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Preface 

The major goal of this book is to present the implementation of some damage 
models with finite elements. The damage models are based on the principles 
of continuum damage mechanics and the effective stress concept. Several 
books have appeared recently on damage mechanics but are mostly theoretical 
in nature. Alternatively, this book provides a complete finite element program 
that includes the effects of damage. 

The book consists of two parts. Part I includes two chapters mainly review
ing topics from finite element analysis and continuum damage mechanics. The 
reader is cautioned that the material contained in this part is introductory -
other references must be consulted for the theoretical aspects of these topics. 
For a complete theoretical treatment of the subject, the reader is referred to 
the book Advances in Damage Mechanics: Metals and Metal Matrix 
Composites by Voyiadjis and Kattan, published in 1999. In Part II the finite 
element program DNA is introduced in three chapters. DNA stands for "Da
mage Nonlinear Analysis". The program can be used for the analysis of elasto
plastic material behavior including the effects of damage within the frame
work of damage mechanics. Two versions of DNA are presented - one for 
small strain analysis and one for finite strain analysis. The program makes 
extensive calls to a library of tensor operations developed by the authors. 
The tensor library is extensively outlined in the last chapter of the book. 

The book includes a CD-ROM containing both the executable versions of 
DNA and Fortran source code. Both the small strain and large strain versions 
are included. The compiled versions will run on personal computers with 
Windows 98 or 2000 (including Windows NT). The program is designed to 
run in DOS mode. However, a special Windows program (or interface) is also 
available on the CD-ROM that will help run DNA through Windows. 

The authors wish to acknowledge the help of Mehrdad Foroozesh, Anthony 
Venson, and Taehyo Park for their significant contributions to DNA. The 
authors wish also to acknowledge the help of Nigel K. Clarke, Rashed K. Abu 
AI-Rub, and Robert J. Dorgan for typing and editing parts of the book. The 
authors also wish to thank their families for their patience and support 
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throughout the writing of this book. Also, the support of Springer-Verlag in 
the publication of this book is greatly appreciated. 

June 2001 Peter 1. Kattan 
George Z. Voyiadjis 
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1 Damage Mechanics 

Kachanov (1958) pioneered the subject of continuum damage mechanics by 
introducing the concept of effective stress. This concept is based on consider
ing a fictitious undamaged configuration of a body and comparing it with the 
actual damaged configuration. He originally formulated his theory using sim
ple uniaxial tension. Following Kachanov's work researchers in different fields 
applied continuum damage mechanics to their areas in fields like brittle ma
terials (Krajcinovic and Foneska, 1981; Krajcinovic, 1988) and ductile materi
als (Lemaitre, 1984, 1985, 1986; Kachanov, 1986; Murakami, 1988) . In the 
1990's applications of continuum damage mechanics to plasticity and compo
site materials have appeared (Voyiadjis and Kattan, 1990, 1993, 1999; Kattan 
and Voyiadjis, 1990, 1993a, 1993b, 1996; Voyiadjis and Venson, 1995; Voyiadjis 
and Thiagarajan, 1996; Voyiadjis and Park, 1997a, 1997b). 

In the first part of this chapter (Sections 1.1-1.3) the principles of conti
nuum damage mechanics are applied to the problem of uniaxial tension with 
damage in the form of both voids and cracks. The effective stress concept is 
used as originally proposed by Kachanov. Isotropic damage is assumed 
throughout Section 1.2 of the formulation. A consistent mathematical deriva
tion is presented for the decomposition of the damage tensor into void da
mage and crack damage components. The derivation is performed using two 
different methods. It is shown that both methods give exactly the same result. 

In Section 1.3 generalization of the derivation is made for the general case 
of anisotropic damage in three dimensions. It is shown that the components of 
the tensorial crack and void damage variables are not independent of each 
other. This seems to prove that a coupling exists between these two types of 
damage. This may be obvious from the physics of the problem but a rigorous 
mathematical proof is provided. Furthermore, the exact relations showing the 
dependence between the components of the crack and void damage variables 
are derived. 

P. I. Kattan et al., Damage Mechanics with Finite Elements
© Springer-Verlag Berlin Heidelberg 2002



2 1 Damage Mechanics 

1.1 
Review of Continuum Damage Mechanics 

The principles of continuum damage mechanics are first reviewed for the case 
of uniaxial tension. In this case, isotropic damage is assumed throughout. 
Consider a cylindrical bar subjected to a uniaxial tensile force T as shown in 
Figure l.Ia. The cross-sectional area of the bar is A and it is assumed that 
both voids and cracks appear as damage in the bar. The uniaxial stress (5 in 
the bar is found easily from the formula T = (5A. In order to use the principles 
of continuum damage mechanics, we consider a fictitious undamaged config
uration of the bar as shown in Figure l.Ib. In this configuration all types of 
damage, including both voids and cracks, are removed from the bar. The ef
fective cross-sectional area of the bar in this configuration is denoted by A 
and the effective uniaxial stress is if. The bars in both the damaged configura
tion and the effective undamaged configuration are subjected to the same ten
sile force T. Therefore, considering the effective undamaged configuration, we 
have the formula T = erA. Equating the two expression of T obtained from 
both configurations, one obtains the following expression for the effective uni
axial stress if: 

A 
(5 = =(5 

A 
(1.1) 

Next, one uses the definition of the damage variable ¢ as originally pro
posed by Kachanov [1]: 

A-A 
¢=

A 

T 

T 

Damaged 
Configuration 

(a) 

A 

Remove Both 
Voids and Cracks 

T 

A 

Effective Undamaged 
Configuration 

(b) 

(l.2) 

Fig. 1.1. A Cylindrical Bar Subjected to Uniaxial Tension: Both Voids and Cracks Are Removed 
Simultaneously. 



1.2 Decomposition of the Damage Variable in One Dimension 3 

Thus the damage variable is defined as the ratio of the total area of voids 
and cracks to the total area. Its value ranges from zero (for the case of an 
undamaged specimen) to one (for the case of complete rupture). Substituting 
for A/A from Equation (1.2) into Equation (1.1), one obtains the following 
expression for the effective uniaxial stress: 

a 
(f=--

1-¢ 
(1.3) 

Equation (1.3) above was originally derived by Kachanov (1958). It is clear 
from Equation (1.3) that the case of complete rupture (¢ = 1) is unattainable 
because the damage variable ¢ is not allowed to take the value 1 in the de
nominator. 

1.2 
Decomposition of the Damage Variable in One Dimension 

The principles of continuum damage mechanics are now applied to the pro
blem of decomposition of the damage tensor in a damaged uniaxial bar sub
jected to a tensile force T. Isotropic damage is assumed throughout the formu
lation. It is also assumed that the damaged state is defined by voids and cracks 
only. Therefore, the cross-sectional area A of the damaged bar can be decom
posed as follows: 

(1.4) 

where A v is the total area of voids in the cross-section and A C is the total area 
of cracks (measured lengthwise) in the cross-section l . In addition to the total 
damage variable ¢, the two damage variables ¢v and ¢c are introduced to re
present the damage due to voids and cracks, respectively. Our goal is to find a 
representation for the total damage variable ¢ in terms of ¢v and ¢c. In order 
to do this, we need to theoretically separate the damage due to voids and 
cracks when constructing the effective undamaged configuration. This separa
tion can be performed in two different methods. We can start by removing the 
voids only, then we remove the cracks separately, or we can start by removing 
the cracks only, then we can remove the voids separately. The detailed formu
lation based on each of these two methods is discussed below and is shown 
schematically in Figures 1.2 and 1.3. It is emphasized that this separation of 
voids and cracks is theoretical in the sense that it is an acceptable method of 
mathematical analysis and has no physical basis. In fact, the physics of the 
problem indicates a coupling between the two damage mechanisms which is 
apparent in the next Section for the general three-dimensional case. 

1 The superscripts "v" and "c" denote voids and cracks, respectively. 
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Fig. 1.2. A Cylindrical Bar Subjected to Uniaxial Tension: Voids Are Removed First Then Fol
lowed by Cracks. 

In the first method, we first remove the voids only from the damaged con
figuration shown in Figure 1.2a. In this way we obtain the damaged configura
tion shown in Figure 1.2b which contains damage due to cracks only. This is 
termed the undamaged configuration with respect to voids. The cross-sec
tional area of the bar in this configuration is clearly A + A C while the uniaxial 
stress is denoted by aVo The total tensile force T in this configuration is then 
given by T = aV(A + N). This expression is equated to the total tensile force 
T = o-A in the damaged configuration from which we obtain: 

-v A 
a =-_--a 

A+N 
(l.5) 

The damage variable ¢v due to voids is defined by the ratio AV / A. Substitut
ing for A V from Equation (1.4), one obtains: 

(1.6) 

Substituting Equation (1.6) into Equation (1.5), one obtains the following 
relation between aV and a: 

aV = __ a_ 
1 - ¢v 

(l.7) 

The similarity between Equations (1.7) and (1.3) is very clear. The next step 
involves removing the cracks from the intermediate configuration in order to 
obtain the effective undamaged configuration shown in Figure 1.2c. Equating 
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the previous expression for the tensile force T = crV(A + N) with the tensile 
force T = crA in the effective undamaged configuration, one obtains: 

(1.8) 

The damage variable (1/ due to cracks is now defined by the ratio: 

(1.9) 

Substituting Equation (1.9) into Equation (1.8) and simplifying, one obtains 
the following relation between cr and crV : 

_ crV 

Cf=---
1 _cpc (1.10) 

Finally, we substitute Equation (1.7) into Equation (LlO) to obtain the 
sought relationship between Cf and cr: 

(1.11) 

The above relation represents a formula for the effective stress in terms of 
the separate damage variables due to voids and cracks. 

The same result can be obtained by reversing the order of removal of voids 
and cracks. In the second method, one first removes the cracks only from the 
damaged configuration shown in Figure 1.3a. In this way we obtain the da
maged configuration shown in Figure 1.3b which contains damage due to 
voids only. This is termed the undamaged configuration with respect to 
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Fig. 1.3. A Cylindrical Bar Subjected to Uniaxial Tension: Cracks Are Removed First Followed 
by Voids. 



6 1 Damage Mechanics 

cracks. The cross-sectional area of the bar in this configuration is clearly A + 
A v while the uniaxial stress is denoted by (jc. The total tensile force T in this 
configuration is then given by T = (jc(A + AV). This expression is equated to 
the total tensile force T = aA in the damaged configuration from which we 
obtain: 

-c A 
a =-_--a 

A +Av 
(1.12) 

The damage variable ¢c due to cracks is defined by the ratio N / A. Substi
tuting for N from Equation (1.4), one obtains: 

A +Av ¢c=I __ _ 
A 

(1.13) 

Substituting Equation (1.13) into Equation (1.12), one obtains the following 
relation between (jC and a: 

(jC=_a_ 
1 _¢c 

(1.14) 

The similarity between Equations (1.14), (1.7) and (l.3) is very clear. The 
next step involves removing the voids from the intermediate configuration in 
order to obtain the effective undamaged configuration shown in Figure 1.3c. 
Equating the previous expression for the tensile force T = (jC(A + AV) with the 
tensile force T = (jA in the effective undamaged configuration, one obtains: 

(1.15) 

The damage variable ¢v due to voids is now defined by the ratio: 

A V 

¢v = A +N (1.16) 

Substituting Equation (1.16) into Equation (1.15) and simplifying, one ob
tains the following relation between (j and (jC: 

_ (jC 
a=--

1- ¢v 
(1.17) 

Finally, we substitute Equation (1.14) into Equation (1.17) to obtain the 
sought relationship between a and (j: 

(1.18) 

It is clear that the above relation between the two stresses in the damaged 
and the effective configurations is exactly the same relation obtained using the 
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first method, i.e. Equation (1.11). Thus both methods of constructing the ef
fective undamaged configuration give the same relation between the stresses 
in the respective configurations. In this way, the decomposition of the damage 
tensor has been completed for the one-dimensional case. In order to derive 
the final result, we compare either Equation (1.11) or Equation (1.18) with 
the total damage appearing in Equation (1.3). Equating the denominators on 
the right-hand-side of these Equations, we can easily obtain the formula: 

(1.19) 

Equation (1.19) represents the general form for the decomposition of the 
damage variable into its two respective components, (PV and (pc. The result 
can be further simplified by expanding Equation (1.19) and simplifying to 
obtain: 

(1.20) 

Equation (1.20) gives a very clear picture of how the total damage variable 
¢ can be decomposed into a damage variable ¢v due to voids and a damage 
variable ¢c due to cracks. It is also clear that Equation (1.20) satisfies the 
constraint 0 :s ¢ :s 1 whenever each of the other two damage variables satis
fies it. It is also clear that when damage in the material is produced by voids 
only (¢C = 0), then ¢ = ¢v. Alternatively, ¢ = ¢c when damage in the material 
is produced by cracks only (¢V = 0). 

1.3 
General Decomposition of the Damage Variable in Three Dimensions 

For the general case of three dimensional deformation and damage, the effec
tive stress tensor Ciij is given by the following transformation (Voyiadjis and 
Kattan, 1999): 

(1.21) 
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where the fourth order tensor Mijkl is given by the following 6 x 6 matrix re
presentation (Voyiadjis and Kattan, 1999): 

21/12z1/133 - 2<P~3 0 o 
o 21/1111/l33 - 2<Pi3 o 

1 0 0 
[M] = 2'<7 A. A. A. ,I, A. A. A. ,f, 

v '1-'13'1-'23 + '1-'12'1' 33 '1-'13'1-'23 + '1-'12'1' 33 

<P12 <P23 + <P131/122 0 

o <P12<P13 + <P231/111 <P12<P13 + <P231/111 

2<P13<P23 + 2<p121/133 

2<P13<P23 + 2<p121/133 
o 

1/1221/133 + 1/I1l1/l33 - <P~3 - <pi3 

<P12<P13 + <P231/111 

<P12<P23 + <P131/122 

o 
2<p12<P13 + 2<P231/111 

2<P12<P13 + 2<P231/111 

<P12<P23 + <P131/122 
<P13<P23 + <P121/133 

1/I1l1/l33 + 1/I1l1/l22 - <pi3 - <pi2 

where V is given by: 

2<p12<P23 + 2<P131/122 
o 

2<p12<P23 + 2<P131/122 

<P12<P13 + <P231/111 

1/1221/133 + 1/I1l1/l22 - <P~3 - <pi3 

<P13<P23 + <P121/133 

V = 1/I1l1/l221/133 - <P~31/111 - <Pi31/122 - <Pi21/133 - 2<p12<P23<P13 

and 1/Iij = 8ij - <Pij (8 ij is the Kronecker delta). 

(1.22) 

(1.23) 

Repeating the same procedure that was employed in the one-dimensional 
case, we can derive the general decomposition for the case of three dimen
sions. Removing the voids first, then removing the cracks and applying Equa
tion (1.21), we obtain the following two Equations: 

(1.24) 

(1.25) 

Equations (1.24) and (1.25) correspond to Equations (1.7) and (LlO) of the 
one-dimensional case. Substituting Equation (1.24) into Equation (1.25), we 
obtain: 

- Me M V 
(Jij = ijmn mnkl(Jkl (1.26) 
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Comparing Equation (1.26) with Equation (1.21), we obtain the desired 
general deomposition: 

(1.27) 

Alternatively, removing the cracks first, then removing the voids and apply
ing Equation (1.21), we obtain the following two Equations: 

(1.28) 

(1.29) 

Equations (1.28) and (1.29) correspond to Equations (1.14) and (1.17) of the 
one-dimensional case. Substituting Equation (1.28) into Equation (1.29), we 
obtain: 

- M V M C (Jij = ijmn mnkl(Jkl (1.30) 

Comparing Equation (1.30) with Equation (1.21), we again obtain the de
sired general decomposition: 

(1.31) 

It is emphasized that Equations (1.27) and (1.31) are equivalent, i.e. both are 
valid representations of the decomposition of the damage effect tensor Mijkl. 
By carrying out the tensorial multiplications explicitly using Equation (1.22), 
one obtains exactly identical results. 

Using the 6x6 matrix representation of Equation (1.22), it is clear that 
Equations (1.27) and (1.31) reduce to the following form: 

(1.32) 

where both [Mt and [M]C can be represented using the 6x6 matrix of Equa
tion (1.22) by replacing <Pij with <pij and <pij> respectively. The same thing holds 
for Vrij' 

The matrix multiplications in Equation (1.32) are performed using the com
puter algebra program MAPLE. Performing the first multiplication [M]C[Mt 
and equating the result with Equation (1.22), we obtain 36 Equations between 
the components of the damage variables <Pij, <Pij, and <Pij. We also obtain an
other 36 Equations (for a total of 72 Equations) when we perform the second 
multiplication [Mt [Mr. It is noted that many of these Equations are identical 
or can be shown to be identical. We have been able to reduce this huge set of 
Equations to 18 independent Equations. Furthermore, these 18 Equations have 
been classified into two categories. The first category includes the following 
nine Equations which represent the general decomposition of the damage ten-
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sor components ¢ij into the damage tensor components ¢ij due to cracks and 
the damage tensor components ¢ij due to voids. 

