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Preface

Not simple, but as simple as possible

Physics should be made as simple as possible,
but not any simpler.

—A. Einstein

Einstein gravity should be made as simple as possible, but not any simpler.
My goal is to make Einstein gravity∗ as simple as possible. I believe that Einstein’s

theory should be readily accessible to those who have mastered Newtonian mechanics and
a modest amount of classical mathematics. To underline my point, I start with a review of
F =ma .

Seriously, what do you need to know to read this book? Only some knowledge of
classical mechanics and electromagnetism! So I fondly imagine, perhaps unrealistically.
More importantly, you need to be possessed of what we theoretical physicists call sense—
physical, mathematical, and also common.

I wrote this book in the same spirit as my Quantum Field Theory in a Nutshell.1 In his
Physics Today review of that book, Zvi Bern wrote this lovely sentence aptly capturing my
pedagogical philosophy: “The purpose of Zee’s book is not to turn students into experts—
it is to make them fall in love with the subject.” I might extend that to “fall in love with the
subject so that they might desire to become experts.” Here I am echoing William Butler
Yeats, who said, “Education is not the filling of a pail, but the lighting of a fire.”

∗ Also known as general relativity.
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A portion of this book can be used for an undergraduate course. I have done it, and I
provide a detailed course outline later in this preface.

Accessible is not to be equated with dumbed-down or watered-down. Also, accessible is
not necessarily the same as elementary: in the last parts of the book, I include some topics
far beyond the usual introductory treatment.

My strategy to make Einstein gravity as simple as possible has two prongs. The first is the
emphasis on symmetry. As some readers may know, I have written an entire book2 on the
role of symmetry in physics, and I absolutely love how symmetry guides us in constructing
physical theories, a notion that started with Einstein gravity, in fact. The second is the
extensive use of the action principle. The action is invariably simpler than the equations of
motion and manifests the inherent symmetry much more forcefully. I can hardly believe
that some well-known textbooks on Einstein’s theory barely mention the Einstein-Hilbert
action. Symmetry and the action principle constitute the two great themes of theoretical
physics.

To get a flavor of what the book is about, you might want to glance at the recaps first;
there is one at the end of each of the ten parts of the book.

How difficult is Einstein gravity?

Any intelligent student can grasp it without too much trouble.
—A. Einstein, referring to his theory of gravity

When Arthur Eddington returned from the famous 1919 solar eclipse expedition that
observed light from a distant star bending in agreement with Einstein gravity, somebody
asked him if it were true that only three people understood Einstein’s theory. Eddington
replied, “Who is the third?” The story, apocryphal3 or not, is one of many4 that gives
Einstein’s theory its undeserved reputation of being incomprehensible.

I believe that in some cases, people like to persist in believing that Einstein’s theory is
beyond them. A renowned philosopher who is clearly well above average in intelligence
(and who understands things that I find impossible to understand) once told me that he
was tired of popular accounts of general relativity and that he would like to finally learn
the subject for real. He also emphasized to me that he had taken advanced calculus5 in
college, as if to say that he could handle the math. I replied that, for a small fee, my
impecunious graduate student could readily teach him the essence of general relativity
in six easy lessons. I never heard from the renowned philosopher again. I was happy and
he was happy: he could go on enunciating philosophical profundities about relative truths6

and physical reality.
The point of the story is that it is not that difficult.
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For whom is this book intended

Experience with my field theory textbook suggests that readers of this book will include the
following overlapping groups: students enrolled in a course on general relativity, students
and others indulging in the admirable practice of self-study, professional physicists in
other research specialties who want to brush up, and readers of popular books on Einstein
gravity who want to fly beyond the superficial discussions these books (including my own7)
offer. My comments below apply to some or all of these groups.8

Personally, I feel special sympathy for those studying the subject on their own, as I
remember struggling9 one summer during my undergraduate years with a particularly
idiosyncratic text on general relativity, the only one I could find in São Paulo back in those
antediluvian times. That experience probably contributed to my desire to write a textbook
on the subject. From the mail I have received regarding QFT Nut, I have been pleasantly
surprised, and impressed, by the number of people out there studying quantum field
theory on their own. Surely there are even more who are capable of self-studying Einstein
gravity. All power to you! I wrote this book partly with you in mind.

Serious students of physics know that one can’t get far without doing exercises. Some
of the exercises lead to results that I will need later.

Quite naturally, I have also written this book with an eye toward quantum field theory and
quantum gravity. While I certainly do not cover quantum gravity, I hope that the reader who
works through this book conscientiously will be ready for more specialized monographs10

and the vast literature out there.
So, I prevaricated a little earlier. In the latter part of the book, occasionally you will need

to know more than classical mechanics and electromagnetism. But, to be fair, how do you
expect me to talk about Hawking radiation, a quintessentially quantum phenomenon, in
chapter VII.3? Indeed, how could we discuss natural units in the introduction if you have
never heard of quantum mechanics? For the readers with only a nodding acquaintance
with quantum mechanics, the good news is that for the most part, I only ask that you
know the uncertainty principle.

I do not doubt that some readers will encounter difficult passages. That’s because I have
not made the book “any simpler”!

In the preface to the second edition of my quantum field theory book, I mentioned that
Steve Weinberg and I, each referring to his own textbook, each said, “I wrote the book that
I would have liked to learn from.” So this is the book I would have liked as an undergrad∗

eager to learn Einstein gravity. I would have liked having at least a flavor of what the latest

∗ In a letter to the editors of Physics Today in 2005, A. Harvey and E. Schucking wrote that, in view of the
“monumental lip service” paid to Einstein in the physics community, “it is a scandal” that Einstein gravity is still
not regularly taught to undergraduates. I find it even more of a scandal that many physics professors proudly
profess ignorance of Einstein gravity, saying that it is irrelevant to their research. Yes, maybe, but this is akin to
being proudly ignorant of Darwinian evolution because it is irrelevant to whatever you are doing.
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excitement was all about. In this spirit, I offer chapter X.6 on twistors, for example, trusting
the reader to be sophisticated enough to know that all one should expect to get from a single
textbook chapter is an entry key to the research literature rather than a complete account
of an emerging area.

The importance of feeling amazed, and amused

I am amazed that students are not amazed.
The action principle amazed Feynman when he first heard about it. In learning theoret-

ical physics, I was, and am, constantly amazed. But in teaching, I am amazed that students
are often not amazed. Even worse, they are not amused.

Perhaps it is difficult for some students to be amazed and amused when they have to
drag themselves through miles of formalism. So this exhortation to be amazed is related
to my attempt to keep the formalism to an absolute minimum in my textbooks and to get
to the physics.

To paraphrase another of my action heroes, students should be required to gasp and
laugh11 periodically. Why study Einstein gravity unless you have fun doing it?

As much fun as possible

Bern started his review of my quantum field theory textbook thus:

When writing a book on a subject in which a number of distinguished texts already exist, any

would-be author should ask the following key question: What new perspectives can I offer that

are not already covered elsewhere? . . . perhaps foremost in A. Zee’s mind was how to make

Quantum Field Theory in a Nutshell as much fun as possible.

Good question! My answer remains the same. I want to make Einstein gravity as much
fun as possible.

Sidney Coleman, my professor in graduate school and thesis advisor, once advised me
that theoretical physics is a “gentleman’s diversion.” I was made to understand that I
should avoid doing long sweaty calculations. This book reflects some of that spirit. Thus,
in chapter VI.1, instead of deriving Einstein’s field equation as a true Confucian scholar
would, I try to get to it as quickly as possible by a method I dub “winging it southern
California style.” Similarly, in chapter VI.2, I get to cosmology as quickly as possible.

This invariably brings me to the dreaded topic of drudgery in general relativity. Many
theory students in my generation went into particle physics rather than general relativity
to avoid the drudgery of spending an entire day calculating the Riemann curvature tensor.
I did.12 But that was the old days. Nowadays, students of general relativity can use ready-
made symbolic manipulation programs13 to do all the tedious work. I strongly urge you,
however, to write your own programs, as I did, rather than open a can. It also goes without
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saying that you should calculate the Riemann curvature tensor from scratch at least a few
times to know how all the cogs fit together.

You make the discoveries

My pedagogical philosophy is to let students discover certain things on their own. Some
of these lessons evolved into what I call extragalactic fables. For example, in part IV, I let
the extragalactic version of you discover electrodynamics and gravity. In chapter IV.3, you
discover that gravity affects the flow of time.

I also whet your appetite by anticipating. For example, I mention the Einstein-Rosen
bridge already in chapter I.6. In working out the shortest distance between two points in
chapter II.2, I mention that you will encounter the same equations when you study motion
around black holes. In part II, I note that the peculiar replacement of a simple equation by
a more complicated looking equation foreshadows Einstein’s deep insight about gravity to
be discussed in part V.

The return of Confusio

Readers of QFT Nut might be pleased to hear that Confusio makes a return appearance,
together with other characters, such as the Smart Experimentalist. Some other friends of
mine, for example the Jargon Guy, also show up. Here I am alluding to what Einstein
referred14 to as “more or less dispensable erudition.”

An outline of this book

This book appears to start at a rather low level, with a review of Newtonian mechanics
in part I. The reason is that I want to treat two topics more thoroughly than usual:
rotations and coordinate transformations. A good understanding of these two elementary
subjects allows us to jump to the Lorentz group and curved spacetime later. My pedagogical
approach is to beat 2-dimensional rotations to death. Depending on how mechanics is
taught, students typically miss, or fail to grasp, some of the material in the chapter on
tensors. I repeat the discussion of tensors under various guises and in different contexts.
One of my students who read the book points to various places where I appear to repeat
myself, but I told her that it is better to hear some key point for the third time15 than not to
have understood it at all. A respected senior colleague and pioneer in Einstein gravity said
to me that a good teacher is someone who never says anything worth saying only once.

I devote part II to a discussion of the all-important action principle, because I believe
that it provides the quickest, and the most fundamental, way to Einstein gravity (and to
quantum field theory). Part III is devoted to special relativity but, in contrast to some
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elementary treatments, the emphasis is on geometry and completion, not on a collection of
paradoxes. In part IV, as was mentioned earlier, I let you discover electromagnetism and
gravity, and so the treatment is somewhat nonstandard. Thus, even if you feel that you
already know special relativity, you might want to take a quick look at part III and part IV.

Many readers probably pick up this book because of a burning desire to learn Einstein
gravity. These readers would have already mastered Newtonian mechanics and special
relativity, and they could probably cut to the chase and skip directly to part V. To them, the
first four parts may appear to be a rather leisurely preparation for Einstein gravity. Still, I
would counsel skimming, rather than skipping, the first four parts. At the very least, parts
I–IV set down the conventions and notation. More importantly, they offer up the ideology
of this text, an ideology that can be simply stated: action!

While I appear to start slow in parts I–III, I am actually setting things up so that we can
go fast in parts V and VI. For example, all the discussion about coordinate transformation
and curved spaces is to prepare the reader for a quick plunge into curved spacetime in
chapter V.1. Similarly, the action principle enables the geodesic equation to be introduced
early on, in part II, so that it is “ready to trot” when needed in part V. In considering
whether to sign up for my course that grew into this book, some students ask how fast I
will be zooming through special relativity to get to the “good stuff.” But special relativity
is good stuff! In particular, it is essential to understand special relativity as the geometry
of spacetime∗ before moving on to general relativity.

The essence of Einstein gravity is explained in parts V and VI. The rest of the book
contains what may be regarded as applications of the theory as developed in part VI. Part X
contains extras that some might consider beyond the scope of an introductory text. The
title is thus something of a misnomer, but to please my publisher, I am obliged to keep
up a running joke I started with my field theory book. A better title might be Gravity from
Newton to the Brane World.

The role of appendices

As a textbook writer, I am torn between being concise and being complete. One way out is to
place numerous topics in appendices to various chapters. Some are fun, such as Einstein’s
derivation of E =mc2 in his 1946 Haifa lectures (see chapter III.6), which, unfortunately,
is in danger of being forgotten and which I much prefer to his 1905 derivation. Another
example is Weyl’s shortcut to the Schwarzschild solution (see chapter VI.3). Some are
results I will need later, but often much later. For example, I talk about the speed of sound
in an appendix to chapter III.6, but I won’t need it until I get to the cosmic microwave
background. Some appendices are peripheral or technical. When possible, I try to give an
intuitive and heuristic understanding before launching into a long development, such as

∗ A multitude of books treat special relativity, but while they all get the job done, they differ widely in conceptual
clarity. Besides the geometrical view of special relativity, I also want to emphasize the Lorentz action as leading
to a unified approach to both massive and massless particles.
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the treatment of Fermi normal coordinates. Some are for enrichment. In sum, the use of
appendices represents my effort to appeal to a broad range of readers with enormously
different levels of knowledge and sophistication. The reader should not feel obliged, upon
first reading this book, to study all the appendices. Each should exercise his or her own
judgment.

Still, a book this size is inevitably incomplete, and so it comes down to the author’s
choice (of course). So many beautiful results, so little space and time! I regard certain
topics, though important, as better covered in more specialized tomes, such as gravitational
lensing, and prefer to include some topics not discussed in several standard textbooks, such
as anti de Sitter spacetime, brane worlds, and twistors.

The most incomprehensible thing about some physics textbooks

The most incomprehensible thing about the physical world is
that it is comprehensible.

—A. Einstein

The most incomprehensible thing about some physics textbooks is that they are in-
comprehensible.

They manage to render the easily comprehensible into the nearly incomprehensible.
Some textbook writers are simplifiers, others are what I call complicators. In defiance of
Einstein’s exhortation, many authors strive to make physics as complicated as possible, or
so it seems to me. In the research literature, the cause of obscurity may be unintentional
or intentional: either the author has not understood the issues involved completely (often
laudably so, when the author is at the cutting edge), or the author wants to impress upon
the reader the profundity of his or her paper by resorting to obfuscations. But in a textbook?

My task, and hope, in my textbooks is to make physics as simple as possible, as the “old
man” with his toy16 said. Having written both a textbook and a couple of popular books, I
am perhaps qualified to express my opinions here. Popular books attempt to make physics
simpler than it really is, thus in some sense deceiving the reader. Textbooks are different:
they must make the reader work to master the subject. But making the reader work is not
the same as making the reader suffer by rendering simple things obscure.

No bijective maps in this book

I am puzzled by students who profess no trouble with the physics but moan∗ about the
math. All the “grown-ups” would say the opposite. The pros regard Riemannian geometry,

∗ Indeed, many of the postings on the sites of online booksellers regarding general relativity texts lament the
difficulty of the math. At the other extreme, a few, by misguided individuals in my opinion, complain about the
lack of rigor.
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which is after all totally logical and algorithmic, as easy, but continue to lose sleep over
Einstein’s theory. Regarding the math, I can say, with only slight exaggeration, that mastery
of the index notation and the chain rule almost suffices. Indeed, any serious student with
a future in theoretical physics should be continually puzzled by the physics but not at all
by the math.

Einstein did not say that physics should be made simple. Of course, physics is not
simple, and understanding Einstein’s theory does require effort. Surely you have heard
that Einstein gravity involves curved spacetime, so there is no getting around learning
the language needed to describe curvature. My strategy is to introduce math only when
necessary, and then to illustrate the key concepts with plenty of examples. I dislike the Red
Army17 approach, and so I do not start by defining bundles on the tangent plane. I bring
in the math gently and sneak in curvature early on via the familiar change of coordinates.

As for rigor, I will let yet another of my action heroes speak. “I’ll differentiate any
function, even the freaking delta function, as many times as I darn well please.” So if you
have to differentiate, just differentiate until the expression you are differentiating starts
bleating for mercy. The trick is to know when it is absolutely necessary to be rigorous
(which is seldom—I would never say never).

I respectfully submit that this book is not for those who want rigor.
While I realize the need for and the benefit of precise definition, for the most part I

simply plead membership in the Feynman18 “Shut up and calculate” school of physics.19

Thus, I won’t trouble your sleep with assertions such as “A bijective differentiable map of
a manifold, whose inverse is also differentiable, is called a diffeomorphism.” Regarding
statements like this, I think that another Einstein quote may be apropos: “We should
take care not to make the intellect our god; it has, of course, powerful muscles, but no
personality.”20 Yet another relevant quote: “The people in Göttingen sometimes strike me,
not as if they wanted to help one formulate something clearly, but instead as if they wanted
only to show us physicists how much brighter they are than we.”21 Alas, “the people in
Göttingen” have now gone off and multiplied,∗ and some even live in our midst. Precise
definitions are indeed necessary occasionally, but by and large, they don’t do much good
in theoretical physics. Some things are better left undefined. In this connection, also keep
in mind the distinction between true clarity and false clarity.22 For example, I consider the
insistence on saying “pseudo-Riemannian manifolds” in a book of this level false clarity
at best.

As I was putting the finishing touches on this book, I read about some notes23 Feynman
scribbled to himself before teaching some course: “First figure out why you want the
student to learn the subject and what you want them to know, and the method will result
more or less by common sense.” Well said! As it turned out, that was the method I followed
when writing this book.

If you feel that bijection is indispensable for your existential essence, then I also respect-
fully submit that this book is not for you.

∗ One tribe is known to look at “old fashioned” indices with contempt. Only coordinate-free notations24 are
good enough for them.
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But of course I am not against mathematics. For instance, I am all for differential forms
(see chapters IX.7 and IX.8). However, when faced with a new formalism, I tend to be
practical and ask, “For the time invested in learning it, what is the payoff?” How significant
is it for the physics?

Teaching from this book and self-studying

It would be ideal to teach a leisurely year-long course based on this book. But I have also
taught Einstein gravity at the University of California, Santa Barbara, as a scandalously
short one-quarter undergraduate course consisting of only 29 lectures. The students al-
legedly knew the action principle and special relativity, but I was appropriately skeptical.
Here is the actual course plan.

Lecture 1 gives an overview. Lectures 2–6 cover chapters I.5 and I.6, starting with the
notion of a metric and illustrated with numerous examples, including the Poincaré half
plane, and ending with locally flat coordinates and a count of the components contained
in the curvature tensor. Lectures 7 and 8 cover part II, and lectures 9 and 10 part III. In
lectures 11 and 12, I let the students discover electromagnetism and gravity and derive
how gravity affects the flow of time. Lectures 13–15 introduce the equivalence principle
and cover part V up to chapter V.3, ending with closed, flat, and open universes.

The second half of the course proceeds as follows:

Lecture 16: the geodesic equation reduced to Newton’s equation, gravitational redshift, spher-

ically symmetric spacetime with time dependence

Lecture 17: the motion of particles and light in static spherically symmetric spacetime

Lecture 18: covariant differentiation, the geometrical picture

Lecture 19: to Einstein’s field equation as quickly as possible

Lecture 20: the Riemann curvature tensor and its symmetry properties

Lecture 21: the Einstein-Hilbert action

Lecture 22: the cosmological constant and the expanding universe

Lecture 23: Schwarzschild metric, with precession of planets and radar echo delay described

in words and pictures

Lecture 24: the energy momentum tensor

Lecture 25: general proof of energy momentum conservation

Lecture 26: the Einstein tensor and the Bianchi identity

Lecture 27: black holes in various coordinates

Lecture 28: the causal structure of spacetime

Lecture 29: Hawking radiation and a grand review

So it is entirely possible to cover the bulk of this book in a one-quarter course! I did it.
Students were expected to do some reading and to fill in some gaps on their own. Of course,
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instructors could deviate considerably from this course plan, emphasizing one topic at the
expense of another. They might also wish to challenge the better students by assigning the
appendices and some later chapters.

Here I come back to those I applauded earlier for self-studying Einstein gravity. Some
of you might want to know which chapters to read. The answer is of course that you
should read them all, in an ideal world. But if you want to get “there” quickly, I suggest
the following. You are on your own regarding the first three parts: it all depends on what
you already know. So try starting with part IV and see how often you need to refer back to
an earlier chapter. Part V is indispensable, particularly the equivalence principle and the
tour of curved spacetimes. You need to understand the covariant derivative, but you could
skip the somewhat heavier appendices in chapter V.6. After the covariant derivative, you
are ready for the heart of the matter, Einstein’s field equation, in chapter VI.1. The rest
of part VI forms the core of a traditional course on general relativity, but my emphasis
is somewhat less on working out orbits in detail. That’s it! You would have then reached
a certain level of mastery of Einstein gravity. You could then regard the rest of the book,
parts VII–X, as a buffet of topics that you could browse at your leisure. Part X contains
more speculative topics, including some that may not be of lasting value. Be warned!
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Notes

1. Hereafter referred to as QFT Nut.
2. A. Zee, Fearful Symmetry. Hereafter, Fearful.
3. See chapter VI.3.
4. Chaim Weizmann, the first president of Israel and a chemist, once crossed the ocean with Albert Einstein

on the same liner, and Einstein tried to explain the theory of relativity to him. When asked about this later,
Weizmann said something like “I did not understand his theory, but he certainly convinced me that he did.”

5. For the record, I took a philosophy course in college. To further emphasize that I am not totally lacking in
“philosophical credentials,” I was once invited by a philosophy professor to lecture, thanks to one of my
popular books, to an auditorium full of philosophers. I like philosophers.

6. Einstein once said that he should have called his work “invariance theory” and lamented his use of the word
“relative.”

7. A. Zee, An Old Man’s Toy. Hereafter, Toy/Universe.
8. In my introduction to Feynman’s book on quantum electrodynamics, I wrote about three different kinds of

readers of that book. Only part 0 of this book will be comprehensible to the first kind. See R. P. Feynman,
QED: The Strange Theory of Light and Matter, with a new introduction by A. Zee, Princeton Science Library,
2006.

9. An undergrad friend had also deluded me into thinking that it was salutary to read Einstein in the original
German!

10. Read J. Polchinski, String Theory, for example.
11. QFT Nut, p. 473.
12. For the record, I started my research career with John Wheeler, studying gravitational wave emission from

neutron stars. For Wheeler’s influence on his students, see Charles W. Misner, “John Wheeler and the
Recertification of General Relativity as True Physics,” in General Relativity and John Archibald Wheeler, ed. I.
Ciufolini and R. Matzner, Springer, 2010.

13. See my remarks in chapter IX.9, for example.
14. A. Einstein, Autobiographical Notes, Open Court, 1999.
15. In any case, if you think that I talk too much about tensors, you could simply feel smugly superior to those

poor souls who never get it.
16. See Toy/Universe. Also see figure 2b in the prologue to book two.
17. I learned this terminology (which, I should clarify, referred to the Russian, not the Chinese, version) in a

conversation with Steve Weinberg about textbooks. It has something to do with lining up all the tanks first.
18. A colleague who got his doctorate at Caltech told me the following story. He was examined by a committee

consisting of Feynman and a bunch of lesser lights. One of the lesser lights posed a question to my friend, who
proceeded to answer it perfectly, outlining the calculation necessary and explaining the physical significance
of the result. The lesser light then opined ominously, “You should have also said . . . ” and hereforth issued
from his mouth a long string of highfalutin hundred-dollar words. Feynman turned to the lesser light and
announced to the rest of the room, “But that’s exactly what he said!”

Here is a totally gratuitous Feynman story that has nothing to do with the discussion at hand. During the
exam, Feynman asked a question about quantum mechanics that the student was unable to answer. Feynman
exploded, saying something like “Quantum mechanics was invented in the 1920s and it’s now 1972; you
really should have mastered quantum mechanics by now!” A committee member turned to Feynman and
said softly, “Dick, Dick, it’s now 1973.”

19. A colleague told me his retort to Feynman: “Shut up and contemplate.” Of course, Feynman is capable of
doing both. Contrary to myth, Feynman won the national Putnam mathematics competition. Here we are
talking about people who can only talk and not calculate.
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20. The quote is possibly apocryphal.
21. Quoted in C. Reid, Hilbert, Springer, 1996, p. 142.
22. As one of my professors, an exceedingly distinguished theoretical physicist, used to say, the main purpose

of all the talk about tangent bundles and pullback is to frighten young children. This is not entirely true, but,
oh well.

23. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, volume III, Addison Wesley
(Commemorative issue 2004), p. xi.

24. I am certainly not against coordinate-free notations. In physics, the only issue is which notation is best suited
for the job at hand. Coordinate-free notations are great for proving general theorems but are not so good for
calculating. In this connection, I might regale the reader with a story. At a recent Santa Barbara conference
on black holes, dS, AdS, gravity dual, and so on—in short, the latest hot stuff—I was chatting at lunch
with two leading young researchers, up and coming stars, not some aging curmudgeons with congealed
opinions. When I mentioned how some people clamored for index-free notations, one of these two leading
lights basically said to please get those people out of her sight. The other told me a more illuminating story.
During grad school, to deepen his understanding of Einstein gravity, he enrolled in a course taught by a
famous mathematician. As it happened, he was the only student able to do the problems in the final exam
involving actual calculations: he did them by first using old fashioned indices and then translating back into
the abstract notation used in the course.

The index-free notation in Einstein gravity is somewhat analogous to using vectors without committing
to any specific coordinate choice. For example, one can prove easily that �L= �r × �p is conserved, but try to
do the spinning top on an oscillating inclined plane without setting up coordinates! The difference between
the uninitiated and the misinformed is that the uninitiated is not acquainted with a particular formalism,
while the misinformed insists that only the particular formalism he or she likes is any good.
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Prologue

Three Stories

Story 1: The drowning beauty and the scrawny lifeguard

Since I started my quantum field theory text1 with a story, possibly apocryphal, about
Feynman in a quantum mechanics class, I feel compelled to start this text also by telling a
story, possibly true,2 about Feynman. The movie opens on a gorgeous southern California
beach. We zoom in on a lifeguard, noticeably scrawnier than the other lifeguards. But
on the other hand, we soon discover that he is considerably smarter. Egads, it is Dick
Feynman, in the days before Baywatch! Perched on his high chair, he has been watching
an attractively curvaceous swimmer with great interest, plotting how he could win the girl’s
affection, all the while solving a field theory problem in his head. Suddenly, he notices that
the girl is splashing about frantically. She is going under! Must be a cramp! An action hero
is as an action hero does: Feynman jumps down from his lookout and goes into action.∗

The other lifeguards are already proceeding in a straight line (starting from point F, the
lifeguard station, in figure 1, going along the dotted line) toward the girl (at point G). That
would be the path of least distance. But no, Feynman has already calculated the path that
would allow him to reach the girl in the least amount of time. Time counts more than
space here: least time trumps least distance. Our hero (like other humans) can run much
faster, even on a soft sandy beach, than he can swim. So the rescuer should spend more
time running before plunging into the sea. A simple high school level calculation (exercise
1) shows Feynman the best path to take (see the solid line in figure 1). Our hero beats the
other guys and gets to the eternally grateful girl first!

∗ “Physics is where the action is.” See chapter III.2.
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Figure 1 The best possible path for Feynman to follow
to get to the drowning girl is along the solid lines
from F to G.

But you don’t have to calculate to see that there is an optimal path. Only a cretin would
follow the third path (the dashed line) shown in the figure!

In the 17th century, Fermat discovered that light, just like Feynman, also follows a least
time principle, and as a result “bends” as it enters from one medium (say, air) into another
(say, water). To read these very words, you have, or rather your saintly mother has, cleverly
positioned in your eyes a blob of watery substance (known to the cognoscenti as a lens)
that you squeeze just so, using tiny muscles, to bend light to your advantage and bring the
ambient light bouncing off these words on the printed page into focus. Your mother, as the
product of eons of evolution, was oh so clever, giving you eyes. As we speak (so to speak),
you are using precisely this phenomenon of light bending to save the light entering your
eyes some time, a phenomenon known as refraction, and to gain yourself some knowledge
about physics and the universe—an activity evolution applauds: reading this book could
conceivably boost your reproductive advantage.

We all know that light travels in a straight line, but we also notice easily that when light
enters water from air, it bends (as shown in figure 1 with “sand” replaced by “air”). Indeed,
that explains why people standing in swimming pools appear to have comically short legs,∗

a phenomenon you can test by sticking a pencil in a glass of water.
It has also been known ever since Euclid† that the shortest path between two points

is a straight line. Ergo, if light is always in a hurry to get from one point to another, it

∗ If you can’t explain that, see figure 7.1 in Fearful. See also the common mirage shown in figure 7.2: on a
hot day, the highway beneath a distant car appears to be wet, but is in fact dry. This mirage shows that light only
cares about the local, not the global, minimum in time of transit.

† Babies have no need for Euclid; as soon as they can crawl, they move toward the obscure objects of their
desire along a straight line.
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wants to move in a straight line. Fermat and others realized that the bending of light could
be explained if light moves more slowly in water than in air. Indeed, if light were really
stupid, it would move in a straight line through point M to get from F to G, just like the
other lifeguards.

Story 2: An ant and her honey

When I was a kid, I was challenged by a puzzle about an ant and a drop of honey. An ant
located on the outside of a cylindrical glass of radius R and a vertical distance d below the
rim, sees, never mind how, or perhaps smells, a drop of honey directly opposite her, but
on the inside of the glass (see figure 2a). The ant wants to get to the honey in the shortest
possible time,3 crawling at some constant speed.

The solution depends on a cute trick. Imagine that the glass is made of paper. Tear out
the bottom and cut the cylindrical glass down some vertical line. Lay the paper down flat,
as shown in figure 2b. Further, imagine the paper to be double-sheeted, so the side with the
drop of honey could be folded out, as shown in figure 2c. Now clearly, the path of shortest
distance between the ant and the honey is a straight line, with distance

√
(πR)2 + (2d)2.

The path is also indicated in figure 2b, with the segment inside the glass indicated by a
dotted line. A really dumb ant would go up vertically to the rim of the glass, then move
along the rim to a point above the honey, and then go down (or along a number of similar
paths equal in distance to the one just described).

This puzzle contains two of the themes central to this book: the shortest path between
two points and curvature, intrinsic and extrinsic.

honey

ant

2πR

(c)

honey

honey

ant

2πR

πR

d

R

ant

d
d

(b)(a)

Figure 2 The best possible path for the ant to follow to get to her honey.
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Draw circles and triangles on a flat piece of paper. Then roll the paper up into a cylinder.
The radius and circumference of a circle maintain the same value as when flat: the paper
is neither stretched nor compressed in any way. Similarly, the three angles in the triangle
remain the same. A cylinder has extrinsic curvature, but zero intrinsic curvature: it is
intrinsically flat. In contrast, the sphere is intrinsically curved: there is no way to construct
a sphere from a flat piece of paper without stretching and compressing the paper.

The proverbial guy and gal in the street think that cylinders are curved, but you and the
ant∗ know better. The uninitiated are talking about extrinsic curvature, regarding how the
2-dimensional surface of a cylinder is embedded into an external 3-dimensional Euclidean
space.

Imagine a civilization of mites living on some curved surface. The mites are much
smaller than the characteristic radius of the curvature of the surface. Once they learn
how to measure the distance along any path (by pacing off the steps they have to take,
for instance) they are ready for geometry. They could define the straight line between two
points P1 and P2 as the path of least distance. Eventually, the mite professors of geometry
could determine whether the world of mites is curved without getting out of their world to
take a look. For example, with enough government funding, the professors could organize
teams of mites to draw small circles of any desired radius by finding the set of all points a
fixed distance from a given point P. Then they can measure the circumference of the circle
and compute

R = lim
radius→0

6
(radius)2

(
1 − circumference

2π radius

)
(1)

as the circle shrinks to zero. For flat space, R vanishes everywhere. Thus, a nonvanishing
value of R gives the mites a measure of the intrinsic curvature at P—of how the geometry
of their world differs† from Euclid’s flat geometry. (The factor of 6 provides a convenient
normalization to match another definition of R to be given later.) Another measure would
be the extent that the sum of the angles enclosed by a triangle deviates from π .

Our mites are not interested in the extrinsic curvature, since they cannot get off the
surface to take a look. Similarly, we are only interested in the intrinsic curvature of our
universe, not in the extrinsic curvature, since we cannot get out‡ of the universe to take
a look.

∗ Ants will eventually find the shortest path to food if the starting point is the location of the colony, but you
need a whole colony of them to do so. Their trick is to lay down pheromone on the path as they go along and to
prefer to follow paths with the stronger pheromone. It is crucial that the pheromone evaporates at some fixed rate
and that ants often wander off the beaten paths to try out nearby paths. (Moral: wander off the beaten paths!) We
explore this variational principle in chapter II.2. A multitude of physicists may also eventually solve the mystery
of quantum gravity. The paths correspond to published papers, the strength of the pheromone to the prestige of
the authors and the number of citations received, and so on and so forth. Not a perfect analogy by any means.

† Early in the 20th century, a distinguished professor, Sir Arthur Eddington, did precisely that, defining a
straight line by the trajectory of light. See chapter VI.3.

‡ There exist some wild speculations that our universe is embedded in a much larger spacetime, but even in
these theories, it does not appear that their proponents can get out of our universe, at least not until after this
book is published. See chapter X.2.
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Story 3: Dueling thinkers

Professor Vicious and Dr. Nasty have been at each other’s throats for decades. Theoretical
physicists are forever fighting over who did what when. They are constantly bickering,
telling each other (as the joke goes), “Nyah, nyah, what you did is trivial and wrong, and I
did it first!”

Of course, the fight for credit goes on in every field, but in theoretical physics, it is almost
a way of life, since ideas are by nature ethereal. And the stakes are high: the victor gets to
go to Stockholm, while the loser is consigned to the dustbin of history, a history largely
written by the victor with the help of an army of idolaters and science writers.

We are finally going to settle matters between Vicious and Nasty once and for all. We
place the two of them at two ends of a long hall, Vicious at x = 0 and Nasty at x = L.

We now tell Vicious and Nasty to solve the basic mystery of why the material world comes
in three copies.4 As soon as they figure it out, they are to push a button in front of them.
When the button is pushed, a pulse of light is flashed to the middle of the room where,
at x = L/2, our experimental colleague, an electronics wiz, has set up a screen. When the
screen detects the arrival of a light pulse, all kinds of bells and whistles are rigged to go
off. In particular, if, and only if, two light pulses arrive at the screen at precisely the same
instant, a huge imperial Chinese gong will be bonged.

“Fair is fair, any and all priority claims will be settled,” we tell Vicious and Nasty. “Now
go to work and solve the mystery of the family problem: why do quarks and leptons come
in three sets?” The dueling duo immediately assume the Rodinesque pose of the deep
thinker and lock themselves in a think to the death.

Meanwhile, you are sitting on a train, moving smoothly relative to the dueling thinkers.
Denote the time and space coordinates in your rest frame by t ′ and x′. In the Newtonian
universe, time is absolute, and so we have t ′ = t . In your frame, Vicious and Nasty are
moving by according to x′ = vt and x′ = L+ vt , respectively, but you are sitting at x′ = 0.
Of course, in the duelists’ frame, you are the one who appears to be moving, gliding by at
x = −vt (see figure 3).

Some time passes, and all of a sudden we all hear a loud bong of the gong. “The best
possible outcome, you solved the problem simultaneously!” we exclaim joyously with
much relief. “You guys are equally smart and you should go to Stockholm together!”

The arrangement is electronically fool-proof. We won’t have either of them gloating, “I
did it first!” Peace shall reign on earth. But guess what?

A Swede is sitting next to you. He, too, heard the gong. That’s the whole point of the
gong: you either heard it or you didn’t. It is all admissible in a court of law. Now, not only is
the Swede on the Committee, but he also happens to be an intelligent Swede. He reasons
as follows.

The two thinkers are gliding by as described by x′ = vt ′. When Professor Vicious pushed
the button, she sent forth a multitude of photons surging toward the screen at the speed
of light c. But the screen was also moving forward, away from the surging photons. Of
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v

x = 0 x = L

screen with
light detector

x = L/2

Figure 3 Professor Vicious versus Doctor Nasty.

course, light moves at the maximum allowed speed in the universe, and it soon catches
up with the screen. The opposite is true for Dr. Nasty. The screen is moving toward the
photons he sent forth. Thus, to reach the screen, his photons have less distance to cover
than Vicious’s photons.

Hence, reasons the Swede, for the two bunches of photons to reach the screen at the
same time and so cause the gong to bong, the photons sent out by Vicious must have
gotten going earlier. Thus, Vicious solved the problem first. With malicious glee, the Swede
solemnly intones, “After Professor Vicious is awarded the Nobel Prize, she will kindly help
us stuff Dr. Nasty into the dustbin of history!”

As Vicious5 enjoys her fleeting immortality, we bemoan or toast, as our taste might
be, the fall of simultaneity. Nasty, trying to climb out of the dustbin, insists that he and
Vicious had been sitting still, thinking hard, and it was the Swede who was moving. Since
the gong had bonged, Nasty is absolutely sure that he and Vicious hit their buttons at the
same instant and so he is entitled to half the prize, while the Swede is equally sure that
Vicious hit her button before Nasty hit his.

The very notion of simultaneity depends on the observer!
Meanwhile, another Swede, also on the Committee, is moving by on another train

described in the duelists’ frame by x = vt . You can fill in the rest.
Young Einstein has bent the stately flow of time out of shape. Albert himself thought

up this gedanken experiment—I have merely added a few dramatic details—showing that
the constancy of the speed of light necessarily has to alter our notion of simultaneity in
time.
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In theoretical physics, we say, “Mind-boggler in, mind-boggler out!” We feed the mind-
boggling fact that the speed of light does not depend on the observer into the wondrous
machinery of logic and out pops another mind-boggling fact, namely that simultaneity is
in the mind of the beholder. Making up one gedanken experiment after another, Einstein
showed that our common sense notion of time must be modified.

Exercises

1 Derive Snell’s law: sin θw/ sin θa = cw/ca < 1, where cw and ca denote the speed of light in water and in air,
respectively.

2 Suppose the ant is outside a hemispherical bowl and the drop of honey is inside the bowl directly across
from her. Find the shortest distance.

3 What happens if the ant can crawl faster on the outside of the glass than on the inside?

Notes

1. QFT Nut.
2. R. P. Feynman, QED: The Strange Theory of Light and Matter, with a new introduction by A. Zee, Princeton

Science Library, 2006.
3. A colleague told me that this reminded him, at least superficially, of the umveg test (http://www.guidehorse

.com/intellig.htm) for assessing intelligence in horses.
4. I am referring to the fact that quarks and leptons come in three families.
5. In his autobiography, Michael Faraday wrote of his conception of scientists: “My desire to escape from trade,

which I thought vicious and selfish, and to enter into the service of Science, which I imagined made its
pursuers amiable and liberal. . . . ” Do I detect in the word “imagined” a trace of cynical disillusion?
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A Natural System of Units, the Cube of Physics, Being Overweight,
and Hawking Radiation

Planck gave us natural units

Max Planck∗ is properly revered for his profound contribution to quantum mechanics. But
he is also much loved for his second greatest contribution to physics: in a far-reaching and
insightful paper, he gave us a natural system of units.

Once upon a time, we used some English king’s feet to measure lengths.† Einstein
recognized that with the universal speed of light c, we no longer need separate units for
length and time. Even the proverbial guy and gal in the street understand that henceforth,
we could measure length in lightyears.

We and another civilization, be they in some other galaxy, would now be able to agree
on a unit of distance, if we could only communicate to them what we mean by one year
or one day. Therein lies the rub: our unit for measuring time derives from how fast our
home planet spins and revolves around its star. Only homeboys would know. How could
we possibly communicate to a distant civilization this period of rotation we call a day, which
is merely an accident of how some interstellar debris came together to form the rock we
call home?

∗ In his personal life, Planck suffered terribly. He lost his first wife, then his son in action in World War I, then
both daughters in childbirth. In World War II, bombs totally demolished his house, while the Gestapo tortured
his other son to death for trying to assassinate Hitler.

† Notions we take for granted today still had to be thought up by someone. Maxwell, in his magnum opus
on electromagnetism, proposed that the meter be tied to the wavelength of light emitted by some particular
substance, adding that such a standard “would be independent of any changes in the dimensions of the earth,
and should be adopted by those who expect their writings to be more permanent than that body.” The various
eminences of our subject could be quite sarcastic.
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Newton’s discovery of the universal law of gravity brought another constant G into
physics. Comparing the kinetic energy 1

2mv
2 of a particle of mass m in a gravitational

potential with its potential energy −GMm/r and canceling off m, we see that the combi-
nation∗GM/c2 has dimensions of length. In other words, having two universal constants c
andG at hand allows us to measure masses in terms of our unit for length (or equivalently
time), or lengths in terms of our unit for mass.

Planck with his constant � made a monumental contribution to physics by noting that
the quantum world gives us for free a fundamental set of units that physicists call natural
units.

Three big names, three basic principles, three natural units

To see how, note that Heisenberg’s uncertainty principle tells us that � divided by the
momentum Mc is a length. Equating the two lengths GM/c2 and �/Mc, we see that the
combination �c/G has dimensions of mass squared. In other words, the three funda-
mental constants G, c, and � allow us to define a mass,1 known rightfully as the Planck
mass

MP =
√

�c

G
(1)

We can immediately define, with Heisenberg’s help, a Planck length

lP = �

MPc
=
√

�G

c3
(2)

and, with Einstein’s help, a Planck time

tP = lP

c
=
√

�G

c5
(3)

Einstein, Newton, and Heisenberg—three big names, three basic principles, three
natural units to measure space, time, and energy by. We have reduced the MLT system
to nothing! We no longer have to invent or find some unit, such as the good king’s foot,
to measure the universe with. We measure mass in units of MP, length in units of lP, and
time in units of tP. Another way of saying this is that in these natural units, c = 1, G= 1,
and � = 1. The natural system of units is understood no matter where your travels might
take you, within this galaxy or far beyond.

Newton small, so Planck huge, and the Mother of All Headaches

The Planck mass works out to be 1019 times the proton massMp. That humongous number
1019, as we will see, is responsible for the Mother of All Headaches plaguing fundamental

∗ You will learn shortly what this combination means physically.
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physics today.2 That MP is so gigantic compared to the known particles can be traced back
to the extreme feebleness of gravity: G is tiny, so MP is enormous.

As the Planck mass is huge, the Planck length and time are teeny. If you insist on
contaminating the purity of natural units by manmade ones, tP comes out to be ∼5.4 ×
10−44 second, the Planck length lP ∼ 1.6 × 10−33 centimeter, and the Planck mass MP ∼
2.2 × 10−5 gram!

It is important to realize how profound Planck’s insight was. Nature herself, far tran-
scending any silly English king or some self-important French revolutionary committee,
gives us a set of units to measure her by. We have managed to get rid of all manmade units.
We needed three fundamental constants, each associated with a fundamental principle,
and we have precisely three!

This suggests that we have discovered all∗ the fundamental principles that there are.
Had we not known about the quantum, then we would have to use one manmade unit to
describe the universe, which would be weird. From that fact alone, we would have to go
looking for quantum physics.

The cube of physics

Here is a nifty summary of all of physics as a cube (see figure 1). Physics started with
Newtonian mechanics at one corner of the cube, and is now desperately trying to get to
the opposite corner, where sits the alleged Holy Grail. The three fundamental constants,
c−1, �, and G, characterizing Einstein, Planck or Heisenberg, and Newton, label the three
axes. As we turned on one or the other of three constants (in other words, as each of these
constants came into physics), we took off from the home base of Newtonian mechanics.†

Much of 20th century physics consisted of getting from one corner of the cube to another.
Consider the bottom face3 of the cube. When we turned on c−1 we went from Newtonian
mechanics to special relativity. When we turned on �, we went from Newtonian mechanics
to quantum mechanics. When we turned on both c−1 and �, we arrived at quantum field
theory, in my opinion the greatest monument of 20th century physics.

Newton himself had already moved up the vertical axis from Newtonian mechanics to
Newtonian gravity by turning on G. Turning on c−1, Einstein took us from that corner to
Einstein gravity, the main subject of this book.‡ All the Stürm und Drang of the past few
decades is the attempt to cross from that corner to the Holy Grail of quantum gravity, when
(glory glory hallelujah!) all three fundamental constants are turned on.§

∗ These days, fundamental principles are posted on the physics archive with abandon. There might be
hundreds by now.

† By this I mean the three laws, F =ma and so on, not including the law of universal gravitation.
‡ The corner with c−1 = 0 but � �= 0 and G �= 0 is relatively unpublicized and generally neglected. It covers

phenomena described adequately by nonrelativistic quantum mechanics in the presence of a gravitational field.
Two fascinating experiments in this area are: (1) dribbling neutrons like basketballs, and (2) interfering a neutron
beam with itself in a gravitational field.4

§ This statement carries a slight caveat, which we will come to in chapter VII.3.
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Figure 1 The cube of physics.

In our everyday existence, we are aware of only two corners of this cube, because these
three fundamental constants are either absurdly small or absurdly large compared to what
humans experience.

The universe’s obesity index

As the obesity epidemic sweeps over the developed countries, one government after
another has issued some kind of obesity index, basically dividing body weight by size.
As we have seen, for an object of mass M , the combination GM/c2 is a length that can be
compared to the characteristic size of the object. So, Nature has her own obesity index for
any object, from electron to galaxy. Indeed, as is well known, John Michell in 1783 and the
Marquis Pierre-Simon Laplace in 1796 pointed out that even light cannot escape from an
object excessively massive for its size.

More precisely, consider an object of mass M and radius R. A particle of mass m at the
surface of this object has a gravitational potential energy −GMm/R and kinetic energy
1
2mv

2. Equating these two energies gives the escape velocity vescape = √
2GM/R. Setting

vescape to c tells us that if 2GM >Rc2, not even light can escape, and the object is a black
hole.5 Remarkably, even though the physics behind the argument∗ is not correct in detail
(as we now know, we should not treat light as a Newtonian corpuscle with a tiny mass), this

∗ This often cited Newtonian argument actually does not establish the existence of black hole defined as an
object from which nothing could escape. The escape velocity refers to the initial speed with which we attempt to
fling something into outer space. In the Newtonian world, we could certainly escape from any massive planet in
a rocket with a powerful enough engine.
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Figure 2 A plot ofM versusR for various objects in the universe. EW stands for electroweak
and GUT for grand unified theory. The shaded area represents the “black hole” regime
with 2GM >R.

criterion, including the factor of 2, turns out to hold in Einstein’s theory. Figure 2 shows
a plot of M versus R for various objects in the universe.

Hawking radiation

Unless you have been hiding out in the jungles of New Guinea, you would have heard that
in an extremely influential paper, Stephen Hawking, building on the earlier work of Jacob
Bekenstein and others, and working in collaboration with Gary Gibbons, pointed out this
purely classical argument needs to be amended when quantum effects are included: black
holes evaporate and radiate particles.

In fact, the temperature of the radiation, known as the Hawking temperature TH of the
black hole, can be estimated by using dimensional analysis. You may be puzzled,∗ since
there are two masses in the problem, the mass M of the black hole and the Planck mass
MP. With two masses, any function of M/MP is admissible, and so dimensional analysis
appears to be inapplicable. Indeed, we need one more piece of information. The key is that

∗ I was talking to a distinguished condensed matter physicist just the other day, and he was puzzled about
precisely this point. So your unspoken question may be widespread.
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Newton’s constant G is a multiplicative measure of the strength of gravity. In Einstein’s
theory as well as in Newton’s, the gravitational field around an object of mass M can only
depend on the combination ofGM . Let us now set c and � (but notG) to 1. The combination
GM is a length and hence an inverse mass. On the other hand, Boltzmann and the
founding fathers of statistical mechanics had long ago revealed to us that temperature,
a highly mysterious concept at one time, is merely the average energy6 of the microscopic
constituents of macroscopic matter. Hence temperature has the dimensions of energy, that
is, of a mass in units with c = 1.

It follows immediately that TH ∼ 1
GM

. This “sophisticated” dimensional analysis cap-
tures an essential piece of physics: the radiation is explosive! As the black hole radiates
energy, M goes down and TH goes up, and thus the black hole radiates faster. The radiative
mass loss accelerates. Certainly not something you want to see in the kitchen: an object
that gets hotter as it loses energy.

