‘consistency’
test introduces, instead, the possibility that different random variables Yi can
have different expectations and different variances and performs a probabilistic
evaluation of the differences in expectations, to which a criterion is generally
associated for the definition of outliers, to be excluded from the computation
of certain summary statistics. The purpose of a ‘compatibility’ test in the
frame of Approach A is similar 34.

The lack of input data consistency cannot directly affect the outcomes of
a key comparison, because, according to the MRA [MRA99], the differences
between laboratory data have the meaning of “degrees of equivalence” (DoE),
a nonhierarchical concept used in the MRA instead of the concept of ‘trace-
ability’, so preventing the use of the concept of outlier, a concept common in
testing and in comparisons performed for other purposes.

For this reason, several authors [Bei02,Bei03,Cox02,Cox07,DS06,DSD07,
IWV04,SD06,SD06b,WI04,WI05] have recently proposed consistency tests.

This is a mandatory exercise in testing, and is also extremely useful in
calibration, when possible. In the context of MRA key comparison, however,
inconsistent data are proposed to be screened out only for the computation
of the KCRV, limiting its computation to a subset of the dataset, often called
the ‘maximum consistent set’. It is believed that this would lead to a ‘better’
KCRV without violating the MRA prescriptions indicated in Footnote 16,

33 A term used in MRA but not defined by VIM. However, one can say that a set
of compatible pairs of observation values is a consistent set.

34 The test hypotheses are generally based on confidence levels or intervals. In
metrology, the indication of a threshold for the definition of ‘outlier’ would ap-
pear less arbitrary if, instead, a risk level was used. In fact, assessing the level
of the risk of a failure (e.g., a wrong value in a certificate of calibration or of
test) by indicating how critical (risky) is that value – consider, e.g., a medical or
contaminant analysis – is much closer to the intended use. Correct, safe results
may be obtained only by deriving proper information concerning acceptable risk
from the real situation, and evaluating accordingly the boundaries of the relevant
confidence interval. When considering a set of experimental data obtained from
a population described in terms of a statistical distribution, a result may fall in a
low probability tail owing to chance only, or to the occurrence of an exceptional
phenomenon, or a combination of both. No matter which is the real cause, an
outlier is produced; should the existence of a perturbing phenomenon be ruled
out, chance is left as the only explanation of an unlikely occurrence.
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concerning the (unilateral) degrees of equivalence, (yh – KCRV) for the hth
participant, where the KCRV is obtained as a summary statistic of the yh.35

However, this is not true according to [Pav07b]. In fact, if the degree of
consistency could determine how the KCRV is calculated, it will therefore in-
fluence the KCRV and the DoEs. However, MRA prescribes that the reported
results cannot be adjusted because the DoEs are to be defined in terms of the
(unadjusted) data.

Mixture model

A factor influencing the estimate of compatibility or consistency of the input
comparison data is the nature of the standards being compared (cfr. Step 1 ),
which, according to [CP02,CCPR04,CCPR05,PF06], can suggest the need to
introduce a ‘mixture model’ (see, e.g., [Eve81,McLP00]).

The probabilistic model, called the mixture model, can provide a char-
acterisation of the overall stochastic variability of the population of a com-
parison involving Class 2 standards, that is, when not involving artefacts
(Class 1) [CCPR04].

In fact, the mixture density function represents the total variability of
a super-population comprising several populations, each one identified by a
specific pdf. It is often used in the statistical quality control of an industrial
process, for example, when nominally identical electronic components have
various lifetime constants. Mixture densities are also used to model experi-
mental situations in nonnormal cases: mixtures of normal densities have been
used for robust estimation of parameters. The latter are also known as a
‘contaminated’ normal family when used to model a population that follows
a normal density except for those occasions when a peculiar observation is
recorded. These peculiar observations are not viewed as outliers, but as the
effect of an admissible variability.

Consider a finite mixture of densities as a linear superposition of N compo-
nent densities (named a mixture density in the following). In an intercompar-
ison, suppose that, for i = 1, . . . , N , a density function fi(x; Λ(i)) is provided
for participant i, where Λ(i) is the (row) vector of Λi, say, parameters of fi.
Then the mixture density

g(x; Λ) =
N∑

i=1

πifi(x; Λ(i)), (7)

where (Λ,π) are the mixture parameters, g is assumed to characterise the total
data variability related to the output pdf. In model (7), Λ = (Λ(1), . . . , Λ(N))
contains the parameters of the N participants’ pdfs and the πi are positive
proportions summing to unity. It may often be appropriate to take these

35 Actually in most cases only of the (yh – yr), where yr is the value attributed to
a reference standard, generally a transfer standard.
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proportions to be equal; that is, πi = 1/N , i = 1, . . ., N . Specific metrological
reasoning may indicate unequal proportions.

In key comparisons, the KCRV is given as the expectation value of the den-
sity function. The moments of the mixture density are given by the weighted
sum of the moments of the component densities according to the πi. Other
authors prefer to use other mixture distribution parameters to define the
KCRV [Due07].

References

[A2LA02] American Association for Laboratory Accreditation (A2LA) 2002
Guide for the estimation of measurement uncertainty in testing

[Bal01] Ballico M 2001 Calculation of key comparison reference values in the
presence of non-zero mean uncertainty distributions, using the maxi-
mum likelihood technique Metrologia 38 155–159

[ABF04] Allevard T, Benoit E, and Foulloy L 2004 Signal processing on fuzzy
nominal scales, in Proceedings 10th IMEKO TC7 International Sym-
posium, Saint-Petersburg, Russia, on CD–ROM

[Bei02] Beissner K 2002 On a measure of consistency in comparison measure-
ments Metrologia 39 59–63

[Bei03] Beissner K 2003 On a measure of consistency in comparison measure-
ments: II. Using effective degrees of freedom Metrologia 40 31–35

[CC03] Chunovkina A and Cox M G 2003 A model–based approach to
key comparison data evaluation, in Proceedings 17th IMEKO World
Congress, Cavtat, Slovenia, on CD–ROM

[CCCP04] Chunovkina A, Ciarlini P, Cox M, and Pavese F 2004 Handling and
treatment of measurement data from different groups or sources, in
Proceedings 10th IMEKO TC7 International Symposium, on CD–ROM

[CCPR04] Ciarlini P, Cox M G, Pavese F, and Regoliosi G 2004 The use of
a mixture of probability distributions in temperature interlaboratory
comparisons Metrologia 41 116–121

[CCPR05] Ciarlini P, Chunovkina A, Pavese F, and Regoliosi G 2005 Mixture
distribution models in temperature metrology and the assessment of
the degree of equivalence, in Proceedings TEMPMEKO 2004, LPM,
Zabreb, Croatia, pp 1003–1008

[CFH07] Cox M G, Forbes A B, and Harris P 2007 Distributions associated with
measurands, in PTB–BIPM Workshop on the Impact of Information
Technology in Metrology, Berlin, Germany. Available on http://www.

npl.co.uk

[CIPM99] BIPM 1999 Guidelines for CIPM Key Comparisons, Bureau Interna-
tional des Poids et Mesures, Sèvres
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Summary. The relationship is investigated between probability and metrology,
here intended as the science of measurement. Metrology is shown to have histor-
ically participated in the development of statistic–probabilistic disciplines, not only
adopting principles and methods, but also contributing with new and influential
ideas. Two mainstreams of studies are identified in the science of measurement. The
former starts with the classical theory of errors and ends with the contemporary
debate on uncertainty; the latter originates from the development of a formal the-
ory of measurement and it has attained recent results that make a systematic use
of probability as an appropriate logic for measurement. It is suggested that these
two mainstreams may ultimately converge in a unique theory of measurement, for-
mulated in a probabilistic language and applicable to all domains of science.
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1 Probability, statistics, and measurement –
An historical perspective

1.1 The origins: Gauss, Laplace, and the theory of errors

The Gauss problem

In his Theoria motus corporum coelestium (1809, [3]1) Carl Friedrich Gauss
(1777–1855) discusses how to obtain estimates of the parameters of the orbits
of heavenly bodies on the basis of a set of observations. In the third section
of the second book of the treatise he considers the case of any number of
observations and formulates what we here call the Gauss problem: given N
observations that depend upon n unknown parameters, n < N, according to
1 Note that the references in the bibliography at the end of the chapter have been

listed in chronological order, in order to provide an overview of the historical
development of the subject.
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a known functional relation, and that are affected by measurement errors,
estimate the unknown parameters.

In modern notation, we write 2:

y = f(x) + v, (1)

where y is a vector of observations, x is a vector of the unknown parame-
ters, v is the vector of measurement errors, and f is a vector function. This
framework applies to many problems in metrology and thus it provides a good
introduction to the role of probability in metrology.

We have started with this problem in order to present, in this first part of
the chapter, a mainstream of studies centered on the problem of measurement
uncertainty, starting with Gauss and ending with the current state of play. We
analyze the historical development of this subject, from the classical theory of
errors, through the contribution of orthodox statistics, up to the development
of the Guide to the Expression of Uncertainty in Measurement [26] and to
some of the main issues of the contemporary debate. In this context we also
present our own view, which is based on a general approach to the probabilistic
modelling of the measurement process.

In the second part of the chapter, we deal with another area of studies
that concern the foundations of measurement and we attempt to establish a
formal theory. We consider the contributions of Helmholtz and Campbell and
the debate on the possibility of the measurement of ‘sensory events’, promoted
by the British Association for the Advancement of Science in the 1930s, which
has had consequences up to the present day. Then we present the representa-
tional approach to measurement and some criticism of it. We discuss the role
of the measuring instrument in a formal theory and the benefit of a proba-
bilistic approach. This part concludes with a brief outline of a probabilistic
theory of measurement that we have recently proposed and published and
also with an attempt to make some previsions on the possible future role of
probability in the science of measurement. We do not attempt to deal with
other approaches such as those concerned with fuzzy sets or with the theory
of evidence, however.

But now let us go back to Gauss. To confront his problem, he adopts
the following estimation criterion: choose the value of x that has maxi-
mum probability, given the observations y. So the estimate, x̂, must be
such that

p(x̂|y) = max
x

p(x|y), (2)

where p(x|y) is the distribution of the parameters, given the observations
and, conversely, p(y|x) is the distribution of the observations, given the
parameters.

2 See Appendix for notation conventions and for a list of the main symbols used in
this chapter.
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Gauss uses a Bayesian argument to show that, assuming an indifference
prior distribution for x, this is equivalent to finding the value x̂ that maximises
the probability of the observations, given the parameters; that is, x̂ may be
equivalently characterised by the property

p(y|x̂) = max
x

p(y|x). (3)

If we now assume that all the errors are independent and equally dis-
tributed, and if pv(·) is the distribution of each of them, we obtain

p(y|x) =
∏

i

pv(yi − fi(x)). (4)

To proceed any further, it is necessary to adopt a proper distribution for
the errors vi. This is where the famous normal or Gaussian distribution comes
into play.

Gauss’s probabilistic model for measurement errors

Gauss distinguishes between systematic and random errors. This distinction,
just mentioned in his Theoria motus, is more clearly expressed in the successive
Theoria combinationis observationum erroribus minimis obnoxiae (1823 [5]).
Due to the importance of this topic in metrology, it is worthwhile reading the
original text.

‘Certain causes of error,’ he writes

are such that their effect on any one observation depends on vary-
ing circumstances that seem to have no essential connection with the
observation itself. Errors arising in this way are called irregular or
random. . .. On the other hand, other sources of error by their nature
have a constant effect on all observations of the same class. Or if the
effect is not absolutely constant, its size varies regularly with circum-
stances that are essentially connected with the observations. These
errors are called constant or regular.

Gauss further observes that ‘this distinction is to some extents relative and
depends on how broadly we take the notion of observations of the same class.’
He explicitly excludes the consideration of systematic (regular, in his termi-
nology) errors in his investigation and warns that ‘of course, it is up to the
observer to ferret out all sources of constant error and remove them’.

This choice of neglecting systematic errors characterises the classical the-
ory of errors and may be its main limitation. We show later that the need
to overcome this limitation has been the driving force behind the studies on
uncertainty in the second half of the 20th century. But for now let us stay
with Gauss’s approach and appreciate its merits. We thus come back to the
Theoria motus to see how he deals with random errors.
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He considers a special, but very important case of the general problem (1),
the measurement of a single constant quantity x by repeated observations. In
this case the model reads

y = x+ v (5)

and the probability distribution for the observations, given x, is

p(y|x) =
∏

i

pv(yi − x). (6)

At this point, Gauss needs an explicit expression for the distribution of
the errors pv, and thus assumes some properties that correspond to the com-
mon understanding of measurement errors. He assumes that pv is symmetric,
maximum in its origin, and decreasing on each side of the origin. It may be
either defined on a finite support, allowing for a maximum error, or rapidly
tending to zero as the argument tends to infinity. Yet these assumptions are
not enough to fully define the distribution pv. Here is where Gauss makes a
simple and genial move: he assumes that the most probable value for x, once
the observations y have been acquired, is the arithmetic mean of the observed
values, because

it has been customary certainly to regard as an axiom the hy-
pothesis that if any quantity has been determined by several direct
observations, made under the same circumstances and with equal care,
the arithmetic mean of the observed values affords the most probable
value, if not rigorously, yet very nearly at least, so that it is always
safe to adhere to it.

This key assumption may be explicated in this way:

x̂ = ȳ � N−1
∑

i

yi. (7)

On the basis of this assumption, Gauss is able to derive his celebrated normal
distribution, which, in modern notation, reads

p(v) = (
√

2πσ)−1exp(−1
2
v2

σ2
), (8)

where σ is the standard deviation3.
To sum up, Gauss was able to derive a probabilistic model for random

errors in measurement which still maintains its validity [15]. During the same
period, a similar result was reached, using a different route, by Laplace.

3 Instead of considering the standard deviation, Gauss elicits a precision measure,
h =

√
2σ−1 and discusses how interpercentile ranges depend upon it.
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Laplace’s approach and the theory of errors

A near contemporary to the Theoria motus was Pierre-Simon Marquis de
Laplace’s (1749–1827) Théorie analytique des probabilités, published in 1812
[4]. He derived the normal distribution in another way [14]. Let us consider
again the case of repeated measurement, as described by model (5). We still
assume that the errors vi are independent and equally distributed, and we
also require that their distribution p(v) is symmetric about the origin and has
a finite support. Let x̂ = ȳ be the selected estimate for x and

e = x̂− x (9)

the estimation error. Then Laplace shows that e is asymptotically normally
distributed with a variance proportional to N−1. So we find here another way
of deriving the normal distribution: it is the distribution of the estimation
error, suitable for long series of observations.

Still another viewpoint may be considered, offered by the central limit
theorem [30], traceable again, in a basic formulation, to Laplace [14]. Infor-
mally, the basic idea is to consider the measurement error as resulting from
the contribution of a large sum of small independent error sources; that is,

v =
∑

j

wj . (10)

If none of them prevails over the others, the distribution of the resulting
error tends to be normal as long as the number of the error sources tends to
infinity.

In conclusion, the classical theory of measurement errors, which is due
to the contributions of Gauss and Laplace in the main, concerns random
errors only and results in a probabilistic model, the normal distribution, whose
validity may be supported by different arguments.

– It results from assumptions about the nature of errors (symmetry about
the origin, probability of large errors quickly decreasing) plus the axiom
that the arithmetical mean of the observations provides the most reliable
estimate, for a series of measurements ‘made under the same circumstances
and with equal care’.

– It is asymptotically attained when estimating a quantity after a long series
of observations of the same quality.

– It also results by assuming the error is the consequence of a large number
of error sources, none of which prevails over the others.

We reconsider the theory of measurement errors later on and discuss its
merits and limitations, and how to overcome them. But now we have to come
back to the original Gauss problem and see how it can be solved.
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The origins of the least squares method

In order to solve the Gauss problem we have to find the value of the parameters
x̂ that maximise the probability of the observations (3). Formula (4) provides
an explicit expression for p(y|x): if we substitute the normal distribution (8)
in it, we obtain

p(y|x) =
1

(2π)
1
2 NσN

exp{− 1
2σ2

∑
[yi − fi(x)]2}. (11)

So the value of x we are looking for is the one that minimizes the sum of
the squares of the errors,

∑
[yi − fi(x)]2 = [y − f(x)]t[y − f(x)] (12)

This is how the least squares method appears in the Theoria motus.
At this point, Gauss considers the linear version of his problem, which in
modern notation is

y = Ax + v (13)

and provides the solution. We do not examine the original development, choos-
ing simply to recall that, in modern notation, the solution may be obtained
by pseudo-inversion

x̂ = (AtA)−1Aty. (14)

Finally, if σ2 is the variance of the errors, the variance of the estimate will
be

V ar(x̂) = σ2(AtA)−1. (15)

Gauss reconsidered the least squares method in much more detail in the
Theoria combinationis. There he provided another rationale for its use, which
is no longer based on assuming a normal distribution for the errors, but rather
on the minimisation of the expected mean-square error. In modern terminol-
ogy, we would say that he presented the method as a way of obtaining a
minimum-variance estimate. For our purposes the original derivation is more
significant, because it is grounded in probability.

The theory of errors and the method of the least squares provided a
great start for the theory of measurement and were the major results of the
19th century. At the beginning of the 20th century new ideas and methods
became available to experimenters thanks to the contribution of ‘orthodox’
statistics [36].

1.2 Orthodox statistics

Experiments in metrology

Orthodox or classic is the name given to the statistics developed in the first
part of the 20th century and whose principal exponent was Ronald Aylmer
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Fisher (1890–1962) [8, 11, 23, 36]4. He was a geneticist and had the merit of
explicitly addressing some of the main problems that experimenters encounter
in their work. This is probably a reason for the success his approach encoun-
tered among experimenters, including metrologists. On the other hand the ef-
fectiveness of some of his methods, for example, his approach to the design of
experiments, may have led to an overestimation of the value of other methods
of orthodox statistics, such as their approach to point or interval estimation.
A book published in 1964 by John Mandel [12], a statistics consultant of the
National Bureau of Standards (NBS), provides a nice synthesis of the statisti-
cal tools and instruments available to the metrologists near the middle 1900s,
which mainly refer to this school. Orthodox statistics promoted the develop-
ment of probabilistic–statistical models by providing a store of methods for
their use in conjunction with experimentation. Such methods include

– Criteria for the design of experiments, in order to optimise the information
obtainable in a finite number of trials

– Methods for the estimation of parameters involved in the models
– Criteria for assessing the validity of the models

We have no room here for dealing with the design of experiments, which
anyway is less central to our subject. We do, however, use a very simple
example to illustrate the other two points. Consider the measurement of a
single constant quantity by a series of n repeated observations as described
by model (5). This model assumes that systematic effects are negligible, as
generally admitted in the classic theory of errors. Suppose now that we have a
set of m measuring instruments of the same type, independently calibrated. If
we want to apply model (5) to them, we should consider whether, for example,
the residual calibration error, which could give rise to a systematic effect, is
really negligible. So we may perform a simple experiment that consists in
measuring the same fixed quantity x with all the instruments at our disposal,
and repeating the measurement n times for each instrument, thus collecting a
total of N = n ·m observations. We may wish to estimate the variance σ2

v , to
check whether the hypothesis of negligible systematic effect is justified and,
if not, to provide a quantitative estimate of the systematic effect. In order to
do that, we have to consider a more general model than (5), that is,

yij = x+ θi + vij , (16)

where
– i = 1, . . . ,m is the index denoting the instruments,
– j = 1, . . . , n is the index denoting the repetitions,
– θi is a random variable representing the residual calibration error of each
instrument,
– vij is an array of random variables representing independent realizations of
the same normal variable v, the random error.
4 We use the term ‘orthodox’, because we prefer to reserve the term ‘classic’ for

authors such as Gauss and Laplace.
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Note that, as already pointed out by Gauss, the same phenomenon, the
residual calibration error θ, gives rise to a systematic error if we consider as
‘observations of the same class’ the indications of a single instrument (index
i fixed to, say, i0), whilst it becomes a random variation if we sample instru-
ments from the class of all the instrument of the same type (index i varying
from 1 to m). Consider the following averages.

– Grand average, ȳ = 1/N
∑

ij yij , which is an estimate of x.
– Average per instrument, ȳi = 1/n

∑
j yij .

– Instrument deviations, (ȳi − ȳ), which is an estimate of θi.

The variance of v may be estimated by

σ̂2
v =

1
N −m

∑

ij

(yij − ȳi)2. (17)

We now want to check whether the influence of the calibration errors θi

is negligible. To do so, suppose that all the θi are null: we call this the null
hypothesis and denote it by H0. If H0 is true, we may estimate the variance
of v also by

σ̂2′

v =
1

N − 1

∑

ij

(yij − ȳ)2 (18)

and the result will be, more or less, the same as obtained by (17). We may
then check whether the difference between σ̂2

v and σ̂2′

v is significant. If H0 is
true, the difference between σ̂2

v and σ̂2′

v is only due to the different degrees
of freedom of the two estimates, namely, ν1 = N − m for the former and
ν2 = N − 1 for the latter. It may be proved that the ratio ρ = σ̂2

v/σ̂
2′

v , con-
sidered as a random variable, has an F -Fisher distribution, with parameters
ν1 and ν2. So a significance test may be performed. To do this, we first divide
the space of the possible values of the ratio ρ into two regions, one with high
probability or highly likely and the other with low probability or unlikely.
Note that this is possible because, if H0 holds, the distribution of ρ is known.
Then we compute the value ρ̂ that is the outcome of the data and we check
in which region it falls.

– If it falls in the ‘unlikely’ region, we reject H0 and thus conclude that
accounting for θ makes a difference and thus the calibration error is not neg-
ligible.
– If it falls in the ‘likely’ region, we conclude that the difference between the
two estimates σ̂2

v and σ̂2′

v may be due to their different degrees of freedom and
so we may neglect the calibration error θ and adopt model (5)5.

In the case of the calibration error not being negligible, we may quantita-
tively evaluate its influence by estimating its variance through
5 We have presented significance testing very informally here, but we discuss it

more fully later on.
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σ̂2
θ =

1
m− 1

∑

i

(ȳi − ȳ)2. (19)

In conclusion, we think that this example, extremely simple in our opinion,
may give an idea of what may be achieved through orthodox statistics in the
development of experiments apt to characterise measuring systems. A much
more elaborate example is presented by Mandel under the heading ‘systematic
evaluation of measuring process’ [12], to which the reader is referred for further
details on this subject. Yet before trying to formulate some conclusions on
the contribution of orthodox statistics to metrology, we have to discuss two
additional key points, namely estimation and statistical testing.

Estimation in Fisher’s view

Consider again Gauss’s problem, for simplicity, in the special case of measure-
ment based on repeated observations, as in model (5). Gauss looked for the
value of x̂ having maximum probability, given the (vector) observation y, that
is, for x̂ such that

p(x̂|y) = max
x

p(x|y). (20)

For calculating x̂ he used a Bayesian argument that is essentially equivalent
to the following considerations. Applying the Bayes–Laplace rule6, we see that

p(x|y) ∝ p(y|x)p(x). (21)

If we assume a uniform distribution for x 7, we obtain

p(x|y) ∝ p(y|x). (22)

So maximizing p(x|y) with respect to x, in view of (22), is computationally
equivalent to maximizing p(y|x), that is, to searching x̂ such that

p(y|x̂) = max
x

p(y|x). (23)

But, for Gauss, if formula (23) may be used for computing x̂, the mean-
ing of x̂ is still established by formula (20). Fisher changes this perspective
completely, although obtaining, in this case, the same final result. He argues
that the Bayes–Laplace rule (21) can not be applied, unless it is possible to
determine an ‘objective’ prior distribution, p(x), for x. So he applies directly
formula (23), without deriving it from formula (20), as Gauss does. Although,
in this case, the result is the same, the interpretation of the estimate is dif-
ferent: x̂ is interpreted now as the most likely value for x, that is, the value
that maximizes the function
6 We discuss in some detail the Gauss–Laplace rule in Section 1.4.
7 The reason for assuming a uniform distribution is that prior to making the mea-

surement, all possible values of x may be considered equally likely.
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l(x|y) = p(y|x), (24)

now called the likelihood function. Note that the likelihood function is not a
probability distribution (because, in general, it does not integrate to unity).

There is a major difference between Gauss’s and Fisher’s approaches
because in the former a probabilistic statement is made for x̂: it is the value
having maximum probability, once that y has been observed, whilst in the
latter no such probabilistic statement is possible. In this sense we may say
that maximum-likelihood estimation is not a probabilistic estimation. Ortho-
dox statistics consider other estimation methods, that we can not review here,
but to which similar arguments apply [23,31,36].

Epistemological aspects of statistical tests

If Fisher’s position on estimation is, in our opinion, not fully convincing, much
more interesting is his view of statistical testing. To introduce this subject, let
us consider an example of significance testing, simple but of high metrological
import.

Suppose that we assume, for some measurement process, that model (5)
holds. As we have already noted, the potentially critical assumption with this
model is the absence of any (noticeable) systematic effect. This hypothesis
implies that, for each observation yi,

E(yi) = x, (25)

where E is the expectation operator. A straightforward way of checking the
validity of this hypothesis is to apply the measurement system to a standard
object, whose value is known, x = x0, with negligible uncertainty. In these
conditions, the measurement process is described by

y = x0 + v, (26)

where v is a vector of N independent, zero-mean, normal variables, with
variances all equal to an unknown value σ2. So, if we take the arithmetic mean
of the observations ȳ, we expect that it is almost equal to x0. The question
is how much may we allow ȳ to differ from x0, while still maintaining our
model?

To answer this question we observe that it is possible to prove that the
scaled distance

d =
√
N − 1

ȳ − x0

σ̂
, (27)

where σ̂2 = (N − 1)−1
∑

(yi − ȳ)2 is an estimate of the variance, has a known
distribution,

p(d) = pt,N−1(d), (28)

where pt,ν(·) is a t-Student distribution, with ν degrees of freedom. Then the
acceptance region, that is, the region where the difference d is not critical for
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our model is a wide enough interval around the origin. How wide should it
be?

We must fix a small probability α (typical values are 0.05, 0.01, or 0.001)
and then we identify the points tα/2, t1−α/2, such that

∫ tα/2

−∞
pt,N−1(d)dd =

α

2
,

∫ +∞

t1−α/2

pt,N−1(d)dd =
α

2
. (29)

Then the acceptance region is A = [tα/2, t1−α/2]: the a priori probability
that ȳ falls into the acceptance region is high, and is equal to 1−α, whilst the
probability that it falls outside is small. So, once we have made our experiment
and have calculated the actual value of ȳ, if it falls into the acceptance region
we maintain our model; we say that the test has corroborated it ; otherwise we
reject it, because what we have observed is highly unlikely under that model,
and we consider the possibility of some systematic effect.

Let us then summarise the logic underlying significance testing: in general,

– We assume a probabilistic model, relying on an H0 hypothesis and calcu-
late the probabilistic distribution of the observations (or of some function
of them, such as the arithmetic mean ȳ just considered),

– We partition the space of the observations into two regions, an acceptance
region, where the observations are likely to occur, and a rejection region,
where the observations are unlikely to occur; this partitioning is based on
the assumption of a conventional value α, called the level of significance
of the test,

– Then we conduct the experiment and if the observations fall into the ac-
ceptance region, we maintain the model, otherwise we abandon it.

This logical process may be synthetically called a hypothetic–deductive
inference [23, 36]: hypothetic, because it starts from assuming a probabilis-
tic model, and deductive because from the model it deduces the probability
distribution for the observations, on which the test is based.

Significance testing plays a fundamental role in statistics, as much as it is
the only way of checking statistical models. Although this way of testing sta-
tistical hypotheses, in an embryonic form, may be traced from the very dawn
of probability and statistics [23], it was undoubtedly developed by orthodox
statisticians. Yet some of them considered another class of statistical tests,
hypothesis tests. Although in many textbooks they are put together with sig-
nificance tests, their epistemological status is very different and we think it is
wise to keep them distinct. We cannot discuss hypothesis testing thoroughly
here, so we just mention it as it differs from significance testing.

In significance testing we test a statistical hypothesis with respect to
its negation: the result may be interpreted as a validation of a statistical
model.

In hypothesis testing we compare two alternative hypotheses, H0 and H1,
and although the way we treat both of them is not symmetric, at the end
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of such a test we cannot reach absolute conclusions about H0, because such
conclusions depend on the alternative hypothesis we have chosen.

So the domains of application of these tests are quite different: the former
are more suited for scientific investigation, the latter for addressing decision
making. This is, very briefly, the core of the criticism that Fisher directed
towards hypothesis testing, that was instead supported by two other ortho-
dox statisticians, Neyman and Pearson.

On this point we agree with Fisher’s position.

Final remarks on the contribution of orthodox statistics
to metrology

Orthodox statistics has been and still is very influential to metrology. Its
contribution is manifold, as we have seen. In our opinion we may elicit two
main contributions, namely

– Addressing the design and evaluation of experiments, by providing valu-
able tools for the design (via the design-of-experiments approach) and the
evaluation of the influence of the various factors (through the analysis-of-
variance method)

– Providing an invaluable tool for checking statistical models, by significance
testing

On the other hand, the orthodox approach to estimation is, in our opinion,
not fully satisfactory and its limit is even more apparent in the following
section.

In the second half of the 20th century, when orthodox methods had reached
their systematisation and were very popular among many experimenters, in-
cluding the metrologists, the metrology community felt the need for a critical
revision of its entire approach to uncertainty.

1.3 The Guide to the Expression of Uncertainty in Measurement

In the late 1970s, the metrological community recognised the need of reaching
an internationally agreed way of expressing uncertainty in measurement. It
also recognised the need to accompany the reporting of the result of any mea-
surement by some quantitative indication of its quality, not only in primary
metrology, but also in everyday measurements. So, in 1978, the Bureau Inter-
national des Poids et Mesures (BIPM) carried out an investigation on a large
number of laboratories and prepared Recommendation INC-1 (1980), whose
guidelines were adopted by the Conference International des Poids et Mesures
CIPM. Then an international working group was instituted (ISO/TAG 4/WG
3) for the development of a technical guide. One of the major scientific prob-
lems to be faced was the composition of random and systematic effects caus-
ing uncertainty. This also required an evolution in the concept of uncertainty
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itself. The work of the group was paralleled by intensive scientific debate on
such themes. In 1993 an important result was attained with the publication
of the Guide to the Expression of Uncertainty in Measurement (GUM) [26].
The document had a great impact both on the technical and the scientific
side and further stimulated international debate on measurement uncertainty
and related topics. Good introductions to the GUM are already available [34]
and here we only want to highlight some points that are particularly relevant
to our subject and to introduce some trends of the contemporary debate on
uncertainty that are the object of the next section.

As we have mentioned, the main problem to be faced was the composition
of systematic and random effects in the evaluation of uncertainty. To do this
the GUM chose to adopt the paradigm of indirect measurements, in which
‘the value of the measurand is obtained by measurement of other quantities
functionally related to the measurand. This may be expressed as

x = g(z), (30)

where x is the measurand, z a vector of input quantities, and g is a function.
We call this expression the (GUM) evaluation model or formula. Basically it
allows us to propagate the uncertainties on the quantities z to the measur-
and x. Such uncertainties, in turn, may be evaluated on the basis of different
pieces of information, which the GUM classifies in two main categories: those
coming from a series of observations (type A) and those coming from other
sources, such as information provided by the instrument manufacturers, by
calibration, by experience, and so on (type B). So the focus moved from the
type of the uncertainty sources (systematic versus random) to the type of
information on them (type A versus type B). Consequently, it was possible to
support, on a pragmatic basis, a common treatment for both of them.

Let us now see how can we deal with direct measurement, that is, mea-
surement which is obtained from the output of a measuring instrument or,
more generally, from a measuring system (MS). We may interpret one of the
zi, for example, the first one, as the indication y of the MS, that is, z1 = y,
and the remaining zi as ‘corrections’, that should be ideally applied to correct
the effect of the various error sources. The (possible) spread of the indications
is accounted for by considering the variability of the random variable y. The
evaluation procedure for the standard uncertainty then proceeds as follows.

The variables that appear in the evaluation formula (30) are regarded as
random. So, if ẑ is a ‘best estimate’ of z (which usually means that it is its
expected value, ẑ = E(z)), Σz the covariance of z and b the vector of the
sensitivities of x with respect to z, calculated for z = ẑ, that is,

bi =
∂g

∂zi

∣∣∣∣
z=ẑ

, (31)

then an estimate of x may be obtained as

x̂ = g(ẑ), (32)
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and the standard uncertainty, u, to be associated to x̂, is

u =
√

bTΣzb. (33)

The generalisation in the case of a vector measurand x is not given explicitly,
but is simple to obtain.

The GUM allows substantial discretion for choosing a formal statistical
inference framework and concentrates mainly on practical aspects.

The debate on uncertainty, stimulated by the GUM, has also involved
theoretical aspects. Bayesian inference was rapidly recognised as a sensible
approach to the problems considered by the GUM, in particular when dealing
with a combination of different sources of information. Prior to entering into
the debate, we briefly review, in the next section, some of the main ideas of
Bayesian inference.

1.4 Issues in the contemporary debate on measurement
uncertainty

Bayesian estimation

Consider an experiment in which we perform repeated trials, in each of which
an event E may occur or not. Let p be the probability of its occurrence in a
single trial. Then the probability that E occurs m times in N repeated trials is

P (nN = m|p) =
(N
m

)
pm(1 − p)N−m, (34)

where nN is the number of occurrences of event E in N trials. This result
was obtained by Jacob Bernoulli and was one of the earliest findings in the
theory of probability. Reverend Thomas Bayes (1702–1761) in his Essay [1],
published posthumously in 1763, considered the problem which is inverse to
the above: suppose that we do not know p and that we perform N trials of
the experiment and find that event E occurs m times: how can we estimate
the probability p?

To estimate the parameter p Bayes intends to assign a probability distribu-
tion to it, that is, to find a rule for calculating the probability that the value
of p falls in any assigned interval [a, b], with 0 ≤ a < b ≤ 1. He obtains the
following formula.

P (a ≤ p ≤ b | nN = m) =

∫ b

a
pm(1 − p)N−mdp

∫ 1

0
pm(1 − p)N−mdp

. (35)

This result comes from assuming a uniform prior distribution for p, over its
range [0,1]. Bayes justifies this assumption by observing that it is the proper
one when ‘concerning such an event I have no reason to think that, in a cer-
tain number of trials, it should rather happen any one possible number of
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times than another’. This is a formulation of the principle of indifference or
of insufficient reason: when there is not sufficient reason for treating different
possible cases in a different way, they should be treated in the same way [23].

The key idea underlying Bayes’ solution was further investigated and gen-
eralised, perhaps independently, by Laplace in his Essay on the probability of
causes [2] and then in his Analytic theory of probability [4]. He formulated
what is now known as the Bayes–Laplace rule as follows,

if an event can be produced by a number n of different causes, then the
probabilities of these causes given the event are to each other as
the probabilities of the event given the causes, and the probability
of the existence of each of these is equal to the probability of the
event given the cause, divided by the sum of all the probabilities of
the event given each of the causes.

In symbols, if we denote the ith cause by Ai, we have

P (Ai|E) =
P (E|Ai)∑
i P (E|Ai)

. (36)

As we have seen, Gauss used a similar, Bayesian, argument in his Theoria
motus and Laplace’s treatise on probability was highly influential throughout
the 19th century. On the other hand, orthodox statisticians disagreed on the
possibility of calculating the probability of causes and preferred a different
approach to estimation, as we have seen. Bayesian estimation became popu-
lar again due to the works of de Finetti, Ramsey, Jeffreys, and others [36].

In modern terms, a Bayesian estimation problem may be formulated and
solved as follows [22]. Consider a series of observations y, depending upon a
unobservable parameter x : then the parameter x may be estimated by assign-
ing a probability distribution to it, conditioned by the observations:

p(x|y) =
p(y|x)p(x)∫
p(y|x)p(x) dx

∝ p(y|x)p(x). (37)

The probability distribution p(x) is called the prior distribution for the
parameter x and may, in general, incorporate prior knowledge about it. A
special, but very important case for us, is that in which the indifference prin-
ciple is used for assigning the p(x), which is also called, in this case, a vague
prior. If we adopt a vague prior, the essence of Bayesian estimation may be
summarised as follows. It is a probabilistic inference aimed at assigning a prob-
ability distribution to some quantity x on the basis of a set of observations y
and of an hypothesis on a probabilistic relation, p(y|x), linking the quantity
and the observations. As such it may be called a hypothetic inductive infer-
ence [23, 36].

Bayesian inference has been applied to measurement problems in different
ways so far, corresponding to different ways of formulating the core hypothe-
sis. We review them in the following sections.
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Furthermore, it is useful to compare the definition above with that which
we provided for significance tests: we regarded them as hypothetic deductive
inferences instead. This distinction is essential for understanding the logic of
the measurement process and we return to it at the end of this section.

A Bayesian approach to the evaluation of measurement
uncertainty

A first Bayesian approach to the evaluation of uncertainty in measurement
is due to Weise and Wöger [24], and other authors, and is documented by
several papers illustrating its application to measurement problems (see [34]
for a bibliography). We now try to summarise it, considering the presentation
by Lira [34] in particular, with the important case of the direct measurement
of a quantity by a MS, subject to both random variations and an additive
systematic effect, by repeated observations.

If we assume, for maximum simplicity, that the indications of the MS are
already properly scaled so that its response function is unitary, we may model
this process as

y = x+ θ + v, (38)

where x is the measurand, y is a vector of N indications of the MS, θ is a
unknown constant systematic effect, and v is a vector of random variations,
that are independent realizations of a normal random variable v, with zero
mean and known8 variance σ2. Note that the structure is similar to a Gauss
problem, but it differs from it due to the presence of the systematic effect θ.
Note also that the structure is similar to that of formula (16) but with an
important difference: here we have a single instrument and so we have no way
of directly observing the effects of θ.

In this approach we need to begin with an evaluation equation which we
may state in the following way,

x = g(ỹ, z) = ỹ + z, (39)

where ỹ is the mean value of y and z is the (ideal) ‘correction’ of the systematic
effect θ; that is, very simply,

z = −θ. (40)

Note that formula (39) is a special case of the GUM evaluation formula
(30). Then we may consider the vector of parameters [x, ỹ, z] 9 and apply the
Bayes–Laplace rule to it,
8 The case of an unknown variance may also be treated, but our aim here is to keep

the example as simple as possible.
9 We may be surprised by the apparent dishomogeneity between ỹ on one side and

x and z on the other, because ỹ is a mean value. The reason is that y varies
during the repeated observations, whilst x and θ do not. So, to combine them
in the same expression, we have to consider the mean value of y instead of its
individual realizations. Actually here there is a criticality because the motivation
of formula (39) in this approach is essentially heuristic.
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p(x, ỹ, z|y) ∝ p(y|x, ỹ, z)p(x, ỹ, z). (41)

Because the indications y depend on x and z only through the expected
value ỹ, the formula simplifies as

p(x, ỹ, z|y) ∝ p(y|ỹ)p(x, ỹ, z).

The joint distribution p(x, ỹ, z) may be factorised as

p(x, ỹ, z) = p(x|ỹ, z)p(ỹ, z) = p(x|ỹ, z)p(ỹ)p(z),

having further assumed the independence of ỹ from z. With the evaluation
equation above in mind, we obtain

p(x|ỹ, z) = δ
(
x− g(ỹ, z)

)
= δ(x− ỹ − z),

where δ is the Dirac-delta operator. If we also assume a uniform prior for ỹ,
we have

p(x, ỹ, z|y) ∝ p(y|ỹ)δ(x− ỹ − z)p(z).

To reach the final distribution, we integrate out ỹ and z and we obtain the
marginal distribution

p(x|y) ∝
∫ ∫

p(y|ỹ)δ(x− ỹ − z)p(z) dỹdz. (42)

In order to proceed with the analytical calculations, let us now assume, as
anticipated, that v is normal with known variance σ2. Then

p(y|ỹ) ∝ exp
(
− 1

2
(ỹ−ȳ)2

σ2/N

)

and, finally,

p(x|y) ∝
∫

exp
(
−1

2
(x− ȳ − z)2

σ2/N

)
p(z) dz. (43)

A distribution is thus assigned to the measurand on the basis of the
observations y and of the following hypotheses.

– A probabilistic model for the observations, p(y|ỹ)
– The evaluation equation x = g(ỹ, z)
– A probability distribution for z, p(z)
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This approach requires the previous assumption of an evaluation equation,
which relies on an essentially heuristic basis (see Footnote 9). In the next
section we consider a different approach: we first present a general probabilis-
tic model of the measurement process and then we consider an alternative
Bayesian approach, based on that model.

A probabilistic model of the measurement process

Recently a general probabilistic model of the measurement process (MP) has
been proposed [35, 42]. It starts from the basic consideration that measure-
ment is performed through a measuring system (MS) [25] and envisages a
general functional description of it. The MS interacts with the measurand
and produces an observable output, the indication, which is related to or, in
other words, is caused by, the value of the measurand. So it is quite natural
to describe the behaviour of the MS by an input–output model, whose input
is the value of the measurand and whose output is the instrument indication.
Such an input–output relationship may be experimentally determined by cal-
ibration. When we perform a measurement, we get an indication on the basis
of which we are able to identify, within the uncertainty limitations, the value
of the measurand, because we know in advance, thanks to the calibration, the
cause–effect relation linking the two. The measurement process may thus be
broken down into two subprocesses, namely:

– Observation, the process of producing an observable output that is caused
by the measurand and depends on its value

– Restitution, the process of identifying the value of the measurand from the
indication(s) of the MS

Consequently, measurement may be viewed as the process resulting from
the chaining of observation and restitution and allowing a value (the measure-
ment value) to be assigned to the measurand. Observation is always performed
by the MS, whilst restitution may either be embedded in the MS or performed
off-line, depending upon the technology. In any case it seems conceptually cor-
rect to distinguish between the two, because the former is a chain of physical
transformations, whilst the latter is a kind of information processing. We also
show how this distinction is practical, as much as it permits the development
of a systematic approach to the modelling of measurement processes, which
allows the final result of measurement to be expressed as a probability distri-
bution over the set of the possible values of the measurand. Let us now see
how can we describe all this in deterministic terms first. This may be seen
as the description of the ideal MP and paves the way to the presentation of
the probabilistic model. In a deterministic framework, observation may be
described by a function that expresses the cause–effect relationship holding
between the value of the measurand x and the indication y ; that is,

y = f(x). (44)
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The function f may be called the response characteristic of the MS,
because it expresses the input–output behaviour of the MS, or also calibration
function, because it may be experimentally determined by calibration [25]. For
example, if x is the temperature, t, of an object, and the MS is a measuring
chain made of a thermocouple, an amplifier, and a voltmeter, then y is the
voltage reading, V , from the voltmeter and f includes the (direct) thermo-
electric function for the thermocouple, f ′, and the gain of the amplifier, A.
So we have

V = Af ′(t).
This deterministic description is ‘ideal’ in that we assume that the mea-

suring system behaves exactly according to its response function f and that
no other quantity influences the measurement.

Restitution, on the other hand, may be viewed as the inversion of obser-
vation, because for any indication y we provide the measurement value x̂ by

x̂ = f−1(y). (45)

In our example, we have

t̂ = A−1f ′−1(V/A).

Note that for standard thermocouples both f ′ and f ′−1 are standardised func-
tions (polynomials).

In a traditional environment, restitution may be performed manually,
whilst in a computerised measuring process it is performed automatically.
Anyway, irrespective of the technology, the concept is the same.

Finally, measurement is the concatenation of the two transformations,

x̂ = f−1[f(x)] = x, (46)

and results in a unitary transformation, due to the fact that the determin-
istic model provides a description of an ideal MP. The meaning of this last
equation is the following. If the MS behaved exactly according to its char-
acteristic function f , and no other uncertainty cause applied, then we would
obtain the exact value of the measurand. Of course this is not the case in real
measurements, but this ideal scheme allows us to introduce the probabilistic
framework, which instead properly represents an uncertain environment.

The results thus far obtained are summarised in Table 1, under the ‘deter-
ministic model’ heading. We provide additional arguments in support of this
model later on, in Section 2.2.

The probabilistic model may be obtained by translating what we have
thus far exposed in probabilistic terms. The natural probabilistic description
of the observation process, that is, the natural counterpart of the calibration
function, is provided by the conditional probability distribution

p(y|x),
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Table 1. Comparison between the deterministic model and the probabilistic one.

Process/
Subprocess Deterministic Model Probabilistic Model

Observation y = f(x) p(y|x, θ)

Restitution x̂ = f−1(y) p(x|y) =∫
Θ p(y|x, θ)

[∫
X

p(y|x, θ) dx
]−1

p(θ) dθ

Measurement x̂ = f−1[f(x)] = x p(x̂|x) =∫
Y

δ[x̂ − E(x|y)]
[∫

Θ p(y|x, θ)p(θ) dθ
]
dy

where
x ∈ X : value of the measurand
y ∈ Y : N -dimensional observation vector
θ ∈ Θ : K -dimensional parameter vector
x̂ ∈ X : measurement value

that is, the probability distribution of the indication y, for any given measure-
ment value x. In other words, whilst in the deterministic model for each value
of the measurand we get one and only one indication, in the probabilistic case
we may obtain a plurality of indications, ruled by a probability distribution.
Consequently, restitution may be described as the probabilistic inversion of
the transformation defining observation. Such an inversion may be performed
according to the Bayes–Laplace rule. If we assume a uniform prior for x, we
obtain

p(x|y) = p(y|x)∫
p(y|x)dx

∝ p(y|x).

In this way we account for random variations, but how can we deal with
systematic effects? The systematic effect (of any type, additive, multiplicative,
etc.,) of an influence quantity θ may be expressed by allowing the distribution
p(y|x) to also be conditioned by θ, thus becoming

p(y|x, θ).

If we now apply the Bayes–Laplace rule, the result will be still conditioned by
θ; that is,

p(x|y, θ) ∝ p(y|x, θ).

To attain the final distribution p(x|y) it is sufficient to ‘decondition’ with
respect to θ, by applying the principle of total probability; that is,

p(x|y) ∝
∫
p(y|x, θ)p(θ) dθ.
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The generalisation to a vector of observations y and to a vector of influence
parameters is immediate and yields, for observation

p(y|x,θ) (47)

and for restitution

p(x|y) ∝
∫
p(y|x,θ)p(θ) dθ. (48)

Restitution yields a probabilistic distribution rather than a single value,
as happened in the deterministic case. Yet even now it is possible to define a
single measurement value as

x̂ = E(x|y). (49)

This formula provides the most general definition of x̂ as a function of the
indications y. When it is possible to make it explicit as a function of θ also,
we obtain

x̂ = h(y,θ), (50)

which is another, essentially equivalent, way of expressing the evaluation equa-
tion envisaged by the GUM, but with an important difference: such an equa-
tion is now derived by the model.

Finally, the overall measurement process may be described by combin-
ing (chaining) observation and restitution in order to obtain the distribution
of the measurement value for each possible value of the measurand, that is,
p(x̂|x). This may be done by observing that the measurement value x̂ is a
function of of the indications y, which, in turn, in observation are regarded
as a vector random variable, conditioned by x. So, applying a formula for the
propagation of distributions, we obtain

p(x̂|x) =
∫

Y
δ[x̂− E(x|y)]

∫

Θ

[
p(y|x,θ)p(θ) dθ

]
dy (51)

which describes the overall measurement process. This completes the set of
formulas of the probabilistic model, collected in Table 1, where they are com-
pared with the corresponding deterministic ones. Further generalisations are
possible (e.g., considering a vector measurand [35]), but are not treated here,
for the sake of simplicity.

Note the different meaning of the distributions p(x|y) and p(x̂|x). The
former, p(x|y), is the distribution that describes restitution: whenever we
observe the (vector, in general) indication y we may assign to the measur-
and the distribution p(x|y). This distribution is thus the basis for providing
the measurement value, x̂ = E(x|y), and its uncertainty. For example, the
standard uncertainty may be defined as

u =
√
V ar(x|y), (52)
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and the expanded uncertainty, at a coverage level p0, as the value U > 0 such
that ∫ x̂+U

x̂−U

p(x|y) dx = p0. (53)

Instead, p(x̂|x) is the distribution that describes the overall measurement
process and relates the measurement value x̂ to the value of the measur-
and x. Then it may be used for declaring the performance of the measuring
system.

In summary, we may say that the two distributions considered thus far,
p(x|y) and p(x̂|x), are complementary in meaning and purpose: the former is
the basis for expressing the uncertainty in a specific measurement; the latter
is useful for expressing the performance of the measuring system in its mea-
suring range (spanned by x ) [39,42]. We may say that the former is of primary
interest for instrument users and the latter for instrument producers.

Let us now look at the application of this model to the example discussed
in the previous section, that is, the measurement of a constant quantity x, by
repeated observations from an instrument affected both by random variations
and systematic additive deviations, according to the model (38)

y = x+ θ + v.

For observation, we obtain

p(y|x, θ) =
∏

i

pv(yi − θ − x) (54)

and for restitution

p(x|y) ∝
∫ ∏

i

pv(yi − θ − x)p(θ) dθ. (55)

When the distribution of v is normal with known variance σ2, we have

p(x|y) ∝
∫

exp
(
−1

2
(x− ȳ + θ)2

σ2/N

)
p(θ) dθ, (56)

which is equivalent to formula (43), because z = −θ.
The derivation is now more straightforward and there is no need to assume

an evaluation equation, rather the results derive directly from the model (38).
Lastly, the distribution that characterises the overall measurement process

is

p(x̂|x) ∝
∫

exp
(
−1

2
(x̂− x− θ)2

σ2/N

)
p(θ) dθ. (57)

In the accompanying DVD numerical examples of the application of this
model to uncertainty evaluation and to risk analysis are provided, with the
related software codes. Additional examples may be found in References [34,
39,40].



Probability in Metrology 53

Some notes on inference in measurement

We call probabilistic an inference that yields the assignment of a probability
distribution to some parameter under investigation.

We have encountered two kinds of such inferences so far, namely

(a) Hypothetic deductive inferences, in significance testing
(b)Hypothetic inductive inferences, in Bayesian estimation

Let us briefly recall their logical structure. In a hypothetic deductive inference

(a1) We hypothesise a probabilistic model,
(a2) On the basis of which we deduce the probability distribution of the

observation y in a given experiment, which allows us
(a3) To define an acceptance region A for the observation, which is a

region in which the observation complies with the model;
(a4) Then we perform the experiment and acquire y:

– If y falls into the acceptance region, the model is corroborated,
– Otherwise it is ‘falsified’ by the observation and we may consider

abandoning it.

In a hypothetic inductive inference, instead, if we consider the most
important case for us, that of assuming a noninformative prior,

(b1) We hypothesise a probabilistic relation, in a given experiment, link-
ing the observation y to a parameter x, expressed as a conditional
distribution p(y|x);

(b2) We perform the experiment and acquire the observation y;
(b3) On the basis of the observation and of the hypothesised probabilistic

relation, we assign a probability distribution to x, induced through
the observation.

Let us now considered the logical structure of the measurement process,
as outlined in the previous section. It includes the following steps.

(c1) Assume a probabilistic relation between the value of the measurand
and the indications of the MS, parametrical in respect to some influ-
ence parameters: this relation is a model of the observation process;

(c2) Assume a probability measure over the space of the influence param-
eters;

(c3) Perform observation and acquire the indications of the MS;
(c4) Apply, in the restitution phase, the Bayes–Laplace rule and obtain

a probability distribution for the measurand, still conditioned upon
the influence parameters;

(c5) Decondition the probability distribution with respect to the influence
parameters, which concludes the restitution phase and the overall
measurement process.
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If we analyse this procedure in the light of what we have so far exposed,
we recognise in steps c1, c3, and c4 a Bayesian inference, so that we may say
that the measurement process embeds a Bayesian inference.

On the other hand, we also note that steps c2 and c5 are not typical of
a Bayesian inference. They include the assumption of a probability distri-
bution for some parameters (step c2) and their use according to the rules
of the calculus of probability (step c5). We say that these two steps form a
hypothetic-deductive process10: so we conclude that in general in a measure-
ment process we have the combination of a hypothetic-inductive inference and
of a hypothetic-deductive process.

This conclusion does not apply only to the approach based on the proba-
bilistic model of the MS, but also to the previous approach, based on formula
(39). Even in that case no inference is made on the influence parameters giv-
ing rise to systematic effects: actually no inference is possible because their
effects are not observable via the indications.

We thus now have a new way of posing the problem of systematic effects.
Because influence parameters giving rise to systematic effects must be treated
via a hypothetic deductive process, what guarantees the validity of the final
measurement result?

This question is a special case of the general requirement for scientific
statements: they must be controllable, as it must be possible to design and
perform experiments whose results may falsify such theories. This principle,
the falsifiability of scientific theories, is central to Popper’s epistemology and
widely accepted [36].

So what can we do in the case of measurement?
The answer, from what we have seen so far, is simple and straightfor-

ward: the validity of the measurement process, which includes a hypothetic-
deductive treatment of systematic effects, may be controlled by a significance
test, that is, by a hypothetic-deductive inference.

Let us briefly see how this inference can be stated. Consider a measure-
ment process described by p(x̂|x). Remember that this distribution accounts
for systematic effects too. Suppose that we dispose of a standard whose value,
x0, is known with uncertainty negligible for our purpose. Then we can mea-
sure the standard through the measurement process under consideration and
perform a significance test on the difference x̂0 −x0, where x̂0 is the measure-
ment value obtained after measuring the standard. For a significance level α,
the acceptance region will be A = [−a,+a], such that

∫ +a

−a

p(x̂0 − x0|x0) dx̂ = α. (58)

10 We distinguish between a hypothetic-deductive process and a hypothetic-
deductive inference: in the latter we learn from experience, whilst in the former we
do not. We show how to apply a hypothetic deductive inference to measurement
in a moment.
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This procedure formalises what is done in the practice of metrology, for
example, in the verification of the calibration of a MS or in the control of a
measurement process by check standards.

2 Towards a probabilistic theory of measurement

2.1 Origin and early development of the formal theory
of measurement

Helmholtz

So far we have considered a mainstream of studies, centered on the problem of
measurement uncertainty, from Gauss up to contemporary practice. In reality,
there is another very important area of studies in the science of measurement
that arose towards the end of the 19th century and concerns the problem
of the foundations of measurement and the development of a formal theory
for it. These two mainstreams, although conceptually related, have developed
essentially in parallel and with few connections. The reason for this lack of
connection is historical and we think that, at present, a merger of these two
approaches is much needed and is a major challenge for metrology. We thus
briefly review some of the main steps in the historical development of measure-
ment theory and then we show why this theory also requires a probabilistic
approach. We then overview what has been done so far and discuss what we
may expect in the near future [41].

The beginning of the modern theory of measurement is usually traced to a
genial work by Helmholtz, ‘Counting and Measuring from the Viewpoint of the
Theory of Knowledge,’ published in 1887 [6]. In this essay he poses the prob-
lem of the foundation of measurement, because he investigates ‘the objective
meaning of the fact that we express as quantities, through concrete numbers,
situations of real objects’ and he discusses ‘under what circumstances we are
allowed to do so.’ ‘Concrete numbers’, in his language, are those arising from
the counting of real objects.

He finds a brilliant solution to the problem by establishing an analogy
between measurement and counting. The key idea is that in many cases what
we want to measure is literally a ‘quantity,’ in the sense that it is the amount
of something, and thus it may be considered to be composed of the sum of a
number of elementary parts, or units, of that something. In these cases mea-
surement is equivalent to the counting of such units.

Counting is possible thanks to the properties of natural numbers which
undergo an order based on the relation ‘greater than or equal to,’ denoted by
≥, and may be added to each other by an addition operation, denoted by +.

Similarly, measurement is possible and well founded whenever it is possible
to identify the empirical counterparts of the order relation and of the addition
operation for the objects carrying the characteristic of interest.
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The main idea of Helmholtz, that measurement represents properties of
objects by assigning numbers to them in such a way as to reproduce empirical
relations in the numerical domain, has been the basis for the development of
a theory of measurement.

Campbell

The first organic presentation of a theory of measurement was by Norman
Campbell, in the second part of his book, Physics: The Elements [7], pub-
lished in 1920. Like Helmholtz, he considers the problem of ‘Why can and do
we measure some properties of bodies while we do not measure others’ and
goes further in this investigation by asking, ‘What is the difference between
the properties which determine the possibility or impossibility of measuring
them.’ In order to answer this question, he distinguishes two main kinds of
quantities, fundamental, such as mass or length, and derived, such as density,
for example. Both of them require an empirical property of order, which is –
as for Helmholtz – the basic requirement for measurement. But fundamental
quantities allow for a physical-addition operation also. Why is this operation
so important?

Because it is the key to permitting the general procedure for fundamental
measurement to be applied. Such a procedure consists in constructing a mea-
surement scale, that is, a series of standards with properly assigned numerical
values, and then in comparing any unknown object, r, to it, in order to select
the element in the series which is equivalent to it. Then it will be possible to
assign to r the same number (measure) as the selected element.

The physical addition operation must satisfy – as Helmholtz had already
pointed out – the logical properties of addition, that is, the associative and
the commutative properties, and there must be experimental evidence of this.

On the other hand, derived quantities do not require a specific scale to
be devised, because they may be measured thanks to a physical law relating
them to other measurable quantities. In the case of density ρ, for example,
we may define it as the ratio of mass to volume, that is, ρ = m/V , and thus
reduce its measurement to one of mass and volume.

Campbell’s investigation contributed to a deeper understanding of the
nature of measurement and his position has been, and still is, highly influen-
tial and he was deeply involved in a controversy that arose in the 1930s in
the scientific community and that would strongly influence the development
of measurement science.

The Committee of the British Association for the Advancement
of Science

In the beginning of the 20th century measurement was popular not only
in physics and engineering, but also in experimental psychology and in
behavioural sciences. So it was quite natural for the scientific community
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to consider whether the epistemological value of measurement in this new
domain was well founded. With this aim, in 1932, the British Association for
the Advancement of Science appointed a committee composed of physicists
and psychologists, to consider and report upon the possibility of quantitative
estimates of sensory events. The report of the committee, published only in
1939, after years of discussions, admitted that it had been impossible for the
two sides to reach a common understanding of measurement [9]. The physi-
cists, in particular, took a strong stance against the possibility of actually
making measurements in the behavioural sciences.

Without entering into detail, the committee considered typical psycho-
physic experiments on ‘just perceptible differences’ and on ‘equal appearing
intervals.’ The psychologists claimed that from those experiments and by as-
suming some feasible psychophysical law, such as Fechner’s law, it was pos-
sible to arrive at quantifying sensations. The physicists, instead, denied that,
mainly because, in their opinion, direct estimation of sensations was not pos-
sible and additivity was inconceivable for them.

The report of the committee had an enormous influence in the following
years and we may say that it led to an essentially parallel development of
measurement science in physical science on one side and in behavioural sci-
ences on the other, with consequences up to the present day. But let us see
now some reactions from an outstanding psychologist, Stanley Stevens, who
did not himself attend the committee, although his work on loudness was
thoroughly discussed by them.

Stevens

Stevens, who was at Harvard and was dealing with problems similar to those
considered by the committee in the same period, felt the need for a more
general theory of measurement. This generalisation was aimed at enlarging
the number of feasible measurement scales [10]. In Campbell’s view there was
only one type of measurement scale, the one holding for quantities for which
an empirical operation of addition was possible. Stevens instead proposed
his famous fourfold classification of measurement scales, which is still in use
and is summarised in Table 2. The classification is based on the notion of
admissible transformations, that is, transformations that leave the scale form
invariant. In the table we may see the scale types (column 3) and the groups of
admissible transformations (column 5).11 In doing so he shifted the focus from
empirical relations, such as order, additivity. . ., to the invariance properties
of the scales.

Nominal scales are involved in classification operations and numbers serve
only to distinguish one class of objects from another. Any biunivocal trans-
formation is permissible, because identification is still possible. Examples are
colour measurements and pattern recognition techniques.

11 The content of the other columns is presented later on.
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Table 2. Summary of the main scales for fundamental measurement, as considered
in the representational theory, based on the original classification by Stevens.

Empirical Empirical Scale Admissible
Structure Relations Type Representation Transformations

Equivalence a ∼ b ⇐⇒
Nominal among elements Nominal m(a) = m(b) Biunivocal

in each class

Weak order a � b ⇐⇒ Monotone
Order among the Ordinal m(a) ≥ m(b) increasing

objects

As above plus Δab � Δcd ⇐⇒ Linear positive
Difference weak order Interval m(a) − m(b) m′ = αm + β

among intervals ≥ m(c) − m(d) α > 0

As above plus a ∼ b ◦ c ⇐⇒ Similarity
Extensive a concatenation Ratio m(a) = m(b) + m(c) m′ = αm

operation α > 0

Ordinal scales permit a rank ordering of objects and remain invariant
under monotonic increasing transformations. They include hardness of min-
erals and earthquake or wind intensity.

Interval scales entail a constant unit of measurement; that is, they intro-
duce a metric, and so permit the calculation of differences between any two
values. They remain invariant under linear positive transformations. Fahren-
heit or Celsius temperatures are good examples, as well as position or time,
intended as calendar.

Ratio scales also feature constant units of measurement, but, in addition,
they allow the ratio of two values to be evaluated, because a true zero exists.
They are invariant under any simply multiplicative transformation, or simi-
larity. They include ‘extensive’ quantities, such as mass or length, but also,
in Stevens’ view, perceptual quantities, such as loudness or brightness

So in order to overcome the position of the physicists, Stevens generalises
the notion of measurement scale, already introduced by Campbell for fun-
damental measurements. Moreover, he argues that direct estimation of sen-
sations is possible, as happens in magnitude estimation. Such a test may be
performed, for example, by presenting a line of a given length and telling the
observer to call it some number, say, 10. Then a line of some other length
is presented and the subject is asked to assign it a number, considering that
the first line was 10 and so forth. The important point is that, thanks to
such tests, it is possible for Stevens to consider equality between ratios, as the
empirical relation for ratio scales, instead of addition.



Probability in Metrology 59

Summarising, Stevens proposes to overcome the severe limitation in mea-
surability posed by the report of the British Association, by increasing the
number of allowable measurement scales and by considering equality of ratio
as an empirical relation. Yet his arguments did not convince the physicists.

With Stevens we have reached the second half of the 20th century. At
that time a considerable body of results had been obtained in measurement
theory and there was a need for a systematization, which was achieved with
the representational theory of measurement.

2.2 The representational theory of measurement

The representational framework

A remarkable systematisation of the formal theory of measurement was
achieved in the second half of the 20th century and referred to as repre-
sentational theory. A comprehensive presentation is offered in the gigantic
treatise, Foundations of Measurement, by Krantz, Luce, Suppes, and Tver-
sky [13], as well as in other parallel works, such as those by Roberts [16]
and Narens [20].These studies shares a common framework, which essentially
may be seen as a combination of the viewpoints of Campbell and Stevens,
that are seen as complementary rather than opposing. The main idea, trace-
able, as we have seen, to Helmholtz, is that the numbers we obtain through
measurement represent empirical relations. This framework also applies to
fundamental physical measurements as intended by Campbell, here called ex-
tensive. But now extensive is regarded as a special, though very important,
kind of measurement, not as the only one worthy of this name. Consequently,
the classification of scales proposed by Stevens may be retained and each scale
is now characterized by

1. A representation theorem, showing how empirical relations are mapped
into corresponding numerical relations

2. A uniqueness theorem, specifying which class of transformations maintain
the properties of the scale

The uniqueness theorem allows the meaningfulness of statements concern-
ing measurement to be addressed. In fact, we may say that a statement con-
cerning the results of measurement on a given scale, is meaningful if its truth
is unaffected by admissible transformations on that scale.

A summary of the representation framework has been presented in Table
2 above. We have already discussed the invariance properties of the scales,
here called uniqueness conditions, when presenting Stevens’ contribution. Let
us now briefly comment on empirical structures (column 1), the associated
empirical relations (column 2), and representation theorem (column 4) .

In nominal structures we only have the equivalence of elements belonging
to the same class, denoted by ∼ and the result of operating on this scale is a
classification.
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Order structures are characterised by an empirical relation of weak order
that we denote by the symbol �. The relation of weak order plays a funda-
mental role in measurement and is satisfied also in the other scales to follow.

In the case of difference structures we are mainly concerned with intervals
of objects and with a weak order relation among them. For example, if a, b
are two elements of A, their interval will be denoted by Δab (being positive
if a � b) and Δab � Δcd means that the first interval is, empirically, greater
than or equal to the second one.

Finally, in extensive structures an empirical concatenation operation, or
physical addition as Campbell named it, is present. In connection with this
operation we also define a ternary relation a ∼ b◦c, meaning that the element
a is equivalent to the empirical sum of b plus c.

The main representation theorem for the three structures we are dealing
with thus reads as follows.

– For order structures:

a � b ⇐⇒ m(a) ≥ m(b), (59)

– For difference structures:

Δab � Δcd ⇐⇒ m(a) −m(b) ≥ m(c) −m(d), (60)

– For extensive structures:

a ∼ b ◦ c ⇐⇒ m(a) = m(b) +m(c). (61)

Each structure includes the properties of the previous ones, so, for exam-
ple, difference structures also satisfy the representation theorem that holds
for order structures and so on.

The representational theory has been developed mainly in the field of be-
havioural sciences but has been brought to the attention of physicists and
engineers since the 1970s, mainly by Finkelstein [19], and has received, after-
wards, contributions also from that community. Such a theory was initially
stated in an essentially algebraic fashion and, until very recently, it has only
partially been treated in probabilistic terms. Moreover, due to its growth, es-
pecially in the field of behavioural science, little or no attention has been paid
to the role of the measuring instrument (or system). We thus now briefly re-
view some of the probabilistic developments proposed in the representational
approach, leaving for the next section the presentation of a complete proba-
bilistic theory of measurement that also accounts for the role of the measuring
system.

Probabilistic issues

Because uncertainty is a constitutive aspect of measurement, several at-
tempts have been made to include probabilistic issues in the representational
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framework. A basic bibliography may be found in Roberts [16], Chapter 6],
Krantz et al. [13, Vol. 2, Chapters 16–17], and in Luce and Suppes [33].
Although we cannot survey these references in detail, we may say that they
mainly deal with a probabilistic treatment of comparison tests aimed at con-
structing order scales. The general problem that they consider may be formu-
lated in the following terms. Given a probabilistic description of the empirical
relations, under which conditions is it possible to arrive at a meaningful rep-
resentation? This issue is also called probabilistic consistency .

To illustrate the problem, suppose we want to measure some perceived
quantity, for example, the intensity of a class of sounds, and we want to con-
struct an order scale for them [37]. Empirical relations are in this case defined
by the responses of a class of subjects to the sounds under investigation. If we
consider any two sounds, a, b, we cannot expect in general that a definite re-
lation, for example, a � b, where � here means ‘louder than’, definitely holds
for them, due to inter-and intrasubjects variability. We may rather expect
that a probability may be attached to such a relation; that is, P(a � b), where
P denotes the probability of a relation.

What property should we require for this probability in order for repre-
sentation to be possible? We have seen that for deterministic order scales the
key property is transitivity; that is, for a, b, c belonging to A, if both a � b
and b � c hold, a � c should also hold. A suitable probabilistic replacement
for this is the so-called weak probabilistic transitivity ; that is,

P(a � b) ≥ P(a ≺ b) and P(b � c) ≥ P(b ≺ c) =⇒ P(a � c) ≥ P(a ≺ c).
(62)

If this property holds, the following representation theorem may be proved
[27].

m(a) ≥ m(b) ⇐⇒ P(a � b) ≥ P(a ≺ b). (63)

Yet results such as this one, although important in some regards, are not
completely satisfactory from a general standpoint. In fact, this means that
in order to assign measures to the objects we must know the probability of
the empirical relations. Empirical relations are no longer regarded as deter-
ministic, but the measures may still be assigned exactly, once the required
probabilities are known. Measurement is still, in some sense, a determinis-
tic process, although it is no longer based directly on empirical relations but
rather, indirectly, on their probabilities.

This is not yet what is needed for a completely satisfactory probabilistic
theory of measurement. The need for a complete probabilistic formulation of
the representational framework was clearly expressed by Leaning and Finkel-
stein [18], where a probabilistic framework was also proposed. Unfortunately
that approach was not developed in detail in the following years. The most fa-
mous paper on the probabilistic approach is perhaps one from Falmagne [17],
in which the author presented a probabilistic representation for extensive mea-
surements, in the case that some special constitutive relations hold between
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relational probabilities and measure values. The paper was a novelty at that
time and had the merit of dealing with the quite complex structure of exten-
sive measurement, but it dealt with special cases only.

Actually, there is an inherent difficulty in achieving a complete proba-
bilistic formulation, partially documented in the studies concerning the so-
called random-utility model (see Roberts [16], Section 6.2). Another difficulty
is related to the notion of the probability of a relation (and of a relational
system), which has been scarcely investigated in the past [36]. Only relatively
recently has a major contribution been provided on this subject in two pa-
pers, by Regenwetter [28] and Regenwetter and Marley [32], which provide
useful results. We account for them, later on, in proposing a full probabilistic
theory, but, before that, we have to discuss the role of the measuring system
in a formal theory of measurement.

The role of the measuring system in a formal theory
of measurement

Although measuring instruments have been key players in the development of
modern science, their role in the theory of measurement seems to have been
underestimated [41]. Campbell, for example, as a physicist, was aware of their
importance, yet he concentrated mainly on the problem of scale construction
and considered the issues related to the measuring system as technical rather
than theoretical ones. Lately, the formal theory of measurement has been
developed mainly in the area of behavioural sciences, where the role of the
measuring system is not felt as central. The need of explicitly accounting for
the role of the measuring system in a theory of measurement has been pointed
out by Gonella [21] and, more recently and with additional arguments, by
Mari [29], who claims that measurement is essentially an evaluation performed
by a calibrated MS. We essentially agree with this position, provided that a
proper (broad) definition of MS is adopted. Let us then discuss this point in
more detail.

In principle, measurement may be performed by selecting one object, a,
and comparing it with a previously established measurement scale in order
to identify a standard s to which the element a is equivalent. After that, we
assign m(a) = m(s). But how can we actually do that?

Measurement is in general performed through the mediation of a measuring
system. So what is the role and the behaviour of the MS precisely?

In Section 1.4 we have observed that, because the value of the measurand
is not directly observable, the function of the MS is to interact with the object
and to produce, as a result of the interaction, an observable output, which is
‘caused’ by the measurand. From the observable output it is possible to go
back to the cause and to properly assign a value to the measurand. We then
propose to define the measuring system as an empirical system able to inter-
act with any object carrying the quantity under investigation and to produce,
as a result of the interaction, an observable output, on the basis of which it
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is possible to assign a value to the measurand. Note that this definition is
general enough to accomplish also measurements by a panel or a jury with
respect to a previously defined reference scale, as often occurs in the case of
perception [37]. Provided that this definition is accepted, how can we formally
state this? In particular how can we characterise the interaction of the MS
with the measurand object?

The solution is straightforward, because the property that we need is sim-
ply the following. The output of the measuring system should depend only on
the state of the quantity (and thus should not depend on the specific object
manifesting that state). The behaviour of the MS may thus be described and
characterised by a function ϕ : A → R such that, for each a, b ∈ A,

a ∼ b ⇔ ϕ(a) = ϕ(b). (64)

The output of the MS does not depend on the specific object but only on
the value of the measurand, thus another useful description is provided by the
calibration function f , that we have informally introduced in Section 1.4. We
may now provide a formal definition: let x be the value of the measurand and
f : X → R the calibration function; then

ϕ(a) = f [m(a)]. (65)

The deterministic description of the measurement process is then still pro-
vided by the formulae (44–46). All this holds in a deterministic framework and
thus describes the ideal measurement. Later on we present the corresponding
probabilistic model, which is also in agreement with what we have anticipated
in Section 1.4.

2.3 A probabilistic theory of measurement

Probabilistic relations

We now briefly sketch a probabilistic theory of measurement that we have
recently proposed and published [38].

The key point for attaining such a theory is the introduction of the notion
probability of a relation [28, 32]. It is important to note first that the term
‘relation’ may be understood both in a general and in a specific meaning. For
example, when we write a � b, we mean that the relation � holds for the
couple (a, b) in A (this is the specific meaning). On the other hand, when we
speak of the relation � on A, we refer to the set of all the pairs of elements
of A which satisfy it (this is the general meaning). Consider now this second,
general, meaning. Then, a probabilistic relation of some kind, for example,
a weak order, on a finite set A, may be defined by assigning a probability
distribution over the class of all possible relations of that kind on A. This is
illustrated by the simple example in Table 3, concerning a set with only three
elements, A = {a, b, c}.
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Table 3. An illustrative example of a probabilistic order structure on A = {a, b, c}.

Relational Weak Order P(Ai)
System Ai Relations �i xa xb xc (Example)

A1 a 	 b 	 c 3 2 1 0.2
A2 a 	 c 	 b 3 1 2 0.2
A3 b 	 a 	 c 2 3 1 0.0
A4 b 	 c 	 a 1 3 2 0.0
A5 c 	 a 	 b 2 1 3 0.0
A6 c 	 b 	 a 1 2 3 0.0
A7 a ∼ b 	 c 2 2 1 0.1
A8 a ∼ c 	 b 2 1 2 0.1
A9 b ∼ c 	 a 1 2 2 0.0
A10 a 	 b ∼ c 2 1 1 0.3
A11 b 	 a ∼ c 1 2 1 0.0
A12 c 	 a ∼ b 1 1 2 0.0
A13 a ∼ b ∼ c 1 1 1 0.1

In the table all the possible weak orders on A are listed (column 2) and
a probability is assigned to each of them (column 6). It may be that the
probability of some of them is null, but it is necessary that no relation which
is not a weak order has a nonnull probability. Note that when we assign a
probability to a weak order, say �i, we also formally assign it to the order
structure Ai = (A,�i).

If we now consider, in this example, a specific relation holding for a specific
pair of elements, for example, a � b, we may note that it is verified in A1, A2,
A5, A8, and A10 and consequently its probability is

P(a � b) = P(A1) + P(A2) + P(A5) + P(A8) + P(A10) = 0.8.

In general, for each couple of elements a, b ∈ A, we may calculate the
probability of the empirical relations a � b as

P(a � b) =
∑

a�b∈Ai

P(Ai). (66)

What we have so far presented is a probabilistic order structure. In a similar
way it is possible to define a probabilistic counterpart also for interval and
extensive structures.

The measurement scale

Thanks to the notion of probabilistic relation it is possible to propose a prob-
abilistic counterpart of the representation theorem. Consider a finite set of
objects A and either
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1. A probabilistic order structure
2. A probabilistic interval structure
3. A probabilistic extensive structure

Then it is possible to assign a discrete random variable xa to each element
a ∈ A in such a way that (for each a, b, c, d ∈ A):

1. For a probabilistic order structure:

P(a � b) = P (xa ≥ xb); (67)

2. For a probabilistic difference structure:

P(Δab � Δcd) = P (xa − xb ≥ xc − xd); (68)

3. For a probabilistic extensive structure:

P(a ∼ b ◦ c) = P (xa = xb + xc). (69)

Proof of this probabilistic representation theorem is provided in Reference
[38]. Let us now illustrate formula (67) with the example in Table 3. In the
table, for each Ai (column 1), a proper assignment of values to the random
variables is presented (columns 3–5). For example, when A1 holds, xa = 3,
xb = 2, and xc = 1. So it is possible to calculate the probability distribution
for each random variable: for example, because xa = 3 in A1 and A2,

P (xa = 3) = P(A1) + P(A2) = 0.4.

It is now easy to check that the Ais for which, say, a � b holds, namely
A1, A2, A5, A8, and A10, are the same for which also xa > xb holds and
consequently

P(a � b) = P (xa > xb) = 0.8.

In the accompanying DVD this example is studied in more detail and the
related software is addressed.

The measurement process

In the deterministic description of the MS (Section 2.2) we have assumed that
the output of the MS does not depend upon the specific object selected, but
only on its state, and from that we have deduced that the observation trans-
formation can be described by a function y = f(x), defining a unique relation
between each value of the measurand x and the corresponding indication y
of the MS. Here we maintain the hypothesis that the output of the MS does
not depend upon the specific object selected, but only on its state, that is, on
the specific value that it manifests when we make the measurement, but we
assume that, for each such value, a plurality of indications is possible, gov-
erned by a probabilistic distribution. Consequently, as we have seen in Section
1.4, a probabilistic description of the MS may be obtained by considering a
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conditional probability distribution which describes the observation phase,
that is,

P (y|x). (70)

Then the restitution phase follows, described by

P (x|y) = P (y|x)
[∑

x∈X

P (y|x)
]−1

. (71)

Lastly, the overall measurement process is characterised by

P (x̂|x) =
∑

y∈Y

δ[x̂− μ(x|y)]P (y|x), (72)

where μ is a position parameter appropriate for the scale that we are consid-
ering (i.e., μ is the median, if the scale is ordinal, or the expected value, if
the scale is interval or ratio) and δ is the unitary discrete impulse. Note that
the integrals appearing in Table 1 are now replaced by sums, because now we
are dealing with discrete random variables. This hypothesis, anyway, is not
critical, because it is essentially equivalent to requiring that the measuring
system has a finite resolution (see [29, 38] for a discussion of this point). We
omit, for the sake of brevity, the treatment of influence quantities that may be
explicated as presented in Section 1.4. Lastly, the calibration of the MS may
be now intended as the operation aiming at obtaining the conditional distri-
bution P (y|x). A summary of the main results of this probabilistic theory of
measurement is provided in Table 4.

Table 4. Synopsis of the proposed theory: deterministic versus probabilistic
approach.

The Measurement Scale

Scale Type Deterministic Approach Probabilistic Approach

Order a � b ⇔ m(a) ≥ m(b) P(a � b) = P (xa ≥ xb)
Interval Δab � Δcd ⇔ P(Δab � Δcd) =

m(a) − m(b) ≥ m(c) − m(d) P (xa − xb ≥ xc − xd)
Ratio a ∼ b ◦ c ⇐⇒ m(a) = m(b) + m(c) P(a ∼ b ◦ c) = P (xa = xb + xc)

The Measuring Process

Process Deterministic Approach Probabilistic Approach

Observation y = f(x) P (y|x)

Restitution x̂ = f−1(y) P (x|y) = P (y|x)
[∑

x∈X P (y|x)
]−1

;

x̂ = μ(x|y)
Measurement x̂ = f−1(f(x)) = x P (x̂|x) =

∑
y∈Y δ[x̂ − μ(x|y)]P (y|x)
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3 Final remarks

Probability and metrology are two closely linked disciplines.
The science of measurement has taken advantage of the development of

probability and statistics and has assumed methods and tools. But at the
same time it has also greatly contributed to the development of these disci-
plines: the early theory of errors is an outstanding example of this.

We think that both in the present and in the future measurement prob-
lems may be best faced not simply by looking for existing statistical methods
to adopt, but rather by considering probability as the natural tool for dealing
with matters in which determinism is not appropriate for providing a satisfac-
tory description and explanation of facts. In this way the relationship within
the two disciplines may be rich and fruitful and the dialogue between the re-
lated scientific communities intense and enriching for both parts.

Moreover we have seen how measurement science has developed according
to two distinct mainstreams, because of the division which arose between sci-
entists in physics and engineering on the one hand and in psychology and be-
havioural science, in the first half of the last century. Such a division has been,
in our opinion, detrimental in many respects, because the two approaches, one
based on the study of the measurement process, the other on the problem of
measurability and of the construction of the measurement scale, naturally
complement each other and are both necessary to attain a satisfactory overall
theory of measurement. We have also seen how a new and unconventional
way of using probability, the probability of relations, has been recently pro-
posed and is extremely promising as it paves the way to a better foundation
for measurement. So we believe in the possibility of a new foundation for
a unique science of measurement, valuable for all domains of knowledge in
which measurement is seen as a necessary tool for reinforcing knowledge and
for gathering information, and we consider probability as the natural logic for
such a science.

Appendix: Symbols and Notation

Some of the main symbols are listed in Table 5. As a general criterion, we
have tried to keep notation as lean as possible. Due to the broadness of the
subject, some symbols are polysemantic: we have preferred to establish an
easy connection between similar ideas, rather than resorting to a wide mass of
difficult-to-relate symbols. We adopt the usual convention of denoting vectors
and matrices by bold characters. We do not use special notation (such as
capitals or bold) for random variables. So the same symbol may be used for
denoting a random variable as well as its specific value. For example, the
probability distribution of v may be denoted either as pv(·) or, in a shorthand
notation, as p(v).
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Table 5. List of the main symbols of Sections 1 and 2, respectively.

x, x parameter(s) to be estimated, measurand (either scalar or vector)
y, y observation(s), instrument indication(s)
f, f scalar function, vector function
v, v random errors affecting the indications of a measuring system
max operator that calculates the maximum of a function
A matrix
E, V ar expectation operator, variance operator
σ, σ2 standard deviation, variance
N, n, m integers
θ, θ influence parameter(s) producing systematic effects
p probability density function, also called probability distribution
P probability function, discrete probability distribution
pt,ν t-Student probability density function, with ν degrees of freedom
x̂ the “hat” symbol indicates an estimator or an estimated value;

if applied to the measurand it denotes the measurement value
ȳ, ỹ arithmetic mean of y, mean value of y
u, U standard uncertainty, expanded uncertainty
g function appearing in the GUM evaluation formula
z, z corrections of influence quantities

A set of objects manifesting the characteristic x
m measure function, m : A �→ R

� empirical weak-order relation on A, empirical weak order relation
between intervals

�i ith empirical weak-order relation definable on A
Δab interval between elements a and b of A
◦ binary empirical operation of concatenation (i.e., empirical sum) of

elements of A
∼ empirical equivalence relation on A defined, for a, b ∈ A

by a ∼ b ⇔ (a � b)and(b � a)
A = (A, �) empirical order system on A
Ai = (A, �i) ith empirical order system on A
P probability function whose argument is a relation

or a relational system (such as an order system)
X set of the possible values of the measurand, image of A in R,

through the measure function m; that is, X = m(A)
Y set of the output values (indications) of the measuring system
μ position parameter of a probability distribution

(e.g., expected value or median)
ϕ, f characteristic functions of the measuring system:

ϕ : A �→ Y, f : X �→ Y ;
• the property characterising ϕ is: ∀a, b ∈ A, a ∼ b ⇔ ϕ(a) = ϕ(b)
• the function f is defined by: ∀a ∈ A, y = ϕ(a) = f [m(a)]

g measurement function, g : X �→ X, defined, for a ∈ A, x = m(a), by:
x̂ = g(x) = f−1[f(x)] = x, and m(a) = g[m(a)] = g(x) = x
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Summary. Since its adoption, the ISO Guide has sparked a revolution in
uncertainty analysis. Of course, even with all of the positive contributions from
the development and adoption of the ISO Guide, there will always be a need to
improve the assessment of uncertainty in particular applications and to extend it to
cover new areas. Among other work along these lines, the International Committee
on Weights and Measures, Joint Committee on Guides in Metrology is currently
working on several supplements to the ISO Guide. Other authors have also recently
made many important contributions to the theory and practice of uncertainty anal-
ysis. The goals of this chapter are to discuss different approaches to uncertainty
assessment from a statistical point of view and to relate them to the methods that
are currently being used in metrology or are being developed within the metrology
community. The particular statistical paradigms under which different methods for
uncertainty assessment are described include the frequentist, Bayesian, and fiducial
paradigms. Each approach is illustrated using common examples and computer code
for carrying out each analysis is illustrated using open-source software.

Key words: Uncertainty analysis, frequentist, Bayesian, fiducial, metrology,
statistics

1 Introduction

The adoption of the ISO Guide to the Expression of Uncertainty in Mea-
surement [19] by a wide array of scientific organizations in 1992 has led to
an increasing recognition of the need to include uncertainty statements in
measurement results. The trend toward laboratory accreditation based on
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standards such as ISO 17025 has greatly accelerated this process in the last few
years. Recognizing that uncertainty statements are required for effective deci-
sion making, metrologists in laboratories of all types, from national metrology
institutes to commercial calibration laboratories, are currently putting con-
siderable effort into the development of appropriate uncertainty analyses for
different types of measurements using the methods outlined in the ISO Guide
(also commonly referred to as the “GUM”).

Some of the strengths of the procedures outlined and popularized in the
ISO Guide are its standardized approach to uncertainty analysis, its accommo-
dation of sources of uncertainty that are evaluated either statistically (Type
A) or nonstatistically (Type B), and its emphasis on reporting all sources of
uncertainty that have been considered. The main approach to the propaga-
tion of uncertainty advocated by the ISO Guide, linear approximation of the
formula used to obtain a measurement result, is simple to carry out and in
many practical situations gives results that are surprisingly similar to those
obtained using more formally justified statistical methods. In short, since its
adoption, the ISO Guide has sparked a revolution in uncertainty analysis.

Of course, even with the positive contributions from the development and
adoption of the ISO Guide, there will always be more work needed to improve
the assessment of uncertainty in particular applications and to extend it to
cover additional areas. Among other work along these lines the International
Committee on Weights and Measures’ Joint Committee on Guides in Metrol-
ogy, whose members authored the ISO Guide, is currently working on several
supplements to the ISO Guide on special topics such as propagation of dis-
tributions using a Monte Carlo method, models with any number of output
quantities, and modeling [1].

The utility of the ISO Guide is also widened by recent important work on
the assessment of uncertainty in situations involving autocorrelated measure-
ments. As indicated in Section 4.2.3 of the ISO Guide, use of the sample stan-
dard deviation to estimate the uncertainty in a set of replicate measurements
is only appropriate when the measurements are independent. Section 4.2.7
notes “If the random variations in the observations of an input quantity are
correlated, for example, in time, the mean and experimental standard devia-
tion of the mean as given in 4.2.1 and 4.2.3 may be inappropriate estimators
(C.2.25) of the desired statistics (C.2.23).” Use of the sample standard devia-
tion for positively autocorrelated data from a stationary process will typically
result in an underestimate of the standard uncertainty. Zhang [33] proposed
an approach involving the autocorrelation function for calculating the stan-
dard uncertainty of the mean of stationary autocorrelated measurements. For
some nonstationary processes, in particular those that exhibit long-term mem-
ory or long-range self-dependence, the Allan variance, which is mentioned in
Section 4.2.7 of the ISO Guide, or the wavelet variance are useful tools for
uncertainty analysis [26]. Measurements from other nonstationary processes,
however, may require other methods for uncertainty assessment.
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Finally, because it must apply to the widest possible range of measure-
ment processes, the definition of measurement uncertainty as “a parame-
ter characterizing the dispersion of the quantity values being attributed to
a measurand” cannot reasonably be given at more than a relatively con-
ceptual level in the International Vocabulary of Metrology [21]. As a result,
defining and understanding the appropriate roles of different statistical quan-
tities in uncertainty assessment, even for relatively well-understood measure-
ment applications, is a topic of particular interest to both statisticians and
metrologists.

Many authors have approached these topics from a metrological point of
view in earlier investigations. Some authors have focused on characterizing
the statistical properties of the procedures that are given in the ISO Guide.
Gleser [14] indicates that these procedures, as originally presented, are not
strictly consistent with any Bayesian or frequentist interpretation in general.
Kacker and Jones [22] propose some minor modifications to the ISO Guide pro-
cedures that bring the results into closer agreement with a Bayesian interpre-
tation in some situations. Another recent short communication in Metrologia
by Elster, Wöger, and Cox [10] discusses the relationship between procedures
for uncertainty analysis proposed in a draft supplement to the ISO Guide and
the results of a Bayesian analysis for a particular class of models. Willink [32]
also discusses different possible probabilistic interpretations of uncertainty in-
tervals and recommends approximating the posterior distributions for this
class of Bayesian analyses with probability distributions from the Pearson
family of distributions.

Lira and Wöger [25] do compare frequentist (referred to as “conventional”)
and Bayesian approaches to uncertainty analysis. However, they limit their
comparison of Bayesian and frequentist approaches to measurement systems
for which all sources of uncertainty can be evaluated using Type A methods.
In contrast, measurement systems with sources of uncertainty evaluated us-
ing both Type A and Type B methods are treated in this chapter and are
illustrated using several examples, including one of the examples from Annex
H of the ISO Guide.

Due to their training, statisticians have historically placed an especially
strong emphasis on using methods for uncertainty assessment that have a
clearly delineated probabilistic justification or interpretation. Through their
work over the years, often outside metrology, several different paradigms for
statistical inference relevant to uncertainty assessment have been developed.
The goals of this chapter are to present some of those approaches to uncer-
tainty assessment from a statistical point of view and to relate them to the
methods that are currently being used in metrology or are being developed
within the metrology community. The particular statistical paradigms under
which different methods for uncertainty assessment are described include the
frequentist, Bayesian, and fiducial paradigms, which are discussed further after
outlining the notational conventions that are needed to distinguish different
types of quantities clearly.
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1.1 Notation

In Section 4.1.1 of the ISO Guide it is noted that Latin letters are used to
represent both physical quantities to be determined via measurement (i.e.,
measurands) as well as random variables that may take on different observed
values of a physical quantity (potential measurement results). This overlap-
ping use of the same symbols, whose different meanings are only indicated
by context, can be difficult to interpret and sometimes leads to unnecessary
ambiguities or misunderstandings. To mitigate this potential source of confu-
sion, we revert to the more traditional notation often used in the statistical
literature. In this notation Greek letters are used to represent parameters
in a statistical model (or measurands in ISO Guide terminology), uppercase
Latin letters to represent random variables that can take on different values
of an observable quantity, and lowercase Latin letters to represent specific
observed values of a quantity. Of course, because additional notation may be
required to denote other physical, mathematical, or statistical concepts, there
will still always be some possibility for ambiguity. In those cases the correct
interpretation should be discernable from the context.

Using this traditional statistical notation, a measurement equation for a
quantity θ is denoted

θ = f (μ1, μ2, . . . , μp) , (1)

where f is a known mathematical function of the quantities μi.
When discussing the values of standard uncertainties, we also distinguish

between theoretical and estimated values of the standard uncertainties of dif-
ferent quantities. To do this we use notation such as σμ or σX to denote the-
oretical standard uncertainties and notation such as SX and sx to denote es-
timates of standard uncertainty before and after being observed, respectively.

1.2 Statistical paradigms

The first statistical paradigm we discuss, in which uncertainty can be proba-
bilistically evaluated, is frequentist. It is based on the statistical theory that is
probably most familiar to many readers. As a result, the frequentist approach
is sometimes referred to as “classical” or “conventional” by some authors.
However, due to the nature of uncertainty in metrology, these familiar meth-
ods must often be adapted to obtain frequentist uncertainty intervals under
realistic conditions.

In the frequentist approach, the input parameters to the function f and
its output θ all are modeled as unknown constants. Then data related to
each input parameter μi are obtained and used to estimate the value of θ
based on the measurement equation or equivalent statistical models. Finally
exact or approximate, data-derived confidence limits for θ, with a nominal
level of confidence specified by the analyst, are obtained using one of several
mathematical principles or procedures, for example, least squares, maximum
likelihood, and the bootstrap.
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Because θ is traditionally treated as constant, the probabilistic statement
associated with a confidence interval for θ is not a direct probability statement
about its value. Instead, it is a probability statement about how frequently the
procedure used to obtain the final uncertainty interval would encompass the
value of θ with repeated use. Traditional frequentist uncertainty intervals pro-
vide a probability statement about the long-run properties of the estimation
procedure used to construct the interval under the particular set of conditions
assumed to apply to the measurement process.

In most practical metrological settings, on the other hand, uncertainty
intervals must account for both the uncertainty in quantities estimated us-
ing data and the uncertainty in quantities whose values are based on expert
knowledge. To obtain an uncertainty interval analogous to a confidence in-
terval in this case, those measurands that are not observed must typically
be treated as random variables with probability distributions for their values
whereas measurands whose values can be estimated using statistical data are
treated as unknown constants.

The various traditional frequentist procedures for the construction of con-
fidence intervals must then be modified to attain the specified confidence
level after averaging over the potential values of the quantities assessed using
expert judgment [14]. Such modified uncertainty intervals provide long-run
probability statements about the procedure used to obtain the interval given
the probability model for the quantities that have not been observed, just as
traditional confidence intervals do when all of the parameters are treated as
constants.

The second paradigm is called the Bayesian approach. It is named af-
ter the fundamental theorem on which it is based, which was proved by the
Reverend Thomas Bayes in the mid-1700s [3]. In this approach the analyst’s
knowledge about the measurands in Equation (1) is modeled as a set of ran-
dom variables that follow a probability distribution on the joint parameter
space of μ1, . . . , μp and θ. Bayes’ theorem then allows these probability dis-
tributions to be updated based on the observed data (also modeled using
probability distributions) and the interrelationships of the parameters defined
by the function f or equivalent statistical models. Then, one obtains a prob-
ability distribution describing one’s knowledge of θ given the observed data.
Uncertainty intervals that contain θ with any specified probability can then
be obtained from this distribution. Because one’s knowledge of the parameter
values is described using probability distributions, Bayesian methods provide
direct probabilistic statements about the value of θ, and the other parameters,
using a definition of probability as a measure of belief.

The third, and last, of the statistical paradigms discussed in this section
is called the fiducial approach. It was initially developed by R. A. Fisher in
the 1930s [11]. In this approach a probability distribution, called the fiducial
distribution, for θ conditional on the data is obtained based on the interrela-
tionship of θ and the μi described by f and the distributional assumptions
about the data used to estimate μi. Once obtained, the fiducial distribution
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for θ can be used to obtain uncertainty intervals that contain θ with any
specified probability.

The fiducial argument that justifies the process used to obtain the fiducial
distribution is most easily understood using a simple example. Suppose the
values taken on by a measurement Y can be described by the equation Y =
μ+Z, where μ is the measurand and Z is a standard normal random variable.
If y is a realized value of Y corresponding to the realized value z of Z, then
we have μ = y − z. Of course Z is not observable. Nevertheless, the fact that
we know the distribution from which z was generated helps us determine a
set of values of μ that we consider plausible. We can use the probabilities
associated with Z to infer the probabilities for μ. The process of transferring
the relationship μ = y − z to the relationship μ = y − Z is what constitutes
the fiducial argument. The fiducial distribution of μ is the distribution of the
random variable y − Z with y fixed.

When describing the different methods for uncertainty analysis under each
of these statistical paradigms, we discuss their fundamental underlying as-
sumptions, incorporation of uncertainties evaluated using Type A or Type
B methods, and the probabilistic interpretation of the resulting uncertainty
assessments. We also describe how the methods used in the ISO Guide relate
to the frequentist, Bayesian, or fiducial results.

1.3 Examples

Each of the approaches is illustrated using two examples. In Example 1, the
goal is to assess the value of a physical quantity θ based on measurements that
must be corrected for a background interference β. Three different versions of
Example 1 are presented to facilitate comparison of the different approaches.
The notation used for each version is given in Table 1.

In the first version, denoted Example 1a, a random sample of five in-
dependent measurements of the signal plus background was observed. Each
measurement is assumed to follow a Gaussian distribution with true mean
γ = θ + β and true standard deviation σY . The observed values of the signal
plus background y are

3.738, 3.442, 2.994, 3.637, and 3.874.

Table 1. Notation that is used for Example 1.

Quantity Symbol

Physical quantity of interest (i.e., the measurand) θ
Background interference β
Quantity detected by measurement method when measuring samples
(i.e., measurand plus background) γ
Standard deviation of measurement method when measuring samples σY

Standard deviation of measurement method when measuring background σB
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These data have a sample mean of ȳ = 3.537 and a sample standard deviation
of sy = 0.342. Similarly, five independent measurements of the background are
made. These measurements are also assumed to follow a Gaussian distribution,
with true mean β and true standard deviation σB . The observed values of the
background b are

1.410, 1.085, 1.306, 1.137, and 1.200.

