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MEASUREMENT IN PSYCHOLOGY

This book traces how such a seemingly immutable idea as
measurement proved so malleable when it collided with the
subject matter of psychology. It locates philosophical and
social influences (such as scientism, practicalism, and
Pythagoreanism) reshaping the concept and, at the core of
this reshaping, identifies a fundamental problem: the issue
of whether psychological attributes really are quantitative. It
argues that the idea of measurement now endorsed within
psychology actually subverts attempts to establish a genuinely
quantitative science and it urges a new direction. It relates
views on measurement by thinkers such as Hölder, Russell,
Campbell and Nagel to earlier views, such as those of Euclid
and Oresme. Within the history of psychology, it considers
among others contributions by Fechner, Cattell, Thorndike,
Stevens and Suppes. It also contains a non-technical expo-
sition of conjoint measurement theory and recent foun-
dational work by leading measurement theorist R. Duncan
Luce.
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‘We must not ask nature to accommodate herself to what
might seem to us the best disposition and order, but must
adapt our intellect to what she has made, certain that such is
the best and not something else.’

(Galileo to Prince Cesi)
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Preface

This is a book about an error, an error in scientific method funda-
mental to quantitative psychology. This error became locked into
established ways of doing things in that science, that is, it became
systemic. Then it was compounded by a higher order error, the
effect of which was to disguise the first. Because science is a cogni-
tive enterprise, because scientific methods are fallible methods,
and because all scientists are fallible cognisers, the making of
errors is par for the course in science and so any particular
instance of error is usually only of passing interest. In so far as
scientists invite criticism and put their ideas to the test, there is
some chance that errors will eventually be corrected. On the other
hand, errors that become systemic are of more than passing inter-
est because they show that science’s mechanisms for correcting
error are themselves fallible and able to break down. Then it is of
interest to inquire into the conditions of such errors because they
may teach us something about the workings of science. This book
is written as a contribution to that endeavour.
In the case studied here, the first of the two errors mentioned

was of a familiar enough kind. It was the error of presuming an
answer to a scientific question, rather than investigating it empiri-
cally. Quantitative psychologists presumed that the psychological
attributes which they aspired to measure were quantitative. There
is no question that presuming instead of testing was an error in
scientific method. Quantitative attributes are attributes having a
quite specific kind of structure. The issue of whether psychological
attributes have that sort of structure is an empirical issue because
there is no necessity that such attributes should be so constituted.
Despite this, mainstream quantitative psychologists (that is, the
dominant tradition of those attempting either to measure psycho-
logical attributes or to theorise about them quantitatively) not

xi
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only neglected to investigate this issue, they presumed that
psychological attributes are quantitative, as if no empirical issue
were at stake. This way of doing quantitative psychology, begun
by its founder, Gustav Theodor Fechner, was followed almost uni-
versally throughout the discipline and still dominates it.
The second, higher order, error involved in this case was of a

kind far from familiar. It involved accepting a defective definition
of a fundamental methodological concept, that of measurement.
Given that measurement has been central to science since ancient
times and also a more or less permanent feature of non-scientific
life since then, it is surprising that quantitative psychologists were
able to pull this manoeuvre off. It is even more surprising that it
was done, so far as I can tell, entirely in good faith. This definition
continues to dominate the discipline. Most quantitative psychol-
ogists think that measurement is simply the assignment of
numerals to objects and events according to rule. This definition
was proposed by the psychologist Stanley Smith Stevens in 1946.
Its understanding of the concept of measurement is clearly mis-
taken because it ignores the fact that only quantitative attributes
are measurable. Of course, that feature is no accident, as will be
revealed.
Because this second error disguises the first so successfully and

has persisted within psychology now for more than half a century,
this tissue of errors is of special interest. Errors such as these are
not likely to be accidental. They are more likely to be motivated.
Locating the motivation is one of my aims. I argue that these
errors are connected with ideologies underlying the development
of modern psychology. These ideologies are scientism and practi-
calism. Scientism is a commonly invoked concept and what I mean
by it is the view that methods successful in certain ‘paradigmatic’
sciences must also apply to others. The concept of practicalism is
one that I have taken from the philosopher John Anderson. I use
this term to refer to the view that success in science derives from
the solving of ‘practical’ problems. This is to be contrasted with
the classical view that success in science simply means finding out
how natural systems work. Anderson thought that ‘modern science
does not exemplify disinterested inquiry. Its spirit has been ‘‘prac-
tical’’, it has been concerned with ‘‘getting things done’’ . . . not
just with finding out what is the case and with the ‘‘criticism of
the categories’’ that that involves.’ I show that modern psychol-
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ogists almost universally, from Fechner to Stevens, neglected
‘criticism of the category’ of quantity and its relation to the scien-
tific method of measurement. Inquiry in psychology had to serve
the social interests of a discipline anxious to present itself as
‘scientific’ and of a profession equally anxious to present itself as
an ‘applied science’. Because these interests were pursued within
a wider milieu dominated by views such as Pythagoreanism, pre-
suming that psychological attributes are quantitative would have
seemed a much smaller step than, in reality, it was.
It is a curious feature of the recent expansion of interest in

‘science studies’ that few works on the history of errors in science
have so far been produced. Perhaps this is because, when it comes
to errors, it seems that scientists themselves ‘are far better placed
to do that critical job than historians, sociologists, or philos-
ophers’, as Steven Shapin puts it. While scientists, like everyone,
need all the help they can get in identifying errors, the history
related here confirms Shapin’s observation by showing how
internal criticism, when valid, can eventually lead to a revolution
in ideas. The fact that, in this case, revolutionary developments
have had minimal impact upon established practice, shows how
much an understanding of science requires an understanding of
the mechanisms of the cognitive affliction I call systemic error.
For most of my adult career I have been involved with attempts

at psychological measurement in some form or another. I served
an ‘apprenticeship’ in applied psychometrics and worked for sev-
eral years as a students’ counsellor and guidance officer before
completing a Ph.D. in the area of attitude measurement. Since
then I have taught psychometrics and measurement theory at the
University of Sydney, supervised theses on psychological measure-
ment and published in the area. Being an insider has both advan-
tages and disadvantages when it comes to writing history. The
advantages are obvious and the disadvantages considerable. There
are the problems of being too close to a subject. There is also the
problem that by training the insider is usually neither an historian
nor a philosopher. I make no claim to be either. Hence, in this
book I lean heavily, but selectively, upon historians and philos-
ophers of science. Selectively, because I am reluctant to conform
to what I adjudge, albeit as an ‘outsider’, to be the false gods
currently worshipped within those disciplines. The result may not
please some. This is a risk I am prepared to take because I think
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that with a topic such as this we enter disciplinary borderlands,
wherein scientists may also have their say and no one claim the
last word.
There certainly is more work to be done on the questions inves-

tigated in this book. First, I have confined my attention to pub-
lished material because it is at this level that the errors and their
history impinged upon me. In this case, the public surface of
science reveals patterns worth reporting. However, I am sure that
there are deeper currents than those identified here. Second, with
a couple of notable exceptions, I have confined attention to mater-
ial available in English. This leaves gaps because the initial error
identified occurred first in German psychology and I am sure that
the study of the ‘quantity objection’ within the nineteenth-century
German psychological literature would reveal subtleties glossed
over in my work. Third, the philosophy of scientific quantification
remains a patchy area of study and it still awaits more comprehen-
sive and systematic treatment than I have been able to give it
here. Finally, the errors investigated here are not free-standing
errors: they form part of a ubiquitous syndrome. There is a par-
ticularly pernicious form of Pythagoreanism, according to which
the ostensively qualitative features of human life are squeezed,
insensitively and without second thought, into a quantitative
mould. This has happened especially in a range of areas where
human performance is considered and evaluated. It deserves
closer philosophical scrutiny. There are many things in human life
which may not be quantitative. They are no worse for that. If
nonquantitative, they can be investigated in terms of their own
‘categories’ and such investigation is no less scientific than
measurement. Quantitative structure is but one (important) kind
amongst many and it holds no franchise over scientific method in
its entirety.
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CHAPTER 1

Numerical data and the meaning

of measurement

There is no safety in numbers, or in anything else.
(James Thurber)

He that forsakes measure, measure forsakes him.
(Fergusson’s Scottish proverbs)

There is a myth about the way in which science works. Scientists
attempt to find out how natural systems work. From what little
they can glean initially by unaided observation and by analogy
with what they think are similar systems, they form hypotheses
about the workings of the systems they are studying and put these
hypotheses to the test. They do this by making predictions from
their hypotheses and then checking these predictions via obser-
vations aided by scientific methods, which may include experi-
ments, measurements, and so on. These methods often involve
elaborate equipment, stringent controls and highly standardised
procedures. Because of their sophistication they are thought to
provide a transparent window on reality. They show us how things
really are. Observations made, the predictions can be checked
against the data and science moves a step forward: the hypothesis
is confirmed or falsified and this general procedure repeated. In
this way, it is thought, science moves ever closer, by successive
approximations, to an understanding of how natural systems work.
Like many myths, this one contains some truth. But if research

in the history and philosophy of science over the past half-century
has shown anything of value, it has shown that the methods that
scientists use to test their hypotheses are not transparent windows
on the world. Philosophers and historians divide over what kind of
‘windows’ these methods might be. Some think they are like the
windows of Chartres cathedral, where what is seen is located
within the window itself and not in the world beyond. Others think

1



The meaning of measurement2

that while there are distortions and discolouration, something of
the world behind the window can, at least sometimes, be glimpsed.
Obviously, the latter view is the most that any kind of research
could ever force us to, for while methods may contaminate obser-
vations, possibly in ways we do not suspect or cannot easily see,
blanket scepticism about methods of knowing is self-refuting and,
incidentally, likewise defeating for the historian or philosopher of
science as well.
The lesson to be learned is that scientific methods are imperfect

tools and all observations are, in principle, fallible. Because scien-
tific methods are imperfect, the only safe way to use them is criti-
cally. By this I mean that caution in science requires investigating
one’s methods as well as using them. I have heard scientists dis-
claim the need for this, arguing that one does not need to know
how a car works in order to drive it. That might be true around
the city, but try driving across Australia’s Simpson Desert, without
roads, on unchartered territory, without knowing how your car
works! The scientist in the classroom giving demonstrations to
students is like the driver in the city; the scientist in the labora-
tory, investigating as yet untested hypotheses, is like the driver in
the desert.
The critical investigation of methods has two parts: empirical

and conceptual. Any observational method, even ‘naked’ obser-
vation, because it involves a causal process between the observer
and the observed, presumes a theory about how that method dis-
closes some of nature’s secrets to us. A good example is the way
theories of optics underwrite the use of the telescope. These theor-
ies need to be empirically investigated, just like any others in
science. But deeper than the empirical lies the conceptual under-
pinnings of methods. The critical investigation of methods, and
their proper use, requires conceptualising the method correctly. If
we consider an entire class of methods, such as methods of
measurement, the conceptual problem resides in defining the
method. This is neither a trivial nor an arbitrary exercise.
Methods are interwoven inextricably into the fabric of science and
the definition given of a concept such as measurement must be
consistent with its place in that fabric. It is possible that uncritical
scientists in a particular area could, for socio-historical reasons,
come to misunderstand a concept such as measurement and use
it in ways inconsistent with its wider theoretical commitments.
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Then the methods called ‘measurement’ within that science would
not disclose the sort of facts about the world that they might be
thought to and those scientists would misunderstand what they
were doing.
Modern psychology, quantitative and experimental, began with

the publication in 1860 of Elemente der Psychophysik by the German
scientist, G. T. Fechner. A physicist preoccupied with psychologi-
cal questions, Fechner was guided by the uncompromisingly
imperialistic metaphysical vision of natural science. In proposing
a feasible scientific theory about how any natural system works, a
metaphysical promissory note is thereby contracted, the scope of
which encompasses all natural systems connected spatio-
temporally, however distantly, with the system theorised about.
This promissory note entails that the categorial features pre-
sumed in that theory infuse the spatio-temporal realm entirely.
Categorial features are the warp and weft of being, so general
that they permeate every situation, no matter where, no matter
when. Two such, of fundamental importance to theories in physics,
are causality and quantity. The category of causality underwrites
the experimental method, that of quantity, measurement. These
methods, experiment and measurement, are often seen as marks
ratifying true science, and so are automatically imposed upon
newer areas of scientific investigation. This was the case with
Fechner’s psychophysics, delivered already swaddled in measure-
ment and experiment.
If quantity is present in every situation, it may seem that

measurement is required of all sciences. Not so. This issue is more
complex than at first appears, particularly in the case of psy-
chology. The relationship between quantity, as a category of being,
and measurement, as a method of science has never been rigor-
ously examined. The founding fathers of modern psychology,
almost to a man, simply presumed that measurement was a scien-
tific imperative and, accordingly, thought to contrive quantifi-
cation. Whether they were correct or not is a matter requiring
careful analysis.
Can the existence of psychological measurement be seriously

questioned, now, at the close of the twentieth century, with psy-
chology so long and (seemingly) securely established as a quanti-
tative science? Is it not a fact that psychologists measure an array
of psychological attributes? Certainly, psychologists claim to be
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able to measure such an array: psychological attributes like gen-
eral intellectual ability (‘intelligence’); various specific intellectual
abilities (verbal ability, spatial ability and so on); the intensities
of different kinds of sensations (loudness, brightness, etc.); the
subjective probability of occurrence of various possible events
(such as winning some gamble); the strength of attitudes towards
social policies (e.g., euthanasia or abortion); the subjective value
of various commodities (such as laptops or wilderness areas);
degrees of personality traits (introversion, neuroticism, etc.);
strength of association between a stimulus and the overt response
elicited (such as Hull’s ‘habit strength’); levels of skill (e.g., social
skill or typing skill); and levels of achievement in various areas
(such as spelling or arithmetic). Not only psychologists, but the
wider community accept that psychologists measure at least some
of these. But science as knowledge, as distinct from science as a
social movement, is often indifferent to the confidence of scientists
and the vicissitudes of popular opinion.
In fact, there are signs that this presumption of successful

psychological quantification is premature. One very disturbing
sign is that many psychologists misunderstand what measurement
is. In taking over the concept of measurement from the estab-
lished sciences and fashioning their own quantitative theories and
practices, psychologists are, like all scientists, logically committed
to the traditional view of measurement; but in endorsing and pro-
moting their claim to measure, psychologists typically invoke a
definition of ‘measurement’ at odds with the traditional view.
The claim that psychologists measure psychological attributes

is embedded in a complex matrix of concepts and practices. This
matrix has three dimensions. First, there is an observational
dimension: the sets of observational and analytical procedures
applying, according to the relevant theories, to each such attri-
bute. Second, there is a theoretical dimension: the character that
each supposedly measurable attribute is taken to have, both its
intrinsic character (i.e., how different levels of this attribute
interrelate) and its extrinsic character (i.e., how the attribute
relates to others). Third, there is a philosophical dimension: the
understanding of measurement professed, in virtue of which psy-
chologists think of their practices as measurement. There is a
dissonance between these dimensions, a dissonance largely unac-
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knowledged. It can be revealed via a brief examination of some
examples of psychological ‘measurement’.
For half a century or so after the publication of Fechner’s Ele-

mente der Psychophysik, psychophysics remained the principal area
within which psychological quantification was attempted. During
the twentieth century interest in psychophysics waned and
attempts to measure intellectual abilities became the central
focus of quantitative psychology. The technology of ability
measurement, so-called, is perhaps the most significant contri-
bution, for better or worse, that modern psychology has made to
our society. The examples considered in this chapter, accordingly,
are taken from these two areas.
First the observational dimension will be examined, then the

theoretical. What kind of thing is it that psychologists suppose
they are able to measure? In discussing this question, interest will
not be in how sensation intensity and intellectual ability should,
separately, be defined. Instead, it will be in the general character
they are thought to share in virtue of being hypothesised as
measurable. Within psychology, it is supposed that sensation
intensity and intellectual ability are both quantitatively related to
other attributes. Theorising of this sort carries implications about
the internal character of the attributes involved, and these, in
turn, entail a view of measurement.
The definitions of measurement which psychologists typically

present in their publications will then be considered. It transpires
that the definition of measurement entailed by the theory and
practice of psychology is quite different from the definitions which
psychologists explicitly profess. It will be argued that in for-
mulating their own, special definition of measurement, psychol-
ogists undermine the understanding of measurement implicit in
the theories they propose and on which their quantitative prac-
tices depend.

TWO EXAMPLES OF PSYCHOLOGICAL MEASUREMENT

Much of what passes for psychological measurement is based upon
the counting of frequencies. A sequence of situations is con-
structed, each of which delivers just one of two possible outcomes
via the behaviour of participants, some of whose attributes it is
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intended to measure. Responses to mental test items, classified
either as correct or incorrect, is a typical example. The number of
outcomes of one kind or the other is counted, and a mathematical
theory linking these frequencies (or, perhaps, associated
probabilities) to the attributes to be measured is accepted as true
and, via that theory, measures of those attributes obtained. This
pattern is easily replicated for many different psychological attri-
butes because dichotomous situations are easily contrived. The
following examples display this pattern.

Psychophysics

The aim of psychophysical measurement, as conceived by its foun-
der, Fechner, is to quantify the intensity of sensations. Consider
a set of stimuli, all of which vary only with respect to a single,
directly discernible, quantitative, physical attribute (e.g., a set of
spherical marbles, all of the same colour and volume, but varying
in weight). The idea behind Fechner’s psychophysics was that the
presentation of each stimulus gives rise to a mental state, a sen-
sation (e.g., the sensation of heaviness produced by a marble held
in the palm of the hand) and it was thought by Fechner, and many
after him, that the physical magnitude of the stimulus and the
intensity of the corresponding sensation are related by some math-
ematical formula (or function), one specific to that attribute (e.g.,
weight)1. There are a variety of procedures by which it is thought
that the intensity of sensations can be measured. The instance
considered here is the method of pair comparisons.
This method involves presenting elements from the stimulus

set, two at a time, to the person whose sensations are being meas-
ured, with instructions to report for each pair which of the two is
the ‘greater’ in some prescribed sense (e.g., which of two marbles
is the heavier). This procedure is repeated many times under stan-
dard conditions, including repetitions of the same pair. Ideally the
procedure is continued until a relatively stable estimate is

1 Of course, Fechner recognised that the same stimulus presented to the same person on
different occasions but under otherwise identical external conditions could give rise to
sensations of different intensity, in which case what may be said to correspond psycho-
logically to the physical magnitude of the stimulus is a probability distribution over a
range of possible sensation intensities. The mathematical psychophysical functions which
Fechner and others proposed were intended to relate to something akin to the average
of these distributions.
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obtained of the person’s probability of judging, under these con-
ditions2, each particular stimulus, say x, greater than each other
stimulus, y. Alternatively, if it is thought that individual differ-
ences in the sensations produced are not too great, then repeated
observations on the same stimulus pairs may be obtained from
different people3. Over many repetitions of each stimulus pair, the
number of times x is judged greater than y in the required sense
may be counted for all pairs, x and y, and these frequencies con-
verted to proportions. These proportions or, more correctly, the
probabilities that they are thought to reflect, are taken to vary
systematically with the magnitude of the difference between the
sensations produced by the stimuli involved. If the precise
relationship between such probabilities and differences were
known as a general law, then the sensation differences could be
measured via the proportions. Such a law cannot be known a priori,
but a number of mathematical relationships have been hypoth-
esised. Perhaps the best known is L. L. Thurstone’s Law of Com-
parative Judgment (Thurstone, 1927a, b).
In the 1920s and later, Thurstone’s theoretical work in psycho-

logical measurement synthesised and organised many of the pre-
viously disparate ideas in the area. One important idea which had
not been explicitly developed theoretically until then was the idea
that magnitudes of the relevant stimulus attribute do not unvary-
ingly cause fixed intensities of sensation.4 A stimulus of a given
magnitude (e.g., a marble of a particular weight), says Thurstone,
may give rise to any of a range of sensations, some being more
likely than others. Here Thurstone employs the so-called Normal
(or Gaussian) probability distribution form:5 the probability

2 It is now recognised that the relevant conditions are not only physical but psychological.
In particular, motivational and cognitive factors are known to be important.

3 Repetitions of pair comparisons involving the same stimulus pairs can be very boring
for subjects, and so can have a dramatic effect upon motivational states. This is just one
of the difficulties in making such measurements which I shall ignore in developing this
example.

4 This will be because of small fluctuations in the state of the causally relevant parts of
the nervous system which cannot be experimentally controlled with existing technology
and not, of course, because of any intrinsic indeterminism in the sensory system.

5 This distribution form is named after the German mathematician, Karl Friedrich Gauss
(1777–1855). Its form is that of the now familiar bell-shaped frequency distribution,
widely referred to in many sciences where statistics are analysed, especially the biologi-
cal, behavioural and social sciences. It was already very well known in psychology when
Thurstone proposed his theory and in that context, some adjudge it a not implausible
hypothesis (see Luce, 1977, 1994).
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distribution of sensation intensities associated with stimulus x is
Normal with mean, µx, and variance, σx

2. Thus, the expectation is
that x will produce a sensation in the vicinity of µx, the likelihood
of something too much greater or less than µx diminishing with
distance from that mean value, the extent of diminution being
dependent upon the magnitude of σx

2. Similar expectations hold
for each other stimulus, say y, where the relevant parameters are
µy and σy

2 respectively. Simplifying by assuming no response biases
(i.e., that the person making the judgment uses a simple response
rule6), that for all stimulus pairs, x and y, σx

2 = σy
2 and that the

sensation intensities elicited by x and y on any occasion are inde-
pendent of one another, Thurstone’s ‘law’ becomes

δxyzxy= (1)σ

(where zxy is the Normal deviate7 corresponding to Px>y (the prob-
ability of judging x greater than y), δxy = µx−µy, and σ is the stan-
dard deviation (i.e., the square root of the variance) of the distri-
bution of differences in intensity between sensations elicited by
any one stimulus in the set and those by any other, a constant
for all stimulus pairs under the simplifications assumed here. For
convenience, the unit of measurement can be set at σ, in which
case σ equals 1). This mathematical relationship can be described
approximately in less mathematical terms as follows: when δxy = 0
(i.e., when µx = µy),Px>y = .5; as δxy increases from 0, Px>y increases
from .5, at first rapidly approaching 1, but never reaching it
because the rate of approach gradually and continually slows
down; and as δxy decreases from 0, a mirror-image process hap-
pens, with the probability now approaching, but never reaching, 0.
Taking the proportion of times that x is judged greater than y

as an estimate of Px>y, this probability can be transformed to zxy

and the difference between µx and µy, δxy, can, accordingly, be esti-
mated. When repeated for all pairs in the stimulus set, measures

6 Thurstone assumed this simple response rule: if on any occasion the intensity of the
sensation produced by x exceeds that produced by y then the person involved will always
judge x greater than y. Subsequently, it has been thought that people may not always
behave in this straightforward way.

7 The Normal deviate corresponding to a probability is the point under the standard
Normal curve (i.e., the Normal curve with a mean of 0 and a variance of 1) below which
the proportion of the total area under the curve equals that probability.
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of the µ values for all stimuli can be estimated on a scale with
arbitrary zero point (see Bock & Jones (1968) for an account of
the estimation procedures). If Thurstone’s conjecture and the sim-
plifying assumptions are true, then the estimated µ values can be
interpreted as the expected value of the sensation intensity pro-
duced by the stimulus involved under the kind of observational
conditions employed. Here, then, is one case of putative psycho-
logical measurement.

Intellectual abilities

It is a commonplace observation that people differ in their per-
formances on intellectual tasks. Two people invited to solve an
arithmetic reasoning problem, for example, will often give differ-
ent solutions. This fact has been used, at least since the work of
Binet (1903) and Spearman (1904) to attempt to measure intel-
lectual abilities. Intellectual abilities are hypothesised properties
of persons which are supposed to be responsible for differences in
performance on intellectual tasks. Of course, such differences in
performance will have a variety of causes within the persons
involved, not all of them intellectual. For example, it is widely
believed that motivational factors play a part. Intellectual abilities
are usually thought of as distinct from such factors, having to do
exclusively with what the person involved knows (the person’s cog-
nitive state) or with the neural mechanisms sustaining such
knowledge. Since the time of Spearman a variety of theories has
been proposed for the measurement of intellectual abilities.
These theories typically apply to scores on psychological tests.

Such tests are fixed sets of intellectual problems administered
under relatively standardised conditions. The individual problems
involved are called test items. When administered to a person,
the person’s solutions to the items (that person’s responses) are
recorded. These responses are then classified as correct or incorrect
and, typically, the number of correct responses (the person’s total
score) is the datum from which a subsequent measure of ability is
inferred. That is, it is generally thought that intellectual abilities
relate in a systematic way to total scores. It is pertinent that the
relationship between the sets of item responses and total scores is
not one to one. Obviously, with the exception of the two possible
extreme scores on any test, two people could get the same total
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score by getting different items correct. Thus, if total scores relate
systematically to intellectual abilities, the relationship between
abilities and item responses must be less systematic, because it
must be possible for two people, having exactly the same level of
ability and getting the same total score,8 to get different items
correct. Most theories in the area cope with this requirement by
postulating a probabilistic relationship between abilities and item
responses.9 Current theories of this sort are called item response
theories.
Item response theories connect the probability of a person get-

ting a test item correct to some combination of the person’s ability
and attributes of the item. The relevant item attributes are usu-
ally taken to be the difficulty of the item, the discriminating power
of the item and the probability of getting the item correct by
random guessing. To illustrate the measurement of intellectual
abilities using this approach, imagine a test in which differences in
total scores between people depend only upon differences between
them in one ability. Of course, this is an idealisation, but it may
be approximated in the case of certain simple tests.
An item’s difficulty level is located on the same scale as the

person’s ability: the difficulty for any item is the level of ability
required to have a 50:50 chance of getting the item correct. If a
person has less ability than this, the chances of failing the item
should exceed those of passing it, and if they have more ability
they are more likely than not to pass it. This last feature relates
to the item’s discriminating power. The more rapidly the prob-
ability of getting an item correct increases as ability increases
above the item’s difficulty (or the more rapidly this probability
falls away with decreases in ability below the item’s difficulty) the
better the item discriminates between different levels of the rel-
evant ability.
Suppose now that the probability of getting an item correct on

this imaginary test varies with just two attributes: the person’s
level of the relevant ability, and the item’s difficulty (all items
having the same discriminating power). Each item classifies

8 Of course, two people with the same level of ability need not get the same total score
either.

9 Again, the probabilistic relationship need not be taken as implying indeterminism. It no
doubt simply reflects the failure of the psychometrician to control all relevant causal
factors.
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people into two groups, correct and incorrect, and the probability of
those in the correct group having more ability than those in the
incorrect group for any item is, it is supposed, relatively high (but
never 1). If it is assumed, as is usual in this area, that responses
to items are independent of each other,10 it follows that a greater
total score on the test is indicative of a greater level of ability
(Grayson, 1988). Depending on the number of items in the test,
and on the discriminating power of the items, an ordering of
people according to total score may be expected to be a more or
less accurate ordering of them according to ability level.
Of course, few psychologists are content with just

(approximately) ordering people according to ability, but one can
proceed beyond this, to measure ability, only if it is known exactly
how the probability of getting an item correct relates to the per-
son’s ability and the item’s difficulty. As with psychophysical
measurement, there are a number of theories about this relation-
ship. The simplest such theory for the idealised example con-
sidered here is that proposed by Rasch (1960). Recall that the
difficulty of an item is the level of ability required in order to have
a 0.5 probability of success. If person i’s level of ability is denoted
Ai and item x’s level of difficulty is denoted Ax then this is
achieved if

Ai
Pr{correct | i & x} = (2)

Ai + Ax

(where Pr{correct | i & x} is the probability of person i getting item
x correct). Despite appearances, this theory is similar to (1): when
the difference between Ai and Ax is zero, the Pr{correct | i & x} =
0.5; as this difference increases from 0, so the probability
increases from 0.5, at first rapidly, then slowing down so that a
probability of 1 is never attained; and as the difference decreases
from 0, a mirror image relation obtains. There are, of course,
versions of item response theory utilising the Gaussian distri-
bution form instead of (2) and versions of psychophysical theory
employing the kind of distribution form entailed by (2) (the logis-
tic form), rather than the Gaussian.
Using (2), levels of A can be estimated from test scores (e.g.,

10 Independent in the sense that for a fixed level of ability, the response to any item in no
way influences the response to any other item.
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see Hambleton & Swaminathan, 1985, for some technical details).
If Rasch’s hypothesis is correct, the estimates can be regarded as
measures of the ability involved. Some psychologists claim to be
able in this way to measure intellectual abilities.

QUANTITATIVE RELATIONSHIPS AND THE CONCEPT OF

MEASUREMENT

In the above examples, a mathematical relation is conjectured to
hold between a hypothetical attribute it is hoped to measure and
another quantity, in each example the probability of some event.
Each of these mathematical relations possesses a special feature:
it remains true under changes in the unit of measurement of the
hypothetical attribute, but not under other mathematical trans-
formations. Changing the unit of measurement (in the case of
length measurement, changing from yards, say, to metres) is
equivalent to multiplication by a positive real number.11 For
example, in the case of equation (2), if the measures of ability
undergo a change of unit, that is equivalent to obtaining meas-
ures, kAi and kAx, on a new scale of ability, where before one had
Ai and Ax. Then equation (2) would become

kAi kAi Ai
Pr{correct | i & x} = = =

kAi+kAx k(Ai+Ax) Ai+Ax

To repeat, changing the unit of measurement makes no difference
to the hypothesised mathematical relationship. The same is true
of equation (1): a change in the unit for measuring differences of
sensation intensity leaves (1) unchanged. By contrast, a different
kind of mathematical transformation (e.g., adding the same con-
stant, k, to each measure, or raising each measure to the same
constant power, k) would in general change the mathematical
relationship, though it might preserve the order of the magnitudes
involved.
This fact, that the (conjectured) mathematical relationship is

insensitive to (or invariant with respect to) changes of unit but
not to other transformations, is not peculiar to these examples.
All attempts at psychological measurement, if they involve the

11 For example, if length in metres is multiplied by .914 then a close approximation to
length in yards is obtained.
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postulation of quantitative relationships between the attributes to
be measured and some other quantities, have this property. Nor
is it peculiar to psychology; it is a general feature of quantitative
science. For example, in physics, the relationship known to hold
between mass, volume and density (density = mass/volume) is
similarly invariant under changes of the units involved (e.g.,
changing from imperial to metric units).
This very general feature of quantitative science is intimately

connected to measurement. In any instance where a supposedly
measurable attribute is hypothesised to, or known to, stand in a
quantitative relationship to other quantities, and this relationship
is invariant with respect to changes in the unit of measurement,
the measurable attribute must possess a certain kind of internal
structure which is capable of sustaining this invariance. Now, by
definition, the unit of measurement on any scale for any quantitat-
ive attribute (e.g., the metric scale of length) is that magnitude
of the attribute whose measure is 1. In the case of the metric
length scale, this magnitude is that length given the name, the
metre.12 The measure of any other magnitude of the same quanti-
tative attribute is just its ratio to the unit of measurement.13 For
instance, the measure of any length, x, in metres is the positive
real number, r, when x is r metres long (i.e., x/metre = r). Similarly,
in the case of abilities, if on a scale for measuring some ability,
the measure of ability level A1 is 1, then the measure of person i’s
ability, Ai, on this scale is the ratio of Ai to A1. If the unit of
measurement is changed from, say, A1 to A2, the measure of Ai

goes from Ai/A1 = r to Ai/A2 = s, and the constant, k, by which r
must be multiplied to produce s (i.e., r × k = s) is just A1/A2 because
(Ai/A1). (A1/A2) = Ai/A2. In other words, the mathematical relation-
ship between ability and other attributes is insensitive to change
of units only so long as there are ratios between different levels
of ability (i.e., the magnitude of one level relative to another must
be a positive real number).
Now, for there to be ratios between different levels of an

12 The metre is this specific length: ‘the length of the path travelled by light in a vacuum
during a time interval of 1/(299 792 458) second’ (Jerrard & McNeill, 1992, p. 98).

13 Discussion of precisely what is meant by ratio here is deferred to Chapters 2 and 3. For
the moment it will simply be said that the ratio of one magnitude, m, of a quantitative
attribute, to another, n, of the same attribute, is the positive real number, r, such that
m = r.n.
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attribute, these levels must be additively related to one another.
That is, considering Ai and Aj (any two levels of ability), if Ai > Aj

then there is a level of ability which is the difference between
them (call it Ak). That is, Ai = Aj + Ak. If ability has such a structure
(and meets some further conditions mentioned in Chapter 3),
there are ratios between any two levels of ability. Without this
kind of structure there are no such ratios, and the ability cannot
possibly be measured.
If the structure of ability does sustain ratios, then it is easy to

see how any level, Ai, may be measured relative to a unit, Ai. The
measure of Ai relative to A1 is r if and only if Ai/A1 = r. That is,
quite generally, measurement is just the process of discovering
or estimating the measure of some magnitude of a quantitative
attribute relative to a given unit. That is, measurement is the
discovery or estimation of the ratio of some magnitude of a quanti-
tative attribute to a unit (a unit being, in principle, any magnitude
of the same quantitative attribute).
This understanding of measurement, that it is the process of

discovering ratios, is not novel. It is, in fact, standard within quan-
titative science. For example, consider this discussion by Terrien
(1980):

Quantities are abstract concepts possessing two main properties: they
can be measured, that means that the ratio of two quantities of the same
kind, a pure number, can be established by experiment; and they can
enter into a mathematical scheme expressing their definitions or the
laws of physics. A unit for a kind of quantity is a sample of that quantity
chosen by convention to have the value 1. So that, as already stated by
Clerk Maxwell,

physical quantity = pure number × unit.

This equation means that the ratio of the quantitative abstract concept
to the unit is a pure number. (pp. 765–6)

Passages showing a similar understanding of measurement
abound in discussions of the concept in the physical sciences (e.g.,
Beckwith and Buck, 1961; Clifford, 1882; Massey, 1986; Maxwell,
1891). As I have said, and as Terrien and many others confirm,
and as will be shown in detail in Chapter 3, this understanding of
measurement follows from the structure of quantitative attri-
butes: they are so structured that different magnitudes of them
are related by ratios; these ratios are expressed as real numbers;
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and measurement is the attempt to discover what, in particular
cases, these real numbers are.

The definition of measurement in psychology

Despite the ubiquity of this understanding of measurement in the
natural sciences, and despite the fact that it is entailed by the
quantitative theories proposed in psychology, psychologists are
strangely ignorant of it. To be sure, psychology texts are more apt
than those in other sciences to attempt to define measurement,
but the resulting definitions given rarely resemble anything in the
last section. Consider the definition of Corsini and Auerbach in
the Concise Encyclopedia of Psychology: ‘Measurement is the process of
assigning numerals to objects or events according to rules’ (Brown,
1996, p. 546). Within psychology, this definition is typical. Most
psychologists would instantly recognise it as a variant of a defi-
nition made famous by S. S. Stevens. In his publications on
measurement theory over a period of almost 30 years, Stevens
repeated this refrain: ‘Measurement is the assignment of
numerals to objects or events according to rule’ (see Stevens,
1946, 1951, 1958, 1959, 1967, 1968, 1975), sometimes adding
‘any rule’. Stevens’ opening chapter of his Handbook of Experimental
Psychology (1951) had an influence on the thinking of psychologists
which is difficult to appreciate now. For most psychologists of that
time, Stevens’ treatment of measurement ‘stood’, as Newman said,
‘like the Decalogue’ (1974, p. 137), a judgment confirmed by the
fact that so many texts published shortly afterwards (for example,
Guilford, 1954, Lindzey, 1954, and Lorge, 1951) quoted it as
definitive.
Since the 1950s, Stevens’ definition of measurement has been,

for psychologists, the model for definitions of the term. Go to any
university library, locate the psychology section and search at
random anywhere in that section. You will very soon find a book
that offers a definition of measurement and it will be one of this
form: ‘measurement is the assignment of X to Y according to Z’
(see Michell, 1997b, for the results of such a survey). That Stev-
ens’ definition is still, in the late 1990s, virtually the only defi-
nition of measurement mentioned in psychology texts is testimony
to its durability over the last 50 years. Sometimes it is quoted
directly and with due acknowledgment (e.g., ‘The classic definition



The meaning of measurement16

of measurement was offered by the experimental psychologist
S. S. Stevens (1951), as the ‘‘assignment of numerals to objects or
events according to rules’’ ’ (Salkind, 1994, p. 96). Often, how-
ever, Stevens’ dictum is paraphrased without any acknowledgment
(e.g., ‘Measurement may be defined as the application of rules for
assigning numbers to objects’ (Kaplan and Saccuzzo, 1993, p. 30)
and ‘Tests are designed to measure attributes of the test taker,
and measurement implies the assignment of numerical values’
(Friedenberg, 1995, p. 6) as if propagating an oral tradition which
communicates psychology’s collective wisdom.
This extraordinary discrepancy between psychology and the

natural sciences becomes all the more interesting when it is
realised that Stevens’ definition and the traditional understanding
of measurement are mutually incompatible: if the traditional
understanding is correct, Stevens’ is not, and vice versa. The
incompatibility resides in two main points of opposition between
them: assignments of numerals according to rule versus discovery
of numerical facts; and objects or events versus ratios.
In measurement, according to the traditional view, numbers (or

numerals)14 are not assigned to anything. If, for example, I dis-
cover by measuring it, that my room is 4 metres long, neither the
number four nor the numeral 4 is assigned to anything, any more
than if I observe that the wall of my room is red, either the colour
red or the word red is thereby assigned to anything. In neither
case am I dealing with the assignment of one thing to another.
Considering the ratios of magnitudes and the numbers involved
in measurement, it is clear that one is not dealing with the
relation of assignment. One is dealing, rather, with predication.15

That is, it is not that my room or its length is related to the
number four, the length of my room relative to the metre simply
is the number four.

14 The conventional distinction between numerals and numbers is this: numerals are the
names of (i.e., signs standing for) numbers, while numbers are whatever it is we think
are named (or signified) by numerals (views on this latter issue differing markedly,
especially amongst philosophers). Stevens’ terminology in his definition of measurement
is quite confusing. He claimed that he wanted to avoid number because of its ambiguity
(Stevens, 1951), but his solution hardly assisted the cause of clarity. I discuss what
numbers are in Chapter 3 and Stevens’ concept in Chapter 7.

15 The difference here is not, as it might appear, that assignment and predication are
different relations. Strictly speaking, predication cannot be taken as a relation at all
without entailing a vicious, infinite regress (see, e.g., Armstrong, 1989, 1997).
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This might appear to be a trivial linguistic point but it is not.
It is a fundamental, logical one. Stevens was correct to link assign-
ments to rules, because the assignment of one thing to another is
a conventional allocation, often based upon an explicit rule.
Measurement does not involve assignments because it is not con-
ventional in that way.16 Measurement is the attempt to discover
real numerical relations (ratios) between things (magnitudes of
attributes), and not the attempt to construct conventional numeri-
cal relations where they do not otherwise exist. The difference
would be most dramatically seen if the attributes involved were
not actually quantitative. Then there would be no ratios to dis-
cover, and measurement would be logically impossible. Nonethe-
less, numerical assignments according to some rule could always
be made to the objects and events involved. This highlights the
logical distinction: the making of numerical assignments entails
no commitment to truth; predication always does. A numerical
assignment may be many things (e.g., useful, convenient,
rewarding), but true (or false) is not one of them. On the other
hand, to claim that my room is four metres long is to assert some-
thing which is either true or false. In measurement, a numerical
relation is taken to obtain. Only because measurements involve a
commitment to truth can they count as data in science.
Of course, one rule for assigning numbers to things could be:

assign to x the number which expresses the ratio of x’s length
to the metre. Then the numerical assignment involves measure-
ment. But just because some numerical assignments (according
to rule) are assignments of measurements it by no means fol-
lows that all numerical assignments (according to rule) are
measurements, any more than it follows from the fact that
some newspaper reports are reports of deceptions that all news-
paper reports are deceptions. Such an invalid inference involves
an obviously illicit attempt to infer all from some but, interest-
ingly, it also involves a sleight of hand with respect to the
second term of the proposition, in which assignments of
measurements and measurements are equated. As will become

16 The conventional element in measurement is the unit adopted. No matter which magni-
tude is taken as the unit, the numerical relationship (ratio) in which it stands to any
other magnitude exists independently of its being the unit. Selecting a unit determines
which numerical facts the measurer is interested in. It never constructs ‘facts’ which
would otherwise not exist.
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evident in Chapter 7, this error was no accident on Stevens’
part.
The second point of opposition between Stevens’ definition and

the traditional notion has to do with the location of numbers in
measurement: are they assigned to objects or events (as on Stev-
ens’ view) or are they predicated of ratios of magnitudes (as on
the traditional view)? This is a fundamental difference, and one
which by itself disqualifies Stevens’ definition.17 The relevant dis-
tinctions are as follows: there are objects (e.g., my room) and
events (e.g., my room’s changing colour); there are attributes of
objects (e.g., the length of my room) and attributes of events (e.g.,
the time it takes to paint my room); and there are relations into
which those attributes enter (e.g., ratios to other attributes of the
same kind, for instance, to the metre or to the second). As far
as measurement is concerned, numbers are only identified when
relations of ratio are considered. In measuring the length of my
room, for example, that length’s ratio to some unit (another
length) is estimated. This relation is intrinsically numerical, and
cannot therefore be described in other than numerical terms. Ste-
vens’ definition shifts the focus of attention, suggesting, falsely,
that objects or events are measured, rather than attributes. In so
doing it ignores the conceptual dependence of measurement upon
ratios, and it ignores the logical link between ratios and numbers.
Because it shifts the locus of measurement from numerical facts

to rules for making numerical assignments, and from quantitative
attributes to objects or events, satisfaction of Stevens’ definition
is trivial. Procedures for assigning numbers or numerals to objects
or events according to some rule can be devised on request, and
without limit. This obvious fact has not escaped the attention of
some psychologists. For example, Suen (1990) remarks that, ‘The
hazard of educational and psychological measurement is that
almost anyone can devise his or her own set of rules to assign
some numbers to some subjects’ (p. 5). Stevens’ definition is
extremely wide, and excludes only random assignment.18 To

17 Stevens also proposed a much more general definition of measurement, one not often
recognised, that does not fall victim to this objection. This is the following: ‘whenever a
feature of one domain is mapped isomorphically in some relation with a feature of
another domain, measurement is achieved’ (Stevens, 1968, p. 855). This is not to say
that it is not wrong for other reasons.

18 ‘The only rule not allowed would be random assignment, for randomness amounts in
effect to a nonrule’ (Stevens, 1975, p. 47).
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labour the point, in relation to any psychological attribute one
can easily contrive ways to count frequencies or obtain numerical
ratings, and via that process make numerical assignments to the
relevant objects or events, thereby according to Stevens attaining
measurement. According to Stevens’ definition, every psychologi-
cal attribute is measurable.
On the other hand, according to the traditional understanding

of measurement, only attributes which possess quantitative struc-
ture are measurable. This is because only quantitative structure
sustains ratios. Unless every attribute really is quantitative, to
conclude that, because one can make numerical assignments to
things, the attribute involved must be measurable, is to presume
upon nature. True, some scientists have believed that all attri-
butes are quantitative. This belief, called Pythagoreanism, is dis-
cussed in later chapters. Not only do I not know of any sound
argument for Pythagoreanism, I know of no argument for it at
all. Until Pythagoreans present arguments, it would of course be
premature to assume their doctrine true. Hence, we have no good
reason to believe that all attributes are quantitative. So, before
we can conclude that any attribute is quantitative (and therefore
measurable), we must ask how the presence of quantity can be
detected. What are the marks of quantity?
This is a question which those who accept Stevens’ definition

will not understand. It emphasises the fundamental, practical dif-
ference between the two concepts of measurement. Those who
accept Stevens’ definition will believe that they can measure when-
ever they have a rule for assigning numerals to objects or events,
regardless of whether the relevant attribute is quantitative. Thus,
given equations (1) or (2), for example, they will believe that they
can measure sensation intensities or intellectual abilities without
further ado. That this is the thinking of many quantitative psy-
chologists is evident from inspection of almost any text on psycho-
logical measurement. Such texts assume that the models or theor-
ies sustaining numerical assignments always enable the
measurement of something.19 Those who accept the traditional
notion of measurement believe otherwise. They would want to

19 I exclude from this generalisation psychological texts influenced by the writings of the
mathematical psychologists R. D. Luce and P. Suppes on the theory of measurement.
More is said about their contributions in Chapter 8.
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know, first, whether or not the relevant attribute is quantitative
and, second, whether or not the rule for making assignments links
numbers to ratios in the correct way. Before accepting equations
(1) or (2), for example, they would want to investigate the hypoth-
eses that sensation intensities or intellectual abilities really are
quantitative attributes. Stevens’ definition of measurement hides
a scientific question (Is the attribute we hope to measure a quanti-
tative attribute?), a question fundamental to quantitative science.
This last claim might be thought to be an overstatement. Stev-

ens also distinguished between what he called different kinds of
scales of measurement and, in particular, accepted the desirability of
what he called interval and ratio scales.20 These kinds of scales cover
the measurement of what, according to the traditional under-
standing, are quantitative attributes. It might be argued then that
Stevens’ definition, correct or not, is fairly harmless conjoined with
his theory of measurement scales. This view is seriously mistaken.
Recognition of the distinctions between Stevens’ kinds of measure-
ment scales is not at all sufficient to counter the effects of
accepting his definition. Most psychologists accept his theory of
scales of measurement, along with some variant of his definition.
Furthermore, most psychologists claim that they can measure
their favoured psychological attributes on interval or ratio scales.
However, hardly any psychologists recognise the need to establish
that their favoured attributes are quantitative before accepting
such claims. Stevens’ definition rationalises this scientific negli-
gence.
The textbook by Lord and Novick (1968), widely regarded as

the definitive work on measurement via psychological test scores,
exemplifies this attitude. They are fully aware of the fact that
Stevens’ concept of an interval scale

specifies a one-to-one correspondence between elements of the
behavioral domain and the real numbers, with only the zero point and
the unit of measurement being arbitrary. Such a scale assigns meaning
not only to scale values and their relative order but also to relative differ-
ences of scale values. (p. 21)

20 See Chapter 7 for a discussion of Stevens’ theory of scales of measurement. Measure-
ment, in the traditional sense, he called ratio scaling, and if an attribute is such that
differences between its levels are quantitative, this allows for the construction of what
Stevens called an interval scale.
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That is, they recognise that having an interval scale of measure-
ment entails that differences between levels of the attribute are
quantitative. But this in turn implies that claiming to measure on
an interval scale is gratuitous unless some attempt has been made
to test the hypothesis that the relevant differences are quantitat-
ive. And, like the majority of quantitative psychologists, Lord and
Novick seem not to recognise this implication.
It is obvious from their discussion that Lord and Novick do not

recognise that the issue of whether or not an attribute hypoth-
esised to underlie test performance (some relevant ability) is
quantitative is a fundamental scientific issue, one upon which the
entire edifice they construct is based. Their response to this prob-
lem is simply to stipulate that total test scores are interval scale
measures of theoretical attributes and to state that to the extent
that a set of test scores produce ‘a good empirical predictor the
stipulated interval scaling is justified’ (p. 22). They then see it as
being a ‘major problem of theoretical psychology . . . to ‘‘explain’’
the reason for the efficacy of any particular scaling that emerges
from [such] empirical work’ (p. 22). The fact that a set of test
scores is found to be a good predictor of some criterion (e.g., suc-
cess in some course of study) is, of course, a fact which invites
scientific explanation, but any proposed theory only explains it if
true. A typical psychological theory here would hypothesise that
the test scores relate systematically to some quantitative property
of the people tested, and that property is a determinant of per-
formance on the criterion. But proposing such a theory and testing
it, in particular testing the crucial hypothesis that the supposed
property is quantitative, are two quite different things. Only when
such a theory has been subjected to some experimental test sensi-
tive to the presence or absence of quantitative structure in the
hypothesised attribute can any conclusions be drawn about
whether or not test scores are interval scale measures of anything.
Weaker tests, such as the test scores being a good predictor of
related criteria, are not sensitive to the presence or absence of
quantitative structure in the underlying attribute because no
matter which way they turn out they cannot rule out the hypoth-
esis that this attribute is quantitative. No discussion of scientifi-
cally crucial tests figures at all in the text by Lord and Novick.
In their quest for mental measurement, psychologists have con-

trived devices (tests or experimental situations) which, when
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appropriately applied, yield numerical data. These devices are
treated as windows upon the mind, as if in the fact of yielding
numerical data they revealed quantitative attributes of the mind.
However, the windows upon the mind presumption dissolves the
distinction between cause and effect, in this case the attributes of
the mental system causing behaviour and attributes of the effects
this behaviour has upon the devices contrived. That the latter pos-
sess quantitative features in no way entails that all of the former
must. Hence, the windows on the mind presumption is question-
able and, so, in the absence of additional, relevant evidence, not a
sound basis for accepting the conclusion that the numerical data
procured via the contrived devices is a measure of anything. Stev-
ens’ definition of measurement obscures these facts.
The fact that the majority of psychologists accept Stevens’ defi-

nition of measurement rather than the traditional one, and have
done so for almost half a century, should be a warning sign regard-
ing the presumption that psychology is a quantitative science. The
fact that acceptance of this definition hides from view questions
fundamental to the development of quantitative science means that
this warning sign must be taken seriously. Acceptance of Stevens’
definition carries, of course, secondary gains. Not only is the fun-
damental scientific question obscured, but the definition is used
to license the conviction that psychologists practise quantitative
science. As a bonus, they feel safe to continue to market their
practices as applications of scientific measurement and to reap the
ensuing rewards.
There are, then, solid prima facie grounds for wanting to look

further at the history of this definition. Where did it come from,
and why was it so readily and so widely accepted? In accepting
Stevens’ definition, psychologists have lost touch with the impli-
cations of their own theory and practice of measurement. Hence,
when they claim to be able to measure psychological attributes,
they do not mean measurement in the standard scientific sense (to
which they are bound to by their own quantitative theories and
practices), they mean measurement in Stevens’ contrived sense. The
question, ‘Is there any such enterprise as psychological measure-
ment?’ is one which psychologists, in so far as they endorse Stev-
ens’ definition, are not presently competent to answer.
The following chapters explain how this anomalous situation

has come about. The causes lie in a number of directions. First,
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they are to be found in the peculiar combination of ideological
forces which existed at the birth of quantitative psychology in the
nineteenth century (see Chapter 2). Second, they lie in the social
pressures which shaped the young science (see Chapter 4). Third,
they reside in the changes in the understanding of measurement
which took place in the philosophy of science during the twentieth
century (see Chapter 5). Fourth, an important catalyst was an
inquiry in the 1930s into the status of psychophysical measure-
ment (see Chapter 6). All of these forces shaped Stevens’ defi-
nition and prepared the ground for its long term acceptance
within psychology (see Chapter 7).
However, this book is not just a history of the concept of

measurement in modern psychology. It is a critical history of quan-
titative psychology. All criticism presumes an underlying logic, in
this case a logic of quantification. Hence, what is also shown in
the following chapters is what measurement really is (Chapter 3)
and how the hypothesis that psychological attributes are quanti-
tative can be tested (Chapter 8). Unbeknown to most psychol-
ogists, the mathematical and logical work necessary for quantitat-
ive psychology’s rehabilitation has already been done.



CHAPTER 2

Quantitative psychology’s intellectual inheritance

Whatever exists at all exists in some amount. To know it
thoroughly involves knowing its quantity.

(Edward L. Thorndike)

This is only to ring changes on words, and to make a show of
mathematical reasoning, without advancing one step in real
knowledge.

(Thomas Reid)

If we view the present through lenses partly constructed by the
past, then clearer vision comes through locating the historical con-
ditions shaping them. I have talked with psychologists so con-
vinced of their own clearsightedness that they claimed not to com-
prehend even the possibility that psychological attributes might
not be quantitative. Yet the merest acquaintance with the history
of science shows that quantitative thinking has not always held
sway. Kuhn’s (1970) picture of the history of science as a suc-
cession of conceptual convulsions may hold a germ of truth but it
is one distorted by his conviction of radical discontinuity in the
flow of ideas. Superficially, conceptual discontinuities appear in
the history of science, but these disguise deeper continuities. The
thesis that nature sustains quantity and measure, which has
flowed through Western thought since at least Pythagoras, has a
trajectory surfacing here, submerged there, here combining with
other ideas, there in opposition to dominant trends. Intellectual
currents, being propositional, interact in logical ways. Some of the
tensions in the history of ideas happen because of the tensions
created when there is a confluence of contradictory intellectual
currents.
As scientists, psychologists inherited the world view that had

developed out of the scientific revolution two centuries earlier.

24
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Consequently, they aspired to make psychology quantitative. This
aspiration, in its turn, conflicted with another element of that
same world view, the presumption that the mental is non-
quantitative. The character of this conflict may be displayed as
follows. Those seeking a place for measurement within psychology
were required to resolve the following inconsistent triad of intel-
lectual currents:
1 The Classical Concept of Measurement: All measurable attributes

are quantitative.
2 The Measurability Thesis: Some psychological attributes are

measurable.
3 The Quantity Objection: No psychological attributes are quantitat-

ive.
Each of these propositions is contradicted by the other two con-
joined. Progress requires rejecting at least one.
Where had these intellectual currents come from? Why did they

exert such strong pressure upon the new science of psychology?
This chapter provides some answers to these questions. Then it
will be clearer what the conceptual problems were facing those
who wished to promote the cause of psychological measurement.
The classical concept of measurement originated in ancient

Greece and the measurability thesis in the Middle Ages. Both
derived fresh impetus from the scientific revolution of the seven-
teenth century and the subsequent progress of quantitative
science. The roots of the quantity objection also lay in the scien-
tific revolution, especially in the metaphysical vision then replac-
ing the Aristotelean system that had influenced European thought
since the thirteenth century. In the following sections, an
impressionistic sketch of each is provided.

THE CLASSICAL CONCEPT OF MEASUREMENT

The classical concept of measurement is that all measurable attri-
butes are quantitative. This concept of measurement derives from
Book V of Euclid’s Elements (see Heath, 1908). Euclid presents a
theory about ratios of magnitudes of a quantity and about
relations of proportion between such ratios. As the understanding
of measurement unfolded, especially during and after the scien-
tific revolution, a close conceptual link between the concepts of
quantity and measurement was forged via the concept of ratio.
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This was that only quantitative attributes are measurable because
these are the only attributes that sustain ratios and measurement
depends upon ratios. Until the twentieth century, the classical
concept was taken to be almost definitional: because of their
character, magnitudes of quantities were thought to entail ratios
which, in turn, made the application of arithmetic possible. It
seemed that measurement could only be of quantities.
What was the Euclidean view? A context for understanding

Euclid’s theory of ratios of magnitudes1 is provided by Aristotle’s
definition of quantity:

We call a quantity that which is divisible into constituent parts of which
each is by nature a one and a ‘this’. A quantity is a multitude if it is
numerable, a magnitude if it is measurable. (Metaphysics, v, 13, 1020a 7-10,
as quoted in Stein, 1990)

A multitude is an aggregate of individual things, all of the same
kind (e.g., an aggregate of sheep). Obviously, Aristotle was not
contemplating infinite multitudes here. Hence, the fact that a
multitude is numerable is just the fact that it is finite and entirely
constituted of discrete units. As a result, any two aggregates of
things of the same kind (say, two aggregates of sheep) will always
be commensurable2 because they are aggregates of the same kind
of unit. In Aristotle’s terminology, the size of a multitude is not
measured, it is numbered (i.e., counted). For Euclid, ‘a number is
a multitude composed of units’, where ‘a unit is that by which
each existing thing is called one’ (Elements, Bk. VII), that is, a unit
is just a definite kind of thing, such as a sheep. The ancient Greek
view was that number was always only whole number.