1 2) 1 (e e e' v v V) -v (o/do/22 - ¢12 = Y'eY'v 0/11 0/22 - ¢12)(0/110/22 - ¢12 (1.33a) 

(1.33b) 

(1.33c) 

(1.33d) 

(1.33e) 

(1.33f) 

(1.33g) 

(1.33h) 

(1.33i) 

where o/ij = oij - ¢ij and o/ij = Oij - ¢ij. 
It is clear from the above set of Equations that the decomposition is not 

explicit. A set of simultaneous Equations needs to be solved for the general 
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three-dimensional decomposition. The second category of Equations includes 
the remaining nine Equations as follows: 

(¢f3¢~3 + ¢~21jJ~3)(¢~3¢~3 + ¢~21jJ~3) = 0 (1.34a) 

(¢f2¢~3 + ¢~31jJ~2)(¢~2¢~3 + ¢~31jJ~2) = 0 (1.34b) 

(¢f2¢~3 + ¢~31jJfl)(¢~2¢~3 + ¢~31jJ~1) = 0 (1.34c) 

(¢f2¢~3 + ¢~31jJfl)(¢~3¢~3 + ¢~21jJ~3) = 0 (1.34d) 

(¢f2¢~3 + ¢~31jJ~2)(¢~3¢~3 + ¢~21jJ~3) = 0 (1.34e) 

(¢f3¢~3 + ¢~21jJ~3)(¢~2¢~3 + ¢~31jJ~2) = 0 (1.34f) 

(¢f2¢~3 + ¢~31jJ~2)(¢~2¢~3 + ¢~31jJ~1) = 0 (1.34g) 

(¢f2¢~3 + ¢~31jJfl)(¢~2¢~3 + ¢~31jJ~2) = 0 (1.34h) 

(¢f3¢~3 + ¢~21jJ~3)(¢~2¢~3 + ¢~31jJ~1) = 0 (1.34i) 

It is clear that the above Equations do not contain any components of the 
total damage tensor ¢ij' This set of Equations relate only the components of 
the two damage tensors ¢ij and ¢ij. It is concluded that the above set of nine 
Equations represent the exact coupling between the two damage mechanisms 
of voids and cracks. Although this coupling may be obvious based on the 
physics of the problem, a rigorous mathematical proof has been given for it. 
Furthermore, the coupling Equations (1.34) have not appeared before in the 
literature. 

Finally it is noted that for the special case of one-dimensional damage, 
Equations (1.33) reduce to the simple decomposition shown in Equations 
(1.19) and (1.20) while the coupling Equations (1.34) reduce to zero. 

1.4 
Damage of Fiber-Reinforced Composite Materials with Micromechanical 
Characterization 

Fiber-reinforced composite materials play an important role in the industry 
today through the design and manufacture of advanced materials capable of 
attaining higher stiffness/density and strength/density ratios. Of particular 
importance is the problem of damage initiation and evolution in fiber-rein
forced metal matrix composite plates. Although the literature is rich in new 
developments in the composite materials technology, it lacks tremendously a 
consistent analysis of damage mechanisms in composite materials. 
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In the analysis of composite materials, one can follow a continuum ap
proach or a micromechanical approach. In the continuum approach, the com
posite material is treated as an orthotropic or transversely isotropic medium. 
Then the classical Equations of orthotropic elasticity are used in the analysis 
(Talreja, 1985, 1986; Christensen, 1988, 1990). No distinction is made between 
the matrix and fibers in this approach and therefore, this approach lacks the 
capability to account for local effects and especially the effects of the matrix
fiber interaction. There were some attempts to include damage using the con
tinuum approach (Talreja, 1985; Shen et al., 1985; Lene, 1986). However, these 
attempts lack the distinction between matrix and fiber damage or damage due 
to the matrix-fiber interaction. 

During the past two decades, researchers have been using micromechanical 
methods in the analysis of composite materials. The advantages of using such 
methods are that local effects can be accounted for and different damage me
chanisms can be identified. Hill (1965, 1972) introduced volume averages of 
stress and strain increments in the matrix and fibers and introduced certain 
concentration factors to relate these volume averages to the overall uniform 
increments. Dvorak and Bahei-EI-Din (1979, 1982, 1987) used Hill's method 
to analyze the elasto-plastic behavior of fiber-reinforced composite materials. 
They considered elastic fibers embedded in an elasto-plastic matrix and iden
tified two distinct deformation modes; matrix dominated and fiber-domi
nated. They concluded that the fiber-dominated mode is general in the sense 
that it can be treated as a general case of plastic deformation of a heteroge
neous medium. 

A thermomechanical constitutive theory has been recently proposed by Al
len and Harris (1987a, 1987b) to analyze distributed damage in elastic compo
sites. In particular, the problem of matrix cracking has been extensively stu
died in the literature (Dvorak, et al., 1985; Dvorak and Laws, 1987; Laws and 
Dvorak, 1987; Allen, et al., 1988; Lee, et al., 1989). 

The theoretical formulation presented here is based on the concept of effec
tive stress that was originally proposed by Kachanov (1958). The pioneering 
work of Kachanov (1958) started what is now known as continuum damage 
mechanics. Different researchers (Lamaitre, 1985, 1986; Chaboche, 1988; Kraj
cinovic, 1983, 1984) used continuum damage mechanics to analyze different 
types of damage in materials ranging from brittle fracture to ductile failure. 
However, no attempt has been made to use the concepts of continuum damage 
mechanics to analyze damage in composite materials using the micromecha
nical approach. It should be mentioned that some researchers (Talreja, 1985) 
have used it to analyze damage in composite materials using the continuum 
approach by modeling the composite as a transversely isotropic medium. 

In the following Sections (1.4.1-1.4.6), continuum damage mechanics is 
used with a micromechanical composite model to analyze damage in compo-
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site materials. Both overall and local damage variables are introduced to mod
el the overall and local damage effects. Stress and strain concentration factors 
are derived for the damaged composite. The model is applied in detail to a 
unidirectional thin lamina that is subjected to uniaxial tension. It is also ap
plied to a unidirectional thin lamina under a state of plane stress. The research 
presented in these Sections is the three-dimensional generalization of the uni
axial tension model derived previously by the authors (Kattan and Voyiadjis, 
1993). 

1.4.1 
Definitions and Assumptions 

Consider a body of fiber-reinforced composite material in the initial unde
formed and undamaged configuration Co. Let C be the configuration of the 
body that is both damaged and deformed after a set of external agencies act 
on it. Following the concept of effective stress (Kachanov, 1958; Murakami, 
1988), consider a fictitious configuration of the body C obtained from C by 
removing all the damage that the body (both matrix and fibers) has under
gone, i.e. C is the state of the body after it had only deformed without damage. 
Assume that the representative volume element in Co is statistically homoge
neous, and is free of voids and cracks initially. Assume also that the composite 
is loaded by an overall stress or strain field which is followed by increments of 
loading. The overall stress or strain fields are assumed to be uniform. The 
effective overall stress is defined in the configuration C as the stress in a per
fectly-bonded two-phase composite free of cracks or voids. 

The composite material is assumed to consist of elastic fibers and an elastic 
matrix. The fibers are continuous, aligned, and equally spaced. It is also as
sumed that the elastic strains are small (infinitesimal). Therefore, the elastic 
strain tensor can be taken to be the usual engineering elastic strain tensor E. It 
is also assumed that there exists an elastic strain energy function such that a 
linear relation can be used between the Cauchy stress tensor (J and the engi
neering elastic strain tensor E. In fact, the tensor rate £ for small elastic 
deformations is equal to the elastic part of the spatial strain rate tensor d 
where second order terms are neglected. 

In the following, quantities are defined in the configuration C of the overall 
composite system. Barred quantities are defined in the configuration C of the 
overall composite system. Only Cartesian tensors are considered in this work 
with their tensor components denoted by subscripts with the usual summation 
convention. Quantities with a superscript M or F refer to matrix or fiber re
lated quantities, respectively. The superscript R is used to indicate the matrix 
or fibers where no distinction between them is necessary. No summation is 
assumed between a superscript and the corresponding identical subscript. It 
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follows directly that barred quantities with a superscript M or F (or R in gen
eral) refer to matrix or fiber related quantities, respectively, in the configura
tion C. For example, (J is the composite (overall) Cauchy stress in C, (j is the 
effective composite Cauchy stress in C, (JM and (JF are the matrix and fiber 
stresses in C, respectively, and (jM and (jF are the effective matrix and fiber 
stresses in C, respectively. 

The constitutive model is first formulated in the configuration C of the 
composite system. Then the hypothesis of elastic energy equivalence (Sidoroff, 
1981) is used to transform the model into the configuration C of the compo
site system. In this hypothesis, it is assumed that the elastic energy for a da
maged material is equivalent in form to that of the undamaged material except 
that the stress is replaced by the effective stress in the energy formulation. For 
this purpose, certain transformation Equations are derived for the composite 
(overall) stresses and strains between the configurations C and C. 

In the formulation, the Eulerian reference system is used, i.e., all quantities 
are based on spatial coordinates. In Section 1.4.2, the necessary Equations re
lating local and overall quantities of the composite system are presented. The 
continuum damage mechanics Equations are then derived in Section 1.4.3. 
Then the constitutive Equations are derived in Section 1.4.4. 

1.4.2 
Composite Analysis 

In this Section, the relations between the local (matrix and fiber) and overall 
(composite) relations are presented in the configuration C. The analysis is 
based on the model given by Dvorak and Bahei-EI-Din (1982, 1987) and Ba
hei-El-Din and Dvorak (1989) utilizing a representative volume element that is 
statistically homogeneous with uniform overall fields of stress or strain. In 
this case, the composite system consists of an elastic metal matrix reinforced 
by elastic, continuous aligned fibers. 

In the configuration C, the effective stress tensor (jR is related to the effec
tive composite stress tensor (j by 

(1.35) 

where Bijkl is a fourth-rank tensor indicating the elastic phase stress concen
tration factor and the superscript R stands for either M or F. The tensor BR(X) 
depends only on the spatial coordinates x for the case of elastic deformation. 
In order to determine BR, certain assumptions are employed, like the Voigt 
assumption where the matrix and fibers are assumed to deform equally or 
the VFD (Vanishing Fiber Diameter) assumption where the fibers are assumed 
to have vanishing diameters while occupying a finite volume fraction. These 
two assumptions are discussed briefly among others at the end of Section 
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1.4.4. The reader should note that the tensor BR does not include any damage 
effect. This is the reason why effective stresses are used in Equation (1.35) 
rather than the actual stresses. In the sequel, a damage phase stress concentra
tion factor will be derived in terms of BR and the damage variables. 

As a result of volume integration and averaging of the local stress fields, the 
following relation is obtained between the local (matrix and fiber) stresses 
and the overall stress in C: 

- M -M F -F 
(Jij = e (Jij + e (Jij' (1.36) 

where eM and eF are the matrix and fiber volume fractions, respectively, given 
by: 

(1.37) 

In Equation (1.37), yM and yF are the matrix and fiber volumes, respec
tively, and y is the total volume of the representative composite element. 
Using the assumption in Equation (1.36) and substituting the relevant expres
sions for iTM and iTF from Equation (1.35), one derives the following relation 
between the elastic stress concentration factors for the matrix and fibers: 

eM Bijkl + eF Bijkl = ~ (8ik8jl + 8il8jk) ' 

where 8ij is the Kronecker delta. 

(1.38) 

It is now seen that once the elastic matrix stress concentration factor BM is 
determined, one can use Equation (1.38) to find the corresponding fiber stress 
concentration factor BF. It also follows from the symmetry of the stress tensor 
and Equation (1.35) that the stress concentration factors BM and BF are sym
metric in the sense Bijkl = B~kl' Although the tensors BM and BF have other 
symmetries, this is the only one needed in the derivations that follow. 

Next the effective matrix and fiber deviatoric stresses i M and iF, respec
tively, are directly derived from Equation (1.35) as follows: 

(1.39) 

where the fourth rank tensor FR is given by: 

R R 1 R 
F ijk1 = B ijk1 - 3 B ppkl8ij. (1.40) 

Using the relation (1.40) above, one can derive the following two useful 
identities: 

R 
Frrkl = 0, (1.41) 

(1.42) 
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In the next part of this Section, the local-overall relationships for the effec
tive strain tensor E in the configuration C are presented. Upon volume inte
grating and averaging the local stress fields (Dvorak and Bahei-El-Din, 1982, 
1987), the following local-overall relation is obtained for the effective spatial 
strain tensor 

(1.43) 

where the appropriate relations for the effective matrix and fiber strain tensors 
are used as follows: 

(1.44) 

where Aijkl is a fourth-rank tensor denoting the elastic phase strain concentra
tion factor. The same remarks outlined earlier about the tensor BR apply again 
to the tensor A R. 

Substituting Equation (1.44) into Equation (1.43), one derives the following 
relation between the elastic matrix and fiber strain concentration factors: 

eM Atil + eF A~kl = ~ (OikOjl + OilOjk), (1.45) 

It is now clear that once one of the elastic strain concentration factors is 
determined, Equation (1.45) can be used to determine the other one. 

On the other hand, one may start with the quantity aij Eij and expand it 
using Equations (1.36) and (1.43). Then one substitutes for the local stresses 
and strains from Equations (1.35) and (1.44) and simplifies to obtain: 

(1.46) 

The above Equation represents the relation between the stress and strain 
concentration factors for the matrix and fibers. In view of the relations (1.39) 
and (1.46), it is clear that Equation (1.46) reduces to an identity. It should be 
mentioned that once the stress concentration factors Btil and B~kl are deter
mined, one can use Equation (1.46) to find a constraint relation between the 
strain concentration factors Atil and A~kl' 

1.4.3 
Damage Analysis 

There are two steps that can be followed in order to develop a continuum 
damage model for a composite system consisting of fibers and a matrix. First, 
one considers damage in the overall composite system as a whole continuum. 
At this step, the model will reflect various types of damage mechanisms such 
as void growth and coalescence in the matrix, fiber fracture, debonding and 
delamination, etc. It should be noted that at this step, no distinction is made 
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between these types of damage as they are all reflected through the fourth
rank overall damage effect tensor Mijkl. In the second step, one considers the 
damage that the matrix and fibers undergo separately such as nucleation and 
growth of voids and void coalescence for the matrix and fracture for the fi
bers. In this case, two fourth-rank matrix and fiber damage effect tensors M~l 
and Mijkl are introduced that reflect all types of damage that the matrix and 
fibers undergo. Subsequently, the local-overall relations are used to transform 
these local damage effects to the whole composite system. Therefore, it is clear 
that the second step does not account explicitly for such damage mechanisms 
as debonding or delamination. It is also clear that each step has certain ad
vantages and disadvantages. While the first step accounts for all types of da
mage in the composite system, it cannot distinguish between them. In contrast 
the second step provides separate damage analysis of the matrix and fiber 
material but lacks the ability to account for fiber-matrix interaction damage. 
Therefore, the aim of the proposed model will be to combine the two afore
mentioned steps in such a way so as to isolate the various local types of da
mage. 

Following the first step outlined above and utilizing an overall damage ef
fect tensor M for the whole composite system, the overall effective Cauchy 
stress tensor (j is given by 

(1.47) 

The above relation was first proposed for the uniaxial case by Kachanov 
(1958) and later generalized to three dimensions by Murakami (1988) and Si
doroff (1981) in the framework of the concept of effective stress. It then fol
lows from Equation (1.47) that the overall effective deviatoric Cauchy stress 
tensor is given by (Kattan and Voyiadjis, 1990; Voyiadjis and Kattan, 1992) 

(1.48) 

where the fourth-rank tensor N is given in terms of M as follows: 

(1.49) 

Certain useful identities follow directly from Equation (1.49). The main two 
identities used here are listed below: 

Nrrkl = 0, (1.50) 

(1.51) 
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Next, the relation between the effective phase stress tensor erR and the over
all stress tensor CY is derived. This is done by substituting Equation (1.47) into 
Equation (1.35). Therefore, one obtains: 

-R R 
CYij = K ijk1 CYkl. (1.52) 

where the fourth-rank matrix tensor Kijkl is given by: 
R R 

K ijk1 = BijmnMmnkl. (1.53) 

From the symmetry of Bijmn discussed earlier, it follows from Equation 
(1.53) that the tensor KR is symmetric in the sense Kijkl = Kftkl' It should be 
noted that the tensor KR has other symmetries, but are not needed in the 
derivations. 

Substituting Equation (1.47) into Equation (1.39), one obtains the following 
expressions for the effective matrix and fiber deviatoric stress tensors: 

-R R 
iij = R ijk1 CYkl, (1.54) 

where the fourth-rank tensor RR is given by: 
R R 

R ijk1 = FijmnMmnkl. (1.55) 

Upon examining Equations (1.39), (1.40), (1.54) and (1.55), one concludes 
that the tensors FR and RR are symmetric in the sense Fijkl = Fftkl and 
Rijkl = Rftkl' Furthermore, by substituting Equation (1.40) into Equation 
(1.55) and using Equation (1.53), one can derive the following relation be
tween the tensors KR and RR: 

R R 1 R 
R ijk1 = K ijk1 - "3 KrrklOij' (1.56) 

The tensor RR satisfies the two identities discussed earlier, namely R~rkl = 0 
and RijklRijmn = KijklKijmn' All these tensors have other symmetries but are not 
needed in the derivations. 