In chapter VII.3, we will see that the overall numerical constant can be determined in a
couple of lines of algebra, so that

TH = �c3

8πGM
(4)

We have restored c and � by high school dimensional analysis using everyday unnatural
units. It is gratifying to see that indeed, with � = 0 and quantum effects turned off, TH = 0,
and the black hole does not radiate.

Thermodynamics states that entropy S is given by dE = T dS. Here E is just the mass
of the black hole. Integrating dS

dM
= 1

TH
∼GM , we obtain

S ∼GM2 ∼
(
M

MP

)2

(5)

Note that, as expected, S is dimensionless.
Using the fact that the black hole has radius R ∼GM and hence surface area A∼ R2,

we conclude that

S ∼ R2

G
∼ A

l2P
(6)

You should be shocked, shocked, shocked. Most theoretical physicists were, and are.
Not shocked?
Normally, the entropy of a system is extensive, that is, proportional to its volume.

Somehow, a black hole has an entropy proportional to its surface area rather than to
its volume. This fact has led to the so-called holographic principle. Many fundamental
physicists believe that this mysterious property of black holes holds the key to quantum
gravity.

All of this merely from dimensional analysis!
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Notes

1. Some readers might wonder why we do not use the mass of the electron me. In modern particle physics,
the electron may not always have had the mass it has now, and in fact it might have been massless in the
early universe. The masses of elementary particles depend on quantum field theoretic notions known as
spontaneous symmetry breaking and the Higgs mechanism. We should express me in terms of MP, not MP
in terms of me. In different areas of physics, different units are used: for example, the size of the hydrogen
atom might be used as a length unit.

2. I return to this problem in due course, in chapter X.8, for example.
3. This face, regarded as a square, was discussed in the very first section of the first chapter in QFT Nut.
4. See appendix 5 to chapter X.8; for more details, see J. J. Sakurai and J. Napolitano, Modern Quantum

Mechanics, pp. 110 and 133.
5. Named by John Wheeler almost 200 years later.
6. The Boltzmann constant k, which is merely a conversion factor between energy units and the markings on

some tubes containing mercury known as degrees, has been set to 1.



Prelude

Relativity Is an Everyday and Ancient Concept

Butterflies will fly indifferently toward every side

Relativity is all about the notion that you are as good as the next guy, or to put it relatively,
the other guy is as good as you.

More seriously, relativity expresses the fact that the laws of physics as deduced by two
observers in uniform motion with respect to each other must be the same.

We physicists believe in the fundamental principle that physics should not depend on
the physicist, unlike some other academic disciplines we need not name, in which the
truth can vary according to the practitioner.

The proverbial guy in the street thinks that relativity started with Albert Einstein (1879–
1955), but you know better, of course. Surely, some smart human had an inkling of it as
soon as sufficiently smooth transport∗ became available, perhaps even the proverbial “cave
man”† drifting downriver on a log watching his buddies moving by. Galileo Galilei (1564–
1642) first1 explicitly stated the principle of relativity. In Dialogue Concerning the Two Chief
World Systems (first published in 1632) the character Salviati says:

Shut yourself up with some friend in the main cabin below decks on some large ship, and

have with you there some flies, butterflies, and other small flying animals. Have a large bowl

of water with some fish in it; hang up a bottle that empties drop by drop into a wide vessel

beneath it. With the ship standing still, observe carefully how the little animals fly with equal

speed to all sides of the cabin. The fish swim indifferently in all directions; the drops fall into the

∗ Of course, we are on a spinning rock orbiting a star in a rotating galaxy hurtling toward its neighbor at high
speed, but our transport is so smooth that we didn’t notice it for the longest time.

† Or a Sung dynasty poet in a boat; see Fearful, p. 52.
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vessel beneath; and, in throwing something to your friend, you need throw it no more strongly

in one direction than another, the distances being equal; jumping with your feet together, you

pass equal spaces in every direction. When you have observed all these things carefully (though

doubtless when the ship is standing still everything must happen in this way), have the ship

proceed with any speed you like, so long as the motion is uniform and not fluctuating this way

and that. You will discover not the least change in all the effects named, nor could you tell from

any of them whether the ship was moving or standing still. In jumping, you will pass on the

floor the same spaces as before, nor will you make larger jumps toward the stern than toward

the prow even though the ship is moving quite rapidly, despite the fact that during the time

that you are in the air the floor under you will be going in a direction opposite to your jump. In

throwing something to your companion, you will need no more force to get it to him whether

he is in the direction of the bow or the stern, with yourself situated opposite. The droplets will

fall as before into the vessel beneath without dropping toward the stern, although while the

drops are in the air the ship runs many spans. The fish in their water will swim toward the

front of their bowl with no more effort than toward the back, and will go with equal ease to bait

placed anywhere around the edges of the bowl. Finally the butterflies and flies will continue

their flights indifferently toward every side, nor will it ever happen that they are concentrated

toward the stern, as if tired out from keeping up with the course of the ship, from which they

will have been separated during long intervals by keeping themselves in the air. And if smoke is

made by burning some incense, it will be seen going up in the form of a little cloud, remaining

still and moving no more toward one side than the other. The cause of all these correspondences

of effects is the fact that the ship’s motion is common∗ to all the things contained in it, and to

the air also. That is why I said you should be below decks; for if this took place above in the

open air, which would not follow the course of the ship, more or less noticeable differences

would be seen in some of the effects noted.2

That† is so beautifully stated! Much better than most popular physics books on the
market (see figure 1).

Galileo’s ship was updated to Einstein’s train‡ and later to rocket ships and other space
vehicles. Let’s use Einstein’s train, moving smoothly along the x-axis with velocity u (see
figure 2). Let an event occur at the point (x , y , z) at time t for the observer on the train (call
her Ms. Unprime) and at the point (x′, y′, z′) at time t ′ for the observer on the ground (Mr.
Prime). We are of course utilizing the profound and brilliant insight of Galileo’s contem-
porary René Descartes (1596–1650) that geometry can be reduced to algebra by associating
three numbers with each point in space. The Galilean transformation states that

t ′ = t (1)

∗ The phrase “common to all the things contained in it” will play a starring role when we get to Einstein’s
equivalence principle, as we will see in part V.

† Galileo intended this passage as a refutation of the argument that the earth could not rotate since otherwise
objects would fall toward the west.

‡ The historian Peter Galison has pointed out that in the period leading up to 1905, the year Einstein proposed
his theory of special relativity, high speed trains and the telegraph linked the cities of Europe, and an increasingly
technological society was preoccupied with clock synchronization among other things.3
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Figure 1 Galileo’s vision: butterflies fly normally in
a cabin on a smoothly moving ship.

y′

x′

z′

y

x

z

ut u⇒

Figure 2 Galilean transformation.

and

x′ = x + ut , y′ = y , and z′ = z (2)

with u the constant relative velocity between the two observers.
We simply differentiate: dx

′
dt ′ = dx′

dt
= dx

dt
+ u. Thus, if Ms. Unprime tosses a ball forward

with speed v, Mr. Prime sees the ball moving forward with speed v′ = v + u, in accordance
with everyday observation, as known to you, me, and Salviati. We have derived the Galilean
law∗ for the addition of velocities:

v′ = v + u (3)

Differentiating again, we obtain the ball’s acceleration a′ = dv′
dt

= dv
dt

= a. Since Newton’s
law of motion F =ma involves acceleration, we conclude that Newtonian mechanics is
invariant under the Galilean transformation, as Salviati told us.

∗ Which you can verify these days at any major airport with a moving sidewalk.
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Special relativity in one minute

Special relativity can be simply summarized. (Of course, we will be going through it
in much greater detail later.) Maxwell’s laws of electromagnetism turned out not to be
invariant under the Galilean transformation. The speed of light c is determined by how
fast an electric field can turn into a magnetic field and vice versa and so does not depend
on the observer. In total defiance of (3), Maxwell had

c �= c + u (4)

In the high noon showdown between Maxwell and Galileo, Maxwell won. The Galilean
transformation had to be replaced by the Lorentzian transformation involving that univer-
sal constant of Nature, c for celeritas.∗ The relations (1) and (2) between space and time
were modified.

General relativity in 30 seconds

That was special relativity in 60 seconds. But then we could ask, what would happen if u
were not constant, if Salviati’s ship encountered a storm, as it were? In deriving a′ = a, we
used du

dt
= 0, but if that were not so, we would have

a′ = a + du

dt
(5)

Multiply this by m, the mass of the ball Ms. Unprime tossed forward, to obtain ma′ =
ma +mdu

dt
. Mr. Prime, invoking Newton’s law, thus sees an additional force mdu

dt
acting

on the ball.
What could that force possibly be? The answer to that question will lead us to curved

spacetime and Einstein gravity.4

Truth is not relative

Later in life, Einstein moaned that he should have called his work “invariant theory” instead
of “relativity theory.” Had he been more judicious in his choice of words, you, I, and
Einstein would have been spared the spectacle of eminent humanities scholars asserting
that “Truth is relative” since “There is no absolute truth: Einstein proved it so.” Of course,
you know that Einstein said exactly the opposite. Physics must be invariant and true.

Notes

1. Perhaps some historian will track down others before Galileo.
2. Galileo, Dialogue Concerning the Two Chief World Systems, trans. S. Drake, University of California Press,

1953, pp. 186–187.
3. See P. Galison, Einstein’s Clocks, Poincaré’s Maps: Empires of Time, W. W. Norton, 2004.
4. Nitpickers, please! It’s what I could say in 30 seconds!

∗ Einstein used V in his 1905 paper.



BOOK ONE

From Newton to the Gravitational Redshift





Part I From Newton to Riemann: Coordinates to Curvature





I.1 Newton’s Laws

The foundational equation of our subject

For in those days I was in the prime of my age for invention
and minded Mathematicks & Philosophy more than at any time
since.

—Newton describing his youth in his memoirs

Let us start with one of Newton’s laws, which curiously enough is spoken as F =ma but
written asma = F . For a point particle moving inD-dimensional space with position given
by �x(t)= (x1(t), x2(t), . . . , xD(t)), Mr. Newton taught us that

m
d2xi

dt2
= F i (1)

with the index∗ i = 1, . . . , D. For D ≤ 3 the coordinates have traditional “names”: for
example, for D = 3, x1, x2, x3 are often called, with some affection, x , y , z, respectively.

Bad notation alert! In teaching physics, I sometimes feel, with only slight exaggeration,
that students are confused by bad notation almost as much as by the concepts. I am using
the standard notation of x and t here, but the letter x does double duty, as the position of the
particle, which more strictly should be denoted by xi(t) or �x(t), and as the space coordinates
xi, which are variables ranging from −∞ to ∞ and which certainly are independent of t .

The different status between x and t in say (1) is particularly glaring if N > 1 particles

are involved, in which case we write m
d2xia
dt2

= F i
a or md2�xa

dt2
= �Fa with xia(t) for a =

1, 2, . . . , N . But certainly ta is a meaningless concept in Newtonian physics. In the
Newtonian universe, t is the time ticked off by a universal clock, while �xa(t) is each
particle’s private business. We will have plenty more to say about this point. Here xia(t)
are 3N functions of t , but there are still only 3 xi.

∗ See appendix 2.
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Some readers may feel that I am overly pedantic here, but in fact this fundamental
inequality of status between x and t will come to a head when we get to the special theory
of relativity. (I now drop the arrow on �x.) Perhaps Einstein as a student was bothered by
this bad notation. One way to remedy the situation is to use q (or qa) to denote the position
of particles, as in more advanced treatments. But here I bow to tradition and continue to
use x.

Have differential equation, will solve

After Newton’s great insight, we “merely” have to solve some second order differential
equations.

To understand Newton’s fabulous equation, it’s best to work through a few examples. (I
need hardly say that if you do not already know Newtonian mechanics, you are unlikely to
be able to learn it here.)

A priori, the force F i could depend on any number of things, but from experience we
know that in many simple cases, it depends only on x and not on t or dx

dt
. As physicists

unravel the mysteries of Nature, it becomes increasingly clear that fundamental forces
are derived from an underlying quantum field theory and that they have simple forms.
Complicated forces often merely result from some approximations we make in particular
situations.

Example A

A particle in 1-dimensional space tied to a spring oscillates back and forth.
The force F is a function of space. Newton’s equation

m
d2x

dt2
= −kx (2)

is easily solved in terms of two integration constants: x(t) = a cos ωt + b sin ωt , with

ω =
√

k
m

. The two constants a and b are determined by the initial position and initial
velocity, or alternatively∗ by the initial position at t = 0 and by the final position at some
time t = T . Energy, but not momentum, is conserved.

Example B

We kick a particle in 1-dimensional space at t = 0.
The force F is a function of time. This example allows me to introduce the highly useful

Dirac1 delta function, or simply delta function.2 By the word “kick” we mean that the
time scale τ during which the force acts is much less than the other time scales we are

∗ See part II.
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–τ

1–τ

τ t →

δ(t)

0

Figure 1 The delta function, which could
be thought of as an infinitely sharp spike,
is strictly speaking not a function, but the
limit of a sequence of functions.

interested in. Thus, take F(t)= wδ(t), where the function δ(t) rises sharply just before
t = 0, rapidly reaches its maximum at t = 0, and then sharply drops to 0. Because we
included a multiplicative constant w, we could always normalize δ(t) by

∫
dt δ(t)= 1 (3)

As we will see presently, the precise form of δ(t) does not matter. For example, we could
take δ(t) to rise linearly from 0 at t = −τ , reach a peak value of 1/τ at t = 0, and then fall
linearly to 0 at t = τ . For t <−τ and for t > τ , the function δ(t) is defined to be zero. Take
the limit τ → 0, in which this function is known as the delta function. In other words the
delta function is an infinitely sharp spike. See figure 1.

The δ function is somehow treated as an advanced topic in mathematical physics, but in
fact, as you will see, it is an extremely useful function that I will use extensively in this book,
for example in chapters II.1 and III.6. More properties of the δ function will be introduced
as needed.

Integrating

d2x

dt2
= w

m
δ(t) (4)

from some time t− < 0 to some time t+ > 0, we obtain the change in velocity v ≡ dx
dt

:

v(t+)− v(t−)= w

m
(5)

Note that in this example, neither energy nor momentum is conserved. The lack of
conservation is easy to understand: (4) does not include the agent administering the kick. In
general, a time-dependent force indicates that the description is not dynamically complete.
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Example C

A planet approximately described as a point particle of massm goes around its sun of mass
M �m.

This is of course the celebrated problem Newton solved to unify celestial and terrestrial
mechanics, previously thought to be two different areas of physics. His equation now reads

m
d2�r
dt2

= −GMm
�r
r3

(6)

where we use the notation �r = (x , y , z) and r = √�x . �x =√
x2 + y2 + z2.

John Wheeler has emphasized the interesting point that while Newton’s law (1) tells us
how a particle moves in space as a function of time, we tend to think of the trajectory of
a particle as a curve fixed in space. For example, when we think of the motion of a planet
around the sun, we think of an ellipse rather than a spiral around the time axis. Even in
Newtonian mechanics, it is often illuminating to think in terms of a spacetime picture
rather than a picture in space.3

Newton and his two distinct masses

By thinking on it continually.
—Newton (reply given when

asked how he discovered
the law of gravity)

Conceptually, in (6), m represents two distinct physical notions of mass. On the left hand
side, the inertial mass measures the reluctance of the object to move. On the right hand
side, the gravitational mass measures how strongly the object responds to a gravitational
field. The equality of the inertial and the gravitational mass was what Galileo tried to verify
in his famous apocryphal experiment dropping different objects from the Leaning Tower
of Pisa. Newton himself experimented with a pendulum consisting of a hollow wooden
box, which he proceeded to fill with different substances, such as sand and water. In our
own times, this equality has been experimentally verified4, 5 to incredible accuracy.

That the same m appears on both sides of the equation turns out to be one of the
greatest mysteries in physics before Einstein came along. His great insight was that this
unexplained fact provided the clue to a deeper understanding of gravity. At this point, all
we care about this mysterious equality is that m cancels out of (6), so that �̈r = −κ �r

r3 , with
κ ≡GM .

Celestial mechanics solved

Since the force is “central,” namely it points in the direction of �r , a simple symmetry
argument shows that the motion is confined to a plane, which we take to be the (x-y)
plane. Set z= 0 and we are left with
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ẍ = −κx/r3 and ÿ = −κy/r3 (7)

I have already, without warning, switched from Leibniz’s notation to Newton’s dot notation

ẋ ≡ dx

dt
and ẍ ≡ d2x

dt2
(8)

Since this is one of the most beautiful problems6 in theoretical physics, I cannot resist
solving it here in all its glory. Think of this as a warm-up before we do the heavy lifting
of learning Einstein gravity. Also, later, we can compare the solution here with Einstein’s
solution.

Evidently, we should change from Cartesian coordinates (x , y) to polar coordinates
(r , θ). We will do it by brute force to show, in contrast, the elegance of the formalism
we will develop later. Differentiate

x = r cos θ and y = r sin θ (9)

twice to obtain first

ẋ = ṙ cos θ − r sin θ θ̇ and ẏ = ṙ sin θ + r cos θ θ̇ (10)

and then

ẍ = r̈ cos θ − 2ṙ sin θ θ̇ − r cos θ θ̇2 − r sin θ θ̈

and ÿ = r̈ sin θ + 2ṙ cos θ θ̇ − r sin θ θ̇2 + r cos θ θ̈ (11)

(Note that in each pair of these equations, the second could be obtained from the first by
the substitution θ → θ − π

2 , so that cos θ → sin θ , and sin θ → − cos θ .)
Multiplying the first equation in (7) by cos θ and the second by sin θ and adding, we

obtain, using (11),

r̈ − rθ̇2 = − κ

r2
(12)

On the other hand, multiplying the first equation in (7) by sin θ and the second by cos θ
and subtracting, we have

2ṙ θ̇ + rθ̈ = 0 (13)

I remind the reader again that we are doing all this in a clumsy brute force way to show
the power of the formalism we are going to develop later.

After staring at (13) we recognize that it is equivalent to

d

dt
(r2θ̇ )= 0 (14)

which implies that

θ̇ = l

r2
(15)

for some constant l . Inserting this into (12), we have

r̈ = l2

r3
− κ

r2
= −dv(r)

dr
(16)
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where we have defined

v(r)= l2

2r2
− κ

r
(17)

Multiplying (16) by ṙ and integrating over t , we have∫
dt

1
2
d

dt
ṙ2 =

∫
dt ṙ r̈ = −

∫
dt
dr

dt

dv(r)

dr
= −

∫
dr

dv(r)

dr

so that finally

1
2
ṙ2 + v(r)= ε (18)

with ε an integration constant.
This describes a unit mass particle moving in the potential v(r)with energy ε. Plot v(r).

Clearly, if ε is equal to the minimum of the potential vmin = − κ2

2l2 , then ṙ = 0 and r stays
constant. The planet follows a circular orbit of radius l2/κ . If ε > vmin the orbit is elliptical,
with r varying between rmin (perihelion) and rmax (aphelion) defined by the solutions to
ε = v(r). For ε > 0 the planet is not bound and should not even be called a planet.

We have stumbled across two conserved quantities, the angular momentum l and the
energy ε per unit mass, seemingly by accident. They emerged as integration constants,
but surely there should be a more fundamental and satisfying way of understanding
conservation laws. We will see in chapter II.4 that there is.

Orbit closes

One fascinating apparent mystery is that the orbit closes. In other words, as the particle
goes from rmin to rmax and then back to rmin, θ changes by precisely 2π . To verify that this
is so, solve (18) for ṙ and divide by (15) to obtain dr

dθ
= ±(r2/l)

√
2(ε − v(r)). Changing

variable from r to u = 1/r , we see, using (17), that 2(ε − v(r)) becomes the quadratic
polynomial 2ε − l2u2 + 2κu, which we can write in terms of its two roots as l2(umax −
u)(u− umin). Since u varies between umin and umax, we are led to make another change
of variable from u= umin + (umax − umin) sin2 ζ to ζ , so that ζ ranges from 0 to π

2 . Thus,
as the particle completes one round trip excursion in r , the polar angle changes by (note
that umin = 1/rmax and umax = 1/rmin)


θ = 2
∫ rmax

rmin

ldr

r2
√

2(ε − v(r))
= 2

∫ umax

umin

ldu√
2ε − l2u2 + 2κu

= 2
∫ umax

umin

du√
(umax − u)(u− umin)

= 4
∫ π

2

0
dζ = 2π (19)

That this integral turns out to be exactly 2π is at this stage nothing less than an apparent
miracle. Surely, there is something deeper going on, which we will reveal in chapter I.4.
Note also that the inverse square law is crucial here. Incidentally, the change of variable



I.1. Newton’s Laws | 31

here indicates how the Newtonian orbit∗ (and also the Einsteinian orbit, as we will see in
part VI) could be determined. See exercise 2.

Bad notation alert! In (1), the force on the right hand side should be written as F i(x(t))

(in many cases). In C, the gravitational force exists everywhere, namely F(x) exists as a
function, and what appears in Newton’s equation is just F(x) evaluated at the position of
the particle x(t). In contrast, in A, with a mass pulled by a spring, F(x) does not make
sense, only F(x(t)) does. The force exerted by the spring does not pervade all of space, and
hence is defined only at the position of the particle x(t), not at any old x. I can practically
hear the reader chuckling, wondering what kind of person I could be addressing here, but
believe me, I have encountered plenty of students who confuse these two basic concepts:
spatial coordinates and the location of particles. I may sound awfully pedantic, but when we
get to curved spacetime, it is often important to be clear that certain quantities are defined
only on so-called geodesic curves, while others are defined everywhere in spacetime.

A historical digression on the so-called Newton’s constant

Wouldn’t we be better off with the two eyes we now have plus a
third that would tell us what is sneaking up behind? . . . With six
eyes, we could have precise stereoscopic vision in all directions
at once, including straight up. A six-eyed Newton might have
dodged that apple and bequeathed us some levity rather than
gravity.

—George C. Williams7

Physics textbooks by necessity cannot do justice to physics history. As you probably know, in
the Principia, Newton (1642–1727) converted his calculus-based calculations to geometric
arguments,8 which most modern readers find rather difficult to follow. Here I want to
mention another curious point: Newton never did specifically define what we call his
constant G. What he did with ma = GMm/r2 was to compare the moon’s acceleration
with the apple’s acceleration: amoonR

2
lunar orbit =GMearth = aappleR

2
radius of earth. But to write

GMearth = aappleR
2
radius of earth, he had to prove what is sometimes referred to as the first of

Newton’s two “superb theorems,” namely that with the inverse square law the gravitational
force exerted by a spherical mass distribution acts as if the entire mass were concentrated
in a point at the center of the distribution. (See exercise 4.) Even with his abilities, Newton
had to struggle for almost 20 years, the length of which contributed to the bitter priority
fight he had with Hooke on the inverse square law, with Newton claiming that he had the
law a long time before publication. You should be able to do it faster by a factor of ∼104 as
an exercise.

∗ On the old one pound note, a portrait of Newton together with his orbits appears on the back. Amusingly,
the artist felt compelled to put the sun at the center, rather than one of the foci, of the ellipse.
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Knowing the moon’s period and Rlunar orbit, Newton could calculate amoon. Since
Rradius of earth had been known since antiquity, he was thus able to calculate aapple and
obtained agreement∗ with Galileo’s measurement of aapple. This of course represents one
of the most magnificent advances in physics history, with Newton unifying9 the previously
disparate subjects of celestial and terrestrial mechanics in one stroke. I don’t have space
to dwell on this here, but I do want to call your attention to the fact that Newton did not
need to know G and Mearth to perform his feat.

Indeed, G was not measured until 1798 by Henry Cavendish (1731–1810) using equip-
ment built and designed by his friend John Michell (1724–1793), now of black hole fame,
who died before he could carry out the experiment.

Needless to say, what I have presented here should only be regarded as a comic book
version of history.

Appendix 1: Where is hell?

You will find it in this appendix, sort of.
Curiously, contrary to what some textbooks and popular books stated, Cavendish’s goal was not to measure

G, but Mearth and hence the earth’s density. Why this was of more interest to physicists of the time than G is in
itself another interesting tidbit in physics history.

I mentioned that Newton had two superb theorems and that the first triggered his feud with Hooke. His second
superb theorem states that there is no gravitational force inside a spherical shell.10 Are you curious why Newton
would even attack such a problem? An erroneous calculation had convinced him that the earth was much less
dense than the moon, which led his friend Edmond Halley (1656–1742), who by the way published the Principia
at his expense, to propose the hollow earth theory.11 Witness the popularity of the idea in science fiction, notably
Jules Verne’s Journey to the Center of the Earth (1864). The idea may seem absurd to us, but at that time, a location
for hell had to be found, and leading physicists gave serious thought to this pressing problem. Every epoch in
physics has its own top ten problems.

So now we understand Cavendish’s interest in Mearth and hence in the density of the earth rather than in G.
Some textbooks give the impression that people easily obtained Mearth by multiplying the density of rock and the
volume of the earth. Not so easy if you think that the earth might be hollow! We learn from Newton’s second
theorem that there is no gravitational force in hell, so the usual portrayal of the leaping flames can’t be right!

Appendix 2: Fear of indices

Occasionally, a student or two would profess, unaccountably, a “fear of indices.” In fact, there is nothing to
fear.12 At this stage, just stand back and admire how clever the invention of indices is. Instead of giving names
to each coordinate axis, such as x , y , and z, we could pass fluidly between different dimensions by writing xi ,
with i = 1, 2, . . . , D. The length of the alphabet we use does not limit us, and we could easily go beyond 26
dimensions.

When we get to Einstein’s theory, there will be a flood of indices, and we will have to distinguish between
upper and lower indices. In Newtonian mechanics, there is no significance to whether we write the index as a
superscript or a subscript. Have no fear: we will discuss each of these features of indices when the need arises.
At this point, we merely note that a quantity can carry more than one index. In the text, we wrote xia, with
i = 1, 2, . . . , D labeling the different spatial directions, and a = 1, 2, . . . , N labeling the different particles. We
will encounter more examples as we go along.

∗ Newton’s first try did not lead to excellent agreement, because the value for the earth’s equatorial radius was
off. Just a reminder that physics never progresses as smoothly as textbooks say.
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With only slight exaggeration, we could say that the invention of indices represents one of the really clever
ideas13 in the history of physics and mathematics, almost a “magic trick” that enables us to deal with as many
particles in as many spatial dimensions as we like with the mere addition of some subscripts and superscripts.

Exercises

1 Show that for some suitably smooth function f (x), the integral
∫∞
−∞ dxδ(x)f (x)= f (0). Then show that

δ(ax)= δ(x)/|a| by evaluating the integral
∫∞
−∞ dxδ(ax)f (x) for some smooth function f (x).

2 Determine the orbit r(θ) by changing variable from r to u= 1/r . We will need the result of this exercise later.

3 Newton thought that light consists of “corpuscles.” Calculate the deflection of light by the sun, applying what
you learned in the text to the case ε > 0. Note that the mass of these minute “particles of light” drops out in
Newtonian theory anyway. We will need this result to compare with Einstein’s theory later in chapter VI.3.

4 Prove Newton’s first superb theorem: the gravitational force exerted by a spherical mass distribution acts as
if the entire mass were concentrated in a point at the center of the distribution.

5 Prove Newton’s second superb theorem.

6 Suppose engineers can build a straight tunnel connecting two cities on earth. Then we could have a free
unpowered “gravity express”14 by simply dropping a railroad car into the tunnel, allowing it to fall from one
city to the other. Use Newton’s two superb theorems to calculate the transit time.

Notes

1. Also introduced by Cauchy, Poisson, Hermite, Kirchoff, Kelvin, Helmholtz, and Heaviside. See J. D. Jackson,
Am. J. Phys. 76 (2008), pp. 707–709.

2. Rigorous mathematicians go berserk at physicists’ use of the word “function” here; they prefer to call it a
distribution, defined as the limit of a function. But working physicists do not give a flying barf about such
niceties. In any case, I do not personally know a theoretical physicist suffering any harm by calling δ(t) a
function.

3. Consider a game of tennis. Compare a hard drive down the line and a soft lob high over the net. In both

cases, we are to solve Newton’s law d2x
dt2

= 0, d
2y

dt2
= −g, with the boundary conditions x(0)= 0, x(T )=L, and

y(0)= y(T )= 0. (The problem is so elementary that we won’t bother to explain the notation, that y denotes
the vertical direction, that y = 0 is the ground, that T is the time of flight before the ball hits the ground,
that L is the length of the tennis court, and so on and so forth. You might want to draw your own figure.)
The solution is x = Lt/T , y = 1

2g(T − t)t . Note that the two types of tennis shots are governed by the same
equation and the same L. Hence we obtain the same solution, but keep in mind that T is small in the case
of the hard drive and that T is large in the case of the soft lob. Now eliminate t to obtain y as a function
of x, namely y(x)= 1

2gT
2(1 − x

L
) x
L

, a parabola in both cases (of course). But compare the curvature of the

two parabolas: we have d2y

dx2 = −g(T /L)2, very small in the case of the hard drive (small T ) and very large in
the case of the lob (large T ). The hard drive down the line barely skimming over the net, and the soft lob
climbing lazily high up into the sky, look and feel totally different pictured in space. In contrast, consider y
as a function of t . We also have two parabolas (of course), namely y(t)= 1

2g(T − t)t , as given earlier. Now

compare the curvature of the two parabolas: we have d2y

dt2
= −g, the same in both cases. The curvature of the

ball’s trajectory in spacetime is universal (universal gravity, get it?). But we tend to see in our mind’s eye the
two parabolas y(x) in space, one for the hard drive and one for the lob, which look quite different, rather than
the parabolas y(t) in spacetime, which have the same curvature. I learned this long ago from John Wheeler.

4. Currently to one part in 1013. The modern round of experiments started with Loŕand Eötvös in 1885 and
continues with the Eöt-Wash experiment led by E. Adelberger in our days.
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5. The equality of the gravitational and inertial mass of the neutron has also been verified to good accuracy
using neutron interferometry.

6. For Newton’s letter to Halley about Hooke on the inverse square, see P. J. Nahin, Mrs. Perkins’s Electric Quilt,
Princeton University Press, 2009.

7. G. C. Williams, The Pony Fish’s Glow, Basic Books, 1997, p. 128.
8. S. Chandrasekhar, Newton’s Principia for the Common Reader, Oxford University Press, 2003.
9. Fearful, pp. 74–75.

10. For a popular account, see Toy/Universe.
11. N. Kollerstrom, “The Hollow World of Edmond Halley,” J. Hist. Astronomy 23 (1992), p. 185.
12. Surely most readers are familiar with indices. My son the biologist informs me that even biologists use indices

routinely; for example, on p. 20 of Genetics and Analysis of Quantitative Traits by M. Lynch and B. Walsh, indices
appear without explanation or apology.

13. A colleague told me to mention that indices are crucial in computer programming, something that many
readers can relate to.

14. Toy/Universe, p. xxix.



I.2 Conservation Is Good

An integrability condition

Conservation has been important to physics from day one.1 In this chapter, we discuss the
origin of various conservation laws in Newtonian mechanics.

The most important case is when the force F i depends only on x and can be written in
the form

F i(x)= −∂V (x)

∂xi
(1)

for i = 1, 2, . . . , D. As we all learned, V (x) is called the potential.
Suppose such a function V (x) exists; then a clever person might have the insight to

multiply each of Newton’s equations

m
d2xi

dt2
= F i = −∂V (x)

∂xi
(2)

by dxi

dt
to obtain the D equations

m
d2xi

dt2

dxi

dt
= −∂V (x)

∂xi

dxi

dt
, with i = 1, . . . , D (3)

He or she would then recognize that the sum of these D equations could be written as

d

dt

[
1
2
m
∑
i

(
dxi

dt

)2

+ V (x)

]
= 0 (4)

which we could verify by explicit differentiation. Lo and behold, the total energy, defined by

E = 1
2
m
∑
i

(
dxi

dt

)2

+ V (x) (5)

is conserved. It does not change in time.
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For D = 1, (1) holds automatically: V (x) is simply given by − ∫ x
dx′F(x′). For D > 1,

the D equations in (1), namely F i(x) = − ∂V (x)

∂xi
, imply the consistency or integrability

condition

∂F i(x)

∂xj
= ∂F j(x)

∂xi
(6)

(Since derivatives commute, both sides of (6) are equal to − ∂2V (x)

∂xi∂xj
.) Thus, given F i(x), we

merely have to check to see whether (6) holds. If not, then V does not exist. If yes, then we
could integrate F i(x)= − ∂V (x)

∂xi
for each i to determine V .

Apples do not fall down

Suppose V (r) depends only on r ≡
(∑D

i=1(x
i)2
) 1

2 . In other words, the potential does not
pick out any preferred direction. We take this for granted nowadays, but it represents one
of the most astonishing insights of physics.2 Newton realized that the apple did not fall
down, but toward the center of the earth.

Differentiating r2 =∑D
i=1(x

i)2, we obtain rdr =∑
i x

idxi (an “identity,” which we will

use again and again in this text) or ∂r

∂xj
= xj

r
, so that

F i = −xi

r
V ′(r) and

∂F i(x)

∂xj
= −1

r
[δijV ′(r)+ xixj

r2
(−V ′(r)+ rV ′′(r))]

which is manifestly symmetric under i ↔ j .
Here we have introduced the Kronecker delta δij , defined by

δkj = 1 if k = j , δkj = 0 if k �= j (7)

(which we can think of as an ancestor of the Dirac delta function3 introduced in chapter I.1).
The important point is not the somewhat involved expression for ∂F i(x)

∂xj
, but that it is a

linear combination of δij and xixj . We haven’t talked about tensors yet (see chapter I.4),
but this result could have been anticipated by a “what else can it be?” type of argument.
Not having any preferred direction, we could only construct an object with indices i and
j out of δij and xixj . We could have seen immediately that the integrability condition (6)
holds.

Note that this discussion holds for any value of D.

Conservation of angular momentum

Suppose the force in (2) points toward the center, so that it has the form F i = f (r)xi

(with f (r)= −V ′(r)/r , as we just saw). Then we obtain angular momentum conservation
immediately. To see this, multiply Newton’s equation (2)

m
d2xi

dt2
= f (r)xi (8)
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by xj , so that md2xi

dt2
xj = f (r)xixj . Subtract from this the same equation but with i and j

interchanged. Regardless of the function f (r), we find

xj
d2xi

dt2
− xi

d2xj

dt2
= 0 (9)

But this is the same as

d

dt

(
xj
dxi

dt
− xi

dxj

dt

)
= 0 (10)

Clever, eh? I am constantly amazed by how brilliant early physicists were.

The quantity lij ≡
(
xj dx

i

dt
− xi dx

j

dt

)
, the angular momentum per unit mass, is con-

served. Recall that in the preceding chapter, this fact seemingly fell out when we changed
to polar coordinates. Note also that the argument given here holds for any D ≥ 2.

Exercise

1 Let N particles interact according to

ma

d2xi
a

dt2
= − ∂V (x)

∂xi
a

(11)

with a = 1, . . . , N . Suppose V (x1, . . . , xN) depends only on the differences xi
a
− xib, with a , b = 1, . . . , N .

Show that the total momentum
∑

a ma
dxia
dt

is conserved.

Notes

1. Fearful.
2. I once explained this point to humanists using Einstein’s terminology by saying that “The words up and

down have no place in the Mind of the Creator.” See A. Zee, New Lit. Hist. 23 (1992), pp. 815–838. See also
web.physics.ucsb.edu/jatila/supplements/zee lecture.pdf.

3. In the sense that δ(x − y) is zero for x �= y.



I.3 Rotation: Invariance and Infinitesimal Transformation

Rotation in the plane

My pedagogical strategy for this chapter is to take something you know extremely∗ well,
namely rotations in the plane, present it in a way possibly unfamiliar to you, and go through
it slowly in great detail, “beating the subject to death,” so to speak.

I have already mentioned that Monsieur Descartes had the clever idea of reducing
geometry to algebra. Put down Cartesian coordinate axes so that a point P is labeled by two
real numbers (x , y). Suppose another observer (call him Mr. Prime) puts down coordinate
axes rotated by angle θ with respect to the axes put down by the first observer (call her
Ms. Unprime) but sharing the same origin O. Elementary trigonometry tells us that the
coordinates (x , y) and (x′, y′) assigned by the two observers to the same point P are related
by† (see figure 1)

x′ = cos θ x + sin θ y , y′ = − sin θ x + cos θ y (1)

The distance from P to the origin O of course has to be the same for the two observers.
According to Pythagoras, this requires

√
x′2 + y′2 =√

x2 + y2, which you can check us-
ing (1).

Introduce the column vectors �r =
(
x

y

)
and �r ′ =

(
x′
y′
)

and the rotation matrix

R(θ)=
(

cos θ sin θ

− sin θ cos θ

)
(2)

so that we can write (1) more compactly as �r ′ = R(θ)�r .

∗ If you don’t know rotations in the plane extremely well, then perhaps you are not ready for this book. A
nodding familiarity with matrices and linear algebra is among the prerequisites.

† For example, by comparing similar triangles in the figure, we obtain x′ = (x/ cos θ)+ (y − x tan θ) sin θ .
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y

O

P

x

y′
x′

θ

Figure 1 The same point P is labeled by (x , y)
and (x′ , y′), depending on the observer’s frame of
reference.

As you recall from a course on mechanics, we can either envisage rotating the physical
body we are studying or rotating the observer. We will consistently rotate the observer.

We have already used the word “vector.” A vector is a physical quantity (for example the
velocity of a particle in the plane) consisting of two real numbers, so that if Ms. Unprime

represents it by �p =
(
p1

p2

)
, then Mr. Prime will represent it by �p′ = R(θ) �p. In short, a

vector is something that transforms like the coordinates
(
x

y

)
under rotation.

Given two vectors �p =
(
p1

p2

)
and �q =

(
q1

q2

)
, the scalar or dot product is defined by �pT .

�q = p1q1 + p2q2. Here T stands for transpose and �pT the row vector (p1, p2). By definition,
rotations leave �p2 ≡ �pT . �p = (p1)2 + (p2)2 invariant. In other words, if �p′ = R(θ) �p, then
�p′2 = �p2. Since this works for any vector �p, including the case in which �p happens to be
the sum of two vectors �p = �u+ �v, and since �p2 = (�u+ �v)2 = �u2 + �v2 + 2�uT . �v, rotation
also leaves the dot product between two arbitrary vectors invariant: the invariance of �p2

implies that �u′T . �v′ = �uT . �v.
Since �u′ = R�u (to unclutter things, we often suppress the θ dependence in R(θ)) and so

�u′T = �uTRT , we now have �uT . �v = �u′T . �v′ = (�uTRT ) . (R�v)= �uT . (RTR)�v. (The transpose
MT of a matrix M is of course obtained by interchanging the rows and columns of M .) As
this holds for any two vectors �u and �v, we must have the matrix equation

RTR = I (3)

where, as usual, I denotes the identity or unit matrix: I =
(

1 0
0 1

)
. Indeed, we could verify

(3) explicitly:

R(θ)T R(θ)=
(

cos θ − sin θ

sin θ cos θ

) (
cos θ sin θ

− sin θ cos θ

)
=
(

1 0

0 1

)
(4)

Matrices that satisfy (3) are called orthogonal.
Taking the determinant of (3), we obtain (det R)2 = 1, that is, det R = ±1. The determi-

nant of an orthogonal matrix may be −1 as well as +1. In other words, orthogonal matrices

also include reflection matrices, such as P =
(

1 0
0 −1

)
, a reflection in the y-axis.
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To focus on rotations, let us exclude reflections by imposing the condition (since
det P = −1)

det R = 1 (5)

Matrices with unit determinant are called special.
We define a rotation as a matrix that is both orthogonal and special, that is, a matrix that

satisfies both (3) and (5). Thus, the rotation group of the plane consists of the set of all
special orthogonal 2 by 2 matrices and is known as SO(2).

Note that matrices of the form PR for any rotation R are also excluded by (5), since
det(PR) = det P det R = (−1)(+1) = −1. In particular, a reflection in the x-axis( −1 0

0 1

)
, which is the product of P and a rotation through 90◦, is also excluded.

Act a little bit at a time

The Norwegian physicist Marius Sophus Lie (1842–1899) had the almost childishly obvious
but brilliant idea that to rotate through, say, 29◦, you could just as well rotate through a
zillionth of a degree and repeat the process 29 zillion times. To study rotations, it suffices
to study rotation through infinitesimal angles. Shades of Newton and Leibniz! A rotation
through a finite angle could always be obtained by performing infinitesimal rotations
repeatedly. As is typical with many profound statements in physics and mathematics, Lie’s
idea is astonishingly simple. Replace the proverb “Never put off until tomorrow what you
have to do today” by “Do what you have to do a little bit at a time.”

When the angle is small enough, the rotation is almost the identity, that is, no rotation
at all. Thus, we can write

R(θ)� I + A (6)

where A denotes some infinitesimal matrix.
Now suppose we have never seen (2). Indeed, suppose we have never even heard of

sine and cosine. Instead, let us define rotations as the set of linear transformations on
2-component objects �u′ = R�u and �v′ = R�v that leave �uT . �v invariant. Following Lie, we
solve this condition on R, namely (3) RTR = I , by considering an infinitesimal transfor-
mation R(θ) � I + A. Since by assumption, A2 can be neglected relative to A, RTR �
(I + AT )(I + A)� (I + AT + A)= I . We thus obtain AT = −A, namely that A must be
antisymmetric. But there is basically only one 2-by-2 antisymmetric matrix:

J =
(

0 1

−1 0

)
(7)

In other words, the solution of AT = −A is A = θJ for some real number θ . Thus,
rotations close to the identity have the formR = I + θJ +O(θ2)=

(
1 θ

−θ 1

)
+O(θ2). The

antisymmetric matrix J is known as the generator of the rotation group.
An equivalent way of saying this is that for infinitesimal θ , the transformation x′ �

x + θy and y′ � y − θx (you could verify that (1) indeed reduces to this to leading order in
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θ ) obviously satisfies the Pythagorean condition x′2 + y′2 = x2 + y2 to first order in θ . Or,
write x′ = x + δx , y′ = y + δy and solve xδx + yδy = 0.

Alternatively, simply draw figure 1 for θ infinitesimal. Since we know the transformation
is linear, we could determine the matrixR in (6) by looking at the figure to see what happens
to the two points (x = 1, y = 0) and (x = 0, y = 1) under an infinitesimal rotation.

Now recall the identity ex = limN→∞(1 + x
N
)N (which you can easily prove by differen-

tiating both sides). Then, for a finite (that is, not infinitesimal) angle θ , we have

R(θ)= lim
N→∞ R

(
θ

N

)N
= lim

N→∞

(
1 + θJ

N

)N
= eθJ (8)

The first equality represents Lie’s profound idea. For the last equality, we use the identity
just mentioned, which amounts to the definition of the exponential.

Some readers may not be familiar with the exponential of a matrix. Given a well-behaved
function f with a power series expansion, we can define f (M) for an arbitrary matrix
M using that power series. For example, define eM ≡∑∞

n=0 M
n/n!; since we know how

to multiply and add matrices, this series makes perfect sense. (Whether or not any given
series converges is of course another issue.) We must be careful, however, in using various
identities that may or may not generalize. For example, the identity eaea = e2a for a a real
number, which we could prove by applying the binomial theorem to the product of two
series (square of a series in this case) generalizes immediately. Thus, eMeM = e2M . But for
two matrices M1 and M2 that do not commute with each other, eM1eM2 �= eM1+M2.

This provides an alternative but of course equivalent path to our result. To leading order,

we have every right to write R
(
θ
N

)
= 1 + θJ

N
� e

θJ
N and thus R(θ)= R

(
θ
N

)N = eθJ .

Finally, we easily check that the formula R(θ)= eθJ reproduces (2) for any value of θ .
We simply note that J 2 = −I and separate the exponential series into even and odd terms.
Thus

eθJ =
∞∑
n=0

θnJ n/n! =
( ∞∑
k=0

(−1)kθ2k/(2k)!

)
I +

( ∞∑
k=0

(−1)kθ2k+1/(2k + 1)!

)
J

= cos θ I + sin θ J = cos θ

(
1 0

0 1

)
+ sin θ

(
0 1

−1 0

)
=
(

cos θ sin θ

− sin θ cos θ

)
(9)

which is precisely R(θ) as given in (2). Note this works because J plays the same role as
i in the identity eiθ = cos θ + i sin θ .

Poor Lie, he never made it into the 20th century.

Two approaches to rotation

Notice that I actually gave you two different approaches to rotation. Let us summarize the
two approaches. In the first approach, applying trigonometry to figure 1, we write down (1)
and hence (2). In the second approach, we specify what is to be left invariant by rotations
and hence define rotations by the condition (3) that rotations must satisfy. Lie then tells
us that it suffices to solve (3) for infinitesimal rotations. We could then build up rotations
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through finite angles by multiplying infinitesimal rotations together, thus also arriving
at (2).

It might seem that the first approach is much more direct. One writes down (2) and that
is that. The second approach appears more roundabout and involves some “fancy math.”
It might even provoke an adherent of the first “more macho” approach to wisecrack, “Why,
with a bit of higher education, sine and cosine are not good enough for you any more? You
have to go around doing fancy math!” The point is that the second approach generalizes
to higher dimensional spaces (and to other situations) much more readily than the first
approach does, as we will see presently. Dear reader, in going through life, you would be
well advised to always separate fancy but useful math from fancy but useless math.

Before we go on, let us take care of one technical detail. We assumed that Mr. Prime and
Ms. Unprime set up their coordinate systems to share the same origin O. We now show
that this condition is unnecessary if we consider two points P and Q (rather than one point,
as in our discussion above) and study how the vector connecting P to Q transforms.

Let Ms. Unprime assign the coordinates �rP = (x , y) and �rQ = (x̃ , ỹ) to P and Q, respec-
tively. Then Mr. Prime’s coordinates �r ′

P = (x′, y′) for P and �r ′
Q = (x̃′, ỹ′) for Q are then

given by �r ′
P = R(θ)�rP and �r ′

Q = R(θ)�rQ. Subtracting the first equation from the second and
defining 
x = x̃ − x, 
y = ỹ − y, and the corresponding primed quantities, we obtain(


x′


y ′

)
=
(

cos θ − sin θ

sin θ cos θ

) (

x


y

)
(10)

Rotations leave the distance between the points P and Q unchanged: (
x′)2 + (
y′)2 =
(
x)2 + (
y)2. You recognize of course that this is a lot of tedious verbiage stating the
perfectly obvious, but I want to be precise here. Of course, the distance between any two
points is left unchanged by rotations. (This also means that the distance between P and
the origin is left unchanged by rotations; ditto for the distance between Q and the origin.)

Invariance and geometry

There is no royal road to geometry.
—Euclid’s advice to a prince

Let no one unversed in geometry enter here.
—Plato’s motto, carved over the

entrance to his academy

Let us take the two points P and Q to be infinitesimally close to each other and replace
the differences 
x′, 
x, and so forth by differentials dx ′, dx, and so forth. Indeed,
2-dimensional Euclidean space is defined by the distance squared between two nearby
points:

ds2 = dx2 + dy2 (11)
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Rotations are defined as linear transformations∗ (x , y)→ (x′, y′), such that

dx2 + dy2 = dx′2 + dy′2 (12)

The whole point is that this now makes no reference to the origin O (and whether Mr.
Prime and Ms. Unprime even share the same origin).

The column d �x =
(
dx1

dx2

)
≡
(
dx

dy

)
is defined as the basic or ur-vector, the template for

all other vectors. To repeat, a vector is defined as something that transforms like d �x under
rotations.