Magnitude is different from multitude, according to the early
Greek view: two magnitudes of the same quantity (two different
lengths, say) need not be commensurable. Euclid held that ‘a mag-
nitude is a part of a magnitude, the lesser of the greater, when it
measures the greater’ and ‘the greater is a multiple of the less
when it is measured by the less’ (Elements, Bk. V, Dfns. 1 & 2; in

1 The ‘beautiful theory of proportion’ (Kneale & Kneale, 1962, p. 379) given in Book V
of Euclid’s Elements is widely attributed to Eudoxos, a contemporary of Plato (see, e.g.,
Heath (1908, p. 112)). Simply for convenience, I call it Euclid’s theory.

2 Two aggregates or multitudes are commensurable if and only if they are each entirely
composed of whole numbers of units of the same kind, i.e., aggregates b and c are com-
mensurable if and only if b = na and c = ma, where a is the unit and m and n are whole
numbers.
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Heath, 1908, p. 113).3 Euclid’s parsimonious style of expression
can cause intellectual indigestion in the modern reader. His view
is that for each magnitude of a quantity (each specific length, say)
there is a series of multiples of that magnitude (where multiple, of
course, is always taken relative to a whole number). That is, a
magnitude is always an aliquot4 part of other magnitudes, which
in turn must be aliquot parts of further magnitudes and so on
indefinitely. A consequence of these propositions is that, unlike
the concept of multitude, the concept of magnitude does not rule
out the possibility of incommensurability. It is not required by
Euclid’s definition that any two magnitudes of the same quantity
(e.g., any two specific lengths) must have any aliquot parts in
common or that the series of multiples of them must ever
coincide.
While the specification of the unit enables the numerical

characterisation of any multitude (via reference to the relevant
whole number), specification of a magnitude as the unit does not
always enable the numerical characterisation of any other, arbi-
trary magnitude of the same quantity in this way. For example,
as was known to Aristotle and Euclid, the lengths of the side and
the diagonal of a square are not commensurable with each other.
However, the great strength of Euclid’s theory is that a general,
numerical characterisation of magnitudes can be achieved via the
concept of identity of ratio. Euclid (Bk. V, Dfn. 3) defined a ratio of
magnitudes as a ‘type of relationship’ between magnitudes of the
same kind in respect of size and then proceeded to give the follow-
ing condition for the identity of two ratios (Bk. V, Dfn. 5).5 Two
ratios of magnitudes, a to b (sometimes written as a:b) and c to d
(c:d) are the same when and only when, for all pairs of whole
numbers m and n,
1. ma < nb if and only if mc < nd (i.e., a:b < n/m if and only if c:d

< n/m),
2. ma = nb if and only if mc = nd (i.e., a:b = n/m if and only if c:d =

n/m),

3 This is a special sense of measure, viz., measures by a whole number of units.
4 An aliquot part is one into which the whole divides exactly (i.e., without remainder),
some whole number of times, i.e., a is an aliquot part of b if and only if there is a whole
number, n, such that na = b.

5 It should not be presumed that Euclid’s concept of ratio of magnitudes was exactly the
same as ours. See Fowler (1987), Grattan-Guinness (1997) and Rusnock & Thagard
(1995) for discussions of what Euclid may have understood by ratio.
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3. ma > mb if and only if mc > nd (i.e., a:b > n/m if and only if
c:d > n/m).

This says that two ratios of magnitudes are identical when and
only when they are each less than, equal to, and greater than
exactly the same numerical ratios. Any particular ratio of magni-
tudes is completely characterised by three classes of numerical
ratios (or, as it would now be put, by three classes of rational
numbers): for any pair of magnitudes, a and b, of the same quan-
tity, a:b is characterised by the three classes, {n/m | ma < nb}, {n/
m | ma = nb}, and {n/m | ma > nb}. If a and b are commensurable,
then the second of these classes is non-empty and this class com-
pletely determines the other two (any element of the second class
is sufficient to precisely specify that class and, thus, the other two
classes). If a and b are incommensurable, then the second class is
empty and either the first or third class uniquely specifies the
other because they are mutually disjoint and together exhaust all
numerical ratios. Therefore, ratios between incommensurable
magnitudes are precisely specified by either the first or the third
of these classes.6 Hence, taking any particular magnitude, a, as a
unit and attempting to characterise any other magnitude of the
same kind, b, relative to it, while a might not measure b in the
narrow sense of being an aliquot part of it, there is always the
ratio of b to a. This ratio gives the measure of b in units of a in
the more general sense of completely specifying b numerically via
a. In modern terms, it locates b:a relative to the series of rational
numbers. From a practical viewpoint, this ratio can only ever be
estimated. Theoretically, however, it is important to understand
what this estimate is an estimate of.
This theory is one of the great intellectual triumphs in the his-

tory of science. It provides a conceptual basis for the understand-
ing of measurement. However, as a theory of measurement it is
incomplete. It needs to be supplemented in three ways. First, the
concept of magnitude must be defined. No doubt Euclid had in
mind magnitudes of geometric quantities, such as length, plane
angle, area, and volume (and, possibly, other sorts of quantities as
well) and there was small chance of his contemporaries misunder-

6 Euclid’s thinking here is very close to the idea that Dedekind was to use when he devel-
oped his theory of real numbers (Dedikind, 1872); (see Bostock (1979) and Stein
(1990)).
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standing the range of applications of his theory.7 However, by the
Middle Ages, when the concept of intensive quantity was intro-
duced,8 the range of possible applications was no longer obvious.
Attributes, such as charity, were said to vary in intensity without
it being clear whether or not they were capable of quantitative
variation (as opposed to merely qualitative variation). However,
such attributes were sometimes taken to be quantitative (Sylla,
1972). This idea was also applied to physical attributes like veloc-
ity. From then on, there was a need within the philosophy of
science for a precise definition of magnitude, for only via such
could this issue be satisfactorily settled. Hölder’s (1901) axioms
for magnitudes of a continuous quantity provided one of the earl-
iest and best known, precise specifications of this concept.
Second, a theory of the classical concept of measurement must

not only explain what magnitudes are and how they sustain ratios
of the kind defined by Euclid, it must also explain the relationship
between these ratios and numbers. For Euclid, as for ancient
Greek mathematicians generally, number meant whole number.
Hence, ratios of magnitudes were not thought of as being of a
kind with numbers. However, over the following two millennia the
concept of number was broadened. From the seventeenth century
onwards, number was defined as the ratio between magnitudes of
the same quantity (e.g., see Klein, 1968, especially his section
on Wallis’ Mathesis Universalis), thus strengthening the conceptual
connection between measurement and quantity. In particular, the
real numbers proved to be especially important in quantitative
science and, employing Dedekind’s (1872) concept of continuity,
Hölder (1901) rigorously explicated the relationship between real
numbers and continuous quantity.
Third, as a practice, measurement bridges mathematical and

empirical science and, so, the theory of measurement is only com-
plete when an account is given of the contexts in which the real

7 This matter was not entirely without ambiguity in ancient times, however. In the Categor-
ies, Aristotle says that ‘Qualities admit of variation of degree’ (10b26; see McKeon, 1941,
p. 27), thereby admitting the possibility that some qualities may be quantitative, a pos-
sibility explored in the fourteenth century by, amongst others, scholars at Merton Col-
lege, Oxford, and Nicole Oresme in Paris via the concept of intensive quantity (see
Grant, 1996; Sylla, 1972).

8 The occasion for the introduction of this concept seems to have been the theological
debate over the intension and remission of forms (see, e.g., Crombie, 1952b; Grant,
1971, 1996; Sylla, 1972).
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numbers find their proper empirical applications. Of course, in
the most general sense, real numbers find application in quanti-
tative contexts. The problem, however, is to understand the
ways in which quantitative contexts can be identified obser-
vationally. While Euclid’s geometric examples were unambigu-
ously quantitative, the justification of other applications is not
always so obvious. This is no less difficult a supplement to
Euclid’s theory than the other two and it is one that is especially
pertinent to the subject matter of this book (viz., measurement
in psychology). Important breakthroughs in this area were also
not made until the twentieth century with the work of Hölder
(1901), Campbell (1920), Luce and Tukey (1964) and Luce et
al. (1990).
In mentioning these three supplements to Euclid’s theory here,

I mean only to give a foretaste of matters dealt with in more detail
in later chapters. My main concern in this chapter is with the
force that this classical conception exerted upon the minds of the
founders of quantitative psychology. Because it was one of the
permanent features of scientific and philosophical thinking, from
ancient times to the birth of modern psychology, it exerted enor-
mous force. Even during the later Middle Ages, when Aristotelian-
ism dominated the intellectual world, and mathematics and phys-
ics were generally thought to have quite separate subject matters,
the classical understanding of measurement held its ground.
One of the most important factors determining the historical

strength of the intellectual tradition embodying the classical con-
cept of measurement was the fact that until the middle decades
of the nineteenth century, Euclid’s Elements was regarded as the
undisputed classic of geometry, and until the early decades of the
twentieth century it (or texts based directly upon it) was a univer-
sal feature of mathematics education. De Morgan’s (1836) assess-
ment, that Book V of Euclid was one of the ‘two most unobjection-
able and unassailable treatises which ever were written’ (p. 1),
was an entirely typical pre-twentieth century view and even as late
as the First World War, Hill (1914) was written as a teachers’
college textbook devoted exclusively to this book of Euclid. Book
V of Euclid provided a common conceptual framework for under-
standing measurement. As a result, when philosophers, mathema-
ticians, and scientists considered measurement, they did so in
terms of ratios of magnitudes (sometimes using the terms pro-
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portion9 and quantity10 instead). Only during the early Middle Ages,
when Euclid’s Elements was almost totally unknown, did its influ-
ence seriously wane. However, with the revival of learning in the
later Middle Ages, the Elements became a core part of the quadriv-
ium, the main source of scientific knowledge for medieval univer-
sity students (Grant, 1996). Its influence upon the thinking of the
Mertonians, Oresme and other scientists of the Middle Ages (see
Sylla, 1972; Lindberg, 1982; Grant, 1996) is evident. For
example, in his Tractatus de Proportionibus, Thomas Bradwardine
expressed laws of nature as ratios of magnitudes (Grant, 1974)
and when Nicole Oresme, in his Tractatus de Configurationibus Qualit-
atum et Motuum (Clagget, 1968), wanted to discuss the measure-
ment of what he thought of as intensive quantities (like velocity),
he did so by analogy with ratios of line lengths.
What can be seen in the history of quantitative thinking from

the later Middle Ages to the Renaissance is a gradual extension
in influence of the central Euclidean concepts of ratio and pro-
portion. Before these concepts came to play a decisive role in the
scientific revolution, they had already left an indelible mark upon
the Renaissance. Artists such as Piero della Francesca, Leonardo
da Vinci and Albrecht Dürer, fascinated by mathematical issues
relating to light, perspective and proportion, produced works that
carried forward the influence of Euclid’s concept of ratio (Bairati,
1991; Crosby, 1997; Field, 1997; Grattan-Guinness, 1997; and
Strieder, 1982). These artists were expert mathematicians and
some made important contributions there, as well. For example,
Dürer wrote and published in 1525 a Manual of Measurement, based
in part upon a Latin translation of Euclid’s Elements he had
obtained in Venice.
Most importantly for the subsequent history of science, Euclid’s

theory of ratio influenced the central works of the scientific revol-
ution itself, in particular the work of Galileo. Mertz (1980, p. 236)
notes that

9 Strictly speaking, calling ratios proportions is confusing because, for Euclid, proportions
were relations between pairs of ratios and, thus, quite different to ratios themselves.
Grattan-Guinness (1997, p. 161) notes that this usage was present in the fourteenth
century in Nicole Oresme’s De proportionibus proportionum. This confusion is still common-
place, if not quite standard.

10 The distinction between magnitude and quantity favoured here (see glossary) has never
been standard and quotations from other authors do not always accord with it.
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. . . within the area of inquiry which Galileo deals with mathematically,
only a single theory is rigorously applied. This is the theory of pro-
portionality of general magnitudes developed by Eudoxos and found in
the Fifth Book of Euclid’s Elements.

Galileo’s devotion to Euclid’s Fifth Book was intense, from the
time when, as a young man, he preferred it to his medical studies,
through his years of teaching mathematics at the universities of
Pisa and Padua, and even to his deathbed, where in September
1641 he began a final commentary on it (Drake, 1978). Its cen-
trality to Galileo’s work is summed up by Mertz in these terms:

The Eudoxean theory is significant in that it establishes proportionality
between continuous magnitudes and so makes for a rigorous application
of mathematics to the continuous distances and change (e.g.,
acceleration) observed in nature. (1980, p. 236)

This feature cannot be stressed too strongly: Euclid’s concept of
ratio provided a principled rationale for the application of arith-
metic to continuous magnitudes and, hence, of measurement
itself.
If the Euclidean conceptual framework was crucial to Galileo’s

thinking in re-establishing quantitative physics, the same concep-
tual framework is evident, also, in Descartes’ attempts to work out
a world-view suited to the new scientific era. At the beginning of
his philosophical career, his imagination fired by his mathematical
research, Descartes’ vision was of a mathesis universalis, a unified
mathematics of measurement applicable to any scientific subject.
This vision was realised most famously in The Geometry (1637/
1954), wherein his recognition of the identity of structure between
ratios of (geometric) magnitudes and (real) numbers sustained
his revolutionary methods for solving geometrical problems by
algebraic means (Gaukroger, 1995, Mancosu, 1992). Indeed, Gro-
sholz (1991) notes that the mathematical theory of proportion
served as a model for Descartes’ more general philosophical
method as well.
The influence of Euclid’s theory of ratios of magnitudes is also

clear in Newton’s quantitative physics. He explicitly defined
number as the abstracted ratio of a magnitude of a quantity to a
unit (Newton, 1728) and his Principia is notable for the manner in
which physical laws are expressed as equations of proportionality.
Conjoined, this definition of number and this form of expression
made explicit the way in which measurement (as the assessment
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of ratios) applies to such laws and, also, how it was that geometri-
cal analogies could be fruitfully employed (Grosholz, 1987).
The success of the scientific revolution, in which quantitative

triumphed over qualitative physics, ensured that the classical con-
cept of measurement persisted well into the nineteenth century
in the thinking of most scientists and philosophers. Thus, De Mor-
gan’s (1836) treatise, The Connexion of Number and Magnitude, which
explains how numbers apply to ratios of magnitudes, was really
an extended commentary upon the fifth book of Euclid. The para-
digmatic understanding of measurement was as explained by
Maxwell in his Treatise on Electricity and Magnetism:

Every expression of a Quantity consists of two factors or components.
One of these is the name of a certain known quantity of the same kind
as the quantity expressed, which is taken as a standard of reference. The
other component is the number of times the standard is to be taken in
order to make up the required quantity. (1891, p. 1)

Without using the term ratio, Maxwell here explains what a ratio
of magnitudes is in measurement: the number of units required
to constitute a given magnitude of a quantity. This kind of under-
standing was often summed-up in a single sentence, like

Every quantity is measured by the ratio which it bears to some fixed
quantity, called the unit. (Clifford, 1882, p525)

Because measurement was understood as necessarily numerical
and because the only avenue through which numbers could enter
scientific discourse was presumed to be via ratios of magnitudes,
it followed that measurement could only be of quantities. To the
minds of pre-twentieth-century scientists and philosophers, the
proposition that measurement could be of non-quantitative attri-
butes would have seemed impossible because there was no rational
basis for applying numbers to such attributes. To the founding
fathers of modern psychology, the classical concept of measure-
ment was a necessary and non-negotiable feature of the scientific
framework within which they attempted to found the science of
psychology.

THE MEASURABILITY THESIS

The measurability thesis is the view that at least some psychologi-
cal attributes are measurable. While Oresme had included psycho-
logical attributes like pleasure and pain amongst the class of
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intensive quantities (Clagget, 1968), after the scientific revolution
it was not until the eighteenth century that psychological attri-
butes were again considered measurable (Brooks and Aalto, 1981;
Leary, 1980; Ramul, 1960; Zupan, 1976) and it was not until the
nineteenth century that the measurability thesis gained serious
scientific attention. Following the scientific revolution, the exemp-
lar of scientific success was quantitative physics. Emerging
sciences were naturally modelled upon physics, as novices in any
field model their efforts upon the obviously successful. This tend-
ency was noted by the German psychologist, Ebbinghaus, who
wrote that ‘The brilliant results produced in the natural sciences
by measurement and calculation suggested the idea that some-
thing similar might be done for psychology’ (1908, p. 13). This
tendency to take quantitative physics as their model was strength-
ened by the fact that the founders of the discipline (e.g., Fechner
and Wundt) had often been trained in natural sciences and, so,
for them the paradigm was quantitative science.
There are reasons, additional to this one, explaining why psychol-

ogists came to accept the measurability thesis. A second seems an
obvious one, although it may well have been the least influential.
Measurement has one apparent advantage over non-quantitative
methods, viz., exactness or precision. Some psychologists aspired to
the level of accuracy and precision attained in the physical sciences
through measurement. This practical advantage was seen by some
as a reason for adopting the measurability thesis. For example,
JamesMcKeenCattell wrote that ‘Psychology cannot attain the cer-
tainty and exactness of the physical sciences, unless it rests on a
foundation of experiment and measurement’ (1890, p. 373).
Cattell’s claim is mistaken and the error involved, as far as

measurement is concerned, had been identified some sixteen years
earlier by another early psychologist, Franz Brentano, when he
wrote that

Mathematics appears to me necessary for the exact treatment of all
sciences only because we now in fact find magnitudes in every scientific
field. If there were a field in which we encountered nothing of the sort,
exact description would be possible even without mathematics.
(Brentano, [1874] 1973, p. 65)

If it is allowed that some attributes of interest to science are non-
quantitative, then it follows that a description may be exact even
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though not quantitative. That is, if some object, X, is Y (where Y is
a non-quantitative predicate) then the proposition that X is Y is an
exact description of that situation. Furthermore, to attempt to
describe the fact that X is Y quantitatively would be to attempt an
inexact (i.e., false) description. Of course, if it is assumed that all
attributes studied in science are really quantitative, then it follows
that non-quantitative descriptions are inexact, but this assumption
is not necessarily true and, so, needs its own justification.
There is more to this issue of exactness and precision than just

description, however. Equally important in science is the formu-
lation of theories, hypotheses and laws in quantitative form. While
a non-quantitative law, All X are Y, may be both exact and precise
(given that neither X nor Y is quantitative), if an hypothesis or
law relates two scientific attributes, rather than just two proper-
ties, then it may seem that a quantitative, functional relationship
is more exact and precise than any non-quantitative proposition
could ever be. Again, this is an illusion and for the same reason.
There can be precise and exact non-quantitative relationships
between attributes and, of course, such relationships can be
expressed in a mathematical form, for mathematics, as is now
recognised, treats more than quantity. However, at a time when
mathematics was taken to be the science of quantity, such an
illusion was prevalent.
A third reason for adopting the measurability thesis was the

metaphysical view, Pythagoreanism. If the view attributed to
Pythagoras, that all things are made of numbers,11 is interpreted
to mean that all attributes are fundamentally quantitative
(despite the often ‘superficially’ non-quantitative guise presented
to us via sense perception), then it follows that the attributes stud-
ied by psychologists must be quantitative and, so, in principle at
least, measurable.
The Pythagorean view persisted over many centuries as a sig-

nificant feature of European thought (Crombie, 1994).12 Plato
adopted and developed it in his Timaeus and from there it found

11 Aristotle wrote that ‘For they [the Pythagoreans] construct the whole universe out of
numbers – only not numbers consisting of abstract units; they suppose the units to have
spatial magnitude’ (Metaphysics, 1080b16–20; (see McKeon, 1941, p. 898)). Burnet tells
us that ‘Briefly stated, the doctrine of Pythagoras was that all things are numbers’ (1914,
p. 52).

12 Pythagoreanism was not always associated with views that today would be thought of as
scientific. See Fehér (1995) for an indication of some of these alternative manifestations.
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its way, via the Augustinean monasteries, into the intellectual cul-
ture that helped shape the scientific revolution of the seventeenth
century (Crombie, 1952a, b, 1994). For example, consider the
parallels between Grosseteste’s thirteenth-century claim that ‘All
causes of natural effects can be discovered by lines, angles and
figures, and in no other way can the reason for this action possibly
be known’ (De Lineis, Angulis et Figuris, see McEvoy (1982, p. 168))
and the well-used quotation from Galileo that ‘The book of nature
is written in mathematical language, and the letters are triangles,
circles and other geometrical figures, without which means it is
humanly impossible to comprehend a single word’ (Il Saggiatore,
see Drake (1957, pp. 237-8)). Koyré (1968) has shown just how
radical Galileo’s Pythagoreanism was in the context of the Aristot-
elian view of the cosmos which prevailed prior to the scientific
revolution. It was not just that Aristotle’s physics was non-
quantitative. His position was that the essential properties of
physical objects could not be mathematical. The triumph of Gali-
leo’s quantitative over Aristotle’s qualitative physics resulted in
Pythagoreanism being incorporated into the new scientific-
philosophical orthodoxy.
The Pythagorean vision of the physical world found its most com-

plete and influential expression in the work of Descartes, who
equated physical existence with quantitative extension in space and
saw science as coextensive with the study of quantity: ‘I recognise
no matter in corporeal things apart from that which the geometers
call quantity’ ([1644] 1985, Vol. 1, p. 247). The influence of
Descartes and the development of quantitative physics at the hands
of Newton meant that the Pythagorean view dominated scientific
thinking during the eighteenth and nineteenth centuries.
Mundy (1994) has coined the term eighteenth-century methodolog-

ical consensus to describe the special Pythagorean vision that physi-
cists then came to share: all physical laws were to be expressed
using the quantitative conceptual apparatus of ordinary or partial
differential equations. As Mundy notes, ‘This conceptual appar-
atus has dominated subsequent physical science’ (1994, p. 60).
Pythagoreanism was such a significant feature of nineteenth-
century scientific ideology (scientism)13 that one of its best known

13 See also Hacking (1983), Kuhn (1961) and Wise (1995) for discussions of the extent
to which measurement and quantification were taken to be necessary features of science
in the nineteenth century.
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expressions by W. Thomson (Lord Kelvin) is still in circulation in
modern psychology:

I often say that when you can measure what you are speaking about and
express it in numbers you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your knowledge is
of a meagre and unsatisfactory kind; it may be the beginning of knowl-
edge, but you have scarcely, in your thoughts advanced to the stage of
science, whatever the matter may be. (Thomson, 1891, pp. 80–81)

Some idea of the ubiquitous influence of this ideology is gained
from the fact that a segment of Lord Kelvin’s saying came to
adorn the facade of the Social Science Building at the University
of Chicago (Merton, Sills and Stigler, 1984).
To the modern mind Pythagoreanism seems to be an out-dated

view, but it must be remembered that until the end of the nine-
teenth century the quantity view dominated mathematics. This
was the view that ‘mathematics is the science of quantities’ (Kant,
[1764] 1970, p. 280). Kant equated empirical science with
applied mathematics: ‘a doctrine of nature will contain only so
much science proper as there is applied mathematics in it’ (Kant,
1786, p. 7). This view endured through the nineteenth century,
at the end of which it was a commonplace observation that ‘science
recognizes only quantities’ (Freud, 1895, p. 309).14 Of course, a
much wider view of the subject matter of mathematics is taken
now and many kinds of structure other than quantitative ones are
included. These other kinds of structure have found ample empiri-
cal application (e.g., the application of the theory of formal lan-
guages to empirical linguistics, machine theory and cognitive
psychology). These applications constitute a decisive refutation of
Pythagoreanism. However, it would be anachronistic to require
such modern conclusions of nineteenth-century thinkers. Pythago-
reanism, if not the dominant scientific philosophy of that century,
was a very powerful intellectual force.
While Pythagoreanism may have been one of the metaphysical

doctrines driving the scientific revolution, the success of that revol-
ution in eventually establishing science as the most dynamic social
movement of the nineteenth-century was, itself, the major factor in

14 Freud, it should be said, changed his mind about this, his more mature view locating
the causes of behaviour in both quantitative (motivational) and qualitative (cognitive)
structures (e.g. Freud, 1915).
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giving Pythagoreanism the hold it had over the nineteenth-century
mind. The spectacular development of quantitative science from
the seventeenth to the nineteenth centuries and the successful
extension of quantification from dynamics into not only the study of
thermal and electrical phenomena but also chemistry and biology,
made it appear that the progress of science and the development of
measurement went hand in hand. Furthermore, there seemed to be
‘no apparent limit to the ultimate extension of quantitative science’
(Jevons, [1873] 1958, p. 274). This view, which is not just that
science andmeasurement are inextricably linked but that measure-
ment is necessary if a discipline is to be scientific, I have called the
quantitative imperative (Michell, 1990).
The quantitative imperative is not synonymous with Pythagore-

anism. Certainly, Pythagoreanism seems to entail the quantitative
imperative. However, the quantitative imperative was also, some-
times, justified inductively from observation of the history of
science and success of quantification. Venn, like Jevons, argued
that because the advance of science into new areas had resulted
in those areas becoming quantitative, it followed that quantifi-
cation was a necessary part of science:

. . . we might almost say that the extension of science from time to time
is correspondent to the discovery of fresh measurable elements in nature;
and that, within the limits of such extent at any given time, our progress
is correspondent to the improvements made in the accuracy of measuring
those elements. (1889, p. 433)

To many psychologists the kind of justification provided by Venn
carried weight equal to that of Pythagoreanism. Whatever the jus-
tification assumed, the quantitative imperative resonated through
the early history of modern psychology, the following sentiments
being typical:

. . . until the phenomena of any branch of knowledge have been submit-
ted to measurement and number, it cannot assume the status and dignity
of a science. (Galton, 1879, p. 147)
The history of science is the history of measurement. Those depart-

ments of knowledge in which measurement could be used most readily
were the first to become sciences, and those sciences are at the present
time the furthest advanced in which measurement is the most extended
and exact. (Cattell, 1893a, p. 316)
. . . there is yet another [method] so vital that, if lacking it, any study is
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thought by many authorities not to be scientific in the full sense of the
word. This further and crucial method is that of measurement.
(Spearman, 1937, p. 89)

The justification of the quantitative imperative takes the form of
a practical syllogism: all science is quantitative; psychology aspires
to be a science; therefore, psychology must be quantitative. The
first premise could be either a deductive inference from Pythago-
reanism or an inductive generalisation from the history of science.
However it is obtained, the logic of this argument entails that if
psychology is not quantitative, then psychology is not scientific. As
is now obvious, the first premise of the above practical syllogism
is merely a species of scientism. It is the mistaken view that a
method which applies to only some scientific disciplines (albeit
those once thought of as paradigms of science), should character-
ise all scientific disciplines.
Had neither Pythagoreanism nor the quantitative imperative

been accepted by psychologists and even had they not hankered
after the exactitude characteristic of the physical sciences, simply
because some of them wished to establish psychology as an aca-
demic, scientific discipline and as an allied profession, they would
still have had another reason to accept the measurability thesis.
The fact that Pythagoreanism and the quantitative imperative
were widely accepted within the nineteenth-century scientific com-
munity meant that if psychology was to be ‘sold’ within that milieu
as a science and as a science-based profession, it had to be ‘pack-
aged’ as quantitative. In this way, both scientism and practicalism
motivated psychologists to adopt the measurability thesis oppor-
tunistically, as an ideological means to a social end.
There are then, these five reasons why psychologists adopted

the measurability thesis: (i) the tendency to model psychology
upon quantitative natural science, (ii) the belief that pursuit of
the goals of precision and exactness required measurement, (iii)
Pythagoreanism, (iv) the quantitative imperative, and (v) the per-
ceived need to ‘sell’ psychology as quantitative. No doubt different
combinations of these reasons operated upon each of the founders
of quantitative psychology, but whatever the combination, they
constitute a potent mix and explain why rejection of this thesis
seemed to most psychologists to be completely out of the question.
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THE QUANTITY OBJECTION

The quantity objection, the claim that psychological attributes are
not quantitative, has its philosophical roots in the scientific revol-
ution. This revolution in human thought was accompanied by a
radical change in world view. Following the successes of Galileo’s
physics, the older, Aristotelian view, according to which the natu-
ral world was thought to contain both qualitative and quantitative
features, was rejected. It was replaced with a comprehensively
quantitative view of the physical world. Within this new view, the
apparently qualitative features of things (such as colours, odours,
flavours, etc.) were extracted from the common-sense picture of
the natural world and relocated within human ‘consciousness’.
This banishment of qualitative features to ‘consciousness’ was
closely linked with the distinction between primary and secondary
qualities articulated in various versions by thinkers such as Gali-
leo, Hobbes, Boyle, and Locke. The primary qualities were under-
stood to be the quantitative attributes of things and they were
taken to be their only real physical properties. The secondary qual-
ities were defined either as combinations of primary qualities apt
to cause qualitative experiences in consciousness, as in Locke (i.e.,
as physical dispositions)15 or as the qualitative, conscious experi-
ences themselves, as in Galileo.16 The content of these qualitative
experiences was thought of as having no existence independent of
the mind involved. One version of this new philosophical picture
was given by the English philosopher, Thomas Hobbes. Hobbes
held that the secondary qualities were ‘in the object . . . but so
many motions of matter; . . . neither in us are they anything else,
but divers motions; for motion produceth nothing but motion. But
their appearance to us is fancy, the same waking, that dreaming’
(Woodbridge, 1930, pp. 139-40). As fancy, the secondary qualities
were held to exist when and only when experienced and, so, to
have no independent, physical existence at all. In this way the

15 ‘Secondly, such qualities which in truth are nothing in the objects themselves but power
to produce various sensations in us by their primary qualities, i.e., by the bulk, figure,
texture and motion of their insensible parts, as colours sounds, tastes, etc. These I call
secondary qualities’ (Locke, [1690] 1894, Bk. 2, Ch. 8, Sect. 10).

16 ‘I think that these tastes, odours, colours, etc., on the side of the object in which they
seem to exist, are nothing else than mere names, but hold their residence solely in the
sensitive body; so that if the animal were removed, every such quality would be abolished
and annihilated’ (Galileo, [1623] 1932).
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world was seen as containing only matter, which in turn possessed
only quantitative attributes.
The most thoroughgoing version of this metaphysical picture

was constructed by Descartes. As already mentioned, early in his
intellectual career he was attracted to the possibility of a mathesis
universalis, a set of principles underlying all science. He was con-
vinced that these principles would be quantitative. The apparently
non-quantitative features of things (the ‘sensible qualities’, as he
called them) were present only in the mind. For example, sensory
qualities such as colours, do not really exist in physical objects,
but only in our minds when the brain is stimulated in certain ways.
Descartes is famous in philosophy for his sharp, metaphysical dis-
tinction between the mental and the physical orders of reality. He
summed it up neatly in his replies to some objections:

. . . there are certain activities, which we call corporeal, e.g. magnitude,
figure, motion, and all those that cannot be thought of apart from exten-
sion in space; and the substance in which they exist is called body . . .
Further, there are other activities, which we call thinking activities, e.g.
understanding, willing, imagining, feeling, etc., which agree in falling
under the description of thought, perception, or consciousness. The sub-
stance in which they reside we call a thinking thing or the mind, or any
other name we care, provided only we do not confound it with corporeal
substance, since thinking activities have no affinity with corporeal activi-
ties, and thought, which is the common nature in which the former
agree, is totally different from extension, the common term for describ-
ing the latter. ([1641] 1934, p. 64)

The basis for his distinction was explained in his Rules for the Regu-
lation of the Mind. The attributes of physical things (e.g., extension,
motion, etc.) he took to be quantitative and, so, measurable. The
sensible qualities (e.g., colour, warmth, etc.) he took to be non-
quantitative and, so, not measurable. Our ideas of physical things,
he thought, are clear and distinct; those of sensible qualities, obscure
and confused. At best, sensible qualities can be ordered but,
Descartes correctly saw, order by itself is not sufficient to sustain
ratios and, hence, insufficient for measurement. He recognised
that sensible qualities are correlated with the physical properties
stimulating our brains, but concluded that this correlation could
never be expressed mathematically because the sensible qualities,
by their nature, cannot be measured (Buroker, 1991). The con-
clusion of this argument is that because the sensible qualities do
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not exist in the physical world and are not amenable to mathemat-
ical treatment and because science is based upon mathematical
treatment (i.e., measurement), consciousness is not a proper sub-
ject for scientific investigation and, so, not a proper subject for
measurement.
In one form or another, this kind of philosophical picture has

informed all modern Western philosophy. It has brought in its
wake a host of philosophical problems to do with epistemology, the
relationship between mind and matter and, of course, the subject
matter of psychology. From the start of modern science, psy-
chology was excluded from the realm of the quantitative. When
philosophers, such as David Hume, began in the eighteenth cen-
tury to formulate psychological laws (in Hume’s case, laws of the
association of ideas) and, so, to found a ‘moral science’ of psy-
chology, no attempt was made to express these in quantitative
form, so entrenched had the non-quantitative view of mental
phenomena become. This was despite the fact that Hume was
modelling his psychology upon Newton’s physics and attempted to
understand the association of ideas by analogy with gravitation.17

The divorce between quantification and psychology was deeply
entrenched. For example, the German philosopher, Immanuel
Kant, agreed with Hume’s position in this respect and thought
that because mental phenomena exist only in time, and not space,
they could not be measured:

. . . mathematics is inapplicable to the phenomena of the internal sense
and their laws, unless one might want to take into consideration merely
the law of continuity in the flow of this sense’s internal changes . . . The
reason . . . lies in the fact that the pure internal intuition in which the
soul’s phenomena are to be constructed is time, which has only one
dimension. . . . It can, therefore, never become anything more than a
historical (and as such, as much as possible) systematic doctrine of the
internal sense, i.e., a natural description of the soul, but not a science of
the soul. ([1786] 1970, p. 8)

This attitude persisted well into the nineteenth century and ves-

17 ‘Thus Hume’s second task as a methodologist was to show that the Newtonian ‘‘methods
of philosophizing’’ are as applicable in the moral as they are in the physical sciences . . .
General laws must be propounded, on the model of the Newtonian laws of gravitation;
Hume thought he could point to such laws in the form of associative principles, which
‘‘are really to us the cement of the universe’’ ’ (Passmore, 1952, p. 8).
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tiges of it remain today in the phenomenological movement in
European philosophy and its derivatives within psychology.18

The quantity objection, however, produced a philosophical ten-
sion of its own as, increasingly, attempts were made in the eight-
eenth and nineteenth centuries to establish a science of psy-
chology. As explained, the quantity objection derived from the
dominant scientific world view. On the other hand, the view that
there is really only one order of reality, which must include the
mental along with the physical, is also implicit in the scientific
view of things. The mental and the physical interact causally, and
they can only do this if they both belong to the same realm of
being, the world that science purports to study. Ingenious philo-
sophies can be devised partitioning mind and matter into distinct
realms, but such philosophies cannot be sustained very easily in
the face even of ordinary experience, let alone of scientific think-
ing. So, the impulse to include psychology within the natural
sciences is a natural one. Given the quantitative imperative, it
was also only natural that this impulse should be accompanied by
another, viz., to measure mental phenomena. However, whenever
attempts were made to do this, the quantity objection was put.
A good example is Thomas Reid’s objections to Francis Hut-

cheson’s proposed quantitative moral psychology. Hutcheson
(1725) proposed a moral algebra, a set of mathematical hypoth-
eses relating moral and psychological attributes (see Brooks and
Aalto (1981) for a discussion of his theory). His proposal provided
the occasion for An Essay on Quantity (Reid, [1748] 1849). In this
paper, Reid begins by advancing a version of the classical concept
of measurement, one that clearly shows the influence of Euclid.
Quantities are said to be additively composed of parts and these
stand in relations of proportion or ratio to one another. It is this
that makes measurement possible and only quantities can be mea-
sured. Later, he turns his attention to the issue of ‘applying meas-
ures to things that properly have not quantity’, things that are
only capable of ‘more and less’, that is, of nothing more than

18 The intellectual trajectory of the quantity objection, interpreted radically as a non-
negotiable metaphysical principle, moving from the phenomenological movement,
through the so-called ‘third force’ in American psychology (Pandora, 1997) to ‘postmod-
ern’ qualitative methodology (e.g., Denzin & Lincoln, 1994), although always a minor
tradition in modern psychology, deserves its own history and will not be considered
further here.
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order. He presents the usual list of secondary qualities, ‘Tastes,
smells, the sensations of heat and cold, beauty, pleasure, all the
affections and appetites of the mind, wisdom, folly, and most kinds
of probability’ (p. 717), and adds virtue and merit to this list.
According to Reid there are only two legitimate routes to quanti-
fication. One is by showing directly that different levels of the
attribute involved stand in ratios to one another. The other is by
showing that the levels of the attribute vary at least monotonically
(this is not his term, of course) with something that is known to
be quantitative. Since, this has not been done for these secondary
and moral qualities, attempts to describe them quantitatively ‘is
only to ring changes on words, and to make a show of mathemat-
ical reasoning, without advancing one step in real knowledge (p.
717).
The quantity objection has two sides. The first is conceptual:

mental phenomena cannot meaningfully be said to be quantitat-
ive. The other is more empirical: the hypothesis that mental
phenomena are quantitative is meaningful, it is just that, as a
matter of fact, mental phenomena do not possess quantitative
structure. While Descartes’ was of the first, Reid’s objection is of
the second kind. In the thinking of those who opposed Fechner’s
psychophysics and later developments in quantitative psychology,
these two sides remained fairly distinct. Some, such as von Kries
(1882) and Bergson ([1889] 1913), were to emphasise the con-
ceptual side. Others, such as Campbell (1940), emphasised the
empirical. The respective merits of these will be considered in
later chapters. The important thing to note here is that the quan-
tity objection did not suddenly appear at the end of the nineteenth
century. It was an important feature of the post-seventeenth-
century world view.

APORIA AND NEXUS

These, then, were the inconsistent triad of presumptions con-
fronting those nineteenth-century scientists who aspired to make
psychology a quantitative science: the classical concept of
measurement, the measurability thesis, and the quantity objec-
tion. Interestingly, the force that each had attained derived from
the scientific revolution and the subsequent success of science.
This revolution and the success of quantitative science reinforced
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the position of the classical concept of measurement by installing
quantity as a fundamental scientific category and measurement as
a fundamental scientific practice. The success of quantitative sci-
ence in turn encouraged a thoroughgoing quantitative vision of
reality and the apparent success of that vision made it seem neces-
sary that any aspiring scientific discipline should also aspire to be
quantitative. Finally, the apparent success of the quantitative
vision of reality helped to banish psychological states from the
domain of quantitative science and, when psychologists attempted
to introduce such states into that domain, this quantitative vision
itself became an obstacle.
It was the singular misfortune of quantitative psychology to

inherit this aporia at its birth. Logically, what is required in order
to resolve it is recognition of the contingent character of both
the measurability thesis and the quantity objection. The quantity
objection is an empirical hypothesis. Its truth or falsity can only
be sensibly ascertained by scientific research. If it is true, then the
measurability thesis is false; if it is false, then the measurability
thesis is true, at least in principle. They are linked by the classical
concept of measurement, which sustains these implications. The
only way of severing this nexus is the rejection of this concept of
measurement.
Acceptance of Stevens’ definition of measurement is a rejection

of the classical concept. Therefore, the widespread acceptance of
Stevens’ definition within psychology after 1950 broke the nexus
between the measurability thesis and the quantity objection.
Indeed, it made the quantity objection seem quite irrelevant. To
those interested in establishing a quantitative psychology, the cen-
tral problem lay in the force of the quantity objection. As long as
the charge could be made that there was no scientific evidence to
support the hypothesis that psychological attributes are quantitat-
ive, psychological measurement would have its detractors. Wide-
spread acceptance of Stevens’ definition of measurement mar-
ginalised the detractors and sustained the conviction that
psychology, like physics, was a quantitative science. But was
acceptance of Stevens’ definition a genuine resolution?



CHAPTER 3

Quantity, number and measurement

in science

Every measurable thing . . . is imagined in the manner of
continuous quantity.

(Nicole Oresme)

Quantity communicates with number.
(Samuel Alexander)

What must the world be like, in its most general features, given
that at least some attributes can be measured and given that it is
possible that some quantitative theories are true? Answering this
question requires unfolding the metaphysics or logic of quantifi-
cation. That logic unfolded, one has a framework within which
attempts at quantification can be critically assessed. In particular,
this enterprise provides a basis for a critical history of quantifi-
cation in psychology and a critical analysis of Stevens’ definition
of measurement.
If measurement of an attribute such as, say, length (or

distance), is sometimes successful and some quantitative theories
such as, say, the theory that the area of a rectangle is its length
times its breadth, are true, then attributes such as length and
area must be quantities. Thus, a part of understanding the logic
of quantification is defining the concept of quantity. This much
tells us the kind of attributes that are measurable. Another part
is showing how magnitudes of a quantity relate to numbers. This
tells us what measurement is. A third part is showing how the
hypothesis that an attribute is quantitative can be tested by obser-
vational methods and how procedures for discovering quantitative
relations can be established. This tells us how to quantify.
In investigating these issues and proposing a logic of quantifi-

cation I will be largely synthesising answers given by others. I
propose little that is original regarding this logic. In the first

46
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instance, I lean very heavily upon a paper by the German math-
ematician, Otto Hölder, on the axioms of quantity and theory of
measurement.1 No matter how much the logic of quantification
must utilise mathematical results, it is not a part of mathematics.
It is a branch of philosophy. I have drawn upon relevant philo-
sophical works of a number of modern metaphysicians (Anderson,
1962; Armstrong, 1997; Bigelow, 1988), philosophers of measure-
ment (Helmholtz, 1887; Mundy, 1987, 1994; Nierderée, 1992;
Swoyer, 1987, 1991) and philosophers of mathematics (Frege,
1903; Whitehead and Russell, 1913; Bostock, 1979; Stein, 1990).

THE THEORY OF CONTINUOUS QUANTITY

If any attribute is measurable, length is. That is, a claim that an
object, say, this pen, X, is 12 centimetres long may be true.2 If this
particular claim is true, then the world must contain the following
situation, that of X’s length being 12cm. So, in its being possible,
we are committed to the possibility of these sorts of situations
(Anderson, 1962) or states of affairs (Armstrong, 1997) obtaining.
In their most general form, situations are always a matter of a
thing or things of some kind having a property, or a thing or things
of some kind standing in relation to something else. In this case,
the pen, X, would be of a specific length and that length would
stand in a specific numerical relation to another length (the unit
of measurement).3 The rest of this section is an attempt to spell
out just what these presuppositions entail.
Of course, X’s being 12cm long is just an example. We could be

1 Hölder (1901). For an English translation see Michell & Ernst (1996, 1997).
2 I accept the relatively simple view of truth that scientists, in attempting to understand
the way natural systems work, implicitly espouse: ‘a claim is true when things are as it
states them to be’ (Mackie, 1973).

3 Situations or states of affairs are all we need the world to be composed of in order to
make sense of the thesis that scientific observations or theories may be true. We do not
need to decompose situations into particulars (say, the pen, X) and universals (such as,
the length of 12 cm), as if these were capable of some independent existence. It makes
more sense to say that particularity and universality are features of every situation.
Neither do we need to suppose that the form of reality is other than situational. That
is, things may not always be as we take them to be (I may take X to be Y when it is
not), but the logical form of things must be situational (i.e., a matter of things having
properties or standing in relations to other things). To think otherwise is not only to
make all discourse impossible, it is to invite the logically intractable tangles of those
who think that the situational form is something we impose on things, that it is merely
a feature of our representations of reality.
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considering objects of any conceivable length. That is, there is not
just one length possible, the length of X. Length’s being measur-
able allows an indefinitely large range. Where we deal with a
range of properties, all of the same general kind, such as the class
of all lengths, the class constitutes what is here meant by an attri-
bute.4 What makes the properties in some range an attribute is the
fact that they are mutually exclusive in relation to one another.
That is, if the pen, X, is of one length, then it cannot at the same
time be of another: if, for example, X’s length is 12cm, then it
cannot at the same time be a different length, say 30cm. Indeed,
as is evident, different lengths stand in numerical relations to one
another (e.g., the length of X is 12 times the length known as a
centimetre). It is the possibility of this sort of relation between
different levels of an attribute, one level being r times another
(where r is a positive real number), that distinguishes quantitative
from non-quantitative attributes. Non-quantitative attributes do
not stand in numerical relations of this sort to one another. Before
we can understand what it means for one length to be, for
example, 12 times another, we need to understand what makes
such numerical relations possible. That is, the range of lengths
must have a special kind of character sustaining such numerical
relations, one which non-quantitative attributes lack.
Numerical relations require additive structure. We know that

lengths are additive because of facts of the following sort. Suppose
we have a set of rigid, straight rods of various lengths. We might
have a rod, X, of length a and another rod, Y, of length b. If X and
Y are combined end to end, so that Y becomes a linear extension
of X, then the length of this concatenation of rods will be a + b. If
we call the concatenation of these two rods Z, and call Z’s length
c, then c = a + b. That is, the lengths, a, b and c stand in an additive
relation to one another. Of course, the lengths stand in this
relation whether or not the operation of concatenating rods X and
Y into Z is carried out. In this sense, the additive relation between
these lengths is a permanent feature of the length attribute, one
independent of anything we might do with objects.
The fact that the range of all lengths possesses additive struc-

ture can be expressed as follows. Let a, b, c, . . ., etc. be any lengths

4 Some attributes, such as the lengths of objects, are ranges of properties; others, such as
the distance between two points in space, are ranges of relations.
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in the range of all lengths. Then the fact that length is additive
is just the fact that the following four conditions obtain.
1. For any lengths, a and b, one and only one of the following is

true:
(i) a = b;
(ii) there exists c such that a = b + c;5

(iii) there exists c such that b = a + c.
2. For any lengths a and b, a + b > a.
3. For any lengths a and b, a + b = b + a.
4. For any lengths a, b and c, a + (b + c) = (a + b) + c.
The first of these conditions is that any two lengths, a and b, are
either identical or different and if the latter, then there is another
length, c, making up the difference between them. The second
says that a sum of lengths always exceeds each length summed.
The third says that the additive relation between lengths is indif-
ferent to the order of the addition. The fourth says that the addi-
tive relation is indifferent to the order of compound additions: the
addition of three lengths, a, b and c is identical whether it is the
addition of a to the sum of b and c or c to the sum of a and b. Note
also that the first and second conditions entail that lengths are
ordered according to magnitude: for any pair of lengths, a and b,
a is greater than b if and only if (ii) is true. Hence, for each pair
of different lengths, one is always greater than the other.
If the range of all lengths has the structure imposed by these

four conditions then it is quantitative. That means that the con-
tent of claims like a = 12b can be unfolded. What such a claim
means is that

a = 11b + b

(where 11b = 10b + b, 10b = 9b + b, . . ., 2b = b + b). Moreover,
numerical relations involving numbers that are not whole num-
bers can also be understood. Claims like a = 9.45b are equivalent
to 100a = 945b and both 100a and 945b can be interpreted by
analogy with 12b above. In general, claims of the sort na = mb
(where n and m are natural6 numbers) have a definite meaning.
What is missing from the above characterisation of length as a

5 For example, if the length of my pen is b and the length of my page is a, then there will
be a part of my page, the length of which is c, such that a = b + c.

6 By a natural number I mean just a whole number, i.e., one of the series, 1, 2, 3, . . ., etc.
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quantity is the understanding that every length in the complete
range of lengths is measurable relative to any other length taken
as the unit. In claiming that length is measurable, we do not mean
that just some lengths stand in numerical relations to the unit.
They all do. Furthermore, we recognise that the unit employed is
always arbitrary, in the sense that while the metre or yard (or
some part thereof) is conventionally selected, any other length
might have been taken had it been convenient to do so. That is,
before we understand what it is for length to be a measurable
quantity we need to characterise the range of lengths so that every
conceivable length is measurable relative to any length as unit.
This may involve talking about lengths that are not instantiated
in objects.7 In the attempt to understand what it means for length
to be measurable, restricting ourselves simply to those lengths
present in our local region of space-time is far too egocentric.
That is, within the range of lengths we need to consider every

conceivable measurable length, so a set of conditions is required
to describe the complete range of measurable lengths possible.
This is done as follows.
5. For any length a, there is another b, such that b < a.
6. For any pair of lengths, a and b, there is another c, such that

c = a + b.
7. For every non-empty class of lengths having an upper bound,

there is a least upper bound.
These three conditions ensure that all possible, measurable
lengths are included in the range of lengths considered. Condition
5 simply says that there is no smallest length: diminishing, lengths
just keep getting smaller. However, lengths are bounded below:
condition 2 entails that there is no length zero or less.8 Condition
6 implies that there is no greatest length. This condition also
means that the class of all lengths is unbounded above. However,
this does not ensure that there are no gaps in the sequence of
lengths ordered according to magnitude. This is why condition 7
is necessary. In order to understand 7, the concepts of upper bound
and least upper bound must be explained. Consider a non-empty
class, L, of lengths. A length, b, is an upper bound of L if and only

7 If it is allowed that distances between points in space have length and that space is
continuous and unbounded, then every conceivable length will be instantiated.

8 In this respect, the concept of distance is wider than that of length. Distances may be
zero or negative. Differences between lengths are distances.
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if every length, a, in L is such that a � b. A least upper bound of
L is an upper bound, c, of L such that c � b (where b is any upper
bound of L).
Condition 7 ensures that the class of all possible lengths is con-

tinuous. What continuity means is that if any arbitrary length, a,
is selected as unit, then for every positive real number, r, there is
a length b such that b = ra. How 7 completes the class of lengths
may be illustrated as follows. Consider the side and diagonal of
any arbitrary square. Take the length of the side, s, as the unit of
measurement. Suppose that the class L contains only every length
strictly less than the length, d, of the diagonal. Note that L does
not contain an upper bound within itself: for any length, a, less
than d there is always one greater than a but still less than d (e.g.,
the length mid-way between a and d). Now consider the class of
all lengths strictly greater than that of the diagonal. Let us call
this class L*. Each of these lengths is, by definition, an upper
bound of L. But analogously, there is no least upper bound of L
amongst them: for any length, b, greater than d there is always
one less than b but still greater than d (e.g., the length mid-way
between d and b). Thus, if the class of all lengths consisted only
of the lengths in the two classes, L and L*, then there would be a
length missing, one measurable by a real number relative to s as
unit, viz., the length d, which of course, by Pythagoras’ theorem,
must be s�2. However, condition 7 ensures that d is not missing
because it requires that the least upper bound of class L be
included in the range of lengths. In this way, condition 7 ensures
no gaps anywhere in the sequence of lengths ordered according to
magnitude.
With these seven conditions, the complete class of lengths and

the structure that they must have if they are measurable has been
specified. Of course, length has simply been employed here as an
example. If it is the case that any attribute, Q, is measurable, then
analogously with the example of length, what is entailed is the
analogue of the above seven conditions for Q. That is, if an attri-
bute is measurable, then this is what the world must be like.9

As Hölder (1901) set these conditions out, they are slightly, but

9 Of course, it is recognised that for some quantities (e.g., velocity in relativity theory)
there are strong theoretical reasons to restrict its range in some way. Then the above
conditions must be modified slightly for that special case.
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not greatly different from the above. Since it is to Hölder’s proofs
that reference will be made, his conditions are displayed below.
Let Q be an attribute and let a, b, c, . . . be different levels (or
magnitudes, as they will be called henceforth) of it. Then Hölder’s
conditions, with his wording slightly modified, are as follows. (In
each case the conditions are also described approximately, using
minimal mathematical symbolism.)
1. Given any two magnitudes, a and b, of Q, one and only one of

the following is true:
(i) a is identical to b (a = b, b = a);
(ii) a is greater than b and b is less than a (a > b, b < a); or
(iii) b is greater than a and a is less than b (b > a, a < b)

(any two magnitudes of the same quantity are either identical or different
and if the latter, one is always greater than the other).
2. For every magnitude, a, of Q, there exists10 a b in Q such that

b < a
(for every magnitude of a quantity there is another that is less).
3. For every ordered pair of magnitudes, a and b, from Q, there

exists c in Q such that a + b = c
(for every pair of magnitudes there exists another, their sum).11

4. For all a and b in Q, a + b > a and a + b > b
(every sum of two magnitudes is greater than each of those summed).
5. For any a and b in Q, if a < b then there exists x and y in Q

such that a + x = b and y + a = b
(if one magnitude is less than another then there exists a third that makes
up the difference between them).12

6. For all a, b, and c in Q, (a + b) + c = a + (b + c)
(the sum of three magnitudes is the same whether it is the addition of the
third to the sum of the first two or the addition of the first to the sum of the
last two).
7. For every pair of classes of magnitudes in Q, φ and ψ, such that

10 Hölder is using the term exists here in a sense familiar to mathematicians but, perhaps,
not to non-mathematicians. He does not necessarily mean to imply that magnitude b is
spatio-temporally located. He can be interpreted as specifying what magnitudes he takes
to be possible.

11 This explanation of Hölder’s third axiom is slightly stronger than the axiom itself
because it ignores the order in which the parts are taken. Hölder (1901) proves that +
is commutative (i.e., for any two magnitudes, a and b, of a quantity, a + b = b + a) and,
so, the stronger proposition does follow from the set of axioms as a whole.

12 Again, this explanation is slightly stronger than the axiom stated in that commutativity
is assumed.
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(i) each magnitude belongs to one and only one of φ and ψ,
(ii) neither φ nor ψ is empty, and
(iii) every magnitude in φ is less than each magnitude in ψ,

there exists a magnitude x in Q such that for every x’ in Q if x’ <
x then x’ is in φ and if x’ > x then x’ belongs to ψ. (Depending on
the particular case, x may belong to either class.)
(Given any two sets of magnitudes, an ‘upper’ and a ‘lower’ set, such that
each magnitude of a quantity belongs to either set but none to both and each
magnitude of the upper set is greater than any of the lower, there must exist
a magnitude no greater than any in the upper set and no less than any in
the lower.)
In considering these conditions, it is very easy to misunderstand
what they claim.13 Hölder’s conditions describe the structure of
quantity. They say nothing directly about how we might relate to
any given quantity. Thus, the relations (+, =, <, and >) involved
are not to be thought of as always directly observable by us in the
behaviour of objects instantiating the relevant magnitudes. For
example, one may be able to think of operations for establishing
that two objects are of equal length. However, any such operation
will never apply across the class of all objects, let alone the class
of all lengths. One way is to compare side by side the span of two
transportable objects, but the success of this operation depends
upon other properties possessed by the objects and not just upon
length. Its employment also depends upon our sensory-motor
capacities. Hence, there will be conditions under which such an
observable relation between objects will not hold while the
relation of identity between magnitudes obtains.
In characterising a quantity, such as length, the relations men-

tioned are between specific lengths. So, =, +, >, and < are to
be understood, not as relations between objects, but as relations
between the magnitudes. For example, considering length again,
a + b = c, by itself, does not say anything about the outcome when
two objects are concatenated lengthwise and compared with a
third. Neither should it be understood as saying anything about
what results when two lengths are put together or combined, if
such an operation is possible. It simply asserts the existence of a
ternary relation of a specific form between lengths. Whether or
not that ternary relation is directly evident when either objects or

13 For the sort of misunderstanding I refer to see Nagel (1931).
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lengths are operated upon by us is a further matter and one not
dependent upon the existence of that relation alone. That is, while
all quantities must be additive (in the sense of satisfying Hölder’s
conditions 3–6), it does not necessarily follow that there will exist
a (humanly) performable operation upon either objects or lengths
that directly reflects this additivity. That is, all quantities must be
additive, but they need not all be extensive (as this term is now
understood).
Extensive quantities are those in which the additivity of the

quantity (i.e., the truth of Hölder’s conditions 3–6, especially) is
evident to us more or less directly from the behaviour of some
objects manifesting magnitudes of the quantity. For example,
using a set of rigid, straight rods of humanly manageable dimen-
sions, the additivity of length can be illustrated more or less
directly. I say more or less because testing a condition like Höld-
er’s sixth, for example, involves matching the lengths of different
rods and this can only ever be done by us, with our limited percep-
tual capacities, approximately. Furthermore, if additivity is
assessed via the concatenation or division of rods, as seems natu-
ral, this can only ever be done over a very restricted range of
lengths. In this very limited sense then, some quantities are
extensive. (It should be stressed that no quantity is extensive
across the entire range of its magnitudes.) Being quantitative (i.e.,
additive) is only necessary and not sufficient for being extensive.
What is also required for a quantity to be extensive is a certain
kind of complex relation between objects instantiating magnitudes
of the quantity and us (i.e., human observers). The fact that cer-
tain attributes are quantitative first came to attention because
certain quantities (such as length, area, volume, etc.) are extens-
ive, but the existence of non-extensive quantities is a possibility.
In the Middle Ages, when the application of quantitative con-

cepts to (then apparently non-extensive) physical attributes, like
velocity, was being considered, the concept of intensive quantity was
proposed.14 Intensities were understood as quantities (i.e., as able
to sustain ratios in Euclid’s sense), but they were not considered

14 As mentioned earlier, this conceptual advance arose out of the controversy over the
intension and remission of qualities when ‘Peter Lombard had put the question whether
the theological virtue of charity could increase and decrease in an individual and be
more or less intense at different times’ (Crombie, 1994, p. 410).
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extensive. That is, they were not understood as quantities within
which additivity was directly demonstrable, even for a restricted
range of magnitudes. This is apparent in the following comment
by Oresme about intensive quantity:

Every measurable thing except number is imagined in the manner of
continuous quantity. Therefore, for the mensuration of such a thing, it
is necessary that points, lines and surfaces, or their properties be
imagined. For in them (i.e., the geometrical entities), as the Philosopher
has it, measure or ratio is initially found, while in other things it is
recognized by similarity as they are being referred by the intellect to
them (i.e., to geometrical entities) . . . Therefore, every intensity which
can be acquired successively ought to be imagined by a straight line . . .
For whatever ratio is found to exist between intensity and intensity, in
relating intensities of the same kind, a similar ratio is found to exist
between line and line and vice versa . . . Therefore, the measure of inten-
sities can be fittingly imagined as the measure of lines. (De Configur-
ationibus I, i; see Clagget, 1968, pp. 165–7).