The overall damage relations for the composite system have now been pre
sented in Equations (1.47) through (1.56). The overall damage effect tensor M 
has been introduced to represent all types of damage that the system under
goes. Following the second step discussed at the beginning of this Section, one 
introduces a phase (local) damage effect tensor MR that represents the damage 
mechanisms in the phase material like nucleation, growth and coalescence of 
voids for the matrix, and fracture of fibers. Therefore, the following local 
transformation Equation is assumed to hold for the phase stress tensor 

It now follows directly from Equation (1.57) that 

-R NR R 
iij = ijklCYkl' 

(1.57) 

(1.58) 
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where the fourth-rank tensor NR satisfies the relations in Equations (1.49), 
(1.50) and (1.51). Comparing Equations (1.52) and (1.57) and simplifying, 
one derives the following relation between the phase stress tensor and the 
overall stress tensor: 

R -R 
(Jij = Bijkl(Jkl, (1.59) 

where 

(1.60) 

where the inverse wijl1 of a fourth-rank tensor Wijkl is defined by 
W ijmn wijl1 = OikOjl. The fourth-rank tensor BR is the damaged phase stress 
concentration factor that includes geometrical and damage related effects as 
can be seen from Equation (1.60). 

It is now possible to derive the required relationship between the local da
mage effect tensors MM and MF and the overall damage effect tensor M. Sub
stituting Equations (1.57) and (1.59) into Equation (1.36) and simplifying, one 
obtains the desired relation: 

(1.61) 

It is clear that Equation (1.61) relates the local damage experienced by the 
matrix and fibers to the overall damage of the composite system. The da
maged matrix and fiber concentration factors appear in the Equation as well 
as the matrix and fiber volume fractions. Substituting for 13M and 13F from 
Equation (1.60) into Equation (1.61), one obtains: 

(1.62) 

The above Equation is an explicit relation between the effective local con
centration factors and the overall damage effect tensor. Examining Equations 
(1.61) and (1.62) carefully, one concludes that once the local (matrix and fi
ber) damage mechanisms have been described through the tensors MM and 
MF, then the overall damage in the composite system can be described which 
includes the matrix and fiber related damage as well as the damage resulting 
from the interaction of the two phases such as debonding. 

1.4.4 
Constitutive Equations 

In this Section, the elastic constitutive relation for the damaged composite 
system will be developed. First, one starts with the overall system and assumes 
the material obeys generalized Hooke's law in the undamaged configuration C: 

(1.63) 
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where Eijkl is the constant fourth-rank elasticity tensor. The corresponding 
effective elastic strain energy fj in this configuration is given by 

- 1 
U = 2. Eijkleijekl. (1.64) 

One now uses the Legendre transform and applies it to Equation (1.64) in 
order to derive the following expression for the effective elastic complemen
tary strain energy V: 

- 1 -I - -
V = 2. Eijk10'ijO'kl. (1.65) 

In the damaged composite configuration C, the elastic constitutive relation 
takes the form 

(1.66) 

where the fourth-rank tensor Eijkl is no longer constant but depends on the 
damage effect tensor Mijkl. Using the hypothesis of elastic energy equivalence, 
by equating the energy in Equations (1.65) in both the damaged and unda
maged configurations, i.e. V = V, one derives the following expression for 
Eijkl (Kattan and Voyiadjis, 1990). 

E- M-I E M-1 
ijkl = pqkl rspq rsij' (1.67) 

Differentiating Equation (1.65) with respect to ii, and using Equations 
(1.47), (1.66) and (1.67), one can obtain the following transformation Equa
tion for the overall strain tensor in the configuration C: 

(1.68) 

The above Equations (1.63) - (1.68) are a brief review of the elastic consti
tutive relations for a damaged one-phase material and can be used as the over
all relations for the composite system. Next, one considers the local stresses 
and strains in an attempt to formulate local-overall Equations for the damaged 
composite system. 

Similar relations can be shown to exist on the local level, that is, the strain 
transformation Equations for the matrix and fibers are similar to Equation 
(1.68) and take the following form: 

(1.69) 

One now can derive expressions for the damaged strain concentration fac
tors. Substituting the expressions of the transformation of the overall and lo
cal strains of Equations (1.68) and (1.69) into Equation (1.44) and simplifying, 
one obtains 

(1.70) 
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where the damaged strain concentration factor A R is given by: 

fiR MR AR M-1 
ijkl = mnij mnpq pqkl o 

(1.71) 

One then assumes the generalized Hooke's law to hold for each of the 
phases in the configuration C, that is 

(1. 72) 

where Eijkl is the constant elasticity tensor for the phase material. Substituting 
Equations (1.63) and (1.72) into Equation (1.36) along with Equations (1.44) 
and (1.45) and simplifying, one obtains the following local-overall relation for 
the undamaged elasticity tensors: 

(1. 73) 

Assuming similar local relations to hold as those of Equation (1.72) in the 
configuration C, one has 

(1.74) 

where the tensor Eijkl is the damaged elasticity tensor for the phase material. 
Substituting Equations (1.66) and (1.74) into an Equation similar to Equation 
(1.36), written in the configuration C, along with Equations (1.69) and simpli
fying, one obtains 

(1.75) 

Next, one considers the transformation Equations for the local moduli of 
elasticity E'fJl and Eijkl. Sta!ting wi~h Equation (1.75) and substituting for E 
from Equation (1.67), for AM and AF from Equations (1.71) and for E from 
Equation (1.73) and simplifying, one obtains: 

-R ~ -I R (R )-1 
E ijk1 = eR MmnijEmnpq Mpqkl ° (1. 76) 

The remainder of this Section is left to determine a proper transformation 
relation for the phase volume fractions eM and eF. The authors see no direct 
way of deriving such Equations at the present time. However, in view of the 
relation given in Equation (1.67), the scalar ratios eM/eM and eF / eF can be 
determined by comparison. Therefore, the following transformation Equation 
is listed here without proof. 

(1.77) 

Upon substituting the above transformation Equation for ~ into Equation 
(1.76), one obtains simple relations for the transformation of the local moduli 
of elasticity similar to that of Equation (1.67). It should be noted that Equation 
(1.77) does not imply a change in the phase volume fractions. The quantities 
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eM and eF represent effective phase volume fractions in the fictitious unda
maged configurations eM and eF, respectively. They should be regarded simi
larly to the effective stresses iTM and iTF where they do not represent actual 
quantities, but effective quantities in the context of continuum damage me
chanics. The constitutive theory as well as the relevant transformation Equa
tions have been presented for the analysis of damage and small elastic defor
mation of fiber-reinforced composite materials. This is illustrated in detail in 
Section 1.4.6 for the case of uniaxial tension. 

The rest of this Section is left for a brief discussion of the stress and strain 
concentration factors. The simplest model available involves the Voigt as
sumption where the matrix, fiber and overall strain rates are assumed equal. 
In our case, the Voigt model is applied to the configuration e in the form 

Eij = Eij = Eij. Substituting these into Equation (1.44) immediately results in 

Aij1l = Aijkl = ~ (OikOjl + OilOjk)' Using this result along with Equations (1.35), 

(1.63) and (1.72) will yield Bij1l = EijmnEkz~n and Bijkl = EijmnEkz~n' Another 
widely known model is the Vanishing Fiber Diameter (VFD) model. In this 
model, it is assumed that the cylindrical fibers have vanishing diameters while 
occupying a finite volume fraction of the composite. However, the resulting 
Equations are not as simple as those of the Voigt model and the reader is 
referred to Dvorak and Bahei-El-Din (1979, 1982) for a detailed discussion of 
the VFD model. Finally, it should be noted that more sophisticated models 
(Mori and Tanaka, 1973) can also be used. 

1.4.5 
Evolution of Damage 

In order to study the evolution of damage in composite materials, one first 
needs to investigate the nature of the fourth-rank damage effect tensor M. It 
has been shown (Voyiadjis and Kattan, 1992) that using the Voigt notation for 
stresses and strains (i.e., representing them as vectors instead of tensors), the 
tensor Mijkl can be represented by a 6 x 6 matrix in terms of a second-rank 
damage tensor cP. Therefore, it is clear (Voyiadjis and Kattan, 1992) that the 
study of damage evolution involves the determination of an appropriate ki
netic Equation for the tensor cP Ij. One introduces the generalized thermody
namic force Yij that is associated with cPtj by the definition (Lemaitre, 1985): 

au 
Yij = acP,j' (1.78) 
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such that ¢ijYij is the power dissipated due to the damage. The criterion for 
damage evolution used here is that proposed by Lee et ai. (1985) and is given 
by the function g(y, B) defined by: 

1 
g(y, B) = "2 JijklYijYkl - B(,B) = 0, (1. 79) 

where B(fJ) is a function of the overall damage parameter fJ and Jijkl is a con
stant fourth-rank tensor that can be represented by a constant 6 x 6 matrix 
(Lee, et aI., 1985; Voyiadjis and Kattan, 1992). In order to develop an evolution 
Equation for the damage variable ¢, one considers the power of dissipation TI 
given by: 

(1.80) 

The problem is to extremize TI subject to the constraint dg = O. Therefore, 
one introduces the Lagrange multiplier i.. and uses the Lagrange multiplier 
method to obtain i.. = ~ and 

. . ag 
¢tj = -fJ-a . (1.81) 

'YLj 

In order to determine ~, one uses the consistency condition dg = 0 in the 
form 

ag. ag . 
-Ypq+-B=O. 
aYpq aB 

(1.82) 

Substituting for the partial derivatives of g from Equation (1.79) into Equa-
tion (1.82) and solving for ~, one obtains: 

~ = i.. = JpqmnYmnYpq . (1.83) 
aBjafJ 

Substituting the above expression of ~ into Equation (1.81), one obtains the 
required evolution Equation for the damage tensor ¢tj: 

. -JpqmnYmnYpq ag 
¢Lj = aBjafJ aYij 

(1.84) 

The solution of the above kinetic Equation hinges on the determination of 
an appropriate expression for the function B(fJ). One may use a linear function 
in the form B(fJ) = C1fJ + C2 where C1 and C2 are constants. This is motivated 
by analogy to the isotropic hardening parameter K in the theory of plasticity, 

( )
1/2 

where the evolution of K is taken to be K = iijiij where i" is the rate of 
plastic strain. Analogously, using B = (~~) 1/2 will yield a linear function B(fJ) 
as proposed above. An example is given in the next Section where the evolu
tion Equation is solved for the case of uniaxial tension with a linear function 
B(fJ)· 
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1.4.6 
Example 1: Uniaxial Tension of a Unidirectional Lamina 

Consider a unidirectional fiber-reinforced thin lamina that is subjected to a 
uniaxial tensile force T along the x I -direction. The lamina is made of an elastic 
matrix with elastic fibers aligned along the xl-direction. The Xz- and Xraxes 
are assumed to lie in the plane of the lamina. Let dS be the cross-sectional area 
of the lamina with dSM and dSF being the cross-sectional areas of the matrix 
and fibers, respectively. In the fictitious undamaged configuration, let the 
cross-sectional areas of the lamina, matrix and fibers be denoted by dS, dSM 

and dSF, respectively. Since the lamina strictly consists of a matrix and fibers, 
it is clear that dSM + dSF = dS, dSM + dSF = dS, dS:::; dS, dSM :::; dSM and 
dSF :::; dSF (Kattan and Voyiadjis, 1992). 

The overall stress, strain and damage tensors a, e, and ¢ for this problem 
can be represented using the following vectors 

(1.85) 

with similar vector representations for their corresponding effective and local 
counterparts. The uniaxial stress a appearing in Equation (1.85) is clearly gi
ven by a = T / dS with the uniaxial effective stress given by (j = T / dS. The 
overall damage variable ¢l is defined by (Kachanov, 1958) 

dSdS 
¢l =Ts' (1.86) 

It is clear from Equation (1.86) that ¢l takes the values between 0 for un
damaged material to 1 for (theoretically) complete rupture. However, the ac
tual value ¢cr where failure occurs is less than 1 and satisfies 0 :s ¢ < ¢cr < 1. 
Two local damage variables ¢r and ¢i can be analogously introduced and 
defined by: 

dSR - dSR 

¢~ = dSR (1.87) 

It follows directly from Equation (1.87) that 0 :s ¢f :s 1. Using Equations 
(1.86) and (1.87) along with the area relations discussed in the beginning of 
this Section, one can easily derive the following relation between the local and 
overall damage variables: 

(1.88) 

It should be mentioned that the uniaxial local and overall stresses a, aM and 
a F satisfy a similar relation to that of Equation (1.88) and is given in tensor 
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form by Equation (1.36). The relation between the overall stress a and its ef
fective counterpart a can be easily shown to be given by 

_ a 
a---

- 1 - <PI' 
(l.89) 

Using Equation (1.36) and a similar Equation for the effective stress, one 
can assume the local stresses to be given by: 

a R 
-R a =---R' 

1 - <PI 
(l.90) 

In view of Equation (1.89), it is clear that the relations (1.90) satisfy the 
requirements given by Equation (1.36). Comparing Equations (1.89) and 
(1.90) with the general transformation Equations (1.47) and (1.57) and con
sidering the notation of Equation (1.85) for this problem, the damage effect 
tensors M, MM and MF can be represented by the following matrices: 

[t 
0 

o ] M= I o . 1-¢2 

0 1~¢3 
(l.91) 

[,t~ 
0 jJ MR = I 

I-¢~ 

0 
(l.92) 

It should be mentioned that the matrix representation of the damage effect 
tensor M of Equation (1.91) applies only to the problem of uniaxial tension 
considered here. For a general matrix representation of the tensor M, the read
er is referred to the recent paper by Voyiadjis and Kattan (1992). 

The overall elasticity tensor Eijkl can be represented by the following matrix 
where an orthotropic material is assumed: 

(l.93) 

Using the representations of M and E of Equations (1.91) and (1.93), and 
substituting them into the transformation Equation (1.67), one obtains the 
following matrix for the damaged elasticity tensor Eijkl: 

(l.94) 
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Considering a matrix representation for £-1 similar to that of Equation 
(1.93) but with all quantities replaced by barred quantities and comparing it 
with the matrix in Equation (1.94), one obtains the following transformation 
Equations for the overall elastic properties: 

Ei = Ei(1- ¢;)2, i = 1,2,3 (no sum), (1.95) 

_ 1- ¢; 
Vij = Vij 1 _ ¢j' i,j = 1,2,3 (no sum). (1.96) 

Next, one uses the transformation Equation (1.60) for the phase stress con
centration factors, and substitutes for the damage effect tensors from Equa
tions (1.91) and (1.92) to derive the following matrix representation for the 
damaged phase stress concentration factor Bijkl: 

(1.97) 

where the terms Bij are the elements of the matrix representation of BijkZ. 
Similarly, one uses the transformation Equation (1.71) for the strain con

centration factors to derive the following matrix representation for the da
maged phase strain concentration factor AijkZ: 

(1.98) 

where the terms Aij are the elements in the matrix representation of Aijkl. 
Finally, one writes the transformation Equations for the volume fractions 

eM and cF• Using Equation (1.77) along with the matrix representations (1.91) 
and (1.92), one derives: 

cR=~I-¢~. 
1 - ¢1 

(1.99) 

Alternatively, the above relations can be derived independently using the 
definitions of eM and cF as area fractions for this problem, along with Equa
tions (1.86) and (1.87). Finally, one can use Equations (1.76) and (1.77) to 
derive transformation Equations for the local elastic properties. However, the 
resulting Equations are similar to Equations (1.95) and (1.96) with super
scripts "M" or "F" and will not be listed here. 
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In order to characterize damage evolution for this problem, one uses Equa
tion (1.84). For this problem, the kinetic Equation (1.84) reduces to 

(1.100) 

where 4>1 and Y1 stand for the tensor components 4>11 and Y11' respectively. 
Using a linear function B(f3) = C1f3 + C2 where C1 and C2 are constants, substi
tuting it into Equation (1.100) and solving the differential Equation, one ob
tains 

-yi 
4>1 = --. 

3C1 
(1.101) 

The above Equation represents the relation between the damage variable 4> 1 
and its associated thermodynamic generalized force Y1 for the case of uniaxial 
tension. One then substitutes for Y1 from Equation (1.78) along with Equation 
(1.64) into Equation (1.101) to obtain: 

(1.102) 

Equation (1.102) represents the overall strain-damage relation for the case 
of uniaxial tension. Similar relations can be derived for the local strain and 
damage variables. 

1.4.7 
Example 2: A Unidirectional Lamina Under Plane Stress 

Consider a unidirectional fiber-reinforced thin lamina that is subjected to a 
case of plane stress in the 1-2 plane. The lamina is made of an elastic material 
with elastic fibers aligned along the xl-axis. Both the X1- and xz-axes are as
sumed to lie in the plane of the lamina, while the xraxis lies in the transverse 
direction to that plane. A complete damage state is considered, although the 
lamina is under plane stress. Therefore, all the damage variables are assumed 
nonzero in this example. For this case of plane stress, the stress and damage 
tensors are represented by the following matrices: 

[ a" 
0'12 n [O'ij] = O'~2 0'22 

0 
(1.103) 

[ ¢" 4>12 ¢u] 
[4>ij] = 4>21 4>22 4>23 . 