Because there are statistical data for each quantity that is a source of un-
certainty in Example 1a, this version of the example lends itself to straight-
forward statistical interpretation under each of the different paradigms.

The scenario for the second version of Example 1, Example 1b, is the same
as for Example 1a with the exception that the assessment of the background
is based on expert knowledge or past experience, rather than on fresh exper-
imental data. In this case, the background β is believed to follow a uniform
(or rectangular) distribution with endpoints 1.126 and 1.329. Because the
background is being assessed using expert judgment in this scenario, its un-
certainty will have to be evaluated using Type B methods. Thus this version
is more like most real measurement scenarios than Example 1a.

The scenario for the final version of Example 1, Example 1c, is exactly the
same as that for Example 1b except that the value of the signal θ is closer
to the background. The data observed for the signal plus background in this
case are

1.340, 1.078, 1.114, 1.256, and 1.192.

With the signal just above the background, this version illustrates how
physical constraints can be incorporated in the assessment of uncertainty un-
der each paradigm.

Example 2 is the calibration of the length of an end gauge taken from
Annex H.1 of the ISO Guide. Because it is more complicated, it is introduced
and discussed in Section 5, after the three methods for uncertainty assessments
are discussed and illustrated using Example 1.

2 Frequentist approach to uncertainty assessment

2.1 Basic method

One of the main statistical techniques used in applications, in particular
in metrology, consists of constructing confidence intervals for an unknown
parameter θ. The 100(1 − α)% confidence interval (or uncertainty inter-
val) is supposed to cover θ with probability 1 − α. Its midpoint gives a
point estimate of the value of this parameter, and its half-width provides
an idea about accuracy of the estimation. In metrology the half-width of the
uncertainty interval is commonly termed the expanded uncertainty of the
estimator.
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In the frequentist context, the parameters are unknown constants. Follow-
ing our convention to denote the random variables by uppercase letters and
the observed values of random variables by lowercase letters, a confidence in-
terval can be obtained from a pivotal quantity for θ (i.e., a function W (Y , θ) of
the (possibly multivariate) data Y and the parameter θ), whose distribution
under θ is parameter-free (provided such a function with a tractable distribu-
tion can be found). Then by determining the upper and lower percentiles �α
and uα of such a distribution, Pθ(�α ≤ W (Y , θ) ≤ uα) = 1−α, one can solve
the inequalities �α ≤ W (Y , θ) ≤ uα in θ to obtain a 100(1 − α)% confidence
interval for θ.

For example, let Y = (Y1, . . . , Yn) represent a random sample from
N(μ, σ2) with Ȳ =

∑
Yi/n. If the parameter of interest is μ, then for known

σ,

Z =
Ȳ − μ

σ/
√
n

∼ N(0, 1),

is a pivotal quantity. The frequentist confidence interval for μ is given by

Ȳ ± σ√
n
zα/2. (2)

If σ is not known, the sample standard deviation

S =

√∑n
j=1(Yj − Ȳ )2

n− 1

is used to estimate σ. Then the (exact) pivotal quantity for μ is obtained by
replacing σ in (2) by S,

Ȳ − μ

S/
√
n

∼ t(n− 1). (3)

Thus, the Student-t distribution based confidence interval for μ is

Ȳ ± S√
n
tn−1,1−α/2,

where tn−1,β is the 100β percentile of the t-distribution with n− 1 degrees of
freedom.

In lieu of exact pivotal quantities, which exist only in simple situations,
approximate pivotal quantities are commonly employed in applications. For
large samples the central limit theorem can be invoked to get approximate
confidence intervals based on the normal distribution.

Further methods of obtaining confidence intervals (inverting a test statis-
tic, pivoting a continuous cumulative distribution function, ordering the dis-
crete sample values according to their probabilities, etc.) are discussed in [6].
Some of them are mentioned in Example 1. A computer-intensive method,
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called the bootstrap, also can be used to construct a confidence interval for
pivot quantities that have unknown distributions. The bootstrap procedure is
discussed later in this section.

Although not explicitly given a frequentist justification from first princi-
ples, the procedures recommended in the ISO Guide sometimes can be used
to obtain an approximate confidence interval for the measurand. Such confi-
dence intervals are based on an approximate pivotal quantity with an assumed
Student’s-t distribution obtainable from the measurement equation (1), which
is the centerpiece of the Guide. Under this procedure the estimate of the mea-
surand θ is based on the plug-in method. More precisely, the unknown p quan-
tities μ1, . . . , μp are replaced by estimates x1, . . . , xp obtained from physical
measurements or from other sources. Typically measurements xi are sample
means or other functions of data designed to estimate some of the quantities,
say, μi, i = 1, . . . ,m. Their (Type A) uncertainty u(xi) is also estimated on
the basis of the data by statistical methods, usually via the sample standard
deviation or by other robust, rank-based procedures. Then the degrees of free-
dom νi = νi(xi) associated with u(xi) is determined from the sample size used
to estimate μi.

As physical measurements are not always possible or feasible for some of
the μj, subjective evaluations xj , j = m + 1, . . . , p, are used along with as-
sociated uncertainty characteristics. Thus, nonstatistical types of information
are used to estimate μm+1, . . . , μp using Type B methods including scientific
judgment, manufacturer’s specifications, or other indirectly related or incom-
pletely specified information. There are situations where both Type A and
Type B information is employed in estimating some of the μj. Commonly in
this case these quantities are considered to have uncertainties whose evalua-
tion is of Type B.

The ISO Guide (see also Section 4.5 in [23]) recommends that the same
functional relationship that relates the value θ of the measurand to the
input quantities μ1, . . . , μp be used to calculate y from x1, . . . , xp. Thus,
the measurement (or, in statistical nomenclature, the estimator) y of θ is
obtained as

y = f(x1, . . . , xm, xm+1, . . . , xp);

that is, the evaluated magnitude of y, y = f(x1, . . . , xp), is taken to be the

measurement of θ.
The uncertainty u(y) in the measurement result y must be evaluated.

The suggested approach is to estimate u(y) by the method of uncertainty
propagation, that is, the uncertainties u(x1), . . . , u(xp) in the quantities
x = (x1, . . . , xp) are used in the Taylor series expansion of the function
f(x1, . . . , xp) at μ1, . . . , μp whose first-order terms are

f(x1, . . . , xp) ≈ f(μ1, . . . , μp) +
p∑

i=1

ci(xi − μi). (4)



80 W. F. Guthrie et al.

The partial derivatives here,

ci =
∂f

∂μi

∣∣∣
μ=x

,

are called sensitivity coefficients. Treating these partial derivatives as con-
stants and applying the rule for the propagation of uncertainty gives the
approximate combined standard uncertainty of y,

uc(y) ≈

√√√√
p∑

i=1

c2iu
2(xi) + 2

∑

i<j

cicju(xi, xj), (5)

where u(xi, xj) is the estimated covariance between Xi and Xj . Validity of
this formula is based on the implicit assumption of well-defined, nonvanishing
sensitivity coefficients. In other words, the ISO Guide prescription works well
when the underlying function f is locally linear. If some of the sensitivity
coefficients vanish, a higher-order Taylor’s expansion is needed, but then the
formulas (5) through (9) do not hold.

To quantify the uncertainty of uc(y), the ISO Guide suggests computing
the effective degrees of freedom using the Welch–Satterthwaite formula,

νeff =
u4

c(y)∑p
i=1

c4
i u4(xi)

ν(xi)

. (6)

This formula is appropriate when all of the individual uncertainties in the
denominator are estimated independently of one another and when all of the
input variables are approximately normal and uncorrelated. This formula can
give a reasonable answer only when the provided degrees of freedom is not too
heterogeneous. Guthrie [15] discusses a counterintuitive property according
to which in interlaboratory studies a confidence interval based on the Welch–
Satterthwaite approximation may be shorter for a between-lab difference than
for one of its components.

Finally, in order to construct a confidence interval for θ, the approximate
pivotal quantity,

W (y, θ) =
y − θ

uc(y)
(7)

is employed. According to the ISO Guide,

W (Y, θ) ∼ t(νeff); (8)

that is,W (Y, θ) is an approximately pivotal quantity which has a t-distribution
with νeff degrees of freedom. The 100(1 − α)% confidence interval for θ,

y ± uc(y)tνeff,1−α/2 (9)

then can be recommended as the 1 − α uncertainty interval for θ. The half-
width of this interval, tνeff,1−α/2uc(y), is the expanded uncertainty of y.
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This recommendation agrees with standard statistical practice when all
uncertainties are evaluated using Type A methods, in which case, the most
commonly used statistical estimate for the particular input μ is the sample
mean of n observations. The traditional method for summarizing data to
obtain the Type A standard uncertainty of this estimator is S/

√
n with n− 1

degrees of freedom. This fact is true for more general statistics of the form Y =
f(X1, . . . , Xp), where the estimators Xi, i = 1, . . . , p, obey the central limit
theorem for large sample sizes. Indeed in this situation, the standard deviation
of Y can be approximated by (5) with u(xi, xj) replaced by Cov(Xi,Xj).

The ISO Guide method presents the collective wisdom of many metrolo-
gists, but it is not an exact mathematical theorem. It is restricted by assump-
tions of

• local linearity of the function f : ideally the sensitivity coefficients should
not vary much and they do not vanish,

• normality of the distribution of point estimators: may not hold even ap-
proximately for small samples, and

• validity of the Welch–Satterthwaite formula (6): it may not work well in the
heterogeneous case. In addition, the degrees of freedom for distributions
unrelated to the chi-squared law are difficult to interpret, indeed, they are
not being used in statistical theory.

To motivate (5) in the frequentist setting, one can employ the concepts
of statistical decision theory and interpret the uncertainty u2(y) as the mean
squared error of the statistical estimator of f(x1, x2, . . . , xp) provided that the
quantities whose uncertainties are of Type B, xm+1, . . . , xp, are eliminated
by integrating over their distributions [14]. Then (5) provides the first-order
approximation of the mean squared error if f “is sufficiently close to being
linear.”

The discussion in Example 1 gives another customary frequentist proce-
dure in the context of confidence intervals.

Bootstrap uncertainty intervals

The key assumption used in constructing the ISO Guide interval is (8), which
may not hold approximately even for simple problems. However, through the
use of a statistical method called the bootstrap [8], we can obtain accurate
confidence intervals without making assumptions such as (8). One way to
get such intervals is the “bootstrap-t” approach. In essence, this procedure
generates an empirical distribution for the approximate pivot W (Y, θ) (to
replace the Student-t distribution in (8)) that is appropriate for the dataset
at hand. Of course, when (8) is in fact correct, the bootstrap-t distribution will
reproduce the Student-t distribution. The empirical bootstrap-t distribution
is then used to construct a confidence interval in exactly the same way that
the Student-t distribution is used in constructing (9).
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Here is an outline of the bootstrap-t method as applied to (1). Using the
estimates xi, the associated uncertainties u(xi), and the assumed distribu-
tions, generate samples x∗i and u(x∗i ), i = 1, . . . , p. In other words, we use xi

as the mean and u(xi) as the standard deviation of the assumed distribution
of the data Xi to generate parametric bootstrap input estimate x∗i and its un-
certainty u(x∗i ). In typical metrological problems, datasets are not big enough
to ensure the validity of the nonparametric bootstrap approach.

Just as described above, the ISO Guide takes (xi, u(xi)), for i = 1, . . . , p,
as its input to produce y, uc(y), and W (y, θ); we take x∗i , u(x∗i ), i = 1, . . . , p,
as input, to compute y∗, uc(y∗), and

W ∗ = W (y∗, y) =
y∗ − y

uc(y∗)
. (10)

To get a bootstrap distribution of W (Y, θ), generate B bootstrap samples
x∗i (b), u(x∗i (b)), i = 1, . . . , p, and for each compute W ∗(b), b = 1, . . . , B. The
100αth percentile of the bootstrap-t distribution of W (Y, θ) is then estimated
by the value t̂α such that

|{W ∗(b) ≤ t̂α}|/B = α,

where |A| is the number of elements of the set A. Finally, the 100(1 − α)%
bootstrap-t confidence interval is

(y − t̂1−α/2 · uc(y), y − t̂α/2 · uc(y)). (11)

The Student-t percentiles are symmetric about zero, and as a consequence, (9)
is symmetric about y. In contrast, the bootstrap-t percentiles can be asym-
metric about zero, leading to an asymmetric uncertainty interval about y. The
details of this process in constructing a 95% uncertainty interval are shown in
the following algorithm.

1. For i = 1, . . . , p, using xi as the mean and u(xi) as the standard devi-
ation of the assumed distribution of Xi, generate B bootstrap samples
(x∗i (1), u(x∗i (1))), . . . , (x∗i (B), u(x∗i (B))).

2. For each bootstrap sample (x∗i (b), u(x∗i (b))), i = 1, . . . , p, compute y∗(b),
uc(y∗(b)) , and W ∗(b) = (y∗(b) − y)/uc(y∗(b)) following the ISO Guide.

3. Estimate the 100αth percentile of the bootstrap-t distribution of W (Y, θ)
by the value t̂α such that |{W ∗(b) ≤ t̂α}|/B = α.

4. The 95% bootstrap-t confidence interval is

(y − t̂0.975 · uc(y), y − t̂0.025 · uc(y)).

Bootstrap samples can also be used to replace uc(y) by estimating the
standard deviation of Y , when the Taylor’s approximation (4) is deemed to
be inappropriate. To do so, for i = 1, . . . , p and b = 1, . . . , B, only input
estimates x∗i (b) are to be generated. For each bootstrap sample,
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y∗(b) = f(x∗1(b), . . . , x
∗
p(b)) is evaluated. The bootstrap estimate of the stan-

dard uncertainty of y is the sample standard deviation of the B replicates,

uc(y) =

√√√√
B∑

b=1

[y∗(b) − y∗(·)]2/(B − 1),

where y∗(·) =
∑B

b=1 y
∗(b)/B.

Finally a nested bootstrap of (B1 · B2) bootstrap samples can be carried
out to construct a bootstrap-t interval using the bootstrap standard devi-
ation estimator. We generate B1 bootstrap samples of input estimates and
the corresponding y∗. For each bootstrap sample, uc(y∗) is computed by B2

second-level bootstrap samples, and

y∗ − y

uc(y∗)

is evaluated. The collection of B1 such ratios is then used to estimate per-
centiles of W (Y, θ), which leads to the construction of a bootstrap-t interval
as in (11). The algorithm of this nested bootstrap in constructing a 95% un-
certainty interval is as follows.

1. For i = 1, . . . , p, using xi as the mean and u(xi) as the standard devia-
tion of the assumed distribution of Xi, generate B1 first-level bootstrap
samples x∗i (1), . . . , x∗i (B1).

2. For each first-level bootstrap sample x∗i (b1), i = 1, . . . , p, compute y∗(b1) =
f(x∗1(b1), . . . , x

∗
p(b1)), and W ∗(b1) = (y∗(b1) − y)/uc(y∗(b1)), where

uc(y∗(b1)) is determined by a second-level bootstrap using the following
algorithm.
(a) For i = 1, . . . , p, using x∗i (b1) as the mean and u(xi) as the stan-

dard deviation of the assumed distribution, generate B2 second-level
bootstrap samples x∗i (1), . . . , x∗i (B2).

(b) For each second-level bootstrap sample, y∗(b2) = f(x∗1(b2), . . . , x
∗
p(b2))

is evaluated.
(c) The bootstrap estimate of the standard uncertainty of y∗(b1) is the

sample standard deviation of the B2 replicates

uc(y∗(b1)) =

√√√√
B2∑

b2=1

[y∗(b2) − y∗(·)]2/(B2 − 1),

where y∗(·) =
∑B2

b2=1 y
∗(b2)/B2.

3. Estimate the 100αth percentile of the bootstrap-t distribution of W (Y, θ)
by the value t̂α such that |{W ∗(b1) ≤ t̂α}|/B1 = α, where |A| is the
number of elements of the set A.

4. The 95% “nested bootstrap-t” confidence interval is

(y − t̂0.975 · uc(y), y − t̂0.025 · uc(y)).
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Although it is a more general approach that does not rely on the quality
of the Taylor’s approximation, the nested bootstrap is computationally more
involved and harder to implement. We have chosen the simpler bootstrap
method to analyze all our examples.

2.2 Example 1

As an illustration, consider the statistical model given for Example 1 in the
Introduction

Yi = θ + β + εi, i = 1, . . . , n, (12)

where θ is the quantity of interest, β represents the background, and εi are
independent N(0, σ2) errors. For a fixed value β, with γ denoting the mean
of the data, the measurement equation for this model is θ = f(β, γ) = γ − β.

If background β has a uniform distribution on the interval (a− d, a + d),
the interval for θ derived from the ISO Guide is

Ȳ − a± 2

√
σ2

n
+
d2

3
.

Gleser [14] discusses the properties of such intervals and compares them to
the interval

Ȳ − a±
[
2

√
σ2

n
+ d

]
, (13)

which can be motivated as follows. Because the conditional distribution of Ȳ
for given β is normal, N(θ + β, σ2/n),

P

(
|Ȳ − θ − β| ≤ 2σ√

n

)
≥ 0.95,

and
P (|a− β| ≤ d) = 1.

It follows that the Eisenhart interval (13) recommended by C. Eisenhart [9]
is conservative,

P

(
|Ȳ − a− θ| ≤ 2σ√

n
+ d

)
≥ 0.95.

However, if d > 12
√
σ2/n, the ISO Guide recommended interval contains

(13), which demonstrates the difference between these two approaches.
The interval (13) is easily adjustable for a t-distributed ratio

√
n(Ȳ − a−

β)/S, and for other distributions of the background (triangular, trapezoidal,
etc.). Different frequentist methods for construction of confidence intervals
are available in this situation. Indeed in the model (12), Ȳ subsumes all the
information the data provide about θ (i.e., in statistical jargon, Ȳ is a sufficient
statistic for θ) with probability density
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√
n

2
√

2πσd

∫ a+d

a−d

e−0.5n(ȳ−θ−β)2/σ2
dβ.

The special form of this distribution allows for many other statistical tech-
niques [6] to derive alternative confidence intervals (all centered at the maxi-
mum likelihood estimator, Ȳ − a, but of different lengths.)

Example 1a

The simple example introduced in Section 1.3 summarizes the measurements
in the model (12), with ȳ = 3.537 and u(ȳ) = 0.153. The latter must substi-
tute for σ/

√
n above and the factor 2 should be replaced by the percentile of

t-distribution with 5.15 effective degrees of freedom. In Example 1a, the back-
ground β can be estimated from measurements following a normal distribution
leading to b̄ = 1.228, and u(b̄) = 0.059. Our estimate of θ is ȳ − b̄ = 2.309
with combined standard uncertainty

√
u2(ȳ) + u2(b̄) = 0.164. The ISO Guide

interval is

2.309 ± 2.548 × 0.164 = 2.309 ± 0.417 = (1.892, 2.727).

The 100(1 − α)% bootstrap-t confidence interval according to (11) is
(2.309− t̂1−α/2 · 0.164, 2.309− t̂α/2 · 0.164), where t̂β is the 100βth percentile
of W ∗ of (10). An R program [27] for generating the B = 10, 000 realizations
of W ∗ is listed below.

B = 10000
y.star = rnorm(B, mean=3.537, sd=0.153)
u.y.star = 0.153 * sqrt(rchisq(B, df=4)/4)
b.star = rnorm(B, mean=1.228, sd=0.059)
u.b.star = 0.059 * sqrt(rchisq(B, df=4)/4)
w.star = ((y.star-b.star)-2.309)/sqrt(u.y.star^2+u.b.star^2)

The 95% bootstrap-t confidence interval based on the 0.025 and 0.975
quantiles of the simulated distribution is

2.309 - quantile(w.star, c(0.975, 0.025)) * 0.164
## 1.895754 2.728817

Example 1b

When there are no statistical data for the background β, instead, β is as-
sumed to have a uniform distribution on the interval (1.126, 1.329), then the
approximate interval derived from the ISO Guide is
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3.537 − 1.228 ± 2.533

√
0.3422

5
+

0.1022

3
= 2.310 ± 0.415 = (1.895, 2.724).

The Eisenhart interval is wider,

3.537 − 1.228 ±
[
2.776

0.342√
5

+ 0.102
]

= 2.310 ± 0.526 = (1.783, 2.836).

Similar to Example 1a, one can construct a bootstrap-t confidence interval
for θ. For this example, the estimates and their uncertainties of γ, β, and θ are
numerically the same as those in Example 1a, except that β is estimated by the
Type B method. Therefore, the realizations of W ∗ are generated differently
from Example 1a only in generating the bootstrap sample b∗ and its uncer-
tainty. The bootstrap sample b∗ is now generated from the known uniform
(1.126, 1.329) distribution with uncertainty 0.059. The R code for generating
B = 10, 000 realizations of W ∗ is as follows.

B = 10000
y.star = rnorm(B, mean=3.537, sd=0.153)
u.y.star = 0.153 * sqrt(rchisq(B, df=4)/4)
b.star = runif(B, min=1.126, max=1.329)
u.b.star = 0.059
w.star = ((y.star-b.star)-2.309)/sqrt(u.y.star^2+u.b.star^2)

The 95% bootstrap-t confidence interval based on the 0.025 and 0.975
quantiles of the simulated distribution is

2.309 - quantile(w.star, c(0.975, 0.025)) * 0.164
## 1.918643 2.699749

Example 1c

If ȳ = 1.196, sȳ = 0.047, both intervals have negative lower endpoints. If the
mean θ is known to be positive, they are replaced by 0 leading to the ISO
Guide recommended interval (0, 0.124) and to the Eisenhart interval (0, 0.202).

An R program for generating the B = 10, 000 realizations of W ∗ to obtain
the bootstrap interval is the same as Example 1b with ȳ = 1.196 and u(ȳ) =
0.047.

B = 10000
y.star = rnorm(B, mean=1.196, sd=0.047)
u.y.star = 0.047 * sqrt(rchisq(B, df=4)/4)
b.star = runif(B, min=1.126, max=1.329)
u.b.star = 0.059
w.star = ((y.star-b.star)+0.032)/sqrt(u.y.star^2+u.b.star^2)
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The untruncated 95% bootstrap-t confidence interval is

-0.032 - quantile(w.star, c(0.975, 0.025)) * 0.075
## -0.1762648 0.1128422

As θ is known to be positive, the truncated 95% bootstrap-t confidence
interval for θ is (0, 0.113).

3 Bayesian paradigm for uncertainty assessment

3.1 Basic method

In most metrological experiments, the measurand and the input variables of
model (1) are physical quantities with fixed quantity values. Nevertheless,
under the Bayesian paradigm, the corresponding parameters μi and θ are
considered random variables in the sense that their probability distributions
summarize our knowledge about these physical quantities.

The Bayesian framework uses a definition of probability that allows prob-
ability distributions to be defined without physical data, for example, using
manufacturer specifications or other expert knowledge. In most measurement
applications however, there will be physical measurements (data) that can be
used for estimation of one or more of the input quantities. In such cases the
corresponding probability density can be obtained via Bayes’ theorem as fol-
lows. Let p(μi) be a probability density for μi as given before the physical data
are obtained. This is called the prior density of μi. Let Y denote a random
variable for which a realization y (data) exists. The probability density of Y ,
p(y|μi), is called the statistical model. Under the Bayesian framework, as μi

is a random variable, the notation | represents the fact that the probability
density of Y is conditional on μi. For a particular realization of y, p(y|μi),
viewed as a function of μi is called the likelihood function. Applying Bayes’
theorem,

p (μi|y) =
p (y|μi) p (μi)∫
p (y|μi) p (μi)dμi

(14)

is the posterior density of μi which summarizes our knowledge about it after
the data y were observed.

When no prior knowledge of the μi exists, then a so-called noninformative
prior distribution [4] is used. In cases when prior information does exist, it
is represented by an informative probability distribution. This is one of the
mechanisms, under the Bayesian paradigm, for including information obtained
by Type B methods into the uncertainty analysis. The form of the likelihood
function is usually selected based on knowledge of the process that generates
the data.
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It is clear that the form of the likelihood function and of the prior densities
will determine the shape of the posterior density. It is therefore important to
select them carefully and to perform sensitivity analysis of the results with
respect to changes in these distributions. For the prior distributions this may
mean using several different densities and comparing the results. Tests of ap-
propriateness of the probability distribution corresponding to the likelihood
function are called model fitting [18] and apply equally to Bayesian and fre-
quentist models.

The definition of measurement uncertainty in metrology, given in the In-
troduction, can be interpreted in the context of Bayesian statistics as refer-
ring to the posterior probability distribution of the measurand θ; that is, the
standard uncertainty is the standard deviation of this probability distribu-
tion. To obtain it, it is necessary first to find the joint probability distri-
bution of all of the μi, and then apply a change-of-variables formula [6] to
derive the distribution of θ. Moments of this distribution can be obtained
more simply as follows. For a function h (θ), we obtain the expected value
E (h (θ)) =

∫
· · ·
∫
h (f (μ1, . . . , μp)) p (μ1, . . . , μp) dμ1 · · · dμp. Note that the

variance can be obtained as Var (θ) = E
(
θ2
)
− [E (θ)]2. Often, the necessary

integration is done using Monte Carlo methods [4].
In the case when the μi are independent random variables, their joint

probability distribution is simply the product of the individual distributions.
In many situations, however, the μi are not independent random variables. For
example, consider the case when the probability distribution of Y is a function
of μ1 and μ2; that is, p (y|μ1, μ2) is the statistical model and p (μ1, μ2) �=
p (μ1) p (μ2). Then the posterior density of (μ1, μ2), must be obtained as

p (μ1, μ2|y) =
p (y|μ1, μ2) p (μ1, μ2)∫

p (y|μ1, μ2) p (μ1, μ2) dμ1dμ2
.

A common situation that leads to such dependence is when the statistical
model is a function of θ, as well as some of the μi. Both of the examples
considered here fall into this category. This illustrates the point that under the
Bayesian paradigm, whenever measurement data are available, the process of
specifying the related probability distributions needs to be started by defining
a statistical model. This will automatically lead to the likelihood functions
needed for the application of Bayes’ theorem and to the correct posterior
densities. The process can be summarized as follows.

1. Identify all measurement data relevant to the physical quantities of inter-
est (parameters).

2. Specify a statistical model (also called observational model) relating the
data to the parameters; these could be the μis or sometimes the measurand
θ.

3. Specify prior distributions for all parameters involved.
4. Apply Bayes’ theorem to obtain posterior distributions of the parameters.
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5. Compute the posterior mean and posterior standard deviation of the mea-
surand.

6. Perform sensitivity analysis of the results with respect to changes in the
prior distributions.

In some situations, a Taylor series approximation may be used to avoid the
numerical computations. Specifically, the Taylor series expansion of
f (μ1, . . . , μp) about the expected values of the μis can be used to state that
f (μ1, . . . , μp) is approximately distributed as N

(
f (E (μ1) , . . . ,E (μp)) , ω2

)

where

ω =
√∑

i

c2i Var (μi) + 2
∑

i<j

cicjCov (μi, μj),

Cov (μi, μj) denote the covariance of the μis, and the ci are the partial deriva-
tives of θ with respect to μi evaluated at the expected values of the μis. (Sim-
ilarly appearing formulas (4) and (5) are used in Section 2.1, but there the
expansion is employed to find an estimate of the variance of the estimator of
θ, not of θ itself.)

3.2 Example 1

This process is now illustrated on Example 1 given in the Introduction. The
measurand in this example is denoted by θ. The measurement equation can
be written as

θ = γ − β. (15)

Example 1a

Consider Example 1a first. There are two relevant sets of data, the five Gaus-
sian measurements Yi with mean γ = θ + β, and standard deviation σY , and
the five Gaussian measurements Bi with mean β and standard deviation σB .
Thus, the statistical model for Yi is

Yi|θ, β, σ2
Y ∼ N

(
θ + β, σ2

Y

)
,

and because the five observations are independent,

p(y1, ..., y5|θ, β, σY ) =
(

1
σY

√
2π

)5

exp

⎧
⎪⎪⎨

⎪⎪⎩
−

5∑
i=1

(yi − θ − β)2

2σ2
Y

⎫
⎪⎪⎬

⎪⎪⎭
.

For Bi, the statistical model is

Bi|β, σ2
B ∼ N

(
β, σ2

B

)
;
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that is,

p(b1, . . . , b5|β, σB) =
(

1
σB

√
2π

)5

exp

⎧
⎪⎪⎨

⎪⎪⎩
−

5∑
i=1

(bi − β)2

2σ2
B

⎫
⎪⎪⎬

⎪⎪⎭
.

Because the two sets of observations are assumed to be mutually independent,
the statistical model is

p(y, b|θ, β, σY , σB) = p(b1, . . . , b5|β, σB)p(y1, . . . , y5|θ, β, σY ).

There are four parameters, θ, β, σY , and σB that must be assigned prior
distributions. In this example, there is no additional information about these
parameters, other than that they are not negative, and thus the random vari-
ables will be assumed to be independent. It is desirable for the forms of the
prior distributions to have minimal effect on the analysis. Such a result is
obtained by the use of so-called reference priors [4]. For the parameters asso-
ciated with the means, that is, θ and β, such a density can be approximated
by

θ ∼ Uniform (0, c) ,

β ∼ Uniform (0, c) ,

with a large value for c. For the scale parameters, σY and σB , the reference
prior density

p (σY ) = 1/σY
,

p (σB) = 1/σB
,

is improper; that is, it does not integrate to 1. This can cause difficulties in
numerical computation so a proper density such as

σY ∼ Uniform (0, c) ,

or
σY ∼ Gamma (c, c) ,

with large values of c is usually substituted. The notation Gamma (φ1, φ2)
represents a gamma distribution with parameters φ1 and φ2; that is, for a
random variable X, this probability density is given by

p (x|φ1, φ2) =
φφ1

2

Γ (φ1)
xφ1−1e−xφ2 .

This completes the prior distribution specification.
Application of Bayes’ theorem results in the joint posterior density of θ,

β, σY , and σB as follows.
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p (θ, β, σY , σB | y, b)

=
p (y, b|θ, β, σY , σB) p (θ) p (β) p (σY ) p (σB)∫

p (y, b|θ, β, σY , σB) p (θ) p (β) p (σY ) p (σB) dθ dβ dσY dσB
.

The posterior density of the measurand θ is obtained by integration as

p (θ|y, b) =
∫
p (θ, β, σY , σB |y, b) dβ dσY dσB .

This posterior distribution summarizes all of the information about θ avail-
able after the measurements were obtained. The mean of this distribution is
taken as an estimate of the physical quantity. The uncertainty is the stan-
dard deviation of this distribution. It is straightforward to obtain a cover-
age interval for the measurand from this distribution. This is an interval
of possible values for θ with a fixed probability; in Bayesian statistics this
is called a credible interval. In many cases, numerical methods may be em-
ployed to accomplish the necessary integrations of Bayes’ theorem. One pos-
sible method of obtaining a random sample from the posterior distribution is
Markov chain Monte Carlo (MCMC) [13] using the software WinBUGS [2].
The code for this example, with the uniform prior distributions with c = 100, is
as follows.

Example1a{
theta~dunif(0,1)
beta~dunif(0, 1)
gamma <- theta+beta

sigma.Y~dunif(0,100)
sigma.B~dunif(0,100)
tau.Y <- 1/(sigma.Y*sigma.Y)
tau.B <- 1/(sigma.B*sigma.B)

for(i in 1:n){
y[i]~dnorm(gamma,tau.Y)
b[i]~dnorm(beta,tau.B)}
}

With the data given in the Introduction, and n = 5, the program produces
a posterior mean of θ of 2.315, and a posterior standard deviation of 0.235. A
95% credible interval for θ is (1.828, 2.798). A sensitivity analysis with respect
to changes in the form of the four prior distributions can be carried out by
varying the value of c, and by substituting the lines

tau.Y~dgamma(1.0E-5,1.0E-5)
tau.B~dgamma(1.0E-5,1.0E-5)
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for the four lines

sigma.Y~dunif(0,1)
sigma.B~dunif(0,1)
tau.Y <- 1/(sigma.Y*sigma.Y)
tau.B <- 1/(sigma.B*sigma.B)

and comparing the resulting values of posterior mean and standard deviation.
The results in this example are robust to such changes.

Example 1b

In Example 1b, the information about the background parameter β is provided
in the form of a probability distribution, produced by a Type B evaluation.
In this case, the observational model is only in terms of the the five Gaussian
measurements; that is,

Yi|θ, β, σ2
Y ∼ N

(
θ + β, σ2

Y

)
.

There are now three parameters that must be assigned prior distributions. For
the background parameter β, the prior density is based on the information
given in the Introduction; that is,

β ∼ Uniform (1.126, 1.329) .

For θ,
θ ∼ Uniform (0, c)

with a large value for c. For σ,

σY ∼ Uniform (0, c) .

This completes the prior distribution specifications. The WinBUGS code for
this example is as follows.

Example1b{
theta~dunif(0,100)
beta~dunif(1.126,1.329)
sigma.Y~dunif(0,1)

gamma <- theta+beta
tau.Y <- 1/(sigma.Y*sigma.Y)
for(i in 1:n){
y[i]~dnorm(gamma,tau.Y)}
}

With the data given in the Introduction, the program produces a posterior
mean of θ of 2.312, and a posterior standard deviation of 0.223. A 95% credible
interval for θ is (1.871, 2.751). A sensitivity analysis of the results is again
satisfactory.
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Example 1c

Next consider Example 1c. The only difference from Example 1b is in the
actual data values (which are now close to the background) and so the same
model and WinBUGS code can be used here. The posterior mean of θ is now
0.068, the posterior standard deviation is 0.066 and the 95% credible interval
is (0.00, 0.187). These results are robust to changes in the value of c with the
uniform priors. Changing the form of the prior density for σY from uniform to
gamma results in a posterior mean of 0.058, posterior standard deviation of
0.053, and 95% credible interval of (0.0, 0.150). This is a larger change than
in the previous examples, and indicates that here, because of the closeness of
the data to the background, the data are not quite as informative about the
measurand. The size of σY (controlled to some degree by the prior distribution
because there are only five observations on which an estimate is based) affects
how informative the data are. In a case such as this, the conservative solution is
to use the longer credible interval based on the uniform distribution. A better
way would be to obtain more measurements. This would then greatly reduce
the effect of the prior density of σY on the results. (An interesting fact about
the Bayes credible intervals such as these can be found in [5]. They show that
in models such as Example 1, the 95% Bayes credible interval based on the
uniform prior has frequentist coverage of close to 95%, whereas the interval
based on the gamma prior usually has lower frequentist coverage.)

To summarize, Example 1a illustrates the case when measurements from
two independent sources are used in a single uncertainty analysis. Example 1b
shows how Type B evaluated information about the background can be in-
cluded in the Bayesian model. Example 1c illustrates the ease with which any
constraint can be included in the Bayesian model, as the positive constraint
on the value of the measurand is critical here. It also shows how the choice of
a noninformative prior distribution can affect the results.

4 Fiducial inference for uncertainty assessment

4.1 Basic method

Under the measurement equation (1) the uncertainty assessment for a measur-
and θ may be based on the fiducial distribution of θ. The following examples
serve to illustrate the recipe for obtaining fiducial distributions for parameters
of interest.

Suppose Y ∼ N(θ, 1), where θ is the measurand, the measurement process
has a known variance equal to 1, and Y is the random variable representing
values that may be observed. One might express the relationship between the
measured values and the underlying random experimental error process by
the following equation,

Y = θ + E, (16)



94 W. F. Guthrie et al.

where E is a random error with N(0, 1) distribution. Each measured value
is associated with a particular random experimental error. Suppose a single
measurement is made and its value is 10. The associated measurement error
is denoted by e. So

10 = θ + e.

Hence θ = 10 − e. If the value of e were known, then we would know the
measurand exactly, but the value of e is not known. Nevertheless, the fact
that we know the distribution from which e was generated helps us determine
a set of values of θ that we consider plausible. For instance, how plausible is
the value θ = 2 for the measurand? For this to be true we need e = 8. A
value of 8 is highly unlikely to have come from an N(0, 1) distribution. So
we conclude that the value θ = 2 is highly unlikely. How likely is it that θ is
between 10 and 12? For θ to be between 10 and 12, e needs to be between 0
and 2 and we can calculate the probability for this to be Φ(2) − Φ(0), where
Φ(z) is the value of the cumulative standard normal distribution at z. Thus,
probabilities associated with E can be transferred to probabilities for θ. Our
knowledge about θ, based on the measured value of 10, can be described by
the distribution of the random variable θ̃ whose distribution is given by that
of 10 − E. That is, θ̃ ∼ N(10, 1). We say that the fiducial distribution of θ
(i.e., the distribution of θ̃) is N(10, 1). The random variable θ̃ is also called a
fiducial quantity (FQ) for θ. Such an FQ is related to what is called generalized
pivotal quantity [29], [30] or fiducial generalized pivotal quantity [17], [31] in
the literature.

In the above example, suppose we consider making two measurements.
Let Y1 and Y2 be the random variables denoting the possible values one might
obtain for the two measurements. We can write

Y1 = θ + E1,

Y2 = θ + E2. (17)

Suppose the actual measurements are 10 and 8. We then have the following
equations relating the measured values, the measurand, and the realized values
of experimental errors, say e1 and e2,

10 = θ + e1,

8 = θ + e2.

Plausible values for θ are related to plausible values of (e1, e2). What makes
this example different from the previous example is that here we know e1 − e2
equals 2. So the universe of possible values for (e1, e2) is now limited by
this requirement. We know (e1, e2) is from a standard bivariate Gaussian
distribution but is constrained to lie on the line e1−e2 = 2. So the probabilities
one would associate with θ are the probabilities one would associate with either
10−e1 or 8−e2 knowing that (e1, e2) is a realization from a bivariate standard
Gaussian distribution subject to the additional condition that e1 − e2 = 2.
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Hence we define an FQ θ̃ to have a distribution that is equal to the conditional
distribution of 10−E1 given that E1 −E2 = 2. This is the same distribution
as the conditional distribution of 8 − E2 given that E1 − E2 = 2. A simple
calculation tells us that the distribution of θ̃ is N(ȳ, 1/2) where ȳ = (y1 +
y2)/2 = (10 + 8)/2 = 9.

More generally, if we have n independent measurements from N(θ, σ2),
then we can write

Y1 = θ + σE1,

Y2 = θ + σE2,

. . . ,

Yn = θ + σEn, (18)

where E1, . . . , En are independent, standard Gaussian random variables. The
joint fiducial distribution for (θ, σ) can be obtained as follows. Use the first
two (or any two) of the above n structural equations to solve for θ and σ,
denoted by θ̃ and σ̃, as functions of y1, y2, E1, and E2. The joint fiducial
distribution for (θ, σ) is the joint distribution of (θ̃, σ̃) conditioned on the
Ei imposed by the rest of the n − 2 equations. In particular, the fiducial
distribution for θ is shown to be

θ̃ = ȳ − s√
n
Tn−1, (19)

namely, a shifted and scaled Student-t distribution with n − 1 degrees of
freedom. Here ȳ and s are the realized values of the sample mean X̄ and the
sample standard deviation S of the n measurements, and Tn−1 is a Student-t
random variable with n− 1 degrees of freedom.

There is an alternative simpler method than that just outlined to derive
a fiducial distribution for θ in (19), which is illustrated in the subsequent
examples.

The above argument is fully generalizable and one can develop fiducial
distributions for model parameters in very general problems. The starting
point for this process is what we call a structural equation [12]. We denote
this structural equation by Y = G(β, E). In the single-measurement exam-
ple, Equation (16) constitutes the structural equation. In the n-measurement
example, Equations (18) constitute the structural equations. The structural
equations relate the measurements Y with model parameters β and er-
ror processes E whose distributions are fully known. For instance, in the
single-measurement example we know the distribution of E completely. For
any fixed values of β, the distribution of E and the structural equation
G(·) determine the distribution of the data Y . After observing the data
Y we can switch the role of data and parameters. In particular, we fix
the value of Y and use the distribution of E and the structural equa-
tion G(·) to infer a distribution on β. This is what constitutes the fiducial
argument.
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4.2 Example 1

Example 1a

To illustrate, consider Example 1a described in the Introduction where the
physical quantity θ is to be estimated from measurements that follow the
model

Yi = θ + β + εi, i = 1, . . . , n, (20)

where εi are independent measurement errors with εi ∼ N(0, σ2
Y ). Also, β

represents a background and can be estimated from measurements that follow
the model

Bi = β + δi, i = 1, . . . , nb, (21)

where δi are independent measurement errors with δi ∼ N(0, σ2
B). It is also

assumed that εi and δi are independent. From (20) and (21), it follows that
Ȳ − B̄ has a normal distribution with mean θ and variance σ2

Y /n + σ2
B/nb,

where Ȳ and B̄ are the means of Yi and Bi, respectively. We can write

Ȳ − B̄ = θ +

√
σ2

Y

n
+
σ2

B

nb
Z, (22)

where Z is a standard normal random variable. This is a structural equation
for Ȳ − B̄. Also

Wy =
(n− 1)S2

y

σ2
Y

∼ χ2(n− 1)

and

Wb =
(nb − 1)S2

b

σ2
B

∼ χ2(nb − 1),

where χ2(ν) stands for the chi-squared distribution with ν degrees of freedom,
S2

y and S2
b are sample variances of Yi and Bi, respectively. Thus

S2
y =

σ2
Y Wy

n− 1
(23)

is a structural equation for S2
y and

S2
b =

σ2
B Wb

nb − 1
(24)

is a structural equation for S2
b . By solving the above three structural equations

for θ, σY , and σB , we obtain an FQ for θ as

θ̃ = ȳ − b̄−

√
(n− 1)s2y
nWy

+
(nb − 1)s2b
nbWb

Z. (25)
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A 1 − α fiducial interval for θ is given by (θ̃α/2, θ̃1−α/2), where θ̃α is the
α quantile of the distribution of θ̃. These quantiles may be determined ana-
lytically in simple situations. However, they are most conveniently estimated
using a Monte Carlo approach. This involves generating a large number of
realizations from the distribution of θ̃ and determining the empirical α/2 and
1 − α/2 quantiles. These quantiles are used as the estimates for θ̃α/2 and
θ̃1−α/2. A single realization of θ̃ may be generated as follows.

1. Generate a realization of a standard normal random variable Z.
2. Generate realizations of independent χ2 random variables Wy and Wb

with n− 1 and nb − 1 degrees of freedom, respectively.
3. Calculate θ̃ as in (25).

For this example, n = nb = 5, ȳ = 3.537, sy = 0.342, b̄ = 1.228, and
sb = 0.131. An R program for generating the 500,000 realizations of θ̃ is listed
below.

nrun = 500000
Z = rnorm(nrun)
W1 = rchisq(nrun, 4)
Wb = rchisq(nrun, 4)
theta = 3.537 - 1.228 - sqrt(4*0.342^2/(5*W1) +

4*0.131^2/(5*Wb))*Z

The mean of the simulated distribution is

mean(theta)
## 2.308893

and a 95% fiducial interval based on the 0.025 and 0.975 quantiles of the
simulated distribution is

quantile(theta, c(0.025, 0.975))
## 2.5% 97.5%
## 1.857814 2.760931

Example 1b

In this example there are no statistical data on the background. It is assumed
that the information regarding β is specified in terms of a probability distri-
bution for β and that β and εi are independent. Furthermore, it is assumed
the probability distribution for β is fully known, that is, does not involve any
unknown parameters.
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The structural equation for Ȳ is given by

Ȳ = θ + β +
σ√
n
Z. (26)

Together with the structural equation for S2
y in (23), we obtain an FQ for θ

as
θ̃ = ȳ − β − sy√

n

Z√
Wy/(n− 1)

.

Because Z/
√
Wy/(n− 1) = Tn−1 is a Student-t random variable with n − 1

degrees of freedom, we have

θ̃ = ȳ − β − sy√
n
Tn−1. (27)

A single realization of θ̃ may be generated as follows.

1. Generate a realization of Tn−1 of a Student-t random variable with n− 1
degrees of freedom.

2. Generate β according its distribution, independently of Tn−1.
3. Calculate θ̃ as in (27).

For this example, β is assumed uniformly distributed over the interval
(1.126, 1.329). The 500,000 realizations of θ̃ are generated by

beta = runif(nrun, 1.126, 1.329)
theta = 3.537 - beta - 0.342/sqrt(5)*rt(nrun, 4)

The mean of the simulated distribution is

mean(theta)
## 2.309454

and a 95% fiducial interval based on the 0.025 and 0.975 quantiles of the
simulated distribution is

quantile(theta, c(0.025, 0.975))
## 2.5% 97.5%
## 1.871685 2.745590

The above fiducial interval agrees with the uncertainty interval obtained
using the method proposed in Supplement 1 to the ISO Guide.
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Example 1c

This example is identical to Example 1b except ȳ = 1.196 and sy = 0.106.
The 500,000 realizations of θ̃ are generated by

theta = 1.196 - beta - 0.106/sqrt(5)*rt(nrun, 4)

The mean of the realizations is

mean(theta)
## -0.03158058

which lies outside the parameter space for θ. The number of realizations out-
side the parameter space can be found by

length((1:nrun)[theta < 0])
## 319168

The approach for handling parameter constraints is to simply truncate the
fiducial distribution to the constrained parameter space. That is, we use

max
(
θ̃, 0
)

to obtain the realizations of the fiducial distribution for θ. A 95% fiducial
interval is calculated as

quantile(pmax(theta, 0), c(0.025, 0.975))
## 2.5% 97.5%
## 0.0000000 0.1361553

The recipe described above can be generalized to arbitrary statistical mod-
els. A prescription for constructing FQs is given in [16]. A simpler recipe for
more common problems where sufficient statistics exist was given in a techni-
cal report [20] and is further discussed in [29], [30]. It is reproduced here for
completeness. The recipe consists of the following steps.

1. Express each sufficient statistic as a function of one or more parameters
and random variables whose distributions are completely known, free of
any unknown parameters. That is, obtain a structural equation for each
sufficient statistic.

2. In each structural equation, express each parameter as a function of the
sufficient statistics and random variables whose distributions are com-
pletely known.

3. Obtain an FQ for each parameter by replacing the sufficient statistics with
their corresponding observed values.
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5 Example 2

Example 2, which is taken from Annex H.1 of the ISO Guide, focuses on
the determination of the length of a new end gauge by comparing it with
a nominally identical end gauge that has previously been calibrated. The
notation used in the ISO Guide is followed as closely as possible, but has been
modified where needed to agree with the notation conventions discussed earlier
that distinguish measurands from observable measurement results. Table 2
lists the physical quantities needed to determine the length of the new end
gauge.

Using the new notation given in Table 2 and based on

• the first line of equation H.2 in the ISO Guide,
• the relationships α = αs +δα and θs = θ̄+Δ−δθ defined in Section H.1.2,

and
• inferences drawn from the propagation of uncertainties in Sections H.1.3.2

and H.1.3.4 of the ISO Guide,

the measurement equation for λ used in the ISO Guide analysis of example H.1
can be expressed as

λ =
λs

[
1 + αs

(
θ̄ +Δ− δθ

)]
+ δλ + δCr + δCnr

1 + (αs + δα)
(
θ̄ +Δ

) . (28)

Note that Equation (28) is the exact measurement equation as described
in Section H.1.1 and the first line of Equation H.2 of the ISO Guide, rather
than the approximation that is made on the second line of Equation H.2 and
then used throughout the rest of Section H.1.

Table 2. New notation used for the reanalysis of Example H.1 of the ISO Guide
under each of the three statistical paradigms. The random variable corresponding
to δλ is denoted D̄λ, and its observed value d̄λ.

Quantity Symbol

Length of unknown end gauge at 20°C λ
Length of standard end gauge at 20°C λs

Difference between end gauge lengths at lab temperature δλ

Correction to difference between end gauge lengths to compensate for
random comparator errors

δCr

Correction to difference between end gauge lengths to compensate for
systematic comparator errors

δCnr

Coefficient of thermal expansion of the standard end gauge αs

Difference in coefficients of thermal expansion of the standard and
unknown end gauges

δα

Average deviation of testbed temperature from standard conditions
during data collection

θ̄

Cyclic variation of testbed temperature from mean temperature due
to thermostatic control

Δ

Difference in temperatures of the standard and unknown end gauges δθ
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Table 3. Summary of information from the analysis of Example H.1 in the ISO
Guide needed for its reanalysis.

Standard Degrees of Assumed
Quantity Value Uncertainty Freedom Type Distribution

λs 50000623 nm 25 nm 18 B Normal
d̄λ 215 nm 5.8 nm 24 A Normal
δCr 0 nm 3.9 nm 5 B Normal
δCnr 0 nm 6.7 nm 8 B Normal

αs 11.5 × 10-6 ◦C-1 1.2 × 10-6 ◦C-1 B Rectangular

δα 0 ◦C-1 0.58 × 10-6 ◦C-1 50 B Rectangular
θ̄ −0.1 ◦C 0.2 ◦C B Not Specified
Δ 0 ◦C 0.35 ◦C B Arcsine
δθ 0 ◦C 0.029 ◦C 2 B Rectangular

Equation (28) is also written in terms of the complete list of physical quan-
tities used to determine the end gauge length, rather than pre-summarizing
the effects due to the difference between the lengths of the two gauges and
in the temperature of the testbed. It is always good practice to write out the
measurement equation for the measurand of interest in terms of the complete
list of quantities needed to determine it. This practice is important because
it helps minimize the potential failure to identify correlations between dif-
ferent physical quantities, such as θ and θs and α and αs as mentioned in
Section H.1.2, whose values ultimately might be based on the same data.

Table 3 summarizes the rest of the information taken from the analysis of
Example H.1 in the ISO Guide needed for the reanalysis of the example under
the different statistical paradigms discussed and compared in the remainder
of this section.

The description of the example in the ISO Guide indicates that there is
only one quantity in this example, δλ, whose value has been directly estimated
via the analysis of statistical data. The distribution of the sample mean of the
measurements has been assumed to be Gaussian (or normal) with an expected
value that depends on the length of the unknown end gauge and the other
physical quantities described in Tables 2 and 3.

The values and standard uncertainties of all other quantities are assumed
to have been evaluated by Type B methods. Because the quantities δα and δθ

follow rectangular rather than Gaussian distributions, however, there are no
widely accepted statistical methods to account for the degrees of freedom in
these two cases. As a result, we do not use the given degrees of freedom for
those quantities.

5.1 Frequentist approach

In the situation of end-gauge calibration in this example, the sensitivity coef-
ficients cαs

= cθs
vanish, and the second-order terms are to be incorporated
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in (5), although just one of them is noticeably different from zero (ISO Guide,
p 71).

The ISO Guide’s answer, y = 50000838 nm, with the corresponding com-
bined standard uncertainty uc(y) = 34 nm can be interpreted as the plug-in
estimate of the end gauge length. As was mentioned in Section 2.1, the un-
certainties of these estimators are approximated by the marginal quadratic
error if the parameters λs, θs are averaged over their normal distributions,
and δα, αs, and δθ are integrated out according to their uniform distributions.

These results are confirmed by Monte Carlo simulations which provide a
very close answer. Moreover, the approximation by t-distribution (8) seems to
be reasonable. See Figure 1 where the empirical percentiles are plotted against
t-distribution quantiles when the degrees of freedom are estimated according
to (6). More simulation results are reported in [28].

To construct a bootstrap interval for this example, λ is estimated to
be 50000838 nm with a combined standard uncertainty uc = 31.7 nm. From
(11), the 100(1 − α)% bootstrap-t confidence interval is (50000838 − t̂1−α/2 ·
31.7, 50000838 − t̂α/2 · 31.7)nm, where t̂β is the 100βth percentile of W ∗ of
(10). The R code for generating B = 10000 realizations of W ∗ is as follows.

Fig. 1. Plot of empirical percentiles versus percentiles of t-distribution in Example 2.
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B = 10000
x.star = cbind(

rnorm(B, mean=50000623, sd=25),
rnorm(B, mean=215, sd=5.8),
rnorm(B, mean=0, sd=3.9),
rnorm(B, mean=0, sd=6.7),
runif(B, min=0.0000095, max=0.0000135),
runif(B, min=-0.000001, max=0.000001),
runif(B, min=-0.45, max=0.25),
rbeta(B, 0.5, 0.5)-0.5,
runif(B, min=-0.05, max=0.05))

u.star = cbind(
25 * sqrt(rchisq(B, df=18)/18),
5.8 * sqrt(rchisq(B, df=24)/24),
3.9 * sqrt(rchisq(B, df=5)/5),
6.7 * sqrt(rchisq(B, df=8)/8),
0.0000012,
0.00000058 * sqrt(rchisq(B, df=50)/50),
0.2,
0.35,
0.029 * sqrt(rchisq(B, df=2)/2))

x.name = c("L.s","D.lambda","Dc.r","Dc.s","A.std","D.alpha",
"T.bar","T.cv","D.theta")

f = expression((L.s*(1+A.std*(T.bar+T.cv-D.theta))+
D.lambda+Dc.r+Dc.s)/

(1+(A.std+D.alpha)*(T.bar+T.cv)))

star = delta(f, x.star, u.star, x.name)
w.star = (star$y - 50000838) / star$uc

The R function delta takes partial derivatives of the R expression meq, the
measurement equation, with respect to parameters namevec, evaluates them
at the input values x, and approximates the uncertainty of the computed
value of the measurement equation, eval(meq), based on the first-order Taylor
approximation to the measurement equation.

delta = function(meq,x,u,namevec){
for(i in 1:ncol(x)) assign(namevec[i], x[,i])
c = attr(eval(deriv(meq,namevec)),"gradient")
list(y = eval(meq),uc = sqrt(apply((c*u)^2,1,sum)))
}

The 95% bootstrap-t confidence interval based on the 0.025 and 0.975
quantiles of the simulated distribution is
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50000838 - quantile(w.star, c(0.975, 0.025)) * 31.70511
## 50000777 50000899

This interval (50000777, 50000899) nm is almost 10% shorter than ISO
Guide’s answer. This general behavior, the width of a bootstrap interval being
shorter than that of an interval derived from the uncertainty analysis based
on the first-order Taylor approximation, is further discussed in [7].

5.2 Bayesian approach

The measurement problem is to determine the length of a nominally 50 nm
gauge. In the notation introduced here, the measurand is λ. The measurement
is performed by comparison with a known standard of the same nominal
length. The direct measurement output (the data) of the comparison is the
difference in their lengths. This is given as an average d̄λ of five measurements.
Following the process outlined above, an observational model relating the data
to the parameters needs to be specified.

The ISO Guide can be interpreted as stating that the expected value of
the measurement E (Dλ) is equal to δλ where

δλ = λ
(
1 + (δα + αs)

(
θ̄ +Δ

))
− λs

(
1 +
((
θ̄ +Δ

)
− δθ

)
αs

)
. (29)

The expected value of the measurements is a function of the parameter vector
γ = ( λs, θ̄, Δ, δα, αs, δθ) and of the measurand λ. The ISO Guide gives
two additional components of Type B uncertainty associated with the com-
parator. This implies that there is uncertainty about the expected value of
the difference measurement being equal to δλ. Similarly to the ISO Guide, the
two components can be combined additively to obtain an uncertainty of 7.8
nm, with 12 degrees of freedom using the Welch–Satterthwaite formula. The
following two-stage statistical model combines all of the available information

D̄λ|δλr
∼ N

(
δλr

, σ
2
Dλ

/
5
)

(30)

δλr
|δλ ∼ δλ + 7.8 ∗ T12.

Another piece of data given in the example is the Type A evaluated uncer-
tainty associated with the measured difference sdλ

. This is an estimate of σDλ
.

A well-known result from basic probability theory is that for a sample of size
n, from a Gaussian distribution with a known variance σ2,

(n− 1)
σ2

S2 ∼ χ2 (n− 1) .

As χ2 (n− 1) is also the Gamma
(
(n− 1/2), 1

2

)
density, this results in

S2
dλ
|σDλ

∼ Gamma

(
(25 − 1)

2
,

1
2σ2

Dλ

)
.
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There are eight parameters in the statistical model, including the measur-
and λ. To find the posterior distribution of λ, it is necessary to first specify
the joint prior distribution of the eight parameters. A priori, these random
variables can be assumed to be independent and so their joint distribution
is the product of their individual prior distributions. For the elements of the
parameter vector γ, the Type B evaluated information can be interpreted as
informative prior densities as follows.

λs ∼ N (50000623, 625) (31)

δα ∼ Uniform
(
−1 × 10−6, 1 × 10−6

)

θ̄ ∼ N (−0.1, 0.1681)

Δ ∼ Beta(0.5, 0.5) − 0.5

αs ∼ Uniform
(
9.5 × 10−6, 13.5 × 10−6

)

δθ ∼ Uniform (−0.05, 0.05) .

We obtain
p (γ) = p (λs) p (δα) p

(
θ̄
)
p (Δ) p (αs) p (δθ) .

Prior distributions for the measurand λ and σDλ
are needed to complete the

prior specification. In this example, there is no additional information about
these two parameters other than that they are not negative. As in Example 1,
the parameters are given reference priors [4]. For λ, a reference density is
approximated as

λ ∼ Uniform(0, c) (32)

with a large value for c. For σDλ
we can also use

σDλ
∼ Uniform (0, c) , (33)

or the Gamma (c, c). This completes the prior distribution specification.
Note that the two reference prior distributions, which sensitivity analysis

shows have minimal impact on the results, are the only distributions not used
in some manner by the frequentist or fiducial approaches.

Application of Bayes’ theorem results in the joint posterior density of
(λ, γ, σDλ

) as follows.

p
(
λ, γ, σDλ

|d̄λ, sdλ

)
=

p
(
d̄λ|δλr

)
p (δλr

|δλ) p (γ) p (λ) p (σDλ
)∫

p
(
d̄λ|δλr

)
p (δλr

|δλ) p (γ) p (λ) dγdλdσDλ

.

The posterior density of λ is then obtained by integration as

p
(
λ|d̄λ, sdλ

)
=
∫
p
(
λ, γ, σDλ

|d̄λ, sdλ

)
dγdσDλ

.
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This posterior distribution summarizes all of the information about λ available
after the measurements were obtained. The WinBUGS code for this example
is as follows.

Example2{
n<-25
df<-(n-1)/2

lambda~dnorm(0,1.0E-18)
delta.a~dunif(-0.000001, 0.000001)
alpha~dunif(0.0000095,0.0000135)
theta~dnorm(-0.1,5.94)
ddelt~dbeta(0.5,0.5)
delta<-ddelt-0.5
delta.t~dunif(-0.05,0.05)
lambda.s~dnorm(50000623, 0.0016)
sigma.D~dunif(0,20)
tau.D<-1/(sigma.D*sigma.D)

delta.l<-lambda*(1+(delta.a+alpha)*(theta+delta))
-lambda.s*(1+((theta+delta)-delta.t)*alpha)

delta.l.r~dt(delta.l, 0.0164,12)
msg<-5*tau.D
dbar~dnorm(delta.l.r,msg)

pg<-tau.D/2
ssq<-(n-1)*s.y*s.y
ssq~dgamma(df,pg)
}

With data input of d̄λ = 215 and sY = 13, this program obtains the
posterior mean of λ as 50000837 nm, with posterior standard deviation of
34 nm. The 95% credible interval is (50000768, 50000908) nm. These results
are almost identical to the results in the ISO Guide.

Note that in the solution given here, the measurement equation in terms
of λ, that is, Equation (28), is never used. This avoids the unnecessary and
difficult task of determining how the distributions of the various parameters
are related. As in Example 1 with the two parameters, the approach given
here leads to the correct joint posterior distribution of all eight parameters.

It is interesting to consider an approximate solution for this example based
on the Taylor series approximation. In the ISO Guide solution, Equation (1)
is approximated as

δλ = λ− λs

(
1 −
(
δα

(
θ̄ +Δ

)
+ αsδθ

))
.

Define a parameter η = λ − δλ. Using the Taylor series approximation,
the probability density of η can be approximated by a Gaussian as η ∼
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N (50000623, 911.47) , For simplicity also approximate σDλ
by sdλ

. Then the
statistical model becomes

D̄λ|δλr
∼ N

(
δλr

,
(13)2

5

)

δλr
|δλ ∼ N

(
λ− η, (7.8)2

)

λ ∼ N(0, c)

η ∼ N (50000623, 911.47) .

For this model, the posterior density of λ can be obtained analytically [24].
We get

λ ∼ N

(
d̄+ 50000623 ,

(13)2

5
+ (7.8)2 + 911.47

)

Because d̄λ = 215 nm, we obtain the posterior mean of λ as 50000838 nm with
posterior standard deviation of 31.3 nm, again results very close to the ISO
Guide solution.

5.3 Fiducial approach

We use this example to illustrate the fiducial inference approach in a more
complex application. The measurement equation is given in (28). Five inde-
pendent repeated measurements are available for estimating δλ. Based on the
information provided in the ISO Guide, the following assumptions are made.

1. The estimated value of λs (i.e., the value given in the calibration certifi-
cate), denoted by ls, is equal to 50000623 nm. The standard uncertainty
of the estimate is 25 nm with 18 degrees of freedom. Under the normality
assumption, an FQ for λs is given by

λ̃s = 50000623 − 25T18. (34)

This is obtained from (19) with ȳ = 50000623 nm, u(ȳ) = 25 nm, and 18
degrees of freedom associated with u(ȳ).

2. Each replicate measurement has a normal distribution with mean δλ and
standard deviation σδλ

. The observed mean of the five repeated measure-
ments, denoted by d̄λ, is 215 nm. The value of σδλ

is estimated from a
separate experiment to be 13 nm with 24 degrees of freedom. This gives
u(d̄λ) = 13/

√
5. So an FQ for δλ is given by

δ̃λ = 215 − 13T24/
√

5. (35)

Also, based on the calibration certificate for the comparator device, the
estimate of δCr

is 0 with a standard uncertainty of 3.9 nm (5 degrees of
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freedom), and the estimate of δCnr
is 0 with a standard uncertainty of

6.7 nm (8 degrees of freedom). Furthermore, the comparator errors can be
assumed to be independent of the replication errors. Thus, we may write

δ̃Cr
= 3.9T5 (36)

and
δ̃Cnr

= 6.7T8. (37)

Mutual independence among the Student-t random variables is a conse-
quence of the ISO Guide assumption about the measurement process.

3. Let θ̄ be the true deviation of the average temperature of the testbed from
the nominal value of 20 ◦C. An estimate of θ̄ is −0.1 ◦C with a standard
deviation equal to 0.2 ◦C. The ISO Guide gives no additional information
concerning this standard deviation, therefore we assume infinite degrees of
freedom for it and we assume that θ̄ follows a normal distribution. Hence
we have

˜̄θ = −0.1 − 0.2Z, (38)

where Z is a standard normal random variable, independent of all other
random variables.

4. An FQ for Δ has a probability density function given by

g(x) =
2

π
√

1 − 4x2
, −0.5 ◦C < x < 0.5 ◦C.

For simulating realizations from the arcsine distribution above, it is
useful to observe that if U1 is a uniform (0, 1) random variable, then
− cos(π U1)/2 has the required arcsine distribution. So an FQ for Δ may
be taken to be

Δ̃ = − cos(πU1)/2. (39)

5. An FQ for δα is given by
δ̃α = U2, (40)

where U2 is a uniform random variable over the interval ±1× 10−6 ◦C−1.
6. An FQ for δθ is given by

δ̃θ = U3, (41)

where U3 is a uniform random variable over the interval ±0.05 ◦C.
7. An FQ for αs is given by

α̃s = 11.5 × 10−6 + U4, (42)

where U4 is a uniform random variable over the interval ±2× 10−6 ◦C−1.

Substituting the fiducial quantities in (34)–(42) into (28), we obtain a
fiducial quantity for λ. We estimate the distribution of λ̃ using 500000 Monte
Carlo samples. The mean and the standard deviation of this simulated distri-
bution are 50000838 nm and 35 nm, respectively. A 95% fiducial interval for λ
can be obtained by using the interval between the 0.025 and 0.975 quantiles
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of the simulated distribution, which is given by (50000768, 50000907) nm. An
R program for generating the 500000 realizations of λ̃ is listed below.

nrun = 500000
lambda.s = 50000623 - 25 * rt(nrun, 18)
delta.lambda = 215 - 13/sqrt(5) * rt(nrun, 24)
delta.cr = 3.9*rt(nrun, 5)
delta.cnr = 6.7*rt(nrun, 8)
theta = rnorm(nrun, -0.1, 0.2)
Delta = (-cos(pi*runif(nrun))/2)
delta.alpha = runif(nrun, -10^(-6), 10^(-6))
delta.theta = runif(nrun, -0.05, 0.05)
alpha.s = runif(nrun, (11.5-2)*10^(-6), (11.5+2)*10^(-6))
lambda = (lambda.s * (1 + alpha.s*(theta + Delta -

delta.theta)) + delta.lambda + delta.cr + delta.cnr)/
(1 + (alpha.s + delta.alpha)*(theta + Delta))

6 Discussion

Table 4 summarizes the results for Example 1. The frequentist bootstrap,
Bayesian, and fiducial solutions for Example 1a and Example 1b are very
similar. The bootstrap and the ISO Guide solutions produce slightly shorter
intervals in both Example 1a and Example 1b. More substantial differences
are seen in the solution for Example 1c. Here the Bayes solution based on the
uniform prior density produces an interval that is quite a bit longer than most
of the other methods; only the conservative Eisenhart interval is longer.

Because the Bayesian and fiducial approaches actually both produce full
probability distributions for the measurand θ, their results for Example 1a and
Example 1c are further compared in Figure 2, in addition to the comparison
of the expanded uncertainty intervals in Table 4. The results for Example 1b
are not displayed because they are visually indistinguishable from the results
for Example 1a. From the histograms in Figure 2 it is clear that the Bayesian
posterior probability distribution for θ and the fiducial distribution for θ are
quite similar when the signal is well above the background. When the signal
is near the background, however, the two distributions have very different

Table 4. Expanded uncertainty intervals constructed under the three statistical
paradigms for Example 1.

ISO Guide Eisenhart Bootstrap Bayes Fiducial

Example 1a (1.89, 2.73) (1.89, 2.73) (1.90, 2.73) (1.83, 2.80) (1.86, 2.76)
Example 1b (1.90, 2.72) (1.78, 2.84) (1.92, 2.70) (1.87,2.75) (1.87, 2.75)
Example 1c (0.00, 0.12) (0.00, 0.20) (0.00, 0.11) (0.00,0.19) (0.00, 0.14)
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Fig. 2. Comparisons of the simulated Bayesian and fiducial densities for Example 1a
and Example 1c.

characteristics due to their different methods of incorporating the physical
constraints inherent in the problem.

In the frequentist context, the measurand θ and the input quantities
μ1, . . . , μp of the measurement equation (1) are all assumed to be fixed un-
known quantities. This approach seems to be quite reasonable if the measur-
and represents a physical constant for which previous studies do not provide
for an appropriate (informative) prior distribution or structural equation. It
is favored by statisticians who do not believe that all parameters must be
modeled as random variables, although it typically handles uncertainties of
Type B as nuisance parameters, that is, by assigning them a probability dis-
tribution and integrating over this distribution. In this regard it is similar to
the Bayesian approach, where all parameters must have their distributions,
but needs fewer distributional assumptions.

The bootstrap is a well-established statistical method that can replace
complicated and often inaccurate approximate confidence intervals by com-
puter simulations. There are various bootstrap schemes developed to construct
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confidence intervals under different conditions. The parametric bootstrap-t in-
terval, introduced in this chapter, is the natural choice as an improvement to
the Student-t interval of the ISO Guide. The advantage of bootstrapping is
its simplicity: it is straightforward to apply the bootstrap to derive confidence
intervals as demonstrated in the examples. Nonparametric bootstrap methods
provide even bigger advantages when the datasets are large.

It was shown with the examples that Bayesian uncertainty assessment via
the statistical model is conceptually simple, and can be applied to complex
measurement problems without any changes to the basic method. Systematic
effects, which are not estimable from the measurements (i.e., there are no
functions of the observations whose expected values are equal to the system-
atic effect) and for which information is obtained by Type B evaluations, can
easily be included in the Bayesian model. Computation of posterior distribu-
tions can be done using MCMC methods, often using existing software. As
was seen, there is no need for asymptotic arguments to justify the probabil-
ity statements, small and large samples share a common, exact probabilistic
justification.

There are some drawbacks to the Bayesian methods described here. Most
important, to use them one must specify prior distributions for all parameters
in the measurement model, including the measurand. Even though in metrol-
ogy informative prior distributions are often available in the form of the Type
B uncertainty evaluations, it is usually the case that one or two of the pa-
rameters will need to be assigned vague (noninformative) prior distributions
because of lack of prior knowledge. Such distributions are not unique, and as
was demonstrated in Example 1c, they can influence the results. It is therefore
always necessary to perform sensitivity analysis to determine the size of any
such effect, which should be small. This was so for all of our examples except
1c. Large effects from the specification of a noninformative prior require fur-
ther study of the measurement system. Generally this means that there is not
enough information in the data about the measurand and thus the prior dis-
tribution has too much influence on the result. In some cases, this problem can
be solved by increasing the sample size, or by changing the way in which the
data are collected, for example, by improving resolution. In other situations,
it may be that the mathematical model being used has too many parameters
about which we have no real prior information and so the model must be
simplified.

There is a silver lining to the need for prior specification and that is that
when substantial prior information about the measurand does exist, it can be
introduced simply, and updated efficiently via Bayes’ theorem. Furthermore,
sensitivity to the prior form, not just for the measurand, but especially for
the standard deviation associated with the likelihood function, can be a good
indication that there are problems with the measurement system. These can
then be corrected.

Fiducial inference provides a framework for associating a distribution
with a parameter of interest. Recent research results [17] show that fiducial
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inference is a valid statistical method with generally good operating character-
istics. The examples used demonstrated that the fiducial approach can easily
and naturally incorporate the uncertainty information into the measurement
equation, and calculate the final estimate and its combined standard uncer-
tainty for a measurand of interest by propagating the component statistical
distributions. There is no need for propagation of uncertainty based on Taylor
series expansions or the Welch–Satterthwaite approximation under the fidu-
cial approach.

There is an issue of nonuniqueness in the fiducial distribution due to the
choice of a particular form of the structural equation. However, it is important
to note that, in many practical applications, the physical process by which
the data was generated is known. In this case we can and should choose the
structural equation to reflect this process, thus eliminating the problem of
nonuniqueness due to the choice of structural equation. In the field of metrol-
ogy where an unknown measurand is measured using some known processes,
one typically knows that random errors influence the measurement in some
pre-specified known fashion. The resulting measured values are expressed as
an equation combining some unknown measured quantities and errors. This
formula can be taken as the structural equation.

7 Chapter summary

In this chapter we have discussed three different approaches for constructing
uncertainty intervals that each have a clear probabilistic interpretation. This
contrasts with much of the other work in this area that has focused on assess-
ing the statistical properties of procedures currently in popular use across the
metrology community. One of the goals in approaching the study of methods
for uncertainty assessment from a different vantage point was to try to gain
insight into current methods and highlight new options that may also prove
useful.

As Lira and Wöger [25] observed, the uncertainty intervals obtained under
the different paradigms will often be similar numerically. Even when this is
the case, however, their interpretations are quite different from one another.

Frequentist uncertainty intervals make probabilistic statements about the
long-term performance of a particular procedure for constructing uncertainty
intervals during repeated use under identical conditions. Thus the probabil-
ity statement is not directly about the value of the measurand, but is about
the long-term relationship between the interval construction procedure and
the measurand. Once the data have been observed and a frequentist uncer-
tainty interval has been computed, there is no longer anything random about
the results. Although it is not known whether the value of the measurand is
captured in a particular realized interval, the analyst does know that such
intervals will capture the value of the measurand with a specified probabil-
ity. Unlike a traditional confidence interval based only on statistical data, the
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frequentist uncertainty interval is typically constructed so that the desired
confidence level is attained on average after integrating over the probability
distributions of any quantities that must be evaluated using Type B methods.

Bayesian and fiducial uncertainty intervals, on the other hand, are based
on probability distributions that directly describe our knowledge of the value
of the measurand. The methods used to obtain these two types of intervals
are different, but the results are similar in this aspect of their interpretation.
The Bayesian results are obtained by combining probability distributions for
each parameter specified prior to analysis of the data with a probability model
that describes the variation in the data using Bayes’ theorem. The resulting
posterior distributions for each parameter reflect the probability of the param-
eter values given the prior information and the data. The fiducial results are
obtained by inverting a probability model for the data given the parameters
to find a distribution for the parameter values given the data.

Of course if the numerical results were always quite similar, then each
of the different interpretations would be simultaneously applicable (at least
approximately) to every uncertainty interval. However, as we have seen, the
numerical results can differ significantly from one another in some instances,
even though each can be justified probabilistically and they share a common
level of significance (generally 95%). Other differences also may be observed.
For example, if one of the dominant sources of uncertainty in a particular ap-
plication has a skewed distribution, the uncertainty intervals obtained using
the Bayesian or fiducial approaches will often reflect that asymmetry whereas
an approximate confidence interval obtained using the procedures of the ISO
Guide will produce a symmetric uncertainty interval (and may be longer than
necessary on one side). Frequentist results based on other statistical prin-
ciples may match the Bayesian or fiducial results in some cases, but the
different methods will never all agree in general because each paradigm is
ultimately based on a different set of unique mathematical assumptions and
criteria.

The existence of different paradigms for uncertainty assessment that do not
always agree might be seen as an unfortunate complication by some. However,
we feel it is better seen as an indication of further opportunity. It is only by
continually working together to appreciate the features of different paradigms
that we will arrive at methods for uncertainty assessment that meet all of our
scientific and economic needs: methods that are practical to implement, make
efficient use of resources, are applicable to many types of measurements, both
old and new, and are transparent in meaning.
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Interval Computations and Interval-Related
Statistical Techniques: Tools for Estimating
Uncertainty of the Results of Data Processing
and Indirect Measurements

Vladik Kreinovich
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Summary. In many practical situations, we only know the upper bound Δ on
the (absolute value of the) measurement error Δx; that is, we only know that the
measurement error is located on the interval [−Δ, Δ]. The traditional engineering
approach to such situations is to assume that Δx is uniformly distributed on [−Δ, Δ],
and to use the corresponding statistical techniques. In some situations, however, this
approach underestimates the error of indirect measurements. It is therefore desirable
to directly process this interval uncertainty. Such “interval computations” methods
have been developed since the 1950s. In this chapter, we provide a brief overview of
related algorithms, results, and remaining open problems.

Key words: Interval computation, interval-related statistics, interval uncertainty,
error bounds, indirect measurements

1 Importance of data processing and indirect
measurements

In many real-life situations, we are interested in the value of a physi-
cal quantity y that is difficult or impossible to measure directly. Exam-
ples of such quantities are the distance to a star and the amount of oil
in a given well. Because we cannot measure y directly, a natural idea is
to measure y indirectly. Specifically, we find some easier-to-measure quan-
tities x1, . . . , xi, . . . , xn that are related to y by a known relation y =
f(x1, . . . , xi, . . . , xn); this relation may be a simple functional transformation,
or complex algorithm (e.g., for the amount of oil, numerical solution to an
inverse problem). Then, to estimate y, we first measure the values of the quan-
tities x1, . . . , xi, . . . , xn, and then we use the results x̃1, . . . , x̃i, . . . , x̃n of these
measurements to compute an estimate ỹ for y as ỹ = f(x̃1, . . . , x̃i, . . . , x̃n); see
Table 1 and Figure 1.
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© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009



118 V. Kreinovich

Table 1. List of symbols.

y actual (unknown) value of the desired quantity
xi actual (unknown) value of the ith auxiliary quantity
n number of auxiliary quantities
f(x1, . . . , xn) relation between x1, . . . , xn and y: y = f(x1, . . . , xn)
x̃i result of measuring xi

ỹ estimate for y: the result of indirect measurement
Δxi = x̃i − xi the ith measurement error
Δy = ỹ − y inaccuracy of indirect measurement
Δi upper bound on the absolute value |Δxi| of Δxi

Δ resulting upper bound on |Δy|
xi = [xi, xi] interval of possible values of xi

y = [y, y] interval of possible values of the desired quantity y

Y enclosure for y, i.e., an interval such that y ⊆ Y
ρ(x) probability density function (pdf)
F (x) cumulative distribution function (cdf)
δxi simulated value of the ith measurement error

a(k) value of a quantity a on the kth iteration

· · ·
x̃n

x̃2

x̃1

ỹ = f(x̃1 x̃n)f , ,· · ·

Fig. 1. Indirect measurement.

For example, to find the resistance R, we measure current I and voltage
V , and then use the known relation R = V/I to estimate resistance as R̃ =
Ṽ /Ĩ.

Computing an estimate for y based on the results of direct measurements
is called data processing; data processing is the main reason why computers
were invented in the first place, and data processing is still one of the main
uses of computers as number-crunching devices.

Comment. In this chapter, for simplicity, we consider the case when the rela-
tion between xi and y is known exactly; in some practical situations, we only
know an approximate relation between xi and y.
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2 Estimating uncertainty for the results of data
processing and indirect measurements: An important
metrological problem

Measurements are never 100% accurate, so in reality, the actual value xi

of the ith measured quantity can differ from the measurement result x̃i.
Because of these measurement errors Δxi

def= x̃i − xi, the result ỹ =
f(x̃1, . . . , x̃i, . . . , x̃n) of data processing is, in general, different from the actual
value y = f(x1, . . . , xi, . . . , xn) of the desired quantity y.

It is desirable to describe the error Δy
def= ỹ − y of the result of data

processing. To do that, we must have some information about the errors of
direct measurements.

3 Uncertainty of direct measurements: Brief description,
limitations, need for overall error bounds (i.e., interval
uncertainty)

Upper bounds on measurement errors. What do we know about the errors
Δxi of direct measurements? First, the manufacturers of a measuring device
usually provide us with an upper bound Δi for the (absolute value of) possible
measurement errors, that is, with the bound Δi for which we are guaranteed
that |Δxi| ≤ Δi.

The need for such a bound comes from the very nature of a measurement
process. Indeed, if no such bound is provided, this means that the actual value
xi can be arbitrarily different from the “measurement result” x̃i as possible.
Such a value x̃i is not a measurement; it is a wild guess.

Because the (absolute value of the) measurement error Δxi = x̃i − xi

is bounded by the given bound Δi, we can therefore guarantee that the ac-
tual (unknown) value of the desired quantity belongs to the interval xi

def=
[x̃i − Δi, x̃i + Δi].

Example. If the measured value of a quantity is x̃i = 1.0, and the upper bound
Δi on the measurement error is 0.1, this means that the (unknown) actual
value of the measured quantity can be anywhere between 1 − 0.1 = 0.9 and
1 + 0.1 = 1.1, that is, that it can take any value from the interval [0.9, 1.1].

Probabilities. In many practical situations, we not only know the interval
[−Δi,Δi] of possible values of the measurement error; we also know the prob-
abilities of different values Δxi within this interval (see, e.g., Rabinovich [1]).

In most practical applications, it is assumed that the corresponding mea-
surement errors are normally distributed with 0 mean and known standard
deviations.
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Numerous engineering techniques are known (and widely used) for pro-
cessing this uncertainty (see, e.g., Rabinovich [1]).

In practice, we can determine the desired probabilities of different values
of Δxi by comparing the results x̃i of measuring with this instrument with
the results x̃ st

i of measuring the same quantity by a standard (much more
accurate) measuring instrument. Because the standard measuring instrument
is much more accurate than the one used, the difference between these two
measurement results is practically equal to the measurement error; thus, the
empirical distribution of this difference Δ̃xi = x̃i − x̃ st

i is close to the desired
probability distribution for the measurement error Δxi = x̃i − xi.

Sometimes, one does not know probabilities. There are two cases when this
determination is not done.

• First is the case of cutting-edge measurements, for example, measurements
in fundamental science. When a Hubble telescope detects the light from
a distant galaxy, there is no “standard” (much more accurate) telescope
floating nearby that we can use to calibrate the Hubble; the Hubble tele-
scope is the best we have.

• The second case is the case of measurements on the shop floor. In this
case, in principle, every sensor can be thoroughly calibrated, but sensor
calibration is so costly—usually costing ten times more than the sensor
itself—that manufacturers rarely do it.

In both cases, we have no information about the probabilities of Δxi; the only
information we have is the upper bound on the measurement error.

4 Data processing and indirect measurements under
interval uncertainty: The main problem of interval
computations

In the case when the only information we have is the upper bound on the
measurement error, after we performed a measurement and got a measurement
result x̃i, the only information that we have about the actual value xi of the
measured quantity is that it belongs to the interval xi = [x̃i −Δi, x̃i +Δi]. In
such situations, the only information that we have about the (unknown) actual
value of y = f(x1, . . . , xi, . . . , xn) is that y belongs to the range y = [y, y] of
the function f over the box x1 × . . .× xi × . . .× xn:

y = [y, y] = {f(x1, . . . , xi, . . . , xn) |x1 ∈ x1, . . . , xi ∈ xi, . . . , xn ∈ xn}. (1)

The process of computing this interval range based on the input intervals
xi is called interval computations (Fig.2); see, for example, Jaulin et al. [2]
and Kearfott and Reinovich [3].
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· · ·
xn

x2

x1

y = f(x1 , ,· · · xn)f

Fig. 2. Interval computations.

5 Uniform distributions: Traditional engineering
approach to interval uncertainty

Brief description. In the case of interval uncertainty, we only know the in-
tervals; we do not know the probability distributions on these intervals.
A traditional statistical approach to the situation when several probabil-
ity distributions are possible is to select the “most uncertain” distribution,
that is, the distribution that has the largest possible value of the entropy
S

def= −
∫
ρ(x) · ln(ρ(x)) dx (here ρ(x) denotes the probability density).

For details on this maximum entropy approach and its relation to inter-
val uncertainty (and Laplace’s principle of indifference), see, for example,
Jaynes at al. [4].

One can easily check that for a single variable x1, among all distributions
located on a given interval, the entropy is the largest when this distribu-
tion is uniform on this interval. Indeed, a function ρ(x) ≥ 0 is a probability
density function on the given interval if

∫
ρ(x) dx = 1. Thus, to find the prob-

ability density function that maximizes entropy, we must maximize entropy
−
∫
ρ(x) · ln(ρ(x)) dx under the constraint

∫
ρ(x) dx = 1. According to the

Lagrange multiplier method, for some value λ (Lagrange multiplier), the
desired constraint optimization problem is equivalent to an unconstrained
optimization problem of maximizing the expression −

∫
ρ(x) · ln(ρ(x)) dx +

λ · (
∫
ρ(x) dx − 1). Differentiating this expression with respect to each

of the variables ρ(x) and equating the derivative to 0, we conclude that
− ln(ρ(x)) − 1 + λ = 0, hence ρ(x) = exp(λ − 1). The probability density
has the same value for all x from the given interval, hence we indeed have a
uniform distribution.

In the case of several variables, we can similarly conclude that the dis-
tribution with the largest value of the entropy is the one which is uniformly
distributed in the corresponding box x1 × . . . × xi × . . . × xn, that is, a dis-
tribution in which:

• Each variable Δxi is uniformly distributed on the corresponding interval
[−Δi,Δi].
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• Variables corresponding to different inputs are statistically independent.

This is indeed one of the main ways how interval uncertainty is treated in
engineering practice; if we only know that the value of some variable is in the
interval [xi, xi], and we have no information about the probabilities, then we
assume that the variable xi is uniformly distributed on this interval.

Limitations. To explain the limitations of this engineering approach, let us
consider the simplest possible algorithm y = f(x1, . . . , xi, . . . , xn) = x1+ · · ·+
xi + · · · + xn. For simplicity, let us assume that the measured values of all n
quantities are 0s x̃1 = · · · = x̃i = · · · = x̃n = 0, and that all n measurements
have the same error bound Δx; Δ1 = · · · = Δxi = · · · = Δn = Δx.

In this case, Δy = Δx1 + · · · + Δxi + · · · + Δxn. Each of n component
measurement errors can take any value from −Δx to Δx, so the largest possible
value of Δy is attained when all of the component errors attain the largest
possible value Δxi = Δx. In this case, the largest possible value Δ of Δy is
equal to Δ = n · Δx.

Let us see what the maximum entropy approach will predict in this case.
According to this approach, we assume that Δxi are independent random
variables, each of which is uniformly distributed on the interval [−Δx,Δx].
According to the central limit theorem (see, e.g., Sheskin [5]), when n → ∞,
the distribution of the sum of n independent identically distributed bounded
random variables tends to Gaussian. This means that for large values n, the
distribution of Δy is approximately normal.

A normal distribution is uniquely determined by its mean and variance.
When we add several independent variables, their means and variances add
up. For each uniform distribution Δxi on the interval [−Δx,Δx] of width
2Δx, the probability density is equal to ρ(x) = 1/(2Δx), so the mean is 0 and
the variance is

V =
∫ Δx

−Δx

x2 · ρ(x) dx =
1

2Δx
·
∫ Δx

−Δx

x2 dx =
1

2Δx
· 1
3
· x3
∣∣Δx

−Δx
=

1
3
·Δ2

x. (2)

Thus, for the sum Δy of n such variables, the mean is 0, and the variance
is equal to (n/3) · Δ2

x. Thus, the standard deviation is equal to σ =
√
V =

Δx · √n/
√

3.
It is known that in a normal distribution, with probability close to 1, all

the values are located within the k · σ vicinity of the mean: for k = 3, it is
true with probability 99.9%, for k = 6, it is true with probability 1 − 10−6%,
and so on. So, practically with certainty, Δy is located within an interval k ·σ
which grows with n as

√
n.

For large n, we have k · Δx · (
√
n/

√
3) � Δx · n, so we get a serious

underestimation of the resulting measurement error. This example shows that
estimates obtained by selecting a single distribution can be very misleading.
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6 Techniques for estimating the uncertainty
of the results of indirect measurements in situations
when the measurement errors of direct measurements
are relatively small

Linearization: main idea. When the measurement errors Δxi are relatively
small, we can use linearization.

By definition of the measurement error Δxi = x̃i−xi, hence xi = x̃i−Δxi.
When the measurement errors Δxi of direct measurements are relatively small,
we can expand the expression

Δy = ỹ − y = f(x̃1, . . . , x̃i, . . . , x̃n) − f(x1, . . . , xn)
= f(x̃1, . . . , x̃i, . . . , x̃n) − f(x̃1 − Δx1, . . . , x̃i − Δxi, . . . , x̃n − Δxn) (3)

in Taylor series and only keep linear terms in the resulting expansion. Because

y = f(x̃1 − Δx1, . . . , x̃i − Δxi, . . . , x̃n − Δxn)

≈ f(x̃1, . . . , x̃i, . . . , x̃n) −
n∑

i=1

∂f

∂xi
· Δxi, (4)

we conclude that Δy = ỹ − y =
∑n

i=1 ·Δxi, where ci = ∂f/∂xi.
The dependence of Δy on Δxi is linear; it is increasing relative to xi if

ci ≥ 0 and decreasing if ci < 0. So, to find the largest possible value Δ of Δy,
we must take:

• The largest possible value Δxi = Δi when ci ≥ 0
• The smallest possible value Δxi = −Δi when ci < 0

In both cases, the corresponding term in the sum has the form |ci| ·Δi, so we
can conclude that

Δ =
n∑

i=1

|ci| · Δi. (5)

Similarly, the smallest possible value of Δy is equal to −Δ. Thus, the range
of possible values of y is equal to [y, y] = [ỹ−Δ, ỹ+ Δ]. So, to compute Δ, it
is sufficient to know the partial derivatives ci.

Case of analytical formulas. In the simplest case when the algorithm
f(x1, . . . , xi, . . . , xn) consists of a simple analytical expression, we can find
explicit analytical formulas for the partial derivatives and thus compute the
desired bound Δ.
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Techniques based on sensitivity analysis (automatic differentiation). In the
general case, a natural way to compute partial derivatives comes directly from
the definition. By definition, a partial derivative is defined as a limit

∂f

∂xi
= lim

hi→0

f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n) − f(x̃1, . . . , x̃i, . . . , x̃n)
hi

.

(6)
In turn, a limit, by its definition, means that when the values of hi are small,
the corresponding ratio is very close to the partial derivative. Thus, we can
estimate the partial derivative as the ratio

ci =
∂f

∂xi
≈ f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n) − f(x̃1, . . . , x̃i, . . . , x̃n)

hi
(7)

for some small value hi.
After we have computed n such ratios, we can then compute the desired

bound Δ on |Δy| as Δ = |ci| · Δi.
In general, this procedure requires n divisions by hi and n multiplications

by Δi. The procedure can be made faster if we select hi = Δi. In this case,
we get

Δ =
n∑

i=1

|f(x̃1, . . . , x̃i−1, x̃i + Δi, x̃i+1, . . . , x̃n) − ỹ|. (8)

Advanced Monte Carlo simulation techniques. The above algorithm requires
that we call the data processing algorithm n + 1 times: first to compute the
value ỹ = f(x̃1, . . . , x̃i, . . . , x̃n), and then n more times to compute the values

f(x̃1, . . . , x̃i−1, x̃i + Δi, x̃i+1, . . . , x̃n) (9)

and thus, the corresponding partial derivatives.
In many practical situations, the data processing algorithms are time-

consuming, and we process large amounts of data, with the number n of data
points in thousands. In this case, the use of the above linearization algorithm
would be thousands of times longer than data processing itself, which itself is
already time-consuming. Is it possible to estimate Δ faster?

The answer is “yes;” it is possible to have a Monte Carlo type algorithm
that estimates Δ by using only a constant number of calls to the data pro-
cessing algorithm f ; for details, see, for example, Kreinovich et al. [6] and
Kreinovich and Ferson [7].

At first glance, because we know that the measurement errors are located
within the intervals [−Δi,Δi], it sounds reasonable to select distributions
located on these intervals. However, it can be shown that this does not lead to
the desired estimates. It turns out that it is possible to estimate the interval
uncertainty if we use a distribution d which is not located on the interval
[−Δi,Δi], namely, a distribution related to the basic Cauchy distribution with
the probability density function
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ρ(x) =
1

π · (x2 + 1)
.

The resulting Cauchy deviate method works in the linearized case, when the
function f(x1, . . . , xi, . . . , xn) is reasonably smooth and the box [x1, x1]×. . .×
[xi, xi]× . . .× [xn, xn] is small enough, so that on this box, we can reasonably
approximate the function f by its linear terms.

If we multiply a random variable distributed according to the above basic
Cauchy distribution d by a value Δ, then we get a Cauchy distribution with a
parameter Δ, that is, a distribution described by the following density func-
tion,

ρ(x) =
Δ

π · (x2 + Δ2)
.

It is known that if ξ1, . . . , ξi, . . . , ξn are independent variables distributed ac-
cording to Cauchy distributions with parameters Δi, then, for every n real
numbers c1, . . . , ci, . . . , cn, the corresponding linear combination c1 · ξ1 + · · ·+
ci · ξi + · · · + cn · ξn is also Cauchy distributed, with the parameter Δ equal
to the desired value Δ = |c1| · Δ1 + · · · + |ci| · Δi + |cn| · Δn.

Thus, if for some number of iterations N , we simulate δx(k)
i (1 ≤ k ≤ N)

as Cauchy distributed with parameter Δi, then, in the linear approximation,
the corresponding differences

δy(k) def= f(x̃1 + δx
(k)
1 , . . . , x̃i + δx

(k)
i , . . . , x̃n + δx(k)

n ) − ỹ (10)

are distributed according to the Cauchy distribution with the parameter Δ.
The resulting values δy(1), . . . , δy(k), . . . , δy(N) are therefore a sample from the
Cauchy distribution with the unknown parameter Δ. Based on this sample,
we can estimate the value Δ.

In order to estimate Δ, we can apply the maximum likelihood method
which leads to the following equation,

1

1 +
(
δy(1)

Δ

)2 + · · · + 1

1 +
(
δy(k)

Δ

)2 + · · · + 1

1 +
(
δy(N)

Δ

)2 =
N

2
. (11)

The left-hand side of this equation is an increasing function that is equal to 0
(hence smaller than N/2) for Δ = 0 and larger than N/2 for Δ = max

∣∣δy(k)
∣∣;

therefore the solution to this equation can be found by applying a bisection
method to the interval

[
0,max

∣∣δy(k)
∣∣].

Simulation of the Cauchy distribution with parameter Δi can be based on
the functional transformation of uniformly distributed sample values:

δx
(k)
i = Δi · tan(π · (ri − 0.5)), (12)

where ri is uniformly distributed on the interval [0, 1].
As a result, we arrive at the following algorithm (see, e.g., Kreinovich and

Ferson [7] and Trejo et al. [8]).
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• Apply f to the midpoints: ỹ := f(x̃1, . . . , x̃i, . . . , x̃n).
• For k = 1, 2, . . . , N , repeat the following.

• Use the standard random number generator to compute n numbers
r
(k)
i , i = 1, 2, . . . , n, that are uniformly distributed on the interval

[0, 1].
• Compute Cauchy distributed values c(k)

i : = tan(π · (r(k)
i − 0.5)).

• Compute the largest value of |c(k)
i | so that we will be able to normalize

the simulated approximation errors and apply f to the values that are
within the box of possible values: K := maxi |c(k)

i |.
• Compute the simulated approximation errors δx(k)

i : = Δi · c(k)
i /K.

• Compute the simulated “actual values” x
(k)
i : = x̃i + δx

(k)
i .

• Apply the program f to the simulated measurement results and com-
pute the simulated approximation error for y:

Δy(k) := K ·
(
f
(
x

(k)
1 , . . . , x

(k)
i , . . . , x(k)

n

)
− ỹ
)
. (13)

• Compute Δ by applying the bisection method to solve the equation

1

1 +
(

Δy(1)

Δ

)2 + · · ·+ 1

1 +
(

Δy(k)

Δ

)2 + · · ·+ 1

1 +
(

Δy(N)

Δ

)2 =
N

2
. (14)

In Kreinovich and Ferson [7] and Trejo et al. [8], we found the number of
iterations N that would provide the desired (relative) accuracy ε in estimating
Δ, that is, the number of iterations that are needed to guarantee that

(1 − ε) · Δ̃ ≤ Δ ≤ (1 + ε) · Δ̃ (15)

with a given certainty p0.
In practice, it is reasonable to get a certainty p0 = 95% and accuracy

ε = 0.2 (20%).
To get an accuracy ε with 95% certainty, we must pick N = 8/ε2. In

particular, to get a 20% accuracy (0.2 · Δ) with 95% certainty, that is, to
guarantee that

0.8 · Δ̃ ≤ Δ ≤ 1.2 · Δ̃ (16)

with certainty ≥ 95%, we need N = 8/(0.2)2 = 200 runs.
In general, the required number of calls to a model depends only on the

desired accuracy ε and not on n, so for large n, these methods are much faster.

Comment. It is important to mention that we assumed that the function f is
reasonably linear within the box

[x̃1 −Δ1, x̃1 + Δ1]× · · · × [x̃i −Δi, x̃i + Δi]× · · · × [x̃n −Δn, x̃n + Δn]. (17)
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However, the simulated values δi may be outside the box. When we get such
values, we do not use the function f for them, we use a linearized function
that is equal to f within the box, and that is extended linearly for all other
values.

7 Techniques for error estimation in the general case
of interval uncertainty

Need for interval computations. In many application areas, it is sufficient
to have an approximate estimate of y. However, in some applications, it is
important to guarantee that the (unknown) actual value y of a certain quantity
does not exceed a certain threshold y0. The only way to guarantee this is to
have an interval Y = [Y , Y ] which is guaranteed to contain y (i.e., for which
y ⊆ Y ) and for which Y ≤ y0.

For example, in nuclear engineering, we must make sure that the temper-
atures and the neutron flows do not exceed the critical values; when planning
a space flight, we want to guarantee that the spaceship lands on the planet
and does not fly past it, and so on.