For Oresme, hypothesising that an attribute is quantitative is an
act of constructive imagination. We take it that certain non-
extensive attributes have a structure capable of sustaining ratios.
Such a structure we find exemplified first and foremost in the
lengths of lines. Here we have extensive quantity. By analogy with
length, quantitative structure can be imagined as present in other
attributes (i.e., those which can be acquired successively, by which
I take it he means those capable of increase or decrease.)15 It
seems clear that what Oresme believes is being hypothesised by
analogy here, is the general structure of quantities and not other,
contingent, features present in lines (i.e., that they can be divided
or concatenated). Oresme finds it meaningful to suppose that
intensities of the same kind stand in ratios, as lengths do. This
analogy presumes an identity of structure (e.g., velocities relate
ordinally and additively to one another, as lengths do), but it
clearly does not presume an analogous capacity on our part to be
able to divide or concatenate the objects or magnitudes involved.
Oresme’s comments indicate a significant conceptual break-
through, one in which the concepts of quantity and extensity are

15 If this is what Oresme meant, then his claim that such attributes ought to be imagined
by analogy with a straight line is far too strong. Order alone does not entail quantity.
The correct view is that the hypothesis that they are quantitative may be considered.
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understood as logically distinct.16 Such a breakthrough was a
necessary step leading to the scientific revolution.
One way of making this point in a more contemporary context

is to consider uncontroversial cases of continuous quantity where
the additivity relation upon the quantity is not directly observable.
Density is one such. Density is taken to be a continuous quantity,
just as mass and volume are, and it is taken to be quantitatively
related to them by a continuous function (i.e., density = mass/
volume). Volume, on the other hand, is an extensive quantity:
there is a concatenation operation upon certain regular solids
under certain conditions, which directly reflects the additivity
relations between their volumes. The same cannot be said for den-
sity. Hence, in taking density to be quantitative, its internal addi-
tive structure is taken to be of a kind with that of extensive quan-
tities (such as volume), while its external relations with human
observers are known to be quite different from that of extensive
quantities.
The point is also clear in the contrast between Newtonian and

relativistic velocity. According to Newtonian physics, if a is the
velocity of A relative to B and b is the velocity of B relative to C
(where A and B are travelling in exactly the same direction) then
the velocity of A relative to C is a + b. Thus, according to Newton-
ian physics, this procedure for concatenating the velocities of
objects revealed their additive structure. In relativistic physics,
however, the velocity of A relative to C is taken to be (a + b)/(1 +
abc-2), where c is the velocity of light. The same concatenation
procedure no longer directly reveals the additive structure of the
quantity. Therefore, concatenation operations upon objects and
relations of additivity between magnitudes are logically distinct
concepts. While the former may sometimes allow us to see the
latter, they are able to be distinguished from one another along
the following lines.
Mill (1843) made a distinction between uniformities of succession

and uniformities of coexistence. The former are causal regularities,
stating what is dependent upon what else. The latter are not. They
do not express causal dependence, rather they express non-causal,
structural relationships. For example, consider Hölder’s condition

16 The point is that quantity is an absolute notion, while extensity is a relative one. It is
relative, amongst other things, to human sensory-motor capacities.
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7 (continuity or, as it is sometimes called, Dedekind completeness).
As originally stated by Hölder it was:

Whenever all magnitudes are divided into two classes such that each
magnitude belongs to one and only one class, neither class is empty, and
any magnitude in the first class is less than each magnitude in the second
class, then there exists a magnitude ξ such that every ξ’ < ξ is in the
first class and every ξ’’ > ξ belongs to the second class. (Depending on
the particular case, ξ may belong to either class.) (Michell & Ernst,
1996, p. 38)

Now, while this wording may reflect nothing more than a fairly
standard mathematical locution, the ‘Whenever . . ., then . . .’ form
is open to a causal interpretation (i.e., such a statement tells us
what happens when all magnitudes are so divided). Such an
interpretation is unlikely, given the impossibility of performing
the operation involved, but this misinterpretation is completely
avoided if the axiom is restated as a uniformity of coexistence: a
proposition about the structure of such classes (as in my condition
7), rather than about the succession of events.
The conditions of measurable quantity are all of this form. They

are to be interpreted as saying nothing, by themselves, about
causal relationships, i.e., about what happens when specific oper-
ations are performed upon the magnitudes involved or upon the
objects manifesting those magnitudes. They do no more than spec-
ify structural relations between such magnitudes. They specify
what it is for a range of properties or a range of relations to be
measurable, and nothing more. Interpreting the conditions in this
way means that two important questions are put to one side.
These are: (i) how do we get to know that a range of attributes is
quantitative? and (ii) how do we measure the attributes within
such a range? These, of course, are the questions to which the
scientist requires answers. However, we must be patient, for other
matters provide a necessary basis for answering them and it is
always important to deal with questions in their logical order.
Here the logically prior question is, what must an attribute be like
if it is measurable?
Hölder’s conditions of quantity make it possible to prove that

every magnitude of a quantity is measurable relative to any mag-
nitude as the unit. Hölder does this as follows. He defines, for any
magnitude a in Q, 2a = a + a, 3a = (a + a) + a, 4a = ((a + a) + a) + a,



Quantity, number and measurement in science58

etc., so that generally, na = (n−1)a + a. Then given any pair of
magnitudes, a and b, and natural numbers, m and n,
(i) m/n is a lower fraction in relation to a : b if and only if na > mb;

and
(ii) m/n is an upper fraction in relation to a : b� if and only if na �

mb.
That is, the ratio (or measure) of magnitude a relative to unit b
is located via the ordered sequence of (positive) rational numbers
(i.e., numerical ratios). This, of course, is the same method Euclid
used in Book V of his Elements for specifying when two ratios of
magnitudes are equal. (In Hölder’s terms, they are identical when
their respective sets of upper and lower fractions are the same.)
This way of locating ratios of magnitudes matches ratios uniquely
with positive real numbers. Dedekind, who was also inspired by
Book V of Euclid’s Elements, noted that each positive real number
is a least upper bound of a non-empty class of rational numbers
(1872). He called such least upper bounds, cuts, and they have
since become known as Dedekind cuts. Thus, ratios of magnitudes
correspond to sets of lower fractions and each set of lower frac-
tions corresponds to its own Dedekind cut (least upper bound),
and so each ratio of magnitudes is associated with a real number.
That is, Hölder proved that

For each ratio of magnitudes a : b, i.e., for each two magnitudes taken
in a specific order, there exists a well-defined cut, i.e., a definite number
in the general sense of the word. This number shall be denoted [a : b].
(Michell & Ernst, 1996, p. 242)

And later he also proves that

There exists exactly one magnitude, ξ, whose ratio to an arbitrarily given
magnitude, b, is specified by some arbitrarily chosen cut, κ. (Michell &
Ernst, 1996, p. 245)

That is, Hölder’s conditions entail that for every magnitude there
is a measure relative to any magnitude taken as unit and for each
positive real number and unit there is a magnitude measured by
that real number relative to that unit. Hölder refers to the real
number, [a : b], as ‘the measure-number obtained when magnitude
a is measured by magnitude b, in which case b is called the unit’
(Michell & Ernst, 1996, p. 242). Hölder proved that the system
of ratios of magnitudes of an unbounded continuous quantity is
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isomorphic to the system of positive real numbers. This makes
explicit what is meant by the measure of one magnitude relative to
another.
Hölder’s achievement here cannot be underestimated. Measure-

ment had existed for millennia prior to the publication of his
paper. At least since the time of Euclid, it was common knowledge
that measurement involved the estimation of ratios of magnitudes
of a quantity (one magnitude generally unknown, the other speci-
fied as a unit). However, what had never been made explicit
during the history of quantitative science was the structure which
magnitudes must possess if any two of them are to stand in ratios
which can be expressed numerically. Of course, in order for this
structure to be specified exactly, it was necessary to define conti-
nuity. This was done by Dedekind using his concept of a cut
(1872). Once that was achieved, progress with the concept of
quantity was possible. Successfully using Dedekind’s definition was
Hölder’s achievement. It filled a significant gap in the understand-
ing of measurement: we now know precisely why some attributes
are measurable and some not. What makes the difference is pos-
session of quantitative structure. Hölder did not solve all problems
by any means, but his contribution made it possible to progress to
other problems in the theory of measurement.17

THE THEORY OF (MEASUREMENT) NUMBERS

If attributes are measurable, then the world contains continuous
quantities, that is, attributes which, by virtue of their additive
structure, sustain numerical relations of the appropriate kind
between magnitudes. The appropriate kind of numerical relation
is this: if a and b are any magnitudes of the same quantity, then
a:b = r (where r is a real number). That is, the existence of
measurement not only presumes the existence of quantities, it
presumes the existence of real numbers, as well. Real numbers
seem to be mysterious entities. This is because they are thought

17 Hölder’s paper was effectively ignored in the philosophy of measurement for half a cen-
tury. While his results received immediate attention from mathematicians (Huntington,
1902), in measurement theory its significance was not really appreciated until Suppes
(1951). Nagel (1931) gave a critique, but one compromised by philosophical precon-
ceptions.
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to be abstract entities,18 detached from space and time (Quine,
1953).
Fortunately, the existence of measurement does not leave real

numbers as mysterious entities because in presuming that there
are continuous quantities, real numbers are implicitly entailed.
Early in his paper, Hölder stated that

To unambiguously specify the formation of multiples of a magnitude I
will set 2a = a + a, 3a = (a + a) + a, 4a = ((a + a) + a) + a, etc. so that in
general, na = (n−1)a + a. (Michell & Ernst, 1996, p. 238)

If Hölder is taken literally, then, 2 = (a + a)/a, 3 = ((a + a) + a)/a,
4 = (((a + a) + a) + a)/a, etc., and in general n = ((n-1)a + a)/a. That
is, the natural number, n, is the ratio of the magnitude, na, to the
magnitude, a.19 However, at this point care must be taken. If b is
any other magnitude of the same quantity, then 2 = (b + b)/b, or if
c is a magnitude of a completely different quantity, then 2 = (c +
c)/c. Since (a + a)/a = (b + b)/b = (c + c)/c, 2 is what is common to all
of these structures. That is, it is a kind of structure. It is one
magnitude’s being double or being twice another, and so on, for
other natural numbers. Hence, wherever there is 2a and a (as
magnitudes instantiated in some objects), there is 2 as well, as
the relation between these two magnitudes. Just as magnitudes
are located in situations, so are numbers.
One reason why numbers appear to be mysterious is because

they are relations, and relations are notoriously difficult to under-
stand.20 Properties seem more definitely located in space and time
than relations do. The redness of the car, it seems, is there, right
where the car is. However, Smith’s ownership of this car (a
relation between Smith and his car) does not seem to be quite so
palpably present. But this way of thinking is a trap for the unwary:
what is spatio-temporally located is not simply properties or
relations, but complex situations. That is, in this example, what

18 For modern philosophers, the term abstract has a very special meaning, one that neatly
demonstrates the fallacy of reification. Strictly speaking, abstracting is a special psycho-
logical relation: that of attending to one feature while ignoring others. To believe that
what we attend to in abstracting is abstract is to mistake the relation between two terms
for a quality of one of them.

19 Hölder might not have agreed with this view of numbers. It is possible that he had a
view something like this (Michell, 1993). Nonetheless, this view is implicit in his theory
of quantity.

20 Aristotle said that relations are ‘least of all things a kind of entity or substance’
(Metaphysics 1088a 22).
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exist (i.e., what is spatio-temporally located) are the two complex
situations, the car’s being red and Smith’s owning the car. Simi-
larly with respect to numbers: what exist are situations involving
numerical relations.
In considering specific relations, the error to which we are prone

if we are not careful is that of mistaking a relation between things
for a quality of one of those things.21 The view that numbers are
properties of agglomerations of things illustrates this.22 Frege
(1884/1950) saw clearly the flaw in this: ‘I am able to think of
the Iliad either as one poem, or as 24 Books, or as some large
Number of verses’ (p. 28e). That is, the number of things in an
agglomeration is always relative to a unit (e.g., in Frege’s example,
a poem, book, or verse). That is, numbers are not features of
agglomerations per se, but are relations. The relation involved
holds between the size of the agglomeration and the unit. For
example, an agglomeration may be that of four books, in which
case being of four books is a property it has, but it does not have
the property of being four. What is four, however, is its size (being
of four books) in relation to the unit (being a book), that is, its
relative magnitude or ratio to a unit.
Taking the natural numbers in this way opens the prospect of

generalising to the integers, rational numbers and real numbers,
as noted by Forrest and Armstrong (1987). The integers, which
differ from the natural numbers (1, 2, 3, . . ., etc.) in being either
positive or negative and including 0 (i.e., . . ., −3, −2, −1, 0, +1,
+2, +3, . . .) are, each, the ratio of a difference between two mul-
tiples of a magnitude relative to that magnitude, itself. The con-
cept of a difference between two magnitudes is implicit in the
concept of a sum: if, for any three magnitudes of the same quan-
tity, a, b, and c, c = a + b, then c − a = b and a − c = −b. Then, for
example, −2 = [(a) − ((a + a) + a)]/a, while +2 = (((a + a) + a) − (a))/a. Of
course, again it is not the specific magnitudes involved that are
important but the kind of structure instantiated: the fact that
the difference (whether positive or negative) is twice the unit. In

21 Anderson (1962) was especially attuned to this form of logical confusion in the thinking
of others (see also Baker, 1986, and Mackie, 1962).

22 ‘What, then, is that which is connoted by a name of number? Of course some property
belonging to the agglomeration of things which we call by the name; and that property
is, the characteristic manner in which the agglomeration is made up of, and may be
separated into parts’ (Mill, 1843, Bk. III, Ch. XXIV, § 5).
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general, for any magnitude, a, and natural number, n, −2 = ((n −
2)a − na)/a and +2 = (na − (n − 2)a)/a.
In the case of both the natural numbers and the integers, the

ratio is always that of a multiple of a to a or a difference between
multiples of a relative to a. But if a wider class of relationships is
considered, then rational numbers are encountered. In general
terms, for example, for any natural numbers, n and m, n/m = na/
ma. That is, the rational numbers are ratios of multiples of the
same magnitude.
The real numbers are more complex structural relations than

the rational numbers, but like them are already implicit in the
concept of a continuous quantity. As already displayed, for any
magnitudes of a quantity, a and b, and any natural numbers, n and
m, a/b > n/m if and only if ma > nb and a/b � n/m if and only if ma
� nb. That is, a/b cuts the rational numbers into two classes: first,
all n/m such that n/m � a/b; and second, all n/m such that n/m >
a/b (for all natural numbers, n and m). As Dedekind showed, real
numbers are least upper bounds of classes of rational numbers
(1872). Since a/b cuts the rational numbers into two classes, each
number in the second class being greater than any in the first, the
real number which is the least upper bound of the first class is
then just a/b. That is, real numbers are ratios of magnitudes of a
quantity.
This way of understanding the real numbers involves taking the

numbers not as abstract entities, but as relations between magni-
tudes of the same quantity, relations that are already implicit in
the concept of multiples of a magnitude and relations that exist
wherever magnitudes exist. This is no new heterodoxy. It is the
traditional understanding of them, one revived in recent decades.
Both Bostock (1979) and Stein (1990) show how this view of the
real numbers is implicit in Euclid’s theory of ratios of magnitudes
in Book V of the Elements. Of course, it would be anachronistic to
attribute such a view to him. Euclid had only one concept of
number (whole number) and he distinguished numbers from
ratios (Fowler, 1987). Nevertheless, his definition of number as ‘a
multitude composed of units’ (Elements, Bk. VII, Defn. 2; Heath,
1908, p. 277) is relational: a multitude of units is the multitude
relative to the unit. While Euclid’s definition was standard in
ancient times and during the Middle Ages, once measurement
became pivotal to science, as it did from the scientific revolution,
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his definition was obsolete because measurement as a practice
typically produces rational numbers and, theoretically, it requires
irrational numbers as well. Euclid’s definition was too narrow.
Scientists, from Oresme to Galileo, had intuitively grasped the
connection between numbers and ratios and it was just a matter
of time before Euclid’s definition gave way to a definition in terms
of ratio. The beginnings of such an understanding are clearly pre-
sent in the works of the seventeenth-century English mathema-
tician, John Wallis, who wrote that

When a comparison in terms of ratio is made, the resultant ratio often
[namely with the exception of the ‘numerical genus’ itself] leaves the
genus of quantities compared, and passes into the numerical genus,
whatever the genus of quantities compared may have been. (Wallis,
Mathesis Universalis, in Klein, 1968, p. 222)

Wallis recognised that ratios of magnitudes are numbers. This
new understanding of number became quite explicit in Newton,
who defined it this way:

By number we understand not so much a multitude of Unities, as the
abstracted Ratio of any Quantity to another Quantity of the same kind,
which we take for Unity. (Newton, [1728] 1967)

Newton, here, explicitly rejected Euclid’s definition and replaced
it with the much more general definition, one adequate to an
understanding of the requirements of scientific measurement. By
an abstracted ratio Newton did not mean an abstract entity in the
modern sense, of course, he only meant that it is the bare ratio,
considered independently of the specific magnitudes or kind of
quantity involved. Just as a colour can be considered in the
abstract, that is, without attending to whether it is the colour of
a specific shirt or particular flower, so a ratio of magnitudes can
be considered, ignoring the fact that the quantity involved is
length or time. Then the thing considered is just the ratio on its
own.
As far as just the real numbers are concerned, this understand-

ing was Frege’s. In the philosophy of mathematics, Frege is best
known for his definition of the natural numbers as classes of simi-
lar classes (Frege, 1884). What is often not appreciated is that
Frege (1903) defined real numbers as ratios of magnitudes.23 In

23 I am indebted to John Bigelow for giving me access to an English translation made for
him by Douglas Jesseph in 1982 of the relevant sections of Frege’s Grundgesetze. There
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doing this he saw his definition as continuous with that of Newton.
What is also not widely appreciated is that Whitehead and Russell
(1913) followed Frege in this respect.24 The definition of real num-
bers in this way seems straightforward. However, there is one
important subtlety that needs attention.
In order to show this, I will follow a line of exposition used

by De Morgan (1836) in his definition of ratios. This treatment
understands ratios not as binary relations between magnitudes,
but as binary relations between classes of ordered multiples of
magnitudes. For each magnitude, a, of a quantity, there is the
ordered class of multiples based upon it: a, 2a, 3a, . . ., etc., in
general na, for all natural numbers, n. Similarly, for another mag-
nitude, b, of the same quantity, there is the class, b, 2b, 3b, . . .,
etc. Whitehead calls each of these classes of ordered multiples a
vector (Whitehead and Russell, 1913). For convenience I will
follow this usage. The ratio between a and b is really a relation
between these two vectors, the a vector and the b vector. Each na
(for all natural numbers, n) is less than, equal to, or greater than
each mb (for all natural numbers, m). That is, each step along the
a vector precedes, coincides with, or exceeds, any step along the b
vector. How these two vectors relate overall (that is, the pattern
of how successive steps within each vector relate between vectors)
is the ratio between a and b. If at some point these vectors coincide
(i.e., na = mb, for some natural numbers, n and m), then the ratio
between a and b is rational; if they do not, it is irrational. Formally,
this way of defining ratios is really equivalent to Euclid’s, but it
emphasises more clearly the dependence of ratios upon the
relation of addition involved in the quantity. This is important
because if there is one such relation of addition for any continuous
quantity (and there must be because the attribute is quantitative),
then there is an infinite number. That is, just given an arbitrary
pair of magnitudes of a quantity in isolation, there is no unique
ratio between them. Instead there is an infinite number of ratios,

is no published English translation of the relevant sections of this important work. How-
ever, Dummett (1991) gives an exposition of Frege’s argument.

24 As Russell acknowledged, this treatment was really Whitehead’s: ‘My friend and collab-
orator Dr A. N. Whitehead has developed a theory of fractions specially adapted for
their application to measurement, which is set forth in Principia Mathematica’ (Russell,
1919, p. 64). Principia Mathematica is an acquired taste, so see Quine (1941, 1963) and
Bigelow (1988) for more digestible expositions of Whitehead’s treatment.
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one for each relation of addition. Ratios between magnitudes of a
quantity are always relative to additivity.
Ellis (1966) gives a neat illustration of this point for the case

of length, which I will embellish slightly.25 What seems to us the
most natural way for lengths to be added is exemplified by joining
two rigid, straight rods, X and Y, linearly end to end to form a
new rod, Z, so that if X’s length is a and Y’s length is b then Z’s
is a + b. However, suppose we lived in a different kind of universe
and for some reason rod X could not be extended linearly by Y
and that the best that could be done is to project Y at a right
angle to X, so that X and Y form two sides of a right-angled tri-
angle. Then, of course, the length (distance) between the two non-
contiguous endpoints of X and Y is just the length of the hypoten-
use, �(a2 + b2). Creatures living in such a universe might come to
think that the sum of lengths a and b is not a + b but �(a2 + b2).
If they did form this view (which to us seems thoroughly
unnatural), then they would still take length to be additive
because my conditions 1–4 for additive structure still obtain.
That is,
1. For any lengths, a and b, one and only one of the following is true,

(i) a = b;
(ii) there exists c such that a2 = b2 + c2;
(iii) there exists c such that b2 = a2 + c2.

2. For any lengths, a and b, a2 + b2 > a2.
3. For any lengths, a and b, a2 + b2 = b2 + a2.
4. For any lengths, a, b and c, a2 + (b2 + c2) = (a2 + b2) + c2.
That is, this relation between lengths also satisfies the conditions
defining additive structure. I will symbolise this relation as �+ . That
is, a �+ b = �(a2 + b2). Just as with +, for any length, a, the vector a, [a
�+ a], [(a �+ a) �+ a], [((a �+ a) �+ a) �+ a], . . ., etc., exists and, similarly,
for any other length, b, the b vector based upon �+ . The ratio of a to
b is then the pattern of equalities and/or inequalities between these
two vectors, step by step along each. Now, suppose that a is the
length of the side of a square and b the length of its diagonal: b = a
�+ a because b = �(a2 + a2), and, so, those inhabiting this universe
would take a and b to be commensurable, in fact, they would say that
b = 2a and if we took the care to note what they mean by the sum of
two lengths we would have to agree.

25 A completely different example of the same point is given in Michell (1993).
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Now, Ellis’s example can be generalised even further within the
single quantity of length. Let c = a * b if and only if c = [ar + br]1/−

(that is, c is the positive rth root of the sum of each of a and b
raised to the power of r, where r is any positive real number such
that 1 � r < �). For each different value of r there is a different
value of c because the sum of a and b is defined differently, but
each such definition conforms to the conditions for additivity and,
so, allows different ratios to be defined for each pair of lengths, a
and b. Since r may take an infinite number of values, for any pair
of lengths there is no unique ratio between them. A similar con-
clusion applies to all continuous quantities. Ratios are relative to
relations of additivity.
While from our point of view, as human observers of quantitat-

ive attributes, such as length, there is ‘a simplest sort of additivity’
(Armstrong, 1997, p. 180) and any other proposal seems strongly
counterintuitive, showing that ratios are relative in this way is by
no means a purely arid point to make. I have already mentioned
the point that, with respect to velocity, what seems to us the sim-
plest sort of additivity is not the sort that reveals the additive
structure of the quantity as conceptualised within relativity
theory. Intuitively, we think that if A and B are travelling in
exactly the same direction away from C and if A’s velocity relative
to B is a metres/second and B’s relative to C is b metres/second
then A’s velocity relative to C should be a + b metres/second. This
is not so within relativity theory. Nevertheless, this way of under-
standing the additivity of velocities is perfectly coherent. It just
means that for velocity as conceptualised within relativity theory
it is not compatible with the, at least equally strong, intuition that
velocity is the ratio of distance to time. If we were to abandon that
intuition instead and retain our intuition about what it means for
velocities to add together, then we would simply be working with
a different relation of additivity within the quantity, velocity.26 The
upshot of this is that in any absolute sense, independent of human
minds, there is no simplest sort of additivity. The relation of addi-
tivity that we come to identify within any quantity is identified
because of factors extrinsic to the quantity itself. It may be ident-
ified as a result of our sensory-motor capacities or as a result, in

26 See Krantz et al. (1971), Lucas (1984) and Luce (1997) for discussions of this point.
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part, of the wider theoretical context within which our under-
standing of that quantity is embedded.
While it must be admitted then that ratios are slightly more

complex relations between magnitudes than they at first appear,
the fact that they are relative to relations of addition within the
quantity involved is no impediment to their status as real num-
bers. However else philosophers of mathematics may wish to con-
strue real numbers, from the point of view of the logic of measure-
ment we need go no further than the traditional view that real
numbers are ratios of magnitudes. Hence, in treating attributes
as measurable, science is not committed to numbers as mysterious
entities outside space and time. Numbers come as part of the
same package as continuous quantity.

THE THEORY OF QUANTIFICATION

In supposing that attributes are measurable, we take them to be
continuous quantities. This much is clear from the above. What is
not yet clear is how we can tell whether or not an attribute is
quantitative. What should be obvious from this chapter so far is
that the hypothesis that some attribute is quantitative is a quite
specific hypothesis, one never logically necessary. Therefore, it is
one that must be put to the test. In the case of extensive, physical
quantities (such as length, time, weight, etc.), the observational
tests, if carried out, would be rather trivial and for this reason
may never have been done explicitly. For this reason, also, their
status as quantities may have acquired a false air of necessity.
However, in relation to intensive quantities (e.g., velocity, force,
temperature, etc.), the required tests are far from trivial. This is
an issue that has long been obscured in the history of science by
the doctrine of Pythagoreanism, by which I mean the thesis that
all attributes are quantitative. Whatever it is that scientists and
philosophers have felt compelled to believe in this regard,
Pythagoreanism is obviously a contingent, empirical hypothesis.
That is, it is one which might be false.27 It is not and never has
been a genuine metaphysical presupposition of quantitative
science.

27 The view that scientists study many kinds of different structures, only some of which
are quantitative, is now quite uncontroversial. As a result, it is now recognised that
Pythagoreanism is contingent, that is, that it may be false.



Quantity, number and measurement in science68

As noted in the last chapter, since the seventeenth century this
has not been recognised clearly. Prior to the seventeenth century,
it may have been glimpsed. Sylla notes that

The Mertonians, although they did not attempt to prove that their meas-
ures were extensive and additive by concise reference to experiment as
a modern philosopher of science might do, were nevertheless not
unaware that the additivity of their measures was an important issue.
Thus in their preliminary expositions they repeatedly emphasize the con-
tinuity, homogeneousness, and additivity of the latitude of quality, and
in their further discussions they frequently consider whether forces,
resistances, and velocities are additive or not. (1972, p. 38)

However, it is not clear to me to what extent the Mertonians and
other medieval scientists (such as Oresme) explicitly acknowl-
edged this as an empirical issue. As Crombie (1994, pp. 413-14)
notes regarding these scientists, ‘Philosophers defending Aristot-
le’s absolute distinction between quality and quantity argued that
there could be no addition or subtraction of degrees of intensity
of a quality as there could be of a length or a number.’ He pro-
ceeds to comment further that one of the Mertonians, John Dum-
bleton, ‘met Aristotle’s exclusion of quality from quantity by
accepting it in reality and presenting the quantifying procedures
as abstract representations of reality’ (1994, p. 414). There was
a widespread reluctance amongst medieval scientists to test their
theories by experiment. I know of no evidence to suggest that they
or their seventeenth-century heirs explicitly recognised the issue
of whether or not attributes are quantitative as one requiring
experimental investigation in its own right. It seems that the
opposition between Aristotelianism and Pythagoreanism (or Pla-
tonism, as it was sometimes then called) on this point was viewed
as a metaphysical rather than an empirical one. This was certainly
true of later thinkers, such as Descartes, who, as we have seen,
drew the line between physics, as quantitative, and psychology, as
non-quantitative, as a metaphysical distinction.
Recognition of the empirical character of this issue was very

slow to emerge in the history of science. To my knowledge, the
first scholar to notice it as an empirical question was Reid (1748).
The first to discuss it as an empirical issue in a rigorous way was
Helmholtz (1887). Interestingly, both raised the issue in the con-
text of the prospect of psychological measurement. The context of
Reid’s paper has already been noted. Heidelberger (1993) sug-
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gests that the context of Helmholtz’s was Fechner’s attempts at
psychophysical measurement and the controversy connected with
the quantity objection. Philosophically, Helmholtz’s scientific work
was inspired by the views of Kant, and Kant’s opposition to psycho-
logical measurement was noted in the preceding chapter. If Heid-
elberger’s assessment is correct, then it was the prospect of
psychological measurement that at last forced recognition of the
empirical character of this issue. As will become evident, there is
some irony in this, for most psychologists declined to face the very
issue that their science had thrust into the light and came to
accept a definition of measurement that obscured the issue.
Helmholtz was concerned to specify the observational con-

ditions under which we could sensibly conclude that an attribute
is quantitative and, so, measurable. As he puts it,

. . . one must ask: what is the objective sense of our expressing relation-
ships between real objects as magnitudes, by using denominate numbers;
and under what conditions can we do this? The question resolves itself,
as we shall find, into two simpler ones, namely:
(1) What is the objective sense of our declaring two objects to be alike

in a certain respect?
(2) What character must the physical connexion between two objects

have, in order that we may regard likenable attributes of these objects
as additively combined, and consequently regard these attributes as mag-
nitudes which can be expressed by using denominate numbers?
(Helmholtz, 1887/1977, p. 75)28

His second question is the more important: how can we tell that
an attribute possesses an additive structure?
What leads us, he says, to conclude that we are working with a

quantitative attribute is the discovery of two procedures: a method
of comparison that enables equivalence with respect to that attri-
bute to be determined, and the discovery of a method of con-
necting or concatenating the objects that indicates the additivity
of the attribute. Taking the method of comparison first,
Helmholtz notes that the observable equivalence relation must be
transitive and symmetric.29 He recognises that observable

28 I have made use of two different translations of Helmholtz’s 1887 paper, that of Kahl
(published in 1971) and Lowe (published in 1977).

29 A binary (i.e., two-termed) relation, R, is transitive if and only if for every x, y and z that
stand in the relation, if xRy and yRz then xRz (where xRy means that x stands in the
relation R to y, etc.). A binary relation, R, is symmetric if and only if for every x and y
that stand in R, if xRy then yRx.
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relations having these properties are quite special. Objects have
many properties and the outcome of the vast majority of possible
comparative procedures would generally be determined by more
than just one of these. What is required is a procedure contrived
in such a way that the outcome is determined only by a single
attribute. As he put it,

If the method of comparison is to yield information concerning the equal-
ity or inequality of the two objects with respect to an attribute, the result
of the comparison must be dependent exclusively upon the fact that the
objects possess that attribute to some specified degree (presupposing, of
course, that the method of comparison is properly carried out).
(Helmholtz, [1887] 1971, p. 454)

In making this point, Helmholtz displayed his sensitivity to the
fact that the observable equivalence relation between objects (e.g.,
the fact that two marbles perfectly balance one another) and the
identity relation between magnitudes (e.g., the fact that the
weight of two marbles is the same) are logically distinct: the latter
can occur without the former and, presumably, in non-standard
circumstances, the former can occur without the latter. But at the
same time, Helmholtz is keenly aware of the fact that our knowl-
edge of the latter is, in these cases, dependent upon discovering
the former.
In considering weight, Helmholtz notes that

When I place two arbitrary bodies on the pans of a true balance, the
balance will generally not be in equilibrium, but one pan will sink. Excep-
tionally, I shall find certain pairs of bodies a and b which, when placed on
the balance, will not disturb its equilibrium. (Helmholtz, [1887] 1977, p.
91)

There are some caveats, which Helmholtz neglects to mention
here, that it is useful to stress. The expression, ‘two arbitrary bod-
ies’, must be interpreted very narrowly: it is two arbitrary bodies
of the sort that can sensibly be placed on such balance pans. Also,
the notion of a ‘true balance’ must not be unfolded in a question-
begging way: it cannot just be one that remains in equilibrium for
certain pairs of objects. A true balance is one satisfying certain
intrinsic, physical specifications which, it must be stressed, can
only ever be approximately engineered. Finally, equilibrium will
be detected, ultimately, by some fallible procedure of finite resol-
ution (i.e., in the general case, only imperfectly). It is important
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to make these points, lest it be thought that talk of ‘weights’ is
just shorthand for our observations. The concept of weight, as a
quantitative property of objects, is much broader than that.
Objects have weight even when they cannot be placed on balance
pans, and two objects may be of the same weight even when they
disturb the equilibrium of what we think is a true balance.
That weight is a quantitative attribute and that sameness of

weight is a quantitative relation are facts logically independent of
human observation. To recognise this is not to abandon empiri-
cism, it is simply to reject operationism and positivism. Unless
empiricism is combined with realism it assumes grotesque forms.
This danger is exemplified in radical forms of empiricism where
ontological and epistemological issues are consistently confused:
positivists and operationists proceed to define what is or how
things are in terms of how they are known or what is immediately
experienced. To assert that reality is just as we experience it, is
implausible, if for no other reason than that it gives an unnatural
priority to the human observer. We do not need the science of
psychology to tell us that human observation is both selective and
fallible. Furthermore, considering our small place in the universe
and our limited sensory capacities, only a foolhardy egoist could
believe that there is no more to the world than what we experience
directly. Weight and sameness of weight are theoretical concepts
which, in most instances, are beyond the reach of immediate
experience but, none the less, in these cases, open to experiential
test.
A procedure for discovering whether or not two objects are the

same with respect to some attribute is not sufficient warrant to
form the view that the attribute is quantitative. What is also
required for this step, thinks Helmholtz, is a ‘physical method of
connecting magnitudes’ such that (i) the resulting magnitude is
not affected by interchanging the magnitudes connected (i.e., the
method is commutative); (ii) it is associative; and (iii) the
resulting magnitude is not affected by substituting equivalent
objects (i.e., objects of the same magnitude as those connected).
Then the method of connecting magnitudes ‘can be regarded as
addition’ (Helmholtz, [1887] 1977, p. 96). For example, combin-
ing two objects in a single balance pan would be such a method
in the case of weight. Implicit in Helmholtz’s discussion is the
requirement that the method also conform to something like
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Hölder’s fourth axiom, that is, that the result of combining two
objects exceeds in the relevant respect each of the objects com-
bined. Of course, similar caveats as before must apply here, as
well: observationally, there will only ever be an approximation to
(i), (ii), and (iii) and this will only ever be the case with a highly
restricted range of objects. It should be stressed that devising
appropriate empirical methods here, even for a highly restricted
range of objects, is often not a simple project.
Helmholtz’s failure to deal with these caveats was, in hindsight,

a significant omission. Later measurement theorists, under the
influence of operationism and positivism, attempted to base their
accounts of measurement completely upon axiomatisations of
these directly observable relations and operations. The conceptual
difficulties in adopting such a basis, therefore, need to be empha-
sised. Take the simplest case of all, that of length. That length is
quantitative is confirmed by satisfying Helmholtz’s above-
mentioned conditions (i), (ii) and (iii), with rigid, straight rods
of humanly manageable sizes, the relevant ‘physical method of
connection’ being that of joining rods end to end, linearly. How-
ever, the satisfaction of these conditions will generally only ever
be approximate and, considering the range of all possible lengths,
restricted to an extremely small band. To base the concept of
length measurement upon the numerical representation of such
approximations to quantitative addition within such a restricted
range of lengths and objects is to adopt a conceptually limited
approach. A more adequate approach is to conceptualise the
length attribute as a theoretical structure (along the lines of, say,
Hölder’s conditions) and to see the operations upon objects (such
as rigid, straight rods) as providing tests of that theory. In the
case of length, the tests are relatively simple, but even there they
will break down to some extent when the limits of human percep-
tual capacities are reached. In all such tests, one is looking for
evidence of quantitative structure. The process of interpreting the
results of such tests is more like that of using clues to solve a
crossword puzzle (Haack, 1993) than that pictured within a rigid
falsificationist framework.
Helmholtz also briefly addresses the issue of why certain pro-

cedures measure.

Magnitudes which can be added are in general also divisible. If every
occurring magnitude can be regarded as additively composed, by the



The theory of quantification 73

addition procedure valid for magnitudes of this kind, out of a cardinal
number of like parts, then by the associative law of addition each of these
magnitudes can be replaced, wherever only its value is of account, with
the sum of its parts. It is in this way then replaced with a denominate
number, and other magnitudes of like kind with other cardinal numbers
of the same parts. The description of the individual magnitudes of like
kind can then be conveyed, to a listener acquainted with the like parts
chosen as units, by simply enunciating the numbers. (Helmholtz, [1887]
1977, p. 97)

Helmholtz recognises that this account generalises to measures
involving non-integer values.
Helmholtz is only too well aware of the fact that this account

of quantification is incomplete. Physics treats quantities which do
not conform to this picture. As examples, Helmholtz lists specific
gravity, thermal conductivity, electrical conductivity, thermal
capacity. He could have chosen any from the majority of quantities
appearing in physical theories. Our knowledge of these quantities
comes about, he notes, ‘each time a regularity between additive
quantities concerns a process which is affected by the peculiarities
of a specific substance or body or by the way the process is initiat-
ed’ (Helmholtz, [1887] 1971, p. 461). However, he does not treat
the issues arising here in a systematic or a consistent fashion. He
recognises that the distinction between these two ways of dis-
covering quantities does not entail a distinction between two dif-
ferent kinds of quantities because occasionally hitherto ‘non-
additive’ quantities, as he puts it, are found to be additive.
However, he insists, as many others have done, that the discovery
of quantities via the construction of observable operations of
addition must always come first. This certainly does not follow
from the logic of quantification. There may be indirect ways
whereby the additive structure of a quantity can be detected.
Helmholtz provided an account of just one way of testing the

hypothesis that an attribute is quantitative and, having confirmed
that hypothesis, one way in which measurement can be achieved.
If the fact that an attribute is quantitative is not logically tied to
the existence of a suitable, observable additive relation of concat-
enation, then neither can our means of testing that hypothesis be
logically tied in the same way. Helmholtz’s recognition that there
is no logical connection here is a sound insight (albeit, one that
Oresme had attained 500 years earlier). What we regard as a
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suitable, observable additive relation is always a function, in part,
of the relationship between us as human observers (with our very
specific sensory-motor capacities) and the attribute in question. It
would be absurd to suppose that every quantitative attribute must
relate to us in such a way that a humanly observable, additive
relation, always exists. It would be equally absurd to suppose that
indirect evidence (i.e., evidence that does not depend upon the
discovery of an additive relation) of quantitative structure cannot
be attained. The causal interconnectedness of all natural pro-
cesses makes it inevitable that the observation of such indirect
evidence will always be a possibility. The conceptual problem is to
think through what might count as indirect evidence for quantity.
The mathematical task is to define structures containing no
explicitly additive relations within which quantity (and, so,
additivity) is definable. These are difficult issues. The hypothesis
that an attribute is quantitative is an empirical one and a theoreti-
cal one. Because it is empirical it requires testing observationally.
Because it is theoretical, such tests need not necessarily be direct.
That indirect tests are possible was demonstrated decisively by
Hölder.
In the second part of his paper, Hölder (1901) presented a set

of ten conditions for directed segments of a straight line (what
might be called ‘intervals’) that make no explicit mention of addi-
tivity and yet from which he deduces that the distances involved
are quantitative (i.e., conform to the conditions of quantity given
earlier in this chapter).30 The sort of situation to which Hölder’s
conditions apply is that of a continuous series of points on a
straight line. Any two distinct points, A and B, define an interval,
AB, stretching from A to B. For such intervals, there is an implicit
relation of addition: for any three points A, B and C, if A < B <
C, then AB + BC = AC. Furthermore, if AB’s distance is a, BC’s is
b and AC’s c, then c = a + b, so the implicit additivity of intervals
involves an implicit additivity of distances. Hölder’s ten conditions
for intervals on a straight line entail that distances are quantitat-
ive, but they make no explicit reference to additivity. Instead, they
allow an indirect test. The key condition amongst Hölder’s set is
the following:

30 See Michell & Ernst (1997).



The theory of quantification 75

7. If A < B, B < C, A’ < B’, B’ < C’, then it always follows
jointly from AB = A’B’ and BC = B’C’ that AC = A’C’.
Since AC = AB + BC and A’C’ = A’B’ + B’C’, it is obvious that

Hölder’s condition 7 must be true. As Oresme noted, lines consti-
tute a model for thinking about other quantities. However, what
is obviously true for intervals on a line may prove false when tested
in relation to other attributes thought to be quantitative. If some
way could be found of applying Hölder’s theory, especially his con-
dition 7, in other contexts, then a way of indirectly testing for
additivity would exist. Hölder’s work here provided an opening
which others were able to exploit. Condition 7 is a very special
case of the Thomsen condition, which in its more general form
(and stated as the weaker ‘double cancellation condition’) enabled
the conceptual breakthrough of conjoint measurement more than
sixty years later (Luce & Tukey, 1964; Krantz et al., 1971). Hölder
had begun the journey down the path that would eventually allow
a genuine resolution of the aporia facing those attempting psycho-
logical measurement.
Because measurement involves a commitment to the existence

of quantitative attributes, quantification entails an empirical
issue: is the attribute involved really quantitative or not? If it is,
then quantification can sensibly proceed. If it is not, then attempts
at quantification are misguided. A science that aspires to be quan-
titative will ignore this fact at its peril. It is pointless to invest
energies and resources in the enterprise of quantification if the
attribute involved is not really quantitative. The logically prior
task in this enterprise is that of addressing this empirical issue. I
call it the scientific task of quantification (Michell, 1997b).
Secondary to the scientific task is the instrumental task of quantifi-

cation (Michell, 1997b). The scientific task having been success-
fully completed, it is known that the relevant attribute is quanti-
tative and, so, it follows that it is measurable. That is, magnitudes
of the quantity sustain ratios. The business of the instrumental
task is to contrive procedures whereby these ratios can be disco-
vered or reliably estimated. This is generally done by exploiting
relationships between the attribute being quantified and another
already quantified. Consider for example the measurement of
temperature using an ordinary thermometer. Within a specific
range of temperatures, it has been found that the temperature of
a liquid (say, the metal, mercury) is linearly related to its volume,
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if pressure is held constant. Thus, in a sealed glass tube of uniform
width, for a limited range, temperature varies linearly with the
height of the column of liquid. By this means, it is possible to
measure temperature via measurements of length.
The ease with which length can be measured makes it an ideal

candidate for attempting to solve the instrumental problem of
quantification. Many instruments, for measuring diverse physical
quantities, employ a needle that moves along a linear scale or
around a dial. Instruments of this kind provide ‘pointer’ measure-
ments (Suppes & Zinnes, 1963; Luce et al., 1990). In every case
of the use of pointer measurement in the physical sciences, the
construction of the instrument utilises established physical laws
relating length to the quantity to be measured. Thus, the instru-
mental task of quantification is no less scientific than what I have
termed the scientific task. However, the object of the instrumental
task is the construction of measurement devices or instruments,
while the object of the scientific task is the discovery of quantitat-
ive structure. The scientific task has logical priority in sciences
aspiring to be quantitative. In relation to psychology, as far as the
logic of quantification is concerned, attempting to complete the
scientific task is the only scientifically defensible way in which the
nexus between the measurability thesis and the quantity objection
can be resolved.

STEVENS’ DEFINITION AND THE LOGIC OF QUANTIFICATION

Having unfolded the logic of quantification, we are in a position
to evaluate critically Stevens’ definition of measurement. Because
measurement is the discovery or estimation of numerical relations
(ratios) between magnitudes of a quantity and a unit of that quan-
tity, measurement could be very loosely described as ‘the assign-
ment of numerals to objects or events according to rule’, but this
description is so loose that taken as a definition it is conceptually
pathetic. Its fundamental deficiency is its withdrawal from the
metaphysical commitments of scientific measurement. As just
shown, if there is measurement, then there is quantity and
number as features of the world. Stevens’ definition denies these
commitments. Instead of numbers, Stevens only offers a human
contrivance, numerals. Instead of quantitative attributes, he gives
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us only objects and events, neither of which allows continuous
quantity.
At its most general, Stevens’ definition of measurement reflects

the modern nervousness about a world independent of human
practices. The logic of measurement shows that quantitative
science is deeply embedded in a rich metaphysics. Those who
would measure the world must first possess a world complex
enough to be measured. In relation to such a world, Stevens was
agnostic and this is why his definition of measurement is impover-
ished to the point of excluding no attribute, whatever its structure,
from the practice of measurement.
How does Stevens’ definition relate to the two tasks of quantifi-

cation? The answer to this question is both dramatic and
revealing: if Stevens’ definition of measurement is accepted, then
the scientific task of quantification is cancelled and only the
instrumental task remains. The scientific task is cancelled because
Stevens’ definition is indifferent to the structure of the world. His
definition requires no quantitative structures. It eliminates the
scientific task and leaches the instrumental task of its scientific
content. This fact is so striking that it is unlikely to be an accident.
Yet no one could believe, a priori, that a discipline seriously
aspiring to become a quantitative science would come to accept a
definition of a fundamental methodological concept because that
definition removed an empirical issue from the research agenda.
Only an examination of the history of psychological measurement
will reveal whether or not one could be brought to believe this a
posteriori.



CHAPTER 4

Early psychology and the quantity objection

One cannot build a house without bricks; and, when even the
plan for the house has yet to be drawn, one cannot have every-
thing right on the first try and get it all to fit together.

(Gustav Fechner)

It may be at present pseudo-science, in the sense that we have
drawn conclusions without adequate knowledge, but it is none
the less the best we can do.

(James McKeen Cattell)

The classical conception of measurement was accepted within
modern psychology until the 1940s. From about 1950 until the
present, Stevens’ concept of measurement has been more or less
officially endorsed. This transition required the existence of two
prior conditions and a precipitating cause. First, conditions within
psychology had to be favourable: by 1940 quantitative psychology
had already adopted a modus operandi fitting Stevens’ definition;
the quantity objection was effectively ignored; and a wide class of
number-generating operations were routinely accepted as
measurement procedures. However, this was not sufficient. Psy-
chology, as a new science, possessed neither the moral nor the
intellectual resources necessary unilaterally to redefine a central
scientific concept. Hence, second, relevant external conditions had
to be ripe. By the 1940s, psychology was more sensitive to develop-
ments within the philosophy of science than it was to develop-
ments within quantitative science per se, so the external conditions
required related to developments within that branch of philos-
ophy. Supplementing these, an event was required to cause accept-
ance of a new definition. This catalyst was the Final Report of the
Ferguson Committee of the British Association for the Advance-
ment of Science.

78
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This chapter traces the trajectory of the first of these factors,
showing how quantitative psychologists at first misunderstood and
then came to ignore the quantity objection. Fechner mistakenly
thought he had answered it. His psychophysics was the exemplar
emulated by subsequent quantitative psychologists and, so, his
modus operandi, that of bypassing the scientific task and proceeding
directly to the instrumental task, was adopted. This pattern was
followed in the area of ability measurement early this century. By
the 1940s, mainstream quantitative psychologists behaved as if
measurement was no more than the assignment of numerals to
objects or events according to rule.

FECHNER’S MODEL FOR PSYCHOLOGICAL MEASUREMENT

The foundation stone of modern quantitative psychology is Gustav
Theodor Fechner’s Elemente der Psychophysik. There had been earl-
ier, unsuccessful, attempts to found a quantitative psychology.1

Fechner succeeded, in that a movement, the science of psychology,
grew from his achievements. Of course, external to Fechner’s
efforts, other factors helped, especially the research programme
and influence of Wilhelm Wundt.2 There were three reasons for
Fechner’s success: he not only proposed a quantitative psychology,
he also linked it via his psychophysical law to quantitative physics,
making psychophysics yet another extension of existing quantitat-
ive science; he supplemented his law with new research methods,
initiating an experimental programme; and he persuaded enough
of his contemporaries that these methods delivered measure-
ment.3 These were significant achievements.
It is one thing to initiate a ‘science’ in the sense of a social

movement, and another to found a science in the sense of
uncovering some of nature’s ways of working, in some new area.

1 In particular, the work of Johann Friedrich Herbart (1776–1841). For a description of
his contribution see, for example, Leary (1980).

2 ‘The birth date of modern psychology is usually placed towards the end of 1879 when
Wilhelm Wundt designated some space at the University of Leipzig to be used for the
conduct of psychological experiments’ (Danziger, 1990, p. 17). Neither Fechner nor
Wundt have been well served by English translators. Of his psychophysical writings, only
volume 1 of Fechner’s Elemente der Psychophysik has been translated. Scheerer has added
translations of two important papers (Fechner, [1851] 1987, [1887] 1987) to this list.
My treatment of Fechner is, regrettably, based exclusively upon only this portion of his
published work. For accounts of Wundt’s contribution see Rieber (1980).

3 The most significant disciple of Fechner in this regard was Wundt himself.
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Fechner achieved the former. As for the latter, the verdict is
unclear,4 mainly because of his inadequate response to the quan-
tity objection. Trained as a physicist and having worked on the
measurement of electric currents,5 Fechner developed psycho-
physics conscious of the meaning of measurement in physics. He
was aware of the quantity objection, but did not think it raised
specific empirical issues. Near his death, without the slightest
equivocation, he asserted that his methods provided genuine
measurement and that ‘all philosophical counter-demonstrations
are, I think, mere writing in the sand’ (Fechner, [1887] 1987, p.
215).
Like many revolutionary developments in psychology, psycho-

physics was philosophically motivated. It was driven by Fechner’s
proposed solution to the mind–body problem,6 viz., that mind and
brain are one.7 He argued that the apparent difference between
mind and body is one of perspective:

We count as mental, psychological, or belonging to the soul, all that can
be grasped by introspective observation or that can be abstracted from
it; as bodily, corporeal, physical, or material, all that can be grasped by
observation from the outside or abstracted from it. (Fechner, [1860]
1966, p. 7)

His idea was that there is just one basic kind of stuff, but that we
can relate to it cognitively in two ways, either via introspection or
via sensory observation, and this cognitive duality gives rise to the
illusion of a metaphysical dualism. This sort of view was not
unusual amongst the founders of modern psychology. Mill (1865/
1965), Wundt (1896/1907) and James (1890) held similar views.
Like all monistic attempts to solve the mind-body problem, it
meets one of the deepest convictions of ordinary life, viz., that
mind and body interact. This conviction is incompatible with a
metaphysical mind-body dualism. If mind and body belong to dif-

4 This judgment is confined to psychophysics. Many judge that Fechner made important
contributions to other disciplines (see Brozek and Gundlach, 1988). Link (1994) assesses
his contribution to psychophysics differently.

5 For an account of Fechner’s electrical research see Winter (1948).
6 The mind-body problem is an artefact of Descartes’ attempt to construct a metaphysics
for modern science by stipulating that the mental is not material.

7 While anticipating, in important respects, the modern identity theory of mind (see, for
example, Armstrong, 1968), unlike most modern philosophers Fechner was motivated
more by pan-psychism than by materialism or reductionism. See Heidelberger (1994)
for a sympathetic summary of Fechner’s position.
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ferent realms of being, then there is no sphere within which they
can interact. Science can only incorporate psychological phenom-
ena stripped of any special metaphysical allegiances (such as to a
distinct realm of mind or of the uncaused). Whatever the value of
Fechner’s solution,8 attempting to locate the psychological within
the same system of ontological categories as the physical was
sound.
Fechner worked out psychophysics along the following lines. He

believed that when a physical stimulus (such as, for example, a
light of a certain brightness, a line of a specific length, or an object
of a particular weight) acts upon the nervous system it produces
a neural effect proportional in magnitude. Furthermore, he
thought that the intensity of the accompanying conscious sen-
sation was a logarithmic function of the strength of that neural
effect. Hence, he concluded, there must be a logarithmic relation
between stimulus magnitude and the intensity of sensation.9 A
logarithmic function, say x = logry, is one in which y = rx, so that as
x increases in equal steps (say, 1, 2, 3, . . ., etc.) y increases in
systematically greater steps when r > 1 (say, 2, 4, 8, . . ., etc., if
r = 2). As Fechner put it, ‘increasing magnitudes of stimulus and
sensation demand constantly greater stimulus increments in order
to maintain the same increase in sensation’ (Fechner, [1860]
1966, p. 52).
Fechner’s hypothesis of a logarithmic function between sen-

sation intensity and stimulus magnitude was not based upon
observation. Before commencing experimental psychophysical
research, he had already formed the view that a change in the
intensity of a sensation was proportional to the relative change in
the magnitude of the stimulus (Fechner, 1851/1987). This convic-
tion led him to postulate a logarithmic relation between intensity
of sensation and stimulus magnitude. When, later, he encountered
Weber’s law (which states that in order for an increment in stimu-
lus magnitude to be just noticeable it had to be a constant
proportion of that magnitude (Weber, 1834, [1846] 1978), he

8 Here is not the place to attempt an evaluation of this very interesting aspect of Fechner’s
thought.

9 Fechner distinguished between two areas of psychophysics: outer (which studies the
relation between stimulus and sensation); and inner (which studies the relation between
the stimulus’ neural effect and sensation). (See, for example, Scheerer, 1987, for a more
detailed discussion of Fechner’s distinction.)
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concluded, mistakenly, that he could deduce his proposed logarith-
mic relation (see Luce and Edwards, 195810). However, he also
thought that this proposed logarithmic relationship could stand
on its own (Fechner, [1887] 1987).
Experimentally testing Fechner’s hypothesis, requires a method

for determining equality of sensation differences. Fechner did not
believe that subjects could directly judge the quantitative struc-
ture of their sensations.11 He proposed three methods for doing
this indirectly: the method of just noticeable differences, the
method of right and wrong cases, and the method of average error.
For example, the method of just noticeable differences consists in
determining the minimal discernible difference between stimuli.
The experimenter may begin with an easily discernible difference
and reduce it to one that is just noticeable, or begin with one that
is not discernible and expand it to one that is just noticeable.
Fechner recommended using both procedures to obtain prelimi-
nary estimates of the value of the just noticeable difference and
then calculating their mean to improve the accuracy of estimation.
Each of his methods determined, for any subject and stimulus

magnitude, the value of a just noticeable difference (jnd). As one
might expect, the value obtained is not only relative to the magni-
tude of the stimulus used (as Weber’s law prescribes), it is also
relative to the other perceptible properties of the stimulus, to
properties of the subject (e.g., perceptual and motivational states),
to the method used, and to the external, environmental conditions
present when the methods are applied. Consideration of these
additional matters will be left aside here, for the question of inter-
est is this: assuming that for each specific stimulus, there is a jnd
for each subject (conditional upon whatever boundary conditions
need to be stated), is it possible thereby to determine equal sen-
sation differences?
Of course, the answer is: not without making further assump-

tions. In determining jnds, it is differences between stimulus mag-
nitudes and the judgments of subjects that are observed. The
intensity of the subject’s sensation is never observed by the exper-

10 Luce and Edwards argue that Fechner confused a ratio of differences (the ratio between
the sensation increment corresponding to a jnd and the jnd itself) with a ratio of
differentials (see also Luce, 1993).