4>31 4>32 4>33 
(1.104) 
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The transformation Equation (1.47) gives rise to a nonsymmetric effective 
stress tensor. Therefore, before proceeding with this example, one needs to 
symmetrize the effective stress tensor ii. One of the most popular symmetri
zation procedures is given by the Equation 

(1.105) 

Before substituting Equations (1.103) and (1.104) into Equation (1.105), one 
needs to find the inverse of the tensor oij - 4>ij' This is found simply by obtain
ing the inverse of the matrix [Oij - 4>ij] through the use of the symbolic ma
nipulation program REDUCE. The resulting matrix is given as: 

4>124>23 + 4>13(1 - 4>22) ] 
4>124>13 + 4>23(1 - 4>11) , 

(1 - 4>11)(1 - 4>22) - 4>i2 

where ~ is given by 

4>134>23 + 4>12(1 - 4>33) 

(1 - 4>11)(1 - 4>33) - 4>i3 

4>124>13 + 4>23(1 - 4>11) 

(1.106) 

~ = (1 - 4>11)(1 - 4>22)(1 - 4>33) - 4>~3(1 - 4>11) - 4>i3(1 - 4>22) -

4>i2(1 - 4>33) - 24>124>234>13' 
(1.107) 

Next, one substitutes Equations (1.103) and (1.106) into Equation (1.105) 
and simplifies the resulting matrix. Using the vector representation 
[0'11 0'22 0'12 r for the stress tensor 0', and likewise using 
[ii11 ii22 iill r for the effective stress tensor ii, the resulting Equation can 
be rewritten as: 

(1.108) 
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where the coefficients of the matrix [M] of Equation (1.108) are given by: 

(1.109a) 

(1.109b) 

(1.109c) 

M12 = M21 = 0, (1.109d) 

M - 2M _ <P12<P23 + <puCl - <P33) 
13 - 31 - ~ , (1.10ge) 

(1.109f) 

The above Equations were obtained using the symbolic manipulation pro
gram REDUCE. 

For the case of plane stress discussed in this Section, the overall elasticity 
tensor Eijkl is written here for an orthotropic material indirectly in the follow
ing form: 

-V12 

T 
...L 
E, 

o 
o ] o . 

G~, 
(1.110) 

Using the representation ofM and E- 1 in Equations (1.109) and (1.110) and 
substituting them into the transformation Equation (1.67), one obtains the 
following matrix for the damaged elasticity tensor Eijkl: 

(1.111) 
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where the terms in the above matrix are given by: 

Mil Mi3 
Ell = E;- + 2G12 ' 

[M22 M22 (Mll + M22)] 
E23 = M 13 - - ])21 - + . 

E2 E2 2G12 

1 Damage Mechanics 

(1.112a) 

(1.112b) 

(1.112c) 

(1.112d) 

(1.112e) 

(1.112f) 

The inverse of the matrix in Equation (1.111) should be equivalent to the 
effective elasticity tensor £ij:z given by: 

[ 

1 _ ~12 

ii-' = ~1; f 0] o . 
{L 

(1.113) 

The relations between the elastic constant E1> E2 , ])12, G12 and the effective 
elastic variables £1> £2, V12, and G12 can be obtained by equating Equations 
(1.111) and (1.113). After some lengthy algebraic manipulations one arrives 
at the following relations: 

- 4MllM22 
G12 = G12 2 ( 2 ) . 

(Mll + M 22 ) MllM22 - M13 

In addition, one obtains the following relation: 

])12 E2 = ])21 EI. 

(1.114a) 

(1.114b) 

(1.114c) 

(1.114d) 

(1.115) 
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The above relation holds for the damaged composite system and is similar 
to the usual composite relation for effective quantities V12E2 = V21El. It should 
be noted that in Equation (1.114a), El is a function of both El and V12 in 
addition to the damage variables. Similarly, in Equation (1.114b), E2 depends 
on E2 , V21 and the damage variables. On the other hand, it is clear from Equa
tions (1.114c) and (1.114d) that V12 depends only on V12 and G12 depends only 
on Gll in addition to the damage variables. An expression for V12 in terms of 
V12 can be obtained similar to Equation (1.114c). 

When using the principal damage variables ¢l> ¢2, and ¢3' Equations 
(1.114) reduce to: 

_ ( 1 )2 
El = El -- , 

Mll 

_ ( 1 )2 
E2 = E2 -- , 

Mn 

_ Mn 
V12 = V12-, 

Mll 

_ (2)2 G12 = Gll 
Mll +Mn 

(1.116a) 

(1.116b) 

(1.116c) 

(l.116d) 

Substituting for Mll , M n , and ~ from Equations (1.109) into Equations 
(1.116), keeping in mind that ¢l3 = ¢23 = ¢12 = Ml3 = 0, one obtains: 

(1.117a) 

(1.117b) 

_ 1 - ¢1 
V12 = V12--, 

1- ¢2 
(l.117c) 

[ 
2 2 3] 2 - 2(1 - ¢1) (1 - ¢2) (1 - ¢3) 

G - G 
12 - 12 (1 - ¢1) + (1 - ¢2i 

(l.117d) 

Equations (1.117a) to (1.117c) are similar to Equations (1.95) and (1.96). 
Thus, the expressions involving principal damage variables reduce to those 
of the uniaxial tension case of the previous example. The only new Equation 
here is Equation (l.117d) which relates shear quantities that do not exist in the 
uniaxial tension case. 
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The phase damage effect tensor M0kZ is considered here to have the same 
form as the overall damage effect tensor M given in Equations (1.108) and 
(1.109). This tensor takes the form: 

o 

M~2 
IMR "2 ]3 

where ~R, MR, M~2 and M~3 are given by: 

~R = (1- ¢~I)(1 - ¢~2)(1 - ¢~3) - (¢~3)2(1- ¢~I) 
( R)2 ( R ) (R )2 ( R ) R R R - ¢]3 1 - ¢22 - ¢12 1 - ¢33 2¢12¢23¢]3' 

(1.118) 

(1.119a) 

(1.119b) 

(1.119c) 

(1.119d) 

The expressions of M and MR given in Equations (1.109) and (1.119), re
spectively, are substituted into the transformation Equation (1.60) to obtain 
the matrix and fiber stress concentration factors for the case of plane stress. 
The phase stress concentration factors B~ are then given by: 

-R 
Bll III l12 l]3 ll4 ll5 ll6 B~I 
-R 
B22 l12 in l23 l24 l25 l26 B~2 
-R 

l]3 l23 l33 l34 l35 l36 B~3 B33 =L -R 
l41 l42 l43 l44 l45 l46 B~2 B12 

(1.120) 

-R 
B]3 l51 l52 l53 l54 l55 l56 B~3 
-R 
B 23 l61 l62 l63 l64 l65 l66 B~3 

where L is given by: 

~ 
L= 

~R[M~I(M~2) + (M~I)2M~2 - (M~3)2(M~1 +M~2)J· 
(1.121) 

The coefficients lij in the above matrix are given in Equations (1.122-1.154) 
and the terms Bij are the elements of the matrix representation of the tensor 

BijkZ· 
In the same way, one can use the transformation Equation (1.71) for the 

strain concentration factors A~z and A~kl to obtain results corresponding to 
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Equation (l.l20). The resulting coefficients look similar to those in Equations 
(l.l22) to (l.l54) and are not shown here for the sake of simplicity. 

III = Mll [(M~2)2 +Mi1M;2 - (Mf3)2], (1.122) 

112 = 0, 

144 = M22 [(M~2)2 +Mi1M;2 - (Mf3)2], 

145 = M13 [(M~2)2 +MilM~2 - (Mf3)2], 

(1.123) 

(1.124) 

(1.125) 

(1.126) 

(1.127) 

(1.128) 

(1.129) 

(1.130) 

(1.131) 

(1.132) 

(1.133) 

(1.134) 

(1.135) 

(1.136) 

(1.137) 

(1.138) 

(1.139) 

(1.140) 

(1.141) 
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(1.142) 

(1.143) 

(1.144) 

(1.145) 

(1.146) 

l55 = M22[ (M~2)2 +Mi1M;2 - (M~3)2J 

+M~2(MllM~2 +MllM~l -2M13M~3) -Mll(M~3)2, 
(1.147) 

(1.148) 

(1.149) 

(1.150) 

(1.151) 

(1.152) 

(1.153) 

l66 = M22[ M~lM~2 + (M~1)2 -(M~3)2J 

+ M~l (MllM~2 + MllM~l - 2M13M~3) - Mll (M~3)2. 
(1.154) 

Exercises 

1. With the aid of a computer algebra system like MAPLE, derive Equations 
(1.33) and (1.34) explicitly. 

2. Instead of using the hypothesis of elastic energy equivalence, we want to use 
the hypothesis of strain equivalence, i.e. Cij = Sij. In this case, derive the 
expression for the effective modulus of elasticity Eijkl that corresponds to 
Equation (1.67). 

3. Use the following criterion of damage evolution to replace Equation (1.79) 

g(a, B) = ~ lijklaijakl - B(fJ) - fJ~ 
2 
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Derive the Equation of damage evolution that corresponds to Equation 
(1.84). 

4. Plot the relation between the extensional strain "1 and the damage variable 
¢I given in Equation (1.102). Make several plots for several values of the 
constant CI. 

5. Using Equation (1.117a), plot the relation between the damage variable ¢I 
and the stiffness degradation ratio ~. 

6. Using Equation (1.117d), plot the relation between the damage variables ¢I 
and ¢2 with the degradation ratio GG- 12 of the shear modulus. You should ob-

12 

tain a three-dimensional plot in this case. 
7. Derive explicitly the coefficients lij of Equations (1.122) - (1.154) for the 

c -M d-P strain concentration lactors A ijk1 an A ijk1 • 



2 Finite Element Damage Analysis of Plate Bending 

2.1 
Introduction 

A ductile material is capable of undergoing large plastic deformations. The 
accumulated plastic deformation can induce the changes of microstructures 
of the material through, for example, the nucleation, growth and coalescence 
of microvoids. These changes in material microstructures are the irreversible 
thermodynamic processes and result in a progressive degradation on the ma
terial properties. The process of the initiation and growth of microvoids and 
other micro defects induced by plastic deformations in ductile solids is called 
the ductile plastic damage. The primary interest of the ductile plastic damage 
is to study the influence of microvoids resulting from plastic deformations on 
the degradation of material properties. The changes on material properties 
can be studied by either a phenomenological damage model or a micromecha
nical damage model. A number of damage definitions and measures were pro
posed for both the models (vide the review papers of Krajcinovic, 1984, 1989; 
Chaboche, 1988; among others). Within the framework of phenomenological 
damage model, the damage of a material can be measured in macro scale by 
the deduction of mechanical properties, such as the elasticity constants (Le
maitre et aI., 1979). Moreover, the changes of the macro-mechanical properties 
can be characterized by the damage effect parameters which are able to be 
determined from experiments (Lemaitre, 1985). These damage parameters 
are the internal state variables in thermodynamics. The phenomenological da
mage model in conjunction with thermodynamics is not only simple in mate
rial modeling, but also quite accurate for the representation of a damage pro
cess. Therefore, the phenomenological model is very attractive in the practical 
application of the damage mechanics for engineering structures. The present 
study is based on the phenomenological damage model. 

Quite a large number of papers on continuum damage mechanics have been 
published (see the references given in reviews of Krajcinovic, 1984, 1989; Cha
boche, 1988). However, the ductile plastic damage of plate bending has re
ceived little attention up to now even though some damage models for the 

P. I. Kattan et al., Damage Mechanics with Finite Elements
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bending analysis of brittle beams have been proposed, e.g., Krajcinovic (1979). 
The flexural plates made of ductile metals, a very important type of structure, 
may undergo large plastic deformations under certain boundary and loading 
conditions. The large plastic deformations in a metal plate can induce the in
itiation and growth of microvoids and consequently cause the deterioration of 
the mechanical properties of the plate, a damage process. The load-carrying 
capacity of the damaged plate is lower than the one predicted from the elasto
plastic analysis. Therefore, the ductile plastic damage analysis can provide a 
useful tool for a safe design of metal plates. 

In the present computational model, the damage effect parameters of a 
cross-section are introduced from irreversible thermodynamics to take into 
account the damage effect across the plate thickness. Analogous to the concept 
of effective stresses, the effective stress couples are defined for plate bending 
problems. The yield function is then defined in the effective stress couple 
space. The evolution law of ductile plastic damage proposed by Lemaitre 
(1985), in which the damage evolution is a linear function of the equivalent 
plastic strain, is adopted. The concept of the plastic node model presented by 
Shi and Voyiadjis (1992) is extended here to discretize the distribution of the 
damage matrix in an element. Finally, by using the principle of virtual work 
together with the damage node model proposed here, the elastoplastic-da
mage stiffness matrix of element is derived. The resulting element stiffness 
matrix can be obtained explicitly as long as the elastic part of the element 
stiffness matrix is given explicitly. Consequently, the computational model 
presented here is very simple and efficient for the damage analysis of elasto
plastic bending plates. 

The damage-related matrices in the elastoplastic-damage stiffness matrix 
are dependent on the damage effect matrix (or tensor). The damage model 
used for the application presented here is the scalar isotropic damage model 
which is the simplest and most widely used model for the one-dimensional 
and isotropic phenomenological damage (vide, e.g., the review papers of Cha
boche, 1988 and Krajcinovic, 1989). In this model, the change of macro
mechanical properties of a material caused by micro defects is described by a 
simple scalar variable: a damage parameter. A new damage strain release rate 
proposed by the authors (Shi and Voyiadjis, 1993, 1997), in which the influ
ence of damage on the plastic deformations is taken into account, is used in 
this work. This damage strain release rate can be defined in the effective stress 
couple space. 

The four-noded quadrilateral (12 dof) CO strain element for plate bending 
developed by the authors (Shi and Voyiadjis, 1991) is employed here to evalu
ate the elastic stiffness matrix. This assumed strain plate element is based 
upon the shear deformable plate theory proposed by Voyiadjis and Shi 
(1991a) and the quasi-conforming element method presented by Tang et al. 
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(1980). Unlike most CO plate elements where the element stiffness matrix is 
evaluated by numerical integration, the element stiffness matrix of the CO plate 
element used here is given explicitly. Consequently, the assumed strain CO 
plate element presented by the authors is very computationally efficient. 
Furthermore, this four-noded quadrilateral (12 dof) CO plate element pos
sesses a linear bending strain field and is free of shearing locking and numer
ical ill-condition. Therefore, this finite element is capable of giving reliable 
and accurate results for both thick and thin plate analysis. 

2.2 
Ductile Plastic Damage in Plate Bending Problems 

The damage analysis presented here is based on the phenomenological meth
od. As mentioned earlier, so far there is not much information about the duc
tile plastic damage analysis of plate bending in the literature. As an earlier step 
towards the ductile damage analysis of plates, the following assumptions are 
adopted in the present study for simplicity: 
1. The damage process in ductile plastic damage is induced by plastic defor

mations; 

2. Tension and compression have the same influence on the damage develop
ment (Lemaitre, 1985); 

The first assumption is reasonable for ductile materials since the degradation 
of elastic modulus in elastic range is really negligible. The second assumption 
is similar to the plastic behavior of ductile materials. It has some limitations in 
application. Nevertheless, when the degradation of mechanical properties of a 
ductile material is primarily induced by microvoids rather than by micro
cracks, this assumption will be quite feasible. 

In order to demonstrate the ductile plastic damage of plate bending more 
easily, the corresponding one-dimensional case will be examined first. 

2.2.1 
Ductile Plastic Damage of Beams 

Within the framework of the phenomenological damage, the measure of da
mage can be characterized by the degradation of the elastic modulus of the 
material (Lemaitre, 1985; Voyiadjis, 1988; Li et aI., 1990). If one lets Eo be the 
Young's modulus of the material in the undamaged state (virgin material), 
then the instantaneous Young's modulus E can be determined by the damage 
effect parameter d (0 ::; d ::; 1) as 

E = (1 - d)Eo. (2.1) 
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Since the stress induced by bending is non-uniformly distributed along the 
thickness direction z, the damage parameter d, in general, varies through the 
thickness of a beam, i.e., d = d(z). 

Let Ee(Z) be the elastic axial strain of the cross-section of a beam, o-(z) be the 
corresponding axial stress. According to the assumption of the plane cross
section, EeCZ) can be expressed in terms of the elastic rotation of cross-section 
¢ as 

a¢ 
Ee(Z) = -z. (2.2) ax 
The corresponding stress then is given by the Hooke's law as follows 

a(z) = Bee = (1 - d)EoEe = (1 - d)Eo a¢ z ax (2.3) 

where x is the coordinate in the axial direction of the beam. It should be noted 
that a(z) might be nonlinear across the thickness since d(z) can also be a 
function of z. 

The elastic bending strain energy density of the beam, We, is of the form 

h/2 h/2 

W = ~ f E adz = ~ a¢ f azdz = ~ a¢ M 
e 2 e 2 ax 2 ax (2.4) 

-h/2 -h/2 

with 

M = b 7 azdz = b ~~ Eo 7 [1 - d(z)]z2dz (2.5) 

-h/2 -h/2 

in which hand b are respectively the thickness and width of the beam. If one 
lets 

E a 
a = EoEe = --dEe = --d' 1 - 1-

(2.6) 

then the stress couple also takes the form 

h/2 h/2 

M = b f [1 - d(z)]azdz = Ai - b f d(z)azdz (2.7a) 

-h/2 -h/2 

with 

h/2 h/2 

Ai = b f azdz = bED a¢ f z2dz = a¢ bh3 
. ax ax 12 

(2.7b) 

-h/2 -h/2 
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5 in Equation (2.6) is the so-called effective stress. The quantity M defined in 
Equation (2.7b) can be considered as the effective stress couple. In the beam 
bending problem considered here, the product of 5 and z does not change its 
sign across the beam thickness -h/2:S z :s h/2. Therefore, by using the 
weighted mean-value theorem for integrals, the last term in Equation (2.7a) 
can be expressed as 

h/2 h/2 

b f d(z)5zdz = bd(~) f 5zdz = d* M for some ~ in [-h/2,h/2]. (2.8) 

-h/2 -h/2 

The parameter d* in the above Equation is the mean value of damage para
meter d(z) across the beam thickness. In the present study, d* is taken as the 
damage effect parameter of a cross-section of the beam. The determination of 
d* will be presented later. Substituting Equation (2.8) into Equation (2.7a) 
gives 

M = (1- d*)M. 