The interval Y that is guaranteed to contain the actual range y is usually
called an enclosure for this range. So, in such situations, we need to compute
either the original range or at least an enclosure for this range. Computing
such an enclosure is also one of the main tasks of interval computations.

Traditional numerical methods are often not sufficient. The main limita-
tions of the traditional numerical mathematics approach to error estimation
was that often no clear distinction was made between approximate (non-
guaranteed) and guaranteed (= interval) error bounds.

For example, for iterative methods, many papers on numerical mathemat-
ics consider the rate of convergence as an appropriate measure of approxi-
mation error. Clearly, if we know that the error decreases as O(1/n) or as
O(a−n), we gain some information about the corresponding algorithms, and
we also gain knowledge that for large n, the second method is more accu-
rate. However, in real life, we make a fixed number n of iterations. If the only
information we have about the approximation error is the above asymptotics,
then we still have no idea how close the result of nth iteration is to the actual
(desired) value.

It is therefore important to emphasize the need for guaranteed methods,
and to develop techniques for producing guaranteed estimates. Such guaran-
teed estimates are what interval computations are about.

Interval computations: A brief history. The notion of interval computations is
reasonably recent, it dates back to the 1950s, but the main problem has been
known since Archimedes who used guaranteed two-sided bounds to compute
π (see, e.g., Archimedes [9]).
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Since then, many useful guaranteed bounds have been developed for dif-
ferent numerical methods. There have also been several general descriptions
of such bounds, often formulated in terms similar to what we described above.
For example, in the early 20th century, the concept of a function having values
that are bounded within limits was discussed by W. H. Young in [10]. The
concept of operations with a set of multivalued numbers was introduced by
R. C. Young, who developed a formal algebra of multivalued numbers [11].
The special case of closed intervals was further developed by P. S. Dwyer
in [12].

Interval computations in their current form were independently invented
by three researchers in three different parts of the world: by M. Warmus in
Poland [13], by T. Sunaga in Japan [14], and by R. Moore in the United
States [15].

The active interest in interval computations started with Moore’s 1966
monograph [16]. This interest was enhanced by the fact that in addition to
estimates for general numerical algorithms, Moore’s monograph also described
practical applications that had already been developed in his earlier papers
and technical reports: in particular, interval computations were used to make
sure that even when we take all the uncertainties into account, the trajectory
of a space flight is guaranteed to reach the moon.

Since then, interval computations have been actively used in many areas
of science and engineering; see, for example, interval website [17] and Jaulin
et al. [2].

Comment. Early papers on interval computations can be found on the interval
computations website [17].

First step: Interval arithmetic. Our goal is to find the range of a given
function f(x1, . . . , xi, . . . , xn) on the given intervals x1 = [x1, x1], . . . ,xi =
[xi, xi], . . . ,xn = [xn, xn].

This function f(x1, . . . , xi, . . . , xn) is given as an algorithm. In particu-
lar, we may have an explicit analytical expression for f , in which case this
algorithm consists of simply computing this expression.

When we talk about algorithms, we usually mean an algorithm (program)
written in a high-level programming language like Java or C. Such program-
ming languages allow us to use arithmetic expressions and many other com-
plex constructions. Most of these constructions, however, are not directly
hardware-supported inside a computer. Usually, only simple arithmetic oper-
ations are implemented: addition, subtraction, multiplication, and 1/x (plus
branching). Even division a/b is usually not directly supported, it is performed
as a sequence of two elementary arithmetic operations:

• First, we compute 1/b.
• Then, we multiply a by 1/b.

When we input a general program into a computer, the computer parses it,
that is, represents it a sequence of elementary arithmetic operations.
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Because a computer performs this parsing anyway, we can safely assume
that the original algorithm f(x1, . . . , xi, . . . , xn) is already represented as a
sequence of such elementary arithmetic operations.

Let us start our analysis of the interval computation techniques with the
simplest possible case when the algorithm f(x1, . . . , xi, . . . , xn) simply con-
sists of a single arithmetic operation: addition, subtraction, multiplication, or
computing 1/x.

Let us start by estimating the range of the addition function f(x1, x2) =
x1 + x2 on the intervals [x1, x1] and [x2, x2]. This function is increasing
with respect to both its variables. We already know how to compute the
range [y, y] of a monotonic function. So, the range of addition is equal to
[x1 + x2, x1 + x2].

The desired range is usually denoted as f(x1, . . . ,xi, . . . ,xn); in particu-
lar, for addition, this notation takes the form x1 + x2. Thus, we can define
“addition” of two intervals as follows,

[x1, x1] + [x2, x2] = [x1 + x2, x2 + x2]. (18)

This formula makes perfect intuitive sense: if one town has between 700 and
800 thousand people, and it merges with a nearby town whose population is
between 100 and 200 thousand, then:

• The smallest possible value of the total population of the new big town is
when both populations are the smallest possible, 700 + 100 = 800, and

• The largest possible value is when both populations are the largest possi-
ble, that is, 800 + 200 = 1000.

The subtraction function f(x1, x2) = x1 − x2 is increasing with respect to
x1 and decreasing with respect to x2, so we have

[x1, x1] − [x2, x2] = [x1 − x2, x1 − x2]. (19)

These operations are also in full agreement with common sense. For
example, if a warehouse originally had between 6.0 and 8.0 tons, and we moved
between 1.0 and 2.0 tons to another location, then the smallest amount left is
when we start with the smallest possible value 6.0 and move the largest possi-
ble value 2.0, resulting in 6.0− 2.0 = 4.0. The largest amount left is when we
start with the largest possible value 8.0 and move the smallest possible value
1.0, resulting in 8.0 − 1.0 = 7.0.

For multiplication f(x1, x2) = x1 · x2, the direction of monotonicity
depends on the actual values of x1 and x2: for example, when x2 > 0, the
product increases with x1; otherwise it decreases with x1. So, unless we know
the signs of the product beforehand, we cannot tell whether the maximum
is attained at x1 = x1 or at x1 = x1. However, we know that it is always
attained at one of these endpoints. So, to find the range of the product, it is
sufficient to try all 2 · 2 = 4 combinations of these endpoints
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[x1, x1] · [x2, x2]
= [min(x1 · x2, x1 · x2, x1 · x2, x1 · x2),max(x1 · x2, x1 · x2, x1 · x2, x1 · x2)].

(20)

Finally, the function f(x1) = 1/x1 is decreasing wherever it is defined
(when x1 �= 0), so if 0 �∈ [x1, x1]; then

1
[x1, x1]

=
[

1
x1
,

1
x1

]
. (21)

The formulas for addition, subtraction, multiplication, and reciprocal of in-
tervals are called formulas of interval arithmetic.

Comment. Alternative faster-to-compute formulas that lead to slightly wider
intervals are described, for example, in Cerimele and Venturini Zilli [18].

Straightforward (“naive”) interval computations. Historically the first method
for computing the enclosure for the general case is the method which is
sometimes called “straightforward” interval computations. In this method,
we repeat the computations forming the program f step by step, replacing
each operation with real numbers by the corresponding operation of interval
arithmetic. It is known that, as a result, we get an enclosure Y ⊇ y for the
desired range.

In some cases, this enclosure is exact. In more complex cases (see example
below), the enclosure has excess width.

Example. Let us illustrate the above idea on the example of estimating the
range of the function f(x1) = x1 − x2

1 on the interval x1 ∈ [0, 0.8].
We start with parsing the expression for the function (i.e., describing how

a computer will compute this expression); it will implement the following
sequence of elementary operations,

r1 := x1 · x1; r2 := x1 − r1. (22)

According to straightforward interval computations, we perform the same
operations, but with intervals instead of numbers:

r1 := [0, 0.8] · [0, 0.8] = [0, 0.64]; r2 := [0, 0.8] − [0, 0.64] = [−0.64, 0.8].
(23)

For this function, the actual range is f(x1) = [0, 0.25]; see Figure 3.

Interval computations go beyond straightforward technique. People who are
vaguely familiar with interval computations sometimes erroneously assume
that the above straightforward (“naive”) techniques are all there is in interval
computations. In conference presentations (and even in published papers),
one often encounters a statement, “I tried interval computations, and it did
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x1

f(x1)

0.5 0.8 1
0

0.25

Fig. 3. Range of the function f(x1) = x1 − x2
1 on the interval [0, 0.8].

not work.” What this statement usually means is that they tried the above
straightforward approach and—not surprisingly—it did not work well.

In reality, interval computation is not a single algorithm, it is a problem
for which many different techniques exist. Let us now describe some of such
techniques.

Comment. For each of the known techniques, there are cases when we get an
excess width. The reason is that the problem of computing the exact range
is NP-hard even for polynomial functions f(x1, . . . , xi, . . . , xn), actually, even
for quadratic functions f (see, e.g., Kreinovich et al. [19]).

Centered form. One such technique is the centered form (see, e.g., Jaulin
et al. [2]). This technique is based on the same Taylor series expansion ideas
as linearization. We start by representing each interval xi = [xi, xi] in the
form [x̃i −Δi, x̃i + Δi], where x̃i = (xi + xi)/2 is the midpoint of the interval
xi and Δi = (xi − xi)/2 is the half-width of this interval.

After that, we use the Taylor expansion. In linearization, we simply ignored
quadratic and higher-order terms. Here, instead, we use the Taylor form with
a remainder term. Specifically, the centered form is based on the formula

f(x1, . . . , xi, . . . , xn) = f(x̃1, . . . , x̃i, . . . , x̃n)

+
n∑

i=1

∂f

∂xi
(η1, . . . , ηi, . . . , ηn) · (xi − x̃i), (24)

where each ηi is some value from the interval xi.
Because ηi ∈ xi, the value of the ith derivative belongs to the interval range

of this derivative on these intervals. We also know that xi − x̃i ∈ [−Δi,Δi].
Thus, we can conclude that

f(x1, . . . ,xi, . . . ,xn) ⊆ f(x̃1, . . . , x̃i, . . . , x̃n)

+
n∑

i=1

∂f

∂xi
(x1, . . . ,xi, . . . ,xn) · [−Δi,Δi]. (25)

To compute the ranges of the partial derivatives, we can use straightforward
interval computations.
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Example. Let us illustrate this method on the above example of estimating
the range of the function f(x1) = x1 − x2

1 over the interval [0, 0.8]. For this
interval, the midpoint is x̃1 = 0.4; at this midpoint, f(x̃1) = 0.24. The half-
width is Δ1 = 0.4. The only partial derivative here is ∂f/∂x1 = 1 − 2x1, its
range on [0, 0.8] is equal to 1−2 · [0, 0.8] = [−0.6, 1]. Thus, we get the following
enclosure for the desired range y,

y ⊆ Y = 0.24+[−0.6, 1] · [−0.4, 0.4] = 0.24+[−0.4, 0.4] = [−0.16, 0.64]. (26)

This enclosure is narrower than the “naive” estimate [−0.64, 0.8], but it still
contains excess width.

How can we get better estimates? In the centered form, we, in effect, ignored
quadratic and higher-order terms, that is, terms of the type (∂2f/∂xi∂xj) ·
Δxi · Δxj . When the estimate is not accurate enough, it means that this
ignored term is too large. There are two ways to reduce the size of the ignored
term:

• We can try to decrease this quadratic term.
• We can try to explicitly include higher-order terms in the Taylor expansion

formula, so that the remainder term will be proportional to say Δx3
i and

thus, be much smaller.

Let us describe these two ideas in detail.

First idea: Bisection. Let us first describe the situation in which we try to
minimize the second-order remainder term. In the above expression for this
term, we cannot change the second derivative. The only thing we can decrease
is the difference Δxi = xi−x̃i between the actual value and the midpoint. This
value is bounded by the half-width Δi of the box. So, to decrease this value,
we can subdivide the original box into several narrower subboxes. Usually, we
divide into two subboxes, so this subdivision is called bisection.

The range over the whole box is equal to the union of the ranges over all
the subboxes. The widths of each subbox are smaller, so we get smaller Δxi

and it is hoped, more accurate estimates for ranges over each subbox. Then,
we take the union of the ranges over subboxes.

Example. Let us illustrate this idea on the above x1 − x2
1 example. In this

example, we divide the original interval [0, 0.8] into two subintervals [0, 0.4]
and [0.4, 0.8]. For both intervals, Δ1 = 0.2.

In the first subinterval, the midpoint is x̃1 = 0.2, so f(x̃1) = 0.2 − 0.04 =
0.16. The range of the derivative is equal to 1−2·[0, 0.4] = 1−[0, 0.8] = [0.2, 1],
hence we get an enclosure 0.16 + [0.2, 1] · [−0.2, 0.2] = [−0.04, 0.36].

For the second interval, x̃1 = 0.6, f(0.6) = 0.24, the range of the derivative
is 1 − 2 · [0.4, 0.8] = [−0.6, 0.2], hence we get an enclosure

0.24 + [−0.6, 0.2] · [−0.2, 0.2] = [0.12, 0.36]. (27)
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The union of these two enclosures is the interval [−0.04, 0.36]. This enclosure
is much more accurate than before.

Further bisection leads to even more accurate estimates: the smaller the
subintervals, the more accurate is the enclosure.

Bisection: General comment. The more subboxes we consider, the smaller Δxi

and thus, the more accurate are the corresponding enclosures. However, once
we have more boxes, we need to spend more time processing these boxes.
Thus, we have a trade-off between computation time and accuracy: the more
computation time we allow, the more accurate estimates we will be able to
compute.

Additional idea: Monotonicity checking. If the function f(x1, . . . , xi, . . . , xn)
is monotonic over the original box x1 × . . . × xi . . . × xn, then we can easily
compute its exact range. Because we used the centered form for the original
box, this probably means that on that box, the function is not monotonic: for
example, with respect to x1, it may be increasing at some points in this box,
and decreasing at other points.

However, as we divide the original box into smaller subboxes, it is quite
possible that at least some of these subboxes will be outside the areas where
the derivatives are 0 and thus, the function f(x1, . . . , xi, . . . , xn) will be mono-
tonic. So, after we subdivide the box into subboxes, we should first check
monotonicity on each of these subboxes, and if the function is monotonic, we
can easily compute its range.

In calculus terms; a function is increasing with respect to xi if its partial
derivative di

def= ∂f/∂xi is nonnegative everywhere on this subbox. Thus, to
check monotonicity, we should find the range [di, di] of this derivative (we
need to do it anyway to compute the centered form expression):

• If di ≥ 0, this means that the derivative is everywhere nonnegative and
thus, the function f is increasing in xi

• If di ≤ 0, this means that the derivative is everywhere nonpositive and
thus, the function f is decreasing in xi.

If di < 0 < di, then we have to use the centered form.
If the function is monotonic (e.g., increasing) only with respect to some of

the variables xi, then

• To compute y, it is sufficient to consider only the value xi = xi.
• To compute y, it is sufficient to consider only the value xi = xi.

For such subboxes, we reduce the original problem to two problems with fewer
variables, problems which are thus easier to solve.
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Example. For the example f(x1) = x1 − x2
1, the partial derivative is equal to

1 − 2 · x1.
On the first subbox [0, 0.4], the range of this derivative is 1 − 2 · [0, 0.4] =

[0.2, 1]. Thus, the derivative is always nonnegative, the function is increas-
ing on this subbox, and its range on this subbox is equal to [f(0), f(0.4)] =
[0, 0.16].

On the second subbox [0.4, 0.8], the range of the derivative is 1 − 2 ·
[0.4, 0.8] = [−0.6, 0.2]. Here, we do not have guaranteed monotonicity, so we
can use the centered form to get the enclosure [0.12, 0.36] for the range.

The union of these two enclosures is the interval [0, 0.36], which is slightly
more accurate than before. Further bisection leads to even more accurate
estimates.

Comment. We got the exact range because of the simplicity of our example,
in which the extreme point 0.5 of the function f(x1) = x1 − x2

1 is exactly in
the middle of the interval [0, 1]. Thus, when we divided the box in two, both
subboxes have the monotonicity property. In the general case, the extremal
point will be inside one of the subboxes, so we will have excess width.

General Taylor techniques. As we have mentioned, another way to get more
accurate estimates is to use so-called Taylor techniques, that is, to explicitly
consider second-order and higher-order terms in the Taylor expansion (see,
e.g., Berz and Hoffstätter [20], Neumaier [21], and references therein).

Let us illustrate the main ideas of Taylor analysis on the case when we
allow second-order terms. In this case, the formula with a remainder takes the
form

f(x1, . . . , xi, . . . , xn) = f(x̃1, . . . , x̃i, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(x̃1, . . . , x̃n) · (xi − x̃i)

+
1
2
·

n∑

i=1

m∑

j=1

∂2f

∂xi∂xj
(η1, . . . , ηn) · (xi − x̃i) · (xj − x̃j). (28)

Thus, we get the enclosure

f(x1, . . . ,xi, . . . ,xn) ⊆ Y
def= f(x̃1, . . . , x̃i, . . . , x̃n)

+
n∑

i=1

∂f

∂xi
(x̃1, . . . , x̃i, . . . , x̃n) · [−Δi,Δi] (29)

+
1
2
·

n∑

i=1

m∑

j=1

∂2f

∂xi∂xj
(x1, . . . ,xn) · [−Δi,Δi] · [−Δj ,Δj ].

Example. Let us illustrate this idea on the above example of f(x1) = x1 −x2
1.

Here, Δ1 = 0.4, x̃1 = 0.4, so f(x̃1) = 0.24 and (∂f/∂x1)(x̃1) = 1−2·0.4 = 0.2.
The second derivative is equal to −2, so the Taylor estimate takes the form

Y = 0.24 + 0.2 · [−0.4, 0.4] − [−0.4, 0.4]2.
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Strictly speaking, if we interpret Δx2
1 as Δx1 · Δx1 and use the formulas of

interval multiplication, we get the interval

[−0.4, 0.4]2 = [−0.4, 0.4] · [−0.4, 0.4] = [−0.16, 0.16]

and thus, the enclosure

Y = 0.24+[−0.08, 0.08]− [−0.16, 0.16] = [0.16, 0.32]− [−0.16, 0.16] = [0, 0.48]

for the desired range. However, we can view x2 as a special function, for
which the range over [−0.4, 0.4] is known to be [0, 0.16]. In this case, the
above enclosure takes the form

Y = 0.24 + [−0.08, 0.08] − [0, 0.16] = [0.16, 0.32] − [0, 0.16] = [0, 0.32]

which is much closer to the actual range [0, 0.25].

Taylor methods: General comment. The more terms we consider in the Tay-
lor expansion, the smaller the remainder term and thus, the more accu-
rate the corresponding enclosures. However, once we have more terms, we
need to spend more time computing these terms. Thus, for Taylor meth-
ods, we also have a trade-off between computation time and accuracy: the
more computation time we allow, the more accurate estimates we will be able
to compute.

An alternative version of affine and Taylor arithmetic. The main idea of Tay-
lor methods is to approximate the given function f(x1, . . . , xi, . . . , xn) by a
polynomial of a small order plus an interval remainder term.

In these terms, straightforward interval computations can be viewed as
0th-order Taylor methods in which all we have is the corresponding interval
(or, equivalently, the constant term plus the remainder interval). To com-
pute this interval, we repeated the computation of f step by step, replacing
operations with numbers by operations with intervals.

We can do the same for higher-order Taylor expansions as well. Let us
illustrate how this can be done for the first-order Taylor terms. We start with
the expressions xi = x̃i −Δxi. Then, at each step, we keep a term of the type
a = ã+ Δxi + a. (To be more precise, keep the coefficients ã and ai and the
interval a.)

Addition and subtraction of such terms are straightforward:

(ã+
n∑

i=1

ai ·Δxi+a)+(̃b+
n∑

i=1

bi ·Δxi+b) = (ã+ b̃)+
n∑

i=1

(ai+bi)·Δxi+(a+b);

(30)

(ã+
n∑

i=1

ai ·Δxi+a)− (̃b+
n∑

i=1

bi ·Δxi+b) = (ã− b̃)+
n∑

i=1

(ai−bi)·Δxi+(a−b).

(31)
For multiplication, we add terms proportional to Δxi · Δxj to the interval
part
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(ã+
n∑

i=1

ai · Δxi + a) · (̃b+
n∑

i=1

bi · Δxi + b) = (ã · b̃) +
n∑

i=1

(ã · bi + b̃ · ai) · Δxi

+ (ã · b + b̃ · a +
n∑

i=1

ai · bi · [0,Δ2
i ] +

n∑

i=1

∑

j �=i

ai · bj · [−Δi,Δi] · [Δj · Δj ]).

(32)

At the end, we get an expression of the above type for the desired quantity
y: y = ỹ + Δxi + y. We already know how to compute the range of a linear
function, so we get the following enclosure for the final range, Y = ỹ +
[−Δ,Δ] + y, where Δ = |yi| · Δi.

Example. For f(x1) = x1−x2
1, we first compute x2 = x2

1 and then y = x1−x2.
We start with the interval x1 = x̃1 − Δx1 = 0.4 + (−1) · Δ1 + [0, 0].

On the next step, we compute the square of this expression. This square
is equal to 0.16 + (−0.8) ·Δx1 + Δx2

1. Because Δx1 ∈ [−0.4, 0.4], we conclude
that Δx2

1 ∈ [0, 0.16] and thus, that x2 = 0.16 + (−0.8) · Δx1 + [0, 0.16].
For y = x1 − x2, we now have

y = (0.4 − 0.16) + ((−1) − (−0.8)) · Δx1 + ([0, 0] − [0, 0.16])
= 0.24 + (−0.2) · Δx1 + [−0.16, 0]. (33)

Because Δx1 ∈ [−0.4, 0.4], we get the enclosure

Y = 0.24 + (−0.2) · [−0.4, 0.4] + [−0.16, 0] = [0, 0.32]. (34)

Comment. We have described several methods and several ideas. On our sim-
ple example, some ideas work better and some lead to wider enclosures. The
fact that a method works better on the simple example does not mean that
it always works better; it depends on the function. In large-scale practical
examples, it is useful to combine all these methods and ideas: for example,
bisect and use centered form and monotonicity on subboxes (see, e.g., Jaulin
et al. [2]).

The interval method—one of the above or their combination—has to be
carefully chosen to match the function at hand. There exist several semi-
empirical heuristics on which method to choose (see, e.g., Jaulin et al. [2]).

8 Situations when, in addition to the upper bounds on
the measurement error, we also have partial information
about the probabilities of different error values

Practical problem. In interval computations, we assume that the uncertainty
in xi can be described by the interval of possible values. In real life, in addition
to the intervals, we often have some information about the probabilities of
different values within this interval. What can we then do?
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Which is the best way to describe the corresponding probabilistic uncertainty?
One of the main objectives of data processing is to make decisions. A standard
way of making a decision is to select the action a for which the expected
utility (gain) is the largest possible. This is where probabilities are used: in
computing, for every possible action a, the corresponding expected utility. To
be more precise, we usually know, for each action a and for each actual value
of the (unknown) quantity x, the corresponding value of the utility ua(x).
We must use the probability distribution for x to compute the expected value
e[ua(x)] of this utility.

In view of this application, the most useful characteristics of a probability
distribution would be the ones that would enable us to compute the expected
value e[ua(x)] of different functions ua(x).

Which representations are the most useful for this intended usage? General
idea. Which characteristics of a probability distribution are the most useful
for computing mathematical expectations of different functions ua(x)? The
answer to this question depends on the type of the function, that is, on how
the utility value u depends on the value x of the analyzed parameter.

Smooth utility functions naturally lead to moments. One natural case is when
the utility function ua(x) is smooth. We have already mentioned, in Section 1,
that we usually know a (reasonably narrow) interval of possible values of x.
So, to compute the expected value of ua(x), all we need to know is how
the function ua(x) behaves on this narrow interval. Because the function is
smooth, we can expand it into Taylor series. Because the interval is narrow,
we can safely consider only linear and quadratic terms in this expansion and
ignore higher-order terms: ua(x) ≈ c0 + c1 · (x − x0) + c2 · (x − x0)2, where
x0 is a point inside the interval. Thus, we can approximate the expectation
of this function by the expectation of the corresponding quadratic expression:
e[ua(x)] ≈ e[c0+c1 ·(x−x0)+c2 ·(x−x0)2], that is, by the following expression,
e[ua(x)] ≈ c0 + c1· e[x−x0]+ c2· e[(x−x0)2]. So, to compute the expectations
of such utility functions, it is sufficient to know the first and second moments
of the probability distribution.

In particular, if we use, as the point x0, the average e[x], the second mo-
ment turns into the variance of the original probability distribution. So, in-
stead of the first and the second moments, we can use the mean E and the
variance V .

In decision making, nonsmooth utility functions are common. In decision
making, not all dependencies are smooth. There is often a threshold x0 after
which, say, a concentration of a certain chemical becomes dangerous.

This threshold sometimes comes from the detailed chemical and/or phys-
ical analysis. In this case, when we increase the value of this parameter, we
see the drastic increase in effect and hence, the drastic change in utility value.
Sometimes, this threshold simply comes from regulations. In this case, when
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we increase the value of this parameter past the threshold, there is no drastic
increase in effects, but there is a drastic decrease of utility due to the necessity
to pay fines, change technology, and so on. In both cases, we have a utility
function that experiences an abrupt decrease at a certain threshold value x0.

Nonsmooth utility functions naturally lead to cdfs. We want to be able to
compute the expected value e[ua(x)] of a function ua(x) that changes smoothly
until a certain value x0, then drops its value and continues smoothly for
x > x0. We usually know the (reasonably narrow) interval that contains all
possible values of x. Because the interval is narrow and the dependence before
and after the threshold is smooth, the resulting change in ua(x) before x0 and
after x0 is much smaller than the change at x0. Thus, with a reasonable
accuracy, we can ignore the small changes before and after x0, and assume
that the function ua(x) is equal to a constant u+ for x < x0, and to some
other constant u− < u+ for x > x0.

The simplest case is when u+ = 1 and u− = 0. In this case, the desired
expected value e[u(0)

a (x)] coincides with the probability that x < x0, that is,
with the corresponding value F (x0) of the cumulative distribution function
(cdf). A generic function ua(x) of this type, with arbitrary values u− and u+,
can be easily reduced to this simplest case, because, as one can easily check,
ua(x) = u−+(u+−u−) ·u(0)(x) and hence, e[ua(x)] = u−+(u+−u−) ·F (x0).

Thus, to be able to compute easily the expected values of all possible
nonsmooth utility functions, it is sufficient to know the values of the cdf
F (x0) for all possible x0.

How to represent partial information about probabilities: General idea. In
many cases, we have complete information about the probability distributions
that describe the uncertainty of each of n inputs.

However, a practically interesting case is how to deal with situations when
we only have partial information about the probability distributions. How can
we represent this partial information?

Case of cdf. If we use cdf F (x) to represent a distribution, then full information
corresponds to the case when we know the exact value of F (x) for every x.
Partial information means:

• Either that we only know approximate values of F (x) for all x, that is,
that for every x, we only know the interval that contains F (x); in this
case, we get a p-box (Ferson [22]).

• Or that we only know the values of F (x) for some x, that is, that we only
know the values F (x1), . . . , F (xi), . . . , F (xn) for finitely many values
x = x1, . . . , xi, . . . , xn; in this case, we have a histogram.

It is also possible that we know only approximate values of F (x) for some x;
in this case, we have an interval-valued histogram.
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Case of moments. If we use moments to represent a distribution, then partial
information means that we either know the exact values of finitely many
moments, or that we know intervals of possible values of several moments.

Resulting algorithms. This discussion leads to a natural classification of pos-
sible algorithms.

• If we have complete information about the distributions of xi, then, to get
validated estimates on uncertainty of y, we have to use Monte Carlo-type
techniques (see, e.g., Lodwick and Jamison [23]).

• If we have p-boxes, we can use methods from Ferson [22] and Ferson
et al. [24].

• If we have histograms, we can use methods from Berleant and Zhang [25].
• If we have moments, then we can use methods from Granvilliers et al. [26]

and Kreinovich [27].

Case study: First moments. In some practical situations, in addition to the
lower and upper bounds on each random variable xi, we know the bounds
Ei = [Ei, Ei] on its mean Ei. Indeed, in measurement practice (see, e.g.,
Rabinovich [1]), the overall measurement error Δx is usually represented as a
sum of two components:

• A systematic error component Δsx which is defined as the expected value
e[Δx]

• A random error component Δrx which is defined as the difference between
the overall measurement error and the systematic error component:
Δrx

def= Δx− Δsx

In addition to the bound Δ on the overall measurement error, the manufac-
turers of the measuring instrument often provide an upper bound Δs on the
systematic error component: |Δsx| ≤ Δs.

This additional information is provided because, with this additional in-
formation, we not only get a bound on the accuracy of a single measurement,
but we also get an idea of what accuracy we can attain if we use repeated
measurements to increase the measurement accuracy. Indeed, the very idea
that repeated measurements can improve the measurement accuracy is natu-
ral: we measure the same quantity by using the same measurement instrument
several (N) times, and then take, for example, an arithmetic average

x̄ =
x̃(1) + . . .+ x̃(k) + . . .+ x̃(N)

N

of the corresponding measurement results x̃(1) = x + Δx(1), . . . , x̃(k) = x +
Δx(k), . . . , x̃(N) = x+ Δx(N).

• If systematic error is the only error component, then all the measurements
lead to exactly the same value x̃(1) = · · · = x̃(k) = · · · = x̃(N), and
averaging does not change the value, hence does not improve the accuracy.
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• On the other hand, if we know that the systematic error component is zero
(i.e., e[Δx] = 0 and e[x̃] = x), then, as N → ∞, the arithmetic average
tends to the actual value x. In this case, by repeating the measurements
sufficiently many times, we can determine the actual value of x with an
arbitrary given accuracy.

In general, by repeating measurements sufficiently many times, we can
arbitrarily decrease the random error component and thus attain accuracy
as close to Δs as we want.

When this additional information is given, then, after we perform a mea-
surement and get a measurement result x̃, then not only do we get the
information that the actual value x of the measured quantity belongs to the
interval x = [x̃−Δ, x̃+ Δ], but we can also conclude that the expected value
of x = x̃− Δx (which is equal to e[x] = x̃− e[Δx] = x̃− Δsx) belongs to the
interval E = [x̃− Δs, x̃+ Δs].

If we have this information for every xi, then, in addition to the interval
y of possible values of y, we would also like to know the interval of possible
values of e[y]. This additional interval will, it is hoped, provide us with the
information on how repeated measurements can improve the accuracy of this
indirect measurement. Thus, we arrive at the following problem.

Precise formulation of the problem. Given an algorithm computing a function
f(x1, . . . , xi, . . . , xn) from Rn to R, and values x1, x1, . . . , xi, xi, . . . , xn, xn,
E1, E1, . . . , Ei, Ei, . . . , En, En, we want to find

E
def= min{e[f(x1, . . . , xi, . . . , xn)] | all distributions of (x1, . . . , xi, . . . , xn)

for which x1 ∈ [x1, x1], . . . , xi ∈ [xi, xi], . . . , xn ∈ [xn, xn], (35)

e[x1] ∈ [E1, E1], . . . , e[xi] ∈ [Ei, Ei], . . . , e[xn] ∈ [En, En]};
and E which is the maximum of e[f(x1, . . . , xn)] for all such distributions.

In addition to considering all possible distributions, we can also consider
the case when all the variables xi are independent.

Algorithms for solving the problem: Case of exactly known moments. The
main idea behind straightforward interval computations can be applied here
as well. Namely, first, we find out how to solve this problem for the case when
n = 2 and f(x1, x2) is one of the standard arithmetic operations. Then, once
we have an arbitrary algorithm f(x1, . . . , xn), we parse it and replace each
elementary operation on real numbers with the corresponding operation on
quadruples (x,E,E, x).

To implement this idea, we must therefore know how to solve the above
problem for elementary operations.

For addition, the answer is simple. Because e[x1+x2] = e[x1]+e[x2], if y =
x1 + x2, there is only one possible value for E = e[y]: the value E = E1 +E2.
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This value does not depend on whether we have correlation, or whether we
have any information about the correlation. Thus, E = E1 + E2.

Similarly, the answer is simple for subtraction: if y = x1 −x2, there is only
one possible value for E = e[y]: the value E = E1 −E2. Thus, E = E1 −E2.

For multiplication, if the variables x1 and x2 are independent, then
e[x1 · x2] = e[x1] · e[x2]. Hence, if y = x1 · x2 and x1 and x2 are indepen-
dent, there is only one possible value for E = e[y]: the value E = E1 · E2;
hence E = E1 · E2.

The first nontrivial case is the case of multiplication in the presence of
possible correlation. When we know the exact values of E1 and E2, the solu-
tion to the above problem is as follows (see, e.g., Granvilliers et al. [26] and
Kreinovich [27]): For multiplication y = x1 · x2, when we have no information
about the correlation,

E = max(p1 + p2 − 1, 0) · x1 · x2 + min(p1, 1 − p2) · x1 · x2+

min(1 − p1, p2) · x1 · x2 + max(1 − p1 − p2, 0) · x1 · x2; (36)

E = min(p1, p2) · x1 · x2 + max(p1 − p2, 0) · x1 · x2+

max(p2 − p1, 0) · x1 · x2 + min(1 − p1, 1 − p2) · x1 · x2, (37)

where pi
def= (Ei − xi)/(xi − xi).

For the reciprocal y = 1/x1, the finite range is possible only when 0 �∈ x1.
Without losing generality, we can consider the case when 0 < x1. In this case,
the range of possible values of E is E = [1/E1, p1/x1 + (1 − p1)/x1].

Similar formulas can be produced for max and min, and also for the cases
when there is a strong correlation between xi: namely, when x1 is (nonstrictly)
increasing or decreasing in x2.

Algorithms for solving the problem: General case. For multiplication (under
no assumption about correlation), if we only know the intervals of possible val-
ues of Ei, then to find E it is sufficient to consider the following combinations
of p1 and p2.

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2; p1 = p1 and p2 = p

2
; p1 = p1

and p2 = p2.
• p1 = max(p

1
, 1 − p2) and p2 = 1 − p1 (if 1 ∈ p1 + p2).

• p1 = min(p1, 1 − p
2
) and p2 = 1 − p1 (if 1 ∈ p1 + p2).

The smallest value of E for all these cases is the desired lower bound E.
To find E, it is sufficient to consider the following combinations of p1

and p2.

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2; p1 = p1 and p2 = p

2
; p1 = p1

and p2 = p2.
• p1 = p2 = max(p

1
, p

2
) (if p1 ∩ p2 �= ∅).

• p1 = p2 = min(p1, p2) (if p1 ∩ p2 �= ∅).
The largest value of E for all these cases is the desired upper bound E.
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Important open problems. What if, in addition to intervals and first moments,
we also know second moments? This problem is important for design of com-
puter chips.

What if, in addition to moments, we also know p-boxes?

Additional problem: How to estimate bounds on the moments. If we knew the
exact values Δxi of the measurement errors, we could estimate the moments
by using the standard formulas: the mean as e(Δx) = 1/n · (Δx1 + · · ·+Δxi +

· · · + Δxn), the variance as var(Δx) = (1/(n− 1)) ·
n∑

i=1

(Δxi − E(Δx))2, and

the covariance as

Cov(Δx,Δy) =
1

n− 1
·

n∑

i=1

(Δxi − E(Δx)) · (Δyi − E(Δy)). (38)

In practice, we do not know the actual value of Δxi = x̃i−xi; we only know
an approximate value Δ̃xi = x̃i−x̃ st

i , where x̃ st
i is the result of measuring the

same quantity by a standard (much more accurate) measuring instrument.
For the standard measuring instrument, we often only know the upper

bound Δst
i on its measurement error: |x̃ st

i − xi| ≤ Δst
i . In this case, we only

know that Δxi ∈ [Δ̃xi − Δst
i , Δ̃xi + Δst

i ]. So, to find guaranteed bounds
for each of the above statistical characteristics c(Δx1, . . . ,Δxi, . . . ,Δxn), we
must find the range of possible values of the corresponding characteristics
when Δxi belongs to the corresponding interval [Δxi,Δxi].

For some characteristics, computing the corresponding range is easy. For
example, the mean E(Δx) is a monotonic function of all its variables, so its
range can be computed as e(Δ) = [E,E], where E = (1/n) · (Δx1 + · · · +
Δxi + · · · + Δxn) and E = (1/n) · (Δx1 + · · · + Δxi + . . .+ Δxn).

For other statistics such as variance var(Δx) or covariance Cov(Δx,Δy),
the problem is, in general, NP-hard; (Ferson et al. [28]). In such cases, in
general, we have to use approximate techniques. There are, however, prac-
tical meaningful situations in which it is possible to efficiently compute the
exact range of the variance and of other characteristics; the corresponding
algorithms are summarized in Ferson et al. [29], and Kreinovich et al. [30]
and [31].

Comment. Similar algorithms can be used in the general situation of statisti-
cal processing under interval uncertainty. Interval uncertainty can come from
measurement errors, but there are also other sources of interval uncertainty:

• A source of interval uncertainty is the existence of detection limits for
different sensors: if a sensor, for example, did not detect any ozone, this
means that the ozone concentration is below its detection limit DL, that
is, in the interval [0,DL].
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• Yet another source of interval uncertainty is discretized data: if we exper-
iment on the fish and watch it daily, and a fish is alive on Day 5 but dead
on Day 6, then all we know about its lifetime is that it is in the interval
[5, 6].

• Expert estimates often come as intervals.
• The need to keep privacy in statistical (e.g., medical) databases also often

leads to the fact that instead of recording, for example, exact age, what
we only record is the interval [40, 50].

In all these situations, the algorithms from Ferson et al. [29] and Kreinovich
et al. [30] and [31] can be used.

9 Final Remarks

The traditional statistical approach to processing measurement errors Δxi is
based on the assumption that we have full information about the probabil-
ity distributions for these errors. Typically, it is assumed that these errors
are independent and normally distributed, with known means and standard
deviations.

In practice, however, we often only have partial information about the cor-
responding probability distributions. For example, sometimes, we only know
the upper bound Δi on the (absolute values of the) measurement errors; that
is, we only know that Δxi belongs to the interval [−Δi,Δi]. In this case, a
usual engineering approach is to select, from several possible distributions, the
most “reasonable one,” for example, the uniform distribution on [−Δi,Δi].
We show that this selection sometimes drastically underestimates the error of
indirect measurements. To get more adequate estimates, we must use robust
statistical techniques, that is, techniques that take into account all the prob-
ability distributions which are consistent with our knowledge. For the case
of interval uncertainty, such techniques are called interval computations. In
this chapter, we overviewed interval computation techniques and more gen-
eral techniques of robust statistics.
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Parameter Estimation Based on Least Squares
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Summary. This chapter describes how standard linear and nonlinear least squares
methods can be applied to a large range of regression problems. In particular, it is
shown that for many problems for which there are correlated effects it is possible to
develop algorithms that use structure associated with the variance matrices to solve
the problems efficiently. It is also shown how least squares methods can be adapted
to cope with outliers.

Key words: Least squares, parameter estimation, uncertainty evaluation, numeri-
cal algorithms

1 Introduction

Least squares parameter estimation methods are used widely throughout sci-
ence and engineering and have particular relevance to metrology. There are
perhaps three main reasons for this: (i) least squares fitting problems lead
to straightforward computational problems for which reliable algorithms have
been developed and used successfully, (ii) least squares approximation has a
natural geometrical interpretation, and (iii) least squares estimates can be
justified from a probabilistic point of view. In different circumstances, any
one of these reasons could dictate a least squares approach. In recent years,
metrology has developed a more probabilistic approach to data analysis and in
many circumstances a least squares approach is appropriate for the statistical
model associated with the data. In this chapter, we consider all three aspects
with an emphasis on applying standard least squares algorithms to as broad a
range of problems as possible. In Section 2, we set the context of model fitting
in metrology, and in Sections 3 and 4 we overview the main algorithmic and
statistical aspects associated with linear and nonlinear least squares meth-
ods. In Sections 5 to 7 we describe how various classes of regression problems
can be reformulated as standard least squares methods. In Section 8 we show
how least squares methods can be used for robust estimation, that is, model
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fitting to data that could include outliers. Our concluding remarks are given
in Section 9.

2 Model fitting in metrology

Many experimental data analysis problems [3]1 involve characterising how the
response φ of a system depends on variables x = (x1, · · · , xp−1)T. The re-
sponse φ can be modelled as a function φ = φ(x,a) where a = (a1, · · · , an)T

are model parameters controlling the shape of the response function φ. For ex-
ample, φ may be a polynomial function of a single variable x and a represents
the vector of polynomial coefficients. In many situations, it is the parameters
a that are the direct objects of interest because they describe features of the
system under study. The values of the model parameters a are often deter-
mined from experimental data y = (y1, · · · , ym)T in which the responses yi

corresponding to variable values xi = (xi,1, · · · , xi,p−1)T are measured. From
this point of view, model fitting is a type of inverse problem [44] in as much
as we are trying to determine the parameters a indirectly from the measured
responses. The measurements will reflect not only the system response but
also random effects associated with the measurement process. These random
effects can perhaps be modelled as

yi = φi(a) + ei,

where φi(a) = φ(xi,a) is the model response, yi the recorded measurement
of φi, and ei models the perturbatory effect of the random influence fac-
tors. The exact contribution of these random effects is generally unknown
but they can be characterised from a probabilistic point of view. For ex-
ample, we could model these effects by stating that ei is a sample from a
probability distribution whose mean μi and variance Vi = σ2

i are known. Usu-
ally μi = 0. The standard deviations σi tell us how much to weight each
measurement yi in determining an estimate â of a from the measurement
data {(xi, yi)}.

3 Linear least squares problems (LS)

Given m × n matrix C, m-vector y, the linear least squares problem is to
determine aLS that solves

min
a

FLS(a) =
1
2
(y − Ca)T(y − Ca).

(The fraction 1
2 is used so that related expressions are simpler.) The matrix

C often arises from a model φ(x,a) described as a linear combination of basis
functions
1 Citations in this chapter are given in alphabetical order.
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φ(x,a) =
n∑

j=1

ajφj(x).

For datapoints (xi, yi), i = 1, · · · ,m, if Cij = φj(xi), then the model
responses are given by Ca. At the solution, the partial derivatives of FLS with
respect to the parameters are zero, leading to the system of linear equations,

CTCa = CTy, (1)

known as the normal equations. If C is full rank, so that CTC is invertible,
the solution parameters are given by

aLS = C†y, C† = (CTC)−1CT . (2)

We note that (2) defines aLS as a linear transformation of the data vector y.
The linear least squares estimate has the following geometrical interpre-

tation. The columns cj , j = 1, · · · , n, and y are vectors (or points) in R
m,

(i.e., m-dimensional Euclidean vector space). Linear combinations

Ca =
n∑

j=1

ajcj = a1c1 + · · · + ancn

of the vectors cj define points in the n-dimensional linear subspace C (a hyper-
plane) defined by these column vectors. The linear least squares solution de-
fines the point ŷ = Ca on the linear subspace C closest to y. The vector y− ŷ
must be orthogonal (perpendicular) to the plane and in particular perpendic-
ular to the vectors cj : cT

j (y−Ca) = 0, j = 1, · · · , n. Writing these equations
in matrix terms,

CT(y − CTCa) = 0,

from which we derive the normal equations (1). The solution necessarily de-
fines a minimum of the convex function FLS(a).

3.1 Orthogonal factorisation method to determine parameter
estimates

If C has orthogonal factorisation [3, 28]

C = QR = [Q1 Q2]
[
R1

0

]
= Q1R1, (3)

then, using the fact that for any vector v, ‖Qv‖ = ‖v‖, we have

‖y − Ca‖ = ‖QTy −QTCa‖ =
∥∥∥∥

[
t1
t2

]
−
[
R1

0

]
a

∥∥∥∥ ,

where t1 is the first n and t2 the last m − n elements of t = QTy; that is,
t1 = QT

1 y and t2 = QT
2 y. From this it is seen that ‖y − Ca‖ is minimised if

aLS solves the upper triangular system
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R1a = t1.

The QR factorisation has the following geometrical interpretation. The
column vectors cj of C define an n-dimensional subspace C of R

m. The or-
thogonal matrix Q defines an axis system for R

m such that the n columns
of Q1 define an axis system for C and the m − n columns of Q2 define an
axis system for the space of vectors C⊥ orthogonal to C. The columns qj ,
j = 1, · · · , n, of Q1 are constructed with q1 aligned with c1 so that there is
an r11 such that c1 = r11q1. The vector q2 is chosen to lie in the plane defined
by c1 and c2, and so there are scalars r12 and r22 such that c2 = r12q1+r22q2,
and so on. This gives the factorisation

[c1 c2 · · · cn] = [q1 q2 · · · qn]

⎡

⎢⎢⎢⎣

r11 r12 · · · r1n

0 r22 · · · r2n

...
...

. . .
...

0 0 · · · rnn

⎤

⎥⎥⎥⎦ ;

that is, in matrix notation C = Q1R1.
The coefficients t1 define the point ŷ in C closest to y as a linear combina-

tion of the columns of Q1; solving R1a = t1 redefines ŷ as a linear combination
of the columns cj of C.

3.2 Minimum variance property of the least squares estimate

As well as a geometrical interpretation, the least squares estimate has the
following statistical properties. Suppose y represents the measurement of Ca
subject to random effects so that

y = Ca + e,

where e models the perturbatory effects associated with the measurement
system. We regard e and hence y as realisations of vectors of random variables
E and Y , respectively. If the expectation E(Y ) and variance V(Y ) are given
by Ca and σ2I, respectively, then aLS is a realisation of a vector of random
variables ALS with

E(ALS) = a, VaLS = V(ALS) = σ2(CTC)−1. (4)

The first property is summarised by saying that aLS is an unbiased estimate
of a, generally a desirable property. Algebraically, it corresponds to the fact
that C†C = I, so that

E(ALS) = E(C†Y ) = C†Ca = a.

For this reason C† is sometimes referred to as the (left) pseudo-inverse of C.
Given an m× n matrix A, the constraint that ATC = I can be implemented
using the orthogonal factorisation (3) of C. We can express A as
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A = [Q1 Q2]
[
D1

D2

]
= Q1D1 +Q2D2,

where D1 is n×n and D2 is (m−n)×n. The requirement that ATC = I can
be written as

I = (DT
1 Q

T
1 +DT

2 Q
T
2 )Q1R1 = DT

1 R1 ⇒ D1 = R−T
1 .

Hence, any A of the form A = Q1R
−T
1 + Q2D2 will determine an unbiased

linear estimator ǎ = ATy of a. The matrix C† = R−1
1 QT

1 is defined by D2 = 0
and so in some sense is the simplest such estimator.

Given A such that A = Q1R
−T
1 +Q2D2, the variance of A = ATY is

σ2ATA = σ2
(
R−1

1 R−T
1 +DT

2 D2

)
,

and is minimised if D2 = 0. This shows that if V(Y ) = σ2I, the least squares
estimate (2) is the minimum variance, unbiased linear estimate of a and is
associated with uncertainty matrix VaLS given in (4).

3.3 Linear Gauss–Markov problem (GM)

Given C and y as above and m×m a strictly positive definite matrix Vy , the
linear Gauss–Markov problem is to determine aGM that solves

min
a

FGM(a) =
1
2
(y − Ca)TV −1

y (y − Ca). (5)

If Vy has Cholesky factorisation Vy = LLT [28] with L lower triangular, and

C̃ = L−1C, ỹ = L−1y,

then (5) is equivalent to the linear least squares problem

min
a

1
2
(ỹ − C̃a)T(ỹ − C̃a), (6)

and therefore has solution

aGM =
(
C̃TC̃

)−1

C̃Tỹ =
(
CTV −1

y C
)−1

CTV −1
y y. (7)

From this last equation, aGM is such that

(y − CaGM)TV −1
y C = 0;

that is, the vector y −CaGM is orthogonal to the columns of C in the metric
defined by V −1

y . If y ∈ Y , that is, y is a realisation of random variables Y ,

and V(Y ) = Vy , then ỹ ∈ Ỹ with V(Ỹ ) = I, so that aGM is the minimum
variance, unbiased linear estimate of a associated with (6) and therefore (5).
The Gauss–Markov estimate aGM can be determined using a QR factorisation
approach to solve (6). The uncertainty matrix VaGM associated with aGM is

VaGM =
(
C̃TC̃

)−1

=
(
CTV −1

y C
)−1

. (8)

If Vy = σ2I, then aGM = aLS and VaGM = VaLS .
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3.4 Generalised QR factorisation approach
to the Gauss–Markov problem

The generalised QR decomposition can be employed to solve (5), avoiding the
calculation of the inverse of a matrix in forming C̃ in (7). In fact the generalised
QR approach can be applied even if the uncertainty matrix Vy is rank deficient
[6, 12, 29, 43]. The generalised QR approach starts with a factorisation of Vy
of the form Vy = BBT, where B is m × p. Often p = m but the approach
applies in the more general case. The matrix B could be the Cholesky factor
of Vy but an uncertainty matrix usually can be expressed naturally in such a
factored form; see, for example, Section 5. The estimate aGM can be found by
solving

min
a,d

1
2
dTd subject to constraints y = Ca +Bd. (9)

Note that if B is invertible,

d = B−1(y − Ca), dTd = (y − Ca)TV −1
y (y − Ca).

We factorise C = QR and QTB = TU where R and T are upper-
triangular and Q and U are orthogonal. Multiplying the constraints by QT,
we have [

ỹ1

ỹ2

]
=
[
R1

0

]
a +

[
T11 T12

T22

] [
d̃1

d̃2

]
, (10)

where ỹ = QTy and d̃ = Ud. From the second set of equations, d̃2

must satisfy ỹ2 = T22d̃2. Given any d̃1, the first set of equations is sat-
isfied if R1a = ỹ1 − T11d̃1 − T12d̃2. We choose d̃1 = 0 in order to
minimise

dTd = d̃
T
d̃ = d̃

T

1 d̃1 + d̃
T

2 d̃2,

so that âGM solves R1a = ỹ1 − T12d̃2. The uncertainty matrix VaGM associ-

ated with âGM is given by

VaGM = KKT, where K solves R1K = T11.

3.5 Linear least squares, maximum likelihood estimation,
and the posterior distribution p(a|y)

The uncertainty matrices Va and VaGM defined in (4) and (8), respectively,
are derived from the law of propagation of uncertainty [GUM95, 13]. If we
make the further assumption that the observed data y are a sample from a
multivariate normal distribution,

y ∈ N(Ca, Vy), (i.e., y ∈ Y , Y ∼ N(Ca, Vy)),
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then the Gauss–Markov solution aGM is a sample from a multivariate normal
distribution:

aGM ∈ N(a, VaGM).

The Gauss–Markov solution is also the maximum likelihood estimate. The
probability p(y|a) of observing y, given a, is such that

p(y|a) ∝ exp
{
−1

2
(y − Ca)TV −1

y (y − Ca)
}
,

and is maximised by aGM.
In a Bayesian context [9, 26, 38], we regard a as a vector of parameters,

information about which is described in terms of probability distributions. If
there is no substantial prior information about a so that the prior distribution
p(a) can be taken to be a constant (i.e., p(a) ≡ 1), the posterior probability
distribution p(a|y) is proportional to the likelihood, regarded as a function of
a:

p(a|y) ∝ p(y|a).

The vector y−Ca can be written as the sum of two mutually V −1
y -orthogonal

vectors
y − Ca = [y − CaGM] + [C(aGM − a)],

so that

(y − Ca)TV −1
y (y − Ca) = (y − CaGM)TV −1

y (y − CaGM)

+(aGM − a)TCTV −1
y C(aGM − a).

The first term on the right does not depend on a and so

p(a|y) ∝ exp
{
−1

2
(a − aGM)TCTV −1

y C(a − aGM)
}
. (11)

Comparing the right-hand side with the multivariate normal distribution, we
see that

a|y ∼ N(aGM, VaGM),

where VaGM is defined in (8). These calculations show that the distribution
p(aGM|a) associated with observing a GM estimate aGM, given a, is

aGM|a ∼ N(a, VaGM).

On the other hand, the distribution p(a|aGM) for a having observed a GM
estimate aGM is

a|aGM ∼ N(aGM, VaGM).

The symmetry in these two statements reflects the fact that a and aGM appear
symmetrically in (11). Furthermore, p(a|aGM) = p(a|y), so that from this
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point of view, the GM estimate does not lose any of the information that can
be derived from the data y.

Algorithms for solving linear least squares systems are described in detail
in [6, 28, 37, 46]. There are linear least squares solvers in the NAG library,
LINPACK, MINPACK, LAPACK, and Matlab, for example, [14, 25, 39, 42,
43]. LAPACK (and the NAG library) also has software for computing the
generalised QR factorisation.

4 Nonlinear least squares (NLS)

The nonlinear least squares problem is: given m functions fi(a) of parameters
a = (a1, · · · , an), m ≥ n, determine aNLS that solves

min
a

FNLS(a) =
1
2

m∑

i=1

f2
i (a) =

1
2
fT(a)f(a). (12)

Necessary conditions for a solution are that

∂FNLS

∂aj
=

m∑

i=1

fi
∂fi

∂aj
= 0, j = 1, . . . , n.

Defining the Jacobian matrix J = J(a) by

Jij =
∂fi

∂aj
(a),

this condition can be written as JT(a)f(a) = 0.

4.1 The Gauss–Newton algorithm for nonlinear least squares

The Gauss–Newton algorithm is a modification of Newton’s algorithm for
minimising a function. Let J be the Jacobian matrix associated with f(a).
Then the gradient g of FNLS(a) is given by g = JTf and the Hessian matrix
H of second partial derivatives is given by H = JTJ +G, where

Gjk =
m∑

i=1

fi
∂2fi

∂aj∂ak
. (13)

For Newton’s algorithm, given estimates a of the solution, updated estimates
are given by a := a + p where p solves Hp = −g. Usually a line search
is incorporated so that the update step is of the form a := a + tp where
t > 0 is chosen to ensure sufficient progress to the minimum is made. The
Gauss–Newton variant follows the same approach, only that in determining
the update step, H is approximated by JTJ ; that is, the term G is ignored
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and p is found by solving JTJp = −JTf . This corresponds to the linear least
squares problem Jp = −f and can be solved using an orthogonal factori-
sation approach, for example; see Section 3.1. The Gauss–Newton algorithm
in general converges linearly at a rate that depends on the condition of the
approximation problem, the size of the residuals f near the solution, and the
curvature (i.e., the degree on nonlinearity). If the problem is well-conditioned,
the residuals are small, and the summand functions fi are nearly linear, then
JTJ is a good approximation to the Hessian matrix H and convergence is
fast.

If the model is

y = φ(a) + e, φ(a) = (φ1(a), · · · , φm(a))T, f(a) = y − φ(a),

the mapping a → φ(a) defines an n-dimensional surface in R
m, and we look

for aNLS that defines the point on the surface closest to y. At the solution,
the vector f = y − φ(aNLS) is orthogonal to the surface at φ(aNLS). The
tangent plane at aNLS is

φ(aNLS + Δ) ≈ φ(aNLS) + JΔ,

and so f must be orthogonal to the columns of J , or in matrix terms JTf = 0,
the optimality conditions.

The Gauss–Newton algorithm has the following geometrical interpretation.
If the current estimate of the parameters is a, the Jacobian matrix J evaluated
at a is used to construct the linear n-space J defined by the columns of J .
The step p defines the point Jp on J closest to y − φ(a).

4.2 Approximate uncertainty matrix associated with aNLS

Suppose the observation model is

y = φ(a) + e, y ∈ Y , E(Y ) = φ(a), V(Y ) = σ2I,

and f(a) is defined as f(a) = y−φ(a). In the linear case, the solution param-
eters aLS are given by a linear function of y and it is possible to propagate
Vy through to obtain the uncertainty matrix VaLS associated with aLS. In
the nonlinear case, the estimate aNLS is defined as a nonlinear function of y
and there is no simple formula to allow us to calculate the variance matrix
associated with the estimate. However, we can use linearisation about the so-
lution aNLS to determine an approximate estimate. We regard the solution
aNLS ∈ ANLS as a realisation of a vector of random variables. If J is the
Jacobian at the solution aNLS then

E(ANLS) ≈ a, V(ANLS) ≈ VaNLS = σ2
(
JTJ
)−1

. (14)

The accuracy of the approximation depends mainly on the degree of nonlin-
earity. For highly nonlinear problems, these estimates can be very misleading.
If J has QR factorisation J = Q1R1, where R1 is an n × n upper-triangular
matrix, then VaNLS = σ2(RT

1 R1)−1.
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4.3 Nonlinear Gauss–Markov problem (NGM)

Given f(a) as before and an m×m strictly positive definite matrix Vy , the
nonlinear Gauss–Markov problem is to determine the solution aNGM of

min
a

FNGM(a) =
1
2
fT(a)V −1

y f(a). (15)

As in the linear case, we can use the Cholesky decomposition Vy = LLT to
convert this problem to a standard nonlinear least squares problem applied
to

min
a

1
2
f̃

T
(a)f̃(a), f̃ = L−1f . (16)

We note that if J is the Jacobian matrix associated with f , then J̃ = L−1J
is that associated with f̃ . As for the case of linear least squares, if Vy , and
hence L, is poorly conditioned, the formation and use of L−1 could lead to
numerical instability. The Gauss–Newton algorithm can be adapted so that
at each iteration the Gauss–Newton step is found by solving

min
a,d

dTd subject to constraints f(a) = −Jp + Ld,

using, for example, the generalised QR decomposition (Section 3.4). More
generally, if Vy is given in factored form as Vy = BBT, then B can replace L
in the above. There is no requirement for B to be a square matrix.

4.4 Approximate uncertainty matrix associated with aNGM

Suppose the observation model is

y = φ(a) + e, y ∈ Y , E(Y ) = φ(a), V(Y ) = Vy ,

and f(a) is defined as f(a) = y−φ(a). We regard the solution aNGM ∈ ANGM

as a realisation of a vector of random variables. If J is the Jacobian for f at
the solution aNGM then,

E(ANGM) ≈ a, V(ANGM) ≈ VaNGM =
(
JTV−1

y J
)−1

. (17)

If Vy has Cholesky factorisation Vy = LLT and J̃ = L−1J has QR fac-
torisation J̃ = Q1R1, where R1 is an n × n upper-triangular matrix, then
VaNGM = (RT

1 R1)−1.

4.5 Nonlinear least squares, maximum likelihood estimation,
and the posterior distribution p(a|y)

If the measurement model is y ∈ N(φ(a), Vy), then aNGM is also the maxi-
mum likelihood estimate. From the definition of the multivariate normal dis-
tribution, the probability p(y|a) of observing y, given parameter values a, is
such that
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p(y|a) ∝ exp
{
−1

2
(y − φ(a))TV −1

y (y − φ(a))
}
,

and is maximised by aNGM.
In a Bayesian context, if there is no substantial prior information about a

so that the prior distribution p(a) can be taken to be a constant, the posterior
probability distribution p(a|y) is proportional to the likelihood. For the case
of Vy = σ2I, we have

p(a|y) ∝ p(y|a) ∝ exp
{
− 1

2σ2
(y − φ(a))T(y − φ(a))

}
.

The term on the right represents a multivariate normal distribution with re-
spect to y, up to a normalising constant. If φ(a) is a linear function of a then
it also represents a multivariate normal distribution with respect to a. For
nonlinear φ(a), the distribution can be quite different from a multinormal.
(If m is much greater than n, then asymptotic results show that it is likely to
be close to a multinormal distribution.) The shape of p(a|y) is determined by
the term

d2(y,φ(a)) = (y − φ(a))T(y − φ(a)),

where we can regard d(y,φ(a)) as the distance from y to the point on the sur-
face φ(a). If we approximate d2(y,φ(a)) by a quadratic about the nonlinear
least squares estimates aNLS, we find

p(a|y) ≈ K exp
{
− 1

2σ2
(a − aNLS)TH(a − aNLS)

}
,

where H = JTJ +G is the Hessian matrix associated with FNLS in (12); that
is, p(a|y) is approximated by the normal distribution N(aNLS, V

Q
a ), where

V Q
a = σ2

[
JTJ +G

]−1
.

If H is approximated by JTJ , then p(a|y) is approximated by
N(aNLS, VaNLS), where VaNLS = σ2(JTJ)−1, as in (14).

The approximation based on H is derived from a quadratic approximation
to the surface φ(a) at aNLS which involves the matrix G of second partial
derivatives whereas the approximation based on JTJ is derived only from a
linear approximation. Furthermore, the distribution N(aNLS, VaNLS) depends
only on the estimate aNLS whereas N(aNLS, V

Q
a ) depends on y through its

contribution to G.
These calculations can be compared with (14) which states that the

distribution p(aNLS|a) for aNLS, given a, is approximated by N(a, Va),
Va = σ2(JTJ)−1, where J is the Jacobian matrix evaluated at a. This corre-
sponds to a forward evaluation of uncertainty: given a, this distribution gives
the likely distribution of the estimates aNLS, given the likely variation asso-
ciated with the data vector y. Because a is generally unknown, a is replaced
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by its estimate aNLS and Va by VaNLS . The distribution p(a|y) corresponds
to an inverse uncertainty evaluation: given that we have observed y, p(a|y)
describes the distribution of parameter values a that could have given rise to
y. To a linear approximation, both p(a|y) and p(aNLS|a) (evaluated with a
set to aNLS) are given by N(aNLS, VaNLS). However, the more nonlinear the
model, the less good are these linear approximations and the more disparate
these two distributions can become. In particular, p(a|y) changes shape with
y whereas the shape of p(aNLS|a) depends only on a: two data vectors with
the same least squares solution will lead to the same uncertainty matrix for
aNLS. The distribution p(aNLS, V

Q
a ) will generally be a better approximation

of p(a|y) because V Q
a does have some dependence on y. For mildly nonlinear

problems and accurate data (say, a relative accuracy of better than 0.1%) then
the Gaussian approximation should be accurate enough for most purposes.

The analysis for general Vy is entirely similar.

5 Exploiting structure in the uncertainty matrix

In many applications the uncertainty matrix Vy associated with the data vec-
tor y is a full matrix. If the number m of observations is large, then solving the
least squares problem can be computationally expensive because the number
of operations required to perform a Cholesky factorisation of Vy , for example,
is O(m3) (i.e., scales with m3). For this reason correlated effects are commonly
ignored so that Vy is replaced by a diagonal matrix in order to reduce the
computational requirement to O(m). However, in many circumstances, a full
uncertainty matrix Vy can be specified more compactly in a factored form
that allows a more efficient organisation of the calculations.

5.1 Structure due to common random effects, linear case

Suppose the random effects associated with measurements are modelled as

y = Ca + e +Ke0.

Here, ei represents the random effect particular to the ith measured value,
e0 = (e1,0, · · · , ek,0)T those common to all the measurements, and K is an
m× k matrix storing the sensitivities Kij of yi with respect to ej,0. If e and
e0 are associated with uncertainty matrices σ2I and U0, respectively, then the
uncertainty matrix Vy associated with the data vector y is given by

Vy = σ2I +KU0K
T.

The matrix Vy (and its Cholesky factor) is a full matrix by virtue of the
common effects e0. Estimate aGM of a can be found by solving

min
a

1
2
(y − Ca)V −1

y (y − Ca), (18)
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using the techniques described in Section 3.3. However, if D = σI, U0 has
Cholesky factorisation U0 = L0L

T
0 and B0 = KL0, then Vy can be factored

as
Vy = BBT, B =

[
D B0

]
, (19)

and (18) has the same solution as

min
a,d,d0

1
2

{
dTd + dT

0 d0

}
subject to y = Ca +Dd +B0d0. (20)

The optimisation problem (20) can be written as

min
a,d,d0

1
2

{
dTd + dT

0 d0

}
, d = D−1 (y − Ca −B0d0) ,

so that if

C̃ =
[
D−1C D−1B0

0 I

]
, ỹ =

[
D−1y

0

]
, ã =

[
a
d0

]
,

then (20), and hence (18), is equivalent to the standard linear least squares
problem

min
ã

1
2
(ỹ − C̃ã)T(ỹ − C̃ã).

By introducing the parameters d0 explicitly into the optimisation to explain
the correlating effects, a simpler and more efficient solution method using the
QR factorisation can be implemented. In the example above, D = σI, and the
approach can be extended to any D that is well-conditioned and for which it
is computationally efficient to compute D−1C, and so on.

Numerical example: Incorporating offsets

Suppose the response y of a system is a quadratic function a1 + a2x + a3x
2

of x and that the measurements of y are made using an instrument with
two accuracy settings, depending on the magnitude of x. The observation
equations are of the form

yi = a1 + a2xi + a3x
2
i + ek,i + ek,0, (21)

ek,i ∈ N(0, σ2
k) and ek,0 ∈ N(0, σ2

k,0), where k = 1, 2, indicates the setting
of the instrument. The term ek,0 represents a fixed offset (systematic effect)
associated with the kth setting. The uncertainty matrix Vy associated with
y can be factored as

Vy = BBT, B =
[
D B0

]
, D =

[
σ1I

σ2I

]
, B0 =

[
σ1,01

σ2,01

]
,

where 1 represents a column vector of 1s.
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Fig. 1. Least squares estimate associated with the model (21). The solid curve is
generated by a, the points marked by dots represent the data {(xi, yi)}, the dotted
curve is generated by GM estimate aGM, and the dashed curve is generated by aWLS,
and ignores the fixed offsets. The points marked by circles represent the adjusted
data {(x, ŷi)}, where ŷi = yi − d̂k,0.

Figure 1 graphs the GM estimate to simulated data generated with σ1 =
0.1, σ2 = σ1,0 = 0.2 and σ2,0 = 0.4, along with the weighted least squares fit
aWLS determined by the solution of

min
a

1
2
(y − Ca)TD−1(y − Ca),

that is, ignoring the contribution of the uncertainties associated with the fixed
offsets d0. An advantage of introducing d0 explicitly into the optimisation is
that it is possible to provide estimates d̂0 of d0 and use them to provide ad-
justed values ŷi = yi − d̂k,0 of the measured response values. The standard
uncertainties associated with estimates aGM are u(aGM) = (0.20, 0.20, 0.12)T,
whereas those associated with aWLS, ignoring the contribution arising from
the offsets, are u(aWLS) = (0.08, 0.20, 0.10)T, underestimating the uncertainty
associated with a1, in particular. Solving the Gauss–Markov problem with the
true variance matrix Vy allows the uncertainties associated with the system-
atic effects to be propagated through correctly to those associated with the
solution parameters. Using the natural factorisation of Vy allows these calcu-
lations to be performed with no significant computational resource penalty.

5.2 Structure due to common random effects, nonlinear case

The same approach for the linear case, described above, also applies in the
nonlinear case. If Vy can be factored as in (19), then setting
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ã =
[

a
d0

]
, f̃(ã) =

[
D−1(f(a) −B0d0)

d0

]
,

the nonlinear Gauss–Markov problem (15) is equivalent to

min
ã

1
2
f̃

T
(ã)f̃(ã),

a standard nonlinear least squares problem involving an augmented set of
parameters ã.

There are a number of nonlinear least squares solvers in the MINPACK
and NAG libraries, for example [25, 42]. Nonlinear least squares algorithms
are described in [15,27]; see also [41].

6 Generalised distance regression (GDR)

Linear and nonlinear least squares problems are appropriate if only one mea-
sured variable is subject to significant random effects. Typically, these prob-
lems are associated with models of the form

yi = φ(xi,a) + ei,

where it is assumed that xi = (xi,1, · · · , xi,p−1)T are known accurately but
the measurements of φ(xi,a) are subject to random effects represented by
ei. In generalised distance regression, we allow for the fact that the values
of the variables are also subject to significant random effects, a situation not
uncommon in metrology, but retaining the assumption that the random effects
associated with (xi, yi) are independent from those associated with (xq, yq),
q �= i. We can write this more general model as
[

xi

yi

]
=
[

ui

φ(ui,a)

]
+ei, ei ∈ Ei, E(Ei) = 0, V(Ei) = Vi. (22)

Here ei represents the perturbatory effects associated with the measured val-
ues xi and yi. The left-hand side of (22) is a datapoint in R

p and the mapping

u →
[

u
φ(u,a)

]

describes a (p − 1)-dimensional surface in R
p. With this model in mind, we

define the explicit generalised distance problem: given a parametrically defined
surface φ(u,a), where φ : R

p−1 × R
n −→ R

p, data {xi ∈ R
p}, and p × p

symmetric, strictly positive definite matrices Vi, i = 1, . . . ,m, determine aGDR

and {u∗
i }m

i=1 that solve

min
a,{ui}

FGDR(a) =
1
2

m∑

i=1

(xi − φ(ui,a))TV −1
i (xi − φ(ui,a)). (23)



162 A. B. Forbes

If each Vi = I, the identity matrix, the GDR problem is sometimes referred
to as the orthogonal distance regression problem (ODR). Setting

y =

⎡

⎢⎣
x1

...
xm

⎤

⎥⎦ , b =

⎡

⎢⎢⎢⎣

u1

...
um

a

⎤

⎥⎥⎥⎦ , η(b) =

⎡

⎢⎣
φ(u1,a)

...
φ(um,a)

⎤

⎥⎦ , Vy =

⎡

⎢⎣
V1

. . .
Vm

⎤

⎥⎦ ,

then (23) can be formulated as

min
b

1
2
(y − η(b))TV −1

y (y − η(b)). (24)

6.1 Algorithms for generalised distance regression

Although the GDR problem can be solved using the techniques for general
nonlinear Gauss–Markov problems, the structure associated with the problem
allows for a much more efficient solution approach. The structure can be
exploited in two ways, as described below.

Structured matrix approach

If Vi has Cholesky factorisation Vi = LiL
T
i , and f i(ui,a) = L−1

i (xi −
φ(ui,a)), then (23) is equivalent to

min
a,{ui}

1
2

m∑

i=1

fT
i (ui,a)f i(ui,a), (25)

a standard nonlinear least squares problem. However, the fact that p − 1
parameters ui only appear in p equations means that the associated Jacobian
matrix of partial derivatives has a block-angular structure

J =

⎡

⎢⎢⎢⎣

K1 J1

K2 J2

. . .
...

Km Jm

⎤

⎥⎥⎥⎦ , (26)

where Ki is the matrix of derivatives of the ith set of observation equations
with respect to ui, and the border blocks Ji store their derivatives with respect
to a. The upper-triangular factor R of the Jacobian matrix also has a block-
angular structure:

R =

⎡

⎢⎢⎢⎢⎢⎣

R1 B1

R2 B2

. . .
...

Rm Bm

R0

⎤

⎥⎥⎥⎥⎥⎦
, (27)



Parameter Estimation Based on Least Squares Methods 163

where {Ri}m
i=1, are (p− 1)× (p− 1) upper-triangular, {Bi}m

i=1 are (p− 1)×n
border blocks and R0 is the n × n upper-triangular factor corresponding to
the parameters a. Starting with R0 = 0, t0 = 0, the upper-triangularisation
proceeds by processing p rows at a time. At the ith stage, a (p+ n)× (p+ n)
orthogonal matrix Qi is found such that

QT
i

[
Ki Ji

R0

]
=

⎡

⎣
Ri Bi

R0

0 0

⎤

⎦ , QT
i

[
−f i

t0

]
=

⎡

⎣
ti

t0
s

⎤

⎦ .

The Gauss–Newton step is also determined efficiently from triangular systems
involving R0 and Ri:

p =

⎡

⎢⎢⎢⎣

p1
...

pm

p0

⎤

⎥⎥⎥⎦ , R0p0 = t0, Ripi = ti −Bip0, i = 1, · · · ,m.

The use of structure exploiting algorithms for model fitting in metrology is
discussed in [10,11,16,18].

Separation of variables approach

The separation of variables approach converts (25) into a standard nonlinear
least squares problem in the parameters a. Denote by u∗

i = u∗
i (a) the solution

of the footpoint problem,

min
u

1
2
D(u) =

1
2
(xi − φ(u,a))TV −1

i (xi − φ(u,a)), (28)

a special form of a nonlinear Gauss–Markov problem. Let ni be any vector
orthogonal to the surface at x∗

i = φ(u∗
i ,a). The conditions for u∗

i to be a
solution of (28) is that the vector V −1

i (xi−x∗
i ) is a scalar multiple of ni. From

this, it is straightforward to show that if we define the generalised distance
di = di(a) by

di =
1
si

nT
i (xi − x∗

i ), si = (nT
i Vini)1/2, (29)

then d2
i = D(u∗

i ), and
∂di

∂aj
= − 1

si
nT

i

∂φ

∂aj
. (30)

In this way, the GDR problem can be posed as a standard nonlinear least
squares problem mina 1/2

∑
i d

2
i (a), where each function and its gradient are

calculated as in (29) and (30), with all quantities evaluated at the solution u∗
i

of the appropriate footpoint problem.
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6.2 Sequential quadratic programming for the footpoint
parameters

Both di and its derivatives are defined in terms of Vi, through si, rather than
V −1

i . If Vi can be factored as Vi = BiB
T
i , then the footpoint problem can be

posed as

min
u,d

1
2
dTd subject to xi = φ(u,a) +Bid, (31)

again avoiding the formation of V −1
i . In fact, there is no requirement in im-

plementing the separation of variables approach that Vi is full rank, only
that nT

i Vini is nonzero, where ni is normal to the surface. This means
that the separation of variables approach applies to a greater range of prob-
lems than the structure-exploiting approach which requires that Vi is full
rank.

A sequential quadratic programming approach can be applied to solve
(31), leading to a quadratically converging algorithm [20]. We first describe
an algorithm to minimise a positive definite quadratic function subject to
linear equality constraints. Let A be an n × n positive definite, symmetric
matrix, C a n× p matrix, p < n, and b and d n- and p-vectors, respectively.
The quadratic programming problem is

min
v

1
2
vTAv + bTv subject to CTv = d. (32)

In a Lagrangian formulation the solution y is associated with a stationary
point of

L(v,λ) =
1
2
vTAv + bTv − (CTv − d)Tλ,

involving v and Lagrange multipliers λ. Let

C = [Q1 Q2]
[
R1

0

]
= Q1R1,

be the QR factorisation of CT, where R1 is p × p upper triangular and Q =
[Q1 Q2] is an n × n orthogonal matrix. We look for a solution of (32) of the
form v = Q1v1 +Q2v2. From the constraint equation we have

d = CT(Q1v1 +Q2v2) = RT
1 Q

T
1 Q1v1 +RT

1 Q
T
1 Q2v2 = RT

1 v1,

because QT
1 Q1 = I and QT

1 Q2 = 0. This shows that v1 must satisfy RT
1 v1 = d.

These constraints fix v1 and we must choose v2 to minimise the quadratic
expression which amounts to minimising

1
2
vT

2 Q
T
2 AQ2v2 + vT

2 Q
T
2 (b +AQ1v1)

with respect to v2. The conditions for a minimum dictate that v2 solves the
system
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QT
2 AQ2v2 = −QT

2 (b +AQ1v1).

If required, the Lagrange multipliers λ can be determined as the solution of
R1λ = QT

1 (b +Av).
The footpoint problem can be solved through a sequence of quadratic

programming problems. Here we describe the algorithm for the case corre-
sponding to (22). Suppose we wish to solve

min
u,d

1
2
dTd subject to

[
x
y

]
=
[

u
φ(u)

]
+
[
B1

bT
2

]
d. (33)

The first set of constraint equations can be written as

x = D

[
u
d

]
, D =

[
I B1

]
.

If DT has QR factorisation

DT = [Q1 Q2]
[
R1

0

]
, Q2 =

[
Q12

Q22

]
,

then, for any v, u = x + Q12v and d = Q22v satisfy the constraints. With
this factorisation, (33) can be reformulated as

min
v

1
2
vTQT

22Q22v subject to y = φ(x +Q12v) + bT
2 Q22v,

involving only one, nonlinear, constraint. The associated Lagrangian is

L(v, λ) =
1
2
vTQT

22Q22v − λ
(
y − φ(x +Q12v) − bT

2 Q22v
)
,

and involves only one multiplier λ. The following algorithm updates estimates
of v and λ.

1. Evaluate the surface function φ, and its first and second partial derivatives
with respect to u:

u = x +Q12v, φ = φ(u), gφ = ∇φ, Hφ = ∇2φ.

2. Set
d = Q22v, g = QT

22d.

3. Evaluate constraint function c and its first and second derivatives with
respect to v:

c = y − φ− bT
2 d, h = −QT

12gφ −QT
22b2, K = −QT

12HφQ12.

4. Set A = QT
22Q22 − λK and solve, for p and updated λ, the quadratic

programming problem

min
p

1
2
pTAp + gTp subject to hTp = −c.
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5. Update v := v+tp for a suitable step length t. (Generally t is chosen to be
an approximate minimum of a merit function that involves the function
being minimised and a measure of how well the constraints are satisfied;
near the solution we expect t to be close to 1.)

6.3 Example application: Response and evaluation calibration
curves

We suppose that an instrument’s response y depends approximately linearly
(or at least monotonically) on a variable x and that for a sequence of calibrated
values xi, i = 1, · · · ,m, of x, measurements of the responses yi are made.
Given a model of the form

yi = φ(ui,a)+ey,i, xi = ui+ex,i, ex,i ∈ N(0, ρ2), ey,i ∈ N(0, σ2),

the response calibration curve is found by solving the generalised distance
regression problem

min
a,u,dx,dy

1
2

m∑

i=1

{d2
x,i+d

2
y,i} subject to

[
xi

yi

]
=
[

ui

φ(ui,a)

]
+
[
ρ 0
0 σ

] [
dx,i

dy,i

]
,

i = 1, · · · ,m. If ρ = 0, as in the case where the uncertainty in the cali-
brated values of x is much smaller than those associated with the response
measurements, this problem reduces to a standard least squares problem

min
a

1
2

m∑

i=1

(yi − φ(xi,a))2.

Given a calibrated value of x, the response curve φ(x,a) predicts the response
of the system. However, in using the instrument, we are interested in estimat-
ing the value of the stimulus variable x, given a measurement of the response
y. If the instrument is calibrated in terms of the response curve φ, then every
time we measure with the instrument, recording an uncalibrated response y,
we have to use iterative techniques to solve φ(x) = y in order to output an
estimate of the calibrated value x. A more attractive proposition is to model
the instrument behaviour as x = ψ(y,a) (so that φ = ψ−1) and the evaluation
calibration curve is found by solving

min
a,v,dx,dy

1
2

m∑

i=1

{d2
x,i+d

2
y,i} subject to

[
xi

yi

]
=
[
ψ(vi,a)

vi

]
+
[
ρ 0
0 σ

] [
dx,i

dy,i

]
.

Using a separation of variables approach, the case of ρ = 0 (or near zero)
introduces no complications (nor numerical stability concerns). The output
x can be determined from a direct evaluation of ψ(y,a), given a measured
response y.
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Regarding the response and evaluation calibration curves as parametric
curves, [

x
y

]
=
[

u
φ(u,a)

]
,

[
x
y

]
=
[
ψ(u,a)

u

]
,

respectively, both problems can be solved as generalised distance regression
problems using the same software.

6.4 Example: GDR line

In the case φ(x,a) = a1 + a2x, each Vi is a 2 × 2 uncertainty matrix. If
[
pi

qi

]
= Vi

[
−a2

1

]
,

then

ui =
−qixi + pi(yi − a1)

−qi + pia2
,

defines the point on the line closest to the datapoint (xi, yi) as measured using
the metric V −1

i . Setting

fi = 1/(−bpi+qi)1/2, gi = uifi, hi = (−a2(xi−ui)+yi−a1−a2ui)fi,

the update step p for estimate a is found from the solution of the linear least
squares problem

Jp = h, J = [f g].

The case of orthogonal distance regression is considered in [2, 7, 28, 30,
31, 34, 35, 45], for example. The software package ODRPACK [8] provides a
fairly comprehensive facility. Generalised distance regression is considered in
[1,4,11,12,16–18,20–22,24,32,40]. The component XGENLINE for polynomial
generalised distance regression is available for downloading from http.//www.
npl.co.uk/ssfm.

7 Generalised Gauss–Markov regression (GGM)

Generalised Gauss–Markov regression combines generalised distance regres-
sion with nondiagonal uncertainty matrices [12]. We consider the case of a
parametrically defined surface φ(u,a), φ : R

p−1 × R
n −→ R

p, and data
points {xi}m

i=1 nominally lying on such a surface subject to random effects.
The generalised Gauss–Markov problem is formulated as in (24) but for gen-
eral uncertainty matrix Vy allowing for correlation between effects associated
with different datapoints.

The generalised Gauss–Markov problem is a type of nonlinear Gauss–
Markov problem and can be solved using nonlinear least squares algorithms
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(Section 4.3) using the Cholesky factorisation of Vy possibly in conjunction
with a generalised QR factorisation. Because the number of computational
steps for solving the generalised Gauss–Markov problem is generally of the
order of m3, for large datasets this approach is computationally expensive.
See below, however.

7.1 Structured generalised Gauss–Markov problems

As with the nonlinear Gauss–Markov problem, the uncertainty matrix Vy
often has a structure that allows the generalised nonlinear Gauss–Markov
problem to be solved more efficiently. Suppose the measurement model is

xi = φ(ui,a) + ei +Kie0, ei ∈ N(0, Vi), e0 ∈ N(0, V0),

where φ : R
p−1 × R

n −→ R
p is a parametric surface, ei represents random

effects specific to the ith datapoint xi, and e0 represents random effects com-
mon to all the measurements. The matrix Ki represents the sensitivity of the
ith set of measurements to these effects. If Vi has factorisation Vi = BiB

T
i and

V0 has factorisation V0 = B0B
T
0 , then the uncertainty matrix Vy associated

with measurements y = (xT
1 , · · · ,xT

m)T is given by

Vy = BBT, B =

⎡

⎢⎣
B1 B0,1

. . .
...

Bm B0,m

⎤

⎥⎦ , B0,i = KiB0,

and (15) can be written as

min
a,{ui},{di},d0

1
2

m∑

i=0

dT
i di (34)

subject to

xi = φ(ui,a) +Bidi +B0,id0, i = 1, · · · ,m.
Holding a and d0 fixed, it is seen that the optimal u∗

i must solve the footpoint
problem (31) but for the surface

φ̃i(ui, ã) = φ(ui,a) +B0,id0, ã =
[

a
d0

]
.

Following the same approach as described in Section 6, we define the gener-
alised distance di(ã) as a function of ã evaluated at the solution of the ith
footpoint. Then (34) is equivalent to

min
ã

{
d0

Td0 +
1
2

m∑

i=1

d2
i (ã)

}
, (35)

and can be solved using standard nonlinear least squares algorithms. This
results in an algorithm that requires a number of steps linear in the number
m of data points [20].
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8 Robust least squares (RLS)

Robust approximation is a term used for data approximation methods that
cope well with outlying or rogue datapoints. Standard least squares meth-
ods are known to provide estimates that can be significantly influenced by
outlying data. We know that least squares methods correspond to maximum
likelihood estimation for Gaussian sampling distributions. The Gaussian den-
sity function accords vanishingly small probabilities to values more than a few
standard deviations from the mean. For this reason, a least squares model fit
is forced to move the model value closer to an outlying datapoint, often at the
expense of dragging the fit away from the rest of the data. As an alternative
to least squares approximation, the L1 approximation criterion is sometimes
used: instead of minimising a sum of squares, the sum of absolute values is
minimised:

min
a

F1(a) =
m∑

i=1

|fi(a)|.

L1 approximation corresponds to maximum likelihood estimation of a with
respect to the double exponential distribution. Figure 2 graphs the PDFs as-
sociated with a Gaussian and double exponential distribution, both with stan-
dard deviation 1, and Figure 3 graphs the negative logarithm of the PDFs.
The double exponential distribution has more probability mass in the tails
but has a narrow peaked behaviour, very dissimilar to a Gaussian. The t-
distribution tν(μ, σ2) can be regarded as a generalisation of a Gaussian distri-
bution N(μ, σ2) with an extra shape parameter ν > 0 specifying the degrees
of freedom. As ν −→ ∞, the distribution approaches the corresponding Gaus-
sian but for low degrees of freedom (ν < 20, say) the probability mass far
from the mean is significantly greater than that for the corresponding Gaus-
sian distribution; see Figures 2 and 3. The graphs suggest that the maximum
likelihood estimation based on a t-distribution will have the good properties of
least squares (making efficient use of all the data) but be tolerant of outlying
data. We show below that it is possible to use least squares algorithms for
this type of approximation, hence the term robust least squares.

The PDF for tν(μ, σ2) is such that

pν(x|μ, σ2) ∝
[
1 +

1
ν

(
x− μ

σ

)2
]−(ν+1)/2

.

For a model of the form

yi = φ(xi,a) + ei, ei ∈ tν(0, σ2),

maximum likelihood estimates of a are found [19,23] by minimising

Fν(a) =
m∑

i=1

(ν + 1) log

[
1 +

1
ν

(
yi − φ(xi,a)

σ

)2
]
. (36)
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Fig. 2. Probability density functions for a Gaussian (solid), double exponential (dot-
dash), and t-distribution with eight degrees of freedom (dotted); each have standard
deviation 1.

Fig. 3. Negative logarithms of the PDFs graphed in Figure 2.

We can write F (a) in (36) as a sum of squares of the form

Fν(a) =
m∑

i=1

w2
i (a)f2

i (a), wi(a) = wν(fi(a)), fi(a) =
yi − φ(xi,a)

σ
,

where the weighting function wν(x) is defined by

w2
ν(x) = (ν + 1)

1
x2

log
(

1 +
x2

ν

)
, ν > 0.
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Because log(1 + ε) = ε− ε2/2 + ε3/3− ε4/4 + · · · |ε| � 1, wν(x) is well defined
at x = 0 with

w2
ν(x) =

ν + 1
ν

[
1 − ζ

2
+
ζ2

3
− ζ3

4
+ · · ·

]
, ζ = x2/ν,

and w2
ν(0) = 1 + 1/ν. A fourth-order approximation (i.e., quadratic in ζ

above) should be accurate enough if |x| < 10−3 and the machine precision is
of the order of 10−16. As ν increases, wν(x) approaches the constant function
w∞(x) = 1.

8.1 Empirical implementation of RLS

The implementation of RLS considered above used the ‘heavy tail’ property of
the t-distribution. The weighting function has the effect of giving less weight to
data that are considered to be far from the corresponding model predictions.
In an empirical implementation, we look for simple weighting functions with
the same qualitative behaviour. One such example [36] is

wβ(x) =
1

(1 + β2
1x

2)β2/2
, 0 ≤ β2 ≤ 1, β = (β1, β2)T. (37)

If β1 > 0, then as |x| −→ ∞, w(x)|x| behaves as β−β2
1 |x|1−β2 . The parameter

β1 controls when the weighting function starts to take effect. If the expected
standard deviation of the residuals not subject to outliers is σ then a value of
β1 ≈ 0.3/σ is appropriate. For such a value, the weighting function is close to
1 for residuals that can be explained by the expected noise in the data.

Figure 4 shows the standard LS fit and empirical RLS fit with β1 = 0.3/σ
and β2 = 1 for data by a cubic polynomial. The LS fit is dragged away from
the majority of the data by the right-hand outlier. The RLS fit, on the other
hand, effectively ignores all the outliers.

8.2 One-sided RLS

For some problems it may be known a priori that outliers have a particular
sign. For example, in dimensional metrology, dust particles sometimes give rise
to spurious measurements. Because the dust particles always have a positive
diameter, their effect is one-sided. Some engineering surfaces have oil-bearing
cracks which again will give rise to a one-sided effect. This behaviour can be
incorporated empirically by defining

wβ(x) =
{

1/[(1 + β2
1x

2)β2/2], x > 0,
1, otherwise.

Figure 5 shows the standard LS fit and one-sided RLS fit of a circle to data
with four outlying datapoints. The outliers have a significant influence on the
LS fit but very little on the RLS fit.
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Fig. 4. LS and empirical RLS fits of a cubic polynomial to data with outliers.

Fig. 5. LS and empirical RLS fits of circle to data with outliers.

8.3 RLS and the Huber M-estimator

One reasonably well-known robust estimation method is the Huber M-
estimator [33]. Estimates of the parameters are found by minimising a function
of the form

Fγ(a) =
m∑

i=1

ργ(fi(a)),

where ργ is defined as

ργ(x) =
{

x2/(2γ), |x| ≤ γ,
|x| − γ/2, |x| > γ.
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The objective function Fγ can also be written as a nonlinearly weighted sum
of squares. Writing ργ(x) = w2

γ(x)x2, so that

wγ(x) =
{

1/(2γ)1/2, |x| ≤ γ,
(|x| − γ/2)1/2/|x|, |x| > γ,

then

Fγ(a) =
m∑

i=1

f̃2
γ,i, f̃γ,i = wγ(fi)fi.

8.4 Algorithms for robust least squares

Given a nonlinear weighting function w(x), let τ(x) = w(x)x and set

f̃i(a) = τ(fi(a)), F̃ (a) =
1
2

m∑

i=1

f̃2
i (a).

Even if fi is linear in the parameters a the introduction of the nonlinear τ
function makes the minimisation of F̃ a nonlinear least squares problem. To
employ a Newton-type algorithm to minimise F̃ (a), we need to calculate

g = J̃Tf̃ , J̃ij = τ̇i
∂fi

∂aj
, τ̇i =

dτ

dx
(fi),

and

H̃ = J̃TJ̃ + G̃, G̃jk =
∑

i

f̃i
∂2f̃i

∂aj∂ak
.

We note that

∂2f̃i

∂aj∂ak
= τ̈i

∂fi

∂aj

∂fi

∂ak
+ τ̇i

∂2fi

∂aj∂ak
, τ̈i =

d2τ

d2x
(fi).

The first term on the right is the contribution due to the curvature in τ , the
second due to that in F . Even if the second term is small, the first term is likely
to be significant. This means that in practice the Gauss–Newton algorithm
implemented for RLS will have significantly slower convergence than a Newton
algorithm. However, if f is linear with f = y − Ca, the second term is zero
and a Newton algorithm can be implemented easily with J̃ and G̃ calculated
using the following identities,

J̃ij = −cij τ̇i, G̃jk =
∑

i

τiτ̈icijcik,

so that H̃ = CTWC, where W is the diagonal matrix with Wii = τ̇2
i + τiτ̈i.
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9 Summary and concluding remarks

This chapter has been concerned with applying standard least squares meth-
ods to a range of regression problems. The algorithmic requirements of the
approaches are modest: all the algorithms described in this chapter can be
implemented using the Cholesky and QR factorisations. (The generalised QR
factorisation employs the RQ factorisation which can be implemented in terms
of a QR factorisation.) Both factorisations can be implemented in a few lines
of software; library implementations are freely available in LAPACK, for ex-
ample. The classes of regression problems considered in the chapter occur
frequently in metrology, but are often solved using approximate methods or
inefficiently. In the algorithms described here, the computations can be organ-
ised so that they require a number of computational steps linear in number of
datapoints. We have also described robust approximation methods that rep-
resent a useful approach to coping with outlying data within a least squares
framework.
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Summary. A traditional approach to signal processing has been, for a long time,
the frequency domain analysis, in which time or space periodicities can be identi-
fied. It is a relatively simple approach which usually carries significant information,
suitable both as a first-step approach for further signal processing and for feature
extraction. Because this approach carries no time information, frequency and time-
domain analysis based on wavelets has become increasingly important. This shares
a similar analytical approach making use of time-limited functions as the basis of
the transform, allowing for space or time localization of short-lived repeating pat-
terns. These are signal-processing tools which require some good understanding of
the underlying theory to avoid common pitfalls and circumvent some limitations.
Examples are given to show applicability.

Key words: Frequency analysis, Fourier transform, time–frequency analysis,
wavelet transform, wavelet packets, wavelet networks

1 Introduction

This chapter deals with the frequency domain and time–frequency domain
representation of signals. Its focus is centered on what is the physical meaning
of these two very important domains in instrumentation and signal processing.
The first three sections after the introduction concern the frequency domain
representation and in the last four sections, the spotlight is aimed at the
ever-growing field of time–frequency domain representation.

Time representation of continuous signals is the most traditional way to
represent and show signals. However, in many applications (if not in the ma-
jority of applications), the time domain representation is insufficient to gain
insight as to what constitutes a signal. For example, from the time domain
representation (e.g., observed in an oscilloscope) a user can see the basic shape
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© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009



178 P.M. Ramos, R.C. Martins, S. Rapuano, P. Daponte

of a signal, its amplitude, and eventually its frequency. However, some smaller
disturbances or distortion of the signal are difficult to spot and even harder to
classify and quantify. In these cases, the signal can be, for example, affected
by the presence of noise or disturbances at particular frequencies (e.g., at the
power grid frequency which affects so many poorly designed or badly condi-
tioned circuits). Some of these situations can be solved by filtering, that is,
the selective elimination or amplification of certain regions of the frequency
domain. Waveform distortions are another field where the time domain repre-
sentation of signals can be insufficient. In all these cases (and in many more),
the frequency domain representation of signals is a crucial tool and the math-
ematical tools that enable its determination must be fully known to every
researcher in the field, especially for instrumentation researchers.

Frequency domain representation works with the signal frequency spec-
trum, that is, with the signal expressed as a function of frequency. The spec-
trum is usually a complex function of frequency, therefore magnitude and
phase spectra or real and imaginary parts of the spectrum are used. The
possibility of decomposition of a periodic signal into the sum of components
at different frequencies was consistently introduced by J. B. Fourier in the
beginning of the 19th century [Fou78]. However, at that time, the ideas de-
fended by Fourier met with a barrage of criticism and only later on was the
credit for such a fundamental theory attributed to Fourier. The basic idea
behind Fourier’s theory can be stated: Any periodic signal is composed of a
superposition of pure sine waves, with suitably chosen amplitudes and phases,
whose frequencies are harmonics of the fundamental frequency of the signal.
Although Fourier demonstrated how to determine the corresponding ampli-
tudes and phases of the harmonics that constitute signals, it was only in 1829
that P. L. Dirichlet demonstrated the conditions under which the Fourier
series converge [Dir29].

The expressions spectral analysis and spectrum are usually employed in the
frequency domain representation of signals. These terms have their historic
origin in the spectroscopic decomposition of light.

The frequency domain representation is suited for the stationary sig-
nals. However, in many situations the actual signal frequency composi-
tion changes with time and this must be measured. To solve this issue,
a mixed time–frequency domain representation can be used. It can easily
be recognized as the representation of the evolution along the time of the
spectrum.

Basic time–frequency representations are the short-time Fourier transform
(STFT), using the repeated discrete Fourier transform (DFT) calculation for
the same window shifted along the sequence of samples, the chirplet transform
and the wavelet transform together with their modifications. This chapter
deals with DFT and FFT (fast Fourier transform, an algorithm for fast im-
plementation of the DFT), wavelet transforms, chirplet transform, and wavelet
networks.
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2 Fourier Analysis

For a periodic continuous signal, the spectral representation is obtained from
the Fourier Series (FS)

s(t) =
+∞∑

k=−∞
cke

jkω0t, (1)

where ω0 = 2πf = 2π/T is the angular frequency of the periodic signal and
the complex coefficients ck, obtained from

ck =
1
T

∫

T

s(t)e−jkω0tdt (2)

represent the spectral composition of the original periodic signal. Already clear
from Equations (1) and (2) is the fact that only a finite number of elements
are obtained for the spectral representation of the periodic signal. This is a
direct cause of the periodic nature of the signal. Elements c1 and c−1 represent
the spectral composition of the signal at its frequency which is typically called
the fundamental. The other terms, which correspond to frequencies that are
integer multiples of the fundamental are called harmonics. There are other
ways to represent the Fourier series, such as

s(t) =
a0

2
+

+∞∑

k=1

akcos(kω0t) + bksin(kω0t)

= A0 +
+∞∑

k=1

Akcos(kω0t+ ϕk).