So, a vector is defined by how it transforms. An array of two numbers �p =
(
p1

p2

)
is a

vector if it transforms according to �p′ = R(θ) �p.
Sometimes it is very helpful, in order to understand what something is, to be given an

example of something that is not. As a simple example, given a �p, then
(
ap1

bp2

)
is definitely

not a vector if a �= b. (You could easily write down more outrageous examples, such as(
(p1)2p2

(p1)3+(p2)3

)
. That ain’t no vector!) You will work out further examples in exercise 1. An

array of numbers is not a vector unless it transforms in the right way.1

Oh, about the advice Euclid gave to the prince who wanted to know a quick way of
mastering geometry. Mr. E is also telling you that, to master the material covered in this
book, there is no way other than to cogitate over the material until you get it and to work
through as many exercises as possible.

From the plane to higher dimensional space

The reader who has wrestled with Euler angles in a mechanics course knows that the
analog of (2) for 3-dimensional space is already quite a mess. In contrast, Lie’s approach
allows us, as mentioned above, to immediately jump to D-dimensional Euclidean space,
defined by specifying the distance squared between two nearby points (compare this with
(11)), as given by the obvious generalization of Pythagoras’ theorem:

ds2 =
D∑
i=1

(
dxi

)2 =
(
dx1

)2 +
(
dx2

)2 + . . . +
(
dxD

)2
(13)

This is as good a place as any to say a word about indices. As I said in chapter I.1, in
my experience teaching, there are always a couple of students confounded by indices.
Dear reader, if you are not, you could simply laugh and skip to the next paragraph.
Indices provide a marvelous notational device to save us from having to give names to
individual elements belonging to a set. (For example, consider all humans hi now alive,
with i = 1, 2, . . . , P where P denotes the population size.) Take a look at the 19th century
physics literature, before the use of indices became widespread. I am always amazed by

∗ Indeed, most, but not all, of the readers2 of this book are constantly rotating between two coordinate systems.
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the fact that, for example, Maxwell could see through the morass of the electromagnetic
equations written out component by component.

Rotations are defined as linear transformations d �x′ =Rd �x that leave ds unchanged. The
preceding discussion allows us to write this condition as RTR = I . As before, we want
to focus on rotations by imposing the additional condition det R = 1. The set of D-by-D
matrices R that satisfy these two conditions forms the simple orthogonal group SO(D),
which is just a fancy way of saying the rotation group in D-dimensional space.

Lie in higher dimensions

The power of Lie now shines through when we want to work out rotations in higher
dimensional spaces. All we have to do is satisfy the two conditionsRTR = I and det R = 1.

So let us follow Lie and writeR � I +A. ThenRTR = I is solved by requiringA= −AT ,
namely that A must be antisymmetric. But it is very easy to write down all possible
antisymmetric D-by-D matrices! For D = 2, there is basically only one: the J introduced
earlier. For D = 3, there are basically three of them:

Jx =

⎛
⎜⎜⎝

0 0 0

0 0 1

0 −1 0

⎞
⎟⎟⎠ , Jy =

⎛
⎜⎜⎝

0 0 −1

0 0 0

1 0 0

⎞
⎟⎟⎠ , Jz =

⎛
⎜⎜⎝

0 1 0

−1 0 0

0 0 0

⎞
⎟⎟⎠ (14)

Any 3-by-3 antisymmetric matrix can be written as A= θxJx + θyJy + θzJz, with three
real numbers θx , θy, and θz. At this point, you can verify that R � I + A, with A as given
here, satisfies the condition det R = 1.

The three matrices Jx, Jy, Jz are known as the generators of the 3-dimensional rotation
group SO(3). They generate rotations, but are of course not to be confused with rotations,
which are by definition 3-by-3 orthogonal matrices with determinant equal to 1.

The upshot of this whole discussion is that any 3-dimensional rotation (not necessarily
infinitesimal) can be written asR(θ)= eA and is thus characterized by three real numbers.
As I said, those readers who have suffered through the rotation of a rigid body in a course
on mechanics must appreciate the simplicity of studying the generators of infinitesimal
rotations and then simply exponentiating them.

Index notation and rotations

Some readers will find this obvious, but others might find it helpful if we derive the
condition RTR = I explicitly once again using the index notation. I prefer to go slow here,
since we will need some of the same formalism later when we get to special relativity. Once
the reader feels sure-footed, we could then dispense with indices.

Let me start by reminding the reader that aD-by-D matrixM carries two indices and has
entries Mij , with the standard convention that the first index labels the rows, the second
the column (for i , j = 1, 2, . . . , D). For example, for D = 2, M =

(
M11 M12

M21 M22

)
, and M12 is
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the entry in the first row and the second column, whereas M21 is the entry in the second
row and the first column. Note that the transpose of a matrix M is given by (MT )ji ≡Mij .
Thus, if �v is a column vector with entries vj , then the entries of the column vector �u=M �v
are given by ui =∑

j M
ijvj . For A and B two D-by-D matrices, the product AB is defined

as the matrix with the entries (AB)ij =∑
k A

ikBkj . (If everything here is news to you, see
the first footnote in this chapter.)

Under a rotation,

dx′i =
∑
j

Rijdxj = Ri1dx1 + Ri2dx2 + . . . + RiDdxD (15)

(I have written the sum out explicitly for the benefit of the rare reader afflicted by fear
of indices.) Also, as was mentioned in chapter I.1, at this stage it is completely arbitrary
whether we write upper or lower indices.

Let us pause and recall the Kronecker delta symbol δij introduced in (I.2.7), defined
to be equal to +1 if i = j and 0 otherwise, and which we can also think of as a D-by-D
unit matrix. We will be encountering the highly useful Kronecker delta often in this book.
For example,

∑
j A

jBj =∑
k

∑
j δ

kjAkBj . Since δkj vanishes unless k is equal to j , the
double sum on the right hand side collapses to the single sum on the left hand side. In
other words, the Kronecker delta allows us to write a single sum as a double sum. It seems
like a really silly thing to do, but as we will see presently, it is an extremely useful trick that
we use quite often in this book.

We now determine how the matrix R must be restricted for it to be a rotation. The
statement that ds2 =∑D

i=1(dx
i)2 as defined in (13) is left unchanged by the rotation implies

that (with all indices running over 1, . . . , D)

∑
i

(dx′i)2 =
∑
i

∑
k

∑
j

RikdxkRijdxj =
∑
j

(dxj)2 =
∑
k

∑
j

δkjdxkdxj (16)

In the last step, we used what we just learned.
Since the infinitesimals dxi can take on arbitrary values, to have the second term equal

to the last term in (16), we must equate the coefficients of dxkdxj and demand that

∑
i

RikRij = δkj =
∑
i

(RT )kiRij = (RTR)kj (17)

Indeed, we obtain RTR = I just as in (3), but now in D-dimensional space for any D.
We end this section with a trivial remark. So far in this chapter, we have written the

column vectors as columns. But columns take up so much space, and so for typographical
convenience (editors must be placated!) we will henceforth write the entries of a column
vector as d �x = (dx1, dx2, . . . , dxD), a practice we will indulge in throughout this book.
(If we want to be insufferably pedantic, we could put in a T for transpose: the column
ur-vector d �x = (dx1, dx2, . . . , dxD)T .)
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Einstein’s repeated index summation

Observe that in all those sums in (16) the indices to be summed over always ap-
pear twice, that is, they are repeated. For example, in the second term in (16),∑

i

∑
k

∑
j R

ikdxkRijdxj , the indices i , k, and j all appear repeated. Thus, we could adopt
the so-called repeated index summation convention proposed by Albert Einstein himself:
omit the pesky summation symbol and agree that if an index is repeated, then it is to be
summed over. For example, dx′i =∑

j R
ijdxj can now be written as dx′i = Rijdxj : in the

expression on the right hand side, the index j appears twice and is thus to be summed
over.∗ In contrast, i is a “free” index and does not appear twice in the same expression.
Notice that free indices must match on opposite sides of any equation. It is rightly said
that one of Einstein’s greatest contribution to physics is the repeated index summation
convention.† When we get to Einstein gravity, we will meet lots of indices to be summed
over, and it would be silly to keep on writing the summation symbol.

Vector fields

The vectors we encounter may well vary in space. For example, the flow velocity in a fluid
in general would depend on where we are. We are then dealing with a vector field �V (�x).
Again, consider two observers studying the same vector field. Mr. Prime would see

�V ′(�x′)= R �V (�x) (18)

with �x′ = R�x of course. In other words, the two observers are studying the same vector
field at the same point P. See figure 2. As another example, the familiar electric �E(�x) and
magnetic fields �B(�x) are both vector fields.

Physics should not depend on the observer

Let me stress again why physicists constantly talk about vectors. The laws of physics often
involve the statement that one vector is equal to another, for example, Newton’s law states
m�a = �F . Applying a rotation matrix R(θ), we obtain mR(θ)�a = R(θ) �F . If �F transforms
like a vector, then m�a′ = �F ′. Ms. Unprime and Mr. Prime see the same Newton’s law, and
more generally, the same laws of physics!

This statement, while self-evident, is profound, and in some sense, it is what makes
physics possible. Physics should not depend on the physicist. Ms. Unprime and Mr. Prime

∗ When a pair of repeated indices, such as j here, is summed over, they are often said to be contracted with
each other. In a tiny abuse of terminology, people also say that Rij is contracted with dxj .

† It appeared only in his later work. In 1905, Einstein did not even use vector notation! In one system, the
coordinates were denoted by x , y , z, in the other, by ξ , η, ζ ; the components of the force acting on the electron
were called X , Y , Z. To modern eyes, his notation was a horrific mess.
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y

x

y′

x′P

Figure 2 Two observers studying the same vector field.

see different accelerations �a and �a′, and different forces �F and �F ′, but the same Newton’s
law. We say that Newton’s law is invariant—that is, it does not change—under rotation.∗

We should also remind ourselves that mass is an example of a scalar: a physical quantity
that does not change under rotation. If it does change, Newton’s law would not be invariant
under rotation and one observer would be preferred over another, which is unacceptable.
Physics rests on the democratic ideal.

Let me remind you that the gravitational force in the planetary problem studied in
chapter I.1 is derived from what is sometimes called a central potential, namely one without
a preferred direction: F i(x)= − ∂

∂xi
V (r)= − xi

r
V ′(r). Hence, �F is proportional to �x and

so a fortiori transforms like a vector.
At this point, it may be worthwhile to be a bit more pedantic and professorial. Some

authors give long-winded speeches about covariance versus invariance, and take great pain
to distinguish the two. We should too. The equation m�a = �F is covariant, that is, the two
sides transform the same way under rotations. The physics expressed by Newton’s second
law is, however, invariant, that is, independent of observers related by a rotation. If physics
depends on how you tilt your head, we are in trouble. Physics does not, but the way physics
is expressed, in terms of equations, does.

Here is the profound and trivial statement. Under a certain set of transformations, a
purportedly fundamental equation is said to be covariant if the two sides of the equation
transform in the same way. If so, then that transformation is known as a symmetry of
physics.3 Physics is said to be invariant under that transformation. As we will see, both sides
of Einstein’s field equation transform in the same way, as tensors, under what are known
as general coordinate transformations. I will explain what a tensor is in the next chapter. I
will allow myself the luxury of using the words invariance and covariance interchangeably
and simply trust you to be discerning.

Since we can always move the quantity on the right hand side of an equation to the
left hand side, we can rewrite a physical law of the form �u= �v in the form �w ≡ �u− �v =
0. Physics students sometimes joke that they could already write down the ultimate

∗ The reader who has already been exposed to the special theory of relativity knows that this notion of invariance
represents the essence of Einstein’s insight. We will of course have a great deal more to say about that!
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equation of physics, namely X = 0, whatever X is. Thus, the statement of invariance
merely expresses the mathematically obvious fact that if �w = 0, then R(θ) �w = 0. (Strictly
speaking, the 0 on the right hand side should be written as �0, but we don’t want to be that
pedantic!)

Descartes versus Euclid

I remember how excited I was when I learned about analytic geometry. Surely you were
excited too. What a genius, that Descartes! Henceforth, we could prove geometric theorems
by doing algebra. After Descartes,4 physics can no longer live without the concept of
coordinates,∗ but he also managed to obscure what was once obvious to Euclid. We now
must also insist on invariance. Indeed, the notion of invariance is at the heart of what we
mean by geometry.

For example, suppose somebody hands you a formula for the area of a triangle with
vertices at (a1, b1), (a2, b2), (a3, b3). You better insist that the formula is invariant under
rotation. In fact, this requirement, plus the requirement that the area should scale as the
square of the separation between the three vertices, suffices to determine the formula.
This simple example rings in the central motif of this book.

Appendix 1: Differential operators rather than matrices

Here I have to divide readers into the haves and the have-nots, but only temporarily. What I will say may sound
difficult, but really, it amounts to not much more than a notational triviality.

If you have studied quantum mechanics, you would know that the generators J of rotation studied here
are related to angular momentum operators. You would also know that in quantum mechanics, observables are
represented by hermitean operators. However, in our discussion, the J s come out naturally as antisymmetric
matrices and are thus antihermitean. To make them hermitean, we multiply them by some multiples of i.

If you have not studied quantum mechanics, then the preceding would sound like gibberish to you, but do
not worry. Simply take the attitude that, hey, it is a free country, and we can always invite ourselves to define a
new set of physical quantities by multiplying an existing set of physical quantities by some constant. Heck, we
could multiply by

√
17i if we want.

Even though here we are nowhere near quantum mechanics, we will bow to customary usage and define Jx ≡
−iJx and so forth. From (14) we see that, for example, Jz acting on the column vector (x , y , z) gives i(y , −x , 0).
Thus, instead of using matrices, we could also represent Jz by i(y ∂

∂x
− x ∂

∂y
), since Jzx = i(y ∂

∂x
− x ∂

∂y
)x = iy,

Jzy = i(y ∂
∂x

− x ∂
∂y
)y = −ix, and Jzy = i(y ∂

∂x
− x ∂

∂y
)z = 0. Note that Jz is precisely the z-component of the

angular momentum operators in quantum mechanics. We can naturally pass back and forth between matrices
and differential operators. We will not make use of this differential representation until a later chapter.

∗ Regarding the argument (which I mentioned in a footnote in the preface) between those who live with
coordinates and those who live coordinate free, I would say that the proof of angular momentum conservation,
which I already gave, not once, but twice in the two preceding chapters using coordinates, provides an example in
favor of the latter group: d

dt
�l = d

dt
(�r × �p)=m d

dt
(�r × d�r

dt
)=md�r

dt
× d�r

dt
+m�r × d2�r

dt2
= 0 for rotationally symmetric

potentials. While this indeed looks simpler than the two previous discussions, the former group could also say
that this requires learning “considerable formal math,” such as the cross product and its various properties.
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Appendix 2: Rotations in higher dimensional space

Here we discuss rotations in D-dimensional Euclidean space. As you have no doubt heard, Einstein combined
space and time into a 4-dimensional spacetime. Thus, what you will learn here about SO(4) will be put to good
use.∗ If you prefer, you could skip this discussion and come back to it later.

Start with a D-by-D matrix with 0 everywhere. Generalize (14). Stick a 1 into the mth row and nth column,
and a (−1) into the nth row andmth column. Call this matrix J(mn). We put the subscripts (mn) in parentheses to
emphasize that (mn) labels the matrix. They are not indices to tell us which element of the matrix we are talking
about. As explained before, we define J(mn) = −iJ(mn) so that explicitly

J
ij

(mn)
= −i(δmiδnj − δmjδni) (19)

To repeat, in the symbol J ij
(mn)

, the indices i and j indicate respectively the row and column of the entry J ij
(mn)

of
the matrix J(mn), while the indices m and n, which I put in parentheses for pedagogical clarity, indicate which
matrix we are talking about. The first indexm on J(mn) can take onD values, and then the second index n can take
on only (D − 1) values since, obviously, J(mm) = 0. Also, since J(nm) = −J(mn), we require m> n to avoid double
counting. Thus, there are only 1

2D(D − 1) real antisymmetric D-by-D matrices J(mn), and A could be written as
a linear combination of them: A= i

∑
m>n θmnJ(mn), where θmn denote 1

2D(D − 1) real numbers. (As a check,
for D = 2 and 3, 1

2D(D − 1) equals 1 and 3, respectively.) The matrices J(mn) are known as the generators of the
group SO(D).

Notice a notational peculiarity: for SO(3), the J s could be labeled with one index rather than two indices. The
reason is simple. In this case, the indices m, n take on 3 values, and so we could write Jx = J23, Jy = J31, and
Jz = J12. We will, as we do here, often pass freely between the index sets (123) and (xyz). In general, rotations
are labeled by the plane they occur in, say the (m-n) plane spanned by the mth and nth axes. In 3-dimensional
space, and only in 3-dimensional space, a plane is uniquely specified by the vector perpendicular to it. Thus, a
rotation commonly spoken of as a rotation around the z-axis is better thought of as a rotation in the (1-2) plane,
that is, the (x-y) plane. (In this connection, note that the J in (7) appears as the upper left 2-by-2 block in Jz in
(14).) In contrast, for SO(4) it makes no sense to speak of a rotation around, say, the third axis.

The reader who has studied some group theory knows that the essence of the group is captured by the extent
to which the multiplication of two group elements does not commute. For rotations, everyday observations show
that R(θ)R(θ ′) is in general quite different from R(θ ′)R(θ). See figure 3.

Following Lie, we could try to capture this essence by focusing on infinitesimal rotations. Let R1 � I + A

and R2 � I + B. Then R1R2 � (I + A)(I + B)� I + A+ B + AB +O(A2, B2) (where rather pedantically we
have indicated that to the desired order if we keep AB, we should also keep terms of order O(A2, B2), but we
will see immediately that they are irrelevant). If we multiply in the other order, we simply interchange A and
B, thus R2R1 � (I + A)(I + B)� I + B + A+ BA+O(A2, B2). Hence, R1R2 and R2R1 differ by the amount
[A, B] ≡ AB − BA, a quantity known as the commutator between A and B.

More formally, given two matrices X and Y , to measure how they differ from each other, we could ask how
X−1Y differs from the identity. If X = Y , then this product is equal to the identity. Now, the inverse of a matrix
I +A infinitesimally close to the identity is easy to determine: it is just I −A, since (I −A)(I +A)= I +O(A2).
Thus, let us calculate (R2R1)

−1R1R2:

(R2R1)
−1R1R2 = [I − (B + A+ BA+O(A2, B2))][I + A+ B + AB +O(A2, B2)]

= I + [A, B] + . . . (20)

For SO(3), for example,A is a linear combination of the Jis, known as the generators of the Lie algebra. Thus,
we could write A= i

∑
i θiJi and similarly B = i

∑
j θ

′
j
Jj . Hence [A, B] = i2

∑
ij θiθ

′
j
[Ji , Jj ], and so it suffices

to calculate the commutators [Ji , Jj ].
Recall that for two matrices M1 and M2, (M1M2)

T =MT
2 M

T
1 . Transpose reverses the order. Thus ([Ji , Jj ])T =

−[Ji , Jj ]. In other words, the commutator [Ji , Jj ] is itself an antisymmetric 3-by-3 matrix and thus could be
written as a linear combination of the Jks:

[Ji , Jj ] = icijkJk (21)

∗ Higher dimensional rotation groups often pop up in the most unlikely places in theoretical physics. For
example, SO(4) is relevant for a deeper understanding of the spectrum of the hydrogen atom.5
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(a)

(b)

Figure 3 A marine recruit in a boot camp is standing and facing north. When the drill sergeant
shouts, “Rotate by 90◦ eastward around the vertical axis” our recruit turns to face east. Suppose
the sergeant next shouts, “Rotate by 90◦ westward around the north-south axis.” Our recruit
ends up lying down on his back with his head pointing west, his feet pointing east. But what
would happen if the sergeant reverses his two commands? You could easily verify that our recruit
now ends up lying down on his left elbow, with his head pointing north. The order matters. For
this reason, the study of rotations has been a bête noire for generations of physics students.

for a set of real (convince yourself of this!) numbers cijk. The summation over k is implied by the repeated index
summation convention.

By explicit computation using (14), we find

[Jx , Jy ] = iJz (22)

You should work out the other commutators or argue by cyclic substitution x → y → z→ x. The three commu-
tation relations may be summarized by

[Ji , Jj ] = iεijkJk (23)

We define the totally antisymmetric symbol εijk by saying that it changes sign upon the interchange of any pair
of indices (and hence it vanishes when any two indices are equal) and by specifying that ε123 = 1. In other words,
we found that cijk = εijk.

Lie’s great insight is that the preceding discussion holds for any group whose elements are labeled by a set of
continuous parameters (such as θi , i = 1, 2, 3 in the case of SO(3)), groups now known as Lie groups. Expanding
the group elements around the origin, we arrive at (20) and hence the structure (21) for any continuous group.
The set of all commutation relations of the form (21) is said to define a Lie algebra, with cijk referred to as the
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structure constants of the algebra. The matrices Ji are called the generators of the Lie algebra. The idea is that
by studying the Lie algebra, we go a long way toward understanding the group.

You should now work out (exercise 4), starting from (19), the Lie algebra for SO(D):

[J(mn) , J(pq)] = i(δmpJ(nq) + δnqJ(mp) − δnpJ(mq) − δmqJ(np)) (24)

This may look rather involved to the uninitiated, but in fact it is quite simple. First, the right hand side,
a linear combination of the J s, as required by the general argument above, is completely fixed by the first
term by noting that the left hand side is antisymmetric under three separate interchanges: m↔ n, p ↔ q, and
(mn) ↔ (pq). Next, all those Kronecker deltas just say that if the two sets (mn) and (pq) have no integer in
common, then the commutator vanishes. If they do have an integer in common, you simply “cross off” that
integer. This is best explained by using SO(4) as an example. We have [J(12) , J(34)] = 0, [J(12) , J(14)] = iJ(24),
[J(23) , J(31)] = −iJ(21) = iJ(12), and so forth. The first of these relations says that rotations in the (1-2) plane and
in the (3-4) plane commute, as you might expect. Do write down a few more and you will get it.

Exercises

1 Suppose we are given two vectors �p and �q in ordinary 3-dimensional space. Consider this array of three

numbers:

(
p2q3

p3q1

p1q2

)
. Prove that it is not a vector, even though it looks like a vector. (Check how it transforms

under rotation!) In contrast,

(
p2q3−p3q2

p3q1−p1q3

p1q2−p2q1

)
does transform like a vector. It is in fact the vector cross product

�p × �q.

2 Show that the product of two delta functions δ(x)δ(y) is invariant under rotation around the origin.

3 Using (14) show that a rotation around the x-axis through angle θx is given by

Rx(θx)=
⎛
⎜⎝

1 0 0

0 cos θx sin θx

0 − sin θx cos θx

⎞
⎟⎠

Write down Ry(θy). Show explicitly that Rx(θx)Ry(θy) �= Ry(θy)Rx(θx).

4 Calculate [J(mn) , J(pq)].

5 Given a 3-vector �p, show that the quantity �pi �pj when averaged over the direction of �p is given by
1

4π

∫
dθdϕ cos θ �pi �pj = 1

3 �p2δij .

Notes

1. Outside of physics, people often erroneously call any array of numbers a vector. Of course, people are free to
call anything anything, so let’s not quibble about the word “erroneously.”

2. I say “most, but not all,” because it is conceivable that you are a native speaker of Guugu Yimithirr. See
G. Deutscher, Through the Language Glass, H. Holt and Co., 2010, p. 161.

3. The intellectual precision of our definition of symmetry is necessary lest we make the same mistake as the
ancient Greeks. See Fearful, pp. 11–12 and figure 2.2.

4. According to one story, take it or leave it, Descartes was lying in bed when he noticed a fly buzzing around
the room. He then realized that he could fix the fly’s position given how far the fly was from two intersecting
walls and the ceiling.

5. For example, J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, pp. 265–268.
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A tensor is something that transforms like a tensor

Long ago, an undergrad who later became a distinguished condensed matter physicist
came to me after a class on group theory and asked me, “What exactly is a tensor?” I told
him that a tensor is something that transforms like a tensor. When I ran into him many
years later, he regaled me with the following story. At his graduation, his father, perhaps
still smarting from the hefty sum he had paid to the prestigious private university his son
attended, asked him what was the most memorable piece of knowledge he acquired during
his four years in college. He replied, “A tensor is something that transforms like a tensor.”

But this should not perplex us. A duck is something that quacks like a duck. Mathemati-
cal objects could also be defined by their behavior. We already saw in the preceding chapter
that a vector is defined by how it transforms: V ′i = RijV j . Consider a collection of “math-
ematical entities” T ij with i , j = 1, 2, . . . , D in D-dimensional space. If they transform
under rotations according to

T ij → T ′ij = RikRjlT kl (1)

then we say that T transforms like a tensor, and hence is a tensor. (Here we are using the
Einstein summation convention introduced in the previous chapter: The right hand side
actually means

∑D
k=1

∑D
l=1 R

ikRjlT kl and is a sum of D2 terms.) Indeed, we see that we
are just generalizing the transformation law of a vector.

Fear of tensors

In my experience teaching, a couple of students are invariably confused by the notion of
tensors. The very word “tensor” apparently make them tense. Dear reader, if you are not
one of these unfortunates, so much the better for you! You could zip through this chapter.
But to allay the nameless fear of the tensorphobe, I will go slow and be specific.
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Think of the tensor T ij as a collection of D2 mathematical entities that transform
into linear combinations of one another. To help the reader focus, I will often spe-
cialize to D = 3. Compounded and intertwined with their fear of tensors, the unfor-
tunates mentioned above are also unaccountably afraid of indices, as mentioned in
chapter I.1. For them, let us list T ij explicitly for D = 3. There are 32 = 9 of them:
T 11, T 12, T 13, T 21, T 22, T 23, T 31, T 32, T 33. That’s it, 9 objects that transform into linear
combinations of one another. For example, (1) says that T ′21 = R2kR1lT kl = R21R11T 11 +
R21R12T 12 + R21R13T 13 + R22R11T 21 + R22R12T 22 + R22R13T 23 + R23R11T 31+
R23R12T 32 + R23R13T 33. This shows explicitly, as if there were any doubt to begin with,
that T ′21 is given by a particular linear combination of the 9 objects. That’s all: the ten-
sor T ij consists of 9 objects that transform into linear combinations of themselves under
rotations.

We could generalize further and define∗ 3-indexed tensors, 4-indexed tensors, and so
forth by such transformation laws as W ′ijn = RikRjlRnmWklm. Here we will focus on 2-
indexed tensors, and if we say tensor without any qualifier, we often, but not always, mean
a 2-indexed tensor. With this definition, we might say that a vector is a 1-indexed tensor
and a scalar is a 0-indexed tensor, but this usage is not common. A scalar transforms as a
tensor with no index at all, namely S′ = S; in other words, a scalar does not transform.

Tensor field

In the preceding chapter, we introduced the notion of a vector field V i(�x), nothing more or
less than a vector function of position. That it is a vector means that it transforms according
to V ′i(�x′)=RijV j(�x). Now consider the derivative of this vector field ∂V j(�x)

∂xk
, which we will

call Wkj(�x).
Use the fact that �x′ = R�x implies �x = R−1�x′ = RT �x′ and thus ∂xk

∂x′h = (RT )kh = Rhk. (The
O in the rotation group SO(D) is crucial: the inverse of a rotation is its transpose.) Then

∂

∂x′h = ∂xk

∂x′h
∂

∂xk
= Rhk ∂

∂xk
(2)

Thus

W ′hi(�x′)≡ ∂V ′i(�x′)
∂x′h = Rhk ∂

∂xk
(RijV j(�x))= RhkRij ∂V

j(�x)
∂xk

= RhkRijWkj(�x) (3)

Comparing with (1) we see that Wkj(�x) transforms like a tensor and, hence, is a tensor.
Indeed, it is a tensor field.

Notice that a tensor T ij transforms as if it were composed of two vectors viwj , that
is, T ij and viwj transform in the same way. (Compare viwj → v′iw′j = RikvkRjlwl =
RikRjlvkwl with (1).) It is important to recognize that only in exceptional cases does a
tensor T ij happen to be equal to viwj for some v and w. In general, a tensor cannot be

∗ Our friend the Jargon Guy tells us that the number of indices carried by a tensor is known as its rank. (The
Jargon Guy is a new friend of the author; he did not appear in QFT Nut.)
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written in the form viwj . Our tensor field Wkj(�x) offers a ready example: in general, it is
not equal to some vector Uk multiplied by V j(�x).

Also, note in our example that the differential operator ∂

∂xk
transforms (2) like a vector.

For example, if φ′(x′)= φ(x) transforms like a scalar, then ∂φ

∂xk
transforms like a vector.

Indeed, that’s why you have encountered the notation �∇ for the gradient in an elementary
physics course. This remark will be important later when we revisit Newton’s inverse
square law in chapter II.3. Do exercise 1 now.

Representation theory

Go back to the 9 objects T ij that form a tensor. Mentally arrange them in a column⎛
⎜⎜⎜⎜⎜⎝

T 11

T 12

...

T 33

⎞
⎟⎟⎟⎟⎟⎠

The linear transformation on the 9 objects can then be represented by a 9-by-9 matrix
D(R) acting on this column. (Here we are going painfully slowly because of common
confusion on this point. Some authors refer to this column as a 9-component “vector,”
which is a horrible abuse of terminology. We reserve the word “vector” for something that
transforms like a vector V ′i = RijV j . It is not true that any old collection of stuff arranged
in a column is a vector. Don’t call anything with feathers a duck!)

For every rotation, specified by a 3-by-3 matrixR, we could thus associate a 9-by-9 matrix
D(R) transforming the 9 objects T ij linearly among themselves. We say that the 9-by-9
matrix D(R) represents the rotation matrix R in the sense that

D(R1)D(R2)= D(R1R2) (4)

Multiplication of D(R1) and D(R2)mirrors the multiplication ofR1 andR2, as it were. The
tensor T is said to furnish a 9-dimensional representation of the rotation group SO(3).
The 9-by-9 matrices D(R) represent R. Notice that with this jargon, the vector furnishes a
3-dimensional representation of the rotation group, known as the defining or fundamental
representation.

Reducible versus irreducible

Let us now pose the central question of representation theory. Given these 9 entities T ij

that transform into each other, consider the 9 independent linear combinations that we
can form out of them. Is there a subset among them that only transform into each other?
A secret in-club, as it were.

A moment’s thought reveals that there is indeed an in-club. Consider Aij ≡ T ij − T ji.
Under a rotation,
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Aij → A′ij = T ′ij − T ′ji = RikRjlT kl − RjkRilT kl

= RikRjlT kl − RjlRikT lk = RikRjl(T kl − T lk)= RikRjlAkl (5)

I have again gone painfully slow here, but it is obvious, isn’t it? We just verified in (5) that
Aij transforms like a tensor and is thus a tensor. Furthermore, this tensor changes sign
upon interchange of its two indices (Aij = −Aji) and is said to be antisymmetric. The
transformation law (1) treats the two indices democratically, without favoring one over
the other, and thus preserves the antisymmetric character of a tensor: if Aij = −Aji, then
A′ij = −A′ji also.

Let us count. The index i in Aij could take on D values; for each of these values,
the index j could take on only D − 1 values (since the D diagonal elements Aii = 0 for
i = 1, 2, . . . , D, no Einstein repeated index summation here); but to avoid double counting
(sinceAij = −Aji) we should divide by 2. Hence, the number of independent components
inA is equal to 1

2D(D − 1). For example, forD = 3, we have the 3 objects:A12, A23, andA31.
The attentive reader would recall that we did the same counting in the previous chapter.

Obviously, the same goes for the symmetric combination Sij ≡ T ij + T ji. You could
verify as a trivial exercise that S′ij = RikRjlSkl. A tensor Sij that does not change sign
upon interchange of its two indices (Sij = Sji) is said to be symmetric. Evidently, the sym-
metric tensor S has more components than the antisymmetric tensorA. In addition to the
components Sij with i �= j , S also hasD diagonal components, namely S11, S22, . . . , SDD.
Thus, the number of independent components in S is equal to 1

2D(D − 1) + D =
1
2D(D + 1).

For D = 3, the number of components in A and S are 1
2

. 3 . 2 = 3 and 1
2

. 3 . 4 = 6,
respectively. (ForD = 4, the number of components inA and S are 6 and 10, respectively.)
Thus, in a suitable basis, the 9-by-9 matrix referred to above actually breaks up into a 3-
by-3 block and a 6-by-6 block. We say that the 9-dimensional representation is reducible:
it could be reduced to smaller representations.

But we are not done yet. The 6-dimensional representation is also reducible. To see this,
note

S′ii = RikRilSkl = (RT )kiRilSkl = (R−1)kiRilSkl = δklSkl = Skk (6)

where we have used the O in SO(D). (Here we are using repeated index summation:
the indices i and k are both summed over.) In other words, the linear combination
S11 + S22 + . . . + SDD, the trace of S, transforms into itself, that is, does not transform
at all. It is a loner forming an in-club of one. The 6-by-6 matrix describing the linear
transformation of the 6 objects Sij breaks up into a 1-by-1 block and a 5-by-5 block. See
figure 1.

Again, for the sake of the beginning student, let us work out explicitly the 5 objects that
furnish the representation 5 of SO(3). First define a traceless symmetric tensor S̃ by

S̃ij = Sij − δij (Skk/D) (7)

(The repeated index k is summed over.) Explicitly, S̃ii = Sii − D(Skk/D) = 0, and S̃ is
traceless. Specialize to D = 3. Now we have only 5 objects, namely S̃11, S̃22, S̃12, S̃13, S̃23.
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9 → 5 + 3 + 1

Figure 1 How the collection of 9 objects T ij splits up. The figure is meant
to be schematic: the dots do not represent the original 9 objects, but linear
combinations of them, and the positions of the dots are not meaningful.

We do not count S̃33 separately, since it is equal to −(S̃11 + S̃22). Under an SO(3) rotation,
these 5 objects transform into linear combinations of one another, as we just explained.

Let us be specific: the object S̃13, for example, transforms into S̃′13 = R1kR3lS̃kl =
R11R31S̃11 +R11R32S̃12 +R11R33S̃13 +R12R31S̃21 +R12R32S̃22 +R12R33S̃23 +R13R31S̃31

+R13R32S̃32 + R13R33S̃33 = (R11R31 − R13R33)S̃11 + (R11R32 + R12R31)S̃12 + (R11R33 +
R13R31)S̃13 + (R12R32 − R13R33)S̃22 + (R12R33 + R13R32)S̃23, where in the last equality,
we used S̃ij = S̃j i and S̃33 = −(S̃11 + S̃22). Indeed, S̃13 transforms into a linear combina-
tion of S̃11, S̃22, S̃12, S̃13, S̃23.

To summarize, what we found is that if, instead of the basis consisting of the 9 entities
T ij , we use the basis consisting of the 3 entities Aij , the single entity Skk (remember
repeated index summation!), and the 5 entities S̃ij , the 9-by-9 matrix D(R) (that represents
rotation in the sense of (4)) breaks up into a 3-by-3 matrix, a 1-by-1 matrix, and a 5-by-5
matrix “stacked on top of each other.” This is represented schematically as

D(R)= (9-by-9 matrix)→

⎡
⎢⎢⎢⎣

(3-by-3 block) 0 0

0 (1-by-1 block) 0

0 0 (5-by-5 block)

⎤
⎥⎥⎥⎦ (8)

Note that once we chose the new basis, this decomposition holds true for all rotations.
(For the readers who know their linear algebra, the technical statement is that there exists
a similarity transformation that block-diagonalizes D(R) for all R. Incidentally, we will
encounter plenty of similarity transformations later.)

More generally, the D2 representation furnished by a general 2-indexed tensor decom-
poses into a 1

2D(D − 1)-dimensional representation, a ( 1
2D(D + 1)− 1)-dimensional rep-

resentation, and a 1-dimensional representation. We say that in SO(3), 9 = 5 + 3 + 1. (In
SO(4), 16 = 9 + 6 + 1.)

You might have noticed that in this entire discussion we never had to write out R
explicitly in terms of the 3 rotation angles and how the 5 objects S̃11, . . . , S̃23 transform
into one another in terms of these angles. It is only the counting that matters. You might
regard that as the difference between mathematics and arithmetic.
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5 → 2 + 2 + 1

Figure 2 Under SO(3), the 5 objects inside the solid line transform
into linear combinations of each other, but under the smaller group of
transformations SO(2), the objects inside each of the 3 dashed lines
transform into linear combinations of each other. The 5 breaks up as
5 → 2 + 2 + 1. As in figure 1, this figure is meant to be schematic.

Restriction to a subgroup

You definitely do not have to master group theory1 to read this book, but it would be useful
for you to learn a few basic concepts and to be able to count. For instance, the notion of a
subgroup. Consider the group SO(2) that we studied to exhaustion, consisting of rotations
around the z-axis, say. Evidently, SO(2) is a subgroup of SO(3) in that its elements are all
elements of SO(3) and form a group all by themselves. The components of the 3-vector V i

could be split into two sets: (V 1, V 2) and V 3. Under a rotation around the z-axis, (V 1, V 2)

transform as a 2-vector and V 3 as a scalar. We say that upon restriction to the subgroup
SO(2), the irreducible representation 3 breaks up into the representations 2 and 1 of the
subgroup, a decomposition we write as 3 → 2 + 1. All the group theoretic results we need
in this book could be obtained by explicit listing and simple counting.

Look at the 5 objects, S11, S22, S12, S13, S23, that furnish the representation 5 of SO(3).
Now consider a restriction to the subgroup SO(2). In other words, we restrict ourselves to
rotations around the z-axis, that is, rotations under whichV 3 → V ′3 = V 3, namely rotations
with R33 = 1 and R13, R23, R31, R32 all vanishing. Since SO(2) does not touch the index
3, we conclude immediately that the combination S11 + S22 = −S33 does not transform,
or in other words, it transforms as a singlet under SO(2). Similarly, the pair (S13, S23)

transforms as a doublet, since the index 3 is “invisible” to SO(2): the group transforms
the indices 1 and 2 into each other, while leaving the index 3 alone. Indeed, we see that our
earlier expression for S ′13 collapses to S′13 =R11S13 +R12S23, as expected. Finally, you can
verify that the remaining combinations (S12, S11 − S22) transform like a doublet. These
results could be summarized by saying that, upon restriction to the subgroup SO(2), the
irreducible representation 5 of the group SO(3) breaks up as 5 → 2 + 2 + 1. See figure 2.

Tensors in Newtonian mechanics

Let us give another example, particularly apt for a book on gravity, of a Newtonian tensor.
Consider two nearby particles moving in a potential. Denote their trajectories by �x(t)
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and �y(t), respectively, determined by d2xi

dt2
= −∂iV (�x) and d2yi

dt2
= −∂iV (�y). (I am also

testing whether there are any readers who do not understand thoroughly the concept of
notational freedom.) We want to know how the separation vector �s ≡ �y − �x changes with
time, keeping terms to leading order in �s:

d2si

dt2
= d2yi

dt2
− d2xi

dt2
= −∂i[V (�y)− V (�x)] = −∂i[V (�x + �s)− V (�x)] � −∂i∂jV (�x)sj

The object Rij (�x)≡ ∂i∂jV (�x) is manifestly a tensor if V (�x) is a scalar. For example, verify
that Rij =GM(δijr2 − 3xixj)/r5 for the gravitational potentialV (�x)= −GM/r . Note that
Rij is a symmetric traceless tensor. Since Rii = ∂i∂iV (�x)= �∇2V , the tracelessness merely
reaffirms the fact that the 1/r potential satisfies Laplace’s equation �∇2V = 0. Also, Rij is
manifestly not the product of two vectors, but it transforms as if it were.

Let us see how rotational covariance works in the equation

d2si

dt2
= −Rij sj (9)

The right hand side has to be linear in the vector �s. Since the left hand side transforms like
a vector, the right hand side must also: indeed, it is given by a tensor R contracted∗ with
a vector �s. A tensor is needed on the right hand side.

Imagine yourself falling toward a spherical planet or star. With no loss of generality,
let your location at some instant be (0, 0, r) along the z-axis. The tensor R written out
as a matrix is then diagonal and is given by (for example, R33 =GM(δ33r2 − 3x3x3)/r5 =
GM(1 − 3)/r3)

R = GM

r3

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎟⎠ (10)

Thus, the sign of d2�s
dt2

depends on the orientation of �s.
To see why this is so and to understand what tensors are all about, imagine surrounding

yourself with a circular arrangement of balls lying in the (x-z) plane (see figure 3a) and
initially at rest in your frame. Using (9) and (10), we can now write down how the separation
between two balls along different directions changes.

Since we are going to specify the direction, we will denote the separation simply by
s. Along the z-axis, s grows according to (see (9)) d2s

dt2
= −R33s = +2GM

r3 s. The plus sign
indicates that the two balls move away from each other. In contrast, along the x-axis, s de-
creases according to d2s

dt2
= −R11s = −GM

r3 s. The two balls approach each other. (Similarly
for two balls aligned along the y-axis.) (Note that acting on �s on the right hand side of (9)
by a tensor makes it possible for d2s

dt2
to change sign depending on the orientation of �s.)

Inspecting figure 3a, you see why. Look at it as an observer on the planet. In the first case,
one of the two balls, being closer to the planet, is falling faster than the other. Thus, they

∗ When a pair of repeated indices, such as j in (9), is summed over, they are often said to be contracted with
each other (as mentioned in a footnote in the preceding chapter) in the sense that this index no longer appears
in the result, as shown by the left hand side of (9).
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z

(a) (b)

x

Figure 3 A falling ring of balls as seen by an observer on the planet (a), and
as seen by an observer falling with the balls (b).

are moving away from each other. In the second case, the two balls are coming closer due
to spherical symmetry: they are both heading toward the center of the planet. As Newton
pointed out, objects do not fall down to earth, but toward the center of the earth.

In your rest frame (figure 3b) as you fall along with the balls, however, you see a tidal
force acting on the circular ring (or a spherical shell if you prefer) of balls. The force
appears to stretch the ring in the z-direction and to squeeze it in the orthogonal direction.
When we come to Einstein’s prediction of gravitational waves in chapter IX.4, we will see
that gravitational waves act on the detector according to equations analogous to (9) and
(10). Note also for future reference that the tidal force Rij (�x) ≡ ∂i∂jV (�x) involves two
derivatives acting on the gravitational potential V (�x).

Invariant tensors

In D-dimensional space, define the antisymmetric symbol εijk...n carrying D indices to
have the following properties:

ε
...l...m... = −ε...m...l... and ε12...D = 1 (11)

In other words, the antisymmetric symbol ε flips sign upon the interchange of any pair
of indices. It follows that ε vanishes when two indices are equal. (Note that the second
property listed is just normalization.) Since each index can take on only values 1, 2, . . . , D,
the antisymmetric symbol forD-dimensional space must carryD indices as already noted.
For example, for D = 2, ε12 = −ε21 = 1, with all other components vanishing. For D = 3,
ε123 = ε231 = ε312 = −ε213 = −ε132 = −ε321 = 1, with all other components vanishing (as
was already noted in the preceding chapter).
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Using the Kronecker delta and the antisymmetric symbol, we can write the defining
properties of rotations RTR = I and det R = 1 as

δijRikRjl = δkl (12)

and

εijk
...nRipRjqRkr . . . Rns = εpqr

...s det R = εpqr
...s (13)

respectively. In (13) we used the definition of det R. (Verify this for D = 2 and 3.)
Referring to (1), we see that we can describe δij and εijk

...n as invariant tensors: they
transform into themselves. For the rest of this text, we will often use, implicitly or explicitly,
the notion of invariant tensors.

For example, for SO(3), using (13) you can show that εijkAiBj ≡ Ck defines a vector
�C = �A× �B, the familiar cross product. Various identities follow. Consider, for example,

εijkεlnk = δilδjn − δinδjl (14)

To prove this, simply note that both sides transform as invariant tensors with four indices,
and the symmetry properties (such as under i ↔ j ) of the two sides match. Contracting
with Aj , Bl, and Cn, we obtain an identity you might recognize: �A × ( �B × �C) = �B( �A .
�C)− �C( �A . �B).

Closing of Newtonian orbits once again

We can now go back to the apparent mystery in chapter I.1, that the Newtonian orbits in
a 1/r potential close. Out of the conserved angular momentum vector �l = �r × �p = �r × �̇r
(we are using the notation of chapter I.1; we have effectively set the mass to unity and
hence the second equality) we can form the Laplace-Runge-Lenz vector �L ≡ �l × �̇r + κ

r
�r .

Computing the time derivative �̇L, you can verify (see exercise 4) that �L is conserved for
an inverse square central force. When �̇r is perpendicular to �r , which occurs at perihelion
and aphelion, the vector �L points in the direction of �r . We could take the constant vector
�L to point toward the perihelion, and thus the position of the perihelion does not change.

Hence the orbit closes.
This result does not hold in Einstein gravity. The precession of the perihelion of Mercury,

which we will discuss in chapter VI.3, is of course one of the classic tests of general
relativity.

Appendix: Two lemmas for future use

There is a lot more we could say about tensors, but let me mention two simple lemmas that we will happen to
need later.

Let Sij and Aij be two arbitrary and unrelated tensors, symmetric and antisymmetric, respectively. Then
SijAij = 0. (See exercise 5.)
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Tensors can have all kinds of symmetry properties, which you can explore on your own and in the exercises. For
example, a totally antisymmetric 3-indexed tensor T ijk is such that T flips sign under the interchange of any pair
of indices (for example, T ijk = −T jik = +T jki). A multi-indexed tensor can also have symmetry properties under
the interchange of a specific pair, or may have no symmetry at all. Consider, for example, a tensorGkij symmetric
under the interchange of the first pair of indices only, that is, Gkij =Gikj . To be pedantic and absolutely clear,
sometimes I like to put a space or a dot between the indices, thus Gki j or Gki .j to separate the “special” pair
from the other indices. For example, our tensor could happen to be Gki .j = ∂k∂iWj(�x) for some vector field Wj .

Given Gki .j , define Hk.ij ≡Gki .j +Gkj .i . (Note that Hk.ij =Hk.ji by definition, but Hi .kj is in general not
equal to Hk.ij .) Then we can solve for G in terms of H :

Gki .j = 1
2
(Hk.ij +Hi .jk −Hj .ki) (15)

(See exercise 8.)

Exercises

1 Define �∇ ≡
(

∂

∂x1 , ∂

∂x2 , . . . , ∂

∂xD

)
. Show that if φ is a scalar, then ( �∇φ)2 = �∇φ . �∇φ =∑

k

(
∂φ

∂xk

)2
and ∇2φ

transform like a scalar. The Laplacian is defined by

∇2 = �∇ . �∇ = ∂2

∂(x1)2
+ ∂2

∂(x2)2
+ . . . + ∂2

∂(xD)2

2 Show that the symmetric tensor Sij is indeed a tensor.

3 Show that the infinitesimal volume element d3x is a scalar.

4 Show that the Laplace-Runge-Lenz vector is conserved.

5 Show that SijAij = 0 if Sij is a symmetric tensor and Aij an antisymmetric tensor.

6 Let T ijk be a totally antisymmetric 3-indexed tensor. Show that T has 1
3!D(D − 1)(D − 2) components.

Identify the one component for D = 3.