The rate form of Eq. (2.9) can be written as 

M = (1 - d*)M - d* M 

where the symbol "." signifies the material rate. 

(2.9) 

(2.10) 

Similar to the strain energy release rate in fracture mechanics, which is 
used for the fracture criterion, a damage strain energy release rate associated 
with a unit damage growth is defined in damage mechanics (Lemaitre, 1985). 
From thermodynamics, there is an internal variable, named D here for a one
dimensional problem, corresponding to the damage strain energy release rate 
- Y. By taking the free-energy W as the thermodynamic potential, the damage 
strain energy release rate - Y of a beam can be defined as 

aw 
Y=-. aD (2.11) 

In general, the free energy W is the function of elastic strains Ce, equivalent 
plastic strain sP' internal variables d, and absolute temperature T, i.e., 

W can also be expressed in terms of effective stresses 5 as 

W = W2 (5, sP' d, T). 

(2.12) 

(2.13a) 

For the one-dimensional problem considered here, the above Equation takes 
the form 

W = W(M, Kp, D, T) (2.13b) 
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where Kp is the plastic curvature. In damage mechanics, the internal variables 
d are the damage effect parameters. It should be noted that both elastic and 
plastic strains in a damaged material are associated with the damage para
meters d even in the case where the elastic and plastic free energies can be 
decoupled. 

The damage evolution D can be determined by the normality property of 
the dissipation potential. By defining a suitable dissipation potential, Lemaitre 
(1985) proposed a damage evolution model for ductile plastic damage as fol
lows 

D = (~~rOip 
with 

-YD~ 0 

D = 0 when - Y :s Yc 

D=Dc ruptured 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

in which So and So are the material constants; Yc is the critical value of the 
damage strain energy release rate - Y; Dc is the critical value of the damage 
parameter D. Both Yc and Dc are material constants and can be determined 
from experiments. The damage parameter D then can be evaluated from D 
by integration. 

When the stresses rather than stress resultants are used, Equation (2.11) 
takes the form 

(2.18) 

Because of the analogy between Equations (2.6) and (2.9) as well as between 
Equations (2.18) and (2.11), it is feasible to assume d* = D. From now on, d* 
will be used to represent the damage parameter of a cross-section determined 
from the free energy in terms of stress couples. 

2.2.2 
Ductile Plastic Damage of Plate Bending 

In the plane stress problem of plate bending, the in-plane strains E and stres
ses CJ can be written in the matrix forms, respectively, as 

E: = { :; }, CJ = { ~; } 
2E:xy CJxy 

(2.19a) 
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For a linear elastic, isotropic material, the stresses cr and elastic strains Ce in 
the undamaged state have the following relation 

(2.19b) 

with 

Eo [1 So =--2 Va 
1 - va 0 

(2.20) 

in which Va is the Poisson's ratio of the undamaged material. After the materi
al is subjected to damage, the corresponding damaged elasticity matrix Sed) 
can be written as (Krajcinovic, 1989) 

Sed) = [I - D(d)]So (2.21) 

where 1 is the identity matrix and D( d) signifies the damage effect matrix (or 
tensor) which is symmetric and composed of damage parameters d. The ex
pression of D( d) can be determined from suitable micromechanical models 
(Krajcinovic, 1989). The evolution of the damage parameters d can be evalu
ated from the free energy as described earlier. 

The stress-strain relation in a damaged state takes the form 

cr = S(d)ce = [I - D(d)]Soce = [I - D(d)]a 

with the introduction of the effective stresses defined as 

The increment of cr can be expressed as 

~cr = [I - D(d)]~a - ~D(d, ~d)a 

in which ~D is the increment of D and is composed of d and ~d. 
Under the assumption of the plane cross-section, the elastic 

across a cross-section can be expressed as 

(2.22) 

(2.23) 

(2.24) 

strains Ce 

(2.25) 

where <Pxe and <Pye are the generalized elastic rotations of the cross-section at 
x = constant and y = constant, respectively, and Ke signifies the elastic curva
tures of the plate. The incremental form of Equation (2.25) is as follows 

(2.26) 
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Consequently, the increment of the elastic bending strain energy density of 
a plate, ,3. We, can be expressed as 

,3. We = ~ 7 ,3.t:; ,3. adz = ~ ,3.K; 7 [(ID),3.a - ,3.Dalzdz 

-h/2 -h/2 

= ~ ,3.K;[ (ID*),3.M - ,3.D*M] = ~ ,3.K; ,3.M 
2 2 

in which the right superscript T signifies the matrix transpose and 

h/2 

,3.M = f 
-h/2 

h/2 

D*,3.M = D(d(~)),3.M = f D(d(z)),3.azdz, 

-h/2 

some ~ in [-hj2, hj2l 

h/2 

,3.D*M = ,3.D*(,3.d(~),d(~))M = f ,3.D(d(z),,3.d(z))azdz 

-h/2 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

In Equations (2.29) and (2.30), the weighted mean-value theorem for inte
grals is utilized. The parameters d(~) and ,3.d(~) are the mean values of da
mage parameter d(z) and its increment ,3.d(z) along the plate thickness respec
tively. d(~) and ,3.d(~) are defined as, respectively, the damage effect parameter 
and its increment of a plate at the point of the plate under consideration. Si
milar to the one-dimensional problem, ,3.d(~) and d(~) can also be evaluated 
by the internal variables DI corresponding to the damage strain energy release 
rates -Yo For plate bending problem, -Y takes the form -Y = {Yj , Y2 }, and is 
given by the free energy of the plate W = W(M, Kp, D1 , T) as 

aw 
Y=-. aD, (2.31) 

The increments of the damage effect parameters of a cross-section, ,3.d(~), 
are given by 

( 1 )50 
{ _ y 50 } ,3.d* = ,3.d(~) = ,3.D1 = So _ ygo ,3.Kp (2.32) 
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where 8.Kp is the increment of the equivalent plastic curvature. Let 8. Kxp, 

8. Kyp, and 8. Kxyp, be the increments of plastic curvatures, then 8.Kp can be 
expressed as 

_ 2 (2 2 2 /) 1/2 
8.Kp = 31/ 2 8.Kxp + 8.Kyp + 8.Kxp8.Kyp + 8.Kxyp 4 . (2.33) 

Following the concept used in the three-dimensional problem presented by 
Lee et aI. (1985), the damage criterion of a plate can be written as 

(2.34) 

in which J is a symmetric matrix; Bo is the initial damage threshold; B(f3) is 
the damage threshold strengthening; and f3 is an overall damage parameter. 
The determination of J can be found in Lee et aI. (1985) and Chaw and Lu 
(1989). Bo and B(f3) can be obtained from experiments (Chaw and Wang, 
1988). The increment of f3 can be expressed as (Lee et aI., 1985) 

(2.35) 

The following expression can be used as a rupture criterion (Lee et al, 1985) 

(2.36) 

where f3c is the critical value of overall damage which is a material constant 
and can be obtained from experiments (Chaw and Wang, 1988). 

2.3 
A Damage Node Model for Ductile Plastic Damage of Plate Bending 

A new plastic node model for the finite element plastic analysis of plates and 
shells was presented (Shi and Voyiadjis, 1992a). In this plastic node model, the 
yield function, in terms of stress couples and stress resultants, is checked only 
at the element nodes. When the stress couples and stress resultants at a node 
satisfy the yield function, the node of the element is considered to become a 
plastic node. The plastic deformations are developed only at these plastic 
nodes, and the interior of the element is always in elastic. The concept of plas
tic nodes is extended to damage analysis in the present work. That is, the 
damage criterion is only checked at the element nodes and it is assumed that 
the damage only undergoes at the damaged nodes. 

Because of the nonlinear nature of the plastic analysis, the incremental 
scheme is used in the evaluation of the elasto-plastic stiffness matrix. It is 
assumed in this work that the incremental bending strains of a plate, i.e., in-
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cremental curvature I'1K can be decomposed into two parts: elastic parts I'1Ke 
and plastic parts I'1Kp, i.e., 

(2.37) 

Similarly, the incremental nodal displacement vector of an element I'1q takes 
the form 

(2.38) 

In the finite element modeling of plate bending using the generalized dis
placement method, I'1Ke in an element can be expressed in terms of the strain
displacement matrix B and the nodal elastic displacement vector of the ele
ment I'1qe as 

(2.39) 

If one lets Sb be the flexural rigidity matrix, the element stress couples I'1M 
are then given by 

(2.40) 

Consequently, the elastic stiffness matrix of an element, K e, can be written 
as 

(2.41) 

where Q denotes the element domain. 
The plastic curvatures can be obtained from the yield function and the as

sociated flow rule. If one lets Fi(Mi) be the yield function, and dAi be the 
plastic proportionality parameter at node i, then by recalling that the plastic 
deformations are only developed at the plastic nodes, the increment of the 
plastic curvature Kxp in an element is given by 

NPN aFi 
I'1Kxp(X, y) = L.:)(x - Xi, y - Yi)dAi-

i=l aMxi 
(2.42) 

in which NPN denotes the number of plastic nodes in the element under con
sideration. 

By using the variational principle to determine dAi in terms of elastic nodal 
displacement vector I'1q (Shi and Voyiadjis, 1992a), then the elasto-plastic 
stiffness matrix of a finite element, K ep , takes the form 

(2.43) 
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where a is the plastic nodal displacement matrix which is associated with the 
yield function in terms of the stress couples, and H is a matrix related to the 
plastic stiffness of the given material (vide Shi and Voyiadjis, 1992a). 

It is worthwhile to mention that Kep presented here can be evaluated expli
citly, i.e., without numerical integration, when the elastic stiffness matrix Ke 
can be given explicitly. This feature makes the present plastic node model very 
computationally efficient and attractive. 

When a material is subjected to a damage process, the mechanical proper
ties of the material are degraded. Consequently, the yield stress of the da
maged material decreases as the damage increases. However, when the stress 
a are replaced by the effective stresses (j which are associated with the virgin 
material, the yield function of the virgin material can be used for the damaged 
material. For example, in the plastic damage analysis of plates, the yield func
tion takes the form 

(2.44) 

where M is the stress couple vector of the plate; ayd(D) is the yield stress of the 
damaged material which is the function of the damage tensor D; M is the 
effective stress couple; ayo is the yield stress of the virgin material; and k and 
ko are the strain hardening parameters of the damaged and virgin materials, 
respectively. 

From the associated flow rule, the incremental plastic curvatures at node i 
are given by 

- - - -

aFi aMi aFi (*)-1 aFi !"J.Kp = -dAi = ----dAi = IDi ---dAi 
'aMi aMi aMi aMi 

(2.45) 

(no summation on i) 

in which Equations (2.22) and (2.27) are used. It should be noted that there is 
no summation on the repeated indices in this work. 

For an element in the damaged state, corresponding to a virtual nodal dis
placement vector 8!"J.q = 8!"J.qe + 8!"J.qp and a virtual bending strain field 
8!"J.K = 8!"J.Ke + 8!"J.Kp, the principle of virtual work for the element gives 

8!"J.qT!"J.f = j 8!"J.KT !"J.Mdxdy = j (8!"J.K; + 8!"J.KJ) [(ID*)!"J.M - !"J.D*M]dxdy 
Q Q 

= j[8!"J.K;M + 8!"J.KJ(ID*)!"J.M - 8!"J.K;D*!"J.M-
Q 

(2.46) 

where !"J.f represents the increment of the internal nodal force vector of the 
element. In Equation (2.46), D*(x, y) and !"J.D*(x, y) are yet undefined fields. 
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Similar to the concept of the plastic nodes, a damage node model is pro
posed here to construct D*(x, y) and ,3.D*(x, y). In this damage node model, 
the damage is assumed to be developed at the element nodes only, and the 
interior of the element is always in the undamaged state. Consequently, the 
damage matrix or tensor in an element D* and ,3.D* can be expressed as 

NDN 

D*(x, y) = L o(x - Xj' Y - Yj)Di 
j=] 

NDN 

,3.D*(x,y) = Lo(x-Xj'Y-Yj),3.D; 
j=] 

(2.47) 

(2.48) 

where Di and ,3.Di are the damage matrix and its increment at node j of the 
element under consideration; and NDN represents the number of damage 
nodes of the element. Substituting Equations (2.41), (2.45), (2.47) and (2.48) 
into Equation (2.46) leads to 

O,3.qT ,3.[ = o,3.q;Ke,3.qe + OdATHdA (2.49a) 

~[ T - T - aFT ( )-T - ] - ~ O,3.KeP* ,3.Mj + o,3.Kej,3.DiMj + OdAj ---. wi ,3.D;Mj. 
~] a~ 

In the above derivation, the consistency condition of yield function 
-T -

a~i dM. = _ aF; dko' = HdA· (2.49b) 
aM; 1 ako; 1 1 1 

is also utilized. It follows from Equations (2.39) and (2.40) that the elastic 
bending strains and stress couples at node j of the element can be written as 

,3.Kej = ,3.Ke(Xj, Yj) = B(Xj, Yj),3.qe=Bnj,3.qe (2.50) 

,3.Mj = SbO,3.Ke(Xj, Yj) = SbO Bnj,3.qe· 

After some mathematical manipulations, one can obtain 

NDN 

L o,3.K~D* ,3.Mj = o,3.q;B~D;SbeBn,3.qe 
j=] 

(2.51) 

(2.52) 

in which Bn is the matrix consisting of Bnj 0 = 1, 2, NDN), D; is the damage 
matrix of the element, and Sbe is the enlarged diagonal matrix of SbO. D; takes 
the form 

o 
D* 

} 

o 
o ] o . 

D7vDN 

(2.53) 
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In the ductile plastic damage, the increment of the damage tensor ,3.DJ at 
node j is the function of the damage parameters ,3.d; at the node, and ,3.d; 
depends on the increment of the equivalent plastic curvature /':,.Kpj shown in 
Equation (2.32). By using Equations (2.33) and (2.45), ,3.D; ( ,3.d;) can be 
transformed into 

(2.54) 

Therefore, in the case when ,3.DJ is a linear function of ,3.d; after a simple 
rearrangement the last two terms in Equations (2.49a) can be written as 

(2.55) 

(2.56) 

with 

(2.57) 

By substituting Equations (2.52), (2.55), and (2.56), Equations (2.49a) be
comes 

O,3.qT ,3.f = o,3.q;Ke,3.qe + OdA THdA - o,3.q;B~D;SbeBn,3.qe 

- o,3.q;B~(DM)dA - odAT(DF)T(ID)(DM)dA 

= o,3.q;[(Ke - B~D;SbeBn),3.qe - B~(DM)dA] 

+ OdAT[HdA - (DF)T (ID)(DM)dA]. 

By recalling Equation (2.38), the above Equation can be rewritten as 

(2.58) 

o,3.qT[K;(,3.q - adA)B~(DM)dA - ,3.f] (2.59) 

+ OdAT[HdA - (DF)T(ID)(DM)dA - aTK;(,3.q - adA) + aTB~(DM)dA] = 0 

where a is the modified plastic nodal displacement matrix because of the da
mage and K; is the modified elastic stiffness matrix. Matrix a gives the plastic 
nodal displacement vector as (Shi and Voyiadjis, 1992a) 

(2.60) 

K; is of the form 

(2.61) 
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Since 8~q and 8dJe are independent of each other and arbitrary, Equation 
(2.59) then gives the following two Equations 

(2.62) 

(2.63) 

where A is the nonsingular square matrix and of the form 

(2.64) 

Equation (2.63) gives 

(2.65) 

Substituting Equation (2.65) into Equation (2.62), one finally obtains 

Kepd~q = ~f (2.66) 

in which Kepd is the elastoplastic-damage stiffness matrix of an element and 
takes the form 

(2.67) 

It should be noted that Kepd is, in general, un symmetric in the presence of 
damage. It can be seen that Kepdreduces to Kep when the damage tensor is null 
which results in D: = 0, (DM) = 0 and (ID) = I. Similar to Kep , Kepd can also 
be evaluated explicitly as long as the elastic stiffness matrix Ke is given expli
citly. A four-noded strain element with the explicit stiffness matrix for the 
elastic plate bending analysis can be found in the paper of Shi and Voyiadjis 
(1991b). 

Exercises 

1. Consider the following expression for the quantity Q used in elasto-plastic 
damage analysis - see page 120 of the book by Voyiadjis and Kattan (1999). 
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Derive an appropriate expression for the effective quantity Q using the fol
lowing transformation relations for the stress, deviatoric stress, and backs
tress tensors: 

aij = Mijkl(]H 

iij = NijklC"fk1 

aij = Nijkdhl 

Use also the transformation relation for the elastic modulus Eijkl given in 
Equation (1.67). Derive also an expression for Nijkl in terms of Mijkl. 

2. For a composite material consisting of a matrix and fibers under uniaxial 
tension, derive the following expression for the effective modulus of elasti
city - see page 45 of the book by Voyiadjis and Kattan (1999). 

E = ~(1 - ¢~)EM(;~ + e'(l - ¢f)EF(;f 

where 
~, e' 
EM, EF 
C~, Cf 
¢~, ¢f 
¢1 

1 - ¢1 

are matrix and fiber volume fractions 
are effective matrix and fiber elastic modulii 
are effective matrix and fiber strain concentration factors 
are matrix and fiber damage variables in one dimension 
is the overall damage variable in one dimension. 