(3)

All these representations are equivalent and one should use the one that best
suits each specific problem. Obviously, there are direct relations that enable as
to change between the different representations by combining the coefficients
of each representation.

Convergence of the Fourier series for periodic signals is restricted to signals
that verify three conditions known as the Dirichlet conditions:

• The signal s(t) must be absolutely integrable; that is,
∫

T

|s(t)| dt < ∞. (4)

This condition guarantees that each coefficient ck is finite.
• The signal must have a finite amount of maximums and minimums during

its period.
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• The final condition concerns the number of discontinuities in the signal
period and states that, for a Fourier series to converge to the original signal,
the number of discontinuities must be finite and also each discontinuity
must be finite.

Note that, signals that do not meet these criteria, are usually designed specif-
ically in order not to meet at least one of the conditions. These signals are
rarely seen in real-world applications and so the conditions, although they are
a formal requirement, are very rarely checked or used.

In instrumentation and measurement, the complete continuous signal only
exists in the analog domain of the circuitry. Because the signal processing
algorithms are in the digital domain, the analog signals must be converted
into the digital domain. This transformation is done using analog-to-digital
converters (ADCs). These devices are the cornerstone of the digital era and
have been, for many years, one of the most relevant research and development
activities of the manufacturers of integrated circuits. Although many different
architectures for the implementation of the ADCs have been developed and
implemented over the years, the basic trade-off of the ADCs still remains true:
to have faster digitalisation, you lose amplitude resolution; better resolution
can usually be achieved only for lower digitalisation speeds. These are the two
most basic parameters in every ADC: its resolution (expressed in the number
of bits of the digitised word used to represent each value of the input analog
voltage) and its sampling rate (corresponding with sampling frequency fs)
which is expressed as the number of samples that the ADC can process per
second.

The acquisition process changes two basic properties of the signal: first
the signal is no longer continuous; it is now a discrete-time signal; secondly,
only a finite number of samples (N) is available. The ADC also changes the
amplitude of the signal from the continuous domain into a discrete domain
due to the ADC resolution and input range. For discrete-time signals, the
Discrete Fourier Transform (DFT) is

xn =
1
N

N−1∑

k=0

Xke
j(2π/N)kn with Xk =

N−1∑

n=0

xne
−j(2π/N)kn. (5)

In these equations, some important aspects of the DFT can be observed:
(i) because only N samples are acquired, in the time domain, only N spec-
tral values are obtained; (ii) because the spectral components of the signal
are present in the form ej(2π/N)kn two such terms are required to represent
a real-valued signal (one with positive frequency and another with negative
frequency (this can also be seen from cos(a) = (eja + e−ja)/2)); (iii) the max-
imum frequency available from the DFT result corresponds to fs/2; (iv) each
sample xn can be time stamped with tn = nΔt and each spectrum element
Xk has a frequency Δf ×

[
0 1 2 · · · (N/2) (−N/2 + 1) · · · −2 −1

]
; (v) in the

time domain, the resolution is Δt = 1/fs whereas in the frequency domain,
the resolution is Δf = fs/N . This is a very important aspect of the DFT: the
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frequency resolution is the reciprocal of the acquisition time Δf = 1/(NΔt).
To achieve a 1 Hz resolution spectrum, a 1 s long acquisition is required. To
improve spectral resolution (i.e., reduce Δf = fs/N) one must either increase
Δt (reducing sampling rate and thus reducing time resolution) or increase N
(acquiring more samples). Either way, both solutions require reacquisition of
the time signal and can only be performed if the signal is stationary.

Another important aspect of the DFT is its relation with the Fourier Series
equations (1) and (2). In fact, to assure a direct correspondence of the two, it
is necessary that the set of acquired points in the DFT correspond exactly to
an integer number of periods of the input signal. Only then can the integral
be replaced with the summation.

The DFT algorithm as presented in Equation (5) is not computationally
efficient. In the literature, it is stated that the number of operations required
to process (5) directly is proportional to N2. This made the application of the
DFT very troublesome for many years. In 1965, Cooley and Tukey published
an efficient algorithm for the computation of the DFT [CT65]. Their algo-
rithm, and others that have surfaced since, are now known as the Fast Fourier
Transform (FFT) and some of the results used to improve the computational
burden of the FFT have been traced back to Gauss in the beginning of the
19th century. The basic idea behind all of these algorithms is that, due to the
symmetry and periodicity of the phasor e−j(2π/N)kn many of the original com-
putations of the DFT were repeated. The number of operations in optimised
FFT algorithms are now proportional to N log2(N) (see [JF07] for the latest
results). The original algorithm [CT65] required that the number of samples
be a product of two integer numbers with the maximum efficiency obtained
when the number of samples is a power of two. Later algorithms improved
the computational efficiency requiring only that the number of samples be de-
composed in the form 2n3m5k. However, these algorithms always depend on
the implementation, either already available in algorithm packages included
in commercial programs or on the implementation by the final user for its
specific platform. In most commercial numerical analysis packages the deter-
mination of the DFT is called FFT. It is up to the user to input a number of
samples that can be used in the FFT of the package. Otherwise, the package
may resort to the slower DFT direct calculation.

A good, well-written textbook on these subjects is Oppenheim et al.
[OSB99].

3 How to use the FFT

The DFT as presented in Equation (5) is periodic with N . This means that
replicas of the spectrum will appear centered on multiples of the sampling
frequency. If the sampled signal contains frequencies higher than half of the
sampling frequency these will overlap with the spectrum centred on neigh-
bouring multiples of the sampling frequency. A corollary of this periodicity
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is that a bandlimited signal must be sampled at a rate at least twice the
highest frequency contained in the signal so as to avoid overlapping. This also
becomes evident from a theorem first enunciated by Nyquist in 1928 [Nyq28]
and then proved by Shannon in 1949 [Sha49] which states that any bandlim-
ited signal can be uniquely determined by its samples as long as the sample
rate is at least twice that of the highest frequency found in the signal. The
highest frequency of the signal is usually referred to as the Nyquist frequency
and twice this, which is the frequency that must be exceeded by the sampling
rate, is commonly called the Nyquist rate.

3.1 Aliasing

Consider now a bandlimited signal consisting of only a sine wave. If this signal
is sampled at a rate 1.9 times higher than its frequency, upon use of Equation
(5) what will appear will be only one frequency, which is in accordance with
the fact that the signal is a sine wave, but with a frequency 0.9 times the
frequency of the signal. The apparent frequency of the signal is called the
alias and this result of subsampling is commonly referred to as aliasing (see
Figures 1 and 2). In Figure 1 it is possible to view the effect of aliasing in the
time domain and in Figure 2 in the frequency domain for different waveforms.
Figure 1 corresponds to the acquisition output of one period of a synthesized
waveform sampled at three different rates. It is easy to visually perceive from
Figure 1 that the frequency of the highest component is not the same when
the signal is subsampled, appearing in this case to be much lower than it
actually is.

The presence of alias frequencies within a spectrum can be detected by
comparing two spectra of the same signal sampled at slightly different rates.
If some of the frequencies that make up the signal change, upon application of
Equation (5), then those that change are being subsampled and are therefore a
result of aliasing. Subsampled signals can be reconstructed as long as (i) they
are periodic, (ii) there is some idea of the number of times their frequency is
higher than half of the sampling rate, and (iii) there is no superposition with
other tones.

3.2 Spectral leakage

Given that the spectrum resolution is Δf = fs/N , if the sampled signal
contains a frequency which is not an integer multiple of this resolution its
energy cannot be accounted for by a single bin. It spreads over the bin nearest
to the frequency of the signal and neighbouring bins. This is known as leakage,
an example of which is shown in Figure 2. Another way of looking at this is
perceiving that inherent to Equation (5) is the periodicity of the acquired
interval and, as such, to avoid discontinuities between these virtual periods
care must taken to ensure that within the acquired interval there is an integer
number of periods of the signal.
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Fig. 1. Example of subsampling in the time domain for a multitone signal. Repre-
sented is one period of the signal 0.9 sin(2πt)+ sin(2π25t), the points that would be
acquired if this signal were sampled at 20 Hz (fmax < fs/2) and the aliased signal
corresponding to the undersampled points.

3.3 Windowing

Usually it is hard, nearly infeasible, to guarantee such a condition, especially if
the signal is multitonal with frequencies whose ratio is not a rational number.
In such cases it is common practice to multiply, point by point, the acquired
sample vector with a function which is zero, or some constant, at both end-
points. This allows for the smooth tapering at each end of the sample vector,
considerably reducing the leakage, albeit usually at the expense of lower fre-
quency resolution. This is known as time windowing. The resolution decrease
can be better perceived by looking at the analytical description of windowing.
If we consider a window function, described in the time domain by the sample
vector w and in the frequency domain by the vector W , then Equation (5)
can be rewritten as

Xk =
N−1∑

n=0

xnwne
−j(2π/N)kn = X �W, (6)

where � corresponds to the convolution operator. The rightmost term of the
second equality states that the wider the main lobe of the Fourier transform
of the window function is, the wider will also be the lines associated with the
tones, effectively decreasing the capability to distinguish close tones. When a
continuous signal is acquired for a limited time interval, a time window is im-
plicitly used: the rectangular window. The Fourier transform of this window
is a sine function, sin(πx)/x, whose main lobe is usually much narrower than
the lobes associated with the most commonly used time windows, such as the
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Fig. 2. Graphical representation of subsampling and leakage for a multitone sig-
nal. The original signal has four frequency components. The first three components
are acquired without spectral leakage. The fourth component has spectral leakage
because the number of periods is not an integer as shown in the inset.

Bartlett (triangular), Hamming, Hanning, and Blackman. This is why usually
the spectrum resulting from the use of time windows has lower frequency reso-
lution. The decrease in the leakage stems from the fact that the peak-sidelobe
level (the ratio between the peak of the side lobes and that of the main lobe)
is usually much lower in the rectangular window than in the aforementioned
common time windows. The most important properties of the time window
to look for are (i) the width of its main lobe, (ii) the peak-sidelobe level, and
(iii) the sidelobe roll-off which is usually a trade-off with the peak-sidelobe
level but, naturally, should be as high as possible.

4 Example of spectral analysis application using FFT

The Fourier analysis is commonly used for measurement of two parameters
describing signal quality: Total Harmonic Distortion (THD) and Signal-to-
Noise Ratio (SNR). It can also be applied to the characterisation of ADCs.
Albeit necessarily limited in scope, the concepts dealt with in this example
can be readily extended to a huge number of applications.
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The experimental procedure consists in generating a spectrally pure sine
wave which will then be digitized by the ADC. The frequency content of the
sample vector will give an idea of the ADC distortion, its effective resolu-
tion, and its noise. These metrics, however, are frequency dependent and as
such should be carried out for several different frequencies within the ADC
bandwidth.

The first step that needs to be taken is to ensure the amplitude of the
sine wave does not exceed about 95% of the ADC input range and is centred.
This is to avoid clipping which would severely bias the distortion metrics.
The second step should be to make sure the ratio between the signal fre-
quency and the acquisition rate is a noninteger rational number. Ideally the
greatest common divisor of the two should be as small as possible because the
inverse, commonly referred to as the Unit Test Period (UTP), gives the time
interval along which there is no information redundancy; that is, all samples
correspond to different phases of the signal, UTP = 1/gcd(f, fs), where gcd
stands for greatest common divisor.

This is an important condition to guarantee for three main reasons:

(i) It maximizes the probability of all codes of the ADC being stimulated,
within the input range.

(ii) It minimizes leakage because the frequency resolution of the spectrum
will be equal to Δf = gcd(f, fs).

(iii) It makes it easier to assess the harmonic distortion.

The number of samples to acquire is now a simple matter to determine:
N = UTP · fs. Even though this configuration minimizes leakage, there is
no guarantee leakage won’t occur. One way to keep its effects to a minimum
is to manipulate the length of the acquired vector. This can be done automat-
ically by assessing the approximate number of points per period, fs/f , and
then keeping the original sample vector evaluating the DFT (5) each time a
sample is removed, up to a maximum of fs/f points. The DFT at which the
amplitude is at a maximum corresponds to the sample vector length of min-
imal leakage. This method, albeit simple and efficient, is suitable only when
the main tone has no neighbours with significant amplitude.

For the purpose of ADC characterisation it is enough to consider only one
side of the spectrum and, as such, the second half of the vector returned from
the DFT can be discarded. The first half is kept and all of its elements are
multiplied by 2, except for the first (DC component) and the last if the length
of the sample vector is even.

The total harmonic distortion of the ADC is measured by dividing the
power of the harmonics by the power of the fundamental of the digitised
signal in the ADC output assuming an ideal analog sine wave at the in-
put. This means the bins associated with those frequencies must be iden-
tified, bin(f1H) = f1H/Δf + 1 and bin(fxH) = xf1H/Δf + 1 where the (+1)
terms are required only if the indexing of the sample vector starts at 1 (e.g.,
MATLAB) and fxH corresponds to the frequency of harmonic x. The com-
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putation of the total harmonic distortion, computed up to the nth harmonic,
is now

THDdB = 10 log10

n∑
x=2

X2
xH

X2
1H

. (7)

where XxH is the spectral amplitude of harmonic x. The nth harmonic to be
evaluated in Equation (7) is usually chosen in accordance with the sampling
rate and the number of harmonics to consider [IEE01]. When assessing the
performance of the ADC for frequencies near half the maximum sampling
rate subsampling usually takes place and the identification of the harmonics
is still possible. In this case, due to the spectrum repetition that takes place
at multiples of the sampling rate, it is fairly simple to determine the alias
frequencies

fxH(alias) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fs/2 − mod
(
fxH ,

fs

2

)
⇐ floor

(
fxH

fs

2

)
is odd

mod
(
fxH ,

fs

2

)
⇐ floor

(
fxH

fs

2

)
is even.

(8)

When the subsampling is associated with frequency components of the input
signal, care should be taken not to remove them in the analog frontend by
an anti-alias filter. This is not the case, however, in the previous example of
distortion due to the converter.

Another common parameter in the characterisation of ADCs is the signal-
to-noise ratio which corresponds to the ratio of the signal power to the power
of noise in the digitised signal at the output of the ADC, assuming an ideal
sine wave at the input,

SNRdB = 10 log10

X2
1H∑

k �=xH

X2
k

. (9)

Still another related parameter is the Signal-to-Noise And Distortion ratio
(SINAD),

SINADdB = 10 log10

X2
1H∑

k>0,k �=1H

X2
k

. (10)

From this last metric the Effective Number Of Bits (ENOB) of the ADC can
be determined. This metric tries to assess the resolution of an ideal converter
which would generate the same level of distortion as the ADC under test.
The distortion in that case would only be attributable to the quantisation.
Because for an ideal ADC the SINADdB = 6.02nbit + 1.76, then

ENOB =
SINADdB − 1.76

6.02
. (11)
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5 Wavelet transform

Transients are generally characterised by a short duration when compared
to the observation interval. Their presence in a stationary waveform makes
the resulting signal exhibit time-varying properties; that is, its instantaneous
spectral contents vary with time. Transients are encountered in various fields
such as audio signals, sonar, radar, medical signal analysis, ultrasonic sig-
nals, power quality analysis, and computerised vision of moving objects. Very
important measurement information is often associated with some kinds of
transients. As an example, the measurement of the time interval between ul-
trasonic echoes coming back from a multilayer structure allows the evaluation
of the thickness of each layer; the estimation of transient phenomena (notches,
spikes, dips) superimposed on the power line voltage offers the opportunity of
monitoring the quality of power.

On the contrary, disturbing sources sometimes produce undesired tran-
sients which corrupt the waveform to be analysed. The removal of these tran-
sients is necessary for:

• Carrying out accurate measurements on the waveform itself
• Proceeding to a deeper analysis in order to identify probable sources and

causes

This is the case, for example, for the transients which occur in high voltage
tests and corrupt the desirable shape of the impulses used in these tests. The
measurement of a transient requires the evaluation of significant parameters
such as duration, amplitude, period of oscillation, and so on; sometimes, it
may also be necessary, for identification and classification purposes, to recover
the time domain shape of the transient by extracting it from the waveform
on which it is superimposed.

Until now, some detection schemes based on both analog and digital solu-
tions have been proposed. The analog solutions exploit sophisticated trigger-
ing circuits in support of specialised transient digitizers. The digital solutions,
on the other hand, provide for suitable algorithms tuned for the detection of
transients of known shapes and unknown arrival times. The possibility of de-
tecting, measuring, and, eventually, classifying transients at the same time
and in an automatic way is still being investigated, and could be carried by
implementing measurement methods based on the Wavelet Transform (WT).
This is a powerful theory allowing the processing of transients simultaneously
in time and frequency domains. In particular, the WT can assure (i) very
good time resolution at high frequencies and good frequency resolution at
low frequencies and (ii) reduction of the influence of random noise affecting
the signals being analysed. Transient arrival times and duration are automat-
ically evaluated by exploiting the good time resolution at high frequencies
assured by the Continuous Wavelet Transform (CWT), a particular WT im-
plementation. On the other hand, the decomposition of the signal spectrum in
frequency subbands and the subsequent reconstruction in the time-domain of
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those subbands containing the transient are performed by means of another
WT implementation, the Discrete Time Wavelet Transform (DTWT).

In the following, attention is principally put on the WT in its different
forms. All the most important theoretical relations are shown along with some
guidelines for their practical implementations.

6 The wavelet transform: Theoretical background
and implementation

The Wavelet Transform acts as a sort of mathematical microscope through
which different parts of the signal under analysis may be examined by ad-
justing the focus. The WT can be seen as the correlation between the signal
and a set of functions that are small waves, called wavelets. Each wavelet,
also called a daughter wavelet, is generated by scaling and translating one
original wavelet, called the mother wavelet or basic wavelet. Scaling implies
that the mother wavelet is either dilated or compressed and translation im-
plies shifting of the mother wavelet in the time domain (Figure 3). In the
following, two typical implementations of the WT are described: continuous
wavelet transform and discrete time wavelet transform.

Fig. 3. Basis functions and time frequency resolution of traditional time–frequency
representations (a,b) and of the wavelet transform (c,d).
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6.1 Continuous wavelet transform

Definition

The expression of the continuous wavelet transform for real signals is

CWT(a, b) =
1√
|a|

∫
h∗
(
t− b

a

)
· s(t)dt, (12)

where h∗(t) denotes the complex conjugate of the mother wavelet h(t), s(t)
is the signal to be transformed, and a and b are the dilation and translation
parameters, respectively. This relation is defined on the open (b, a) half-plane
(b ∈ �, a > 0). The scale parameter is proportional to the reciprocal of
frequency; the translation parameter stands for time.

If h(t) is defined as

ha,b(t) = a−1/2h

(
t− b

a

)
, (13)

then Equation (12) can be written as a scalar or inner product of the real
signal s(t) with the function ha,b(t)

CWT(a, b) =

+∞∫

−∞

h∗a,b(t)s(t)dt or CWT(a, b) = 〈h∗a,b(t), s(t)〉. (14)

Implementation

For practical implementation a discretised version of the original CWT
Equation (12) must be considered

CWT(a, iΔt) = Δt
1√
a

N−1∑

n=0

h∗
[
(n− i)Δt

a

]
s(nΔt), (15)

where N is the number of samples in the signal and Δt is the sampling interval.
From this equation, it can be seen that at all values of the scale parameter a,
a full set of N samples is generated. Although the time variable is discretised
with uniform spacing, the parameter a could be discretised with a uniform or
dyadic spacing. When the dyadic spacing is used, Equation (15) defines the
discrete time wavelet transform. However, as in this section, Equation (15) is
used as an approximation of the CWT, the notation CWT is used here. The
scale parameter a is expressed in dyadic form as the series

a = 2j+m/M , (16)

where j indicates the octave number, m the voice number (0 < m < M), and
M is the number of voices per octave. The number of octaves J to be adopted
for CWT computation is the greatest integer satisfying the relation
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J = log2(N) − 1, (17)

and the octave number j ranges from 2 to (J + 2). Moreover, the value of M
generally ranges from 0 to 12; the greater M the better the frequency resolu-
tion. The direct implementation of Equation (15), especially for a number of
voices per octave greater than 8, would require an extensive amount of com-
putation. For this reason, an efficient algorithm, based upon the FFT, may
be adopted [BM94]. By analysing the CWT in the Fourier transform domain
and referring to the theorem of Parseval, the basic convolution operation of
the CWT can be achieved by simple multiplication operations. As a matter
of fact, writing the CWT in the Fourier domain gives

F {CWT(a, b)} = a−1/2 ·H∗(aω) · S(ω), (18)

where F{CWT(a, b)} is the Fourier transform of the CWT, H(·) is the Fourier
transform of the mother wavelet, and S(·) is the Fourier transform of the input
signal. Equation (18) can be represented graphically as shown in Figure 4

Fig. 4. Discrete WT implementation scheme.
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after precalculation of the FFT of the mother wavelet and signal, the CWT is
implemented via repeated scale, multiply, and inverse FFT (IFFT) operations
[BM94].

Mother wavelet features

There are some conditions that must be met for a function to qualify as a
mother wavelet; the function h(t) is said to be a mother wavelet if and only
if its Fourier transform H(·) satisfies

+∞∫

0

|H(ω)|2
ω

dω =

0∫

−∞

|H(ω)|2
ω

dω = CH < +∞. (19)

In other words, the mother wavelet h(t) must be oscillatory and have
amplitude that quickly decays to zero. Furthermore, a mother wavelet h(t)
must have d vanishing moments, if and only if, for all nonnegative integers
q < d, it satisfies

+∞∫

−∞

tqh(t)dt = 0. (20)

Each mother wavelet must have at least one vanishing moment; this condition
implies that

+∞∫

−∞

h(t)d(t) = 0, (21)

and h(t) must therefore be a zero mean value function. Examples of mother
wavelets are (Figure 5 upper):

1. Modulated Gaussian (Morlet)

h(t) = ejω0t · e−t2/2. (22)

2. Second derivative of a Gaussian (Mexican hat)

h(t) =
(
1 − t2

)
· e−t2/2. (23)

3. Haar

h(t) =

⎧
⎪⎨

⎪⎩

+1 0 ≤ t < 1/2
−1 1/2 ≤ t < 1

0 otherwise.
(24)

4. Shannon

h(t) =
sin(πt/2)
πt/2

· cos
(

3πt
2

)
. (25)
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Fig. 5. Time domain shapes (upper) and frequency spectra (lower) of the following
mother wavelets: Morlet (curve a), Mexican hat (curve b), Haar (curve c), and
Shannon (curve d).

All the aforementioned characteristics allow the mother wavelet to be thought
of as a bandpass filter (Figure 5 lower). Furthermore, unlike sines and cosines,
individual mother wavelets are quite localised in time; simultaneously, as
with sines and cosines, they are localised in frequency. This allows the
WT to associate the nonstationary time-domain signal with a representa-
tion that is localised not only in frequency but also in time. Such an ap-
proach results in a more natural description of the signal under analysis
thus giving the opportunity of extracting details and information from it
[RV91,Dau92].

CWT modulus maxima properties

The local maxima of the CWT modulus correspond to the sharpest variation
points of the signal. Let h(t) = dφ(t)/dt where φ(t) is a function whose integral
is equal to 1. The CWT modulus at a fixed scale a satisfies
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|CWT(a, b)| =
∣∣∣∣
√
a

∫
d

db
φ∗
(
t− b

a

)
· s(t)dt

∣∣∣∣

=
∣∣∣∣
d

db

[√
a

∫
φ∗
(
t− b

a

)
· s(t)dt

]∣∣∣∣ .
(26)

The CWT modulus is proportional to the first derivative of s(t) smoothed by
φ(t). The local maxima of the CWT modulus thus correspond to the local
maxima of the derivative of 〈s(t), φa,b(t)〉, which are the sharpest variation
points of the signal smoothed at the scale a. Furthermore, for a fixed b

|CWT(a, b)| = k(a)α, (27)

where α is the so-called Lipschitz exponent, and k is a constant. It follows
that:

• The CWT modulus local maxima decrease when the scale decreases
(frequency increases) for discontinuities characterised by positive α.

• The CWT modulus local maxima does not decrease when the scale de-
creases for discontinuities characterised by nonpositive α.

From these considerations one can discriminate the signal from the noise by
looking at the behaviour of the CWT modulus local maxima across scales.
As a matter of fact, because actual signal discontinuities characterised by
positive Lipschitz exponents and random noise is almost everywhere singular
with negative Lipschitz exponents (one can prove that a white noise has a
uniform Lipschitz exponent equal to –1/2), the CWT of the signal decreases
when the scale decreases; on the contrary, the CWT of the noise increases, on
average, when the scale decreases. In order to compute the evolution of CWT
amplitude across scales, it is possible to relate each modulus maximum at the
given scale to a modulus maximum at the successive and lower scale which is
as close as possible and with the same sign, thus constructing some sequences
called chains. At this point one can remove any chain of the modulus maxima
whose amplitude increases, on average, when the scale decreases and retaining
those chains whose amplitude decreases when the scale decreases; the former
are related to a discontinuity which is most influenced by the noise, and the
latter are related to an actual signal discontinuity [ADD99,LAD99].

It is worth noting that extensions of the CWT were proposed; for example,
in [SML96] an extension based on a moving and scalable localizing Gaussian
window was proposed. This offers some desirable characteristics that are ab-
sent in the CWT.

6.2 Discrete time wavelet transform

DTWT definition and implementation as bank of filters

The discrete time wavelet transform is defined as

DTWTm,n =
1√
am
0

N−1∑

k=0

h(a−m
0 k − nb0)s(k), (28)
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where a0 �= 1, N is the number of samples, and n is the discrete-time variable.
As seen before, assuming that a0 and b0 are integers, the smallest possi-

ble values for a0 and b0 (b0 = 1 and a0 = 2) give the condition that all the
scale factors are a power of two. This definition is a discrete approximation
of the CWT and therefore can be obtained from Equation (15) as described
in Section 6.1 with a very high number of discrete scales. However, it can
also be obtained by means of analytical relations which regulate a digital fil-
ter bank, provided that the filter impulse responses satisfy some conditions
described below. In particular, the whole DTWT implementation scheme is,
generally, subdivided into two stages: decomposition and reconstruction. The
DTWT decomposition is based on two digital filters: a highpass ha(·), called
the discrete mother a wavelet, and its lowpass mirror version ga(·). The de-
composition is carried out by arranging these filters in a tree structure as
shown in Figure 6a which, in particular, reproduces a tree structure allow-
ing a seven subband decomposition for the signal s(·) to be analysed. Each
step of this scheme consists of the same digital filters. At each step, the in-
put signal is simultaneously low-pass and high-pass filtered. Both the filter
outputs are decimated by a factor of 2; then the low-pass filter output is
sent to the next step where it is processed in the same way. The combina-
tion of the impulse responses of the encountered filters produces as a result,
at the points A, B, C, D, E, and F six bandpass filters and at the point
G a lowpass filter. All these filters are characterised by the same relative
bandwidth (ratio between frequency bandwidth and centre frequency), but
the filter obtained at the point A has the centre frequency, and consequently
the frequency bandwidth, double with respect to that of the filter obtained
at the point B and so on for the filters obtained at the points B and C.
The results of the decomposition at the points A, B, C, D, E, and F can be
expressed as

DTWTm,n =
N−1∑

k=0

hm,2m+1n−ksk, m = 0, . . . , 5, (29)

and at the point G as

DTWTm,n =
N−1∑

k=0

hm,2mn−ksk, m = 6, (30)

where hm,n, for m = 0, . . . , 6, are the impulse responses of the seven filters.
As can be seen, Equations (15) and (28) to (30) are very similar, except for
the conjugation of the discrete mother wavelet function. However, it should
be noted that the dyadic decomposition obtained by using the filter bank is
incomplete, considering only a branch of the tree at each step.

Similar considerations are valid for the DTWT reconstruction stage, where
hs(·) and gs(·) are the highpass and lowpass filters, respectively (Figure 6b)
where an interpolation by factor 2 is used at each step. Each input signal for
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Fig. 6. (a) DTWT decomposition stage; (b) DTWT reconstruction stage. The dig-
ital filter ha(·), also called the discrete mother wavelet, is generally highpass. In
orthogonal hypothesis, ga(·) is the lowpass mirror version of ha(·), and hs(·) and
gs(·) are identical to their counterparts, within time-reversal.

the reconstruction stage at the points A, B, C, D, E, F, and G gives its own
contribution to the output signal. In particular, each contribution represents
the time domain reconstruction of the contents of the related frequency
subband.

Discrete mother wavelets’ features

The scheme of Figure 6 is said to be a perfect reconstruction tree if the output
signal obtained reconstructing the contents of all subbands is identical to the
input signal, within a possible time shift. Perfect reconstruction properties are
assured if the filters ha(·), ga(·), hs(·), and gs(·) satisfy either biorthogonal or
orthogonal constraints. The biorthogonality constraints on these filters, also
requires that

1. The overall scheme be an identity system or that

z−2kHa(z)Hs(z) =

{
1 k = 0
0 k �= 0

, k ∈ Z, (31)

and

z−2kGa(z)Gs(z) =

{
1 k = 0
0 k �= 0

, k ∈ Z, (32)

where Ha(z), Ga(z), Hs(z), and Gs(z) are the z-transform system func-
tions of the filters

2. The information in one branch of each step be independent of the infor-
mation in the other branch
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This last condition, which assures no redundancy, can be expressed in terms
of the filters as

z2kHa(z)Gs(z) = 0, k ∈ Z, (33)

and

z2kGa(z)Hs(z) = 0, k ∈ Z. (34)

The conditions in Equations (31) to (34) can be imposed directly onto the filter
coefficients for implementation purposes thus giving the following relations

gs(j) = (−1)jha(j), j = 0, . . . , Lh − 1, (35)

hs(j) = (−1)j+1ga(j), j = 0, . . . , Lg − 1, (36)

where Lh and Lg indicate the length of the filters ha(·) and ga(·), respectively.
Arbitrary length linear phase filters can be designed. In orthogonal hypothesis,
a special case of biorthogonality, a further relation must be satisfied

ga(·) = (−1)jha(L− j − 1) j = 0, . . . , L− 1, (37)

where ha(·) and ga(·) have the same length L = Lh = Lg. This condition sim-
plifies filter design (the highpass and lowpass filters in Figure 4 are practically
identical); however, some nice properties have to be relaxed such as linear
phase [AH92,VH92,Rio93]. The Daubechies filters are good examples of or-
thogonal discrete mother wavelets [Dau92] and some biorthogonal examples
are given in [VH92].

DTWT properties

A significant and very useful property of the DTWT is the multiresolution
subband decomposition (analysis) and reconstruction (synthesis). Its basic
concept is to divide the signal spectrum into subspectra or subbands and,
then, to treat individually those subbands more useful for the purposes at
hand [RV91, Dau92, AH92]. Referring to Figure 6, the result of the recon-
struction of the signal obtained at the point G from the decomposition stage
can be regarded as a lowpass filtered (smoothed) version of the input signal
s(·), and a first approximation of s(·). The result of the reconstruction of the
signal obtained at the point F is a bandpass filtered version of s(·) and adds
slightly more detail to the output. The same is true for the results of the
reconstructions of the signals obtained the points E, D, C, and B. Finally,
the result of the reconstruction of the signal obtained at the point A adds
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the highest-frequency detail to the output. Each reconstruction result is re-
ferred to as a multiresolution component and contributes increasingly finer
detail to the output of the synthesis stage. In practice, this DTWT prop-
erty can be exploited in several application fields. In data compression, for
example, the multiresolution components which contribute as much detail as
desired are stored or transmitted; the higher-resolution components can be
omitted or coded with fewer bits. The DTWT is a powerful tool for removing
noise overlapping to signals in the same frequency band. In fact, due to the
WT properties, the main part of the noise power is translated to the higher
frequencies and separated from the signal. Therefore the noise can be easily
highpass filtered out [PL06]. With regard to the analysis of transient sig-
nals, an occurred transient can be separated from the stationary waveform on
which it can be superimposed thanks to their different and disjoined spectral
contents [ADDT98].

An example of filter bank-based DTWT application: Extracting
transient waveforms from distorted powerline signals

Power quality monitoring and analysis must be able to detect, locate, estimate,
and classify disturbances on the supply lines. As a consequence, it must be
supported by suitable measurement methods and systems.

The authors of paper [ADDT98] propose a procedure based on the mul-
tiresolution signal decomposition and reconstruction obtained by means of the
DTWT. Such a procedure is able to detect, locate, and estimate the peak-
to-peak amplitude of a disturbance. The number of subbands, to be used for
signal decomposition, is chosen in such a way that the signal at the fundamen-
tal frequency ff is included in the middle of the lowest-frequency subband, in
order to limit the effects of fundamental spectral contents on the other sub-
bands. The sampling frequency fs can be maintained fixed in order to allow
an easier implementation of the algorithm in a suitable hardware structure.

The original signal is decomposed in p frequency subbands by means of
the DTWT analysis stage, arranging a tree digital filter structure as reported
in [ADDT98]. In particular, the Daubechies filter with 16 coefficients has been
adopted as a discrete mother wavelet for its revealed suitability to power
quality analysis [ADDT98].

Figure 7 shows the DTWT analysis results obtained by decomposing the
original signal, a pure sine wave with an overlapped oscillatory transient
with a 600 Hz frequency, into 7 frequency subbands, with fs = 12.8 kHz and
ff = 50 Hz. The extraction of the disturbance (3) from the fundamental is ob-
tained by reconstructing (DTWT synthesis stage) only the synthesis results
coming from the subband including the reciprocal of the transient duration
Figure 7 and the nearest two. The reconstructed disturbance gives the pos-
sibility of evaluating some relevant parameters (amplitude, rise time, and so
on) and, therefore, to classify it.
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Fig. 7. (1) Powerline signal with a transient. (2) Results of the DTWT analysis
and synthesis in the following frequency subbands: (a), (h) 6400–3200 Hz; (b), (i)
3200–1600 Hz; (c), (l) 1600–800 Hz; (d), (m) 800–400 Hz; (e), (n) 400–200 Hz; (f),
(o) 200–100 Hz; (g), (p) 100–0 Hz. (3) Extracted transient.
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7 Chirplet transform

Like the other Time–Frequency Representations (TFRs), the Chirplet Trans-
form (CT) projects the input signal onto a set of functions that are all
obtained by modifying an original window function g(t), also called the
mother chirplet (see Figure 8a.) Besides the well-known time and frequency
shifting peculiar to the Short Time Fourier transform (STFT) – shown in
Figure 8b, c – and scaling adopted by the WT –, see Figure 8d – the CT
performs other modifications such as chirping both in time and frequency,
Figure 8e, f. Thanks to chirping, the CT is capable of rotating each cell of
the time–frequency plane as well as shearing it along the time and frequency
axes, (Figure 8g) [AD02].

New degrees of freedom in shaping the cells are thus available to the user
with respect to the other TFRs, which, ultimately, means new opportuni-
ties of optimizing the time–frequency resolution (Δt × Δf) according to the
analyzed signal. As an example, with reference to instantaneous frequency
estimation, it is possible to rotate and shear each cell according to the local

Fig. 8. Modifications of the mother chirplet peculiar to the traditional CT and
related effects on the time–frequency plane: (a) original window function, (b) time
shifting, (c) frequency shifting, (d) scaling, (e) chirping in time, (f) chirping in
frequency, and (g) all the modifications applied [AD02].



200 P.M. Ramos, R.C. Martins, S. Rapuano, P. Daponte

slope of the trajectory of the analyzed instantaneous frequency, thus giving
the opportunity of best tracking its evolution versus time.

Chirping in time is obtained by multiplying the mother chirplet, g(t), with
a linear FM signal, also known as chirp, given by

ej2π(c/2)t2 (38)

where the parameter c is the so-called chirp rate. It causes a rotation of all
cells on the time–frequency plane as well as their shear along the frequency
axis. Specifically, the slope of the cell is determined by the value of the afore-
mentioned parameter c (see Figure 8e).

Chirping in frequency, on the other hand, is given by the convolution in
the time domain between the mother chirplet and another FM linear chirp

(−jd)−(1/2)ej2π(1/2d)t2 , (39)

where the parameter d accounts for the shear amount along the time axis
imposed on the cell (Figure 8f). It is worth highlighting that the described
operation turns in a product in the frequency domain between the Fourier
transform of the mother chirplet G(f) and

e−j2π(d/2)f2
(40)

which can be considered a chirp in the frequency domain, the chirp rate of
which is equal to d.

The combined effect of all the aforementioned modifications of the mother
chirplet gives rise to the following complete analytic expression of the CT of
a signal s(t),

CTs(t, f, a, c, d) =
∫
s(τ)h∗(τ − t, f, a, c, d)dτ. (41)

The kernel h(τ − t, f, a, c, d) is given by

h(τ−t, f, a, c, d) =
1√
−jda

∫
g

[
(τ − t)

a
− v

]
ejπ{2fτ+c[((τ−t)/a)−v]2+(v2/d)}dv

(42)
where t and f account, respectively, for time and frequency shift, and a is the
scale parameter.

To improve the efficacy of the traditional CT in instantaneous frequency
estimation, some changes in the analytic definition of this transform as well
as a proper choice and use of its parameters are proposed in [AD02]. The
main advantage of the modified version over the traditional CT is the better
aptitude of adapting its resolution, in terms of shape and aspect ratio (see
Figure 8a) of the cell, to the local features of the analyzed signal, in any point
of the time–frequency plane (Figure 9).
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Fig. 9. Proposed modifications of the mother chirplet and related effects on the
time–frequency plane (cfr. [AD02]).

8 Wavelet networks

The idea of using Artificial Neural Networks (ANNs) for classification pur-
poses has proved useful for a long time. To achieve best classification perfor-
mance, a preprocessing of the input samples is advisable. In particular, for
nonstationary signals, time–frequency transforms are desirable. Such trans-
forms yield simultaneously two different aspects of the signal: the frequency
characteristics as well as the temporal behaviour. From the variety of so-
lutions, the WT shows itself the most suitable for the analysis of transient
signals in several application fields.

The wavelet network (WN) combines the properties of the WT with the
advantages of ANNs. Wavelet networks can be considered as an extended
perceptron consisting of two parts (Figure 10). The first part contains the so-
called wavelet nodes, in whose the classical sigmoidal activation functions are
substituted by mother wavelet functions h(a, b) as in [DMR01], but without
the energy normalization factor a−1/2. They act as preprocessing units for
transient detection and feature extraction. The classification is performed by
the second part, a traditional single-layer or multilayer perceptron [DMR01].
The classic backpropagation method is applied to train the network by tun-
ing the weighting coefficients, the sigmoid steepness, and the wavelet node
scale and time parameters (a and b) in order to minimize the difference, in
the mean squared error sense, between the current and the target output ar-
rays for a given training signal set. As a consequence, during the training
stage, the WN is able not only to learn arbitrarily complex decision regions
defined by the weight coefficients, but also to look for those parts of the time–
frequency plane that are suited for a more reliable classification of the input
signals. In [DMR01] an example of using WNs to classify the disturbances
on quadrature amplitude modulated signals is described. In the paper some
considerations about the correct procedure to choose the mother wavelet, the
WN modularity, and the selection of training signals can be found may be
found.
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Fig. 10. Wavelet Network scheme.
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Rovisco Pais 1, 1049-001 Lisbon, Portugal, psgirao@ist.utl.pt,
poctav@ist.utl.pt

2 Escola Superior de Tecnologia, IPS, Setúbal, joseper@est.ips.pt

Summary. Human activity involves sequential decision-making. Activities with
alternatives require deciding for one of the alternatives. A rational decision is one
that weighs each alternative pros, cons, and risks. The support for decision-making
is data that come basically from experience, either previously acquired or gathered
for the specific decision-making. The data usually come from different sources and
thus have to be fused for a single decision. The core of this chapter is precisely
about data fusion. In its subsections, we look namely at some procedures and tech-
niques commonly used in data fusion. Decision-making and risk analysis are briefly
discussed

Key words: Sensor data fusion, data fusion, data fusion tools, decision-making,
risk analysis

1 Data fusion

In this section we address issues related to data fusion. Our concern is ap-
plications that can be framed in the engineering domain where experimental
data play a decisive role. Procedures and techniques considered are pertinent
for data fusion obtained with different sensing systems, independent of size
and organization.

It is impossible to present in detail all the techniques and algorithms that
we elected to include. We refer the reader to [1] to [4] for details of fusion
techniques, and for the mathematically inclined, [5]. In a limited number of
pages it is only possible to introduce them, some in more detail than others.
The exposition of each subject is complemented with references that in gen-
eral deal not with the state-of-the-art but rather with the fundamentals and
foundations of that subject.

F. Pavese, A.B. Forbes (eds.), Data Modeling for Metrology and Testing 205
in Measurement Science, DOI 10.1007/978-0-8176-4804-6 7,
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1.1 Definitions, concepts, and terms of reference (terminology).
Processing and topological issues

Data or information fusion is currently defined in several ways; some focused
on supporting a functional model and architecture [1], others centered in the
framework and fundamentals [6]. Nevertheless, we think there is general agree-
ment that the ultimate idea underlying data fusion is to obtain greater quality
information (better suited for a specific purpose) by exploiting the synergy of
data gathered from different sources.

According to [1], data fusion is the process of combining data or informa-
tion to estimate or predict entity states. Data fusion deals with everything that
has to do with this objective and because problems in many domains of ap-
plication require some decision-making, data fusion also encompasses aspects
such as classification and pattern recognition used to support decisions.

As an organized research area, data fusion owes a lot to people working in
the framework of military applications, target tracking and identification in
particular, in which it is crucial not only to fuse data obtained from multiple
sensors but also to assess threats and risk. It is thus natural that these issues
are included in the data fusion domain by those defending the definition,
model, and architecture proposed for instance in [1].

As mentioned in [1], data fusion has or may have many advantages: (a) it
increases robustness and reliability and reduces the vulnerability of the system
supporting the decision, because it allows decision-making even in the absence
of malfunction of some sources of information; (b) it may provide a better and
larger coverage of space and time; (c) it reduces ambiguity, because better
information provides better discrimination between available hypotheses; and
(d) it provides a solution to deal with the large amount of data that may be
available.

It is beyond the scope of this chapter to provide an exhaustive and detailed
treatment of data fusion. Several texts on the subject are available and we par-
ticularly recommend [1] to [7] for those seeking insight of the data/information
fusion framework.

Information fusion is based on experimental data output by sensing devices
and eventually on information obtained by other means (e.g., the user as a
data source for a priori knowledge, experience, model application). Fusion
requires or advises all data to have the same representation (e.g., numeric
values in the same units, relative values), the realization of which is often the
first step of the data fusion process. This process, particularly difficult if data
are heterogeneous (noncommensurate), is often referred to as data alignment
or data registration [6].

Measurements, understood as the output of a sensor, form a signal [6] more
or less affected by noise whose reliability has to be verified (e.g., malfunction
of the sensor, express corruption of sensors’ measured quantity, for instance,
jamming). Data filtering and data validation are two common and important
tasks in a data fusion. Other basic aspects involved in data fusion involve
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addressing: (a) data coming from sources with different levels of quality (e.g.,
different accuracy); (b) nonindependent data; (c) too much information, which
may lead to computational problems; and (d) need to change the context of
the observation (e.g., from time to frequency domain) or to extract features
or attributes [6].

The above-mentioned issues are of the data-processing type. They address
questions such as how to select the proper measurements, determine the rel-
evance of the data, and ultimately, how to select the fusion methods and
architectures, once the data are available. Other types of issues that we do
not address here but that are important for correct decision-making are of
a topological nature: sensors and their spatial distribution, the communica-
tion network between sensors and places of processing and decision-making,
information exchange, availability and reliability of information at the time
of the fusion, and cost of acquiring the information. These topological issues
are particular pertinent with the increasing number of applications that use
sensor networks, namely of the wireless type. In such applications it is not
trivial but extremely important to organize and distribute data fusion tasks
in the network. It is a subject also beyond the scope of this chapter and has
been researched for a few years now (e.g., [8]).

The data/information fusion domain uses dedicated terminology and terms
of reference, some of them with different meanings according to the authors
or to the specific domain of application (e.g., association: concatenation of
data, or correlation between a measurement and the actual value of interest).
Some of those terms were already introduced and some others are used in the
paragraphs that follow. Most of them are presented and discussed in detail
in [6].

1.2 Data fusion models and architectures

The first data fusion model was developed in 1985 by the U.S. Joint Directors
of Laboratories (JDL) Data Fusion Group and is known as the JDL data fusion
model. Widely accepted as the base model, it was revised more than once, the
later revision dating from 2004 [9]. Also in 2004, the Data Fusion Information
Group, which integrates most of the people working in data fusion modeling,
proposed an upgrade to the JDL model, the DFIG model [10]. Dasarathy [11],
Bedworth and O’Brien [12], and Salerno [13], among others, also proposed
models and architectures for data fusion with merits.

In different ways, all data fusion models, either of the functional type,
such as the JDL and Dasarathy models or of the process type, such as the
Omnibus model of Bedworth and O’Brien, differentiate types of data fusion
functions using fusion levels. Those levels are more or less connected to the
stages at which the fusion occurs. There are three fundamental stages to
consider (Figure 1):

• Direct fusion of sensors’ data or raw data fusion. If sensors measure the
same quantity and the data are registered in time and space, their raw
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Fig. 1. Sensor data fusion processing architectures.

data can be directly fused; otherwise, either the output of each sensor is
converted into relative units (normalized), and special algorithms (e.g.,
neural networks) used, or data must be fused at the feature/state vector
stage or decision stage.

• Feature or state vector fusion. A characteristic or a feature vector repre-
senting data is extracted before fusion is implemented. This often involves
a data–mining problem, that is, the extracting of information from large
datasets or databases.

• Decision fusion. Data are combined with other data or with a priori knowl-
edge or the data are processed to yield inferences or decisions that are then
combined.

1.3 Data fusion techniques and algorithms

Measuring transducer inverse modeling and characteristic
approximation. Unit adjustment. Coordinate transformation.
Normalization.

Measuring transducers, often simply called sensors, and measuring devices
are the main sources of experimental data. Electrical measuring transducers,
which are the most used, output an electric quantity (e.g., voltage, current)
that informs on the quantity in the input of the transducer sensing device
(measurand). Examples include radar, sonar, and cameras. The relation be-
tween the transducer’s output and the measurand must be known to calculate
the measurand’s value from the transducer’s output value. That relation is
called the transducer characteristic and the operation now mentioned is often
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called transducer inverse modeling. When the transducer characteristic is not
linear, it is necessary to approximate it to simplify inverse modeling.

A data fusion algorithm does not usually operate on raw data, but rather
on some types of data in some representations. This implies that the first steps
in a data fusion process may need what we would call data formatting. This
may involve, for instance, unit conversion, coordinate transformation, data
registration, and data normalization.

Association metrics and similarity functions

A metric, d, is a function that satisfies the following properties:

1. Nonnegativity: d(x, y) ≥ 0.
2. Symmetry: d(x, y) = d(y, x).
3. Identity: d(x, x) = 0.
4. Definiteness: d(x, y) = 0 if and only if x = y.
5. Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z).

Association metrics is a general term for assigning a number represent-
ing a degree of likeness to data [3,14]. Particular types of association metrics
have special designations (e.g., association measures, matching coefficients,
distance measures). The association metrics measures usually the similar-
ity of two elements of a dataset and is of paramount importance in digital-
processing techniques for classification and pattern recognition purposes (e.g.,
clustering).

The selection or definition of an association metrics depends essentially on
the structure of the data. Some examples follow.

1. Comparison between two elements X = (x1, x2, · · ·xn) and Y =
(y1, y2, · · · yn) of two numerical datasets: sample product moment correla-
tion,

C(X,Y ) =
cov(X,Y )

[var(X)var(Y )]1/2
=

1
n

∑n
i=1(xi − x̄)(yi − ȳ)

[
1
n

∑n
i=1(xi − x̄)2(yi − ȳ)2

]1/2
, (1)

where var and cov stand for variance and covariance and the − for mean
value.

2. Comparison between elements X and Y of datasets where one or both are
not numerical: the range of each variable is divided into classes (intervals),

X =
p⋃

j=1

Xj Y =
q⋃

k=1

Xk (2)

and correlation coefficients Aj,k/n are defined. Aj,k is the number of data
values for which xi ∈ Xj and yi ∈ Yk.
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3. Comparison between elements Xj and Xk of a numerical dataset:
Minkowski distance function,

Dp (Xj ,Xk) =

(
n∑

i=1

|Xij −Xik|p
)1/p

. (3)

For p = 2, Equation (3) is the Euclidean metric or Euclidean norm; for
p = 1 the metric is called the Manhattan or taxi cab. If the elements are
different quantities or are in different units, they should be normalized
using, for instance:

X̂j =
(
xji − x̄

σj

)n

i=1

, (4)

where σ is the standard deviation.
When p tends to infinity, the minimax or Chebyshev distance results:

D∞ (Xj ,Xk) = maxn
i=1 |xij − xik| . (5)

4. Comparison of datapoints whose components are some or all not numeri-
cal: the Minkowski distance function with

|xij − xik| =
{

0 if xij = xik

1 otherwise . (6)

A similarity function S is more loosely defined than a metric and satisfies the
three following properties.

1. Nonnegativity: S(x, y) ≥ 0,
2. Symmetry: S(x, y) = S(y, x),
3. The more similar the objects a and b, the greater is S(x, y).

General metrics is a subject covered by the mathematical literature in mea-
sure theory. Nonetheless, practical applications in domains such as physics,
biology, or object and target tracking and identification do require special
metrics and similarity functions, some of which are discussed in [15].

Figures of merit

Generally speaking, data fusion encompasses all activities that ultimately sup-
port a decision for a user. The performance not only of the processing involved
but also of the final result must have a way to be evaluated. Figures of merit
are indicators that allow or simplify that evaluation. Blasch et al. [16] propose
a minimum set of metric figures that include: accuracy, confidence, through-
put, timeliness, and cost. One simple example of two possible figures of merit
when evaluating the performance, for instance of a program that implements
a routine for pattern recognition: number of floating-point operations involved
(execution time) and memory requirements.
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Gating

In the context of data fusion, gating are correlation-type algorithms used
to validate data. Particularly used in tracking systems (a track is a state
trajectory estimated from the observations that have been associated with the
same object), a gate defines a neighborhood of an observation or predicted
observation (data element) inside which a new observation should be. Several
gate types can be used according to the problem at hand [17].

Rectangular gate

If Ôi is a predicted observation, an observation Oi is valid if the residual
|Oi − Ôi| satisfies the condition:

∣∣∣Oi − Ôi

∣∣∣ ≤ KRGσr, (7)

where

σr =
(
σ2

O + σ2
Ô

)1/2
(8)

is the standard deviation of the residual.

Elliptical gate

In the case of an elliptical gate, the relation that the residual must satisfy is:

[
O − Ô

]T
cov
(
O, Ô

)−1 [
O − Ô

]
≤ KEG. (9)

Appropriate values for KRG are in the interval 2.81–3.09 and for KEG in
the 9.21–15.09 interval [18].

Dynamic systems often require more complicated gates [4].

FFT and cepstrum

Fourier transform

It is well known that time and frequency are reciprocal quantities and that it
is straightforward to transform a signal defined in the time domain into one
defined in the frequency domain using the Fourier transform.

The Fourier transform X(f) of a continuous time function x(t), which
changes the representation from the time to the frequency domain, can be
expressed as

X(f) =
∫ ∞

−∞
x(t)e−j2πftdt. (10)

To obtain the time representation x(t) of a signal whose frequency repre-
sentation is X(f) the inverse transform formula must be used,
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x(t) =
∫ ∞

−∞
X(f)ej2πftdf. (11)

Expressions (10) and (11) reveal that the Fourier transformation is sup-
ported on sine and cosine functions whose arguments are integer multiples of
a base value. Such functions are orthogonal and thus form a base in which
any signal can be represented.

Some authors prefer to write the transform in terms of angular frequency,
w = 2πf , which leads to the introduction of either a factor 1/2π in either
Equations (10) or (11) or (1/2π)1/2 in both Equations (10) and (11).

In most practical situations, though, the signal is only known at some finite
number of time instants ti (sampled systems). Then, if we consider a complex
series x(n) with N samples of the form x0, x1, x2, x3, . . ., xN−1 where x is
a complex number, xi = xreal + jXimag and that the series outside the range
0, N − 1 is extended N -periodic, that is, xn = xn+N for all n, the Fourier
transform of this series, the Discrete Fourier Transform (DFT) denoted by
X(k), will also have N samples and is defined by:

X(k) =
N−1∑

n=0

x(n)e−j2knπ/N n = 0, . . . , N − 1. (12)

The inverse transform will then be given by:

X(n) =
1
N

N−1∑

k=0

x(k)ej2knπ/N n = 0, . . . , N − 1 (13)

The Fast Fourier Transform (FFT) is nothing else but an efficient algo-
rithm to compute the discrete Fourier transform and its inverse. In fact, the
evaluation of the DFT requires about N2 arithmetical operations, (N − 1)2

complex multiplications, and N(N − 1) complex additions. The FFT is an
algorithm to compute the same result in only NlogN operations. Because the
inverse DFT is the same as the DFT, but with the opposite sign in the ex-
ponent and a 1/N factor, any FFT algorithm can easily be adapted for it as
well.

Many FFT algorithms only depend on the fact that e−j(2π/N) is a primitive
root of unity. By far the most common FFT algorithm is the Cooley–Tukey
algorithm [19]. This is a divide-and-conquer algorithm that recursively breaks
down a DFT of any composite size N = N1N2 into many smaller DFTs of
sizes N1 and N2, along with multiplications by complex roots of unity. In the
most well-known use of the Cooley–Tukey algorithm the transform is divided
into two pieces of size N/2 at each step, and is therefore limited to power-
of-two sizes, but any factorization can be used in general. Although the basic
idea is recursive, most traditional implementations rearrange the algorithm to
avoid explicit recursion.
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The FFT is the object of a particular chapter of this book, Frequency and
Time–Frequency Domain Analysis Tools in Measurement, so we invite the
reader to consult it or the abundant bibliography on the subject for detailed
information. Nevertheless, and because the DFT is used in the analysis of
continuous time signals and systems, the approximations involved when using
the DFT and the problems that may arise in the process that may lead to
erroneous results merit a few comments here.

As it is well known, undersampling, that is, sampling at a frequency lower
than twice the maximum frequency of the sampled signal (Nyquist rate),
causes frequency components that are higher than half of the sampling fre-
quency to overlap with the lower-frequency components. As a result, the
higher-frequency components roll into the reconstructed signal and cause dis-
tortion of the signal called aliasing. The only solution to the aliasing problem
is to ensure that the sampling rate is high enough to avoid any spectral over-
lap, or to use an anti-aliasing filter.

Signals are observed in a finite time interval. Terminating a signal after
a finite number of terms is equivalent to multiplying the signal by a window
function. The result is a distortion of the spectrum. There is a spreading or
leakage of the spectral components away from the correct frequency, which
leads to an undesirable change in the total spectrum. Because leakage results
in a spreading of the spectrum, the upper frequency may move beyond the
Nyquist frequency, and aliasing may also then result. The best approach for
alleviating the leakage effect is to choose a suitable window function that
minimizes the spreading.

DFT looks at the spectrum not as a continuous function but rather as
through a “picket-fence” because the observation is only at discrete points. If
the peak of a particular component lies between two of the discrete transform
lines it is not detected without some additional processing. It is convenient to
remember here that DFT points are separated in frequency (resolution of the
DFT) by the reciprocal of the total sampling time and that thus each line of
the DFT corresponds to a frequency whose value is obtained by multiplying
the line order by the reciprocal of the total sampling time. One procedure
for reducing this picket-fence effect is to vary the number of points in a time
period by adding zeros at the end of the original record, while maintaining the
original record intact. This process artificially changes the period, which in
turn changes the locations of the spectral lines without altering the continuous
form of the original spectrum. In this manner, spectral components originally
hidden from view can be shifted to points where they can be observed.

In the context of data fusion, the Fourier transform, and the FFT in par-
ticular, can be used for many purposes and situations, namely: (a) to con-
vert data from the time to the frequency domain for, for instance, align-
ment purposes; (b) to digitally (numerically) filter a signal (FFT of the
signal, elimination of the undesired components, inverse FFT to obtain
the filtered signal); and (c) to extract features of a signal for posterior
data fusion.



214 P. S. Girão, O. Postolache, J. M. D. Pereira

The Fourier transform provides information of high resolution in what con-
cerns the frequency contents of a signal and is thus very useful when the signal
is stationary; that, is its frequency content is time constant. For nonstationary
signals, it is often important to know not only the frequency contents but also
the time those frequencies occur. Because the Fourier transform involves an
infinite integration time, frequency resolution is extremely high but, on the
other hand, time resolution is zero. This is a manifestation of the Heisenberg
uncertainty principle applied to time–frequency: one cannot know the exact
time–frequency representation of a signal; that is, one cannot know what spec-
tral components exist at what instances of times. It is, however, possible to
know both representations with a lower bounded uncertainty. To do this, the
Fourier transform must be changed so that the integration interval is finite.
The solution used in the Short Time Fourier transform (STFT) is to divide
the signal into small enough segments, where these segments (portions) of the
signal can be assumed to be stationary using a window function, and evaluate
the Fourier transform of each segment. The width of the window must be
equal to the segment of the signal where its stationarity is valid. The result
of the STFT is a time–frequency function. As we show, the wavelet trans-
form also provides simultaneous time–frequency information of a signal and
because it outperforms the STFT we do not elaborate more about the STFT.

One final but important comment: expressions (10)–(13) consider a time–
changing signal (one-dimensional Fourier transform). However, some applica-
tions, such as those involving images, require processing multidimensional sig-
nals. Expressions (10)–(13) can be extended to higher dimensions ( [20], [21]).

Cepstrum

Another mathematical tool of interest for signal analysis and feature extrac-
tion is the so-called cepstrum (spectrum with letters of the first syllable in-
verted). The cepstrum of a signal was introduced in [22] and was defined as
the Fourier transform of the logarithm, with unwrapped phase (phase between
0 and 2π or between −π and π), of the Fourier transform of the signal; that
is:

cepstrum of signal = FT(log(FT(signal)) + j2πm) , (14)

where FT stands for the Fourier transform given by Equations (10) and (12),
log for the natural logarithm, and m is the integer required to properly unwrap
the angle or imaginary part of the complex natural logarithm function. The
independent variable of the cepstrum thus defined was labeled quefrency and
operations on cepstra labeled quefrency analysis or cepstral analysis.

Nowadays, however, it is common to relate the cepstrum of a signal not
with the Fourier transform but with the inverse Fourier transform of the
log(FT(signal)). In this case, the independent variable of the cepstrum has
time units. Software packages, such as MATLAB, have functions that eval-
uate the cepstrum this way (e.g., MATLAB Digital Signal Toolbox function
rceps, if the logarithm is calculated using the magnitude of the signal’s Fourier



Data Fusion, Decision-Making, and Risk Analysis 215

transform (real cepstrum) or cceps, if the complex logarithm of the spectrum
is used (complex cepstrum)).

By analogy with a filter that is a selective device in the frequency domain,
a lifter is a filter that operates in the cepstrum domain. Filtering of a signal
can be implemented by multiplying the cepstrum by a window in the cepstral
domain and then converting back to the time domain.

The cepstrum basically provides information about the rate of change in a
signal’s spectrum and was originally proposed and used for characterizing and
identification of echoes (e.g., radar) [23]. In terms of signal-processing methods
taxonomy, the cepstrum belongs to the class of homomorphic deconvolution
methods [24].

Nowadays, the domains where cepstral analysis is more used are sound
and voice recognition and speech and music classification [25].

Wavelets

The Fourier transform is a powerful tool for signal processing that allows the
representation of a signal as the sum of a possibly infinite number of sines and
cosines. This Fourier expansion means that we are able to determine all the
frequencies present in a signal, but has the drawback that we do not know
when they are present in time. The Fourier expansion provides frequency res-
olution but no time resolution. Because both pieces of information are impor-
tant in many applications, namely those dealing with nonstationary signals,
several solutions have been developed to overcome the Fourier transform limi-
tation and thus to represent a signal in the time and frequency domain at the
same time. The wavelet transform or wavelet analysis is probably the most
interesting solution to overcome the shortcomings of the Fourier transform.
A large number of more [26, 27] or less [28], [29, 30] mathematicalles oriented
publications exist on the wavelet transform and thus we mention here only its
basics.

Continuous wavelet transform

The wavelet transform is based on the representation of a function using base
functions generated from a single basic wavelet Ψ(t), called the mother wavelet,
by scaling and translation,

ΨS,T (t) =
1√
s
Ψ

(
t− τ

s

)
. (15)

In Equation (15), s is the scale factor, t is the translation factor, and
the factor s−1/2 is for energy normalization across the different scales. The
Continuous Wavelet Transform (CWT) is then given by:

Y (s, τ) =
∫ ∞

−∞
f(t)Ψ∗

s,τdt, (16)
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where ∗ denotes complex conjugation and f(t) is the signal to be transformed.
The inverse wavelet transform is given by

f(t) =
∫ ∞

−∞

∫ ∞

−∞
Y (s, τ)Ψs,τdτds. (17)

Contrary to the Fourier transform, the wavelet transform is not anchored
in a specific type of base function. The mother wavelet can be any function
provided that it satisfies some conditions: admissibility, regularity, and van-
ishing moments. From Equation (16) it is clear that the wavelet transform of a
one-dimensional function is a two-dimensional function whose representation
requires a three-dimensional space, amplitude, s and τ , the second variable
informing on the frequency content of the transformed signal and the third
variable on time. Because of Equation (15), the higher the s is, the lower is
the frequency.

In wavelet analysis, the use of a fully scalable modulated window solves the
signal-cutting problem (see short Fourier transform in the FFT and cepstrum
paragraphs). The window is shifted along the signal and for every position
the spectrum is calculated. Then this process is repeated many times with a
slightly shorter (or longer) window for every new cycle. In the end the result
will be a collection of time–frequency representations of the signal, all with
different resolutions. Because of this collection of representations we can speak
of a multiresolution analysis. In the case of wavelets, we normally do not speak
about time–frequency representations but about timescale representations,
scale being in a way the opposite of frequency, because the term frequency is
reserved for the Fourier transform.

Discrete wavelet transform

The continuous wavelet transform defined by Equation (16) has some limi-
tations: (a) the scaled functions used do not form an orthogonal base and
thus the information obtained is redundant. Note, however, that the redun-
dancy of the CWT is sometimes useful, for instance, to reduce sensitivity to
noise; (b) the number of functions is often unmanageable; (c) for most signals,
the wavelet transform has no analytical solution and can be calculated only
numerically.

Problem (a) is overcome by using not a continuous set of wavelet functions,
but wavelets whose scale values assume a discrete number of values (discrete
wavelets). This is achieved by:

1. Modifying the wavelet representation:

Ψj,k(t) =
1√
sj
0

Ψ

(
t− kτ0s

j
0

sj
0

)
, (18)

where j and k are integers and s0 > 1 is a fixed dilation step, so as to
be discrete Discrete Wavelet Transform (DWT). The translation factor τ0
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Fig. 2. Localization of the discrete wavelets in the timescale space on a dyadic grid.

depends on the dilation step. The effect of discretizing the wavelet is that
the timescale space is now sampled at discrete intervals. Usually, s0 = 2 so
that the sampling of the frequency axis corresponds to dyadic sampling.
Where the translation factor is concerned, τ0 = 1 also means a dyadic
sampling of the time axis. Figure 2 shows the wavelet localization in the
timescale space in this case.

2. Appropriate selection of the mother wavelet. A function is eligible for a
mother wavelet if it is oscillatory and its amplitude tends quickly to zero.
If a set of discrete wavelets satisfies

∫ ∞

−∞
Ψj,k(t) Ψ∗

m,n(t) dt =
{

1 if j = m and k = n
0 otherwise (19)

then they form an orthogonal base.

It is interesting to note that: (a) the use of discrete wavelets leads to a
series of wavelet coefficients, γ(j, k); (b) the coefficients evaluated using an
orthogonal base allow the reconstruction of the signal in a way similar to the
Fourier series for periodic signals (inverse wavelet transform),

f(t) =
∞∑

j,k=−∞
γ(j, k) Ψj,k(t). (20)

Even with discrete wavelets, an infinite number of functions are required
to calculate the wavelet transform and thus something else must be done
to overcome problem (b). Time translation is naturally limited because the
signal to transform is also time limited. Where scaling is concerned, it is
possible to reduce the number of wavelets and still have a fair result using
an additional function called the scaling function or father wavelet. Figure 3
shows a particular pair, scaling function–mother wavelet.

We invite the reader to find a detailed explanation of how a finite number of
wavelets plus a scaling function do provide an efficient solution for the wavelet
transform evaluation in the literature (e.g., in [30]). If all the functions are
orthogonal, one is in the multiresolution domain (MRA). In a very simple
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Fig. 3. Daubechies 20 scaling function (left) and Daubechies 20 mother wavelet
(right).

way but containing the essence of the explanation, a wavelet has, and must
have, a bandpasslike spectrum and the scaling function has a lowpasslike
spectrum and it is fairly easy to understand that it is possible to analyze
all the signal’s spectrum using a lowpass filter and bandpass filters as long as
the bands of adjacent filters overlap. The series of dilated wavelets together
with a scaling function act as a filter bank. This idea is also instrumental
for the implementation of a practical algorithm to calculate the wavelets and
scaling function coefficients –wavelet analysis – that takes care of problem (c).

A detailed procedure of the algorithm due to Mallat that is commonly used
and called Fast Wavelet Transform (FWT) is presented in the chapter Fre-
quency and Time–Frequency Domain Analysis Tools in Measurement in this
book. The algorithm uses not bandpass filters but highpass filters for practical
reasons. Because the signal to transform (analyze) is by nature bandlimited
and because each iteration reduces to half the bandwidth to be analyzed, the
two solutions are equivalent. It is an iterative algorithm whose number of it-
erations would be infinite for a continuous signal. However, signals must be
sampled and thus the number of iterations depends ultimately on the number
of samples. Because on each iteration the bandwidth of the signal analyzed
is halved (the number of samples used is also halved), the number of signal
samples should be a multiple of a power of 2, the power of two correspond-
ing to the number of iterations (decomposition level) and the value of the
multiple corresponding to the number of samples used in the last iteration.
If the total number of samples is 2n, then the maximum theoretical number
of iterations in n and the number of filter outputs is n + 1 (n details and 1
approximation). Figure 4 shows the process in the frequency domain. Note
that with this algorithm, based on the decomposition of the signal spectrum
in frequency subbands, the high-frequency components of the signal (detail 1)
are obtained first (first iteration, first level of decomposition), being the DC
component (approximation) of the last value output.

An alternative to the decomposition process just mentioned is the wavelet
packet decomposition algorithm. Whereas in the wavelet decomposition only
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Fig. 4. Frequency domain representation of the DWT: d1, d2, d3, details level 1, 2,
and 3, respectively; a3, approximation level 3.

the approximation (output of the lowpass filter with the number of samples
divided by two) is further decomposed, in the wavelet packet decomposition
both the approximation and the detail (output of the highpass filter with the
number of samples divided by two) are decomposed, which means that for an
n-level decomposition, instead of n+1 one gets more than 22n−1

outputs. The
reduction to half of the samples is usually called downsampling.

Mother wavelet

The mother wavelet to use depends on both the type of the signal to be
transformed and on the objective aimed with the use of the wavelet transform.
It is not possible, at least for us, to provide a clue for the selection of the best
mother wavelet and scaling function. We have used Daubechies with success,
but it depends a lot on the application. There is a lot of research on the
subject but naturally application-oriented (e.g., [31]). Contrary to the Fourier
analysis, the wavelet analysis is not supported on a single function type and,
from that point of view, is an open technique. This means that it is possible to
design a mother wavelet better suited for a specific application (e.g., [32–34]).

1.4 Applications

Wavelets were developed independently in fields such as mathematics, quan-
tum physics, electrical engineering, and seismic geology. Nowadays, the num-
ber and domains of applications of the wavelet analysis are huge. It is difficult
thus to exhaustively mention them all. Because of the number and importance
we, however, refer here to some examples: function approximation (e.g., geo-
physics and mathematics); general data analysis, namely detection of patterns,
trends, and structures in data (e.g., geophysics, medicine, biology, engineer-
ing, finance); data compression (e.g., engineering, image); de-noising of noisy
data (e.g., engineering, image, medicine); rupture and edge detection (e.g.,
engineering); and short-time phenomena (e.g., engineering, medicine).

Software

There are several programs for wavelet analysis. Perhaps the most
widespread and user-friendly is The MathWorks, Inc. MATLAB toolbox.
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Mathematica and Mathcad have similar packages: Wolfram Research, Inc.
Mathematica Wavelet Explorer, PTC (former Mathsoft) Mathcad Wavelets
Extension Pack. A fairly exhaustive reference to wavelet software is
at http://www.wavelet.org. In the table available at http://www.sm.
luth.se/grip/Research/Publications/Wavelets/ SoftwareComparison/
Gri04S_Wavelet_Software_Comparison_Table.pdf a partial software com-
parison is presented.

Kalman filtering

Data fusion, as an organized discipline, owes much to people working in de-
fense, in particular in target tracking and identification. The problematic in-
volved is in the context of dynamic systems and, in particular, of dynamic
systems where observations are subject to spontaneous or induced noise. One
of the tools that performs particularly well under those circumstances is the
Kalman filter also known as Linear Quadratic Estimation (LQE) in control
theory.

The Kalman filter [35] is a discrete-time recursive estimator, which means
that only the estimated state from the previous time step and the current
measurement together with the system process and measurement models are
needed to compute the estimate for the current state. Thus, it has the advan-
tage over batch estimation techniques that no history of observations and/or
estimates is required. Contrary to most filters that operate in the frequency
domain, it is a time domain filter.

Kalman filter underlying model

The Kalman filter model assumes the true state at time k depends on the
state at time (k − 1) according to:

x(k) = F (k) x(k − 1) + G(k) u(k) + w(k), (21)

where

• F (k) is the state transition model that is applied to the previous state
x(k − 1).

• G(k) is the control-input model that is applied to the control vector u(k).
• w(k) is the process noise that is assumed to be Gaussian discrete white

noise with covariance Q(k).

The bold-italic type indicates that the variables are vectors or matrices.
Equation (21) has several labels: state model, state equation, plant, plant
model, process equation, and process model, among others.

At time k, an observation (or measurement) z(k) of the true state x(k) is
made according to:

z(k) = H(k) x(k) + v(k), (22)
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where H(k) is the observation model that maps the true state space into
the observed space and v(k) is the observation noise, which is assumed to be
zero mean Gaussian white noise with covariance R(k). The initial state, and
the noise vectors at each time step {x(0), w(1), . . . , w(k), v(1), . . . , v(k)}
are all assumed to be mutually independent. Equation (22) also has different
labels, for instance sensor model, measurement model, observation model, and
measurement equation.

Many real dynamical systems do not exactly fit the model described by
Equations (21) and (22); however, because the Kalman filter is designed to
operate in the presence of noise, an approximate fit is often good enough for
the filter to be very useful.

Basic Kalman filter algorithm

The Kalman filter is a predictor–corrector algorithm and in each time step it
passes two distinct phases: predict and update (correct). The predict phase
uses the state estimate from the previous time step to produce an estimate of
the state at the current time step. In the update phase, measurement infor-
mation at the current time step is used to refine this prediction to arrive at a
new, more accurate state estimate for the current time step. The state of the
filter is represented by two variables: the estimate x̂(k + 1|k) of x at time k
+ 1 given observations up to and including time k, and the error covariance
matrix, P (k + 1|k), that is a measure of the estimated accuracy of the state
estimate.

In the basic Kalman filter algorithm, the prediction–updating process can
be described as follows.

Prediction:

• Prediction of the state a time step ahead, k + 1:

x̂(k + 1|k) = F (k) x̂(k|k) + G(k) u(k). (23)

• Prediction of the state error covariance at instant k + 1:

P (k + 1|k) = F (k) P (k|k) F T(k) + Q(k). (24)

• Prediction of the observation (measurement) at instant k + 1:

ẑ(k + 1|k) = H(k + 1) x̂(k + 1|k). (25)

Updating:

• Computation of the innovation, J , that is, the difference between the
observation and its prediction, at instant k + 1:

J(k + 1) = z(k + 1) − ẑ(k + 1|k). (26)



222 P. S. Girão, O. Postolache, J. M. D. Pereira

• Computation of the Kalman gain, K at instant k + 1:

K(k + 1) = P (k + 1|k) HT(k + 1)

·
[
H(k + 1) P (k + 1|k) HT(k + 1) + R(k + 1)

]−1

.
(27)

The factor to the −1 power is the inverse of the innovation covariance
matrix, S(k + 1), so Equation (27) can be written in the equivalent more
compact form:

K(k + 1) = P (k + 1|k) HT(k + 1) S−1(k + 1). (28)

• Correction of the state estimation at instant k + 1:

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1) J(k + 1). (29)

• Correction of the state error covariance at instant k + 1:

P (k + 1|k + 1) = P (k + 1|k) − K(k + 1) H(k + 1) P (k + 1|k). (30)

The Kalman gain, a variable that represents the gain which can be taken
from the received measurement, relies on the knowledge about the variances
of all the previously taken measurements and incorporates the variance of the
new measurement in each step. The correction of the state error covariance
depends on the Kalman gain definition.

The basic Kalman filter briefly introduced is quite limited because it
applies only to discrete-time processes and both the state model and the
measurement model are linear, that is, the process is governed by a linear
stochastic difference equation, and the noise of both the process and the mea-
surement is Gaussian. To overcome this limitation, several changes have been
introduced. Such is the case, for instance, of the Extended Kalman Filter
(EKF), that overcomes the linearity constraint, and the Kalman–Bucy filter,
which is a continuous-time version of the Kalman filter. The reader will easily
find literature on the different types of Kalman filters (e.g., [36]– [38]).

Applications and software

The estimation of system’s states using past and present observations is a non-
linear filtering problem. The Kalman filter is an Minimum Mean Square Error
(MMSE) optimal estimator equivalent to the optimal nonlinear estimator for
systems described by linear models with Gaussian noise and in this context
the Kalman filter is one of the mathematical tools more used to solve problems
involving the estimation theory. The domains of applications are thus many,
just to name a few: control, telecommunications, macroeconomics, economet-
rics, medicine and biology, and weather forecasting.
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The Kalman filter is also used in multisource (multisensor) estimation.
There exist several measurement fusion methods for Kalman-filter-based mul-
tisensor data fusion ([39]– [42]). Two examples are (a) merging of the multi-
sensor data through the observation vector of one Kalman filter (centralized
Kalman filter fusion); and (b) combination of the observation vectors of the
Kalman filters that individually process each sensor’s output data (decentral-
ized Kalman filter fusion).

There is a lot of software for Kalman filtering. MATLAB, in its Con-
trol System toolbox, includes the possibility of designing Kalman filters both
for steady-state and for time-varying systems or Linear Time-Invariant (LTI)
systems with nonstationary noise covariance and also for simulation purposes.
Other toolboxes for MATLAB are available from individual contributors (e.g.,
KALMTOOL, from Magnus Nrgaard). Generic Kalman Filter software, a pro-
gram written in ANSI C, and O-Matrix with an add-on called Kalman Filter
Studio Design from Harmonic Software are alternatives to MATLAB. Math-
ematica and Excel with add-ons and linkage software can also be used for
Kalman filter design and simulation.

Principal components analysis (PCA)

Principal Components Analysis (PCA) is included in a group of techniques
that also includes factor analysis and principal co-ordinates analysis. In what
follows, we only refer to the more common linear PCA able to capture only
the linear features of the data, and not to nonlinear PCA that is served by
several different algorithms (e.g., [43]–[45]).

One is often confronted with the problem of extracting information about
poorly known processes from data. When multivariate data are collected, it
is common to find some correlated variables. One implication of these corre-
lations is that there will be some redundancy in the information provided by
the variables. In the extreme case of two perfectly correlated variables one is
redundant, which means that no significant information is lost if we use only
one of them. Principal components analysis exploits the redundancy in mul-
tivariate data, enabling us to detect patterns in the variables and to reduce
the dimensionality of datasets without a significant loss of information.

The problem of dimensionality reduction is often of paramount importance
because: (a) the complexity of most algorithms that operate on data increases
sometimes exponentially with its size; and (b) the practical implementation
of such algorithms requires high-performance processing systems (computers)
and even then, the processing time may be prohibitive. Two approaches are
available to perform dimensionality reduction: feature extraction, consisting
in creating a subset of new features by combinations of the existing features,
and feature selection, which consists in choosing a subset with the most infor-
mation of all the features. Feature extraction techniques are grouped into two
categories: signal representation, when the goal of the feature extraction is to
represent the data accurately in a lower-dimensional space, and classification,
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when the goal of the feature extraction is to enhance the class-discriminatory
information in a lower-dimensional space. PCA is a signal representation fea-
ture extraction technique.

Feature extraction refers to identifying the salient aspects or properties of
data to facilitate their subsequently use, for instance, in a data fusion process
or decision-making. Features are a set of derived variables, functions of the
original problem variables, which efficiently capture the information contained
in the original data.

Principal components analysis is probably the most common data dimen-
sion reduction technique and involves a mathematical procedure that trans-
forms a number of (possibly) correlated variables into a (smaller) number of
uncorrelated variables called principal components. The first principal com-
ponent accounts for as much of the variability in the data as possible, and
each succeeding component accounts for as much of the remaining variability
as possible. PCA is thus a statistical method that based on the determination
of the eigenvectors and eigenvalues of the data covariance matrix allows the
representation of the original data in a lower-dimensional space. The eigen-
vectors of the covariance matrix are an orthogonal base where the original
data can be represented and the space dimension reduction is achieved by
ordering the eigenvectors in the order of descending eigenvalues (largest first)
and using only the m of the n eigenvectors with larger eigenvalues for data
representation.

PCA algorithm

Let us suppose that we have a set of n values of i variables X =
(x(1)

1 , x
(1)
2 , . . . , x

(1)
n , x(2)

1 , x
(2)
2 , . . . , x

(2)
n , . . . , x(i)

1 , x
(i)
2 , . . . , x

(i)
n ). The PCA al-

gorithm can be summarized as follows.

Step 1 . Mean subtraction: for each variable determine the mean value and
subtract it to each i value of that quantity. A new set of values is obtained:
X ′ = (x(1)′

1 , x
(1)′

2 , . . . , x
(1)′

n , x
(2)′

1 , x
(2)′

2 , . . . , x
(2)′

n , . . . , x(i)′

1 , x
(i)′

2 , . . . , x
(i)′

n ).

Step 2 . Calculate the covariance matrix: each element of this square matrix,
C, is given by

Cj,k =

∑n
p=1

(
x

′(j)
p − x(j)

)(
x

′(k)
p − x(p)

)

(n− 1)
, (31)

where Cj,k is the row j, column k element corresponding to the variance
between variables j and k, and − represents the mean value.

Step 3 . Calculate the eigenvectors and eigenvalues of the covariance matrix:
the eigenvectors V and eigenvalues λ are such that the following matrix equa-
tion is satisfied,

CV = λV . (32)
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Step 4 . Choose components and form a feature vector: according to the eigen-
values, choose the eigenvectors to be used in the representation of the original
data. The eigenvectors with higher eigenvalues are the principal components
of the original dataset. These eigenvectors constitute the feature vector, F .

Step 5 . Derivation of the new dataset: the new dataset, Y , is obtained using
the selected eigenvectors as follows,

Y = F TX
′T, (33)

where T means transposed matrix. Equation (33) reveals how to recover the
original data from the new data. Because the inverse of the feature vector is
equal to the feature vector transposed, we have:

X
′T = FY . (34)

The original set is obtained by adding the mean value of each variable to
the corresponding X

′T values.

PCA applications and software

Principal components analysis is sometimes one of the first steps in data pro-
cessing. All domains of application can benefit from this processing technique,
but image processing is probably one of the most benefited.

A program to implement PCA can be easily developed using any program-
ming language. Nevertheless, software for the purpose is available. MATLAB,
for instance, has a Multivariate Statistics toolbox with a function, princomp,
which can output most of the information and data related with PCA. Many
other solutions exist, namely XLSTAT, an add-in for Windows Microsoft Ex-
cel, and multivariate statistics packages such as the one available from Kovach
Computing Systems.

Artificial neural networks

Artificial neural networks (ANNs) are processing structures made of artificial
neurons. An artificial neuron is an entity that establishes a pre-defined rela-
tionship between its input and its output. Figure 5 represents the so-called
scalar neuron with bias. The output o is a scalar given by

Fig. 5. Artificial neural scalar neuron with bias.
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o = f (i∗W + b) , (35)

where f is neuron’s activation or transfer function (e.g., hard-limit (McCul-
loch and Pitts threshold function), linear, sigmoid [46]) whose argument de-
pends on the input scalar i, which is multiplied by a scalar weight, W , and on
a constant value, b (bias).

In artificial neural networks, the neurons’ number and transfer function
and interconnections between neurons may differ significantly but the over-
all objective of the network is to materialize a function F between two sets
of variables, input X, and output Y , F : X ′Y . Figure 6 represents a pos-
sible organization of a neural network. The case depicted corresponds to a
processing structure whose information moves in only one direction, forward,
from the input nodes to the output nodes (one only, in this case). The neu-
rons are organized in layers and the input of each neuron depends on the
output value of the neurons to which it is connected. Neurons of the hidden
layer are of the perceptron type [46,47]. They are like the one represented in
Figure 5 but having several inputs that are multiplied by possible different
weights.

The underlying idea of neural networks is that neurons’ weights and bias
can be adjusted so that the network materializes F or exhibits some desired
behavior. The process of adjustment is called network training or learning
process. It consists basically in the following: weights and biases are initialized,
for instance, randomly; a set of input values Xt whose output set values Yt

are known, is input to the network and the output of the network, Y , is
calculated; Y and Yt are compared and the weights’ and biases’ values are
changed until a cost function is usually minimized. There are three different
learning paradigms [46] – supervised, unsupervised, and hybrid – several cost

Fig. 6. Topology of a feedforward neural network. Arrows represent the weights of
the neurons.
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functions, and several algorithms for training neural network models, most of
them employing some form of gradient descent.

In terms of architecture, and taking into account data flow, ANNs can
be classified into two types: feedforward and recurrent . Contrary to feed-
forward networks (FFANNs), recurrent neural networks (RANNs) are process-
ing structures with bidirectional data flow. Where as a feedforward network
propagates data linearly from input to output, RANNs also propagate data
from later processing stages to earlier stages. MultiLayer Perceptron (MLP),
Radial-Basis (RBF), and Kohonen self-organizing networks are examples of
FFANNs [46]; the Elman Network or simple recurrent network [48] shown in
Figure 7, whose main task is to produce particular output sequences in re-
sponse to specific input sequences (spatial and temporal pattern learning and
recognition capability), is an example of a RANN.

The most adequate ANN to use depends on the problem to solve. Artificial
neural networks can be used for many purposes but their main applications
may be included in one of the following categories:

• Function approximation: for example, sensor static characteristic model-
ing, sensor data correction, and disturbance factor compensation, process
modeling and control, fault detection and diagnosis.

• Time series prediction/forecasting: for example, dynamic sensor charac-
teristics modeling, electric power forecasting, weather forecasting, water
quality forecasting, financial and sales forecasting.

• Classification: for example, acoustic sound recognition (dolphin whistles),
target recognition, medical diagnosis, system diagnosis.

• Data mining: for example, clustering, data visualization, data extraction.

Artificial neural networks are processing structures with a huge domain
of applications. In many cases they outperform other more traditional pro-
cessing techniques and algorithms. Theory and practice of neural networks
are still under development, but many aspects are already well established.
For time-independent applications or when input values are equally spaced
in time, and from the several neural network types and architectures, two of

Fig. 7. The Elman network. The output of the network at time tk depends not only
on the inputs I1, I2,. . .. In at time tk but also on the output of the hidden layer at
time tk−1 stored at D. The hidden neuron is usually of the sigmoid type and the
output neuron is of the linear type
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the feedforward type are clearly favored by users: multilayer perceptron and
radial basis function. When the inputs are time-dependent and not equally
spaced in time, only networks of the recurrent type are effective for spatial
and temporal pattern learning and recognition capability.

MLPs and RBFs are essentially different: (i) MLPs have one or several
hidden layers, where as RBFs have only one hidden layer; (ii) MLPs have hid-
den neurons with nonlinear activation functions (nonlinear hidden layers) and
output neurons with linear or nonlinear activation functions (linear or nonlin-
ear output layer), where as RBFs have a nonlinear hidden layer and a linear
output layer; (iii) in MLPs, the argument of the hidden neurons is obtained
through a scalar product; in RBFs, it is calculated using an Euclidean norm;
(iv) whereas MLPs are global approximators, RBFs are local approximators;
(v) MLPs use supervised learning and RBFs hybrid learning.

In spite of all these differences MLPs and RBFs are two competing non-
linear function approximation methods because they are both universal func-
tion approximators, meaning that given enough neurons they can model any
function to the desired accuracy. The tasks they can perform are also basi-
cally the same: function approximation, classification, prediction, and control.
A question that naturally arises is thus: when should one use an MLP and
when should an RBF network be used instead? To the best of our knowledge,
there is not a decisive answer to such question. It is well known that some
types of applications better fit MLPs and others RBFs but several factors
may completely change things: size of the training and testing sets, number
of inputs and outputs, number of neurons, or level of confidence required for
the output(s). Generally speaking, one can say that RBFs are better classi-
fiers than MLPs when the size of the input data is large; they provide better
local approximations with better repeatability but for global approximation
the number of neurons must be higher than in an MLP. In terms of training,
backpropagation methods used in MLPs, namely the Levenberg–Marquardt
algorithm, are particularly efficient but that does not mean that they out-
perform the hybrid methods of RBFs because these networks tend to be less
complex than MLPs.

Some of the major issues of concern today related with artificial neural
networks are scalability, testing, and verification. There are several software
applications with powerful and user-friendly neural networks toolboxes (e.g.,
MATLAB) but programs sometimes become unstable when applied to larger
problems. Testing and verification is a critical issue for applications in sensitive
domains such as the defense, nuclear, and space industries. The mathematical
theories used to guarantee the performance of an applied neural network are
still under development and no real profit has been taken from the intrinsic
parallel processing structure of most of ANNs.

Pulse-Coupled Neural Networks (PCNNs) are a very special type of neural
network that resulted from the work in biology mainly of Eckhorn et al. [49].
Later, Johnson [50] and others developed the algorithm proposed by Eckhorn.
PCNNs are basically used for image processing and for image fusion (e.g., [51]).
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Software

As mentioned before, MATLAB has a Neural Networks toolbox that allows
us not only to design and train the most common neural networks but also
to design and train user-defined networks. It is a powerful toolbox whose use
requires a fair knowledge of artificial neural networks and of the possibilities
of each topology. The same can be said about Mathematica and Mathcad
solutions.

Clustering

Clustering deals with methods and techniques to find a structure in a collec-
tion of unlabeled data. A loose definition of clustering is the process of organiz-
ing objects (data) into groups whose members are similar in some way [53].
A cluster is therefore a collection of objects that are similar among them and
are dissimilar to the objects belonging to other clusters. The similarity cri-
terion is either (a) distance: two or more objects belong to the same cluster
if they are close according to a given distance—distance-based clustering—or
(b) common concept : two or more objects belong to the same cluster if this
one defines a concept common to all those objects—conceptual clustering.

Clustering is included in the unsupervised learning domain. Contrary to
supervised classification techniques, in clustering techniques no a priori infor-
mation about classes is required; that is, neither the number of clusters nor
the rules of assignment into clusters are known. They have to be discovered
exclusively from the given dataset without any reference to a training set.

Cluster analysis is served by many different algorithms. For simplicity, it
would be interesting to organize them into types or classes, but, unfortunately,
we do not know any classification broadly used or mentioned in the literature.
This is an inconvenience in the context of this chapter, because it would
simplify the text presentation. Thus, we use one simple classification that
probably covers all the known methods, enumerate some of the most common
and known techniques, and make more detailed considerations about two of
them.

Clustering methods/algorithms

We divide clustering methods into five types: partitioning algorithms, hier-
archical algorithms, model-based methods, grid-based methods, and density-
based methods [15,52,54].

Model-based methods consist in using certain models for clusters and at-
tempting to optimize the fit between the data and the model.

Although generally classified as a special kind of artificial neural network,
grid-based methods use multiresolution grid data structures and dense grid
cells to form clusters.

In density-based methods, clustering is based on local criteria such as
density-connected points.
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Partitioning algorithms

Simply put, partitioning algorithms classify n objects into k clusters. Although
partitioning is usually associated with nonoverlapping, for simplicity we ad-
mit that the clusters may or may not overlap (exclusive and overlapping algo-
rithms). k-means clustering and its many variations (e.g., adaptive k-means
and hard k-means) are of the exclusive type, whereas fuzzy C-means is an
example of the overlapping type.

k-means clustering [55] (not to be confused with k nearest neighbor, k-NN,
clustering [56, 57]), is probably the most widespread partitioning clustering
algorithm. The algorithm can be summarized in the following sequence of
steps:

1. Define the number k of clusters in which data (objects) are to be classified.
2. Place k points into the space represented by the objects that are being

clustered. These points represent initial group centroids.
3. Assign each object to the group that has the closest centroid.
4. When all objects have been assigned, recalculate the positions of the k

centroids.
5. Repeat Steps 3 and 4 until the centroids no longer move.

Figure 8 shows a possible evolution of the cluster centers mi if a minimum-
distance classifier is used, that is, if x is included in cluster i if the distance
||x−mi|| is the minimum of all the k distances.

Although it can be proved that the procedure will always terminate in
a number of iterations smaller than the size of the data, and in spite of its
aptitude to accommodate new data, the k-means algorithm does have some
weaknesses:

1. It is a numeric data-oriented algorithm. Results depend on the metric
used [58]. A possible solution is to normalize each variable by its standard
deviation, although this is not always desirable.

2. Results depend on the value of k. To our knowledge, there is no general
theoretical solution to find the optimal number of clusters for any given
dataset. A possible approach is to compare the results of multiple runs

Fig. 8. Partitioning clustering: cluster centers’ possible evolution [53].
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with different k classes and choose the best one according to a given
criterion.

3. The initialization is not specified. Usually, k of the objects are randomly
chosen.

4. Results depend on the initial values, and it frequently happens that sub-
optimal partitions are found. This problem can be minimized by running
the algorithm with different starting points.

5. It is unable to handle noisy data and outliers.
6. It is unsuitable when clusters are nonconvex. Fuzzy c-means algorithms

[59,60] are often a solution for this problem.

Hierarchical algorithms

Hierarchical algorithms find successive clusters using previously established
clusters. Hierarchical algorithms can be further divided into two types: ag-
glomerate and divisive, the first being by far the most used of the two. Figure 9
shows, in a tree representation (dendrogram), how the original data are pro-
cessed in an agglomerate hierarchical algorithm. A divisive algorithm would
have the same dendrogam but the sequence would be inverse; that is, it would
start with the abcdef cluster. Cutting a dendrogram at any level defines a
clustering and identifies clusters.

Given a set of N items to be clustered and an N × N distance (or simi-
larity) matrix, the basic process depicted in Figure 9 can be summarized as
follows [61]:

1. Assign each item to a cluster (N items, N clusters).
2. Find the closest (most similar) pair of clusters and merge them into a

single cluster, so that now you have one cluster less.

Fig. 9. Original data and dendrogram of hierarchical agglomerate clustering algo-
rithms. The distance metric used is the Euclidian distance.
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3. Compute distances (similarities) between the new cluster and each of the
old clusters. This can be done in different ways depending on how the dis-
tance (similarity) is computed (single-linkage, complete-linkage, average-
linkage, median-linkage clustering).

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of
size N .

The main weaknesses of agglomerative clustering methods are the time
complexity, which depends on the square of the number of total objects, the
likelihood of the algorithm to be stuck in a local minimum, and the impossi-
bility to accommodate new data.

Applications and software

Clustering is an extremely useful and powerful tool in applications involving
pattern recognition (i.e., automatic identification of patterns in data without
human participation in the decision process, e.g., marketing, planning) and
classification (e.g., book ordering in libraries, document classification, and
group identification at the World-Wide Web).

Where software is concerned, multivariate statistics packages usually have
clustering analysis capability. The Multivariate Statistics toolbox from MAT-
LAB, for instance, is a good example, providing functions for both k-means
and hierarchical clustering analysis. Other examples: statistiXL, an add-in
for Microsoft Excel, Advanced Statistics Module of StatPac, and multivariate
statistics packages such as the one available from Kovach Computing Systems.

Support vector machines

Support Vector Machine (SVM) identifies a specific type of algorithms basi-
cally for classification purposes that use supervised learning. Because they use
only part of the data available (vectors)—support vectors—SVMs also help
to solve problems associated with the dimensionality, that is, data size. In as
much as publications from V. Vapnik (e.g., [62]) and particularly [63] with the
help of [64] provide detailed information about SVMs, we restrict ourselves
here to an introductory note on the subject.

Although not limited to that case, the basic idea of SVMs is better under-
stood in the context of two-class classification, that is, when data are to be
classified in two classes.

SVMs aim at finding the hyperplane separating the two classes that max-
imizes the margin between it and the examples in the training set, maximum
margin classifier. To achieve this, it may be necessary to map the training
data into another space. In the case of nonlinear classification, that is, when
the classes are not separable by hyperplanes, the data should be mapped using
kernel functions in a higher-dimensional space where a hyperplane separating
the classes exists (see Figure 10).
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Fig. 10. Mapping 2D data in 3D transforms the line separating the classes into a
plane, simplifying the classification. After classification in 3D, the solution must be
mapped back to 2D.

Margin maximization, which uses only part of the data, is important be-
cause the higher the margin is, the better the classifier will be, that is, the eas-
ier it will be to classify new data. Finding the best hyperplane, that is, the one
whose distance to the nearer datapoints is maximal, is an optimization prob-
lem usually resolved in the context of quadratic programming optimization.

Applications and software

As mentioned before, SVMs are important tools for classification and data size
reduction purposes. Applications requiring pattern recognition and decision-
making based on data mining or classification (e.g., [65]) are probably those
that benefit more from SVMs.

SVMs are currently served by several available software solutions. Some
of them, such as the MATLAB Bioinformatics toolbox and LIBSVM, can be
found at http://en.wikipedia.org/wiki/Support_vector_machine.

General-purpose software for data mining or classification, such as Ran-
domForests from Salford Systems, also normally has SVM capability.

Self-organizing maps

A Self-Organizing Map (SOM) or self-organizing map networks, introduced
by T. Kohonen [66], are a special type of unsupervised single layer feedforward
artificial neural networks. An SOM is a data reduction and, unintentionally,
a clustering technique used basically for pattern recognition, classification,
and mainly for data visualization purposes. A word about visualization: data
with more than three dimensions (3D data) are difficult or even impossible to
visualize. SOMs map the input data (feature space) in a 2D space (usually)
preserving the distance between clusters in the input data space. This means
that neighboring 2D points represent very similar patterns and thus a fairly
accurate 2D representation of the input data.
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Incremental-learning SOM algorithm

Training 2D-SOMs, those that as mentioned are usually used, consists in the
assignment operation from the ensemble of data vectors (input data normal-
ized) to an ordinary two-dimensional array of nodes (output). The number of
nodes depends on the discretization level one wants the output representation
to have. Nodes are usually arranged in either rectangular or hexagonal config-
uration. Each node, i has a reference vector mi associated. The components of
that vector, whose dimension is the same of the input data, are called weights
and must be initialized, for instance, randomly (not very efficient).