7 Consider for SO(3) the tensor T ijk from exercise 6. Show that it transforms as a scalar.

8 Prove the lemma in (15).

9 Verify (13) for D = 2 and 3.

Note

1. For a concise introduction to some of the group theory needed in theoretical physics, see QFT Nut, appendix B.
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Euclidean spaces described with different coordinates

In discussing rotations in chapter I.3, I emphasized that Euclid is defined by Pythago-
ras. That the square of the distance between two neighboring points in 2-dimensional
Euclidean space with coordinates (x , y) and (x + dx , y + dy) is given by ds2 = dx2 + dy2

defines what we mean by Euclidean space.
But even the familiar Euclidean space can look unfamiliar. You know well that in many

physics problems, one set of coordinates is often much more convenient than another.
Indeed, in discussing Newton’s planetary orbit problem in chapter I.1, we changed from
Cartesian∗ coordinates (x , y) to polar coordinates (r , θ), with x = r cos θ and y = r sin θ .
Differentiating, we have dx = dr cos θ − r sin θ dθ and dy = dr sin θ + r cos θ dθ , so that

ds2 = dx2 + dy2 = (dr cos θ − r sin θ dθ)2 + (dr sin θ + r cos θ dθ)2 = dr2 + r2dθ2 (1)

We are free to make any coordinate transformation we feel like. Consider the most gen-
eral transformation x = f (u, v), y = g(u, v). Then dx = fu(u, v)du+ fv(u, v)dv where
fu ≡ ∂f

∂u
and so on, and dy = gu(u, v)du+ gv(u, v)dv. Just plug in to obtain ds2 = dx2 +

dy2 = (f 2
u

+ g2
u
)du2 + (f 2

v
+ g2

v
)dv2 + 2(fufv + gugv)dudv. With a gunky choice of f and

g you will end up with a mess of a coordinate system that would only make your life
miserable. (Note that even the innocuous change x = u + v and y = v leads to ds2 =
du2 + 2dv2 + 2dudv with the rather unpleasant dudv cross term.) Of course, it was discov-
ered long ago that by choosing f (u, v)= u cos v and g(u, v)= u sin v, we can get rid of the
cross term. By now probably all the nice choices for f and g have already been published
by someone.

∗ When I was in high school, I got the erroneous impression that the notion of coordinates originated with
Descartes. In fact, by the time of Ptolemy, astronomers in the West certainly had latitudes and longitudes. In
China, Chang Heng, roughly a contemporary of Ptolemy, was said to have derived, by watching a woman weaving,
a system of coordinates to map heaven and earth with. The Chinese words for latitudes and longitudes, “jing”
and “wei,” are just the terms for warp and weft in weaving.
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I presume that you also know how to go from Cartesian coordinates (x , y , z) in 3-
dimensional Euclidean space E3 to spherical coordinates (r , θ , ϕ), with x = r sin θ cos ϕ,
y = r sin θ sin ϕ , z= r cos θ . The more-than-familiar (and who can blame you if you have
been in it all your life?)E3 could be described by either ds2 = dx2 + dy2 + dz2 in Cartesian
coordinates or by

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 (2)

in spherical coordinates.

From Latin to Greek

We can systematize and generalize this toD-dimensional space easily enough. In previous
chapters, I used Latin letters for the index on the coordinates. I now switch, for later
convenience, from Latin to Greek and call the coordinates xμ = (x1, x2, . . . , xD). Then,
for Euclid’s spaces ED, Pythagoras said that ds2 =∑D

μ=1 (dx
μ)2.

We write this in the fancier form ds2 =∑D
μ=1

∑D
ν=1 gμνdx

μdxν by introducing a D-
by-D matrix g whose diagonal elements are all equal to one and whose other elements
are all zero, the famous matrix known far and wide as the identity matrix. To repeat, the
indices μ, ν run over 1, 2, . . . , D, and gμν is defined by gμμ = 1 and gμν = 0 if μ �= ν. (In
other words, it is just the Kronecker delta introduced in chapter I.3: gμν = δμν.) Thus, in the
double sum for ds2, the terms withμ �= ν drop out and we are left with ds2 =∑D

μ=1 (dx
μ)2.

Now a word on notation. In the chapter on rotation, I have already introduced this
expression for ds2, and furthermore, the repeated index summation convention. Einstein
suggested that between us friends we could omit the cumbersome summation symbol
and agree that if an index is repeated, then it is to be summed over. Thus, we suppress the
double summation

∑D
μ=1

∑D
ν=1 and write simply ds2 = gμνdx

μdxν. Hereμ and ν are both
repeated and hence summed over. Unless there is a risk of confusion, no more summation
symbols!

The metric

The matrix gμν is called the metric, a word meaning measure, as in geometry, the science
of measuring the earth. We use the metric to measure space. This step of introducing a
metric for Euclidean spaces seems like one of those totally senseless moves that certain
academics like and publish. In the discussion just given, the metric is simply the identity
matrix.

But as soon as we change coordinates, the metric is no longer so simple. As we have
already noted in (1), with polar coordinates, the plane E2 is described by a metric with
grr = 1, gθθ = r2, and grθ = 0 = gθr . With spherical coordinates,E3 is described by a metric
with grr = 1, gθθ = r2, gϕϕ = r2 sin2 θ , with all other entries zero, as in (2).



64 | I. From Newton to Riemann: Coordinates to Curvature

In both examples, the metric is not given by the identity matrix. Furthermore, the
metric gμν(x) varies from point to point. For example, gϕϕ depends on both r and θ .
Note, however, that for these examples, the metric is diagonal. (That is why polar and
spherical coordinates are so popular!) In general, the metric gμν need not be diagonal
(as shown in the example ds2 = du2 + 2dv2 + 2dudv, for which guu = 1, gvv = 2, guv =
gvu = 1). However, in this text, for the sake of simplicity, we will mostly stick to metrics
that are diagonal. Furthermore, since dxμdxν = dxνdxμ, the metric is symmetric under
interchange of indices: gμν = gνμ. It goes without saying that the reader encountering all
this for the first time should verify everything I say.

Lower indices appear

The attentive reader might have noticed that lower indices have sneakily appeared! The
metric gμν carries lower indices, while dxμ carries an upper index. When I taught Einstein
gravity, the appearance of upper and lower indices invariably confused some students. In
this text, I will try to motivate the point of introducing upper and lower indices, more
from a utilitarian, rather than a profoundly mathematical, point of view. My strategy is to
introduce this business of two kinds of indices in stages.

At this stage, the motivation, to put it bluntly, is that we just feel like it. But this
caprice immediately leads to a useful rule. In the Einstein repeated index summation,
we will insist that when we sum over a pair of repeated indices, one of them must be
upstairs, the other downstairs. This is manifestly, and trivially, satisfied by the only example
ds2 = gμν(x)dx

μdxν we have encountered thus far. The whole business of two kinds of
indices may seem unnecessary at this point, but later, you will see that the distinction
between upper and lower indices becomes essential, or at least highly useful.

A word about terminology: Some authors refer to ds2 = gμν(x)dx
μdxν as the square

of the line element, reserving the term metric for the object gμν(x) contained in the
line element. I find it convenient to abuse terminology and simply refer to both as the
metric.

Let me mention one trivial point, but one with the potential for confusing beginners.
Some years ago, when I surveyed the students in my class for points of confusion, one
student told me that for quite a while he did not realize that gρμ(x)dxρdxμ, gζψ(x)dxζdxψ ,
and so on, all denote the same thing! Perhaps this is because the summation symbol
has been suppressed: the same student could recognize that

∑D
μ=1

∑D
ν=1 gμν(x)dx

μdxν =∑D
ρ=1

∑D
μ=1 gρμ(x)dx

ρdxμ =∑D
ζ=1

∑D
ψ=1 gζψ(x)dx

ζdxψ .

Change of coordinates, curved space, and curved spacetime

We all know that in Euclidean 3-space, if we restrict r to be equal to a, we would find
ourselves on the surface of a sphere of radius a. In other words, the set of points at a
distance a from the origin form a sphere with radius a.
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This procedure gives us an easy way to determine the metric on a sphere. Simply
take the metric (2) ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 and set r = a. Then dr = 0, so that
ds2 collapses to a2(dθ2 + sin2 θdϕ2). From 3-dimensional flat space we have “lost” the
coordinate r and gone to a 2-dimensional curved space with coordinates xμ = (x1, x2)=
(θ , ϕ). Without loss of generality, we can take a as the unit of distance and set a = 1. So,
on the unit 2-dimensional sphere S2

ds2 = dθ2 + sin2 θdϕ2 (3)

with a metric given by g11 = gθθ = 1, g22 = gϕϕ = sin2 θ , and g12 = gθϕ = g21 = gϕθ = 0.
The take-home message here is that curved space is just a skip and a hop away from the

familiar change of coordinates. This is fortunate for students of physics: when you learned
to change coordinates, you were actually also learning about curved spaces. We are now
going to develop a general formalism for changing coordinates. Even though you already
know how to change coordinates, it pays to learn this formalism, because we can also use
it to study curved space and curved spacetime (which, as you have surely heard, plays a
central role in Einstein gravity).

Change of coordinates, curved space, and curved spacetime: basically the same deal, as
you will see.

How do we know whether a space is curved or not?

This raises an exceedingly interesting and crucial question: given a space with the metric
gμν(x), how do we know whether it is curved or flat?

A complicated looking metric does not necessarily mean that the space is curved, since
somebody could have simply chosen an especially gunky coordinate system. It could be flat
space in disguise. To forcefully bring home this point, I invite you to consider ds2 = (1 +
u2)du2 + (1 + 4v2)dv2 + 2(2v − u)dudv and ds2 = (1 + u2)du2 + (1 + 2v2)dv2 + 2(2v −
u)dudv. One describes flat space, the other a space that at some points is violently curved.
Which is which?

Puzzled, you reply: “How could I possibly tell?”
That’s in fact the correct answer at this stage of this discussion. The two metrics I just

gave you look almost identical except for one single 2 → 4. In one of the most famous
episodes in mathematics, Carl Friedrich Gauss (1777–1855) solved this problem for 2-
dimensional spaces. His work was then generalized by his student Bernhard Riemann
(1826–1866). Later, in chapter VI.1, given any metric in any number of dimensions, you
will be able to calculate, and even better, to train the computer to calculate, something
called the Riemann curvature tensor, which will tell you once and for all if the space is flat
or curved. No more thinking involved! Gauss and Riemann did it for you.

But for now, let me ask you to think about two simple examples in good old 2-
dimensional space, for which our intuition is allegedly pretty good. We know that ds2 =
dr2 + r2dθ2 describes flat space. Consider

ds2 = dρ2 + sin2 ρ dθ2 (4)
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Is the space being described flat or curved? Or consider the space described by

ds2 = cos2 ρ dρ2 + sin2 ρ dθ2 (5)

Is it flat or curved? You should think about this before reading on. The answers are given
in appendix 1.

Remember the civilization of mites in the prologue? You are in the same position as
the mite professors of geometry: they can measure the distance between infinitesimally
separated points, and from that they have to figure out whether their world is curved. We
will face the same problem as the mites when we get to cosmology in parts V and VI.

The logic of differential geometry

Differential geometry, as developed by Gauss and Riemann, tells us that given the metric,
we can calculate the curvature. The logic goes as follows. The metric tells you the distance
between two nearby points. Integrating, you can obtain the distance along any curve joining
two points, not necessarily nearby. Find the curve with the shortest distance. By definition,
this curve is the “straight line” between these two points. Once you know how to find
the “straight line” between any two points, you can test all of Euclid’s theorems to see
whether our space is flat. For example, as described in the prologue, the mite geometers
could now draw a small circle around any point, measure its circumference, and see if
it is equal to 2π times the radius. (See appendix 1.) Thus, the metric can tell us about
curvature.

Take an everyday example: given an airline table of distances, you can deduce that the
world is curved without ever going outside. If I tell you the three distances between Paris,
Berlin, and Barcelona, you can draw a triangle on a flat piece of paper with the three cities at
the vertices. But now if I also give you the distances between Rome and each of these three
cities, you would find that you can’t extend the triangle to a planar quadrangle (figure 1). So
the distances between four points suffice to prove that the world is not flat. But the metric
tells you the distances between an infinite number of points.

Paris

Barcelona

Berlin

Rome

Figure 1 The distances between four
cities suffice to prove that the world is
not flat.
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Figure 2 The Poincaré half plane (including pictures of
Poincaré).

Poincaré half plane

Let me tell you the interesting example of the Poincaré half plane.∗ Consider the upper half
plane covered by the usual coordinates (x , y) with y > 0, but endowed with the peculiar
metric

ds2 = dx2 + dy2

y2
(6)

See figure 2. In other words, gxx = gyy = 1
y2 . The space is translation invariant in x, that is,

gμν(x + a , y)= gμν(x , y) for any a, and the space at one value of x looks exactly the same
as the space at some other value of x, but it is not translation invariant in y. Evidently,
this space has an edge at y = 0. Consider a standard ruler with length l, pointing along
the x-axis, so that the two ends of the ruler are separated by 
y = 0. According to (6),
l =
s =
x/y. Take the ruler closer and closer to the edge. The ruler covers less and less

x as you approach the edge: indeed 
x = yl → 0 as y → 0. It would appear that your
ruler is shrinking relative to the milestones the inhabitants of this world have helpfully
erected at fixed values of x. (We point the ruler along the x-axis merely for pedagogical
clarity; in fact, we would reach the same conclusion regardless of the ruler’s orientation.
For example, a ruler pointing along the y-axis would cover 
y = yl, which → 0 as you
approach the edge.)

In reality, the edge is infinitely far away, since the actual distance between the points
(x , y∗) and (x , 0+) along the line of constant x is given by∫

ds =
∫ y∗

0+
dy/y = log(y∗/0+)→ ∞

∗ First discovered by the Italian mathematician Eugenio Beltrami (1835–1899) long before Poincaré.
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Imagine, as in a sci-fi movie, finding yourself in such a weird space. Before reading on,
can you figure out the straight line joining two points, say (0, y∗) and (x∗, y∗)? The phrase
“straight line joining two points” is of course, as already mentioned, defined to be the path
of shortest distance between the two points.

If you were to go along the line of fixed y = y∗, the distance would be
∫
ds = (

∫ x∗
0 dx)/y∗

= x∗/y∗. Clearly, you could do better. To economize on ds, you should curve away from
the edge at y = 0 into the region of larger y and hence smaller ds for a given stretch of
(dx , dy). At this point, we can only discuss this curved path qualitatively. In chapter II.2,
we will learn how to determine this curve. In this sci-fi movie, you see your favorite person
in the distance. You run to him or her, but you sure don’t want this person to think you
are an idiot, which you would be if you ran along a “straight” line expressed in (x , y)
coordinates. You try to be like Feynman the lifeguard in the prologue, so you follow the
curve that minimizes

∫
ds.

In fact, this simple example of the Poincaré half plane is behind a recent advance in
quantum gravity and string theory, known as AdS/CFT (anti de Sitter/conformal field
theories). See chapter IX.11.

A pervasive theme of theoretical physics

The central message here is that coordinates do not have intrinsic geometric significance.
If you use the coordinates xμ, somebody else could perfectly well use coordinates x′μ,
with the two sets of coordinates related by the D functions of D variables x′μ(x) and their
inverses xμ(x′).

Again we come to the pervasive theme of theoretical physics already alluded to in chapter
I.3: transformations. Given a set of physical laws, we ask: What are the transformations
that leave these laws unchanged? How do the relevant physical quantities transform? What
combinations of these quantities are left invariant? Here we are concerned with coordinate
transformations.

Rotations furnish the prototypical example. Indeed, we see that we can think of rotation
x ′μ = Rμ

ν
xν as a special example of a class of coordinate transformations, namely those

that are linear. Notice that, obeying our rule of only summing an upper with a lower index,
we moved the column index on the rotation matrix R downstairs. We also graduated from
Latin to Greek.

General coordinate transformation

In elementary discussions of change of coordinates, brute force substitution, as in (1),
suffices, but as you will see, it pays to formalize the steps involved, so that the formalism
applies to more general situations. I have already advertised that many concepts involved
in changing coordinates are also relevant for discussing curved spaces.
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We will use as our canonical example the transformation between Cartesian and polar co-
ordinates, between (x1 ≡ x , x2 ≡ y) and (x′1 ≡ r , x′2 ≡ θ). We have the two functions x1 ≡
x = r cos θ , x2 ≡ y = r sin θ and their inverses x′1 ≡ r = √

x2 + y2, x ′2 ≡ θ = arctan y
x

.
Note that in many cases, xμ and x′μ all have common colloquial names, namely x , y and
r , θ , respectively, in this example. We will pass freely without any further remark between
the “academic” names xμ and x′μ and their street names.

A word about notation: I trust the reader not to be confused by unavoidable but trivial
notational abuse. For example, here the letter x does double duty: generically, it represents
xμ and, in the special case of the standard Cartesian coordinates, also the first component
of xμ.

In general, coordinate transformations are definitely nonlinear. For example, the polar
angle x′2 ≡ θ = arctan y

x
is defiantly not a linear function of x and y. However, and this is

a crucial point, the infinitesimals dxμ do transform linearly. Indeed, applying elementary
calculus, we have

dx′μ = ∂x′μ

∂xν
dxν (7)

For the sake of the reader seeing this for the first time, let’s go slow here. Calculate dx′3,
for example (supposing that D ≥ 3):

dx′3 = ∂x′3

∂x1
dx1 + ∂x′3

∂x2
dx2 + ∂x′3

∂x3
dx3 + . . . + ∂x′3

∂xD
dxD =

D∑
ν=1

∂x′3

∂xν
dxν = ∂x′3

∂xν
dxν (8)

where in the last step we invoke the repeated index summation convention and drop the
summation sign. This is of course just (7) with μ= 3.

It is useful to define the matrix

Sμ
ν
(x)≡ ∂x′μ

∂xν
(9)

which we could regard as a matrix with a row index μ and column index ν. Then we can
write dx′μ = Sμ

ν
(x)dxν. In accordance with the repeated index summation convention, the

index ν is summed over. Note that we put the second index on S downstairs to obey the
rule of only summing an upper with a lower index.

The infinitesimals dx′μ and dxν are related linearly by the matrix Sμ
ν
(x), just as dx′μ =

Rμ
ν
dxν for rotation. The big difference from simple rotation is of course thatSμ

ν
(x)depends

on x. (This fact leads to all the mathematical complications in Einstein gravity that you may
or may not have heard about.)

In the polar example, we have

dx′1 ≡ dr = xdx + ydy√
x2 + y2

and dx′2 ≡ dθ = xdy − ydx

x2 + y2

so that

S1
1 = x√

x2 + y2
, S1

2 = y√
x2 + y2

, S2
1 = −y

x2 + y2
, and S2

2 = x

x2 + y2
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(Note that, if we think of x, y, and r as having dimensions of length, the different
components of the matrix Sμ

ν
do not even have the same dimension—hardly surprising,

since x′1 = r and x′2 = θ have different length dimensions.)
Going from primed to unprimed coordinates, we expect to encounter the inverse of (7):

duh, we are going the other way. Again, using elementary calculus, we write (with the
index ρ summed over as per the repeated index convention)

dxμ = ∂xμ

∂x′ρ dx
′ρ = (S−1)μ

ρ
(x′)dx′ρ (10)

where

(S−1)μ
ρ

≡ ∂xμ

∂x′ρ (11)

Since we are simply performing the inverse transformation, S−1 in (10) has to be, as we
just said, the inverse of the matrix S introduced in (7). Nevertheless, let us pause to verify
the obvious. Use the chain rule of calculus: (S−1)μ

ρ
Sρ
ν
= ∂xμ

∂x′ρ ∂x
′ρ

∂xν
= ∂xμ

∂xν
= δμ

ν
, where the

Kronecker delta is defined in analogy with the Kronecker delta used in (I.3.16) for rotations,
namely that δμ

ν
= 1 if μ= ν and 0 otherwise. In other words, the Kronecker delta is just a

fancy way of describing the identity matrix.∗ Thus, we have verified that, indeed, S−1S = I .
In the simple polar example, (10) just consists of dx = cos θ dr − r sin θ dθ and dy =

sin θ dr + r cos θ dθ . Thus, (S−1)11 = cos θ , (S−1)12 = −r sin θ , S2
1 = sin θ , and S2

2 =
r cos θ .

Let me also quickly put another potential source of confusion to rest. I have written S as
a function of x and S−1 as a function of x′, but of course any function of x could be written
as a function of x′ and vice versa.

A general formalism for changing coordinates

We want to know how the metric gμν transforms when we change from one set of coor-
dinates xμ to another set of coordinates x′μ. We know that the square of the infinitesimal
distance between two neighboring points does not depend on our choice of coordinate
system:

ds2 = gμν(x)dx
μdxν = g′

ρσ
(x′)dx′ρdx′σ (12)

This requirement fixes the relation between gμν and g′
ρσ

, as we will now see.
Let me reassure the reader seeing this for the first time and finding all these indices

a bit fearsome. Keep in mind that what we are doing is nothing but a more general and
compact packaging of something that is conceptually quite simple, almost trivial, if you
have mastered calculus. For this class of readers, I will, in what follows, jump back and forth
between the general and the specific. At each step, we will review the familiar change from

∗ Note that the δ here carries one upper and one lower index.
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Cartesian (x , y) to polar (r , θ) coordinates, and point out how this illustrates the general
point. Indeed, in this example, (12) is just (1), namely ds2 = dx2 + dy2 = dr2 + r2dθ2

written in index notation.
Eliminate dxμdxν in (12) in favor of dx′ρdx′σ using (10), and obtain

g′
ρσ
(x′)dx′ρdx′σ = gμν(x)

∂xμ

∂x′ρ
∂xν

∂x′σ dx
′ρdx′σ (13)

Note that all repeated indices in (13) are summed over. To help the abecedarian reader, I
now restore temporarily the summation symbol and write the right hand side of (13) more
slowly and explicitly as

∑
μ

∑
ν

gμν(x)dx
μdxν =

∑
μ

∑
ν

gμν(x)

(∑
ρ

∂xμ

∂x′ρ dx
′ρ
) (∑

σ

∂xν

∂x′σ dx
′σ
)

=
∑
μ

∑
ν

∑
ρ

∑
σ

gμν(x)
∂xμ

∂x′ρ
∂xν

∂x′σ dx
′ρdx′σ

I hope you see the advantage of following Einstein and dropping all summation symbols.
Since the infinitesimals dx′ρ and dx′σ in (13) are arbitrary, we can identify the coefficient

of dx′ρdx′σ to find

g′
ρσ
(x′)= gμν(x)

∂xμ

∂x′ρ
∂xν

∂x′σ (14)

This tells us how the metric g′
ρσ
(x′) in the primed coordinate system is related to the metric

gμν(x) in the unprimed coordinate system. Note that we are relating the two metrics at the
same point P: x and x′ are merely the different coordinate values corresponding to P.

Given the metric in one coordinate system, we can work out the metric in some other
coordinate system using∗ (14). For example, applied to the polar case, one of the equations
in (14) says that g′

22(x
′) = g11(

∂x1

∂x′2 )
2 + g22(

∂x2

∂x′2 )
2 = r2. (As remarked earlier, we could

write this also as g′
θθ
(r , θ) = gxx(

∂x
∂θ
)2 + gyy(

∂y
∂θ
)2 = r2.) You should work out the other

components of g′ in this way. As another exercise, check the formalism here for spherical
coordinates.

Upper versus lower

In going from unprimed to primed coordinates, we have (7) dx′μ = Sμ
ν
(x)dxν and (14)

g′
ρσ
(x′)= gμν(x)(S

−1)
μ

ρ
(S−1)

ν

σ
. Practical calculation aside, we notice that, in going from

unprimed to primed coordinates, an upper index μ transforms with Sμ
ν

and a lower index
ρ transforms with the inverse matrix (S−1)

μ

ρ
. An important conceptual point, but clearly

this must be the case: for ds2 = gμν(x)dx
μdxν to remain invariant, the upper and lower

∗ In practice, it is actually somewhat more direct to apply calculus to (12), rather than to use (14): again for
the polar example, going the other way from (r , θ) to (x , y) for a change, we have

ds2 = dr2 + r2dθ2 =
(
xdx + ydy

r

)2

+ r2
(
xdy − ydx

r2

)2

= dx2 + dy2
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indices must transform oppositely, so that the S and the S−1 can knock each other out.
Fancy people call the upper index contravariant and the lower index covariant—I can never
remember which is which. If you like big words, go for it.

From (9), we notice another important point. Look at Sμ
ν
(x)= ∂x′μ

∂xν
: the upper index ν

on the right hand side emerges as a lower index on the left hand side. This makes a certain
amount of “intuitive” sense: on the right hand side we sort of “divide” by dxν. We will use
the shorthand notation for the differential operator

∂ν ≡ ∂

∂xν
(15)

To check that it is consistent for ∂ν to carry a lower index, note that, using the chain rule,

∂ ′
μ

≡ ∂

∂x′μ = ∂xν

∂x′μ
∂

∂xν
= (S−1)

ν

μ
∂ν (16)

This is precisely how a lower index should transform, with the inverse matrix S−1. Notice
also that this generalizes what we learned in chapter I.3 about how ∂

∂xk
transforms under

a rotation.
In the two preceding paragraphs, we talked about going from unprimed to primed

coordinates. Going from primed to unprimed coordinates, we have of course, as already
remarked, the inverse transformations: dxν = (S−1)ν

μ
(x′)dx′μ and gμν(x)= g′

ρσ
(x′)Sρ

μ
Sσ
ν
.

The roles played by S and S−1 are interchanged: an upper index transforms with S−1 and
a lower index with S.

It is also illuminating to write the transformation law of gμν in terms of matrices.
Given a matrix Mμ

ρ
, define the transpose by (MT )

μ

ρ
= Mμ

ρ
. Then we can rephrase the

transformation law of the metric g′
ρσ
(x′)= gμν(x)(S

−1)
μ

ρ
(S−1)

ν

σ
as

g′(x′)= (S−1)T g(x)S−1 (17)

Now you can make contact with something you know only all too well, rotations. Let
us see how the formalism just developed works for rotations. For a rotation matrix R,
RTR =RRT = I , so thatR−1 =RT . Thus, if S happens to be a rotation matrixR, that is, if
the transformation from unprimed to primed coordinates is a mere rotation, then in this
special case (and only in this special case) (S−1)T = (ST )T = S. The transformation law (17)
of the metric collapses to I = SIS−1, since in this case the metric is just the identity matrix
I in both the unprimed and primed coordinates. In other words, rotations are defined as
linear coordinate transformations that leave the Euclidean metric invariant, as we learned
in chapter I.3.

Regarding gμν as a matrix, we naturally think of its inverse, which we denote by gμν. In
other words, the matrix gμν is defined by

gμνgνλ = δ
μ
λ (18)

Here the index ν is summed over. (Since the inverse of a symmetric matrix is also
symmetric, gμν = gνμ.) Note that, in accordance with our rule that we are allowed only
to sum over a lower index with an upper index, the inverse of the metric gμν carries two
upper indices. Normally, we denote the inverse of a matrix M by M−1. However, here it
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is customary to omit the superscript (−1): the placement of the indices suffices to tell us
that gμν is the metric and gμν is its inverse.

Most of the metrics we deal with are diagonal. If so, then the inverse metric is a cinch to
write down. For example, for spherical coordinatesgrr = 1, gθθ = 1/r2, gϕϕ = 1/(r2 sin2 θ).

Not surprisingly, when we go from unprimed to primed coordinates, while the metric
gμν transforms with S−1, the inverse metric transforms with S:

g′μν(x′)= Sμ
ρ
Sν
σ
gρσ (x) (19)

(This sounds entirely plausible, since gμν is, after all, the inverse of the metric, and so
should transform oppositely as the metric, but you can also easily check that the g′μν given
in (19) is indeed the inverse of g′

νσ
: g′μν(x′)g′

νσ
(x′)= (Sμ

ρ
Sν
σ
gρσ (x))(gηκ(x)(S

−1)
η

ν
(S−1)

κ

σ
)

= Sμ
ρ
gρσ (x)gσκ(x)(S

−1)
κ

σ
= Sμ

ρ
(S−1)

ρ

σ
= δμ

σ
.)

A word or two of encouragement: I agree that for the reader seeing this for the first
time, all these indices might look overwhelming, but it is actually quite simple, once you
get used to how the indices hang together. You might also remind yourself that we are doing
nothing more involved than changing coordinates, but instead of doing it one coordinate
system at a time as in elementary treatments, here we want to do it in general, for any
coordinate system. In any case, don’t worry about it if you are having some difficulty. As I
said, we will discuss all this in more depth later.

Vectors, scalars, and tensors

I will now tell you what a vector is in curved coordinates (for example, spherical coordi-
nates). Eventually, we will discuss vectors, tensors, and all that good stuff in curved space
in great detail, but for now let’s do it on the quick. The easiest path is to simply generalize
the familiar notions of scalars and vectors under rotation. We say that Wμ(x) is a vector
with an upper index if it transforms just like dxμ does. In other words,

W ′μ(x′)= Sμ
ν
(x)Wν(x) (20)

when we go from unprimed to primed coordinates. Note that we are simply generalizing
(I.3.18), which describes how a vector field transforms under a rotation.

Indeed, we could now take over our discussion of vectors and tensors in chapter I.4
almost in its entirety. The one novelty, as already noted, is that we now have upper and
lower indices, or as the Jargon Guy would say, contravariant and covariant indices. In
contrast to a vector with an upper index Wμ, which transforms like dxμ, a vector with a
lower index Wμ transforms like ∂μ:

W ′
μ
(x′)=Wρ(x)(S

−1)ρ
μ
(x) (21)

I like to think of dxμ and ∂μ as the two “primeval” vectors.
A scalar field φ(x) transforms like φ′(x′) = φ(x), again simply generalizing a basic

notion we learned in studying rotation.
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From (16), we learn that ∂ ′
μ
φ′(x′)= (S−1)

ν

μ
∂νφ(x). We say that ∂μφ(x) transforms like

a vector with a lower index. As I said, this subject will be developed in more detail in part
V, but at the moment all we need is that Wμ(x) and ∂μφ(x) transform oppositely, with
S and S−1, respectively. Thus, Wμ(x)∂μφ(x) (with the index μ summed over, of course)
transforms like a scalar. It’s easy to check:

W ′μ(x′)∂ ′
μ
φ′(x′)= Sμ

ν
Wν(x)(S−1)

λ

μ
∂λφ(x)=Wν(x)∂νφ(x)

where we used Sμ
ν
(S−1)

λ

μ
= δλ

ν
.

GivenVμ andWμ, you can verify easily thatV ′
μ
(x′)W ′μ(x′)= Vμ(x)W

μ(x): the S and S−1

in (20) and (21) knock each other off. Colloquially, we say that summed indices disappear.
Indeed, the astute reader will notice that we just showed this in the preceding paragraph,
since Vμ and ∂μφ(x) transform in exactly the same way.

The concept of tensors arises naturally, just as in chapter I.4, but now tensors can carry
both upper and lower indices. For example, the tensor T μνλ

ω
transforms like

T ′μνλ
ω

(x′)= Sμ
ρ
Sν
σ
Sλ
τ
(S−1)ζ

ω
T
ρστ
ζ (x) (22)

In other words, T μνλ
ω

transforms as if it were composed of the product of four vectors
WμV νUλYω.

Again, summed indices disappear. For example, setting λ equal to ω in (22) and sum-
ming, we obtain T

′μνλ
λ (x′)= Sμ

ρ
Sν
σ
T ρστ
τ

(x). In other words, T μνλ
λ is actually a tensor with

two upper indices.
A basic “theorem” is that we could use the metric to lower indices and its inverse

to raise indices. Given a vector with an upper index Wν, the claim is that the object
Vμ ≡ gμνW

ν transforms like a vector with a lower index. Simply plug how gμν transforms
into (20) to obtain V ′

ρ
= g′

ρσ
W ′σ = gμν(S

−1)
μ

ρ
(S−1)

ν

σ
Sσ
κ
Wκ = gμν(S

−1)
μ

ρ
Wν = (S−1)

μ

ρ
Vμ,

in agreement with (21), as claimed. Indeed, this little exercise shows that there is no need to
introduce another letter: it is customary to simply writeWμ = gμνW

ν. I will leave it to you to
verify that, similarly, given a vector with a lower indexUν, the object gμνUν transforms like
a vector with an upper index. Since tensors transform as if they were products of vectors,
we can use the metric to lower indices and its inverse to raise indices on tensors at will.

Here is a simple practice problem involving upper and lower indices. Solve the equation
gμρA

ρ = Bμ for A. Multiply by gσμ: we obtain gσμgμρA
ρ = δσ

ρ
Aρ =Aσ = gσμBμ. In other

words,Aσ = gσμBμ. We now rename the index σ and call it ρ and writeAρ = gρμBμ. With
practice, you could simply omit the intermediate steps and go directly from gμρA

ρ = Bμ

to Aρ = gρμBμ. We may think of this colloquially as flipping the metric from the left hand
side to the right hand side, where it flips over to become its inverse. Some readers might
think that I am belaboring the obvious, but then they would not believe how some students
flip out if I omit the intermediate steps when I teach. Indeed, it really is clear if we regard
g as a matrix, and A, B as vectors: gA= B implies A= g−1B.

Regard this as a first brush with tensors. Much more later.
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Area and volume

As you will see, in studying relativity, we constantly ask how various quantities transform.
The importance of transformation is in fact central to theoretical physics. In elementary
physics, this importance is disguised to some extent, as the quantities the student is
likely to encounter have already been formulated to transform properly. In more advanced
physics, quantum field theory, for example, the requirement of transforming properly
often defines the concept in question.

Let me give you an elementary example that beginning students can all relate to: the
concept of area and volume. In flat space, the infinitesimal volume element is given by d3x

in Cartesian coordinates, but what is it in spherical coordinates? You probably obtained
the answer in a course on integral calculus by drawing a curved infinitesimal volume
element bounded by the eight points (r + ηrdr , θ + ηθdθ , ϕ + ηϕdϕ), where ηr , ηθ , ηϕ = 0
or 1, and approximating it by a rectilinear volume. Clearly, d3x cannot be a volume
except in Cartesian coordinates. In spherical coordinates, d3x = drdθdϕ does not even
have dimensions of length cubed. The power of the metric tensor formalism developed
here is that it will tell us what the correct volume element is in any coordinates, even
those for which gμν is not diagonal, and in any dimensions (for D = 1, we are talking
about a length element, for D = 2 an area element, for D = 3 a volume element, and
so on).

The point is that dDx does not transform properly under a coordinate transformation
x → x′. This is just a fancy way of stating the obvious, dxdydz and drdθdϕ are surely not
equal to each other. (They don’t even have the same dimension!) Indeed, you know that a
Jacobian J is needed when you change integration variables. You learned in calculus that
dDx = dDx′J , where J is the determinant of the D-by-D matrix ∂xμ

∂x′ρ .
Go back to (14), which shows how the metric transforms, and take the determinant of

that equation. Use the fact that the determinant of a product of matrices is the product of
their determinants. You obtain g′ = gJ 2, denoting the determinant of gμν regarded as a
D-by-D matrix by∗ g and similarly for the primed quantities.

Putting these two facts together, we obtain

dDx
√
g = dDx′J√

g = dDx′J
√
g′
J 2

= dDx′√g′ (23)

In other words, dDx
√
g is invariant under coordinate transformation. We learned that it

is not dDx, but the combination dDx
√
g, that has intrinsic geometric significance as a

volume element, intrinsic in the sense that it does not depend on our coordinate choice.†

I will show you presently that this reproduces the volume element you have known since
childhood.

∗ We have also used the letter g to refer to the metric, but the context should remove any potential confusion.
† The Jargon Guy would say that (23) defines

√
g as a scalar density. A tensor density is then defined as a

tensor multiplied by
√
g. For me, the less jargon the better.
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In spherical coordinates, ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 with (x1, x2, x3)= (r , θ , ϕ).
We regard the metric gμν as the matrix⎛
⎜⎜⎝

1 0 0

0 r2 0

0 0 r2 sin2 θ

⎞
⎟⎟⎠

You can calculate the determinant of this matrix by eyeball: g = r4 sin2 θ . In Cartesian
coordinates, the metric is the identity matrix, and so you don’t even need to exercise
your eyeball to calculate the determinant: g = 1. Thus, applied to these two coordinate
systems, the statement (23) that dDx

√
g is an invariant amounts to saying that dxdydz=

drdθdϕ r2 sin θ , as you have always known.∗

You should now reproduce all the area and volume elements in all the coordinate systems
you know. The important point to appreciate, as I have already stressed, is the generality
of (23). In exercise 11, you will see that this formalism enables you to calculate the area of
higher dimensional spheres.

As a preview of exciting things to come, let me tell you that Einstein’s field equation
contains a “famous” 1

2 that both Einstein and Hilbert failed to obtain in their separate first
tries. At this stage, I will whet your appetite with a cryptic remark that the square root in
(23) is responsible for this all-important 1

2 in the history of physics. (See chapter VI.4.)

Local versus global

A couple of remarks are in order.
Typically, we need more than one set of coordinates to cover an entire space. The sphere

provides an example. The (θ , ϕ) coordinates (aka latitude and longitude) fail at the north
pole and the south pole. (Didn’t you ask your teacher what the longitude of the north
pole was? The correct answer is that it is undefined.) One symptom of this failure is that
gϕϕ = sin2 θ vanishes at the poles. Since the coordinate system fails† at only two points,
most physicists simply ignore this failure as a technicality and happily use the spherical
coordinates until they run into trouble,1 which is almost never. In this example, clearly
nothing intrinsically bad happens at the two poles: on the sphere, every point is as good as
any other. All we have to do is to set up a coordinate system with coordinates (θ ′, ϕ′) with
some point (other than the two poles) and its antipodal point playing the role of the north
and south poles for this primed coordinate system.

In general, we may need several “coordinate patches” to cover the entire space. One patch
must overlap with another such that in the overlap region, the two sets of coordinates are
related to each other by smooth differentiable functions.

∗ Note that although we are using a formalism appropriate for curved space to derive these expressions, when
we apply them to spherical coordinates, we are dealing with flat space, of course.

† Incidentally, this also implies that g vanishes and hence the inverse metric gμν fails to exist at that point.
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Similarly, the polar coordinates are, strictly speaking, not defined at the origin, since gθθ
vanishes there.

You might have also noticed that in the metric ds2 = dr2 + r2dθ2, and in (4) and (5),
I have implicitly assumed, as is customary, that (r , θ) and (r , θ + 2π) describe the same
point. In other words, θ is an angular variable. But nothing in the metric itself tells us that.
By its very nature, the infinitesimal distance between two nearby points cannot tell us
anything about the global character of the space. The identification θ ≡ θ + 2π is a global
statement.

Indeed, we can imagine cutting out a wedge of angle α from the flat piece on which we
have mentally drawn the polar coordinates and gluing the two edges together. Evidently,
this forms a cone characterized by the angle α. In other words, we now identify (r , θ) and
(r , θ + 2π − α). Remember the ant in the prologue?

A quick summary

Since this has been a fairly long trek, it may be helpful to have a brief summary. The
metric was introduced, and you learned that the metric enabled you to calculate the
curvature of space (only in principle, not yet in practice, for any dimensions). The Poincaré
half plane gave an interesting example of how a simple looking metric could describe a
strange space. Along the way, we also got acquainted with upper and lower indices, and
understood how vectors and tensors could be defined by how they transformed under
coordinate transformation. In particular, we figured out how the metric transformed. As
an application, we determined the generalized volume element for any curved space.

Appendix 1: Mite geometers draw circles and dream of black holes

Go back to the mite professors of geometry in the prologue, busily drawing circles of radius ε around any given
point P and calculating the curvature R by evaluating R = limradius→0

6
(radius)2

(
1 − circumference

2π radius

)
. If the space is

flat, R vanishes.
Let us see how this works for the metric (4) with θ and θ + 2π identified. The arithmetic simplifies enormously

if we pick P to be the origin. The distance from the origin (0, 0) to the point (ε , θ) is given by
∫ ε

0 ds = ∫ ε
0 dρ = ε.

In other words, the set of points with coordinates (ε , θ) form a circle. Then the circumference is given by∫
dθ sin ε = 2π sin ε. Thus, R = limε→0

6
ε2 (1 − sin ε

ε
) = 1 and the space is curved. Perhaps you have already

recognized that the metric (4) is just the metric of the unit sphere (3) with θ and ϕ disguised as ρ and θ ,
respectively.

As for the metric (5), it turns out that the space it describes is flat. The distance from the origin (0, 0) to the
point (ε , θ) is now given by

∫ ε
0 ds = ∫ ε

0 cos rdr = sin ε. Now R = 0 at the origin. Indeed, you might have seen
immediately that the metric in (5) is just ds2 = dr2 + r2dθ2 with the change of variable r → sin ρ.

You are now catching on and can tackle any metric. An interesting class of D = 2 metric is given by ds2 =
f (r)dr2 + r2dθ2. The geometrical meaning is clear. We have filled space with circles (consisting of the points
(r , θ)with θ varying from 0 to 2π ) centered around the origin. For each circle, the radius is equal to

∫ r
0 dr ′√f (r ′),

while the circumference is given by
∫ 2π

0 dθr = 2πr . A simple calculation shows that for f (r)� 1 + γ r2 and small
r , the curvature at the origin is given by R = γ .

We could generalize the preceding discussion to D = 3 for ds2 = f (r)dr2 + r2dθ2 + r2 sin2 θdϕ2. Fill space
with spheres, with the surface area of each sphere given by 4πr2 and radius depending on f (r). We will study
metrics of this form when we encounter black holes.
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Appendix 2: A peculiar description of flat space

Here, at this early stage in this text, I give you a particularly fun description of flat space, which we will need
much later in part VII, when we study rotating black holes. Spherical coordinates are so nice that normally hardly
anybody would think of mucking around with them, but let’s do precisely that and write x = f (r) sin θ cos ϕ , y =
f (r) sin θ sin ϕ , z = r cos θ . Start with Pythagoras and describe flat space with ds2 = dx2 + dy2 + dz2. Plug in
dx = f ′(r) sin θ cos ϕdr + f (r) cos θ cos ϕdθ − f (r) sin θ sin ϕdϕ, and so on, to obtain

ds2 = dx2 + dy2 + dz2

= (f ′2 sin2 θ + cos2 θ)dr2 + (f ′2 cos2 θ + r2 sin2 θ)dθ2 + f 2 sin2 θdϕ2

+ 2(ff ′ − r) sin θ cos θdrdθ (24)

You might have recognized that we have merely worked out various versions of (12), (13), and (14) for a specific
example.

A couple of lessons here. For some arbitrary f (r), (24) is a metric that nobody would love, or even want to
calculate with. But by construction, it certainly describes flat space. While we are used to diagonal gμν , we see that
an off-diagonal term drdθ appears easily. To get rid of this diagonal term, set ff ′ = r , which implies f 2 = r2 + a2.
For a = 0, we recover the usual spherical coordinates, but perhaps surprisingly, we find that for a �= 0, we could
describe flat space with what are known as Boyer-Lindquist coordinates:

ds2 = r2 + a2 cos2 θ

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θdϕ2 (25)

Instead of spheres, the surfaces of fixed r are now ellipsoids with cylindrical symmetry. Strangely, at least for
those seeing this for the first time, r = 0 is not a point! Instead, it is a disk (a flattened ellipsoid) with radius a.
Set r = 0 to obtain x = a sin θ cos ϕ , y = a sin θ sin ϕ , z= 0, and we see that as θ and ϕ vary, this sweeps out a
disk. In fact, θ plays the role of a “radial” rather than an “angular” variable: as θ goes from 0 to π

2 , we go from
the center of the disk to its edge. In other words, (r , θ)= (0, π/2) describes a ring with radius a.

After examples like this, I hope that you will find black holes a little less strange when you eventually
encounter them.

Appendix 3: Divergence, Laplacian, and all the rest

When I was an undergrad, to do the exercises in a course on electromagnetism, for example, I had to know the
form of the divergence, the Laplacian, and things like that in various coordinate systems. Since I was taught to
derive things rather than to look them up or to memorize them, I must have derived the Laplacian in spherical
coordinates about a hundred times. It got to be kind of annoying. No doubt many readers have had the same
experience.

I now show you that the high-powered metric formalism you just learned provides an easy way to derive all
these objects like the Laplacian directly from the metric gμν . Of course, they could all be derived also by brute
force substitution (as I painfully recall).

First, we will determine the divergence of a vector field Wμ(x). The simple minded divergence that works
in Cartesian coordinates ∂μWμ(x)=∑D

μ=1
∂Wμ

∂xμ
does not work in general, because it does not transform like a

scalar (as you can verify; also see below). We want a divergence that does not depend on the coordinate system,
that is, one that transforms like a scalar.

The clever trick is to invoke the integral I ≡ ∫
dDx

√
gWμ(x)∂μφ(x). We learned earlier that the integrand

Wμ(x)∂μφ(x) is a scalar, and we know from (23) that dDx
√
g is also a scalar. Hence I is invariant under coordinate

transformations. Integrate by parts to find that I = − ∫
dDx∂μ(

√
gWμ)φ = − ∫

dDx
√
g 1√

g
∂μ(

√
gWμ)φ. We

deduce from the coordinate invariance of I and dDx
√
g that the combination

DμW
μ ≡ 1√

g
∂μ(

√
gWμ)= ∂μW

μ +
(

1√
g
∂μ

√
g

)
Wμ (26)

must be a scalar. At this stage, DμW
μ is just a convenient symbol; you won’t learn what Dμ means until a later

chapter. What you have learned here is that the Cartesian divergence ∂μW
μ must be corrected by adding an
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extra term. Of course, in Cartesian coordinates, g = 1 and the extra term vanishes. But in spherical coordinates,√
g = r2 sin θ , as noted before, so that the correct expression for the divergence is ∂rWr + ∂θW

θ + ∂ϕW
ϕ +

2
r
Wr + cos θ

sin θ
Wθ , as you may or may not recall. The point is that (26) gives the divergence in any coordinates and

any curved space.
Next, to the Laplacian. Here we are after a general result, independent of specific coordinate systems. The trick

is to consider the integral
∫
dDx

√
ggμν∂μφ∂νφ, which is manifestly a scalar, since the integrand is a scalar (since

gμν and ∂μφ transform with S and S−1, respectively). Integrate by parts to obtain − ∫
dDxφ∂μ(

√
ggμν∂νφ)=

− ∫
dDx

√
gφ( 1√

g
)∂μ(

√
ggμν∂νφ). We thus conclude that the Laplacian is given by

D2φ ≡ 1√
g
∂μ(

√
ggμν∂νφ) (27)

In Cartesian coordinates, this reduces to the usual expression. But, for example, in spherical coordinates,
plugging in

√
g and gμν , we obtain the Laplacian (∂2

r
+ 2

r
∂r + 1

r2 ∂
2
θ

+ cos θ
r2 sin θ

∂θ + 1
r2 sin2 θ

∂2
ϕ
)φ, again, as you may

or may not recall.
My pedagogical strategy is to go from change of coordinates to curved spaces, from which it is a short hop over

to the curved spacetimes we need for Einstein gravity. You learn here that it pays to learn this general formalism,
even if you don’t intend to deal with curved spacetimes any time soon.

Exercises

1 Suppose we defined ds2 = gμν(x)dx
μdxν as the square of the distance from x to x + dx. One consistency

requirement is that this is the same as the square of the distance from x + dx to x. Show that this requirement
is satisfied.

2 A race of Eskimo mites living around the north pole naturally uses the north pole as the origin of their
coordinate system and the “walking” distance from the north pole as a distance measure. After years of
study, their mite geometers figured out that the metric of their world is given to second order by (set the
radius of the sphere to 1)

ds2 =
(

1 − y2

3

)
dx2 +

(
1 − x2

3

)
dy2 + 2

3
xy dxdy + . . .

For x , y � 1, the space is flat and as Euclidean as it could be. But note that in second order the metric is not
diagonal.

You of course know that their coordinates (x , y) are related to the usual spherical coordinates by x =
θ cos ϕ and y = θ sin ϕ. Furthermore, you know, but Eskimo mites don’t, that actually ds2 = dθ2 + sin2 θdϕ2.
Given your knowledge, derive the metric above.