11 Unlike Stevens who, as we shall see in Chapter 7, believed that subjects could directly
estimate quantitative relations between sensations.
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imenter.12 So conclusions about sensations can only validly be
drawn from observations of jnds by invoking additional premises.
Fechner’s additional premise was that jnds for different stimulus
magnitudes correspond to equal sensation differences. If this
premise is true, then a series in which consecutive stimuli are
separated at each step by one jnd corresponds to a series in which
the consecutive accompanying sensations are separated by equal
differences in intensity. Given this, the intensity of any sensation
in the series is measured by the number of jnds between the
stimulus producing it and the absolute threshold (the minimal
stimulus magnitude eliciting a sensation).
Fechner thought that this additional premise was a tautology.

His discussion of the Plateau-Delbœuf procedure, known as the
method of bisection, 13 makes this clear. In this method, the subject
sets the magnitude of a stimulus, B, between the magnitudes of
two given stimuli, A and C, so that the perceived difference
between B and A equals that between C and B.

Now it might be said that if the perceived difference between A and B
has been found equal to the perceived difference between B and C, then
it by no means follows that the total perceived difference between A and
C, if compared directly, will equal exactly double the two partial differ-
ences perceived separately; it might be a totally indefinite function of
both. But in fact this could not be said, because to do so would mean
contradicting a tautological sentence. Nor would it be possible to say in
physics: If three weights A, B, C are given and if the weight difference
between A and B has been found equal to the weight difference between
B and C, then it by no means follows that the weight difference between
A and C is twice as large as those two partial differences. We simply call
a total difference twice as large as each of two equal partial differences
of which it is composed, in the above sense, or into which it can be

12 Indeed, the thesis that there are such things as sensations is not a proposition that could
ever be put to any kind of scientific test (i.e., it is a purely philosophical thesis). Fechner,
like many psychologists, took this assumption for granted. However, some have argued
(e.g., Michell, 1988) that in perception the immediate object of awareness is always the
stimulus itself and never an ‘inner’ mental object, such as a sensation. On this alterna-
tive, realist view, a subject’s judgments inform us, not about sensations (for there are
no such things) but, rather, about the subject’s sensitivity to the physical stimulus, its
properties and relations (see also Luce, 1972). Boring (1921) explored a similar view,
as did Holt (1915). Brentano ([1874] 1973), much earlier, had written that ‘a clear
understanding of what is actually measured by Fechner’s methods would show us that
the object of measurement is not so much a mental as a physical phenomenon’ (p. 69).

13 Laming and Laming (1996) give an English translation of two of Plateau’s relevant
papers. See also Herrnstein and Boring (1965).
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thought to be decomposable; and I do not see any reason why in this
respect there should be any difference between the mental and the physi-
cal fields. (Fechner, 1887/1987, p. 215)

It is instructive to isolate Fechner’s mistake here. If a total differ-
ence is entirely constituted by two discrete and equal parts, then
we do call the total twice each of the parts. However, the tautologi-
cal character of the claim hinges upon the additive relationship
between the parts and the whole.
Suppose it is found that weights B and X combined perfectly

balance weight A and that weights C and X combined perfectly
balance weight B. Expressed as A = B + X and B = C + X, these
facts seem to imply that A − B = B − C = X and, therefore that,
A − C = 2(A − B) = 2(B − C). However, in translating the obser-
vations into quantitative propositions, weight is assumed to con-
form to something like Hölder’s axioms. For example, the neces-
sary algebra uses the associative law (Hölder’s axiom 6): if A = B
+ X and B = C + X then A = (C + X) + X = C + (X + X) = C + 2X
and, so, A − C = 2X = 2(A − B) = 2(B − C). If axiom 6 does not
hold, then the claim that (C + X) + X = C + (X + X) does not
necessarily follow. It is only because weight is assumed to be a
quantitative attribute that Fechner’s claim appears tautological.
Similarly, the claim about perceived differences is not a taut-

ology. Let A, B, C, and D be four stimuli in descending order of
magnitude and let (A/B) be the stimulus perceived to be halfway
between A and B, etc., and let S(A), S(B), etc., be the sensation
intensities produced by A, B, etc., respectively, so that S(A) − S(B)
is the difference in intensity between sensations evoked by A and
B. On Fechner’s interpretation, S(A) − S(A/B) = S(A/B) − S(B) =
[S(A) − S(B)]/2. If this is true, then S((A/B)/(C/D)) = S((A/C)/(B/D)).
This last proposition is certainly not tautological, it being possible
for a subject’s sensations to contradict it. Thus, Fechner’s claim
here, that it is tautologous that a total difference is twice the parts
obtained via the bisection method, is not true.14

The bisection method identifies a relation between stimulus
magnitudes which Fechner interpreted as an additive relation
between equal sensation differences. The hypothesis that this

14 An experiment something like the above was carried out by Gage (1934a, b). The results
did not support Fechner’s contention. However, Gage’s results could perhaps be reinter-
preted quantitatively in the light of the more general theory of bisection operations
proposed by Fagot (1961) and Adams and Fagot (1975).
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relation is additive is not necessarily true. Its truth needs to be
demonstrated independently. Fechner applied the same logic to
interpreting the meaning of a sequence of jnds: he thought that
such a sequence obviously corresponded to a sequence of equal
sensation differences. Again, what is required is some way of test-
ing this interpretation independently. In making these mistakes,
Fechner was misled by an incomplete understanding of measure-
ment. His view was not incorrect as far as it went, neither was it
less than could reasonably be expected at that time. However, it
was deficient exactly where it mattered.
His view was that ‘the measurement of a quantity consists of

ascertaining how often a unit quantity of the same kind is con-
tained in it’ (Fechner, [1860] 1966, p. 38). This definition is cer-
tainly congruent with the classical conception. He later amplified
this understanding:

Given several values, in any field, which may be taken to be magnitudes
inasmuch as they can be thought of as increasing or decreasing; given
the possibility of judging the occurrence of equality and inequality in
two or more of these values when they are observed simultaneously or
successively; and given that n values have been found equal or, if they can
be varied freely, have been made equal: then it is self-evident (because it
is a matter of definition and therefore a tautology) that their total mag-
nitude, which coincides with their sum, equals n × their individual magni-
tudes. It follows that each single value, or each definite fraction or each
definite multiple of the magnitudes that have been found equal (no
matter which), can be taken as the unit according to which the total
magnitude, or every fraction of it, can be measured. The n equal parts
that can be thought of as composing a total magnitude of course have
the same magnitude as the n equal parts into which the total magnitude
can be thought to be decomposable. All physical measurement is based
on this principle. All mental measurement will also have to be based on
it. (Fechner, [1887] 1987, p. 213)

Fechner’s conviction that mental and physical measurement are
based on the same principle was a sound one and his elaboration
of the general character of measurement is broadly in agreement
with the classical view, but it applies only to attributes already
‘taken to be magnitudes’. He claims that for every magnitude, a,
of a quantity, there exists a magnitude, b, such that a = nb (for all
natural numbers, n > 1), and this is a simple consequence of the
classical concept (as worked out, for example, by Hölder) and
related to Euclid’s view that all magnitudes have aliquot parts.
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Furthermore, the definition of nb as (n − 1)b + b, makes Fechner’s
judgment about a tautology in this passage appear correct, given
the classical view. Even his contention that all physical measure-
ment is based on the proposition that each magnitude is related
to multiples of smaller magnitudes can be construed sympatheti-
cally. In general, the ratio of any magnitude, a, to any unit, b, is
defined by the classes of upper and lower numerical ratios ident-
ified by Hölder, which in turn depend upon relations of the form
na � mb and na > mb (for pairs of natural numbers, n and m) and,
so, ultimately upon multiples of a and b. The fact that he couches
his comments in terms relative to the human observer, does not
really detract from the correctness of his claim. Fechner was only
too well aware of the fragile and inexact nature of the human
judgments upon which measurement of all kinds is based and he
recognised that the underlying logic of measurement could be con-
sidered independently of this fact. However, his treatment fails to
recognise the necessity of testing by observational methods
whether or not an attribute is quantitative.
It is clear from earlier discussions of measurement (Fechner,

[1860] 1966) that he recognised that the attributes we measure
are only ever located in situations where they are conjoined with
other attributes. In measuring something like time we are depen-
dent upon the observation of processes (say, the movement of sand
through an hour glass or a hand about the face of a clock) which
possess more than temporal attributes. Time, itself, or a specific
unit of time, cannot be isolated in a process independently of these
other attributes. Furthermore, it may be that an attribute is meas-
ured via a unit of a different quantity. A simple example is volume.
Typically, rather than attempt to measure it directly, we measure
it via units of length. What is required in such a case is a relation
between volume and length. Sometimes the attribute measured is
hidden from direct observation and can only be assessed indirectly.
Despite the perspicacity of his understanding, Fechner treats
these difficulties only as obstacles encountered in developing
methods of measurement (what I have called the instrumental
task) and not as difficulties encountered in showing that an attri-
bute is quantitative (what I have called the scientific task).
In this latter context, these problems are at least as serious as

in the former. The fact that any object or process always possesses
a multitude of attributes means that situations must be artificially
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contrived in which the existence of quantitative relations (such as
additivity), within a single attribute, can be clearly displayed. This
is the same problem that we find in all branches of science:
nature’s ways of working are not always openly on display and, so,
the scientist must contrive situations that give some indication.
Generally, in experimental science, it is causal relations that the
scientist aims to detect. This is not always the case, however. In
basic quantitative research, the scientist aims to discover the addi-
tive structure of attributes. In the case of attributes which are not
directly observable these problems are magnified.
Fechner’s neglect of the scientific task suggests that his vision

was blinkered. In the preface to his Elements of Psychophysics, he
described his project as that of providing ‘an exact theory of the
relation of body and mind’ and proceeded to state that

As an exact science psychophysics, like physics, must rest on experience
and the mathematical connection of those empirical facts that demand
a measure of what is experienced or, when such a measure is not avail-
able, a search for it. (Fechner, [1860] 1966, p. xxvii)

That is, he believed that the exact sciences must use mathematics
and that the use of mathematics entails measurement. Therefore,
the place to begin the new, ‘exact science’ of psychophysics was
with the search for quantitative methods. This search was not seen
as containing, as a first step, a test of the hypothesis that the
psychological attributes involved are really quantitative. A rejec-
tion of that hypothesis would have been taken to mean that psy-
chophysics was not an exact science. For Fechner, this was not
possible because the mental and the physical were the same world
viewed from different perspectives (the ‘inner’ versus the ‘outer’).
If it was accepted that the physical world was subordinate to the
category of quantity, then the mental must be as well. Psycho-
physics was important because it demonstrated ‘the common sub-
ordination of both the mental and the physical realms to the prin-
ciple of mathematical determination’ (Fechner, [1887] 1987, p.
213). Fechner’s metaphysics implied that, despite our inability to
judge their additive relations directly, sensations are essentially
quantitative and mathematically related to physical magnitudes.15

15 Fechner’s view about this relation was fairly subtle, as Heidelberger (1994) has pointed
out. While the mental and the physical were not thought of by Fechner as different
stuff, the mathematical relation between physical quantities and associated mental
intensities was not taken to be that of identity because the mental and physical
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This conception guided his thinking prior to the development of
his measurement methods. This is why he overlooked the logically
prior issue of determining experimentally that the psychological
attributes under investigation are quantitative. His metaphysics
inflicted his blind-spot.
Situated in its historical context, Fechner’s error was under-

standable. Not only was Pythagoreanism a widely held, nine-
teenth-century, metaphysical presupposition, none of his critics
brought the specifically empirical character of the quantity objec-
tion squarely into the open. Von Kries (1882) was one of Fech-
ner’s most forceful critics. However, he also did not see the quan-
tity objection as raising an empirical issue. When he objected that
‘One cannot explain what it means to say that one pain is exactly
10 times as strong as another’ (p. 12),16 he was basing this upon
the presupposition that it is meaningless to claim that distinct
sensation differences are equal. As he put it,

. . . if we load a point on the skin with 2 and then with 3 pounds, and
subsequently with 10 and then 15 pounds, then the latter two sensations
of pressure are at a completely different position on the total series of
sensations as the former two. The one increase is thus something com-
pletely different to the others and they allow of no comparison. The
claim that they are equal has absolutely no meaning. In fact, it is no
different to claiming equality between, for example, a movement of
sound and of light. (p. 274)

Von Kries thought that while extensive quantities (by which he
meant length, time and mass) are measurable, ‘intensive quantit-
ies17 are (theoretically) unmeasurable’ (p. 275) because differ-
ences between such magnitudes cannot be directly equated. For
intensive quantities of a physical kind (e.g., velocity, force, pres-
sure, etc.), he thought that they could in practice be measured by
‘fixing’ them relative to length, time and mass via a functional
relation. For intensive ‘quantities’ of a psychological kind (e.g.,
intensity of sensation) exactly the same sort of ‘fixing’ could not
be done. He admitted that Fechner’s assumption (that jnds corre-

perspectives were not taken to be identical. Hence, identity, or even linearity (according
to Scheerer and Hildebrandt, 1988) was ruled out.

16 As far as I know, von Kries’ paper has never been published in an English translation. I
am indebted to Julie Hatfield for providing me with one.

17 By ‘intensive quantities’ von Kries meant attributes that can only be ordered as opposed
to those possessing an additive structure. This was a standard usage at that time.
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spond to equal sensation differences) appears to ‘fix’ a meaning
to the concept of equal sensation differences, but it is entirely
arbitrary and, so, he thought, there could be no issue of its being
correct or incorrect.
Von Kries recognised that there was also an element of arbitrar-

iness in the physical case, as well. The difficulty then, is clearly to
expose the difference, if there really is one, between the two cases.
This would have required a significant conceptual advance on von
Kries’ part, one that in fact was not made for almost another
century. Thus, his objection to Fechner really established nothing
more than that there is an issue to be addressed. No amount of
mere assertion by either party could settle the matter. Von Kries
was, perhaps, closer to seeing this than was Fechner, for he wrote
that ‘It is perhaps regrettable, but is a part of nature, that my
claims here really cannot be proven’ (p. 274). This admission,
however, just left Fechner free to ignore the issue.
Objections to Fechner’s psychophysics on purely philosophical

grounds were the order of the day. Bergson ([1889] 1913) argued
that sensations qua sensations cannot even be ordered according to
intensity, much less measured.

If . . . we distinguish two kinds of quantity, the one intensive, which
admits only of ‘more or less’, the other extensive, which lends itself to
measurement, we are not far from siding with Fechner and the psycho-
physicists. For, as soon as a thing is acknowledged to be capable of
increase and decrease, it seems natural to ask by how much it decreases
or by how much it increases. And, because a measurement of this kind
does not appear to be possible directly, it does not follow that science
cannot successfully accomplish it by some indirect process, either by an
integration of infinitely small elements, as Fechner proposes, or by any
other roundabout way. Either, then, sensation is pure quality, or, if it is
a magnitude, we ought to try to measure it. ([1889] 1913, p. 72)

Bergson’s answer was that it is ‘pure quality’, by which he meant
that we can only correctly judge sensations as the same or differ-
ent. This, he thought, definitely ruled out their measurability.
Bergson’s claims here are a tangle of misconceptions. First, his
suggestion that if sensation intensities are ordinal, then they are
measurable was, and still is, a common misunderstanding. Order
alone never entails quantity. As we shall see, however, ordinal
relations between levels of an attribute under special conditions
do entail that an attribute is quantitative. Second, his view that,
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if sensations are confined to relations of sameness and difference,
then they are not measurable was equally mistaken. Hölder’s
axioms for intervals on a straight line entail that, also, under spe-
cial conditions, relations of sameness or difference may imply that
an attribute is quantitative. The issues in this debate were much
more complex than most of the protagonists were then able to see
and were deeply obscured by metaphysical presuppositions. The
conceptual difficulty of the quantity objection and its implications,
allowed Fechner to dismiss it cheaply and, thus, effectively, to
ignore it.

APPLYING FECHNER’S MODUS OPERANDI

After Fechner, the emerging science forged a compromise
between his apparent success in constructing quantitative
methods and the reservations induced by the quantity objection.
The almost universal failure to see that the quantity objection
raises an empirical issue, combined with the almost universal
adherence to the quantitative imperative, meant that Fechner’s
methods were retained. Fechner had bequeathed units in which
to count (jnds), and for conformists to the quantitative imperative
this legacy was too valuable to sacrifice to philosophical nervous-
ness. Most researchers felt that the quantity objection’s force
could be met by reinterpreting what Fechner’s methods measured.
Furthermore, this strategy was generalised: in other areas of
quantitative psychology, Fechner’s approach (viz., that of finding
‘units’ of some kind to count) became the established modus
operandi.
Nineteenth-century psychophysicists reached a consensus.

Emerging from the characteristically thorough and meticulous
research of Belgian and German psychologists (such as Delbœuf,
Ebbinghaus, Höfler, Meinong, G. E. Müller, Plateau, Stumpf and
Wundt) was the view that what Fechner’s methods measured was,
not the intensity of sensations per se, but only the magnitude of
sensation distances (Titchener, 1905). As William James put it

To introspection, our feeling of pink is surely not a portion of our feeling
of scarlet; nor does the light of an electric arc seem to contain that of a
tallow-candle in itself . . . if we were to arrange the various possible
degrees of the quality in a scale of serial increase, the distance, interval,
or difference between the stronger and the weaker specimen before us
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would seem about as great as that between the weaker one and the
beginning of the scale. It is these RELATIONS, these DISTANCES, which
we are measuring and not the composition of the qualities themselves, as Fechner
thinks. (James, 1890, p. 546)

The conviction that sensations were never an additive composite
of smaller sensations was the unanalysed, metaphysical premise
sustaining the quantity objection, as it was raised against Fech-
ner’s psychophysics. Most psychologists agreed that sensations
themselves could not be measured because, it seemed, they were
conceptually indivisible. However, using methods like the Plateau-
Delbœuf method of bisection, distances between sensations
seemed to be divisible in practice, if only indirectly (see Titchener,
1905, for a review). Despite the emphasis upon distances, as
related to both stimulus differences and differences between the
corresponding sensations evoked, there was no recognition of the
connection with Hölder’s work on intervals within a straight line.
Titchener was familiar with German research on measurement
theory and alone amongst English-speaking psychologists, pro-
vided a detailed bibliography that included important German
texts (Titchener, 1905). Hölder’s 1901 text was not included.
Absent also was recognition of the empirical issue at stake.
Later psychophysicists came tantalisingly close to recognising

this issue, but none grasped the nettle. In 1913 the English psy-
chologist, William Brown, participated in a joint symposium of the
British Psychological Society, the Aristotelian Society, and the
Mind Association on psychophysics. Dawes Hicks quoted from Ber-
trand Russell’s Principles of Mathematics, a suggestion that in con-
texts where levels of an attribute are orderable, it is always theor-
etically possible to order differences between these levels as well
(Dawes Hicks, 1913).18 Brown noted the significance of this for
psychophysics in a later publication (Brown and Thomson, 1921):
even with just five ordered magnitudes, given the orders between
their differences, between differences between their differences,
and so on (such orderings the authors call gradings),19 approximate

18 Russell’s views on the concept of measurement are considered in more detail in the next
chapter. See also Michell (1993, 1997a).

19 Such a hierarchy of ordinal relations, if it satisfies certain testable conditions, gives rise
to what some psychologists now call an ordered metric scale, following Coombs (1950). In
the limiting case, an ordered metric scale is an interval scale, i.e., it measures intervals
or differences between magnitudes.



Early psychology and the quantity objection92

measures of the magnitudes (actually, measures of the differences
between them) follow, so that

With an infinite number of quantities, and all the gradings of all their
differences, we should, it would seem, arrive at an exact solution of the
problem, so that grading and measurement are not perhaps so different
in their nature as might at first be thought. (Brown and Thomson, 1921,
p. 12)

Hence, if it is allowed that in psychophysics subjects can judge the
equality or order of differences between sensation intensities, this
insight could be applied.
However, it could have been applied in two ways: merely as a

method for inferring numerical estimates, or as a basis for
addressing the scientific task of quantification. Two conditions had
to be satisfied for this insight to be taken beyond the former to
the latter: first, the recognition that such a scientific task exists,
and second, an understanding of specifically what empirical tests
are necessary for the satisfactory investigation of this problem.
Unlike most of his contemporaries, Brown satisfied the first of
these, for he had earlier written that

Quantitative relations are characteristics of the real world which are
proved to exist by the tentative process of experimenting. Whether forms
of measurement other than the physical are possible can only be decided
in the same way. (Brown, 1913, p. 185)

However, he failed to satisfy the second, showing no knowledge of
the issues taken up in Part II of Hölder (1901). For example, a
knowledge of Hölder’s axiom 7 for intervals within a straight line
might have been applied to the measurement of sensation inten-
sities as follows: if within stimulus pairs the difference in sensation
intensity between a and b is the same as that between a’ and b’,
and the difference between b and c is the same as that between b’
and c’, then if sensation differences are quantitative, the differ-
ence in sensation intensity between a and c must equal that
between a’ and c’. Confirmation of this test (say, by obtaining
direct judgments of equality between sensory differences) would
support the hypothesis that differences in sensation intensity are
quantitative. However, Hölder’s paper continued to escape the
notice of psychologists, as did other perceptive analyses of the logi-
cal problems facing attempts at psychophysical measurement
(e.g., Wiener, 1919; see also Fishburn and Monjardet, 1992).



Applying Fechner’s modus operandi 93

The consequences of logical misconceptions in science are not
independent of social context. Early in the twentieth century, the
social contexts of German and American science were significantly
different. The ethos of the German universities, influenced by the
Humboltian conception of disinterested inquiry, was more suited
to research in psychophysics, an area with minimal relevance to
the practical problems of the day. Psychophysics was generally
treated with respect by American psychologists,20 but the social
imperatives of the Progressive Era and the native pragmatism of
American intellectuals turned attention to areas of psychology
promising more direct application to practical problems. They
seized the opportunities presented by the development in Europe
of methods for assessing intellectual abilities.
In England, Francis Galton’s (1869) research into the inherit-

ance of intellectual abilities led to the quantitative research pro-
gramme of Charles Spearman (1904). Spearman was the first to
unify this area conceptually by linking mental tests to mental
abilities within a quantitative theory. His contributions gave this
area the same kind of mathematical impetus that Fechner’s had
given to psychophysics. Spearman’s contribution also carried the
stamp of Fechner’s modus operandi in its disregard for the funda-
mental scientific problem at the heart of measurement.
Spearman’s quantitative theory was based upon the contri-

butions of Galton and Karl Pearson to the understanding of
regression and correlation. Given a set of objects (say, persons)
and for each object, i, two numerical scores or measures, xi and yi

(say, scores on two different mental tests, X and Y), then the Pear-
son product moment correlation coefficient, rXY, is an index of the
degree of linearity between them. If each person’s score on test
X, xi, is expressed as a standard score, that is, as a deviation from
the mean, µX, divided by the standard deviation, σX, (i.e., xi is
expressed as zi = (xi−µX)/σX) and the same for scores on Y, then
rXY is the expected value of the product of the two standard scores
in the population. This index may take values ranging from +1.0
20 William James, however, was completely disrespectful of Fechner’s psychophysics, writ-

ing that ‘. . . it would be terrible if ever such a dear old man as this could saddle our
Science forever with his patient whimsies, and, in a world so full of more nutritious
objects of attention, compel all future students to plough through the difficulties, not
only of his own works, but of the still drier ones written in his refutation’ (1890, p. 549).
Despite this, reviews of psychophysical research appeared regularly in the American
psychological literature (e.g., Jastrow, 1887; Holt, 1904; Titchener, 1905; Rich, 1925).
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(indicating perfect positive linearity), through 0 (no linearity) to
-1.0 (perfect negative linearity).
Spearman took a positive correlation coefficient between scores

on two mental tests as indicating that performance was caused, in
part, by a common, underlying mental ability. The fact that all
mental tests tend to intercorrelate positively he interpreted as
meaning that all intellectual performance is caused, in part, by a
single, general intellectual ability, which he came to refer to
simply as g. As well as g, Spearman postulated specific abilities for
each different kind of intellectual task. The ‘two factor theory’, as
it became known, may be expressed as follows;

zij = gjgi + sjsi

(where zij is the standard score of person i on mental test j, gj and
sj are the extent to which test j measures general ability and the
relevant specific ability, respectively, and gi and si are i’s measures
of general ability and specific ability). Spearman thought that his
theory was very strongly supported by the data he presented, but
Brown and Thomson (1921) took considerable pains to show that
it was underdetermined by test score data. Despite this, Spear-
man’s theory and its associated method (later called ‘factor
analysis’)21 continue to influence this area of psychology. The vari-
ous methods of factor analysis it spawned (e.g., see also Thurstone,
1947), constitute genuine advances in statistical methodology.
Although his theory was quantitative, Spearman ignored the

scientific task of quantification. This is all the more striking given
that the other great innovator in this area, the French psychol-
ogist, Alfred Binet, believed that test scores were not an adequate
basis for mental measurement. Binet asserted this quite categori-
cally in relation to his scale of mental age: ‘The scale, properly
speaking, does not permit the measure of the intelligence, because
intellectual qualities are not superposable, and therefore cannot
be measured as linear surfaces are measured’ (1905, p. 40 (as
quoted in Gould, 1981, p. 151)). It is, however, perfectly reason-
able to attempt to explain positive correlation coefficients between
mental test scores by postulating common underlying causes, it is
just that there is no logical necessity for the relevant causes to

21 For a fairly simple and comprehensive introduction to modern factor analysis see
McDonald (1985).
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be quantitative. Quantitative effects may have non-quantitative
causes. For example, two families may differ with respect to the
number of children they contain and this quantitative effect may
be due to differences in the contents of beliefs relating to the
morality of artificial contraception (a non-quantitative cause). Or,
more relevant to abilities, two algorithms for solving intellectual
problems (say, for deducing conclusions from syllogisms) may
differ in the time taken to reach a correct solution because of
non-quantitative differences in the way the problem is approached
(say, using Venn diagrams versus using a formal axiomatisation
of syllogistic logic). Of course, Spearman’s theory that g, and the
various specific abilities, are quantitative is a coherent hypothesis
and one that ought to be taken seriously. Considerations like that
raised by Binet do not, of themselves, refute such hypotheses. Like
von Kries’ objections to Fechner, they simply raise the issue. How-
ever, part of taking Spearman’s hypothesis seriously is recognising
the contingent character of its quantitative features and, as a
consequence, recognising the need to test these experimentally
prior to accepting it. The hypothesis that g and s are quantitative
attributes of mental functioning is the fundamental issue underly-
ing Spearman’s approach to explaining intellectual performance
and, as a result of Spearman’s influence, the fundamental issue
still underlying the majority of theories in this area.
It should be noted that the methods of factor analysis used in

this area of psychology do not enable a test of the hypothesis that
abilities are quantitative. Instead, they, like Spearman, already
presume its truth. Linear factor analysis consists of a set of ana-
lytical procedures for reducing a matrix of correlation coefficients
to a set of linear relationships between hypothetical attributes
(factors) and test scores. The correlation coefficient, rXY, between
scores on tests X and Y, is hypothesised to be related to factors as
follows:

rXY = (fX1 × fY1) + (fX2 × fY2) + . . . + (fXk × fYk)

(where k is some finite natural number and fXn (n = 1, . . ., k) is the
degree of linear relationship between scores on X and measures on
factor n, etc.). The analytical methods used always arrive at a
solution to this equation. Hence, the method is insensitive to the
truth or falsity of the fundamental hypothesis that the relevant
causes are quantitative. If they are all quantitative and if they
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combine in the fashion displayed above, then the method of factor
analysis may help identify them. These are ‘ifs’ that cannot be
taken for granted by the scientist. If the underlying causal factors
are not all quantitative, then the method of factor analysis will
not help identify them. Indeed, because it delivers a numerical
solution regardless, it may mislead us into thinking that these
causes are quantitative attributes. The scientific use of factor
analysis is premised upon a logically prior commitment to an
entirely quantitative causal theory. Within this area of psychology,
such theories have simply been assumed and factor analysis has
been used in the possibly vain hope of discovering what attributes
a given selection of tests actually measures. Pythagorean psychol-
ogists are convinced that their tests measure something; they just
do not know what.
Spearman studied in Wundt’s laboratory at Leipzig, eventually

receiving his doctorate there, and spent time with Külpe in Würz-
burg and G. E. Müller at Göttingen (Spearman, 1930). He had a
thorough grounding in psychophysics, contributing to that litera-
ture (e.g., Spearman, 1908). Fechner’s quantitative modus operandi
provided a model for him, as Cyril Burt (1960) claimed it did for
Galton and Pearson as well. Spearman was later to write that

. . . great as may be the potency of this [the experimental method], or of
the preceding methods, there is yet another one so vital that, if lacking
it, any study is thought by many authorities not to be scientific in the
full sense of the word. This further and crucial method is that of
measurement. (Spearman, 1937, p. 89)

He took measurement to be an essential ingredient of the scien-
tific enterprise and in this he was at one with his German and
British mentors. As with them, the quantitative imperative appar-
ently closed his eyes to the empirical issues at stake.
However, in Spearman’s writings the emergence can be noted

of what was to become a far more potent motive for ignoring the
scientific task of quantification: what we might call practicalism.
This is the view that a science’s success resides in its practical
applications.

And, indeed, when we without bias consider the whole actual fruit so far
gathered from this science − which at the outset seemed to promise
an almost unlimited harvest − we can scarcely avoid a feeling of great
disappointment. Take for an example Education. This is the line of prac-
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tical inquiry that more than all others has absorbed the energy and
talent of the younger workers and that appears to offer a peculiarly
favourable field for such methods. Yet at this moment, notwithstanding
all the laborious experiments and profuse literature on the subject, few
competent and unprejudiced judges will venture to assert that much
unequivocal information of capital importance has hitherto thus come to
light. Nor have the results been more tangible in Psychiatry or in any
other department of applied psychology. (Spearman, 1904, p. 203)

The scientific task of quantification, like science generally, is logi-
cally indifferent to practicalism. Discovering that the causes of
intellectual performance are all quantitative (or that some are
non-quantitative) is, in and of itself, not something that either
should or should not be applied. Spearman, however, reveals an
anxiety about the scope of the practical applications of psychologi-
cal results. There is no necessary link between such an anxiety
and neglect of the scientific task of quantification, but they may
not be causally unrelated. In circumstances where a scientific issue
is difficult, and may even appear unnecessary (as was the case
with the scientific task of quantification in psychology), and in
circumstances where the social rewards for practical applications
are high (as was certainly the case in the application of mental
tests), ignoring the scientific issue may be a means of reaping
those rewards. In this way practicalism may subvert science.
Practicalism did play this kind of role in the development of the

mental testing movement in the United States early in the twenti-
eth century. Here it was the pioneering work of James McKeen
Cattell and Edward Lee Thorndike that helped establish applied
psychological ‘measurement’ through the promotion of mental
tests within schools, industry and the military.22 These tests
proved useful to administrators in making decisions regarding
children, workers and servicemen. Their usefulness, however, did
not depend upon the truth of the hypothesis that they measure
intellectual abilities. To an extent, their usefulness resided simply
in the fact that they produced numerical data and that, therefore,
they could be suitably packaged for a public eager to believe that
these tests gave measurement. Wise (1995) and Porter (1995)
show how what happened in psychology at this time was part of a

22 There were others who played significant roles in this movement, such as Goddard,
Terman, Yerkes, etc. (see e.g., Gould, 1981), but these two played an especially import-
ant ideological role.



Early psychology and the quantity objection98

much wider social phenomenon in which numerical procedures
came to be identified with the values of precision and objectivity,
especially in the spheres relating to human organisation or
coercion. A quantitative psychology with social applications was a
highly marketable commodity and Danziger (1990) has charted
elements of the symbiotic relationship between bureaucrats and
psychologists which resulted in the widespread acceptance of
ability testing in the United States, especially within education.
Brown (1992) shows how Cattell, Thorndike and others in the

American mental testing movement promoted psychological tests
as measurement instruments by employing easily understood
metaphors drawn from the socially valued disciplines of engineer-
ing and medicine. Their rhetoric went beyond Pythagorean scien-
tism in likening ‘applied psychology’ to the applications of quanti-
tative physics and physiology. In promoting the use of
psychological tests within the educational system and other insti-
tutions, the advantages of this kind of rhetoric are obvious. Its use
in this case, however, necessitates turning a blind eye to the scien-
tific issue of whether or not the attributes in question (i.e., the
various intellectual abilities) are quantitative. While some argued
for restraint in the use of this kind of rhetoric (e.g., Ruml, 1920;
McCormack, 1922), American society embraced the message that
psychologists offered, despite the lack of scientific credentials. By
1922, three million children per year were subjected to one form
or another of mental ‘measurement’ (Thorndike, 1923) and by
1937, ‘5005 articles, most of them reports of new tests, which
[had] appeared during the fifteen year period between 1921 and
1936’ (South, 1937) were available for use by psychologists. A
science is vulnerable when its rhetoric outstrips its credentials in
such circumstances and its survival may rely upon serving domi-
nant social interests. This sort of complicity has periodically been
a source of radical complaint against the mental testing move-
ment (Gould, 1981).
If a psychological test is found useful in some decision-making

situation,23 then that fact does not settle a scientific issue, it only

23 Of course, usefulness is an entirely relative notion and Danziger’s shrewd observation
that ‘Not infrequently, administrators simply needed [psychological] research for public
relations purposes, to justify practices and decisions they judged to be expedient’ (1990,
p. 103), supplemented by Porter’s message that in the eyes of the public, ‘In our own
time, measurement means nothing if not precision and objectivity’ (1995, p. 23), may
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raises one, viz., why are scores on this test usefully related to the
criterion? It is perfectly reasonable to speculate that they are so
related because the test is deemed to measure24 some hypothetical
quantitative attribute (such as general ability) on which the cri-
terion is causally dependent. However, until that hypothetical
attribute is identified and shown to be quantitative, one has here
only a theory in need of testing. To the critical, scientific mind, a
theory always raises questions to be answered by further research;
to the uncritical, practicalist mind, a theory is taken to answer
questions raised. The way in which quantitative psychology
embraced practicalism is nicely illustrated via a trajectory through
three generations of American psychology, from Cattell, through
Thorndike, to Kelley.
Boring (1957) stresses the great influence that Cattell, one of

the earliest designated professors of psychology in the United
States, had upon the development of American psychology. Cat-
tell, like Spearman, was deeply influenced by both Wundt and
Galton, taking his doctorate with the former in 1886 and making
contact with the latter in 1888. He wrote a number of early, piv-
otal papers (Cattell, 1890, 1893a) broadening the scope of quanti-
tative psychology from psychophysics towards the study of intellec-
tual abilities. His brief entry, under the heading Measurement, in
Baldwin’s Dictionary of Philosophy and Psychology (1902, vol. 2, p. 57)
presents his views succinctly. It expresses his faith in the quanti-
tative imperative (‘Exact science consists of measurements and all
sciences as they advance become increasingly quantitative’) and
his commitment to the classical concept of measurement
(measurement is the ‘determination of a magnitude in terms of a
standard unit’ and ‘a ratio is the basis of all measurement’). Here
claims on behalf of psychological measurement were realistic
(‘The place of measurement in psychology is still an open
question’), but confident (‘It has been claimed that only physical
measurements are made in the psychological laboratory, but it
may be replied that at all events mental processes are functions

not be too cynical an assessment of precisely wherein the usefulness of psychological
tests sometimes really resided.

24 By the same token, any respect in which test scores are useful as practical tools of
prediction is one that can always be described without recourse to the rhetoric of
measurement. Unless underlying, hypothetical attributes are shown to be quantitative,
talk of tests scores as measurements is a theoretically loaded way of packaging their
utility, not a way of explaining it.



Early psychology and the quantity objection100

of the quantities measured’). As he had made explicit earlier
(1893b), he thought that mental processes were not just any func-
tions of the physical quantities measured, but quantitative func-
tions. This way of thinking was a consequence of his view,
expressed later in Popular Science Monthly, that

The mental and the physical are so inextricably interfused that quanti-
tative and genetic25 uniformities could not exist in the physical world if
absent from consciousness. If our mental processes did not vary in
number, if they did not have time, intensity and space relations, we
should never have come to apply these categories in physics, chemistry
or astronomy. (Cattell, 1904, p. 182)

Thus, he concluded, ‘Psychology is from the start both quantitative
and genetic’ (p. 184). In fact, Cattell was totally committed to the
development of psychology as a quantitative science. In the same
paper he contemplated psychology as an applied science and his
discussion entered a grey area where the prospects of practicalism
obviously excited his mind. In assessing his response to these pros-
pects we need to keep clearly in mind the fact that if there is no
science, in the sense of no body of empirically established results
of a general and systematic sort, then there can be no applied
science, for there is then no science to apply. Cattell danced on
the razor’s edge (‘It may be true that pure science should precede
the applications of science. But of this I am not sure’ (p. 185),
and ‘It may be at present pseudo-science, in the sense that we have
drawn conclusions without adequate knowledge, but it is none the
less the best we can do in the way of the application of system-
atised knowledge to the control of human nature’ (p. 186)) before
yielding to practicalism (‘If I did not believe that psychology . . .
could be applied in useful ways, I should regard my occupation as
nearer to that of the professional chess-player or sword swallower
than to that of the engineer or scientific physician’ (p. 185).
Having cast his lot, he disclosed his dream:

I see no reason why the application of systematized knowledge to the
control of human nature may not in the course of the present century
accomplish results commensurate with the nineteenth-century appli-

25 By genetic, Cattell meant here something like causal, deterministic or perhaps experimental,
as is indicated in such comments as that made a few sentences earlier, ‘The two great
achievements of science have been the elaboration of the quantitative method on the
one hand and of the genetic method on the other’ (1904, p. 182).
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cations of physical science to the material world . . . We may have experts
who will be trained in schools as large and well-equipped as our present
schools of medicine, and their profession may become as useful and as
honorable . . . in the end there will not only be a science but also a
profession of psychology. (p. 186)

That an ‘honorable’ science of quantitative psychology might
require the empirical demonstration that its hypothesised attri-
butes are quantitative as a necessary condition for intellectually
responsible applications and that the science ought to come before
the profession did not loom large in a mind gripped by practicalist
enthusiasms.
Edward Lee Thorndike received his doctorate from Columbia

University under Cattell in 1898, then ‘took up with the mental
test movement and became a leader in it’ (Boring, 1957, p. 563).
His text, An Introduction to the Theory of Mental and Social Measure-
ments (1904) became something of a classic in the area. If anyone
was Cattell’s spiritual heir it was Thorndike. He welded the vari-
ous elements of Pythagoreanism, the quantitative imperative and
practicalism into his famous ‘Credo’:

Whatever exists at all exists in some amount. To know it thoroughly
involves knowing its quantity as well as its quality . . .
We have faith that whatever people now measure crudely by mere
descriptive words, helped out by the comparative and superlative forms,
can be measured more precisely and conveniently if ingenuity and labor
are set at the task. We have faith also that the objective products pro-
duced, rather than the inner condition of the person whence they spring,
are the proper point of attack for the measurer, at least in our day and
generation.
This is obviously the same general creed as that of the physicist or chem-
ist or physiologist engaged in quantitative thinking − the same, indeed,
as that of modern science in general. And, in general, the nature of
educational measurements is the same as that of all scientific measure-
ments. (1918, pp. 16–17)

Stripped of its pseudo-scientific, quasi-religious and crypto-
metaphysical overtones, Thorndike’s confession signalled a poten-
tial advance in psychometric thinking. The suggestion that the
(educational) measurer attend to ‘the objective products pro-
duced, rather than to the inner condition of the person’, indicated
a way of narrowing the focus of psychological measurement. If
what one is attempting to measure, be it intensity of sensation or



Early psychology and the quantity objection102

intellectual ability, is a theoretical attribute, then the problems of
quantification are compounded. A person’s performance on a
mental test does not suffer this impediment.
Test performances have many features, some quantitative and

some non-quantitative. Thorndike’s approach was to focus only on
the quantitative. The most obvious quantitative feature of mental
test performance is the number of items correctly answered. This
is now, almost universally, the only feature of test performance of
interest to psychometricians (and is called the person’s observed
score).26 Observed scores, in and of themselves, are not measures
of anything. They may be interpreted as measures of ability, say,
within the context of some theory (like Rasch’s or Spearman’s
theories), but then we have reintroduced the theoretical attributes
which Thorndike wished, for the present, to avoid. Thorndike mis-
takenly thought that observed scores count units of variable mag-
nitude:

. . . the zeroes of the scales for the educational measures and the equival-
ence of their units are only imperfectly known. As a consequence, we can
add, subtract, multiply and divide educational quantities with much less
surety and precision than is desirable.27 (1918, p. 17)

However, an even more egregious mistake was his complete fix-
ation upon observed scores at the expense of other attributes of
performance. This sidesteps the issue of whether or not test per-
formance is really measurable. If performances to individual test
items are classified as correct or incorrect, and coded as 1 and 0,
respectively, as is typical, then a person’s performance on the test
as a whole is represented more informatively by an ordered
sequence of ones and zeroes than by a single number, the observed
score. It is entirely possible for two people to perform quite differ-
ently and, yet get exactly the same observed score. Obviously,
their performances, as ‘objective products produced’ are equival-
ent in one sense (number correct), but not in the more funda-
mental sense of displaying exactly the same knowledge. A’s per-
formance on a given mental test is only at least as knowledgable

26 It should be noted that there has recently been a renewed interest in mental speed, i.e.,
the time taken to respond to a test item. This feature was also of interest to Cattell in
the late nineteenth century.

27 To his credit, Thorndike here identified a complex and taxing problem, one hinted at
by Reid (1748), popularised by Stevens (1946, 1951, etc.) as the problem of permissible
statistics, and still not resolved to the satisfaction of everyone (Michell, 1986).
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as B’s if A also gets correct every item B gets correct (and possibly
more as well). What is observed, in terms of this more funda-
mental relation between people’s performances, is not a quantitat-
ive relation. It is a mere order relation (i.e., one that is only transi-
tive and asymmetric) and the set of possible performances on any
test constitutes only a partially ordered, not a quantitative struc-
ture. That is, there will be cases where we cannot conclude that
A’s performance is more knowledgable than B’s or vice versa
because A gets incorrect items that B gets correct and vice versa.
As an index of knowledgability, observed score is not even ordinal
and, so, it is not a measure of that attribute. Had Thorndike not
been obsessed with measurement, he might have been prepared
to consider the objectively revealed, non-quantitative structure of
mental test performances and, on that basis, to consider the pos-
sibility that non-quantitative theories of intellectual abilities are,
a priori, the most plausible candidates. Instead, he encouraged psy-
chology down a path which, if abilities are not quantitative, was
entirely the wrong path for the science to take.
Thorndike’s approach to observed scores was to decree by fiat

that they were at least an ordinal index of knowledgability (or
‘scholarship’ as he put it (1904, p. 85)). Thorndike could only
justify such a claim by invoking some theory about what observed
scores might measure. From that false start he believed he could
attempt, what he called measurement by relative position (by which
he meant something not unlike the modern practices of using
percentile scores or standard scores). He claimed that ‘Measure-
ment by relative position in a series gives as true, and may give
as exact, a means of measurement as that by units of amount’
(1904, p. 19). Even if observed scores were an ordinal index of
knowledgability, this latter claim would be false. An ordering falls
very far short of the level of information given by measurement.
‘Measurement’ by relative position is merely a monotonic (i.e.,
order preserving) transformation of observed scores and has no
meaning beyond what those scores themselves already possess.
The fact that psychologists took Thorndike seriously shows how
ready they were to believe that observed scores really do measure
something.
The tendency to ignore the scientific issues involved was not a

universal one in early American psychology. In one way or
another, doubts were raised by critical minds. E. G. Boring, once
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Titchener’s student and, incidentally, later Stevens’ supervisor at
Harvard University, took a critical view of measurement in psy-
chology, writing that ‘We are left then with the rank-orders of our
psychological quantities . . . and it is with these rank orders that
we must deal. We are not yet ready for much psychological
measurement in the strict sense’ (Boring, 1920, p. 32). This com-
ment could have been aimed specifically at Thorndike’s measure-
ment by relative position. Truman Lee Kelley, ‘Thorndike’s pupil
and for some years America’s leading psychologist-statistician’
(Boring, 1957, p. 540), published a retort (Kelley, 1923) based
on his assessment that ‘Boring’s conclusions are generally destruc-
tive, and tend to leave one with the feeling that there is no sound
statistical basis for mental measurement, and little for other
psychological measurement’ (p. 408). That Kelley saw the prob-
lem, at this stage in the history of psychology, as one requiring a
‘sound statistical basis’, rather than as logical, is interesting.
Under the combined influence of Spearman, Thorndike and
Kelley, issues to do with psychological measurement gradually
became assimilated to statistical issues,28 and, especially under
Kelley’s influence, psychometric theory was viewed as a branch of
statistics.29 For psychologists interested in measurement, this had
two effects. Quantification was no longer understood in terms of
its logical character but, instead, was seen as purely statistical.
Given that very few psychologists were competent statisticians,
this in turn meant that foundational issues of quantification were
no longer much thought about. Psychologists looked to statis-
ticians to resolve measurement problems, much as they did with
issues of inference a generation later (Gigerenzer et al., 1989).
The questions were in the process of being subtly transformed in
ways that pushed the quantity objection to the periphery.
The issue of the unit of measurement, that had bothered

Thorndike, was still there. However, Kelley presented an argu-
ment intended to remove it:

It might seem axiomatic that there can not be a science of quantitative

28 In this they were also following Fechner, who not only utilised statistical concepts (see
Link, 1994) but also made original contributions to probability theory which, in turn, it
is said influenced the famous frequentist theorist, Richard von Mises (Heidelberger,
1994).

29 Kelley also made early contributions to what became known as classical test theory (Kelley
and Shen, 1929).
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measurement until and unless there is established a particular unit of
measurement. This is, however, true only in a limited sense; for it is
quite conceivable that one could have a science of physical phenomena
in which the units were such that the scale of time intervals was the
square of the present intervals measured in seconds, and in which the
length scale was logarithmic as compared with the present scale in centi-
meters. etc. Of course, in terms of these new units, all the laws of physics
would be stated by means of formulas different from and in general more
cumbersome than our present formulas; but nevertheless we could have
an exact science. The existence of the science does not lie in the units
employed, but in the relationships which are established as following
after the choice of units. (1923, p. 418)

Thorndike’s problem had been that because items in a mental test
might differ in level of difficulty, the observed score is a sum of units
of different magnitude. This had led him to prefer measurement by
relative position, which Boring was now classing as a mere ‘rank-
order’. Kelley’s retort was to draw attention to a very subtle and not
widely appreciated degree of freedom within quantitative science.
His observation about transforming scales for measuring time and
length is quite true. What he failed to bring out, however, is that it
is really quite a different problem from that facing psychologists.
The previous chapter drew attention to the fact that for any two
magnitudes of a quantity (say, any two lengths) there is no unique
ratio between them. Ratios are tied to relations of additivity. If for
any continuous attribute there is one such relation, then there is an
infinite number. Replacing our conventional scale of length (which
is based upon our conventional view of what it is for lengths to add
together) by one which is its logarithmic transform, as Kelley sug-
gests, simply identifies a different relation of additivity between
lengths, one which although it seems quite unnatural to us, exists
alongside the other. Physics has the luxury of being able to select
whichever additive relations best suit (as the case of velocity
illustrates), but this is a luxury bestowed in virtue of already having
discovered that its attributes possess additive structure. There is no
parallel here with the situation then existing in psychometrics and
there could be none until it is shown that attributes like ability or
knowledgability are quantitative.
Kelley, instead drew the mistaken conclusion that

A parallel situation holds with reference to mental measurement; so
that, starting with units however defined, if we can establish important
relationships between phenomena measured in these units, we have
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proceeded scientifically. The choice of the unit is purely a question of
utility. (1923, p. 418)

The confusion goes right back to Thorndike’s reservation about
observed scores being a sum of unequal units. This is not so. In
the case of observed scores, there is a fixed, unvarying unit, that
of a correct answer. So observed scores are quantitative: they are
frequencies. It is only when these frequencies are considered to
be indices of some other attribute, such as ability or knowledg-
ability, that an issue of unequal units can be sensibly posed. For
this to be meaningful, these attributes must be quantitative. So
the same issue, that of whether or not these psychological attri-
butes are quantitative cannot be escaped by those who would
invoke the concept of measurement.
Kelley’s suggestion then, that psychometricians look for

‘important relationships’ between observed scores and criteria of
interest is valid, but it is a matter that we have already considered.
When useful relationships of this sort are found, it does not follow
that anything is measured, although quantitative hypotheses
might be proposed to explain the relationships observed. If they
are, then the problem of testing whether or not the relevant attri-
butes are quantitative returns. The fact that psychologists were
satisfied with arguments like Kelley’s and thought, as a result,
that observed scores must measure something, shows how seri-
ously their critical faculties had been compromised by practi-
calism.
As a matter of simple logic, the scientific task of quantification

cannot be erased by any amount of argument and so those who
hope for measurement always invite the quantity objection. Not
to face it is to condemn one’s discipline to be forever less than
scientific. Even if all psychologists agreed to ignore it and made a
pact to call their numerical procedures measurement, the reality
of the quantity objection would remain.
Up to, say, 1930, an enormous array of mental tests were devel-

oped. These were presented as suitable for the measurement of
intellectual abilities and educational achievements (for summaries
see, for example, Pintner, 1929, and Freeman, 1929). Procedures
for their use were standardised in manuals, along with conventions
for interpreting the ‘measures’ arrived at. Considerable attention
was paid to the practical issues surrounding the instrumental task
of quantification and almost none to the scientific task. Pintner
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(1929) represented the dominant attitude. Without so much as a
nod towards the scientific task, he asserted that ‘At present the
psychologist has a great number of scales and tests for the
measurement of intelligence’ (p. 700). He noted, however, that
psychologists do not all define intelligence in the same way.
Indeed, in 1921, The Journal of Educational Psychology had invited
seventeen ‘leading investigators’ to discuss the concept. There was
little agreement and most definitions failed: the participants did
not know the intrinsic character of intelligence, but each thought
he knew what it caused (e.g., learning, cognition, adaptation, etc.).
Because of the pressures of practicalism and the quantitative
imperative, however, one intrinsic feature was agreed upon: quan-
titative structure. All thought intelligence measurable. As Kelley
later put the matter,
Our mental tests measure something, we may or may not care what, but
it is something which it is to our advantage to measure, for it augments
our knowledge of what people can be counted upon to do in the future.
The measuring device as a measure of something that it is desirable to
measure comes first, and what it is a measure of comes second. (1929,
p. 86)

The theory that mental tests are instruments of measurement was
accepted because it helped answer the questions raised by the
apparent usefulness of such devices. The extent to which the ques-
tion raised by such a theory (viz., is anything really measured?)
was ignored is an index of the triumph of practicalism over critical
inquiry in quantitative psychology.
Views critical of this approach to quantification were expressed

during the 1930s (e.g., Adams, 1931; Brown, 1934; and Johnson,
1936), but the mainstream of quantitative psychology was unaf-
fected: the quantity objection was buried. Another decisive index
of this was the character of psychometrics courses and textbooks,
that they dealt only with psychological measurement as a practice
based upon an emerging statistical theory: the so-called, classical
test theory. This hypothesised that observed scores were a sum of
two statistically independent components, true scores and error
scores, with the latter being supposedly drawn randomly from a
normal distribution of errors. If ever there was, in the history of
any science, a theory accepted just because it answered questions
rather than investigated because it raised them, this is it. As
classical test theory became increasingly entrenched and solidified,
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this uncritical mass of ‘normal science’ (Kuhn, 1970) expelled the
quantity objection from the dominant paradigm. By the close of
the fourth decade of the twentieth century, psychologists’ quanti-
tative practices already conformed to the definition that Stevens
would soon propose.



CHAPTER 5

Making the representational theory

of measurement

The separation between number and quantity is thus com-
plete: each is wholly independent of the other.

(Bertrand Russell)

Measurement is only a means to an end.
(N. R. Campbell)

If, by 1930, the modus operandi of quantitative psychology already
anticipated Stevens’ definition, by itself this was not sufficient to
ensure displacement of the classical concept. However, by 1940
the standing of the classical conception within psychology had alt-
ered dramatically. How did this happen? First, whilst most first-
generation quantitative psychologists had initial training in estab-
lished quantitative science (e.g., Fechner in physics, Wundt in
physiology), the proportion of quantitative psychologists with such
experience diminished as the twentieth century unfolded. Increas-
ingly psychologists were drawn from the humanities, not the
sciences. Second, from the turn of the twentieth century, Book
V of Euclid’s Elements exerted a diminishing influence upon the
mathematics curriculum and, for the first time since the Dark
Ages, central quantitative concepts, such as magnitude, quantity,
ratio and measurement, drifted from their traditional moorings.
This mattered less in established quantitative science, where
measurement practices secured them, than in psychology, where
quantitative practices ignored the classical concept.
These factors, however, were alone insufficient. Early this cen-

tury, more profound changes in the philosophy of measurement
encouraged redefinitions. British and American philosophy shifted
in an anti-realist direction. As a result, the concepts of number
and quantity were prised apart. This forced a reinterpretation of
the concept of measurement, one which accommodated the

109
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non-realist views of number then accepted in philosophy of math-
ematics.1 The philosophical understanding of measurement came
to depend less and less upon the increasingly alien concepts of
magnitude and quantity.
The emphasis in philosophy of science upon immediate sensory

experience as the bedrock of scientific knowledge and the sus-
picion of anything beyond hand or eye, put the classical concept
on the defensive. In America this spirit was manifest as oper-
ationism, in Europe as logical positivism, but, as an intellectual
style it was much more pervasive than either of these. The theory-
laden concept of continuous quantity was discarded. It was
replaced by concepts apparently more firmly located upon the lab-
oratory shelf and requiring for their grasp no exercise of scientific
imagination.
So complete was this flight from the classical paradigm that

when, in 1966, Ellis’s Basic Concepts of Measurement was published,
virtually all memory of the classical concept in philosophy had
been lost. In attempting to describe this concept, Ellis made no
mention of the relevant contributions of De Morgan (1836),
Helmholtz (1887), Hölder (1901), Frege (1903) and Whitehead
and Russell (1913).2 Quantitative psychologists of the 1940s and
1950s, with little first-hand knowledge of quantitative science, had
often studied the philosophy of science from texts such as Cohen
and Nagel (1934). They were thereby conceptually closer to Stev-
ens’ definition than to the classical. This chapter traces these
philosophical changes through the writings of the three most sig-
nificant measurement theorists of the time, Bertrand Russell,
Norman Robert Campbell, and Ernest Nagel.

RUSSELL’S TRANSFORMATION OF THE CONCEPT OF

MEASUREMENT

Russell’s early interest was in the philosophy of mathematics.3

Initially, he accepted the classical view of numbers as ratios of

1 The three dominant views were logicism (numerical truths were thought to be derivable
from the general laws of logic), formalism (numerical truths were thought to constitute
a ‘free-standing’ formal, axiomatic system, with its own symbols and rules of inference),
and intuitionism (numerical truths were thought to be dependent upon fundamental
intuitions of human thought). See Benacerraf & Putnam (1983).