3. For an elasto-plastic material with kinematic hardening, derive an expres
sion for the effective backstress tensor rate d;3ij (see Section 7.4 of the book 
by Voyiadjis and Kattan, 1999). 



3 Using DNA 

In this chapter we cover the basic steps needed to install and run the program 
DNA correctly and obtain the results. A complete list of DNA commands and 
supported finite elements are given in Chapter 4. A detailed outline of the 
tensor library is given in Chapter 5. 

DNA stands for Qamage ~onlinear ~nalysis. It was developed by the re
search group of Professor George Z. Voyiadjis at Louisiana State University 
in Baton Rouge, LA, USA. It includes both the elastic and plastic analysis of 
materials incorporating damage effects based on the theory of continuum da
mage mechanics. Both linear and nonlinear analysis options are available in 
DNA. It was written in Fortran 77 with some Fortran 90 extensions. It is a 32-
bit DOS executable file which can run under the Windows 95/98/NT operating 
system. Two versions of the program are available: DNA_S for problems with 
small strains, and DNA_L for problems with large (finite) plastic strains. The 
program includes a well developed library of finite elements for two-dimen
sional plane stress, plane strain, and axisymmetric problems. In addition, 
three-dimensional analysis can be carried out using the available three-dimen
sional finite elements. Also, a DNA Windows Interface is also provided for 
those users who wish to run DNA from within the Windows environment. 

For each problem solved with DNA, two text (ASCII) files are associated. 
The first one is the input file which is prepared by the user using any text 
editor. After running the program successfully, a second file (output file) 
which contains the results is generated. Furthermore, if the graphics option 
is enabled in the input file, a third file (postscript file) is generated which the 
user can use to view the finite element mesh and various contour plots gra
phically. For this last step, a postscript viewer must be available - such a pro
gram called Ghostscript is provided on the accompanying CD-ROM. With the 
aid of this viewer, the results can be viewed graphically on the computer 
screen and printed on the printer. Complete details about the use of DNA 
and the three file formats are included in this chapter. 

The CD-ROM accompanying this guide contains all the following: 
l. Fortran source code files for DNA_S. 
2. Fortran source code files for DNA_L. 

P. I. Kattan et al., Damage Mechanics with Finite Elements
© Springer-Verlag Berlin Heidelberg 2002
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3. DOS executable file DNA_S. 

4. DOS executable file DNA_L. 

5. Fortran source code for the tensor library. 

6. Ghostscript 5.50 and GSView 2.70 for Windows 95/98. 

7. Various input example files. 

8. Various output and postscript example files. 

The only known limitations of the program are: 

1. The number of nodes in a problem must not exceed 3000. 

2. The number of elements in a problem must not exceed 400. 

3. The number of degrees of freedom at each node is limited to a maximum of 
3. 

4. The maximum number of materials used in a problem is 10. 

5. The number of nodes for each element should not exceed 20. 

6. The number of skew (inclined) boundary conditions (supports) should not 
exceed 300. 

7. The number of integration points in any direction for each element has a 
maximum value of 3. 

8. The maximum number of interfacial nodes is 500. 

9. The system resources of the user's computer (especially the available mem-
0ry) may limit the size of the problem to be solved. 

The program DNA is designed to run in DOS mode under Windows 95/98/NT 
or Windows 2000. It will not run under Linux or any other Unix system. How
ever, the source code can be compiled and binaries built to run under any 
operating system with the appropriate tools. This can be done with only slight 
modifications to the source code. It is noted that the source code was written 
in such a way so that it will compile easily using the Digital or Compaq Visual 
Fortran compiler (version 5 or 6 or later). More details about this issue can be 
found at the end of this chapter. 

DNA is a finite element program for the analysis of damage in two-dimen
sional and three-dimensional problems of solid mechanics. DNA requires an 
input file and writes the results to an output file. Both the input and output 
files are text (ASCII) files that can be viewed and edited with any suitable text 
editor (e.g. DOS Edit, Windows NotePad, or Windows WordPad). The input 
file is usually prepared by the user by including the appropriate DNA com
mands - Chapter 4 provides a comprehensive reference guide to these com
mands. Once the program is exectued, DNA generates the output file. Option
ally, DNA may generate an output graphics file written with the PostScript 
language, depending on whether the graphics option is enabled or not in the 
input file. 
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Table 3.1. Recommended Filename Extensions 

Type of File 

Input File 
Output File (Numerical Data) 
Output File (Graphical Data) - Postscript 

File Extension 

*.in 
*.out 
*.ps 

Unit Number 

Unit 11 
Unit 13 
Unit 4 
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There are no specific filename formats required for the three files associated 
with DNA. However, in order to organize things, it is advised that the follow
ing filename extensions be used as shown in Table 3.l. 

There are two versions of the program: DNA_S for problems with small 
strains, and DNA_L for problems with finite plastic strains. In the rest of this 
chapter, DNA_S will be used for the example. However, the user can use 
DNA_L instead of DNA_S (by substituting DNA_L for each occurrence of 
DNA_S). It should be noticed that DNA_S runs much faster than DNA_L. In 
particular, large problems used with DNA_L take a very long time to run de
pending on the type and power of the computer used (i.e CPU speed and 
memory available). 

3.1 
Installing DNA 

Although DNA can be executed and run from the accompanying CD-ROM 
directly, it is preferred to install the program on the hard disk. The advantages 
of hard disk installation are the increase in access speed and the ample disk 
space available to store the large output files. The user should note that DNA's 
disk storage requirements are minimal - it needs less than 4 MB for installa
tion. However, the user should keep ample space available for the output files 
especially for large problems. 

Copy the following files from the CD-ROM to a folder on the hard disk: 

DNA_S.EXE (Small Strains Program) 

DNA_L.EXE 

SAMPLE.IN 

(Finite Plastic Strains Program) 

(Sample Input File) 

Since both versions of DNA are 32-bit DOS applications, it is more appropriate 
to execute the program from the DOS prompt. Later in the chapter, we will 
discuss how to run DNA using the DNA Windows Interface directly from with
in Windows (see Sections 3.5 and 3.6). 
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3.2 
Running DNA 

Change to the DOS prompt on your Windows computer and to the folder 
where you installed the DNA program files. You can now view or edit the ex
ample input file (sample.in) using your favorite text editor. You need to check 
the input file at this stage. Table 3.2 includes a listing of the sample input file 
(sample.in) that you should have ready to run. 

Note that the commands can be entered in capital or lowercase letters; DNA 
is not case-sensitive. 

At the DOS prompt, type the following command to start the execution of 
DNA: 

followed by pressing "Enter" 

The computer will ask you now to enter some additional information as fol
lows: 

(D )elete or (K)eep intermediate files after successful run [D J> 

Usually the intermediate files generated during a DNA session are not needed 
by the user; therefore, type the following command to confirm deletion of 
these files: 

D followed by pressing "Enter" 

If you want to keep the intermediate files, type K instead of D above. Next the 
computer requests the name of the input file as follows: 

File name missing or blank - please enter file name 
UNIT 11? 

The program refers to the input file internally as unit 11. Enter the name of 
the sample input file as follows: 

SAMPLE.IN followed by pressing "Enter" 

The computer prompts now for the name of the output file as follows: 
File name missing or blank - please enter file name 
UNIT 13? 

Enter the name of the desired output file (unit l3) for numerical data as fol
lows: 

SAMPLE. OUT followed by pressing "Enter" 

Finally the computer prompts for the name of the output postscript file (unit 
4) for graphical data as follows: 

File name missing or blank - please enter file name 
UNIT 4? 
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Table 3.2. Sample Input File (sample.in) for the Example Problem 

TITLE 1 
plane strain problem -- plasticity 

I*linear 
nonlinear 
nonsymmetric 

outputs every 10 
NIPXI 3 NIPETA 3 
GRAPHICS 10 
WL 0.0 WR 8.0 WB 0.0 WT 10.0 
FMAG 1.0 DMAG 1.0 
CONTOURS 
LINE THICKNESS 1 
END 
MATERIAL 1 E 73087.0 NU 0.3 THICK 3.175 
TYPE 2 
yield 226.85 isotropic 792.92 kinematic 275.8 
increments 100 iterations 50 convergence factor 0.0001 stop 50 
NODES 9 
1 0.0 0.0 0 
2 4.0 0.0 0 
3 8.0 0.0 0 
4 0.0 5.0 0 
5 4.0 5.0 0 
6 8.0 5.0 0 
7 0.0 10.0 0 
8 4.0 10.0 0 
9 8.0 10.0 0 

BOUNDARY CONDITIONS 9 
1 1 1 0 
2 00 0 
3 00 0 
4 00 0 
5 00 0 
6 00 0 
7 1 1 0 
8 00 0 
9 00 0 

INCIDENCES 4 
1,2204,4, 1 2 5 4,1,0 
2,2204,4, 2 3 6 5,1,0 
3,2204,4,4587,1,0 
4,2204,4, 5 6 9 8,1,0 
LOADS 1 

9 10000.0 10000.0 0.0 

57 
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Enter the name of the desired postscript file for graphical data as follows: 
SAMPLE.PS followed by pressing "Enter" 

The computer will run the problem now and generate the two output files 
"sample. out" and "sample.ps". In case the GRAPHICS block is commented in 
the input file (using the operator 1*), then there will be no postscript output 
generated (you will not be prompted for unit 4). 

Alternatively, the program can be executed with all commands on one line 
including all the file names by typing the following at the DOS prompt; 

DNA_S D SAMPLE.IN SAMPLE.OUT SAMPLE.PS 
followed by pressing "Enter" 

At the end of the run, the program will show the CPU usage on the screen (it 
took 26.91 seconds to run this sample problem on a 450-MHz Pentium III 
computer with 128 MB RAM). 

The output file containing the numerical results (sample.out - on the ac
companying CD-ROM) can now be viewed with your favorite text editor. The 
results shown in the output file include the following information: 
1. The strain components for each element. 
2. The stress components for each element. 
3. The reactions at the nodes. 
4. The displacements at the nodes. 

3.3 
Installing Ghostscript and GSView 

In order to be able to view the finite element mesh and contour plots, we need 
to install the postscript viewer, namely Ghostscript and GSView. Copy the 
compressed file GSV27550.EXE to a folder on the hard disk. Run this program 
to unzip the files. Then run the setup (installation) program. Two programs 
Ghostscript 5.50 and GSView 2.70 should be installed automatically on your 
computer in the default directory C:\gstools. Now you are ready to run 
GSView which is the postscript viewer for Windows 95/98. 

3.4 
Viewing the Finite Element Mesh and Contours 

Run GSView from the Programs menu in Windows 95/98, then open the file 
"SAMPLE.PS". You should be able to view the finite element mesh. If the 
CONTOURS option is enabled in the input file, you should also be able to view 
the various contours for this problem. The mesh should be exactly like the one 
shown in Figure 3.1. The PS file can be transformed into a PDF file using 
Adobe Distiller which comes with Adobe Acrobat from Adobe. 
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The graphics file for this sample problem consists of 111 pages where the 
first page contains the finite element mesh, followed by 11 pages for each of 
the 10 increment outputs as specified in the input file (II x 10 + 1 = 111 
pages). The 11 pages for each output include the following information: 

1. Displaced shape. 

2. Stress contours for ax. 

3. Stress contours for ayo 

4. Stress contours for i xyo 

5. Stress contours for a z• 

6. Strain contours for Ex' 

7. Strain contours for Eyo 

8. Strain contours for Yxyo 

9. Strain contours for Ez• 

10. Strain contours for Ev - volumetric strain. 

11. Plastic work K. 

The 11 graphical output pages after increment 10 are shown in Figures 3.1-
3.11. 

Fig. 3.1. Finite Element Mesh 
for Sample Problem 
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LEGEND FOR FRAME NUMBER 1 (STRESS: X) AT LOAD STEP 10 

MINIMUM = -0.2197E+02 MAXIMUM = 0.1529E+03 

0= -0.2153E+02 1 = -0.2488E+01 2 = 0.1656E+02 3 = 0.3561 E+02 
4 = 0.5465E+02 5 = 0.7370E+02 6 = 0.9275E+02 7 = 0.1118E+03 

8 = 0.1308E+03 9 = 0.1499E+03 

Fig. 3.2. Stress Cix Contours for Sample Problem 
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LEGEND FOR FRAME NUMBER 2 (STRESS: Y) AT LOAD STEP 10 

MINIMUM = -0.1828E+02 MAXIMUM = 0.1557E+03 

0= -0.1791 E+02 1 = 0.1036E+01 2 = 0.1998E+02 3 = 0.3893E+02 
4= 0.5787E+02 5= 0.7682E+02 6= 0.9577E+02 7= 0.1147E+03 

8 = 0.1337E+03 9 = 0.1526E+03 

Fig. 3.3. Stress lJy Contours for Sample Problem 
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LEGEND FOR FRAME NUMBER 3 (STRESS: XV) AT LOAD STEP 10 

MINIMUM = 0.5811E+01 MAXIMUM = 0.8349E+02 

0= 0.5928E+01 1 = 0.1436E+02 2= 0.2279E+02 3= 0.3123E+02 
4 = 0.3966E+02 5 = 0.4809E+02 6 = 0.5653E+02 7 = 0.6496E+02 

8 = 0.7339E+02 9 = 0.8182E+02 

Fig. 3.4. Stress Txy Contours for Sample Problem 
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LEGEND FOR FRAME NUMBER 4 (STRESS: Z) AT LOAD STEP 10 

MINIMUM = -O.8925E+01 MAXIMUM = O.9260E+02 

0= -O.8746E+01 1 = O.2309E+01 2 = O.1336E+02 3 = O.2442E+02 
4 = O.3547E+02 5 = 0.4653E+02 6 = O.5758E+02 7 = O.6864E+02 

8 = O.7969E+02 9 = O.9075E+02 

Fig. 3.5. Stress (J z Contours for Sample Problem 
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LEGEND FOR FRAME NUMBER 5 (STRAIN: Xl AT LOAD STEP 10 

MINIMUM = -0.3062E-03 MAXIMUM = 0.1073E-02 

0= -0.3001E-03 1 = -0.149BE-03 2 = 0.3920E-06 3 = 0.1506E-03 
4 = 0.300BE-03 5 = 0.4511 E-03 6 = 0.6013E-03 7 = 0.7515E-03 

B = 0.9017E-03 9 = 0.1052E-02 

Fig. 3.6. Strain Cx Contours for Sample Problem 
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LEGEND FOR FRAME NUMBER 6 (STRAIN: Y) AT LOAD STEP 10 

MINIMUM = -0.5205E-03 MAXIMUM = 0.1123E-02 

0= -0.51 00E-03 1 = -0.3311 E-03 2 = -0.1522E-03 3 = 0.2672E-04 
4 = 0.2056E-03 5 = 0.3846E-03 6 = 0.5635E-03 7 = 0.7424E-03 

8 = 0.9213E-03 9 = 0.1100E-02 

Fig. 3.7. Strain O"y Contours for Sample Problem 



66 3 Using DNA 

LEGEND FOR FRAME NUMBER 7 (STRAIN: XV) AT LOAD STEP 10 

MINIMUM = 0.2067E-03 MAXIMUM = 0.2970E-02 

0= 0.2109E-03 1 = 0.5109E-03 2 = 0.8109E-03 3 = 0.1111E-02 
4 = 0.1411 E-02 5 = 0.1711 E-02 6 = 0.2011 E-02 7 = 0.2311 E-02 

8 = 0.2611 E-02 9 = 0.2911 E-02 

Fig. 3.8. Strain Yxy Contours for Sample Problem 
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LEGEND FOR FRAME NUMBER 8 (STRAIN: Z) AT LOAD STEP 10 

MINIMUM = O.OOOOE+OO MAXIMUM = O.OOOOE+OO 

0= O.OOOOE+OO 1 = O.OOOOE+OO 2 = O.OOOOE+OO 3 = O.OOOOE+OO 
4 = O.OOOOE+OO 5 = O.OOOOE+OO 6 = O.OOOOE+OO 7 = O.OOOOE+OO 

8 = O.OOOOE+OO 9 = O.OOOOE+OO 

Fig. 3.9. Strain Sz Contours for Sample Problem 
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LEGEND FOR FRAME NUMBER 9 (VOLUMETRIC STRAINS) AT LOAD STEP 10 

MINIMUM = -O.1289E+02 MAXIMUM = O.1338E+03 

0= -O.1263E+02 1 = O.3335E+01 2 = O.1930E+02 3 = O.3527E+02 
4= O.5124E+02 5= O.6721E+02 6= O.8318E+02 7= O.9914E+02 

8= O.1151E+03 9= O.1311E+03 

Fig. 3.10. Volumetric Strain ev Contours for Sample Problem 
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LEGEND FOR FRAME NUMBER 10 (WORK) AT LOAD STEP 10 

MINIMUM = O.OOOOE+OO MAXIMUM = O.OOOOE+OO 

0= O.OOOOE+OO 1 = O.OOOOE+OO 2 = O.OOOOE+OO 3 = O.OOOOE+OO 
4 = O.OOOOE+OO 5 = O.OOOOE+OO 6 = O.OOOOE+OO 7 = O.OOOOE+OO 

8 = O.OOOOE+OO 9 = O.OOOOE+OO 

Fig. 3.11. Plastic Work K Contours 
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3.S 
Installing the DNA Windows Interface 

A Winodws program (or interface) is also available so that the user can edit 
the input file, run the analysis, view the output file, print the results, and view 
the finite element mesh and contours, all from within the same Windows en
vironment. Here are the instructions to install the DNA Windows interface 
successfully on the hard disk: 

1. Make a folder on the C: drive of your computer hard disk and call it DNA. 
This must be done on the C: partition of your hard disk and not on any 
other partition for the Windows interface to work properly. You should 
now have the folder C:\DNA available on your computer. 