3 The familiar Mercator map of the world is obtained by transforming spherical coordinates θ , ϕ to coordinates
x , y given by x = W

2π ϕ, y = − W
2π log tan θ

2 . (This was first derived by the English mathematician Edward
Wright in 1599.) Show that ds2 =�2(x , y)(dx2 + dy2). Determine �.

4 Consider the space described by

ds2 = ρ2

ρ2 + a2
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdϕ2, where ρ2 ≡ r2 + a2 cos2 θ

Is the space curved or not? (Hint: r = 0 does not represent a point. Also, study lines of fixed θ and ϕ.)

5 Consider the metric ds2 = dr2 + (rh(r))2dθ2, with θ and θ + 2π identified. For h(r)= 1, this is flat space.
Let h(0)= 1. Show that the curvature at the origin is positive or negative according to whether h(r) starts to
turn downward or upward. Calculate the curvature for h(r)= sin r

r
and for h(r)= sinh r

r
.

6 Consider a “fixed latitude” circle defined by θ = ε around the north pole of a unit sphere. The radius is θ ,
while the circumference is 2π sin θ . Show that R = 1.
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7 Show that dDx
√
g gives the correct length element on the unit circle.

8 Here is a simple way of understanding that d3x
√
g gives the volume element. Consider the metric ds2 =

a2dx2 + b2dy2 + c2dz2. Calculate the volume of an infinitesimal rectilinear container with sides dx , dy , dz.

9 In several areas of theoretical physics, we need to talk about higher dimensional spheres. The d-dimensional
unit sphere Sd is embedded intoEd+1 by the usual Pythagorean relation (X1)2 + (X2)2 + . . . + (Xd+1)2 = 1.
(We will discuss embedding more in the next chapter. See also exercise 16 below.) Thus, S1 is the circle and
S2 the sphere. Indeed, we may even live on S3. You can readily generalize what you know about polar and
spherical coordinates to higher dimensions by defining

X1 = cos θ1, X2 = sin θ1 cos θ2, . . .

Xd = sin θ1 . . . sin θd−1 cos θd , Xd+1 = sin θ1 . . . sin θd−1 sin θd

where 0 ≤ θi < π for 1 ≤ i < d − 1, but 0 ≤ θd < 2π . (For S2, θ1 = θ and θ2 = ϕ. Note that the usual Cartesian
coordinates are trivially permuted from the coordinates used here: X1 = Z , X2 = X , X3 = Y .) Verify the
Pythagorean relation. Show that the metric on Sd works out to be

ds2
d

=
d+1∑
i=1

(dXi)2 = dθ2
1 + sin2 θ1dθ

2
2 + . . . + sin2 θ1 . . . sin2 θd−1dθ

2
d

10 Show that the metrics on the unit spheres satisfy the iterative relation

ds2
d

= dθ2 + sin2 θds2
d−1

Note that the common observation that curves of fixed latitude on the globe are circles is an example of this
relation.

11 Use the formalism in the text to calculate the area (used in the generalized sense, of course) of Sd . Verify
that you recover what you know for d = 2 and 3. Show that the area of S3 is equal to 2π2, a result that you
will need in quantum field theory.2

12 A squashed sphere: consider ds2 = (b2 + a2 cos2 θ)dθ2 + (b2+a2)2

b2+a2 cos2 θ
sin2 θdϕ2, with 0 ≤ θ ≤ π and 0 ≤ ϕ ≤

2π , as usual. Find the length of the equator (that is, the curve defined by θ = π/2) and of the circle of fixed
longitude going through the two poles (for this, give the numerical result when b = a), and the area of this
squashed sphere. We will need these results later when we discuss rotating black holes.

13 Stereographic projection of the sphere: start out with ds2 = dr2

1− r2

L2

+ r2dϕ2 for a sphere of radiusL. (This is of

course the usual spherical coordinates withL sin θ disguised as r .) Now imagine the sphere as a transparent
globe with the south pole touching a plane, as shown in figure 3, and a light affixed to the north pole. The
shadows of various points cast on the plane defines the stereographic map. Show that the point (r , ϕ) is
mapped to the point (ρ , ϕ) on the plane, with

r = ρ

1 + ρ2

4L2

and by substitution

ds2 = 1(
1 + ρ2

4L2

)2 (dρ
2 + ρ2dϕ2)

For Sd the projection generalizes to ds2 = 1(
1+ ρ2

4L2

)2 (dρ
2 + ρ2d�2

d−2).

14 Conformally flat: a space described by ds2 =�2(x)ds2
flat is said to be conformally flat. We also say that the

metric gμν related to the flat metric by gμν(x) = �2(x)gflat
μν

is conformally flat. The metric in exercise 13
provides an example. Show that lengths are not the same but that angles are the same as calculated with the
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Light

L

O ρ

r

2L

Figure 3 Stereographic projection of the sphere.

two different metrics. This is clear for the stereographic projection of the sphere. Note, for example, that as
ρ → ∞, a given 
ρ corresponds to an ever-smaller 
s, but as ρ → 0, the two metrics approach each other.
Bad terminology alert: A conformally flat metric does not describe a flat space, as the example of the sphere
makes clear! More generally, two metrics are said to be conformally related to each other if there exists a
function �(x) such that g̃μν(x)=�2(x)gμν(x). Again, it is worth emphasizing that the two metrics are not
related by a coordinate transformation.

15 Verify that the expression given forDμW
μ in (26) reproduces the usual formula for the divergence in spherical

coordinates.

16 Find the metric on the torus.

17 Show that any d = 2 space is conformally flat.

18 Show that ds2 = e2u(du2 + dv2) is not only conformally flat but literally flat.

Notes

1. One situation that requires more care is in the discussion of magnetic monopoles. See, for example, QFT
Nut, chapter IV.4.

2. QFT Nut, p. 273. For a rather nifty trick giving the area of Sd for any d , see QFT Nut, p. 539.



I.6 Curved Spaces: Gauss and Riemann

Fear of curves

Surely you have heard that Einstein gravity involves curved spacetime. In my experience,
the very mention of the Riemann curvature tensor, which we will come to in due time,
inspires fear and trembling in many beginning students of general relativity. “I was doing
well in the course,” students would moan, “until we started doing Riemannian geometry!”
I actually have a great deal of sympathy for these students: very little in their background
prepares them for the Riemann curvature tensor. Unless they have taken an exceptionally
good mechanics course, with studies of particle motion on curved surfaces, they typically
have no prior exposure to the massive amount of rather technical material needed to
calculate the Riemann curvature tensor. Dear reader, take heart: even Einstein had to
struggle to master differential geometry.

Given this frightening reputation of Riemannian geometry, we will take baby steps
toward curvature. My pedagogical strategy is to first deal with surfaces that you can
practically imagine holding in your hands.

Introducing Professor Flat

As I was encouraging a fearful student, Professor Flat came ambling along. A mild man-
nered man with a somewhat disheveled look, he inquired gently, “Why all the trembling?”
We told him, and he nodded. Then he asked the fearful student, “Do you know why it took
humans so long to realize that the world was round?”

FS: “Because the world is locally flat, and humans can’t walk very fast.”
PF: “Exactly! In everyday life, we have no need to know that the world is actually round,

as long as the distance scale of interest is small compared to the earth’s radius. If you
focus on a small enough region on any surface—or any space in any dimension for that
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matter—it’s going to look flat, and you could simply study the small deviation from flat
space. Nothing terribly frightening at all!”

Tangent plane

So indeed, let’s follow Professor Flat’s advice. To get some feel for curvature, let us keep
things simple and be content to take some nice curved space, roundish like the sphere.
Imagine approaching it with a flat plane until it touches the surface at some point P. The
plane is then known as the tangent plane. To focus our minds, consider a sphere of radius
L. Since all points on it are equivalent, we might as well have the plane touch the south
pole and be perpendicular to the z-axis joining the north and south poles. The southern
hemisphere is defined by z = −√L2 − x2 − y2 + L, where we added the constant L to
the usual definition of z so that for convenience, z = 0 at the point P we are interested in
(the south pole in this case). Near the south pole, z � 1

2L(x
2 + y2): the sphere is locally

a parabolic bowl and is well approximated by the tangent plane. It is in this sense that
Professor Flat says that the surface is locally flat.

So, consider the tangent plane touching the roundish surface we are studying at some
point P. See figure 1. Let z denote the coordinate perpendicular to the plane, and (x , y)
the coordinates in the plane, with the point P coordinatized by (x , y)= (0, 0). Locally, we
have a quadratic expansion in the small quantities x and y: z= 1

2ax
2 + cxy + 1

2by
2. Here

a , b, c have dimension of inverse length, and thus the local region is defined by x , y small
compared to a−1, b−1, c−1. (For the sphere, c = 0 and a = b = 1/L.) Applying Pythagoras,
we obtain the distance squared between two nearby points with coordinates (x , y) and
(x + dx , y + dy):

ds2 = dx2 + dy2 + dz2 = dx2 + dy2 + [(ax + cy)dx + (by + cx)dy]2

≡ gxxdx
2 + gyydy

2 + 2gxydxdy (1)

with the metric

gxx = 1 + (ax + cy)2, gyy = 1 + (by + cx)2, gxy = (ax + cy)(by + cx) (2)

Note that even for the sphere, the metric regarded as a 2-by-2 matrix contains an off-
diagonal term in this locally flat coordinate system. Of course, for x , y → 0, the off-diagonal
term vanishes and the metric approaches the identity matrix.

P

Figure 1 The tangent plane to a
curved surface.
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We could also write z � 1
2 �xTM �x, with M =

(
a c

c b

)
and �x = (x , y) a column vector

which we are writing as a row vector for typographical reasons mentioned in chapter
I.3. But we can always rotate the coordinates �x = (x , y) to some other coordinates �x ′ =
(u, v) given by �x′ = R�x. We want the curvature to be an invariant geometric concept not
dependent on our coordinate choices. In the new coordinates, M is replaced by M ′ =
R−1MR. We know that M possesses two invariant quantities, namely its two eigenvalues
μ and ν. But this dovetails perfectly with our discussion in the prologue.

Remember the ant going for her honey? We learned from that story that at a given point,
a curved space has an intrinsic and an extrinsic curvature. It all makes sense, then: these
two curvatures correspond to the two invariant quantities contained in M . As you will
see, we could exploit similar reasoning, asking how things transform under a change of
coordinates, to determine the curvature of Riemannian spaces of any dimension.

Let us diagonalize M , so that in the new coordinate basis∗ z = 1
2μu

2 + 1
2νv

2. Thus,
we have the intuitive result that any surface is locally the sum of two parabolas, z =
1
2μu

2 + 1
2νv

2, with μ−1 and ν−1 the radius of curvature of the parabola in the u and in
the v direction, respectively. (Expand a circle of radius L around some point, in the same
way that we expanded a sphere earlier, y = −√

L2 − x2 + L� 1
2Lx

2, and we see that it is
locally a parabola with radius of curvature equal to L.)

Intrinsic versus extrinsic

For a 2-by-2 matrix, its determinant and trace, or equivalently, its two eigenvalues, con-
stitute its two basis-independent attributes. Our insistence that the measure of surface
curvature does not depend on whether we use the x , y or the u, v coordinates means that
we can have two measures of surface curvature:

Intrinsic curvature = det M = μν = ab − c2 (3)

Extrinsic curvature = ( 1
2 trM)2 = 1

4 (μ+ ν)2 = 1
4 (a + b)2 (4)

(Note that I have defined the extrinsic curvature to have the same dimension as the extrinsic
curvature. The normalization factor 1

4 is such that the intrinsic and extrinsic curvatures of
the sphere, for which a = b, c = 0, are equal.)

How do I know which is which, intrinsic versus extrinsic curvature? We appeal to the
cylinder in the prologue as an example, knowing that it is intrinsically flat. Indeed, for
a cylinder† of radius L, z = −√

L2 − x2 + L independent of y and hence b = c = 0. We
have intrinsic curvature = 0 and extrinsic curvature = a2 = 1/L2, as we would expect. In

∗ Note that while M is diagonal, the metric is not.
† The cylinder example also underlines the fact that we are always talking about local curvature, as explained

in the preceding chapter. Globally, the mites could of course go all the way round and come back to the same
place.
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Einstein gravity, we are normally only interested in the intrinsic curvature of spacetime,
since we can’t get out∗ of spacetime and look at its extrinsic curvature.

Negative curvature

A sphere of radius L has intrinsic and extrinsic curvatures both equal to 1/L2. Since every
point on the sphere is the same as the south pole, the sphere has constant intrinsic and
extrinsic curvatures.

A beginning student named Confusio1 looked, well, confused. He said: “You mean the
curvature at the bottom of a bowl and at the top of a dome are not opposite in sign?
Everybody knows that the bowl is curved upward, the dome downward.”

Confusio’s everyday intuition caused him to think that he was somehow inside the
bowl and outside the dome. In fact, the sphere is an infinitely thin surface. There is no
conceptual distinction between being on the “inside” and the “outside” of the surface. Of
course, we could also turn the bowl upside down. Let’s calculate the curvature at “the top
of the dome,” as Confusio calls it, otherwise known as the north pole. Near the north pole,
z =√

L2 − x2 − y2 − L � − 1
2L(x

2 + y2), so that a = b = − 1
L

, c = 0. Thus, the intrinsic
curvature is ab − c2 = 1

L2 , as expected. Compared to the neighborhood around the south
pole, z flips sign, but dz2 does not, so that the metric, and hence the curvature, have the
same value at the north pole and at the south pole, as they should.

Thus, in contrast to everyday perception, a negative curvature surface2 is one in which
the two parabolas bend in opposite directions, μ= −ν, such as the proverbial saddle. A
more contemporary example is the kind of potato chips that come in a cylindrical container.
I am surmising that the typical reader of this text is more likely to eat potato chips than
to gallop across the steppes with the Golden Horde. An example is a surface that goes
like z= xy for x � 0, y � 0. Then a = b = 0, c = 1, and μ= 1, ν = −1, and it has negative
curvature R = −1 at the origin.

Professor Flat: “Confusio, you still look confused. Think of a donut or a bagel, otherwise
known as the torus. Do you see that along its hole, the curvature is negative? Along the
outer edge, in contrast, the curvature is positive.”

Incidentally, it then follows that somewhere on the torus the curvature (we are always
talking about intrinsic curvature) vanishes. Do you see where? You could always use the
tangent space method here to calculate the curvature and thus check your intuition.

Embedding of curved spaces in higher dimensional flat spaces

In general, we could embed3 a D-dimensional space in N -dimensional Euclidean space
EN . WriteXA(x1, . . . , xD) forA= 1, . . . , N . For everyday surfaces,D = 2 andN = 3, but
the formalism to be given presently works for arbitrary values of N >D. (For the iconic

∗ Except in some speculative and unproven theories!
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sphere, (x1, x2)= (θ , ϕ) and (X1, X2, X3)= (X , Y , Z)= (sin θ cos ϕ , sin θ sin ϕ , cos θ).)
We see that x represents coordinates on the surface: as xμ varies, the points XA(x) sweep
out a D-dimensional space in EN . In this age of spectacular computer graphics, you can
easily generate all kinds of interesting surfaces by playing around with three functions
XA(x) of two variables.

Consider two neighboring points: P described by xμ and Q described by xμ + dxμ. If
the Euclidean coordinates of P are given by XA, then the Euclidean coordinates of Q are
given by XA + dXA =XA + ∂XA

∂xμ
dxμ. Pythagoras gives us the distance squared between

P and Q

ds2 ≡
∑
A

(dXA)2 =
∑
A

∂XA

∂xμ
dxμ

∂XA

∂xν
dxν ≡ gμνdx

μdxν (5)

with the metric

gμν =
∑
A

∂XA

∂xμ

∂XA

∂xν
(6)

Here I choose to display the summation over A explicitly. The attentive reader wlll realize
that (1) and (2) are examples of these two equations. The metric gμν is said to be induced
by the ambient Euclidean metric.

Another common embedding method is to restrict XA to satisfy certain conditions.
Again, we have the familiar example of the unit sphere defined by X2 + Y 2 + Z2 = 1.
Indeed, writing (X , Y , Z) in terms of (θ , ϕ) amounts to solving this equation. Instead,
we could choose to eliminate∗ Z. In the notation used above, (x1, x2) = (X , Y ). Then,
ds2 = dX2 + dY 2 + dZ2 = dX2 + dY 2 + (XdX+YdY )2

1−X2−Y 2 . We can clearly exploit the rotational
invariance in the (X-Y ) plane and write4 X = r cos ϕ, Y = r sin ϕ, X2 + Y 2 = r2, and
XdX + YdY = rdr , thus obtaining

ds2 = dr2 + r2dϕ2 + r2dr2

1 − r2
= dr2

1 − r2
+ r2dϕ2 (7)

Since the metric in (7) and the usual ds2 = dθ2 + sin2 θdϕ2 both describe the sphere, they
must be related by a coordinate transformation. Do you see how? Another question for you:
Why does (7) become singular as r → 1? See appendix 1. Further examples of embedding
are given in appendix 2.

Locally flat

The fearful student looks much more relaxed. He asks, “All this is clear enough for actual
2-dimensional surfaces I can visualize, but is it obvious that we can always choose our
neighborhood to be locally flat for any space of any dimension D?”

∗ The two solutions of the quadratic equation for Z define two coordinate patches covering the northern and
southern hemispheres (minus the equator, strictly speaking), as mentioned in the preceding chapter.
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Professor Flat: “It is fairly obvious for any sufficiently smooth5 space. Look at how the
metric transforms (I.5.14) when you go to a new set of coordinates:

g′
λσ
(x′)= gμν(x)

∂xμ

∂x′λ
∂xν

∂x′σ (8)

Within reason, you could choose any x′ you want, and for each choice, you get a new form
for the metric. You have a lot of freedom to massage the metric into the form you want.
The proof simply amounts to counting how much freedom you have on hand.”

So, look at our space around a point P. First, for writing convenience, shift our coor-
dinates so that the point P is labeled by x = 0. Expand the given metric around P out
to second order: gμν(x) = gμν(0) + Aμν ,λx

λ + Bμν ,λσx
λxσ + . . . . (The commas in the

subscripts carried by A and B are purely for notational clarity, to separate two sets of
indices.)

Again, let me assure the abecedarians that nothing profound is going on. We are merely
expanding gμν(x) in a power series, with the coefficients given names Aμν ,λ and Bμν ,λσ

(with indices that accord with the rule of repeated summation having to involve an upper
and a lower index). Note that the lower indices on the left hand side remain lower indices
on the right hand side, and similarly for upper indices.

As always, if you get confused, you should simply refer to the sphere. Thus, let the
coordinates of the point P be (θ∗, ϕ∗), so that x1 = (θ − θ∗), x2 = (ϕ − ϕ∗). (Of course, in
this simple case, nothing depends on ϕ∗.) What we just wrote down is then simply, for
example, gϕϕ = sin2 θ = sin2 θ∗ + 2 sin θ∗ cos θ∗x1 + . . . , so that Aϕϕ , 1 = 2 sin θ∗ cos θ∗
and Aϕϕ , 2 = 0. Nothing profound at all.

Change coordinates according to xμ = Kμ
ν
x′ν + L

μ
νλx

′νx′λ + M
μ
νλσx

′νx′λx′σ + . . . .
Again, nothing profound: K , L, M , . . . are just a bunch of coefficients to be determined.
At the point P, the new metric is given by (8):

g′
λσ
(0)= gμν(0)K

μ
λK

ν
σ

(9)

Regard this as a matrix equation g′ =KT gK , where T denotes transpose. Since gμν(0) is
symmetric and real, there always exists a matrix K that will diagonalize it. After gμν(0)
becomes diagonal (with positive diagonal elements—we will take that as a definition of
space), we could scale each coordinate, one by one, by an appropriate factor,∗ so that the
diagonal elements become 1. We end up with the Euclidean metric gμν(0)= δμν, with δμν
equal to 1 if μ= ν and 0 otherwise. (We shall keep dropping primes as we move along,
renaming the new coordinates and metric xμ and gμν, respectively.)

Let us count

The object Kμ
ν

has D2 elements to start with. How many are left, now that we have fixed
gμν(0)?

∗ xμ → xμ/
√
gμμ(0), no sum over repeated indices here.
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Let’s count. We are inD-dimensional space. First, note that the number of independent
elements in an antisymmetric D-by-D matrix Fμν = −Fνμ is equal to 1

2D(D − 1), since,
for each of theD values the first index can take on, the second index can take on onlyD − 1
values.∗ In contrast, a symmetricD-by-D matrix has 1

2D(D − 1) off-diagonal elements and
D diagonal elements, making for a total of 1

2D(D + 1) elements.†

Since gμν(0) had 1
2D(D + 1) arbitrary elements to begin with, we had to use this many

elements in Kμ
ν

to adjust these to δμν. Hence, the object Kμ
ν

has D2 − 1
2D(D + 1) =

1
2D(D − 1) elements left over. This is exactly the number of independent elements in an
antisymmetric D-by-D matrix. Hardly an accident! As discussed in detail in chapters I.3
and I.4, the number of generators in the rotation group SO(D) relevant forD-dimensional
space is 1

2D(D − 1). (For instance, for D = 3, 1
2D(D − 1)= 3, and we have precisely three

rotations that leave the identity matrix δμν invariant.) We have just shown the fairly obvious
fact that in D-dimensional space, the freedom we have left in K is precisely the freedom
to rotate.

Now onward. We proceed to the next step and claim that the linear terms in gμν(x)=
δμν +Aμν ,λx

λ + . . . can be removed by suitable choices ofLμνλ in xμ = x′μ +L
μ
νλx

′νx′λ +
. . . . (Evidently, Aμν ,λ and Lμνλ have been modified already by what we have done thus far,
but we do not want to introduce more letters.)

I urge the reader to expand (8) to first order in x to see what is going on. Since Aμν ,λ

is symmetric in μν, it contains 1
2D(D + 1)D = 1

2D
2(D + 1) elements (18 for D = 3). But

L
μ
νλ also has 1

2D
2(D + 1) elements: likeAμν ,λ it has three indices and is symmetric in two

of them. Yes! We have enoughLs to knock off 6 theAs. Thus, locally around any point P in
a Riemannian manifold, the metric can always be chosen to be gμν(x)= δμν plus second
order terms.

Thus, at any point P in a Riemannian manifold, not only can we choose the metric to be
Euclidean, but we can also arrange for the first order deviations from Euclidean to vanish.
Indeed, in our simple example (2), the deviation from locally Euclidean is quadratic. (See
also exercise I.5.2.) That the corrections to the locally flat Euclidean metric are second
order, rather than first order, is the mathematical explanation for why humans thought
their world was flat for so long.

Curvature

Let’s keep going! At this stage, we have gμν(x)= δμν + Bμν ,λσx
λxσ + . . . and xμ = x′μ +

M
μ
νλσx

′νx′λx′σ + . . . . How many components of B can we knock off by judicious choices
of Mμ

νλσ ?

∗ Recall that we did this sort of counting in chapter I.4.
† Alternatively, knowing thatn(D), the number of independent elements in a symmetricD-by-Dmatrix, can be

at most quadratic inD, we writen(D)= c0 + c1D + c2D
2 and fix the coefficients instantly fromn(0)= 0, n(1)= 1,

and n(2)= 3. We obtain n(D)= 1
2D(D + 1). A similar argument gives the number of independent elements in

an antisymmetric D-by-D matrix.
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Let’s count. The number of components in Bμν ,λσ is easy to count, since B has two
pairs of symmetric indices, and so we have ( 1

2D(D + 1))2 components. The number of
components in M

μ
νλσ is harder to count. Focus on the symmetric triplets νλσ . We know

that the number f (D) of possible choices is cubic in D. Again, the quickest method,
efficient though not particularly clever, is to write f (D) as a cubic polynomial in D and
then determine the coefficients by “fitting to data.” Start with f (1) = 1. To find f (2),
simply exploit the symmetry to arrange the indices in the order ν ≥ λ ≥ σ , and list the
possibilities: 222, 221, 211, 111, and so f (2)= 4. Similarly f (3)= 10. (Also, the process is
clearly inductive: f (D)= f (D − 1)+ 1

2D(D + 1).) In this way, we obtain f (D)= 1
6D(D +

1)(D + 2), and hence Mμ
νλσ has 1

6D
2(D + 1)(D + 2) components. We use these to knock

off some components in B, leaving 1
4D

2(D + 1)2 − 1
6D

2(D + 1)(D + 2)= 1
12D

2(D2 − 1)
elements that we can’t get rid of.

If you didn’t quite get all that, just write it out for D = 2, and you will see what’s
going on. At this stage of the cancellation game, we have 3 coefficients a , b, c in g11 =
1 + a(x1)2 + b(x2)2 + c(x1x2) + . . . . Similarly for g22 and g12, for a total of 3 × 3 = 9
coefficients we want to cancel. On the other side of the ledger, we can adjust 4 parameters
p , q , r , s in x1 = x′1 + p(x′1)3 + q(x′1)2x′2 + rx′1(x′2)2 + s(x′2)3 + . . . . Similarly for x2 for
a total of 2 × 4 = 8 parameters we can adjust to knock off the 9 coefficients in the metric.
So we are left with 9 − 8 = 1 = 1

1222(22 − 1) number we can’t get rid of.
As another example, for D = 4, B has 100 components, and M 80 components, leaving

us with 100 − 80 = 20 = 1
1242(42 − 1) numbers we can’t get rid of.

The measure of curvature is what we can’t iron flat. We thus conclude that at any given
point on a Riemannian manifold, we need Riemann(D) ≡ 1

12D
2(D2 − 1) numbers to

specify the curvature. In particular, Riemann(1) = 0 and Riemann(2) = 1, confirming∗

what we already know. The number Riemann(D) increases rapidly: Riemann(3)= 6, and
for D = 4, which, I’m sure you’ve heard is relevant for Einstein gravity, the curvature has
Riemann(4)= 20 components, a number that sets our student FS to fear and trembling
again. It is of course reasonable that it takes a lot of numbers to describe curvature in
higher dimensional space, since we have to specify how the space is curving in many
different directions.

To make sure that you follow this discussion, I suggest you try this fun exercise. Suppose
you were given a space described by the metric ds2 = dr2 + r2dθ2. This is of course a
plane as flat as Kansas, but suppose you didn’t know that. Calculate the curvature by first
transforming polar coordinates into locally flat coordinates† at the point (r , θ)= (r∗, 0) by
going through all the steps here. Then extract the combination of the Bμν ,λσs giving the
intrinsic curvature. By the end of this straightforward exercise, you will probably agree that
there ought to be a better way to get at the curvature.

∗ Note that a curve has no intrinsic curvature, only extrinsic curvature, as is intuitively clear, while a surface,
as described in chapter I.5, is characterized by two numbers specifying the intrinsic and extrinsic curvatures. We
are evidently talking about the intrinsic curvature here.

† Also known as Riemann normal coordinates. Thanks, Jargon Guy.
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It is commonly said in academia that the best way to master a subject is to teach it. In
this connection, the computer is a more-than-willing student. Write a program such that,
given a metric, the program is able to find the locally flat coordinates at an arbitrary point.
If you do this, as I did while writing this chapter, you will truly understand the counting
above.

Guessing what the Riemann curvature must look like

One significant by-product of this counting and subsequent understanding of local flatness
is that we see what the general expression for curvature must involve. Since the curvature at
the point P is described by those components inBμν ,λσ that we cannot transform away, we
conclude∗ that the definition of curvature must involve two powers† of derivatives acting
on the metric gμν. As we have already seen, it takes lots of numbers to describe curvature
completely. But we also know that we could change coordinates (from (x , y) to (u, v), for
the simple curved surface that started this chapter). Thus, we don’t want these numbers to
gallop wildly out of our control when we change coordinates. Now you see that the concept
of a tensor, as discussed in chapter I.4, is going to play a big role. In fact, the 1

12D
2(D2 − 1)

numbers are the components of a tensor, quite naturally called the Riemann curvature
tensor. With our intuitive discussion here, we can anticipate that the curvature tensor will
have the schematic form R.... ∼ ∂∂g..; since the number of components grows quartically
with D, we can even guess that it will carry 4 indices. Very nice: this is all consistent with
the curvature being related to Bμν ,λσ .

What did Riemann want?

The great insight of Carl Friedrich Gauss and other pioneers of differential geometry,
not to mention the mite professors of geometry, is that given the metric, we should be
able to determine the intrinsic curvature without worrying how the surface is embedded,
as was already explained in the preceding chapter. Knowing the distance between two
infinitesimally separated points, we can find the distance between two points far apart by
integrating ds along any path connecting the two points. We can then define a “straight
line” between two points as that path that minimizes the distance between them. This
allows us to do geometry as Euclid had shown us. Shades of Newton, Leibniz, and Lie!

Indeed, we defined the Poincaré half plane by specifying ds2, without having to say, or
even to care about, how it is embedded.

To calculate the intrinsic curvature, we need to know only the metric gμν; we don’t need
to know the embedding functions XA(xμ). When the great Gauss discovered this fact for
curved surfaces in 1828, he was so struck by it that he called it the Theorema Egregium

∗ Since Bμν ,λσ are nothing but the second order Taylor coefficients in an expansion of gμν around the point P.
† This is also confirmed by the intuitive example in (1) and (2).
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(the outstanding or extraordinary theorem; the meaning of the Latin word has been much
distorted in the English word “egregious”). Here’s hoping that you find your Theorema
Egregium some day.

The whole point of the story in the prologue is that, like the mites, we cannot get out of
the universe, yet we can measure its curvature.

Bernhard Riemann, who was two years old when the Theorema Egregium was born and
who as a student attended Gauss’s lectures, took the profound step of extending differential
geometry to arbitrary dimensions and definitively taught us how to calculate curvature.
Given a metric gμν, Riemann wanted the curvature.

Now that I have sketched it out for you, you could set yourself a challenge and see
how you stack up compared to Riemann. The problem is easily stated and well posed.
Construct a tensor R.... ∼ ∂∂g.. out of two partial derivatives and the metric that would
measure intrinsic curvature. See how far you can get before reading further.

You will soon see that it is not so simple. Indeed, even for D = 2, looking at (3), and
knowing the answer, it is not obvious what the combination should be. In that simplest
of all cases, the Riemann curvature tensor has only one component and thus degenerates
into a scalar. So given 3 functions g11, g22, and g12, call them E , F , G say, each a function
of two variables x , y, find an expression involving E , F , G, allowing yourself only two
derivatives, such that the expression does not change under the transformation in (8). You
recognize that this amounts to Gauss’s problem. Challenge yourself!

A historical curiosity. After Riemann worked out the general treatment of curved spaces,
he had, remarkably enough, some vague thoughts about curved spaces having something
to do with gravity. Unfortunately for him, he was way too early. Special relativity and
Minkowski’s unification of space and time into spacetime (as we will see in part III) were
still in the future. We now know that it is curved spacetime, not curved space, that has
something to do with gravity (as we will see in part IV).

Appendix 1: Coordinate singularity, a simple version of the Einstein-Rosen
bridge, and a wormhole

The metric discussed in the text ds2 = dr2

1−r2 + r2dϕ2 illustrates an important point. Here are the answers to the

questions I asked you. Set r = sin θ , so that dr2 = cos2 θdθ2 and ds2 becomes dθ2 + sin2 θdϕ2. The singularity at
r = 1 is merely due to our choice of coordinates going bad at the equator. In fact, the sphere is perfectly smooth
there.

When we study black holes in parts VI and VII, we will encounter this kind of singularity, known as a coordinate
singularity, in contrast to an actual or physical singularity, when the geometry itself becomes singular. As another
example, consider the surface described by

ds2 = 1
1 − rS

r

dr2 + r2dϕ2 (10)

with rS a positive constant. Again, the singularity at r = rS is merely a coordinate singularity. Indeed, this
surface could be embedded intoE3 using the familiar cylindrical coordinates ds2 = dr2 + r2dϕ2 + dz2 and setting

z2 = 4rS(r − rS). (Let’s verify this: zdz= 2rSdr , so that dr2 + dz2 =
(

1 + 4r2
S

z2

)
dr2 = r

r−rS dr
2.) Thus, the surface is

perfectly smooth at r = rS (see figure 2). It consists of two planes connected by a “throat,” known as the Einstein-
Rosen bridge. Note that a mite geometer could perfectly well travel from the upper to the lower plane without
noticing any singularity at all. So this type of geometry is sometimes known picturesquely as a wormhole.
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Figure 2 The Einstein-Rosen bridge, underlining
the difference between a coordinate singularity
and a physical singularity.

A line of fixed r is simply a circle. For r � rS , the space becomes flat: ds2 → dr2 + r2dϕ2. Incidentally, in the
same cylindrical set-up, the S2 metric we started this appendix with is given by the embedding z2 = 1 − r2. In
fact, I am repeating myself.

Meanwhile, Confusio has flown off to the equator to investigate the r = 1singularity there. “What singularity?”
the locals ask him.

Appendix 2: Spheres

In the text, we studied the 2-dimensional sphere S2. Clearly, it is not difficult to generalize our discussion to
higher dimensional spheres. For instance, S3 is embedded in E4 by X2 + Y 2 + Z2 +W 2 = 1. Replace (X , Y , Z)
by the usual spherical coordinates, so that W 2 = 1 − r2 and WdW = −rdr , and eliminate W in ds2 = dX2 +
dY 2 + dZ2 + dW 2 = dr2 + r2(dθ2 + sin2 θdϕ2)+ (−rdr)2

1−r2 . We thus obtain the metric for S3:

ds2 = dr2

1 − r2
+ r2(dθ2 + sin2 θdϕ2)= dr2

1 − r2
+ r2d�2

2 (11)

The only difference from (7) is that here the angular element d�2
2 on S2 appears rather than the angular element

d�2
1 = dϕ2 on S1 (namely the circle). Indeed, recalling what we just learned in the preceding appendix, we invite

ourselves to write r = sin ψ in (11), thus obtaining d�2
3 = dψ2 + sin2 ψd�2

2, where, in line with the usual solid
angle notation, we have renamed the line element ds2 on S3 as d�2

3.
Evidently, we can determine the line element on Sn iteratively,

d�2
n
= dψ2 + sin2 ψd�2

n−1 (12)

thus recovering the result of exercise I.5.10. As noted in that exercise, this generalizes the elementary school
observation that the curves of constant latitude on the globe form circles. Here, the subspaces of constant ψ
form Sn−1.

I already mentioned in exercise I.5.9 that we may actually live in S3. In (11), simply scale r → r/L, and
then multiply ds2 by L2 to obtain ds2 = dr2

1−( r
L
)2

+ r2(dθ2 + sin2 θdϕ2). All we have done is to restore the length

dimension to r . One objective of observational cosmology is to determine L, or failing that, to set a lower bound
on it.

Appendix 3: Hyperbolic spaces

The 2-dimensional hyperbolic spaceH 2 (or pseudosphere, as some people call it) is less intuitively accessible than
S3 and hence generally not mentioned in elementary schools. Define a 2-dimensional surface byX2 + Y 2 −W 2 =
−1, embedded (crucially) not in E3 but in a “pseudo-Euclidean” space with the metric

ds2 = dX2 + dY 2 − dW 2 (13)



I.6. Curved Spaces: Gauss and Riemann | 93

Once again, replace (X , Y ) by the usual polar coordinates, so that W 2 = 1 + r2 and WdW = rdr . Writing

dW 2 = (rdr)2

W 2 in ds2, we obtain the metric for H 2:

ds2 = dr2 + r2dθ2 − (rdr)2

1 + r2
= dr2

1 + r2
+ r2dθ2 (14)

Compare and contrast with (7) for S2. That one sign makes all the difference, of course.
Now we are invited to write r = sinh ψ , so that ds2 = dψ2 + sinh2

ψdθ2. Hyperbolic sine, hyperbolic space,
got it? Curves of constant “latitude” (that is, ψ) also form circles, while W 2 = 1 + r2 traces out a hyperbola in the
(W -r) plane.

Evidently, we can move up in dimension. The 3-dimensional hyperbolic space H 3 is described by the line
element (not very imaginative notation) dH 2

3 = dψ2 + sinh ψ2(dθ2 + sin2 θdϕ2) = dψ2 + sinh ψ2d�2
2. More

generally,

dH 2
n

= dψ2 + sinh ψ2d�2
n−1 (15)

Note that Hn is constructed from Sn−1, not Hn−1.
Again, one issue addressed by cosmology is whether we live in H 3 or S3. Just as for spheres, we could restore

the length dimension to r and write the metric forH 3 as ds2 = dr2

1+( r
L
)2

+ r2d�2
2. (Note that (14) looks like but is not

to be confused with the stereographic metric of a sphere given in exercise I.5.15.) We will encounter hyperbolic
spaces when we study de Sitter and anti de Sitter spacetimes in part IX.

Note that while the embedding space is pseudo-Euclidean, the hyperbolic space is clearly locally Euclidean.
Indeed, around an arbitrary point on H 3, say r = L, θ = π/2, and ϕ = 0, the mites living in the space would
experience the perfectly Euclidean metric ds2 � 1

2dr
2 + L2(dθ2 + dϕ2). Indeed, if you want, you can define

x = r/
√

2, y = Lθ , z = Lϕ, so that ds2 � dx2 + dy2 + dz2. The mites don’t know that the embedding space
is not Euclidean and couldn’t care less.

Appendix 4: A potential confusion over hyperbolic spaces

Consider another hyperbolic surface defined by X2 + Y 2 −W 2 = 1 embedded in a space with the metric ds2 =
dX2 + dY 2 − dW 2. You should draw the surface defined by X2 + Y 2 − W 2 = 1 and compare it with the cor-

responding surface in appendix 3. Following the same steps as above, you find ds2 = dr2 + r2dθ2 − (rdr)2

r2−1 =
dr2

1−r2 + r2dθ2. This is just the sphere in (7). Surprise! (Or were you surprised?)
Well, I bet that you drew something like a cylinder but with a radius that grew toward infinity at both ends.

If you didn’t, hurray for you. In all likelihood, you drew the surface as if it were embedded in E3, but it isn’t.
Indeed, you see that if you analytically continue W → iW , the surface defines S2.

Exercises

1 Find the transformation relating the coordinates used by the Eskimo mites in exercise I.5.2 to the coordinates
in (2).

2 Calculate the curvature of the torus by the tangent plane method.

3 A civilization living in 2-dimensional space marks their world with the coordinates (κ , ζ ) handed down eons
ago by their ancestors. Careful measurements of distances between various points over time have shown
that the metric of their world is given by gκκ = 1 + . . . , gζζ = 1 + 2κ + . . . , gκζ = 0 + . . . , where the dots
indicate terms quadratic in κ and ζ . The civilization is in fact planning to deploy a team of geometers to
measure these quadratic terms. As they develop physics, they find the linear term in gζζ terribly irksome.
(a) One day, a bright young physics student points out that changing coordinates from (κ , ζ ) to (ω, φ),

defined by κ = ω + 1
2φ

2, ζ = φ − ωφ, would cause the linear term in the metric to disappear. Show that
this is in fact the case.
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(b) Many years later, another bright young physics student realizes that the “crazy” coordinates (κ , ζ ) are
just remnants of polar coordinates left by advanced interstellar visitors, who had long since departed.
The student writes down polar coordinates (r , θ) with ds2 = dr2 + r2dθ2 and shows that the civilization
has been flourishing in a small neighborhood of the point P with coordinates (r , θ)P = (r∗ , 0). The
mysterious coordinates (κ , ζ ) turn out to be merely the deviation of r , θ from P, suitably scaled by r∗.
Explain how this works. Of course, this is just a theory: the civilization would now have to measure the
quadratic terms in their metric to be sure, but preliminary measurements indicate that this theory will
very likely work. Measurements show that the origin of the polar coordinate system is incredibly far
away; nevertheless, an expedition is planned to visit this mysterious place.

4 Find the locally flat coordinates on the Poincaré half plane.

5 Show that for D = 2, the combination 2B12, 12 − B11, 22 − B22, 11 measures intrinsic curvature. In the simple
example discussed in connection with the tangent plane, since the combination dx2 + dy2 is invariant
under rotation, it is equal to du2 + dv2, and thus ds2 = dx2 + dy2 + dz2 = du2 + dv2 + (μudu+ νvdv)2 =
(1 + μ2u2)du2 + (1 + ν2v2)dv2 + 2μν uv dudv. Work out Bμν ,λσ and the combination specified here.

6 Calculate the combination 2B12, 12 − B11, 22 − B22, 11 for the metric found in exercise 4.

7 Show that for D = 1, we can set g11 to 1 by a coordinate transformation and so curves have no intrinsic
curvature.

8 It is easy to introduce a coordinate singularity by a poor choice of coordinates. Start with ds2 = dx2 + dy2

and let z= yp. Find the metric in terms of (x , z).

9 Note that the coordinates (x , y , z) introduced forH 3 in appendix 3 are not locally flat. Find the transformation
to locally flat coordinates.

10 Two spaces described by the metric g̃μν and gμν are said to be conformally related if

g̃μν(x)=�2(x)gμν(x) (16)

Show that, given two infinitesimal line segments originating from a point, the angle between them is
preserved by this conformal transformation. In particular, that is why the Mercator map of exercise I.5.3
was popular with navigators. (Bad terminology alert: The term “conformal transformation” often suggests
to students that the two metrics g̃μν and gμν are related by a coordinate transformation. In general, they are
not. Thus, it is probably better to call “conformal transformation” a Weyl transformation instead.)

11 In the preceding exercise, if the metric gμν is flat, then the metric g̃μν is said to be conformally flat. In
other words, a metric gμν (dropping the tilde) is said to be conformally flat if there exists an � such
that gμν(x) = �2(x)δμν . (In fact, we have already encountered conformally flat spaces in exercise 14 in
the preceding chapter.) In higher dimensions, a metric has to be very special (in particular, it must be
characterized by a single function) to be conformally flat. But 2-dimensional surfaces are so “simple” that
they are all (locally) conformally flat. Show this by a counting argument.

12 Show that the sphere and the Poincaré half plane are conformally flat. (Again, a bad terminology alert: The
term “conformal flat space” misleads many students into thinking that the space is flat. In general, it is not.
For example, consider the Mercator map of exercise I.5.3: the sphere S2 is manifestly not flat.)

13 Find the curvature of the space described by ds2 = ydx2 + xdy2.

14 Show that hyperbolic spaces are conformally flat.
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Notes

1. Later in life, he also appears in QFT Nut, older but not wiser.
2. For pictures, Toy/Universe, p. 25.
3. Can any space be embedded inEN? If so, what is the minimum value ofN for a given space? These nontrivial

questions were answered by John Nash, the mathematician portrayed in the film A Beautiful Mind: Ann. Math.
63 (1956), p. 20.

4. I purposely use the letter r to emphasize that we can use the same letter to describe different things in
different situations. I trust you not to confuse this r with the r in the usual spherical coordinates and which
we restricted to be 1 in the preceding chapter to obtain the metric for the unit sphere. The r here is the “polar”
radial variable in polar coordinates.

5. For the purpose of this book, we call a Riemannian manifold a space whose metric is smooth enough to be
differentiated an appropriate number of times. This may require finding an appropriate set of coordinates.

6. The rigor-minded reader realizes that we actually need to check this.



I.7 Differential Geometry Made Easy, but Not Any Easier!

“Classical” differential geometry

I feel that it would be good for those readers seeing Riemannian geometry for the first time
to work through some “classical” differential geometry1 dealing with curves and surfaces,
“real” stuff that you could actually see and “hold in your hands.” Throughout this chapter,
we will be living in good old 3-dimensional Euclidean space. I am going to tell you how the
greats like Frenet and Gauss thought about curves and surfaces. None of the fancy tangent
bundle talk for us; we will just do it. Action, not talk!

One advantage of this approach2 is that you will gain a geometric feel for important
concepts such as covariant differentiation, curvature, and the Christoffel symbol, which
in some texts are introduced immediately in a more high powered and abstract fashion. We
will, of course, also get to the more general and direct Riemannian approach3 to curvature
in due time. Hence, it is entirely possible for those who do not care as much as I do about
“classical” mathematics to skip this chapter.

Curves

Consider a curve C given by �X(l) parametrized by the length l along the curve. In other
words, we start from an arbitrary point O on the curve, and pace off a distance equal to l
along the curve. Our location is then specified by the vector �X(l).

The unit tangent vector is �t ≡ �̇X ≡ d �X
dl

. Following Newton, we denote differentiation
with respect to l by a dot, as was already done in chapter I.1. (All vectors in this chapter
have 3 components and will be labeled with an arrow.) Since we said that l is the length,
namely dl2 = d �X . d �X, we have �t . �t = 1. Differentiating, we obtain �t . �̇t = 0. Thus, the unit
vector �p defined by

�̇t = κ �p (1)
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curve C

osculating plane

�t

�b

�p

�X (ℓ)

Figure 1 The moving trihedron and osculating plane of a
smooth curve C.

(known as the principal normal vector) is orthonormal to �t . You can see that κ , equal to |�̇t |
by definition, has to do with the curvature of the curve C at the point �X.

Imagine driving a race car along the curve: �t indicates the direction you are pointing in
and �̇t how fast you have to turn the steering wheel. Anyway, we physicists recognize �̇t as the

acceleration �̈X and κ as a measure of the centrifugal force. In this analogy, l is time, and
so speed is fixed to be 1. This is kind of a neat example of how physics and mathematics
intertwine: the centrifugal force tells us about curvature.

Next define the unit vector �b(l)≡ �t(l)× �p(l), known as the binormal vector. As we move
along the curve, we have what 18th century mathematicians called a moving trihedron
formed by the triplet �t , �p, and �b. The vectors �t and �p form a plane, named the osculating
plane (from the Latin for “kissing”) by D’Amondans Charles de Tinseau (1748–1822) in
1780. See figure 1.

By construction, �t . �b= �t . (�t × �p)= 0. Differentiating this equation, we get �̇t . �b+ �t . �̇b=
0. Using �p . �b= 0, we find that �̇b is orthogonal to �t . Also, differentiating �b . �b= 1, we obtain
�b . �̇b = 0. Since �̇b is orthogonal to both �t and �b, we conclude that

�̇b = −τ �p (2)

Evidently, τ , known as the torsion of the curve C at the point �X, measures how the curve
is twisting. If the discussion is unclear to you at any point, draw your own picture!

The next question is how the unit normal �p changes as we move along. Noting that
�p = �b × �t , we differentiate and use (1) and (2) to obtain

�̇p = �̇b × �t + �b × �̇t = τ �b − κ�t (3)

We can package the three equations, (1), (2), and (3), known as the Frenet-Serret
equations (in memory of Jean Frenet (1816–1900) and Joseph Serret (1819–1885)), more

compactly by introducing the 9-component object ψ ≡
( �t

�p
�b

)
. Then

ψ̇ = Aψ , with A=

⎛
⎜⎜⎝

0 κ 0

−κ 0 τ

0 −τ 0

⎞
⎟⎟⎠ (4)

The antisymmetry of A ensures that ψ . ψ̇ = 0.
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Surfaces

We now graduate from curves to surfaces in the 3-dimensional Euclidean space E3 we
were born into. A surface embedded in E3 is defined by �X(x1, x2). In contrast to a curve
�X(l) parametrized by l, the surface is parametrized by two coordinates xμ, with the indexμ
taking on 2 values: this feature is of course what makes a surface a 2-dimensional object.
Also, while the length along the curve l provides a natural parametrization, there is no
comparable natural parametrization for a surface. If the discussion becomes too abstract
for you at any point, you can always think of the familiar sphere (with x1 = θ , x2 = ϕ) for
which

�X =

⎛
⎜⎜⎝

sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞
⎟⎟⎠

The two 3-component vectors �eμ ≡ ∂μ �X = ∂ �X
∂xμ

, labeled by the index μ, form the basis
vectors for the surface. For example, on the sphere,

�e1 =

⎛
⎜⎜⎝

cos θ cos ϕ

cos θ sin ϕ

− sin θ

⎞
⎟⎟⎠ and �e2 =

⎛
⎜⎜⎝

− sin θ sin ϕ

sin θ cos ϕ

0

⎞
⎟⎟⎠

To make absolutely sure that there is no confusion, let me say again that �X(x) lives in
the ambient 3-dimensional Euclidean space E3, and �eμ(x) are two 3-vectors labeled by
μ= 1, 2. Note that x1, x2 are coordinates on the surface, not components of �X.