2 This is not to say that Ellis did not refer to some of these authors in other contexts.
3 See Griffin & Lewis (1990).
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magnitudes. Then, still in his neohegelian phase, he rejected it
(Russell, 1897).4 Even though he later described this paper as
‘unadulterated Hegel’ and ‘unmitigated rubbish’ (Russell 1959),
he never resiled from its main conclusion, that the concept of
quantity cannot support that of number. He adjudged the tra-
ditional view of quantity incoherent and attempted a reconstruc-
tion. Quantity, he argued, reduces to mere order: given any two
magnitudes, the most that can be said of them is that one is
greater (or less than) than the other. Because quantity reduces to
mere order, a relation, and because relations are indivisible, he
reasoned that magnitudes also must be indivisible and, so, cannot
stand in additive relations. Without additive relations they cannot
sustain ratios. This was an explicit rejection of the classical con-
cept: if magnitudes do not sustain ratios, ‘The separation between
number and quantity is thus complete: each is wholly independent
of the other’ (Russell, 1903, p. 158) and measurement must be
understood anew.
Michell (1997a) analysed Russell’s argument (see also Griffin,

1991) and I will ignore its more arcane features here. Russell’s
central points transcend their Hegelian context and present genu-
ine challenges to the classical view, illuminating features of it.
Russell’s contention that quantity reduces to mere relation (order,
in his view) presents an interesting problem. Likewise, his view
that magnitudes are indivisible deserves attention.

The problem of the relativity of continuous quantity

Russell claimed that ‘the whole essence of one quantity is to differ
from some other quantity’ (Russell, 1897, p. 331). Consider a
specific magnitude, say, a length of one metre. What can be said
about this length other than that it relates to other lengths in
certain ways, e.g., it is less than 1 chain, it is greater than 1 foot,
etc.? And, likewise, all that can be said about these other lengths,
it seems, is how they, in turn, relate to yet other lengths. There
seems to be no end to this network of relations and, in particular,
no non-relational basis upon which the terms related stand. Since
no length appears to be independently definable in terms of its

4 See Griffin (1991) for an account of the development of Russell’s views during this
period.
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own, intrinsic features, the concept of length, and by extension
that of any continuous quantity, would appear to involve an infi-
nite regress of relations. If a relation obtains, then there must
be something standing in that relation (to other things) and that
something cannot dissolve into an infinite regress of relations to
other things because that would leave nothing definite to stand in
any of the relations.
Clarity is attained on this issue by attending, first, to the sim-

pler concept of discrete quantity. Our paradigm of discrete quan-
tity is that of the sizes of aggregates. By this, I mean the attributes
that aggregates have in virtue of which they may be the same size
as one another. For example, an aggregate of three books and an
aggregate of three horses share a common property: that of being
three-membered. It can be said of this magnitude that it is less
than being four-membered and greater than being two-membered.
These are relational characterisations, like those considered above
for length. However, these relational characterisations do not
entail an infinite regress: they terminate with an obvious basis.
For example, an aggregate of Xs is three-membered if and only if
it is entirely composed of discrete parts, A and B, where A is a
one-membered aggregate of Xs and B is a two-membered aggre-
gate of Xs; an aggregate of Xs is two-membered if and only if
it is entirely composed of discrete parts, C and D, where C is a
one-membered aggregate and D is a one-membered aggregate;
and an aggregate of Xs is one-membered if and only if it is entirely
composed of something, E, where E is an X. That is, with the
discrete quantity, aggregate size, there is a basis to the network
of relations, the property of being one-membered. Since it is only
aggregates of finite magnitude that are being considered, every
aggregate size is completely definable relative to the unit magni-
tude, being one-membered. This is what is attempted whenever
any magnitude is counted. This unit magnitude is simply a matter
of something being a thing of a certain kind and such situations
exist, if anything does. That is, for this quantity, the basis, in
terms of which every magnitude of the quantity can be defined, is
the unit. Is there an analogue for continuous quantities?
Consider length. Given a unit, say, the metre, each other length

is defined relative to it by an infinite class of inequalities, as shown
by Euclid’s Elements, Book V. That is, if u is the metre and x any
other length, then there will be an infinite set of inequalities of
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the form, nx � mu (where n and m are natural numbers). So, with
continuous quantity, as with discrete quantity, there is a basis
relative to which each magnitude is defined and this, in a nutshell,
is what is attempted (albeit, generally, only approximately) when
any magnitude is measured. It may seem that an infinite set of
inequalities relating each magnitude to a unit is not much of an
improvement upon the infinite regress of relations mentioned
above. This is not so. While it may not be possible for us to specify
exactly every magnitude, x, relative to the unit because, poten-
tially, an infinite number of numerical relations is involved, the
theory is that x is, in reality, quite definitely, so related to u. That
is, the limitation here is human, not ontological.
However, there is another important difference between dis-

crete and continuous quantities. In the case of discrete quantity,
the unit (a thing of a certain kind) is, sometimes, directly observ-
able. For example, we can usually see when something is a book
or a horse. However, in the case of continuous quantities we
cannot literally see the unit. One cannot, for example, discriminate
exactly one metre from a different length indiscernibly close to it.
Even when the standard metre was the bar of platino-iridium alloy
at the International Bureau of Weights and Measures at Sèvres,
one could not literally see precisely one metre because human
perceptual capacities do not permit sufficiently fine visual dis-
criminations. Even then, the concept of a metre was a theoretical
concept. This fact is explicit now that the metre is defined as the
length of the path travelled by light in a vacuum during a time
interval of 1/(299,792,458) parts of a second (Jerrard & McNeill,
1992).
Whatever observational difficulties this entails, it does solve the

ontological problem raised by the infinite regress of relations to no
fixed magnitude. The unit is precisely defined within some theory.
Given the truth of that theory, every other magnitude is specified
by the infinite class of inequalities relating it to the unit. The
concept of continuous quantity is introduced into science by anal-
ogy with that of discrete quantity and is a complex generalisation
of it. Although it is based upon infinite sets of relations and units
are defined theoretically, it remains coherent because at each step
of its characterisation, the terms involved are precisely defined.
Observing a metre would mean observing the difference

between it and arbitrarily close lengths and this could never be
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done by us, given the finite resolution of our perceptual systems.
The real world, with which science deals, is not, in its infinite
complexity, defined by its relations with human observers, as posi-
tivists and operationists insisted. If the ways of working of natural
systems are to be grasped, then the scientific imagination must
overcome the limitations of human observation. The concept of
continuous quantity shows us just what a blunt sword observation
is. Using it effectively requires knowing its limitations rather than
treating its limitations as signalling ontological boundaries.
Observation is really a form of causal contact between us and the
world in which the effect (some state of the observer) is sensitive
to the cause (some feature of the observed), in the sense that had
the cause been different in relevant ways, then likewise, the effect.
In the case where the cause is some quantitative feature, were the
effect some continuous function of it, then infinitely fine discrimi-
nations could be made and distinct magnitudes, such as the metre,
would be directly observable. However, our sensory systems have
finite resolution. This is a limitation of the sensory apparatus, not
a feature of situations perceived. We can construct a coherent
theoretical picture of the structure of continuous quantities by
analogy with that of discrete quantity, using concepts clearly
articulated by Euclid. Unlike the case of discrete quantity, we have
no good reason to suppose that measurable quantities are not con-
tinuous and no basis upon which to restrict the class of such mag-
nitudes.

The problem of the indivisibility of magnitudes

Russell’s main reason for denying the link between quantity and
number was this: on the one hand he held magnitudes of a quan-
tity to be indivisible, on the other he thought that number was
divisible, and so, he concluded, number could not be based upon
quantity. Division and its obverse, concatenation, are clear enough
when applied to the objects that possess quantitative attributes,
but not when applied to those attributes themselves. An object, 2
metres in length is divided into two discrete parts, each 1 metre
in length: has the length (i.e., the property of being 2 metres
long) thereby also been literally divided? Some would say yes (e.g.,
Armstrong, 1978); Russell asserted no. I know of no way in which
this issue can be settled. In this section, I will assume that Rus-
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sell’s intuition is correct and explain how it is no impediment to
the classical view.
Even if a magnitude of a quantitative attribute cannot be, itself,

literally divided, when an object possessing that magnitude is div-
ided, there is a relation between that attribute and the relevant
attributes of the parts of the division. When, for example, a rod,
C, is divided into two discrete parts, A and B, the length of C is
related to the lengths of A and B. Let us call this relation additivity.
As stressed in Chapter 3, the additivity of magnitudes is a purely
formal matter. That is, any relation between magnitudes
satisfying the relevant conditions of Hölder, for example, is one
of additivity. Sometimes evidence for the existence of additivity
between magnitudes can be obtained by dividing or concatenating
objects in appropriate ways. For example, the additive character
of length can be tested by concatenating or dividing rigid rods of
manageable dimensions. However, one of the most difficult con-
ceptual hurdles in understanding measurement has been that of
distinguishing the additivity of magnitudes from the divisibility of
objects.
The former is an hypothesis proposed to help explain the latter.

If the linear concatenation, end to end, of rigid rods, A and B,
exactly spans rod C, then this is partly explained by the fact that
their respective lengths, lA, lB, and lC, are such that lA + lB = lC.
This is not a complete explanation of the outcome of such a con-
catenation because, as stressed in Chapter 3, additive relations
between magnitudes are uniformities of coexistence, not causal
laws. The relevant causal law here would need to take account of
the other properties (physical, chemical, etc.) of the rods as well
as their lengths and, also, of the precise physical character of the
concatenation operation.
Numbers are similar. In what sense is the natural number, 3

say, able to be divided into 2 and 1? The fact that 1 + 2 = 3 is an
additive relation between these numbers, but here additivity does
not entail literal divisibility any more than in the case of magni-
tudes of continuous quantity. Indeed, there is a direct analogy.
Discrete aggregates of, say, just two books and of just one book
may be concatenated into an aggregate of three books and this
operation is explained by the additive relation obtaining between
1, 2, and 3, but not entirely. Discrete aggregates of just two
(female) rabbits and just one (male) rabbit may be carelessly
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concatenated into an aggregate of more than three rabbits, as
Australian farmers know. The relevant causal law, explaining the
outcome of a concatenation operation, must take account of the
other properties of the aggregates concatenated and the character
of the concatenation.
This matter can be pressed further. The natural numbers are not

properties of aggregates. The properties of the aggregates are the
aggregate sizes, being one-membered, being two-membered, etc.
(see Michell, 1994a). These properties constitute a quantity, as
mentioned above. Strictly speaking, it is relations of relative magni-
tude between these properties that instantiate the natural num-
bers. Consider, for example, the magnitude of an aggregate of just
two books relative to that of an aggregate of just one book: the for-
mer’s size is twice the latter’s. The same relation (being two of)
holds between themagnitude of an aggregate of just two rabbits and
an aggregate of just one rabbit. It is this relation which is two and,
of course, it is, like the real numbers, a ratio of magnitudes of a
quantity. Without going into the precise formal details, it can now
be appreciated how the additivity of the discrete quantity, aggregate
size, connects with the additivity of the natural numbers.
Returning to Russell’s claim that magnitudes are not divisible,

it is clear that in precisely the same sense, numbers are not divis-
ible either. However, both magnitudes and numbers are additive
and, not only is the additivity of number connected with that of
quantity, but also the additivity of both can be used to explain
partially the results of dividing and concatenating objects.

Russell’s new theory of measurement

Russell held that (i) magnitudes are purely ordinal structures and
(ii) magnitudes are logically distinct from numbers. He proposed
six axioms characterising magnitudes:

1. Every magnitude has to some term the relation which makes it of a
certain kind.

2. Any two magnitudes of the same kind are one greater and the other
less.

3. Two magnitudes of the same kind, if capable of occupying space or
time, cannot both have the same spatio-temporal position; if relations,
can never be both relations between the same pair of terms.
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4. No magnitude is greater than itself.
5. If A is greater than B, B is less than A, and vice versa.
6. If A is greater than B and B is greater than C, then A is greater than

C. (Russell, 1903, p. 168)

Axioms 2, 4, 5 and 6 claim that a system of magnitudes is a strict
simple order. Axioms 1 and 3 are logical and 3 could be taken as a
necessary and sufficient condition for 1. Thus defined, magnitudes
seemed incapable of sustaining ratios and, hence, it seemed, num-
bers could not be introduced into measurement in the classical
manner. This left two problems: first, to give an alternative
account of number, one independent of quantity; and second, to
explain the role of numbers in measurement.
Russell’s proposed solution to the first problem is well known

(Benacerraf and Putnam, 1983). In brief, it was to define the
sequence of cardinal numbers, 1, 2, 3, . . ., etc., as classes of similar
classes, where by similar classes he meant any two classes of the
same size.5 This sequence begins with the class of all singletons,
which for Russell was 1; next, the class of all pairs or 2; then, the
class of all triples or 3; . . ., etc. He then proceeded to define the
integers, rational and real numbers in terms of the cardinal num-
bers.6 If this is what numbers really are, then their occurrence in
measurement is a mystery. Other definitions of the cardinal num-
bers (formalist, intuitionist, and set theoretical) were proposed
around this time and these made the use of numbers in measure-
ment no easier to understand. Russell’s importance for measure-
ment theory resides in his proposed solution to the second prob-
lem, for this was a solution equally applicable to any of the other
definitions of number.
Since, according to Russell, the series of magnitudes constitut-

ing a quantity and the series of real numbers used in their
measurement are logically unconnected, their association must be
external. Hence, he proposed that,

Measurement of magnitudes is, in its most general sense, any method
by which a unique and reciprocal correspondence is established between
all or some of the magnitudes of a kind and all or some of the numbers,
integral, rational, or real as the case may be . . . In this general sense,

5 Russell avoided mentioning the attribute of class size by defining similar classes as those
whose elements correspond one to one.

6 Russell’s approach does not avoid the concept of quantity because, obviously, similar
classes are all classes of the same size.
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measurement demands some one-one relation between the numbers and
magnitudes in question − a relation which may be direct or indirect,
important or trivial, according to circumstances. . . . Since the numbers
form a series, and since every kind of magnitude also forms a series,
it will be desirable that the order of the magnitudes measured should
correspond to that of the numbers, i.e. that all relations of between
should be the same for magnitudes and their measures. (Russell, 1903,
p. 176)

Russell’s idea is that measurement involves a one-to-one corre-
spondence between the magnitudes of a quantity and a subset of
one or other of the number systems, integral, rational or real, in
such a way that the order of the magnitudes is represented by the
order of the corresponding numbers. This, as far as I know, is the
first explicit statement of the representational view of measure-
ment (Michell, 1993).
What is the difference between this and the classical concep-

tion? According to the classical concept, since the ratio of each
magnitude to a unit is a real number, for each unit there must
be a one-to-one correspondence between all magnitudes and the
positive real numbers. So, the difference between the two concep-
tions is not to be found in the proposition that measurement
involves an order preserving isomorphism between magnitudes
and numbers. This proposition is a necessary condition for
measurement, according to both views but, according to the classi-
cal conception, it is not sufficient for measurement. An isomor-
phism between a purely ordinal system of attributes (as Russell
takes magnitudes to be) and numbers is not measurement accord-
ing to the classical view. Because it shifted the emphasis away
from additivity, Russell’s new theory possibly accommodated
psychological attributes, and Russell emphasised this by using
psychological examples. Russell’s theory, therefore, differs in two
ways from the classical account.7 First, for him a quantity is not
an additive system of magnitudes, it is a purely ordinal one. Sec-
ondly, the numbers that magnitudes correspond to are not
entailed by the system of magnitudes itself, but are, instead,
entirely external to that system.

7 It differs also in another relatively superficial respect, but one that can cause confusion.
Russell, somewhat idiosyncratically, used the term quantity to refer to objects having
magnitudes (Russell,1903). Thus, ‘An actual foot-rule is a quantity: its length is a mag-
nitude’ (p. 159).
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According to the classical view, numbers are already located
within a system of magnitudes, as relations of a certain sort (viz.,
ratios), and, therefore, measurement is the attempt to discover
facts about magnitudes. Seen in this way, measurement is continu-
ous with the rest of science: it is part of the process of discovering
the way things are. This is not the case with the representational
view. According to that view, a complete empirical science could
be a ‘science without numbers’ (Field, 1980). Since numbers are
presumed not to be present in the phenomena studied in empirical
science, two questions may be asked of representationalists: ‘why
introduce numbers into science?’ and ‘why restrict the application
of numbers to the representation of ordinal structures?’
Russell attempted neither question. However, he did say that

Without numerical measurement, therefore, the quantitative relations
of magnitudes have all the definiteness of which they are capable −
nothing is added, from the theoretical standpoint, by the assignment of
correlated numbers. The whole subject of the measurement of quantities
is, in fact, one of more practical than theoretical importance. (Russell,
1903, p. 183)

So, the imposition of numbers upon magnitudes is for practical
reasons. What are the benefits? The answer may seem obvious, as
Russell had indicated earlier, ‘Number is of all conceptions, the
easiest to operate with, and science seeks everywhere for an oppor-
tunity to apply it’ ([1896] 1983, p. 301). However, such a view
trades upon the classical conception, according to which numbers
are familiar, close at hand, and instantiated in some way in every
situation that we encounter. Russell’s numbers (his classes of simi-
lar classes) are far from familiar and easy to operate with. Like-
wise, the numbers of the modern representationalists, the com-
plex constructions out of the empty set (e.g., Suppes, 1960) are
neither familiar to us nor are they easy to operate with. Once the
concept of number is alienated from the familiar contexts in which
ordinary experience finds it, then the measurement theorist is
obliged to explain the ‘unreasonable effectiveness’ (Wigner, 1960)
of ‘numerical’ representation.
There are other unsatisfactory aspects of Russell’s account.

Having characterised quantities as purely ordinal systems of
magnitudes, he had the problem of explaining how it is that the
numbers used in physical measurement represent more than
merely ordinal structure. Quantitative science relies upon exact
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numerical relations between magnitudes, relations like, ‘this mag-
nitude is double that’ (Russell, 1903, p. 178). While he thought
that magnitudes are indivisible, Russell did allow that the objects
involved may be divisible or stand in other relations that can also
be represented numerically. So when, for example, it is said that
length a is double b, what is meant is that an object, say a rod, of
length a, may be divided into just two discrete parts, each of length
b. That is, if the numbers used in measurement represent more
than ordinal structure, then the extra relations represented are
relations between the objects involved rather than between the
magnitudes. The emphasis upon relations between objects later
became increasingly important.
In Russell’s mind, this distinction between order and other

quantitative relations (such as addition) was absolute. However,
he also believed that differences between magnitudes (say, differ-
ences between lengths) are themselves magnitudes, that is,
ordered. Had he been aware of Hölder (1901), he would have seen
that if relations between such differences satisfy the axioms for
intervals within a straight line, then it follows that the magnitudes
possess an additive structure. That is, if Russell’s six axioms for
magnitudes are supplemented by Hölder’s axioms for intervals
(with intervals interpreted, more generally than is done by Hölder,
as differences between magnitudes), then traditional quantitative
structure is implied. Had this aspect been rigorously worked out,
then the motivation to remain representational would have been
lost. Once quantities entail additive structure, ratios are implied
and the most parsimonious approach to measurement becomes
the classical.
The most radical features of Russell’s account were its new con-

cept of magnitude and its use of the concept of numerical rep-
resentation. As alternative views of number became accepted
within the philosophical community, representationalism became
the standard principle for understanding measurement. So this
feature of his theory of measurement had enduring and important
consequences. The history of measurement theory in the twenti-
eth century is the history of how this principle of numerical rep-
resentation unfolded. Clearly, because Russell’s new theory
entailed that some measurable attributes are not quantitative (in
the classical sense), it had potential for resolving quantitative psy-
chology’s aporia. However, its cost was Russell’s view of magni-
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tude, a cost too great for some. The first reaction to Russell was
an attempt to marry representationalism with a more traditional
view of quantity.

CAMPBELL’S THEORY OF FUNDAMENTAL AND DERIVED

MEASUREMENT

Campbell’s theory was worked out in considerable detail in his
influential book, Physics: The Elements (1920),8 and summarised in
later works (Campbell, 1921, 1928, 1938). His aim was to present
a representational theory of physical measurement. He took physi-
cal measurement to be coextensive with measurement generally.
Campbell never considered the issues of quantity and measure-
ment as questions of general logic, independently of the circum-
stances prevailing in physics. This left him inadequately resourced
to evaluate psychological measurement.
Measurement was possible, he thought, because certain ranges

of physical attributes are similar to numbers: in short, they are
additive. Because of this, numbers can be assigned to these attri-
butes in such a way that numerical additivity represents physical
additivity. Hence, he thought, demonstrating physical additivity
experimentally is the basis of all measurement. The numerical
representation of physical additivity he called fundamental measure-
ment. The main aim of numerically representing attributes, accord-
ing to Campbell, was to express their interrelationships as
numerical laws. Doing this, he noted, sometimes enables us to
identify systems of numerical constants (Campbell’s paradigm
here was density, which is a different ratio of mass to volume for
each kind of substance). Such systems of numerical constants he
called derived magnitudes and their numerical identification he
called derived measurement.
Campbell defined measurement as ‘the assignment of numerals

to represent properties of material systems other than number,
in virtue of the laws governing these properties’ (1938, p. 126).
According to Campbell, the laws required were twofold: (i) the
property must be ordered, such that systems9 having the property

8 This book treats a wide range of issues in the philosophy of science, over and above
measurement. It was reissued in 1957 under the title, Foundations of Science. See Buch-
dahl (1964) for a useful summary of Campbell’s more general views.

9 Campbell used the term systems to denote objects possessing the relevant magnitudes.
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must be greater than, equal to, or less than one another; and
(ii) there must be an operation of physical addition, whereby two
systems having the property can be combined to produce a third
greater than either and satisfying analogues of the commutative
and associative laws of numerical addition. What Campbell had in
mind here is illustrated by weight. Objects possessing weight,
when placed on the pans of a beam balance, reveal their weight
ordering and the weights of two objects placed in the same pan
can be shown to be ‘added’ in the required sense. Whether or not
weight or any other property satisfies these laws is a fact revealed
by experiment. Once the truth of these laws has been demon-
strated, Campbell thought that the measurement of that property
could proceed as follows:

All physical measurement depends on the existence of these ‘additive’
properties, resembling number in this feature. The principle is very
simple. We choose some system and assign to it the numeral 1; then we
assign the numeral n to the system that results from combining n such
systems, or to any system that is equal in respect of the property to that
system. Apart from an arbitrary factor depending on the choice of the
system to which 1 was assigned, we then have a definite method of
assigning numerals which depends on facts; we have measured the prop-
erty. (Campbell, 1938, pp. 126-7)

Campbell’s emphasis here on the assignment of numerals (the
names of numbers) rather than numbers themselves, derives from
his special view of number. Measurement, he thought, was
achieved, by analogy with number, but because he thought of num-
bers as physical properties of collections, he rarely wrote of num-
bers as being assigned to other properties in measurement. Of
course, if there is a one-to-one correspondence between numerals
and magnitudes, then there will be a one-to-one correspondence
between magnitudes and numbers, so measurement remains
numerical representation on his view. Campbell recognised that
only a small number of the quantities measured in physics were
fundamental: number, mass, volume, length, angle, period, force,
electrical resistance, current voltage. All other physical quantities
he took to be derived. In elaborating upon the above sketch, I will
draw attention to just three features of Campbell’s theory: his
concepts of number, physical additivity, and derived measure-
ment.
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Campbell’s concept of number

According to the standard representational view, number is not a
physical (or empirical) concept, it is a formal, or abstract concept,
and representation is introduced into measurement theory to
explain how a non-empirical concept (number) finds its way into
empirical contexts (viz., measurement). This was not Campbell’s
view. According to him, number is a physical concept. He recog-
nised the existence of a purely mathematical concept of number,
which he referred to as Number. This he identified with Russell’s
view of numbers as classes of similar classes, but correctly saw
that such an esoteric concept was not required to understand
measurement. Indeed, he thought it intolerable to contaminate
physics with concepts ‘so extremely precarious’ (1920, p. 338) as
that of number. All that measurement required, he thought, was
the concept of physical number.
By physical number, Campbell meant a property of physical sys-

tems: the property that certain systems (collections or aggregates)
have in virtue of which one system is equally numerous to, or
more numerous than, another.10 According to Campbell, physical
number is, itself, a fundamental magnitude, similar to other fun-
damental physical magnitudes, and able to be assessed (or
measured) via counting. He sometimes referred to this property
simply as ‘numerousness’, recognising that in assessing it, ‘what
we are measuring is not simply ‘‘number’’, but ‘‘number of
something’’ ’ (Campbell, 1920, p. 300). He failed to notice that
he was confusing two physical concepts, what I have called aggre-
gate size, and that of natural number.
Campbell recognised that counting required the specification of

a unit, a kind of thing, and that what is discovered as a result is
the number of things of that kind in an aggregate. He also recog-
nised that ‘in one respect two numbers, one of one thing and one
of another, are distinct magnitudes, as distinct as weight and
length’ (1920, p. 300). However, he also recognised that ‘it is
possible to attribute a direct physical significance to the statement
that numbers of different kinds are equal’ (1920, p. 301). In this

10 This view is very similar to that of Mill (1843). Campbell did not acknowledge Mill as
an influence and, in general, dismissed ‘Mill, whose views are often suggestive just
because they are erroneous’ (1920, p. 117).
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latter sense, he thought, number, ‘unlike all other fundamental
magnitudes, is considered to have no dimensions’ (1920, p. 301).
Here he glimpsed the distinction between aggregate size and
natural number, but failed to use it and, confusingly, continued to
refer to both concepts as number. Aggregate size (the number of
things of a kind in an aggregate) is not dimensionless because it
is linked to a specific unit. If one concept is dimensionless and the
other is not, they cannot be the same concept.
John Stuart Mill (1843) took number to be a property of aggre-

gates. Frege (1884) refuted this suggestion decisively, pointing
out that while nothing could be both n and m in number, an aggre-
gate could simultaneously be both nXs and mYs (e.g., a book could
be both n chapters and m pages). From this fact Frege correctly
inferred that whatever the properties, being nXs and being mYs,
are, they are not the same as the natural numbers, n and m. Frege
concluded from this that there could be no physical concept of
number, and most subsequent philosophers have submitted their
critical faculties to his authority. However, all that Frege’s argu-
ment proves, beyond the fact that being nXs is not being n, is that
being n is not a property. It does not follow from this that because
being nXs is physical, being n is not. Forrest and Armstrong
(1987) suggested that the natural numbers are not physical
properties, but physical relations between aggregate sizes. That
is, being n is a relation between the properties of being nXs and
being an X. This position is not ruled out by Frege’s argument.
Campbell made one further observation about physical number

that was highly perspicacious. He noted a special feature of truths
about number: ‘they are assumed to be true by all language’
(1920, p. 295). While he took this to be, primarily, a feature of
language, he recognised that it reflected a feature of our thought:
‘if we talk of objects at all, we unavoidably think of them as perma-
nent and individual’ (1920, p. 299). This matter deserves excogi-
tation. Quantity and number (in Campbell’s two senses of physical
number) enter into every cognitive judgment made. The simplest
of judgments, one of the form, This X is a Y, identifies a single,
particular thing as an X and, so, introduces both aggregate size
and, by extension, natural number. In this sense, they are, as Kant
([1781] 1978) recognised, categories of cognition. If our judg-
ments are at least sometimes veridical, then quantity and number
must be features of that which is judged, as well. That is, they
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must also be categories of being. Just as the simplest of judgments
identifies something as an X, so the simplest of situations judged,
likewise, involves a single, particular thing being an X and, so,
involves quantity and number. Number is part of the fabric of
being. To this extent, the Pythagoreans were correct.

Campbell’s concept of physical additivity

The Pythagoreans erred in taking every attribute to be quantitat-
ive. While the simplest of situations, this X being Y, involves quan-
tity (in the sense of aggregate magnitude) and number (in the
sense of natural number), the character of Y (specifically, whether
or not it is a magnitude of some quantity) is always an empirical
issue because it is not logically necessary that all attributes be
quantitative. While number and quantity are features of every
situation, they are not features of every attribute. Some attributes
are quantitative, some are not. Campbell was correct, therefore,
to insist that there is an empirical issue here. As he saw it, some
attributes which are not number are like number.
His concept of a quantitative property was similar to the classi-

cal concept of a quantity. For example, he claimed that

The difference between those properties which can be measured per-
fectly definitely, like weight, and those which cannot arises then from
the possibility or impossibility of finding in connection with these proper-
ties a physical significance for the process of addition. (Campbell, 1920,
pp. 277-8)

If by the ‘process of addition’ is understood the additive relation
characterising a quantity and if experimental tests indicating the
presence of additive relations between magnitudes are to count as
finding ‘a physical significance’ for it, then the view expressed here
is the classical view of Chapter 3. However, Campbell mistakenly
concluded that the way in which such physical significance is
generally arrived at in the case of physical quantities is the only
way.
In his view, for fundamental measurement to be possible there

had to be a direct analogy between a physical operation and the
process of numerical addition. Consider the two Laws of Addition
which he proposed for such a physical operation. His first law was
as follows:
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For the process of addition must be such that the system which is pro-
duced by adding one body possessing the property in question to another
must be greater than either of the bodies added. (Campbell, 1920, pp.
281–2)

And his second was that,

The magnitude of a system produced by the addition of bodies A, B, C,
. . . depends only on the magnitude of those bodies and not on the order
or method of their addition. (Campbell, 1920, p. 284)

Campbell intended his second law to cover physical analogues of
the commutative and associative laws of arithmetic. The idea is
that there must be some physical operation for combining objects
possessing the relevant attribute, the result of which depends only
upon the magnitudes of the relevant attribute possessed by those
objects. But, if the relationship between the magnitude of the out-
come and the magnitudes of the objects combined is analogous to
numerical addition and if the magnitude of the outcome depends
only upon the magnitudes of the objects combined, then the
formal similarity between the physical operation and numerical
addition must derive from relations between the magnitudes. This
is what ‘only’ means here. That is, Campbell’s view entailed that
the additivity of magnitudes is fundamental to understanding the
physical operation of addition between objects. If there were no
additive relations between magnitudes, the idea of the outcome
of the physical operation depending only upon the magnitudes
combined would have no content.
Once this is recognised, it is clear that there is at least the

logical possibility of detecting additive relations between magni-
tudes in ways other than by the obvious, direct methods applying
to fundamental measurement. Campbell was clearly deflected
from considering this because he attended only to physical
measurement, but his failure to consider the issue is puzzling,
given that he considered derived measurement and that he
thought of fundamental and derived magnitudes as quantities in
the same sense. It is a very small step from this insight to the
recognition of derived measurement as an indirect identification
of underlying quantitative additivity. The reason he failed to take
this step, I believe, was because he emphasised epistemological
issues at the expense of ontological ones. While he did have some-
thing like the classical concept of quantity in the background,
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influencing his understanding of measurement and guiding his
attempt to construct a representational theory, this underlying
concept of quantity was never explicitly acknowledged. Instead, his
theory of measurement remained a theory about how quantitative
attributes are detected and never considered what quantitative
attributes are.
Later representationalists (e.g., Stevens, 1951) criticised

Campbell because he confined measurement to just the numerical
representation of operations of physical addition. Campbell had
his reasons. First, he thought of measurement as the numerical
representation of quantities, but mistakenly thought that the only
evidence for quantity was via the discovery of operations of physi-
cal addition. Even if it was wrong on that point, there was some
sense to his position. If measurement is the numerical represen-
tation of quantity, then it is going to be the representation of
additive systems exclusively. Had he developed his implicit con-
cept of quantity, he would have reinvented the classical concept.
Second, non-additive structures (e.g., purely classificatory or

ordinal attributes) can be adequately represented by numerals.
On the other hand, he thought, the specifically additive structure
of quantities cannot be adequately represented by the numerals.
The representation of these structures requires numbers. His
reasoning here is confused, but contains a germ of truth. Of
course, additivity can be represented adequately, if not by the
numerals alone, then by the numerals supplemented by other
mathematical signs (e.g., ‘+’ and ‘=’), for it is precisely via the
numerals plus these other signs that the additive truths of arith-
metic are symbolically represented. So strictly speaking his claim
is false. However, the germ of truth is this. Quantities are intrin-
sically numerical in ways that purely ordinal systems are not.
Ratios of magnitudes of a continuous quantity possess all of the
formal properties of the positive real numbers and this is why
numerical concepts (and not just numerals) are implicated in
quantitative science.
Third, according to his view, the aim of measurement is the

expression of what he called ‘numerical laws’:

Measurement is only a means to an end; we want to express the proper-
ties of systems by numerals only because we are thereby enabled to state
laws about them. When we have measured two or more magnitudes
characteristic of some system, we can usually find a general numerical
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relation between these magnitudes. The assertion of such a numerical
relation is called a numerical law, and it is from laws of this kind that
nearly all the advances made in the conscious history of physics have
been made. (Campbell, 1920, pp. 328–9)

Now, it is true that if numerical assignments are made to merely
ordinal attributes, then numerical relationships will exist between
those assignments and other measures and, so, ‘numerical laws’
could be stated for ordinal attributes. However, even if ‘numerical
laws’ relating ordinal attributes could be expressed as continuous
numerical functions, the constants in such ‘numerical laws’ would
have, in Campbell’s view, an intolerable arbitrariness. As the
matter might now be expressed, the numerical form of such laws
would not be invariant under all monotonic transformations of the
ordinal ‘measurements’ involved. Campbell did not develop this
point, but his discussion of it anticipated the problem of ‘meaning-
fulness’ recognised later within the representational theory of
measurement (see Luce, Krantz, Suppes and Tversky, 1990). In
terms of this concept, Campbell’s point was that with merely ordi-
nal measurement there are no meaningful numerical laws of the
sort found in quantitative physics. These are generally laws relat-
ing products of powers of physical quantities. Hence, his reasoning
could be expressed as follows: if the sole aim of measurement is
the expression of meaningful numerical laws and such laws only
exist where the numbers assigned represent physical additivity,
then measurement must be confined to the numerical represen-
tation of additive structures.

Derived measurement

Not all measurement in physics is fundamental measurement.
Campbell attempted to accommodate this fact via his concept of
derived measurement. Physical quantities in this category, he
thought, can be expressed as functions of fundamental physical
quantities. For example, the density of a body is a function of its
mass and volume. Campbell concluded that the ratio of mass to
volume is, itself, a quantity because this ratio is constant for
bodies composed of the same substance (e.g., all samples of pure
gold have a constant ratio of mass to volume). Since the ordering
of substances according to the value of this constant matches the
ordering of substances according to density (as determined by
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relative buoyancy), the ratio of mass to volume may be regarded
as the measure of density. According to Campbell, ‘the constant
in a numerical law is always the measure of a magnitude’ (1920,
p. 346).
The relevant numerical laws all turn out to be products of

powers of fundamental quantities. For example, density = mass+1

× volume-1. In general terms, what Campbell proposed was that if
some attribute (possibly hitherto unmeasured) is discovered to be
correlated with a product of powers of fundamental quantities,
then the numerical value obtained gives a measure of that attri-
bute. Given the wide application of this principle in physics,
Campbell inferred that it is generally true as, indeed, later shown
in Krantz et al. (1971). These authors also display the sense in
which numbers so assigned provide a representation of an additive
relation within the derived quantity.
While fundamental and derived measurement clearly differ pro-

cedurally, it was Campbell’s view that they were of quantities in
the same sense.

But is there any other difference between fundamental and derived mag-
nitudes other than susceptibility to addition, or rather does this differ-
ence indicate any other which is of importance? So far as I can make out
it does not; and perhaps the best proof that it does not is obtained from
the fact that magnitudes derived from a numerical law are often funda-
mental magnitudes; they may be fundamental magnitudes well known
before the law was discovered, or they may first have been found as
derived magnitudes and subsequently discovered to be susceptible to fun-
damental measurement; the most striking examples of the last possibil-
ity is furnished by electrical resistance and capacity. (Campbell, 1920,
pp. 346–7)

Whether or not a quantity is susceptible to fundamental measure-
ment, in Campbell’s sense, must then be a relation between that
quantity and scientists, and is not an intrinsic feature of the quan-
tity. This is strikingly similar to the classical view.
If fundamental and derived measurement involve quantities in

the same sense (e.g., as specified, say, in Hölder’s (1901) axioms),
then it follows that the character of being quantitative resides in
an attribute’s internal structure and not in its external relations
(say, to scientists, via some operation of physical addition which
they happen to be able to perform). Hence, any attempt to limit
the range of external relations through which scientists can come
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to know quantitative structure (e.g., Campbell’s restriction to fun-
damental and derived measurement), must be accompanied by
two demonstrations: first, that these ways are capable of indicating
the existence of quantity; and second, that other ways of detecting
quantitative additivity are not possible. At best, Campbell only
half completed the first task, through his informal demonstration
that concatenation operations satisfying his two laws of measure-
ment indicate that the attribute involved is quantitative.
Campbell did not complete the other half of the first task. That
is, he did not demonstrate that constants in numerical laws must
always indicate quantities. Furthermore, he neglected entirely the
second task. It is especially important to stress these gaps in his
theory because it was at precisely these points that Campbell
became most dogmatic in his evaluation of attempts at psycho-
physical measurement.
As an attempt to establish a rival paradigm, Campbell’s theory

was inadequate because, first, it focused only upon the special case
of physical attributes and neglected the more general issues raised
by the logic of measurement and, second, it really presumed the
classical theory, anyhow. However, because it appeared to survey
ground outside the classical paradigm, it was important. Quite
unconsciously, through his neglect of the concept of quantity and
his focus upon the experimental identification of physical additiv-
ity, Campbell appeared to develop Russell’s claim that quantity
and number were logically distinct concepts. He showed how much
of physical measurement could be understood as the numerical
representation of physical operations.
His failure to work out successfully a viable account of number

and to explain how derived measurement leads to the numerical
representation of quantitative structure was passed over by his
contemporaries. Given the commitment of most contemporary
philosophers of mathematics to one or other of logicism, formal-
ism or intuitionism, his attempt to construct a physical account of
number was ignored. The questions raised by derived measure-
ment for the representational theory were not clearly posed until
that theory was articulated more carefully than Campbell had
done. Hence, his theory of measurement was not seen as a failure
or even as significantly incomplete. Indeed, it came to be seen
as especially authoritative. Because Hölder (1901) was neglected,
Campbell’s representational treatment of physical measurement
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seemed the best available. It was still a touchstone for Ellis (1966)
more than forty years later.

NAGEL’S POSITIVISTIC REPRESENTATIONALISM

Ernest Nagel (1931) was one later measurement theorist who
owed a debt to Campbell. In his short, but influential paper,11

Nagel synthesised contributions of Helmholtz (1887), Hölder
(1901), Russell (1903) and Campbell (1920). Nagel chipped away
what he considered to be accumulated metaphysical encrustations
upon the theories of Russell and Campbell, leaving what later
seemed to Stevens to be a conceptually solid bedrock for a better
understanding of measurement. Nagel repeated Russell’s defi-
nition of measurement as ‘the correlation with numbers of entities
which are not numbers’ (1931, p. 313)12 and his theory is self-
consciously located within the representational tradition. Like
Campbell (1920), he distinguished between fundamental and
derived measurement and characterised the former via a positiv-
ist-inspired modification of Hölder’s axioms of quantity. Like Rus-
sell and contrary to Campbell, he regarded the numerical rep-
resentation of ordinal structures as measurement, as well, but he
rejected Russell’s concept of magnitude and, by implication, along
with it the classical concept of quantity. Hence, he did not accept
Campbell’s claim that fundamental and derived magnitudes do
not differ, as magnitudes. Finally, these various elements were
unified by a philosophical outlook compatible with logical positiv-
ism and its American cousin, operationism.
Nagel criticised Russell’s concept of magnitude. Remember that

Russell thought of magnitudes of some quantity as a strictly
ordered range of attributes (e.g., the range of all lengths) which,
while sustaining relations of equality and order between objects,
did not sustain additive relations. Since, for certain attributes,
there are both ordinal and additive relations between objects and
since these can be used to provide the conceptual basis for a rep-
resentational theory of fundamental measurement, as Campbell

11 It provided the basis for the section on measurement in Cohen and Nagel (1934) and
was reprinted in Danto and Morgenbesser (1960).

12 Russell (1903, p. 158) had written, ‘Moreover it has appeared that measurement − if
this means the correlation, with numbers, of entities which are not numbers or aggre-
gates − is not a prerogative of quantities.’
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had shown, Russell’s philosophical agonies about whether or not
magnitudes are divisible, must have seemed a nightmare to the
positivist mind. Nagel’s impatience with Russell’s philosophical
scruples is not disguised. To the positivist, the question must have
seemed all too obvious: Why not define measurement as the
numerical representation of empirical relations between objects
and be done with it? In dealing with ordinal and additive relations
between objects (as opposed to such relations between
magnitudes), argued Nagel, we deal with ‘a concrete actuality’
(1931, p. 323), but Russell’s magnitudes reside in ‘a realm of
essences . . . a domain of immaterial entities having no necessary
reference to existence’ (1931, p. 323). His argument against them
was that they are unobservable and conceptually unnecessary:
magnitudes are just reifications of observed relations between
objects; ‘if Occam’s razor still can cut, the magnitudes demanded
by the absolute theory may be eliminated’ (1931, p. 325).
There are problems with this type of criticism. First, while

properties were a familiar target of operationists (see Bridgman
(1927)), their supposed logical defects are also shared by
relations. If it is held, as Nagel believed, that the same relation
can occur in different situations (e.g., the relation of one thing
being longer than another), then relations are universals just as
much as properties are. Hence, the usual philosophical arguments
against properties apply to relations as well.
Nagel’s objection to magnitudes, however, was more specific

than the usual line. He took the view that what we think of as
magnitudes really reduce to relations, i.e., that a magnitude is a
mere disposition to relate in various ways to other things.13 For
example, he defined density as ‘the capacity of a liquid to float
upon other liquids’ (1931, p. 317) and he made the general obser-
vation that ‘when magnitudes, which are always found to be
relations exhibited in the physical operations of things, are
invoked as the locus of those operations, it seems legitimate to
ask what empirical difference their existence or nonexistence as
‘‘common essences’’ would make’ (1931, pp. 324–5). But this
argument applies to all properties and if all properties are really
relations then an object is never a thing of a certain kind, it is just

13 Nagel was not alone in suggesting a dispositional view of magnitudes. See Mackie (1973)
for a useful discussion of the issues.
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that which relates to other things in various ways. As I argued
earlier in this chapter, the idea of things as constituted entirely
by their relations to other things, which in turn are likewise consti-
tuted entirely by relations, and so on, ad infinitum, is an idea that
cannot work. It leaves only relations and nothing to stand in them.
If there are relations, then there must be things having some sort
of intrinsic (i.e., non-relational) character standing in those
relations.
Furthermore, the scientific mind recognises a connection

between how things behave when treated in various ways and the
intrinsic characteristics they possess. So, if it is the case that liquid
X floats on liquid Y when both are poured into a common con-
tainer, it is standard scientific thinking to hypothesise that this is,
at least in part, because of different attributes that X and Y pos-
sess. Hypothesising thus is not a case of invoking the ‘essences’
that Nagel feared. It is an example of deterministic thinking, a
form of thinking entirely typical of science. Indeed, it is so typical
that Nagel himself used it, candidly admitting that ‘once having
specified the defining operation, whether it is actually performed
or not, the things measured have a nature prior to the actual
performance which conditions their behaviour in it’ (1931, p.
324). Having written this, he immediately attempted to rational-
ise it as merely a way of speaking:

This observation may be verbal only: if equality is defined in terms of
the process, quantities can be called equal prior to the process only pro-
leptically; unless at some time the process eventuates, we cannot know
that there is such a property as equality. (Nagel, 1931, p. 324)

However, if the character of objects is to condition their behaviour
when they are subjected to the relevant operation, then the fact
that they possess that character cannot be ‘verbal only’. ‘Verbal
only’ characteristics (i.e., characteristics only attributed to and not
really located in the objects) cannot condition real behaviour.
What worried Nagel was the fact that we may not know that

the objects possess the relevant characteristics prior to performing
the necessary operation upon them and, so, in attributing them to
the objects after performing the operation, all we appear to be
doing is reifying the observed relation. But the characteristics
attributed to the objects are not a reification of this relation. The
characteristics have an explanatory generality that the observed
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relation lacks. The fact that two objects are both of the same
length contributes towards explaining their behaviours in an
indefinite number of possible situations, something which their
behaviour in a single situation cannot do. To refrain from attribu-
ting characteristics to objects because they are only known via
some relation, is to sacrifice explanatory power to the scientifically
debilitating principle that the world extends no further than we
can see.
Nagel’s critique of Russell’s concept of magnitude fitted the

positivistic spirit of the times and it marked the point at which
the classical concept of quantity ceased to be seriously considered
within measurement theory. Nagel used Hölder’s axioms of quan-
tity, but he modified them to apply to objects, not magnitudes. Höld-
er’s seven axioms for magnitudes of a continuous quantity, at Nag-
el’s hands, became the following twelve conditions for an
approximately Archimedean set of objects.

1. Either a > b, or a < b, or a = b.
2. If a > b, and b > c, then a > c.
3. For every a there is an a’ such that a = a’.
4. If a > b, and b = b’, then a > b’.
5. If a = b, then b = a.
6. For every a there is a b such that a > b (within limits).
7. For every a and b there is a c such that c = a + b.
8. a + b > a’.
9. a + b = a’ + b’.
10. a + b = b + a.
11. (a + b) + c = a + (b + c).
12. If a < b, then there is a number n such that na > b (also within

limits). (Nagel, 1931, p. 315)

Note the modifications Nagel made to Hölder’s axioms. If a set of
axioms relating to objects is to provide a basis for fundamental
measurement in Campbell’s sense, then replicas of those objects
are required for any axiom in which a term is repeated. For
example, Nagel’s ‘axiom’ 10, the commutative law, is not directly
testable because a + b cannot be directly compared with b + a. One
way around this is to establish that b + a = a’ + b’; by using Nagel’s
‘axiom’ 3, then 10 follows by his ‘axioms’ 5 and 9. So, in part, the
increase in ‘axioms’ is due to those required for replicas (i.e., ‘axi-
oms’ 3, 4, and 9). Furthermore, Nagel qualified ‘axioms’ 6 and 12
with the phrase ‘within limits’, recognising that ‘axioms’ asserting
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the existence of objects are not directly testable (3 and 7 should
be similarly qualified, as well). Nagel neglected to point out that
none of these four ‘axioms’ (3, 6, 7, and 12) is falsifiable. In
addition, he ‘axiomatized’ > and = and included commutativity as
an ‘axiom’. ‘Axiom’ 12 approximates an Archimedean axiom, and
is vainly intended to replace Hölder’s axiom of continuity.
Designed to accommodate positivistic scruples, Nagel’s ‘axiomati-
zation’ is less economical than Hölder’s and delivers much less.
Furthermore, it possesses problems intrinsic to this kind of

approach. First, Nagel avoided specifying the relevant domain of
the ‘axioms’, that is, the class of objects over which they are
thought to hold. If they are intended to apply to length, for
example, over what class of objects are the variables, a, b, c, etc.,
quantified? For any such class to be scientifically interesting, it
must be specified via relevant properties. It could be, for example,
the class of rigid, straight rods of humanly manageable dimen-
sions. But if it is acceptable to invoke properties in order to specify
the relevant class of objects, then why not axiomatise for proper-
ties (magnitudes) directly, as Hölder did?
Second, whatever this class is, it must be confined to a class that

human scientists can operate upon because the relations, =, <,
and +, are required to reflect humanly performable operations.
Hence, the class to which the ‘axioms’ apply will be smaller than
the class that scientists will generalise to. For example, having
established that Nagel’s ‘axioms’ hold for a specific, finite class of
rods between, say, 1 centimetre and 10 metres in length, what
can be concluded about rods outside this class, or about lengths
outside this range? It cannot be inferred that if operations of the
same sort were carried out with objects outside that class similar
results would be obtained, because for most of those objects this
conclusion would be false (e.g., imagine concatenating the earth
and sun to obtain the sum of their diameters: the earth would
disintegrate!). However, to even imagine doing this requires think-
ing in terms of the attribute, length. By way of contrast, Hölder’s
approach can avoid this defect. The operations upon objects
satisfying certain boundary conditions may be taken as telling us
something about the structure of length generally, rather than
something about just the behaviour of particular objects. There is
no long term conceptual gain in ‘axiomatizing’ only with respect
to objects.
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In the same way, Campbell’s view of derived measurement
retained a coherence that Nagel’s lost. Nagel’s rejection of the
unifying concept of magnitude and his positivistic reduction of
concepts to ‘empirical’ meaning entailed that the meaning of
numerical assignments in derived measurement differed from
those in fundamental measurement. For example, he claimed that

When one body is said to be thirteen times as heavy as another, a differ-
ent meaning must be given to such a statement from the meaning of the
statement that mercury is thirteen times as dense as water; only in terms
of the numerical law connecting mass and volume has the latter prop-
osition significance. (Nagel, 1931, p. 329)

Nagel’s problem was to articulate what the meaning of derived
measures, like density, then was. Historically, the concept of
derived measurement proved to be a difficulty for the represen-
tational theory, for it was not clear that empirical relations are
numerically represented when numbers are assigned via numeri-
cal laws. Hence, it was not clear that derived measurement was
measurement in the representational sense.
In axiomatising at the level of operations upon objects and in

attempting to reinterpret derived measurement, Nagel indicated
the direction in which the representational theory was to develop.
He also cleared the ground for Stevens’ theory of scale-types. He
recognised that numbers could also be used for purposes of identi-
fication (i.e., to represent equivalence relations in classification)
and to represent merely ordinal relations. While he thought of
‘magnitude in the most complete sense’ (1931, p. 316) as obtained
only when all twelve of his ‘axioms’ were satisfied, he did not resist
thinking of other forms of numerical representation as measure-
ment of some kind, as Campbell did. In this respect, his view
broadened Russell’s and set a precedent for Stevens.
Despite the above difficulties, Nagel recognised that the logic

of the representational theory of measurement requires math-
ematical relations to be empirically instantiated. He made this
point in general terms as follows.

For if mathematics is applicable to the natural world, the formal proper-
ties of the symbolic operations of mathematics must also be predicable
of many segments of that world. And if we can discover what these formal
properties are, since mathematics is relevant to the exploration of
nature, a physical interpretation must be found for them. That physical
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interpretation will constitute, whenever it can be found, the conditions
for measurement of that subject matter. (Nagel, 1931, pp. 314–315)

And he made it specifically in relation to addition as well:

Is it not, however, more perspicacious to think of mathematical
‘‘addition’’ as a universal, whose variable empirical content will be cases of
addition, but which will require further specific definition and exper-
imental proof of the presence of those formal characters which make
those empirical contents instances of that universal? (Nagel, 1931, p.
327)

This was an important insight because it was Russell’s denial of
just this point that caused his escape from the classical paradigm.
Unfortunately, it was not a point that Stevens developed and it
was one that later representational theorists were slow to run
with.14

FROM RATIOS TO REPRESENTATIONS

Russell, Campbell, and Nagel all attempted the impossible. Any
satisfactory account of scientific measurement must be based upon
quantitative concepts as they figure in scientific theories. In such
theories, quantitative attributes are hypothesised to stand in con-
tinuous functional relations to one another, relations that depend
upon additivity (i.e., that are invariant with respect to the choice
of unit). It follows that quantitative attributes must also be con-
tinuous and additive in structure. Attributes of this form sustain
ratios of magnitudes which in turn have exactly the structure of
the positive real numbers. The classical paradigm is part of the
same conceptual package as the concept of quantity presumed
within scientific theories. If scientists think quantitatively, then
they think within that paradigm. Any attempt to break away from
it, combined with a wish to retain quantitative theories, is thereby
doomed to fail.
That which fails logically may still influence uncritical minds.

In attempting to transform the logic of measurement from ratios
to representations, Russell, Campbell, and Nagel succeeded in
loosening the grip of the classical concept of measurement,
especially upon the minds of philosophers and those influenced

14 See Narens & Luce (1990).
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by philosophers. Had Hölder encountered Stevens’ definition of
measurement, he would have seen its poverty and summarily dis-
missed it. Nagel, however, might have felt able to accept it. The
idea that measurement involves numerical assignments (rather
than estimations of numerical facts) was common to Russell,
Campbell, and Nagel, and each could have interpreted Stevens’
non-specific condition, ‘according to rule’, as necessary but not
sufficient. Of course, none of these three would have interpreted
Stevens’ definition as liberally as he was to do. Properly defined,
the representational view is that measurement involves the
numerical representation of empirical relations. It was Stevens’
unique contribution to argue that assignments made according to
rule always represent empirical relations. That was not to be an
insignificant step, and it was one that could only be made standing
upon the shoulders of earlier representationalists.
Given quantitative psychology’s modus operandi, such a step had

to be taken. Liberal as Nagel’s representational concept was, in
itself it was of little use to psychologists. A representationalism
that emphasises the numerical representation of empirical
relations between objects, only seems to work if the relevant
empirical relations can be first identified experimentally. Even the
numerical representation of a classification requires identifying
an empirical equivalence relation, one that has the contingent
properties of being reflexive, symmetrical and transitive. Psychol-
ogists could not claim to have identified even this much structure
in relation to attributes like the various intellectual abilities or
personality traits they claimed to be able to measure. This is why,
prior to Stevens, psychologists showed very little interest in the
representational theory (even in Nagel’s very liberal version) and
those who did (e.g., Johnson, 193615) tended to be highly critical
of psychological measurement.
So the representationalists bestowed a double legacy. By intro-

ducing the concept of representation they cleared a conceptual
path for an even more radical definition of measurement, such

15 Hornstein (1988) calls Johnson’s (1936) paper, ‘a widely ignored precursor of Stevens’
scales’ (p. 30). However, as far as distinguishing different kinds of scales of measurement
is concerned, there is nothing in Johnson’s paper not already in Nagel’s. The important
difference between their approaches was that Johnson used Nagel’s representationalism
as a stick to beat psychology with, while Stevens transformed it into a definition that
eased psychologists’ minds. In the one area in which Stevens followed Johnson (the so-
called problem of permissible statistics), his views were controversial.
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as Stevens’. However, Campbell and Nagel, in emphasising the
representation of empirically discovered relations, prepared the
way for a confrontation between the practice of psychological
measurement and the quantity objection. Once it was accepted
that measurement presupposed the discovery of the right sort of
empirical relations, it was inevitable that embarrassing questions
would be asked about psychological measurement. Those psychol-
ogists who still clung to a combination of the classical concept of
measurement and Pythagoreanism (such as Thurstone, 1931,
1937) were becoming a minority. Pythagoreanism could not long
survive the broadening of the subject matter of mathematics to
include non-quantitative structures, structures which were finding
applications even in physical science. Adherents to the classical
concept in psychology were diminishing. Campbell and Nagel had
lit a fuse.



CHAPTER 6

The status of psychophysical measurement

You will not find the boundaries of psyche by travelling in any
direction, so deep is the measure of it.

(Heraclitus)

The scientific experimenter . . . need not be in the least con-
cerned with methodology as a body of general principles.