The incremental-learning SOM algorithm is iterative. Upon initialization,
the algorithm takes one input vector and looks for the node whose vector is
closer, according to some metrics, to that input vector. This node is called
the winner or Best Matching Unit (BMU) and this strategy is called winner-
take-all, competitive learning. Once identified, the components or weights of
the BMU are actualized as well as those of the nodes in its neighborhood more
similar to the input vector according to

mi(t+ 1) = mi(t) + hc(x),i (x(t) − mi(t)) , (36)

where t is the step index. Index c (“winner”) is defined by the condition:

‖x(t) − mc(t)‖ ≤ ‖x(t) − mi(t)‖ ∀i. (37)

hc(x),i is called the neighborhood function. It is like a smoothing kernel that is
time-variable (step order) and its location depends on condition (37). It is a
decreasing function of the distance between the ith and cth map nodes.

The most used neighborhood functions are:

1. Gaussian:

hc(x),i = α(t) exp

(
−‖ri − rc‖2

2σ2(t)

)
, (38)

where 0 < α(t) < 1 is the learning-rate factor or function, which decreases
monotonically with the step order, rc ∈ R∈

2 and ri ∈ R∈
2 are the vecto-

rial locations in the display grid, and σ(t) corresponds to the width of
the neighborhood function, which decreases monotonically with the step
order.

2. Circular or bubble:

{
hc(x),i = α(t) if ‖ri − rc‖ is smaller than a given radius
hc(x),i = 0 otherwise (39)

The assignment of a BMU to one input vector and the actualization of the
nodes’ weights go on until all input vectors have been assigned to a node or
until a predefined number of iterations has been reached.
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A positive aspect of SOMs is their good performance. They classify data
well and it is easy to evaluate their own quality so that one can actually cal-
culate how good a map is and how strong the similarities between objects are.

SOMs have, however, some drawbacks or limitations of which one has to
be aware. The first problem that may come up has to do with the fact that to
generate a map, a value for each component of each input vector is needed.
Sometimes this is not possible and often it is very difficult to acquire all of
the required data. This limiting feature to the use of SOMs is often referred
to as missing data.

Another problem is that every SOM is different and finds different simi-
larities among the sample vectors. SOMs organize data so that at the end, the
samples are usually surrounded by similar samples. However, similar samples
are not always near each other and it is not always obvious that the map is
not a good map.

Finally, SOMs are very computationally expensive, which is a major draw-
back because as the dimensions of the data increase, dimension reduction
visualization techniques become more important, but unfortunately then com-
putation time also increases.

Applications and software

As already mentioned, although initially designed as a visualization tool for
large-dimensional data, SOMs have been largely used for pattern recognition
and classification, namely of high-dimension data. In fact, the properties of
these networks make them a fairly good classifier. The classification of a new
vector once the SOM is trained consists in the determination of the BMU.

A neural network-based clustering tool in Excel using SOMs is avail-
able from Angshuman Saha at http://www.geocities.com/adotsaha/NN/
SOMinExcel.html. Databionic ESOM Tools is also an interesting free soft-
ware available at http://databionic-esom.sourceforge.net.

Visualization and data-mining-oriented software usually have the capabil-
ity to train and use trained SOMs. The MATLAB Neural Network toolbox
and Mathematica Machine Learning Framework are, however, probably the
more accessible solutions for someone wishing to design and use self-organizing
maps.

Voting

Voting is probably the oldest fusion decision method. It is also the most basic,
the one to which one recurs when having little information about the data to
fuse. The method can be used at different stages of the fusion process and,
as the name suggests, the basic idea is to obtain an output by weighing in-
puts in some way. Weights are usually attributed as votes. Common voting
methods are:



236 P. S. Girão, O. Postolache, J. M. D. Pereira

• Majority: each input has a certain number of votes and the output is
derived from the most voted input.

• Plurality: as majority, but the output is derived from the more voted in-
puts.

• Consensus: an output is obtained only if all the inputs are equal under a
certain criterion.

• Weighted: votes or weights are given to each input and the output is de-
rived by a weighed combination of all the inputs.

The votes or weights must be attributed according to some prior knowl-
edge. When possible, the use of probabilities is an interesting solution because
it allows the updating of votes/weights (e.g., using Bayes rule) as new data
are obtained.

Inference

Inference is the act or process of deriving a conclusion based solely on what
one already knows. There are basically two forms of inference: inductive and
deductive. In deductive inference one progresses from certain premises to cer-
tain conclusions. In inductive inference, one tries to establish general principles
from a limited number of observations. Both are important in decision-making
and risk analysis and it is also in this context that the present paragraph is
included in this chapter.

From the “mathematical approach” point of view, several approaches are
possible. We mention here three: the Bayesian approach, the Dempster–Shafer
method, and the fuzzy-based approach. They correspond to solutions better
suited for different types of problems, depending on the knowledge one has of
them and how that knowledge can be quantified. Each approach represents a
different way of expressing uncertainty.

Bayesian inference

Bayesian inference is a probability-based statistical inference in which evi-
dence or observations are used to update or newly to infer the probability
that a hypothesis may be true. Bayesian inference is based on the well-known
Bayes’ rule,

P (A|B) =
P (B|A) P (A)

P (B)
, (40)

where P (A) and P (B) are the probabilities of A and B and P (A|B) and
P (B|A) are the probabilities of A given B and of B given A, respectively. If
variables A and B are independent, P (A|B) = P (A) and P (B|A) = P (B),
and Equation (40) is equivalent to saying that P (A,B) = P (B,A). In that
case, B does not affect P (A).

It is common to think of Bayes’ rule in terms of updating our belief about
a hypothesis A in the light of new evidence B. Specifically, our posterior belief
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P (A|B) involves the multiplication of our prior belief P (A) by the likelihood
P (B|A) that B will occur if A is true. P (B) is called evidence. The power of
Bayes’ rule is that in many situations where we want to compute P (A|B) it
turns out that it is difficult to do so directly, yet we might have direct infor-
mation about P (B|A). Bayes’ rule enables us to compute P (A|B) in terms of
P (B|A).

From Equation (40) it is clear that P (A|B) requires all other three prob-
abilities. However, when comparing possibilities (different A) in the light of
the same new evidence, P (B) is irrelevant because it is the same for all A.
Note also that each time we calculate P (A|B), that value can be used as a
prior for posterior updating upon a new evidence.

The objective of Bayesian inference is to support a decision of choosing
among a set of N different alternatives Ai, based on an observation B. In this
case, for each Ai, P (Ai|B) is calculated and the decision made according to the
N values obtained. When the decision is based on multiple observations, M
(e.g., multiple sensors measurements) then B is a vector with M elements. For
each i of the N alternatives, P (Ai|(B1, B2, . . . , Bm)), Equation (40) becomes:

P (Ai|B1, B2, . . . BM ) =
P (Ai)

∏M
m=1 P (Bm|Ai)∑N

i=1

∏M
m=1 P (Bm|Ai)

(41)

and, as before, it is the N values obtained by calculating Equation (41) for
the N alternatives that support the decision.

Dempster–Shafer model

Sometimes, situations cannot be described by a full set of probabilities because
some values are unknown. The Dempster–Shafer approach is also a statistical
one but that takes into consideration situations when the level of uncertainty
is not compatible with a description through classic probabilities and that
some of the probabilities are thus not known, or are in conflict.

The Dempster–Shafer model ( [67]– [69]) is a belief-based model but there
are other models of this type also identified by upper and lower probabilities
models [70]. These models’ aim is to model someone’s degrees of belief and
for that purpose a function or functions are introduced.

In any model for belief two components must be considered: one that
describes the state of belief and the other that defines how to update the be-
lief given new information. Dempster calls the plausibility function the upper
probabilities and belief function the lower probabilities and the values of these
functions can be calculated from a combination of the probabilities assigned
to individual events or statements of the problem’s state space. As probabili-
ties are the support of a decision in Bayesian inference, plausibility and belief
values support a decision when a Dempster–Shafer inference is used.

It is out of the question to give a detailed description of the Dempster–
Shafer model here or even an exemplification of how it works (e.g., [70]), the
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best way to understand it. To readers interested in the upper and lower prob-
abilities model and in particular in the Dempster–Shafer model we suggest
the reading of [71].

Fuzzy inference

Fuzzy inference is the process of formulating the mapping from a given input
to an output using fuzzy logic. It tackles problems characterized by vagueness
and ambiguity when it is not possible to assign a single value or a proba-
bility to a quantity or statement. Fuzzy logic uses fuzzy sets introduced by
Zadeh [72, 73], that is, sets without a crisp, clearly defined boundary. They
can contain elements with only a partial degree of membership expressed by
a membership function whose values are reals in [0,1].

Fuzzy inference consists of basically five distinct steps:

• Initialization: definition of the fuzzy variables and corresponding member-
ship functions and of the rules and hedges.

• Fuzzification: mapping from “crisp” numerical values to the membership
functions of the fuzzy variables.

• Rule evaluation: the rules defined are evaluated using a fuzzy set logic.
• Aggregation: the results of the rules are aggregated so that they are

mapped to the output variables.
• Defuzzyfication: mapping from fuzzy output variables to crisp numerical

values.

The fuzzy set logic is similar to normal Boolean logic but because variables
do not have only values 0 or 1, the definition of operators must be redefined.
The three basic operators in fuzzy logic are OR, AND, and NOT defined as
follows.

A OR B = Max(A,B)
A AND B = Min(A,B)

NOTA = 1 −A

A fuzzy rule is assembled as follows.

IF antecedent THEN consequent

According to the structure of the consequent, fuzzy inference systems are ei-
ther of the Mamdani (also labeled Zadeh–Mamdani) type [74] or Sugeno (also
labeled Sugeno–Takagi) [75] type.

A hedge is an operator that is applied on a membership function and de-
fined in such a way to reflect their linguistic meaning. Figure 11 shows the
change of the membership function associated with the height of a person
when hedges “very short” and “very tall” are applied (the operator used was
“power of two”).

In fuzzy inference, the value or values obtained upon defuzzification are
the support of the decision.
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Fig. 11. Change in membership function associated with the height of a person
when hedges very short and very tall are applied.

Software

Calculations involved both in basic Bayesian and Dempster–Shafer inferences
are fairly easy to implement. Nonetheless, software like Gister from SRI In-
ternational provides functionalities that may be useful. Fuzzy inference algo-
rithms are less easy to program, but both Mathematica and MATLAB have
a well-documented package/toolbox that makes user’s life easier.

1.5 Implementing data fusion

Level and architecture

In Sections 1.1 and 1.2 we saw that data fusion can be made at different levels
using different architectures. The consideration of those aspects is obviously
important, in particular from the conceptual, taxonomic, and organizational
points of view, but practically less pertinent. In fact, data fusion serves appli-
cations and normally they “tell you” what should be done. This is evidenced
with the two examples that we present next.
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Technique/algorithm selection

The choice of the technique or algorithm to use is often not easy because
many constraints can exist. Time, programming resources available, technical
capacity, and expertise are only some of possible factors to take in consider-
ation. Some tips that can help: (a) investigate those solutions that are more
generally followed to resolve the problem in the specific domain of appli-
cation you face and try to evaluate which is the best; (b) try to use tech-
niques and algorithms that you know by your own experience and whose
result you are able to control; and (c) if you are looking for the best solution,
you have to compare the results you obtain with each solution and choose
accordingly.

Commercial software

In the paragraphs of Section 1.3, and when we judged pertinent, we pro-
posed software that implements the techniques and algorithms considered
then. Some of the references are to multipurpose software packages (e.g.,
Synapse from Peltarion Corporation) and most of the referenced software
is accompanied either by a helper or a tutorial to assist the user. Nonethe-
less, in our opinion, Mathworks’ MATLAB (http://www.mathworks.com),
followed by Wolfram Research Mathematica (http://www.wolfram.com), is
the best overall solution because it is able not only to answer the user needs,
but also because the documentation it provides is exhaustive and usually of
high quality. Readers are invited to verify this by themselves. Another advan-
tage of MATLAB is the interfacing capabilities with other software packages,
namely with Microsoft Excel (Mathematica also has the same possibility) by
means of MATLAB Excel link toolbox and MATLAB Builder for Excel and
LABVIEW from National Instruments, a worldwide used software for data
acquisition systems.

Examples

The two examples that follow are presented to illustrate the use of some of the
techniques of the past paragraphs and to support the comments made then.

Example 1: Air pollution detection using gas sensors

Suppose that we want to detect air pollution based on the measurement of
a set of N gases and vapors using low-cost gas sensors. The gas sensors are
not very selective (i.e., the output of a sensor depends on more than one
gas/vapor) and temperature and humidity are influence quantities. Pollution
detection depends on the interpretation of the outputs of all the sensors and
thus we are in the presence of a multisensor fusion problem involving (at least)
and by this order the following steps:
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1. Temperature and humidity correction of sensors outputs—sensor inverse
modeling with influence quantities correction (compensation).
With additional temperature and humidity sensors, one could implement
either: solution 1—one neural network whose inputs were the normalized
values of temperature, humidity, and sensor outputs and whose output
would be the N temperature and humidity corrected values of the sensor
outputs; or solution 2—N neural networks, one for each sensor. The input
of each network would be temperature, humidity, and sensor’s output and
network’s output would be the temperature and humidity corrected value
of the correspondent sensor. The networks have to be trained using the
values output by the sensors under temperature and humidity controlled
conditions when submitted to calibrated samples of the gases and vapours
at stake.
Due to the poor selectivity of the sensors, solution 2, although more com-
plex and computationally expensive, would be better.

2. Correction of sensors’ poor selectivity. The problem is to know what per-
centage of a sensor’s output is due to each gas/vapor. This is equivalent
to looking for the values of the elements of the matrix αij that relates the
concentrations Cj with sensor outputs Oi,

⎡

⎢⎢⎢⎢⎣

O1

· · ·
Oi

· · ·
ON

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

α11 α12 · · · · · · α1N

· · · · · · · · · · · · · · ·
αi1 · · · αij · · · αiN

· · · · · · · · · · · · · · ·
αN1 αN2 · · · · · · αNN

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

C1

· · ·
Cj

· · ·
CN

⎤

⎥⎥⎥⎥⎦
. (42)

The experimental values gathered for temperature and humidity compen-
sation mentioned before could be used to calculate either the matrix of
Equation (42) or its inverse. This last matrix would allow the fusion of
sensor outputs to obtain the gases/vapors concentration in what can be
classified as a weighted voting technique.

3. Fusion of gas and vapor concentration values to classify the quality of
the air. Three possible solutions would be: solution a, fuzzy inference and
defining a rule for each gas/vapor measured; solution b, a clustering tech-
nique; or solution c, a neural network with N + 2 inputs and 2 or more
outputs, depending on the number of classification levels desired. Solu-
tions b and c require sets of values to define the clusters and to train the
network, respectively.

Example 2: Autonomic nervous system analysis

The status of the Autonomic Nervous System (ANS) is a general health in-
dicator. Several tests produce values that when isolated allow only reduced
and inconclusive knowledge of the ANS condition. Fusing the information one
increases that knowledge and medical and clinical conclusions can be drawn.
Let us assume that the electrocardiogram (ECG) and the blood pressure (BP)
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are two tests that allow the extraction of features that once fused produce a
result directly related with the ANS status. Then, to go from the ECG and
BP to the ANS status assessment one had to:

1. Extract, from the ECG and from the BP, the features to fuse: heart rate
variability (HRV) and blood pressure variability (BPV). This would re-
quire the following [76]:
a) Determination of beat-to-beat time interval variations (R-R variation,

in medical terms) and blood pressure amplitude variation. If the start
data are ECG and BP sampled values, this extraction would involve:
• Filtering of both signals, namely to eliminate DC components. A

bandpass digital filter is a possible solution.
• Identification of the peaks of the ECG and BP filtered signals, and

calculation of the time differences between consecutive peaks in the
ECG case and of the amplitude difference of consecutive peaks in
the case of the BP. Peaks should be defined according to some cri-
terion, for instance using a gating technique or by simply defining
a threshold. The time intervals Δt and amplitude variations ΔA
would be the new signals to process.

b) Decomposition of Δt and ΔA into high– and low-frequency compo-
nents. For this purpose an FFT could be used, but our experience
shows that wavelet techniques perform better [77]. Once decomposed,
the ratio between the low-frequency and high-frequency power densi-
ties of Δt and ΔA should be calculated and would constitute the two
features, HRV and BPV, to be further processed.

2. Feature fusion. How to fuse HRV and BPV is a delicate matter because
it depends on how the medical class values each of these indicators, and
that is at least controversial. Thus, and to more easily adapt to different
opinions, we would propose using fuzzy inference.

2 Decision-making

In domains such as health, business, or engineering, the aspects related to
decision-making and risk analysis, although often related, can be dealt with
separately using different techniques. Each technique is characterized by a
particular way of processing information. However, information understood
as organized data, is not always available. Instead, the support of such tech-
niques is data gathered by many different ways: through experience, through
measuring, estimated, and so on. In this section, we look into some frameworks
for decision-making.

Decision-making may be defined as the cognitive process leading to the
selection of a course of action among alternatives. Every decision-making
process produces a final choice. Decision-making is anchored in many ar-
eas of knowledge, decision theory being one of them. This section provides a
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short incursion into decision analysis by presenting some general-purpose tech-
niques/procedures that because supported in basic mathematics and statis-
tics, are interesting tools for decision-making. Before, though, we have a few
comments.

1. When facing a decision problem, two basic situations may occur: (a) all
the alternatives are completely known and quantified; (b) alternatives are
only identified. In the first case, a mathematical (e.g., based on a model)
or statistical based decision is possible and the process of decision-making
consists in basically either: (1) the calculation of numerical parameters
chosen to support the decision and on the rules of decision (this often
involves probabilities); or (2) the resolution of an optimization problem
which often consists in finding a solution of an objective function under a
set of constraints in the form of a system of equations or inequalities (lin-
ear programming). When alternatives are only identified, the first step is
to assign numerical values to the possible outcomes, which is the domain
of the utility theory [78]. After that, we are either under the same condi-
tions of alternative (a) or we face what can be classified as an ill-posed
problem.

2. One should not identify a good decision with a good outcome. The classi-
fication of a decision is meaningful only in the context of the information
and data in which it is made. A good decision yields a good outcome only
if the framework in which the decision is made correctly describes the
problem to solve as identified by the user.

3. In the paragraph on inference of Section 1 three mathematical tools to
support decision-making were presented: Bayes, Dempster–Shafer, and
fuzzy inference. The values output by these tools are often used to define
decision rules or criteria. To account for the risk of each alternative, the
rules are based on indicators that weigh both the expected merit of the
alternative and its risk.

2.1 Special decision-making tools and techniques

Cost-benefit analysis

Cost/benefit analysis is a powerful, widely used tool for helping decision-
making. The underlying idea is to weigh the total expected costs against the
total expected benefits of each alternative. Thus, this technique is particularly
suited to decide upon alternatives where the factors affecting the decision can
be quantified in terms of currency. The procedure involves:

• Calculation of all the costs of each solution
• Calculation of all the benefits of each solution
• Calculation, for each solution, of the time it will take for the benefits to

repay the costs (payback time or break-even point)
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According to the results obtained, the best solution may not be unique.
Payback time can be more important than the benefit-cost differential (e.g.,
when a loan and respective interests are a heavy burden).

BRAND

BRAND is a mnemonic whose letters are the initials of the following words:
benefits, risks, alternatives, nothing, decision. These words identify the five
steps of a procedure to decide upon a solution:

1. Specification, if possible with quantification, of the benefits of the solution
2. Specification, if possible with quantification, of the risks of the solution
3. Specification, if possible with quantification, of the alternative solutions
4. Evaluation of doing nothing
5. Decision-making

What is really peculiar of this procedure is that “nothing” is an alternative
and thus the process of decision-making can lead to the conclusion that the
best solution is to do nothing, keeping things as they are.

SWOT analysis

SWOT stands for strengths, weaknesses, opportunities and threats. In SWOT
analysis, each alternative solution is characterized by the same four above-
mentioned parameters, two related with the solution itself, with its absolute
value, positive aspects (strengths), negative aspects (weaknesses), and two
that cater to the favorable (opportunities) and unfavorable (threats), aspects
that are external to the solution but condition it.

SWOT analysis is mostly used as a strategic planning tool. The imple-
mentation may be based on feeling in templates such as the one shown in
Table 1 for each alternative. By assigning numeric values and weights to each
criterion, a number representing the quality of the alternative is obtained.

Table 1. Example of a SWOT analysis template.

Criteria Strengths Weaknesses Criteria
s1 w1
s2 w2
s3 w3
...

...

Criteria Opportunities Threats Criteria
o1 t1
o2 t2
o3 t3
...

...
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Pareto analysis

Also known as the 80–20 rule [79], Pareto analysis is a technique based on
Pareto’s so-called 80–20 rule that can be expressed in the context of solution-
finding as: by doing 20% of work you can generate 80% of the advantage
of doing the entire job. Pareto’s distribution whose probability distribution
function is given by

f(x; k, xm) =
k

xm

(xm

x

)k+1

for x ≥ xm (43)

is the support for phenomena that are observable in different domains. The
Pareto distribution, also known as the Bradford distribution, tends to the
Dirac function δ (x− xm) when k tends to ∞ and can be useful to be fused
with other distributions for data approximation (e.g., [80]).

Pareto analysis is mainly oriented to find the solution to a problem by
(a) identifying and assigning values (scores) to the various components that
contribute to the problem, and (b) selecting a limited number of tasks that
produce significant overall effect. The sequence of Pareto analysis is then:

• List the problems or the options available.
• Group options where they are facets of the same larger problem.
• Assign an appropriate value to each group.
• Work on the group with the highest score.

Pareto analysis not only identifies the most important problem to solve,
but it also provides values revealing how severe the problem is.

Paired compared analysis

Paired comparison analysis is a technique that allows the relative comparison
of alternatives in the absence of objective data. Thus, it is particularly suited
to support decisions on completely different alternatives (e.g., acquisition of
different types of infrastructures).

The step sequence of implementation of the technique is:

• Listing of the options to compare. Assign a letter to each option.
• Marking of the options as row and column headings on a table, preferably

using the same order.
• Blocking of the cells that correspond to the same row and column headings

(marked with (*) in Table 2) and of the cells where information would be
duplicated (marked with (**) in Table 2).

• In the remaining cells, a comparison between the alternative in the row
with the one in the column is introduced under the following format: letter
identifying the more important alternative, number, for instance on a scale
from 0 to 5, representing the difference (0 no difference) in importance be-
tween the two alternatives.

• Addition of the total score for each alternative and eventual conversion into
percentage. The results indicate the relative merits of the alternatives.



246 P. S. Girão, O. Postolache, J. M. D. Pereira

Table 2. Paired compared analysis. In the example shown, alternative A is the
best: Alternative A = 7 (43.75%); Alternative B = 1 (6.25%); Alternative C = 5
(31.25%); Alternative D = 3 (18.75%).

Alternative A Alternative B Alternative C Alternative D

Alternative A (*) A,3 C,1 A,4
Alternative B (**) (*) C,4 B,1
Alternative C (**) (**) (*) D,3
Alternative D (**) (**) (**) (*)

Table 3. Grid analysis: unweighed cells (top); weighed cells (bottom).

Factors: F1 F2 F3 ... ... Fn Total

Weights:
S1 S11 S12 S13 ... ... S1n
S2 S21 S22 S23 ... ... S2n
... S31 S32 S33 ... ... S3n
Sm Sm1 Sm2 Sm3 ... ... Smn

Factors: F1 F2 F3 ... ... Fn Total
Weights: W1 W2 W3 Wn

S1 S11*W1 S12*W2 S13*W3 ... ... S1n*Wn
∑

(S1i*Wi)
S2 S21*W1 S22*W2 S23*W3 ... ... S2n*Wn

∑
(S2i*Wi)

... ... ... ... ... ... ... ...
Sm Sm1*W1 Sm2*W2 Sm3*W3 ... ... Smn*Wn

∑
(Smi*Wi)

Grid analysis

Grid analysis (also known as decision matrix analysis, Pugh matrix analysis,
or MAUT, which stands for MultiAttribute Utility Theory [81]) is a technique
that allows comparing both objective and subjective data. It is particularly
effective when the decision involves a large number of good alternatives and
many factors have to be taken into account.

Table 3 summarizes the grid analysis procedure:

• Construction of a table with m rows (solutions) and n columns (factors to
take into account).

• Filling the table with values Sij(i = 1, . . . ,m; j = 1, . . . , n) each represent-
ing the degree factor j is satisfied by solution i (unweighed cells).

• Filling the weights row with values representing the importance given to
each factor in the final decision.

• Recalculation of the table: Sij ×Wj (weighted cells).
• Calculation of each solution total score adding all the values in a row.
• The solution with highest score is the best one.

Decision trees

Decision trees, like Bayesian networks [82], are graphical models that can be
constructed to help decision-making. Perhaps the more general implementa-
tion of a decision tree involves the following sequence of procedures:
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• Decision tree drawing
The tree starts with a decision that is under evaluation. A symbol is drawn
to represent this root of the tree. We suppose that the symbol used is a
small square.
From this box are drawn lines, one for each possible alternative and the
alternative is identified along the line. Lines should be kept apart as far
as possible.
At the end of each line, a result must be considered. If the result of taking
that decision is uncertain, a symbol to identify it is drawn. We suppose that
the chosen symbol is a small circle. If the result is that another decision
needs to be made, another square is drawn. If the solution is completed at
the end of the line, it is blanked.
Starting from the new decision squares on the diagram, lines representing
the options that can be selected are drawn. From the circles, lines rep-
resenting possible outcomes are drawn again with some identification of
their meanings. The process is repeated until all possible outcomes and
decisions leading from the original decisions are considered.

• Tree evaluation
A value is assigned to each possible outcome by estimating its merit.
Next, and going up the tree in the direction of the root, each circle (rep-
resenting an uncertainty point) is identified and the probability of each
outcome estimate. Using percentages, the total must come to 100% at
each circle. Using fractions, they must add up to one.

• Calculation of tree values
Starting from the end of the tree, each node value is calculated and written
down by the node.
– Calculation of the value of uncertain outcome nodes: multiplication of

the value of the outcomes by their probability. The total for that node
of the tree is the total of these values.

– Calculation of the value of decision nodes: upon writing down the cost
of each option along each decision line, the cost is subtracted from the
outcome value already calculated.

When all the decision benefits are calculated, the decision falls on the alterna-
tive with largest benefit. Figure 12 shows the tree of a multiple hypothetical
decision involving two alternatives A and B.

2.2 Final notes on decision-making

Decision-making is something that is in everyday life and affects all fields of
human activity. Boosted mainly by economics, decision theory and decision
analysis are disciplines that aim to provide the theoretical background for
decision-making anchored in different subdomains of mathematics and prob-
ability theory. The framework and tools adequate to a decision-making can
be quite difficult to handle in particular because of the increasing objective of
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Fig. 12. Decision tree for the selection of one of two alternatives, A and B. Trees
draw from left to right are more common.

reaching robust decisions [83]. We mentioned only a few. Many others could be
mentioned (e.g., weighing pros and cons, PMI (plus/minus/interesting), force
field analysis). One thing they have in common: once the data in which they
are supported are known (not always easy), they are fairly easy to implement.
Even so, it is possible to find commercial software to help the user (e.g., DPL
Fault tree from Syncopation Software) particularly in the evaluation of the
influence of the change of the parameters in the decision (sensitivity analysis)
(e.g., Decision Tool Suite form Palisade). Algorithms and programs operate
on data (the user is often a data source for a priori knowledge) and thus one
must be aware that decision-making quality is highly dependent on the quality
of data that supports it.

3 Risk analysis

Risk is an identified but not certain event leading to negative consequences
(i.e., loss). Risk is intimately related with decision-making because risk is an
important factor that conditions a decision. This means that if the expected
value (mean) of the outcome of a decision can be calculated, it is a possible in-
dicator of the quality of a decision, but it must be complemented with another
statistical parameter, the standard deviation, because the value of this param-
eter is a measurement of risk. For this reason, the quality of a decision taking
into account risk is better expressed by the coefficient of variation defined,
when the mean is not zero, as the absolute value, expressed in percentage, of
the ratio between the standard deviation and the mean.

In engineering terms, the total risk Rtotal of a set of events can be expressed
as
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Rtotal =
∑

i

Lipi, (44)

where Li is the cost of or due to the event (magnitude of the potential loss)
and pi is the probability of the event (probability of the potential loss). The
summation is extended to all events causing risk.

More generally (Bayes risk), the risk function of an estimator δ(x) for a
parameter θ, calculated from some observables x, R (θ, δx), is defined as the
expectation value of the loss function L (θ, δx),

R (θ, δx) =
∫
L (θ, δx) × f (x | θ) dx. (45)

Risk analysis [84, 85] comprises three components; two result from Equa-
tion(44): identification of risks (risk assessment), and evaluation of their con-
sequences (risk evaluation); the third deals with solutions to minimize risk
consequences (risk management).

The identification of events that can lead to negative consequences
(threats, Table 1) requires a careful analysis of all their potential sources.
Some examples by no special order are human (e.g., illness, death); natural
(e.g., weather, natural disasters); technical (e.g., technical failure, new tech-
nologies); project (e.g., cost overruns, jobs taking too long); operational (e.g.,
loss of access to essential assets, failures in distribution); reputational (e.g.,
loss of business partner or employee confidence, reputation damage); procedu-
ral (e.g., failures of accountability, organization); financial (e.g., interest rates,
unemployment); on political (e.g., changes in tax regimes, foreign influence).
The diversity of threats recommends the involvement of more than one person
in their identification.

According to Equation (44), risk evaluation involves the estimation of the
probability of each threat and of the cost of the potential loss. This estima-
tion can be helped by sensitivity analysis using simulation tools based, for
instance, in the Monte Carlo method [85,86].

Risk management deals with the solutions to minimize risk. Some exam-
ples are as follows.

• Contingency plans: the risk is accepted but a plan to minimize its effects
if it happens is developed. In a good contingency plan, action should be
taken immediately.

• Involvement of additional resources.
• Inclusion of redundancy.
• Risk insurance, which is sharing part of the risk with somebody else.

Final note on risk analysis

Risk analysis may start within the context of a decision process and have many
points of contact with decision analysis but has its own identity. Identification
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of risk threats and the quantification of their total cost (total risk) is of
paramount importance to decide on how to manage risk.

In what concerns software, commercial software for decision-making, such
as the one from Palisade mentioned in the decision-making section, usually
includes risk analysis capability.
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Summary. A number of basic questions are asked which arise from daily practice
in the chemical measurement laboratory “when comparing results of chemical mea-
surements.” Answers to these questions have either not (yet) been given so far, or
not made properly known to the users concerned, or the answers are unsatisfac-
tory, or they unveil a variety of opinions, if not controversy. A scientific debate and
suitable propagation of its conclusions is needed.
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tribution, reference quantity value, measurement uncertainty

1 Introduction

Results of chemical measurements are compared daily. In many practical cases,
these comparisons are at the origin of a confrontation between parties such
as buyer and seller, inspecting body and inspected person, measurement lab-
oratory and regulatory body, or between declared value and actually mea-
sured value. In such cases, only two measurement results are involved. These
comparisons usually involve different measurement methods, different mea-
surement laboratories, different measurement instruments, or different ana-
lysts, but in the end, they are made between two measurement results. There
also are cases where comparisons of more than two measurement results are
made in order to arrive at statistical conclusions describing sets of large num-
bers of results. We attempt to formulate some questions which arise in both
cases, and to which the answers do not seem to have been openly debated
sufficiently.

Of utmost importance in discussing a comparison of measurement results,
is, of course, a good basic and commonly accepted understanding of the con-
cepts ‘comparison’ and ‘measurement result’ as well as various associated
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concepts1. In this chapter, we exclusively use the concepts as defined in the re-
vised International Vocabulary of Metrology – VIM dGM 200:2008 [1], hence-
forth termed “VIM3”. The terms labelling these concepts are printed in bold
in order to remind the reader that they are defined in VIM3 (sometimes we
add the explanatory notes to the VIM3 definitions when they are important).

In daily life, many different kinds of comparisons are made between ob-
jects of a similar kind such as books on a given topic (comparison possible),
and, sometimes and curiously enough, between objects of a different kind such
as apples and oranges (comparison not possible). Here we examine a specific
case of the concept ‘comparison’ namely ‘comparison of measurement results’.
The former is a superordinate concept. The latter is a subordinate concept (a
special case of the former) and therefore needs a special term to identify it. We
term it metrological comparison in line with the thinking that underlies VIM3.

2 Why do we compare measurement results?

One of the most important purposes of measurements, including measurement
in chemistry, is to be able to communicate. We want to exchange knowledge –
including quantitative knowledge – about some measurand, that is, about
some “quantity intended to be measured”, a 2008 definition [1] that consti-
tutes a considerable modification of the previous 1993 definition “quantity
subject to measurement” [2]. In order to communicate fruitfully in terms of
quantitative knowledge, we need to compare these measurement results. We
distinguish two categories of comparisons: comparisons of two measurement
results, and comparisons of more than two measurement results.

2.1 Comparison of two measurement results in chemistry

Every day, two measurement results are compared. There can be very impor-
tant reasons for such a comparison:

– The wish to know whether two different measurement results (one from a
buyer and one from a seller) indicate a real difference or rather an equiv-
alence in the quality of a specified property of a material (e.g., protein
concentration in wheat) and therefore in the price (schematically given in
Figure 1).

– The wish to know whether the measurement results (e.g., the toxic dioxin
content in chicken meat) obtained by an exporter and an importer, and
lying above and below an upper regulatory limit for the concentration of
dioxin, constitutes (formally) a potential danger to human health in which

1 Single quotation marks (‘. . . ’) refer to concepts. Double quotation marks (“. . . ”)
enclose terms and quotations from other sources.
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Fig. 1. Whether two measured quantity values are really different depends on their
measurement uncertainties (which are probabilities that the results are located in
the indicated interval).

case the trade of chicken meat can be stopped at a border, causing a po-
tential trade dispute; if a regulatory upper limit for the concentration is
not exceeded (measured quantity value is lower than the upper limit), no
impediment of trade can be invoked; but, if it is (i.e., when the measured
quantity value is higher than the upper limit), a permissible barrier to
trade can be erected.

Looking at Figure 1, an international normative definition of measurement re-
sult is needed which stipulates whether the measurement uncertainty is part
of the measurement result or not. As shown in Figure 1, the measurement
uncertainties of the results determine whether the measurement results are
significantly different. That is a major reason to have a common perception
on whether the measurement uncertainty is part of the measurement result.
In the VIM3 [1], we find a definition for common global use: “set of quantity
values being attributed to a measurand together with any other available rel-
evant information.” It, quite rightly, makes measurement uncertainty de facto
part of the result and the explanatory notes to the definition are clear on
that [1]. However, two measured quantity values are never identical except by
coincidence. More specifically, two different measured quantity values for the
same measurand in the same sample are the rule rather than the exception.
Whether one result can be substituted for another, in other words whether
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both results are equivalent, is then determined by the measurement uncertain-
ties associated with the measured values, together with the difference between
the two measured quantity values themselves.

Each time measurement uncertainty is used here, it is used exclusively as
defined in [1]. Because of its key importance, the definition is quoted:

measurement uncertainty
uncertainty of measurement
uncertainty
non-negative parameter characterizing the dispersion of the quantity values being
attributed to a measurand, based on the information used

NOTES
1 — Measurement uncertainty includes components arising from systematic effects,
such as components associated with corrections and the assigned quantity values
of measurement standards, as well as the definitional uncertainty. Sometimes
estimated systematic effects are not corrected for but, instead, associated measure-
ment uncertainty components are incorporated.
2 — The parameter may be, for example, a standard deviation called standard
measurement uncertainty (or a specified multiple of it), or the half-width of an
interval, having a stated coverage probability.
3 — Measurement uncertainty comprises, in general, many components. Some of
these may be evaluated by Type A evaluation of measurement uncertainty
from the statistical distribution of the quantity values from series of measurements
and can be characterized by standard deviations. The other components, which may
be evaluated by Type B evaluation of measurement uncertainty, can also be
characterized by standard deviations, evaluated from probability density functions
based on experience or other information.
4 — In general, for a given set of information, it is understood that the measurement
uncertainty is associated with a stated quantity value attributed to the measurand.
A modification of this value results in a modification of the associated uncertainty.

Measurement uncertainty must be reflected in a measurement uncertainty
budget, whereby the uncertainties must be evaluated according to the ISO
Guide for the Expression of Uncertainty in Measurement (GUM) [3].

What we are really interested in, is the

metrological compatibility of measurement results
metrological compatibility
property of a set of measurement results for a specified measurand, such that
the absolute value of the difference of any pair of measured quantity values from
two different measurement results is smaller than some chosen multiple of the
standard measurement uncertainty of that difference

NOTES
1 — Metrological compatibility of measurement results replaces the traditional con-
cept of “staying within the error”, as it represents the criterion for deciding whether
two measurement results refer to the same measurand or not. If in a set of mea-
surements of a measurand, thought to be constant, a measurement result is not
compatible with the others, either the measurement was not correct (e.g. its
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measurement uncertainty was assessed as being too small) or the measured
quantity changed between measurements.
2 — Correlation between the measurements influences metrological compatibility of
measurement results. If the measurements are completely uncorrelated, the standard
measurement uncertainty of their difference is equal to the root mean square sum of
their standard measurement uncertainties, while it is lower for positive covariance
or higher for negative covariance. [1]

A special case of metrological compatibility can be characterized by the
property that measurement results can be substituted for each other for a
specified intended use. This is termed metrological equivalence.

metrological equivalence of measurement results
equivalence of measurement results
property of two or more measurement results for a given measurand that have
metrological compatibility, and are each acceptable for the same specified in-
tended use [4]

Metrological equivalence of measurement results can vary very much: from
very good (two very small measurement uncertainties) to very bad (two very
large measurement uncertainties, or one very small and one very large uncer-
tainty). So far, these concepts have not been used very much in the literature
although they would assist in this recurrent problem.

Problems of a small number of measurement results (and two is certainly
a small number) have recently been discussed in the literature [5], [6].

We still need to address the term “comparing”. A fairly current practice
in chemical measurement is to compare various types of measurement results.
That is done in a variety of ways, not necessarily governed by clear rules.
A recurring example is a certification campaign for the quantity value embod-
ied in a certified reference material (CRM), when two measurement results
from sometimes widely diverging origin or type are “compared” in order to
arrive at a supposedly better “certified value”. The same usage can occur in
a Proficiency Testing Scheme (PTS), when two measurement results are com-
pared, then combined, to yield a reference quantity value which can serve as
a reference to evaluate the measurement capability of the participants, sup-
posedly based on the belief that the average of a (preferably) large number
of measurement results yields in a value closer to the “true value” which is
then considered to be the “best” reference. A normal distribution of the values
is assumed either before or after the removal of “outliers”. In most of these
cases, the attention goes to the measured quantity values, sometimes without
too much consideration of their measurement uncertainty.

The change to a revised definition of measurement result could have conse-
quences, both for field practice as for “high metrology”, entailing the question
whether certain rules are not needed for comparing, then “combining” mea-
surement results.

In a practical case, we are interested in, for example, two clinical mea-
surement results for the same patient (one obtained in the home country
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Fig. 2. IMEP-17: measurement results for cholesterol concentration in identical hu-
man serum samples (991 participating laboratories); certified metrological reference
value: 5.111 ± 0.021 mmol · L−1 with U = k · uc and k = 2 [7].

and one in a tourist resort) and measured by two laboratories which have
shown their measurement capability in an interlaboratory comparison (ILC)
by delivering a result obtained on the same sample. One of them could lie
in the upper part of group 1 and one from the other laboratory could lie
in the lower part of group 2 in Figure 2. It seems important to be able to
evaluate the metrological compatibility of the measurement results. We must
conclude that a difference of as much as 20% to 30% relative may be normal
and not indicative for a significant difference. Figure 2 is taken from the In-
ternational Measurement Evaluation Programme, IMEP, from the Institute
for Reference Materials and Measurements, IRMM, and can be consulted on
the Web [7].

In addition, it is meaningful, or even necessary, to ask the question whether
both results can indeed be compared, that is, are in compliance with the def-
inition of comparability of measurement results which stipulates that such
results must be traceable to a common reference. For that, it is essential to
recall two key definitions given in [1]. One of them is the definition of

metrological comparability of measurement results
metrological comparability
comparability of measurement results, for quantities of a given kind, that are
metrologically traceable to the same reference

EXAMPLE
Measurement results, for the distances between Earth and Moon, and between Paris
and London, are metrologically comparable when they are both metrologically trace-
able to the same measurement unit, for instance the metre.
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NOTES
1 — See Note 1 to the definition of metrological traceability.
2 — Metrological comparability of measurement results does not necessitate that
the measured quantity values and associated measurement uncertainties
compared be of the same order of magnitude.

Because metrological traceability is essential – or even a prerequisite – to
understand comparability, it is indicated to look at its definition [1]:

metrological traceability
property of a measurement result whereby the result can be related to a refer-
ence through a documented unbroken chain of calibrations, each contributing to
the measurement uncertainty

NOTES
1 — For this definition, a ‘reference’ can be a definition of a measurement unit
through its practical realization, or a measurement procedure including the mea-
surement unit for a non-ordinal quantity, or a measurement standard.
2 — Metrological traceability requires an established calibration hierarchy.
3 — Specification of the reference must include the time at which this reference
was used in establishing the calibration hierarchy, along with any other relevant
metrological information about the reference, such as when the first calibration in
the calibration hierarchy was performed.
4 — For measurements with more than one input quantity in the measure-
ment model, each of the input quantity values should itself be metrologically
traceable and the calibration hierarchy involved may form a branched structure or a
network. The effort involved in establishing metrological traceability for each input
quantity value should be commensurate with its relative contribution to the mea-
surement result.
5 — Metrological traceability of a measurement result does not ensure that the mea-
surement uncertainty is adequate for a given purpose or that there is an absence of
mistakes.
6 — A comparison between two measurement standards may be viewed as a cal-
ibration if the comparison is used to check and, if necessary, correct the quan-
tity value and measurement uncertainty attributed to one of the measurement
standards.
7 — The ILAC considers the elements for confirming metrological traceability to
be an unbroken metrological traceability chain to an international measure-
ment standard or a national measurement standard, a documented mea-
surement uncertainty, a documented measurement procedure, accredited technical
competence, metrological traceability to the SI, and calibration intervals (see ILAC
P-10:2002).
8 — The abbreviated term “traceability” is sometimes used to mean ‘metrological
traceability’ as well as other concepts, such as ‘sample traceability’ or ‘document
traceability’ or ‘instrument traceability’ or ‘material traceability’, where the history
(“trace”) of an item is meant. Therefore, the full term of “metrological traceability”
is preferred if there is any risk of confusion.

This definition of metrological traceability with explanatory notes means
that measurement results that are not traceable to a common reference cannot
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be compared to each other by definition. The above definitions of basic con-
cepts with associated terms, seem to be essential when formulating questions
about “comparing” measurement results, the topic of this chapter.

We can now attempt to formulate and answer some questions.

Question 1

Must an organizer of an ILC, who is going to compare the participants’ mea-
surement results, not verify whether they are comparable in principle?

Answer. The answer is clearly positive: the definition of metrological compa-
rability of measurement results requires metrological traceability of measure-
ment results to a common reference regardless of the measurement procedure
(which includes measuring systems and measurement method) used.

It is worthwhile to note that the possibility of metrological comparability
of measurement results arises only after these results have been obtained: it
is an operation becoming possible a posteriori to the process of measurement
by the participants. However, its definition requires metrological traceability
of these results (see definition above, Note 2) and that is established (i.e.
decided) prior to each individual measurement by each participant in the
planning stage of his or her measurement, notably when he or she decides on
the calibrator(s). That leads to

Question 2

Must the organizer of an ILC not request metrological traceability from each
participant for his/her result when he wants to create the possibility for any
two laboratories to compare their measurement results and draw conclusions
about that pair?

Answer. There is little doubt that the answer is positive because compara-
bility of results is only possible for metrologically traceable results as the
definition explicitly requires.

Thus in Figure 3, where measurement results are displayed in four groups
and where the measurement results in each group had their metrological trace-
ability only established to a ‘common reference’ for the members of that
group [7], a measurement result of one group is not comparable to the mea-
surement result of another group and no meaningful conclusion about such a
pair of measurement results can be drawn.

More experimental evidence is given in Figure 4 (nine different mea-
surement procedures, each with its own possibly commercial measurement
standard as reference). Hence, one measurement result of one group is un-
comparable with any measurement result of any other group.

There seems to be another question arising from the figures.
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Fig. 3. IMEP-17: measurement results of 950 laboratories for γ-glutamyl-
transferase, arranged in method groups (for technical details of the methods, see
[7]). Certified [metrologically traceable] reference value: 34.70 ± 0.93 U·L−1 with
U = k · uc and k = 2 (U is the symbol for international WHO unit) [7].

Fig. 4. IMEP-17: measurement results of 863 laboratories for amylase, arranged in
method groups (for technical details of the methods, see [7]). Certified [metrologically
traceable] reference value: 56.8 ± 2.6 U·L−1 with U = k · uc and k = 2 (U is the
symbol for international WHO unit) [7].
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Question 3

In view of Figure 1, doesn’t an ILC organizer need to require a statement
of measurement uncertainty (which automatically means measurement uncer-
tainty according to VIM and GUM) for each individual measurement result
declared by any of the participants in order to enable any two participating
laboratories to compare their measurement results and draw conclusions about
that pair?

Answer. Again, the answer seems to be in the affirmative (see Figure 1)
because that is required by the definition of measurement result which
makes measurement uncertainty part of the result. That leads to the next
question:

Question 4

Is the establishment of metrological traceability not a prerequisite for evaluat-
ing measurement uncertainty of each of any two measurement results?

Answer. The answer is positive. It is often claimed in the literature that an
uncertainty statement (frequently delivered in many different forms which are
not GUM-compliant) automatically entails metrological traceability. That is
an erroneous conclusion. The metrological traceability is determined by the
choice of a calibration hierarchy [1], a decision which is part of the mea-
surement plan made up before the measurement starts. That also fixes the
metrological traceability chain which can then be used after the measure-
ment to demonstrate metrological traceability (very much as a roadmap has
to be decided before a journey and be used to guide the journey after the
roadmap is decided). Measurement uncertainties are attached to the various
links in that chain (i.e., each time that a calibration in such link is carried
out). That in turn will enable us to evaluate measurement uncertainty of the
end user’s measurement result as the accumulation of all these uncertainties.
See the definition of metrological traceability above.

[However, the end user him/herself only has to worry about the calibration
of his/her measuring system and of his/her ensuing measurement. The metro-
logical traceability chain with associated measurement uncertainty of the cali-
brator used (usually in the form of a certified reference material, CRM), must
be provided by the CRM producer/seller with a statement of the metrological
reference of the metrological traceability and of the measurement uncertainty
of the value embodied in the CRM.]

There is another reason why the answer to Question 4 is positive. The so-
called uncertainty statement made by most analysts is mostly not compliant
with the definition of measurement uncertainty in VIM and GUM. It is often
only a repeatability, or a reproducibility, or it is derived from another very
incomplete evaluation of the uncertainty budget.
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Question 5

Can we combine two measurement results which are not metrologically com-
parable and build conclusions on such comparisons, sometimes by combining
these results?

Answer. The answer seems to be negative. It is difficult to see why measure-
ment results which are uncomparable by definition, could be compared, then
combined. Yet, that is done in practice many times without too much con-
sideration for whether or how metrological traceability was established and,
therefore, whether these results were comparable at all.

So far, we have asked questions for cases where only two measurement
results are implicated. We now identify a few questions for cases where more
than two measurement results are involved.

2.2 Comparison of many measurement results in chemistry

A number (N > 2) of measurement results in chemistry are often compared to
obtain a measure of the spread of the results amongst a group of laboratories.
Or they are pooled in order to obtain some kind of “most probable value”,
which is considered as a “best value” and which could be considered for use
as a reference quantity value for the measurand under investigation.

Question 6

Must each participant of an ILC not establish hims/herelf the metrological
traceability of his/her own measurement results before measuring the measur-
and of concern in an ILC, in order to create the possiblity that any result in
the ILC can be compared to any other result?

(similar to Question 2 for two measurement results)

Answer. In the light of the above definition of metrological traceability as
a prerequisite for metrological comparability of measurement results, the
answer is, no doubt, in the affirmative. Metrological traceability of partici-
pants’ results is established before the measurement as it is part of the mea-
surement plan and as the choice (i.e. a decision) of the calibrator to be used,
must, of necessity, be made at that stage. Traceability of any measurement
result is also required by ISO 17025.

In the study of such sets of measurement results, a normal distribution
of the results is “assumed” and some sort of average, mean, weighted mean,
median, and so on is calculated after (or without) the removal of “outliers”.
That leads to the following
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Question 7

Can measurement results in chemistry in an ILC automatically be expected to
be normally distributed around a reference quantity value?
Answer. Frequently not, as can be observed in Figures 5 through 7 as well as
in other IMEP graphs [7]. It seems clear that normal distribution around a
reference quantity value cannot automatically be assumed. An obvious con-
clusion would be that, in any given case, a normal distribution must be proven
before it can be assumed.

Fig. 5. Measurement results for amylase in U·L−1; certified [metrologically trace-
able] reference value: 56.8 ± 2.6 U·L−1 with U = k · uc and k = 2 (U is the symbol
for international WHO unit) [7].

Thus follows naturally another question:

Question 8

Can general conclusions which are based on the assumption of a normal distri-
bution around a reference quantity value be drawn when experimental evidence
does not substantiate such a distribution?
Answer. The answer to this question must be negative. However, the chemi-
cal literature is awash with statements such as “assuming normal distribution
of measurement results” around a reference quantity value, without that as-
sumption being proven. In a logical reasoning, any conclusion must be based
on premises that have been checked for their validity first. Well-documented
cases in the literature (see two examples in Figures 6 and 7) do not exactly dis-
play a normal distribution in practice. They prevent conclusions to be drawn
that are based on such an assumption.
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Fig. 6. Measurement results in IMEP-20 for mass fraction of As in tuna fish accord-
ing to the criterion: CRM was used (“yes”) or no CRM was used (“no”); certified
[metrologically traceable] reference value: 4.93 ± 0.21 mg(As)/kg(material) with
U = k · uc and k = 2 [7].

Fig. 7. Measurement results in IMEP-13 for amount-of-substance content of Pb
in polyethylene grouped according to the criterion ‘accredited laboratories’ or
‘non-accredited laboratories’ or ‘no statement by participant’; certified [metrologi-
cally traceable] reference interval: 0.501–0.539 mmol (Pb)·kg−1(polyethylene) with
U = k · uc and k = 2 [7].
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Question 9

Do the different measurement results in an ILC belong to a same population?

Answer. Measurement results in an ILC are usually obtained from different
measurement laboratories, methods, analysts, and instruments. Most of these
characteristics prevent the conclusion “belonging to the same population”.
One of the main conditions for being normally distributed is therefore not
fulfilled, and any conclusion based on that evidence must therefore remain
elusive.

Question 10

If the average, or median, or ‘cleaned’ mean of the participants’ results derived
from an ILC, where metrologically traceable and nonmetrologically traceable
measurement results are sometimes mixed (“combined”), can that lead to a
“reference value”?

Answer. It is very difficult to see how that could be a permissible proce-
dure because the very concept of metrological comparability of measurement
results requires metrological traceability of measurement results to a common
reference. The presence of nonmetrologically traceable measurement results
prevents an immediately positive answer to this question.

One of the subsequent uses of a reference quantity value (average, me-
dian, mean, etc.) in a calibrator (CRM) is the calibration of measurement
procedures by means of that calibrator. Therefore it is legitimate to ask the
following

Question 11

To which extent is a subsequent calibration of measurement procedures, us-
ing such a reference quantity value, a circular process as the same measure-
ment procedures were used in the establishment of the reference quantity value
itself?

Answer. One cannot escape from the impression that such an approach has at
least the presumption of being circular, thus nullifying its scientific value. It
is also difficult to see how values which are not normally distributed around a
metrologically traceable quantity value and are averaged, could be considered
an approach towards an independent measured quantity value equivalent to
a metrologically traceable quantity value, as Figures 3 and 8 show clearly.
A quantity value calculated from measured quantity values has usually been
subjected to various considerations and statistical treatments and hence seems
to be dependent on the choice of such treatments (giving the impression of
being more a matter of decision rather than of measurement).

Question 12

Who is then guarding orthodoxy in this process?
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Fig. 8. Measurement results for mass fraction of Pb in polyethylene; certified
(metrologically traceable) reference interval: 0.449–0.491 mmol(Pb)/kg(material)
with U = k · uc and k = 2 [7]. (1) and (2) measurement uncertainty encompassing
the metrologically traceable reference quantity value with its associated expanded
measurement uncertainty (k = 2); (3) target measurement uncertainty: measure-
ment uncertainty specified as a goal, in this case put at ± 15%, and decided a priori
on the basis of the intended use of the measurement results.

Answer. This question must probably not be answered by identifying a formal
“authority”, but rather by giving an answer based on scientific/metrological
grounds in order to prevent any arbitrariness. The answer can come from the
concept of metrologically traceable value which shows by its very metrological
traceability chain, that it constitutes a connection to our internationally estab-
lished structure of measurement, the International System of Units/Système
International d’Unités, (SI), operating under the formal responsibility of
CCQM/CIPM/BIPM and CGPM according to an Intergovernmental Treaty,
the Convention du Mètre. Put in simple language: a metrologically traceable
value takes automatic precedence over any other value whatever the non-
metrological procedure being the basis of its assignment.

The answers to some of the questions above lead to the following:

Question 13

Does the very fact of participating in an ILC not have as logical consequence
that the participant who offered a nonmetrologically traceable result a priori
cannot use the calculated average (or median or mean) as a–(nother) metro-
logical reference a posteriori?
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Answer. It seems so, as the process would look as a self-fulfilling prophecy. If
a measurement laboratory contributes to setting a reference without having
a metrological reference itself, it seems that the very notion of reference is
turned around.

However, it could be argued that the measurement results and the refer-
ence quantity value obtained from an ILC, where participants all use the same
material as well as a metrologically traceable calibrator value, would not only
be comparable but also compatible (or equivalent) amongst themselves. That
would/could have the ironic result that an ILC was not necessary to obtain
a new metrologically traceable quantity value because any value of any par-
ticipant is, metrologically speaking, a metrologically traceable quantity value
confirming all the others and is being confirmed by all the others (!).

However, it is very important to point out that each of the participants’
results may inspire a very increased confidence and trust to a user of the ref-
erence value because that value is strengthened very much by these mutual
confirmations.

That leads to the next question.

Question 14

Isn’t the basic product of an ILC to establish some sort of “degree of equiva-
lence” of any specified pair of results of participants, rather than comparing
and possibly combining measurement results?
Answer. It seems so, thus fulfilling an extremely useful role in confrontations
as described above in the introduction.

Question 15

Is a ‘consensus value’ for the certified quantity value(s) carried by a calibrator
(CRM) (average, median, mean of selected values) metrologically traceable?
Answer. Usually different methods and different instruments are used by dif-
ferent laboratories and performed by different people in order to have inde-
pendent (or at least as independent as possible) results enabling us to combine
them and to arrive to a suspected “true value” as closely as possible “assum-
ing a normal distribution”. However, under these conditions, it is hard to see
that such measurement results belong to the same population, condition for
the assumption of a normal distribution.

Establishing a reference quantity value for an ILC after the measurement
(because calculated from the ILC results) seems to violate the (chrono-)logics
in the definition of metrological traceability that it be established before the
measurement.

Question 16

Is not measurement uncertainty sometimes (instinctively) made larger to
encompass a perceived uncertainty in the statement of a metrological trace-
ability?
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Answer. That operation seems to be acceptable according to the GUM which
permits a Type B evaluation based on skill and judgement of the analyst.
It can be carried out by deciding on a coverage factor (which must then be
mentioned).

Question 17

Is it possible to state or establish a (nonmetrological) form of traceability for
a ‘consensus value’ of an ILC?

Answer. Probably. Maybe that could just be called “traceable to a given and
described decision”. However, some careful thinking is needed here. This form
of “traceability” in fact suggests a sort of new unit: it is not traceable to a
metrological reference but to a decision. That would prohibit the use of the
expression “traceable to an SI unit.” The impression one gets is that a new,
arbitrary unit is created, giving the impression of traceability to the definition
of an SI unit, whereas in reality it only carries the name of an SI unit (i.e.,
the result is just stated in an SI unit). The metrological traceability chain
seems to be broken at the moment of the decision about the choice of the sta-
tistical treatment of measurement results belonging to different populations.
The same unit cannot be claimed anymore above the break in a metrological
traceability chain because the definition of metrological traceability prescribes
metrological traceability all the way to, for example, the definition and real-
ization (or embodiment) of the unit chosen (SI or other) before the start of
the measurement. That is especially important if one wants to claim ‘metro-
logical traceability to the SI’. It looks like this traceability is claimed by just
expressing a measurement result in a given measurement unit. But that is not
establishing an unbroken metrological traceability chain to a realization (em-
bodiment) of that unit. It is just a “declaration” of a metrological traceability
chain to a(n SI) unit, implied by writing the result in terms of this unit.

However, there is no doubt that such a mean, average, or selected mean,
after a ‘cleaning up’ process by a competent assembly of experts, increases
the confidence and trust the end user will have in the value. ‘Consensus val-
ues’ contribute to a huge increase of trust and confidence building; that is,
they confirm trustworthiness of metrologically traceable values embodied in
CRMs. If IRMM and NIST have obtained mutually confirming values on cer-
tified quantity values carried by a material, or if IRMM, LGC, and BAM do
that as they sometimes do in their cooperation towards realizing European
Reference Materials (ERM), that process mutually confirms each other’s cer-
tified values, giving them additional trust and confidence. One could even
state that it confirms trust and confidence in the metrological traceability of
each of the three values (or of the value of the Institute which would take
full responsibility for the CRM), because the other two confirm by a strict
metrological traceability, the value of the third measurement.

That, of course, leads to an interesting question formulated as follows:
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Question 18

Is the measurement uncertainty claimed for a “certified measurement result”
which is generated by the combination of several measurement results with full
(GUM) measurement uncertainties, obtained by for example, a few National
Metrology Institutes results, smaller or larger than the individual measurement
uncertainty of either of the two individual measurement results?
Answer. The answer is not as straightforward as usually implicitly or
explicitly thought. First, only a low number of values are available which
makes statistical conclusions very dangerous. Second, presumed carefully
drafted measurement uncertainty budgets result in a full (GUM) evaluated
measurement uncertainty of the certified measurement result in each of the
cooperating institutes. How could that measurement uncertainty be reduced
just by combining it with another measurement uncertainty, presumed to be
equally carefully drafted and resulting in an equally carefully full (GUM) eval-
uated measurement uncertainty of the certified measurement result? Would
one not naturally and intuitively expect that the measurement uncertainty
of the “combined” result be larger rather than smaller, in order to cover all
likely values?

3 Final remarks

We did not intend – on purpose – in this chapter of this book to indicate how
to compare measurement results and provide statistical procedures for it. We
rather concentrated on the description of practical cases where comparisons
of measurement results are performed for an important intended use. We did
so by means of well-documented and available “comparisons” of measurement
results. Both for the cases where two measurement results or a large number
(N > 2) of measurement results are compared, a number of questions have
been identified which need to be openly debated and which need answers that
are professionally formulated and supported by convincing transparent argu-
ments. In the first category, the answers must be applicable to the case of
“comparing” basically two measurement results. In the second category, the
answers must not automatically “assume” normal distributions. It may be
necessary that new – and simple – forms of treatments of measurement re-
sults have to be drafted for practical use, to replace present, sometimes very
complicated calculations, either not applicable to a very small numbers of
results, or based on a possible fallacy of an unproven normal distribution.
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Summary. Modelling of measuring systems or processes is an indispensable prereq-
uisite of modern uncertainty evaluation. Per se, any modelling remains imperfect; it
is always reduced to relevant influences, system parameters, and behaviour. There-
fore, in uncertainty evaluation, it is important to consider the effects of imperfect
modelling. Derived from the classical theory of signals and systems, this contribu-
tion explains the basic approaches to systematic modelling of continuous measuring
systems. The approach used is based on the cause–effect analysis and a subsequent
design of the model of the measurement by means of standardised components.
Emphasis is put on modelling of nonlinear and also time-variant systems and, con-
sequently, on the effects of disregarding nonlinearities and time-variant (dynamic)
behaviour. The chapter demonstrates that, based on carefully analysing and under-
standing the measurement, it is possible to reach proper modelling of measurements
and one may sufficiently describe the relevant effects of imperfect modelling.

Key words: System modelling, effect of modelling

1 Introduction to the modelling of measurements

1.1 Modelling tasks in uncertainty evaluation

For evaluating the measurement uncertainty it is necessary to mathematically
describe both the measurement process as well as all influencing quantities and
parameters of the measuring system [1, 2]. Henceforth, these quantities and
parameters are termed input quantities [1, 2].

In accordance with the Bayesian probability theory and the so-called prin-
ciple of maximum information entropy (pme) [2–4], the unavoidably incom-
plete knowledge about the input quantities is expressed by appropriate state-
of-knowledge probability density functions (pdf). This commonly accepted
theory, for example, yields

• A rectangular pdf if one knows that the possible values ξi of the quantity
Xi are contained in an interval, and
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• A Gaussian pdf if one knows the standard deviation σj or its sample es-
timate sj or the uncertainty uxj associated with the expectation of the
quantity Xj .

Bayesian probability theory and the pme also apply to the modelling of
given measurement data that, for example, are obtained from repeated ob-
servations without knowing much about the nature of their source. In combi-
nation with analytical sampling statistics, they provide the basic justification
for making assumptions on appropriate types of distribution, such as, for ex-
ample, of normally, Student-t, or, in case of multivariate output quantities,
χ2 distributed datasets.

Besides these quantity and data models, evaluation of a measurement es-
sentially needs to know the interrelation between the input quantities, data,
and the measurand(s) effectuated by the measurement process.

It is the primary target of the evaluation of a measurement, based on the
knowledge of both the input quantities and the (inverse) measurement pro-
cess, to determine the best estimate y for the measurand Y , together with the
measurement uncertainty uy. This uncertainty, in essence, is a measure of the
‘trustworthiness’ of the ‘estimated’ result value y.

In modern uncertainty evaluation, knowledge about the measurement pro-
cess is represented by the so-called model (Equation (1)) [1, 2, 5]. It mathe-
matically expresses the interrelation between the measurand(s) Y and the
relevant(!) input quantities X = (X1, . . . , XN )T:

Y = fM(X). (1)

Usually in classical metrology one deals with one (univariate) measurand only.
In uncertainty evaluation, the final result of a measurement is either expressed
by a pdf for the output quantity, which theoretically can be calculated using
the so-called Markov -formula,

gY (η) =

+∞∫

−∞

· · ·
+∞∫

−∞

gX1,...,XN
(ξ1, . . . , ξN ) · δ

(
η − fM(ξ1, . . . , ξN )

)
dξ1 . . . dξN

(2)
or by stating the best estimate y =

∫ +∞
−∞ ηgY (η)dη = E[Y] for the output quan-

tity together with an associated measurement uncertainty uy =
√

Var[Y].
In both cases, one needs to know the model Equation (1) to calculate the

measurement result [1,2,5]. Modern uncertainty evaluation utilises numerical
methods to calculate a pdf for the output quantity [2].

1.2 Basic categories of models

As everywhere in modelling, any model for the description of the measure-
ment can hardly be established completely and perfectly. In practice, models
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should pragmatically reflect the ‘purpose-relevant’ behaviour of the measure-
ment to be evaluated. Nevertheless, modelling of a measurement process ap-
pears to be the most difficult problem in uncertainty evaluation. It requires
a sufficient understanding of the measurement including all influences and
relationships.

Basically, there are three means available to set up and express models:
language, graphics, and mathematics. Accordingly, one may distinguish the
following categories of models.

• Verbal models:
Verbal models describe the facts of the case by means of the language. The
language seems to be the most flexible tool to describe a model. It is less
suitable in structuring and quantifying systems and processes.

• Graphical models:
The category of graphical models is, for example, comprised of signal-flow
charts, block diagrams, structure diagrams, state graphs, and so on. They
are suitable for comprehensible depiction of interconnections and flows.
They are less suitable to represent quantitative relationships.

• Mathematical models:
Mathematical models may be structured into data models, such as data
sequences and frequency distributions, analytical models (see Section 2),
and connective models, such as neuronal networks.

1.3 Models for representing
measurements and for evaluating the measurement uncertainty

Generally, a model serves to analyse the original system or to draw con-
clusions from its behaviour. In measurement, usually the measurand and
other (system-disturbing) influence quantities may be seen as causative signals
which by the measuring system are (physically) transformed into effects, such
as indications or output signals. In this way, the measuring system assigns val-
ues to the measurand(s), and the system is influenced by system-disturbing
influence quantities.

The cause–effect approach is the most commonly used and comprehensible
methodology for the representation of basic relationships in modelling of mea-
surements. It is explained in detail in [5, 6]. It is based on the constitution of
the path of the measurement signal from cause to effect. Example 1 illustrates
this approach.

Example 1: Temperature measurement of a liquid bath

The temperature measurement example is illustrated with Figure 1 [5, 6]:
The indication X1 = tIND depends on both the bath temperature tB, (i.e.,
measurand) and the instrumental error ΔtTh of the thermometer used [5, 6].
Furthermore, the indication is affected by the temperature inhomogeneity of
the bath, the effect of which is represented by the deviation δtB. Then, in
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Fig. 1. (a) Simplified example of a bath-temperature measurement. (b) Graph of the
respective cause-and-effect relationship. (c) Cause-and-effect relationship expressed
in mathematical terms. Symbols: tB, (average) bath temperature (measurand); δtB,
deviation due to the temperature inhomogeneity of the bath; ΔtTh, indication(scale)
error of the thermometer used; tIND, indicated value [5].

accordance with the symbols used in Figure 1, the cause–effect relationship
for this example can mathematically be expressed by X1 = h(Y,X2,X3).

A model that describes the cause–effect behaviour of a measuring system
or sensor is often termed a ‘measurement equation’ or ‘sensor equation’.

In contrast to this, for evaluating the measurement uncertainty, usually an
‘inverse model’ is needed that establishes the relationship between the mea-
surand (often termed output quantity) and all relevant input quantities, such
as, for the above example (see Figure 1), Y = fM(X1,X2,X3). Usually, this
model category is termed the ‘model equation’ [1] or ‘model for the evalua-
tion of measurement uncertainty’ (see Figure 2) and is generally expressed by
Equation (1).

Figure 2 illustrates the difference between the two model categories. The
knowledge about all involved quantities and parameters Y and X are rep-
resented by means of pdfs (see Section 1.1) the expectation values of which
are the best estimates of the quantities. Consequently, these best estimates
represent the operating point of the measuring system that may be expressed
by the operating-point vector x = (x1, . . . , xN )T. In accordance with the
ISO-GUM [1], the unavoidable incompleteness of knowledge about the (true)
values of the quantities X1, . . . , XN is expressed by means of the uncertainties
associated with the above best estimates. These uncertainties are the stan-
dard deviations of the above-mentioned state-of-knowledge pdfs for the input
quantities (see Section 1.1).
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Fig. 2. Comparison of model categories: ‘Measurement equation’ and ‘Model equa-
tion for the uncertainty evaluation’ [5].

2 Describing systems and signals

Measuring systems are usually modelled the same way as any other technical
information system. First, the system is decomposed and modularised into
functional elements. Then, the transmission behaviour of any functional ele-
ment is mathematically described, usually by means of its transfer behaviour.
Equation (2) and Example 2 illustrate the meaning of the transmission be-
haviour and the transfer function which relate the output signal to the input
signal(s):

XOUT = h(XIN), (3)

where XIN = (XIN1, . . . , XINn)T, input signal(s); XOUT, output signal; h,
transfer function.

Figure 3 shows both the general graphic depiction of a transmission ele-
ment and its application to the particular case of Example 2.

Example 2: Air buoyancy correction of a mass

A solid body having the mass m0 and the density ρB is exposed to ambient
with the air density ρA. The transfer function reads W = h(m0, ρA, ρB) =
m0(1−ρA ·ρ−1

B ), where W is the air buoyancy effect in terms of mass (output
quantity/signal); XIN = (m0, ρA, ρB)T is the (vector of the) input quanti-
ties/signals.

Referring to the appropriate mathematical description of the transfer
behaviour, measuring systems are usually divided into time-invariant (in-
cluding steady-state/static) systems, time-variant (dynamic) systems, and
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Fig. 3. General transmission element: (a): General depiction. (b): Example: air
buoyancy correction. Symbols: h, transfer function; (XIN1, . . . , XINn)T = X IN, input
signal(s); XOUT, output signal(s); W , air buoyancy correction in terms of mass; ρA,
air density; ρB, density of the body; m0, uncorrected (true) mass.

parametric-distributed systems. Table 1 gives a survey on static dynamic sys-
tems along with the corresponding mathematical description tools.

2.1 Linear time-invariant systems

In measurement, the great majority of systems is treated as being linear and
time invariant. Therefore, proper description of this system category is of
great importance in metrology and industrial measurement. Moreover, in an-
alytical metrology, it is current best practice to treat slightly nonlinear and
time-variant systems this way, but accounting for additional uncertainty con-
tributions mainly owing to nonlinearity and dynamic effects.

In signal and system theory, a system is called linear and time invariant
(lti system) if it meets the following properties and conditions.

• Superposition: h(X1 +X2) = h(X1) + h(X2)
• Homogeneity: h(a ·X) = a · h(X)
• Time invariance: XOUT(t) = S

{
XIN(t)

}
⇒ XOUT(t−t0) = S

{
XIN(t−t0)

}

where X1,X1,XIN are quantities acting at an (physical) input of the system or
an element of the system; XOUT is the quantity at the (physical) output of the
system or an element of the system; t is time; and S is the transfer function.

A system or functional element which is only comprised of the mathe-
matical operations addition, subtraction, multiplication by constant factors,
and/or differentiation is always a linear and time-invariant system. The trans-
fer function of a time-invariant system can be represented by an algebraic
equation (see Table 1).

For a linear system, the transfer function consists of constant transmission
factors, h(XIN) = A = (A1, . . . , Am)T. This is illustrated in Figure 4 for both
the general case and an example.
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Table 1. Survey on system classes and tools for their mathematical description.

System Equation for Equation for
Class General Systems Linear Systems
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Differential
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X, X(1), Y (2), . . . , t)

Linear differential equations

n∑

υ=1

aυY (υ) =
m∑

μ=1

bμX(μ)

State space
model

Z(t) = f(Z(t), X(t), t)

Y (t) = g(Z(t), X(t), t)

Ż(t) = AZ(t) + BX(t)

Y (t) = CZ(t) + DX(t)
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function Y (s) = G(s)X(s)
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μ=0
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n∑
υ=0

aυsυ

Fig. 4. Linear transmission element. (a) General depiction. (b) Example: XOUT =
kX1+X2; A = (k1). Symbols: X1, X2, XIN, input signals; other symbols see Figure 3
and text.

2.2 Linearity of measuring systems

For uncertainty propagation, the ISO-GUM [1] uses the Gaussian law of er-
ror propagation which only can deal with linearisable models. Nevertheless, it
should be mentioned that the ISO-GUM also considers second-order approx-
imations. Linearisation is implemented by first-order Taylor-series expansion
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of the model equation about the best estimates x1, . . . , xN of the input quanti-
ties X1, . . . , XN (see Equation (1)). Any model is considered to be linearisable
if it fulfils the following condition,

η = fM(mξ) = fM(x) +
N∑

i=1

ci(ξi − xi), (4)

where η are the possible values of the output quantity Y (i.e. the measur-
and); mξ = (ξ1, . . . , ξN )T are the possible values of the input quantities
X = (X1, . . . , XN )T; x = (x1, . . . , xN )T; xi = E[Xi] are the expectation and
best estimate of the quantity Xi. The ci are called sensitivity coefficients [1]
and given by

ci =
∂fM(x1, . . . , xN )

∂Xi

∣∣∣∣
xi=ξi

. (5)

For a linear system or model, the best estimate of the measurand becomes [1]

y = E[Y] = fM(x1, . . . , xN). (6)

In practice, a measuring system is hardly ever described and analysed in a
holistic way. Usually, a measuring system or process is described and anal-
ysed from cause to effect and considered as a series of nonreactive functional
elements (or a sequence of operational steps) to carry out measurements. In
practical measurement, the above linearity condition (see Equation (3)) will
usually be satisfied if the following assumption for the individual functional
elements can be made [5–7].

• In narrow ranges around the operating points of the input variables, the
functional elements or steps of a measurement may be regarded as having
approximately linear characteristics and may, therefore, be described by
a first-order Taylor-series expansion. Figure 5 (which is taken from [5])
illustrates this linearisation and the limits of its applicability.

• The (steady-state) transmission behaviour of the fictitious unperturbed
measuring system is related to well-known operating points given by the
operating point vector x = (x1,. . . , xN )T representing the expectation
values of the (pdfs for the) input quantities.

For practical modelling of measurements, on the above assumptions, the
‘real world of measurement’ may be taken into consideration by allowing for
slight deviations of the real influence quantities and other parameters from the
above ‘idealised operating conditions’. The unavoidably incomplete knowledge
about these deviations, and therefore about the quantitiesX1, . . . , XN , may be
represented by appropriate pdfs and uncertainties, respectively (see Section 3).

2.3 Nonlinear systems

The polynomial model is a natural way to represent nonlinear transfer
behaviour of measuring systems or elements of a system:
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Fig. 5. Linearisation of the functional dependence of the output quantity Y on the
input quantity X. For linearisation one replaces the model function Y = fM(X) by
a relation for its values η = fM(x) + c(ξ − x), where c is the first partial derivative
of the model function at its expectation values x. ξ and η are the possible values
of X and Y . For a linear model the following hold: y = fM(x), expectation value
of the output quantity; uy = c · ux, standard uncertainty associated with y; and c,
sensitivity coefficient. Case (a): linear treatment is possible. Case (b): linearisation
would lead to erroneous uncertainty propagation and here even underestimate the
value for y [5].

XOUT(t) = A1XIN(t) + · · · +AnX
n
IN(t). (7)

In case of lti systems, in practical physical measurement one usually deals
with slight nonlinearities only, and in practice, the real characteristics are re-
placed with idealised characteristics. The idealised linear characteristic will,
in a given measuring range (see Figure 6), approximate the real characteristic
without causing significant nonlinearity errors.

2.4 Time-variant signals and systems

A system is called dynamic or time variant if its response depends not only on
the instantaneous value(s) of the (physical) input quantities/signals but also
on elapsed values [8]. Correspondingly, the response of a nondynamic system
depends on the instantaneous value(s) of the input signal(s) only.
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Fig. 6. Nonlinear measurement characteristic (example). Symbols: Y = XIN, (phys-
ical) input quantity/signal; X = XOUT, (physical) output quantity/signal; xL, yL,
beginning of the measuring range; xH, yH, end of the measuring range.

Generally, in the time domain, the system behaviour may be described by
means of ordinary differential equations,

XOUT = h
(
X

(1)
OUT(t),X(2)

OUT(t), . . . ,X(1)
IN (t),X(2)

IN (t), . . . , t
)
, (8)

where Xi(t) = (diX(t))/dti; XOUT = (XOUT1,XOUT2, .)T.
For uncertainty evaluation, the inverse response characteristic of a system

or element of a system is needed (see Figure 2). Usually, only the forward-
response characteristic of a measuring system is known; and its inversion might
be awkward.

Therefore, in particular in case of dynamic systems, it might be useful to
describe a system in the state space by means of the so-called observation
equation [8, 9],

Ż(t) = fS [Z(t),XIN(t), t] ,
XOUT (t) = gOUT [Z(t),XIN(t), t] , (9)

where Z(t) is the vector of the so-called internal state variables which repre-
sent the foretime knowledge about the system.

For a lti system, Equations (9) become

Ż(t) = A · Z(t) + B · XIN(t)
XOUT(t) = C · Z(t) + D · XIN(t).

(10)

A, B, C, D, are vectors representing constant factors, A = (A1, A2, . . . )T

and se on.
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Example 3: Cantilever of an atomic force microscope (AFM)

The dynamic behaviour of the cantilever of an AFM may be modelled as a
spring-mass-damper-system (see Figure 7), mX(1) = Fa − cX − dX(1), where
X is the deflection (output quantity), Fa being the excitation force, c being
the spring constant, and d being the clamping factor. Using velocity X(1) and
acceleration X(2) as state variables, state-observation equations read

⎛

⎝
X(1)

X(2)

⎞

⎠ =

(
0 1

− c

m
− d

m

)
·
(

X

X(1)

)
+

⎛

⎜⎝
0

1
m

⎞

⎟⎠ · Fa

X = (1 0) ·
(

X

X(1)

)
+ 0 · Fa.

For proper treatment of real stochastic influences and processes, for ex-
ample, noise, it might be useful to describe continuous systems and signals in
the frequency and Laplace domain, respectively.

For linear or linearised systems, Laplace transformation [8,9] offers a suit-
able way to straightforwardly characterise a transmission system by its so-
called transfer function,

L
[
XOUT(t)

]
= L
[
XIN(t)

]
·G(s), (11)

where s is the Laplace operator, L
[
XOUT(t)

]
the Laplace transformed output

signal of the system or element, and L
[
XIN(t)

]
is the Laplace transformed

input signal. G(s) is the so-called system function,

G(s) =

m∑
μ=0

bμ · sμ

n∑
υ=0

aυ · sυ

, (12)

Fig. 7. Example: (a): Cantilever of an atomic force microscope; (b) Spring-mass-
damper model of the cantilever. See text for symbols.
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which unambiguously defines the behaviour of a system. This is a useful and
proven way of characterising continuous systems in the frequency domain, that
originates in automatic control. The decisive limitation is that this method-
ology only applies to linear(ised) systems with one input and one output.
Nevertheless, it is applicable to a large number of problems in measurement.

2.5 Description of stochastic signals

Usually, measurement signals cannot be represented by deterministic signal
models. Therefore, it seems to be more appropriate to use stochastic signals.
Analogous to statistical methodology, one may define an amplitude density of
a stochastic signal (see Figure 8) [10]:

h(X) = lim
ΔX,Δti→0

T→∞

1
ΔX · T ·

n∑

i=1

Δti (13)

and, hence, compute mean and variance:

X =
1
T

T∫

0

X(t)df =

+∞∫

−∞

h(X)XdX, (14)

V[X] =
1
T

T∫

0

[X(t) −X]2df =

+∞∫

−∞

h(X)
[
X(t) −X

]2dX. (15)

Neither the mean nor the variance contains information about the conser-
vation tendency of the signal. This is provided by the so-called autocorrelation
function which expresses the intrinsic coherence of the signal. It reads:

ΦXX(τ) = lim
T→∞

+T/2∫

−T/2

X(t) ·X(t+ τ) df, (16)

Fig. 8. Stochastic signal [10].
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Fig. 9. Examples of time-variant stochastic signals together with their correspond-
ing autocorrelation functions in time and frequency domains. Picture source: Pro-
fos [10].

where τ means a period ti−ti−1. Figure 9 shows three examples of time-variant
signals X(t) together with their corresponding autocorrelation functions.

Fourier transformation of the autocorrelation function yields the so-called
(auto) power-spectrum density SXX (ω) which expresses a stochastic signal
in the frequency domain:

SXX(ω) =

+∞∫

−∞

ΦXX(τ) · e−jωτ · dτ. (17)

The power-spectrum density may, for example, be used to characterise an
external random disturbance.

The reverse transformation,

ΦXX(τ) =
1
2π

+∞∫

−∞

SXX(ω) · ejωτdω (18)

is known as Wiener–Chinchine-theorem.
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3 Systematic approach to the modelling
of measurements

Establishing a model for a measurement at least to practitioners often appears
to be the most difficult task in uncertainty evaluation. It requires a complete
understanding of the underlying physics and the measurement strategy under
study. Neither the GUM [1, 2] nor other basic documents provide any assis-
tance on that task. Moreover, from the scientific point of view it does not
seem possible to develop a general theory that allows for designing a measure-
ment model stringently. Nevertheless, it has been demonstrated that there is
a possibility to achieve systematic modelling for uncertainty analysis based
on the idea of the cause–effect propagation of measurement signals.

The modelling concept introduced here in brief is explained in detail in [5].
It is mainly based on the idea of the classical measuring chain and, therefore,
refers to the ISO-GUM procedure [1] that only applies to linear or linearisable
models satisfying Equation (4).

The second idea refers to the fact that the method of measurement [11]
employed is reflected in the structure of the model. This results in only a few
generic model structures [5]. For example, it is known that direct measure-
ments (deflection method) always result in a linear unbranched chain reach-
ing from cause to effect. Substitution always results in conjoining cause–effect
chains, having a comparing measuring instrument at its end. Compensation
needs to be modelled by means of a closed loop [5].

3.1 Standard modelling components

Based on the practical assumptions made in Section 2.2, a generic linear or
linearised transmission element k that is part of a measuring system or pro-
cess can generally be expressed by the scalar product of an input vector X kIN

and a transmission vector Ak (compare Equation (2) and Figure 4):

XkOUT = XT
kIN · Ak (19)

The vector of the transmission factors Ak = (Ak1, . . . , Aki, . . . , Akn)T basi-
cally represents the internal parameters of the element k. For practical reasons,
it is split into a (constant) expectation vector ak and a parameter-deviation
vector δAk, Ak = ak + δAk. The expectation vector represents the best esti-
mates or nominal values of the internal parameters of the element, such as, for
example, the so-called k-factor of a strain gauge stated by the manufacturer.
The parameter-deviation vector represents the incompleteness in knowledge
about the (relevant) system parameters, such as, for example, about a piston
area of a piston gauge.

The individual deviation δAki are called multiplicative or deforming devi-
ation. They influence the transmission factors. The (incomplete) quantitative
knowledge about them is usually expressed in terms of uncertainties [5].
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If a transmission element serves to multiplicatively combine two or more
input quantities/signals, such as, for example, to multiply an electrical current
and an electrical resistance, at least one of transmission factors Aki becomes
an additional input quantity Aki = Yki. With the view to maintain linearity
around the operating point, it is required that the expectation of this second
input quantity is constant; yki = constant.

The input vectorXT
kIN is comprised of one or more input signals which are

processed or simply influenced by the transmission element k in any way. Some
of the input quantities Xki = Zki might be understood as additive influence
quantities that, for example, represent the effect of any external influence,
(e.g., temperature). In this case, the corresponding transmission factor would
become equal to unique; Aki = 1.

In classical measurement, we usually deal with only one or two input quan-
tities, one transmission factor, and have to account for additive deviations
(offsets). This directly leads from Equation 12 to the so-called generic linear
transmission element introduced in [5] (see Figure 10). The transfer equation,
consequently, reads:

XkOUT = XkIN(yk1 + δYk2) + (zk2 + δZk2) · 1. (20)

Linearity of the system and its time invariance allow for writing

XkOUT(t) = XkIN(t) · (yk1 + δYk2) + (zk2 + δZk2), (21)

where both the input and the output signal are time-dependent.
Practical modelling of technical and other processes are usually based on

graphical depictions of cause-to-effect propagations. The same is suggested for
systematically modelling for uncertainty analysis [5]. It is a modular procedure
which consists of only three generic modelling components and five elemen-
tary modelling steps. First approaches to establishing practical procedures of
modelling have been published by Bachmair [13], Kessel [14], and Kind [15].
For graphical depiction of the cause-and-effect relationships of the measure-
ments to be analysed and modelled (see Section 3.2) it has been suggested to
use only three standard modelling components [5] as follows:

• Parameter sources (SRC): They provide or reproduce a measurable quan-
tity, for example, the measurand (see Figure 11).

Fig. 10. Generic linear time-invariant transmission element [5]. Symbols: see text.
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Fig. 11. Graphical depiction of the standard modelling components: (a) pa-
rameter source (including material measures) and (b) indicating unit. Symbols:
XRC, quantity provided or reproduced by SRC; XSRC0, nominal value of XSRC;
ΔXSRC(P ) = XSRC0 − XSRC(P ), instrumental error of the material measure de-
pending on parameters P ; δXM(P ), (additive) disturbances/deviations depending
on measurement conditions and external influences P ; ΔXINSTR, instrumental error
of IND; δXIND, deviation due to the limited resolution and XIND, indicated quantity.

• Transmission units (TRANS): They represent any kind of signal process-
ing and influencing, for example, amplification (see Figure 10).

• Indicating units (IND): They indicate their (physical) input quantities.
If the errors and corrections that appear cannot be singled out and as-
signed to particular physical causes, the (summary) error (of indication)
of the measuring instrument [11] ΔXINSTR (see Figure 9) is allocated to
the indicating unit.

3.2 Stepwise modelling procedure

The suggested modelling procedure consists of the following five elementary
steps.

1. Describing the measurement, identifying the causative quantities (measur-
and, influence quantities) and the method of measurement [11] employed.

2. Analysing the measurement, decomposing it into its functional con-
stituents, and, in turn, establishing graphically the cause-and-effect re-
lationship for the fictitious ideal (unperturbed) measurement in terms of
the above-described standard modelling components (see Section 3.1).

3. Incorporating all imperfections, effects of incomplete knowledge about
quantities, and influences that may perturb the fictitious ideal measure-
ment.
Establishing graphically and, in turn, mathematically the cause-and-effect
relationship for the real (perturbed) measurement.
Note: the incorporation of imperfections, such as external influences, in-
complete knowledge about parameters, and instabilities, is carried out by
utilising correction factors and deviations that are related to the fictitious
operating point which is represented by the operating-point vector.

4. Identifying mutually dependent input quantities and including resulting
correlations.
Note: there are three possible ways to include correlation [5, 15].



Modelling of Measurements, System Theory, and Uncertainty Evaluation 291

5. Reversing the mathematical cause-and-effect relationship with a view to
explicitly deriving the model equation.

Example 4: Calibrating a nonautomatic scale

This example including the stepwise modelling procedure is described and
explained in detail in [5]. Here, Figure 12(a) illustrates the calibration of
a non-automatic scale by direct measurement of a standard weight. Fig-
ure 12(b) shows the respective graphical cause–effect relationship for the real
(disturbed) measurement. For the sake of simplification, possible correlation
has been neglected.

By stepping through this graphical model from cause to effect, from Fig-
ure 12(b) the following mathematical cause–effect relationship can be derived:

WIND = (WS0−ΔWS)kB +δWCPL(P )+δWM(ta)+ΔWINSTR +δWIND. (22)

Reversing this cause–effect equation yields the model equation for evaluating
the measurement uncertainty:

ΔWINSTR = WIND−δWIND−δWM(ta)−δWCPL(P )−(WS0−ΔWS)kB. (23)

Fig. 12. Simplified example of a calibration of a scale. (b) Respective cause-and-
effect relationship modelled for the real measurement. Symbols; WS, weighing value
provided by the standard; WS0, nominal value of the standard and ΔWS = WS0−WS,
instrumental error of the standard, (e.g., given in a calibration certificate); WIND,
indication; δWIND, resolution; kB, air-buoyancy correction factor (see Figure 12(b)).



292 K.-D. Sommer

4 Effects of imperfectly modelled measurements

4.1 Disregarding nonlinearities

Disregarding nonlinearities usually means that the real (nonlinear) character-
istic of a measuring system or element is replaced with an idealised (linear)
characteristic, along with neglecting the difference between them. With regard
to Figure 6, this yields a nonlinearity error (of indication)

ΔXNL = X −XID. (24)

Related to this indication span, one obtains the relative error

ΔXNLrel =
X −XID

xID − xL
. (25)

The value of this (relative) nonlinearity error depends on the nonlinearity of
the real characteristic and the particular measurement value.

Let the real characteristic be given by the function

X = f(Y,Z0),

where Z0 is the operating point vector. Thus, Taylor-series expansion of this
equation reads

X = f(yL,Z0)+
∂f(Y,Z0)

∂Y

∣∣∣∣
Y =yL

(Y −yL)+
1
2
∂2f(Y,Z0)

∂Y 2

∣∣∣∣
Y =yL

(Y −yL)2+ · · · . (26)

Because the sensitivity is generally defined as c(Y,Z) = ∂f(Y,Z)/∂Y , Equa-
tion (26) becomes

X = f(yL,Z0) + c(yL,Z0) · (Y − yL) + c(1)(yL,Z0) · (Y − yL)2 + · · · , (27)

where

c(1)(yL,Z0) =
∂c(Y,Z0)

∂Y

∣∣∣∣
Y =yL

.

By introducing the sensitivity of the idealised characteristic (see Figure 6)
cID = (xH − xL)/(yH − yL), Equation (25) may be transformed into

X − xL = cID(Y − yL) · (1 +ΔXNLrel). (28)

Therefore, one obtains the following approximation for the relative nonlinear-
ity error [7],

ΔXNLrel ≈
c(yL,Z0) +

1
2
c(1)(yL,Z0) · (Y − yL)

cID
− 1. (29)

For determining the measurement uncertainty associated with the nonlinear-
ity error XNLrel, one has to distinguish the following two cases.
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(a) The value of the nonlinearity error is not taken into consideration but it
is considered as an additional uncertainty contribution.

(b) One corrects the result for the value of the linearity order but wants to
account for the uncertainty associated with its estimation/approximation.

In the usual case (a), one simply has to take the squared nonlinearity
error as an additional variance which has to be implemented in uncertainty
propagation [16,17].

In case (b) a standard uncertainty has to be determined that can be at-
tributed to the estimated nonlinearity error (see Equation (29)). This means
that Equation (29) might be interpreted as a mathematical submodel, the con-
stituents of which, such as, for example, the sensitivities c(yL,Z0) and cID,
are to be evaluated statistically by assigning appropriate state-of-knowledge
pdfs to them [1,2].

4.2 Dynamic uncertainty contributions

Basically, one might define an instantaneous dynamic error δXDYN(t) as the
deviation between an influenced or disturbed or processed time-variant signal
XD(t) and the original unaffected or undisturbed input signal X(t) at a given
time t:

δXDYN(t) = XD(t) −X(t). (30)

Figure 13 illustrates this instantaneous dynamic error.
Basically, as in signal and system theory, the dynamic error may be ex-

pressed in the frequency and Laplace domain as well. For a linear system in the
Laplace domain holds XD(s) = X(s) ·G(s) where G(s) is the transfer function
of the nonideal system or element. The dynamic error might be recognised as
being just the deviation caused by the system:

δXDYN(s) = X(s)
[
XD(s)
X(s)

− 1
]

= X(s)
[
G(s) − 1

]
. (31)

Fig. 13. Instantaneous dynamic error. Picture source: Profos [10].
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Consequently,
δXDYN(t) = L−1

{
X(s)

[
G(s) − 1

]}
. (32)

In case of deterministic signals, for example, a step function, this error is know-
able in principle if two out of three variables (see Equation (18)) are known.

In practical measurement, the definition and use of an instantaneous dy-
namic error is useful for the treatment of slow transition processes only, such
as, for example, temperature equalisation of a thermometer (see Example 5).

Example 5: Dynamic error of an immersed liquid-in-glass thermometer

A liquid-in-glass thermometer that indicates the ambient temperature ϑa plus
its (statical) instrumental error, ϑIND = ϑa + ΔϑINSTR, is at time ta being
immersed into a water bath having the temperature ϑB (see Figure 13).

The cause–effect relationship of this measurement and temperature equal-
isation process may be expressed by

ϑIND = ϑB +ΔϑINSTR − T
dϑTh

dt
, (33)

where
T =

m · c
α ·A,

dϑTh

dt
≈ dϑIND

dt
,

m is the mass of the temperature, c is the specific heat capacity, α is the ther-
mal transition factor, and A is the immersed surface area of the thermometer.

Consequently, the model equation for evaluating the measurement uncer-
tainty becomes

ϑB = ϑIND −ΔϑINSTR + T
dϑTh

dt
, (34)

where T (dϑTh/dt) = δϑDYN(t) being the dynamic error component, the ex-
pectation of which is approximately

δϑDYN(t) = (ϑB − ϑa) · exp
(
− t− t0

T

)
.

The uncertainty associated with this expectation may be derived from
a rectangular probability density distribution accounting for the incomplete
knowledge of the immersion process and the above heat exchange parameters.

In the case of quickly changing processes or stochastic signals, the use of
an instantaneous dynamic error is not very useful because it is permanently
changing with time, may transitionally disappear and so on. Therefore, sim-
ilar to statistics, one prefers mean values, such as, for example, a dynamic
mean-square error [10]. This is given by

δX2
DYN = lim

T→∞

1
T

T∫

0

(
(XD(t) −X(t))

)2dt. (35)



Modelling of Measurements, System Theory, and Uncertainty Evaluation 295

In the frequency domain, it is usually not possible to describe measurement
processes by means of deterministic signals. Instead of this, one uses the (auto)
power-spectrum density of a stochastic signal (see Section 2.4). This yields the
following transfer relationship,

SXDXD(ω) = SXX · |G(jω)|2 . (36)

Consequently, the dynamic mean-square error becomes [10]

X2
DYN =

1
π

∞∫

0

SXX(ω) · |G(jω) − 1|2 dω (37)

and

X2
DYN =

1
π

∞∫

0

SXDXD(ω) ·
∣∣1 −G(jω)−1

∣∣2 dω, (38)

respectively.
For uncertainty evaluation, this dynamic mean-square error of a stochas-

tic signal basically and apart from spectrum dependencies might be used as
a squared standard uncertainty. Example 6 explains this further.

Example 6: Accounting for external stochastic disturbances

Suppose the physical input of an electrical measuring system such as, a digital
multimeter is being disturbed by induced noise. Furthermore, it is supposed
that the measuring system can be described by a linearised cause–effect model
(see Figure 14) and the induced noise is quantified by its power-spectrum den-
sity SZZ(ω). Thus, a separate treatment of static and dynamic errors (see Fig-
ure 15) yields the effect of the stochastic disturbance at the physical output of
the system, for example, in indication. The effect is the system-filtered noise

Fig. 14. Illustration of Example 5: dynamic error of an immersed liquid-in-glass
thermometer. Symbols; see text.
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Fig. 15. Example: Taking external stochastic disturbances into account (for expla-
nation see text). Symbols: XM, measurand; G(jω), dynamic transfer behaviour; G0,
static transmission factor; ZD, induced disturbing signal; ZDEff, transformed filtered
signal ZD; ΔXINSTR, static error of indication; XIND, indication.

Fig. 16. Filter effect of the measuring system. For symbols see Figure 15 and text.
Picture source: Profos [10]

(see Figure 16). In the case of a power-limited signal, the principle of maxi-
mum information entropy (pme) yields Gaussian distribution of the values of
the signal ZDEff , an expectation E[ZDEff ] = 0 and an average variance

u2
ZDEff

=
1
π

∞∫

0

SZZ(ω) |G(jω) − 1|2 dω. (39)

This uncertainty can easily be transformed back to the measurand as one of
the uncertainty contributions to be taken into account.
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Français pour la Qualité
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Summary. The following chapter presents a selection of feasible approaches to
data assessment and uncertainty evaluation for single measurands (univariate case),
multiple measurands with and without a functional relationship (multivariate case),
and some aspects of semi-qualitative and qualitative testing.
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1 Introduction

Although the following chapter deals with approaches to data assessment and
uncertainty evaluation which are applicable to, and frequently used in, the
field of (chemical) analysis and testing, it is not the intention to create an ar-
tificial barrier between the fields of metrology, calibration, and testing. There
are, instead, many common approaches, and as far as type A evaluation
is concerned, the same basic statistical tools as presented in the preceding
chapters are used. The Guide to the Expression of Uncertainty in Measure-
ment (GUM) [1] sets out the principles and rules, and a helpful compendium
of tools for type A evaluation is [2], presented from a practitioner’s point
of view.