Tangent plane and metric

Linear combinations of the two basis vectors span the tangent plane at the point labeled
by the coordinates x; in other words, the set of all points represented by uμ�eμ(x) =
u1�e1(x)+ u2�e2(x), for u1, u2 any two real numbers, form the tangent plane. The tangent
plane changes as we move around on the surface, of course. For example, on the sphere, at

the point (θ = π/2, ϕ = 0), the tangent plane consists of
(

0
u2

−u1

)
as u1 and u2 range over the

real numbers. For another example, again on the sphere, at the point (θ = π/2, ϕ = π/2),

the tangent plane consists of
( −u2

0
−u1

)
again as u1 and u2 range over the real numbers.

Another familiar example is the cylinder with radius a, for which (with the choice

x1 = ϕ , x2 = z) �X =
(

a cos ϕ
a sin ϕ

z

)
. It follows that �e1 =

( −a sin ϕ

a cos ϕ
0

)
and �e2 =

(
0
0
1

)
. Note that

if we think of a as a length, �e1 and �e2 do not have the same dimension.
Since d �X = ∂μ �Xdxμ, the distance squared between two neighboring points with coor-

dinates x and x + dx is given by ds2 = d �X . d �X = (∂μ �X . ∂ν �X)dxμdxν = �eμ . �eν dxμdxν.
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�n

P

�e1

�e2

Figure 2 The tangent plane and the normal to a
surface at some point P.

In other words, the metric on the surface is

gμν = �eμ . �eν (5)

We use the Einstein repeated summation convention: all repeated indices are summed
over. For example, d �X = ∂μ �Xdxμ = ∂1 �Xdx1 + ∂2 �Xdx2. You should check that (5) gives the
familiar result ds2 = dθ2 + sin θ2dϕ2 for the sphere. For the cylinder, ds2 = �e1 . �e1dϕ

2 +
�e2 . �e2dz

2 = a2dϕ2 + dz2.

As we move about on the surface, how does the tangent plane rock and roll?

We now ask how the two basis vectors change as we move about on the surface. Consider
�eμ,ν ≡ ∂ν�eμ = ∂ν∂μ �X. Here for typographical convenience, we have introduced the stan-
dard notation E,μ = ∂μE for any expression E. Thus, �eμ,ν denotes a 3-vector labeled by two
indices μ and ν. In general, this vector will have a component pointing out of the surface.

Next, denote the unit normal to the surface by

�n= �e1 × �e2

|�e1 × �e2|
(6)

(not to be confused with �p in our discussion of curves, of course). See figure 2. For example,

for the cylinder, �n=
(

cos ϕ
sin ϕ

0

)
.

As I just said, the vector �eμ,ν, namely the change of �eμ in the direction ν, sticks out of
the surface and thus has a component along �n. So let us expand �eμ,ν in terms of the basis
vectors �eλ and �n:

�eμ,ν = �λ
μν

�eλ +Kμν �n (7)

Since ∂μ∂ν = ∂ν∂μ, the vectors �eμ,ν and the expansion coefficients�λ
μν

andKμν are symmet-
ric in their two lower indices. (For future use, we note that �λ

μν
is known as the Christoffel

symbol.) Contracting (7) by the normal vector, we obtain

Kμν = �eμ,ν . �n (8)

known as Gauss’s equation.
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We hasten to give an example. For the sphere, with X, �e1, and �e2 as given before,
we have �n = �X, �e1, 1 = ∂1�e1 = −�n, �e2, 1 = ∂1�e2 = �e1, 2 = ∂2�e1 = cot θ �e2, and �e2, 2 = ∂2�e2 =
− sin θ cos θ �e1 − sin2 θ �n. From (7) we read off

K11 = −1, K22 = − sin2 θ (9)

and

�2
12 = cot θ , �1

22 = − sin θ cos θ (10)

with all other entries of K and � vanishing.
By drawing a picture, you can see that, as we move from one point to a neighboring point,

the change of �e1 and �e2 projected into the tangent plane (the first term in (7)) tells us how
the tangent plane is rotating around the normal vector �n, while the change projected in the
direction of the normal (the second term in (7)) tells how the tangent plane is “rocking and
rolling.” Thus, the coefficients Kμν tell us about how the surface is curving in the ambient
3-dimensional Euclidean space.

Covariant derivative

Let Wμ(x) be a vector field. In other words, at every point∗ x, two numbers, W 1(x)

and W 2(x), are given, so that someone living in the ambient E3 sees a vector field
�W(x) ≡ Wμ(x)�eμ(x). Since �W is a linear combination of the two basis vectors, it lives

on the tangent plane. In other words, it does not stick out of the surface.
I now introduce one of the most basic concepts of differential geometry, that of covariant

derivative. Unaccountably, some texts make covariant differentiation sound mysterious
and complicated, when in fact it is intuitive and simple. Suppose we want to differentiate
the vector field Wμ(x). It is not enough to ask how the components W 1(x) and W 2(x)

change when we move from the point x to a neighboring point x + dx. The basis vec-
tors �eμ(x), against which the components are measured, are themselves changing. The
covariant derivative simply takes into account this obvious geometric fact, namely the vari-
ation of the basis vectors. This effect does not occur in Euclidean space: once we set up
the usual unit basis vectors pointing in the x , y , z directions, they do not change.

Mathematically, all we have to do is to differentiate using the product rule and follow
our noses:

∂ν �W(x)= ∂ν(W
μ(x)�eμ(x))= (∂νW

μ(x))�eμ(x)+Wμ(x)∂ν�eμ(x)
= (∂νW

μ)�eμ +Wλ�
μ
λν�eμ +WμKμν �n (11)

In the first line, the second term expresses the effect we were just talking about: the basis

∗ The phrase “point x” is of course shorthand for “point described by x in our chosen coordinate system.” We
are a bit less precise, but remember, “brevity is the soul of wit.”
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vectors themselves vary as we move about. In the second line, we used (7) and renamed
some dummy indices we sum over. The key point is that ∂ν �W contains a component along
�n, the normal to the surface.

Imagine ourselves members of the mite civilization in the prologue. We do not know
about vectors sticking out of our universe: all we know and care about are vectors lying
inside our universe. Thus, we invite ourselves to define a covariant derivative4 by dropping
the term proportional to �n in (11):

Dν
�W ≡ (∂νW

μ +Wλ�
μ
λν)�eμ ≡ (DνW

μ)�eμ (12)

In the last step we defined DνW
μ ≡ ∂νW

μ + �
μ
νλW

λ. (Recall that � is symmetrical in its
two lower indices.)

From my experience teaching, I know that some beginning students get confused here.
But really, the concept of covariant derivative is at heart quite simple. Think of yourself as
a mite, and you don’t know about vectors sticking out of the surface that forms your world.
So you just drop that component in the derivative, and you get the covariant derivative.

You the mighty mite do not know about ∂ν �W , only aboutDν
�W . The concept of covariant

derivative is central to differential geometry and hence to Einstein gravity.

Parallel transport

Let me explain the covariant derivative in a slightly different way. If we are living in
Euclidean space and we want to differentiate a vector field, we simply follow Newton and
calculate the limit of �W(x + δx)− �W(x). But this implies that we know how to subtract a
vector defined at the point x from another vector defined at a different point y = x + δx.
Recall how we learned as children to subtract one vector from another. We were taught to
slide one vector over to the other, so that their feathered ends coincide; the gap between
their sharp pointy ends is then the difference we want. See figure 3. But of course when we
slide a vector over, we have to take care that we do not rotate it; we need to keep it pointing
in the same direction.

Sliding a vector over taking care to keep it pointing in the same direction is known as
“parallel transporting” the vector. Of course, in Euclidean space, parallel transport is trivial,

Figure 3 How we learned as chil-
dren to subtract one vector from
another.
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Figure 4 When a vector living in the tangent plane at one point on a curved
surface is parallel transported to a nearby point, it will in general not live in the
tangent plane at that point. The component sticking out of the tangent plane
(dashed line) has to be projected away.

and we do it without giving it a second thought. But if we are living on a curved surface, it
is not so simple to parallel transport. Given a vector �V at the point x, how do we parallel
transport it to some other point y?

To the more knowledgeable beings living in the ambient E3, it is obvious. Just parallel
transport �V in the ambient Euclidean space. Any child could do it, they yell.

The trouble is that while the 3-vector �V lives in the tangent plane at x, it doesn’t
necessarily live in the tangent plane at y: it will in general have a component sticking
out of that tangent plane. Thus, we have to project �V onto the tangent plane at y. See
figure 4.

Well, we know how. Write �V as a linear combination of �e1(y), �e2(y), and �n(y), and
then simply drop the piece proportional to �n(y). The result is the vector �V projected onto
the tangent plane at y, which we denote by ( �V → y)P. You can work out ( �V → y)P in an
exercise, but we don’t really need the explicit form here. Note that ( �V → y)P is a vectorial
function of the vector �V and of the location y. The subscript P reminds us that we are
projecting. I have to ask you to understand the notation before reading on. Again, I have
encountered an occasional student who finds the notation confusing. In fact, the notation,
which may appear cumbersome, is needed to make the discussion clear.

This discussion tells us not to blindly follow Newton and calculate the limit of �W(x +
δx)− �W(x). No, Sir Isaac, we don’t want to compare �W(x + δx) against �W(x). No sir, we
want to compare �W(x + δx) against ( �W(x)→ x + δx)P.

And, dear reader, what does this clunky but informative notation ( �W(x) → x + δx)P

mean? It means the result of the following procedure: we take the vector �W(x) (corre-
sponding to the �V in the preceding paragraph), parallel transport it to x + δx, and then
project by throwing away the component that sticks out of the tangent plane at x + δx.
That is the beast we want to subtract from �W(x + δx).

So, put the difference �W(x + δx)− ( �W(x)→ x + δx)P into Newton’s limiting machine,
that is, take the limit δx → 0 of this difference.
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But the result of this “geometrical” construction is effectively exactly the same as the pre-
vious construction, namely dropping the component proportional to �n from the ordinary
derivative ∂ν �W to define the covariant derivative Dν

�W , precisely as in (12).
Yet another way of saying this is that the covariant derivativeDν

�W does not express how
�W(x + δx) differs from �W(x), but how �W(x + δx) differs from �W(x) parallel transported

to x + δx, that is, how �W(x + δx) differs from ( �W(x) → x + δx)P. (Some students are
perhaps confused because here, by parallel transport on a curved surface, we actually mean
parallel transport in the ambient E3 and then projection onto the tangent plane.)

A rough analogy may help some readers. When you think about how much your
income has risen, you don’t simply differentiate your income with respect to time. More
meaningful is your income increase adjusted for inflation. It could be that your income is
not increasing intrinsically, but the dollar (or whatever currency you get paid in) figure
is rising because of inflation. Similarly, the covariant derivative Dν

�W is the ordinary
derivative ∂ν �W adjusted for the change in the reference frame.

Thus, if we have a vector field �V (x) satisfying Dν
�V = 0, then it is not changing intrinsi-

cally. It has simply been parallel transported all over space, a fact of considerable military
significance.

The ancient art of war

Imagine that it is 300 bc and that you are the physicist-sorcerer attached to the army
commanded personally by the Emperor the Son of Heaven. The other sorcerer, the astro
guy whom you have always derided for staring at the sky, predicted a thick fog on the day of
the battle, so that the soldiers would not be able to see which way was which. The Emperor
ordered you to solve the problem. Having read this book, you immediately realized that
your task was to parallel transport a vector so that it always pointed south. You quickly
had an imperial south-pointing carriage constructed, on top of which was a statue of the
Emperor pointing south. Indeed, the day was frighteningly foggy, a pea soup fog, as the
Brits would say. The soldiers could barely see beyond an arm’s length, and the enemy
became totally confused. In contrast, as the south-pointing carriage moved around this
way and that, the statue always pointed south, and so the Emperor scored a huge victory.
The Emperor was so delighted that you (and that astro guy too) received tenure at the court
and lived happily ever after.

Would I make something like this up? Obviously not. The south-pointing carriage was
described in ancient Chinese chronicles. Unfortunately, the detailed construction plan was
lost to posterity, but in the 20th century, a contest produced a modern reconstruction.∗ (See
figure 5.) I won’t bother to show the engineering drawing here but pose the design to you
as a challenge.5

∗ Louis Grace of the physics department at the University of California, Santa Barbara, kindly built this war
chariot for me, complete with a statue of Emperor Albert on top.
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Figure 5 A modern version of the south-pointing carriage
described in ancient Chinese chronicles.

Gauss’s strategy

To determine the curvature of the surface at a given point P, Gauss’s strategy was to
study curves on the surface passing through P and calculate their curvatures. This sounds
puzzling at first. How did Gauss expect to determine6 the curvature of a surface by studying
the curvature of curves lying on the surface?

To motivate his reasoning, consider the curvature at the saddle point P with coordinates
(x = 0, y = 0) on the surface z = 1

2px
2 − 1

2qy
2, taking p > 0, q > 0 for definiteness (a

special case of the surface considered in chapter I.5). Imagine yourself walking along the
ridge defined by y = 0: on both sides of you, the land falls away (see figure 6). When
you reach the lowest point x = 0 on the ridge, the land in front of you and behind you
rises up. Consider the family of curves going through P. For a curve pointing in the
y direction, the curvature is positive, while for a curve pointing in the x direction, the
curvature is negative. Evidently, for a curve pointing in some other direction, the curvature
is intermediate between two extremal values. Gauss proposed to find these two extremal
values.

So for a given point P on a curved space, let’s look at some curve going through that
point and study its tangent vector �t = tμ�eμ with tμ = dXμ

dl
. Then

d�t
dl

= dtμ

dl
�eμ + tμ

d�eμ
dl

(13)
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z

x
y

P

Figure 6 Determining the curvature of a surface with a
saddle point P.

Write the right hand side as some linear combination of �e1, �e2, and �n, so that

d�t
dl

= κg�e + κn�n (14)

with �e some unit vector given by some linear combination of �e1 and �e2. Note in passing
that since �t . �t = 1, we have �t . d�t

dl
= 0 and so �t . �e = 0. The three unit vectors �n, �t , and

�e form an orthonormal triad. Note also that �eμ and �n pertain to the surface, while �t
and �e pertain to the curve.

To get a feel for the two quantities κg and κn in (14), consider a couple of surfaces. Draw
a couple of pictures as you read the next two paragraphs. That will make it easy to follow
what I am talking about, which is not much more than common spatial sense.

First, a plane flat as Kansas. Through P draw a curve as curvy as you like, and you can
make κg as large as you like. But try as you may, d�t

dl
will stay in the plane by definition, and

κn will remain stubbornly equal to 0. Evidently, κg does not tell us about the curvature of
the surface, merely the curvature of the curve.

Next, picture a sphere, and let P be Copenhagen, say. Following Gauss, consider a variety
of curves going through Copenhagen. For example, think of the circle of constant latitude.
Then d�t

dl
points toward the axis of the earth joining the north and south poles and can be

written as in (14) with �e pointing north along some street in Copenhagen and �n pointing
upward∗ at the sky (as always, independent of where we are). As we try different curves,
κg and κn vary. If we choose the curve to be the circle of constant longitude (rather than
latitude) going through Copenhagen, κg vanishes, while |κn| is maximized, given by the
inverse of the earth’s radius. Indeed, |κn| attains its maximum value for the two great circles
going through Copenhagen. If you have trouble with this, try drawing a picture.

This example shows clearly that it is κn, not κg, that tells us about the curvature of the
surface. You can further convince yourself by picturing other examples, such as the ridge
you were walking on earlier. While there is an infinite number of surfaces with different

∗ With this convention (rather than pointing downward toward the center of the earth, as would be mathe-
matically more natural), κg > 0 while κn < 0.
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global properties, if we focus on a local patch of the surface around a point P, there are
only a couple prototypical surfaces, sphere-like or ridge-like, so to speak.

From curvature of curves to curvature of surface

Using (13) and (7), we have (suppressing terms not of interest to us)

d�t
dl

= . . . + tμ
d�eμ
dl

= . . . + tμ
∂�eμ
∂xν

tν = . . . + tμ(Kμν �n)tν (15)

Comparing with (14), we can extract

κn =Kμνt
μtν (16)

A digressive word about what appears to physicists as rather quaint terminology. Strip
the dl off tμ = dxμ

dl
in κn and we encounter the combination Kμνdx

μdxν, known to clas-
sical differential geometers as the second fundamental form.7 Sounds pretty important.
Then what do these guys call the first fundamental form? None other than our beloved
infinitesimal distance squared: gμνdxμdxν.

Next, differentiate �t . �n= 0 to obtain (using (14))

�t . d �n
dl

= −�n . d�t
dl

= −Kμνt
μtν = −κn (17)

known as Weingarten’s equation after Julius Weingarten (1836–1910).
Gauss’s idea was to look at all curves passing through the point P. For each curve,

calculate κn. Following the great man, we are supposed to find the extremal values of κn.
So, let us extremizeKμνt

μtν. But tμ is not entirely free to vary: it has to satisfy gμνtμtν = 1.
Thus, we have a constrained extremization problem.

But we know how to deal with this: introduce a Lagrange multiplier8 k. In other words,
vary Kμνt

μtν − k(gμνt
μtν − 1) with respect to tμ and set the result to 0, thus obtaining

(Kμν − kgμν)t
ν = 0. Multiplying by gλμ, we obtain an equation

(gλμKμν − kδλ
ν
)tν = 0 (18)

for the eigenvalues of the 2-by-2 matrix Mλ
μ

≡ gλμKμν. Contracting (18) with tλ ≡ gλρt
ρ,

we find k =Kμνt
μtν = κn. In other words, the two eigenvalues k1 and k2 give the extremal

values of κn.
As usual, the eigenvalues are determined by

det(g−1K − kI)= 0 (19)

which (since g−1K is a 2-by-2 matrix) amounts to the quadratic equation k2 − tr(g−1K)k +
det(g−1K)= 0. Thus, the product of the eigenvalues is given by

G ≡ det(g−1K)= det K
det g

(20)

and the sum by

S ≡ tr(g−1K) (21)
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Intrinsic versus extrinsic again

In story 2 in the prologue, and also in the preceding chapter, you learned to distinguish
between extrinsic and intrinsic curvatures. A cylinder has extrinsic curvature by virtue of
how it is embedded in the ambient Euclidean space, but it has no intrinsic curvature. We
can unroll a cylinder into a flat piece of paper. Like the mite geometers of the prologue, we
cannot get out of the universe we live in, and so we are interested in the intrinsic, not the
extrinsic, curvature, as was mentioned in the preceding chapter.

The quantities G and S present us with two measures of curvature. How do we know
which one is intrinsic? The easy way is to look at the cylinder, just as we did in the
preceding chapter. It also gives us a chance to try out the machinery we just worked out.

Recall from earlier in this chapter that �e1 =
( −a sin ϕ

a cos ϕ
0

)
, �e2 =

(
0
0
1

)
, and �n=

(
cos ϕ
sin ϕ

0

)
. First,

using (5), we already worked out the metric g11 = a2, g12 = g21 = 0, g22 = 1. Next, we
take derivatives: ∂1�e1 = −a�n, ∂1�e2 = ∂2�e1 = ∂2�e2 = 0. Plugging these values into Gauss’s
equation (8) Kμν = �eμ,ν . �n, we obtain K11 = −a, with all other entries vanishing. Thus,
det K = 0, so that G = 0. This immediately tells us (and told Gauss) that it is the product
G that measures the intrinsic curvature of the surface at the point P. The sum S measures
the extrinsic curvature. To be consistent with the previous chapter, we define the intrinsic
curvature to be G and the extrinsic curvature to be E ≡ ( 1

2S)2.
For the surface we started the last section with (and on which you have been hiking),

we have �X =
(

x

y
1
2px

2− 1
2qy

2

)
with x1 = x and x2 = y. It follows that �e1 =

(
1
0
px

)
and �e2 =(

0
1

−qy

)
. Note that to calculate the curvature at the point P, we need various quantities

only at P. At our chosen point P, where x = y = 0, the arithmetic simplifies. We have

�n= �e1 × �e2 =
(

0
0
1

)
, ds2 = �e1 . �e1dx

2 + �e2 . �e2dy
2 = dx2 + dy2, so that g11 = 1, g22 = 1, and

g12 = g21 = 0. Furthermore, ∂1�e1 = p�n, ∂2�e2 = −q �n, and ∂1�e2 = ∂2�e1 = 0, so that from
Kμν = �eμ,ν . �n, we obtain K11 = p, K22 = −q, and K12 = K21 = 0. Thus, G = −pq and
S = p − q.

For a sphere of radius a, p = −q = a, and so G = a2 = E. We have calculated these
quantities only at (x , y)= (0, 0), but of course for the sphere, this amounts to knowing
the intrinsic and extrinsic curvatures everywhere.

If G > 0, then the two eigenvalues k1 and k2 have the same9 sign, and the surface at P
is spherical. If G < 0, the two eigenvalues have opposite signs. The surface is shaped like
a saddle (or potato chip) and is hyperbolic at P. If G = 0, the surface is cylindrical at P.

The whole point of Riemann’s formalism (as will be developed in detail in part VI) is
that we do not need to embed the space we are studying in some ambient Euclidean space.
But we have lots of intuition about 3-dimensional Euclidean space (and, as I said before,
who can blame us?), and so this 18th and 19th century differential geometry is a lot easier
to visualize and to grasp.

With the benefit of hindsight, Gauss’s strategy is also perfectly reasonable. To find the
curvature at a point P on the surface, you build race tracks going through P. Find the race
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tracks with the largest and smallest possible curvature. The product and sum of these two
curvatures measure the curvature, intrinsic and extrinsic, respectively.

Appendix: Spherical coordinates

Throughout this text, we will be often changing to spherical coordinates. You must have done this about a
hundred times in courses on mechanics and on electromagnetism. So it might be good to collect some useful
information here and to defineω1 ≡ sin θ cos ϕ,ω2 ≡ sin θ sin ϕ, andω3 ≡ cos θ . Denote∗ the coordinates inE3 by
(v1, v2, v3). Transform to spherical coordinates (r , θ , ϕ) by vi = f (r)ωi , i = 1, 2, 3. Differentiating

∑
i(ω

i)2 = 1,
we have

∑
i ω

idωi = 0, where dωi = ∂θω
idθ + ∂ϕω

idϕ . Furthermore,
∑

i ∂θω
i∂ϕω

i = 0,
∑

i(∂θω
i)2 = 1, and∑

i(∂ϕω
i)2 = sin2 θ , so that (dωi)2 = dθ2 + sin2 θdϕ2.

Thus, the metric is given by ds2 =∑
i(dv

i)2 =∑
i(f

′(r)drωi + f (r)dωi)2 = f ′(r)2dr2 + f (r)2
∑

i(dω
i)2 =

f ′(r)2dr2 + f (r)2(dθ2 + sin2 θdϕ2). For example, to derive (X.1.20) and (X.1.21), we will need to use a slightly
generalized version of this result.

Exercises

1 Calculate the curvature κ and the torsion τ of the exponential spiral �X =
(

f (ϕ) cos ϕ
f (ϕ) sin ϕ

g(ϕ)

)
. Take f (ϕ)= eaϕ and

g(ϕ)= 0 for simplicity.

2 Find an expression for �VP(y).

3 Show that if k1 �= k2, the two corresponding eigenvectors t1 and t2 are orthogonal in accordance with our
geometrical intuition.

4 On a cylinder, draw the curve defined by X1 = a cos l , X2 = a sin l, and X3 = bl, with l the length. Show that
a2 + b2 = 1. Calculate the curvature and the torsion.

5 Calculate G for a unit sphere. (Anticipating a bit, we will see that G is equal to the Riemann curvature R1212.)

6 Show that if the mite professors of geometry are given the metric, they can determine the Christoffel symbol,
even though they don’t know about �n.

Notes

1. E. Kreyszig, Differential Geometry, University of Toronto Press, 1959.
2. Several years ago, I gave some chapters from part I to a few University of California, Santa Barbara,

undergrads to read. One of them emailed me a few days later. I cannot resist quoting, with insignificant
edits, from his email.

I’m very excited about your approach to introducing differential geometry first in E3 before doing GR
for multiple reasons. Conversing with another undergraduate physics major who took the undergrad-
uate GR course here, we agreed that general relativity books and courses ought to spend more time
describing intuitive and easily visualizable examples, and laying down as rigorously as possible (given

∗ This is to avoid confusion with the �X = (X1, X2, X3) in the text.
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the constraints of GR courses needing to be about physics, not math) the meaning and definitions of
curvature, geodesics, etc, at least partially through examples in E2 and E3. I found it spooky that a day
after having this conversation, I read these chapters and found they did basically what I had hoped an
introductory book to general relativity would do. I found this chapter personally more useful than the
other chapters because the way I learned differential geometry was the more abstract approach.

Spooky indeed!
3. Indeed, you already had a first taste in the preceding chapter.
4. In an alternative view, which I do not like as much, we can think of the covariant derivative as acting only

on objects carrying the vectorial arrow. Insisting that Dν is distributive just like ∂ν , some authors write
Dν

�W =Dν(W
μ�eμ)= (∂νW

μ)�eμ +Wμ(Dν�eμ). Note that in this formulation,Dν acting on the “numbers”Wμ

is given by the ordinary derivative by definition. Comparing with (12) then gives Dν�eμ = �λ
νμ

�eλ. Referring
back to (7), we see that Dν�eμ differs from ∂ν�eμ by a term proportional to �n, as we might expect.

5. Here is a hint. Gears convert the rotation of the left wheel and the right wheel separately into rotations around
the vertical axis. Another differential gear responds to the difference in the output from the two wheels and
rotates the statue around the vertical axis. If the chariot is moving in a straight line, the statue is not rotated.
But when the chariot moves along a curve, the right wheel (say) rotates more than the left, and this difference
gets converted into a rotation of the statue around the vertical axis, compensating for the turning of the body
of the chariot. In other words, as the chariot turns this way and that, the statue points in a fixed direction.
To the extent that Riemannian surfaces are locally flat, the war chariot also more or less works on a surface
that is not flat, provided that the chariot is much smaller than the radius of curvature, and after subtracting
out the (negligible) vertical component of the vector represented by the Emperor’s arm.

6. Need I remind you to distinguish between these two uses of the word “curvature”?
7. The word “form” here does not carry the same meaning as the word “form” in chapter IX.7.
8. For those readers who have forgotten the notion of a Lagrange multiplier from their course on calculus, here

is a quick review. The problem is to extremize a function f (x , y) with the constraint g(x , y)= 0. The brute
force approach would be to solve g(x , y)= 0 to obtain y(x), eliminate y in f (x , y), and extremize f (x , y(x)).
The same Lagrange you were introduced to in the text invented the following more symmetrical, and often
better, method. Form the functionh(x , y)= f (x , y)+ λg(x , y), whereλ is known as the Lagrange multiplier.
Extremizeh(x , y) to determine x and y in terms ofλ, and then impose the constraintg(x , y)= 0. An example:
f (x , y)= ax + by and g(x , y)= 1

2 (x
2 + y2 − 1). In other words, we are to extremize f (x , y)= ax + by, with

x and y constrained to the unit circle. Following Lagrange, we obtain after the first step x = −a/λ, y = −b/λ.
Imposing x2 + y2 = 1, we have λ= ±√

a2 + b2. For a > 0, b > 0, the plus root gives the maximum of f (x , y)
at x = a/

√
a2 + b2, y = b/

√
a2 + b2.

9. We are dealing with Euclidean surfaces here, so that det g > 0.



Recap to Part I

An essential feature of Newton’s force law is that it involves two derivatives. The presence
of two derivatives will permeate almost everything we do.

For a given situation, a judicious choice of coordinates makes our lives a lot easier.
Coordinates can of course be freely chosen, but the square of the separation between two
neighboring points, which according to Pythagoras has the form ds2 = gμν(x)dx

μdxν,
must not depend on the coordinate choice. Once we master the changing of coordinates,
it is but a short hop over to curved spaces.

Choosing coordinates wisely, we can always make our immediate neighborhood look
flat. The extent to which we notice deviation from local flatness as we move away from
our neighborhood is the measure of curvature. A simple counting argument tells us how
many numbers we need to characterize the intrinsic curvature at a given point. To get a
feel for curvature, it is good to spend some time back in the good old days with the likes
of Gauss and play with some surfaces we can literally hold in our hands.



Part II Action, Symmetry, and Conservation





II.1 The Hanging String and Variational Calculus

The hanging string

To understand the action principle, which to a large extent will permeate this book, we
have to master a slight generalization of ordinary calculus known as variational calculus.
In ordinary calculus, we take derivatives with respect to some variable, typically a real
number. In variational calculus, we take derivatives with respect to a function. To learn
what that means and to see how variational calculus arises in physics, let us start with a
simple problem.

Throw a marble into a bowl. When you come back later, you expect it to be sitting at rest
at the bottom of the bowl. This is formalized by saying that, if we denote the cross section
of the bowl by v(x , y) so that the potential energy of the marble is proportional to v(x , y),
the position of the marble is found by solving ∂v

∂x
= 0 and ∂v

∂y
= 0.

To explain variational calculus, let us tackle a problem in baby string theory. Consider an
ideal elastic string tied down at two ends and hanging under the force of gravity. See figure
1 for how we set up our coordinates. Denote by φ(x) the amount by which the bit of string
at x hangs below the horizontal line. That the string is tied down at the two ends gives
us the boundary conditions φ(L/2)= φ(−L/2)= 0. We want to solve for the shape of the
hanging string, which is of course determined by the tug of war between the downward
pull of gravity and the elastic force trying to minimize the amount of stretch in the string.

The elastic energy is given by a constant T intrinsic to the string times the stretch,
defined as the length of the string minus the original length, which, as you could verify
later, does not come into our calculation, so that we might as well take it to be L. To
find the length of the string, think of how Newton and Leibniz discovered calculus and
imagine dividing the string up into little segments labeled by j . Pythagoras tells us that

each segment has length given by (see figure 1)
√

x2

j
+
φ2

j
=
xj

√
1 +

(

φj

xj

)2
. Taking

the Newton-Leibniz limit, we see that the length of the string is equal to
∫ L

0

√
dx2 + dφ2 =∫ L

0 dx

√
1 + ( dφ

dx

)2. (Henceforth, we will carry out this sort of manipulation without further
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–L/2 L/2x

Δx

Δφ

φ(x)

Figure 1 An elastic string tied down at two ends hangs under the force
of gravity.

ado. We will also tend to suppress the integration limits.) Thus, the elastic energy is equal

to T (
∫
dx

√
1 + ( dφ

dx

)2 − L)= T
∫
dx(

√
1 + ( dφ

dx

)2 − 1).

For pedagogical clarity, we consider the case where dφ
dx

� 1, that is, when the string

is stretched only by a little bit, so that
√

1 + ( dφ
dx

)2 � 1 + 1
2

( dφ
dx

)2. (It turns out that this
simplification is not necessary, and you can work things out without it. See exercise 1.)

The gravitational energy is given by
∫
dx(−σgφ(x)), where σ denotes the mass per

unit length of our string. Note the minus sign: we have chosen φ(x) to point downward,
as indicated in the figure. Again, we have assumed that the stretch is small.

Thus the string has energy

E(φ)=
∫ L

0
dx

(
T

2

(
dφ

dx

)2

− σgφ(x)

)
(1)

Extremizing a functional

Note thatE is not a function of a real variable named φ. Rather, E is known as a functional
of a real valued function φ(x). When you plug a number x into a function f , you get out a
number f (x). Analogously, when you plug a function φ(x) into the functional E, you get
out a number, the string energy E(φ). For total clarity, we could write E(φ(.)), with the
dot emphasizing that φ is itself a function. Note that we should not write E(φ(x)) in (1):
x is a dummy integration variable on the right hand side.

Our task is to find the specific function φ(x) that minimizes the energy E of the string.
In ordinary calculus, we differentiate a function with respect to its argument and then set
the result to zero to find the extremum of the function. Analogously, in variational calculus,
we differentiate a functional with respect to its argument, which is a function, and then
set the result to zero to find the extremum of the functional.

But how do we differentiate with respect to a function?
For pedagogical clarity, let us go back to the marble in the bowl and write δv = ∂v

∂x
δx +

∂v
∂y
δy to first order in δx and δy, some arbitrary and small variations in the position of the

marble. We notice that δv vanishes if and only if ∂v
∂x

= 0 and ∂v
∂y

= 0. To first order in δx

and δy, the variation of v vanishes if we happen to be sitting at an extremum. To second



II.1. The Hanging String and Variational Calculus | 115

order, the variation of v is positive if we are at a minimum. In other words, we nudge the
marble and if it costs us energy, we know that it is sitting at the bottom of the bowl. All of
this is elementary and well understood by you. So now we do the same: we push the string
slightly and ask if it costs us energy.

We vary the function φ(x) by changing it to φ(x)+ η(x). We then compare E(φ + η)

and E(φ). Take η(x) small, so that it suffices to calculate the change in energy δE =
E(φ + η)− E(φ), expanding in η. To first order in η, δE should vanish. If the shape φ(x)
minimizes the energy, δE would furthermore be positive to second order.

Let us go slow and first deal with the second term in (1): taking out the overall constant
−σg, we have

∫
dx{(φ(x)+ η(x))− φ(x)} = ∫

dx η(x). That was easy!
The first term in (1) is only slightly more difficult to deal with. Since d

dx
(φ + η) =

dφ
dx

+ dη
dx

, we find

∫
dx

1
2

((
dφ

dx
+ dη

dx

)2

−
(
dφ

dx

)2
)

�
∫

dx

(
dφ

dx

dη

dx

)
=
(
dφ

dx
η

) ∣∣∣∣
x=L/2

x=−L/2
+
∫

dx

(
−d2φ

dx2
η

)
(2)

In the last step, we integrated by parts. Note that our boundary conditions tying down the
string at the two ends, η(x = L/2)= 0 = η(x = −L/2), imply that the boundary terms in
(2) vanish.

Putting it together, we have

δE =
∫

dx

(
−T d

2φ

dx2
− σg

)
η(x) (3)

Since η(x) is arbitrary, δE can vanish only if the integrand in (3) vanishes. Thus, the shape
of the hanging string is determined by the differential equation

T
d2φ

dx2
= −σg (4)

namely, a graceful parabola described by φ(x)= σg
2T {(L2 )2 − x2}. At the two ends, φ(L2 )=

φ(−L
2 )= 0, which just expresses the boundary conditions. In the middle, φ(0)= σg

2T (
L
2 )

2.
(Remember our convention that φ > 0 means hanging down.)

The physics is simple, and the math merely describes the physics. In (1), the first term
wants to make ( dφ

dx
)2 small, that is to make φ(x) constant, and hence φ(x)= 0 with the

given boundary conditions. In contrast, the second term wants to make φ(x) as large and
as positive as possible. The actual shape is a compromise between these two terms. This
theme of compromise will pervade this book.

General lessons

We are less interested in the hanging string than in what general lessons we can learn
from this simple example. Here are some remarks.

1. Evidently δ
∫
dxφn = ∫

dx{(φ + η)n − φn)} ∼ ∫
dx nφn−1η, where for the sake of notational

simplicity, we have suppressed the x dependence of φ + η. Since any functional of φ can

be expanded as a power series, we have, for instance, δ
∫
dx cos φ = ∫

dx(cos(φ + η) −
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cos φ)∼ − ∫
dx(sin φ)η. In general, δ

∫
dxV (φ)= ∫

dx(V (φ + η)− V (φ))∼ ∫
dxV ′(φ)η,

where V ′(φ)= dV
dφ

is computed by pretending that V (φ) is a function of a real variable φ,

ignoring the fact that φ is itself a function.

Now that the utility of η has come to an end, we might as well, in analogy with ordinary

calculus, define the functional derivative by

δ

δφ(y)

∫
dxV (φ(x))= V ′(φ(y)) (5)

Note that to be careful, we have restored the argument of the function φ. It is important to

realize that here x is a dummy variable to be integrated over, but y is a “free” variable: we

are free to vary the function φ at a point y of our choice. To our satisfaction, we see that the

variation depends only on quantities evaluated at the point y. This states that the energy

density is a local quantity and does not depend on what is happening far away from y.

2. Suppose we now have to vary
∫
dxF(

dφ
dx
). By the same reasoning, we have

δ

∫
dxF

(
dφ

dx

)
=
∫

dx

(
F

(
dφ

dx
+ dη

dx

)
− F

(
dφ

dx

))
∼
∫

dxF ′
(
dφ

dx

)
dη

dx

= −
∫

dx

(
d

dx
F ′
(
dφ

dx

))
η

where, as before, we have integrated by parts and dropped the boundary terms since η(x)

vanishes at the boundaries. Once again, F ′ is defined as if the argument of F were an

ordinary real number. In our simple example, F(u)= 1
2u

2 and so F ′(u)= u. See exercise 1

for another example. Again, we can drop η and write δ
δφ(y)

∫
dxF(

dφ
dx
)= − d

dy
F ′( dφ

dy
).

Thus, in general, if the energy functional is given by

E(φ)=
∫

dx

{
F

(
dφ

dx

)
+ V (φ)

}
(6)

with the boundary condition that φ(x) vanishes at the integration endpoints, we obtain the

equation

d

dx
F ′
(
dφ

dx

)
− V ′(φ(x))= 0 (7)

Even more generally, if the energy functional is given by

E(φ)=
∫

dxE
(
dφ

dx
, φ
)

(8)

again with the standard boundary condition that φ(x) vanishes at the integration endpoints,

we obtain

d

dx

(
δE
δ
dφ
dx

)
− δE
δφ

= 0 (9)

Verify this: you will grasp the notation better. As in (5), we now pretend that E(a , b) is an

ordinary function of two variables a and b. By δE
δ
dφ
dx

we mean ∂E(a ,b)
∂a

with a subsequently set

equal to dφ
dx

and b to φ(x). I will leave it to the reader to figure out what δE
δφ

means.

The equation (9), known as the Euler-Lagrange equation, is of fundamental importance

in theoretical physics.
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3. Bad notation alert! The present discussion highlights the notational confusion I mentioned

in chapter I.1 that bedevils some students. For the marble in the bowl problem, it would

have been best to reserve x and y for spatial coordinates and to denote the position of the

marble by q1 and q2, say. In the mechanics of point particles, it is standard to abuse notation

and use x , y , . . . for both spatial coordinates and for the positions of particles. Generally

there is no confusion.

But when we go to continuum mechanics, such as our hanging string problem, we must

distinguish between dynamical variables (in our example, just the function φ(x)) and spatial

coordinates (in our example, the single coordinate x). Here x serves as a label to tell us which

infinitesimal segment of the string we are talking about. The displacement of that particular

string segment from where it would have been were gravity turned off is given by φ(x). (This

is a mouthful for saying that φ(x) denotes the amount by which the string is hanging down

at the point x, but I want to be precise and academic here.) Note that the 2-dimensional

position of that particular string segment is given by (x , φ(x)). Thus, in some sense, the

letter x, seen this way, is doing double duty, both as a label and as a position. When we

introduce time in a later chapter, it will become clear that x has no dynamics but φ(x) does.

Some books use the horrendous notation y(x) instead of φ(x), which has caused endless

confusion. I belabor these rather obvious points because I have seen too many students

getting confused, particularly when they encounter field theory, classical or quantum.

4. Another bad notation alert! In most textbooks, the variation of φ(x) is written as δφ(x).

This confuses some students, because they think of δ as some operation acting on φ(x)

and quite legitimately worry whether the two operations δ and d
dx

commute. Instead,

I write η(x) for δφ(x). In particular, a manipulation analogous to the first step in (2),
d
dx
(φ + η)− dφ

dx
= dφ

dx
+ dη

dx
− dφ

dx
= dη

dx
, proves that δ dφ

dx
really is equal to dδφ

dx
. Now that I

have clarified this point, I will mostly lapse into the more explanatory notation δφ(x), which

also avoids introducing yet another symbol.

5. The careful reader might worry that we have found only the extremum, rather than the

minimum, ofE(φ). In most problems, that the solution is a minimum of the energy should

be physically clear, as is the case here. To show that our solution is indeed a minimum of

E(φ), we would have to expand to second order in δφ(x)= η(x). This is especially easy in

our example here, because V (φ) is linear in φ, so that we can read off from (2) that the

second order variation of E(φ) is given by the manifestly positive quantity
∫
dx(

dη
dx
)2.

6. With some practice, you will be able to do variational calculus without having to go through

the steps we went through here. When you go on to study quantum field theory, you will

encounter these so-called functional derivatives all over the place.

7. Instead of gravity pulling down on the string uniformly, we could load the string unevenly.

Indeed, for convenience, let’s define E(φ) with an overall factor of T taken out in (1) and

replace the constant σg/T by a specified function ρ(x), so that

E(φ)=
∫

dx

(
1
2

(
dφ

dx

)2

− ρ(x)φ(x)

)
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From string to membrane

Several possible generalizations immediately suggest themselves: we could increase
the number of spatial coordinates, or we could increase the number of functions, or
both. We consider the first possibility here and defer the second possibility to the next
chapter.

Go from a hanging string to a hanging membrane (or “brane” for short). See figure 2.
We generalize the energy functional (1) as amended above to

E(φ)=
∫

dxdy

(
1
2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2
]

− ρ(x , y)φ(x , y)

)

with the boundary condition that φ(x , y) vanishes along some nice closed curve (such
as a circle) in the (x-y) plane. Note that E(φ) involves an integral over the two spatial
coordinates (x , y).

While you can easily derive this expression for the energy by working out how much
the membrane is stretched, we can simply use rotational invariance to fix the form of
the integrand: the energy should not change when we rotate (x , y). Recall from exercise

I.4.1 that ( ∂φ
∂x
)
2 + (

∂φ
∂y
)
2

transforms like a scalar and the accompanying discussion in
chapter I.4.

Again the physics behind the various terms is clear. To minimize the first two terms, we

want ( ∂φ
∂x
)
2

and (
∂φ
∂y
)
2

to be as small as possible, that is, to stretch the membrane as little
as possible. In contrast, to minimize the third term in E(φ), we want φ to be positive (we
are taking the load ρ(x , y) to be positive) and as large as possible to lower the energy. Just
as in the hanging string, it is the struggle between these two terms that determines the
shape of the membrane. Note that once again we choose to have φ point downward; hence
the minus sign in the potential term.

Varying E and going through the same steps as before, we generalize (2) trivially to

∫
dxdy

1
2

((
∂φ

∂x
+ ∂η

∂x

)2

+
(
∂φ

∂y
+ ∂η

∂y

)2

−
(
∂φ

∂x

)2

−
(
∂φ

∂y

)2
)

= −
∫

dxdy

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
η

Thus, we obtain Poisson’s equation1 ∇2φ(x , y) = −ρ(x , y), with the Laplacian ∇2 ≡
∂2

∂x2 + ∂2

∂y2 .

φ(x, y)

x
y

Figure 2 A hanging membrane.
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Newton’s gravitational potential as a field

A deep strand . . . was his total love of the idea of a field . . .
which made him know that there had to be a field theory of
gravitation, long before the clues to that theory were securely in
his hand.

—Freeman Dyson speaking of Einstein

I went through this membrane example for a reason. Newton’s gravitational potential
� satisfies

∇2�(x , y , z)= 4πGρ(x , y , z) (10)

with ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 and ρ(x , y , z) the mass distribution. (If you are not aware of
this, we will show explicitly, for ρ describing a point mass, that this equation gives for �
the Newtonian gravitational potential.) What we just did for the membrane tells us that
(10) for Newtonian gravity emerges from minimizing the energy functional

E(�)=
∫

d3x

(
1

8πG
( �∇�)2 + ρ(�x)�(�x)

)
(11)

Note the plus sign in (11), which reflects how the gravitational potential is defined so that
a mass m located at �x in the potential has energy +m�(�x).

By the way, E(�) defines a classical field theory, and �(�x) is known as a field,∗ as
it pervades space, just like the familiar electromagnetic field. The hanging string and
membrane allow us not only to introduce the variational principle, but importantly, also
the notion of a field.

To verify that (11) leads to (10), we could simply invoke the membrane example or use
the Euler-Lagrange equation (9). Alternatively, it is easy enough to vary (11) directly, going
through the same steps as earlier in this chapter:

δE(�)=
∫

d3x

(
1

4πG
( �∇� . �∇δ�)+ ρ(�x)δ�(�x)

)
=
∫

d3x

{
1

4πG
(−∇2�)+ ρ(�x)

}
δ�(�x)

where we have integrated by parts. Setting the coefficient of δ� to zero yields (10).
It suffices to solve (10) for a point mass at the origin,† that is, for ρ = Mδ3(�x) ≡

Mδ(x)δ(y)δ(z). Here we generalize the Dirac delta function defined in chapter I.1 to a
3-dimensional delta function, as indicated and discussed in exercise I.3.2. Recall that you
can think of the delta function δ3(x) as essentially a function sharply peaked at x = 0. Thus,
ρ(�x) is sharply spiked at the origin �x = 0 and vanishes everywhere else. The total mass∫
d3xρ(x , y , z)=M(

∫
dxδ(x))(

∫
dyδ(y))(

∫
dzδ(z)) is equal to M .

∗ But, at this point, merely a static field without any dynamics, that is, without any dependence on time.
† For an arbitrary mass distribution, we can imagine ρ(x , y , z) as being composed of point masses and add

the contribution from each mass to �.
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Dimensional analysis∗ determines the solution of (10) up to an overall constant: since
∇2 goes like 1/L2 and δ3(�x) like 1/L3, the potential can only go like 1/r . As you know, it
is in fact �= −GM/r . To verify the overall constant, we integrate the two sides of (10)
over a ball of radius R centered at the origin, obtaining for the left hand side

∫
d3x∇2�=∫

d �S . �∇�= 4πR2(GM/R2), and for the right hand side
∫
d3x 4πGMδ3(�x)= 4πGM . In

other words, we have derived the useful identity

∇2
(

− 1
4πr

)
= δ3(�x) (12)

When you first learned about the inverse square law, did you not wonder where the
inverse square comes from? This discussion shows that it is essentially a consequence
of the form of the ( �∇�)2 term in E(�), required by rotational invariance, which in turn
leads to the Laplacian in (10). The inverse square then follows by dimensional analysis.
You realize of course that the electrostatic potential satisfies the same equation (10) if we
interpret the right hand side Gρ as the charge density. This is not an accident, but is due
to the same deep consequence of rotational invariance.

Anticipating, you will see that powerful invariance requirements also fix the form of
Einstein gravity.

Appendix 1: The lion by his paw prints

The brachistochrone problem makes for a great physics story. One winter day in 1697, when Newton (1642–
1727) was 97 − 42 = 55 (not old by modern standards but old in the age he lived in and in any case, long past
the creative brilliance of his youth), he received a letter from Johann Bernoulli (1677–1748) posing the following
problem. Fashion a stiff wire into a curve connecting two points A and B, as shown in figure 3. Thread the wire
through a bead of mass m, as shown. Gravity is acting downward as usual. Release the bead at rest at the higher
point, say A, and let it slide down the wire. What should the shape of the wire be if the bead is to reach B in the
least amount of time? (In Greek, brachistos means “shortest” and chronos means “time.”)

Galileo had erroneously thought that the curve was a circular arc, but he can be excused because, unlike you,
he did not know variational calculus.