2. Copy the following files from the accompanying CD-ROM into the folder 
C:\DNA that you created in step 1. 

DNA.EXE 

DNA_S.EXE 

DNA_L.EXE 

SAMPLE.IN 

.:.. . -+ IZ. Ii'))< lID . 
~1~j~c~~~~~~~~~~~~u.=-~~~~~==~~=-----------------------~3 

D Dna 

-----J.oU)I." " 

... 11,. 

Fig. 3.12. Splash Screen of DNA Windows Interface 
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Fig. 3.13. DNA Windows Interface with Menu Bar 

3. Make sure that you have the Ghostscript program GSView installed on your 
computer in a folder called C:\GSTOOLS. See Section 3.3 to install it if it is 
not already installed. 

4. Run the program DNA.EXE from within Windows. This will start the DNA 
Windows interface. The splash screen will appear for a few seconds as 
shown in Figure 3.12. Then the interface will start with one menu bar as 
shown in Figure 3.13. See Section 3.6 below for instructions on how to use 
the interface. 

3.6 
Using the DNA Windows Interface 

The DNA Windows interface is an integrated environment where you can per
form all the operations of editing the input file, running the analysis, viewing 
the results and contours all from within the same menu bar. After installing 
the Windows DNA interface successfully, here are the instructions on how to 
use it: 

1. Click the File menu and select Open in order to open an input file. You 
should get the name of the input file displayed at the top left corner of the 
screen. 
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Fig. 3.14. Editing the Input File with NotePad 

2. Click the Edit menu and select Input File to edit the input file. This will start 
the Winodws NotePad program and opens the desired input file as shown in 
Figure 3.14. If the input file is too long, the program will prompt you to 
start WordPad instead. To open a new file, open first an existing file then 
click the File menu and select New for the NotePad menu bar. 

3. Click the Run menu and select the type of analysis you would like to run. 
Both small strain and large strain damage analysis are available at this step. 
Once the desired type is selected, Windows will start either DNA_S or 
DNA_L in a DOS Window (see Figure 3.15) depending on the type selected. 

4. Click the Edit menu and select Output File in order to view the results in the 
output file. This will again start NotePad and open the output file. The out
put file is also available for editing at this step. 

5. Click the Plot menu to view the finite element mesh and contours. This will 
start GSView automatically as shown in Figure 3.16. This step will run suc
cessfully only if the GRAPHICS option is included in the input file. 

6. Click the Help menu for information on the program. 
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Fig. 3.15. Running the Analysis in a DOS Window 
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Fig. 3.16. Viewing the Finite Element Mesh with GSView 
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3.7 
Example 1 - Plane Strain Problem in Plasticity 

The plane strain elasto-plastic problem shown in Figure 3.17 is solved in this 
example using DNA. Two concentrated loads of 10 kN each act at the upper 
right corner (node 9) of the plate. It is assumed that plane strain conditions 
exist in the plate. The plate is made of aluminum alloy 2024-T3 with E = 
73,089 MPa and v = 0.3. The thickness of the plate is 3.175 mm. The isotropic 
and kinematic hardening parameters used are c = 792.9 MPa and b = 275.8 
MPa, respectively. Initial yielding is characterized by 

cry 
y'3 = 226.8 MPa 

Four-node isoparametric quadrilateral elements (element type 2204) are 
used to model this problem. Only four such elements are used for illustrative 
purposes. More elements should be used to obtain reliable results. A total of 
100 increments of the load are used with 50 iterations per increment. A con
vergence factor of 0.0001 is set for this problem. This is obviously a TYPE 2 
analysis (plasticity without damage effects) according to DNA terminology. 

The DNA input file for this problem was shown previously in Table 3.2 for 
the sample example problem. In addition, graphical output including various 
stress and strain contours were shown in Figures 3.1-3.11 at the end of the 
first 10 increments. 

3.8 
Example 2 - Elastic Cantilever With Two Elements 

This example is provided in order to check the accuracy of the results ob
tained by DNA and compare them with results of other finite element pro-

Fig. 3.17. Sample Problem t ;OkN for Example 1 
7 B 

10mm I ~ 10 kN 

6 
5 YL 

2 3 X 

1-- Bmm ~I 
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Fig. 3.18. Cantilever Beam 
with Two Elements ~ 10 Kips 

~~------.-------. 6 
2 4 

Table 3.3. Input File for Example 2 (test.in) 

TITLE 1 
TEST 
NIPXI 3 NIPETA 3 

I'" 

MATERIAL 1 E 30000. NU 0.0 THICK 1.0 
TYPE 1 
NODES 6 
1 0.00.00 
20.01.00 
31.00.00 
41.01.00 
52.00.00 
62.01.00 
BOUNDARY 6 
1 1 1 0 
21 1 0 
3000 
6001 
INCIDENCES 2 
1 2104,4, 1 3 4 2,1,0 
2 2104,4, 3 5 6 4,1,0 
LOADS 1 
6 0.0 10.0 0.0 

3 5 

2in 
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grams when no damage effects are present. A small elastic thin cantilever with 
two elements is considered as shown in Figure 3.18. Plane stress conditions 
are assumed to exist in this problem. The modulus of elasticity is E = 30 X 

103 ksi and Poisson's ratio is v = 0.0. The thickness of the cantilever plate is t 
= 1 in. Obviously this is a TYPE 1 analysis (elasticity with no damage effects) 
according to DNA terminology. The finite element mesh of two elements is 
shown in Figure 3.18. Only two elements are used for illustrative purposes. 
More elements should be used to obtain reliable results. 

The cantilever plate is subjected to a concentrated load of 10 kips acting at 
its free edge (at node 6). Four-node isoparametric quadrilateral elements (ele-
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ment type 2104) are used. Three integration points are used in each direction 
for each element. The DNA input file for this problem is shown in Table 3.3. 

After running this problem successfully with DNA, the output file shown in 
Table 3.4 is obtained. No graphical output is produced for this example as 
there are no graphics commands in the input file. 

3.9 
Example 3 - Center-Cracked Plate Under Uniaxial Tension 

A center-cracked plate is analyzed as shown in Figure 3.19. The plate is sub
jected to uniaxial tension in the longitudinal direction. The material used is 
aluminum alloy 2024 T3 (E = 73,087 MPa, v = 0.3) with both kinematic and 
isotropic hardening parameters of b = 275.8 MPa and c = 792.9 MPa, respec
tively. Initial yielding is characterized by 

CYy 
,J3 = 226.8 MPa 

Since the thickness of the plate (t = 3.175 mm) is small compared with 
other dimensions, a state of plane stress is assumed. 

Since the plate geometry and loading are symmetrical, only one quarter of 
the plate is discretized by finite elements (shaded area in the figure). Eight
node isoparametric quadrilateral finite elements are used in the finite element 
mesh as shown on page 428. We avoid the use of singularity elements around 
the crack tip by using a large number of regular elements at that point. The 
total number of elements used is 381 with 1228 nodes. 

A load increment of 10 MPa is used until a total load of 300 MPa is reached. 
The DNA input file MEIPL.IN is available on the accompanying CD-ROM as 
well as the output file MEIPL.OUT. The finite element mesh (around the crack 
tip) for this problem is shown in Figure 3.20 which is taken from the file 
MEIPL.PS which can be converted into MEIPL.PDF using Adobe Acrobat Dis
tiller. Both the postscript and PDF output files are available on the accompa
nying CD-ROM. 

3.10 
Compiling and Building the DNA Executables 

In this Section, instructions are provided to compile and build the DNA ex
ecutable files using Digital or Compaq Visual Fortran (version 5 or 6 or later) 
under Windows 95/98/NT or Windows 2000. The files can also be compiled 
using the old Microsoft Fortran Powerstation compiler. All the files needed 
are available on the accompanying CD-ROM. These instructions are provided 
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Table 3.4. Output File for Example 2 (test.out) 

TEST 

COORDINATES OF THE NODES 
NODE NO. X Y Z 

1 .0000000000 .0000000000 .0000000000 
2 .0000000000 1.000000000 .0000000000 
3 1.000000000 .0000000000 .0000000000 
4 1.000000000 1.000000000 .0000000000 
5 2.000000000 .0000000000 .0000000000 
6 2.000000000 1.000000000 .0000000000 

ELEMENT INCIDENCES (ELEMENT TYPE: 2104) 
ELEMENT NO. INCIDENCES 

1342 
2 3564 

NODAL LOADS 
NODE NUMBER X Y Z 

6 .0000 10.00 .0000 

NUMBER OF EQUATIONS = 8 
HALF BANDWIDTH = 8 
AVERAGE BANDWIDTH = 6 
SIZE OF THE STIFFNESS MATRIX = 36 

»»»> OUTPUTS AT INCREMENT 1 
********** ELEMENT = 1 ********** 

STRAIN COMPONENTS 
POINT X Y EXX EYY EXY EZZ 
1 .11270 .11270 1.54919E-03 -8.83935E-06 2.24624E-03 .00000 
2 .50000 .11270 1.54919E-03 -3.92157E-05 6.97043E-04 .00000 
3 .88730 .11270 1.54919E-03 -6.95920E-05 -8.52150E-04 .00000 
4 .11270 .50000 .00000 -8.83935E-06 2.21586E-03 .00000 
5 .50000 .50000 .00000 -3.92157E-05 6.66667E-04 .00000 
6 .88730 .50000 .00000 -6.95920E-05 -8.82527E-04 .00000 
7 .11270 .88730 -1.54919E-03 -8.83935E-06 2.18548E-03 .00000 
8 .50000 .88730 -1.54919E-03 -3.92157E-05 6.36290E-04 .00000 
9 .88730 .88730 -1.54919E-03 -6.95920E-05 -9.12903E-04 .00000 

STRESS COMPONENTS 
POINT X Y SXX SYY SXY SZZ 
1 .11270 .11270 46.476 -.26518 33.694 .00000 
2 .50000 .11270 46.476 -1.1765 10.456 .00000 
3 .88730 .11270 46.476 -2.0878 -12.782 .00000 
4 .11270 .50000 .00000 -.26518 33.238 .00000 
5 .50000 .50000 .00000 -1.1765 10.000 .00000 

77 
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Table 3.4. (continued) 

6 .88730 .50000 .00000 -2.0878 -13.238 .00000 
7 .11270 .88730 -46.476 -.26518 32.782 .00000 
8 .50000 .88730 -46.476 -1.1765 9.5444 .00000 
9 .88730 .88730 -46.476 -2.0878 -13.694 .00000 

********** ELEMENT = 2 ********** 
STRAIN COMPONENTS 

POINT X Y EXX EYV EXY EZZ 
1.1127 .11270 5.16398E-04 -1.65559E-05 9.70430E-04 .00000 

2 1.5000 .11270 5.16398E-04 1.96078E-04 4.54032E-04 .00000 
3 1.8873 .11270 5.16398E-04 4.08713E-04 -6.23655E-05 .00000 
4 1.1127 .50000 2.16840E-19 -1.65559E-05 1.18306E-03 .00000 
5 1.5000 .50000 2.16840E-19 1.96078E-04 6.66667E-04 .00000 
6 1.8873 .50000 2.16840E-19 4.08713E-04 1.50269E-04 .00000 
7 1.1127 .88730 -5.16398E-04 -1.65559E-05 1.39570E-03 .00000 
8 1.5000 .88730 -5.16398E-04 1.96078E-04 8.79301 E-04 .00000 
9 1.8873 .88730 -5.16398E-04 4.08713E-04 3.62903E-04 .00000 

STRESS COMPONENTS 
POINT X Y SXX SYY SXY SZZ 

1.1127 .11270 15.492 -.49668 14.556 .00000 
2 1.5000 .11270 15.492 5.8824 6.8105 .00000 
3 1.8873 .11270 15.492 12.261 -.93548 .00000 
4 1.1127 .50000 6.50521E-15 -.49668 17.746 .00000 
5 1.5000 .50000 6.50521 E-15 5.8824 10.000 .00000 
6 1.8873 .50000 6.50521 E-15 12.261 2.2540 .00000 
7 1.1127 .88730 -15.492 -.49668 20.935 .00000 
8 1.5000 .88730 -15.492 5.8824 13.190 .00000 
9 1.8873 .88730 -15.492 12.261 5.4435 .00000 

REACTIONS AT THE NODES 
NODE NO. RX RY RZ 
1 -20.00000000 -4.705882353 
2 20.00000000 -5.294117647 
3 -2.1700306482E-16 -1.0172540436E-14 
4 -5.4928934665E-15 2.6562926121 E-14 
5 -2.1250362581E-16 6.3901249743E-15 
6 7.5599249083E-15 10.00000000 

DISPLACEMENT OF THE NODES 
NODE NO. UX UY UZ 
1 .0000000000 .0000000000 
2 .0000000000 .0000000000 
3 2.0000000000E-03 2.7058823529E-03 
4 -2.0000000000E-03 2.6274509804E-03 
5 2.6666666667E-03 7.7647058824E-03 
6 -2.6666666667E-03 8.2352941176E-03 

»»»> TOTAL NUMBER OF ITERATIONS FOR THIS RUN IS = 2 
CPU USAGE: 0:00:00.00 hrs 
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Fig. 3.19. Center-Cracked 
Plate Subjected to Uniaxial 
Tesnion 

Fig. 3.20. Finite Element 
Mesh for Example 3 
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to programmers who wish to modify DNA or include additional features to the 
program. 

In order to compile and build the file DNA_L.EXE, make a new project that 
includes the following files: 

DNA_LARG.FOR 

SXM.FOR 

TENSOR.FOR 

PRTL.FOR 

The first file above is the source code for DNA_L while the last three files 
comprise the tensor library - a library of tensor operations that are extensively 
called by the program (see Chapter 5 for more details). You should now be 
able to build directly the executable file DNA_L.EXE. 

In order to compile and build the file DNA_S, make a new project that in-
cludes the following files: 

SOLUTION.FOR 

GSTIFEFOR 

LOAD_VEC.FOR 

ELEMLIB.FOR 

BOUNDARY.FOR 

CONTROL.FOR 

TENS_UTL.FOR 

PLOT.FOR 

IO.FOR 

UTILITY. FOR 
STRS_ VEC.FOR 

DNA.FOR 

BLOCKDAT.FOR 

MATERIAL.FOR 

SXM.FOR 

TENSOR.FOR 

PRTL.FOR 

The first 14 files above contain the source code for DNA_S while the last three 
files comprise the tesnor library (see Chapter 5 for more details on the tensor 
library). You should now be able to build directly the executable file DNA_
S.EXE. 

Finally, the programmer should note that the source code for DNA_L is 
contained in one large file while the source code for DNA_S is divided into 
14 small files as shown above. 
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Exercises 

1. Write a FORTRAN subroutine to evaluate the expression for damage evolu
tion given in Equation (1.84). Use the tensor library. 

2. Write a FORTRAN subroutine to evaluate the expression of Q given in ex
ercise 1 of chapter 2. Use the tensor library. 

3. Modify the FORTRAN source code of DNA (available on the accompanying 
CD-ROM) so as to include damage analysis of composite materials using 
the local approach. For details about the local approach see the book by 
Voyiadjis and Kattan (1999). 

4. Modify the Visual Basic source code of the DNA Windows interface (avail
able on the accompanying CD-ROM) so that the user can enter data inter
actively through the use of a graphical pre-processor instead of editing in
put files. The new Windows interface should include the capability of ac
cepting data input interactively and writing it to an input file internally. 
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DNA commands must be entered in the input file for any problem to be solved 
with this program. The following rules apply to DNA commands: 
1. Real numbers can be entered using an "F" or "E" format with "D" or "E" 

exponent notation. 
2. Many commands have numeric arguments but there are some commands 

that have no arguments. 
3. Commands must be separated from their numeric arguments with white 

space (blank space or TAB character). 
4. Numeric arguments can be separated by white space or comma. 
5. Additionally, commands must be separated from previous commands (with 

or without arguments) with white space. 
6. Anything following the characters /* on the line is considered a comment 

and will not be processed by DNA. 
7. Only the first four characters of each command are read by DNA. The re

maining part of the command is not processed. 

4.1 
Command Reference 

The following is a comprehensive reference guide for all the known commands 
available in DNA. For each command, the format of the command, the types 
of arguments, notes, and examples are provided. 

TITLE n 

Followed by n lines for the title of the problem. 

Notes: Usually n = 1, as one title line is sufficient. n is an integer. 

Example: 

TITLE 1 

Analysis of a Cantilever Beam 

P. I. Kattan et al., Damage Mechanics with Finite Elements
© Springer-Verlag Berlin Heidelberg 2002
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LINEAR or NONLINEAR 

Use LINEAR to perform a linear analysis and use NONLINEAR for a nonlinear 
analysis. Do not use both these commands in the same input file. 

Example: 

LINEAR 

SYMMETRIC or NONSYMMETRIC 

Use SYMMETRIC for a solution with a symmetric stiffness matrix. Use NON
SYMMETRIC for a general nonsymmetric stiffness matrix. Do not use both 
these commands in the same input file. 

Example: 

NONSYMMETRIC 

DIMENSION n 

Use this command to set the dimension of the problem. Use n = 2 for two
dimensional problems and n = 3 for three-dimensional problems. 

Note: n is an integer. 