Nevertheless one may identify some peculiarities of the majority of mea-
surement tasks in testing. First of all, due to the nature (e.g., destructive
testing) or the complexity of the measurement process, the number of (re-
peated) observations is usually small (process control may be an exemption).
Secondly, testing quite often deals with more than one measurand or one
single property. Multiple measurands may either be intrinsically independent
from each other, or depend on each other according to a certain (functional)
relationship. In some cases, the measurement process introduces relationships
(correlation) between intrinsically independent measurands such that the es-
timates of the measurands’ values have to be considered correlated. Thirdly, it
is not uncommon in testing to determine the same measurand using different,
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in Measurement Science, DOI 10.1007/978-0-8176-4804-6 10,
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one hopes independent, methods all having their own bias and delivering dif-
ferent estimates for the value of the measurand.

Data assessment in testing therefore is strongly related to combination of
results, and should be based upon a sound estimation of measurement uncer-
tainty. It should answer the question about which results should be combined
in which way given the uncertainties of the results to be combined, and it
should deliver the best estimates available for both the value and the corre-
sponding uncertainty.

Finally, large areas in the field of testing deal with qualitative properties
where the well-established concepts of the GUM [1] meet (serious) problems
in application.

The following chapter presents a selection of feasible approaches to data
assessment and uncertainty evaluation for single measurands (univariate case),
multiple measurands with and without a functional relationship (multivariate
case), and some aspects of semi-qualitative and qualitative testing.

2 Assessment and combination of quantitative results

One of the most intriguing and persistent problems in the evaluation of mea-
surement data is how to combine the results obtained in several measurements
of the same quantity. Here the problem is not so much how to distil from the
data a good estimate of the quantity itself: most often some kind of mean
will do, and different means (unweighted, weighted, etc.) will generate simi-
lar values. The big question, however, is how to estimate the uncertainty of
the respective mean value. When combining discrepant results, any reason-
able uncertainty estimate will need to account for the bias observed, and this
task requires an appropriate mathematical model as a basis for data analysis.
Depending on the model and the data evaluation technique, uncertainty es-
timates may vary considerably, leaving the user with a difficult decision. But
even when the results agree within specified uncertainties, it is often unclear
whether the data are sufficiently independent to justify the use of the factor
of 1/

√
N in the calculation of the uncertainty of a mean value, and how to

proceed if not.

2.1 Univariate case: Approaches and tools for two measurements

General

Consider the most simple case of two measurement results a ± u(a) and b
± u(b) where a and b may be single values or mean values from replicate
measurements, and u(a), u(b) are standard uncertainties obtained from an
evaluation of measurement uncertainty for a and b. The task is to determine
a combined result c ± u(c).
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In the absence of any specific reasons suggesting another estimate, the
default choice for c is the common mean:

c =
a+ b

2
. (1)

Straightforward application of uncertainty propagation according to the GUM
gives a combined standard uncertainty u(c) as follows,

u (c) =
1
2

√
u2 (a) + u2 (b), (2)

provided a and b are independent. Given measurement results values 100 ± 3
and 140 ± 4, the mean value c = 120 obtained from Equation (1) may still
be a reasonable joint estimate of the measurand. But considering the differ-
ence Δ = (b – a) = 40, the standard uncertainty u(c) = 2.5 obtained from
Equation (2) obviously is not.

This is the discrepancy problem: the measurement results are not consis-
tent within specified uncertainties. Thus at least one of the uncertainties u(a)
and u(b) was largely underestimated. Because one or both of the data u(a)
and u(b) are invalid, the combined uncertainty u(c) is invalid, too.

Another, less commonly recognised source of trouble is the correlation
problem: the combination rule according to Equation (2) is only valid for in-
dependent measurements. If measurements have major uncertainty sources in
common, a correlation term has to be included in the combined uncertainty of
a mean value. As a rule, this will give a larger uncertainty than Equation (2).
The uncertainty of a weighted mean requires a modification of Equation (2),
and the uncertainties thus obtained are often substantially smaller than for the
common mean. Last but not least, when the task is to combine the data from
two sets of replicate measurements, and uncertainty evaluation is restricted
to variability, the simplest approach is to pool the data.1

Handling of discrepant results

In an ideal world the solution to the discrepancy problem would be to re-
examine and amend the uncertainty budgets for the two measurement re-
sults. In practice, however, this approach is most often not applicable. The
data are what they are, and the alternative is either to declare a meaningful
combination impossible, or to estimate a combined uncertainty from the avail-
able data. Accommodation of the observed discrepancy by way of amended
uncertainties requires some kind of model. Two models are feasible.

1 We assume b > a throughout this section to get around the use of absolute values
|b – a|.
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(a) Minimum coverage of observed differences

Consistency of measurement results a ± u(a) and b ± u(b) may be examined
by comparing the difference Δ = (b−a) with its expected magnitude, as given
by the combined standard uncertainty of the difference

u (Δ) =
√
u2 (a) + u2 (b). (3)

One disregards significance levels and uses Δ > u(Δ) as a criterion for lack of
consistency, requiring action (see [4]). If (b – a)2 > u2(a)+u2(b), a pragmatic
approach to account for the lack of coverage by the specified uncertainties
is to take the difference as a combined excess uncertainty according to (b –
a)2−u2(a) – u2(b) = u2

ex(a)+u2
ex(b). Next, amended uncertainties are defined

by u2
am(a) = u2(a) + u2

ex(a) and u2
ex(b) = u2(b) + u2

ex(b). Now the amended
uncertainty of the mean value is calculated according to u2

am(c) = 1/4 [u2
am(a)

+ u2
am(b)] = 1/4 [u2(a) + u2(b) + u2

ex(a) + u2
ex(b)] = 1/4 [u2(a) + u2(b) +(b –

a)2 − u2(a) − u2(b)] = 1/4 (b – a)2. In summary the result of this uncertainty
evaluation is as follows.
For compatible results

u (c) =
1
2

√
u2 (a) + u2 (b). (4)

For discrepant results

uam (c) =
1
2

(b− a) . (5)

Following the approach by Lyons [4], the calculation above may be justified by
a measurement error model as follows. Assume that both measurements are
affected by an unknown bias and model this by a random shift with zero mean
and standard deviation sshift. Accordingly, amended uncertainties uam(a) and
uam(b) are obtained as root sums of squares of u(a) and sshift or u(b) and sshift,
respectively. Assuming further that the shifts for measurements a and b are
uncorrelated, and equating the expected magnitude of the difference b – a with
the observed value, the shift standard deviation is estimated as s2shift = 1/2 [(b
– a)2 − u2(a) − u2(b)]. This gives a final result of u2

am(c) = 1/4 (b – a)2.

(b) Extended coverage of observed differences

In the approach by Levenson et al. [5], the observed difference (b – a) is
accommodated by an additional uncertainty contribution based on a rectan-
gular probability distribution. The uncertainty of the mean value is directly
amended according to u2(c) = 1/4 [u2

am(a) + u2
am(b)] +u2

ex(c), where the ad-
ditional contribution is taken to be the variance of a rectangular distribution
with zero mean and a width of (b – a). The standard deviation of this distri-
bution is uex(c) = (b – a) / 2

√
3. This gives an amended uncertainty of

uam (c) =
1
2

√

u2 (a) + u2 (b) +
(b− a)2

3
. (6)
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Handling of Correlated Result

If measurements have major uncertainty sources in common, a correlation
term has to be included in the combined uncertainty of a mean value. Other-
wise the uncertainty may be substantially underestimated. For a mean of two
results, this is not a major issue because the correct uncertainty is at most by
a factor of

√
2 larger than the value calculated from Equation (2). However,

for a mean of N ≥ 10 results the correct uncertainty may be up to a factor
of

√
N larger than the value obtained without correlation, and this certainly

is a major issue.

Uncertainty of Weighted Means

For a weighted mean of two measurement results,

cw =
wa · a+ wb · b

wa + wb
(7)

with weights wa, wb, the combined standard uncertainty is given by

u (cw) =

√
w2

au
2 (a) + w2

bu
2 (b)

(wa + wb)
2 . (8)

Equation (8) also applies if the inverse variances are used as weights (wa =
1/u2(a), wb = 1/u2(b)). Given discrepant results a ± u(a) and b ± u(b), it may
appear doubtful to use an inverse-variance weighted mean. This would only
be reasonable if it could be taken for granted that smaller uncertainty corre-
lates with smaller bias. Assuming this, one may use the weighted mean with
variances amended for lack of consistency according to u2

am(a) = u2(a) + u2
ex,

u2
am(b) = u2(b) + u2

ex with u2
ex = 1/2 [(b – a)2 - u2(a) − u2(b)]. This gives

cw =
1
2

[
(a+ b) − u2 (b) − u2 (a)

b− a

]
(9)

and

u (cw) =
1
2

√

(b− a)2 − [u2 (b) − u2 (a)]2

(b− a)2
. (10)

Compared with the common mean c = 1/2 (a – b), the weighted mean is shifted
towards a if u(b) > u(a) and towards b if u(b) < u(a).

Pooling replicate data

Given data A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn} from two sets of
replicate measurements, the most simple combination is to pool the data, take
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the grand mean (cpool), and calculate the standard deviation of the pooled
data (spool). If uncertainty evaluation is restricted to variability, a promising
candidate for the standard uncertainty of the grand mean is

u (cpool) =
spool√
m+ n

. (11)

It may be doubtful whether such a combination makes sense. If the data A and
B are supposed to be for the same measurand, there should be some overlap
between the range of A and the range of B. Otherwise there is a significant
bias between A and B. Similar to the case of two results a ± u(a) and b ±
u(b), a decision has to be taken as to whether this bias is still acceptable and
data combination, accommodating the bias, should be undertaken.

If so, taking the grand mean (cpool) is an appropriate default combina-
tion. However, if there is a bias between A and B, Equation (11) will not
provide a valid standard uncertainty of the grand mean. The problems of as-
sessing bias between A and B and estimating uncertainty for the grand mean
accounting for betweengroups bias are most conveniently addressed by one-
factorial ANOVA which is exhaustively covered in textbooks (see, e.g., [3]).
ANOVA delivers an estimate for the betweengroups variance s2between = 1/2 [(b̄
– ā)2−s2(ā)−s2(b̄)] which is positive given the observed bias. The amendment
to u (cpool) is

u2
am (cpool) =

s2within

2n
+
s2between

2
=

(b̄− ā)2

4
(12)

which is similar to Equation (5).

2.2 Univariate case: Approaches and tools for multiple
measurements

With just two measurement results a ± u(a) and b ± u(b) there is only very
limited scope for statistical data processing. However, if a larger number N of
measurement results xi ± u(xi) have to be combined into a mean value and an
associated standard uncertainty, x̄ ± u(x̄), statistical tools for analysing and
processing the data become available. One assumes reasonably well-behaved
data such that the common mean or a weighted mean can be used. Robust
means, accommodating outliers or skewed data, are addressed in a later part.

According to GUM principles, the expanded uncertainty U should cover a
large fraction of the distribution of values that could reasonably be attributed
to the measurand. As a rule, U = k · u is taken to effect about 95% coverage.
Given the case that none of the results xi ± u(xi) is obviously invalid, the
interval x̄ ± U(x̄) should cover the entire range. Targeting for minimum 95%
coverage, we would put x̄ = 1/2 [xmax + xmin], that is, use the midrange value
as an estimate for the mean, U(x̄) = 1/2 [xmax − xmin], and therefore estimate
the standard uncertainty of the mean as
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u (x̄) =
xmax − xmin

4
. (13)

Interestingly enough, this uncertainty estimate is rather optimistic for N = 2
results due to the fact that one targets at 95% coverage whereas previously
the target was “one-standard uncertainty” coverage or better. On the other
hand, for large numbers N of measurement results, the uncertainty estimate
above would rather be considered as unduly pessimistic, because cancellation
of measurement errors is completely ignored. In other words, Equation (13)
assumes total correlation among the measurements results. An alternative
approach would assume uncorrelated measurements results and introduce the
factor 1/

√
N to account for error cancellation. This would give

u (x̄) =
xmax − xmin

4
√
N

. (14)

Most often the ‘truth’ will be somewhere in between.

Approaches based on analysis of variance

As already mentioned, analysis of variance (ANOVA) is an extremely versatile
and powerful tool for data analysis and data consolidation. Among numerous
other applications, ANOVA has been, and still is, used as the preferred tool
for the evaluation of interlaboratory studies for value assignment of certified
reference materials. Comprehensive guidance on this issue is given in ISO
Guide 35 [6]. A definitive treatment of the use of ANOVA for combination of
measurement results was given by Cochran [7].

The main objectives of data analysis by ANOVA are (i) to decide whether
the different groups of replicates are mutually consistent and can be pooled,
and (ii) to determine an appropriate estimate for the standard deviation of the
grand mean, depending on the outcome of step (i). For a one-factorial layout,
the data analysis is based on a statistical model, where data variability is
described by combination of two effects: random withingroup variations and a
betweengroups influence of the factor (e.g., different laboratories) according to

xlm = μ+ βl + εlm. (15)

In this equation μ is the actual value of the measurand, βl the bias of mea-
surements made in the lth laboratory, and εlm the random error in the mth
replicate measurement of that laboratory. The β’s and ε’s are supposed to be
random variables with expectation zero and variance σ2

bias and σ2
rep, respec-

tively. As a consequence of the bias term β shared by measurements made in
the same laboratory, replicates are correlated, with a covariance of cov(xlp,
xlq) = σ2

bias whereas measurements from different laboratories are indepen-
dent. The variance of the grand mean is

var (¯̄x) =
σ2

bias

L
+

σ2
rep

L ·M (16)
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and takes up an appropriate estimate for betweengroups bias provided it ex-
ists, hence s2bias > 0. In the case that the estimate s2bias ≤ 0, this means that
the withingroup variability covers the overall data variability, and there is no
need to introduce a betweengroups bias as an additional source of variability.

An ANOVA can also be performed without individual replicate data pro-
vided experimental standard deviations are substituted by GUM-type stan-
dard uncertainties. This may not be fully compatible with the statistical model
used in the original ANOVA but should be good enough as a pragmatic ap-
proach. Let x̄l ± s(x̄l) be the laboratory mean values and the associated
standard deviations: then the decision criterion for data consistency reads

s2means ≤
1
L

∑

l

s2 (x̄l) (17)

and for inconsistency

s2means >
1
L

∑

l

s2 (x̄l) (18)

with smeans being the standard deviation of the laboratory means. According
to common understanding, ANOVA assumes comparable uncertainties u(xl);
chi-squared techniques do not require that.

Approaches based on the chi-squared technique

In the ANOVA approach, consistency of results was evaluated using the aver-
age difference of two squares, < (xk −xl)2 – u2(xk −xl) >k �=l. Instead of this,
one may consider the average quotient of the squares concerned, < (xk−xl)2/
u2(xk − xl) >k �=l. Inserting the general expression for the variance of a dif-
ference, u2(xk − xl) = u2(xk) + u2(xl) – 2u(xk, xl), the average quotient of
squares is obtained as

χ2
std =

1
L (L− 1)

∑

k

∑

l �=k

(xk − xl)
2

u2 (xk) + u2 (xl) − 2u (xk, xl)
. (19)

Given mutually consistent results, the expected value of χ2
std is 1. Therefore

χ2
std ≤ 1 would be taken to indicate consistency and χ2

std > 1 to indicate
inconsistency. A comprehensive treatment of the pair-difference chi-squared
technique for assessing the mutual compatibility of key comparison data is
given in [8].

As before, an excess variance may be introduced to account for lack of con-
sistency, that is, lack of coverage of the differences (xk − xl) by the specified
uncertainties u(xk) and u(xl) concerned. This cannot be done by difference
as before. Instead, the excess variance is introduced in the expression for χ2

std,
and the expression so obtained is equated to 1. This gives a nonlinear equation
for the excess variance u2

ex as follows,
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1
L (L− 1)

∑

k

∑

l �=k

(xk − xl)
2

u2 (xk) + u2 (xl) + 2u2
ex − 2u (xk, xl)

= 1, (20)

which may be solved for u2
ex using numerical methods. With this excess vari-

ance, for the case of inconsistent data the variance of the mean value is

uam (x̄) =
1
L

√∑

l

u2 (xl) + L · u2
ex (21)

whereas for consistent results it is given by

u (x̄) =
1
L

√∑

l

u2 (xl). (22)

The estimate for the excess variance could also be used if the common mean x̄
is replaced by a weighted mean. For many purposes, the variances and covari-
ances relating to the mean value may be neglected, and the amended variances
of the deviations from the mean are approximated according to u2

am(xl− x̄) ≈
u2(xl) + u2

ex. This gives a modified equation for the excess variance as
follows,

∑

l

(xl − x̄)2

u2 (xl) + u2
ex

= L− 1. (23)

This approach was introduced by Paule and Mandel [9], and has been recog-
nised as one of the leading approaches for the combination of measurement
results. It was in particular considered by NIST for in-house characterisation
of reference materials [10]. The statistical basis of the Paule–Mandel approach
has been a subject of mathematical investigations [11], and its performance
was assessed by simulation studies (see, e.g., [12]). Reference [13] compares
various approaches for combining interlaboratory data based on random ef-
fects models, including ANOVA and the chi-squared approach of Paule and
Mandel, from a generic statistical perspective.

The Birge approach to account for lack of consistency

An alternative approach was introduced by Birge [14] to account for discrepan-
cies in interlaboratory studies for the determination of fundamental constants.
It is based on the assumption that all participants have underestimated their
uncertainties by about the same factor. Accordingly a factor is introduced to
amend the uncertainties according to uam(xl) = f · u(xl), and fixed at the
smallest value effecting consistency. If consistency is assessed on the average
differences < (xk−xl)2 – u2(xk−xl) >k �=l, the Birge factor is given by f2 =<
(xk−xl)2 >k �=l / < u2(xk−xl) >k �=l= s2x / < u2(x) >. Here, sx stands for the
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standard deviation of the laboratory means, and < u2(x) > for the average
of the u2(xk). For the common mean, this gives an amended uncertainty of

uam (x̄) =
1
L

√∑

l

f2 · u2 (xl) =
f

L

√∑

l

u2 (xl) =
sx√
L
, (24)

This is just the ANOVA result. If consistency is assessed on the average quo-
tients, < (xk − xl)2 / u2(xk − xl) >k �=l, the Birge factor is given by f2=
< (xk − xl)2 / u2(xk − xl) >k �=l = χ2

std. This gives an amended uncertainty
of the common mean as follows,

uam (x̄) =

√
χ2

std

L

√∑

l

u2 (xl). (25)

The Birge approach can also be used for weighted means. In this case, the
Birge factor f is fixed such that

∑

l

(xl − x̄w)2

f2u2 (xl)
= L− 1 (26)

and this factor is then used in the amended uncertainty of the weighted mean
according to

uam (x̄w) =
f√∑

l

1
/
u2 (xl)

. (27)

Approaches based on bias correction

Instead of amending the uncertainties u2(xl) such that compatibility is
achieved between the differences (xk − xl) among the various measurements,
or the deviations (xl− x̄) from the mean value, and the uncertainty attributed
to these differences/deviations, discrepancies may be utilised to derive correc-
tions, either of the mean value x̄ or the individual values xl. In addition to
this, the uncertainty on these corrections is evaluated, and this uncertainty is
included in the uncertainty of the mean value obtained, either by direct cor-
rection or from the corrected individual values. A procedure for simultaneous
correction of individual biases of the values xl and amendment of individual
uncertainties u(xl) is described in [15]. Reference [16] specifies a procedure
for the correction of bias in mean values (e.g., based on a comparison of the
mean value x̄ and the midrange value xmid = 1/2 (xmin + xmax)) and reviews
other approaches from this perspective.

Robust statistics and related tools

Combination of different results xl ± u(xl) for the same quantity is a two-step
process. In the first step the data xl are combined into some kind of mean
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value. In the second step the uncertainty of this mean value is evaluated, and
data consistency checked. If inconsistency is revealed, either the uncertainties
are amended, or the first step has to be revisited so as to decide whether
another common average value performs better. Two alternatives have been
offered thus far: the common mean value was used by default, supplemented
by the inverse-variance weighted mean to account for major differences among
the uncertainty data. This approach was also motivated by the fact that, for
example, with just two measurement results a ± u(a) and b ± u(b), there is
only very limited scope for statistical data processing.

However, if a major number L of measurement results xl ± u(xl) have to
be combined, the common mean value may not be the best choice. This is a
good estimate if the data xl behave as a sample from a normal distribution.
But if the data distribution is skewed, other estimates perform better. As an-
other major problem, contamination with outliers will spoil the performance
of the common mean. Thus outliers should be removed or, preferably, robust
means should be used.

A well-known robust mean is the median. This is obtained by arranging
the data in an increasing sequence, x1 ≤ x2 ≤ . . .≤ xL. If L is an odd number,
L = 2N + 1, the median is the middle value xN+1. If L is an even number, L
= 2N , the median is the mean of xN and xN+1. The median is obviously in-
sensitive to outliers. On the other hand, for well-behaved data from a normal
distribution the median gives similar results to the common mean. These are
highly attractive features, but unfortunately this medal has a backside, too:
it is impossible to evaluate the uncertainty of the median by propagation of
the uncertainties u(xl), a problem shared by many other robust means. Thus
the uncertainty data u(xl) cannot be used in the estimation of uncertainty for
the median; that is, a major part of the information contained in the data xl

± u(xl) is thrown away.
If the median is used, the standard uncertainty of the median is estimated

from the data xl alone, discarding the uncertainty data u(xl). For this purpose
the median of the absolute deviations |xk – med{xl}| may be used with an
appropriate numerical factor (to the effect that for normally distributed data
the standard deviation of the mean is recovered).

Reference [17] gives an introduction to the median and its use for a robust
evaluation of interlaboratory comparisons. A more detailed explanation of the
techniques briefly described above can be found in [18], including worked-out
examples and result discussion.

Uncertainty estimation

Assessment of data and data consistency as well as the application of com-
bination strategies as presented above require the availability of sound esti-
mates for the uncertainty of the results to be assessed, compared, or com-
bined. Since the publication of the GUM [1], much has been done to interpret
the basic concepts, and facilitate their application, in most different areas
of both calibration and testing. Numerous publications were, and are still
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being published, and various international associations and sector commit-
tees have published guides which target their respective scientific communi-
ties. Most prominent is probably the EURACHEM/CITAC Guide [20] which
(i) implements the methodology of the GUM for the field of chemical anal-
ysis, and (ii) introduces concepts for using (available) data from different
quality assurance measures commonly installed in the laboratories (method
validation, proficiency testing, control charts, and the use of reference ma-
terials) for uncertainty estimation. These concepts are commonly called the
top-down approach. Characteristics used in the ‘top-down approach’ which
account for the influence and uncertainty contributions of groups of factors
include, inter alia, repeatability, reproducibility, and recovery estimates. Esti-
mation and use of the former are comprehensively covered by ISO 5725 [21],
and interesting aspects and treatment of recovery and the uncertainty aris-
ing from recovery can be found in [22]. Because the topic is well covered by
standards, documents, and guidelines, and because nowadays powerful soft-
ware supporting uncertainty budget calculation is available, it is not be elabo-
rated further, but not without saying that the issue still exists. Quite recently,
NORDTEST published guidelines for implementation of the concepts in envi-
ronmental analysis [23], and the Codex alimentarius Commission for the field
of food analysis [24]. EUROLAB developed the principles of the top-down
approach into concrete handling instructions [25]. Interestingly enough, the
latter make intensive use of the combination strategies, and follow the data
consistency approach discussed above.

An example

The example refers to the establishment of traceability for a conventional
method. The water (OH bond) content in glasses is usually determined us-
ing FTIR spectroscopy, a method which is conventional in the sense that
it uses pre-defined extinction coefficients in a two-band model developed by
Scholze [26]. For RM certification and establishment of traceability, a com-
pletely different primary method, namely nuclear reaction analysis (NRA),
was applied. The NRA actually determines hydrogen which can easily be re-
calculated into molar concentrations of water provided all hydrogen is found
in this form. Many years of experience in the glass-manufacturing industry
prove that this is essentially the case, at least for these types of soda–lime sil-
ica glasses considered here. The nuclear reaction used, and the measurement
equations for both methods are given in Figure 1.
Twenty-four samples from three glass disks were meticulously analysed in
replicate. The results were combined into within-method means. For the corre-
sponding uncertainties, amendments were made accounting for contributions
from within-disk (where applicable) and disk-to-disk inhomogeneities, the re-
peatability of the actual measurements, and the known systematic effects of
the method. For the FT-IR measurements, for example, the within-method
uncertainty was estimated as (expressed for the mole fraction of water)
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Fig. 1. Model equations for the determination of the value of the measurand for
the two independent methods used for water content determination.

u2 (xOH) =
s2

n
+ u2

in hom disk−to−disk + u2
in hom on−disk + u2

method (28)

using the approaches developed in the preceding clauses. In Equation (28), the
first term is the contribution from characterisation measurements, assessed as
the standard deviation of the mean value of a series of measurements. The
other three terms are contributions derived from a two-factorial ANOVA for
the factors between-disk variability, on-disk (mostly radial) inhomogeneity,
and method repeatability. This established data consistency within a method.
Inconsistency was however detected between the means of both methods. It is
obvious that besides the factors already considered, the model is a potential
source of data incompatibility, mainly due to two factors, namely

1. The use of a two-band model with pre-defined extinction coefficients in
FT-IR. The coefficients may be an acceptable, but by far not the best
choice, and they come without any uncertainty.

2. A residual risk of measuring hydrogen other than OH− by NRA. This risk
is very low such that no correction should be applied, but an allowance
made in the uncertainty budget.

An appropriate model accounting for the above factors would be

cNRA = cH2O + δ′

cIR = f · cH2O = (1 + α) · cH2O

= cH2O + α · cH2O = cH2O + δ′′
(29)

The probable bias caused by hydrogen other than OH− is additive. The bias
caused by nonoptimal extinction coefficients is, in general, complex and non-
linear. Within concentration ranges not exceeding certain limits, it may be
approximated by a simple multiplicative bias term (f = (1 + α) in Equa-
tion (29)). Because one assumes that a result which uses the best estimates
for the extinction coefficients does not differ very much from the one obtained
using the Scholze coefficients, it holds α � 1. For a given c(H2O), one finally
obtains Equation (29).
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Fig. 2. Water content in mol/L (consolidated mean per disk and method) de-
termined on 3 disks (24 samples in total) by NRA (light-grey bars) and FT-IR
spectroscopy (grey bars), and consolidated mean per method including model error
contribution.

The unknown δ′ and δ′′ are set to zero, and their effect is covered by an
excess uncertainty different from zero. One assumes u(δ′) = u(δ′′) = u(δ),
that is, amends the uncertainties according to Equation (28) symmetrically
for both methods.

The amendment is calculated such that the within-method means become
fully consistent. The ‘nominal error’ En consistency criterion is used which
takes the same form for both standard and expanded uncertainties with the
only difference that the critical value is 2 for standard, and unity for expanded
uncertainties. Figure 2 visualises the effect. It displays the inconsistency of the
within-method means (here separately for the three disks) within their uncer-
tainties, and the total within-method means with their amended uncertainties,
now fully consistent.

Based upon data consistency, the certified value is derived as the weighted
mean of the within-method means, and the corresponding weighted uncer-
tainty is assigned, resulting in a molar concentration of water in glass of
c(H2O) = 0.0340 mol/L with a combined standard uncertainty of u(c) =
0.0015 mol/L.

2.3 Multivariate case: Approaches and tools

In all cases when more than one single value is to be determined for the sam-
ple, the test or reference object (e.g., a couple of analyte concentrations for
one matrix), and the values are suspected to be correlated.
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Here, a joint consideration of a property vector p (instead of a scalar
property) and a variance/covariance matrix M (instead of a standard de-
viation) should be carried out [19]. The problem becomes evident when
functionally related properties are to be determined (by measurements with
an independent parameter varying within certain limits in a domain) and
tested with regard to the compatibility of measured values and a reference
curve.

Before deciding on the kind of data treatment (i.e., uni- or multivariate)
in situations where an assumption of possible correlations cannot be rejected,
an analysis of possible correlations between the data obtained for the different
property values can be helpful. The hypothesis of uncorrelated (independent)
data sets can be adopted on statistical grounds when 1st order Pearson coef-
ficients do not exceed 0.1, and possible correlations can still be neglected or
disregarded as long as a limit of 0.5 is not exceeded provided further analytical
evidence can be given that the method is sufficiently selective and interfer-
ences (both due to the nature of the analytes and the measuring device) are
unlikely to appear. When a relationship (and thus correlation in the data)
can be assumed which is generated by the underlying physics (or chemistry),
multivariate data treatment is a must.

Procedures for establishing consolidated values for distributed properties
shall provide the more-dimensional analogue to tools and techniques well es-
tablished in univariate data assessment, that is, enable

• the definition of an average of a certain number of single measurements
(applied to both a grand mean and a laboratory mean) plus corresponding
standard deviation(s)

• the definition of a mean of means plus corresponding standard deviation(s)
• analysis of variance for homogeneity testing and/or betweenlaboratories

bias determination
• outlier tests
• tests on significant differences between determined properties.

Some multivariate data assessment tools and their possible applications
to evaluation and combination of data for multiple measurands are listed in
Table 1.

The multivariate En criterion reads (c1−c2)T · (M1+M2) · (c1−c2) <E,
where c1 and c2 are vectors of values to be compared, M1 and M2 the corre-
sponding variance/covariance matrices of the vectors, and E the expectation
value at the corresponding number of degrees of freedom for an appropriate,
most often a chi-squared distribution. Because most of the procedures men-
tioned in Table 1 refer to the bare data and generate the ‘classical’ uncertainty
estimates in a pure Type A estimation step, they are not fully compatible,
but adaptable to the GUM approach. It must be admitted that most of the
adaptation still has to be done. Besides this fact, from an application of the
univariate approaches presented in the last chapter the problem of assessing
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Table 1. Possible multivariate tools for assessment and combination of data.

Tool Description and Application

Pearson correlation matrix Reveals possible intrinsic or extrinsic correlations.
MANOVA Reveals significant dataset incompatibilities

(between-set variations) and allows a decision
on whether all single values in the sets
(‘pooling’) or only the means of the single
values in each set (‘no-pooling’) may be averaged.

Cluster analysis Detects closeness of and groups in datasets and
thus may indicate distant (outlying) datasets.

Discriminant analysis Detects the (maximum) differences in datasets
and classifies sets into groups. This may possibly
be used as an outlier test (if groups discriminate,
i.e., are distant enough). The normal classification
scheme is likely to correspond to a univariate
Grubbs, the jackknifed classification to a Nalimov
test.

En criterion Confirms or rejects dataset compatibility within the
stated uncertainties.

Kernel estimation Interpolation of generically related data
Principal component Data reduction for generically related data
analysis
Nonlinear regression Data reduction for functionally related data

data consistency within the limits of full variance–covariance matrices arises,
including the problem of comparing these matrices with each other.

Multiple measurands

Measurement results sharing major input uncertainties are correlated. This
correlation has to be accounted for in any joint application, for example, if
these measurement results are jointly used as input in a subsequent mea-
surement or as input to the calculation of a derived quantity, and therefore
have to be stated (see GUM (7.2.5) [1]). Even beyond the case of simulta-
neous measurement of several measurands considered in the GUM, correla-
tion matters are important in any joint application of multiple correlated
measurement results. A prominent application field is (natural) gas analysis
where gas properties such as the calorific value, the density, or the Wobbe
index are derived from gas composition. Even in the case that component
interferences can be disregarded, the commonly used normalisation proce-
dure inevitably causes strong correlations between the up to 17 components
measured [27].

The handling of the variance–covariance matrix is by no means obvious.
Two standalone (standard) uncertainties, obtained for two measurement re-
sults, are easily compared as to whether one is larger than the other. Exten-
sion of such comparison to two sets of (standard) uncertainties, obtained for
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two sets of measurement results, is rather straightforward in the absence of
correlations. Given this condition, the uncertainties would be compared one
by one. However, if there are significant correlations within the two sets of
measurements, the relevant covariances or correlation coefficients should be
included in any such comparison. The question then is how to perform such
comparison, that is, how to adequately compare two uncertainty matrices
(variance–covariance matrices), in particular if these matrices are significantly
nondiagonal.

A feasible comparison might be motivated by the fact that correlation
between different measurement results is only important if the results are
jointly utilised, and works as follows. Let x1, x2, . . ., xN be the values of N
different measurands X1, X2, . . ., XN obtained on some measuring object, for
example, the lengths of the sides of a plane triangle or the concentrations of the
various components (hydrocarbons, carbon dioxide, and nitrogen) in a sample
of natural gas. Furthermore let P be a quantity of the measuring object that is
related to the measurands X1, X2, . . ., XN by a linear equation. Given values
x1, x2, . . ., xN , the corresponding value p = P (x1, x2, . . ., xN ) is obtained as

p = p0 +
N∑

i=1

pixi. (30)

When emphasis is made on the handling of the variance–covariance matrix
of the measured quantities, the uncertainty of the parameters and the uncer-
tainty arising from errors in the model equation may be neglected, at least
temporarily. For the uncertainty of p one gets

u2 (p) =
N∑

i=1

N∑

k=1

pipku (xi, xk) =
N∑

i=1

N∑

k=1

piUikpk, (31)

where u(xi, xi) = u2(xi) represent the ‘normal’ variances, and u(xi, xk) with
i �= k the covariances. For two variance–covariance matrices U , U ′ of two
different estimates for the same set of measurands, or estimates for two dif-
ferent, but related sets of measurands, it can be shown that the uncertainty
expressed by U is larger than that expressed by U ′ if the standard uncer-
tainty of any derived quantity obtained by linear combination of estimates is
larger with U than with U ′, or if

N∑

i=1

N∑

k=1

pi(Uik − U ′
ik)pk ≥ 0 ∀(p1, . . . , pN ). (32)

This is the case if and only if (U −U ′) is a positive semi-definite matrix. A
symmetric square matrix with real entries is positive semi-definite if and only
if all its eigenvalues are nonnegative. An efficient way to test this is based on
the Cholesky decomposition [28].
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When the level of derived uncertainties is concerned, the derived uncer-
tainty u(p) has to be normalised with respect to the level of the coefficients
pi for comparison. One may obviously introduce the Rayleigh quotient (e.g.,
see [29])

Φ (U , p) =
u2 (p)
N∑

i=1

p2
i

=

N∑
i=1

N∑
k=1

piU ikpk

N∑
i=1

p2
i

=
pT · U · p

pT · p (33)

as a measure. The minimum value of the Rayleigh quotient (over all vectors
p) is given by the lowest eigenvalue of the matrix, and the maximum is given
by the largest eigenvalue. The level of uncertainty of a variance–covariance
matrix U (i.e., the range of the uncertainty of standardised linear combi-
nations), is determined by the range of eigenvalues λ(U ) of the uncertainty
matrix, [λmin(U ), λmax(U )], according to λmin(U ) ≤(U , p) ≤ λmax(U ).

The above general principles can be extended to (i) consideration of only
nonnegative coefficients pi, and (ii) the use of specific features of the matrix
as for example, block diagonal, nonpositive, or nonnegative off-diagonal ele-
ments, zero row sums, and other. The application allows for an easy handling
assessment and comparison of variance–covariances matrices for multiple mea-
surands. Guidance on these specific topics and worked-out examples showing
the impact of correlations can be found in [30]. Reference [31] deals with,
and exemplifies, correlations between dilution series in standard addition, an
experimental technique frequently used in analytical chemistry for estimation
of possible matrix influences.

Functional relationships

The multiple measurands dealt with so far were interrelated (i.e., correlated),
but still standalone properties of an artefact or sample. Many tasks in testing
refer to properties which are related by a – known or unknown – functional
relationship governed by physical principles. Irradiance curves or fluorescence
efficiency/yield (in the wavelength domain), the uptake of sorbent (pressure
domain), or implantation profiles (space domain) may serve as examples.

Determination of these relationships is, however, pointwise, and the as-
sessment is based upon raw data which are replicated runs from different
sources, being different instruments, methods, or laboratories, and are pre-
sented as nonequidistantly spaced data tables of different length. The rela-
tionship is measured as a set or table of paired values y |x = {yi, xi}|m1 =
{y1, x1; y2, x2; y3, x3; . . . ; ym, xm} in a single run of an instrument or a set of
instruments. Normally, this measurement is repeated q times with the same
instrument yielding to q tables y |xk. As a rule, even with the same instrument
the number of data pairs (yi, xi) in the tables will differ; that is, each table has
its own number mk of data pairs (with k ranging from 1 to q). For more than
one data source, this measuring scheme is repeated by a set of p instruments,
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methods, or laboratories each providing qj tables y |xk,j . Although one will
normally aim at keeping both the number m of data pairs in the table and
the number q of repetitions (runs) constant, it cannot be avoided that both
mk,j and qj differ from source to source. As a result, the data assessment has
to deal with a total number of Q = Σ qj tables containing altogether M =
ΣΣ mk,j data pairs (yi, xi). In practical situations, min(mk,j) and max(mk,j)
may differ by a factor much larger than unity. These sampling tables have to
be combined appropriately, and a common or reference function has to be
determined.

As long as the functional relationship is known, nonlinear regression is
the method of choice. Numerous approaches and algorithms have been devel-
oped and are well established (see, e.g., [28,29]). A large class of problems of
practical interest are governed by a minimum of three, mostly four functional
parameters for description, namely maximum position, maximum height, and
(left and right) FWHM, and may approximated and handled by using a bell-
shaped, symmetric or asymmetric model function. The advantage of regression
is that it can easily cope with different numbers of points in the sampling ta-
bles y |xk as described above. Less attention has been paid thus far to the
uncertainties which are best described by the variance–covariance matrix of
the function parameters. For assessment and comparison, techniques as de-
scribed in earlier sections of this chapter may be applied.

It is often felt that even thoroughly selected model functions are too stiff
to interpret fine details in a complex relationship, and preference is given to
interpolation techniques. Again, an enormous amount of work has been done,
and many algorithms developed in this field, with spline interpolation being
probably the most prominent one. Uncertainty estimation for a splined rela-
tionship meets some problems, such that frequently simpler approaches are
used, including the following.

(a) Reference curve determination using grid projection

A sequence of equally or log-equally spaced sampling points (the grid) is
spanned over the range covered by the sampling tables y |xk,j . The distance
between sampling points is chosen such that the number of intervals equals
or exceeds max(mk,j). Such a choice avoids co-ordination problems occurring
when an interval contains, for example, only one datapoint of a certain table
(k1, j1), but more than one datapoint of another (longer) table (k2, j2). Ac-
cording to their xi-value, the yi-values are now projected onto the sampling
points. The projection rule is linear interpolation. The projections are subse-
quently treated as individual measurement points, and means and standard
deviations are calculated for them.

(b) Reference curve determination using kernel estimation

This is a piecewise fit of an approximating function to the data. Normally,
one assumes polynomial approximating functions. The level of localisation
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is governed by the introduction of a kernel, normally a function symmetric
with respect to the origin, diminishing outside an interval h (the bandwidth).
The squared deviations with respect to the approximating function are now
weighted by the kernel, and a global minimisation according to

N∑

i=1

(yi −
p∑

j=1

βj ·(x− xi)j)2 ·Kh(x− xi) = min (34)

is carried out for the parameter vector β. This provides local solutions within
each band width, that is, in the vicinity of x, where an estimate for the un-
known functional relationship is required. From the residuals, confidence and
prediction intervals can be calculated. The main advantage of this technique
consists in the fact that no specific assumptions concerning the kind of the
functional relationship is needed. Because the local environment of each point
to be approximated is taken into account, the method takes up and conserves
more of the (hidden) functional information than a grid projection as de-
scribed above. Uncertainty estimates may be derived from the overall residual
SSD.

(c) Reference curve estimation using 2D averaging

This technique is motivated by the following fact. All of the above approaches
consider the independent variable (e.g., a scale) error-free. This is most often
not the case in practice, because scales of different sources (instruments, meth-
ods) are also subject to uncertainty and a general systematic bias. This idea
has been taken up in the development of advanced regression techniques for
calibration (e.g., [32,33]). The technique is most often called generalised least
squares regression (although other brand names are in use), and is based upon
weighted regression in both the dependent and the independent variables. In
2001, the technique was standardised for the field of gas analysis [34], its
application is, however, generic and not field-specific.

2D averaging serves the same needs. It does not use weighted regression
(which is able to cope with heteroscedastic datasets) but attributes common
biases to both variables. In this sense, it is similar to warping, an emerging
technique used for improvement of reproducibility of chromatographic mea-
surements [35]. 2D averaging comprises the following steps.

Step 1: Each sampling table included in the optimization procedure is made
‘continuous’ by an interpolation rule which retains the experimental sampling
points in space, and allows continuous interpolation between them. Rules may
be as sophisticated as needed (polynomials, splines, rationales); frequency
polygons (i.e., straight-line interpolations between sampling points) are often
sufficient.

Step 2: The original data are adjusted according to appropriate bias mod-
els which should be as simple as possible, and as complicated as needed.
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An appropriate model could be scaling for the responses (y-axis) which takes
up biases in sensitivity of the different instruments or methods, and shifting
the x axis, which accounts for additive biases between scales.

ϕ(xjk) = xjk + δk : xjk → xjk + δk

yjk → fk · yjk
(35)

Step 3: At any of the adjustment steps, each of the single measurement re-
sults from the sampling tables is attributed to, and grouped around the closest
actual position in the independent variable. The estimated point on the refer-
ence function RF is calculated as the corresponding mean in both the x-and
the y-direction according to

fk · yjk = RFj(xjk + δk})
(36)

and the RF represented by a frequency polygon interpolating all points cal-
culated in this simple way.

Step 4 : The individual deviations of each point in the sampling table from
the reference value according to Equation (36) at the actual position, and the
total SSD (i.e. the sum over all these deviations) are estimated.

Step 5 : The total SSD is minimized by adjusting the parameters fk and
δk using an appropriate iteration procedure. Steps 2 to 4 are repeated until
convergence is reached.

When convergence is reached, the best-fit estimates for fk and δk are
found. Now the joint confidence region (JCR) for each of the points which
make up the RF (and were calculated in accordance to Equation (36)) is de-
termined. Upper and lower CI of the points on the RF are then estimated as
the points where the bisecting line of the RF frequency polygon passes through
the JCR. Thus, the approach allows a joint estimation of both the best esti-
mate for the RF and the biases which can reasonably be attributed to the data
sources.

3 Assessment and combination of qualitative results

Although calculation, assessment, and statement of measurement uncertainty
in quantitative testing are required by international standards [36], supervised
by accreditation bodies, and guided by basic documents (e.g., [20–22]), the
problem of assigning uncertainty-like statements to qualitative (also called
nonquantitative to avoid confusion with ‘quality’) test results remains widely
unsolved. The ILAC Guide [37] states that for qualitative testing, considera-
tion is still being given as to how uncertainty of measurement applies in such
cases. To overcome this situation, the European laboratory association EU-
RACHEM formed a working group for drafting corresponding guidelines, and
recently also ISO/REMCO initiated a study into this issue. This is motivated
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by the fact that the volume of not purely quantitative testing and analysis
is immense, and so is the economic impact of decisions taken on the basis of
qualitative results.

3.1 Approaches and tools

Very much in general, basic approaches such as method repeatability and
method reproducibility also remain valid for semi-qualitative test procedures.
Any testing laboratory may create an estimate of its internal method disper-
sion simply by assessing the results of an appropriate number of repetitions.
Such experiments can be carried out under either repeatability (controlled,
constant environmental and other influential parameters, same operator) or
reproducibility conditions (maximum variation of all influential parameters
within the limits of method specification, and different operators).

Laboratory intercomparisons may be designed and executed in the very
same way. Average lab precision and average betweenlaboratories bias may be
calculated from the intercomparison results using established algorithms.

Testing with measurements involved

Nowadays a very large group of qualitative testing procedures are not as qual-
itative as it may seem at a first glance. Rare are the situations where testing
procedures are purely descriptive, or solely depend on human senses. Most
frequently, one will have a situation where a complex characteristic (e.g., of a
material) discontinuously changes in dependence on one or more recordable,
continuous quantitative parameters. Two examples are material breakdown or
detonation of explosive mixtures. Whether the characteristic has changed at a
certain set of parameter values is assessed by judgement (e.g., pattern recog-
nition, colour change) which may be instrument-assisted. Such procedures are
semi-qualitative in the sense that the judgement is qualitative, but the result
of the test is nevertheless a fully quantified (set of) parameter(s). A certain
fuzziness of judgement induces an uncertainty in quantification. The change
(or the status) of the characteristic to be tested is modelled as a Bernoulli
random variable depending on a set of fully quantified parameters

ζ = f(k1, k2, . . . , kn). (37)

The variable may take only two values: 0 (fail = status has not changed) or 1
(success = status has changed). During the test, the status of ζ in dependence
on k is assessed by judgement, and k c determined as the value at which the
status of ζ changes. Normally, there will be a region of certainty where the
outcome of the experiment is undoubtedly 0 or 1, and a region in the vicin-
ity of the threshold k c where the outcome is uncertain, mainly due to the
fuzziness of judgement.

Within this region, replicate measurements at each set of parameter values
are taken, and the parameter values are increased (or decreased) in a stepwise
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manner according to the actual test requirements. With n replicates, ζ at
each sampling point should follow a B(n, p) binomial distribution with known
mean and variance. The (changing) probability parameter p is estimated as
the frequency of occurrence (or nonoccurrence) of the event as observed, and
the corresponding variances var(p) are calculated accordingly.

A unit step function (with the step at k c) is fitted to the frequency-of-
occurrence data. The variable parameter for the fit is k c. Different minimisa-
tion criteria are feasible, namely the following.

1. The normal SSD = min criterion known from regressions. Due to the
discrete spacing of the sampling and the infinitive first derivative of the
Heaviside function at k c, this criterion provides multiple solutions in an
interval between two sampling points.

2. The criterion of equilibrated (i.e., equal) cumulated probabilities (quan-
tiles) on both sides of the step. This criterion provides a unique solution
for k c, which will fall in the interval according to (1) and, thus, also sat-
isfies the minimum residual SSD requirement of an ordinary least squares
regression (OLS) fit.

The criterion according to (2) should be preferred. Because at both sides
of the step estimates of an average occurrence probability are only available at
the discrete sampling points, quantiles may only be calculated with an addi-
tional assumption on an appropriate envelope function. Detailed information
on the envelope is rather unavailable, but pragmatic approaches can be used
including simple frequency polygons which connect the measured datapoints
in a segmentwise manner by straight lines. A disadvantage of this pragmatism
is that the areas beneath and above the frequency polygon will normally be
different (i.e., the strict p = 1 – q rule is violated), but because one will use
in practice only one type of the areas (the cumulated p) on both sides of the
step, the method will provide a sensible estimate for the equality point.

It may also seem reasonable to fit the quantile of the normal distribution
to the data obtained for p. One aims at finding estimates for the variability
(scatter) of one (or a couple of) value(s) k c, which is/are influenced by a con-
siderable number of influential factors such that an overall distribution close
to the normal distribution can be assumed. On the other hand, this coincides
with the philosophy of the GUM [1], which also recommends the transforma-
tion of different, most often only assumed distributions to Gauss distributions,
and the corresponding measures of scatter to standard uncertainties.

For the given set of datapoints {pi, ki} one has to solve the minimisation
problem

N∑

i=1

(pi −Q(ki,kc, s))2 = min (38)

(with Q being the quantile of the normal distribution) with respect to the pa-
rameters k c and s. This automatically generates the standard uncertainty; the
confidence interval is calculated from its multiplication by the corresponding
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(one-sided) t factor. The above-described approach may be further refined into
a weighted (in y) regression using the inverse variances of the pi as weights.

With or without such weighing in y, one is still not completely done
because in a last step, the quantifiable uncertainties of the ki should be
taken into account by uncertainty propagation [34]. Following this propaga-
tion scheme, each ki is separately altered by ± 1/2 u(ki), and the minimisation
problem solved for kc with a fixed s. The contribution of the uncertainty in
ki to the total uncertainty is obtained as

u(kc : ki) = kc(ki + 1/2u(ki)) − kc(ki + 1/2u(ki)) (39)

and will accordingly be summed up for all sampling points.

Identification

In a generic sense, identification and recognition (of something) are not quite
the same but similar terms. This subsection deals with identification in a more
specific sense, namely of a chemical substance or compound. For analytical
identification of a substance, measurements are also carried out, most often
using spectroscopic techniques such as UV/Vis, NIR, IR, MS, or NMR. The
results of the measurement are spectra, and identification basically reduces to
a comparison of known and unknown spectral pattern.

Figure 3 illustrates that identification problems (which are usually con-
sidered qualitative) have much in common with quantitative analysis if the
subsequent decision process is taken on board. In quantitative analysis, deci-
sions on the compliance of the data with certain specifications are made on
the basis of the value and the uncertainty, the latter taken as a measure for the
performance of the method used. This is one of the reasons why this chapter
deals with assessment strategies providing reliable values and uncertainties.
From the outcome of the decision process, statistics can be generated which
provide estimates for the probabilities that

• A complying object is recognised as such (true positive).
• A noncomplying object is recognised as such (true negative).
• A noncomplying object is admitted as complying (false positive).
• A complying object is rejected as non-complying (false negative).

Although measurements are involved, the results of an identification (pat-
tern recognition) experiment are treated differently. They are compared with
certain specifications regardless of any performance criteria. Where one finds
measurement uncertainty in quantitative analysis, there is a question mark
here.
Instead, the statistics on the true positive, true negative, false positive, and
false negative outcomes are normally considered as the uncertainty estimates.
This widely leaves out the performance characteristics (reproducibility, biases)
of the concrete equipment used for doing the test, at the concrete time the
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Fig. 3. Analogies between quantitative testing (including decision-making on the
outcome) and substance identification as an example of qualitative testing.

test is carried out. An obvious candidate for filling the box with the question
mark would be principal component (PCA) or discriminant analysis (DA), the
latter if maximum distinction between patterns is the aim. PCA has success-
fully been used for discrimination of composition patterns of a large variety of
food products (wines, high-alcoholic beverages, olive oils, honey, etc.). Char-
acteristic patterns were then attributed to the origin of the product or the
raw materials from which these products were made, for example, [38–40].

The result of a (spectroscopic) measurement for substance identification
is a data table y |xk containing signals y (peak heights or areas, extinc-
tions, emission densities, abundances, etc.) at well-separated or even quasi-
continuous sampling positions x (wavelengths, retention times, masses, ratios,
etc.). The length of the table may vary widely depending on the method. Mea-
surements are made in replicate for at least the reference substance and the
unknown. Both tables are normalised, preferably with respect to the sums of
all signals involved. This normalisation removes the influence of sensitivity
and/or injection variations of the equipment. Normalised data for the ref-
erence substance are subjected to PCA, and reference loadings are obtained.
These are applied to the normalised data for the unknown to give scores which
are displayed together with the scores for the reference. Joint confidence re-
gions for both score sets are calculated and serve as the basis for assessing
the overlap and the difference between the unknown and the reference. This
is done in the very same manner as scalar uncertainties are used for decid-
ing about nonsignificant or significant differences between scalar values. The
JCR for the reference substance is centred in the origin of the score plot. The
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Fig. 4. Data treatment for comparison of an unknown with a reference substance.
Starting point is a data table with replicate measurements for the reference and the
sample; here abundances of spectral mass peaks are determined by MS/MS at 6
peak positions.

minimum identity requirement is that the JCR for the scores of the unknown
also contain the origin of the plot. More sophisticated models which assess
the degree of overlap between both JCRs are possible. The described data
treatment is visualised in Figure 4.

Inspection

Inspection, either by visual or sensual judgment or supported by auxiliary
measurement, follows the principles of attribute sampling. Quite often, mu-
tually excluding nominal properties such as intact/broken, tight/leaking are
considered, and modelled using the formal approach introduced at the begin-
ning of this section. Occurrence of the ‘event’ follows a binomial or Poisson
distribution. Using these distributions, a number of problems of practical in-
terest can be solved, such as the determination of optimum sample size given a
certain acceptance or rejection criterion. Closely linked to production process
control, available tools are well developed, and laid down in several interna-
tional standards [41–43]. Note that, for example, ISO 2859 (reference [41])
has several parts, with part 1 dealing with lot-by-lot inspection, part 2 with
isolated lot inspection, and parts 3 to 5 with derived techniques including
skip-lot and sequential sampling.

But even if the testing procedure involves supporting measurement, equip-
ment uncertainty (implementation effects, reproducibility, biases) is normally
disregarded (see Figure 3). A certain fuzziness of the equipment is, however,
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recognised and taken into account as a probability of not detecting the prop-
erty if present, and detecting it in absence. Thus method performance is char-
acterised by the positive/negative decision rates described above. Bayes’ theo-
rem is applied to the conditional probabilities in order to derive risk estimates
for acceptance or rejection given the feasible sample sizes and sampling con-
ditions.

Characteristics derived from the basic probabilities are often used in non-
destructive testing. Nondestructive testing aims primarily at the detection of
defects and faults in components and assemblies. The diagnostic signals may
be quantitative (e.g., the peak height of an ultrasound echo) or qualitative
(e.g., the blackening pattern on an X-ray film). The quality of the testing
procedure is assessed from a receiver operating characteristic (ROC) diagram
in which the probability of detection (POD) of a defect is plotted against the
probability of false alarm (PFA). Blind testing of the equipment under realis-
tic conditions in the industrial environment allows an integral assessment of
the system capabilities given the application conditions and the human fac-
tor. A comprehensive description and application to land mine detection and
de-mining is given in [44].

3.2 Uncertainty estimation

In addition to the above-mentioned approaches to the description of equip-
ment capabilities, general principles of stating and reporting uncertainty in
qualitative testing have been developed in [45].

The use of uncertainty information in compliance assessment is compre-
hensively described in [46]. Metrological requirements to test equipment stip-
ulated in the new EU Measurement Instrument Directive caused attempts
of incorporating measurement uncertainty in the decision-making process in
conformity assessment when sampling is limited. Risks of incorrect decisions
where test results lie in the vicinity of a specification limit are assessed in
terms of percentage probability and the costs of measurement and environ-
mental consequences [47], leading to an optimised uncertainty methodology
based on attribute sampling.

4 Some final remarks

Any data assessment and consolidation strategy should start from thorough
data exploration aiming at the detection of possible bias. Plenty of well-
elaborated tools and approaches exist; some of them have been described
here. Which tools are appropriate depends on the suspected sources of bias.
Uncertainty budgets which are as complete as possible should be the basis for
exploration. Bare repeatabilities are normally insufficient, but in some cases
the only estimates attainable so far.
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The outcome of data exploration suggests the appropriate way of com-
bining results. Again, plenty of approaches exist, and the most appropriate
should be selected. Most often, for specific problems both a tailored analysis
and a tailored combination strategy will be needed.

A data consolidation strategy is successful if individual data are compati-
ble with the final result within the stated uncertainties (assessed by, e.g., the
En criterion, the chi-square technique, or the Birge ratio).

Multianalyte analyses and functionally related properties require multi-
variate data exploration tools. Efforts should be made to enable existing mul-
tivariate tools to take up, and account for, type B uncertainty estimates.
This would make them fully GUM-compliant and bridge another gap between
quantitative and qualitative testing.
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Summary. The evaluation of expressions of measurement uncertainty can be
enhanced by Monte Carlo simulation techniques. For any claimed uncertainties that
have been expressed (either explicitly or implicitly) as probability density functions,
Monte Carlo techniques can propagate uncertainties through any measurement equa-
tion or algorithm – including statistical aggregates. These techniques are introduced
in this chapter, and applied to examples drawn from measurement comparisons.
Examples illustrate the power of the techniques in extending uncertainty analysis to
cases where the applicability of the usual methods is in doubt, such as consistency
testing using chi-squared-like statistical aggregates.

Key words: Measurement, uncertainty, Monte Carlo, simulation, comparison, mea-
surement equation, measurand, random, GUM

1 Introduction

In the context of uncertainty, Monte Carlo modeling is based on an extremely
simple concept. Experience shows that measurements do not repeat exactly,
but have a random component, as is illustrated in Figure 1.

A Monte Carlo computer model can replicate the randomness in the mea-
surement process, creating pseudo-measurements that incorporate the mod-
eled randomness, as shown in Figure 2. These pseudo-measurements may be
used instead of real measurements in support of conventional uncertainty anal-
yses [GUM95]. This chapter illustrates how modeled randomness can emulate
uncertainties evaluated not only by statistics (Type A methods) but also by
other means (Type B methods).

Monte Carlo modeling of randomness provides an easy means for combin-
ing uncertainties [GUM-S1 07] that is particularly useful when the adequacy
of the usual methods are in doubt.

It is very simple to combine uncertainties using Monte Carlo simulation:

• Model the uncertainties of the input quantities with pseudo-random
number generators.
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Fig. 1. Repeated measurement of a 25 ohm platinum resistance thermometer in an
ice bath over a time interval of about five hours. To the right is a histogram of the
measurements.

Fig. 2. Monte Carlo simulation of the measurements of Figure 1. To the right is a
histogram of the simulation (gray points) compared to a histogram of the measure-
ments (black points).

• Model the calculation of the output quantity from the input quantities
using the measurement equation.

• In a loop, generate a set of pseudo-random input quantities, calculate
its output quantity, increment a histogram bin–repeat loop many times (com-
monly ≥105).

Given a means of generating the appropriate pseudo-random numbers, no-
tice that there is nothing complicated here. Each iteration through the loop
represents a single Monte Carlo event, where the instance values of the input
quantities have been sampled from their attributed distributions. A picture
of the resulting randomness associated with the output quantity is built, one
event at a time, by performing the calculation many times and generating a
histogram of the simulated events.

Even the choice of modeling strategy is only rarely a complicating is-
sue. For any scalar input quantity, subtleties arise only when its uncer-
tainty is nonsymmetric about that quantity’s reported value [DSWH05],
so usually no distinction needs to be made between the distribution of
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measurements (or gedanken measurements) of Figures 1 and 2 and the dis-
tribution of the measurand (to which formal uncertainty distributions re-
fer). The formal justification for this is facilitated by the standard prac-
tice by metrologists of using the same value to be the best representa-
tion both of the (fully corrected) measurement, and of the measurand.
This “fiducial value” simplifies, and in our view strengthens, the fiducial
argument [F35].

The utilitarian potential of a measurement can be realized directly when
it is compared to one or more other measurements. For this chapter we have
chosen measurement comparisons as examples to illustrate the power of Monte
Carlo simulation in the chains of metrological inference that provide the prac-
tical benefits of measurement science.

1.1 Strengths of Monte Carlo methods

With the Monte Carlo simulation method of uncertainty analysis, there is no
restriction on the measurement equation. Neither linearization nor derivative-
evaluation need to be done. The Monte Carlo method will work every bit
as easily for a measurement algorithm as it does for a measurement equa-
tion. Thus, unlike the conventional methods that require a measurement equa-
tion, Monte Carlo simulation can be applied to uncertainty analysis of mea-
surement processes that incorporate decisions or branching, or incorporate
order statistics that depend on sorting a set of values into nondecreasing
order.

For any case where there is some doubt about the adequacy of the ap-
proximations inherent in the classical GUM analysis, Monte Carlo simula-
tion is a useful tool to investigate, and usually to confirm, that the classical
methods for combining uncertainties are indeed adequate. For all the power
of Monte Carlo simulation, it is also important to recognize its limitations:
although it can easily and quickly give answers to obscure questions about
the model, the simulation in and of itself does not address questions about
reality.

Monte Carlo simulation is applicable to uncertainty claims that have
been derived by any method and expressed as a standard uncertainty, or
as a standard uncertainty with a stated degrees of freedom, or as an ex-
plicitly given probability density function. In this chapter, we restrict the
discussion to real, scalar input, and output quantities, but address all other
intricacies.

The power of the Monte Carlo method is further revealed when ap-
plied to aggregates of extensive sets of experimental measurements to judge
the mutual consistency of such results relative to the uncertainty claims.
It can analyze the predictions implied by these claims however they have
been prepared, whether by Type A methods, frequentist methods, Type
B methods, Bayesian methods, Monte Carlo simulation, or quantum me-
chanics. By construing a prediction from the uncertainty claim associated
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with each measured value, it is possible to invoke the classical scientific
method of comparing prediction with experiment to create and to con-
vey confidence for the methods of uncertainty analysis used in a particular
application.

2 Distributions for uncertainty claims

x An input quantity
fG(x) Gaussian probability density function (PDF) for x
aG Normalizing constant for fG

u Standard uncertainty of input quantity x
x0 Mean, or reported value, of x
fS(x) Scaled and shifted Student-t PDF
aS Normalizing constant for Student-t PDF
ν Degrees of freedom for Student-t PDF
a Semi-width of a rectangular distribution

The recommended [GUM95] form of an uncertainty claim is as a standard
uncertainty, taken as the standard deviation of a Gaussian distribution, or as
the sample standard deviation (see Section 2.2) of a t-Student distribution if
a finite degrees of freedom is given, or as the distribution standard deviation
if there is any other significant departure from a Gaussian, with its depar-
ture described explicitly. This is sometimes done using moments, but it is
usually better to do this using tabulated distributions. Any asymmetry will
have to be correctly oriented, using an appreciation of whether the distribu-
tion describes the measurand, or is a more direct prediction of measurement
results.

2.1 Gaussian or Normal distributions

The most common function used to provide a basis for uncertainty state-
ments is the Gaussian or normal probability density function (PDF). A ran-
dom variable x is used to represent the possible value of the measurand,
described by its mean value x0 and its standard deviation u. If only x0 and
u are given to describe a measurand, a Gaussian PDF is to be construed
for x:

fG(x) = aG × e−(x−x0)
2/(2u2), (1)

where aG is a normalizing constant, equal to (u
√

2π)−1, chosen so that
the integral of fG over all x, the overall probability, will be equal
to 1.
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2.2 Student-t distributions

Another function that is explicitly recognized as the basis for expressing un-
certainty [GUM95] is the scaled and shifted Student-t distribution. This has an
additional parameter, the degrees of freedom, ν, and in the limit as ν → ∞ the
Student distribution converges to the Gaussian distribution discussed above.
The scaled and shifted Student-t PDF is given by

fS(x) = aS × [1 + (x− x0)2/(ν u2)]−(ν+1)/2, (2)

where aS is a normalizing constant, equal to Γ ([ν + 1]/2)/[Γ (ν/2)u
√
πν ],

chosen so that the integral of fS over all x, the overall probability, will
be equal to 1. Although tabulated most commonly for ν as a positive in-
teger, ν does not have to be an integer when expressing uncertainty. This
distribution is centered at x0 and has a standard uncertainty u, the sam-
ple standard deviation, which for all ν > 2 is

√
(ν − 2)/ν times the distri-

bution’s standard deviation (the square root of the distribution’s variance
about x0).

The sample standard deviation is the parameter u in Equation (2), and is
to be used as the standard uncertainty [GUM95] whether it is derived as the
standard deviation away from the mean from a sample of ν + 1 independent
measurements drawn from a Gaussian, or if it is derived in any other way
(including a consideration of how well the uncertainty is known). If an uncer-
tainty budget has been expressed using the guidance of the ISO-GUM, and a
degrees of freedom has been quoted, then the standard uncertainty must be
construed as the parameter u in Equation (2) to accord with the intent of the
authors of any uncertainty budget who have followed the ISO-GUM’s devel-
opment of expanded uncertainty (Annex G of [GUM95]) and its use of the
Welch–Satterthwaite approximation. Note that this required usage is contrary
to the usage of the standard uncertainty as the distribution standard devia-
tion for a general PDF, and a subordinate suggestion [GUM-S1 07] for scaled
and shifted Student-t distributions. Our perspective is that supplements to
the ISO-GUM should not be interpreted as modifying the ISO-GUM, and
the way that is most obviously faithful for construing an ISO-GUM standard
uncertainty associated with a degrees of freedom is to use Equation (2) with
u as the quoted standard uncertainty and with ν as the quoted degrees of
freedom.

There are different reasons why those preparing an uncertainty statement
might give a finite degrees of freedom. Each reason can be appropriate in its
own context, but the reasoning need not concern us here. Whenever a stan-
dard uncertainty claim is accompanied by a finite degrees of freedom, in the
absence of other information users must construe a scaled and shifted Student-
t PDF in order to be consistent with the accepted standard [GUM95] and its
explicit calculations of expanded uncertainty.
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2.3 Rectangular distribution

The rectangular or uniform distribution is constant over a range (x0−a, x0+a),
and has zero probability density outside this range. It is commonly used for
uncertainties where only the bounds of an input quantity can be specified. It
also has a more rigorously justified use in accounting for the quantization un-
certainty between a finite-resolution measurement and an analog measurand.

2.4 U-shaped distribution

For an input quantity that is sampled at random in a situation there is a si-
nusoidally varying fluctuation between two fixed limits, a particular U-shaped
PDF—the arcsine distribution—may be useful. It may be appropriate where
an on–off temperature controller is cycling on and off between two fixed limits
in a system that has a time constant much longer than the controller cycle
time. We discuss this distribution in more detail below, as a worked example
in the section on algorithms.

3 General distributions

The building block PDFs discussed above do not cover all possible cases of
interest for uncertainty analysis. It is possible to list other forms, but eventu-
ally circumstances arise that cannot be covered by any list, however long the
list may be. For example, for an input quantity needed in your measurement
equation, you may be handed an uncertainty claim for an input quantity that
includes a description of a wholly new PDF.

Although this is not now a common occurrence, it is not fanciful. It will
likely become more common as we improve our ability to describe the un-
certainty properly and so meet the requirements of the international stan-
dard [GUM95]. If, in the opinion of the person preparing an uncertainty state-
ment, there are significant departures of the PDF from the Gaussian distribu-
tion, or from the Student-t distributions, such departures are to be described
in stating the uncertainty. There are several ways in which this may be done.

3.1 General distributions by moments

One traditional way of describing a more general PDF is to use its moments.
Indeed, we have already encountered the first moment (the mean value, x0)
and the second moment about the mean (the variance, u2, or for the special
case of the Student-t distribution u2ν/(ν − 2)). For higher moments, the nth
moment Mn of a PDF f(x), about its mean x0 is

Mn =
∫ ∞

−∞
(x− x0)nf(x)dx. (3)
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The second moment is the variance (usually u2), and the third moment may
be expressed by a coefficient of skewness, usually M3/M

3/2
2 . If a PDF has a

more pronounced tail to the right, its skewness is positive, and if the tail is
more pronounced to the left the skewness is negative. A distribution that is
symmetric about x0 has zero skewness, and Mn is zero for any n that is odd.

For any uncertainty that is not symmetric about x0, it is important to
appreciate and to be able to discuss the sense of the PDF and whether
it “tails left” or “tails right”. The skewness parameter is a convenient
mechanism for keeping track of the orientation of the distribution in such
discussions.

Even a Gaussian PDF has a fourth moment, or kurtosis, which is equal to
3. We often encounter the “excess kurtosis” parameter (M4/M

2
2 ) − 3, which

is zero for a Gaussian and which thus describes a significant departure in
peakedness from a Gaussian PDF.

We believe that describing general distributions by their moments is of
only limited use for generalizing Monte Carlo methods to handle arbitrary
probability distributions. However the moments are reported, the uncertainty
statement is only complete when a scheme for expanding the moments back
into the PDF is also specified by the persons preparing the uncertainty state-
ment, otherwise their uncertainty specification is not unique. With the expan-
sion specified, it would be straightforward to calculate and to use a tabulated
approximation of the PDF, as discussed next.

3.2 General distributions by tables

Another traditional method for describing a function is to tabulate x and f(x)
for a reasonable number of points and to specify an interpolation scheme for
calculating f(x) for any value of x in between the tabulated values. Every
time a PDF is graphed, this is the basic method that used, and this method
can be adapted to describe the PDFs of any claimed distribution in a form
that may be used easily in Monte Carlo simulation of the uncertainty claims.

The general form of tabulated function and interpolation scheme can be
quite simple. Consider a table of N values of x, {xi}, i = 1, . . . , N , sorted into
ascending order so that xi < xi+1. For each xi there is a corresponding f(xi),
with f(x1) = 0 and f(xN ) = 0. For any value of x outside the range (x1, xN ),
f(x) = 0. For any value of x between xi and xi+1, the value of f(x) can be
calculated by linear interpolation:

f(x) = f(xi) + [f(xi+1) − f(xi)] × [x− xi]/[xi+1 − xi]. (4)

Other, higher-order, interpolation schemes are also possible. The points do
not need to be equally spaced, so it is feasible to approximate a discontinuous
function very efficiently. For example, a rectangular distribution could be ap-
proximated well by a table of length N = 4, having a flat top and arbitrarily
steep sides. Note that f(x) is the probability density, so that when the {xi}
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are unequally spaced, the tabulated f(xi) are not all simply proportional to
the probability (they can all have different proportionality constants).

Monte Carlo simulation can treat any uncertainty expressed as a general
function that can be tabulated and interpolated in this way.

3.3 Skewed general distributions

In the authors’ opinion, one of the benefits of Monte Carlo simulation for
analysis of uncertainties is that there can be a direct mapping of intermedi-
ate results of the simulation onto possible experiments where repeated real
measurements and repeated simulations could be compared. There is a minor
difficulty to be addressed: the experimental data are expressed in the form
of a histogram of replicated measurements, and the simulated uncertainty
distributions should be in the form of a histogram of replicated simulated
values for the measurand if the uncertainty is being expressed in the standard
way [GUM95].

For the scalar measurands being discussed here, there is a simple and
rather robust mechanism for converting one sort of histogram into the other:
by reflecting the histogram of simulated values about x0 [DSWH05]. For sym-
metric distributions, this is a null operation and the minor difficulty vanishes.
For claimed uncertainty distributions that are not symmetric, care is needed
to construe the meaning of the claimed distribution and to propagate its skew-
ness appropriately through any changes from the measurand perspective to
the measurement perspective and back again. Skewness reversal can also arise
from the measurement equation (e.g., in subtracting), but this will be looked
after automatically by the Monte Carlo simulation process.

4 Multivariate distributions

Although we have discussed the use of a general PDF of a real variable by
tabulating and interpolating the PDF of any combined uncertainty, there are
sometimes advantages in backing up one (or more) layers in order to use the
constituent uncertainty components of a combined uncertainty statement as
the mechanism for creating a Monte Carlo simulation of a new output quan-
tity. In essentially redoing an uncertainty calculation authored by someone
else—that is, in recombining their uncertainty components within your own
uncertainty model, there can be no objections provided that there are no
significant differences in the calculations.

The disassembly of a combined PDF into more elemental PDFs can some-
times really simplify the treatment of covariant uncertainties, and avoid as-
sumptions and approximations that are often invoked when a multivariate
PDF is used as the basis of handling covariances.
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4.1 Covariance: Simplifications – Type A

x1, x2 Two input quantities, possibly covariant
u1, u2 Standard uncertainties of x1, x2

r1,2 Correlation coefficient of x1 with x2

y1, y2, y3 Three independent random variables to model
uncertainty of x1 and x2

A covariance that has been evaluated by a purely Type A method (statis-
tical evaluation of correlations between repeated paired measurements) can be
handled by Cholesky decomposition to obtain an efficient means for a Monte
Carlo resampling of the multivariate probability density function that has the
desired variance and covariance characteristics.

We can obtain additional clarity by sacrificing a bit of efficiency, using
more than the minimum number of pseudo-random variables in order to de-
scribe the multivariate Gaussian distribution. For example, the general bi-
variate Gaussian distribution of two (zero mean) input quantities x1 and x2

would usually be characterized by their standard uncertainties u1 and u2, and
their correlation coefficient r1,2 (or covariance r1,2 u1u2).

An equivalent description can be created using three independent zero-
mean random variables, y1, y2, and y3, drawn from Gaussian distributions
having standard deviations v1 =

√
u2

1 − r1,2u1u2, v2 =
√
u2

2 − r1,2u1u2, and
v3 = √

r1,2u1u2. It is clearer to consider v1 as the standard uncertainty of
the independent perturbations of x1, and v2 for x2, with v3 representing the
standard uncertainty of the perturbations shared between x1 and x2. In the
context of Monte Carlo simulation, it is a simple matter to generate a set of
three values for y1, y2, and y3, drawn from PDFs characterized by v1, v2, and
v3, and to calculate x1 = y1 + y3 and x2 = y2 + y3 for the event, where the
same value of y3 is used for calculating both x1 and x2.

For Type A evaluations of a covariant uncertainty component, generally
no cause (or causes) are identified for this “shared” perturbation, y3. The
Monte Carlo method can gracefully handle covariances evaluated by Type A
methods, but does not help us to focus on obtaining clearer insights. In our
experience with high-level metrology, it is rare to rely only on Type A methods
for evaluating covariances in uncertainty budgets.

4.2 Covariance: Simplifications – Type B

For covariances evaluated by Type B methods, Monte Carlo methods can focus
on the physical and practical meanings of our variables in evaluating covari-
ances implicit in the input quantities used in our measurement equation.

In practice, two or more variables in a measurement equation can be ex-
amined for possible covariances by asking a few simple questions about their
values as used in the measurement equation:
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• Are the values the same? This is a particularly simple but rather weak
test. Particularly for interlaboratory comparisons, identical corrections may
indicate a common origin. The test is weak in two ways: it may be just a
chance occurrence that the values are the same in this instance, and that
there is no underlying correlation. Furthermore, even if corrections by differ-
ent laboratories are not numerically identical, they may still be correlated.

• Are the values procedurally constrained to be the same? If two uncer-
tainty budgets each import a value for one of their input quantities from the
same source, the associated uncertainty component is completely correlated
(with correlation coefficient r = 1). Although this system might be modeled
as two correlated variables, simplicity dictates that the Monte Carlo model
should use only one pseudo-random variable for this circumstance.

• Are the values physically constrained to be the same? For example, in
a measurement equation, many parts of the associated measurement system
may be affected by temperature, and although each part may be at a slightly
different temperature, the temperatures of all parts are expected to track
the laboratory temperature pretty closely. For this situation, a single pseudo-
random variable (for laboratory temperature) is the simple starting point.

These questions are relatively simple for measurement specialists to answer
in their own fields. The more complete question, “Are the values procedurally
or physically constrained to be partially covariant?,” is a much more difficult
question to answer. It may be possible to develop insights about these ques-
tions by reformulating the measurement equation in terms of independent and
shared perturbations (similar to the y1, y2, y3 basis discussed above).

4.3 Covariances in building measurement equations

In creating a Monte Carlo model, a sound objective is to use as few pseudo-
random variables as possible, but no fewer. If simplicity can be enhanced by
increasing the number of pseudo-random variables, we believe that it is ap-
propriate to do so. In our opinion, Monte Carlo simulation is best exploited
when one goes beyond considering a standardized measurement equation, and
considers anew all of the assumptions that had to be made to arrive at a mea-
surement equation that was tractable using standard methods. Because Monte
Carlo simulation for combining uncertainty components can easily cope with
many more intricacies than the traditional approach, it is a natural way to
explore extensions to a measurement equation without incurring the overhead
of re-evaluating derivatives and covariances.

4.4 Example: Covariance matrix to perturbation vector

α Temperature coefficient
Ti Temperature at which measurement i was taken
T0 Reference temperature for reporting measurement
u(α) Standard uncertainty in α
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To illustrate how covariances are automatically handled by the direct ap-
proach inherent in Monte Carlo model building, consider a Type B evaluation
of covariance due to the temperature coefficient α of a measurand, with domi-
nating uncertainty u(α). One example of this might be the thermal expansion
of a gauge block, needing a correction of the measured length at a temperature
T , to the specified reference temperature T0, of −α[T − T0]. To first-order,
the correction’s uncertainty has two components, each with its own standard
uncertainty: αu(T −T0) and u(α)[T −T0]. It is this last standard uncertainty,
u(α)[T − T0], that can give rise to covariant uncertainties if there is a shared
value of the thermal expansion coefficient that is used for applying the cor-
rection to different measurements.

We require the full covariance matrix of a set of N ′ measurements made
at known temperatures Ti, rather than at the specified reference temperature
T0, and assume u(Ti)×α � α[Ti−T0]. With elements u2(α)[Ti−T0][Tj −T0],
this covariance matrix has a determinant of zero, so the usual methods for
Cholesky factorization fail.

Considered from the approach of Monte Carlo simulation, however, the
uncertainty in the ith result is just u(α)[Ti − T0]. A single random variable
can simulate the uncertainty in α, scaled by [Ti − T0] to the N ′ simulated
errors of the corrected measurand. Determining the scope of each value for α
is part of the uncertainty modeling, determined by the physical constraints on
the temperature coefficient and described by the PDF associated with u(α).
Here, the temperature coefficient is to be represented by the same value for
each set of simulated measurements, resampled to reflect its uncertainty u(α).

In the Monte Carlo approach, it is clear that the random variable for α
can be drawn from any shape of distribution, in contrast to the usual mul-
tivariate distribution approach where it would have to be approximated by
a Gaussian.

5 Pseudo-random number generators

The ascendance of Monte Carlo simulation is based on the easy availability of
programmable computers that can quickly perform deterministic calculations
involving millions—or millions of millions—of arithmetic operations. A par-
ticular class of deterministic program has been developed that can emulate
randomness, producing a sequence of (floating point) values that are difficult
to distinguish from ideally random values. Programs that do this are termed
pseudo-random number generators. The “pseudo” is not referring to readily
discernible departures from randomness in the generated sequence (many are
practically impossible to distinguish from ideal randomness) but rather to the
fact that the sequence is deterministic: it can be repeated at will, and so the
usual validation procedures for deterministic software can be used. Even if true
random number generators (i.e., nondeterministic) were available everywhere,
the preference would be for pseudo-random number generators as a tool for
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uncertainty analysis and measurement science and in any other application
where software validation is an everyday concern.

For ordinary computers, a wide variety of pseudo-random number gen-
erators is available, and although a few of the earlier methods have serious
flaws for uncertainty analysis, most are quite suitable for use with the Monte
Carlo method of combining uncertainty components. For a few applications
such as “six-nines” calculations, or for other chi-squared-like tests comparing
probabilities at 10−8 or less, additional care is needed when selecting your
generator. Also, it has happened that a broadly trusted application has been
“updated” to break a formerly working pseudo-random number generator.
Clearly, in the context of metrology and ISO 17025 quality systems, these
tools and their validation must be properly documented and maintained.

In the context of uncertainty analysis, the computation speed of different
pseudo-random number generators is not normally an issue: any typical com-
puter can be used with any generator to calculate millions of points for an
output quantity in a very reasonable amount of time, usually without concern
about the computer language used for the implementation.

5.1 Underlying pseudo-random number generators

Virtually all pseudo-random number generators are based on some algorithm
that creates a sequence of floating-point numbers, with each number restricted
to the interval (0, 1) or [0, 1). The generators aim to approximate a sequence of
samples of a random variable with a uniform probability density function on
the interval (0, 1). The sequence is not really random because the sequence can
be restarted so that, for each restarted sequence, exactly the same sequence of
floating point numbers will result. Good pseudo-random number generators
have no discernible patterns to their sequence of numbers. Although the se-
quence has a finite length and would eventually repeat, many generators have
a repeat length so long that accidental repetition is simply not a problem.

5.2 Compact algorithms

In metrology one aspect of floating-point random numbers is occasionally im-
portant: the dynamic range of the smallest steps near 0 and 1 to the interval
size of 1. The Hill–Wichmann [HW82] generator has a dynamic range of about
215 ( 30,000), which is adequate for many but not all applications in metrol-
ogy. For some applications, the period of this generator, 7 × 1012 numbers,
would also be considered to be short. The same authors have published an
improved version [WH06] that is still quite compact.

The main advantage of a compact algorithm is found in the greater ease of
checking the source code of the computer program. The other advantages of
compactness can be translated into an expectation for a greater speed of exe-
cution. If proper software validation is to be performed on the executable code
from any source code (however compact it might be) the apparent advantage
of source code compactness will largely disappear.
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5.3 Demonstrable randomness

One particularly good implementation of a pseudo-random number generator
is known as RANLUX [J94], [L94]. This algorithm adds an interesting theo-
retical underpinning to the usual tests for assessing the statistical quality of
randomness. Generally these tests only try to find some departure from ideal
randomness, but ideal randomness in all its manifestations cannot be proven.
For the RANLUX generator, the chaotic nature of the individual bits of binary
representation is given a theoretical justification for portions of the underlying
sequence [L94]. By discarding some, or all, of the potentially nonchaotic val-
ues, a family of pseudo-random number generators is created characterized by
a specified “luxury level”. A luxury level of 4 means all potential departures
from bit-by-bit chaos have been removed. The most commonly used member
of this family is for a luxury level of 3, which also passes all of the usual em-
pirical statistical tests for randomness. The period of this generator is 10171

numbers.
The RANLUX generator provides 24-bit pseudo-random numbers, and a

standard extension is RANLUX64 that is used to concatenate two adjacent
24-bit pseudo-random numbers from the RANLUX sequence into a 48-bit
mantissa for a double-precision floating-point number on [0,1). It is easy to
see that the bit-chaotic character is preserved by this concatenation, and so
the theoretical basis for the randomness also applies to RANLUX64.

A version of RANLUX (and of RANLUX64) is available from the au-
thors which has a symmetric approach to generating numbers close to 0
and to 1. Unlike the original implementation, no extra bits are concatenated
for pseudo-random numbers near zero. For simulating uncertainty distribu-
tions, this has the effect of symmetrizing the wings of the resampled dis-
tributions. Asymmetry in the “extreme outliers” of measurements—even of
simulated measurements—is likely to capture the attention of good metrol-
ogists, so it is worthwhile to avoid artificially introducing asymmetry via
an underlying algorithm in a fashion that may be difficult to explain to
other metrologists.

5.4 Testing with pseudo-random number generators

In the context of uncertainty analysis, testing with pseudo-random number
generators is needed to support the validity of conclusions made using Monte
Carlo methods. Overall, “testing” in uncertainty analysis should address a
very broad range of issues, including:

• The implementation of the agreed basis for uncertainty analysis (random
variables)

• The implementation of resampling of specific distributions that have
been claimed to represent the uncertainties of the input quantities

• The adequacy of the measurement equations used for representing real
measurements
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• The adequacy of uncertainty claims to represent a set of measurements
on quantities construed as invariant by a broad consensus

• The adequacy of the statistical methods themselves, tested by using the
classical scientific method.

The Monte Carlo approach is powerful enough to support testing in
all of these ways, we believe. The above scope of testing may seem
daunting—offering too many years (or perhaps even centuries) of testing and
improvement—until one examines what might reasonably be wanted by a
skeptical client, colleague, or quality system assessor. In our view, it is really
only the first two statements that need to be addressed at this time in order
to justify a particular implementation of Monte Carlo methods as a means
of delivering confidence in a specific uncertainty analysis. In its role of sup-
porting the standard methods [GUM95], and justifying their approximations,
only rather simple testing of the Monte Carlo tools must be performed and
documented.

5.5 Tests of pseudo-random number generators

The primary test for a pseudo-random number generator (PRNG) aims at
discovering departures from randomness in the underlying code that is to gen-
erate uniform random numbers on the interval (0,1). When an algorithm for
generating pseudo-random numbers is first published, some comment about
the quality of its randomness is normally included. Exceptionally, a theoret-
ical justification may be provided [L94], but more usually only results from
one or more empirical test suites [M85], [LS02], [B07] are given. Generally, if
one is relying on empirical tests, the more recent tests can provide stronger
testing, but the requirements for randomness in some important applications
(such as the characterization of cryptographic security) can be very different
than the real requirements for modeling uncertainty.

For modeling uncertainty claims, the real requirements on randomness can
be quite lax in comparison. In high-level metrology, uncertainty budget au-
thors would only rarely be adamant in defending their value for the standard
uncertainty in discussions about the possibility of a 10% change to the stan-
dard uncertainty. However, only a modest effort is required in documenting
the randomness of your PRNG to a much higher level than this, with the
great benefit of eliminating potentially distracting arguments about PRNG
quality. This will involve some understanding, and perhaps tracking, of the
requirements perceived by your target audience.

5.6 Tests on your computer

At first, it might seem important to repeat the tests, discussed above, of the
underlying PRNG that is to generate uniform random numbers on the inter-
val (0,1). Careful checking of the source code, and rerunning one or more of
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the empirical test suites might seem to be required. Because these empirical
tests should ideally be rerun and checked whenever there is a change to your
computer, this could burden users who automatically update their operating
system and other software monthly (or even more frequently).

A practical and much shorter test can be almost as convincing. The PRNG
is restarted from a standard state, and after generating a specified number
of pseudo-random numbers, the next pseudo-random number is recorded and
compared to the output by the standard implementation that has been used to
run the empirical test suites. Almost all possible deterministic errors should be
revealed by this process. For a variety of PRNG methods, the GNU Scientific
Library and associated testing programs [C02] give a standard initialization
and a standard random number reference value (for the value after 104 random
numbers have been generated). This provides a simple, easily repeated, and
easily documented test that can reliably associate the PRNG in the present
state of your computer with earlier results of the empirical test suites.

Because neither theory nor empirical tests can provide generic assurance
about randomness that is rigorously applicable to all circumstances that you
may wish to examine in your Monte Carlo simulations, another particularly
simple test is very helpful: to run your simulation with PRNGs of different
qualities. Regions perturbed by PRNG artefacts will usually exhibit differ-
ences between results obtained using different PRNG methods. If the answers
to questions about the model are the same for simulations performed with
different PRNGs, this provides a convincing yet simple argument for there
being no PRNG artefacts in the answer about the model.

For uncertainty analysis, there is another simple demonstration that is
capable of convincing a wide audience of measurement experts: showing that
the simulated randomness does indeed regenerate the PDFs claimed by the
authors of the uncertainty budgets in question. Collecting and histogramming
the results is quite tractable (see Figure 3), and can provide graphical reassur-
ance to those whose primary concern rests in the position, width, and shape
of these distributions. Most measurement experts are quite used to accepting
the assumption of independence for random variables that represent perturba-
tions which in reality have unknown correlations, correlations that are likely
far greater departures from ideal randomness than would ever be found in a
modern pseudo-random number generator.

5.7 Tests of dynamic range

There is a simple visual variant to the last approach that we have just dis-
cussed. Using a logarithmic vertical scale instead of a linear one for comparing
the histogram of the simulated results with the form of the claimed PDF,
which is usually expressed analytically, changes the character of the com-
parison from one of probability accuracy to one of probability ratio accuracy,
allowing one to appreciate the fractional accuracy of the simulation relative
to the claim. Confidence about the fractional accuracy is important when we
are interested in statements about the chance occurrence of outliers.
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Fig. 3. Histogram comparison of the limited dynamic range of the Hill–Wichmann
PRNG versus RANLUX64, for simulating two uncertainty distributions (with
2 × 1010 events for each) by the table method: a Gaussian and a Student-t with
6.3 degrees of freedom. The two thin white lines are the analytic targets, which
show the failings of the Hill–Wichmann PRNG for target values less than 10−4

of the peak; many histogram bins have 0 or 1 counts where 10s or 100s are
expected.

This type of logarithmically scaled graph is a very simple means of estab-
lishing the validity of the dynamic range of the simulation: it can provide a
convincing demonstration of the dynamic range of the underlying PRNG in
the context of each specific algorithm for transforming to the target PDF.
There are circumstances where users of Monte Carlo results really need to
know that the implementation of the Monte Carlo resampling has sufficient
dynamic range in the probability density to justify using the simulation to
formulate conclusions about outliers of the modeled claims. Figure 3 shows
the difficulties that the Hill–Wichmann PRNG can create when used outside
its somewhat restrictive dynamic range. Also shown is the improvement that
can accrue with a PRNG having a larger dynamic range, the RANLUX64
generator (with luxury level = 3). The table lookup method, used for the his-
tograms in Figure 3 targeting a Gaussian, and a Student-t distribution with
degrees of freedom = 6.3, uses but a single value at a time from the under-
lying uniform PRNG, and places the most stringent demands on dynamic
range. Even so, the worst of the distributions in Figure 3 demonstrate that
they are quite adequate for simulations requiring a dynamic range of less than
104 to 105.

Of course, with large dynamic range comes a particular problem in mea-
surement science. The low-probability tails of the targeted uncertainty claims
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are usually difficult to evaluate experimentally, and the role of confidence
about our Monte Carlo implementation is to direct attention towards improv-
ing the claims for these tails, rather than to have others dwell on possible defi-
ciencies in the mechanics of the simulations. The claimed tails themselves may
be of interest in making decisions [SWD05], and the Monte Carlo simulation
can incorporate any specific decisions to record the statistical consequences
about this complex kind of process.

6 Algorithms for generating specific distributions

To model the claimed distributions properly, we will need tools that can con-
vert the uniform (pseudo-) random variate into a (pseudo-) random variate
with the distribution claimed by the author of the uncertainty statement.
The underlying uniform random number generator creates pseudo-random
floating-point numbers from the interval (0,1), and all other needed distribu-
tions will be created by transforming samples from this sequence of numbers
into other floating-point numbers that have the desired distribution. Each
output number is based on one or more samples from the underlying uniform
PRNG.

A multiplicity of input quantities needs to be simulated in most Monte
Carlo simulations, and usually these all draw in turn on numbers from a single
sequence from a single underlying uniform pseudo-random number generator.
Below, we use a preceding subscript to denote the multiplicity of pseudo-
random variates that usually needs to be created: i = 1, 2, 3, . . . Gaussians;
j = 1, 2, 3, . . . , Student-t variates, k = 1, 2, 3, . . . uniform variates,. . . etc.

6.1 Gaussian

i Preceding subscript for the ith Gaussian PDF
ix ith input quantity described by a Gaussian PDF
ix0 The mean or reported value of the input quantity ix

iσ The standard uncertainty of ix, its Gaussian standard deviation
iy Standard-normal variate used to resample ix

The Box–Muller method [BM58] is a standard method for transforming sam-
ples from a standard uniform PRNG on [0, 1) into samples from a Gaussian
(or “standard normal”) distribution, with mean value = 0 and standard de-
viation = 1. To use a Box–Muller output variable iy for uncertainty analysis,
we convert to the quantity ix (which is an input quantity of our measurement
equation) by using the simple shifting and scaling transformation
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ix = iσ ·iy + ix0 (5)

so the resulting variable ix has a Gaussian distribution, with a standard de-
viation equal to the claimed standard uncertainty, iσ, and centered on the
reported value ix0.

Although it may be the most common method, this is not the only way
that a Gaussian might be approximated: table lookup and interpolation can
be applied here just as readily as in the case of more complicated distributions;
a reasonable approximation is to use the departure from 0.5 of the average of
N > 5 samples from the underlying uniform PRNG; the Gaussian needed by
one of our input quantities might originate in a GUM-compliant combination
of other uncertainty components, and if the full uncertainty budget for this
input quantity is available, it could be simulated in all its constituent com-
ponents rather than as its combined standard uncertainty that is represented
by a Gaussian.

The important observation in this discussion is that the way in which
we use the modeled randomness is always independent of the mechanism
used in the computation, and a specified PDF can always be regenerated
in whatever way is clearest or is most convenient for us, even when the
distribution in question is this most common basis PDF found in uncer-
tainty budgets. Only if reanalysis of an uncertainty budget shows signifi-
cant discrepancies from its author’s combined uncertainty calculation does
one need to distinguish between the author’s combined uncertainty claim,
and our claim of the combined uncertainty from the author’s uncertainty
budget. This distinction applies to any method that we use for the recalcu-
lation, and is not an additional burden peculiar to Monte Carlo uncertainty
analysis.

6.2 Student-t

j Preceding subscript for jth input quantity described by a Student-t
jx The jth input quantity described by a Student-t PDF
jx0 The mean or reported value of the jth input quantity jx

jσ The standard uncertainty of jx (also the “sample standard deviation”)
jν The degrees of freedom of jx

jy A Student-t variate used to resample jx

The Kinderman–Monahan–Ramage method [KMR77] is a standard
method for transforming samples from a standard uniform PRNG on [0, 1)
into samples from a Student-t distribution with a specified degrees of freedom
jν (note that jν is not constrained to be an integer). It produces a zero-mean
distribution having a sample standard deviation equal to 1. For jν > 2 the
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distribution standard deviation is
√

jν/(jν − 2). As published, the method
fails if the underlying PRNG returns exactly 0.25, but it is a simple matter
to avoid 0.25.

To use a Kinderman–Monahan–Ramage output variable jy for uncertainty
analysis, we convert to the input quantity jx of our measurement equation by
using the simple shifting and scaling transformation

jx = jσ ·jy +jx0 (6)

so the resulting variable jx has a scaled and shifted Student t-distribution,
with a standard deviation equal to the claimed standard uncertainty, jσ
(recall that this is always to be interpreted as the sample standard devia-
tion [GUM95]), and centered on the reported value jx0.

As was the case for the Gaussian distribution, there are other computa-
tion methods at our disposal, and for integer ν we can generate the Student-t
variate by combining results from ν + 1 samples from a Gaussian distribu-
tion. This approach can directly simulate the finite sampling uncertainty
and its broadening of a Gaussian PDF’s wings into those of a Student-t
PDF.

6.3 Uniform distribution

k Index for the kth input quantity described by a uniform distribution
kx The kth input quantity described by a uniform distribution
kx0 The mean or reported value of the kth input quantity kx

ka The semi-width of the uniform distribution for kx

ky A uniform variate on (0,1) used to resample kx

It is particularly simple to use the underlying uniform PRNG to simulate
any quantity described by a uniform rectangular distribution. Using a value
ky from our underlying PRNG, for uncertainty analysis we convert to the
input quantity kx of our measurement equation by using

kx = ka(ky − 0.5) + kx0 (7)

so the resulting variable kx has a scaled and shifted distribution, with a

full rectangular width that is equal to a and centered on the reported value
kx0. Recall [GUM95] that a/

√
12 = (a/2)/

√
3 is the distribution standard

deviation and is to be the claimed standard uncertainty.
Once again, the numerical method can be chosen from many alternatives:

in this case the choice can be made from the many candidates available for
the underlying uniform pseudo-random number generators.
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6.4 U-distribution

l Index for the lth input quantity described by an arcsine-U distribution
lx The lth input quantity described by an arcsine-U distribution PDF
lx0 The reported value of lx, and the mean of its arcsine-U distribution
la For lx, the semi-width of its arcsine-U distribution
ly Uniform variate on (0,1) used to resample the arcsine-U distribution

for lx
v A random variate used for integrating the arcsine-U distribution
δx A small increment in the input quantity x
θ A uniformly distributed random variate on (0, π)
δθ A small increment in theta

The U-distribution, or arcsine-U distribution is chosen here as our last class
of classical analytic uncertainty distributions. It is neither the next most com-
mon nor necessarily the next most useful distribution for uncertainty analysis.
It does offer a particularly clear physical basis for the transformation from one
uncertainty distribution to another, and is a good example of the simplifica-
tion that can be had in uncertainty modeling by choosing the input quantities
carefully. It is also a convenient distribution to use for demonstrating the
general methods that we need when no such physical model is available.

This distribution is used to describe random sampling from a measurand
subject to a sinusoidal perturbation. For example, consider the temperature
of a system with a long time constant, controlled by a temperature controller
between two set limits. When the cycling between the two limits is faster than
the natural time constant, the main perturbation can be sinusoidal. If mea-
surement times are uncorrelated with the temperature controller cycling, then
the probability density can be modeled by emulating the sampling process of
the cyclic variation: we draw a pseudo-random number ly from a distribu-
tion uniform on (0, 1), multiply by 2π to emulate a random phase at which
the sinusoid is sampled, scale it to the appropriate amplitude la (half the
peak-to-peak amplitude), and shift it to the desired mean value lx0,

lx = −la · cos(π ly) +lx0, (8)

a process that is physically transparent in situations where we are considering
a random-phase sample of a sinusoidally varying input quantity. The standard
uncertainty is the root mean square of the departures of lx from lx0, la/

√
2.

Here we are considering one branch: as ly runs from 0 to 1, lx runs from
lx0 −la to lx0 +la.