Newton recognized this as a brazen attempt by one of the best minds on the continent to embarrass him. In
the bitter and contentious controversy between Newton and Gottfried Wilhelm Leibniz (1646–1716) over who
invented calculus, Bernoulli had sided with Leibniz. By this time, Newton was a high-level government official
in charge of the Royal Mint. England was in the middle of issuing new coins in an effort to combat widespread
counterfeiting. Newton’s job was demanding and included catching and executing counterfeiters. The old man
had had a long day at his day job, but he took up the gauntlet, working feverishly into the night, surprising his
dedicated servants. Newton had the solution before dawn. By gosh,2 he still had all his marbles together.

Now what did Newton do? He published his solution anonymously in the next issue of the Philosophical
Transactions of the Royal Society. When Bernoulli saw the elegant solution, he exclaimed, “Tanquam ex ungue
leonem!” (“One recognizes the lion by his paw prints!”)

In fact, only three other physicists in Europe (besides Bernoulli) were able to solve what was at the time a
fiendishly difficult problem: Bernoulli’s older brother Jacob Bernoulli, the Marquis de l’Hospital3 (of the rule you
learned in calculus), and the great Gottfried Leibniz. The variational calculus was not invented until 1766 (almost
70 years after the lion chose to show his paw prints rather than to roar) by Leonhard Euler (1707–1783) and then
subsequently refined by Joseph-Louis Lagrange (1736–1813).

It is a bit of a shame that anonymous scientific publication is no longer done these days. Lots of fun stories
would result, no doubt.

∗ From
∫
dxδ(x)= 1, it follows that δ(x) has dimension of an inverse length, like 1/L, and thus δ3(�x) has

dimension 1/L3.
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A

B

bead

wire

Figure 3 The brachistochrone problem. A bead is released at rest from A and
slides down a stiff wire fashioned into a curve connecting A to B. What should
the shape of the wire be if the bead is to reach B in the least amount of time?

Before you read on, see if you can go toe to toe and mano à mano with Isaac and solve the problem before
dawn! The solution is given below.

Perhaps you can see intuitively that the correct shape looks like that given in figure 3. The dumb guess would
be the straight line joining A and B. What you want to do is to start out dropping as vertically as possible to pick
up speed. Depending on the position of B, it may actually pay to drop below B to attain more speed and then
“coast” back up. With beads and wires, you could experiment by holding races.

Appendix 2: Another approach to functional variation

I mentioned that there are two approaches to variational calculus. The other approach is to discretize: replace the
continuous variable x by the discrete variables xj = ja , j = −N , . . . , N − 1, N withNa =L/2. We denote φ(xj)
by φj . In some sense, we go in the opposite direction from that taken by Newton and Leibniz when they invented
calculus. As already alluded to above, we mentally imagine dividing the string up into tiny segments. In the limit
a → 0 andN → ∞, we should recover our continuous string. Thus, we write

∫
dxV (φ(x))∼ a

∑
j V (φj), so that

δ

δφ(y)

∫
dxV (φ(x))∼ a

d

dφk

∑
j

V (φj)= aV ′(φk)

with k determined by y ∼ xk. Discretization reduces functional differentiation to ordinary differentiation. The
derivative term requires a bit more work:

∫
dx

(
dφ

dx

)2

∼ a
∑
j

((φj+1 − φj)/a)
2 (13)

so that

δ

δφ(y)

∫
dx

(
dφ

dx

)2

∼ 1
a

d

dφk

∑
j

(φj+1 − φj)
2

= 2
a
(−(φk+1 − φk)+ (φk − φk−1))∼ 2a

(
− d2φ

dy2

)
(14)

I leave the reader to check that this reproduces all the results we derived before.
I mention one rather trivial technicality, which, however, might bother some fastidious readers. For discrete

variables, clearly
δφj
δφk

= δjk, where the Kronecker delta δjk is defined, as in part I, to be 1 if j = k and 0 otherwise.
For continuous variables, we would like to write
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δφ(x)

δφ(y)
= δ(x − y) (15)

with the Dirac delta function introduced in chapter I.1. In particular, this will reproduce (5). Since δ(x − y) has
dimension of an inverse length, we shouldn’t think of δφ(x)

δφ(y)
as something like an ill-defined 
φ(x)


φ(y)
. To have the

correct dimensions, we can either multiply the right hand side of (15) by the “short distance regulator” a, or more
simply and preferably, absorb a into the definition of δ

δφ(y)
.

Exercises

1 In the hanging string problem, if we did not make the approximation that the string is stretched only a little
bit, we would have F(u)= √

1 + u2 (see remark 2 after (5)). Find the equation determining the shape of the
string.

2 What is the analog of the inverse square law inD spatial dimensions? We will need this result in chapter X.2.

3 Consider the functional S(a , b)= ∫∞
0 dr r(1 − b)a′ of two functions a(r) and b(r) (with a′ ≡ da/dr). Find

the a(r) and b(r) that extremize S, with the boundary condition a(∞)= 1 and b(∞)= 1.

4 Denote the downward displacement of a hanging membrane by φ(x , y). Show that the amount of area
by which the membrane is stretched is given by

∫
dxdy 1

2 [( ∂φ
∂x
)2 + (

∂φ
∂y
)2]. Hint: Use what you learned in

chapters I.5 and I.6.

5 Solve the brachistochrone problem. By the way, the solution contains a “moral to the story.”

Notes

1. There is a movie about a fish called Wanda, but not one about a fish called Poisson.
2. A mild anachronism: the euphemism was introduced circa 1750. Incidentally, I originally wrote “by Jehovah,”

but one reader thought that very few readers would know who Jehovah was. Too bad.
3. Incidentally, although the French often snickered at the ignorance of American physicists who talked about

the hospital rule, the marquis himself spelled his name with an s, as in “the hospital.”



II.2 The Shortest Distance between Two Points

Variational calculus with several unknown functions

In the previous chapter we considered a functional of a single function φ, which could
depend on more than one variable x1, x2, . . . , xD. We could also easily consider a func-
tionalE(φ1, φ2, . . . , φn)= ∫

dxE( dφ1
dx

, φ1, . . . , dφn
dx

, φn) that depends on several functions
φj(x), j = 1, . . . , n, each of which is a function of a single variable x. Simply vary each
function φj(x) to obtain n Euler-Lagrange equations (you should verify this):

d

dx

⎛
⎝ δE
δ
dφj
dx

⎞
⎠− δE

δφj
= 0 (1)

to be solved for the n unknown functions φ1, . . . , φn. This is no different from the
conceptual jump from the calculus of a single variable to that of many variables. Note that
the formalism is completely general; in particular, E is just a functional, not necessarily
having anything to do with energy. More generally, we could of course also consider a
functional of several functions, each of which depends on several variables.

Armed with this understanding, you can now solve various classic problems. One of the
most celebrated is that of finding the path of shortest distance between two given points,
the so-called geodesic problem.

Reparametrization invariance

To start out easy, let us look at paths in flat 2-dimensional Cartesian space. A curve is
described by a set of points labeled by two real functions x(λ), y(λ), which vary as the
parameter λ varies. (See figure 1.) The choice of λ is arbitrary: the only requirement is that it
increases monotonically from some initial value λi to some final value λf as we move along
the curve from the starting point A = (x(λi), y(λi)) to the endpoint B = (x(λf ), y(λf )).
Imagine the curve as a highway on a map connecting city A with city B. We could
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(x(λ), y(λ))

B

A

λ
x

y

Figure 1 To describe a curve be-
tween two points, we have con-
siderable freedom in choosing the
parameter λ.

parametrize where we are on the highway by specifying the amount of gas consumed
for example, or the number of songs sung, but it is clearly more sensible to use for λ the
actual road distance l we have covered. As we will see, while the choice of parametrization
is up to us, mathematics and common sense favors the particular parametrization λ= l.

The length of the curve is given by

∫ √
dx2 + dy2 =

∫ λf

λi

dλ

√(
dx

dλ

)2

+
(
dy

dλ

)2

(2)

The length, being geometric, is manifestly reparametrization invariant, that is, indepen-
dent of our choice of λ as long as it is reasonable. This is one of those “more obvious than
obvious” facts, since

∫ √
dx2 + dy2 on the left hand side of (2) is manifestly independent

of λ.
Your calculus teacher probably told you not to write something like the left hand side

of (2): a properly formulated integral should look like the right hand side of (2). But as I
already said in the preceding chapter, it is perfectly kosher: just think of

∫ √
dx2 + dy2 as

the sum of infinitesimals
∑

i

√
(
x)2i + (
y)2i .

If we insist, we can check the reparametrization invariance of (2). First, obviously the
powers of dλ match, so that if we scale λ→ aλ, the length is unchanged, as it should be.
More generally, if we use another parameter η related to λ by λ= λ(η), then dx

dλ
= dη

dλ
dx
dη

and dλ= dλ
dη
dη. Plugging in, we have

∫ λf

λi

dλ

√(
dx

dλ

)2

+
(
dy

dλ

)2

=
∫ ηf

ηi

dη

√(
dx

dη

)2

+
(
dy

dη

)2

Finding the straight line

Of course, this particular example is trivial to solve, but that’s the point, using a trivial
example to illustrate general concepts. You have probably already realized that it would
be sensible to put the starting point A = (0, 0) at the origin and to rotate axes so that the
endpoint B sits on the x-axis, in which case we might use the parametrization λ= x, so
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thatE = ∫
dx

√
1 + (

dy
dx
)2. Obviously, the length is minimized by setting dy

dx
= 0. Imposing

the boundary conditions, we obtain the solution y(x)= 0.
We, however, do not want to solve the problem in the simplest possible way, but more

generally, so as to learn about the calculus of variation. Well, all we have to do is to use (1),
with the notational shift φ1 → x , φ2 → y , x → λ. In this almost laughably simple example

E(x , y)= ∫
dλE, with E

(
dx
dλ

, dy
dλ

)=
√(

dx
dλ

)2 + ( dy
dλ

)2, so that (1) gives two equations for two
unknowns:

d

dλ

⎛
⎜⎝ 1√

( dx
dλ
)2 + (

dy
dλ
)2

dx

dλ

⎞
⎟⎠= 0 and

d

dλ

⎛
⎜⎝ 1√

( dx
dλ
)2 + (

dy
dλ
)2

dy

dλ

⎞
⎟⎠= 0 (3)

These are easy enough to solve by inspection: dx
dλ

and dy
dλ

are both constant, independent
of λ. Hence we have shown, as expected, that the straight line gives the shortest distance
between two points.

The more important lesson here, however, is to observe how (3) simplifies with the
“preferred” or natural parametrization, namely to use for λ the length l along the curve,
defined by dl =√

dx2 + dy2, so that√(
dx

dl

)2

+
(
dy

dl

)2

=
√
dx2 + dy2

dl
= 1

Replace λ by l in (3). Watch the square roots disappear, so that (3) simplifies to d2x
dl2

= 0 and
d2y

dl2
= 0. We will exploit this simplification ruthlessly when we get to Einstein’s theory of

gravity.
The astute reader might realize that there is a third equation, the definition of l:

( dx
dl
)2 + (

dy
dl
)2 = 1. Differentiating this equation with respect to l, we obtain dx

dl
d2x
dl2

+
dy
dl

d2y

dl2
= 0, and thus this equation is not independent of the other two equations already

given.

The world’s most complicated description of a straight line

I prefer to go slow here, and so, instead of jumping into curved spaces immediately, let’s
stay on the flat plane but now use polar coordinates. The length of a curve connecting the
two points is then given by

∫ √
dr2 + r2dθ2 =

∫ λf

λi

dλ

√(
dr

dλ

)2

+ r2
(
dθ

dλ

)2

≡
∫ λf

λi

dλL (4)

with L now playing the role of E in (1).
A thorough understanding of this example will be important in mastering Einstein

gravity later, so to make sure that you follow, let me spell out the steps here. First, we
vary L with respect to dr

dλ
and obtain 1

L
dr
dλ

with L the square root defined in (4). Then we
vary with respect to r and obtain 1

L
r( dθ

dλ
)2. Thus, we obtain d

dλ
( 1
L
dr
dλ
)− 1

L
r( dθ

dλ
)2 = 0 as in

(1). Once again it is clear that we could make life easier by using the length parametrization.
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Thus, setting λ to l, we have L= 1, so that this equation simplifies to

d2r

dl2
− r

(
dθ

dl

)2

= 0 (5)

Similarly, repeating for θ what we did with r , we find

d

dl

(
r2dθ

dl

)
= 0 ⇒ d2θ

dl2
+ 2
r

dr

dl

dθ

dl
= 0 (6)

In addition, we also have of course(
dr

dl

)2

+ r2
(
dθ

dl

)2

= 1 (7)

Confusio: “But if we have (7), isn’t the integrand we are varying in (4) just 1? How do
you vary 1?”

Dear reader, if you are confused also, just use some other parameter λ, obtain the
variational equations with the square root in it (as in (3), for example), and then replace λ
by l, as we did above.

Confusio: “But we have three equations (5), (6), and (7) to determine two unknown
functions?”

You could choose any two of the three. The third then provides a consistency check, if
you want.

Confusio: “Which two should I choose?”
Well, if I were you, Confusio, I would choose the two that make my life the easiest.
Since (7) is a first order differential equation, it is our clear-cut favorite. Of the two second

order differential equations (5) and (6), the latter is clearly simpler to solve and hence is
the more sensible∗ choice. Indeed, we now see there is no point in even differentiating, as
we rather stupidly did in (6). The original form d

dl
(r2 dθ

dl
)= 0 yields immediately r2 dθ

dl
= a

an unknown constant. Inserting this into (7) gives(
dr

dl

)2

+ a2

r2
= 1 (8)

Indeed, you might have realized that, in terms of a mechanical analog (interpreting l

as time), we have just used angular momentum conservation to eliminate dθ
dl

in (7), so
that (8) simply describes a particle with mass = 2 and energy = 1 moving in a repulsive
“centrifugal” potential V (r)= a2

r2 .
Integrating (8), we find r2 = l2 + a2, where we absorbed an integration constant into l

by setting l = 0 when r = a. Integrating dθ
dl

= a

l2+a2 , we obtain a tan(θ − θ0)= l. A nice
exercise in elementary geometry shows that this indeed describes a straight line.

The point of this is not to show that the author is capable of solving coupled differ-
ential equations and to obtain a rather complicated description of a straight line, but to

∗ As an undergraduate, I once took a math course for which the final exam consisted of ten problems, of which
we were required to do only one. The ability to recognize which problem is doable is an extremely valuable skill
in theoretical physics, and presumably in math also. The professor later told us that one of the ten problems had
not yet been solved, and he was hoping that some bright undergrad would solve it “by chance.”
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understand that a straight line can apparently take on quite different forms in different
coordinate systems. This will be a recurring theme in Einstein gravity.

Just to whet the reader’s appetite, I might mention that when we study the motion of
particles around a black hole, we will encounter the same type of equations as (5) and (7).
Here we made our lives sweeter by favoring (7) over (5). When we get to Einstein gravity,
we will use this “trick” again and again, namely tackling the analog of (6) first.

Great circles

We continue with a slightly more difficult problem: find the geodesics on a sphere. With
the usual spherical coordinates, the length of a curve on a sphere is given by

∫ √
dθ2 + sin2 θdϕ2 =

∫ λf

λi

dλ

√(
dθ

dλ

)2

+ sin2 θ

(
dϕ

dλ

)2

≡
∫ λf

λi

dλL (9)

Here we set λ to l without further ado and obtain

d2θ

dl2
− sin θ cos θ

(
dϕ

dl

)2

= 0 (10)

and

d

dl

(
sin2 θ

dϕ

dl

)
= 0 ⇒ d2ϕ

dl2
+ 2 cos θ

sin θ

dθ

dl

dϕ

dl
= 0 (11)

Since L does not depend on ϕ, the equation for dϕ
dl

is particularly easy∗ to obtain.
We all know that on a sphere great circles are geodesics. Indeed, we see that ϕ constant

with θ a linear function of l is a solution. Lines of fixed longitude are great circles. In
contrast, θ constant is not a solution unless that constant is π/2. Flying along a fixed
latitude is not a fuel-economizing move† unless you are at the equator.

As in the simpler flat space problem above, we should remember that we have a third
equation
(
dθ

dl

)2

+ sin2 θ

(
dϕ

dl

)2

= 1 (12)

and just as in that case the reader could differentiate this equation and verify that it is not
independent of (10) and (11). (The reader could also see that if l is interpreted as time, (12)
expresses the conservation of energy in the motion described by (10) and (11).)

With what you have learned here, you could now immediately determine the geodesics
on the Poincaré half plane discussed in chapter I.5. Try doing it, and then look at appendix 4
if you need help.

∗ The analog of this will also hold in Einstein gravity, associated with the notion of Killing vectors (see
chapter V.4).

† As you will see, this foreshadows the discussion in chapter V.1.
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The geodesic equation

After these three examples, we are now ready to formulate the general case. The strategy
is now familiar: we do what the ants mentioned in the prologue do. Without the benefit
of advanced math, they wander off from some “tried and true” path, hoping to find a
better one.

Consider a space with the metric gμν(x) and a curve Xμ(λ), where λ is, once again,
any parameter that varies monotonically along the curve. (As in chapter I.5, we use Greek
indices to label the coordinates, and repeated indices are summed over.) Once again, we
deftly avoid the notational confusion inflicted on the reader by some books. Beware of the
distinction between x and X! We are to minimize the length of the curve fixed at some
initial and final positions:∫

dl =
∫ √

gμνdX
μdXν =

∫
dλ

√
gμν(X(λ))

dXμ

dλ

dXν

dλ
≡
∫

dλ L (13)

where gμν is evaluated at X of course. (At any point, if you are confused, you could always
refer to the example of the sphere in (9), for which gθθ = 1, gθϕ = 0, and gϕϕ = sin2 θ .)

Here we could have simply plugged this functional of Xμ(λ) into the general equation
(1), but in the interest of pedagogy, it is worthwhile (and easy enough) to go through the
Euler-Lagrange steps again. Setting the variation of

∫
dλ L to zero, we obtain

δ

∫
dλ L=

∫
dλ δL

=
∫

dλ

(√
gμν(X(λ)+ δX(λ))

d(Xμ + δXμ)

dλ

d(Xν + δXν)

dλ
−
√
gμν(X(λ))

dXμ

dλ

dXν

dλ

)

=
∫

dλ
1
L

(
2gμν

dXμ

dλ

dδXν

dλ
+ ∂σgμν

dXμ

dλ

dXν

dλ
δXσ

)
= 0 (14)

(If you are confused, read the paragraph following (4) again.)
We emphasize that gμν and ∂σgμν are evaluated at X(λ). Indeed, the second term arises

from the dependence of gμν on X. Integrating the first term by parts (with δXσ = 0 at the
endpoints as usual), we obtain

L
d

dλ

(
1
L

2gμσ
dXμ

dλ

)
− ∂σgμν

dXμ

dλ

dXν

dλ
= 0 (15)

We have learned only too well that to simplify (15) we should exploit the freedom in
choosing λ and use length parametrization. Set dλ to dl so that L= 1. Then we have

d

dl

(
gμσ

dXμ

dl

)
− 1

2
∂σgμν

dXμ

dl

dXν

dl
= 0 (16)

where, to repeat, gμσ and ∂σgμν are to be evaluated at X(λ). (For example, for the sphere,
for σ = θ we have, noting that the metric is diagonal, d

dl
(gθθ

dθ
dl
)− 1

2∂θgϕϕ(
dϕ
dl
)2 = 0, which

is just (10).)
In specific cases, rather than pushing through the differentiation in the first term in (16),

we are better off restraining ourselves. The geodesic equation in this form corresponds to
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the first halves of (6) and (11). In particular, if gμν does not depend on xσ , the second term
in (16) vanishes, and we learn immediately that gμσ

dXμ

dl
is constant along the geodesic

curve.
For further analysis, however, we should, and could, push ahead and carry out the

differentiation in the first term of (16), just as in the second halves of (6) and (11). We obtain
gμσ

d2Xμ

dl2
+ ∂νgμσ

dXν

dl
dXμ

dl
− 1

2∂σgμν
dXμ

dl
dXν

dl
= 0, which on multiplication by gρσ becomes∗

d2Xρ

dl2
+ 1

2
gρσ (2∂νgμσ − ∂σgμν)

dXμ

dl

dXν

dl
= 0 (17)

Defining the Christoffel symbol by

�ρ
μν
(x)≡ 1

2
gρσ (x)

(
∂μgνσ (x)+ ∂νgμσ (x)− ∂σgμν(x)

)
(18)

we can write (17) as

d2Xρ

dl2
+ �ρ

μν
(X(l))

dXμ

dl

dXν

dl
= 0 (19)

Note that �ρ
μν

is defined to be symmetric in μν, since in (19) it multiplies the symmetric

combination dXμ

dl
dXν

dl
.

It is often useful to deal with the auxiliary quantity

�μν .σ ≡ 1
2
(∂μgνσ + ∂νgμσ − ∂σgμν) (20)

We put a dot in the group of three indices to remind us that this object is symmetric
under the exchange of the first two indices, and that the last index σ is the one who came
downstairs, and when needed, could be sent upstairs again.

Comparing (19) with (5) and (6), you could read off the nonvanishing Christoffel symbols
for polar coordinates:

�r
θθ

= −r and �θ
rθ

= 1
r

(21)

(Note the factor of 2 in (5) disappears because of the symmetry of the Christoffel symbol
in its two lower indices.) Similarly, you could read off from (10) and (11) the nonvanishing
Christoffel symbols for the sphere:

�θ
ϕϕ

= − sin θ cos θ and �
ϕ
θϕ = cos θ

sin θ
(22)

You should verify that you obtain the same results plugging the metric into (18).
Decide for yourself which method of calculating �ρ

μν
is computationally simpler for

you. I prefer to vary (13) directly to using (18). With practice the variation could be done
mentally. For really simple examples, such as the ones here, it is pretty much a toss up.

Note that the geodesic equation (19), when written in terms of the tangent vector
V μ ≡ dXμ

dl
to the curve, actually looks quite simple:

dV ρ

dl
+ �ρ

μν
V μV ν = 0 (23)

∗ Recall from chapter I.5 that gρσgμσ = δρ
μ

.
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Keep in mind also that often it is easier to solve (16), which can now be written as

d

dl
(gμσV

μ)− 1
2
(∂σgμν)V

μV ν = 0 (24)

I have intentionally derived the geodesic equation in a slightly cumbersome way, drag-
ging L along, to emphasize that the length (13) is a geometric quantity independent of
the parametrization λ used. Only at the end do I exploit our parametrization freedom and
set λ to l to obtain (16). I will do this throughout. In contrast, the authors of some texts
vary an alternative quantity

∫
dl gμν

dXμ

dl
dXν

dl
(which is emphatically not parametrization

independent) and use the Euler-Lagrange equation (1) to arrive at (16) in one step. The
derivation looks cleaner but comes with the cost of potential conceptual misunderstand-
ing. Once you understand all this, you can, however, safely use this method. At the least,
it serves as a useful mnemonic.

Connection to classical differential geometry

At this point Confusio suddenly speaks up. “Hey, didn’t we encounter the Christoffel
symbol already back when we discussed classical differential geometry in chapter I.7?”

Excellent! Confusio has been paying attention and is not as confused as he looks! But
what is the connection? In chapter I.7 the Christoffel symbol appeared in the variation of
the basis vectors ∂μ�eν. Here it has to do with the first derivative of the metric.

In fact, you already encountered the key in exercise I.7.6, namely that

∂μgνσ = �μν .σ + �μσ .ν (25)

Applying a lemma given in chapter I.4, we can invert (20) to obtain precisely this.

A straight line does not have to look straight

Professor Flat ambles by again, saying, “It would be enlightening to give an alternative
derivation of the geodesic equation (19).”

“Let’s guess,” you and I reply in unison, “We go to locally flat coordinates, right?” By
now, we are catching on.

PF: “Excellent! We all know that in a locally flat region the geodesics are just straight
lines, from stretched linen, you know.”

It sounds vaguely plausible; Professor Flat is also an amateur etymologist.
So, consider locally flat coordinates yρ(x), related to our curved coordinates as indicated.

The metric is ds2 = δρσdy
ρdyσ = gμν(x)dx

μdxν so that

gμν(x)= δρσ
∂yρ

∂xμ

∂yσ

∂xν
(26)

A straight line is a curve yρ(s) for which the tangent vector dyρ

ds
does not change, that is,

d2yρ

ds2 = 0.
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Professor Flat interjects: “That’s what ‘straightforward’ means: you keep moving for-
ward. This derivation will be straightforward also, just plug and chug. We replace y by x

in the simple equation d2yρ

ds2 = 0 to obtain a complicated looking equation!”

So, dyρ

ds
= ∂yρ

∂xλ
dxλ

ds
, and then

0 = d2yρ

ds2
= ∂yρ

∂xλ

d2xλ

ds2
+ ∂2yρ

∂xμ∂xν

dxμ

ds

dxν

ds
(27)

Multiplying by ∂xσ

∂yρ
(and using ∂xσ

∂yρ
∂yρ

∂xλ
= δσ

λ
), we obtain (after renaming the index σ )

d2xλ

ds2
+ ∂xλ

∂yρ

∂2yρ

∂xμ∂xν

dxμ

ds

dxν

ds
= 0 (28)

As promised, we manage to replace the simple equation d2yρ

d2s
= 0 by the complicated-

looking∗ (28).
Upon identifying

�λ
μν

= ∂xλ

∂yρ

∂2yρ

∂xμ∂xν
(29)

we recognize (28) as just the geodesic equation (19).
PF: “See how easy it is? We just have to show off our mastery of the chain rule!”
A straight line does not have to look straight in curved coordinates. Rather, it is described

by a curve determined by (28). Nothing wrong with the straight line, but you have chosen
funny coordinates. A bit like the fun house mirrors in amusement parks.

In this formalism, how do we relate the Christoffel symbol in (29) to the first derivative
of the metric, as given in (18) and (20)? The way to do this is as follows. Differentiating1

the metric in (26) gives

∂λgμν(x)= δρσ

(
∂2yρ

∂xλ∂xμ

∂yσ

∂xν
+ ∂yρ

∂xμ

∂2yσ

∂xλ∂xν

)

Using the identity (I.4.14) you derived in chapter I.4, you could solve for δρσ
∂2yρ

∂xλ∂xμ
∂yσ

∂xν
.

Lowering an index in (29) by using the metric in (26), you obtain �μν .σ as given in (20).

Appendix 1: Drowning in a sea of indices

The appearance of the 3-indexed Christoffel symbol�ρ
μν

has detonated the explosion of indices that gives Einstein
gravity its (undeserved) reputation of being difficult, and the reader is hereby warned that it will get much worse in
subsequent chapters when the 4-indexed Riemann curvature tensor† appears. On first exposure, some students
could easily feel that they are “drowning in a sea of indices.” Some sophisticated types favor a fancy-schmancy
index-free notation.‡ This is analogous to the vector notation �v that you are fluent with, instead of the index
notation vi . But it takes considerable effort to learn the index-free notation, and when push comes to shove, in an

∗ This peculiar replacement of a simple equation by a complicated one foreshadows Einstein’s deep insight
about gravity. See the discussion of the equivalence principle in part V.

† The astute reader might sense that the appearance of 3- and 4-indexed objects was foreshadowed by the
expansion gμν(x)= gμν(0)+Aμν ,λx

λ + Bμν ,λσx
λxσ + . . . we used in chapter I.6 to go to locally flat coordinates.

‡ Which we will eventually get to in chapter IX.7.
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actual calculation,∗ even a sophisticate might have to descend to indices. Besides, you have to learn to walk before
you can fly, and I think that for a first introduction to Einstein gravity, grappling with indices is an essential and
ennobling experience.

Different people have different ways of remembering how the indices go. My advice is to remember the
symmetry properties of various objects we encounter, for example, that �ρ

μν
is defined to be symmetric in μν. I

remember the schematic form �
.
.. ∼ g

..
∂.g.., which enables me to reconstruct the precise expression (18).

Appendix 2: How the Christoffel symbol transforms

The beginning student should skip this appendix. Although it contains a result we will need later, it also contains
“a sea of indices”!

Knowing how gμν transforms under a coordinate transformation (I.5.14), you could immediately plug that
transformation law into (18) to determine how �λ

μν
transforms. It is easier, however, to use (29) and grind ahead.

Following Professor Flat’s suggestion, we went from the locally flat coordinates y to the coordinates x,
obtaining the �λ

μν
in (29). What if somebody comes along and changes from y to x′? She would obtain some

other Christoffel symbols �′λ
μν

. How are they related to our symbols?

To relate �′λ
μν

= ∂x′λ
∂yρ

∂2yρ

∂x′μ∂x′ν , we simply replace the derivatives with respect to x′ by those with respect to x. The
calculation looks messy, but hey, it’s only the chain rule once again.

Start with ∂yρ

∂x′ν = ∂xσ

∂x′ν
∂yρ

∂xσ
, and so

∂2yρ

∂x′μ∂x′ν = ∂xω

∂x′μ
∂

∂xω

(
∂yρ

∂x ′ν

)
= ∂xω

∂x′μ
∂

∂xω

(
∂xσ

∂x′ν
∂yρ

∂xσ

)

= ∂xω

∂x′μ
∂xσ

∂x ′ν

(
∂2yρ

∂xω∂xσ

)
+ ∂xω

∂x′μ
∂2xσ

∂xω∂x′ν

(
∂yρ

∂xσ

)

The other factor in �′λ
μν

is much easier to deal with: ∂x′λ
∂yρ

= ∂x′λ
∂xη

∂xη

∂yρ
. Putting it together, we obtain

�′λ
μν

= ∂x′λ

∂yρ

∂2yρ

∂x′μ∂x′ν = ∂x′λ

∂xη

∂xω

∂x′μ

{
∂xσ

∂x′ν

(
∂xη

∂yρ

∂2yρ

∂xω∂xσ

)
+ ∂2xσ

∂xω∂x′ν

(
∂xη

∂yρ

∂yρ

∂xσ

)}

= ∂x′λ

∂xη

∂xω

∂x′μ
∂xσ

∂x′ν �
η
ωσ

+ ∂x′λ

∂xη

∂2xη

∂x′μ∂x′ν (30)

where we used
(
∂xη

∂yρ
∂yρ

∂xσ

)
= δη

σ
once again.

The Christoffel symbol does not transform as a tensor, and hence, is not a tensor!
Referring to chapters I.4 and I.5, we see that the first term in (30) is precisely what is needed for the Christoffel

symbol to transform as a tensor under the coordinate change x → x′, but that is spoiled by the presence of the
inhomogeneous term ∂x′λ

∂xη
∂2xη

∂x′μ∂x′ν . To repeat, the important point here is that the Christoffel symbol is not a
tensor.

That the Christoffel symbol carries three indices and that it fails to transform nicely like a tensor are among
the two root causes of some technical complications of general relativity. We can handle something carrying two
indices: a square array of numbers may naturally be treated as a matrix, but not a cubical array. Note that we did
not go looking for this 3-indexed beast; it came looking for us.

Using the notation Sμ
ν
= ∂x′μ

∂xν
, (S−1)

μ

ρ
= ∂xμ

∂x′ρ , and ∂ ′
μ

= (S−1)
ν

μ
∂ν introduced in chapters I.4 and I.5, we could

write (30) in a slightly nicer form:

�′λ
μν

= Sλ
η
(S−1)

ω

μ
(S−1)

σ

ν
�η
ωσ

+ Sλ
η
(S−1)

ρ

μ
∂ρ(S

−1)
η

ν
(31)

Appendix 3: Finding locally flat coordinates

Professor Flat is getting visibly more and more excited. We gently inquire why.

∗ See the story in endnote 23 to the preface.
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PF: “Don’t you see? Given how the flat coordinates y depend on the curved coordinates x, you can calculate
�. Now just reverse the math. Suppose you are in a curved space at some point P with coordinates x∗, and you
know � at that point, then you can reverse the steps above and find the desired flat coordinates y.”

In chapter I.6, I showed you by simple counting that it should be possible by changing coordinates to make
the region around any point locally flat. But I didn’t show you how to do it explicitly. Now we see that all we have
to do is to solve (29) for y. The solution is

yρ(x)=K
ρ
λ{(xλ − xλ∗)+ 1

2�
λ
μν
(x∗)(xμ − xμ∗ )(x

ν − xν∗)+ . . .} (32)

with the shorthand K
ρ
λ = ∂yρ

∂xλ
|x∗ and with the dots indicating corrections of order (x − x∗)3. We simply insert

this into (29) and verify that we recover �λ
μν
(x∗). (You might want to compare with the discussion in chapter I.6.)

Of course, after obtaining y as given by (32), we still have the freedom of applying an arbitrary rotation followed
by a translation without affecting (26) and (29). We didn’t include these to avoid cluttering up (32).

To see how all this works, it is best to go to an example. Imagine you are living at latitude∗ θ∗ and longitude ϕ∗.
Since the metric does not depend on ϕ, we could set† ϕ∗ = 0, but you might want to drag it along nevertheless.
Simply plug into (22) and (32).

Appendix 4: Geodesics on the Poincaré half plane

Let us now find the geodesics on the Poincaré half plane defined by ds2 = (dx2 + dy2)/y2 in chapter I.5. First,
you may wish to recall the discussion there. We concluded that, to go from one point to another, we would want
to curve away from the edge at y = 0, but we were not able to determine the actual curve. Now yes, we can. We
are to minimize

D =
∫ B

A

√
dx2 + dy2

y2
(33)

Rudolf Peierls famously said2 to the young Hans Bethe, “Erst kommt das Denken,3 dann das Integral.”
(Roughly, “First think, then calculate.”) Now that we have done the thinking in chapter I.5, we could simply plug
into the geodesic equation derived here. But wait, how about a tiny bit more Denken? Let’s exploit parametrization
invariance and choose the parameter that would minimize not only the integral but also our labor.

So, what did you choose? Inspired by your solution of the brachistochrone problem in exercise II.1.5 when you

went mano à mano with Isaac Newton, you chose y as the parameter! Then‡ D = ∫ B
A
dy
√

1 + ( dx
dy
)2/y2 ≡ ∫ B

A
dy L.

The key observation is that with this choice the integrandL is independent of the “dynamical” variable x. In other
words, the Euler-Lagrange equation simplifies:

d

dy

(
δL

δ dx
dy

)
= δL

δx
= 0 ⇒ d

dy

⎛
⎜⎝ dx

dy

y
√

1 + ( dx
dy
)2

⎞
⎟⎠= 0 (34)

We obtain immediately dx
dy

= y
b

√
1 + ( dx

dy
)2, with b an integration constant. This elementary differential equation

is solved by x − x∗ = ±√b2 − y2. The second integration constant x∗ reflects the translation invariance in x.
The geodesics are semi-circles of radius b centered at any point (x∗ , 0) on the x-axis. (The ± sign we

encountered in the solution corresponds to the two halves of the semi-circle.) Note also the “vertical” lines
x = constant also solve the geodesic equation. See figure 2.

Thus, the geodesic going from point A to point B could be determined by a geometric construction. Draw
a circle centered on the x-axis going through the two points. The circular arc between A and B is the desired
geodesic, in full accordance with our intuition in chapter I.5.

∗ We mean physicists’ latitude, of course, with θ = 0 at the north pole.
† The story of France’s losing battle to set ϕ = 0 for Paris makes for an interesting bit of history. Fortunately, the

British were not so arrogant as to set the latitude of Greenwich to 0 also. More recently, GMT, meaning Greenwich
Mean Time, was replaced by the compromise term UTC, an acronym neither in English nor in French.

‡ In fact, you can see that this problem bears a striking resemblance to the brachistochrone problem but is
not at all the same.
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*
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A B

Figure 2 Geodesics on the Poincaré half plane.

Of course, if you chose the length l along the curve instead of y as the parameter, you could still solve the
problem readily. See exercise 4. After all, Euler and Lagrange already did the Denken for you.

Appendix 5: Coordinates from a family of geodesics

Given a space with a coordinate system and a metric, we can determine the geodesics. Conversely, a family of
geodesics can also lead us to a “natural” coordinate system.

Consider 2-dimensional space and a family of geodesics. We restrict ourselves to a region in which the
geodesics do not intersect. (The coordinate system fails where the geodesics intersect. For example, the usual
spherical coordinates on the sphere are not well defined at the north pole, where lines of constant longitudes
intersect.) Label each geodesic by the parameter θ continuously. In other words, each value of θ uniquely specifies
a geodesic, and values of θ infinitesimally close to each other specify geodesics that neighbor each other. On each
geodesic, mark off the distance l and call this the coordinate r ; in other words r = l. This is equivalent to saying
1 = gμν

dxμ

dl
dxν

dl
= grr(

dr
dl
)2 = grr : the first equality is the definition of l, the second follows from our construction

that θ is constant along each geodesic, while the third is due to the choice r = l. Hence we have grr = 1.
Next, let’s see if we can get rid of the cross-term drdθ . Change coordinate by setting r = r̃ + h(θ) so that

dr = dr̃ + h′(θ)dθ . In the new coordinates (r̃ , θ), we have the cross-term 2(grθ(r , θ)+ h′(θ))dr̃dθ . Of course,
grθ(r , θ) can be equivalently written as some function k(r̃ , θ). Thus, in general, we cannot get rid of the cross-term
by suitably choosing h(θ).

But we are able to get rid of the cross-term at a specific value of r̃ , call it r̃0. In other words, we choose h(θ) so
that h′(θ)= −k(r̃0, θ).

To proceed further, we will be kind to ourselves and drop the tilde sign, that is, we rename r̃ and call it r . To
summarize, at this point we have ds2 = dr2 + 2grθdrdθ + gθθdθ

2, with grθ(r0, θ)= 0.
We now plug in the geodesic equation for the coordinate r and obtain 0 = − d2r

dl2
= �r

μν
dxμ

dl
dxν

dl
= �r

rr
. The

second equality is the geodesic equation, while the first equality follows from r = l, the third from the fact that
along a geodesic θ is constant and r = l. Thus, we have learned that�r

rr
= 1

2g
rθ(2∂rgrθ)= 0. Here the first equality

follows from grr = 1. So, either grθ = 0 or ∂rgrθ = 0. In the first case, the 2-by-2 matrix gμν is diagonal and so its
inverse is also diagonal, meaning that grθ = 0. In the second case, ∂rgrθ = 0. In other words, grθ does not vary
as r varies. But we already know that grθ(r0, θ)= 0 for some r0, and hence we can conclude that grθ(r , θ)= 0
for all r .

To conclude, for 2-dimensional spaces, we have found, at least in some region, a class of coordinate systems
with the metric

ds2 = dr2 + F(r , θ)dθ2 (35)

Note that in general we cannot simplify further.
You know some examples from this class. In particular, consider the subclass with metric ds2 = dr2 + f (r)dθ2.

Two examples are ds2 = dr2 + r2dθ2, polar coordinates for the plane, and ds2 = dθ2 + sin2 θdϕ2, spherical
coordinates for the sphere.

Exercises

1 As explained in the text, to solve for the geodesics on the sphere, we could choose two of the three equations
(10), (11), and (12). The wise person chooses (11) and (12) (of course!). Solve (11) immediately and plug into
(12) to obtain
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(
dθ

dl

)2

+ K2

sin2 θ
= 1 (36)

where K is an integration constant. Show that this equation could be interpreted as that of a particle moving
in the potential V (θ)= K2

sin2 θ
. Discuss.

2 Show that for diagonal metrics, at most one of the three terms on the right hand side of (18) defining the
Christoffel symbol actually survives.

3 Show that (18) and (20) follow from (29).

4 Determine the geodesics on the Poincaré half plane.

5 Use the transformation law (30) of the Christoffel symbol to determine �r
θθ

and �θ
rθ

in polar coordinates.
Hint: Consider the coordinate transformation from (x1, x2)= (x , y) to (x′1, x′2)= (r , θ).

6 Instead of varying the integral
∫
dλ

√
gμν(X(λ))

dXμ

dλ
dXν

dλ
in (13), we could, as an alternative, vary the integral∫

dλgμν(X(λ))
dXμ

dλ
dXν

dλ
. Show that this leads to the same geodesic equations as in the text. Although this

approach is arithmetically simpler, it is, as explained in the text, conceptually opaque, since this integral is
not parametrization invariant and does not represent a geometric quantity, such as the length of the curve.

7 In chapter I.6, in proceeding to locally flat coordinates, after the first step, with the metric already in the form
gμν(x)= δμν +Aμν ,λx

λ + . . . , we claimed that by using the transformation xμ = x′μ +L
μ
νλx

′νx ′λ + . . . , we
could get rid of the linear terms in the metric. Using the transformation property of the Christoffel symbol,
determine Lμνλ. (Just from the index structure, you could probably guess the answer.)

8 Find the equation for geodesics in conformally flat spaces (which, as you might recall, were defined in an
exercise in chapter I.6).

Notes

1. A tiny bit of subtlety gets glossed over here. See S. Weinberg, Gravitation and Cosmology.
2. QFT Nut, p. 365.
3. As in gedanken experiment.



II.3 Physics Is Where the Action Is

The action principle

You realize that in the last couple of chapters, I have been setting you up for a return to the
prologue—to Fermat with his least time principle and to Feynman choosing the right path.

Next time you are invited to a dinner party at the home of a philosophy professor, say the
word “teleological” in the middle of the main course. After these guys have stopped clawing
at each other, utter, with nonchalant total self-assurance, “The ontological is distinct from
the epistemological, while the tautological is antithetical to the logical,” and watch the fun
start again. That statement is of course what is known in polite circles as “utter nonsense”
and in less polite circles as total BS, but it gives you an idea of how some academics talk.

The philosophies-R-us version, which I could give you for no charge, is that things are
teleological if they have a purpose, or at least act as if they have a purpose. That’s a big
no-no in Western science. You see, Fermat’s least time principle1 has a strongly teleological
flavor: that light, and particularly daylight, somehow knows how to save time—a flavor
totally distasteful to the post-rational palate. In contrast, at the time of Pierre Fermat (1601
or∗ 1607/08?–1665), there was lots of quasi-theological talk about Divine Providence and
Harmonious Nature, so there was no question that light would be guided to follow the
most prudent path.

Thus, after the success of the least time principle for light, physicists naturally wanted to
find a similar principle for material particles. Something is minimized, but what? Matter
appears to behave quite differently from light, and this puzzled physicists for centuries.†

∗ The heavy academic controversy over Fermat’s birth year stems from his father marrying twice and naming
two sons from two different wives Pierre.2

† See the discussion in chapter III.5. The ultimate resolution had to wait until the advent of quantum field
theory, but that’s another story I’ve told elsewhere.
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From the hanging string to the falling apple: Time makes its grand entrance

Now that you have mastered variational calculus, you can easily figure out whether New-
ton’s F = ma follows from a variational principle. Consider the falling apple. Newton
taught us to determine the path q(t) of the apple by solving

m
d2q

dt2
= −mg (1)

The question is: what variational principle can give us this differential equation?
I certainly dropped a trail of hints when I discussed the variational calculus. Recall (II.1.1)

and (II.1.4): we saw that the Euler-Lagrange equation for a hanging string

T
d2φ

dx2
= −σg , (2)

follows from extremizing the energy functional

E(φ)=
∫

dx

(
T

2

(
dφ

dx

)2

− σgφ(x)

)
(3)

At this point, you don’t have to be a genius to see that (1) and (2) have the same form.
Simply replace x → t , φ → q . Pretty nifty, eh? Remarkably, we simply flip figure II.1.1 over
and relabel the horizontal axis by t instead of x, to obtain figure 1.

Voil̀a, from the hanging string to the falling apple by replacing space with time! In other
words, extremizing the integral S(q)= ∫

dt{ 1
2m(

dq
dt
)2 −mgq(t)} gives us (1). Thus far, in

part II, we have had no time. Now time makes its grand entrance.
More generally, we have discovered, with no further ado, that extremizing

S(q)=
∫

dt

{
1
2
m

(
dq

dt

)2

− V (q)

}
(4)

yields the equation of motion

m
d2q

dt2
= −V ′(q) (5)

for a particle moving in a potential V . The integral S(q) is known as the action.
The action S(q) is a functional of the path q(t). With each path, we assign a real number,

namely the action S(q) evaluated for that particular path q(t). We are then instructed to

t

q

Figure 1 To go from the hanging string to the
falling apple, we simply flip figure II.1.1 over and
relabel the horizontal axis by t instead of x.
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vary S(q) subject to the boundary conditions (which, if we feel pedantic, we should perhaps
refer to as the initial and final conditions, since we are dealing with time) that q(ti)= qi

and q(tf )= qf . The particular path q(t) that extremizes the action S(q) satisfies Newton’s
law (5).

The Lagrangian

The action principle states that the movement of particles is determined by extremizing
an action. In general, the action functional is given by

S(q)=
∫

dtL

(
dq

dt
, q
)

(6)

The quantityL(dq
dt

, q) is known as the Lagrangian. The action is to be varied with the initial
and final positions q(ti) and q(tf ) held fixed to some qi and qf , respectively.

The variation of the action vanishes if

d

dt

(
δL

δ
dq
dt

)
− δL

δq
= 0 (7)

To be precise and pedantic, I stress, as in chapter II.1, that the notation means the
following. We pretend that L(a , b) is an ordinary function of two variables a and b. By
δL

δ
dq

dt

, we mean ∂L(a ,b)
∂a

with a subsequently set equal to dq
dt

and b to q(t). Similarly, by δL
δq

,

we mean ∂L(a ,b)
∂b

with a subsequently set equal to dq
dt

and b to q(t).
Switching from Leibniz’s notation to Newton’s notation, we could write the Euler-

Lagrange equation (7) in the elegantly compact form

˙δL
δq̇

= δL

δq
(8)

At Princeton University, there is a church-like gothic building with stained glass win-
dows, each of which is inlaid with a fundamental equation of physics. One of the equations
is (8). This equation, suitably generalized to quantum fields, underlies all known dynamics
(we will come back to this shortly) in the universe.

A minus sign

In nonrelativistic mechanics, the Lagrangian L(
dq
dt

, q) has the additive form

L

(
dq

dt
, q
)

= 1
2
m

(
dq

dt

)2

− V (q) (9)

(but that is not necessarily the case in general). Notice that the Lagrangian is equal to the
kinetic energy minus the potential energy. In a way, there is a “what else could it be?”
quality to what the Lagrangian turns out to be.

The minus sign is needed to generate the correct equation of motion (5), as you saw.
In the energy functional (3) for the string, the variation of φ in space adds to the potential
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energy in the energy functional. In contrast, in the action functional (4), the variation of
q in time goes against the potential energy: the crucial minus sign. Consider the simple
harmonic oscillator, for which the action would be S = ∫

dt
[ 1

2m
( dq
dt

)2 − 1
2kq

2]. This is a
first hint that time and space work against each other. Time differs from space by a sign,
so to speak.

Choosing a path as a metaphor for life

Let us see how the action principle works in a specific case. Consider an object falling from a
height of h to the ground in time T . The Lagrangian is thenL(dq

dt
, q)= 1

2m(
dq
dt
)2 −mgq(t).