(Sir Frederic Bartlett)

If what Kuhn (1970) said about the way that science works is
correct, then the fuse lit by Campbell and Nagel was in danger
of being snuffed out. Quantitative psychologists now possessed a
paradigm of measurement, one almost universally accepted
throughout the discipline. This was that standardised psychologi-
cal procedures for making numerical assignments yield measure-
ments. The strength of this paradigm was not just that it sus-
tained a thriving ‘normal science’ (in Kuhn’s sense), but equally
important, it would never meet with any ‘anomalies’ or unsolvable
puzzles. Because every situation involves quantity and number
(i.e., there are always aggregates to count), numerical assignment
procedures can always be contrived for any psychological attribute.
Furthermore, cases of genuine measurement, should they ever
arise in psychology, could also be thought to fit this paradigm. It
stood almost invulnerable.1

The fact that relative to the classical paradigm, or even Nagel’s
representationalism, quantitative psychology’s modus operandi was
itself an anomaly, could be ignored by an established science of
psychology, one securely located within the university system, with

1 Which is not to say that it might not degenerate as a research programme, with its
endless array of tests for measuring every conceivable psychological attribute, scores on
none of which contribute to an understanding of how the causal systems producing
behaviour actually work.
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its own journals and research conventions, attached to an
expanding profession. This was certainly the case in the United
States where, even by 1912, eighty-three American cities had
recognised psychology clinics (Resnick, 1982); by 1917, seventy-
four universities and colleges supported psychological laboratories;
and there were already twenty-one journals in psychology or cog-
nate disciplines (Canfield, 1973). Nagel’s reconstruction of
measurement theory did impinge upon American psychology, but
the response was entirely consistent with Kuhn’s picture.
E. G. Boring, whose doubts about psychological measurement

were mentioned earlier, had considered the relationship between
measurement theory and psychophysical measurement in his 1934
seminar at Harvard University (Newman, 1974). A paper by
McGregor (1935) was an outcome. It was written from the per-
spective of Campbell (1920) and Cohen and Nagel (1934), requir-
ing that numerical representations only be of operationally ident-
ified, empirical relations, and yet it concluded that ‘Psychological
measurement, understood in operational terms, is a fait accompli’
(McGregor, 1935, p. 265). How had McGregor managed to deflect
the obvious charge that psychologists had not identified additive
relations for numerical representation?
First, he confined himself to psychophysics, thus not attending

to intellectual abilities, personality traits, or other psychological
attributes. Second, he proposed an operational reinterpretation of
psychophysical measurement, whereby what was measured was no
longer psychological, but physical. According to this reinterpret-
ation, the subject in a psychophysics experiment is regarded as
a measuring instrument and the investigator compares physical
measures of the physical attribute (say, length) with measures
obtained from the subject (say, judgments of equality or inequality
of individual lengths or sums of lengths, etc.). As McGregor put it,

We have understood S = f(R) and yet have avoided the Cartesian dichot-
omy. It is true that we have measured distances under a different set
of operational conditions than those chosen by the physicist, but our
measurement is no less ‘physical’ because of that. What we have done is
to shift the focus of attention from the measured magnitude to the
operating organism. We have examined the relationship between a magni-
tude measured in the usual way and one measured under special oper-
ational conditions which are specially designed to shed light upon the
functioning of the organism. But S is as physical, or as psychological, as
R. (1935, p. 263)
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It was his reinterpretation of psychophysics that enabled
McGregor to slip the representationalist noose. This reinterpret-
ation, however, had been canvassed by Boring (1921)2 more than
a decade before and was as old as Brentano ([1874] 1973). It was
aged wine in the new operationist bottle.
The same spirit is present in Johnson’s (1936) more thorough-

going attempt to get to grips with the implications of the represen-
tationalism of Cohen and Nagel (1934). Johnson distinguished
nominal, ordinal and cardinal applications of numbers: nominal
apply to classifications, ordinal to mere orderings, and cardinal
only to attributes with demonstrable additive structure. Only the
latter is measurement and no psychological attributes fit this cate-
gory, in Johnson’s view. He uncritically included intelligence
amongst his list of ordinal attributes, concluding that observed
scores on intelligence tests correspond to an ordinal scale of intel-
ligence because equal differences between such scores have not
been shown to correspond to equal differences in intelligence (i.e.,
he reasoned that if they are not quantitative, then they must be
ordinal). This is not a valid conclusion, for intelligence test scores
or any other for that matter. If the proposition that equal differ-
ences between observed scores correspond to equal differences in
intelligence is doubtful, then the proposition that the order of
observed scores corresponds to the order of intelligence can like-
wise be doubted. Both are empirical hypotheses in need of testing.
Too generous with respect to ordinal scales, Johnson was niggardly
with respect to the concept of measurement, where his insistence
upon the direct empirical demonstration of additivity outdid even
Campbell. Despite this defect in his treatment, Johnson bit the
bullet, drew the correct conclusion (viz., no psychological attri-
butes have been shown to be measurable) and drew a sensible,
anti-Pythagorean moral: ‘Those data should be measured which
can be measured; those which cannot be measured should be
treated otherwise’ (Johnson, 1936, p. 351). For all its toughness
and good sense, Johnson’s paper stirred barely a ripple. It was, as
Hornstein (1988) understated, ‘widely ignored’ (p. 30).
What Kuhn (1970) has labelled ‘normal science’ is not normal.

If scientists want to discover the hidden ways of working of natural

2 See footnote 12 in Chapter 4. Boring added a footnote to McGregor’s paper indicating
his complete agreement.
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systems, ignoring valid criticism is an abnormal way of proceeding.
Science is a cognitive enterprise: its pursuit is generally difficult
and its practitioners are fallible. Hence, it only works reliably
when its method is critical inquiry. Critical inquiry is the common
core of scientific method, a core that takes various forms in differ-
ent disciplines. Critical inquiry, because it is inquiry premised
upon its own fallibility, involves seriously questioning the most
cherished of assumptions. If critical inquiry characterises normal
science (correctly understood), then Kuhn’s ‘normal science’, the
sort that existed in quantitative psychology in the 1930s, is gull-
ible inquiry. Quantitative psychologists believed what they wanted
to believe with respect to the measurability hypothesis and
ignored valid criticism.
Psychology in England was more vulnerable than that in Amer-

ica. Although the English could boast of influential names like
Galton, Pearson, Spearman, Burt,3 and even Titchener,4 psy-
chology did not easily gain a foothold in English universities prior
to the Second World War. As late as 1939 there were only six
psychology chairs in all England and only about thirty lecturers
(Hearnshaw, 1964). Professionally, English psychology was also
far weaker than American. Psychologists did not have the respect
of the scientific and medical establishments, as in America. ‘A
combination of academic hubris, intellectual scepticism and pro-
fessional antagonism persuaded these élites to keep the psychol-
ogists out of their charmed circle’ (Wooldridge, 1994, p. 153). A
hostile scientific establishment might seek to exclude psychology
institutionally by attempting to discredit its scientific claims; and
an institutionally weak psychology could ill afford to ignore such
criticisms. The implications of Campbell’s representationalism
could be ignored by American psychologists with impunity, even
when one of their own forcefully spelt them out; but when levelled
in England, a different response was necessary.

THE FERGUSON COMMITTEE

At York, in 1932, the British Association for the Advancement of
Science appointed a committee of nineteen to ‘consider and report

3 Although Burt’s reputation as a scientist was later discredited, he had enormous influ-
ence in British psychology.

4 Titchener was English by birth.
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upon the possibility of Quantitative Estimates of Sensory Events’.
The chairman of the committee was A. Ferguson, a physicist. The
committee contained the following psychologists: C. S. Myers5 (as
vice-chairman), H. Banister,6 F. C. Bartlett,7 R. J. Bartlett,8 W.
Brown,9 S. Dawson10 (Dawson was later replaced by K. J. W.
Craik11), J. Drever,12 S. J. F. Philpott,13 L. F. Richardson14 and
R. H. Thouless.15 Significantly, it also contained Campbell along
with other physicists. As an exercise in critical inquiry, the deliber-
ations of the Committee were a sham. Both the interim and final
reports (Ferguson et al., 1938; Ferguson et al., 1940) consisted
largely of set pieces: the big guns of a confident, intellectually
dominant, Campbell camp, and the pea-shooters of an intellectu-
ally limp psychophysics camp.
The battle lines were sharply drawn in 1933. In discussions on

vision, organised by the Physical and Optical Societies, the issue
of the measurement of sensations had been raised. The only

5 Myers was the grand old man of English experimental and applied psychology. He was
appointed director of the Cambridge Psychological Laboratory in 1912 and founded the
National Institute of Industrial Psychology in 1921, of which he was the first director
(Bartlett, 1965; Hearnshaw, 1964). The term, ‘shell-shock’ was apparently first used by
him (Hearnshaw, 1964) and in Hearnshaw’s view, Myers was ‘perhaps the ablest and
most balanced mind among the British psychologists of this century’ (1962, p. 7).

6 H. Banister did research on the psychology of hearing at Cambridge University.
7 Sir Frederic Bartlett, a student of Myers at Cambridge, became director of the Cam-
bridge Psychological Laboratory in 1922 and the first professor of experimental psy-
chology at Cambridge in 1931 (Broadbent, 1970). He achieved international repute as
a cognitive psychologist, popularising and adapting Head’s concept of ‘schema’
(Hearnshaw, 1964).

8 R. J. Bartlett taught experimental psychology at London University and later worked in
clinical psychology.

9 W. Brown was a leading British quantitative psychologist, with a broad range of interests
covering psychoanalysis and industrial psychology. He held the Wilde Readership in
Mental Philosophy at Oxford University from 1921 until 1946.

10 S. Dawson was an early advocate of Sir Ronald Fisher’s statistical methods in psychology
(Hearnshaw, 1964).

11 K. J. W. Craik, a promising student of F. C. Bartlett in the area of visual perception and
first Director of the Applied Psychology Unit of the Medical Research Council, was killed
early in his career (Broadbent, 1970).

12 J. Drever became Scotland’s first professor of psychology, at Edinburgh University in
1931. He pioneered experimental psychology in that country (Collins, 1951).

13 S. J. F. Philpott taught psychology at London University (R. J. Bartlett, 1952).
14 L. F. Richardson did research in psychophysics and pain perception and had participated

in the joint discussions (Smith et al., 1932) which resulted in the Ferguson Committee
being set up.

15 R. H. Thouless was a psychologist at the University of Glasgow. He was the first British
psychologist to make use of Fisher’s work in statistics and pioneered such fringe areas
as the psychology of religion and psychical research (Hearnshaw, 1964).
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speaker who mentioned a particular theory of measurement was
Richardson. He mentioned Campbell’s theory and ‘deliberately
rejected it’ (Campbell, 1933a, p. 565). Following this, Campbell
targeted Richardson’s proposed method of psychophysical
measurement and the resulting discussion involved some of the
Committee members: R. J. Bartlett, J. Guild, T. Smith, J. H.
Shaxby and R. A. Houstoun. Campbell (1933b) claimed that
‘nothing but confusion and error can result from using ‘‘measure-
ment’’ in any but its accepted sense. I call nothing measurement
that does not possess the distinctive features of the processes
physicists accept as measurement’ (p. 589). Richardson appealed
against Campbell’s hard line:

A restriction of the meaning of the word ‘‘measurement’’ so that it
should apply only to what Dr Campbell has named A-magnitudes and
B-magnitudes16 is recommended by several speakers. Such a conventional
restriction might suitably be left to the decision of the Committee
appointed by Sections A and J of the British Association in 1932. But I
must point out that Dr Campbell formulated his valuable classification
of types of magnitude before he had sufficiently considered the existence
and properties of mental estimates. Dr Houstoun in this Discussion has
mentioned excellent reasons for not thus restricting the meaning of
‘‘measurement’’. Might we not suitably say that mental estimates are
‘‘C-magnitudes’’, and that all magnitudes are measured? (Richardson,
1933, pp. 587–8)

This revealed a deep misconception of the issues. Richardson
thought that the extension of the concept of measurement was
simply a convention and he wanted the physicists to alter the con-
vention. Possibly sensing the weakness of his own position in the
face of Campbell’s critique, he embarked upon a boundary dispute
about the denotation of the word ‘‘measurement’’, as if no factual
issue was involved. He was prepared to accept that Campbell’s
theory of fundamental and derived measurement suited the quan-
titative practices of physicists and wanted quantitative psychology
recognised as a new form of measurement. Given the unspoken
premise behind Richardson’s plea, the Campbell camp would have
sensed that they had already won the debate and, so, had no
reason to shift their view. Their line was solid from start (‘If we
wish to talk about measurement in connexion with sensations,

16 Campbell (1928) had called magnitudes open to fundamental measurement, A-magni-
tudes, and those open to derived measurement, B-magnitudes.
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then measurement must mean measurement’ (Guild, 1933, p.
576)) to finish (‘Measurement is not a term with some mysterious
inherent meaning, part of which may have been overlooked by
physicists and may be in course of discovery by psychologists . . .
To use it to denote other ideas does not broaden its meaning but
destroys it’ (Guild, 1940, p. 345)). The psychologists’ best hope of
success would have been to propose a new conception of measure-
ment, one not only manifestly superior to Campbell’s, but also one
that could salvage their own quantitative practices. This the Brit-
ish psychologists could not do, not because they did not have able
minds in their midst, but because of a curious indifference to
methodological issues.
This attitude is exemplified in F. C. Bartlett’s later remark that

The scientific experimenter is, in fact, by bent and practice an opportun-
ist . . . The experimenter must be able to use specific methods rigorously,
but he need not be in the least concerned with methodology as a body
of general principles. (1958, pp. 132, 133)

According to the British historian of psychology, L. S. Hearnshaw
(1964), this attitude characterised, not just Cambridge, but also
British psychology.17 Of course, the critical scientist will always sit
loose upon methodological rules, adapting them to suit the main
scientific game, the discovery of underlying structures and the
ways of working of things. Even though, superficially, methodology
appears to be just a set of rules, it is really concerned with factual
issues, as much as science is in general. In the case of measure-
ment, these facts are those dealt with in Chapter 3. Scientific
method has its necessary conditions in the general structure of
the subject matter under investigation. If, for some method, such
as measurement, these conditions do not obtain in some field, then
the method is inappropriate in that field. The purely instrumental
attitude to method, in which the scientist simply learns to apply
‘specific methods rigorously’, leads to methodological rigidity and
to the application of inappropriate methods.18 If Hearnshaw is cor-

17 This is a remarkable attitude towards method in a scientist, especially in a psychologist.
Psychologists study not only one of the most complex of natural systems, they study a
process, cognition, which no one has yet even successfully conceptualised. These facts
should at least raise the question of to what extent the quantitative, experimental
methods of physical science can meaningfully apply.

18 Outside the example of psychological measurement, the best example of rigid thinking
in the methodological area is the case of significance testing in psychology (see Giger-
enzer, 1993).
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rect, and this attitude characterised British psychology, then it
explains the bewilderment of the psychologists on the committee
in the face of the criticisms of the Campbell camp. Those who are
trained to use methods rigorously, but who decline to understand
the logic of what they are doing, must inevitably respond to deep
methodological criticism with inflexibility and incomprehension.
More than one British psychologist missed the point of the
Campbellian critique, unable to doubt that what psychologists
were doing was the only available scientific option, viz., simply
applying the method of measurement to their subject.
In the two published reports (Ferguson, et al., 1938; Ferguson,

et al., 1940), Campbell kept a low profile and the case opposing
the measurement of sensations was formulated in detail by Guild.
Guild’s (1938) case was the centrepiece of the Committee’s work:
it was the largest, most closely argued piece; and discussion
revolved around its claims. Guild began with an interpretation of
Campbell’s theory of fundamental and derived measurement (or,
as Guild consistently called them, the measurement of A-magni-

tudes and B-magnitudes). This interpretation was faithful to
Campbell in its relevant essentials: the measurement of A-magni-
tudes involves the numerical representation of an experimentally
determined analogue of numerical addition; and the measurement
of B-magnitudes, the discovery of constants in numerical laws
involving A-magnitudes. It differed from Campbell (1920) in what
in this context were inessentials: for example, Guild rejected
Campbell’s physical concept of number; and he thought of B-mag-
nitudes as completely defined by their functional relations with
A-magnitudes, so that ‘Strictly speaking, therefore, the only
measurable magnitudes are A-magnitudes’ (p. 299).
Guild’s treatment of temperature as an example of a B-magni-

tude was not as sure-footed as it should have been and Campbell
(1940) had to correct a misleading impression inadvertently
given. Guild wrote that

The fact that there is no operation of addition applicable to temperature
qua temperature, prevents it from being measurable in the true sense
of the term. All we are able to do, however we are able to disguise it
by theoretical considerations, is to assign numerals to temperatures in
accordance with an arbitrary postulated relation to some measurable
property of some specified substance or piece of apparatus. When once
we have defined some such scale of temperature, temperature becomes
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‘measurable’ in the broad sense in which the word is generally used; and
the laws relating other physical variables with temperature as so defined
become open to empirical investigation. (1938, p. 304)

In writing of arbitrary postulated relations as a basis of measure-
ment, Guild had opened a gate wide enough to accommodate
Fechner’s proposed logarithmic function between sensation inten-
sity and stimulus magnitude. Campbell (1940) firmly shut it,
reminding the Committee that

Within a certain range, temperature can be measured by the simple
indirect process described above,19 in virtue of Boyle’s Law, pv = constant.
The order of this constant is the order of temperature defined as a prop-
erty such that, if the temperature of A is greater than that of B, A in
contact with B will become lower and B of higher temperature. If, then,
a value of the constant were assigned to one body, the value to be
assigned to any other within the range would be determinate. (p. 341)

That is, Campbell argued, temperature measurement is a genuine
case of derived measurement, dependent upon the discovery of
constants in a numerical law and not dependent upon an arbitrary
postulated relation.
In its essentials, Guild’s critique of psychophysical measure-

ment was straightforward: in their experimental work, psychol-
ogists have not discovered an analogue of numerical addition, and
so sensations do not involve A-magnitudes; without A-magnitudes
of a psychological kind, there are no B-magnitudes of that kind
(B-magnitudes being defined entirely by their relation to
A-magnitudes); therefore, sensations do not involve magnitudes
at all and, hence, there is no such thing as psychophysical
measurement. Guild applied this form of argument not just to
Fechner’s sensation intensities but, also, to the later concept of
sense-distances.
We have already seen in Chapter 4 how Fechner’s attempt to

measure the intensities of sensations using his method of jnds is
open to the sort of objection put by Guild. If a series of stimuli,
each separated from its immediate predecessor by one jnd, was
constructed experimentally, then there was no evidence that the
increments in sensation intensities corresponding to steps in the
stimulus series were equal to one another, nor that any sensation
was measured by the number of jnds between the stimulus produc-

19 Campbell is referring to his discussion, a page earlier, of derived measurement.
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ing it and the first in the series. R. J. Bartlett spoke for the other
psychologists when he said that ‘The Committee are on safe
ground . . . in agreeing that the arguments of Fechner are fal-
lacious: that has been accepted by psychologists from an early
date’ (1940a, p. 343–4). However, the psychologists were not so
ready to give ground when attempts to measure sense-distances
were considered.
At this point, the force of Guild’s arguments faltered. He con-

sidered a particular kind of example:

The observer is presented with a series of patches of light, all of the
same colour, whose intensities are under his control, and is asked to
adjust their brightnesses until they form a series so that the ‘seeming
disparity’ between each one and the next in the series is the same. . . .
The results of experiments of this kind for vision and other senses are
usually interpreted as establishing a relation between a psychological
magnitude – sense-distance – and stimulus intensities. The grading is
supposed to consist of equal sense-distances and the relation found
between these equal sense-distances and the corresponding stimulus
intervals is regarded by most psycho-physicists as providing a basis on
which a quantitative relation between sensation intensity and stimulus
intensity may be constructed. (1938, p. 311)

Now, as stated in Chapter 4, if one is prepared to accept that
there are sensations, then it is possible to test the hypothesis that
sense-distances are quantitative by exploiting an analogy between
sense-distances and intervals within a straight line, applying Höld-
er’s axioms for the latter to the former. Guild, like other psychol-
ogists of this time, appears to have known nothing of Hölder, but
as we have seen, there was at least a recognition by psychologists
(e.g., Brown and Thomson, 1921) that an ordering of distances
can provide a method for making numerical estimates of magni-
tudes of a quantity, even if it was not recognised that such an
ordering allowed a test of the hypothesis that sense-distances are
quantitative. So, what were Guild’s objections to the measurability
of sense-distances?
First, he argued that sense-distances are not levels of the same

attribute as sensation intensities. That is, for example, a differ-
ence between the intensities of two sensations of brightness is not
the same attribute as intensities of the brightnesses themselves.
This is a complex point, but even if true, it does not by itself
refute the claim that sense-distances are quantitative. If distances
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between levels of an attribute are quantitative, then so is the attri-
bute itself, even if the distances and the attribute are distinct
quantities. Hence, this objection has no force.
Second, he claimed that there is, as a matter of logic, no transi-

tive and symmetrical relation of equality for sense-distances.
Guild was not claiming that the available evidence contradicted
transitivity or symmetry but, rather, that these properties could
not even be tested. He thought this was so because each particular
sense-distance can only be specified operationally on any occasion
relative to a particular pair of dissimilar stimuli and from this
he inferred that each particular sense-distance must, therefore,
somehow be linked conceptually to its specific stimulus pair. Given
this presumption, there can be no equality between distinct sense-
distances because each sense-distance is unique. That is, the
sense-distance Dij (between sensations elicited by, say, stimuli, Si

and Sj) and the sense-distance Dhk (between sensations elicited by,
say, stimuli, Sh and Sk) cannot be equal because Dij cannot be
specified relative to Sh and Sk and Dhk cannot be specified relative
to Si and Sj. This is a curious argument which, if generalised
beyond sense-distances, would make impossible equivalence
relations in any domain. A psychophysicist could plausibly argue
that just as the same length can be instantiated in two different
rods, so the same sense-distance can be instantiated in the
relation between the sensations elicited by two quite different
stimulus pairs, and so the properties of transitivity and symmetry
can be tested. Again Guild’s argument is less than compelling.
Third, Guild argued that instructing subjects to perform tasks

like setting a variable stimulus, Sj, so that the intensity of the
sensation it elicits bisects the sense-distance between sensations
elicited by stimuli, Si and Sk, already presumes that sense-
distances are quantitative because bisection is a quantitative con-
cept. One cannot deny that this criticism has force: just because
subjects in a psychology experiment respond, it does not follow
that the task was meaningful. A psychology experiment is a social
situation, the dynamics of which constrain compliant subjects to
attempt to please the experimenter by responding, to the best of
their understanding, appropriately. Hence, the fact that a subject
responds by setting Sj to a value between Si and Sk does not mean
that the intensity of the sensation elicited by Sj bisects the inten-
sities of those elicited by Si and Sk. However, as Guild acknowl-
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edged, the experimenter in this sort of psychophysical experiment
is not required to use quantitative concepts like that of bisection.
The subject’s task can be specified purely in terms of relations of
equality between sensation differences and neither equality nor
difference is a uniquely quantitative concept. That is, the subject
only has to recognise sameness of a particular kind of a relation
between sensation pairs. While Guild made a valiant attempt to
rule this out on philosophical grounds, in the end his argument
against the measurement of sense-distances did not have the force
of his argument against Fechner’s measurement of sensation
intensities.
Consequently, Guild had left an opening that the psychologists

could have exploited had they been prepared to think about the
foundations of quantitative methods. Indeed, the opening was
wider than yet indicated. Campbell, who in the published proceed-
ings of the Committee remained silent on the issue of sense-
distances, had previously made a pertinent observation:

Almost everyone will agree, not only that a buttercup is yellower than
milk and milk than snow, but also that the difference between a butter-
cup and milk is greater than the difference between milk and snow. Now
it can easily be shown that if we could order in this way all of the differ-
ences between sensations, that is to say not only first differences, but
also second differences, third differences, and so on indefinitely,20 then a
process of measurement would be possible by means of which we could
assign numerals quite uniquely. . . . Here is a system of measurement
theoretically possible; the algebra of it is simple, but need not be elabor-
ated. For as a matter of fact, we can rarely, if ever, order any differences
higher than the first or second. (Campbell, 1933a, p. 571)

Obviously, when Campbell referred to this as a process or system
of measurement, he was unaware that it enabled an indirect test
of additivity and was only thinking of it as a means of making
numerical assignments to a pre-established quantity (i.e., as a way
of solving the instrumental, not the scientific task of
quantification). It is a sad irony that he was so near to a more
complete understanding of quantification and one that could have
been usefully extended to psychophysics. One cannot help but feel
that Campbell was so entrenched in his prejudices, first, that

20 By first differences, Campbell meant differences between sensations, by second differ-
ences, differences between differences between sensations, and so on.
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‘physics is the science of measurement’ (1928, p. v) (and therefore
psychological attributes are necessarily excluded) and, second,
that his processes of fundamental and derived measurement were
the only possible routes to quantification, that in his mind there
was no possibility of defending psychophysical measurement. From
Campbell’s point of view, the only task of the Committee was to
convince the psychologists of this.
The psychologists, for their part, lacked the resources to exploit

the deficiencies in Guild’s critique. What Campbell had failed to
recognise in his discussion of the ordering of differences were two
important facts. First, there is a trade-off between the number of
first differences and the need for higher order differences, so that
given even a modest number of first differences, higher order dif-
ferences are not required in order to obtain relatively good esti-
mates of the measures of the elements (e.g., sensations) involved
(Krantz, et al., 1971). Second, quite independent of that issue,
with just a small number of different stimuli (say, at least six)
and attending only to first differences between sensations, tests of
additivity can be undertaken (i.e., tests of Hölder’s axioms for
intervals within a straight line). Had these facts been known to
the psychologists, both Guild’s critique and the generality of
Campbell’s theory of measurement could have been resoundingly
refuted.
The one psychologist whose background qualified him to carry

the debate to this level was Brown, for he had dealt with the con-
cept of orders upon differences in earlier publications (e.g., Brown
and Thomson, 1921). However, Brown’s contribution to the pub-
lished reports only amounted to about 150 words (Brown, 1938a)
and, while he was ‘not satisfied that he [Guild] has demolished the
case for the direct measurement of contrastes sensibles (Delbœuf),
commonly translated as ‘‘sense distances’’ ’ (p. 330), and that ‘a
very much fuller discussion of the problem is needed, in the light
of recent experimental work’ (p. 330), he did nothing to advance
the discussion. It should be noted, of course, that Brown was at
this time nearing sixty years of age and had for the preceding
twenty years diverted his energies from quantification to the prac-
tice of psychotherapy. He had arrived at the view that ‘the obser-
vations of psychology are primarily qualitative, not quantitative’
(1938b, p. 51). Brown’s comments were those of a scientist no
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longer deeply interested in the issue of psychophysical measure-
ment.
So, how did the other psychologists respond to Guild’s critique?

It completely overwhelmed one. Thouless, said of it that ‘This
account of what is meant by ‘‘measurement’’ is excellently clear.
I think ‘‘measurement’’ is primarily the physicist’s term and I am
willing to accept what they say as to what the word means’
(Thouless, 1938, p. 328). However, Thouless’s capitulation was
not typical. Most who made comments wished to find a place for
psychophysical measurement but, in the light of Guild’s critique,
had no idea how. Opposing Guild’s critique, Drever had been
assigned the task of presenting the case in defence of psychophys-
ical measurement. He correctly understood Guild as arguing that

. . . In order that we may be able to establish a quantitative relation
between the intensity of the physical stimulus and the intensity of the
sensation, we must be able to measure not only the physical stimulus in
physical units but the sensation in sensation units. (Drever, 1938, p.
332)

Beyond that, however, he was out of his depth. Drever thought
that it was theoretically possible to hypothesise that sensation
intensity is measurable and because, even in physical measure-
ment, ‘for practical purposes all measurement is ultimately in
terms of space’ (p. 333), he reasoned that it is not necessary that
sensation be measured in sensation units. Thus, he concluded,

. . . in order to relate quantitatively stimulus intensity and sensation
intensity, it is not necessary that we should be able to measure each in
units of the same kind, but merely to measure the one − the stimulus
intensity − and determine the manner in which the other − sensation
intensity − varies in dependence upon the former. (Drever, 1938, p. 333)

Those for whom this seems an adequate response to Guild have
already assumed that the procedures devised by psychophysicists
to measure sensation can be taken as doing just that. In other
words, Drever begged the question. It is not surprising that in the
Final Report, Drever was not called upon again to give the case
for the measurability of sensation. It was left, separately, to Craik
and R. J. Bartlett.
Craik (1940b) and Bartlett (1940a) expressed the view, put

earlier by Richardson (1933), that a more liberal understanding of



The status of psychophysical measurement154

measurement was required to accommodate psychophysics. Craik
wrote that

It is important not to base the definition of measurement only on the
most stringent instances, such as length; for ‘measurement’ is applied
also to scales of temperature, density, time, etc., which fail to fulfil one
or other of the conditions which are fulfilled by length. (Craik, 1940b,
p. 343)

Having said that, one might have expected Craik to set about the
difficult task of ‘finding a definition of measurement which fits its
use in other sciences’ (Craik, 1940b, p. 343) and then proceed to
inquire ‘whether the facts obtained by psycho-physical experi-
ments entitle the estimation of sensation magnitude to be sub-
sumed under this definition’ (Craik, 1940b, p. 343). Craik knew
what was needed but declined to attempt the hard intellectual
work. Instead, he offered the opinion that if the assumption of
psychophysical measurement ‘can help to co-ordinate the data . . .
I feel much in favour of giving such measurement a chance’
(Craik, 1940b, p. 343), as if there was no underlying question of
the truth or falsity of the assumption. Bartlett wanted, like Brown,
the concept of measurement to cover procedures based upon judg-
ments of sameness of sense-distances. As noted already, such
suggestions are not without merit, but the entire matter needed
much more rigorous development than the psychologists gave it
and the issue needed addressing in a systematic fashion, one that
attempted to come to grips with the logic of measurement.
Nothing short of that could, at this stage, satisfy the critical mind.
Unfortunately, the psychologists’ ‘English’ methodological atti-
tude proved too strong.
The psychologists on the Ferguson Committee failed the inter-

ests of critical inquiry and the scientific interests of their disci-
pline. They failed because when confronted with the challenges
inspired by Campbell’s theory of measurement they made no
attempt to address the relevant issues in a disinterested, system-
atic fashion. In general, their approach was dominated by an inter-
est in defending psychophysics as a form of measurement, rather
than by addressing the methodological issue dispassionately. Fur-
thermore, they made no serious attempt to understand the gen-
eral features of measurement prior to addressing the issue of the
specific conditions necessary or sufficient for psychophysical
measurement.
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Although the Campbell camp easily won the debate, the case
against the measurement of sense-distances was, objectively, not
conclusive and Campbell’s attitude revealed serious blind-spots.
Nonetheless, the physicists were right to raise the issues they did.
They were really doing nothing more than raising the quantity
objection within the framework of Campbell’s theory of measure-
ment. It was up to the psychologists to examine their quantitative
practices in the light of this. Had the psychologists been more
interested in the logic of quantification, as a purely methodolog-
ical issue, the interests of psychology as a science would have been
better served.

THE RESPONSE TO THE FINAL REPORT

The first response to the Final Report was by a committee
member, R. J. Bartlett, who perhaps, as president of section J
(psychology) of the British Association for the Advancement of
Science, felt a duty to comment. What he offered (R. J. Bartlett,
1940b) was a review of the current state of quantitative psy-
chology. He provided examples of the variety of numerical data
collected in psychology sandwiched between expressions of pious
hope. Bartlett noted the criticisms of the physicists on the Fergu-
son Committee, expressed again the view that Campbell’s theory
of measurement currently set the hurdle too high for quantitative
psychology, and quoted Spearman to the effect that ‘the path of
science is paved with achievements of the allegedly unachievable’
(Bartlett, 1940b, p. 423). He concluded by asking
. . . does itmattermuch if some continue to believe . . . that our data contain
nothing ‘that can properly be calledmeasurements’ and that it is presump-
tion for us to think that, in any reasonable sense, our data, theories,
methods and results constitute ‘a systematic science’? After all there is a
sense in which logical and mathematical proofs are what the psychology of
advertising has called ‘rationalisation copy’. (Bartlett, 1940b, p. 441)

Bartlett apparently could not see that the issue of whether or not
psychology was a ‘systematic science’ was logically distinct from
the issue of whether or not psychological attributes are quantitat-
ive. However, there is no doubt a causal connection between the
manner in which these two issues are addressed: a science that
refuses to consider the latter issue scientifically, may damage its
credentials to be any kind of science at all. Bartlett’s attitude is a



The status of psychophysical measurement156

fair summary of what Hearnshaw (1964) describes as the ‘English’
attitude to methodology: the real work of science goes on in the
laboratory and methodological discussion is a mere rationalisation
of laboratory results. Hence, Bartlett recommended that quanti-
tative psychologists proceed as usual, describing their procedures
as measurement, despite the Campbellian critique, in the confi-
dent hope that others outside the discipline would eventually
describe them in the same way. Bartlett, like most of his col-
leagues, still apparently declined to recognise that measurement
presumes quantitative attributes and the distinction between
quantitative and non-quantitative attributes is an empirical dis-
tinction. He also declined to recognise that scientists who consist-
ently presume answers to empirical questions thereby bring
science itself into disrepute.
The effect of the two reports of the Ferguson Committee upon

psychology was to indicate the importance of the definition of
measurement. In contrast to the English, the Americans displayed
a refreshing intellectual boldness in their approach to this prob-
lem and a willingness to meet Campbell on equal terms. Other
than Stevens, there were two American psychologists who
attempted to think through the implications for psychological
measurement of the Ferguson Committee’s Final Report. These
were Thomas Reese and Andrew Comrey.
Reese’s response to the Campbellian critique of psychological

measurement was a model of scientific sanity (Reese, 1943). He
accepted a general statement of Campbell’s definition of measure-
ment as ‘the assignment of numerals to systems according to
scientific laws’ (Reese, 1943, p. 43), but interpreted it, like Nagel,
as including ‘ordinal measurement’ because establishing an order
requires discovering scientific laws as well. In this he may not
have differed much from other psychologists but, practically alone
amongst his peers, he did not flinch from what such a definition
implies. It implies that measurement of all forms must be based
upon the experimental demonstration of the relevant empirical
relations, ordinal and/or additive: ‘the physicists do not demand
that psychologists immediately cease demonstrating those
relations which they are able to demonstrate; but they do point
out that the psychologists should not interpret their data on the
basis of undemonstrated relations’ (1943, p. 43). According to
Reese psychologists needed to commence an experimental
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research programme, testing for the existence of the relevant
relations. As he so aptly put it,

It is true that no subjective magnitude has been measured fundamen-
tally. The belief of the author that they may be so measured is an hypoth-
esis. Only experimentation can give the answer. But it seems that the
major objections of the physicists have been answered. There are no a
priori reasons why psychological magnitudes may not be measured fun-
damentally. Measurement in psychology and physics are in no sense dif-
ferent. Physicists can measure when they can find the operations by
which they may meet the necessary criteria; psychologists have but to do
the same. They need not worry about mysterious differences between
the meaning of measurement in the two sciences. (Reese, 1943, p. 49)

One can only speculate about why the psychologists on the Fergu-
son Committee could not see with equal clarity. Was it the force
of the measurability thesis, the ‘English’ methodological attitude,
or some combination of both? Reese’s words deserve to be quoted
in every text on psychological measurement. His own experimen-
tal work was not without its serious limitations, but its importance
lay in the direction it pioneered. It is of the first importance to
note that, at the time, no psychologists followed where Reese led.
In the immediate aftermath of the Ferguson Committee, the
measurability thesis came to be protected by construction of a
defensive ideology.
Signs of its emergence are in the approach that Comrey offered.

He saw ordinal attributes, on the one hand, and additive attri-
butes, on the other, as constituting opposite poles of a continuum.
Between these extremes, he believed, lay most instances of
psychological measurement, better than ordinal but not satisfying
Campbell’s conditions for fundamental measurement. As noted in
the discussion of Johnson (1936) above, this was a very generous
assessment of most forms of psychological measurement. Comrey
(1950, 1951) and Guilford and Comrey (1951) meticulously set
forth the empirical conditions necessary for an ordinal structure,
but at no time mentioned relevant experimental evidence for any
psychological attributes. A consensus had developed, unsupported
by serious research, that psychological measurement was at least
ordinal scaling. Comrey also set forth empirical conditions of the
kind described by Campbell for fundamental measurement. In
Comrey’s view, these latter conditions were never satisfied by any
natural attributes, be they physical or psychological: there are just
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approximations to them, with physical attributes like length
approximating them much better than other physical attributes
(like temperature) and, of course, all physical measurable attri-
butes approximating them much better than any psychological
attributes. Now, in so far as, in the testing of these conditions,
one considers objects and operationally definable relations
between objects, Comrey’s assessment is correct. The Campbell-
ian conditions for fundamental measurement are too stringent if
they are expected to hold for humanly manageable operations and
discriminations upon objects. This observation provided Comrey
with an interesting defence against Campbell. What Campbell
thought of as a dichotomy (measurement vs non-measurement),
Comrey saw as a matter of degree (approximations to an idealised
set of conditions). Seen from this perspective, the gulf between
psychological and physical measurement no longer seemed
unbridgeable.
In both cases (i.e., ordinal attributes and those closely approxi-

mating fundamental measurement), thought Comrey, the num-
bers assigned to objects take their empirical meaning from the
operationally defined relations between objects. Hence, he
inferred, the general principle, of which both the numerical rep-
resentation of ordinal attributes and fundamental measurement
are but two instances, is this: ‘the meanings given numbers assigned in
any type of measurement are merely an expression of the operations performed’
(Guilford & Comrey, 1951, p. 525; italics in original). On the
basis of this principle, any instance of the use of numbers in psy-
chology is able to be interpreted by considering the operations
performed in assigning the numbers. Comrey consistently
declined to offer a general definition of measurement. However,
he thought that what most instances had in common was this:
‘numbers are used to represent the results of certain operations that have been
performed’ (Guilford and Comrey, 1951, p. 507; italics in original).
This, together with the above principle, gave Comrey’s conception
great scope, even if very limited theoretical value. Almost by defi-
nition, any procedure for assigning numbers to objects or events
involves operations of some kind, and so the numerical assign-
ments are able to be interpreted via these operations. However,
this approach is of very limited theoretical value in so far as it is
supposed that the attribute measured is a theoretical construct
whose meaning transcends the operations involved.
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For example, if a psychologist supposed, as Spearman for
example had, that general ability was an attribute of a person’s
intellectual functioning (a force driving the engines of the mind
as Spearman (1923) believed) which could, in turn, be used to
explain that person’s performance on an ability test, then a meas-
ure of general ability derived from that performance could not,
without circularity, be defined by the operations of test perform-
ance. If all that a particular level of general ability means,
employing Comrey’s principle, is a performance of a certain class,
then the concept of general ability cannot be invoked to explain
performance of that kind because the explanation and what is to
be explained are the same. In so far as a scientific explanation of
some effect identifies causes and in so far as cause and effect must
always be logically distinct occurrences, theoretical quantities
defined by Comrey’s principle fail as explanatory concepts.
Comrey would not have been greatly troubled by this kind of

criticism because he was more concerned with the practical utility
of psychological measures than with their value as explanations.
As he put the matter,

If numerical methods of description can be applied which aid in describ-
ing and predicting human behavior, then it is absurd to object to their
use on the basis of a failure to satisfy a set of conditions designed for a
different context. In evaluating methods of measurement in psychology,
and in devising new ones, the practical purposes which these methods
are to serve must be considered. (Comrey, 1950, p. 222)

Comrey was especially keen to press this point regarding mental
tests: ‘It seems reasonable to assert that mental testing is and will
be for some time essentially an empirical science with certain
rather well-defined practical objectives rather than primarily a
theoretical scientific enterprise’ (1951, p. 330). What Comrey’s
thinking betrays here is a serious confusion concerning the practi-
cal usefulness of certain procedures and the aims of science. As
Cronbach21 and Gleser (1957) later came to acknowledge, the use-
fulness of tests in predictive or decision-making contexts is an
issue independent of whether or not tests measure psychological
attributes. Cronbach and Gleser advocated replacing the
‘measurement model’ by the ‘decision theory model’ and, while

21 It is interesting to note that in his 1951 paper Comrey acknowledged the critical input
of L. J. Cronbach.
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this recommendation may have value in specific, practical con-
texts, the issue of whether or not such tests measure anything
remains a genuine scientific issue. As already noted, discovering
that a particular mental test is useful in a particular context raises
the scientific issue of why that should be so, but in and of itself,
it does not contribute towards settling that scientific issue and,
certainly, does not imply that anything is measured.
In fact, in his thinking on these issues, Comrey had brought

quantitative psychology to a crossroads: psychologists could treat
their quantitative procedures as purely practical tools designed for
specific tasks such as prediction (in which case the issue of their
status as instruments of measurement could be realistically recog-
nised as presently unknown and the rhetoric of measurement
could be dispensed with); or quantitative psychologists could con-
tinue to employ the rhetoric of measurement in describing their
procedures, interpreting what was measured via the principles of
operationism. The fact that Comrey had declined to redefine
measurement reveals how fluid the concept had become in psy-
chology. There was now conceptual space for a redefinition and
Stevens’ approach systematically developed the second of the
above alternatives.
Stevens’ sone scale (Stevens and Davis, 1938) for the measure-

ment of loudness had been considered by the Ferguson Committee
in its final report (Craik, 1940a), which gave Stevens a special
interest in the reports of that committee. Stevens’ response was
to propose a new definition of measurement (1946). It was a defi-
nition entirely consonant with the operationist spirit then domi-
nant in psychology. If measurement involves making numerical
assignments to things (as the representational view has it) accord-
ing to definite operations then, in accordance with operationism,
measurement itself is operationally defined by the general fea-
tures of this process. In total disrespect of Campbell’s pretensions
to have delivered the last word on measurement, Stevens wrote,
‘Paraphrasing N. R. Campbell (Final Report, p. 340), we may say
that measurement, in the broadest sense, is defined as the assign-
ment of numerals to objects and events according to rules’ (1946,
p. 677).
Stevens knew that while Campbell often used similar turns of

phrase (e.g., ‘Measurement is the assignment of numerals to rep-
resent properties’ (Campbell, 1920, p. 267)), there could be no
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ambiguity about Campbell’s view that ‘not every assignment of
numerals is measurement’ (Campbell, 1938, p. 122) and, so, what
Stevens wrote was in no way a paraphrase of Campbell’s intention.
Indeed, what Campbell had written was that ‘Measurement in its
widest sense may be defined as the assignment of numerals to
things so as to represent facts or conventions about them’
(Campbell, 1940, p. 340) and had immediately begun to sketch
what, according to his view, the relevant facts and conventions
are. Stevens knew this because he quoted it on the final page of
his article, attributing it to ‘one of its [the Ferguson Committee’s]
members’ and calling it ‘the most liberal and useful definition of
measurement’ (1946, p. 680). What Stevens was doing was
implying that the major proponent of the representational view,
Campbell himself, had failed to understand his own definition of
measurement.
Stevens’ reference to Campbell, here, was doubly cheeky

because Stevens proceeded to unfold his own theory of the differ-
ent kinds of measurement scales, the now famous nominal, ordi-
nal, interval, and ratio scales, as if it was a simple derivation from
Campbell’s own definition. Clearly, Stevens was playing a game,
the subtext of which was that Campbell had spent the seven years
of the Ferguson Committee’s life arguing to exclude psychophys-
ical measurement when in fact his own definition of measurement
already entailed the contrary conclusion. Even if both attitudes
were out of place, Stevens’ confidence was a good match for
Campbell’s smugness.



CHAPTER 7

A definition made to measure

The number system is merely a model, to be used in whatever
way we please.

(S. S. Stevens)

Measurement is the business of pinning numbers on things.
(S. S. Stevens)

The claim to be able to measure psychological attributes was
thought to conflict with the Campbellian version of the quantity
objection. Almost alone of his generation, Reese sought to defend
the measurability thesis by a programme of empirical research.
Instead of joining him, mainstream American quantitative psy-
chologists responded in the tradition of Fechner: criticisms were
deflected, not faced. Even Comrey’s proposal that psychology’s
quantitative procedures be regarded simply as practical tools was
unacceptable to those benefiting by the rhetoric of measurement.
Deflecting the quantity objection required neutralising the rep-
resentational theory’s emphasis upon empirical tests of quantitat-
ive structure. Operationism provided the key. As a result of the
recent revolutions in physics,1 operationism enjoyed considerable
vogue within psychology, where it was interpreted by Stevens as a
radical, liberating intellectual force. In Stevens’ hands, it seemed
to liberate modern psychology from the quantity objection.
Coming at a time of postwar expansion within the discipline,

the Handbook of Experimental Psychology (1951), edited by Stevens,
was very influential.2 Chapter 1, entitled ‘Mathematics, Measure-

1 Those ushering in Relativity and Quantum Theories.
2 The speed and the extent of the influence of Stevens’ views on measurement within
American psychology was really quite remarkable. One factor contributing to this was
Stevens’ membership of the ‘Psychological Round Table’ (see Benjamin, 1977) from its
foundation in 1936 until 1946, the period during which his theory was formed. This
highly select group of young American experimental psychologists met annually to dis-
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ment, and Psychophysics’, was written by him. It was the most
complete exposition of his theory of measurement. A reviewer
warned that ‘Some students may be lulled into a false sense of
security, thinking that they now know the essential relations of
numbers and mathematics to the psychologist’s operations’
(Grant, 1952, p. 159). ‘Lulled’ was right. Stevens’ message eased
the minds of psychologists unlike anything they had heard about
measurement before. His views dovetailed so neatly with the
needs of the time that earlier conceptions of measurement were
rendered inoperative and largely forgotten. His definition was
absorbed so smoothly into psychology’s storehouse of conventional
wisdom that he had cause to complain that ‘many authors feel no
need to cite the origin’ (Stevens, 1974, p. 409).
Stevens’ theory of measurement was integral to his psychophys-

ical research programme. He wrote: ‘My own central problem
throughout the 1930s was measurement, because the quantifi-
cation of the sensory attributes seemed impossible unless the
nature of measurement could be properly understood’ (Stevens,
1974, p. 409). Located at Harvard University, he was exposed to
a range of new ideas deriving from the physicist P. W. Bridgman,
the philosopher A. N. Whitehead, the mathematician G. D. Bir-
khoff, and, importantly, members of the Vienna Circle, then arriv-
ing from Europe, including Herbert Feigl and Rudolph Carnap.3

Stevens assumed the role of mediator between the new philosophi-
cal trends and psychology. It was a shrewd strategy, for his audi-
ence not only received an account of measurement that indulged
their illusions, they were also given a stiff dose of ‘up to date’
philosophy into the bargain.
For psychologists Stevens’ definition had the ring of an obvious

truth. When a person performing a psychophysics task adjusts one
stimulus magnitude to what is judged to be half the intensity of
another, and the experimenter assigns corresponding numerical
values to the sensations, there is a sense in which this is the
assignment of numerals to events. Or when, for example, in

cuss new ideas in psychology, and the list of members included many who were to become
important leaders in psychology in the 1950s and 1960s. Stevens certainly promoted his
ideas on measurement with this group, as is evident from the programme given for the
1941 meeting (Benjamin, 1977).

3 According to Still (1997), Stevens belonged to a group that met regularly to discuss the
philosophy of science, including Bridgman, Carnap and G. D. Birkhoff.
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testing the intellectual abilities of a person, the number of correct
answers is transformed into an IQ or some other kind of score,
there is a sense in which the numeral expressing that score is
assigned to that person (an object). Stevens’ definition was tailor-
made for both the nature and circumstances of quantitative prac-
tice in psychology and it excluded nothing that psychologists called
measurement. However, face validity is insufficient, especially
when the proposed definition could be construed as opportunistic.
A methodological rationalisation was required to legitimise its
currency. Supplying this was Stevens’ genius. He drew upon three
sources: representational measurement theory, Bridgman’s oper-
ationism, and the logical positivist view of mathematics.

STEVENS’ THOROUGHGOING REPRESENTATIONALISM

For Russell and Campbell, the logic of measurement was that of
representation. However, Russell thought of it as the numerical
representation of ordinal structures only, because he thought that
measurement was only of magnitudes and magnitudes were, by
definition, ordinal. In this respect his representationalism was
compromised by an unexorcised ghost of the classical paradigm,
viz., order as a feature of quantity. Likewise, Campbell’s theory,
that measurement required additive empirical structures, was also
adulterated by classical residues. Even more liberal theorists, such
as Cohen and Nagel (1934), distinguished measurement ‘in the
strict sense’ (p. 296) from the numerical representation of non-
quantitative structures. Half-heartedness always invites the pos-
sibility of being thoroughgoing. Stevens accepted the challenge
and proposed that the numerical representation of any kind of
empirical relation is measurement.
For Stevens, measurement is possible only because there is an

isomorphism between features of numerical structures and
empirical relations among objects and events. He amplified this
thesis as follows:

. . . in dealing with the aspects of objects we can invoke empirical oper-
ations for determining equality (the basis for classifying things), for rank
ordering, and for determining when differences and ratios between the
aspects of objects are equal. The conventional series of numerals − the
series in which by definition each member has a successor − yields to
analogous operations: We can identify the members of the series and
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classify them. We know their order as given by convention. We can deter-
mine equal differences, as 7 − 5 = 4 − 2, and equal ratios, as 10/5 = 6/3.
This isomorphism between the formal system and the empirical oper-
ations performable with material things justifies the use of the formal
system as a model to stand for aspects of the empirical world. (Stevens,
1951, p. 23)

According to Stevens, any numerical modelling of empirical sys-
tems is measurement.4 He believed that Russell and Campbell had
taken specific features of ordinal and additive models as definitive,
rather than making numerical representation alone the essence of
measurement. Stevens proposed an uncluttered view that reduced
measurement to a single, simple concept.
However, at first sight,5 it appears that Stevens’ represen-

tationalism does not entail his definition of measurement. It
seems to entail a much narrower definition than the one he is
famous for, something like, measurement is the assignment of numerals
to represent empirical relations between objects and events. Of course, if,
in his definition, Stevens meant by rule an exclusively represen-
tational rule, then his definition would have been entirely rep-
resentational. Stevens made it clear, however, that he did not just
mean this when he stressed that ‘any rule’ would do and that
‘provided a consistent rule is followed, some form of measurement
is achieved’ (Stevens, 1959, p. 19).
An indisputably representational rule for the making of numeri-

cal assignments to objects or events is one in which the structure
of some attribute of the objects or events is identified indepen-
dently of any numerical assignments and then, subsequently,
numerical assignments are made to represent that attribute’s
structure. For example, consider hardness. Minerals can be
ordered according to whether or not they scratch one another
when rubbed together. The relation, x scratches y, between min-
erals, is transitive and asymmetric and these properties can be
established prior to any numerical assignments being made (as,
for example, Mohs’ scale of hardness (Jerrard and McNeill,
1992). I call this external representation because the attribute rep-
resented exists externally to (or independently of) any numerical

4 Stevens (1968) broadened his conception of measurement to include not just numerical
modelling but the modelling of empirical systems by any abstract system.

5 For example, Michell (1986) thought he detected a hiatus between Stevens’ theory and
definition of measurement.
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assignments, in the sense that even if the assignments were never
made, the attribute would still be there and possess exactly the
same structure. This is the kind of representation that Campbell
thought was involved in fundamental measurement and which, he
argued, psychophysics lacked with respect to additivity.
Other kinds of consistent but less obviously representational

rules are possible. The opposite of external representation is
internal representation. This occurs when the attribute rep-
resented, or its putative structure, is logically dependent upon the
numerical assignments made, in the sense that had the numerical
assignments not been made, then either the attribute would not
exist or some component of its structure would be absent. An
extreme case would be that of assigning different numbers to each
of a class of identical things (say, white marbles) and on that basis
defining an attribute. The attribute represented by such assign-
ments would not be logically independent of them and, so, had
they not been made, the attribute would not exist. A less extreme
case is where an independent attribute may exist, but the struc-
ture that it is taken to have depends upon numerical assignments
made. For example, people may be assigned numbers according
to nationality (say, Australian, 1; French, 2; American, 3; Belgian,
4; . . ., etc.) and then the attribute of nationality may be taken to
have the ordinal structure of the numbers assigned. In this case,
had numerical assignments not been made, the attribute
(nationality) would still exist but the supposed ordinal structure
would not. No representationalist explicitly recommends internal
representation, although Rozeboom (1966), without calling it by
the same name, has drawn attention to it as a logical possibility.
Between these poles lie the cases of most interest to psychol-

ogists, what we might call ambiguous representation. In such cases
it is not known whether or not the attribute or its putative struc-
ture exists independently of the numerical assignments made.
Mental test scores provide a good example. Suppose two people, i
and j, get the same score on test X and that another person, k,
gets a different score on X. Then, in the most straightforward,
error-free sense,6 if these test scores externally represent an attri-

6 I discuss only the most straightforward sense here. Obviously, most psychometricians
would favour a less straightforward sense of representation, one in which sameness or
difference of test scores only indicated sameness or difference of the attribute
represented with a specified probability. For example, Rasch’s theory of test scores,
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bute, then i and j will share a level of that attribute, one which k
lacks, and this attribute will be identifiable independently of the
test scores assigned. No one knows whether or not scores on any
psychological test represent levels of an independently identifiable
attribute because, as yet, no such attribute has been indepen-
dently identified. It is not unreasonable to hypothesise that such
an attribute exists. Against this hypothesis, it is known that dis-
tinct causal systems (as persons i and j must be) can systematically
produce the same effect (the same score on a test) under similar
conditions because of the action of quite different internal causes.
In the case of performances on mental tests, this alternative is
prima facie plausible because exactly the same test score can result
from quite different patterns of right and wrong answers, indicat-
ing the possibility of causal processes involving different attributes
resulting in the same score. All hypotheses in this area require
rigorous testing before any are accepted. Despite this, persons i
and j have an attribute in common (the attribute defined by the
fact of their obtaining the same test score) and there is a trivial
sense in which the number assigned (the test score) represents
that attribute, but the issue of whether or not anything over and
above that is represented is not obvious. Furthermore, if some-
thing is externally represented by test scores, the issue of precisely
what sort of structure is represented (e.g., nominal, ordinal, inter-
val or ratio) remains.
The fact that Stevens’ definition of measurement subsumes all

three cases under his concept means that, something which for
earlier representational theorists was a most important issue, is
obscured. As the representational theory had been understood by
Russell, Campbell, and Nagel, the existence of the empirical
relations numerically represented must be logically independent
of the numerical assignments made. That is, these empirical
relations must be such that it is always possible (in principle, at
least) to demonstrate their existence without first making numeri-
cal assignments. To do this, it is necessary to give an adequate
characterisation of the formal (i.e., topic-neutral) properties of the
relations involved. For example, classification (the empirical basis

mentioned in Chapter 1, allows people of the same ability to obtain different scores
and people of different levels of ability to get the same score on particular
occasions.
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of a nominal scale) requires a relation possessing the formal
properties of transitivity, symmetry and reflexivity (i.e., an equiv-
alence relation). For the scientific mind, the issue of whether or
not an empirical relation has these properties can only be assessed
by scientific investigation. Simply to presume that a consistent
rule for assigning numerals to objects represents an empirical
relation possessing such properties is not to discover that it does;
it is the opposite. Whenever a transitive, symmetric and reflexive
relation is discovered by observational methods, independently of
any numerical assignments, then numerals can be assigned to the
objects or events involved to represent this equivalence relation.
For example, humans can be classified according to nationality by
a set of well-defined procedures that is logically independent of
any numerical assignments that might subsequently be used to
code (or represent) that attribute.
Likewise, an empirical relation only qualifies as an order, if it

is transitive and asymmetric, properties which also will not be
taken for granted by the scientific mind. The empirical character-
istics necessary for fundamental measurement in Campbell’s
sense are even more demanding and so even less able to be pre-
sumed. The precise definition of the empirical conditions neces-
sary and sufficient for various kinds of numerical representation
was not rigorously systematised until Suppes and Zinnes (1963).
However, enough work (including that of Hölder (1901)) had been
done on this matter by the time Stevens was writing for it to be
apparent that if measurement is the numerical representation of
independently existing empirical relations, then measurement
involves demanding necessary and sufficient empirical conditions.
Stevens was quite deliberately departing from that view and invok-
ing a much wider concept.
This wider concept depended upon the idea that the existence

of relations between things is not logically independent of the
operations used to identify those relations. Thus, Stevens could
also write that measurement was possible not simply because of
an isomorphism between numerical and empirical relations but,
also, ‘only because there exists an isomorphism between the
properties of the numeral series and the empirical operations that
we can perform with the aspects of objects’ (Stevens, 1951, p. 23;
my italics). According to his view, it is not the ‘aspects of objects’
(i.e., the independently existing properties of or relations between
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objects) that are represented in measurement, as represen-
tationalists like Russell and Campbell had thought. Strictly speak-
ing, from the operational perspective, there are no such properties
or relations and numerical representation can only be of relations
defined via the operations performed upon these objects. This dis-
tinction is vital for a correct understanding of Stevens’ position.
The concept of operation, for Stevens, was science’s fundamental
category.