However, this is not the only route to resampling. We can also evaluate the
PDF for this resampling process. The density of samples from the sinusoidal
waveform giving a value between x and x + δx will be proportional to the
fraction of the time that the waveform spends at that value, δθ/2π, derived
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from the inverse of slope of the sinusoid at x = sin(θ), (δx/δθ) = cos(θ); that
is, 1/ cos(θ) = 1/

√
1 − sin2 θ = 1/

√
1 − x2. Thus the PDF of x is proportional

to 1/
√

1 − x2.

6.5 General PRNG methods – for the U-distribution

We now wish to consider a general procedure for converting a specified shape
of PDF into a usable means for converting a value from a uniform PRNG into
a pseudo-random sample from the specified shape.

The first step is to create the cumulative distribution function, CDF(x)
from our specific probability density function PDF(x) on the interval [–1,1]
and zero outside [1,1]. The general definition of the CDF is

CDF(x) =
∫ x

−∞
PDF(v)dv (9)

which, in the above example of the U-distribution, can be evaluated explicitly

CDF(x) =

∫ x

−1
(1 − v2)−1/2dv

∫ 1

−1
(1 − v2)−1/2dv

(10)

to arrive at

CDF(x) = 0.5 +
arcsin(x)

π
(11)

which is the origin of the usual name for this kind of random variate,
an arcsine-U variate. When dealing with PDFs that are described by un-
normalized shapes, as here, it is necessary to divide by the normalizing area
under the shape as shown in Equation (10). Note that in this example the
shape of PDF(x) is symmetric about x = 0, and so CDF(0) = 0.5 exactly.

In general, the cumulative distribution function will provide the path for
transforming values my from our underlying PRNGs, uniform on (0, 1), into
samples mx of a random variate that match the CDF and its own defining
PDF shape. Given a value my from our underlying PRNG, the transformation
involves solving for mx in the equation

CDF(mx) =m y (12)

which in general would need to be solved numerically, but in this case also has
an analytic solution, mx = sin(πmy−π/2) = − cos(πmy), which after shifting
and scaling gives Equation (8).

The use of the arcsine-U distribution is not restricted to cases for which
there is a neat physical justification. It also is substituted for a uniform dis-
tribution when the author of an uncertainty budget wants to explore the
consequences of a “less central” distribution than the uniform (rectangular)
distribution. Defined as here, spanning [−1, 1], the PDF is π−1[1 − x2]−1/2

and has a variance of 0.5, giving a standard uncertainty of 1/
√

(2) (of the
half-width which is equal to 1 in this unscaled version of the arcsine-U PDF).
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6.6 General PRNG Methods for Tabulated Distributions

(xi, xi+1) Interval containing a specific value x with PDF tabulated as f(xi)
Δ The bin width used in a histogram
mx A random variate on (−∞,+∞) possessing a specific CDF
my A uniform random variate on (0,1)
ι, κ, η Indices to N tabulated values of an input quantity and its PDF
xι ιth tabulated value of input quantity x, with a PDF value f(xι)
fι f(xι), the tabulated value of the PDF at a tabulated value xι

CDF Cumulative distribution function
F (x) CDF of x, integrating linear interpolation of PDF points fι at xι

Fκ The tabulated value of the CDF, F (xκ)
RV Random variate
nx RV representing some nth input quantity
nxr The reporting value for the input quantity nx: a “fiducial value”
nx

′ Random variate representing measurand–measurement conjugate
to nx

ny RV uniform on (0,1), to make RV nx from its tabulated CDF,
CDF(nx)

In uncertainty analysis, we can simulate the most general randomness us-
ing only a tabulated PDF. We do not need access to the physical model that
gave rise to the tabulated PDF. The tabulated PDF can be interpreted as a
continuous probability density function f(x) given in Equation (4). For any
x between xι and xι+1, and for any ι denoting f(xι) as fι we can define the
appropriate cumulative distribution function

F (x) =
[
∑ι

η=1(xη+1 − xη) fη+1+fη

2 ] + (x− xι)fι + (x−xι)
2

(xι+1−xι)
(fι+1 − fι)

∑N
η=1(xη+1 − xη) fη+1+fη

2

(13)

and use this to transform a value ny from a uniform pseudo-random number
generator into a sample nx of a random variate with a PDF= f(x). Again,
we solve the equation

F (nx) =n y (14)

which can be done in two steps. Denoting F (xκ) as Fκ, in the first step we
find an index k such that Fκ < ny < Fκ+1. In the second step we solve
Equation (14) for x, knowing that xκ < nx < xκ+1. A linear interpolation
of F (xη) will only simulate a staircase approximation to f(x), but by solving
Equation (14) using the full Equation (13) we can recover our original f(x)
as defined in Equation (4). If fk �= fκ+1, then the solution for Equation (14)
is a solution to a quadratic equation
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nx =
−fκ +

√
f2

κ + 2(ny − Fκ)(fκ+1 − fκ)/(xκ+1 − xκ)
(fκ+1 − fκ)/(xκ+1 − xκ)

(15)

and if fκ = fκ+1 the solution is

nx = ny − Fκ

fκ
(16)

producing a value for nx which may be used directly, if the mean and standard
deviation are exactly what is wanted in the simulation. Otherwise, it may be
scaled and shifted as we have done for the distributions discussed above.

For any general distribution that is not symmetric about its mean, it is
significantly simpler to simulate a zero-mean process. In using such a distribu-
tion rigorously, one is forced to choose whether one is simulating a distribution
of samples of the measurement, or is simulating samples of the measurand.
Usually, it is the mean value of an input quantity that is the reported value,
and then a zero-mean simulation needs only a simple change of sign to trans-
form between the interpretation of the simulated values nx as samples of the
measurement process and the interpretation of the simulated values as sam-
ples of possible values nx

′ of the measurand. Otherwise, if nxr is the reported
experimental (or fiducial) value of an input quantity, the transformation is

nx
′ = nxr − (nx−nxr) (17)

or the neater but more obscure nx
′ = (2 · nxr) − nx. Clearly, there is no sig-

nificant simplification of the arithmetic. However, by simulating a zero-mean
process we can keep this question of measurement versus measurand picture
within the context of uncertainty analysis, whereas the use of Equation (17)
evokes the additional scrutiny demanded by any source of potential bias.

6.7 Choosing the number of simulated events

Ne Number (#) of fully-resampled simulated events in a Monte Carlo
simulation

n # of simulated events with an output quantity between specified limits
nl # in the histogram bin (width Δ) with plNe events to the left of

this bin
nr # in the histogram bin (width Δ) with prNe events to the right of

this bin
pl The coverage probability to the left of a coverage interval
pr The coverage probability to the right of a coverage interval

The output quantities of interest will generally be proportional to the frac-
tion n/Ne of the number of simulated events Ne that create n measurement
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equation values between two limits. The accuracy with which the fraction
n/Ne can be ascertained can be evaluated easily in several different ways.

• For n � Ne, or for Ne − n � Ne, the resampling uncertainty (the stan-
dard deviation) in n can be estimated as

√
n, and the relative accuracy of

n/Ne as (n/Ne)(
√
n/n) =

√
n/Ne.

• As n gets larger, a better estimate may be useful that takes into
account the randomness, not only in n, but also the anticorrelated ran-
domness in Ne − n (there being no randomness in Ne). The resampling
uncertainty (the standard deviation) in n for this case is to be estimated
as
√
n(1 − n/Ne).

• If the simulation involves complex decision trees, for which the two es-
timators above are in doubt (they are based on properties of the Poisson and
binomial distributions), then by repeating the simulation m times, without
restarting the PRNG, and by calculating the standard deviation of the re-
sulting m values for n, and dividing by

√
m, one would usually obtain a good

estimate of the standard deviation of the mean of n. The PRNG must be
random across each subset n of the Ne events, but this is expected from the
PRNG if Ne is less than the PRNG sequence length.

If there is some particular level of accuracy wanted in n/Ne, a reconnais-
sance run can give an estimated fraction n/Ne and allow a simple calculation
of a value for Ne that will deliver the appropriate accuracy in n/Ne by using
one of the above techniques.

For some quantities, such as coverage intervals, the estimate is only slightly
more involved. Consider a coverage interval leaving a fraction pl events to the
left of the coverage interval, and pr to the right. By treating the two ends as in-
dependent in a simulation with Ne events overall, the uncertainty in the cover-
age interval can be estimated from the bin width Δ, the number of events nl in
the bin closest to having plNe events to the left of it, and the number of events
nr in the bin closest to having prNe events to the right of it. Due to the finite
number of Monte Carlo resampled events, there is an additional uncertainty
component for breadth of the coverage interval having a standard uncertainty

Δ

√
pl(1 − pl)Ne

n2
l

+
pr(1 − pr)Ne

n2
r

.

Commonly this will be for a probabilistically symmetric interval (pl = pr),
with a coverage probability of 95% = 100%(1 − pl − pr), so pl = pr = 0.025
and the simulation-induced standard uncertainty in the coverage interval is

0.1561Δ
√
Ne(n−2

l + n−2
r ). The choice of an appropriate bin width Δ, and the

number Ne of events to be used in the simulation, can be easily obtained
from one or more reconnaissance simulations using skills that are highly de-
veloped in measurement scientists by extensive laboratory experience with
real experiments.
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7 Examples of Monte Carlo simulation

i, k Index to indicate Laboratory i or k in an M -lab comparison example
ix0 Mean or “fiducial” value reported by lab i

iu The uncertainty reported by lab i

iσ Gaussian’s standard deviation representing uncertainty of Lab i,
usually iu

ixj The jth event’s simulated value for lab i: 1xj for lab 1, etc.
x̄j Simple mean of the M values simulated for the M laboratories in

event j
¯̃xj The inverse-variance weighted mean of the M simulated values in

event j
M Number of labs in a comparison and its simulated comparison

7.1 Gaussian PDFs

To illustrate the broad scope of Monte Carlo analysis of uncertainties in mea-
surement, we have constructed an example based on interlaboratory measure-
ment comparisons that circulate a stable artefact to be measured by a group of
laboratories, aiming to provide confidence in the claimed measurement capa-
bilities by demonstrating consistency. Table 1 and Figure 4 show what might
be a typical comparison involving M = 6 laboratories: each has reported a
value and a standard uncertainty that are conventionally plotted as shown
in the left panel (although sometimes as error bars an expanded uncertainty
might be used instead of, or in addition to, the standard uncertainty).

Recall that in the absence of explicit information to the contrary, the pri-
mary interpretation of the standard uncertainty [GUM95] is as the standard
deviation of a Gaussian probability density function. If a degrees of freedom is
explicitly given, it is a Student-t distribution that is to be construed, with the
standard uncertainty to be used as its sample standard deviation. Allowance
is made for any other departures from Gaussians, provided that the depar-
tures are described. In this example, we start by simulating Gaussian PDFs
and work towards incorporating non-Gaussian PDFs.

Table 1. An artificial set of comparison values ix with standard uncertainties iu,
used as the example in all the analyses that follow.

Lab i ix0 iu

Lab 1 0.335 0.335
Lab 2 –0.251 0.251
Lab 3 –0.262 0.393
Lab 4 –0.271 0.575
Lab 5 0.640 0.640
Lab 6 –0.471 0.270
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Fig. 4. Left: the artificial set of comparison values from Table 1, with error bars
showing the claimed standard uncertainties. Right: the same data with axes in-
terchanged to also show Gaussian PDFs, having standard deviations equal to the
claimed standard uncertainties, and means equal to the reported values.

The six PDFs that account for the randomness in the measurand are rein-
terpreted as describing resampled measurements, [DSWH05], resampling the
measurement as all influence quantities are imagined to vary randomly over
their natural ranges. As an alternative, with some minor exceptions it would
be possible to run Monte Carlo simulations of uncertainties within the per-
spective of resampling the measurand; but with impaired opportunities, we
believe, for practical guidance from laboratory experience and experiments.
The resampling is not, of course, from reality but is from the claimed model
of uncertainty and randomness. The role of the Monte Carlo simulation is
restricted to answering questions relating to the model and the adequacy of
the model to describe the available measurements of reality. Note that this
reinterpretation is what would commonly be done when a measurement (and
its uncertainty) is actually used with another measurement to make a deci-
sion: “. . .the reported value is . . . but the reported value could also have been
distributed like this . . .”, and that this reinterpretation is a null operation
except for asymmetric distributions.

The quality of the six resampled variables from the six Gaussians of Fig-
ure 4 (derived from Table 1) is illustrated graphically in Figure 5, where the
histograms of the six Monte Carlo resampled variables have been recorded
for 105 events, each drawn from the Hill-Wichmann uniform PRNG [HW82]
and the Box–Muller [BM58] transformation to a standard normal distribution
which is scaled and shifted (as per Equation (5)) to have the claimed mean ix0

and standard uncertainty iu equal to the standard deviation of the Gaussian,
iσ. Superimposed on each histogram is its analytic Gaussian distribution. This
kind of graph can convincingly show that the claimed means and randomness
are being properly resampled. Note that here it is inappropriate to impose
any external constraint (such as a common-mean constraint) to permit us
to simulate the consequences of the as-claimed values and uncertainties. The
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Fig. 5. The Gaussian approximation to the comparison of Figure 4. The histograms
of 105 simulated points are shown for the six labs, with the analytic Gaussians
superimposed in white.

data for Figure 5 can be calculated in a few seconds, and it is not difficult to
prepare a graph where there is no visible simulation noise left in the counts in
the histogram bins. In our experience, graphs with visible noise are very often
more effective than smooth ones for introducing the idea that the resampling
is being properly done.

For our first example of a measurement equation, let us consider the sim-
ple mean as the output quantity. For the jth set of six pseudo-measurements,
{ixj , i = 1, . . . , 6} it is completely straightforward to calculate the simple
mean xj of the set as

xj =
1
M

M∑

i=1

ixj . (18)

Of course, any other measurement equation involving the {ix} could be sub-
stituted for the simple mean, and for physically meaningful measurement
equations we would expect no difficulties. The resulting output quantity val-
ues, xj , are histogrammed, as shown in Figure 6 for the same 105 sets used
for the six histograms of Figure 5. Also shown in Figure 6 is the analytic
Gaussian distribution that would usually be attributed to the simple mean:
centered at the simple mean of the six experimental values, and having a

standard deviation equal to
√

(1/M)/
∑M

i=1 iσ2. As we should expect, the
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Fig. 6. The Monte Carlo simulation of 105 samples of the simple mean of the set of
six simulated measurements of Figure 5, each drawn from a Gaussian distribution.
Superimposed in white is the analytic answer.

agreement between the Monte Carlo simulation and the analytic methods of
conventional statistics is excellent in this example where the claimed uncer-
tainties are Gaussian and can be handled by the techniques of conventional
statistics.

However, we do not have control over the claims of the six participating
laboratories. Their uncertainty budgets might not be Gaussians. They may
have degrees of freedom specified, or they have been prepared by combin-
ing uncertainties using Monte Carlo methods and specified as a Monte Carlo
histogram. We now turn to a more interesting simulation for which the appli-
cability of conventional statistical tools could be in doubt.

7.2 Non-Gaussian PDFs and measurement equations

To make the point that arbitrary claimed PDFs can be handled by Monte
Carlo simulation, we now simulate the same example as above (Table 1), but
for a set of fanciful PDFs that all have marked departures from Gaussian
distributions. The sources of the six PDFs are shown in Figure 7. The PDFs,
shown in Figure 8, are not all symmetric, so we also need to clarify that we
are taking these PDFs as specifying the distribution for measurements that
the model predicts when all influence quantities are varying randomly over
their natural ranges. The distribution standard deviations iσ are taken as the
standard uncertainties iu from Table 1, and the distribution means are taken
as the ix0 from Table 1, as illustrated in Figure 9. Repeated comparisons
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Fig. 7. A demonstration of coping with arbitrary uncertainty distributions. Six
familiar shapes are used to provide the basis for PDFs in a fanciful comparison of
six NMIs.

Fig. 8. Tabulated (but unnormalized) PDFs from Figure 7. These PDFs are used,
as described in the text, to construct six pseudo-random variates, one sampled from
each tabulated PDF, and representing resampled measurements.

are each simulated from six consecutive peudo-random numbers, uniform on
(0,1), from the underlying PRNG, transformed to the six values that con-
stitute a simulated comparison. As discussed in Section 3.3, tabulated PDF
distributions were used (Figure 10A) to calculate the appropriate CDF (Fig-
ure 10B) that is used to transform samples from a uniform PRNG into samples
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Fig. 9. The comparison data of Table 1 and Figure 2, with a fanciful PDF raised
to be beside each point. Each PDF’s mean and standard deviation are matched to
the value and standard uncertainty of Table 1, also plotted as the point and error
bar.

Fig. 10. (A) Tabulated input PDF for lab 1 of Figure 9. (B) CDF for A, proba-
bility is vertical axis, from 0 to 1. (C) Monte Carlo histogram of 105 events com-
pared to tabulated input. (D) As for (C), but with 108 events. Note the standard
deviation in a histogram bin containing n events is

√
n, or a fractional accuracy

of 1/
√

n.
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from the tabulated PDF (Figure 10C for a histogram of 105 samples and Fig-
ure 10D for a histogram of 108 samples). From these simulated values, any
measurement equation, or indeed any measurement algorithm, can be used to
calculate an output value for which simulated values can be accumulated in a
histogram.

Measurement equation: simple mean

Despite the markedly non-Gaussian nature of the individual PDFs for the
six input quantities, when we calculate the simple mean as a candidate ref-
erence value (using Equation (18) as our measurement equation), we find
that the resulting distribution of the output quantity x differs only very
slightly from the all-Gaussian approach discussed above. For the simple
mean, no departures are evident on the linear graph of the left panel of
Figure 11, where the analytic Gaussian PDF for the simple mean is shown
on top of the Monte Carlo histogram for the simple mean obtained by us-
ing the tabulated-PDF method of Section 3.3 to model the PDFs shown in
Figures 7–10.

For applications exhibiting no significant differences between results from
the simple Gaussian approximation and from the full Monte Carlo simula-
tion using the tabulated PDFs, a simple linear PDF comparison graph, such
as those in Figure 11, may be a sufficiently quantitative characterization of
the differences over the scope or scopes of interest. For specific applications, it
may be appropriate to use other means to describe the adequacy of the simple
Gaussian methods. If the low-probability tails are of particular interest, the
adequacy of the simple Gaussian methods may be better appreciated if the
PDF axis is graphed using a logarithmic scale. If one specific parameter is of
interest, the accuracy of the simple Gaussian method may be simply charac-
terized as an accuracy in percent for that parameter. However it is reported,
this description should aim for simplicity in the eyes of the end users.

Fig. 11. Monte Carlo histograms (black) using 108 events to simulate three methods
for calculating a reference value for measurements from Figure 9: the simple mean
(left), the inverse-variance weighted mean (middle), and the median (right). The
superimposed gray lines are based on GUM-derived uncertainty methods (see text).
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Measurement equation: inverse-variance weighted mean

The inverse-variance weighted mean is another candidate reference value that
has an uncertainty which we can model by Monte Carlo simulation. This
weighted mean is defined by the measurement equation

x̃j =
1

∑M
i=1 iσ−2

M∑

i=1

ixj

iσ2
(19)

which is still just a linear combination of the six simulated lab measurements
that constitute an “event set” in the Monte Carlo simulation. In the Gaussian
approximation, the expected uncertainty in x̃ is

u(x̃) = 1/

√√√√
M∑

i=1

iσ−2,

shown in the center panel of Figure 11 as the light gray line superimposed
on the black line of the histogram of weighted means from a Monte Carlo
simulation of the fanciful PDFs of Figures 7–10. The Gaussian gives a good
approximation to the full simulation’s distribution of the weighted mean’s
within-method randomness to be expected from the six uncertainty claims
shown in Figure 9.

Measurement algorithm: median

Monte Carlo simulation can analyze uncertainty for any automatable algo-
rithm. As an example of this, we now consider the median of the fanciful
comparison as the output quantity of interest. As applied to a set of M mea-
surements, the usual definition of the median is the value of the measurement
having as many measurements above as it has below, if M is odd. If M is
even, the median is taken as the simple mean of the adjacent pair of measure-
ments that have (M − 1)/2 measurements below them in value, and the same
number above.

It is straightforward to automate the procedure by sorting the measure-
ments as to value, and taking—for odd M—the [(M + 1)/2]th value as the
median. If M is even, the average of the [M/2]th and the [(M/2)+1]th sorted
values is the median value of the measurements. The same algorithm can be
applied to each set of pseudo-measurements in the process of resampling the
median to obtain a histogram of possible median values that the stated mea-
surement values and the claimed uncertainty distributions can produce. This
is the commonest form [SWD06] of a broader family of order statistics that
rely on the relative positions of measurements, and sometimes also use the
claimed uncertainties, that seek to de-emphasize “outliers”. It is not generally
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feasible to analyze uncertainty propagation for these algorithms by using the
standard methods presented in the ISO-GUM [GUM95], yet the resampling
technique has no difficulty in producing resampled histograms showing how
the claimed values and their randomness produce pseudo-measurements and
how these sets of pseudo-measurements react to the analysis algorithm, which
in this case is the median algorithm.

Note that the median algorithm has been clearly defined for measure-
ments, and both intuitions and the possibility of direct experimental tests
lead us to prefer the measurement picture here, speaking of the “M mea-
surements” rather than the “M values reported for the measurand.” Thus
we reinterpret measurand-perspective uncertainty statements about our in-
put quantities as statements about the randomness to be expected in the
measurements if all components of the uncertainty budget were allowed to
vary over their natural ranges. Furthermore, we may want to reconvert the
histogram of output quantity (expressed in the perspective of measurements)
back into the measurand perspective [DSWH05]. For the usual definition of
the median, there is another detail to be mastered in these translations of
perspective: the median of the reported values is not necessarily equal to the
mean of the median distribution. If we are scrupulous about reflecting in the
reported value for the median [DSWH05] it is possible to analyze the median
algorithm rigorously and exactly as it is normally used. In the right panel of
Figure 11, the black line shows the resampling histogram of median values
(still expressed as a distribution of measurements). On the same graph, the
gray line shows a Gaussian approximation with a standard deviation derived
from the square root of the noncentral second moment of the distribution of
resampled medians about the experimental median.

The power of the Monte Carlo method allows us to address other questions
about the median as a measurement algorithm. In the context of comparisons
of laboratory results, the question, “How often is each lab expected to be the
median?” is something that can be tracked within a Monte Carlo simulation.
For an odd number M of values, it is possible to track which one is the median
value and to count the number of times that each one contributes the median
value. For even M , the median value is contributed by a pair of labs, and
each lab’s count would be incremented by one-half. In our fanciful example of
Figure 9, from top to bottom the “median weights” for the resampled median
are 13%, 30%, 22%, 16%, 7%, and 12%. Note that in the experiment, the
median is the average of the second and third values. These percentages can
provide useful insight for explaining how the median algorithm handles the
randomness claimed for a particular comparison.

Measurement equation: Departure from the weighted mean

In CIPM key comparisons, it is common practice to report the measurements
as departures from a “key comparison reference value” (KCRV) and to report
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the expanded uncertainty of this departure for a coverage probability pf 95%.
Usually the KCRV is algorithmically derived from the reported measurements
and uncertainties. Often the KCRV is calculated as the simple mean, or as
the inverse-variance weighted mean, or as the median. As shown in Figure 11,
Monte Carlo methods can easily resample any of these methods. Sometimes
outlier rejection schemes are invoked that are based on the observed values
and the claimed uncertainties, and if the method for doing so has been fully
described, these can also be incorporated into the KCRV algorithm that is
simulated.

Here, we illustrate the simulation of a comparison (Figure 9) to report
for one lab (lab 1, as shown in Figure 9 and in Figure 10) departure from
a reference value that is the inverse-variance weighted mean, with no outlier
rejection. This example illustrates how the Monte Carlo simulation simpli-
fies the handling of correlations due to the reuse of values in a measurement
equation. The measurement equation is

1xj − x̃j = 1xj −
1

∑M
i=1 iσ−2

M∑

i=1

ixj

iσ2
(20)

and the reuse of 1x as ix for i = 1 is obvious and is automatically incorporated
in the simulation with no additional effort. For traditional methods, there is
an unavoidable covariance to be accounted for. The ISO-GUM uncertainty for
Equation (20) is described by a Gaussian with standard deviation u(1xj − x̃)
given by

u(1xj − x̃) =
√
u2(1x) + u2(x̃) − 2 cov(1x, x̃), (21)

where both u2(x̃) and cov(1x, x̃) are equal to (
∑M

i=1 iσ
−2)−1, so that

Equation (21) becomes u(1xj − x̃) =
√
u2(1x) − u2(x̃). The Monte Carlo

simulation’s histogram of 1xj − x̃ is compared to the ISO-GUM’s Gaussian
approximation (Equation (21)) in Figure 12. The expanded uncertainty for
a coverage probability of 95% is also shown for each method in Figure 12.
The ISO-GUM expanded uncertainty is for a coverage factor k = 1.96 appro-
priate for a Gaussian distribution. It is plotted as the gray horizontal error
bar in Figure 12. The probabilistically symmetric coverage interval of the
Monte Carlo histogram is shown as the black horizontal error bar: 2.5% of
the histogram is to the left of this interval and 2.5% is to the right. The 95%
coverage interval is slightly smaller than the Gaussian, and is slightly asym-
metric: 0.50 +0.53,−0.57 (for measurements). In the measurand perspective,
this coverage interval should be reported as 0.50 + 0.57,−0.53.

This example illustrates that even with strikingly large departures from
Gaussian distributions, the Gaussian approximation can yield results that
may be satisfactory for many purposes.
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Fig. 12. Monte Carlo resampled comparison of Figure 9 claims as repeated pseudo-
measurements: histogram of “lab 1 minus the weighted mean” (black) compared to
the GUM Gaussian (gray). The error bars show 95% coverage intervals. The Monte
Carlo interval (black error bar) is the probabilistically symmetric interval.

8 Monte Carlo simulation for hypothesis testing

χ2 Reduced chi-square of departures from inverse-variance weighted mean
z A particular value of a chi-square
En Normalized error: departure divided by its standard uncertainty
DoF Degrees of freedom, describing a χ2 distribution
χ2

APD χ2-like aggregate over all pair differences for nominally equal pairs

All of the simulations above have used reported values and claimed uncer-
tainties and predict where measurements might be found on the basis of these
claims. However, Monte Carlo simulation can also use these as claims about
reality to test for compatibility with an external hypothesis.

To test an external hypothesis in this way, we run a simulation where we as-
sume that this hypothesis is true. There is no escaping making this assumption
temporarily, for the duration of the test; and the test may only provide a means
for quantifying the compelling evidence revealed for rejecting the hypothesis.

Unlike any of the simulations in earlier sections, hypothesis-testing Monte
Carlo simulations examine the probabilistic consequences of the modeled ran-
domness (i.e., the claimed uncertainties in the context of a particular mea-
surement equation) in a fictitious universe where the hypothesis under test is
forced to be true. This is a profoundly different kind of simulation, and will
only touch reality in statements of how likely it would be for a real experi-
mental value of a statistical aggregate to be exceeded in the modeled fictitious
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universe where the hypothesis has been forced to be true. Finally, this is inter-
preted as quantifying the strength of the evidence for rejecting the hypothesis
under test, paralleling the process of conventional theorem-based χ2-testing.

Although we made the assumption for the purposes of testing the hypoth-
esis, it is crucial to convey to all users of our test results that the absence
of compelling evidence to reject our hypothesis is not particularly good ev-
idence to accept the hypothesis. Specifically, if the test “passes” a criterion
that limits false rejection to 5%, all users of the test result must be protected
from the disastrous logical mistake of associating this in any way with a 95%
confidence in the hypothesis being true.

8.1 Chi-squared testing of the common mean hypothesis

One of the triumphs of theorem-based statistics is the clarity of analysis that
can be brought to bear in testing the external hypothesis of the common mean
for claimed Gaussian uncertainty distributions that are independent (which
may be a second external assumption). Another external hypothesis may be
needed—that using the inverse-variance weighted mean x̃ really is an accept-
able method for determining a reference value—with no need to impose weight
limits as would often be considered in high-precision comparisons.

The idea is that the square of the departures of the M constituent mea-
surements from the weighted mean can be aggregated to yield an analytic
reduced-chi-squared distribution if the hypotheses discussed above are true.

χ2 =
1

M − 1

M∑

i=1

(ix− x̃)2

iσ2
. (22)

The hypotheses are usually considered as a single composite hypothesis
termed the “null hypothesis” in chi-square testing. The experimentally ob-
served value of this aggregated statistic can be associated with a probability
for falsely rejecting the hypotheses when they are true, and this can be used
to help evaluate how compelling the evidence is for actually rejecting the
combined hypothesis.

The reduced chi-square that is appropriate is one with a degrees of freedom
parameter equal to M − 1. The reduced chi-squared PDF is defined on the
interval (0,∞), as is its cumulative distribution function (CDF). The proba-
bility that M measurements, with a common mean and fulfilling all the other
assumptions we have just discussed, has a χ2 aggregate that exceeds a value
z is given by (1−CDF(z)), as shown by the dotted gray lines in Figure 13, for
a degrees of freedom = 5, which is appropriate to the Gaussian model of six
measurements shown in Figure 4.

From the values and uncertainties of the comparison in Figure 4, for this
imagined experiment the value of the reduced chi-squared statistic is 1.060,
and if the common mean hypothesis is forced to be true then the probability
of the reduced chi-squared exceeding 1.060 is 38.0%, taken from the analytic
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Fig. 13. Probability of three test statistics exceeding a value of χ2, for a six-lab
comparison, as linear (left) and logarithmic (right) graphs. The thin dashed line is
the analytic reduced chi-squared for a degrees of freedom (DoF) = 5. The other
two χ2-like statistics need Monte Carlo simulation with a null hypothesis of “agree-
ment” to evaluate the randomness of Figure 9: the black line is for agreement with
the weighted mean reference value (Wt Mean), and the gray line is for pairwise
agreement of all labs, using the all pair differences (APD) mean-square aggregate of
En, χ2

APD.

reduced chi-squared distribution for a degrees of freedom = 5 shown as the
dotted line in Figure 13. There is no compelling evidence in the experiment’s
dispersion to reject the common mean hypothesis in the context of the claimed
uncertainties. Note that “not rejecting” is not the same as “accepting” or “val-
idating”.

The main limitations to the method are related to the method’s inapplica-
bility when non-Gaussian uncertainties are claimed, or a candidate reference
value is a variant on the strict inverse-variance weighted mean.

8.2 Chi-squared-like testing of the common mean hypothesis

Fortunately, by using Monte Carlo simulation, it is relatively easy to extend
full rigor to the chi-squared style of analysis for these cases where the strict
conditions for chi-squared analysis cannot be met. The common-mean hy-
pothesis, with the subsidiary hypothesis that the candidate reference value
algorithm can represent the unknown common mean, can be tested with any
specified randomness, such as that of Figure 9.

By forcing the simulated distributions to have the same mean, we can em-
ulate the PDF of the χ2, calculated as per Equation (22), and thence calculate
the function (1−CDF(z)), that would be expected if the null hypothesis were
to be true. Note that this does not force us to accept the null hypothesis, but
we must make this assumption for the purposes of evaluating the consequences
that accrue if the null hypothesis is true.

This curve is plotted in both panels of Figure 13 as the solid black line.
The departures of the statistic from an analytic chi-square (with degrees of
freedom = 5) are relatively minor for χ2 < 3 but get rather serious for larger



366 A. G. Steele, R. J. Douglas

values of the reduced chi-squared. At χ2 = 6, the probability of exceeding a
χ2 = 6 is some 100 times greater than would be estimated from the analytic
chi-squared function.

Thus for some purposes, the established analytic chi-squared method can
be shown to give results that are good enough, whereas in other cases it will
only be appropriate to use the hypothesis-constrained Monte Carlo simula-
tions’ results to establish the (1-CDF(z)). Practically, the constraint about
the shared mean is particularly easy to arrange when there are zero-mean
random variables and setting the common mean to zero is a convenient way
for applying the common-mean constraint.

Notice that if the common-mean constraint is not imposed, then Equa-
tion (22) is simply the measurement equation for an output quantity and the
PDF that has been left unconstrained by the null hypothesis is simply the
uncertainty distribution for χ2. This may even be of some use in deciding on
the solidity of conclusions based on values of χ2.

Of course, in the hypothesis-constrained Monte Carlo simulation, any al-
gorithmically defined reference value can be used for the chi-square-like test-
ing. The Monte Carlo method can test the simple mean, the inverse-variance
weighted mean with weight limits, the median, or any other reference value.

Similarly, we are not constrained by the form of the statistic. However, be-
cause the purpose of the testing is to quantify and to communicate confidence
in the adequacy of the model, familiarity and simplicity from the perspective
of the end-user will dictate a preference for chi-squared-like statistics for the
foreseeable future.

If the data in Figure 4 are reinterpreted as having non-Gaussian uncer-
tainty distributions as shown in Figure 9 the Monte Carlo calculation of the
reduced chi-squared (Equation 22), shown as the black line in Figure 13, can be
used to test the common-mean hypothesis, represented as the inverse-variance
weighted mean, against the detailed non-Gaussian (tabulated) uncertainty dis-
tributions. If the common mean hypothesis is forced to be true, the chance of
exceeding the actual reduced chi-squared of 1.060 is 35.4%. This happens to
be but little different than the analytic chi-squared result, but the simulation
has provided the easiest and most convincing mechanism for establishing this
near equivalence. For different experimental values, giving a larger value of
the reduced chi-squared, the probabilities could have been very different. In
this case, there is no compelling evidence in the experiment’s dispersion to re-
ject the common mean hypothesis in the context of the claimed uncertainties.
Again, note that “not rejecting” is not the same as “accepting”.

8.3 Chi-squared-like testing of the agreement hypothesis

The above model is testing mediated agreement, mediated by a real value for
the measurand. If this value is to be experimentally accessible and will be
used as the referent for future measurements, all is well.
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However, when the mediating statistic is under debate, or the reference
value has not been specified or will not be used, an unmediated approach may
have significant advantages. In this kind of testing, the unmediated agreement
of Labs i and k, in the normalized error sense of En = (ix−k x)/(u(ix−k x))
can be used instead, as can its mean-square averaged over all distinct mea-
surement pairs. This all-pair-difference chi-squared-like statistic is

χ2
APD =

1
M(M − 1)

M∑

i=1

M∑

k=1

[
ix−kx

u(ix−kx)

]2
. (23)

It is sometimes an exact reduced-chi-squared having degrees of freedom
equal to M − 1, and at other times it is only moderately close. (See the gray
line in Figure 13). The point that we are finishing on here is that Monte Carlo
simulation can provide a solid foundation for extending the scope of quite
familiar-looking tests, allowing them to be applied before choosing a reference
value or a reference value method [SHD02] [SD06a] [DS06] [SD06b].

Applying this chi-squared-like statistic, and imposing the null hypothesis
of pair agreement, the probability of exceeding the experimental value of 1.017
is 39.9%. In this case, there is no compelling evidence in the experiment’s dis-
persion to reject the pair agreement hypothesis in the context of the claimed
uncertainties. Yet again, note that “not rejecting” should not be taken to have
the same meaning as “accepting” or “validating”.

9 Final remarks

Monte Carlo simulation has been presented here as a means of modeling the
randomness of measurements, using reported values and their associated un-
certainty claims as the basis for predicting the randomness of the result of
a measurement equation (or algorithm). With a measurement equation, only
arithmetic needs to be done. It does need to be done many, many times; it
may take an everyday computer a second or so to perform enough iterations.

The random number generators can be conveniently packaged as a toolkit
that minimizes the amount of reprogramming required. On the accompanying
DVD, we provide and document the full toolkit that was used for the Monte
Carlo simulations presented here. It is provided as a set of Excel macros that
use Excel’s Visual Basic for Applications programming and debugging envi-
ronment. We have found these Excel workbooks to be a simple way for a
beginner to adapt a Monte Carlo simulation program to a new measurement
equation. An introductory tutorial is available online [NRC05] with many
examples. Sharing these workbooks can also be a very effective way to com-
municate with colleagues, communicating both results and methods with less
effort than other mechanisms we have tried. For Monte Carlo simulation,
we prefer to link directly with experiments (real and gedanken) by thinking
about measurements throughout the simulation process. By considering the
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histograms that we can collect as predictions that might be compared with real
experiments, we facilitate the application of the classical scientific method to
measurement science and metrology: prediction, followed by experiment and
comparison. We use a simple means for importing and exporting uncertainty
claims expressed instead in terms of a distribution for scalar measurands. In
simple circumstances Monte Carlo simulation might be done equally well from
the perspective of resampling measurands, but when asymmetry is present in
the distributions, special care is needed [DSWH05].

Monte Carlo simulation can only reinterpret our model (measurement
equation, measurement values, and uncertainty information), and does not
of itself create any really new knowledge, although it may reveal the conse-
quences of the model in new and clearer ways. New knowledge can be obtained
from the enhanced abilities to consider different models and different assump-
tions. We have indicated some of these directions in this chapter, but we be-
lieve that the full capabilities of Monte Carlo methods have yet to be explored
in dealing with the randomness attributed to measurements and measurands.
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Summary. As everywhere in technological development, IT has become an in-
dispensable part of metrology. Modern measuring instruments rely on embedded
software. Data obtained through measurement are transferred via communication
networks and processed further by software systems. This development has led to
increasingly complex and distributed metrological functions. This complexity has
different facets: it can not only enhance the functionality of a measuring system
itself including self-checking facilities, but also the distribution and transmission of
measurement data and the methods used for data analysis. One can say that IT
opens up a new world of concepts that essentially contribute to the development of
metrology. In this, different fields of information technology have to be taken into
account, extending from software engineering, computational methods, databases,
communication technology, and security techniques to knowledge-based systems.
This chapter of the book gives a survey of the software validation and software en-
gineering methods in metrology. For a better illustration, the accompanying DVD
presents two case studies of validation procedures performed at PTB. Finally, an
outlook on future issues is given.

Key words: Measurement software, software validation, software quality assurance

1 Introduction: The risks of software in metrology

Today, a metrological system cannot do without software technology, as this
is an indispensable base. However, the improved software-based functionality
and the complexity of the metrological systems not only bring about advan-
tages, they also raise new problems and questions to be answered. By no
means should we ignore the risks that are involved with software. Software
of insufficient quality may lead to malfunctions with unlimited consequences.
Moreover, software must always be considered to be a target for accidental or
even intentional corruption. It is therefore evident that software quality assur-
ance, including the security of the software and the measurement data, plays
an important role in metrology today. The public needs to be able to trust
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© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009



372 N. Greif, D. Richter

the software-supported functionality associated with high-quality metrological
service for science, technology, medicine, consumer protection, and environ-
mental protection.

Looking at metrology, we cannot say yet that software technology can al-
ready be regarded as a mature and commonly understood discipline of metrol-
ogy. Of course, we do not ignore the many successes that have already been
achieved in the area of metrological software. However, a common under-
standing still remains to be developed. This first section illustrates the special
character of software and is particularly addressed to people who are not
software professionals.

1.1 What is software

A fundamental part of a common understanding is the clarification of what
software is. This question might be irritating. Everyone interested in tech-
nology naturally has an idea about software: computer programs which can
do many different things such as serve the customer at the banking terminal,
control the activation of an airbag, process texts, control measuring instru-
ments, process measurement data, or check other computer programs. So we
formulate our question more precisely and ask what software encompasses: the
bit string on a storage unit (on a chip, etc.), the instruction sequence written
in a programming language (C++, Java, etc.), the logic design for the pro-
gram flow, the mathematical calculation rule, the structure of the data, the
architecture of the subunits, the design of the user interface, the information
necessary for operation, the documentation needed for the description, or the
input and output data. Answering this question requires some thought, and
the individual answers reflect a lot of different opinions.

From the point of view of software technology, the answer is clear as far as
the principles are concerned: all elements listed above are part of the software.
The question about the particular design must, however, be answered in con-
crete terms, and the answers then follow individual subjective assessments.
This subjective character complicates the answers – which are difficult any-
way – to questions of the following kind. How can it be ascertained whether
a piece of software can be trusted? Is software A better than software B? Is
a certain software package suitable for use in area X? What must be done
when software is accepted to ascertain whether the required quality is com-
plied with? How is software validated? Can software be calibrated? How can
the uncertainty associated with software be determined?

It is clear that the issues associated with such questions depend on the
context and it is important to pose the questions precisely and in keeping
with the context. This often is the key to success. At the same time, how-
ever, this is commonly the most difficult part of problem solution because
the questions are not of a purely software-technological nature but have an
interdisciplinary character and may additionally be superposed by economic,
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social, and other issues. Software problems can best be mastered if they can
be reduced to clear software-technological questions.

1.2 Software is different

Metrology is largely founded on the physical sciences. Software has, however,
introduced new types of risks, which are not known in the technical world that
is shaped by physics. It is necessary to understand that quality ideas cannot
be transferred blindly from one area to another. In the following, fundamental
differences between physical and software engineering are presented taking up
the theses of Boris Beizer [Be00], which are adjusted or further developed to
fit in with the backgrounds of this chapter (see also [Ri02]).

What are the prominent differences?

Fundamentals

First, and as a principle, software is not structured in accordance with physi-
cal laws. The existing mathematical bases of information science do not imply
concrete program structures but offer a wide range of structures which can
generally be used by the software engineer within the scope of his or her free-
dom in design. This freedom in design – following well-considered principles of
software engineering, but in many cases, to the chagrin of software engineers –
is increasingly restricted by conventions and regulations in the form of stan-
dards, guidelines, or procedural models. These do not, however, have their
roots in mathematics or natural sciences but follow comprehensive demands
such as rules from quality management systems, customer’s specifications, or
restrictive regulations for reasons of business economics. As a consequence,
there is no possibility of tracing back quality-defining software characteristics
on the basis of natural science or mathematics.

Ageing

Software does not age in physical terms, whereas physical components, in the
course of time, undergo changes in their properties as a result of environmen-
tal effects or wear. This is not so for software whose characteristics do not
change with time. What can vary over time are its carriers or the storage
units, or they can fail, which would indirectly lead to a change in the software
features. Also, the environment of the software can vary, resulting in a differ-
ent assessment of the utility value. Furthermore, it can be ascertained only in
the course of time whether a software product is corrupt or otherwise does not
meet the expectations, which also changes the assessment of the utility value.
In all these cases, the software attributes originally realized remain, however,
the same.
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Spatial and temporal aspects

Another difference stems from the fact that physical effects are related to
space and time. Experience has shown that in the physical world, the effects
of an action bear a temporal and spatial relation to the action. This cannot
be expected from software. As a result of the use of global data, for example,
the location of the effect of a fault can be completely different from the source
inducing the fault. Likewise, effects may occur at a time which cannot be
foreseen. This is true, for example, for program abortion due to exceptional
arithmetic phenomena.

Proportionality of cause and effect

There is also a difference as regards the relation of cause and effect. In the
physical world, it is in general true that an effect is approximately propor-
tional to the force expended or that damage is roughly proportional to the
destroying force. Excepted from this are cases in which boundary values are ex-
ceeded thus leading to rupture or in nonlinear systems in which small changes
in elements of the system can lead to abrupt or catastrophic changes in behav-
ior. For software, it is not possible to delimit an area in which, for example,
the effects of a software failure can be related to the kind or number of the
faults. It is not even confirmed that identical software faults lead to identi-
cal effects, not even in the case of identical faults of the same software. This
strongly affects the measurement uncertainty concept. Metrology depends on
being able to assess the cause-and-effect relations and to estimate the resid-
ual uncertainty [GUM95] but this is not valid for the uncertainty inherent in
software. The effects of unrecognized software faults can be estimated neither
in quantitative nor in qualitative terms.

Negative synergy effects due to complexity

The complexity of software and the negative synergy effects related to it are
phenomena deserving great attention. It is typical for software that failures
are produced by more than one fault; software failures that arise from a single
cause are usually detected and eliminated at the development phase. What as
a rule is not discovered in the development phase are the failures induced by
the concurrence of several different causes. With increasing complexity of the
software systems, the relation between causes and an error state is increas-
ingly hard to discover. So-called negative synergy effects occur. This situation
affects the structure of software systems and the interaction between subsys-
tems and touches on the management of the software development which must
ensure the coordination necessary for the development. As it is difficult to fix
bugs retrospectively, constructive (i.e., preventive) quality assurance gains in
importance.

The increasing complexity of software systems is the result of an increas-
ing variety of functions as well as of ever more comfortable user interfaces.
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As a price for user friendliness, that is, simple interfaces guiding the user and
recognizing operating errors, the size of the programs increases.

Security limits and tolerances

In software engineering the principles of security limits and tolerances are
unknown. Classical engineering products such as bridge structures have a cal-
culated and a designed loading limit. For use a safety factor is added so that
the allowed load is clearly below the calculated loading limit. In production
technology, tolerances are stated within which the dimensions of manufactured
workpieces are allowed to lie. In software engineering analogies are not known.

Measurability

The bases for measurability and quantifiability are also entirely different. The
essential difference from the physical measurement is that in software engi-
neering the measurands are not defined on the basis of the natural sciences.
What quantities are of interest and what system is defined by measurands
is rather a question of subjective assessment and of reasonableness in a par-
ticular context. Software metrics can very well contribute to objectifying the
software assessment and to providing comparability, provided the parties in-
volved have clearly stated the definition, the interpretation, and the context
of the application. In software engineering, different metrics systems for the
quantification of software characterisitcs are known (cf., e.g., [Zu97]). Software
metrics serve, for example, to quantify the complexity of software by measured
values. The metrics systems for software are in a state of flux. Although efforts
to order them have been made for a long time (cf., e.g., [KHL01]), interna-
tional standards for fundamental units of software measurement are not in
sight. Although software measurement indirectly affects the reliability of soft-
ware, the feasibility of a standard system of fundamental units for software
measurement is basically questioned [Be00].

What conclusions can be drawn so far?

(1) Software quality assurance measures cannot start from recognized effects
(i.e., observed failures), but must be planned independently and sepa-
rately. The reason is that causes of failure often cannot be linked to the lo-
cation and the time of failure observation. This is also true for the planning
of quality assurance measures. With the increasing complexity of software
systems, the detectability of cause-and-effect relationships diminishes.

(2) The degree of the deviation from a design rule or specification (as far as it
can reasonably be determined) is not indicative of the severity of the con-
sequences associated with a failure caused by the deviation. Error-avoiding
quality assurance measures thus cannot be founded on a taxonomy of the
compliance with design rules and specifications. They must be based alone
on the analysis of the consequences of potential failures.
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(3) The appreciation of the suitability of metrics is dependent on the context
and based on experience. This is also valid for the assessment of soft-
ware development and testing methods. Any change in context is likely to
require a reassessment of the software.

(4) Software failures in metrology do not fit into the existing measurement
uncertainty systematics. They need their own fundament. They require a
different assessment methology.

1.3 Tackling software issues in metrology

From the organisational point of view, there are indeed various ways to handle
software issues in metrology. Here we briefly describe the approach PTB has
taken.

PTB has established special working groups for IT support in metrology.
One of them has its focus on software testing and software process related qual-
ity assurance in metrology. Another one is especially devoted to software issues
in legal metrology. In order to raise customer confidence, the first unit has been
further developed to a software test centre that received in 2001 the accredi-
tation as a software test laboratory according to ISO/IEC 17025. This accred-
itation confirms the competence of the software test centre, the observance of
widely accepted requirements specified in international standards for test lab-
oratories, and the comparability of the laboratory’s test results with those of
other software test centres throughout the world. The scope of accreditation
ranges from the testing of software for functionality, reliability, security, and
usability (ISO/IEC 25051/12119, ISO/IEC 9126) to the detailed testing by er-
gonomic criteria (ISO 9241). Test objects are measuring device software, soft-
ware in measuring facilities and test assemblies, software in calibration devices,
software for the processing of measurement data, and software in other de-
vices to be approved by PTB or other state institutes (e.g., voting machines).
If appropriate, software development processes can be subjected to testing.

The software test centre offers its services not only to PTB laboratories
and other state institutes but cooperates with the measuring instruments in-
dustry and metrological services. The guidelines and requirements catalogues
developed are made publicly available [GSS07].

2 Standards
and guidelines related to software in metrology

In metrology, the amount of software used steadily grows. However, its quality
differs. It is necessary, for principal reasons in metrology, to have a compara-
bility of software quality. Unlike most metrology quality concepts, the software
quality cannot be traced back to any measurement standard. That role must
be taken over by software standards or guidelines [GR00].
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Requirements play a fundamental role for the comparability. They have
a twofold importance: they are to be observed by the manufacturer, and
they are a quality criterion for the tester or user. Standards and guide-
lines are a supporting means for deriving particular requirements. The par-
ties concerned can find generic as well as concrete requirements in these
documents.

Unfortunately, the situation of standardisation in the field of software
quality assurance is rather confusing. The situation is caused by different
aspects.

• Numerous projects for drawing-up standards or guidelines have been
launched by various bodies (e.g. ISO, IEC, IEEE, EA, EUROLAB).

• The lines of action followed within the bodies have not been harmonised
(overlapping with respect to contents, differing terminology).

• The results of the bodies’ work have reached different stages (e.g.,
multistage drafts of standards/guidelines, tentative standards, standards
adopted).

• The scopes of the regulations differ (they are valid for different fields of
software application).

• The purposes for which the standards and guidelines are intended differ
(definition of terms, specification of product and/or process requirements).

In the following, a survey of the present state of software standards with
a particular concern on quality issues is given. Particular attention is laid on
such regulations which formulate special software requirements for testing and
calibration laboratories. Drafts of standards and guidelines already published
will be taken into account to some extent. In view of the problems outlined
above and due to the limited space available, this section cannot claim to
represent a complete overview.

For an overview of guiding documents concerning IT issues in legal metrol-
ogy refer to [TG06].

2.1 Approaches to software quality and systematics of standards

The quality of software is determined by the quality of the software product,
including its intermediate products, but also by the quality of the processes
that belong to the software lifecycle, in particular, the design processes. Prod-
uct quality is evaluated on the basis of internal product characteristics (e.g.,
results of static analyses of intermediate products), on the basis of external
product characteristics (e.g., results of dynamic functional tests), and on the
basis of special quality in use characteristics (cf. also Section 2.3.1).

Product quality is influenced by the quality of the processes involved in the
manufacture of the product. Because the characteristics of processes basically
differ from product characteristics, these classes of characteristics are usually
treated in separate standards and guidelines. Figure 1 shows a systematics of
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Fig. 1. Systematics of software quality management standards.

the standards concerning the field of software quality. As regards the purpose
of the standard, a distinction is made above all among vocabulary standards,
product standards, and process standards:

• Vocabulary standards serve the unification of terminology by providing
definitions of terms.

• Product standards formulate requirements to be met by the product classes
under consideration (final or intermediate products). The manufacturing
process (here: software design process) is left out of consideration.

• Process standards formulate requirements for the implementation of pro-
cesses (e.g., design, production, quality management processes). They de-
scribe the line of action to be followed in the processes. The spectrum of the
process standards ranges from the description of framework processes (e.g.,
quality management, model of how to proceed in software development)
to detailed rules of procedure (e.g., concrete testing instructions, auditing
methods). No statements concerning the quality of the final product are
made.

The separation between the definition of product and process requirements
often is not consistent. Some overlap in the contents can be found, in par-
ticular, in regulations specific to a particular technical field or laboratory
(cf. Figure 1). In the following, standards and guidelines concerning software
quality management are dealt with according to the systematics shown in
Figure 1.



Software Validation and Preventive Software Quality Assurance 379

2.2 Standards and guidelines concerning process quality

This section indicates and briefly explains process standards which are sig-
nificant for the complexes of quality management, software development, and
for the development of safety-related systems.

2.2.1 Quality management

The series of standards ISO 9000 ff. provides basic standards for quality man-
agement. It assists the customer in gaining confidence in the capabilities of
a producer or supplier. The supplier wins the customer’s confidence by in-
troducing a quality management system and furnishing proof of its existence.
Minimum requirements to be fulfilled by such a quality system are described
in ISO 9001. This standard is, however, valid for a wide range of products,
from material products to services. ISO 90003 has been published to take the
specific features of software production into consideration. However, it is not
intended to be used as assessment criteria in quality system certification. ISO
90003 only sets out guidelines to facilitate the application of ISO 9001.

2.2.2 Software development

The standard ISO/IEC 12207 (Information Technology - Software Life Cycle
Processes) defines a well-accepted software life cycle and describes in detail all
processes which play a part in the life cycle. For so-called primary processes,
such as development or maintenance, but also for supporting processes, such
as configuration management, or quality assurance, the hierarchy of the ac-
tivities to be performed is presented in detail. The Software Lifecycle Process
Model of the German Development Standard [DS97] describes all activities to
be carried out and all products to be drawn up in the course of software devel-
opment. With the aid of this process model, software projects can be carried
out in compliance with the standard ISO 9001. The process model also covers
quality assurance, configuration management, and project management. In
addition to these process standards which are universally applicable there are
a large number of standards which describe special software processes. Some
examples are given in the following.

• ISO/IEC 15910, Information Technology – Software User Documentation
Process

• ISO/IEC 18019, Software and System Engineering – Guidelines for the
Design and Preparation of User Documentation for Application Software

• ISO/IEC TR 9294, Information Technology – Guidelines for the Manage-
ment of Software Documentation

• ISO/IEC TR 15846, Information Technology – Software Life Cycle Pro-
cesses – Configuration Management for Software

• ISO/IEC 14764, Information Technology – Software Maintenance
• ISO/IEC TR 14471, Information Technology – Software Engineering -

Guidelines for the Adoption of CASE Tools
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• BS 7925-1/2, Software Testing – Vocabulary/Software Component Testing
• IEEE 1008, Software Unit Testing
• IEEE 829, Software Test Documentation

Additionally, there are some regulations which deal specifically with the as-
sessment and improvement of software processes:

• ISO/IEC 15504, Information Technology – Software Process Assessment
(SPICE)

• Capability Maturity Model Integration (CMMI) [CMM02]

Due to the fact that software processes are an integral part of the overall sys-
tem processes, the well-known system engineering standard ISO/IEC 15288
is often taken into account.

2.2.3 Standard for the implementation of safety-related systems: IEC 61508

The international standard IEC 61508 functional safety of electri-
cal/electronic/programmable electronic safety-related systems is a generic
standard for building up safety-critical systems. The standard deals with
the total system life cycle of safety-related systems, for example, from ini-
tial concept, through design, implementation, operation, and maintenance to
decommissioning. The standard comprises amongst others detailed subsets of
process-oriented requirements:

• General requirements for systems
• Requirements for safety-related systems
• Software requirements
• Examples of methods for the determination of safety integrity levels
• Overview of techniques and measures to fulfil the requirements

A requirements catalogue for software processes is provided in Part 3 of the
standard. In general, the standard adopts a risk-based approach. The determi-
nation of well-defined system-based safety integrity levels (SIL) and software
safety integrity levels is an important element of the required risk assessment
process and a base for the final selection of risk-minimising measures and
validation procedures.

2.3 Standards and guidelines concerning product quality

This section deals with standards and guidelines which specify requirements
for software products.

2.3.1 ISO/IEC 25000 – The SQuaRE series of standards

The ISO/IEC 25000 SQuaRE (Software Product Quality Requirements and
Evaluation) series of standards covers both software product requirements
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and corresponding evaluation procedures. Recommendations are given for de-
velopers, purchasers, and evaluators. Within SQuaRE, a fundamental quality
model for software products is described in the part ISO/IEC 25010. This
model is based on the well-accepted quality model of the standard ISO/IEC
9126-1. The current version of this standard defines quality characteristics
with corresponding subcharacteristics (see Figure 3) and a specific quality
model for quality in use. The following aspects are taken into consideration.

• Internal product quality (via internal product characteristics such as
results of static analyses)

• External product quality (via external product characteristics such as
results of dynamic functional tests)

• Quality in use (via special quality in use characteristics)

Six quality characteristics for internal and external product quality (e.g., func-
tionality, reliability, usability, maintainability), including subcharacteristics,
which are also normative, are explicitly defined in the standard. Four spe-
cial characteristics for assessing the quality in use are formulated in addition.
These characteristics (effectiveness, productivity, safety, satisfaction) deter-
mine the degree of the overall efficiency of the software product for the user.

The quality characteristics defined in the standard are to be used for the
following activities.

• Definition of software requirements (user requirements, software design
objectives)

• Evaluation of software products (definition of quality criteria and testing
objectives )

• Definition of user acceptance criteria for a completed software product
• Validation of the completeness of a requirements definition

The evaluation section of SQuaRE is based on ISO/IEC 14598. Here, an over-
all process model for software evaluation is described and refined for different
roles such as developers, acquirers, and evaluators.

2.3.2 The standard ISO/IEC 25051

The standard ISO/IEC 25051 (Software Engineering – Software Product
Quality Requirements and Evaluation (SQuaRE) – Requirements for Qual-
ity of Commercial Off-The-Shelf (COTS) Software Products and Instructions
for Testing) has been drawn up to replace the older well-accepted standard
ISO/IEC 12119. As a specific part of the SQuaRE series of standards (see Sec-
tion 2.3.1), it defines requirements to be met by COTS software packages and
lays down regulations for checking compliance with these requirements. Here,
software packages are software products as offered, supplied, and used, that
is to say not as an intermediate or changeable product. Database programs,
text processing programs, but also programs for technical and scientific func-
tions are given as examples. Metrology software thus also comes within the
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scope of this standard. The standard is intended, for example, for software
manufacturers, software users, testing laboratories, and certification bodies
endeavouring to stipulate requirements for software products or to evaluate
software products.

The standard’s software requirements are divided into the categories of
documentation and programs/data. For example, requirements to be met by
the documentation are:

• Each software package shall have documentation (product description and
user documentation).

• General requirements for the documentation are: understandability, com-
pleteness, consistency, correctness, and ease of overview.

Requirements to be met by programs and data correspond to the content of
ISO/IEC 9126-1 (see Section 2.3.1). Among them are functionality (installa-
bility, availability of functions, correctness, consistency), reliability (disaster
recovery, data security, plausibility), and usability (understandability, clarity,
operability).

2.3.3 Standards concerning documentation, security, and ergonomics

Although some software standards, for example, ISO/IEC 25051 or ISO/IEC
12119, also formulate requirements for documentation, security, and er-
gonomics, specific standards have been drawn up which concern exclusively
software documentation, security, or ergonomics. Some of these standards are
listed in the following. Examples of documentation standards are:

• ISO/IEC 6592, Information Technology – Guidelines for the Documenta-
tion of Computer-Based Application Systems

• ISO/IEC 9127, Software Engineering – User Documentation and Cover
Information for Consumer Software Packages

• DIN 66270, Information Technology – Software Document Evaluation –
Quality Characteristics

Based on these international standards, a guideline for software documenta-
tion was elaborated at PTB [GS06]. The guideline serves as a basis for quality
assurance in software development, and for the evaluation of software docu-
mentation. It is also a basis for drafting and controlling of contract documents
when software development commissions are placed with third parties. The
proposed process and contents of software documentation are illustrated by
an example from metrology.

The security of software as part of the security of information technology is
checked and evaluated on the basis of special security requirements laid down
in international standards. For example, security evaluation criteria are spec-
ified in the document ITSEC (Information Technology Security Evaluation
Criteria) [ITS91] and in the international standard ISO/IEC 15408 (Com-
mon Criteria for Information Technology Security Evaluation). Additionally,
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guidelines exist which define a uniform method for conducting evaluations,
which apply security requirements and which thus contribute to achieving the
mutual recognition of security evaluations. In correspondence to the require-
ments catalogues mentioned above, these are the documents ITSEM (Infor-
mation Technology Security Evaluation Manual) [ITS92] and CEM (Common
Evaluation Methodology for Information Technology Security) [CC04].

In order to ensure efficient interaction between computer users and applica-
tion software, ergonomic design criteria should be taken into account. General
ergonomic requirements, such as requirements for fitness for use, user friend-
liness, realisation of dialogues, presentation of information, and expectation
conformity are defined, for example, in the standards ISO 9241 (Ergonomic
Requirements for Office Work with Visual Display Terminals) and ISO 13407
(Human-centred Design Processes for Interactive Systems).

2.4 Laboratory and metrology related standards and guidelines

Standards and guidelines dealt with in the following formulate requirements
for computers and in particular for software products used in testing and cali-
bration laboratories, and specifically in metrological applications. In addition
to the well-known accreditation standard ISO/IEC 17025 which contains only
a few explicit software requirements, some specific guidelines are considered in
closer detail. Besides a basic document of the Organisation for Economic Co-
Operation and Development (OECD) [GLP95], metrology-oriented guidelines
of NPL [WPB07] and NORDTEST [NOR03], and the FDA guideline [FDA02]
are discussed. A guideline for the validation of metrological software according
to ISO/IEC 17025 was elaborated at PTB [Gr06b] and is outlined in detail
in Section 4.

2.4.1 The standard ISO/IEC 17025

The standard ISO/IEC 17025 (General requirements for the competence of
testing and calibration laboratories) lays down the requirements a laboratory
has to fulfil when it wants to be recognised as being competent for the per-
formance of tests and calibrations. The requirements must be met for both
the accreditation of a laboratory in accordance with ISO/IEC 17025 and for
a conformity declaration according to ISO/IEC 17050. Both conformity as-
sessment procedures confirm the correctness and reliability of the testing or
calibration activities in a laboratory.

If a laboratory uses computers or other software-controlled systems for its
testing or calibration activities, the requirements outlined in ISO/IEC 17025
for the management of the laboratory and the test methods and test equip-
ment used also apply to the handling of computers and software and/or the
software products themselves. In addition, the standard defines a number of
requirements explicitly for computers, software products, and software pro-
cesses. The term “software processes” covers thereby the whole range of the
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software life cycle, that is, all activities, starting from contract design to pur-
chase, development, testing, and maintenance.

In contrast to the OECD document [GLP95], the standard does not specif-
ically refer to the use of computers and software in laboratories. It rather
describes management requirements and general technical requirements (e.g.,
for staff competence, accommodation, and environmental conditions, testing
and calibration methods). Only a few of the requirements can be applied to
software as a means of measurement. They essentially concern the quality
characteristics of functionality and security as well as the software documen-
tation. For example, the laboratory shall ensure that software is documented
in sufficient detail (user manual, installation guide) and suitably validated
or otherwise checked as being adequate for use. Protection against unautho-
rised access to data and protection of data integrity in case of input, storage,
transmission, and processing of data are requirements of the category data
and program security. Calculations and data transfer shall be checked in an
expedient and systematic way. Original data shall not be lost or changed. Doc-
uments generated by software (surveys, reports, charts, etc.) shall be uniquely
identified. For further details see Section 4.

2.4.2 The OECD consensus document

On the basis of the OECD principles laid down in the document OECD
Series on Principles of Good Laboratory Practice (GLP) and Compliance
Monitoring, the so-called GLP consensus document ‘The Application of the
Principles of GLP to Computerized Systems’ has been drawn up [GLP95].
The document formulates requirements which computers, connected hard-
ware, and installed software must meet when they are used in laboratories
within the framework of tests, approvals, or the like. The document says lit-
erally: ‘All computerised systems used for the generation, measurement or
assessment of data intended for regulatory submission should be developed,
validated, operated and maintained in ways which are compliant with the GLP
principles.’

With reference to the main sections of the GLP principles, namely respon-
sibilities, training, facilities and equipment, maintenance and disaster recov-
ery, data, security, validation of computerised systems, documentation, and
archives, the requirements for both the software development processes and
software products are formulated.

Process requirements

The application of acknowledged rules of science and technology, acknowl-
edged technical and quality standards (e.g., ISO, IEC, IEEE), and documented
procedures is explicitly required, especially for processes covering the introduc-
tion of computerised systems, software development (design, programming,
testing, documenting), and for processes covering the validation, operation,
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and maintenance of software. The software should be developed in compli-
ance with acknowledged software development standards (e.g., the Software
Lifecycle Process Model of [DS97]) and documented procedures (e.g., guide-
lines for software documentation or programming directives). The application
of acknowledged procedures allows in particular the software manufacturer’s
reliability and thus, indirectly, the product quality to be assessed.

Product requirements

The requirements for software products specified in the chapters of the con-
sensus document are compiled here and assigned to the requirement categories
of security, identification, functionality, reliability, and documentation.

Requirements with regard to the security of data and programs generally
rank high in the OECD consensus document. In the section about data and
program security, documented procedures for the protection of data and pro-
grams against unauthorised (intentional or unintentional) access (confidential-
ity), and unauthorised modification, falsification, and loss (data integrity) are
required. The following means/actions are suggested: unambiguous user iden-
tification and multistage protection by password(s), ‘electronic’ signature with
date/time and reason for modification so that all modifications of data can be
traced back to persons, file verification routines (use of checksum-protected
binary data files), and plausibility checks (recording of nonplausible values).
Archiving procedures must be uniformly applied to all data types. The unique
identification of programs, subparts, and versions is required.

The laboratory has to ensure that only validated program versions are
used. The availability of adequate documentation is required, including pro-
gram documentation and program development documentation. A test doc-
umentation (test plan, test procedures, test data, test results) is especially
required.

In the scope of functionality, the traceability of the measurement re-
sults and of all data modifications as well as the archiving of all raw data
and supporting information according to the expected life is required. To
achieve reliability, documented procedures for disaster recovery to be taken
in the event of partial or total failure (backup copies of data and programs)
and documented procedures for preventive maintenance and fault repair are
required.

2.4.3 NPL Best Practice Guide No. 1

The NPL guidance document validation of software in measurement sys-
tems [WPB07] addresses validation of metrology-related software both from
the perspective of the user and the supplier. Current best practices in soft-
ware quality assurance are surveyed and applied to measurement systems.
Especially, validation aspects within safety-related systems by reference to
the generic safety standard IEC 61508 are considered. The contents of the
guide comprise a management overview and a specific technical part. The
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part covering management aspects defines a framework for the overall quality
assurance approach based on software risk assessment. The applied risk anal-
ysis corresponds to the standard IEC 61508. The technical part of the guide
provides recommendations for specific validation techniques. Based on risk
assessments, well-defined software risk factors are determined. As a function
of these risk factors, a so-called “measurement software index” is computed
which serves as a base to determine appropriate validation techniques.

2.4.4 NORDTEST Software Validation Method

The NORDTEST software validation guideline [NOR03] provides assistance
in validation of small and medium-sized software used in accredited and other
testing and calibration laboratories. The proposed validation method is imple-
mented as a software tool to be used for systematic computer-aided software
validation. The text processing tool recommends a working strategy based
on a common software life cycle model. The software requirements used in
the validation process are mainly stated in the standard ISO/IEC 17025. Fur-
thermore, the guideline ISO 90003 is taken into consideration for requirements
specification. The proposed method can be used to validate the following.

• Purchased software products that are not standard or configurable soft-
ware packages

• Self-developed or purchased software products where the source code is
available

• Software products being developed in control of the laboratory

A template to elaborate the validation report summarising all validation
activities is suggested.

2.4.5 FDA Guide: General Principles of Software Validation

The FDA guidance document [FDA02] describes the general context for soft-
ware validation (terminology, quality assurance approaches) and the funda-
mental principles of validation in the scope of medical device software. The
validation principles shall provide helpful measures to improve the design,
development, and manufacturing processes of medical devices. System and
software requirements are taken from the FDA medical device quality sys-
tem regulation. The guidance addresses the complete software life cycle and
all software components that influence the final software-controlled medical
device. Furthermore, risk management activities are recommended to qualify
the validation process. The proposed guidance applies to the following kinds
of software.

• Software used as a component, part, or accessory of a medical device
• Software that is itself a medical device (e.g. blood establishment software)
• Software used in the production of a device (e.g., programmable logic con-

trollers in manufacturing equipment)
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• Software used in implementation of the device manufacturer’s quality sys-
tem (e.g., software that records and maintains the device history record)

For software developers, the guide proposes to establish a complete software
life cycle model that is appropriate for their products. Software validation
is seen as an important part within the applied life cycle model. Especially,
repeated validations in case of software changes are emphasised.

2.5 Future work

The standards and guidelines presented define requirements to be met by soft-
ware products and software processes. From the viewpoint of metrology, the
formulation of the majority of the requirements is, however, a very general
one. Application of the requirements to metrological software requires con-
cretisation. One important objective is the definition of special metrological
software quality characteristics. This would allow the relevant requirement
catalogues to be derived more easily for different kinds of software tests (type
approval procedures, testing of measuring assemblies) and for different mea-
sures of preventive quality assurance.

Quality criteria which are easily applicable are also advantageous in the
development and purchase of metrological software. Reference to metrologi-
cal aspects is concretely made in the standard ISO/IEC 17025, in the NPL,
PTB (see Section 4), and NORDTEST guidelines, and in the GLP principles.
In contrast to the general standards such as ISO/IEC 9126-1, these docu-
ments take the special conditions in testing and calibration laboratories into
account. In view of the historical development and bearing in mind the re-
spective purpose, the standards and guidelines referred to above emphasize
different features. The emphasis on security aspects – for example, protection
against unauthorised access and data tampering – is striking in the docu-
ments, in particular in the GLP document. Requirements for the quality of
the processes are also taken into account to an ever-increasing extent.

In view of the great variety of standards concerning software quality assur-
ance and the necessity of defining special metrological quality characteristics,
the development of a framework document for the application of software qual-
ity standards in the field of metrology would be a forceful way towards quality
criteria which are easily applicable. By serving as a guide to the derivation
and application of requirements for metrological software, such a document
might bridge the gap between software specialists and metrologists.

3 Analytical and preventive software quality assurance

For two reasons, the use of software-controlled systems will always entail a
factor of risk: implementation errors can never be completely ruled out [Be90],
and on the other hand, software solutions will always provide a target for in-
tentional or unintentional manipulation. To maintain consumer confidence in
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the correct and reliable functioning of the software in measuring systems, the
existing risk has to be minimised. Today this is mainly achieved by different
kinds of conformity assessment techniques:

• Product testing: The final software product (or an intermediate product) is
thoroughly tested by an independent test centre. In analogy to the general
inspection carried out for motor vehicles, the independent body certifies –
if the test result is positive – that a certain software product complies with
the relevant quality standards, and that it is suited for its intended use.

• Process assessment and improvement: The software development process
is regularly accompanied by preventive quality assurance measures (au-
dits) already at the producer’s. If the result of the audits is positive, the
independent auditor certifies that the producer’s software development
process, including all its subprocesses, complies with the relevant quality
standards. If the outcome of the audit is negative, suitable suggestions for
improvement are derived from the audit results.

• Producer’s declaration: The software producer himself declares compliance
of his software products or his software development processes with the
technical and quality standards applicable.

3.1 Product testing versus preventive quality assurance

Software quality assurance consists of (a) the analytical testing of software
products and (b) the assessment and improvement of the software develop-
ment processes as preventive action to be taken as early as possible in the
development phase. These two components are inseparable, and they supple-
ment each other. The quality of software is determined by the quality of the
final software product and its intermediate products, and is also a result of
the quality of the underlying processes of the software life cycle, especially of
the development processes (see Figure 2). Not only is the quality of software
evaluated by its internal characteristics (e.g., the results of static analyses),
its external characteristics (e.g., the results of dynamic function tests), and
its special quality in use characteristics (see also Section 3.3), but also it is
directly influenced by the quality of the different processes contributing to its
development. For the assessment and permanent improvement of development
processes by means of special process characteristics, models such as ISO/IEC
15504 (SPICE) or CMMI [CMM02] are available and already in use worldwide
(see Section 3.4). In the long run, high software quality can be achieved only
if the underlying software development processes are also of high quality. The
logical consequence of this is that analytical and preventive aspects of qual-
ity assurance have to be linked and directed towards the common objective
of software quality [Gr06a]. The relationship between testing and preventive
quality assurance also becomes clear when we look at the application of quality
requirements (see Section 3.2). The requirements which will finally be applied
by the test engineer as quality criteria for the software test must be defined as
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Fig. 2. Product- and process-oriented aspects of software quality.

quality objectives already in the design and development phases as it is not
possible to ‘test quality into a product’ once it is completed.

The requirements applying to a software product and its development pro-
cesses should be known not only to the test engineer but also to the device
manufacturer and to the software producer. Efforts should therefore be made
to provide them with the necessary information, ideally in the form of check-
lists, guidelines, and process models. If these guidelines are applied at an early
stage, it will have a positive impact both on the manufacturing process and
on the quality of the software development process, and finally lead to an
improvement of the software product itself. The aim of this approach is to
strengthen customer confidence in the producer, to enhance product testa-
bility, to facilitate explicit software testing and render it more cost-effective,
and to replace final product testing in part or completely by analysing and
assessing the software development process right from the beginning by audits.

3.2 Definition of testable requirements

It is a precondition for assessing the quality of software used in measuring
systems that testable requirements are defined for the software products and
their development processes [SS97, Gr04, GS00]. These requirements, which
must cover both metrological and software-related aspects, will serve the soft-
ware producer as target functions in the development of the product and the
test engineer or software user as quality criteria. Unfortunately, at the be-
ginning of a test cycle, testable requirements are hardly ever in place and
the producer’s ideas about the objective of the test usually rather vague. All
the producer generally wants is the product to be certified as being ‘of high
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quality,’ or as “functioning correctly.” For the test engineer, however, these
formulations are much too imprecise. He needs detailed test specifications
and defined targets. Each time a product is tested, concrete test objectives
are therefore determined beforehand in close cooperation with the producer,
and a catalogue of specific technical requirements is compiled.

For the definition of requirements, existing standards and guidelines can
be used as a basis. It is, however, to be noted that the state of standardisation
in the field of software quality assessment is not very clear.

A survey of the situation is given in Section 2 with particular reference to
standards and regulations containing special software requirements for testing
and calibration laboratories.

As an example, Figure 3 shows the quality characteristics for software
products according to ISO/IEC 9126-1. For the specific problems encoun-
tered in metrology, most of the software requirements specified in standards
and guidelines are formulated in a much too general way. Before they can
be applied to metrological software, they have to be tailored for their in-
tended use. Only in a few regulations, some special needs of metrology are
taken into account, for example, in the GLP Principles of the OECD [GLP95]
and in the NPL and PTB guidelines (see Section 2.4). Unlike general stan-
dards such as ISO/IEC 9126, the standard ISO/IEC 17025 and the PTB
guideline (see Section 4) also account for the special conditions in testing
and calibration laboratories. In certain cases, these documents can therefore
be directly used for the testing of measuring software. Special features of

Fig. 3. Software quality characteristics according to ISO/IEC 9126-1.
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legal metrology are considered in the WELMEC-Guide 7.2 [WEL05]. Based
on the MID [MID04], concrete requirements and validation guidance are pro-
vided for measuring systems subject to legal verification.

Usually, however, the requirements must be separately drawn up and de-
fined for the different classes of measuring instruments based on the standards
and guidelines to which they refer (see [GR00]). The time and work spent on
drawing up the requirements catalogues would take up a large amount of the
total test work. To reduce this amount, the PTB Software Test Centre has
prepared a series of catalogues covering different types of requirements and
allowing a software test to be carried out from different aspects. The following
catalogues are available.

• General nonfunctional software requirements
• Requirements for software used as testing equipment
• Ergonomic software requirements
• Requirements for the use of software-controlled systems in testing and

calibration laboratories
• Checklist for auditing a software producer

The catalogues are permanently updated. Also, new catalogues for further
aspects are under preparation. Detailed requirements lists of the various cat-
alogues have been compiled in [GS00].

From the requirements catalogues and the applicable standards and guide-
lines, concrete requirements for special device classes can be derived. For a
weighing instrument, for example, the requirement ‘functionality’ means that
the mass of a weight must be correctly indicated (within the limits of the
declared measurement uncertainty). For the software of this weighing instru-
ment, this implies that, for example, the zero position of the instrument (the
offset of the weighed value) is determined in a self-check and stored in a suit-
ably dimensioned program variable.

For example, the Software Test Centre of the PTB has worked out cat-
alogues of concrete requirements for the following fields of application: cal-
culation of measurement uncertainties [GSR06], calibration of gauge blocks
(length measuring technique) [GSR99], and calculation of the radiation dose
for flight attendants. One objective of the future work will be the definition
of specific metrological quality criteria for further classes of test applications.
Such criteria would allow concrete requirements for different types of software
tests and for different instrument classes to be derived more easily. It is also to
be noted here that reasonable software requirements are also needed for pre-
ventive quality assurance and for the development or purchase of measurement
software.

3.3 Software product testing

The objective of a software product test can vary strongly from case to case,
with the test method varying accordingly. As a consequence different methods
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and procedures are applied in the test. Software tests can be distinguished ac-
cording to the following levels.

• With regard to the different software components, a distinction can be
made among the testing of the executable program (including the user in-
terface); the testing of the source code, the testing of the documentation,
and, where appropriate, the testing of data (see Figure 4).

• With regard to the instantaneous position of a software product within
the software life cycle, we can distinguish between the testing of the final
product and the testing of intermediate products. Apart from the testing
of the final product (which is described below in more detail), the scope of
testing also includes the testing of products in the early stages in the soft-
ware life cycle, for example, reviews of requirement and design documents.
The test of a final software product against the original user requirements
is called software validation.

• With regard to the testing techniques applied, a distinction can be made
as follows (see Figure 5) [Be90,Be95,Me79]:
– Manual inspections (e.g., evaluation of program source codes, docu-

mentation, requirements specification, design documents)
– Tool-supported program function tests (systematic execution of pro-

grams including actual/setpoint value comparison, testing of user in-
terfaces)

– Structural tests (e.g., tests based on data/control flow, determination
of test coverage)

– Tool-supported static analyses of the source code (e.g., check whether
programming rules are observed, data flow analyses)

• With regard to the technical objective of software tests, distinctions that
can be made include:
– Test of functionality
– Test of conformity with standards or normative regulations

Fig. 4. Components of the software under test.
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Fig. 5. Techniques of software product evaluation.

– Test of the programming technique
– Test of ergonomic characteristics
– Test for data and program security
– Test for functional safety

Although not complete, the bullets regarding the test objectives serve as a
guideline for the explanations below.

3.3.1 Functionality test

All functions of a program are checked for compliance with an individual set
of requirements. To test the functionality, a specification, a list, or catalogue
of requirements must be available or at least precise ideas about the required
or desired scope of functions. Experience has shown that the formulation of
such requirements is often imprecise (see Section 3.2). As testing techniques,
mainly functional and structural tests are applied [Be90, Be95, Me79]. Code
inspections, too, are of some help.

3.3.2 Conformity test

The software is tested for conformity with software-specific or domain-specific
standards or normative regulations. Tests are carried out, for example, with
regard to the following regulations.

• ISO/IEC 25051/12119: Testing whether a software is suitable as COTS
software product.

• ISO 9241: Testing whether a software is fit for its intended use (see further
below).

• OECD Principles of Good Laboratory Practice [GLP95] and NPL/PTB
Guidelines (see Section 2.4): Testing of compliance with regulations pre-
scribed or recommended for the use of computers and software in (accred-
ited) laboratories or in metrology-related applications.
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If necessary, compliance with other software- and domain-specific standards
or guidelines for laboratories is tested. Testing techniques frequently applied
are functional and structural tests as well as the inspection of program source
code and documentation.

3.3.3 Test of the programming technique

By testing the quality of the programming technique, evidence is to be given
that the software works in a robust and reliable manner. For this code-specific
test of non-functional requirements, code inspections and tool-supported static
analyses, especially data flow analyses [GS99], are used. The following ques-
tions can be answered by this category of test.

• Has the software been implemented according to the state of the art, and
has the software complied with any specified programming rules?
For example, the following error categories can be detected by the tests:
initialisation problems, memory access problems, and side effects.

• Are the data processed correctly from the moment of their input until the
moment of their output? Is it possible to reconstruct the relationship be-
tween output value (e.g., price of the product indicated on the weighing
instrument) and input values (sensor value, measurement range) by means
of the program source code?

To answer the questions of the last bullet, methods of data flow analysis [GS99]
are invaluable. This special method can, for example, be used to test whether
security against software manipulation in measuring systems subject to legal
control is assured. Software which has to be protected against tampering is
found, for example, in electronic weighing instruments and in fuel dispensers
at petrol stations. To protect the software, it cannot, however, be ‘sealed’
completely. From time to time, it must be possible for the shop assistant or
service-station attendant to adjust the price of his products per kilogram or
litre. For this purpose, he must have limited access to certain data storage
areas of the software. He is not, however, supposed to influence the formation
of the weight values, for example. When the weighing instruments are type-
approved, evidence must be provided that those components of the software
which are subject to legal control and form the measurement value are not
influenced by the price adjustments made, as is permitted, by the shop assis-
tant and that no criminal manipulation of the software is possible or at least it
is not possible by simple means. For this purpose, extensive software-specific
tests have to be carried out based on the analysis of the program data flow.

This basic understanding of securing software can be transferred to types
of instruments, not only to those ones that are subject to legal verification.

3.3.4 Test of ergonomic characteristics

Here, the usability and the fitness for the intended purpose of a software
product according to the international standard ISO 9241-10/11 is tested for
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a specific context of use. Essential criteria to evaluate how the interaction
between user and software is designed and implemented are as follows.

• Suitability for the task: The user shall be supported in such a way that he
can accomplish his task effectively and efficiently.

• Self-descriptiveness: All dialog steps shall be immediately understandable
and explained on request.

• Controllability: The user shall be able to start the dialog and to influence
its direction and speed until he reaches the objective.

• Conformity with user expectations: The dialog shall be consistent and tai-
lored to the knowledge of the user.

• Fault tolerance: Even if the user makes inputs which obviously are erro-
neous, he shall be able to achieve the intended objective with only very
little additional effort.

• Suitability for individualisation: The program shall be so designed that
it can be adjusted to the requirements of the task and to the individual
capabilities and preferences of the user.

• Suitability for learning: The user shall be supported and guided in learning
the program dialogs.

The test of ergonomic characteristics includes a functionality test according
to the above-mentioned ISO/IEC 25051/12119.

3.3.5 Security test

The testing and evaluation of software security within the scope of informa-
tion technology security is carried out according to special security criteria
laid down in international regulations, such as the following.

• ISO/IEC 15408, Common Criteria for Information Technology Security
Evaluation.

• ITSEC: Information Technology Security Evaluation Criteria [ITS91],

Conformity tests are mainly carried out for the following quality characteris-
tics.

• Availability: Data and services must at any time be available to authorised
users.

• Confidentiality: Information shall be available to authorised users only.
• Integrity: Data and programs must be protected from unintended or unau-

thorised modifications (including complete loss).
• Authenticity: Programs must clearly identify the communication partner

(user, process) of protected transactions.

In particular, the existence and efficiency of security measures is tested. Such
measures can be as follows.

• Controls of access to programs, password systems
• Restrictions of access to certain data storage areas or documents
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• Role concepts, graded granting of rights
• Measures for antivirus protection, firewalls
• Plausibility checks for all input data
• Database integrity rules
• Archiving and backup measures
• Disaster recovery

3.4 Execution of software product tests

To warrant the repeatability and comparability of tests, all requirements, test
data, and methods used in the tests must be well defined and documented.
Also, the organisational sequences which are repeated in each test have to be
laid down as working instructions. For example, the following questions must
be clarified in advance for each test.

• What requirements are to be met by the software to be tested (see Sec-
tion 3.2)?

• Which criticality (risk/integrity level) is allocated to the software system,
to its components, and, if appropriate, to each individual requirement to
be checked?

• What normative documents (standards, guidelines, regulations) are to be
observed?

• Which test concept or testing procedure is used (testing depth, selection of
test data and methods, selection and adjustment of procedures, analyses,
of testing results)?

Figure 6 shows the basic procedure and the essential elements of a software
validation process.

3.5 Process assessment and improvement

It is the precondition for high quality of a software product that its overall
development process and all its subprocesses are also of high quality. This is
achieved by assessing the overall process and its subprocesses and improving
them on the basis of the assessment results. The assessment of processes and
their improvement are cyclical elements.

Formal or informal assessments of software development processes may
be applied in the form of audits at the software producer’s site. Formal as-
sessment systems are offered by the International Standards series ISO/IEC
15504 (SPICE) or the assessment models CMMI (Capability Maturity Model
Integration) [CMM02]. On the other hand, in informal assessments, made-
to-measure lists of questions based on relevant process standards (such as
ISO/IEC 12207) can be compiled and applied. If the answers to the audit
questions are positive and if the overall assessment of the development pro-
cess is also positive, this can be regarded as an important indication that the
producer’s software is in compliance with the latest state of the art. All in
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Fig. 6. Schematic representation of the software validation process.

all it can be assumed that in the case of an overall positive judgement, good
testability and maintainability of the software product is ensured.

To illustrate the procedure and thoroughness of an audit, some questions
are given in the following.

3.5.1 Audit – Software testing:

• Are adequate software testing procedures used in the project (test planning, test
case determination, test data generation, performance of tests, test analysis, test
documentation)?

• Are the methods used documented?
• Who carries out the tests? Is there a separate group for this?
• Are reviews of the results of the different stages carried out at regular intervals

(e.g., review of the requirements specification, design documents, test schedules)?
• Who draws up the test schedules and by what means?
• Who carries out the functional test?
• Are there test records and summarising test reports?
• Is there a procedure to record and archive the test results?
• By what means is it assured that all user requirements and product functions

have been checked?
• Who authorises test schedules, test records, test reports?
• Are confidence-building internal audits of the software development processes

carried out?

• Can the producer guarantee access to the test environment (testing tools, test

data) and to the test documentation?
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3.5.2 Audit – Software documentation:

• Are there any company-specific standards or guidelines for the preparation and
maintenance of the software documentation?

• Is the documentation produced parallel to the project?
• Is the documentation subject to regular reviews?
• What is the scope of the documentation supplied?
• For what time is the documentation valid?
• Is the documentation subject to version management?
• Can the producer guarantee access to the software development documentation?

• Can the producer guarantee access to the source code (if necessary)?

3.5.3 Audit – Error messages and change management:

• Is there a formal problem message procedure with feedback to the customer or
to the test team?

• How does the producer react to error messages and suggestions for improvement
and how does he deal with them?

• In what way are the customers or the test team informed about how the matter
is handled?

• Are error statistics (error types, frequencies) compiled?
• Who initiates software modifications?
• Who approves software modifications?
• Are there documented methods for change and version management?
• Do the procedures of the change management also apply (apart from programs)

to the software documentation and other documents such as test schedules, test
reports, or design schedules?

• Are new software and document versions systematically identified?
• How are the customers informed about new versions?
• Is a configuration management tool used?

• Are there any provisions as to which tests have to be repeated in case a version

is modified, and in which way they have to be carried out?

If necessary, these audit questions have to be extended or refined to allow
producer- or domain-specific checklists to be derived.

Finally, the quality of the software development processes can be improved
by the following means.

• The results of the audits carried out at the producer’s site are directly put into
practice (this has a direct impact on the processes and, consequently, on the
products).

• Use of auxiliary means in software development: standards, working instructions,
checklists, process models, guidelines (e.g., for design, programming, documen-
tation, testing).

• Use of validated software tools (compiler, configuration management).
• Use of validated requirements catalogues.

• Reuse of high-quality software or software components.
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3.6 Future work

Main elements of conformity assessment are testing and certification of prod-
ucts or processes, the producer’s declaration, and accreditation. For these
elements, two trends become apparent in software quality assurance which
are of importance for metrology in particular.

The first trend is the increasing orientation towards preventive quality as-
surance for the development processes. Extensive time- and labour-consuming
product tests are simplified or replaced by process audits, producer’s decla-
rations, or the testing of samples. In the field of legal metrology, this trend
is accounted for by the introduction of specific conformity assessment mod-
ules H and H1 within the framework of the MID [MID04]. In future it will
be a task to support this shift of emphasis by organisational and technical
means. Besides, it is necessary to work out instructions for process audits
at the producer’s site. For areas requiring a high degree of measurement
correctness or running an increased risk of manipulation, it is advisable to
carry out systematic tests of intermediate products based on specific risk
analyses.

The second trend regards product tests. There is an increasing demand
that these tests should be repeatable and comparable. This would ensure the
traceability of the test results and the objectivity of the evaluation. This can,
however, be achieved only if the tests are carried out on the basis of detailed
working instructions. During the test, relevant intermediate results, all final
results, and the respective test environment (test engineer, hardware, soft-
ware, etc.) are to be documented. Accredited software test centres must meet
these requirements. In future, greater attention will have to be paid to the
reliability of product testing. For this purpose, studies are necessary in the
field of test coverage and software metrics in conjunction with the particular
needs of metrology. The following questions will have to be answered more pro-
foundly for metrology. When can the test be terminated? Is the entire scope
of the program covered by test cases? Which test cases are still missing in
which program components and have therefore to be carried out subsequently?
Which software metrics help evaluate the software product and the test
results?

4 Software validation in metrology

The validation of methods used for measurement and testing is crucial for
the quality assurance of metrological processes. For software validation in
metrology, however, there is not yet any overall guidance material or text-
book available. Examples where selected aspects of software validation in the
metrological context are dealt with are [GSS07], [WPB07], [Ri06], and [Ja06].

Validation is an essential aim of the standard ISO/IEC 17025. This stan-
dard also provides the conceptual basis for the validation of software. In this
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section special interpretations of the standard for software are outlined in Sec-
tion 4.1, testable requirements for software products and for the handling of
software in laboratories are systematically derived in Section 4.2, and methods
of software validation are presented in Section 4.3.

4.1 Software-oriented
interpretation of the standard ISO/IEC 17025

An essential requirement of the standard is the necessity to validate
laboratory-developed or changed test and calibration methods. If these meth-
ods are based on software or are supported by it, the software, too, must be
subjected to the required validation. The basis of the software validation is
the definition of testable software requirements.

Interpreting the general requirements of ISO/IEC 17025 with special re-
gard to software, it is assumed that software programs used in the laboratory
can implement or support both the items ‘equipment’ and ‘method’ accord-
ing to the terminology of the standard. Therefore, the requirements for both –
‘equipment’ and ‘methods’ – are considered in the interpretation process. Alto-
gether, the aspects this standard contains with regard to software products or
software processes are extremely multifaceted. In the following, we have listed
those aspects of the standard which are taken into account for the derivation
of software requirements.

• Equipment used for measurements, testing, and/or calibrations
• Methods and procedures (measurements, tests, calibrations, data analyses)
• Handling of test and calibration data (control, archiving, etc.)
• Handling of electronic documents and records (technical and management

scope)

For different reasons, extracting the requirements that apply to software prod-
ucts and the use of software from the text of ISO/IEC 17025 turns out to be a
difficult task. First of all, the standard is, of course, not structured according
to the needs of a software-oriented system. This means that the requirements
are often ‘hidden’ or mentioned several times in different contexts. Secondly,
many requirements are of a very general nature and were defined without
taking the special software aspects into account. Their application to soft-
ware products and processes leaves some room for interpretation.

4.2 Systematisation of software requirements

When interpreting the requirements of the standard with special regard to
software, it is assumed that software programs used in the laboratory can im-
plement or support both the ‘equipment’ and the ‘methods’ of the laboratory.
In the systematisation of the software requirements, therefore, not only the
requirements for the equipment of the laboratory will be taken into account



Software Validation and Preventive Software Quality Assurance 401

but also those for the relevant laboratory processes. For each individual ap-
plication within the scope of a software validation, however, the total number
of requirements derived for software must be reduced to the corresponding
amount of requirements relevant for the special case. Not every requirement –
and by no means the total number of requirements – is relevant for a specific
validation case.

The total amount of requirements is subdivided into two fields. The first
field encompasses the requirements for software products. The term software
product comprises the executable computer program itself, but also the soft-
ware documentation with all its variants, the program source code, and any
associated data or databases.

The second field encompasses the requirements for the management of soft-
ware. Thereby, the complete life cycle of the software, from its development
to its validation and maintenance, is taken into account.

4.2.1 Requirements for software products

This subsection describes the requirements which a testing or calibration lab-
oratory must fulfil when it uses software programs for testing or calibration
within the scope of its facilities or procedures.

By the term ‘software’, we understand software as being a component of
a measuring chain. It receives measurement values, measurement parameters,
or intermediate results from the hardware, from users or from data storage
media, processes them, and issues processed data or measurement results.

The input data of a program are measurement values (raw data), mea-
surement parameters, and configuration data (facility parameters). The data
it issues are the measurement results. If the program does not cover the whole
measuring chain, intermediate results are entered or issued instead of mea-
surement values and results.

Measurement values influence the measurement result directly and are
newly acquired several times for each measurement. Measurement parame-
ters influence the measurement result directly or indirectly and are usually
entered or determined once for each measurement. Configuration data also
influence the measurement result, but they are modified only rarely or never.
Thus, configuration data can be logged and/or administrated independently
of the measurements, whereas measurement values and measurement param-
eters must be logged for each measurement.

In the following we list all the requirements derived from ISO/IEC 17025.
They are ordered in groups of similar subjects and numbered for easy refer-
ence.

Software identification

(P1) The software must be identifiable. The identification must consist of the name

of the program, the version number and the author/contact person, and it must be

shown at the beginning of the program or whenever required.
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Functional scope, fitness for purpose, and conformity

(P2) The software must allow the input, logging and, if necessary, storage of mea-

surement values and measurement parameters as well as the calculation, logging

and, if necessary, storage of measurement results.

(P3) The software must comprise all functions that are necessary for the determi-

nation of the measurement result.

(P4) The software must not generate any numerical errors which reach the order of

magnitude of the measurement uncertainty.

(P5) The implemented algorithms must as far as possible correspond to the specifi-

cation. If approximations are used, estimations or test series must prove how large

the difference is to the exact solution. The difference must be taken into account

when determining the measurement uncertainty. The approximate solution methods

must be described.

(P6) The values supplied by the measurement hardware must be processed as

specified.

Plausibility checks

(P7) The software must survey the status of the measurement hardware. The values

supplied by the hardware must be checked for plausibility. If the measurement values

are implausible or show unexpectedly large variation, the user must be notified.

(P8) The values entered by the user must be checked for plausibility.

Confidentiality and integrity of data

(P9) It must not be possible to alter the configuration data by simple means. The

user must agree to an alteration before it is carried out. Alterations of the configu-

ration data must be logged together with the date.

(P10) Admissible deviations, variation ranges, plausibility limits etc. must either be

implemented firmly or must only become effective when the user has agreed to any

alterations.

(P11) After the measurement has started, it must no longer be possible to alter

measurement parameters and other values entered by the user.

(P12) The deletion of data must either be reversible or may only become effective

if the user has agreed to it.

(P13) It must not be possible for the user to alter the values supplied by the mea-

surement hardware. If they can be altered, the modifications must be registered.

(P14) If there is a manual mode for measurement values which are normally captured

automatically, or if there is a learning or demonstration mode, the values captured

in this way must clearly be marked as such.

(P15) If the software rejects or re-formats entered data, a display (if it exists) has

to be updated immediately.
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(P16) For each number which has to be entered and for each number which has to

be indicated, stored or printed out, it must become clear which unit of measurement

is valid for it.

(P17) Special technical terms must be used in the user interface and in the docu-

mentation in a clear and consistent way and in compliance with the standard.

(P18) If the configuration data are stored as a file, the file must be protected against

unintentional alterations.

(P19) If the measurement values, measurement parameters and/or measurement

results are stored as a file, the file must be protected against unintentional

alterations.

(P20) The program must not store or issue measurement values if the measurement

was not complete or has been disrupted.

Documentation

(P21) There must be documentation available which has to be valid for the software

version to be put into operation.

(P22) The documentation must contain the following information: name of the pro-

gram, version(s) for which the documentation is valid, date of issue, author/contact

person, purpose of the program or brief introduction, description of the main func-

tions of the program, list of all error messages along with instructions for the further

recommended action, system requirements, constraints or limitations and a descrip-

tion of the file formats, page numbering, total number of pages or a mark showing

the end of the document.