Example: 

DIMENSION 2 

TYPE n 

Use this command to set the type of analysis required. Four analysis types are 
available in DNA as follows: 

n = 1 for elastic analysis. 

n = 2 for plastic analysis. 

n = 3 for elastic damage analysis. 

n = 4 for plastic damage analysis. 

Note: n is an integer. 

Example: 

TYPE 2 
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COORDINATES n or NODES n or JOINTS n 

Followed by n lines (or less when using node generation) 
form: 

of the following 

k Xk Yk m 
k Xk Yk Zk m 

for two-dimensional problems 
for three-dimensional problems. 

where 
n 
k 

Notes: 

number of nodes 
node number 
x-coordinate of node k 
y-coordinate of node k 
z-coordinate of node k (for three-dimensional problems only) 
node number increment 

When m = 0 , all nodal coordinates must be given explicitly by 
the user. When m -I- 0, then all nodes between the start node and 
the end node will be generated using a node number increment of 
m. 

The coordinates of the nodes must be entered using a consistent system of 
units. 

The value of n should not exceed 3000. 
are integers 
are real numbers 

Example: (for a two-dimensional problem) 

NODES 6 
1 0.0 0.0 0 
2 0.0 1.0 0 
3 1.0 0.0 0 
4 1.0 1.0 0 
5 2.0 0.0 0 
6 2.0 1.0 0 

MEMBERS n or INCIDENCES n 

Followed by n lines (or less if element generation is used) of the form: 
k I nl kl k2 ......... knl mat m 

where 
n 
k 

number of members or elements 
element or member number 
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nl 
element type (see page 51 for element types) 
number of nodes per element (4, 8, or 20) 

kl k2 ......... knl node numbers of element k 
mat 
m 

Notes: 

material type number of element k 
element number increment 

When m = 0 , all element incidences must be given explicitly by 
the user. When m #- 0, then all elements between the start ele
ment and the end element will be generated using an element 
number increment of m. 

The value of n should not exceed 400, the value of mat should not exceed 10, 
and the value of nl should not exceed 20. 

n, k, 1, nl, kl k2 ......... knl> mat, m are integers 

Example: 

INCIDENCES 2 

1 2104, 4, 1 3 4 2, 1, 0 

2 2104, 4, 3 5 6 4, 1, 0 

BOUNDARY n 

Followed by n lines (or less if boundary generation is used) of the form: 

k nl n2 n3 m 

where 
n number of nodes where there are boundary conditions (e.g. sup

ports) 
k node number where there is a boundary condition (e.g. support) 
nl n2 n3 codes for boundary conditions (1 for a restrained degree offree

dom, 0 for an unrestrained degree of freedom). Include n3 only 
for three-dimensional problems. 

m increment number for boundary condition (e.g. support) 

Note: n, k, nl, n2, n3, m are integers 

Example: (for a two-dimensional problem) 

BOUNDARY 6 

1 1 1 0 

2 1 1 0 

3 0 0 0 

600 1 
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SKEW n 

Followed by n lines of the form: 
k 11 lz 13 

87 

where 
n number of nodes where there are skew (inclined) boundary con

ditions 
k 

Notes: 

Example: 

SKEW 1 
5 45 45 0 

node number where there is a skew (inclined) boundary condi
tion 
direction angles of skew (inclined) boundary conditions. Include 
13 only for three dimensional problems. 

the value of n should not exceed 300. 
are integers 
are in degrees 

MATERIAL n E a NU b THICK c 

Repeat this command line for each material type, where 
n material type number (should not exceed 10) 
a modulus of elasticity (Young's modulus) 
b 
c 

Notes: 

Example: 

Poisson's ratio 
thickness of element (for two-dimensional problems only) 

The values of a, b, and c must be entered using a consistent sys
tem of units 

MATERIAL 1 E 73087.0 NU 0.3 THICK 3.175 

LOADS n or LOADING n 

Followed by n lines of the form: 

k PI P2 P3 

where 
n number of nodes where there are applied force loads 
k node number where there is an applied force load 
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PI P2 P3 applied force loads at each degree of freedom (should not exceed 
three applied force loads at each node). Include P3 for three-di
mensional problems only. 

Notes: the values of PI> P2, and P3 should be entered using a consistent 
system of units 
n, k are integers 
PI P2 P3 are real numbers 

Example: (for a three dimensional problem) 

LOADS 1 
6 0.0 10.0 0.0 

DISPLACEMENTS n 

Followed by n lines of the form: 
k d l d2 d3 

where 
n number of nodes where there are applied displacements 
k node number where there is an applied displacement 
d l d2 d3 applied displacements at each degree of freedom (should not ex

ceed three applied displacements at each node). Include d3 for 
three-dimensional problems only. 

Notes: The values of d l , d2 , and d3 should be entered using a consistent 
system of units 
n, k are integers 
d l d2 d3 are real numbers 

Example: (for a three dimensional problem) 

DISPLACEMENTS 2 
3 5.0 0.0 0.0 
7 0.0 -7.4 0.0 

NIPXI a NIPETA b NIPSI c 

Use these commands to set the number of integration points for each element 
along the local axes, where: 

a number of integration points in the xi-direction 
b number of integration points in the ry-direction 
c number of integration points in the s -direction. Include this va-

1ue for three-dimensional problems only. 
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Notes: The values of a, b, and c should not exceed 3 

a, b, c are integers 

Example: (for a two-dimensional problem) 

NIPXI 3 NIPETA 3 

IRONS n 

Use this command to set the optimum integration points introduced by Irons, 
where: 

n number of Irons integration points 

Note: n is an integer 

Example: 

IRONS 2 

THICKNESS t 

Use this command for entering the thickness of two-dimensional finite ele
ments (also used as part of the MATERIAL command - see page 41), where: 

t thickness of two-dimensional finite elements 

Notes: The value of t must be entered using a consistent system of units 

t is a real number 

Example: 

THICKNESS 3.175 

E a 

Use this command for entering the modulus of elasticity or Young's modulus 
of the material used (also used as part of the MATERIAL command), where: 

a modulus of elasticity (Young's modulus) 

Notes: The value of a must be entered using a consistent system of units 

a is a real number 

Example: 

E 73087.0 
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NU b 

Use this command for entering Poisson's ratio (also used as part of the MA
TERIAL command - see page 41), where: 

b Poisson's ratio 

Notes: The value of b must be entered using a consistent system of units 

b is a real number 

Example: 

NUO.3 

WXaWYbWZc 

Use these commands for entering the specific weight of the material in each 
direction, where: 

a specific weight in x-direction 

b specific weight in y-direction 

c 

Notes: 

Example: 

WY 25.3 

YIELD Y 

specific weight in z-direction (used only for three-dimensional 
problems) 

The values of a, b, and c must be entered using a consistent sys
tem of units 

a, b, c are real numbers 

Use this command to set the yield strength of the material. Used only for 
plastic analysis (TYPE 2) and plastic damage analysis (TYPE 4), where: 

y yield strength of the material 

Notes: The value of y must be entered using a consistent system of units 

y is a real number 

Example: 

YIELD 190.53 
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ISOTROPIC c 

Use this command to set the isotropic hardening parameter of the material. 
Used only for plastic analysis (TYPE 2) and plastic damage analysis (TYPE 4), 
where: 

c isotropic hardening parameter of the material 

Notes: The value of c must be entered using a consistent system of units 

c is a real number 

Example: 

ISOTROPIC 792.92 

KINEMATIC a 

Use this command to set the kinematic hardening parameter of the material. 
Used only for plastic analysis (TYPE 2) and plastic damage analysis (TYPE 4), 
where: 

a kinematic hardening parameter of the material 

Notes: The value of a must be entered using a consistent system of units 

a is a real number 

Example: 

KINEMATIC 275.8 

BETA b 

Use this command to set the control parameter for kinematic hardening. Used 
only for plastic analysis (TYPE 2) and plastic damage analysis (TYPE 4), 
where: 

b control parameter for kinematic hardening (1 for kinematic 
hardening, 0 for no kinematic hardening) 

Note: b is an integer 

Example: 

BETA 1 
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DAMAGE d 

Use this command to set the damage parameter of the material. Used only for 
elastic damage analysis (TYPE 3) and plastic damage analysis (TYPE 4), 
where: 

d damage parameter of the material 

Notes: The value of d must be entered using a consistent system of units 
d is a real number 

Example: 

DAMAGE 0.4 

COEFFICIENT c 

Use this command to set the damage coefficient of the material. Used only for 
elastic damage analysis (TYPE 3) and plastic damage analysis (TYPE 4), 
where: 

c damage coefficient of the material 

Notes: The value of c must be entered using a consistent system of units 
c is a real number 

Example: 

COEFFICIENT 2.0 

DBBETA b 

Use this command to set the partial derivative constant 8B/8j3 of the material. 
Used only for elastic damage analysis (TYPE 3) and plastic damage analysis 
(TYPE 4), where: 

b partial derivative constant aBlaf3 of the material 

Notes: The value of b must be entered using a consistent system of units 
b is a real number 

Example: 

DBBETA 18000000.0 

INCREMENTS r 

Use this command to set the number of increments for the analysis, where: 
r number of increments for the analysis 
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Note: r is an integer 

Example: 

INCREMENTS 50 

ITERATIONS t 

Use this command to set the number of iterations within each increment for 
the analysis, where: 

t number of iterations within each increment 

Note: t is an integer 

Example: 

ITERATIONS 20 

CONVERGENCE c 

Use this command to set the tolerance (acceptable error or convergence fac
tor) for the analysis, where: 

c tolerance (acceptable error or convergence factor) for the analy
sis 

Note: c is a real number 

Example: 

CONVERGENCE 0.0001 

FACLOW I 

Use this command to set the lower convergence factor for the analysis, where: 
I lower convergence factor for the analysis 

Note: this command may be outdated in the latest version of DNA 
I is a real number 

Example: 

FACLOW 0.000001 

FACHIGH h 

Use this command to set the higher convergence factor for the analysis, where: 
h higher convergence factor for the analysis 



94 4 DNA Commands 

Note: this command may be outdated in the latest version of DNA 

h is a real number 

Example: 

FACHIGH 0.001 

STOP n 

Use this command to stop processing if divergence occurs after n iterations, 
where: 

n number of iterations to stop processing if divergence occurs 

Note: n is an integer 

Example: 

STOP 30 

RESTART 

Use this command to restart the analysis. 

Example: 

RESTART 

OUTPUT EVERY n 

Use this command to request writing the results to the output file every n 
increments, where: 

n number of increments for output 

Note: n is an integer 

Example: 

OUTPUT EVERY 10 
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GRAPHICS EVERY n 

WL a WR b WB c WT d 

CONTOURS 

LINE THICKNESS I 

END 

Use this command block to request plotting the finite element mesh and con
tours to a postscript file every n increments, where: 

n number of increments for plotting 

a 

b 

c 

d 

p 

q 
I 

Notes: 

Example: 

lower left x-coordinate of graphics window 

upper right x-coordinate of graphics window 

lower left y-coordinate of graphics window 

upper right y-coordinate of graphics window 

magnification factor for original geometry 

magnification factor for displacements 

thickness of all lines to be drawn 

Use CONTOURS only if you want contour plots 

n, I are integers 

a, b, c, d, p, q are real numbers 

GRAPHICS EVERY 5 

WL 0.0 WR 10.0 WB 0.0 WT 30.0 

CONTOURS 

LINE THICKNESS 1 

FMAG 1.0 DMAG 1.0 

END 

There are a few other DNA commands that are undocumented and are not 
used in this manual. They are PAX, PAY, PBX, PBY, RAX, RAY, RBX, RBY, 
BLAN, and ENDF. 
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4.2 
Library of Finite Elements in DNA 

The following types of finite elements are supported by DNA. Each element 
description is given along with the element type number and a sketch showing 
the used node numbering scheme in DNA. 
l. 4-noded isoparametric quadrilateral element: there are three types of this 

element as follows: 
2104 for two-dimensional plane stress problems. 
2204 for two-dimensional plane strain problems. 
2304 for two-dimensional axisymmetric problems. 

2. 8-noded isoparametric quadrilateral element: there are three types of this element 
as follows: 
2108 for two-dimensional plane stress problems. 
2208 for two-dimensional plane strain problems. 
2308 for two-dimensional axisymmetric problems. 

3. 9-noded Lagrangian element: there are three types of this element as follows: 
2109 for two-dimensional plane stress problems 
2209 for two-dimensional plane strain problems 
2309 for two-dimensional axisymmetric problems 

4. 8-noded hexadedron solid element: there is only one type of this element as fol
lows: 
3008 for three-dimensional problems 

5. 20-noded hexahedron solid element: there is only one type of this element as fol
lows: 
3020 for three-dimensional problems 

Fig. 4.1. 4-noded isoparame
tric quadrilateral element 

Fig. 4.2. 8-noded isoparame
tric quadrilateral element 

x 

4 3 

D 
2 

4 7 3 

5 2 
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Fig. 4.3. 9-noded Lagrangian 4 7 3 
element 
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Fig. 4.4. 8-noded hexahedron 4 3 
solid element 
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5 The Tensor Library 

5.1 
Introduction 

The tensor library is a collection of 72 Fortran subroutines that handle several 
tensor operations useful in Damage Mechanics. The tensor library is called 
extensively by the DNA program to handle all the tensor operations. All ten
sors are assumed to have an index range of 1, 2, 3. All matrices are square of 
size 3 x 3 or 6 x 6 if full. The tensor library is available on the accompanying 
CD-ROM in three files, namely TENSOR. FOR, PRTL.FOR, and SXM.FOR. The 
subroutines are available for both single precision and double precision calcu
lations. The following is a list of all the subroutines in the tensor library. Re
move the letter "D" from the beginning of the name of each subroutine to use 
the single precision version; otherwise the double precision version will be 
used. 

1. DALminus_Bi 
2. DALplus_Bi 
3. DAiLminus_Bij 
4. DAiLplus_Bij 
5. DALBi 
6. DALBj 
7. DAiLBij 
8. DAik_Bkj 
9. DAiLBkl 

10. DAik_Bjl 
11. DAiLBjk 
12. DAiLBj 
13. DAijkLBklmn 
14. DAijkLBijkl 
15. DAijkLBklij 
16. DAijkLBijmn 
17. DAijkLBmnkl 
18. DAijkLBkl 

P. I. Kattan et al., Damage Mechanics with Finite Elements
© Springer-Verlag Berlin Heidelberg 2002
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19. DAijkLBmn 
20. DAijkLBij 
21. DAijklmn_Bmn 
22. DAijklmn_Bkl 
23. DAijklmn_Bij 
24. Diarray 
25. Dtensocto_matrix 
26. Dvectocto_tensor 
27. Dtensocto_vector 
28. Dvectoc6_to_tensor 
29. Dtensocto_vectoc6 
30. Dvectoc9 _to_tensor 
31. Dtensocto_vectoc9 
32. Dsymmetrize 
33. Dtensocto_matrix_full 
34. DmatrixjulLto_tensor 
35. Darray _copy 
36. Dtensocinverse 
37. DAijkLminus_Bijkl 
38. DAijkLplus_Bijkl 
39. DAijklmn_minus_Bijklmn 
40. DAijklmn_plus_Bijklmn 
41. Dscalacmultiply _Ai 
42. Dscalacmultiply_Aij 
43. Dscalacmultiply _Aijkl 
44. Dscalacmultiply _Aijklmn 
45. DAik_Bjk 
46. DAkLBkj 
47. DAjLBj 
48. DAijklmn_Bijkl 
49. DAijklmn_Bijmn 
50. DAijklmn_Bklmn 
51. DAijklmn_Bklij 
52. DAijklmn_Bmnij 
53. DAijklmn_Bmnkl 
54. Didentity 
55. Didentity_4 
56. Dammij 
57. Dsdeviator 
58. Dsdeviatoc4 
59. Daijij 
60. Daiijj 
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6l. Daii 
62. DAijklmn_Bijpq 
63. DAijklmn_Bpqij 
64. DAijklmn_Bklpq 
65. DAijklmn_Bpqkl 
66. DAijklmn_Bmnpq 
67. DAijklmn_Bpqmn 
68. Dpermute 
69. Dmatrix_transpose 
70. DvectocfulLto_tensor 
7l. Dtensocto_vectocfull 
72. SXM 

5.2 
Fortran Source Code 
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The complete Fortran source code for the tensor library is stored on the ac
companying CD-ROM. A few comment statements are given at the beginning 
of each subroutine explaining the function of the subroutine and the argu
ments used. See the DNA source code on the CD-ROM for examples on how 
to call these subroutines. 
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Contents of the Accompanying CD-ROM 

The accompanying CD-ROM includes five folders as follows: 

Executables: 

This folder includes the DNA DOS executables and the DNA Windows Inter
face. See Sections 3.1 and 3.2 for installing and running DNA. 

Example Input Files: 

This folder includes some example input files. Also the resulting output, post
script, and PDF files for some of these examples are included. 

Ghostscript: 

This folder includes the compressed file GSV27550.EXE which contains both 
Ghostscript and GSView. See Section 3.3 for installing and running GSView. 

DNA Source Code: 

This folder includes the complete source code for DNA in 18 Fortran files. 
These include the source code for DNA_S, DNA_L, and the tensor library. 
See Section 3.10 for compiling the source code and building the DNA execu
tables. 

DNA Windows Interface Source Code: 

This folder includes the Visual Basic source code for the DNA Windows Inter
face. See Sections 3.5 and 3.6 for installing and running the DNA Windows 
Interface. 
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