STEVENS’ OPERATIONISM7

In 1927 P. W. Bridgman’s The Logic of Modern Physics was published.8

According to Bridgman, earlier physicists, such as Newton, had
made the mistake of defining physical concepts via properties;
however, in Bridgman’s view, ‘the proper definition of a concept
is not in terms of its properties but in terms of actual operations’
(1927, p. 6). Indeed, he thought that ‘we mean by any concept
nothing more than a set of operations; the concept is synonymous with
the corresponding set of operations’ (1927, p. 5). For example, according
to Bridgman, the length of an object is not a property it possesses
independently of us (such as its extension in space) but is, instead,
constituted by our operations of length measurement (such as
bringing the object into the appropriate relation to a tape
measure). This now famous slogan embodied Bridgman’s philo-
sophical nihilism: there is no nature beyond our knowledge of
nature and no knowledge of nature beyond our operations. It also
expressed his optimism: he thought he had found the key to doing
science, the use of which would ‘render unnecessary the services
of unborn Einsteins’ (1927, p. 24) by eliminating the possibility
of future scientific revolutions. It was the promise of this key that
attracted psychologists.
While Bridgman argued his case in simple, non-technical

terms, giving the impression of presenting a common sense, home
spun, grass-roots philosophy of science emerging from the labora-
tory practices of a successful scientist, the fact is that his views
were closely informed by turn-of-the-century positivism and

7 Stevens’ attempt to construct an operationist philosophy of science has recently been
discussed in some detail by Hardcastle (1995).

8 Bridgman was a leading American physicist, professor at Harvard University and winner
of a Nobel Prize for research on high pressure phenomena.
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pragmatism (Moyer, 1991a, b). It is not surprising then that his
views were enthusiastically endorsed by like-minded philosophers
and scientists and, especially, by psychologists, already under the
influence of behaviourism. The leader of the Vienna Circle,9

Moritz Schlick, deeply impressed by Bridgman’s book, wrote to
him on behalf of Herbert Feigl about the possibility of postdoc-
toral research at Harvard under Bridgman. Feigl arrived in 1930
and introduced ‘the university’s psychologists more fully to Bridg-
man’s operational approach’ (Moyer, 1991b, p. 392). A few years
later, Stevens (1935a, b, 1936a) presented his own version of
operationism.
Operationism was invariably characterised as empiricism,

indeed, as ‘pure empiricism’ (Bridgman, 1927, p. 3). Empiricism,10

it may have been, but it is more closely related to the anti-realist
‘empiricism’ of Berkeley11 than to the natural empirical realism
of most scientists. Just as Berkeley thought of reality as entirely
constituted by our perception of it, so the operationists thought of
scientific reality as completely defined by repertoires of scientific
operations. Just as perception is the process by which a perceiver
is acquainted with whatever is perceived, so an operation (in
Bridgman’s sense) is the process by which a scientist identifies
something (as an instance of some concept). Furthermore, just as
with a perceives x, the fact that x is perceived does not entail that
x cannot exist without being perceived (as Berkeley mistakenly
thought); so, with a identifies (via operation o) x, the fact that x is
identified does not entail that x cannot exist without being ident-
ified (via operation o). But if x can exist without being identified
via operation o, then x and o cannot mean the same thing (i.e.,
they must be logically distinct). Hence, operationism is false. In
their own ways, both Berkeley and Bridgman confused the know-
ing of something, with the thing known. Egregiously, each treated

9 The Vienna Circle were scientifically minded philosophers who met in Vienna through-
out the 1920s and 30s developing the doctrines now called logical positivism. Some (e.g.,
Rudolph Carnap and Herbert Feigl) later became significant philosophers in America.

10 Empiricism is the view that knowledge derives only from our sensory experience of
things. However, if empiricism is also that at least some knowledge is of independently
existing situations, then operationism is not a form of empiricism.

11 Linking operationism to the British empiricist, Bishop Berkeley, is not far-fetched. The
intellectual impulse underlying operationism is clearly evident in Berkeley ([1721]
1951).
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his own special confusion as if it was a revolutionary philosophical
insight.
According to Stevens’ version of operationism, ‘A word or state-

ment means something . . . only if the criteria of its applicability
or truth consist of concrete operations which can be performed’
(1936a, p. 94). This sounds as if Stevens thought that the meaning
of a concept is not synonymous with the operations involved but
rather, the existence of these operations only provides a necessary
condition for meaning and truth. This, however, is not the case.
Stevens held that the basis of scientific concept formation was
classification, that ‘Classification can proceed only when we have
criteria defining the conditions of class-inclusion, and these cri-
teria are essentially operational tests’ (1939, p. 233) and that ‘the
concept of that class is defined by the operations which determine
inclusion within the class’ (1939, p. 234, my italics) (see also Stev-
ens (1942)). In this respect his position did not differ from Bridg-
man’s.12

In reshaping the understanding of measurement, Stevens’ prob-
lem was this. He had to find a way of relaxing the requirement,
prescribed by earlier representationalists, that measurement
always involves external representation. However, he had to find
a way of doing this that (i) avoided the obviously indefensible
excesses of internal representation, and yet (ii) could be given a
methodological defence. His understanding of measurement as
the numerical representation of operationally defined empirical
relations, gave representationism the new twist required for it to
entail his definition of measurement, and thereby for it to include
not just his psychophysics, but all psychological quantitative pro-
cedures, past, present and future. A rule for assigning numerals to
objects or events could always be taken as representing empirical
relations if those relations were understood as operationally
defined by that rule itself. If objects do not possess properties or
stand in relations which are logically independent of scientists’
operations (as operationists held), then the earlier distinctions
made between external, internal and ambiguous representations

12 Stevens’ view of science differed from Bridgman’s in at least one respect. Stevens
thought science was a ‘social convention’ (1935b, p. 327). His view that ‘from the social
criterion of truth there is no appeal’ (1936a, p. 97) should warm the heart of modern
social constructionists (like Lovie, 1997) who otherwise, inexplicably, want to disown
their philosophical harbinger.
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collapse. From the operational point of view, these three forms of
representation are not three, but one. In all cases of measurement,
from the operational perspective, the numbers assigned represent
nothing that is not completely defined by the operations involved
in the rule for making the assignments.13 Any such rule must
always deliver at least a nominal scale (in Stevens’ terms):
assigning numerals to objects or events according to that rule
indirectly classifies them as the same (in the sense that they are
assigned the same numeral) or different (if they are assigned dif-
ferent numerals). Hence, at least a nominal scale is always defined
by every consistent assignment rule. This is a way of thinking
which non-operationalists would adjudge viciously circular, but
that is because they presume the existence of independent attri-
butes and regard as trivial those which can only be defined via
rules for making numerical assignments. The operational
interpretation involves no such presumption. If the numerical
assignment rule linked numerical ratios to the operationally
defined empirical relations, then the resulting scale would be
called, by Stevens, a ratio scale. This is the kind of thinking that
lay behind Stevens’ attempts at psychophysical measurement.
Prior to the publication of his influential measurement paper,

Stevens had established a reputation within psychophysics. In fact,
it was his sone scale (Stevens, 1936b) that the Ferguson Com-
mittee’s Final Report (Ferguson et al., 1940) singled out for spe-
cial attention. Stevens claimed that certain psychophysical
methods produced scales of ‘true numerical magnitude’ (1936b,
p. 406), that is, scales of the sort that he was later to call ratio
scales. The procedures considered by Stevens in this early paper
required subjects to make direct judgments of numerical relations
between the loudness of tones. For example, the subject was
instructed to ‘make a direct estimate by varying the intensity of
one tone until it sounds half as loud as another’ (1936b, p. 408).
These methods anticipated the more general (direct) psychophys-

13 Stevens was not so blatant as to say that once numbers have been assigned to objects
or events according to a consistent rule, any properties of the numbers could be used to
define ‘empirical’ relations. In fact his strictures on permissible statistics (see Michell,
1986) contradict such a position. Although, he never explicitly stated anywhere precisely
what his view really was, looking through the lens of his practice he seems to have
believed that ‘empirical’ relations could be defined via properties of the numerical
assignment rule itself.
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ical methods of magnitude estimation and cross-modality match-
ing later used by Stevens (e.g., Stevens, 1956).
Stevens applied his operationism to the interpretation of these

methods. By a subjective scale or a scale of sensation, Stevens did
not mean what Fechner and most subsequent mentalists had
meant. Stevens denied that there was an inner, private world of
experience that could be studied scientifically. He proposed
another interpretation of the subject-matter of psychophysics.

Any attempt to define the term experience operationally or point out
what, concretely, is meant by the philosopher’s ‘given’ discloses at once
that the discriminatory reaction is the only objective, verifiable thing
denoted. Scientific psychology is operational and as such can have
nothing to do with any private or inner experience for the simple reason
that an operation for penetrating privacy is self-contradictory. Therefore,
we need no longer think of immediate experience as the subject-matter
of psychology. (Stevens, 1936a, p. 95)

Since he thought that what was really observed in the study of
sensations was the discriminatory reactions of the subject, he con-
cluded that ‘a subjective scale is a scale of response’ (1936b, p.
407), that is, a scale of discriminatory responses. Thus, for Stevens
there was no hiatus between the discriminatory judgments made
by the subject and the sensory intensities of which they had been
taken to be judgments by an earlier generation of psychophysic-
ists.
In this sense then, subjects’ judgments could be taken at face

value. Fechner had not thought that subjects could make direct,
quantitative judgments of sensory intensity accurately enough,
and so had resorted to his indirect psychophysical methods. If sen-
sory intensity is intensity-as-judged, as Stevens contended, then
there is no obstacle to eliciting direct judgments from subjects.
Stevens also concluded that such judgments could be taken at face
value as measurements of true numerical magnitude: ‘. . . the
response of the observer who says ‘‘this is half as loud as that’’ is
one which, for the purpose of erecting a subjective scale, can be
accepted at its face value’ (1936b, p. 407). This conclusion fol-
lowed from his operationism: one tone’s being half as loud as
another may be operationally defined by the operation used to
determine it, i.e., by the subject judging it to be so. As Stevens
put it: ‘With such a scale the operation of addition consists of
changing the stimulus until the observer gives a particular
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response which indicates that a given relation of magnitudes has
been achieved’ (1936b, p. 407). The relation of magnitude
between sensations was seen as being defined by the judgment
operation itself. On this basis, Stevens proposed that

A scale, then, which would enable us to designate the numerical as well as
the intensive14 magnitude of an attribute of sensation can be constructed
according to the criterion that, having assigned a particular number N
to a given magnitude, the number N/2 shall be assigned to the magni-
tude which appears half as great to the experiencing individual. (Stevens,
1936b, p. 407)

The operationist concludes that a ratio scale is obtained because
of the character of the assignment rule, viz., the subject is
instructed to judge ratios. For such a procedure to count as ratio
scale measurement, according to the non-operationist, subjects’
responses must manifest a special sort of empirical structure. Just
as a nominal scale requires a transitive, symmetric and reflexive
empirical relation and an ordinal scale requires a transitive, asym-
metric empirical relation, so a ratio scale requires empirical
relations of a definite character.15 Thus, to take numerical judg-
ments as constituting measurements at face value, in accordance
with operationism, is to resort to postulating what one wants
instead of looking to see what is the case.16

Ironically, Stevens liked Russell’s maxim: ‘The method of ‘‘post-
ulating’’ what we want has many advantages; they are the same
as the advantages of theft over honest toil’ (Russell, 1919, p. 71;
quoted by Stevens, 1951, p. 14, 1958, p. 386). In this vein, he
candidly conceded that (i) ‘We postulate, among other things, that
the subject knows what a given numerical ratio is and that he can
make a valid judgment of the numerical relation between two
values of a psychological attribute’ (Stevens, 1951, p. 41); and (ii)
‘If this postulate is thievery, it is certainly no petty larceny’
(Stevens, 1951, p. 41). In admitting this, Stevens momentarily
shifted from operationist to realist ways of thinking, but his

14 Stevens is here using the term intensive to mean ordinal, a typical usage at that time (see,
e.g., Cohen & Nagel, 1934).

15 See Gage (1934a, b) and Fagot (1961) for an indication of these in the sort of context
that Stevens’ research fell into.

16 Considering Stevens’ more general direct psychophysical methods, later measurement
theorists, such as Krantz (1972), Luce (1990) and Narens (1996), have made the rel-
evant experimental tests explicit.
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realism was not very serious. Stevens’ writings reveal no meaning-
ful engagement with the relevant empirical issues in the sense of
attempting to formulate testable conditions necessary and suf-
ficient for responses of this kind to be representable as a ratio
scale. Indeed, Stevens wrote that ‘the early loudness scale had
become a scientific reality before a measurement theory capable
of designating what kind of scale it was’ (Stevens, 1975, p. 50). In
science, there is nothing wrong with postulating what we want in
a provisional sense. All scientific research involves assumptions of
some kind. Properly understood, postulation in science need not
be theft. It may be more like taking out a loan. However, just as
borrowing becomes theft if repayment is declined, so conclusions
conditional upon postulations cannot be claimed as scientific
knowledge if no attempt is ever made to check the truth of the
postulations. This means that Stevens’ proposed psychophysical
scales of measurement could never have been taken as a scientific
reality while the underlying, empirical issue of quantity was neg-
lected.
Given Stevens’ injunction to one of his later critics (‘attend to

what I do and not to what I say’ (1966b, p. 33)), his operationist
psychophysics provides the primary basis for understanding his
theory of scales of measurement. This theory is as widely accepted
within psychology as is his definition, although its presentation by
Stevens contains a convenient ambiguity. Even though Stevens
never resiled from his operationism (see for example Stevens,
1966a, b), he never advertised it in his most influential papers on
measurement theory (especially his 1946 and 1951 papers). A
reader who knew nothing of his operationism might misinterpret
the scope of Stevens’ representationism, thinking that his theory
of measurement scales was intended to apply only to external rep-
resentation. The fact that Stevens believed that proponents of
external representation (such as Suppes and Zinnes (1963)) had
drifted ‘off into the vacuum of abstraction’(Stevens, 1968, p. 854)
because they attempted to specify the formal properties of empiri-
cal structures, adds weight to my rejection of such an interpret-
ation for Stevens and, indeed, there are other considerations sup-
porting this rejection.
If Stevens had intended his theory to apply only to external

representations, then some of his examples were exceedingly ill-
considered. When Suppes and Zinnes came to present their theory
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of scales of measurement (1963), they introduced the concept of
an empirical relational system. This is an empirical structure, the
relations within which are defined quite independently of any
numerical assignments. Given Stevens’ conceptual resources, he
could have pursued a similar approach. He declined, making pro-
nouncements such as ‘most of the scales used widely and effec-
tively by psychologists are ordinal scales’ (1951, p. 26) without
giving even one instance of a psychological relation known to be
both transitive and asymmetric.17 In another example, he (1951)
considered a set of non-additive procedures for making ratio scale
assignments to weights without considering the issue of why the
empirical structure involved sustained this level of numerical rep-
resentation. This failure, together with the fact that this latter set
of procedures was workable, simply confirm the impression that
for Stevens the key feature determining scale type was the charac-
ter of the rule for making numerical assignments and not the
structure of any independent empirical system which might be
involved.
This impression is even more strongly confirmed by Stevens’

discussion of the subject of admissible scale transformations. This
concept was actually a valuable addition to representational
measurement theory. Admissible scale transformations refer to
the classes of mathematical transformations that can be made to
numerical assignments without altering the type of scale involved.
It is known that with nominal scales, the class of admissible trans-
formations include all one to one transformations; with ordinal
scales, the class of all increasing monotonic (i.e., order preserving)
transformations; with interval scales, the class of all positive linear
transformations (i.e., adding a positive or negative constant to all
numerical assignments or multiplying them all by a positive con-
stant, or both); and with ratio scales, the class of all positive simi-
larities transformations (i.e., multiplying all numerical assign-
ments by a positive constant). In the case of external
representation, these classes of transformations are largely deter-
mined by the structure of the empirical relations numerically rep-
resented. While admissible scale transformations alter the specific
numbers used in the numerical representation, they leave
unchanged the empirical information numerically represented.

17 In this he was doing no more than giving vent to a typical misunderstanding.
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However, in Stevens’ presentation the emphasis is upon trans-
formations that ‘leave scale form invariant’ (1951, p. 26) which,
in the absence of a commitment to external representations only,
does not necessarily mean transformations that leave invariant
the empirical features represented.
Both giants of psychophysics, Fechner and Stevens, each mis-

takenly thought that their psychophysical methods could be taken
as methods of measurement without any further scientific justifi-
cation. In doing this first, Fechner established the psychological
tradition of regarding number-generating procedures as measure-
ment procedures and Stevens translated that tradition into a
definition of measurement. Stevens may have wanted to repeal
Fechner’s psychophysical law and legislate his own (1961), but
his definition of measurement legitimised Fechner’s quantitative
modus operandi, in the minds of psychologists. This modus operandi
was Fechner’s most enduring legacy to psychology and Stevens
made it seem scientifically respectable. Although completely
anachronistic, Adler’s comment that ‘Fechner understood the
essential nature of measurement as ‘‘the assignment of numerals
to objects or events according to rule’’ ’ (Adler, 1980, p. 14), per-
haps points to the truth that Stevens’ definition made explicit, in
operationist concepts of mid-twentieth-century psychology, Fech-
ner’s modus operandi.
Operationism commits an elementary confusion: it confuses

‘the act or process of measuring with the object of the act, namely
the quantity in question’ (Byerley, 1974, p. 376). Once this con-
fusion is exposed, Stevens’ definition of measurement is revealed
for the charade it is. In general, psychologists have declined to
acknowledge this. Stevens had given them what they wanted: a
definition which, if accepted, made the quantity objection magi-
cally invisible. Mainstream interest in the definition of measure-
ment effectively ceased with receipt of that ‘gift’.

STEVENS’ CONCEPT OF NUMBER

Having stretched the representational theory to the span of his
definition, Stevens remaining problem was to explain the concept
of number in a way that would forestall return of the classical
concepts of quantity and number. He might have been expected
to pioneer an operational concept of number. However, Stevens’
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was not a creative mind. His genius lay in synthesising others’
contributions. Thus, he borrowed a version of formalism from the
logical positivists. According to the formalist view, mathematical
concepts are devoid of any content external to the abstract system
within which they are defined and their meaning derives solely
from interrelationships within that system. In its most extreme
version, a mathematical system is thought of as one composed of
(uninterpreted) symbols, rules for constructing well-formed for-
mulas out of those symbols, strings of symbols called ‘axioms’, and
‘inference’ rules for deriving ‘true theorems’ from axioms via a
finite number of steps. If the symbols are thought of simply as
ciphers of a certain shape, then mathematics is understood as
merely a ‘game’ played with strings of symbols according to
explicit rules. Thus conceived, mathematical concepts are devoid
of empirical content.
The influence of positivism upon psychology was at its height in

the immediate pre- and postwar decades and this fact aided the
reception of the formalist view of number. Stevens, therefore,
could assert with impunity that ‘mathematics is a game of signs
and rules, man-made and arbitrary, like the game of chess’
(Stevens, 1958, p. 383) and explicitly align his exposition with
formalism (‘The present account of things is more in line with
the formalist tradition’ (Stevens, 1951, p. 5)), confident that the
majority of psychologists would not baulk at this contemporary
conventional wisdom. However, his exposition of formalism was
amateurish and, at times, deeply ignorant. For example, when
explaining why he defined measurement as the assignment of
numerals, rather than numbers, to objects and event, Stevens
wrote
In using two different words, ‘numeral’ and ‘number’, for what gets
related to objects by means of semantical rules, Campbell and Russell
probably both intend the same meaning. Elsewhere I have sided with
Campbell’s usage because the meaning of the term ‘number’ is often
ambiguous: among other things, it refers sometimes to a physical attri-
bute of a collection of discrete objects (a number of peanuts), sometimes
to Frege’s class of isomorphic classes (cardinal number), and sometimes
to Russell’s relational expressions (relation numbers, of which the ordi-
nal numbers are a subclass). My guess would be that the numbers Russell
intends for measurement are the relation numbers.
The term ‘numeral’ has the defect that it sometimes means the physi-

cal ink mark on a piece of paper and it sometimes means the essentially
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logical relation that a numeral may stand for. This second meaning is in
line with the formalist’s view of mathematics, according to which arith-
metic is regarded as the rules of a game played with numerical symbols
‘whose shape is recognizable by us with certainty independently of space
and time, and of the particular conditions of their manufacture, and of
the trifling differences in their execution’ (quoted from Hilbert by Weyl
[1949], p. 35). Campbell seems to have this second meaning in mind,
which is probably also Russell’s meaning. (Stevens, 1951, p. 22)

Here, Stevens is bluffing. Had he ever actually read Russell and
Campbell in detail? The former, while notorious amongst philos-
ophers for changing his views, was unwavering in his opposition to
the formalist view of mathematics.18 Campbell, on the other hand,
took great pains to explain that numerals were the names of num-
bers and that numbers, in the sense of physical properties, were
all that were needed in measurement.19 This, of course, was
exactly what Russell denied in his account, wherein the logicist
(i.e., Fregean) concept of number was presumed. Campbell, on
the other hand, was deeply suspicious of this concept of Russell’s.20

Ignorant of these facts, Stevens wove their names together with
those of Frege (the foremost logicist) and Hilbert (the foremost
formalist), as if distilling a canonical essence from their conjoined
eminences.
Formalism has serious problems and these were widely known

at this time. Perhaps, the most important derives from Gödel’s
(1931) incompleteness theorem. This theorem is that any consistent,
formal system entailing arithmetic is incomplete and, so, the
truths of mathematics must exceed the theorems of mathematics
provable within any formal system. Interestingly, the implications
of Gödel’s theorem for Hilbert’s formalism were discussed in some
detail by Weyl (1949), the reference cited by Stevens in the para-
graph quoted above. Weyl concluded with the following anti-
formalist prescription: ‘A truly realistic mathematics should be
conceived, in line with physics, as a branch of the theoretical

18 Of formalism Russell wrote: ‘The theory is perfectly adequate for doing sums, but not
for the applications of number. Since it is the applications of number that make it
important, the Formalists’ theory must be regarded as an unsatisfactory evasion’ (1959,
p. 110). This critique of formalism is typical of his position after his adoption of logicism,
sixty years earlier.

19 This is a matter discussed at length by Campbell (e.g., 1920, pp. 303–5).
20 He adjudged Russell’s logicist view of number ‘extremely precarious’ (Campbell, 1920,

p. 338).
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construction of the one real world’ (1949, p. 235). Stevens did not
distract his readers with this alternative! Formalism is now not
only thought to be logically inadequate, it is also considered
psychologically inadequate in the sense that ‘many mathema-
ticians retreat to a nihilistic formalism−‘‘We are just playing
meaningless games with empty symbols’’−but none of us really
believes that’ (Hirsch, 1995, p. 137). Furthermore, if formalism is
true, then ‘the enormous usefulness of mathematics in the natural
sciences is something bordering on the mysterious and there is no
rational explanation for it’ (Wigner, 1960, p. 2).
Stevens addressed this last problem by suggesting that some

formal mathematical systems have been deliberately constructed
to match the kinds of empirical structures identified in the natural
sciences. As he put it:

Of course the rules for much of mathematics (but by no means all of it)
have been deliberately rigged to make the game isomorphic with
common worldly experience, so that ten beans put with ten beans to
make a pile is mirrored in the symbolics: 10 + 10 = 20. (Stevens, 1951,
p. 2)

Ignoring the fact that for many kinds of thing, X, putting 10Xs
with 10Xs does not always precisely mirror this arithmetic prop-
osition, this sort of response does appear to provide a way out for
the formalist. It seems not unreasonable to propose that, say, the
formal system characterising the truths about natural numbers
arose via a process of abstraction from ordinary human experience
with aggregates of things and that, for this reason, true sentences
within that formal system reflect some of our common obser-
vations. This was essentially Stevens’ proposal: ‘Striving somehow
to count his possessions, ancient man seems destined in the nature
of things to have hit upon the concept of number and to have
made therein his first triumphant abstraction’ (Stevens, 1958, p.
384). This process of abstraction is repeated, thought Stevens, in
the child learning arithmetic:

He learns his first arithmetic with the aid of fingers or buttons or beads,
and only with great labour does he finally, if ever, achieve the reoriented
view that mathematics is an abstract game having no necessary relation
to solid objects. (Stevens, 1958, p. 384)

This ‘reoriented view’ is that pure mathematics involves only ‘syn-
tactics’.
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Syntactics refers to the formal disciplines of logic, mathematics, and
syntax, where the relations among signs are abstracted from the relation
of the signs to objects and to the users or interpreters of signs. The
propositions of syntactics are devoid of empirical content. They say
nothing about the physical world. They are statements like the laws of
algebra, which set the rules for the combining and arranging of the signs
of algebra. In short, abstract mathematics is a branch of syntactics.
(Stevens, 1951, p. 2)

Stevens neglected to discuss the philosophical commitments
entailed by this way of looking at the matter. Once acknowledged,
they make formalism less plausible.
If, for example, the strings of symbols that can be used to

express the truths of the arithmetic of the natural numbers mirror
certain empirical facts to do with aggregates of things of some
kind, then there are already numbers of things in the world,
including amongst others, numbers of symbols. Stevens accepted
this (empirical) fact quite happily, identifying this as ‘number in
the layman’s sense’ and calling it ‘numerosity’ (1951, p. 22). If
there are numbers of things, say, twenty beans in a heap, then
there are facts of the following kind: this aggregate of twenty
beans is entirely composed of two discrete parts, each an aggre-
gate of ten beans. If there are aggregates, then there must be
aggregate sizes (e.g., the property of being an aggregate of ten
beans, etc). When the theory of aggregate sizes is developed in
detail (Michell, 1994a), it can be seen that the range of all aggre-
gate sizes constitutes a discrete quantity. If there are aggregate
sizes, then there will be relations of ratio between them (e.g., the
size of an aggregate of twenty beans is ten times the size of an
aggregate of two beans). In developing the theory of such relations
(Michell, 1994a) an empirical structure (empirical in the sense of
being present in the spatio-temporal world) is identified having
exactly the structure of the natural numbers. This much Stevens
might have been happy with, because he tacitly admitted the exist-
ence of such structures, even though he declined to think of these
empirical structures as instantiating the system of natural num-
bers.
However, in admitting this much, Stevens was admitting as

much as an account of the natural numbers requires. There are
relations between quantities (be they discrete or continuous) and
the enterprises of counting and measurement are the attempt to
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identify them and the theory of counting and measuring can be
worked out exclusively in terms of them. Recognising that in the-
orising about such relations, it is useful to devise a set of special
symbols, Stevens wished to treat these symbols, together with
their associated syntactic rules, as the exclusive subject matter of
mathematics. This is the logical equivalent of treating the symbols
used to designate physical quantities (say, m for mass, v for veloc-
ity, etc.), together with the syntax of physical theories, as the
exclusive subject matter of physics. But no sane scientist would
think of physics as just the study of the language of physics. This
would be recognised as a superficial confusion, one not worthy of
serious refutation. What then is the merit of regarding what is
seen as a confusion elsewhere, as being a virtue when applied to
mathematics?
The benefits that Hilbert wished to derive from his formalist

approach were twofold: (i) the establishment of a distinctive sub-
ject matter for mathematics (i.e., it was to become the study of
formal, axiomatic systems); and (ii) the establishment of a distinc-
tive method (formal proof) whereby (a) all of the truths of math-
ematics could be derived and (b) the system itself could be proved
logically consistent. While Gödel’s incompleteness theorem
entailed that for most of mathematics, if it is consistent, (a) and
(b) are impossible, (i) and (ii) are still worthwhile aims. However,
they do not require the extreme formalism that Stevens proposed.
If the view is taken that relational structures constitute the dis-

tinctive subject matter of mathematics (as is sometimes variously
advocated today (e.g., Parsons, 1990; Resnik, 1981)), then a differ-
ent kind of formalism can be defended. Ignoring the sorts of things
that any empirical structure is composed of, considering structures
only as characterised by their relations, and relations only as charac-
terised by their topic-neutral (i.e., formal) features, then math-
ematics may be understood as the study of such structures. Given
that structures may be not only natural (e.g., quantitative
structures) but also conventional (e.g., linguistic structures), then
the syntactic structure of mathematical theories may still be
included within its subject matter (the theory of formal languages),
but only as a small part. Furthermore, since there is no necessity
that all of the logically possible sorts of structures are instantiated
in the world, mathematicians may explore the character that other
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sorts of structures might have were they to exist. Seen this way,
mathematics has a distinctive subject matter.
Turning to Hilbert’s second benefit, that of establishing a dis-

tinctive method for mathematics, this also does not depend upon
a formalism of the kind advocated by Stevens. Hilbert thought
that in mathematics the validity of proofs within an axiom system
should be entirely logically independent of any extraneous content
associated with any symbols. For example, considering geometric
axiom systems, ‘It must be possible to replace in all geometric
statements the words point, line, plane by table, chair, mug’ (quoted
in Weyl, 1970, p. 264). This is simply the familiar fact that val-
idity depends upon the form of the argument and not its material.
For example, the valid conclusion that Socrates is mortal from the
facts that All men are mortal and Socrates is a man depends not upon
the content of the specific terms in the propositions (Socrates, men,
and mortal) but upon the topic-neutral, Barbara, form of this syllo-
gism (Thom, 1981). Now, while logic is the science of formal
implication, and so mathematics presupposes logic, implication
itself is a relation (a formal relation between kinds of situations),
and so the structure of valid-argument forms may be studied
mathematically, which is really what logic is. That is, on this struc-
turalist view, logic (the science of implication) is just a special
branch of mathematics and Hilbert’s desire for a distinctive math-
ematical method is realised. However, in so far as every situation
studied in any science has its (topic-neutral) form, as well as its
own material, this distinctive mathematical method is relevant to
all science.
If mathematics is taken to be the study of form in that sense,

then not only can the familiar distinction be maintained between
mathematical symbols and the mathematical ‘entities’ denoted
(e.g., the distinction between numerals and numbers) but, also,
there is a compellingly simple explanation available for the fact
that some mathematics is not just applicable to the real world but
is also fundamental to all science. It is applicable to the real world
because mathematics studies the formal properties of structures,
including the sorts of structures instantiated in the world, and it
is fundamental to all science because scientists look for structure
in the natural systems they study.
What Stevens actually required, given his commitment to
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operationism, was not a formalist view of number at all, but an
operationist one.21 Such an account would be one in which it is
revealed how numerical concepts (such as one, two, three, etc.) are
constructed out of the operations we perform on things. The oper-
ationist might begin by asking what operations are involved in
showing that a single X (say, one sheep) is just one X and not two
or more. A typical reply to this question would be that the relevant
operation for numbering a collection of Xs is just that of coordinat-
ing, one to one, the Xs and the elements of the series of numerals,
taken in their conventional order and beginning with the first (i.e.,
one). A single X on its own takes us no further along this series
than one; whereas two Xs takes us to two, etc. By this operation
two Xs are distinguished from one, three from two, and so on. The
obvious problem is that for this operation to work successfully we
must already be able to recognise single Xs (including, of course,
single instances of the different numerals). As I have suggested in
earlier chapters, number and quantity are present in every situ-
ation and we cannot conceive of a human operation that does not
presume their existence. This is where Stevens’ observation, quoted
earlier, that ‘ancient man seems destined in the nature of things to
have hit upon the concept of number’ (1958, p. 384) gains its force.
It is the nature of things, quite literally, that includes the concept of
number. If there were no individual things, separate from other
things but, also, arranged with them as aggregates, there would be
no nature of things involving the concept of number.
The character of numerical assignment procedures is such that

they always presume that the world has sufficient structure for
numbers to be real features (Michell, 1997a). Therefore, not every
application of numerical concepts to the world requires the con-
cept of representation. Because there are finite aggregates, there
are numbers. In the counting of things aggregated, numbers are
discovered (as ratios between aggregate sizes), not assigned. Like-
wise, in measuring magnitudes of continuous quantities, numbers
are discovered or estimated (as ratios between magnitudes), not
assigned. The logic of counting and measuring is not represen-
tation, it is instantiation. In both practices, instances of number

21 In this respect Bridgman was a more consistent operationist than Stevens, taking the
view that mathematics was ‘just as truly an empirical science as physics or chemistry’
(1964, p. 52).
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are located in the world. However, there are applications of
numerical concepts with a different logic. Chief amongst them
is numerical coding. When structures (such as classifications or
orderings) are coded numerically, the numerals are not used in
those situations to name numbers instantiated therein. Then the
logic of numerical application is not instantiation, it is represen-
tation. It is to the context of representation that Stevens theory
of nominal and ordinal scales scales and scale transformations has
valid application.

STEVENS’ ‘REVOLUTION’

Prior to 1951, measurement was defined within psychology in ways
reflecting the classical paradigm. As already noted, Fechner
([1860] 1966) had written that ‘Generally the measurement of a
quantity consists of ascertaining how often a unit quantity of the
same kind is contained in it’ (p. 38). In Baldwin (1902), an entry
under measurement states that

In order that a concept may be measured as a mathematical quantity
without ambiguity, it is essential that the special attribute by which we
measure it should be conceivable as made up of discrete parts, admitting
of unambiguous comparison inter se, with respect to their quality or differ-
ence of magnitude. (p. 58)

Titchener (1905) wrote that ‘When we measure in any depart-
ment of natural science, we compare a given magnitude with some
conventional unit of the same kind, and determine how many
times the unit is contained in the magnitude’ (p. xix). Brown and
Thomson (1921) held that

The preconditions of measurement in any sphere of experience are (1)
the homogeneity of the phenomena, or of any particular aspect of it, to
be measured, (2) the possibility of fixing a unit in terms of which the
measurement may be made, and of which the total magnitude may be
regarded as a mere multiple or submultiple. (p. 1)

The entry in Warren (1934) under measurement defines it as ‘the
comparison of a quantitative datum of any sort with a fixed, endur-
ing datum or standard of the same sort’ (p. 161); and that in
Harriman (1947) defines it as ‘the application of temporal or spa-
tial units to psychological events or functions’ (p. 215). These quo-
tations are just examples and while they differ in adequacy,
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emphasis and detail, what they have in common is the view that
measurement involves comparison with a unit, the implication
even where not explicit being that of numerical comparison. This
idea connects easily with the classical view of measurement.
The contrast with most definitions offered within the psycho-

logical literature after 1951 could not be more dramatic. Stevens’
definition occurs (with and without acknowledgment) regularly
and across the discipline (Michell, 1997b). Even when it is not
quoted verbatim (or with the minor substitution of numbers for
numerals), its form is utilised and measurement is defined as the
assignment of X to Y according to Z (where X may be numerical values,
scores, other symbols or abstract systems; Y, attributes, behaviour,
characteristics, individuals, observations, persons, properties of
experimental units or of objects, responses, situations, or things;
and Z sometimes specifies a particular kind of rule (e.g., numerical
representation).
As noted in Chapter 1, this situation within psychology con-

trasts sharply with the definitions given in the physical sciences.
Modern authors of works in the physical sciences who provide a
definition of measurement are rare, but those I have found who
do (e.g., Beckwith and Buck, 1961; Massey, 1986; Terrien, 1980)
invariably present the classical concept.
What this literature shows is that after 1951, the majority of

psychologists came to accept Stevens’ definition of measurement,
but this was never the case within mainstream quantitative disci-
plines. To call this a revolution within psychology would be to go
too far. The theories and practices of psychologists were
unchanged by acceptance of this definition. However, acceptance
of Stevens’ definition within the discipline made the policy of
ignoring the quantity objection socially acceptable. That is, after
1951 this policy was sanctioned by the methodological principles
accepted as normative within the discipline. This allowed those
interested in the measurement of psychological attributes to pro-
ceed as if the practices long employed actually did measure those
attributes.
In a variety of research contexts (for the most part, what are

called psychophysics and psychometrics), psychologists have devel-
oped a wide range of procedures for collecting numerical data.
These procedures have been standardised, theorised about in
quantitative terms, and in some practical contexts they have
proved remarkably useful. Most undergraduate students of psy-
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chology are educated in these theories and techniques in courses
variously called ‘psychophysical measurement’, ‘psychological scal-
ing’, ‘psychometric methods’, ‘psychological measurement’, etc.
That is, this body of procedures and theories is ‘packaged’ under
the label of ‘measurement’ or cognate terms. This is standard
practice in the education of psychologists. However, in so far as it
is held that these procedures measure psychological attributes,
there has been little serious scientific research undertaken to show
that the relevant attributes are really quantitative and, therefore,
that the relevant attributes are measurable. If they are not, then
their character and their relationship to the standard number-
generating procedures that psychologists use needs to be investi-
gated. Despite this lack of attention to the scientific issues
involved, psychologists treat these methods as measurement. The
principal difficulty involved in maintaining this misconception is
the obvious objection that in the physical sciences measurement is
typically understood classically. Psychologists have overcome this
difficulty by persuading themselves that both within psychology
and within the physical sciences, measurement simply means ‘pin-
ning numbers on things’ (Stevens, 1958, p. 384). Since very few
quantitative psychologists ever have any serious engagement with
quantitative science, this illusion easily survives.
The manner in which Stevens’ definition has been institutional-

ised within psychology is very interesting, because what in reality
is a debilitating conceptual weakness has been mythologised as a
strength. Most attributes that psychologists believe they are able
to measure are not attributes open to direct observation. This, as
already noted, was seen by generations of psychologists prior to
Stevens as a source of serious difficulties. Since Stevens, psychol-
ogists claim to have solved this problem via the conceptual device
of operationalising their theoretical attributes. In reality, this
amounts to no more than stipulating that certain numerical
assignment procedures measure theoretical attributes. However,
this combination (Stevens’ definition and operationist philosophy)
is packaged as a major conceptual breakthrough in scientific
method.
In Kerlinger’s (1979) words, the standard line is as follows:22

22 Views similar to these of Kerlinger are ubiquitous in psychology. The most up-to-date
texts on research methods in psychology still recite Stevens’ definition and invoke the
mantra of operationism (e.g., Heiman, 1995; Whitley, 1996).
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An operational definition assigns meaning to a construct or variable by
specifying the activities or ‘operations’ necessary to measure it or to
manipulate it. An operational definition, alternatively, specifies the
activities of the researcher in measuring a variable or in manipulating
it. It is like a manual of instructions to the researcher: It says, in effect,
‘Do such-and-such in so-and-so manner.’ A well-known though rather
extreme example is: Intelligence (anxiety, achievement, and so forth) is
scores on X intelligence test, or intelligence is what X intelligence test
measures. This definition tells us what to do to measure intelligence. It
tells the researcher to use X intelligence test. Achievement may be
defined by citing a standardized achievement test, a teacher-made
achievement test, or grades assigned by teachers. We here have three
distinctly different ways of operationally defining the same construct.
The reader should not let this multiplicity of operational definitions
bother him; it is part of their flexibility and strength. After all, a con-
struct like achievement has many facets, and researchers can be inter-
ested in different facets at different times. (p. 41)

Here, two important empirical issues, that of how a theoretical
attribute, such as intelligence, relates to performance on a par-
ticular test and that of whether scores on such a test are measures
of anything at all, are dissolved into a simple matter of ‘oper-
ational definition’, so-called. That is, stipulation and postulation
are substituted for serious scientific investigation into these issues.
Yet no psychologist really means by intelligence, scores on an
intelligence test, and in believing intelligence to be measurable,
psychologists typically theorise about it as a quantitative attribute,
one continuously related to other attributes. The ideology of oper-
ationalising, therefore, completely obscures what is really going
on: psychologists are thereby caused to ignore the distinction in
meaning between theoretical concepts, like intelligence, and their
observable effects, like test scores; and they are also thereby
caused to ignore the conceptual commitments of quantitative the-
orising in science. The real function of this ideology is to make
such arbitrary stipulations and unsupported postulations appear
to be both legitimate and debt free. The bottom line is mainten-
ance of the measurability thesis. Without a hint of irony, Kerlinger
(1979) believes that this practice is ‘a radically different way of
thinking and operating, a way that has revolutionised behavioral
research’ (p. 41); that as a result of this practice, ‘the success of
behavioral scientists in measuring behavioral variables is remark-
able’ (p. 142); that ‘measurement is measurement in the natural
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sciences and in the behavioral sciences. The basic definition and
the general procedures are the same’ (p. 143); and, finally, that
‘Measurement is the assignment of numerals to objects or events
according to rules (Stevens, 1951). This is an excellent example
of a powerful definition’ (p. 129). Powerful indeed!
Stevens broke the nexus between the measurability thesis (some

psychological attributes are measurable) and the quantity objec-
tion (no psychological attributes are quantitative). It was a two-
step process. In the first place, his definition of measurement
broke the nexus quite simply by entailing that some measurable
attributes are non-quantitative. Stevens’ definition not only admits
ordinal and nominal attributes to the class of measurables, it
entails that all non-quantitative attributes are also measurable.
That alone, however, is something of a pyrrhic victory, because it
leaves the quantity objection unaffected. Hence, it would not have
satisfied those psychophysicists like Stevens, psychometricians like
Lord and Novick (1968), or methodologists like Kerlinger (1979),
who want to maintain that at least some psychological measure-
ment is on a par with physical measurement. A second step was
required to neutralise the force of the quantity objection, without
in any way confronting the scientific task of quantification. This is
where Stevens’ operational interpretation of his theory of
measurement scales paid off. Stevens introduction of his own ter-
minology (nominal, ordinal, interval, and ratio scales) effectively
removed the term quantitative from the psychologists’ lexicon.
Then, allowing the type of measurement scale to be defined oper-
ationally enabled him to conclude that his ratio scales (of sensory
intensities) were on a par with measurement scales used in the
physical sciences. This way of proceeding became standard prac-
tice in psychology, sanctioned under the name of operationalising.
In this way, the quantity objection was deflected and the nexus
broken. The proposition that there now exist interval and ratio
scales of measurement for psychological attributes is currently
generally accepted within the discipline and most contemporary
quantitative psychologists would have great difficulty grasping the
force of the quantity objection, were it possible to bring it before
their minds. If one has already accepted the operational view, that
measurement is the assignment of numerals to objects or events
according to rule, then theoretical research showing how to test
the hypothesis that attributes are quantitative will seem to be not
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only irrelevant but also unhelpful, because it raises doubts about
matters taken to be already settled.
In order to break the nexus between the measurability thesis

and the quantity objection, Stevens stood the classical concept of
measurement on its head. According to this latter concept,
numerical measurements supervene upon quantitative attributes:
if an attribute has the right kind of structure, then numerical
measures are implicit in it. According to Stevens, the implication
moves in the opposite direction: measurable attributes supervene
upon numerical assignments. If a consistent procedure can be
devised for making numerical assignments to objects or events,
then a measurable attribute is implicated. With the classical con-
cept upturned, the measurability thesis, at long last, looked
secure.



CHAPTER 8

Quantitative psychology and the revolution

in measurement theory

The revolution that axiomatic measurement theory might
have touched off has not yet occurred.

(Norman Cliff)

The only revolution properly so called is an intellectual revol-
ution, ‘a revolution in ideas’.

(John Anderson)

The shift from the classical understanding of measurement to that
encapsulated by Stevens’ definition is unsustainable. Not only does
acceptance of Stevens’ definition sever connections between main-
stream quantitative psychology and the traditions of quantitative
science, it blinds those who accept it to the character of quantifi-
cation, thereby causing them to ignore fundamental empirical
commitments of quantitative theorising. Mainstream quantitative
psychology is now in the anomalous position of being unable to
consider the measurability thesis in the critical manner character-
istic of normal science. When a science’s institutionalised ways of
proceeding impede critical inquiry into some issue relevant to its
subject matter, then that science subverts itself as a cognitive
enterprise.
As a social movement, science is a complex phenomenon. It

always serves diverse social and personal interests. These may
sometimes oppose those of critical inquiry. There are dramatic
instances of this, like scientific fraud, when scientists claim results
which they know they do not have. In general, however, scientific
fraud is an aberration of individual scientists, not of entire disci-
plines. More dramatic still are cases where the scientists of a par-
ticular nation are completely overwhelmed by non-scientific inter-
ests to the extent that critical inquiry into relevant issues stops,
as illustrated by the case of Lysenko and the political domination
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of Soviet genetics (Soyfer, 1994). Again, such disasters rarely
afflict entire disciplines on an international scale.
There may be less obvious interests at work, however, that can

affect entire disciplines. The majority of those participating in
a science might be pressed unwittingly by shared philosophical
presuppositions to conform to a false idea of science. This is scien-
tism. The historical record shows that endorsement of the measur-
ability thesis and, in turn, Stevens’ definition served some such
image. Furthermore, many sciences are allied to professions. If the
members of a profession are required to sell their services, then they
have an economic interest in presenting these services as attract-
ively as possible. The historical record shows that the profession of
psychology derived economic and other social advantages from
employing the rhetoric of measurement in promoting its services
and that the science of psychology, likewise, benefited from support-
ing the profession in this by endorsing the measurability thesis and
Stevens’ definition. These endorsements happened despite the fact
that the issue of the measurability of psychological attributes was
rarely investigated scientifically and never resolved.When the econ-
omic and social interests of a ‘science-based’ profession take pre-
cedence over the interests of critical inquiry within a discipline, then
this is a form of practicalism.
Of course, to some degree, scientism and practicalism influence

most sciences and their effects are not necessarily detrimental.
They may even advance inquiry. Furthermore, endorsement of the
measurability thesis and of Stevens’ definition, taken in isolation,
were simply errors. Given our fallibility, error is a normal feature
of all cognitive enterprises. Science is subverted, however, when
mechanisms for correcting errors go awry. The integrity of individ-
ual scientists in endorsing a view, the social conditions favouring
such endorsement, and the social interests that such a view might
serve are distinguishable. It is possible that all psychologists who
endorsed the measurability thesis and Stevens’ definition were
moved by the highest of personal motives (which, of course, never
rules out the possibility of error) and, yet, because of the special
social conditions obtaining, acceptance of these views served social
interests opposing those of critical inquiry. These social conditions
may have caused a breakdown in the science’s error-correcting
mechanisms. For example, these mechanisms depend crucially on
the training of scientists, and both professional institutions and
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false images of science can influence the syllabus content of uni-
versity courses, the criteria for assessing the competence of gradu-
ates and, thereby, the criteria for the interpretation and accept-
ance of research results. Defects here may seriously impede
critical inquiry.
In order to test the hypothesis that mainstream quantitative

psychology works against itself as a cognitive enterprise, evidence
is required that quantitative psychology is prevented by its
internal ways of working from correcting the errors of accepting
both the measurability thesis and Stevens’ definition. Suppose that
a group of scholars, working outside the mainstream tradition of
quantitative psychology, made conceptual breakthroughs in
relation to the issue of testing the hypothesis that psychological
attributes are quantitative. Suppose they advertised this progress
within mainstream vehicles of scientific communication. Then
strong evidence of a breakdown in internal, error-correcting mech-
anisms would exist if mainstream quantitative psychology failed
to integrate these developments into its curricula and research
programmes, and continued business as usual. Interestingly, this
scenario was played out in the history of psychology in the latter
half of the twentieth century.

THE REVOLUTION THAT HAPPENED

Book V of Euclid’s Elements presents the theory of ratios of magni-
tudes. This theory initiated the conceptual project of understand-
ing measurement. Completing this project requires explaining
what magnitudes are (that they should sustain ratios), what ratios
are (that they should sustain real numbers), and how to test the
hypothesis that attributes are quantitative. If the work of Hölder
(1901) and Frege (1903) made progress with respect to the first
two of these, what psychology lacked was any understanding of the
third. While the second part of Hölder (1901) pointed in the right
direction, its significance was not recognised.
The seeds from which a breakthrough developed were sown in

the year of Stevens’ Handbook, 1951: Patrick Suppes, a philosophy
graduate of Columbia University, where one of his teachers had
been Ernest Nagel, published a paper on extensive measurement
(Suppes, 1951). It displayed a number of important character-
istics. First, Suppes was not only aware of Hölder (1901), Hölder’s
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views were debated. Second, Suppes showed an interest in empiri-
cally testing the ‘axioms’ of extensive measurement. In these
respects he followed Nagel. He departed from Nagel in the specific
mathematical approach employed. Suppes was now at Stanford
University and he attended seminars by the Polish logician, Alfred
Tarski,1 at Berkeley (Suppes, 1979). As a result, Suppes’ trade-
mark became the axiomatic, set-theoretical analysis of philosophi-
cal and scientific problems. This proved to be an extremely pro-
ductive vehicle for advancing measurement theory.2 Finally,
Suppes’ views were contaminated neither by the practicalist/scien-
tistic interests of quantitative psychology in general nor by Stevens
in particular.3

Suppes (1954) recommended that philosophers of science
attempt to ‘axiomatize’ developed branches of empirical science
and, especially, those portions involving scientific measurement. A
theory is ‘axiomatized’ when it is expressed as a set of (ideally,
logically independent) propositions (called ‘axioms’) from which
the remainder of the theory deductively follows. These prop-
ositions are not ‘axioms’ in the sense of being self-evident or, even,
taken to be true. They are simply the fundamental hypotheses of
the theory. An ‘axiomatization’ is set-theoretic when the entities
to which the theory applies are described as members of a set of
some kind and the ‘axioms’ state conditions which this set satisfies
(such as, for example, that some relation between members is
transitive). In this way Suppes aimed to bridge the gap

between qualitative observations (‘this rod is longer than that one,’ ‘This
pan of the balance is higher than the other one’) and the quantitative
assertions demanded in developed scientific theories (‘The length of this
rod is 5.6cm.,’ ‘The mass of this steel ball is 7.2gm.’). (1954, p. 246)

Given the view that numbers are not part of the furniture of the
world, this connection can seem to be a problem. Since number
systems had already been axiomatized set-theoretically, ‘axiomati-

1 Alfred Tarski, professor of mathematics at Berkeley until 1968, had a profound influence
upon modern philosophy through his analyses of the concepts of truth and logical impli-
cation.

2 Referring to Suppes’ axiomatic, set-theoretic approach, Luce (1979) reports that ‘More
than any other living person, Suppes has affected contemporary presentations of theories
of measurement’ (p. 93).

3 Suppes’ undergraduate training was not in psychology but in physics and meteorology
(Suppes, 1979), and his eventual interest in psychological measurement developed via
decision theory and utility, rather than via psychophysics and ability testing.
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zations’ of empirical systems might smooth the task of estab-
lishing a connection between these so-called ‘qualitative’4 and
quantitative domains. A further aim implicit in this programme
was, as far as possible, to restrict the axioms of the ‘qualitative’,
empirical structure to those directly testable. The result of this
programme was to bring into the open testable, ‘qualitative’ con-
ditions necessary and sufficient for various forms of numerical rep-
resentation. Suppes’ programme was clearly located within the
representational tradition, but it was also firmly realist, as
opposed to operationist.
As Luce and Narens (1994) indicate, the application of this

programme to any instance of scientific measurement reduces to
four steps.
1. A ‘qualitative’, empirical system is specified as a relational

structure, that is, as a non-empty set of entities of some kind
(objects or attributes, perhaps) together with a finite number of
distinct relations between elements of this set. It is required that
these elements and the relations between them be identifiable
by direct observation. These are the empirical primitives of the
system.
2. A set of ‘axioms’ (preferably finite in number) is stated in

terms of the empirical primitives. So far as possible, they should
be directly testable.
3. A numerical structure is identified such that a set of many-to-

one mappings (homomorphisms) between the empirical structure
and this numerical structure can be proved to exist. This proof is
sometimes referred to as the representation theorem.5

4. A specification of how the elements of this set of homomor-
phisms relate to one another is given, generally by identifying to
which class of mathematical functions all transformations of any
one element of this set into the other elements belong. This is
sometimes referred to as the uniqueness theorem and it makes rigor-
ous Stevens’ more informal views about admissible scale trans-
formations.

4 By qualitative, Suppes and associates seem to mean non-numerical and by quantitative,
numerical. This differs from my usage throughout this book.

5 A representation theorem is a purely mathematical result and is therefore logically inde-
pendent of the representational theory itself and able to be appropriated by any theory
of measurement, if needed. A set of mathematical theorems never constitutes a theory
of measurement.



The revolution in measurement theory196

Suppes and associates made contributions to this programme
during the 1950s (e.g., Suppes, 1951; Suppes and Winet, 1955;
Scott and Suppes, 1958), and a range of possible empirical struc-
tures relevant to instances of physical measurement and attempts
at psychological measurement was presented by Suppes and
Zinnes in the first chapter of the first volume of the Handbook of

Mathematical Psychology (1963). I will illustrate the above four steps
via their treatment of extensive measurement.
Suppes and Zinnes defined the relevant empirical relational

structure as follows:

An extensive system <A, R, o> is a relational system consisting of the binary
relation R, the binary operation o from A × A to A, and satisfying the
following six axioms for a, b, c in A.
1. If aRb and bRc, then aRc;
2. [(a o b) o c]R[a o (b o c)];
3. If aRb, then [a o c]R[c o b];
4. If not aRb, then there is a c in A such that aR[b o c] and [b o c]Ra;
5. Not [a o b]Ra;
6. If aRb, then there is a number n such that bRna where the notation

na is defined recursively as follows: 1a = a and na = (n−1)a o a. (1963,
p. 42; my square brackets)

The empirical structure is the system denoted by <A, R, o>,6 the
non-empty set of entities being A and the relations, R and o. R

may be interpreted as the relation, being at least as great as. For
example, if the entities in A are lengths, then aRb simply means
that length a is at least as great as length b. o is a concatenation

operation. That is, sticking with the length example, a o b is the
length obtained when a is extended by (or concatenated with) b.
Strictly speaking, o is a binary operation, rather than relation, but
as Suppes and Zinnes note, ‘operations are simply certain special
relations’ (1963, p. 5). That is, if c = a o b, then a, b, and c are
related in a specific way, so corresponding to the concatenation
operation there is a relation (of additivity) between lengths. The
empirical structure is described as qualitative because the ‘axi-

6 The pointed brackets, < >, simply indicate that the elements they enclose are taken as
ordered. In the case of Suppes’ notation for denoting relational structures, the conven-
tion is that the set of objects is mentioned first, followed by the relevant relations holding
between those objects.
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oms’ do not contain any reference to numerical concepts, other
than in ‘axiom’ 6 where, of course, the recursive definition of na

shows that n is defined completely by a and o. It is empirical
because it is thought to capture the form exhibited by various
spatio-temporally located structures, e.g., lengths, as explained, or
a set of objects differing in weight, ordered by heaviness on an
equal arm, beam balance, upon which the objects may be concat-
enated.
‘Axioms’ 1 (transitivity of the order relation), 2 (associativity of

the concatenation operation), 3 (monotonicity of concatenation)
and 5 (positivity of concatenation) are directly testable. For
example, 5 would be false for the case of weight if some object
perfectly balanced the combination of itself and some other object.
On the other hand, ‘axioms’ 4 (the solvability condition) and 6
(the Archimedean condition) are not directly testable, although it
should be stressed that in combination with the other ‘axioms’
they entail testable predictions.
Suppes (1951) proved (the representation theorem) that

extensive systems of this kind are homomorphic to numerical
extensive systems of the sort <N, �, +,> where N is a subset of
positive real numbers and the numerical relation, �, is used to
represent R and +, to represent o. That is, given a set of objects
and relations R and o for which the above axioms are true, positive
real numbers may be assigned to the objects in such a way that
the values of the numbers assigned reflect both the order of the
objects and the concatenation relation, that is, if a = b o c then the
number assigned to a is the sum of the numbers assigned to b and
c. More formally, for any a, b, and c in A,

aRb if and only if φ(a) � φ(b) and
aR[b o c] if and only if φ(a) � φ(b) + φ(c)

(where φ is a homomorphism from A into N). Suppes and Zinnes
proved (the uniqueness theorem) that any two such homomor-
phisms for the same empirical extensive system are related by
multiplication by a positive constant. That is, in Stevens’ sense,
the numerical assignments to an extensive system constitute a
ratio scale.
Suppes emphasised the numerical representation of more or

less directly observable structures. His emphasis upon numerical
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representation, meant that he did not link such structures to the
traditional concept of quantity.7 In this respect, Suppes was again
following Nagel. However, while Suppes and Zinnes gave attention
to purely ordinal structures, later work within this framework has
paid increasing attention to possible empirical structures which
map into additive substructures of the real numbers (what Stevens
would have called interval and ratio scales). ‘Hölder’s theorem’8

came to play a central role in this research programme on
measurement theory, so much so that it has been caricatured as
‘the enterprise of proliferating boring corollaries to Hölder’s the-
orem’ (Domotor, 1992, p. 202). The general strategy has been to
show that the ‘axioms’ for certain kinds of more or less directly
observable, qualitative, empirical structures enable the definition
of an Archimedean, ordered group and, thus, via ‘Hölder’s the-
orem’, an additive numerical representation.
Suppes and Zinnes (1963) did not advance the substance of

measurement theory much beyond Hölder (1901). Their instances
of fundamental measurement treated only extensive measure-
ment and difference systems. While there was an array of the
latter (including the psychologically interesting cases of semiord-
ers (Luce, 1956) and ‘Coombs systems’ (Coombs, 1950)), these
are all special cases of, applications of, or refinements of Hölder’s
ideas relating to intervals on a line. The treatment given of
derived measurement was especially inadequate given the sorts of
problems faced by psychology in attempting to find indirect ways
of testing the hypothesis that attributes are quantitative. It failed
to bring out the fact that empirical issues are involved and it
unfortunately made derived measurement appear to be a matter
of stipulation.
However, Suppes’ and Zinnes’ (1963) paper was significant.