(P23) The program and the documentation must related to each other.

Logging and archiving

(P24) For each complete measurement and each measurement not having been re-

jected, the software must issue a measurement protocol. The protocol must contain

all measurement values and measurement parameters captured by the program, in-

cluding the date.

(P25) The software must allow the recording and logging of all configuration data.

(P26) All measurement values and measurement results having been issued, stored,

printed out and dispatched must at any time allow the corresponding measurement

parameters and configuration to be identified.

(P27) The software must issue measurement values and measurement parameters

in a form suitable for archiving. If the data are archived electronically, a format

for the stored data must be determined and described in the documentation. If

the measurement results are not archived, it must be possible to process retrospec-

tively, using software or otherwise, the archived measurement values (i.e. raw data),

measurement parameters and configuration data to recalculate the measurement

results.
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(P28) Subsequent alterations of the stored or issued measurement values, measure-

ment parameters or measurement results must be clearly marked. The date of and

the reason for the alteration must be noted, as well as the name of the person in

charge. The original value must remain identifiable (readable).

(P29) If the software issues test reports or calibration certificates, these must comply

with the prescriptions for test reports or calibration certificates.

4.2.2 Requirements for the management of software

The requirements defined in this section apply to the management of software
programs which are used in laboratories and contribute essentially to obtain-
ing test and calibration results. Mainly, requirements with regard to various
procedures or processes during the life cycle of the software products are de-
rived. Processes of the life cycle of software regarded under this aspect are:
contract design, purchase, development, documentation, validation, archiving,
installation, and maintenance. For the individual software processes, binding
regulations and documented procedures must exist in the laboratory. These
can be worked out by the laboratory itself or can be part of an existing quality
management system. Such required prescriptions can also be focused on cer-
tain essential subjects such as, for example, the aspect of data and program
security.

In the following, the requirements are subdivided into the fields of security,
documentation, validation, purchase/development, and installation as well as
archiving.

Program and data security

(M1) The laboratory must have regulations at hand which guarantee the protection
of the clients’ confidential information and of the ownership rights in the

• processing of confidential data by software;
• issuing of confidential data in electronic files;
• archiving of electronic files or printouts;
• sending of confidential data by means of software.

It is best to summarise the security measures in a security concept. Some possible
measures are:

• regulation of the access to the software (passwords, file access control, access to
the computer or laboratory, stand-alone operation, firewall, etc.);

• regulation of the access to archives;
• encoding of electronic files on hard disks and on other electronic storage media;
• virus protection measures;
• encoding of transmitted data;
• sealing of computer printouts.

(M2) The laboratory must have regulations at hand which ensure the integrity of the
data and programs and guarantee a protection against intentional and unintentional
alterations. Measures to ensure program and data integrity can also be included
in the security concept. Further possible measures - besides the ones mentioned
above - are:
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• activation of the write-protection function for files;
• ensuring that only the latest versions of programs and documentation are used;
• measures offered by the program itself (requests, plausibility checks, etc.).

Documentation process

(M3) The laboratory must have regulations for the documentation of software at

hand. These regulations and the documentation of the software programs are part

of the management system of the laboratory and must be taken into account for the

control of documents.

(M4) (to be applied only for laboratory-developed software or software that was

specially developed by order of a particular customer:) The software documen-

tation must be checked and approved before use. This also applies to each revi-

sion. The checking and approval must be carried out by authorised (competent)

personnel.

(M5) (to be applied only for laboratory-developed software or software that was

specially developed by order of a particular customer:) If the software is modified,

the documentation must also be revised. Electronic elements of the documentation

(e.g. on-line help functions) must also be updated.

(M6) The latest valid version of the documentation of the software programs must

be available in all places where it is needed to comply with the requirements for

work quality.

(M7) Outdated versions of the documentation must be destroyed or clearly be iden-

tified as being invalid. This also applies to electronic elements (e.g. on-line help

functions).

(M8) There must be a list in which the latest valid version of the documentation, its

date of release and all locations where it is kept must be entered. This shall ensure

that always the latest version of the documentation is used and all older ones can

be localized and exchanged.

Validation

(M9) Before being used, the software has to be validated. The validation must

be carried out in accordance with the regulations of the laboratory and must be

documented.

(M10) After software modifications or larger updates the validation must be

repeated.

Purchase/development and installation

(M11) The laboratory must have regulations covering how software is specified, de-
veloped, selected, installed, purchased and/or used. Here, it can be laid down:

• that purchases and programming orders have to be carried out on the basis of
a requirements specification,
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• who is going to compile the requirements specification and what will be its min-
imum content

• which standards and guidelines will have to be generally complied with
• according to which criteria the selection amongst several products or tenders is

made
• who is responsible for the installation and validation
• who will give the permission to use the software

(M12) Software purchases and programming orders must be carried out based on a
specification which must be checked and approved.

(M13) The installation and operation of the software program have to be docu-
mented. This includes the following information:

• software identification (name, version/variant);
• manufacturer;
• type of documentation and, if applicable, locations where the documentation is

kept;
• date of installation;
• installation procedures, installation result, installation problems;
• computers on which the installation was carried out;
• validation documents or reference to these;
• validation result and directions for use having arisen from the validation;
• problems and modifications (configuration alterations, patches, smaller updates,

etc.) during the running operation;
• if applicable, modifications made to the previous version and their impacts.

(M14) If the contribution of the software program to uncertainty is not negligible,

it must be taken into account in the measurement uncertainty evaluation of the test

or calibration result.

Archiving of software versions

(M15) All program versions (electronic files and printouts) that are relevant for the
reconstruction of tests or calibrations must be archived. The laboratory must have
archiving regulations with the following minimum content:

• type of the data to be archived (what is archived?);
• type of identification, registration and storage of the records;
• periods of record-keeping;
• measures against the loss of the physical and logical readability of electronic

files;
• measures for the protection of confidentiality;
• measures for the protection against intentional or unintentional alterations.

(M16) Old program versions which were used for testing must be archived.

(M17) Before software programs are modified, the impact of the alterations on the

already archived data must be estimated and, if need be, measures to maintain the

readability of the data (migration) must be taken.
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4.3 Methods of software validation

Testing or calibration methods having been developed or modified by a lab-
oratory itself must be adequately validated. From the software point of view,
this means that the software products used to implement the methods have
to be validated. Validation means, as interpreted by the standard, to confirm,
by examination and by provision of objective evidence, that the particular
requirements for a specific intended use are fulfilled. The applied validation
methods shall be appropriate for the kind and scope of the respective exami-
nation. Commercial off-the-shelf software (e.g., word processing, spreadsheet,
database, and statistical programs for general use) which is used within its
intended range of application can be considered to be sufficiently validated.
For software having been specially developed for a customer, the validation
can be regarded as a part of the acceptance test. During validation, the testing
documents of the manufacturer should be taken into account. Software which
is already in use must be validated, too. For this purpose, first of all, all those
documents which establish confidence in the correctness of the software must
be collected. It is only after this that a decision can be taken with regard to
appropriate validation procedures. Also the evidence of long years of satisfac-
tory operation of the software can be a suitable method of validation. When
software products or processes have been modified, it is necessary to carry out
a new validation (partial validation). All records with regard to the validation
procedures and validation results must be preserved.

The spectrum of applicable validation methods is very broad. It extends
from the simple checking of documents (e.g., program descriptions, test docu-
mentations) to functionality tests of computer programs, through to system-
atic inspections of program source codes. For each application, an individual
and suitable validation method has to be determined. In the following, exam-
ples of validation methods are listed.

Functional test of the software product

• Operation of the software with determined input values (measurement
standards) whose corresponding output values are known

• Repeated tests of one or several retained specimens with known charac-
teristic values

• Repeated tests using the same or different procedures, and comparison of
the results

• Comparison with a reference software, with reference calculation processes,
with (certified) reference materials (programs, data)

Examination/inspection of the documentation

• Detailed inspection of software documentation (e.g., user manual, devel-
opment documentation, test documentation, requirements specification,
design specification)
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• Examinations regarding the compliance with all relevant standards and
(legal) regulations

• Examinations aimed at the preservation of the traceability to SI units by
the software

• Inspection of specific requirements (limits of use, sensitivity, uncertainty,
linearity, etc.)

Further investigations

• Audits of quality management systems and/or realisations of software pro-
cess models (e.g., for software development, configuration management,
total life cycle)

• Evaluation/acceptance of corresponding audit reports or declarations (self-
declarations) of manufacturers/developers

• Evidence of satisfactory operation of the software; documentation of long-
term correct operation of the software

• Interlaboratory comparisons regarding software validation

In case of high criticality of individual computer programs or program com-
ponents, software engineering methods with higher testing depth can be of
advantage. Such methods are, for example, dynamic functional tests of indi-
vidual program modules (black-box/white-box tests), tool-aided static analy-
ses of the program source code, or manual inspections of the program source
code (see Section 3.3). If these methods are used, it is recommended to involve
software engineering experts.

5 Outlook: Towards a GUM-like validation guideline

Software validation is an interdisciplinary task; it is much more than just test-
ing a program. Software validation begins with the definition and refinement
of requirements and ends with the generation of objective validation reports.
To a great deal, validation consists in the specification of requirements.

In this activity, metrologists and software engineers have to work closely
together. At decisive points in the process, for example, when it comes to
refining the requirements, their collaboration is an absolute must. This is
particularly true with the example of the GUM-supporting software product,
whose validation is discussed in a case study presented on the accompanying
DVD, where also a list of International Standards on the issue is reported.

To be able to support metrology over the entire validation process, the
existence of a comprehensive ‘Guide for Software Validation in Metrology’ is
indispensable. A guide being of equal significance as the GUM should provide
at least:

• A common understanding of software validation in metrology
• A uniform terminology for software validation
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• A description of the metrology-specific methodology
• Recommendations for carrying out validations
• Recommendations for selecting appropriate methods
• A means to evaluate the validations having been carried out
• ‘Best-practice’ examples

Thus, such a ‘Guide for Software Validation in Metrology’ should become a
supporting companion for metrologists.

Basic questions to be dealt with when starting to elaborate such a guide
are as follows.

• Basic aim: Should the focus be preferably on the support of construc-
tive, preventive quality assurance, or rather on guidance for the analytical
software validation?

• Basis: Should we start completely a new or should we just take an existing
approach and develop it further?

• Range of software: Which range of metrological software should be covered
by the guide?

• Basic standards: Selection of the relevant standards to which the guide
shall be traced back.

• Risk management: Role and assessment of different risk evaluations.
• Variety of requirements: Should a methodology be provided to derive and

refine the requirements, or shall the requirements be developed for typical
cases?

• Variety of methods: Should the full range of validation methods be offered
or just a preselection?

• Methods: Should new methods be developed or old ones adapted, or should
only the existing ones be used?

• Restrictions: Will there, in practice, be any restrictions as to time, costs,
and so on which will have to be taken into consideration, and to which
extent?

It is to be expected that a Software Validation Guide will become much more
complex than the GUM, for example. It is high time to start a corresponding
initiative for developing such a Software Validation Guide.

References

[Be90] Beizer, B.: Software Testing Techniques, Van Nostrand, New York, 1990.
[Be95] Beizer, B.: Black-Box Testing, John Wiley, New York, 1995.
[Be00] Beizer, B.: Software is Different, in: Annals of Software Engineering,

Volume 10, Numbers 1–4, pp. 293–310 (18), Springer, 2000.
[CC04] Common Evaluation Methodology for Information Technology Security

(CEM), version 2.4, 2004.
[CMM02] Capability Maturity Model Integration (CMMI), http://www.sei.cmu.

edu/cmmi/cmmi.html, 2002.



410 N. Greif, D. Richter

[DS97] Development Standard for IT Systems of the Federal Republic of
Germany (EStIT), Part 1: Software Lifecycle Process Model (V-Model),
General Offset Reproduction No. 250, 1997.

[FDA02] U.S. Department of Health and Human Services, General Principles
of Software Validation; Final Guidance for Industry and FDA Staff,
January 11, 2002.

[GLP95] OECD Series on Principles of Good Laboratories Practice, No. 10:
The Application of the Principles of GLP to Computerised Systems,
OECD/GD(95)115, 1995.

[GR00] Greif, N., Richter, D.: Software Engineering Related Standards and
Guidelines for Metrology, in: P. Ciarlini, A. Forbes, F. Pavese, D.
Richter, Advanced Mathematical & Computational Tools in Metrology
IV, 109 - 121, World Scientific, London, ISBN 9810242166, 2000.

[Gr04] Greif, N.: Richtig funktionierende Software: Anforderungen und ihre
berprfung, in: Sensoren und Messsysteme, VDI-Berichte 1829, 85 - 95,
ISBN 3-18-091829-2, VDI-Verlag, 2004.

[Gr06a] Greif, N.: Software Testing and Preventive Quality Assurance for
Metrology, in: Computer Standards & Interfaces 28 (2006), 286-296,
ISSN 0920-5489, 2006.

[Gr06b] Greif, N.: Validierung messtechnischer Software, in: Sensor und Test
2006, PTB-Bericht PTB-Q-3, 69–77, 2006.

[GS99] Greif, N., Schrepf, H.: Towards Secure Measurements Through Software
Analysis, in: D. Richter, V. Granovski (eds.), Methodological Aspects
of Data Processing and Information Systems in Metrology, PTB Report
PTB-IT-7, 52–59, June, 1999.

[GS00] Greif, N., Schrepf, H.: Software requirements for measuring systems
- Examples for requirements catalogues, PTB Laboratory Report,
PTB-8.31-2000-2, Braunschweig and Berlin, July, 2000.

[GS06] Greif, N., Saborrosch, D.: Guideline for Software Documentation,
PTB-IT-14, Braunschweig und Berlin, July 2006.

[GSS07] Greif, N., Schrepf, H., Saborrosch, D.: Several Guidelines for
the Development and Validation of Software in Metrology,
www.softwarepruefstelle.de

[GSR99] Greif, N., Schrepf, H., Richter, D.: Software Evaluation in Calibration
Services: Requirements and Testing Procedure, in: D. Richter, V.
Granovski (eds.), Methodological Aspects of Data Processing and
Information Systems in Metrology, PTB Report PTB-IT-7, 60–72, ISBN
3-89701-379-7, Braunschweig and Berlin, June, 1999.

[GSR06] Greif, N., Schrepf, H., Richter, D.: Software Validation in Metrology:
A Case Study for a GUM-Supporting Software, Measurement 39(2006)
849–855, 2006.

[GUM95] Guide to the Expression of Uncertainty in Measurement (GUM),
ISO/BIPM Guide, 1995.

[ITS91] Information Technology Security Evaluation Criteria (ITSEC), Version
1.2, Commission of the European Communities, 1991.

[ITS92] Information Technology Security Evaluation Manual (ITSEM), Com-
mission of the European Communities, 1992.

[Ja06] Jacobsen, J: Validation of software in measuring instruments, in:
Computer Standards & Interfaces 28 (2006), 277–285, 2006.



Software Validation and Preventive Software Quality Assurance 411

[KHL01] Kitchenham, B.A., Hughes, R.T., Linkman, S.G.: Modelling Software
Measurement Data; IEEE Transactions on Software Engineering, 27, 9
(2001).

[Me79] Meyers, G.J.: The Art of Software Testing, John Wiley, New York, 1979.
[MID04] Measuring Instruments Directive (MID), Directive 2004/22/EC of the

European Parliament and of the Council on Measuring Instruments,
Official Journal of the European Union, L135/1, 30 April 2004.

[NOR03] NORDTEST Technical Report 535, Method of Software Validation,
2003.

[Ri02] Richter, D.: Software in der Metrologie - Chancen und Risiken, in:
PTB-Mitteilungen, Heft 2/2002, 99–113, 2002.

[Ri06] Richter, D. (ed.): Special Issue “Validation of Software in Metrology”,
Computer, Standards & Interfaces, Elsevier, 28, 3, January (2006).

[SS97] Sommerville, I., Sawyer, P.: Requirements Engineering, Wiley, New
York, 1997.

[TG06] Tasic, T., Grottker, U.: An overview of guidance documents for software
in metrological applications, in: Computer Standards & Interfaces 28,
256–269, (2006).

[WEL05] WELMEC Guide 7.2: Software Guide (Measuring Instruments Directive
2004/22/EC), http://www.welmec.org, 2005.

[WPB07] Wichmann, B., Parkin, G., Barker, R.: Validation of Software in
Measurement Systems, Version 2.2, Software Support for Metrology,
Best Practice Guide No. 1, NPL Report DEM-ES 014, January, 2007.

[Zu97] Zuse, H.: A Framework for Software Measurement; de Gruyter, Berlin
and New York, 1997.



Virtual Instrumentation

Octavian Postolache1,2, Pedro S. Girão1, José M. D. Pereira1,2
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Summary. Traditional instruments and instrumentation have been replaced at an
increasing pace by hardware/software mixed measurement-oriented systems. The
software component gives the hardware extended measuring capabilities and the
instruments are thus named virtual instruments. This chapter deals with virtual in-
struments and with the different forms of their implementation. Both the hardware
and software components of a virtual instruments are detailed. A short reference to
virtual laboratories is also included.

Key words: Virtual instrument, virtual instrument software architecture, Inter-
changeable Virtual Instrument (IVI), graphical programming language, VI, virtual
laboratory

1 Introduction

According to the International Vocabulary of Basic and General Terms in
Metrology (VIM), a measuring instrument is a device or combination of de-
vices designed for measurement of quantities. This definition does not dis-
tinguish a real instrument from a virtual instrument. Therefore, we chose to
present here an extensive definition of a virtual instrument (VI), that is to
say, what we think a virtual instrument is and what it is not.

Everyone agrees that the virtual concept is related to the fact that a vir-
tual instrument is able to provide more information that the one immediately
available from its underlying hardware. This means that a virtual instrument
is not only hardware but must have a software component. However, several
traditional instruments, like some network analyzers or even bench-top multi-
meters, have both hard- and software components and no one classifies them
as virtual instruments. This is because the virtual concept before mentioned
is not satisfied: those instruments just do what they were meant to do. Thus,
a virtual instrument is more than just hardware and software. Other aspects
are also characteristic of a virtual instrument or system:
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• Hardware reconfigurability, that is, the same hardware must be able to
be reprogrammed for different purposes. The user can customize, up to a
certain point, the hardware.

• Software portability, that is, it should be possible for the software devel-
oped in one software environment for a particular application to be used
for the same application in another software environment.

• Virtual instruments do not have displays or knobs. The ‘normal’ user–
instrument interface is through the display unit (e.g., monitor) used to
‘create’ the instrument’s GUI.

From what has been said, it is clear that virtual instruments and vir-
tual instrumentation systems can be developed using different types of hard-
ware (e.g., sensors, data acquisition boards, general purpose instruments) and
different programming environments (e.g., textual languages, graphical lan-
guages).

Virtual instruments (VIs) ( [1]– [4]) entered the instrumentation and mea-
surement world in the late 1980s when the technology of personal computers
and object-and visual-oriented programming languages allowed the combina-
tion of a general-purpose computer and a generic data acquisition system
to emulate several traditional measurement instruments. Virtual instruments
are characterized by their versatility and low cost so they are very suitable
for different areas, including education. The primary difference between real
instrumentation and virtual instrumentation is the software component of a
virtual instrument. The software enables complex and expensive equipment
to be replaced by simpler and less expensive hardware. The whole system is
characterized by its versatility because software and hardware modules change
dynamically according to the application requirements.

Virtual instrumentation or instruments are truly instruments, such as a
digital voltmeter, digital counter, or oscilloscope. However, the difference be-
tween a virtual instrument and conventional instrumentation is huge as can
be concluded from Table 1.

Without the displays, knobs, and switches of conventional, external, box-
based instrumentation products, virtual instruments use a device with pro-
cessing and display capabilities such as a personal computer (PC) for all user
interaction and control. In many common measurement applications, a data
acquisition board or card, with a personal computer and software, can be used
to create an instrument, which can reduce instrumentation costs by a factor
of four.

With the increasing demand of VIs and the technological developments in
the last decade in telecommunications and computer electronics, joined by a
significant development in digital signal processing, several things happened.

• Development of user-friendly software for VI design using graphical
programming languages to make programming easier. This software was
designed in a manner that guides the user intuitively to choose sys-
tem elements which are appropriate for the user’s objective, and which



Virtual Instrumentation 415

Table 1. Comparison between traditional and virtual instruments.

Traditional Instruments Virtual Instruments

Vendor-defined User-defined
Function-specific, standalone with
limited connectivity

Application-oriented system with
connectivity to networks, peripher-
als, and applications

Hardware is the key Software is the key
Expensive Low-cost, reusable
Closed, fixed functionality Open, flexible functionality leverag-

ing off familiar computer technol-
ogy

Slow turn on technology (5–10 year
life cycle)

Fast turn on technology (1–2 year
life cycle)

Minimal economics of scale Maximum economics of scale
High development and maintenance
costs

Software minimizes development
and maintenance costs

automatically precludes the user’s selection of system elements that are
mutually incompatible

• Possibility of implementing VIs using processing units less powerful,
smaller, and less expensive than a PC (e.g., ARM microcontrollers)

• Possibility of increasing the accuracy of measurement through digital sig-
nal processing

• Migration of the VI concept to other environments (e.g., to industry, that
traditionally favours solutions tested over time but recognises the positive
features associated to VIs such as high performance, flexibility, productiv-
ity and low cost)

• Integration of the VI technology and other technologies (e.g., sensing, com-
munications, information technology)

• Viability of wired and wireless networked measuring systems for applica-
tions requiring measurements in different locations – distributed measure-
ment systems

• Viability of dealing with applications requiring real-time measuring sys-
tems using low cost off-the-shelf equipment

It is in a context modeled by the above-mentioned events that the
present chapter is written. Telecommunications and information technology
are strongly involved in virtual instrumentation and consequently the text
abundantly uses terminology typical for those domains.

It is the synergy between hardware and software that confers on VIs their
appealing characteristics. By discussing hardware in Section 2 and software
in Section 3 it looks as if we are trying to divide something that makes sense
only when it is considered as a whole. Far from it! If we do that it is because
we believe that the presentation becomes clearer dealing separately with each
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component. We do hope that the reader agrees with us after reading the whole
chapter.

A final comment in this introductory section, about VI drawbacks, three
in particular, is in order.

• The software component of a VI is often its main asset and the VI per-
formance critically depends on its software. As we all know, software is
extremely prone to problems, both due to programming but also when it
runs in a processing system. Particular attention must be paid to potential
problems related to software.

• The flexibility of VIs often comes at a cost in the sense that an equivalent
traditional instrument, whose design has been optimized for a single or a
restricted number of tasks, may outperform a VI.

• As with any other measuring instrument or system, virtual instruments
and systems must be calibrated. Software validation is essential to ensure
the overall precision of the instrument or system.

2 Hardware

As already mentioned, virtual instruments combine rapid development soft-
ware and modular flexible hardware to create user-defined test and measure-
ment systems. The VI main concept is related to the utilization of a computing
platform for test and measurement tasks including general-purpose hardware
and specific software. By loading different software, different functionality will
be loaded into the system.

The most widely used computing platform is the IBM-compatible per-
sonal computer (PC), but other platforms such as PXI (Peripheral Compo-
nent Interconnect (PCI) bus eXtension for Instrumentation), VXI (VME Bus
Extension for Instrumentation), Macintosh, VME (Versa Module Eurocard
Bus)-based and UNIX (UNiplexed Information and Computing System) based
systems are also popular. The VI makes use of the services and architecture
provided by these computing platforms, namely of standard I/O hardware
(RS232, USB, IEEE 1394). General-purpose hardware such as multifunction
I/O boards (MIOB), GPIB controllers, and RS232-to-RS485 bridges permit
the extension of the VI hardware functionality. At the same time, networking
(wired or wireless) with other computers and devices is used to extend the
functionalities to remote measuring and data publishing.

According to the number of hardware elements involved in the VI ma-
terialization,
single unit virtual instruments and multiple unit virtual instruments are con-
sidered. The first category includes multifunction input/output (I/O) boards
with different computer bus compatibility (PCI, PCMCIA, USB, FireWire,
RS232, CompactFlash). The second category of VIs is characterised by dif-
ferent hardware units including computational modules (e.g., real-time con-
trollers), I/O modules (e.g., NI CompactRIO 9215) and networking modules
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(e.g., RS485, Ethernet, Bluetooth). Real-time distributed systems with analog
and/or digital I/O (e.g., VXI, PXI, FieldPoint, Compact RIO) and general-
purpose ‘classical’ instruments such as multimeters and oscilloscopes with
remote control interfaces, GPIB, USB, or Ethernet, can be also considered
multiunit virtual instruments.

The next section discusses single unit virtual systems developed mainly
around multifunction I/O boards, also known as data acquisition boards.

2.1 Single unit based virtual instruments – Multifunction
I/O boards

Data acquisition systems, as the name implies, are systems used to collect
information to document or analyse some phenomenon. As technology has
progressed, data acquisition has been made more accurate, versatile, and re-
liable through electronic equipment. One of the most representative devices,
the multifunction I/O board (MIOB) [5, 6], is designed to meet the needs of
Virtual Instrumentation Systems (VISs) by providing multiple measurement
modes. These different measurement modes include analog input, digital I/O,
counter/timer functionality, external timing, triggering, and control all in a
single package that is compatible with different types of computer buses in-
cluding PXI. Examples of MIOB buses are PCI, ExpressPCI, and PCMCIA
for plug-in computer multifunction I/O boards, and RS232, RS485, USB, Eth-
ernet, and FireWire for external wired MIOBs.

The MIOB serves as a focal point in a VI system, tying together a wide
variety of products, including sensors. The main blocks implemented in a
MIOB are: sample-and-hold block, analog-to-digital converter block (ADC),
digital-to-analog converter block (DAC), digital input/output (DIO) block,
timing and synchronisation block (TS), bus controller block (BC), plug and
play block (PnP), and interrupt interface block (II).

The ADC block has usually one of the designs: multiplexed–single ADC
(M-SADC), or parallel–multiple ADCs (P-MADC). The M-SADC type is a
low cost solution and permits the digitization of signals from multiple channels
at a low sampling rate. The P-MADC type is more expensive and presents bet-
ter dynamic characteristics and simultaneous sampling capabilities, because
each channel has its own sample-and-hold, a dedicated programmable gain
instrumentation amplifier and an ADC. Figure 1 represents the acquisition
part of a MIOB for multiplexed and parallel architectures.

In Figure 1 one can identify the Programmable Gain Instrumentation Am-
plifiers (PGIA) that adapt the level of the input signals to the range of the
ADC. To avoid losing samples, the ADC requires dedicated memory (e.g., 256-
word first-in-first-out (FIFO) memory). The ADC timing control is provided
by the TS block that ensures the correct scheduling of the complex interac-
tion among the memory, the bus controller, and other external timing signals.
The main electronic device of the TS block is a programmable universal timer
(e.g., OKI MSM82C54-2RS/GS/JS).
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Fig. 1. ADC block for the M-SADC (top) and P-MADC (bottom) architectures.

The bus controller provides a high rate (usually improperly called high
speed, but that we also use throughout this chapter) transfer communication
path to other storage units such as the computer host memory.

For MIOB selection as part of a VI, the following characteristics are im-
portant [7]:

• Computer bus compatibility
• Number of analog inputs
• Input resolution (number of bits)
• Maximum sampling rate (samples/s)
• Multichannel sampling rate (samples/s)
• Number of analog outputs
• Output resolution (number of bits)
• Maximum output rate (samples/s)
• Output range (V)
• Number of digital I/O lines
• Number of counter/timers
• Triggering type – analog, digital
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The plug-in computer MIOB presents the advantages of transfer speed
(because they are connected directly to the bus) and cost (because the over-
heads of packaging and power are provided by the computer). Each board
installed in a computer has a unique input/output map location. The I/O
map in the computer provides the address locations that the processor uses
to gain access to the specific device as required by a program.

When field measurements are required, external MIOBs with RS232, USB,
PCMCIA, CompactFlash, or FireWire bus interfaces are used to develop ap-
propriate virtual instruments. A portable MIOB offers a number of advantages
over PCI, ExpressPCI, and PXI MIOBs. external MIOBs are easy to use, be-
cause one does not have to open a computer chassis to install it, are easier
to move from one application to another, and have the capacity to enable a
user to begin taking measurements very quickly (when the board is combined
with ready-to-run DAQ software) because of the plug-and-play capability of
PCMCIA, CompactFlash, USB, and FireWire. Considering the latest devel-
opments in the area of portable MIOBs, elements of CompactFlash, USB,
and FireWire buses and particular MIOB features as part of portable virtual
instruments are discussed in more detail next.

USB protocol and MIOBs with USB bus controller

The Universal Serial Bus (USB) [8] was introduced in 1995 to address a num-
ber of connectivity issues associated with existing serial communication stan-
dards. USB supports multiple devices and provides easier installation, faster
transmission speeds, and simpler cabling requirements than conventional par-
allel or serial ports. USB was also designed to supply modest operating power
directly to peripherals, eliminating the need for external power supplies in
some cases.

Many PCI-Pentium-based PCs include up to four USB ports. Using USB
hubs, up to 127 USB peripherals can be connected. USB connections work well
at distances up to 50 feet (15m). The maximum speed for USB version 1.1 is 12
megabits per second (Mbits/second or Mbps). However, the USB 2.0 standard
released in 2000 raised the maximum USB speed to 480 Mbits/second.

USB peripherals are hot plug devices, so they can be attached or removed
from an energized PC without damage and without the need to reboot the
system. USB also incorporates plug-and-play, so a compatible PnP operating
system will automatically recognize and reconfigure PC resources to handle
the addition or removal of a USB peripheral.

USB modules offer good noise immunity, with performance benefits for
noise-sensitive measurements. USB cables are typically 1 to 5 metres long, so
the I/O circuitry is located further away from the computer’s noisy mother-
board and power supplies, and closer to the signals they will be measuring.
USB is fully supported by Windows 98, Windows Me, Windows 2000, Win-
dows XP, and Windows Vista.
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Concerning the USB MIOB as a component of virtual instruments, differ-
ent solutions are commercially available from manufacturers such as National
Instruments, Keithley Instruments, and Agilent. USB MIOBs that comply
with USB 2.0 and are connected to PCs with a high-speed USB 2.0 port can
attain the full data transfer rate of USB 2.0. The increased bandwidth enables
multiple I/O operations simultaneously at throughput rates up to 1.2 MS/s
(e.g., NI 6251). MIOBs are also compact and portable (Figure 2), allowing
their use in field applications.

FireWire (IEEE 1394) protocol and MIOB with FireWire controller

IEEE 1394 [9,10] is a serial bus standard that was developed collaboratively
by Apple, Intel, Texas Instruments, Microsoft, Sun Microsystems, Compaq,
and National Semiconductor. FireWire is the Apple Computer trademark for
its implementation of IEEE 1394.

FireWire, built to achieve high-speed data transfer, uses a peer-to-peer
architecture in which the peripherals are intelligent and can negotiate bus
conflicts to determine which device can best control a data transfer. Data
transfer rates of 100, 200, and 400 Mbps are currently supported by the bus
architecture.

FireWire was also developed for the purpose of creating an inexpensive
alternative to parallel buses. Some problems with parallel buses are: (a) they
are confined to a small physical area; (b) they do not have plug-and-play

Fig. 2. USB-MIOB implementations: Keithley KUSB-3160 (left), National Instru-
ments USB-6251 (right).
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support; (c) and they do not support isochronous applications. The IEEE
1394 bus was engineered to solve these problems.

FireWire MIOBs are developed now by National Instruments (e.g.,
DAQPad-6070E, DAQPad-6052E) and are available for Windows 2000 and
Windows XP (but not yet for Mac OS). Several advantages of IEEE 1394 are:
a tiered-star topology allowing up to 63 devices (only 16 devices are allowed by
the National Instruments NI-DAQ drivers), long distance (up to 500 m with
extender), hot plug-and-play, easy configuration, no need to open the PC for
installation, high throughput (up to six DAQPad-6070Es at full rate), higher
than PCMCIA. As IEEE 1394 disadvantages can be mentioned: FireWire
MIOBs are more expensive than MIOB supported by PCI and PCMCIA;
only one manufacturer commercializes boards.

Concerning MIOBs’ performance, the maximum aggregate sampling rate
is about 1.25 MS/s for 12 bit resolution. Although the USB2.0 protocol was
already upgraded, FireWire will be upgraded (1394b) to support communica-
tion rates up to 3200 Mbits/s.

CompactFlash protocol and MIOB with CompactFlash controller

CompactFlash (CF) [11, 12] was originally a type of data storage device
used in portable electronic devices. As a storage device, it typically uses
flash memory in a standardised enclosure, and was first specified and pro-
duced by SanDisk Corporation in 1994. The physical format is now used for
a variety of devices including MIOB devices (e.g., Talisman DATAQ-CF2,
National Instruments NI CF-6004). The Compact Flash Standard organi-
zation (www.compactflash.org) promotes two CF standards. According to
the CompactFlash Specification Revision 2.0 (2003), the data transfer rate
associated with CF devices is 16 Mbps, whereas for the devices compati-
ble with CompactFlash Specification Revision 3.0 the data transfer rate is
up to 66 Mbps.

MIOBs were designed and implemented according to the CF standard
specifications and can be used as the hardware component of virtual instru-
ments mobile systems (Figure 3).

Several characteristics of commercially available MIOBs are presented in
Table 2.

Table 2. CompactFlash MIOBs characteristics.

MIOB BUS Analog
Input

Input Res-
olution
(bits)

Analog
Out-
put

Max Sam-
pling Rate
(kS/s)

Max Input
Range (V)

DIO

NI CF-6004 CF 4SE 14 200 ± 5 4
TS-F CF241 CF 4SE 24 2 38.4 ± 2.5 4
DATAQ CF2 CF 4SE 24 2 38.4 ± 2.5 4
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Fig. 3. CompactFlash MIOB solutions.

2.2 Multiunit based virtual instruments

Multiunit virtual instruments are those that use input/output modules with
networking interfacing capabilities. One of the first types of virtual systems de-
veloped for test and measurement application were constructed using general-
purpose traditional instruments connected in a GPIB or a RS485 network.
In order to provide connectivity between the processing unit (e.g., PC) and
the measurement modules, the computer must be compatible with the im-
plemented test and measurement network (e.g., GPIB traditional instrument
network, Ethernet traditional instrument network). Because a GPIB controller
is not available on general-purpose computers (only USB, RS232, Centronix,
and Ethernet communication ports are usually included), additional interfac-
ing modules (e.g., NI PCIe-GPIB, NI GPIB-USB-HS) have to be included as
part of the hardware. For Ethernet compatible instruments, the remote control
is performed using the computer Ethernet interface according to the measur-
ing node IP (Internet protocol) address and port number (e.g. IP=192.168.1.2;
port=5555)

Distributed virtual instrument systems based on general-purpose
instruments

Traditional general-purpose instruments such as multimeters, oscilloscopes,
programmable power supplies, and signal generators can be used as hardware
components of virtual instrumentation systems as long as they are provided
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with some sort of interface that allows remote operation. GPIB (IEEE 488)
is perhaps the most successful of those interfaces. This standard interface has
the following characteristics: up to 15 instruments, called devices, can be con-
nected to a computer, usually called the controller, because it is responsible
for coordinating bus traffic; 1 Mbps transfer rate; 8 bit parallel data bus; 3
wired or handshake lines; additional control lines (SRQ – Service ReQuest,
IFC – InterFace Clear, REN – Remote ENable, EOI – End Or Identify, ATN –
ATtentioN).

An example of a GPIB-based distributed virtual system to test a device,
DUT, is shown in Figure 4.

Nowadays, in general-purpose measuring instruments, the GPIB interface
has been replaced by Ethernet (local area network (LAN) interface). The pri-
mary benefit in using Ethernet is cost. In nearly all cases, the Ethernet network
precedes the measurement system, so it often adds little cost to the mea-
surement system itself. Ethernet provides a low-cost, moderate-throughput
method for exchanging data and control commands over long distances. How-
ever, due to its packet-based architecture, Ethernet is not deterministic and
has relatively high latency. The lack of determinism and high latency are
incompatible with the requirements of some instrumentation systems (e.g.,
real-time systems). These situations are better served with a dedicated bus
such as PXI, VXI, GPIB, and more recently LXI (LAN eXtension for Instru-
mentation).

LAN extension for instrumentation-based systems

LAN eXtensions for Instrumentation (LXI) [13, 14] is a test and measure-
ment system architecture based on proven, widely used standards such as
Ethernet. LXI enables fast, efficient, and cost-effective creation and reconfig-
uration of test systems. The main reasons to consider LXI for present and

Fig. 4. GPIB Distributed virtual instrument (GPIB interface): DUT device under
test.
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Fig. 5. Distributed virtual instrument based on LXI network architecture with
WWW connection.

future test systems are: ease of use, performance, cost, scalability, longevity,
flexibility, and IEEE-1588 [15] synchronization. It is possible to use LXI to
develop distributed virtual instruments. Figure 5 represents a distributed vir-
tual instrument hardware architecture that includes a router to separate the
instruments from the network.

Because LXI instruments use Ethernet and TCP/IP protocols to com-
municate, they can also connect to the Internet. A local server assigns each
instrument an IP address consistent with its subnet and any user who knows
the instrument’s address can communicate with it from almost anywhere.
This type of distributed virtual instrument poses performance and security
challenges. Regarding performance, commands sent to the instrument, for in-
stance, according to the standard commands for programming instruments,
SCPI, must travel through a number of intervening hubs, routers, and switches
that can decrease throughput because they also handle other Internet traffic.
Concerning security, because the instruments operate usually under Windows
operation systems, antivirus and firewall protection programs are required.

Distributed systems with real-time capabilities

A real-time system (RTS) responds in a (timely) predictable way to unpre-
dictable external stimuli. In an RTS, timing is crucial and tasks have to start
and finish within time boundaries. To meet this requirement, RTS must oper-
ate under real-time operating systems (RTOS). A distributed system can be
defined as a system that uses two or more linked computing subsystems to
achieve a task.

Real-time distributed applications such as simulation, control, or high-
performance data logging must be built in a manner that guarantees that all
elements of the system operate in a deterministic fashion.

Real-time distributed virtual instrument systems include different embed-
ded architectures. Examples from National Instruments are PXI (PCI eXten-
sion for Instrumentation), FieldPoint, and CompactRIO [16].
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FieldPoint. FieldPoint is a proprietary solution for interfacing devices to
computers developed by National Instruments that follows the fieldbus con-
cept [17]. The idea of the fieldbus grew out of the problem of interfacing hun-
dreds or thousands of sensors and actuators to programmable logic controllers
(PLCs) and process control computers in large industrial plants. Rather than
connect each sensor or actuator to a central plant computer, requiring hun-
dreds or thousands of kilometers of wiring, the idea of FieldPoint was to con-
nect related groups of sensors and actuators to a local microcomputer that
communicates with the central plant computer via an Ethernet local area net-
work. Earlier FieldPoint units used serial interface lines (RS232 and RS485
protocols) for communication.

PXI. PCI Extension for Instrumentation systems (PXI) [18, 19] consist of a
rugged chassis, embedded controller, and plug-in I/O modules. To develop a
real-time virtual instrument based on PXI, a real-time software component
must be developed using a real-time programming language (e.g., LabVIEW
Real-Time). For the particular case of LabVIEW Real-Time for ETS targets,
the embedded controller is converted into a real-time controller by download-
ing the RTOS and application software to a dedicated microprocessor. The
embedded software then has access to all I/O in the PXI system, taking ad-
vantage of the PXI advanced timing and synchronization features to achieve
precise I/O triggering and multimodule synchronization.

CompactRIO. The NI CompactRIO programmable automation controller
(PAC) [20, 21] is a low-cost reconfigurable control and acquisition system.
The CompactRIO architecture is composed of an embedded real-time con-
troller (e.g., cRIO-9002), a reconfigurable embedded chassis containing an
FPGA (e.g., NI cRIO-9104), and hot-swappable I/O modules (e.g., NI 9233).
The direct connection between the I/O modules and the FPGA enables the
developer to tightly integrate timing and triggering between I/O modules
through the FPGA. The embedded FPGA in CompactRIO is programmed
using LabVIEW FPGA Module functions. The programmed areas are then
accessed by specific functions of the LabVIEW Real-Time Module that runs
in the CompactRIO Real-Time Controller.

3 Software

Various software technologies and development environments exist for devel-
oping virtual instruments. They can be classified in two categories: textual
programming languages and graphical programming languages. Graphical pro-
gramming languages are visual programming languages and textual program-
ming languages can also be of the visual type (e.g., VisualC++) but that also
generate program lines.



426 O. Postolache, P. S. Girão, J. M. D. Pereira

3.1 Textual programming languages

Two subcategories can be identified in textual programming languages: pro-
cedural programming languages and object-oriented languages.

Procedural programming for virtual instrumentation
implementation

Procedural programming is by far the most common form of programming
but not in the VI domain. A program is a series of instructions which oper-
ate on variables. It is also known as imperative programming. Examples of
languages used to develop the software component of the virtual instruments,
which despite their differences are considered procedural programming lan-
guages, include Basic, C, LabWindows/CVI, and MATLAB.

Procedural programming handles a problem by carrying out a sequence of
operations. Structures such as IF–THEN–allow the control of the sequence of
operations. Variables play a central role in programs, and their scope is an
important notion in block-structured languages.

Advantages of procedural programming include its relative simplicity, and
ease of implementation of compilers and interpreters. Disadvantages include
the difficulties of reasoning about programs and, to some degree, difficulty
of parallelization. Procedural programming tends to be relatively low level
compared to some other paradigms, and as a result can be very much less
productive. Because software development is so important to VIs, we next
present a summary of the characteristics of several relevant procedural pro-
gramming languages.

C and LabWindows/CVI. C is a powerful flexible language that provides fast
program execution and imposes few constraints on the programmer. C’s power
and fast program execution come from its ability to access low-level com-
mands, similar to assembly language, but with high-level syntax. Its flexibil-
ity comes from the many ways the programmer has to accomplish the same
tasks. C includes bitwise operators along with powerful pointer manipulation
capabilities.

Modularity is another good feature of C. Sections of code can be stored in
libraries for reuse in future programs. This concept of modularity also helps
with C’s portability and execution speed. The core C language leaves out
many features included in the core of other languages. These functions are
instead stored in the C Standard Library where they can be called on when
needed. An example of this concept is C’s lack of in-built I/O capabilities.
I/O functions tend to slow down program execution and also to be machine
independent when programmed to run optimally. For these reasons, they are
stored in a library separately from the C language and only included when
necessary.
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Fig. 6. Virtual voltmeter C routine.

For VI implementation, C languages offer the possibility to develop test
and measurement instruments for most of the hardware platforms men-
tioned in Section 2 but are normally used for programming multifunction
input/output boards with PCI, RS232, or USB interfaces. Figure 6 is a com-
mented list of a routine for a virtual voltmeter based on a ADR101 RS232
compatible MIOB from Ontrak Control Systems.

C is, however, not a good solution to implement a graphical user interface
(GUI) in a virtual instrument. A better choice is LabWindows/CVI [22] devel-
oped by National Instruments. It is a software development environment for
programming in C. It is equipped with powerful function libraries and a com-
prehensive set of software tools for data acquisition, analysis, and presentation
that are used to interactively develop data acquisition and instrument control
applications. With LabWindows/CVI it is possible to edit, compile, link, and
debug C programs. Additionally, compiled C object modules, dynamic link li-
braries (DLLs), C libraries, and instrument drivers can be used in conjunction
with C source files to develop the software part of virtual instruments.

Typical LabWindows/CVI applications include the following elements:
user interface, data acquisition, data analysis, and program control.

As mentioned above, an important advantage of LabWindows/CVI is its
graphical user interface (GUI) capability. As shown in Figure 7, CVI offers
predefined graphical elements that permit us to develop in a short time a user
interface. The GUI is easy to implement but programming requires from the
VI developers a good knowledge of C.

MATLAB. MATLAB from The MathWorks, Inc. [23,24] is a general-purpose
procedural programming language whose use for VI programming increased
with the inclusion in version 6.5 onwards of a Data Acquisition toolbox and an
Instrument Control toolbox. The type and number of hardware supported by
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Fig. 7. GUI using the LabWindows/CVI.

this toolbox is continuously increasing and includes MIOBs, general-purpose
remote-controlled instruments and digital signal processor (DSP) develop-
ment cards (e.g., TI C64x). Developed in MATLAB, the software component
is able to process signals acquired with the hardware in operation, the process-
ing parameters being controlled from the graphical user interface. The user
interface of a virtual oscilloscope and a virtual modulation analyzer developed
in MATLAB are presented in Figure 8.

The Instrument Control toolbox includes functions that enable communi-
cation with instruments such as oscilloscopes, function generators, and ana-
lytical instruments directly from MATLAB. Thus, it is possible to generate
data in MATLAB to send out to an instrument, or read data into MATLAB
for analysis and visualization. This toolbox provides a consistent interface to
all devices independent of hardware manufacturer, protocol, or driver. The
toolbox supports VXIplug&play, GPIB, TCP/IP, and UDP communication
protocols.

To combine different types of hardware in a VI, MATLAB (usually thought
of as a procedural language) uses the device object concept to represent in-
struments, that is, the properties and methods specific of an instrument are
encapsulated within device objects. The block diagram that expresses the de-
vice object relation with the GUI, the instrument driver, the interface object
and the hardware component of the virtual instrument is presented in Fig-
ure 9. The device object represents a bridge between the MATLAB Instrument
Driver and the MATLAB GUI whose elements were exemplified in Figure 8.
Other important features of the MATLAB Instrument Control toolbox are
that it permits: (i) synchronous and asynchronous (blocking and nonblocking)



Virtual Instrumentation 429

Fig. 8. Virtual instrument GUI based in MATLAB: virtual oscilloscope (top), vir-
tual modulation analyzer (bottom).
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Fig. 9. MATLAB device object block diagram.

read-and-write operations; (ii) event handling for time-out, bytes read, data
written, and other events.

MATLAB Data Acquisition toolbox provides a complete set of tools for
MIOB based VIs. The toolbox allows the configuration of external hardware
devices, reading data into MATLAB and Simulink for immediate analysis,
and sending out data. GUI design tools can be used to design the virtual
instrument front panel according to the implemented functionalities. As the
Instrument Control toolbox, the Data Acquisition toolbox provides functions
for creating device objects that are directly associated with MIOBs. These
objects include base properties that apply to all supported hardware, such
as sample rate, trigger settings, and channel properties. Device-specific prop-
erties permit us to access the specific features and capabilities of the used
hardware. Data Acquisition Toolbox analog input functions can control the
digitization of the analog input signals. An analog input object with the num-
ber of the input channels can be created and data transferred to the memory
or read to MATLAB workspace. The analog output functions can control
the hardware through an analog output object. Based on Data Acquisition
toolbox functions and MATLAB GUI functions, a VI with an appropriate
user interface can be implemented. In conclusion: MATLAB is a procedural
programming language that provides an easy way for VI software implemen-
tation. However, the flexibility, portability, and MATLAB GUI elements are
limited when compared to LabWindows/CVI or to graphical programming
languages such as LabVIEW, VEE Pro, or TestPoint.

Object-oriented programming for virtual instruments
implementation

Object-oriented programming (OOP) [25] is a programming language model
organized around objects rather than actions and data rather than logic.
Object-oriented programming takes the view that what we really care about
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are the objects we want to manipulate rather than the logic required to ma-
nipulate them.

The first step in OOP is to identify all the objects and to generalize them
as classes of objects by defining the kind of data they contain and the logic
sequences that can manipulate them. Each distinct logic sequence is known as
a method. A real instance of a class is an object. An object or a class instance
runs in the computer. Its methods provide computer instructions and the class
object characteristics provide relevant data. During operation a communica-
tion is made by objects – and the objects communicate with each other – with
well-defined interfaces called messages.

Comparing object-oriented with a procedural language, one notes that the
focus of procedural programming is to break down a programming task into
a collection of data structures and subroutines, whereas in object-oriented
programming it is to break down a programming task into objects.

Some differences between pure object-oriented languages and nonobject-
oriented procedural languages are presented in Table 3.

The object-oriented languages used for VI software implementation in-
clude VisualC++, Visual C#, Java, and Visual Basic.Net. Visual Basic.Net
(VB.NET) is part of a brand new platform, based on the .NET Framework
with the result that VB.NET is fully object-oriented. This is a huge difference
and is a powerful improvement over previous versions of Visual Basic.

Java [26, 29] as an object-oriented language is used only in particular ap-
plications involving RS232 compatible hardware or the new LXI devices. In
fact, and to extend the capabilities of the websites to interact with different
instruments, a Java extension for communication tasks, named Java Commu-
nications API, was recently developed. For example, the case of javax.com
extension package includes new data classes that manage the access and own-
ership of communication ports, provide an interface to physical communica-
tions ports, and provide an interface between the low-level classes and the
underlying operating system. Java communications API enables access to se-
rial (RS-232), parallel (IEEE 1284), and USB ports and LXI devices. The Java
communication API features provides, in the RS232 case, access to: port set-
tings (baud rate, parity, stop bits), port naming, mapping, enumeration (con-
figurable), data transfer, hardware/software flow-control, and receive-buffer
threshold control [30]. In the LXI case, Agilent and Keithley instruments de-
veloped proprietary Java communication APIs that provide enhanced Web
capabilities for the instruments, which allow users to operate the instruments

Table 3. Object-oriented languages and procedural languages element comparison.

Pure Object-Oriented Language Pure Procedural Language

Methods Functions
Objects Modules
Message Call
Member Variable
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via the Web similarly to how they use the front-panel interfaces. Thus, with
a Web server built into every LXI instrument and a standard Java-enabled
Web browser on the computer, the full control of an instrument over the in-
strument’s built-in LAN interface can be carried out using the Web virtual
interface (Figure 10).

Web technologies such as Java applets [31] can provide a rich, responsive,
and easy-to-use Web interface with only relatively modest memory and pro-
cessing power requirements. Potential features of those technologies include:
(i) full instrument configuration, (ii) full instrument control, (iii) tabular or
graphical display of data, and (iv) extensive user help. Java applets’ perfor-
mance can be a problem for some virtual instruments system. However, a
variety of techniques available for optimizing the performance of embedded
applications [32].

Nowadays, the hardware for VI implementation comes with software
drivers for Visual C++, Visual C#, Visual Basic, and Visual Basic.NET.
Keithley and National Instruments offer different software packages compat-
ible with those languages. One of them is Measurement Studio by National
Instruments. It is an integrated suite of classes and controls for test, measure-
ment, and automation applications in Microsoft Visual Studio 2005, Visual
Studio .NET 2003, and Visual Studio 6.0. NI Measurement Studio dramat-
ically reduces application development time by providing Windows Forms,

Fig. 10. Web page of an LXI virtual oscilloscope.
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Web Forms, and ActiveX user interface components. Measurement Studio for
Visual C# and Visual C.NET components provides the management .NET
controls for creating rich Web and Windows GUIs, multithreaded application
programming interface (API) for data acquisition, instrument control APIs
and analysis libraries.

3.2 Graphical programming languages

A graphical programming language (GPL) is a visual programming language
and thus, programs are built by manipulating program elements graphically
but without producing textual program lines.

In the context of VIs, graphical programming languages tend to integrate
the approach of dataflow languages [33] to have immediate access to the pro-
gram state for in-line debugging purposes.

LabVIEW and VEE Pro are the most common dataflow and graphical
programming languages for VI implementation.

LabVIEW

LabVIEW from National Instruments [34,35] is a graphical programming lan-
guage that looks like flowcharting. It allows complex tasks to be broken down
visually into block diagrams. LabVIEW is the platform currently most used
for the development of software for PCs, PDAs, real-time devices (e.g., PXI,
CompactRIO), and embedded systems-based VIs. It utilizes graphics that look
like real instruments for the program inputs and outputs and subVI (nodes)
that are wired together to perform the program functions. LabVIEW is almost
totally portable across Windows, Linux, and Macintosh platforms.

A LabVIEW program is called a VI which is short for virtual instrument.
It is also possible to create sub-VIs, which are like subroutines. This makes
modular and hierarchical programming very easy.

LabVIEW can simulate controls such as sliders and dials, many types
of switches, indicators, and waveform graphs on its virtual workbench. Lab-
VIEW is designed to take input data directly from the user through its virtual
instrument interface or from input/output channels and input it into a Lab-
VIEW virtual instrument. Data are analyzed/processed and displayed on the
VI GUI or saved in a file using LabVIEW functions. The processed data can
be used to drive controls. An example of the front panel of a virtual spectrum
analyzer developed in LabVIEW is presented in Figure 11.

LabVIEW Front Panel is where the user interacts with the program by en-
tering data and viewing results. It is called Front Panel because it is supposed
to look like the front panel of an instrument or a group of instruments. The
Front Panel includes user inputs called controls and program outputs called
indicators.

LabVIEW’s most important component for program development is the
Block Diagram, a window where the graphical code is created. The Block
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Fig. 11. Virtual spectrum analyzer front panel.

Diagram window (Figure 12) includes icons called nodes. There are many
types of nodes: nodes that represent the controls and indicators of the Front
Panel (e.g., stop, signal, and power spectrum in Figure 12) called terminals;
nodes that represent functions (e.g., DAQ assistant, spectral measurements,
Figure 12); and nodes that represent program execution structures (such as
while loops, for loops, and case and sequence structures).

Most nodes are wired together for logical functioning of the program. All
nodes have one or more input and/or output terminals called connectors to
wire to and from. LabVIEW utilizes dataflow which means that a node exe-
cutes its function only after it has received data from a previous node. Using
one of LabVIEW features called highlighted execution the dataflow can be
observed (Figure 13).

After the node is through with its function, the processed data are trans-
ferred via the wire to the next node. In the example of Figure 13, data go
from the Spectral Measurements Node to the Power Spectrum Node. There are
several different types of data and wire types to carry the data (e.g., integer,
double, cluster, string) that are graphically expressed in different ways.
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Fig. 12. Virtual spectrum analyzer Block Diagram.

Fig. 13. The dataflow associated with LabVIEW program execution for the partic-
ular case of the virtual spectrum analyzer of Figures 11 and 12.
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Table 4. LabVIEW programming terms compared to their conventional equivalents.

LabVIEW Conventional Programming
VI Program

LabVIEW C, C++, Java, Pascal, BASIC, etc.
Function Function or Method
Front Panel User Interface
Block Diagram Program Code
Sub VI Subroutine, Subprogram

Table 4 includes a comparison among the main terms used in LabVIEW
and in textual programming languages.

One of the main strengths of LabVIEW is its data analysis and data com-
munication capabilities. Libraries for measurement, signal processing, mathe-
matics, image processing, and control allow the extraction of information from
acquired data within the LabVIEW environment without having to recur to
external computational resources. Data communication is simplified by func-
tions that allow the access of the program to communication channels (e.g.,
serial, TCP, Bluetooth).

VEE Pro

VEE (visual engineering environment) [36, 37] is a visual and dataflow pro-
gramming language and development environment from Agilent Technologies.
It is optimized to use with acquisition devices such as digital voltmeters and
oscilloscopes, and source devices such as arbitrary waveform generators and
power supplies.

VEE programs associated with virtual instruments are written by wiring
together objects that represent data sources, transforms, and sinks. In the ex-
ample shown in Figure 14, two function generators are the data sources and
the waveform dataflows from their output terminals when the program runs.
The ‘A+B’ object is a data transform object. It transforms the incoming data
by adding the two waveforms, and then outputs the resulting waveform on
its output terminal. From there, the dataflows to the waveform display which
is a data sink; that is, it does not propagate the data any further and only
displays it.

The VEE language is characterized by wide instrumentation connectiv-
ity and intuitive programming using a block diagram. As with the LabVIEW
graphical programming environment, it permits us to select and edit objects
from pull-down menus and connect them to each other by wires to specify the
program’s flow, mimicking the order of tasks one wants to perform.

Agilent VEE Pro was designed to implement quickly virtual instruments
associated with automatic measuring and testing. Hardware components can
be controlled through GPIB, LAN, USB, RS-232, VXI, and other interfaces
or buses, including PXI and SCXI data acquisition and modular instrumenta-
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Fig. 14. VEE program for signal generation.

tion devices from National Instruments. Conventional instruments PC plug-in
cards are controlled using an instrument driver. Instrument address and other
parameters can be verified at runtime and changed on the fly, without reconfig-
uring programs. Agilent VEE Pro automatically handles different datatypes.

In order to use the VEE Pro functions in other programs, the ActiveX Au-
tomation Server (ActiveX AS) is used. It supports all popular programming
languages, including Visual Basic, C/C++, Visual C#, all .NET-compliant
languages, and National Instruments LabVIEW.

Concerning the GUI, VEE Pro permits the development of an interactive
interface that includes different types of graphical elements. An example of a
VEE Pro VI interface associated with a PID controller virtual instrumentis
is presented in Figure 15.

TestPoint

TestPoint from Keithley [38] is a graphical programming language for test and
measurement mainly used to develop virtual instruments based on MIOBs and
on traditional instruments with RS232, GPIB, or Ethernet interfaces. Fig-
ure 16 shows the front panel of a VI developed with TestPoint. It is a virtual
thermometer with three temperature measuring channels. The virtual system
includes a Keithley 2700 multimeter with a plugged-in data acquisition mod-
ule and its software carries out the hardware control, voltage-to-temperature
conversion, and measured data display.

TestPoint programming is based on simply drag and drop objects rep-
resenting graphs, displays, and other parts of measuring and testing VI in a
display panel. On an Action List, all of the things that the virtual instruments
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Fig. 15. VEE Pro front panel of a PID controller virtual instrument.

Fig. 16. Multichannel temperature measurement virtual instrument VEE Pro front
panel.

will be able to do are included. After this stage, the TestPoint builds auto-
matically the code to run in the VI, which makes this language different from
other GPLs such as LabVIEW and VEE Pro. Figure 17 shows a TestPoint
virtual PID controller.
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Fig. 17. Virtual PID controller developed in TestPoint.

TestPoint is compatible with industry standard software interfaces such
as OLE, ActiveX controls, VBX controls, and MATLAB scripts.

TestPoint is an interesting alternative for virtual instrumentation imple-
mentation but is limited in terms of hardware targets (e.g., does not support
real-time systems) and operating systems support (runs only on Windows OS).

3.3 VISA and IVI technologies

VISA and IVI are two concepts introduced to simplify virtual instruments
programming through the inclusion of a layer between the instrument driver
and the hardware. These technologies are oriented for applications based on
traditional instruments and do not support MIOBs.

Virtual Instrument Software Architecture (VISA)

VISA [39, 40] is an industry standard implemented by several test and mea-
surement companies widely used as an input/output application programming
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interface (I/O API) for communicating with instruments from a PC. VISA’s
advantages are as follows.

• VISA provides interface independence. It uses many of the same opera-
tions to communicate with instruments regardless of the interface type.
For example, the VISA command to write an ASCII string to a message-
based instrument is the same whether the instrument is Serial, GPIB, USB
or Ethernet. This can make interfaces switch more easily and also gives
the users who must program instruments for different interfaces use of the
same instrument programming technology (Figure 18).

• Programs written using VISA function calls are easily portable from one
software platform to another. VISA does this by defining its own datatypes.
This prevents problems such as those caused by moving from one platform
to another where the size of an integer may be different. In other words,
a LabVIEW application written with VISA calls can be easily ported to
another platform that supports LabVIEW. Several operating systems are
supported, including Windows XP/64, Windows 2000/ME/98, MAC OS
X/9/8, some Linux distributions (i.e., Linux complete systems, not only
the kernels), as well as some Solaris distributions;

• It provides a very simple-to-use API that has bus-independent functions
for most of its I/O functionality. VISA provides the most commonly used
functionality for instrumentation in a very compact command set, elim-
inating the need to learn low-level communication protocols for multiple
bus types.

Fig. 18. Multinode virtual instruments based on VISA technology.
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Fig. 19. Virtual thermometer GUI (top); VISA application sequence (bottom).

An example of VISA application where LabVIEW VISA functions are used
is presented in Figure 19. It opens a session to a GPIB instrument, performs
a write of MEAS:VOLT:DC?-n and then queries the device for its response. The
string response is converted in double temperature data using the temperature
sensor specifications.

The same format would be used in a text-based language such as C++ or
Basic and if the used hardware had Serial, USB, Ethernet, IEEE-1394, or any
of the other buses that VISA supports. All one would have to do would be to
change the Instrument Descriptor connected to the VISA Open.

Interchangeable Virtual Instrument (IVI)

Interchangeable Virtual Instrument (IVI) ( [40]– [42]) is also a standard whose
goal is to create a driver standard that allows instrument interchangeability.
Interchangeability means that software for different instruments is compati-
ble with each other (i.e., the software developed for an arbitrary waveform
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generator (ARB) from Fluke can be used with an Agilent ARB). According
to IVI, the programs work because the IVI standard for ARB drivers requires
ARBs from different manufacturers to support the same exact set of function
calls.

In IVI, the user application program developed in textual (e.g., C) or
graphical programming language (e.g., LabVIEW) communicates with an IVI
class driver (e.g., IviDmm class driver) which is represented by a specific in-
strument driver (e.g., Keithley 2000 instrument driver). The interface between
a specific instrument driver and the hardware is performed using the VISA
I/O platform. A block diagram that expresses the interdependences on IVI
technology is presented in Figure 20.

The IVI architecture breaks the traditional instrument driver into two
parts: an instrument-specific driver and a class driver. The instrument-specific
driver functions the way traditional instrument drivers had in the past, but
with an underlying architecture that is optimized for performance and in-
cludes instrument simulation. The class instrument driver contains generic
functions for controlling an instrument category and calls the corresponding
instrument-specific driver functions at run-time. An VI for measuring or test-
ing purpose can be created with either the class driver or the specific driver,
but only programs written with the class driver are interchangeable. Figure 21
shows the application of Figure 19 implemented with IVI.

Fig. 20. IVI architecture block diagram.
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Fig. 21. Virtual thermometer: IVI implementation.

IVI provides the following benefits.

• IVI drivers behave intelligently and perform instrument I/O only when
the value of a hardware setting needs modification.

• IVI drivers have a built-in instrument simulation capability that permits
one to develop the test code while the hardware components of the VI are
temporarily unavailable, or are in the process of being delivered.

• IVI drivers are interchangeable across instruments.
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4 Virtual instrumentation operation

The software of virtual instruments is implemented in a computer or in a real-
time controller (e.g., NI cRIO-9002) and assigns parameters associated with
measurement and control processes. According to application requirements,
virtual instruments components are placed at the same location or can be
distributed in different locations.

In the first case, the virtual instrument is characterized by a concentrated
architecture (software and hardware at the same location) and the user can
control the measurement process through the GUI developed for the applica-
tion. The presence of the VI hardware nearby the software assures a better
understanding and verification of the measurement and control performed by
the VI. Distributed VIs are multinode wired or wireless systems. Thus, ad-
ditional software is required for communication among nodes. Usually, client
server application architecture is implemented for that purpose.

Client server describes an application architecture in which the client re-
quests an action or service from the provider of service, the server. Developing
client server applications means developing modular programs. Modular pro-
gramming separates large applications into smaller constituent pieces to ease
development and provide better maintainability.

Client programs request service from a server by sending it a message and
include a GUI for presentation of the service provided by an application. Server
programs (e.g., LabVIEW Web Server) process client requests by performing
the tasks requested by clients. Servers are generally passive as they wait for a
client request. During these waiting periods, servers can perform other tasks
or perform maintenance. Unlike the client, the server must continually run
because clients can request service at any time. Clients, on the other hand,
only need to run when they require service. Many server applications allow
for multiple clients to request service. How the server manages service to the
clients depends on the software designed for that purpose for the server, but
generally it is on the basis of first-in, first-out, that is, the first client to be
served is the first requesting service. Some applications may require different
clients having different priorities. To do this the server must have a method
to identify, differentiate, and authenticate the clients requesting service.

Figure 22 shows the general client server interaction and the GUI of a
virtual vibration analyzer whose hardware is physically in the place measure-
ments are made. Access to the instrument GUI for visualization is open, but
access to instrument’s controls can be restricted.

4.1 Virtual laboratories

Virtual laboratories (virtual labs) consist of virtual instrumentation that can
be shared and accessed remotely. Usually, the virtual instruments are con-
nected in a local network that includes a PC (local PC) and it is through the
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Fig. 22. Client server program interactions (top) and Web virtual vibration ana-
lyzer GUI (bottom).



446 O. Postolache, P. S. Girão, J. M. D. Pereira

local PC that users’ PCs gain access to the instruments. This means that the
local PC, operating as a server, and users’ PCs (clients) must be connected,
that is, must share a network. Because of its worldwide coverage, the more
interesting network is, naturally, the Internet and virtual laboratories can be
thus used as a hypermedia learning system resource.

Figure 23 represents the block diagram of a possible virtual lab implemen-
tation.

When users log in to the local PC over the Internet, they are able to control
both the computer and the equipment. Video cameras and specific software
are often included in the local system to assure the visual contact with the
real lab.

Figure 24 shows the program block diagram of a typical virtual lab.
Virtual labs’ design and implementation exploit new tools such as VRML

[43] to construct virtual representations of the objects and Java, JavaScript,
and Vrmlscript to implement the scripts.

The number of virtual labs available over the Internet increases as institu-
tions operating in the education and formation fields change their educational
paradigms to profit from the new communication and information technolo-
gies. Distance learning and particularly e-learning are the principal clients of
virtual labs, a reality that opens the access to instrumentation and measure-
ments to ordinary people.

Fig. 23. Block diagram of virtual laboratory complex solution.
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Fig. 24. Program block diagram of a virtual lab.

Table 5. List of acronyms in the chapter.

ADC Analog-to-Digital Converter
API Application Programming Interface
ARB Arbitrary Waveform Generator
ATN Attention
BC Bus Controller Block
Bluetooth Wireless Communication Protocol
CF Compact Flash Protocol
CompactRIO Compact Reconfigurable Input Output Tech-

nology
DAC Digital-to-Analog Converter
DAQ Data Acquisition
DIO Digital Input Output
DLL Dynamic Link Library
DUT Device Under Test
EOI End of Identify
Ethernet IEEE803.2 Protocol
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FIFO First Input First Output
FireWire IEEE1394 protocol
FPGA Field Programmable Gate Array
GPIB General-Purpose Interface Bus
GPL Graphical Programming Language
GUI Graphical User Interface
I/O Input/Output
IFC Interface Clear
II Interrupt Interface Block
IP Internet Protocol
IVI Interchangeable Virtual Instrument
LAN Local Area Network
LXI LAN Extension for Instrumentation
MIOB Multifunction Input Output Board
Mbps Mega bits per second
M-SADC Multiplexed single analog-to-digital converter
NI National Instruments
NI-DAQ drivers National Instruments Data Acquisition

Drivers
OOP Object-Oriented Programming
OS Operation System
PC Personal Computer
PCI Peripheral Component Interconnect
PCMCIA Personal Computer Memory Card Interna-

tional Association
PID Proportional Integral Differential
PLC Programmable Logic Controllers
P-MADC Parallel multiple analog-to-digital converter
PnP Plug-and-Play
PXI PCI eXtension for Instrumentation
REN Remote Enable
RS232 Point-to-Point Serial Protocol
RS485 Multipoint Serial Protocol
RTOS Real-Time Operation System
RTS Real-Time System
SCPI Standard Commands for Programmable In-

struments
SCXI Signal Conditioning Extension for Instrumen-

tation
SE Single Ended
SRQ Service Request
TCP/IP Transfer Control Protocol/Internet Protocol
TS Synchronization Block
UDP User Datagram Protocol
UNIX UNiplexed Information and Computing Sys-

tem (OS)
USB Universal Serial Bus Protocol
VEE Visual Engineering Environment
VI Virtual Instrument
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VIM Vocabulary of general terms in Metrology
Virtual LABs Virtual Laboratories
VIS Virtual Instruments Systems
VISA Virtual Instrument Software Architecture
VME Versa Module Eurocard Bus
VRML Virtual Reality Modeling Language
VXI VME Bus Extension for Instrumentation
WWW WorldWide Web
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METREL d.d., Ljubljanska c. 77, 1354 Horjul, Slovenia
tanasko.tasic@metrel.si

Summary. State-of-the-art information technology enables a variety of specific
metrological applications. The first benefit for the metrology community is in signif-
icantly increased remote functionality of the measuring systems (e.g., connected in
distributed legal metrology measuring systems, or remote operation of the measuring
instruments in severe environmental conditions). The next significant improvement
comes from the introduction of new metrological services (e.g., time service, remote
calibration, and remote software validation). Finally, it is important to mention the
increased availability of the metrology-related information which is available on the
World Wide Web. Presented approaches and solutions are not exclusively specific
for the metrology community; however, it is important to mention them in order
to make metrologists aware of their existence. This chapter is not an attempt at
giving the complete overview of available solutions, but rather the first insight into
the mentioned areas which will be the starting point for further investigations.

Key words: Distributed measuring systems, remote instruments operation, remote
calibration, metrological database systems, Internet software validation services

1 Introduction

This chapter gives an overview of metrology-related applications whose devel-
opment has been enabled by the spread of Internet services. It is not aimed at
metrological IT experts but rather it is directed at metrologists (manufactur-
ers of measuring instruments, scientists in metrological laboratories) who are
not deeply involved in IT issues. The chapter is intended to give such readers
an insight into this developing field and to help them solve problems with
state-of-the art technologies.

The focus of the chapter is not in the explanation of the technical im-
plementations but on giving an overview of the applicable benefits, thus con-
structional solutions are not explained in deep detail. Furthermore, it is not an
attempt to give a complete presentation of all available services, but an infor-
mative overview of the common applications which may give the reader useful

F. Pavese, A.B. Forbes (eds.), Data Modeling for Metrology and Testing 453
in Measurement Science, DOI 10.1007/978-0-8176-4804-6 14,
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information, indicate an existing solution for his or her problem, or suggest
an idea for developing some new solution. There are many links to Internet
sites with interesting contents; exploring these sites is left to the reader.

When mentioning Internet-enabled metrology, people usually have in mind
issues related to Internet-enabled calibrations or Web sites with software val-
idation tools. However, state-of-the-art IT enables a much wider variety of
metrological applications. The benefits to metrology arising from the spread
of use of Internet may be organized in three groups:

• Functionality of measuring instruments (distributed measuring systems)
• New metrological services (time service, remote calibration, software val-

idation)
• Significantly increased availability of metrology-related information

In the context of this chapter, information technology covers more than
the public communication networks, delivered using a range of hardware re-
alisations and different operators: optical cable, cable TV networks, wireless,
fixed wire and mobile telephony (GSM, GPRS, UMTS), or public networks
using secure (e.g., VPN) channels. In distributed measuring systems, espe-
cially in cases when distribution companies possess their own distribution
networks (e.g., electricity), common ways of data exchange are PLC (Power
Line Carrier), DLC (Distribution Line Carrier), RADIAN (Radio Applica-
tion Network), and ZigBee [2] (IEEE 802.15.4), for example. Additionally, the
supporting communication protocols may be general-purpose internet proto-
cols (SMTP, HTTP, FTP) or application specific, for example, DLMS (Device
Language Message Specification; IEC 62056-46, IEC 62056-61).

From the point of view of IT security, metrology-related IT applications
apply standard approaches (e.g., HTTPS, FTPS, public key infrastructure),
mostly for the protection of data (to ensure correctness of measuring data)
and for the authentication of involved parties.

In the background, very often as the central point of a distributed measur-
ing system there is a database system. The applications again vary from data
collection/billing or dynamic tariff calculation (electricity) in legal metrology,
medical diagnostics (databases of particular health states’ pattern signals in-
tended for medical diagnostics), general information about metrological ca-
pabilities (e.g., national), monitoring and managing of distributed metrology
systems (e.g., information about the bodies performing legal metrology tasks
or information about the status of the measuring instruments, information
about the instruments’ calibration parameters during the life cycle), and so on.

Metrology institutions worldwide are fully aware of the importance of these
issues. The International Organization of Legal Metrology (OIML) had or-
ganised the seminar on measuring instruments software as early as 1999. The
International Bureau of Weights and Measures (BIPM) and leading national
metrology institutes organize a series of conferences on the impact of the
information technology in metrology:
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• BIPM–NPL Workshop on the Impact of Information Technology in Metrol-
ogy, Teddington, UK, 16–19 September 2002

• NMIJ–BIPM Workshop on the Impact of Information Technology in
Metrology, Tsukuba, Japan, 18–20 May 2005 [13]

• PTB–BIPM Workshop on the Impact of Information Technology in
Metrology, Berlin, Germany, 4–8 June 2007 [22]

It is possible to find much valuable metrology-related information in the
proceedings of those conferences.

2 Functionality of
measuring instruments (distributed measuring systems)

As said in a presentation at the FASIT [25] workshop, the development of legal
measuring instruments began with the ‘iron age’ (mechanical measuring in-
struments), continued with the ‘electronic age’ followed by the ‘software’, and
now we are already in the ‘communication age’. This statement is undoubtedly
true for all areas of metrology that benefit from the state-of-the-art computer
communication, Web, and database technologies.

As in all other modern devices, software is taking over more and more
functions in measuring instruments and systems. Besides software running on
the measuring instrument computer, communications and database systems
are implemented to enable distributed measuring systems, measuring data
storage and their subsequent processing. In addition to gathering, storing,
and processing the measurement data, there are also the functionalities of
maintenance of measuring systems, calibration, and surveillance of the mea-
suring instruments metrological status. Most of these services are available
via public communications networks; others will be available very soon.

This progress is undoubtedly useful for the users, because it enables faster
measurements, higher accuracy, and opens up the possibility of various analy-
ses and further processing. For the manufacturer the new technology simplifies
realizing complex functions and gives flexibility for meeting the wishes of their
customers and measuring instrument maintenance.

2.1 Legal metrology applications

Legal metrology instruments are subject to several instances of conformity as-
sessments and inspections during their life cycle. Initial conformity assessment
procedure (type approval) is the prerequisite for obtaining status of the legal
metrology instrument. First verification is necessary before the first use, fol-
lowed by regular and extraordinary verifications and inspection examinations
during the measuring instrument’s life cycle.

Institutions that perform these conformity assessment procedures are both
governmental and private bodies. In recent years, more and more conformance
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assessment tasks are being entrusted to private bodies. Irrespective of the
trends towards privatisation of conformity assessment services and towards
removing barriers to trade, it is required to maintain an adequate level of
consumer protection. The role of state institutions (who are responsible for
operation of national metrology systems) is becoming more focused on the
collection and analysis of reports on conformity assessment procedures (from
private bodies performing, e.g., verification of legal measuring instruments)
and occasional metrological spot checks of measuring instruments. As a conse-
quence, huge amounts of data need to be exchanged between these institutions
in order to maintain a suitable quality of the national legal metrology system.
This leads to additional measuring instruments functionality, which is nowa-
days mostly implemented by software and information technologies.

An illustrative example is the operation of electricity meters in the de-
regulated energy market. In such a system, a variety of participants needs to
have access to the electricity meter, each of them with its own access rights
(Figure 1). The end customer receives electricity from one of the distribu-
tors. Energy consumption is processed by a metering data provider. The price
of energy necessary contains shares of the electricity supplier, owner of the
distribution network, operator of the IT network, and electricity distributor.
Additional participants that also need to have access to the meter are members

Fig. 1. Participants in modern distributed measuring system, an example from legal
metrology.
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of the legal metrology system: the notified body (performing initial conformity
assessment), the legal verification authority (performing legal verifications),
and the inspection body (usually independent body performing metrological
surveillance of the measuring instruments in use). And of course, the meter
manufacturer and/or her representative need to have access for maintenance
purposes as well.

The usefulness of remote access to meters is well illustrated by the exam-
ple of operators of measuring instruments. For utility companies (electricity
distribution companies, for instance) remote access significantly decreases the
costs of collection of measurement data and maintenance of measuring instru-
ments. The highest benefit is definitely the possibility of remote update of
software in measuring instruments already installed at the place of use. In the
case of detection of a serious bug in the measuring instrument’s software, the
software in all instruments of that type has to be updated. If we take as an
example electricity meters installed in remote mountain areas, the cost for a
technician to visit an installation and physically load the new software might
well be more than the original meter retail price.

Taking into consideration the variety of involved parties, such a system has
to be adequately coordinated. Authentication of every participant is necessary
to ensure that only entitled personnel have access to particular meter data
or functionality and to assure that the correct customer is charged for the
consumption. Generally speaking, the risks of fraud in metrological software
applications are not so high, compared to other areas (e.g., e-banking). How-
ever, they are certainly not negligible, as they vary from possible attempts to
amend energy consumption data by market competitors, monitoring of energy
consumption in order to detect the absence of the residents from home (e.g.,
by burglars), or just-for-fun hacker attacks.

An implementation of such a system in praxis has been validated during
the project SELMA [15, 23] ‘Sicherer ELektronischer Messdaten-Austausch’,
secure electronic measurement data exchange). Participants in the project
were the manufacturers of measuring instruments, universities, electricity dis-
tribution companies, and state institutes responsible for metrology and infor-
mation security.

A similar approach has been implemented in road-traffic enforcement net-
works [6]. In such systems automated vehicle velocity measuring stations (po-
lice radar) transmit files with evidence of offences to the place of process-
ing. For transmission of these files it is necessary to ensure their integrity
and confidentiality, as well as proper authentication of participants in the
process.

Being aware of the consequences of IT-related development in the
field of measuring instruments [4], legal metrology institutions have pre-
pared guidance documents that support harmonised software validation
[27] like WELMEC [11] ‘Software Guide (Measuring Instruments Directive
2004/22/EC)’, and OIML [18] ‘General requirements for software controlled
measuring instruments’.
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2.2 Remote operation of measuring instruments

Remote operation of measuring instruments is important in circumstances
where environmental conditions are such that human presence at the time
and place of performance of measurements is not possible (e.g., in a mine, in
a weather station, near steel production furnaces, in space vessels) or in cases
where permanent human presence is not practicable. There are many examples
of the latter in industry (e.g., measurements after exposure of measuring in-
struments to stabilised environmental conditions or long-lasting measurements
with periodic changes of reference values). It is important to stress that pre-
requisites for remote operation of measuring instruments are already present
in the form of existing IT infrastructure. An example of remote-controlled fac-
tory testing of an electrical power monitoring system is illustrated in Figure 2.
Several measuring instruments for monitoring the electrical power parameters
are connected in a computer network by different communication interfaces.
Testing the functionality of measuring instruments comprises several long-
lasting measurements. One session of measurement of electrical energy as a
rule lasts several days. During that time reference signals need to be changed
several times.

Fig. 2. Remote testing of measuring instruments: an example from the company
METREL d.d.
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In addition, it is necessary to check the functioning of the components of
the system (particular measuring instruments, measuring instruments server,
database server, and client application). These checks need to be performed
every couple of hours. Once initiated all these checks may be performed re-
motely, for example, from home, generally much more practical than driving
to the testing laboratory every time that some activity is necessary.

Some of the software functionalities necessary for support of the remote
measurements are already embedded in operating systems (such as Microsoft
Windows virtual private network and remote desktop connections in the ex-
plained example). Another solution is available in T&M automation tools,
for example, publishing software control applications as Web pages, which
can then be remotely accessed (e.g., this functionality is available in National
Instruments LabVIEW).

3 Internet-supported metrological services

Besides distributed measuring systems that are intended for online uninter-
rupted service, there are very many Internet-supported services related to
various metrological activities. These can be classified as follows.

3.1 General metrology related services

An example of such service is the Internet Time Service (ITS) [20], which is
intended to synchronize computer clocks via the Internet. A reference clock
runs on a WWW server. The service responds to time requests from any In-
ternet client by sending the time and estimated delay information in several
formats including the DAYTIME, TIME (older realisations), and NTP pro-
tocols. The Network Time Protocol (NTP) is one of the most accurate and
flexible means of sending time over the Internet [16]. It can be used by almost
any type of computer. The protocol is designed to compensate for some, but
not all, network time delays between the server and the client. NTP is most
successful across local area networks and can give an accuracy as good as
a few milliseconds. On the World Wide Web, however, time transfer delays
are at the mercy of server traffic and network bottlenecks, and accuracy fig-
ures cannot be quoted as easily. NTP conveniently supports security measures
for users who want more reassurance concerning the origin of the timestamp
(Authenticated NTP Services), rather than insecure NTP. On the client side,
the user needs to have the software that can request time over the Internet.
A version of the NTP client software used to synchronize computer clocks is
called Simple Network Time Protocol (SNTP).

The accuracy of such services is rarely better that 0.1 s, for better accura-
cies it is necessary to use other methods and services, for example, Common-
View GPS method.
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3.2 Internet enabled/supported calibrations

The ‘old-fashioned’ procedure of performing calibrations, which is still used
by the majority of customers and laboratories, involves transporting the in-
strument to be calibrated to the calibration laboratory [5]. The instrument
has to be physically present in the calibration laboratory during the whole
calibration process. Such an approach has several disadvantages, like:

• Long instrument downtime (for home laboratory);
• Costs of the transportation;
• Calibration of the instrument in conditions different from the conditions

of its routine use (e.g., other personnel, instrumentation environment, cli-
matic environment);

• Danger of damage during the transportation.

The spread of the Internet as a communication medium and the availability
of the continuously improved measurement standards enable the dissemina-
tion of calibration values from higher-level standards laboratories in a different
way. As the result, many institutions offer remote access over the Internet to
more and more calibration and measurement services.

There are several ways in which the Internet is used for measurement pro-
cess support. From the point of view of logistics, the simplest way is if there
is no need to physically transport anything (no transfer standards). This way
is possible for the dissemination of a limited number of physical quantities
(e.g., time, frequency), or in situations when the measurement signal can be
transmitted from the field laboratory to the reference laboratory. Other meth-
ods require either the presence of the reference standard (reference material)
or presence of the transfer standard at the place where the calibration is
performed.

From the point of view of laboratories that need calibrations of their in-
struments the benefits of Internet-enabled calibrations may be summarised as
follows:

• Reduced costs;
• Direct access for more customers to the higher-level laboratories;
• The measurement standards belonging to the remote laboratory do not

need to be transported;
• The standards are calibrated under normal conditions of use in their home

laboratory;
• The ‘down time’ for the remote laboratory is kept to a minimum;
• Uncertainties are calculated online by reference software in the reference

laboratory;
• The results can be reviewed online before the calibration is completed;
• Instructions and procedures can be conveyed over the Internet;
• The calibration conditions can be recorded using a video or digital camera;
• The calibration environment can be recorded;
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• The calibration chain is cut down to one link;
• Calibration can be performed at any time, day or night;
• The expertise of the higher-level laboratory can be transferred.

Some generic IT-related issues have to be addressed:

• Security of calibration information and results as they are transferred over
the Internet (data integrity, authentication, access control, and protection
from viruses and worms);

• Smooth operation of Internet calibrations through site fire-walls, overcom-
ing problems of two-way communication of data through fire-walls without
compromising security;

• Division of software between Web pages and compiled measurement code;
• Appropriate choice of computer–instrument interfaces at the remote site

together with future proofing to accommodate evolution in computer soft-
ware and hardware;

• Storage of calibration results in a database for recall by users during the
calibrations and the use of data warehousing to provide long-term access
to calibration history;

• Guidance on the procedures necessary to meet accreditation requirements
in general;

• Promotion of the technology to metrology areas where it may be applicable
and advantageous but which have not yet taken it up.

For Internet-enabled metrology to be successful, it is essential that the
software works reliably, both in terms of integrity of transmitted data and the
smoothness of operation from the point of view of the user. It is also necessary
to prove that the traceability of a calibration when it is carried out at a remote
site can be maintained. This is a nontrivial issue as traceability covers factors
such as the suitability of the calibration environment, the correct operation
of the measurement equipment, and, perhaps of most importance in this case,
the ability of the calibration staff at the remote laboratory to carry out the
required tests under the guidance provided through Web pages.

Entirely remote calibrations

An excellent example of the application of the modern technologies in metrol-
ogy is use of Global Positioning System (GPS) satellite signals and the internet
for time synchronization and frequency calibration. The satellite constellation
consists of 24 satellites (the first was launched in 1978 and the 24th in 1994).
They transmit signals that can be detected by receivers on the ground. The
satellites are positioned in six Earth-centred orbital planes with four satellites
in each plane. This means that 100 percent of the time, any point on the
Earth’s surface can receive signals from at least six satellites. The main appli-
cation of the GPS system is the determination of the position of objects on the
Earth’s surface (primarily for military purposes). However, this is not the only
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Fig. 3. The common view method.

application of the system. Each satellite carries either rubidium or caesium
oscillators, or a combination of both, which are synchronised with UTC [12]
USNO [17] and UTC NIST [19]. Those UTCs are maintained within 100 ns
of each other, and the frequency offset between the two timescales is less than
1 · 10−13.
GPS receivers at locations A and B receive time information from the same
satellite (which is in common view for both locations, A and B). The common-
view method compares two clocks or oscillators located in different places.
Unlike one-way measurements that compare a clock or oscillator to GPS, a
common-view measurement compares two clocks or oscillators to each other.
The first scientific publications describing this system, called ‘Common View’
appeared as early as 1980 [3].

There are several types of time and frequency measurements that utilize
GPS signals; some of them require intensive calculations that used to take up
to several weeks in the past. By combining the common-view technique with
the Internet, it is possible to build a common-view network that processes
data in near real-time [14].

The lowest uncertainties currently achieved using the GPS measurement
techniques for carrier-phase common-view are less than 500 ps for time and
less than 5 · 10−15 for frequency.
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This approach may be the starting point for realisation/dissemination of
all physical quantities that are related to frequency (e.g., voltage).

Internet-supported calibrations with additional transmission
of the measurement signal

This idea is explained using the example of the remote calibration of practical
lengths by using low-coherence interferometry and optical fibre network [10].
The laboratory requiring calibration has its own low-coherence interferometer
(LabI) and performs measurements on a unit under calibration (UUC). The
measurement signal, in the form of the interferometer signal, is transmitted
via optical fibre to the reference laboratory. The reference laboratory with its
associated software then determines the parameters of the UUC.
A major limitation of this method is the signal loss in optical fibre between
the customer premises and reference laboratory. With the state-of-the art
technology affordable distance is about 20 km.

Internet-supported calibrations with the local reference standard

Fig. 4. Internet-supported calibrations with additional transmission of the mea-
surement signal. ITI: IT Interface, UUC: unit under calibration, LabI: Instrument
in customer’s laboratory, here used as the light source, Std.: higher level measuring
standard, Ref. SW: software associated with higher-level measuring standard.

This approach uses a local reference standard or material (Ref S) with stable,
known characteristics for the calibration of an instrument under calibration
(IUC). The IUC measures characteristics of the Ref S and sends the results
via the Internet to the reference laboratory. After analysis of the measuring
results, software in the reference laboratory calculates the calibration param-
eters for the IUC.

This approach is used for the calibration of instruments in many areas
such as the measurement of impedance (iPIMMS [9], Primary Impedance
Measurement Software for Impedance calibration of Vector Network Anal-
ysers), spectrophotometry (iColour Calibration Visible Diode Array Spec-
trophotometer [9]), pressure measurement [24], or ionising radiation [29].
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Fig. 5. Internet-supported calibrations with the local reference standard. ITI: IT
interface, Ref. S: Reference sample (material), IUC: Instrument under calibration
(in customer’s laboratory), Ref. SW: Reference laboratory’s software.

Internet-supported calibrations with travelling reference standard

This approach is applied in areas where local reference materials or reference
standards of appropriate quality are not available. The transportation of trav-
elling standards from the reference laboratory to the customer’s laboratory is
generally more convenient than the transportation of the instrument to the
reference laboratory. Related costs are likely to be less as well. The proce-
dure of calibration is the same as the one for the case of Internet-supported
calibrations with local reference standard. Travelling reference standards are
not yet available with very high precisions; the uncertainties for this type of
calibration are usually higher than the uncertainties in reference laboratories.

Fig. 6. Internet-supported calibrations with travelling reference standard. ITI: IT
Interface, Trans. Std: Travelling reference standard, IUC: Instrument under calibra-
tion (in customer’s laboratory), Ref. SW: Reference laboratory’s software.

3.3 Availability of specific metrological software validation services

Modern laboratory measurement systems are very often highly automated
in data acquisition as well as in postprocessing of measured data [8]. Typi-
cally, software components of such systems may consist of both commercially
available software packages and custom-made software, developed by the lab-
oratory staff. In order to ensure confidence in the results provided by such
systems, the software must be proven to be fit for purpose, so it is necessary
to be able to properly verify it in whole and partially.

Web-based software validation tools make possible for different users
around the world (developers, evaluators, or laboratories) to validate their
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software modules using black-box testing methods. Two approaches to vali-
dation of software are identified as appropriate for Web-based software val-
idation tools: validation with the reference datasets and validation with the
reference software.

Examples of available tools are the following:

• Web pages with reference software for validation of the mathematical func-
tions;

• Web pages with reference software for validation of the standardised metro-
logical functions;

• Web pages with reference datasets for validation of the metrological soft-
ware.

Reference software for validation of the mathematical functions

Reference software enables testing of the software components that realise
standard mathematical/statistical functions (e.g., mean, standard deviation,
square root, etc.). The user validates his software by comparing output param-
eters from his and reference software in response to the same input parameters.
Phases in testing process are the following:

• Generate reference datasets and corresponding reference results consistent
with the computational aim;

• Apply the software under test to the reference datasets to obtain test
results;

• Compare the test results with the reference results.

Generation of the reference data may be organised in several ways:

• Applets that run on the client (or user’s) machine. The user supplies values
for a number of input parameters to the applet, which then generates its
output in two windows. One window contains the reference dataset and
the other the reference results and additional information;

• Servlets that run on the host machine. In the same way as for an applet,
the user supplies values for a number of input parameters to the servlet,
which then generates its output as a text page (viewed using an Internet
browser) that may be saved to the user’s machine;

• Web services that run on the host machine. Using this mechanism the data
generators may be called directly (via the Internet) from software (such
as a test harness) running on the client’s (or user’s) machine.

Reference software for validation of standardised metrological
functions

This kind of reference software is suitable for validation of software com-
ponents that realise algorithms based on well-known international technical
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standards (e.g., IEC 60584-1,2 Thermocouples) [28]. Its purpose is to enable
developers (metrologists from laboratories that develop their own software
components) to validate their software components. The application is sim-
ple; the user just needs to enter input variables simultaneously to both the
software under test and the reference software and afterwards compare the
results from both.

Such an application also allows laboratories involved in an intercompar-
ison to check their software modules before actual measurements begin and
thus eliminate any potential source of difference due to software errors

Some additional issues arise in connection with this approach. The first
one concerns the validation of the reference software [1]. The application that
claims to be the reference needs to be suitably validated. The next question
relates to IT security: the user needs to be 100% sure that the results come
from the genuine reference software and not from some fake (malicious) copy.
This question can be resolved with the use of appropriate Internet protocols
(e.g. https).

The software characteristic which is usually validated with this approach
is functionality (numerical correctness), one of the most important character-
istics for metrologists.

Reference datasets for validation of metrological software

Instead of dynamically generated reference data, as explained in ‘Reference
software for validation of the mathematical functions’, the reference datasets
may be static, dedicated for validation of standardised metrological functions.
Reference datasets must contain both input and output parameters. During
the software testing the user applies input parameters, runs the software and
then compares the results with the reference one(s).

4 Availability of the metrology-related data

The ease of distribution of information is the most important benefit of the
Internet. In the metrological community, the most important information is
provided by Web-hosted databases with relevant metrological information:

• Calibration/metrological resources and their capabilities. The most com-
prehensive database collection containing worldwide metrological informa-
tion is available on the website of the Bureau international des poids et
mesures (BIPM: http://kcdb.bipm.org). It contains information about
scientific work, history and technical realisation of the primary measure-
ment standards, calibration and measurement capabilities in particular
countries, units of measurement, technical committees, measurement stan-
dards, publications, conferences, key comparisons, reference materials and
other metrological information.
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• Research-oriented databases, for example, PTB databases for vacuum-
metrology medical research (heart bio signals).

• Information exchange centres, for example, ‘virtual institutes’. These
sites are dedicated to experts in particular areas of metrology. Some
examples are: the Virtual Institute for Reference Materials (VIRM,
http://www.virm.net/), the Virtual Institute for Thermal Metrology
(Evitherm, http://www.evitherm.org/), and the Virtual Institute of En-
ergy Metrology (https://bi.offis.de/viem/tiki-index.php).

• Legal metrology databases are intended mostly for public information
about nationally or internationally (EU-type approval or OIML-type ap-
proval certificates) approved measuring instruments, metrological stan-
dards and regulations, ongoing projects, and so on.

• Metrology-related public information: information about approved mea-
suring instruments, about their intended use, about control bodies, and
inspections.

• Databases of national metrology institutes contain a variety of data: organ-
isational, calibration and verification capabilities, scientific background for
metrological procedures, presentation of achievements, metrological advice
for general public, and so on.

• Databases of reference materials or reference data, for example, at the
Institute for Reference Materials and Measurements [7].

Various database technologies are implemented for the construction of the
metrological database systems. The choice of which technologies to employ is
influenced mostly by the amount of data in the databases and the available
resources.

Metrological databases may be used as the tool for monitoring the pro-
cesses in a distributed metrology system. An example of such a Web-based
database system is realised in the Slovenian National Metrology Institute
[21, 26]. The implementation is adjusted to the specifics of the organisation
of Slovenian metrology. MIRS is responsible for the whole scope of national
metrological activities, including maintaining the system of national and refer-
ence standards for physical quantities and chemical measurements, the system
of legal metrology (type approvals, verifications, precious metals), metrolog-
ical surveillance of legally controlled instruments and other issues, including
the Slovenian business excellence prize. Monitoring of all processes in such
a system requires acquiring, manipulating, and processing a large amount of
data. The MIRS implementation is suitable for monitoring activities of the
distributed metrology system in a small country, covering various aspects from
the point of view of the responsible organisation, players, public, and inter-
national partners. Besides facilitating organisational issues it gives transpar-
ent information for all members of the metrology community, from high-end
metrological laboratories to the users of measuring instruments.

The implementation is based on the Linux (http://www.linux.org) oper-
ating system with an Apache (http://www.apache.org) server and MySQL
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Fig. 7. System of databases for monitoring functioning of national metrology sys-
tem, an example.

(http://www.mysql.com). Access and applications are realized with PHP
(http://www.php.net) and sometimes JavaScript (http://javascript.
internet.com) scripts. With selected open source technology it is possible
to minimise initial expenses for building such a system. If necessary, the plat-
form may be changed afterwards, when the basic concepts have been clarified.

5 Final Remarks

Benefits arising from the spread of the Internet for the metrology community
are manifold. They may be summarised as follows.

• Implementation of new or improvement of the existing functionality of
metrological systems (e.g., distributed measuring systems).

• Improvement of metrological services (e.g., remote calibrations, remote
procedure validation tools). Benefits are both fundamental improvement
in some areas (achieving lower uncertainties as in the case of time and
frequency) as well as in improved quality (functionality, reliability, and
faster performance) of metrological services.

• Increased availability of metrology-related information.
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In order to take full advantage of new possibilities, they have to be im-
plemented carefully (taking into account IT security issues, in the first place)
with a full understanding of the background of applied technologies.

The Web-enabled services presented here are only examples of metrological
Internet services now available. In no case it is the complete list, but provides
only a short overview and illustrations of the possibilities open to the users
of the metrological services.

All websites referenced in this chapter were active at the time of writing
the chapter. There is no guarantee that they are still ‘alive’ or correct, not
transferred to another Web address. Certain commercial entities, equipment,
or materials are mentioned in order to describe an experimental procedure or
concept adequately. Such identification is not intended to imply recommenda-
tion or endorsement, nor is it intended to imply that the entities, materials,
or equipment are necessarily the best available for the purpose.
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