First, it demonstrated an approach to fundamental measurement

7 Suppes (1951) used the concepts of quantity and magnitude in a way not unrelated to
Russell’s (1903) idiosyncratic usage. He did not retain this usage in later publications.
Modern representational theories centred upon the concept of quantity are those of
Mundy (1987, 1994) and Swoyer (1987).

8 ‘Hölder’s theorem’, so-called, is not the proposition that ratios of a continuous quantity
are isomorphic to the positive real numbers (the main theorem of Hölder, 1901) but,
rather, the proposition (e.g., Birkhoff, 1948) that an Archimedean, ordered semi-group
is isomorphic to a subgroup of the positive real numbers (a reinterpretation of a footnote
of Hölder, 1901). ‘Hölder’s theorem’ is a weaker version of Hölder’s main theorem,
one in which continuity (or Dedekind completeness) is replaced by the Archimedean
condition.
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which required specifying the structure of empirical systems prior
to any numerical assignments being made. In this, its approach
would have been an antidote to Stevens’ operationism had it been
adopted. Second, it illustrated the strength of the axiomatic, set-
theoretic approach to measurement theory, requiring mathemat-
ical proofs that empirical structures were numerically represent-
able and of the uniqueness of proposed representations. In this
respect it elevated measurement theory to a level of rigour not
attained since Hölder (1901) and Wiener (1919). Set alongside
Stevens’ main contribution to measurement theory (1951),
Suppes and Zinnes (1963) made the quantum leap from informal,
‘folk’ representationalism9 to mathematically rigorous represen-
tationalism.
In achieving this much, Suppes and Zinnes (1963) provided the

methodological basis for the developments that followed, due larg-
ely to R. D. Luce and collaborators. Luce (an engineer and math-
ematician by training) began work in mathematical psychology in
the 1950s, having some contact with both Stevens and Suppes
(Luce, 1989). He later worked with the statistician, J. W. Tukey,
exploring the idea that measurement might be attainable via the
discovery of relations of additivity between attributes, as distinct
from the more conventional route via relations of additivity within
attributes. This led to their revolutionary paper on the theory of
conjoint measurement (Luce and Tukey, 1964).
Extensive measurement relies upon locating a concatenation

operation the relevant effects of which depend almost entirely
upon a single attribute. Every object is complex in the sense of
possessing indefinitely many properties and standing in indefi-
nitely many relations to other things (i.e., it has indefinitely many
attributes). Any operation of bringing two objects together in
some way is an operation which must have effects, but there is no
necessity that any of these effects should depend upon just one
attribute of the objects involved. Fortunately, it works this way
sometimes. For example, in the extensive measurement of length
with rigid straight rods, the operation of joining two rods end to
end, linearly, is one where an outcome (viz., the length of the

9 To use a term coined by Niederée (1994) with a slightly different meaning. Niederée’s
category of folk representationalism is wider than mine and Suppes’ and Zinnes’ 1963
paper would probably fall into it.
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joined rods) depends pretty much only upon the lengths of the
rods used. Our capacity to locate concatenation operations suit-
able for extensive measurement of the attributes that interest us
depends upon the existence of a very special class of causal
relations, as well as upon our sensory-motor capacities and how
we, as observers, relate to these attributes. Given the fact that
‘nature loves to hide’, as Heraclitus aptly put it (Burnet, 1930, p.
133), the amazing thing is not that the prospect of psychological
measurement presents enormous difficulties; it is that the
accomplishment of physical measurement was so smooth.10

The existence of derived measurement in physics implies that
for some quantitative attributes there must be ways of identifying
the additive structure of quantities other than extensive measure-
ment. The theory of conjoint measurement, as developed by Luce
and Tukey (1964), explicates one such other way. Some of the
ideas behind the theory of conjoint measurement had been antici-
pated by Hölder (1901) and others, much later, by Adams and
Fagot (1959) and by econometricians (e.g., Debreu, 1960). The
mathematical proofs of Luce and Tukey (1964) were improved by
Krantz (1964), utilising ‘Hölder’s theorem’, and the account later
given in Krantz et al. (1971) is perhaps the best mathematical
introduction.11 Here I will simply present the ideas involved with-
out explicating mathematical details and detached from the rep-
resentational theory.
Hölder (1901) had pioneered the logic of indirect tests of quan-

titative structure by exploiting the fact that intervals within a
straight line are composed additively of discrete parts which are
themselves intervals. One of his conditions depended upon the
fact that any two intervals, say, that from point A to point C (AC)
and that from point A’ to point C’ (A’C’), entirely composed of the
discrete interval pairs, AB & BC, and A’B’ & B’C’ respectively,
must equal one another if AB = A’B’ and BC = B’C’. That is, in
the context of discrete adjoining intervals on a straight line,
equals plus equals gives equals. What is true of intervals within a

10 Of course, when inspecting physical measurement in its present state, its accomplish-
ment can seem much smoother than it really was. Consider, for example, the enormous
difficulties medieval scientists had in just conceptualising quantities like distance and
velocity, a process that took several centuries and was a necessary step for the achieve-
ments of Galileo and Newton.

11 See also Narens (1985). A version written specifically for those with little mathematical
background is given by Michell (1990).
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straight line must also be true of differences within any quantitat-
ive attribute. The theory of conjoint measurement generalises this
idea to combinations of attributes in a context which enables dif-
ferences within the two attributes to be matched between them
relative to joint effects upon a third attribute. If, in some context,
attribute Z increases only with increases in attributes X and Y,
and increasing X by some specific amount (what I will call a differ-
ence within X) has the same effect upon Z as does increasing Y
by some specific amount (a difference within Y), then these differ-
ences are equal in that sense. The generalisation of Hölder’s idea
is this: if two discrete but adjoining differences within attribute X
can be matched with two discrete but adjoining differences within
attribute Y, then if these attributes are quantitative the X-differ-
ence entirely composed of the two adjoining differences within X
must equal the Y-difference entirely composed of the two adjoin-
ing differences within Y (relative to effects upon Z).
The idea of a difference between two levels of X (or Y) having

an effect upon Z can be made clearer by taking a hypothetical
psychological example. It might be supposed that a person’s per-
formance upon an intellectual task (e.g., a test of some kind) is
influenced by both ability to do tasks of that kind and level of
motivation: increases in ability and increases in motivation each
cause increased levels of performance. If an experimental situ-
ation can be contrived in which differences in performance are
due just to these two attributes and in which levels of each can be
identified and manipulated to some extent (although, of course,
not initially measured), then the sort of situation exists to which
the theory of conjoint measurement applies.
I will develop this example assuming that the way in which

ability and motivation combine to produce performance does not
differ between individuals. Suppose persons K and L perform at
exactly the same level on the test despite the fact that they differ
from one another in motivation and ability. K does as well as L
because of a higher level of motivation and L compensates for K’s
higher level of motivation by possessing a higher level of ability.
That is, K’s level of motivation (MK) minus L’s level of motivation
(ML) equals L’s level of ability (AL) minus K’s level of ability (AK)
in terms of effects upon performance. Putting it in quantitative
terms, relative to performance, a difference in motivation equals
a difference in ability, i.e., MK − ML = AL − AK. The basic idea is
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that levels within either of the two attributes (motivation and
ability) can be ‘traded off ’, as it were, against one another, relative
to effects upon a third attribute (performance).
If this is possible for one pair of differences, then it is possible

for adjoining differences. Consider persons J and H who also do
equally well on the test but better than L and K. Suppose J has
K’s high level of motivation but does better than K because of
more ability. Suppose H has L’s high level of ability but does better
than L because of higher motivation. Now, MH − MJ is traded off
against AJ − AH, these two differences being equal relative to
effects upon performance. However, because MJ = MK and AH =
AL, if MH − MJ = AJ − AH, then MH − MK = AJ − AL. Since MH − MK

adjoins MK − ML and AJ − AL adjoins AL − AK, it follows, if the
attributes are quantitative, that the two composite differences,
entirely composed of these adjoining components, must likewise
be equal, i.e., that

(MH − MK) + (MK − ML) = (AJ − AL) + (AL − AK)

and, simplifying, that

MH − ML = AJ − AK.

Additivity between differences has been indirectly identified via
adjoining component differences. This last equality, entailed by
the equality of the corresponding components plus the hypothesis
that the attributes are quantitative, entails a new prediction. It
implies that two people trading off these two differences, must
also perform equally well. That is, someone, F, compensating for
having only L’s level of motivation by having J’s level of ability
should perform as well as someone, E, compensating for having
only K’s level of ability by having H’s level of motivation. Hence,
this prediction provides a specific test of the hypothesis that the
attributes are quantitative: if they are, then this prediction fol-
lows; if not, then it does not.
This test is called the Thomsen condition by Krantz et al. (1971)

and it is simply, as hinted, a fresh application of the ancient Eucli-
dean axiom that equals plus equals gives equals. If, within it, the
equality relation between the terms is replaced by the weak
inequality (the relation of equal to or less than), then the con-
dition is known as double cancellation. Double cancellation is a
key condition in the theory of conjoint measurement. Krantz et al.
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(1971) add two further conditions: solvability and an Archime-
dean condition. In terms of the above example, solvability just
means that for any difference in ability there exists an equal dif-
ference in motivation at any point on the motivation attribute,
and vice versa. The Archimedean condition amounts to the
requirement that differences within the attributes involved cannot
be infinitesimally small or infinitely large relative to other differ-
ences. That is, given any two differences within one of the attri-
butes (say, within the ability attribute), the smaller of the two
multiplied by some natural number will at least equal the larger.
The solvability and Archimedean conditions are difficult con-
ditions to test experimentally. However, Scott (1964) proved a
result which implies that they can be tested via a potentially infi-
nite hierarchy of cancellation conditions, each similar in form to
double cancellation, but most of them involving more terms. The
technical details of this are not important to pursue here.12 The
important point is that a way, distinct from extensive measure-
ment, had been specified whereby the hypothesis that an attribute
has additive structure could be tested.
Given these conditions (double cancellation, solvability and the

Archimedean condition),13 it not only follows that ability, motiv-
ation and performance are quantitative14 but also that

performance = ability + motivation.

This last relationship needs commenting upon, for had a different
additive relation within the attributes been identified then the
functional relationship discovered would have been

performance = ability × motivation.

In the example discussed above, a trade-off between an increase
in ability and one in motivation identified an equality between

12 For a simplified account see Michell (1990).
13 I have overlooked two others which Krantz et al. (1971) specify: essentialness (there must

be more than two levels on each of the attributes, ability and motivation); and weak order
(levels of performance must be ordered in the sense that given any two, one is greater,
equal to or less than the other, and if one is greater than another and that greater than
a third then the first is also greater than the third).

14 Strictly speaking, it does not follow that they are quantitative in exactly the sense
described in Chapter 3 because these conditions do not entail continuity. However, if
the attributes involved satisfy these conditions then their ratios constitute a substructure
of the positive real numbers and so the attributes will be measurable.
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differences. The same trade-off identifies an equality between
ratios. As mentioned in Chapter 3, if there is one relation of
addition within a continuous quantity, then there are infinitely
many others. As is obviously the case, one relation of addition is
identified via differences. When a trade-off between increases in
two attributes identifies equal differences, the specific relation of
additivity identified within each attribute is one connecting these
differences to component differences in the way described above.
In turn, via that relation, ratios between differences can be ident-
ified and measurement thus achieved.
Alternatively, and, perhaps less obviously in this context, a

trade-off between equal increases in two attributes identifies equal
ratios directly. An increase from, say, X to Y, within an attribute,
not only identifies a difference (Y − X), but also identifies a ratio
(Y/X), the factor by which X is multiplied to reach Y. When, for
example, the increase from K’s ability to L’s ability affects per-
formance to the same extent as the increase from L’s motivation
to K’s motivation, then the fact that AK/AL = ML/MK is identified.
The specific relation of additivity identified via such ratios is one
between levels of the attribute, rather than between differences
as before. These two relations of additivity are totally distinct and
so sustain totally different systems of ratios and hence different
systems of measurement. However, because it is the case that if

performance = ability × motivation,

then

log(performance) = log(ability) + log(motivation),

these two sets of measurements are related mathematically.
Identifying ratios directly via trade-offs results in the identifi-
cation of multiplicative laws between quantitative attributes. This
fact connects the theory of conjoint measurement with what
Campbell called derived measurement.
Luce and Tukey’s (1964) theory of conjoint measurement, rein-

terpreted as trade-offs between ratios, explained the logic of
derived measurement in physical science. Their work made it poss-
ible to understand the empirical tests which would validate
instances of derived measurement, to understand why attributes
quantified via derived measurement are quantitative in the same
sense as those quantified via Campbell’s notion of fundamental
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measurement, and to understand the precise character of the
interlocking between interdependent attributes. Especially
importantly, they showed that the measurement of derived attri-
butes did not depend upon the prior measurement of any other
attributes, as Campbell had incorrectly insisted. Many matters,
hitherto deeply obscure, were made transparent by this work and
its later developments. For these reasons, it was a scientific revol-
ution in the strict sense.
Prior to the discovery of conjoint measurement theory it was

not clear how derived measurement worked. Consider the case of
density. Physicists knew that the density of something was the
ratio of its mass to its volume, but what was not clear was the
kinds of observations sustaining such a relationship. Campbell
(1920) took it that because the ratio of mass to volume is a con-
stant for each different kind of stuff, the constant identifies a
quantitative attribute. The theory of conjoint measurement
explains why this is so. It is because density and volume trade off
against one another relative to mass. For example, if a brick of
pure gold weighs exactly the same as a block of pure aluminium,
then relative to effects upon mass, the increase in volume between
the aluminium block (VA) and the gold brick (VG) equals the
increase in density between the gold brick (DG) and the aluminium
block (DA). Identifying equal ratios directly via such trade-offs
means that VA/VG = DG/DA. If density is a quantitative attribute,
then double cancellation must obtain for sets of such volumes of
densities.15 This means that the known relationship between den-
sity, mass and volume is not an arbitrary stipulation, but is a test-
able, scientific hypothesis. This same logic applies to all instances
of derived measurement in physics.
Here was the answer to Craik’s request (1940b), mentioned in

Chapter 6, that the understanding of measurement be based not
just on ‘the most stringent instances, such as length’, but that it
also include ‘temperature, density, time, etc.’. The theory of con-
joint measurement showed how this could be done without
relaxing the classical understanding of quantity and measurement
one iota and without resiling from the fact that specific empirical

15 This is, for any three levels of volume, V1, V2, and V3, and for any three densities (as
identified, say, via homogeneous substances), D1, D2, and D3, if V1 of D2 weighs at
least as much as V2 of D1 and V2 of D3 weighs at least as much as V3 of D2, then V1
of D3 must weigh at least as much as V3 of D1.
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tests were at stake. This theory implied that psychologists could
not be let off the hook simply because psychological attributes are
not amenable to fundamental measurement in Campbell’s sense.
It scuttled Campbell’s attempt to reject the possibility of psycho-
logical measurement just as surely as it should have scuttled psy-
chologists’ misplaced confidence in the measurability thesis.
Consider, for example, Spearman’s two-factor theory of ability

mentioned in Chapter 4. It states that performance on a simple
intellectual task depends upon two kinds of ability: an ability
which contributes only to performance upon tasks of that kind,
called specific ability; and an ability which contributes to all intel-
lectual performances, called general ability. On a test, j, composed
only of tasks of one specific kind (a homogeneous test), Spearman’s
theory states that

zij = gj gi + sj si

(where zij is the standard score of person i on test j; gi is i’s general
ability; si is i’s specific ability; gj is the extent to which performance
on test j is dependent upon general ability; and sj is the extent to
which performance on test j depends upon specific ability). For a
fixed homogeneous test, gj and sj are constant for all subjects, and
so Gi (= gjgi) and Si (= sjsi) are simply rescalings of gi and si. That is,

zi = Gi + Si.

The theory of conjoint measurement applies directly to any theory
of this form and, in doing so, brings out clearly (i) that such a
theory could be mistaken in its requirement that the relevant
attributes be quantitative, and (ii) that, as a consequence, in the
absence of relevant evidence, confidence that these attributes are
measurable is misplaced.
In this instance there are three further requirements necessary

to apply conjoint measurement theory: a theory of problem solving
capable of distinguishing homogeneous from non-homogeneous
tests;16 some way of identifying values of general ability that is
independent of test scores, some way of identifying values of
specific ability, also independently of test scores, and some way of,
first, identifying and, then, controlling other relevant causes, so

16 The fact that psychology so far lacks such a theory means that Spearman’s later rejection
of his two-factor theory (Spearman, 1927) was premature.
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that the features of the data diagnostic of additive structure are
not swamped by error. These are matters that require the theory
to be elaborated well beyond its present state. In requiring these,
the theory of conjoint measurement makes explicit a fundamental
defect in the exclusively factor analytic study of human intellec-
tual abilities. Not only have quantitative psychologists working
within this tradition assumed without adequate evidence that
abilities are quantitative attributes, they have also tended to
characterise abilities for the most part simply as dispositional con-
cepts. For example, verbal ability is the ability to do well in verbal
tasks. Sometimes the best we can do in science is to identify some-
thing via its effects, but this never justifies defining it as a dispo-
sition to produce those effects, as if absurdly it has no intrinsic
character, only effects.17 A necessary step in applying conjoint
measurement theory to Spearman’s theory is that of hypothesising
more about abilities than just their likely effects upon test per-
formance. Only when theorists in this area are prepared to
hypothesise about the intrinsic character of abilities can the issue
of whether or not abilities are quantitative be investigated exper-
imentally.
This illustrates the fact that a theory of measurement, like con-

joint measurement theory, only takes us so far along the road
to quantification. Further progress requires adequately developed
substantive theories to which to apply it. Clearly, the successful
application of conjoint measurement theory to psychology is never
going to be an ‘easy fix’ for the measurability thesis. Conjoint
measurement theory is but one conceptual resource amongst an
array. Its significance is that it fills a specific, debilitating gap in
the quantitative psychologist’s methodological armory. Even
applying it, however, the path to evaluating the truth or other-
wise of the measurability thesis must be long and difficult, with
all of the false leads and discarded ancillary hypotheses that
attend any significant scientific advance. It indicates a place to
start, but the journey will only ever be completed in conjunction
with advances in substantive areas of psychology and a deeper
understanding than we have now of how psychological systems

17 Of course, others have drawn attention to this logical defect in the concept of ability
(e.g., Passmore, 1935; O’Neil, 1944).
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work. As Heraclitus said, those who seek for gold will dig up much
earth to find little (Burnett, 1930).
Here is not the place to review all of the advances in measure-

ment theory made by Luce and his associates nor to analyse this
movement historically.18 These developments are covered in detail
in the three volumes of the Foundations of Measurement (Krantz et
al., 1971; Suppes et al., 1989; Luce et al., 1990) and some of them
are summarised more accessibly in other publications (e.g.,
Narens and Luce, 1986; Luce, 1988; Luce and Narens, 1994;
Luce, 1996a). From the historical point of view, my interest here
is only in the fact that the development of the theory of conjoint
measurement enables a test of my hypothesis that something in
the internal workings of mainstream quantitative psychology
impedes critical inquiry into the measurability thesis.
However, one further development does warrant mention

because it reconnects these developments to the concept of quan-
tity. For the most part, Suppes, Luce, and their associates avoided
this concept in treating measurement. They theorise at the sur-
face level of the objects or events to which they think numerical
assignments are made, rather than at the theoretically deeper
level of the quantitative attributes measured. That is, the empiri-
cal relational structures considered were generally structures com-
posed of directly observable objects and the empirical relations
considered were observable relations between such objects. At
their hands, this was a strength because it provided exactly what
psychology needed, the surface-level theory of conjoint measure-
ment. However, it raised this question: if extensive measurement
yields a ratio scale (in Stevens’ sense), if conjoint measurement
may also yield ratio scales (given a multiplicative representation
of the conjoined factors), and if it is theoretically possible that
indefinitely many other kinds of surface-level, empirical structures
could also yield ratio scales; what, if anything, do all these differ-
ent empirical structures have in common sustaining this common
form of numerical representation? From the classical viewpoint
the answer is obvious: they all involve quantitative attributes.
However, these theorists were looking for an answer specifiable
via the primitives of the surface structure itself.
Proceeding this way, it was discovered that a relational struc-

18 Dı́ez (1997a & b) attempts this.
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ture rich enough to sustain a ratio scale representation always
has the following property: the class of all automorphisms of the
structure is an Archimedean ordered group.19 An automorphism
of a relational structure is a function mapping that structure into
itself in such a way that its internal structural features are pre-
served. Automorphisms are familiar enough in science, but some-
times under different names. For example, magnification is an
automorphism upon length. When we look through a magnifying
glass, small lengths become enlarged in such a way that structural
relations are preserved. For example, if length a is greater than b,
then a magnified by a specific glass is greater than b magnified by
the same glass. Or, if a + b = c, then a magnified by a specific glass
plus b magnified by the same glass equals c likewise magnified. Of
course, a magnifying glass applies typically only to a highly restric-
ted range of lengths, but imagine one that was totally unrestricted
and could be applied to all lengths. Such a magnifying glass would
be an automorphism upon length. Now, different glasses may
differ in strength of magnification, i.e., any specific length is
enlarged to different extents by different glasses. Imagine the set
of all magnifying glasses with unrestricted application to all
lengths. Each glass translates each, specific length into its own,
specific enlargement, which, of course, is another length.
By way of contrast, a lens of a different kind may shrink lengths

but similarly preserve relevant structural relationships. Likewise
imagine the set of all lenses,20 each able to shrink any length to
another, smaller length and each having unrestricted application
to all lengths. Now we have the complete set of automorphisms
that may be applied to any length. Furthermore, as we know, if
we select a length, a, to be magnified or shrunk as the case may
be, and another length, b, into which a is to be magnified or shrunk
(depending upon whether a is greater or less than b), then these
two lengths completely fix the magnifying glass or lens that will
do the job. Let us call the set of all such magnifying glasses and
lenses the set of automorphic translations upon length. These
translations have a quite well defined structure and it is because
of this that length is ratio scalable.

19 See Luce (1987) and Luce et al. (1990).
20 For convenience of exposition in this discussion, I will confine the term lens to mean only

those lenses that shrink lengths.
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The structure is this. First, these translations are ordered
according to their magnifying or shrinking power. Translation t is
greater than or equal to translation s according to whether t
applied to any length a is greater than or equal to s applied to a.
Second, the translations form a group in the special mathematical
sense of that term. In order to see what this means, note first that
translations can be combined (a can be magnified to b by glass t
and then b to c by glass s which is equivalent to magnifying a to c
directly by glass r with the powers of t and s combined) and second
that there is the possibility of looking at lengths through a plane
glass, one that neither magnifies nor shrinks (this is the identity
translation because it ‘translates’ each length only into itself). The
translations are a group because (i) any translation combined with
the identity translation equals itself; (ii) for each translation there
is another such that the two combined equal the identity trans-
lation; and (iii) any three translations combined will result in the
same outcome regardless of the order of combination. Third, the
set of translations are an Archimedean ordered group, which
means that given any two translations which are magnifications
(translations greater than the identity), the smaller, when com-
bined some finite number of times with itself, results in a level of
magnification at least as great as that of the larger.
If the translations form an Archimedean, ordered group then

they have the same structure as a subgroup of the positive real
numbers, and so may be given a ratio scale representation. This,
of course, is ‘Hölder’s theorem’. In the forgoing exposition, length
has been taken as the example and using somewhat idealised con-
cepts of magnifying glass and lens the concepts of automorphism
and translation have been illustrated. To understand the full force
of this work in measurement theory, this example must be gener-
alised. Any attribute that can be ordered has its own special ana-
logues of magnifying and shrinking. Of course, it does not auto-
matically follow that these analogues always preserve relevant
structural features, whatever these features might be in any
specific instance, as idealised magnifying glasses and lenses do for
the structural features relevant to length as an extensive struc-
ture. Even if they do, it does not automatically follow that the
translations so identified constitute an Archimedean, ordered
group. But if they do and only if they do, then the empirical struc-
ture involved is able to be numerically represented as a ratio scale.
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Thus, all ratio scales, no matter what the surface character of the
empirical structure involved, share this feature.
However, the fact that this result depends upon ‘Hölder’s the-

orem’ is significant. Remember that Hölder’s main theorem was
that the ratios of magnitudes of an unbounded continuous quan-
tity have the structure of the positive real numbers. The restric-
tion to Archimedean structures in ‘Hölder’s theorem’ is a rela-
tively minor one. While in some cases it might be theoretically
important, it is not a difference that will ever show up easily, if at
all, in empirical tests. Note, also, that the translations discussed
above are simply a generalisation of the familiar concept of ratio.
Restricted to Hölder’s quantities, the translations would be equiv-
alent to ratios. Of course, more generally, as discussed above, they
do not appear to be ratios because the concept of quantity has
been bypassed and the theory goes directly from the surface,
empirical structure to the concept of translations. However, if the
translations form an Archimedean, ordered group, then the con-
cept of quantity is, I think, implied. It seems plausible to suggest
that the additivity of the translations (which they possess in virtue
of being an Archimedean ordered group) reflects back upon the
empirical objects involved (or, more correctly, upon their relevant
attributes) even when the empirical structure itself contains no
directly or even indirectly observable additive relation. Thus, a
system of attributes satisfying Hölder’s conditions (with the Archi-
medean condition substituted for his Condition 7) is identified. If
this is so, then the representational theory of measurement entails
the concept of quantity. However, with quantity comes number,
which means that this theory does not escape number as part of
the furniture of the world. That is, the concept of representation
is redundant as an explanation of measurement (see Michell,
1997a).

ELUDING THE REVOLUTION

The theory of conjoint measurement provides a conceptual basis
for testing the measurability thesis. However, Cliff (1992) alleges
that mainstream quantitative psychology has declined to exploit
this resource. For this reason, he calls it ‘the revolution that never
happened’ (p. 186). In their reply Narens and Luce (1993)
pointed to areas such as decision making and psychophysics. These
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areas of research represent the main empirical interests of these
authors and their associates. As a result, research based upon con-
joint measurement theory and other, more recent, developments
has been conducted in these fields, some of it encouraging (see,
for example, Luce, 1996b). However, the fact remains that most
research in mainstream quantitative psychology overlooks these
revolutionary developments. Those areas of quantitative psy-
chology having the greatest impact upon the lives of ordinary
people, viz., those relating to attempts to measure intellectual
abilities,21 personality traits, social attitudes and even most
research in psychophysics remain substantially unaffected.
In relation to psychological measurement as understood by most

psychologists and by most lay people, Cliff ’s assessment is correct.
This is not to say that all psychometricians have ignored these
developments. Ross (1964) had already, apparently independently
of Luce and Tukey, anticipated features of conjoint measurement
theory and had applied his ideas to issues relevant to psychological
testing. Keats (1967), in an article reviewing then recent develop-
ments in test theory, mentioned Ross and gave centre place to the
contributions of Luce and Tukey (1964), suggesting how they
could be applied to Rasch’s (1960) item response theory. Further-
more, Volume 1 of Foundations of Measurement (Krantz et al., 1971)
was reviewed by Ramsay (1975) in Psychometrika, the leading jour-
nal of mainstream quantitative psychology.22 Such initial, isolated
attention to these developments makes their subsequent absence
from mainstream quantitative psychology all the more striking.
Levy’s otherwise perspicacious commentary on test theory (1973)
lists Krantz et al. (1971) as a reference, but does not mention
conjoint measurement; Lumsden’s highly critical review of devel-
opments in test theory (1976) referred to no research using these
ideas; and works such as Goldstein and Wood (1989), and van der
Linden and Hambleton (1997), which review developments in
item response theory, make no mention of it (despite attempts by
Keats (1967), Brogden (1977), Perline et al. (1979) and Andrich

21 Blinkhorn (1997) gives a brief history of developments in test theory over the past fifty
years. No mention is made of conjoint measurement theory.

22 Ramsay (1991) also reviewed in the same journal volumes 2 and 3 when they were
published about twenty years later. Interestingly, in that review he recommended that
psychologists cease using the term measurement to describe their numerical practices.
This recommendation goes too far: psychologists’ use of the term measurement is really
hypothetical.
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(1988) to relate Rasch’s theory to conjoint measurement). One
recent publication does highlight the significance of conjoint
measurement for psychometrics: Cliff ’s own (1993).
Confirming Cliff ’s assessment is the fact that only in very

exceptional cases do these developments form part of the standard
psychology curriculum. All textbooks on test theory, from Lord
and Novick (1968) to the present not only ignore them, they con-
tain no discussion of the more general underlying issues, the
measurability thesis and the quantity objection. Aiken et al.(1990)
surveyed Ph.D. programmes in quantitative methodology in psy-
chology in North American universities. Although the tone was
generally critical and programmes in measurement were specifi-
cally targeted, no mention at all was made of work in measure-
ment theory. Meier’s recent paper on ‘revitalizing the measure-
ment curriculum’ in psychology (1993), gave no attention to these
developments or to the underlying conceptual issues. The measur-
ability thesis, the rock upon which quantitative psychology is built,
and conjoint measurement theory, psychology’s best chance of
checking the foundations upon which this rock stands, are system-
atically ignored within mainstream quantitative psychology. Cliff
(1992) proposed five reasons.
His first proposal is that the mathematics used in modern rep-

resentational theory is ‘foreign to most other quantitatively ori-
ented psychologists’ (p. 188). A similar observation was made by
Ramsay (1975). While perhaps true, this suggestion does not
account for neglect of this work. Scientists seriously researching
some issue do not let the fact that a body of knowledge is ‘foreign’
stand in their way, once its relevance is recognised. As illustrated
in the above exposition of conjoint measurement, the conceptual
basis is far from foreign and it is easily detached from the abstract
algebra and set theory in which it is typically cast. The fact that
very little attempt has been made to master even this conceptual
basis suggests that quantitative psychologists do not recognise its
significance for psychological measurement. That suggestion plus
the foreign appearance of the mathematics together might
explain this neglect.
Cliff ’s second proposal is that there has not been enough ‘in

the way of striking empirical examples of its utility’ (p. 188). In
their reply, Narens and Luce (1993) again mentioned decision
theory as providing such an example. However, applications are
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not ‘striking’ in vacuo. Context is crucial. Those already convinced
that psychological attributes are quantitative and that existing
procedures measure them, will fail to be impressed by demon-
strations of what, for them, would be the obvious. On the other
hand, any quantitative psychologists for whom the measurability
thesis raises empirical issues will not require ‘striking’ empirical
examples before wanting to apply revolutionary ideas.
Cliff ’s third proposal is what he calls the ‘error problem’: ‘There

has been relatively little in the way of answers to questions of
how to apply the abstract measurement principles to fallible or
incomplete data’ (p. 189). Narens and Luce (1993) concede that
this is a problem. However, what they do not bring out is that its
importance needs to be placed in the context of how the issue of
‘error’ is dealt with more generally in psychology. What psychol-
ogists call ‘error’ in their data has two sources. The first source
resides in the observer or the instruments of observation used.
Error deriving from this source is a familiar concept in quantitat-
ive science. When not thought to be systematic, it is taken as
random and is generally dealt with by averaging. The second
source resides in the causal processes underlying the phenomena
studied. In psychology it is generally impossible to study specific
processes in isolation from wider causal networks. Unwanted fac-
tors invariably contaminate observations. Of course, this is a prob-
lem in all science, but an especially difficult one in psychology
because of the complexity of psychological processes, our general
ignorance of them, and the insurmountable difficulties of con-
trolling extraneous factors. The conventional way of dealing with
this problem in psychology when hypothetical quantitative attri-
butes are under investigation is to conceptualise error as a random
process, described by the ‘Normal curve’ and added on to the
effects of the hypothetical processes of immediate interest.
Enough has been written in recent times to suggest that this con-
ventional ‘solution’ to the problem of error is not free of its own,
possibly debilitating, difficulties (e.g., Gigerenzer et al., 1989; Gig-
erenzer, 1993). However, when all is said and done, the interpret-
ation of data in science is an art (not a mechanical procedure)
and it is an art best practised under no illusions regarding its
fallible and speculative character. Seen in this wider context, the
problem of error for conjoint measurement theory is not dimin-
ished, but it is seen to be part of a parcel of problems general to
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psychology and, indeed, to a greater or lesser extent, to all science.
Those convinced of the importance of conjoint measurement
theory regard the problem of error as a challenge, not an obstacle.
Those interested in applying this theory have found their various
ways (e.g., Falmagne and Iverson, 1979; Michell, 1994b; Pieters,
1979; Rodewald, 1974; Stankov and Cregan, 1993; Tversky,
1967). To those not convinced of this theory’s importance, how-
ever, this problem could serve as an excuse for continuing to
ignore it.
Cliff ’s fourth proposal for explaining the failure of quantitative

psychologists to apply conjoint measurement theory is what he
refers to as a difference in ‘research styles’ between the math-
ematical psychologists developing this theory and both research
traditions (experimental and differential) characterising main-
stream quantitative psychology. Experimental psychologists prefer
designs amenable to analysis of variance, and differential psychol-
ogists prefer multivariate linear methods, such as correlation and
factor analysis. Cliff is correct about these different research styles
and the deep reluctance of the psychologists involved to depart
from their respective traditions. However, the interesting question
in this context is what this fact tells us about the attitudes of such
researchers to psychological measurement. In so far as the various
univariate and multivariate procedures used in these areas of psy-
chology are intended to inform us about psychological quantitative
attributes, they presume that such attributes are already known
to be quantitative, and so presume the very thing that conjoint
measurement theory might be used to test. That is, these research
styles are really theoretically loaded packages already tilted
against conjoint measurement theory. Those committed to these
styles have first accepted, perhaps without noticing it, the very
proposition conjoint measurement theory is designed to test.
Cliff ’s final proposal is that quantitative psychologists were ‘dis-

tracted by separate developments that took place at about the
same time’ (1992, p. 189). He refers, on the one hand, to ‘the
striking work of Sternberg’ and, on the other, to ‘Jöreskog’s . . .
solution, at a stroke, of a multitude of computational and, at least
indirectly, conceptual problems’ (p. 189). Now, whatever the
merits of this other work, it is not the case that it dealt with the
issue of showing how the conflict between the measurability thesis
and quantity objection could be resolved. To propose that these
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separate developments could have distracted quantitative psychol-
ogists from this issue for almost thirty years, had they recognised
its importance, is implausible to say the least. If a fundamental
issue is recognised as unresolved, it does not normally lie fallow
for that length of time if the means to investigate it are available.
Cliff ’s proposal also presumes, rather simplistically, that both
these developments and conjoint measurement theory could not
have been taken up at once.
Considered in the light of the fundamental empirical issues

raised by the measurability thesis, Cliff ’s proposed reasons alone
are not adequate to explain the failure of quantitative psychol-
ogists to exploit conjoint measurement theory. Only if the measur-
ability thesis is understood as already accepted, and accepted free
of qualms, are any of Cliff ’s reasons plausible. In turn, the wide-
spread acceptance of Stevens’ definition of measurement explains
how it is that the measurability thesis can be accepted within
quantitative psychology in the face of the otherwise obvious quan-
tity objection.

IN FINE

Failure to investigate the measurability thesis, by itself, of course,
is not an error. Such failure implies, however, that attempts to
measure psychological attributes do not yet stand as scientific
results. They remain hypotheses, the truth of which have not been
adequately tested. Instead of candidly admitting their ignorance,
quantitative psychologists promote their attributes as quantitative
and their procedures as instruments of measurement. They may
be right: the attributes may be quantitative and the procedures
may measure them. However, the point is that in the absence of
experimental tests known to be specifically sensitive to the hypoth-
esised additive structure of the attributes studied, it is not known
whether or not these attributes are quantitative and thus it is not
known whether or not existing procedures measure them. The
error committed, therefore, is that of accepting hypotheses prior
to possessing adequate evidence. This error has been further com-
pounded by another: an understanding of measurement which
hides the first error has become institutionalised. This, in turn,
has had the consequence that when a way of possibly correcting
the first error was discovered, it was largely ignored because its



In fine 217

significance could not be appreciated. Thus, a necessary compo-
nent of normal science, viz., science’s error-correcting mechanism,
has been subverted.
Does this tissue of errors matter? Of course, it matters to the

extent that scientists who overstate their findings, even unwit-
tingly, may bring science into disrepute. It matters as well to the
extent that those whose lives are affected by scientific claims have
a right to be assured that these claims are warranted by sufficient
evidence. But do these errors matter in the more fundamental,
scientific sense of possibly interfering with the progress of psy-
chology as a science?
Some quantitative psychologists with whom I have discussed

this question console themselves by pointing to the history of
quantitative physics. Physics became a successful quantitative
science before anyone had anything like the insights into the logic
of quantification reported in Chapter 3 and certainly well before
the theory of conjoint measurement was articulated. If this lack
did not in the end harm physics, the paradigm of quantitative
science, why should it harm psychology? Some think that psy-
chology’s progress thus far confirms the view that it is well on the
way to becoming a successful quantitative science, although that
is a matter of opinion. At least one wise mind has his doubts
(Meehl, 1991) and another thinks that psychologists cannot at
present do any better than order levels of their attributes (Cliff,
1996). Psychology might be on the way to becoming a successful
quantatitive science, but as a body of workable, quantitative theor-
ies and laws, it is so far short of the example set by physics that
no one yet has a clear idea of what a successful quantitative psy-
chology would look like. The history of science teaches us many
things, but I do not think that one of them is that we can expect
to make progress by ignoring pertinent matters.
If it does teach us one thing, it is that the acquisition of

scientific knowledge does not always travel in straight lines. The
route to scientific understanding is sometimes circuitous, even
chaotic. Only the reckless would attempt to predict the future of
psychology from the history of physics. The differences between
the circumstances of the two sciences are significant enough to
make such extrapolation tenuous in the extreme. First, physics
began its history in the fortunate position of being able to isolate
a range of attributes separately (the geometric attributes), the
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quantitative structure of which was directly evident. Indeed,
length provided the paradigm of continuous quantity for millennia
and the logic of quantification was developed with the example
of length uppermost. Psychology differs from physics in that no
hypothesised psychological attributes are obviously quantitative in
the manner of the geometric attributes.
Second, when the range of known physical quantities was

extended via the application of the experimentalmethod, physicists
again were fortunate in being able to isolate and control indepen-
dent variables in a way that is presently impossible in psychology.
Under certain conditions it is highly plausible to conclude that a
theoretical attribute is quantitative. For example, if it is found that
an observed continuous quantity (say, mass) varies, so far as we can
tell, continuously with a theoretical attribute (say, density), which
corresponds to a directly observable attribute (say, kind of
substance), while a third (say, volume) is held constant, then the
most economical explanation of this relationship is that the theor-
etical attribute (density) is likewise, a continuous quantity. Quanti-
tative effects typically require quantitative causes because the level
of complexity of the causally relevant attributemustmatch the level
of complexity of the attribute involved in the effects. This sort of
principle sustained the expansion of quantitative physics in a way
that it cannot yet do with psychology. Psychologists have not yet
devised ways of isolating their relevant theoretical attributes.
Behaviour is always a function of more than one attribute and these
cannot be controlled separately. This fact itself is further compli-
cated by the possibility of individual differences in causal processes
between subjects (they are distinct causal systems, after all) and by
the ubiquitous problem that error (in the sense of effects caused by
‘unwanted’ factors) masks structure in psychological data much
more than it does in physics. While quantitative effects require
quantitative causes, they do not require, a priori, that all of their
causal conditions must be quantitative. Because causal processes
can never be manipulated as cleanly in psychology as in physics, it
is never clear in psychology that all of the relevant causes must be
quantitative even when the effects studied are quantitative (e.g.,
reaction times or observed scores). Also, exclusively quantitative
theories can never be considered as the only possible candidates in
psychology because we have models of less complicated causal
systems (e.g., computer models of problem solving) in which
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quantitative effects can be produced by a confluence of quantitat-
ive and non-quantitative causes. Furthermore, the one distinctive
process that psychologists study, and the one that is causally rel-
evant in most psychological experiments, cognition, does not have
an obviously quantitative structure. Indeed, behaviour, in so far
as it is infused with cognition, has structural features which are
definitely non-quantitative (e.g., semantic and grammatical
structures). This fact makes exclusively quantitative theories
unlikely, a priori, to be adequate in giving causal accounts of behav-
iour. Of course, exclusively quantitative psychological theories can
be hypothesised and, to an extent, can be tested experimentally,
but without a clear idea of how the structure of the hypothesised
underlying attributes may be reflected in behavioural data, the
scientist does not have a clear idea of what to look for in order
to distinguish quantitative from non-quantitative causes. These
differences between psychology and quantitative physics are sig-
nificant and it is obtuse to ignore them.
The only reliable way forward in science is by subjecting all

empirical hypotheses to empirical test, and not by protecting
hypotheses in which we have a vested interest. This is the normal
way for science to proceed. It cannot ensure success, because
nothing can. And the possibility of quantitative psychology achiev-
ing success in some way via its present uncritical route cannot be
ruled out. However, a science that ignores a body of theory which
is relevant to the testing of some of its hypotheses is denying itself
an opportunity. Science is not so easy that opportunities can sen-
sibly be passed up. Most scientists recognise this fact and the situ-
ation is only different in psychology because a body of theory is
not recognised for the opportunity it is.
If, despite this error and neglect, quantitative psychology has a

claim to be seen as a normal science, it is in large part because of
the trajectory of critical thought extending from Helmholtz and
von Kries to Suppes and Luce. This trajectory delivered a revol-
ution in ideas about measurement. If it can be accepted that some
of psychology’s cherished attributes, such as the intellectual abili-
ties, the personality traits, the social attitudes, might not be quan-
titative, indeed, if it is even possible that some of the psychological
attributes listed at the beginning of this book might not in fact be
quantitative, can quantitative psychology, as a science, afford not
to grasp this opportunity?
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abilities hypothetical properties of, states of, or processes within a
person which are supposed to sustain cognition and cause perform-
ance on intellectual tasks, for example, verbal ability or spatial
ability.

additivity a relation between levels of a quantitative attribute. For any
two distinct levels of a quantitative attribute, a third always exists
such that the greater of the two is the sum of the third and the less.
These three levels are related additively. Additive relations must be
commutative and associative.

Archimedean condition a condition satisfied by a quantitative attribute
if and only if the magnitude of any level relative to each other is
finite.

associativity a property possessed by a form of combination if and only
if the combination of one term with the combination of a second
and third is equivalent to the combination of the third with the
combination of the first and second. The relation of additivity
between magnitudes is associative.

asymmetry a property of binary (i.e., two-term) relations. A relation is
asymmetric if and only if whenever it holds between one thing and
a second, it does not hold between the second and the first. For
example, the relation of being the mother of is asymmetric because if
one person is the mother of a second, the second is never the mother
of the first.

attribute a range of properties (e.g., lengths or colours) or a range of
relations (e.g., velocities or kinships) that are mutually exclusive in
the sense that (i) if properties, then nothing can possess more than
one property within the range at any one time, or (ii) if relations,
then no ordered class of entities (of the appropriate number) can
stand in more than one relation within the range at any one time.

categories sometimes called the ‘categories of existence’. They are fea-
tures common to all situations (and so to those that might be stud-
ied scientifically), for example, quantity, generality and spatio-
temporal location. That is, every situation involves some number of
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things of some general kind, located somewhere at some time. The logic of
science requires investigation of the categories.

causality a relation between events: an event of kind X, occurring in a
context (or ‘causal field’) of kind C, causes an event of kind Y if and
only if in the context of C, X is necessary and sufficient for Y. If to
be is to have effects (that is, to make some sort of difference), then
causality is one of the categories.

commutativity a property possessed by a form of combination if and
only if the combination of every pair of terms is independent of
order. The relation of additivity between magnitudes is commuta-
tive because if one magnitude is the sum of another two in one
order, it remains their sum in the other.

concatenation operation a humanly performable operation which,
when carried out upon objects manifesting different levels of a quan-
titative attribute, directly displays the additive structure of the attri-
bute, at least for a limited range. For example, the operation of
combining rigid, straight rods lengthwise linearly.

conjoint measurement a way of identifying the additive structure of
attributes indirectly, via trade-offs in the way that two attributes
relate to a third. For example, in the way that differences in density
can be traded off against differences in volume to keep mass con-
stant, the otherwise hidden additive structure within the attribute
of density is revealed.

connexity a property of some binary (that is, two-term) relations. A
relation is connected if and only if it holds between any two things
which stand in that relation to other things. For example, the
relation of being not older than is connected.

continuous quantity a quantitative attribute that contains no gaps in
its order. It is not just that between any two distinct magnitudes
there is a third, less than the greater and greater than the less, but
that for any subset of the magnitudes containing all those less than
some other specific magnitude, there is a magnitude no less than
any in the set and no greater than any not in the set. Technically
put, its order is not just dense, but Dedekind complete.

extensive quantity a quantitative attribute, the additive structure of
which is manifest via a concatenation operation for some range of
its magnitudes, for example, length.

homomorphism the same as an isomorphism except that one structure
has more objects in it than the second, to which it is otherwise
similar in form. As a result objects in the first are matched, many
to one, with those in the second. If measurement is understood as
the numerical representation of objects, then because more than
one object can be assigned the same number, the representation is
a homomorphism, rather than an isomorphism.
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intensive quantity a quantitative attribute, the additive structure of
which is not open to direct test via human sensory/motor capacities.
For example, we are only able to show that attributes like tempera-
ture and density are quantitative indirectly (e.g., by conjoint
measurement).

isomorphism two distinct relational structures are isomorphic if they
are identical in form. That is, the objects in the two structures can
be matched, one to one, in such a way that corresponding to any
situation in one structure, involving some of its objects, there is an
analogous situation in the second involving the matching objects.
For example, there is an isomorphism between the Titanic as she
was, say, in March 1912, and an exact scale replica constructed now.

magnitude a specific level of a quantitative attribute (or quantity). For
example, each specific length that any object might have is a magni-
tude of the attribute, length.

measure an estimate of the ratio of a magnitude of a quantity to a unit
of the same quantity.

measurement the discovery or estimation of the ratio of a magnitude of
a quantity to a unit of the same quantity.

metaphysics the branch of philosophy concerned with the study of the
most general features of existence (the categories of being).

number the ratio of a magnitude of a quantity to another of the same
attribute. If the quantity is discrete then the number is rational; if
the second magnitude is an aliquot part of the first, then the
number is natural and if either is a difference, then the number is
integral. If the quantity is continuous, then the number is real.

numeral a conventional sign for a number. The Arabic numerals, 1, 2,
3, . . ., are those most commonly used, although Roman numerals,
I, II, III, . . ., have a ceremonial function. Signs should never be
confused with what they signify.

practicalism the view that the success of a science depends upon the
extent to which it has practical applications.

property an attribute that something has intrinsically, that is, logically
independently of anything else. For example, if a person is male,
then his being male logically implicates no other object. Thus, being
male is a property. However, if a person is a parent, then there must
be something else (viz., a child). Thus, being a parent is not a prop-
erty.

psychological attribute an attribute of a person (or, more generally, of
an organism) that is logically dependent upon cognition.

psychophysics the study of the relationship between physical attributes
and the sensations or judgments of them.

Pythagoreanism the thesis that all attributes are quantitative.
quantification the process of (i) showing that an attribute is quantitat-

ive and (ii) devising procedures to measure it.
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quantity an attribute possessing ordinal and additive structure. For
example, length is a quantity because lengths are ordered according
to their magnitude and each specific length is constituted additively
of other specific lengths.

ratio the magnitude of one level of a quantitative attribute relative to
another of the same attribute. If the quantitative attribute is con-
tinuous, then the ratios are real numbers and they are always rela-
tive to a specific relation of additivity.

relation an attribute that is not intrinsic to something, that is, not logi-
cally independent of other things. It is the way in which something
is vis-à-vis one or more other things. For example, being a parent of is
a relation, for it is how one person is vis-à-vis another and no one
can be a parent without there being another person, a child of the
first.

scientism the view that a method successfully employed in one or more
sciences must apply to others, for example, the view that because
measurement is successfully employed in the physical sciences it
must apply to others, such as psychology.

sensations the immediate objects of sensory perception according to the
school of thought that locates these objects in the mind or brain of
the perceiving person.

situation a state of affairs. It is always a matter of something’s having
a property or standing in relation to one or more other things.

symmetry a property of some binary (that is, two-term) relations. A
relation is symmetric if and only if whenever one thing stands in
that relation to a second thing, the second thing also stands in that
same relation to the first thing. For example, the relation of being a
sibling of is symmetric.

transitivity a key property of ordinal relations. A binary (that is,
two-term) relation is transitive if and only if whenever one thing
stands in that relation to a second thing, and the second to a third
thing, then the first also stands in that relation to the third. For
example, the relation of being heavier than is transitive.

unit a specific magnitude of a quantity relative to which measurements
are made.



References

Adams, E. W. and R. F. Fagot, 1959, A model of riskless choice, Behavioral
Science, 4, 1–10

1975, On the theory of biased bisection operations and their inverses,
Journal of Mathematical Psychology, 12, 35–52

Adams, H. F., 1931, Measurement in psychology, Journal of Applied Psy-
chology, 15, 545–54

Adler, H. E., 1980, Vicissitudes of Fechnerian psychophysics in America,
in R. W. Reiber and K. Salzinger, (eds.), Psychology: Theoretical–histori-
cal Perspectives, New York: Academic Press, pp. 11–23

Aiken, L. S., S. G. West, L. Sechrest, and R. R. Reno, 1990, Graduate
training in statistics, methodology, and measurement in psychology,
American Psychologist, 45, 721–34

Anderson, J., 1962, Studies in Empirical Philosophy, Sydney: Angus and
Robertson

Andrich, D., 1988, Rasch Models for Measurement. Newbury Park, CA.: Sage
Armstrong, D. M., 1968, A Materialist Theory of the Mind, London: Rout-

ledge and Kegan Paul
1978, Universals and Scientific Realism, Cambridge University Press
1989, Universals: An Opinionated Introduction, Boulder: Westview Press
1997, A World of States of Affairs, Cambridge University Press

Bairati, E., 1991, Piero della Francesca, New York: Crescent Books
Baker, A. J., 1986, Australian Realism: The Systematic Philosophy of John And-

erson, Cambridge University Press
Baldwin, J. M., 1902, Dictionary of Philosophy and Psychology, Vol. 2, London:

Macmillan
Bartlett, F. C., 1958, Thinking: An Experimental and Social Study, London:

Unwin
1965, Remembering Dr Myers, Bulletin of the British Psychological Society,
18, 1–10

Bartlett, R. J., 1940a, In defence of the measurability of sensation inten-
sity, Advancement of Science, 1, 343–4

1940b, Measurement in psychology, Advancement of Science, 1, 422–41
1952, Obituary: S. J. F. Philpott, Quarterly Bulletin of the British Psycho-

logical Society, 3, 114

224



References 225

Beckwith, T. G. and N. L. Buck, 1961, Mechanical Measurements, Reading,
MA: Addison-Wesley

Benacerraf, P. and H. Putnam, 1983, Philosophy of Mathematics: Selected
Readings, 2nd edn, Cambridge University Press

Benjamin, L. T., 1977, The psychology round table: revolution of 1936,
American Psychologist, 32, 542–9

Bergson, H., [1889] 1913, Time and Free Will, trans. by F. L. Pogson,
London: George Allen and Co

Berkeley, G., [1721] 1951, De Motu, in A. A. Luce and T. E. Jessop,
(eds.), The Works of George Berkeley Bishop of Cloyne, Vol. 4, London:
Thomas Nelson, pp. 31–52

Beveridge, E., 1924, Fergusson’s Scottish Proverbs, Edinburgh: Blackwood
Bigelow, J., 1988, The Reality of Numbers: A Physicalist’s Philosophy of Math-

ematics, Oxford: Clarendon Press
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Wissenschaften zu Leipzig, Mathematisch–Physische Klasse, 53, 1–46;
trans. in Michell and Ernst, 1996, 1997

Holt, E. B., 1904, The classification of psycho–physic methods, Psychologi-
cal Review, 11, 343–69

1915, The Freudian Wish and its Place in Ethics, London: T. Fisher Unwin
Ltd

Hornstein, G. A., 1988, Quantifying psychological phenomena: debates,
dilemmas, and implications, in J. G. Morawski, (ed.), The Rise of
Experimentation in American Psychology, New Haven: Yale University
Press

Huntington, E. V., 1902, A complete set of postulates for the theory of
absolute continuous magnitude, Transactions of the American Mathemat-
ical Society, 3, 264–84

Hutcheson, F., 1725, An Inquiry into the Original of our Ideas of Beauty and
Virtue, London: Darby

James, W., 1890, Principles of Psychology, New York: Holt, Rinehart and
Winston

Jastrow, J., 1887, A critique of psycho-physic methods, American Journal
of Psychology, 1, 271–309

Jerrard, H. G. and D. B. McNeill, 1992, Dictionary of Scientific Units,
London: Chapman and Hall

Jevons, W. S., [1873] 1958, The Principles of Science, New York: Dover
Johnson, H. M., 1936, Pseudo-mathematics in the social sciences, Amer-

ican Journal of Psychology, 48, 342–51
Kant, I., [1764] 1970, Inquiry concerning the distinctness of the prin-

ciples of natural theology and morality, in D. Walford, (ed.), The
Cambridge Edition of the Works of Immanuel Kant: Theoretical Philosophy,
1755–1770, Cambridge University Press, pp. 243–86

[1781] 1978, Critique of Pure Reason, trans. by Norman Kemp Smith,
London: Macmillan

[1786] 1970, Metaphysical Foundations of Natural Science, trans. J. Elling-
ton, Indianapolis: Bobbs–Merrill

Kaplan, R. M. and D. P. Saccuzzo, 1993, Psychological Testing: Principles,
Applications, and Issues, Pacific Grove, CA: Brooks/Cole

Keats, J. A., 1967, Test theory, in P. R. Farnsworth, O. McNemar and
Q. McNemar, (eds.), Annual Review of Psychology, Vol. 18, Palo Alto,
CA: Annual Reviews Inc, pp. 217–38

Kelley, T. L., 1923, The principles and technique of mental measure-
ment, American Journal of Psychology, 34, 408–32

1929, Scientific Method, Ohio State University Press



References 233

Kelley, T. L. and E. Shen, 1929, The statistical treatment of certain
typical problems, in C. Murchison, (ed.), The Foundations of Experimen-
tal Psychology, Worcester, MA: Clark University Press, pp. 855–83

Kerlinger, F. N., 1979, Behavioural Research: A Conceptual Approach, New
York: Holt, Rinehart and Winston

Klein, J., 1968, Greek Mathematical Thought and the Origins of Algebra, Cam-
bridge, MA: MIT Press

Kneale, W. and M. Kneale, 1962, The Development of Logic, Oxford: Clar-
endon Press
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