To keep irrelevant symbols from cluttering the page, let us choose units so that g = 1. Then

Newton’sma = F reads d2q

dt2
= −1 to be solved with the initial and final conditions q(0)= h

and q(T )= 0. Dear reader, I know that you can solve this equation practically in your sleep,
thus finding the familiar parabola

q(t)= h+
(
T

2
− h

T

)
t − 1

2
t2 (10)

Note one important difference between Fermat’s least time principle governing light
and the action principle governing material particles. In the least time principle, we are to
minimize, duh, the transit time. In the action principle the transit time T is specified in
advance. The particle is required to get to its destination in time T , the ultimate “on-time
company.” Notice that in the particular solution q(t), the coefficient of the term linear in
t switches sign when T becomes larger than

√
2h: Given too much time, the particle has

to “waste” some time moving up before coming down.
Just as in the discussion of the hanging string following (II.1.9), the potential in this

particular case is linear in q, and so, under q(t)→ q(t)+ η(t), the second order variation
of S is given by 1

2m(
dη
dt
)2 and thus is manifestly positive. The path in (10) in fact minimizes

the action S. This is not true in general. (See exercise 1.) A simple calculation shows that,
for the path actually followed, namely the path in (10), the action is equal to (henceforth
we will factor out m and drop it) Smin(q)= h2

2T − hT
2 − T 3

24 .
It is intriguing that in the least action formulation of mechanics, the particle gives the

impression of choosing a path to follow, as if it could sample all possible paths∗ before
finding the one with the minimum action. “Mmm, this path is no good. Let me try another.”
Let’s have fun seeing how this actually works.

What does the particle decide to do? Should the particle sit around and suddenly make
a mad dash? Or should it get going promptly and then coast to the destination? What sort
of “personality” does it have?

Perhaps the particle does something in between. Suppose that it decides to just forget
about Newton and to fall down with constant speed, that is, following the path q1(t) =

∗ This is a profound statement. To some extent, one could argue that the existence of the action principle in
classical physics foreshadows the quantum world. See “Local versus global” later in this chapter.
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h− h
T
t . A steady kind of guy going at a steady pace. You could check that the action is then

S(q1)= h2

2T − hT
2 , indeed more than Smin(q) given above.

In everyday life, a falling object, especially if it is fragile and valuable, appears to hesitate
for a moment or so, almost as if it is saying “Catch me if you can!” before gathering speed
and crashing to the floor. That’s Galileo’s law of acceleration in action of course. From the
action point of view, you can understand what is going on. The object, by staying at high
altitude for “as long as possible,” maximizes its potential energy and thus lowers the action.
But then it has to rush at the end to get to the floor in the allotted time T , and hence pays the
price of a larger kinetic energy. You could easily compute that the particle, by choosing the
actual path q(t) rather than the alternate path q1(t), pays an extra time-integrated kinetic
energy equal to T 3

24 , but it also raises its time-integrated potential energy by 2
(
T 3

24

)
, thus

managing to lower its action. It has figured out how to get the best action deal.
Some would see in the action principle a metaphor for life. You want to live life maximiz-

ing something, perhaps the total time-integrated happiness. You could either party now,
dude, or you could study the action principle and party later in life. Of course, physics is
so much simpler than real life, for which the quantity corresponding to the Lagrangian
consists of a multitude of terms, each with zillions of parameters that vary from individual
to individual. For example, for some geeks, studying physics has got to be way more fun
than partying. There is also the minor detail that T is not known in advance.

Newton versus Aristotle

I have restricted the discussion to a single particle moving in 1 dimension. As in chapter
I.1, through the magic of indices, we can immediately jump to the case of many particles
moving in any dimension you desire. For instance, for a particle moving in 3-dimensional
space, the position of the particle is specified by a 3-vector �q(t). By rotational invariance
(that is, “no direction is special”), the Lagrangian L(

d �q
dt

, �q) must be a scalar. This pretty
much restricts it to have the form

L

(
d �q
dt

, �q
)

= 1
2
m

(
d �q
dt

)2

− V (|�q|) (11)

where ( d �q
dt
)2 represents the dot product d �q

dt
. d �q
dt

of course. You might also think of adding
the term �q . d �q

dt
, but this is equal to 1

2
d
dt

�q2 and so contributes to the action S = ∫
dtLmerely

a boundary term 1
2(�q2(T )− �q2(0)). The equation of motion is not affected.

Aristotle thought that force is equal to velocity. It took the full genius of Newton to point
out that no, force is in fact equal to acceleration. That, F = ma, is certainly one of the
least obvious ideas in the history of theoretical physics: just try explaining it to a medieval
peasant struggling to keep his cart moving.

When you first studied physics, didn’t you wonder why Nature went against Aristotle
and chose acceleration, and not velocity? Here is the answer. In some sense, rotational
invariance and the action principle dictate the form of the kinetic term in (11). The
Lagrangian contains two powers of d

dt
. No way one of these is to disappear on our way to
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the equation of motion. It has to be a second order differential equation. This fundamental
truth in fact continues to hold as we move onward to more advanced physics, all the way
to the action of fundamental forces governed by quantum field theory.

I don’t claim that this is a proof that would satisfy mathematicians. For example, we could
have a term like ( d �q

dt
. d �q
dt
)

1
4 in the Lagrangian, but this sure would not lead to mechanics

as we know it.

Local versus global

Newton’s equation of motion is described as local in time: it tells us what is going to
happen in the next instant. In contrast, the action principle is global: one integrates over
various possible trajectories and chooses the best one. While the two formulations are
mathematically entirely equivalent, the action principle offers numerous advantages over
the equation of motion approach. We mention some interesting points here.

1. The action leads directly to an understanding of quantum mechanics via the so-called Dirac-

Feynman path integral3 formulation. Indeed, the discussion here gives a premonition of

the emergence of probability in the quantum world. Which path would the particle choose?

Betting odds, anybody?

2. Intriguingly, while the energy functional is unequivocally asking to be minimized, the action

principle merely tells us to extremize, rather than to maximize or minimize, a functional.

In exercise 1, you will show that for the harmonic oscillator, the actual path can correspond

to either a maximum or a minimum of the action. Within classical mechanics, this would

appear somewhat puzzling, at least to me when I was a student. In the Dirac-Feynman

path integral, this fact emerges naturally: classical paths correspond to the stationary phase

in the sum over amplitudes. I consider this insight to be one of the great triumphs of

quantum physics. Unfortunately, this point is obscured in the more familiar Schrödinger

or Heisenberg formalisms.

3. The action principle gives a deeply satisfying and unifying understanding of conservation

laws, as we will discuss in the next chapter.

4. The fundamental interactions we know about—the strong, weak, electromagnetic, and

gravitational—can all be described by the action principle.∗ As you will see in this book,

the action principle provides a natural route to special relativity, electromagnetism, and

Einstein gravity. The action, rather than equations of motion, furnishes the language of

quantum field theory. For instance, in perturbative field theory, we can go directly from the

action to Feynman diagrams without ever mentioning equations of motion.

5. A practical, but a relatively minor, advantage is that since the action involves only first deriva-

tives with respect to time, rather than second derivatives as in the equation of motion, it saves

us computational labor in changing variables. An example is provided by Newton’s solution

∗ Why this should be so represents a profound mystery.
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for planetary orbits. In changing coordinates x , y → r , θ , we do not have to differentiate

twice to get to (I.1.11); we could stop at (I.1.10), square, and add to obtain ẋ2 + ẏ2 = ṙ2 + r2θ̇2.

The action then becomes

S(r , θ)=m

∫
dt

{
1
2
(ẋ2 + ẏ2)+ κ

r

}
=m

∫
dt

{
1
2
(ṙ2 + r2θ̇2)+ κ

r

}
(12)

Indeed, what we are effectively doing is replacing dx2 + dy2 by dr2 + r2dθ2, or more

generally, gμνdxμdxν. (Note that we are using the notation of chapters I.5 and I.6, in

particular, Greek indices.) Here S is a functional of two functions, r(t) and θ(t), so that

varying, we obtain two Euler-Lagrange equations: r̈ = rθ̇2 − κ

r2 and d
dt
(r2θ̇ )= 0. Note that

the conservation of angular momentum pops out, without our having to derive (I.1.13) and

stare at it to recognize its more compact form.

6. Relating our discussion here to that in chapters I.5 and I.6, we see that the action allows us

to immediately formulate mechanics in any coordinate system and in curved space. Simply

replace (11) by

L

(
dq

dt
, q
)

= 1
2
m

(
gμν(q)

dqμ

dt

dqν

dt

)
− V (q) (13)

as in (12).

7. In the treatment in chapter I.1 involving equations of motion, the mass of the planet m

drops out. In the action formalism here, this corresponds to m appearing merely as an

overall factor for the action in (12). As I mentioned in chapter I.1, this fact will play a central

role in Einstein gravity.

A particle at rest will remain at rest

For a pedagogical exercise, imagine that you and I were around in the early 18th century.
How could we, doused with a liberal dose of hindsight, have developed the principle that
governed the motion of material particles? What I will describe is not how it actually
happened, but what we can readily imagine as how it could have happened, a sort of
alternative physics history, perhaps in another civilization far far away in another galaxy.

We have heard of Fermat’s marvelous principle, but material particles obviously can’t
also follow a least time principle, since their speeds can vary according to their energies.

Consider the simplest case of a particle moving in 1-dimensional space. To get started,
suppose that there is no force and the particle just sits there: the couch potato problem.
What is the particle minimizing? Obviously, it is keeping its kinetic energy as small as
possible.

Define the quantity S(q)= ∫
dt m2 (

dq
dt
)2, which we will call the action. The integral over

t is evaluated from some initial time, call it 0, to some final time T . The particle starts
from some initial position q(0) and ends up at some final position q(T ). To ease writing,
choose the coordinate such that q(0)= 0. We also impose q(T )= q(0)= 0. Evidently, S is
minimized for dq

dt
= 0, which when solved with the stated boundary conditions gives us
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q(t)= 0. Indeed, we have successfully described, by design, a particle sitting at rest. We
have solved the couch potato problem, and perhaps we can even ask for tenure.

The law of inertia

So far so good. Next, we are emboldened to ask what would happen if at time T , we require
the particle to be in some other position∗ q(T )=Q. Is our action principle smart enough
to tell us that the particle will get there with constant speed?

Consider the path q(t)= Q
T
t + σ(t). Evidently, σ(t), subject to the boundary conditions

σ(0) = σ(T ) = 0, describes deviation from “the straight and narrow path.” Plug dq
dt

=
Q
T

+ dσ
dt

into our action:

S = m

2

∫ T

0
dt

(
Q

T
+ dσ

dt

)2

= mQ2

2T
+ mQ

T

∫ T

0
dt
dσ

dt
+ m

2

∫ T

0
dt

(
dσ

dt

)2

= mQ2

2T
+ m

2

∫ T

0
dt

(
dσ

dt

)2

where in the last step we used the boundary conditions. This is obviously minimized by
dσ
dt

= 0, which together with the boundary conditions implies that σ(t)= 0, and thus the
actual path q(t)= Q

T
t .

A small triumph: we have recovered the law of inertia! In the absence of an external
force, the particle continues to move† at a constant velocity Q

T
. No force: no speeding up,

no slowing down.
When we first learned to solve Newton’s law, we were typically given the initial position

q(t = 0) and the initial velocity dq
dt
(t = 0), rather than the initial and final positions, as in

the action principle. Of course we can also solve Newton’s law with specified initial and
final positions. Mathematically, we have a second order differential equation, so in any
case, we need two conditions to fix two integration constants.

Getting the potato off the couch

Let us now go back to the couch potato and see how we could nudge him into motion. Turn
on the gravitational potential V (q)=mgq. Note that q is a vertical coordinate pointing up:
larger q corresponds to higher potential energy. Our boundary conditions q(0)= q(T )= 0
imply that the initial velocity dq

dt
(0) must be positive: the particle shoots upward and

eventually falls back down. With a negative initial velocity, the boundary conditions could
not be satisfied.

The question is how to modify the free particle action S(q)= ∫
dt m2 (

dq
dt
)2. Indeed, by

dimensional analysis, our desired action principle is pretty much fixed: in the integrand,

∗ Compare 3:10 to Yuma. The problem there is that you have to get to Yuma, Arizona, at 3:10 pm.
† Which is of course a highly nontrivial statement that essentially got physics started.
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we can either add or subtract the potential energy. As mentioned earlier, adding would
just mean the integrand becomes the total energy. So we try subtracting and write S(q)=
m
∫
dt{ 1

2(
dq
dt
)2 − gq}.

What the minus sign does is that now the particle can get a better deal on the action
by moving to positive q, and thus lowers the action via the second term, compensating
for the gain in the first term. We can easily estimate how high h the particle has to rise to
get the best deal. Dropping the overall m, we have S ∼ T ( h

T
)2 − T gh: as anticipated, the

kinetic term wants the particle to stay on the couch (h= 0), while gravity urges it to go up
(h > 0). Extremizing in h, we obtain the familiar h∼ gT 2.

I am somewhat surprised that Newton didn’t discover the action principle. Indeed, I see
the brachistochrone problem, with its flavor of least time, as a bridge between the least
time and the action principles. Leibniz, Newton’s constant rival, apparently almost had it.

The Hamiltonian

After Lagrange invented the Lagrangian, Hamilton invented the Hamiltonian.∗

Given a Lagrangian L(q̇ , q), define the momentum by p = δL
δq̇

and the Hamiltonian by

H(p , q)= pq̇ − L(q̇ , q) (14)

where it is understood that q̇ on the right hand side is to be eliminated in favor of p.
Let us illustrate this procedure by a simple example. Given the Lagrangian L(q̇ , q)=

1
2mq̇

2 − V (q) in (9), we have p = mq̇, which is precisely what we normally mean by
momentum. The Hamiltonian is then given by

H(p , q)= pq̇ − L(q̇ , q)= pq̇ − 1
2
mq̇2 + V (q)= p2

2m
+ V (q) (15)

where in the last step we wrote q̇ = p/m. You should recognize the final expression as the

total energy, namely the sum of the kinetic energy p2

2m and the potential energy V (q). The
Hamiltonian represents the total energy of the system.

Lagrange and Feynman

We close with two small stories about two towering figures.
Starting when he was 18, Joseph-Louis, the Comte de Lagrange (who, by the way,

was born Giuseppe Lodovico Lagrangia before the term “Italian” existed), worked on the
problem of the tautochrone, which nowadays we would describe as the problem of finding
the extremum of functionals. A year or so later, he sent a letter to Leonhard Euler, the
leading mathematician of the time, to say that he had solved the isoperimetrical problem:
for curves of a given perimeter, find the one that would maximize the area enclosed. Euler
had been struggling with the same problem, but he generously gave the teenager full credit.

∗ We mention this here for future use in part III. There is of course a lot more to the Hamiltonian than given
here, but this is all we need.
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Later, he recommended that Lagrange should succeed him as the director of mathematics
at the Prussian Academy of Sciences.

Richard Feynman (1918–1988) recalled that when he first learned of the action principle,
he was blown away. Indeed, the action principle underlies some of Feynman’s deepest
contributions to theoretical physics. In particular, his formulation of quantum mechanics
depends very much on the action. I have left a clue in one sentence in the text for the
curious student on how quantum physics can be understood without writing down the
Schrödinger equation. Here you have learned how to do classical mechanics without
Newton’s equation.

Appendix 1: Particles and fields: Each telling the other how to behave

The action principle is now practically begging us to add the action (11) telling us how masses move in a
gravitational potential to the energy functional (II.1.11) in chapter II.1 telling us how masses generate the
gravitational field.

First of all, let us generalize (11) trivially to incorporate a whole bunch of masses through the magic trick of
indices:

Smatter =
∫

dt
∑
a

ma

{
1
2

(
d �qa
dt

)2

−�(�qa(t))
}

(16)

We have used the fact that the potential V felt by the ath particle is given by ma�, with the gravitational potential
�(x) evaluated at x = qa(t). (We now suppress the arrow on various vector quantities.)

In chapter II.1, we learned that the gravitational potential �(x) is determined by minimizing (II.1.11)

E(�) = ∫
d3x

(
1

8πG (∇�)2 + ρ(x)�(x)
)

, where the mass density ρ(x , t) =∑
a maδ

3(x − qa(t)) is given by a

sum of spikes centered on each of the particles. But wait, this is an energy functional, not an action. We now turn
it into an action by the simple expedient of integrating its negative over time (the overall minus sign is because
E(�) is a potential energy):

Sgravity = −
∫

dt

∫
d3x

(
1

8πG
(∇�)2 + ρ(x)�(x)

)
(17)

This is of course the infamous instantaneous action at a distance of Newtonian gravity: at time t , the gravitational
potential �(x , t) is determined by ρ(x , t) at the same time. (Needless to say, you should distinguish between the
two different uses of the word “action”!) You may have also noticed that I have already stealthily snuck a time
dependence into the mass density ρ(x , t): after all, the location qa(t) of the particles changes with time. It is a
free country: the particles are allowed to move around.

Confusio: “Do we now add the two actions, Smatter and Sgravity, together?”
No!
We see that, after we substitute the expression above for ρ(x , t) as a sum of delta functions into the second

term in Sgravity in (17) and then integrate over space, we obtain for this term

−
∫

dt

∫
d3x

∑
a

maδ
3(x − qa(t))�(x)= −

∫
dt
∑
a

ma�(qa(t))

But this is precisely the second term in Smatter given in (16). So Confusio, if you add the two actions together, you
would be double counting.

Thus, to obtain the total action for this Newtonian world, we should merge, rather than add, Smatter and Sgravity.
The correct action is

S =
∫

dt

{∑
a

1
2
ma

(
dqa

dt

)2

−
∫

d3x
1

8πG
(∇�)2

−
∫

d3x

(∑
a

maδ
3(x − qa(t))

)
�(x , t)

}
(18)
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The first term describes the dynamics of the particles, the second term describes the field �(x , t), and the third
term couples the particles and the field together.

In Newtonian gravity, the field dictates how the particles move, and the particles in turn generate the field.
If you think that the action (18) is an ugly and awkward mess, you are completely right. The gravitational field

pervades space but has no dynamics in time, merely reacting instantaneously to the location of the particles, while
the particles are treated as points. How these two issues are resolved comprises two magnificent achievements
in physics.

Dear reader, perhaps you have already seen a way of endowing the field with dynamics. By analogy with the
particle’s kinetic term (

dqa
dt
)2, which is quadratic in time derivative, you might add to the second term in (18)

a term quadratic in time derivative also, thus changing (∇�)2 to − 1
C2 (

∂�
∂t
)2 + (∇�)2, with C some unknown

constant with the dimension of length over time (that is, the dimension of speed) to make the dimensions come
out right. Varying S and repeating the same steps that led to II.1.10, we see that the equation determining � is
changed to

(
− 1
C2

∂2

∂t2
+ ∇2

)
�=Gρ (19)

Now � no longer reacts instantaneously to ρ at the same time t . No more Newton’s spooky action at a distance!
The gravitational potential now has dynamics and takes time to propagate from one point in space to another.
Indeed, in empty space, with ρ = 0, the solution to (19) has the familiar wave form �(�x , t)=A sin(ωt − �k . �x)+
B cos(ωt − �k . �x), with ω2 = C2�k2. The unknown constant C measures the speed of propagation.

If you indeed saw all this, congratulations, you are some kind of a genius. You had foreseen Lorentz invariance
and predicted the existence of gravitational waves. We will return to this in chapter IX.4.

But still, classical physics cannot remove the dichotomy between the field pervading space and the particles
localized as points. Only by going into the quantum realm, where particles can be realized as excitations in fields,
do we have a pleasingly unified description of Nature. This dichotomy between field and particle in fact provides
one of the driving motivations4 for quantum field theory. As you will eventually learn (but not in this text), in
quantum field theory, the form 1

C2 (
∂�
∂t
)2 − (∇�)2 in the modified action is equivalent to the statement that the

graviton, the particle associated with the gravitational field, is massless.

Appendix 2: The string in action and light cone coordinates

In chapter II.1, the string is just hanging there limply, far from being an action hero. With the action principle, it
is a cinch to make it spring into action. The displacement φ(x) of the string segment labeled by x now depends
on time and so has to be promoted to φ(t , x). Denote by ζ the mass per unit length, so that our little string
segment has mass ζdx. Add a kinetic energy term

∫
dx 1

2 ζ(
∂φ
∂t
)2 to the energy functional of the string given in

chapter II.1. The action becomes

S =
∫

dt

∫
dx

[
1
2
ζ

(
∂φ

∂t

)2

−
(
T

2

(
∂φ

∂x

)2

− σgφ(t , x)

)]

= 1
2
ζ

∫
dt

∫
dx

[(
∂φ

∂t

)2

− c2
s

(
∂φ

∂x

)2

+ κφ(t , x)

]
(20)

Note the relative signs between the terms: as we now realize, the energy functional defined in chapter II.1 should
really be called the potential energy functional and as we learned in this chapter, the kinetic energy and potential
energy work against each other in the action. In the second step, since the Euler-Lagrange equation of motion
does not depend on the overall normalization of the action, we took out a factor of 1

2 ζ and defined c2
s
= T

ζ
and

κ = 2σg
ζ

.
Indeed, you recognize that we give life to the string in the same way we gave life to the gravitational field in

the preceding appendix.
Varying φ and integrating by parts (once in time and once in space), we obtain the equation of motion

(
∂2

∂t2
− c2

s

∂2

∂x2

)
φ = 1

2
κ (21)
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One important point here is that cs has dimensions of speed and thus, as you might expect, controls the speed
with which vibrations on the string propagate.

The physics we want to emphasize here could be made more clear by turning off gravity, that is, by setting
κ to 0. Then the equation of motion for the string has the general solution φ(t , x)= fL(cst + x)+ fR(cst − x),
where fL and fR are two arbitrary smooth functions describing a wave propagating to the left and to the right,
respectively (a fact you can see by sketching φ(t , x) as a function of x at different values of t). Our subsequent
discussion is a bit cleaner if we use units so that the constant cs is effectively equal to 1. (This is completely
analogous to the astronomical practice of using light years as a measure of distance.)

The general solution φ(t , x)= fL(t + x)+ fR(t − x) is practically begging us to use the coordinates

x± ≡ t ± x (22)

instead of (t , x). We then have ∂± ≡ ∂
∂x± = 1

2 (∂t ± ∂x). To see the last equality, simply act with both sides on x±.
(To save writing, we use the notation ∂t ≡ ∂

∂t
and so forth.) We thus have the string action (up to an irrelevant

overall constant and with gravity turned off)

S =
∫

dxdt [(∂tφ)
2 − (∂xφ)

2] = 2
∫

dx+dx− ∂φ

∂x+
∂φ

∂x−

and the equation of motion ( ∂
2

∂t2
− ∂2

∂x2 )φ = 0, or even simpler with the x± coordinates, ∂2φ
∂x+∂x− = 0. By the way,

for reasons that will become clear later, the coordinates x± are known as light cone coordinates.
As I already mentioned, a dynamical variable such as φ(t , x) that depends on both time and space is known

as a field, just as an electric field or a magnetic field depends on time and space. Much more on fields later.
Here let’s recall the bad notation alert in chapter I.1. In this example, in particular, you see clearly that x is not a
dynamical variable but a label telling which segment of the string we are talking about.

Appendix 3: Baby string theory and a sneak peek at the Lorentz
transformation

Recall that when we discussed the energy functional of the membrane in chapter II.1, we used an observation

from chapter I.4 that the expression (
∂φ
∂x
)
2 + (

∂φ
∂y
)
2

transforms like a scalar (see exercise I.4.1) under the rotation
x′ = cos θ x + sin θ y, y ′ = − sin θ x + cos θ y.

The expression (∂tφ)
2 − (∂xφ)

2 we encountered here in the action for the string looks similar except for a
crucial minus sign. We naturally wonder if there might be a transformation similar to rotation that would leave
this expression invariant.

A clue is provided by the fact that to show x′2 + y′2 = x2 + y2, we need the trigonometric identity cos2 θ +
sin2 θ = 1. Let me remind you that the hyperbolic functions, cosh ϕ, sinh ϕ, and tanh ϕ, are defined in analogy
to the trigonometric functions (and are in some respects even simpler):

cosh ϕ = 1
2
(eϕ + e−ϕ), sinh ϕ = 1

2
(eϕ − e−ϕ), tanh ϕ = sinh ϕ

cosh ϕ
(23)

from which the hyperbolic identity cosh2
ϕ − sinh2

ϕ = 1 follows.
Let’s try transforming t and x using hyperbolic cosine and sine instead of trigonometric cosine and sine. We

see immediately that with

t ′ = cosh ϕ t + sinh ϕ x and x′ = sinh ϕ t + cosh ϕ x (24)

we have t ′2 − x′2 = t2 − x2. Furthermore, ∂tφ = ∂t ′
∂t
∂t ′φ + ∂x′

∂t
∂x′φ = cosh ϕ ∂t ′φ + sinh ϕ ∂x′φ. Similarly, ∂xφ =

sinh ϕ ∂t ′φ + cosh ϕ ∂x′φ. We then verify that, indeed, (∂t ′φ)2 − (∂x′φ)2 = (∂tφ)
2 − (∂xφ)

2. The string action is
left invariant by the transformation (24). Everything parallels the corresponding discussion for rotation of the
action for the membrane.

We will see in chapter III.3 that although the string discussed here obeys Newtonian physics and has nothing
to do with special relativity, the same transformation, known as the Lorentz transformation, appears in Einstein’s
theory of relativity. It is amusing that the transformation is foreshadowed by baby string theory.

To show the power of the x± coordinates, we note that the ∂φ

∂x+
∂φ

∂x− is obviously left unchanged if we multiply
x+ and divide x− by the same factor, call it eϕ. But the transformation x′+ = eϕx+, x′− = e−ϕx− when written
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in terms of t and x immediately translates into the transformation above. (For example, t ′ = 1
2 (x

′+ + x′−) =
1
2 (e

ϕx+ + e−ϕx−)= cosh ϕ t + sinh ϕ x .) With the right choice of coordinates, we don’t even need an inspired
guess.∗

Appendix 4: Particle on a sphere

Here is a fun problem. Determine the motion of a particle on a sphere with unit radius. Some features of the
calculation we do here will come in handy when we get to anti de Sitter spacetime in part IX. Denote the position
of the particle by �X = (X1, X2, X3), satisfying the constraint �X2 = 1. (Henceforth, we suppress the arrow to
minimize clutter.)

The problem is best solved with a double dose of Lagrange, using the Lagrangian and the Lagrange multiplier5

to implement the constraint. So, write L= 1
2 Ẋ

2 + 1
2λ(X

2 − 1), with λ the Lagrange multiplier. (We recognize
this as a special case of (11). We have also chosen units in which the mass of the particle is unity.) Here L is to
be regarded as dependent on X and λ.

Plug this into the Euler-Lagrange equation (7). For q taken to be λ, we recover the constraint X2 = 1, while for
q taken to be X, we obtain Ẍi = λXi (with i = 1, 2, 3). Differentiating the constraint, we have X . Ẋ = 0 (where
we indicate the dot in the dot product to remind us that we are dealing with vectors).

Now notice by direct differentiation that the quantity J ij ≡XiẊj −XjẊi does not depend on time: J̇ ij = 0.
In other words, it is conserved. Do you recognize it? Angular momentum of course! (We will have a lot more
to say about it in the next chapter.) Define 2J 2 = J ijJ ij = 2(XiẊj −XjẊi)XiẊj = 2Ẋ2. Hence Ẋ2 = J 2 is also
constant. Recognize it? Total energy.

This last equation has the solutionXi = aieiJ t + bie−iJ t , with �a and �b two constant complex vectors satisfying
a2 = b2 = 0, 2a . b= 1. Note that forXi to be real, �b= �a∗. (Of course, if you prefer, you can express the solution in
terms of sine and cosine.) The constraint 1 =X2 is also satisfied. Hence, the motion of the particle is completely
solved.

Geometrically, it is clear that the particle travels along great circles. Let’s verify this. What is the distance D
traversed by the particle between times t1 and t2? We have

D =
∫ √

(d �X)2 =
∫

dt
√
Ẋ2 = J

∫
dt = J (t2 − t1)

In contrast, at time t1, X1 = aeiJ t1 + be−iJ t1. The position X2 at time t2 is given by a similar expression with t2
replacing t1. The angle θ12 between the two vectorsX1 andX2 is then given by cos θ12 =X1 .X2 = 2a . b cos J (t1 −
t2)= cos D, since 2a . b = 1. We obtain, as expected, D = θ12.

The attentive reader might have noticed that we need not determine the Lagrange multiplier, but it is easy to
do. UsingX2 = 1andX . Ẋ = 0, we find J ij Ẋj = J 2Xi and J ijXj = −Ẋi . But if we differentiate the last equation,
we obtain −Ẍi = J ij Ẋj = J 2Xi . Comparing with the equation of motion obtained earlier, we find λ= −J 2.

Exercises

1 Show that for a harmonic oscillator, the actual path can be either the maximum or the minimum of the
action.

2 Suppose the falling particle in (1) follows an inverted parabola q2(t)= h(t − T )2/T 2. By the argument given
in the text, the corresponding action must be higher than the actual action. Calculate S(q2) and show that it
is indeed higher.

3 Show that for the action S(q)= ∫
dt{ 1

2 (
dq
dt
)2 − gq} discussed in the text, with initial and final conditions

q(0) = q(T ) = 0, the action evaluates to − 1
24 g

2T 3 for the actual path q(t) = − 1
2gt (t − T ). If the particle

stayed on the couch, its action would have been 0.

∗ If g = 0, the physics is invariant under a much larger class of transformations, as you will see in exercise 5
and later in chapter IX.9.
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4 Vary S = 2
∫
dx+dx− ∂φ

∂x+
∂φ

∂x− to obtain the equation of motion ∂2φ
∂x+∂x− = 0.

5 Show that for g = 0, the dynamics of the string is invariant under x′+ = f+(x+), x′− = f−(x−), with f+ and
f− two arbitrary smooth functions.

6 Solve the isoperimetrical problem. You know the solution is a circle.

Notes

1. If it ever comes to a priority dispute, Fermat would have to cede to Heron of Alexandria (circa 65 ad).
2. K. Barner, “How Old Did Fermat Become?” NTM 9 (2001), p. 209.
3. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals; also, QFT Nut, chapter I.2.
4. QFT Nut.
5. Let me remind those readers who are a bit shaky about the Lagrange multiplier that I gave a brief review in

endnote 8 in chapter I.7.



II.4 Symmetry and Conservation

“Spiritual formulas”

Pure mathematics is, in its way, the poetry of logical ideas.
One seeks the most general ideas of operation which will
bring together in simple, logical and unified form the largest
possible circle of formal relationships. In this effort toward logical
beauty spiritual formulas are discovered necessary for the deeper
penetration into the laws of nature.

—Albert Einstein, writing about Amalie Emmy Noether
(1882–1935)

Symmetry1 and conservation played, and continue to play, intertwined and central roles in
physics. A set of transformations that leaves physics unchanged is said to be a symmetry.
The example of angular momentum conservation, as discussed in chapter I.2, strongly
indicates that symmetry and conservation are intimately related. In this chapter, we will
have a general discussion showing that this is indeed the case.

I give immediately two concrete examples.

Example A

A particle moves in 2-dimensional space under a rotationally invariant potential, that is, a
potential without a preferred direction:

L= 1
2
m

[(
dx

dt

)2

+
(
dy

dt

)2
]

− V (r) (1)

where, as usual, r =√
x2 + y2.
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Example B

Two particles move in 1-dimensional space interacting with a translation invariant poten-
tial, that is, a potential that depends only on the distance between them:

L

(
dqa

dt
, qa

)
= 1

2
m

[(
dq1

dt

)2

+
(
dq2

dt

)2
]

− V (|q1 − q2|) (2)

Let us consider a Lagrangian L
( dqa
dt

, qa
)

depending on a certain number of qs, which
we denote as qa. You see that our notation is flexible enough so that the index a can have
entirely different meanings in different examples. In example A, it labels the x and y

coordinates of a single particle. In example B, it labels two different particles. In general, we
can have n particles moving in D-dimensional space, so that a = (α , i), with α = 1, . . . , n
and i = 1, . . . , D. In other words, the index a labels the different degrees of freedom, and
L
( dqa
dt

, qa
)

denotes L
( dq1
dt

, dqN
dt

, q1, . . . , qN
)

with N = nD degrees of freedom.
With this rather general setup, we proceed. We say that our Lagrangian exhibits a sym-

metry if it remains invariant under an infinitesimal transformation qa → qa + δqa. It
suffices to specify an infinitesimal transformation, since a noninfinitesimal transforma-
tion can be built up by repeating infinitesimal transformations, as explained in chapter I.3.

Again, let us hasten to our concrete examples. The Lagrangian in example A does not
change under the transformation x → x + εy and y → y − εx. Recall from chapter I.3 that
this is just a rotation through an infinitesimal angle ε . The Lagrangian in example B does
not change under the transformation q1 → q1 + ε and q2 → q2 + ε.

Profundity and simplicity

We are now ready to prove Noether’s theorem. As is often the case with the most profound
theorems in theoretical physics, the proof is astonishingly simple. The statement that a
Lagrangian does not change under an infinitesimal transformation qa(t)→ qa(t)+ δqa(t)

can be written as

0 = δL=
∑
a

[(
δL

δ
dqa
dt

)
δ

(
dqa

dt

)
+ δL

δqa
δqa

]
(3)

Under the transformation qa → qa + δqa, we have, by differentiating, dqa
dt

→ d
dt
(qa +

δqa)= dqa
dt

+ d
dt
δqa, so that δ( dqa

dt
)= d

dt
δqa. Thus, (3) becomes

0 =
∑
a

[(
δL

δ
dqa
dt

)
d

dt
δqa + δL

δqa
δqa

]
(4)

To keep things uncluttered so that you can see more clearly what is going on, I ask you
to hold the summation

∑
a in your head. I now suppress the index a and write (4) as

0 =
(
δL

δ
dq
dt

)
d

dt
δq + δL

δq
δq (5)
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What do we do now? The only weapon at our disposal is the Euler-Lagrange equation

δL

δq
= d

dt

(
δL

δ
dq
dt

)
(6)

Putting this into (3), we have

0 =
(
δL

δ
dq
dt

)
d

dt
δq + d

dt

(
δL

δ
dq
dt

)
δq (7)

Lo and behold! The two terms on the right hand side combine, and we obtain

0 = d

dt

(
δL

δ
dq
dt

δq

)
(8)

In other words, the motion is such that

Q= δL

δ
dq
dt

δq (9)

does not change in time. Q is conserved! (Restoring the sum in your head, we have
Q=∑

a
δL

δ
dqa
dt

δqa.)

This is Noether’s theorem, proved in that momentous year for physics 1915: for every
transformation that leaves the Lagrangian unchanged, there is a conserved quantity.

Applying Noether’s theorem

I am sure that you are eager to see how this actually works in practice. So let us jump to
our two examples on the double. We just have to plug in (9).

Example A

Q= ε

(
δL

δ dx
dt

y + δL

δ
dy
dt

(−x)
)

= εm

(
y
dx

dt
− x

dy

dt

)
(10)

Don’t forget the sum
∑

a that you were holding in your head! That is why there are two
terms: the sum runs over x and y.

A trivial remark is that we can drop the overall constant ε now that its job is done.
The more important remark is that the conserved quantity m(y dx

dt
− x

dy
dt
) is just the an-

gular momentum. Thus, the conservation of angular momentum follows from rotational
symmetry, as we suspected in chapter I.2.

Example B

Q= εm

(
δL

δ
dq1
dt

+ δL

δ
dq2
dt

)
= εm

(
dq1

dt
+ dq2

dt

)
(11)
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We recognize this as just the conservation of total momentum! The conservation of
momentum follows from translational symmetry.

Utter generality

With practice, you will soon get the hang of it. You are given some Lagrangian, and after
staring at it, you realize that it is invariant under some transformation. Then you simply
plug the change of qa, namely δqa, into Noether’s formula. There you are! The conserved
quantity is

∑
a

δL

δ
dqa
dt

δqa. Here I have restored the sum over a.

Note that the derivation does not refer to the specific form and content of the Lagrangian,
except for the fact that the Euler-Lagrange equation holds.

Noether’s formula is utterly general and holds, all the way up, for quantum field
theory, for string theory, and in fact, for any theory that respects the action principle.
For the simple case of Newtonian mechanics, the Lagrangian has the generic form L=∑

a
1
2ma

( dqa
dt

)2 − V (q1, q2, . . .), in which case the conserved quantity corresponding to
translation invariance is given simply by

∑
a ma

( dqa
dt

)
δqa. Note that I have allowed for the

possibility of the particles having different masses. Thus, for example, if the two particles
in example B have different masses, the conserved quantity is m1

dq1
dt

+m2
dq2
dt

.

Energy conservation

Staring at (3), the astute reader might have noticed that even if δL does not vanish, but
as long as it is a time derivative (namely that δL= dK

dt
for some K), we can still proceed.

When we get to (8), we now have dK
dt

on the left hand side instead of 0:

dK

dt
= d

dt

(
δL

δ
dq
dt

δq

)
(12)

We still have a conserved quantity:

Q= δL

δ
dq
dt

δq −K (13)

You might think that this is an obscure clause, a technicality fit for some nattering math-
ematical nitpickers. What kind of transformation would change L into this special form?
But you would be wrong. Energy conservation provides an example of this phenomenon.

Consider a Lagrangian without any explicit time dependence, such as the Lagrangian
in our examples A and B. Let the transformation be an infinitesimal translation in time:
q(t)→ q(t + ε)� q(t)+ ε

dq
dt

. We are just shifting the argument of q(t) and dq
dt
(t) inside

L by ε and thus, obviously, δL= ε dL
dt

; in other words, we haveK = εL. Plugging δq = ε
dq
dt

into (13) for the simplest case of a particle moving in a 1-dimensional potential, we find

Q= ε

(
m
dq

dt

dq

dt
− L

)
= ε

(
m

(
dq

dt

)2

−
(

1
2
m

(
dq

dt

)2

− V (q)

))
= ε

(
1
2
m

(
dq

dt

)2

+ V (q)

)

(14)
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which is, up to the no-longer-relevant overall constant ε, just the total energy. Note that in
contrast to chapter I.2, here we simply turn the crank.

To understand better what is going on, it is instructive to look at this derivation from a
somewhat different point of view. Start with the action

S =
∫ T

0
dt

{
1
2
mq̇(t)2 − V (q(t))

}
(15)

Now consider

S′ ≡
∫ T

0
dt

{
1
2
mq̇(t + ε)2 − V (q(t + ε))

}
(16)

It is crucial to realize that we are holding the limits of integration fixed, so this is not just a
trivial shift of the dummy integration variable by ε. Thus, S′ �= S. Expanding the difference
to linear order in ε, we have

δS = S′ − S = ε

∫ T

0
dt (mq̇q̈ − V ′(q)q̇) (17)

We now evaluate δS in two different ways. First, using the equation of motion, we can
write (17) as

δS = ε

∫ T

0
dt (mq̈ − V ′(q))q̇ = ε

∫ T

0
dt (−2V ′(q))q̇ = −2ε

∫ T

0
dt
dV

dt

Second, without using the equation of motion, we write (17) as

δS = S′ − S = ε

∫ T

0
dt

d

dt

(
1
2
mq̇2 − V (q)

)

Equating these two expressions for δS, we obtain
∫ T

0 dt d
dt
( 1

2mq̇
2 + V (q))= 0. (Note how

the relative sign between the kinetic and potential energy terms flips at this point.) Doing
the trivial integral and defining E(t)≡ 1

2mq̇
2 + V (q), we obtain E(T )= E(0).

Perhaps Noether’s infinitesimal transformations here reminded you of Lie’s infinitesi-
mal transformations in chapter I.3. Clearly, there is a fruitful connection to be exploited.
Just a remark to whet your appetite for more.

Exercise

1 Derive the conservation of angular momentum in 3 dimensions using Noether’s theorem.

Note

1. Fearful.



Recap to Part II

We find the shortest path by the incredibly clever trick of comparing the length of different
paths, basically the same method used by a colony of ants. The ants send out zillions to
try out different paths to the honey. We adopt the same idea. They exploit pheromone
evaporation; we use the variational calculus. Euler and Lagrange proposed to change things
a little and see what happens.

Mysteriously, all of fundamental physics is governed by the action, from which the
equations of motion follow.

A profound truth is that the conservation laws are due to symmetries.





Part III Space and Time Unified





III.1 Galileo versus Maxwell

I am convinced that the philosophers have had a harmful effect
upon the progress of scientific thinking in removing certain
fundamental concepts from the domain of empiricism, where
they are under our control, to the intangible heights of the a
priori. . . . This is particularly true of our concepts of time and
space, which physicists have been obliged by the facts to bring
down from the Olympus of the a priori in order to adjust them
and put them in a serviceable condition.

—A. Einstein1

Galilean transformation

Go back to the prelude, in which Galileo’s ship was updated to Einstein’s train. The observer
on the train, Ms. Unprime, ascribed to some event the spatial coordinates (x , y , z) and
temporal coordinate t . To the same event, the observer on the ground, Mr. Prime, assigns
the coordinates (x′, y′, z′) and t ′. Denote the speed of the train by u, and choose the axis
so that the train moves along the x-axis. Then the two sets of coordinates are related by

t ′ = t

x ′ = x + ut

y ′ = y

z′ = z (1)

a set of relations known as the Galilean transformation. Consider a point on the train with
x = 0. Plugging this into (1), we see that, for Mr. P on the ground, this point moves along
according to x′ = ut = ut ′.

The innocuous looking equalities y′ = y and z′ = z actually represent an important
consequence of Galileo’s relativity principle. Call the y direction the vertical direction. We
can supply sticks of a standard length L to Ms. U and Mr. P to build a fence.

To make sure that the sticks supplied to the two observers are identical, we can arrange
for the woodcutter to ride in a train going by at speed 1

2u relative to Mr. P and − 1
2u

relative to Ms. U. In other words, the coordinates of the woodcutter are given by t ′ = tw



160 | III. Space and Time Unified

and x′ = xw + 1
2utw. As far as the woodcutter is concerned, he is at rest, and Mr. P and

Ms. U are going by him at the same speed but in opposite directions.2 The woodcutter
can toss the pre-cut sticks in identical ways to the two observers and their helpers. This
long-winded digression is to answer any objection that the tossing of sticks from Mr. P to
Ms. U, say, could have done something to the lengths of the sticks.

The top of the two fences is then given by y =L and y′ =L, respectively. The two lengths
must agree, because as the two fences sweep past each other, the two observers could see
whether one fence is taller than the other. In either case, Galileo’s relativity principle,
stating that two observers in relative uniform motion could not decide who is moving
relative to the other, would be violated. Thus, we must have y′ = y. Similarly, z′ = z. The
coordinates perpendicular to the direction of motion are unaffected by the motion.

The relation x′ = x + ut certainly does not violate Galileo’s principle, since x = x′ +
(−u)t ′. To Ms. U, she is at rest, but relative to her, Mr. P, sitting at x′ = 0, is moving with
speed −u in the x direction.

We have set up the coordinates so that when t ′ = t = 0, we have x′ = x = 0. Just as
in chapter I.3, we can avoid having to line up the origins of the two coordinate systems
by considering the separation between two events E1 and E2 in spacetime located at
(t1, x1, y1, z1), (t ′1, x′

1, y′
1, z′1), (t2, x2, y2, z2), and (t ′2, x′

2, y′
2, z′2). Writing 
t = t2 − t1, 
x =

x2 − x1, and so on, and 
t ′ = t ′2 − t ′1, 
x′ = x′
2 − x′

1, and so forth, we have


t ′ =
t


x′ =
x + u
t


y′ =
y


z′ =
z (2)

Since the y and z coordinates are just going along for the ride, we omit writing the
transformation equations for them henceforth. Again, just as for rotations in chapter I.3,
we can replace the finite differences 
t , 
x, and so on by infinitesimals dt , dx, and so
forth:

dt ′ = dt

dx ′ = dx + udt (3)

Adding velocities

The addition of velocities is so physically intuitive that almost everybody grasps it in
everyday life. You are in a car speeding down the highway at 70 miles an hour. A fly trapped
in the car flies forward at 3 miles an hour. To a hitchhiker standing by the roadside, the fly
evidently moves forward at 70 + 3 = 73 miles an hour, even though flies normally can’t fly
that fast. Indeed, if the hitchhiker also sees the fly moving forward at 3 miles an hour, it
would have smashed into the rear window in an instant.

To formalize this intuitively obvious understanding, let us go back to the train. Ms. U
tosses an object forward with velocity v; in other words, the object’s trajectory is described
by x = vt . (See figure 1, showing Ms. U as a stoker on Einstein’s train.)
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Figure 1 A lump of coal is tossed forward on a moving train. (Illustration adapted from
Fearful.)

Simply plug this into (1) and we obtain, very slowly and carefully, the velocity seen by
Mr. P:

v′ ≡ dx′

dt ′
= d

dt
(x + ut)= dx

dt
+ u= v + u (4)

We just add the velocity of the object to the velocity of the train, as everybody would have
felt intuitively. We can obtain the same result, perhaps a tad quicker, by going to (3) and
dividing dx′ by dt ′ to obtain

v′ = dx′

dt ′
= dx + udt

dt
= dx

dt
+ u= v + u (5)

The calculus book I read in high school warns the reader sternly that dx
dt

is a holistic
(but of course that word did not become fashionable until much later) symbol of a single
mathematical entity and is not to be thought of as dx divided by dt . I am telling you that
at the level of rigor of theoretical physics it is okay. Just think of the differential dx as
the difference 
x, divide by 
t , and then take the Newton-Leibniz limit. When we get to
general relativity, we will be constantly manipulating differentials.

We now see that the invariance of Newtonian mechanics under the Galilean transfor-
mation follows merely because Newton’s law involves the second derivative, so that

m
d2x′

dt ′2
=m

d

dt ′

(
dx

dt
+ u

)
=m

d2x

dt2
(6)

An important point here is that this derivation even tells us when Galilean invariance
of Newtonian mechanics fails. If u changes in magnitude or in direction (we had chosen
�u to point in the x direction, but �u is really a vector!), then (6) is changed to

�F ′ =m�a′ =m�a +m
d �u
dt

(7)

An ancient part of our brains interprets this extra term as an apparent additional force:
our body feels it when the driver of the car (remember, the one with the fly trapped in it)
speeding down the highway suddenly slams on the brake or zips around a sharp curve.
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Even someone as dumb as a fly would feel the additional force md �u
dt

as it smashes into the
windshield. Unfortunate as well as dumb.

But for now, what the fly knows is advanced stuff for us; we will get to it when we discuss
gravity. Let us check that the action for Newtonian mechanics is Galilean invariant. First,
for simplicity, look at the action for a single free particle in one dimension:

S =
∫

dt ′ 1
2m

(
dx′

dt ′

)2

=
∫

dt 1
2m

(
dx

dt
+ u

)2

=
∫

dt 1
2m

(
dx

dt

)2

+ u

∫
dtm

dx

dt
+ u2

∫
dt 1

2m (8)

The extra term linear in u in the Lagrangian is proportional to the integral of the derivative
dx
dt

. With fixed initial and final conditions, it is just an irrelevant additive constant. The
term quadratic in u is also an additive constant. In other words, the change in the action
S is just some additive constant whose variation vanishes.

This simple demonstration can be immediately generalized to the many-particle case
with

S =
∫

dt

⎧⎨
⎩
∑
a

1
2ma

(
dxa

dt

)2

−
∑
a �=b

V (xa − xb)

⎫⎬
⎭ (9)

Note that it is necessary for the interaction potential to depend on the difference xa − xb =
x′
a
− x′

b
. The generalization to higher dimensional space is trivial.

Incidentally, you might have noticed that implicit in the argument is the assumption that
the two observers in relative motion agree on the same mass. I have underlined this by
writing m explicitly in (6) and (8). There is no m′. Galilean relativity requires that different
observers measure the same mass.

Contrary to what the guy in the street might think, the principle of relativity did not start
with Einstein, but, in a sense, was reestablished by Einstein’s special relativity.

Showdown between Galileo and Maxwell

While the addition of velocities (4) is so intuitively obvious, even to a layperson not versed
in physics (as in my everyday example of a speeding car), it came to play a central role
in the looming crisis that confronted physics toward the end of the 19th century. In his
monumental work, Maxwell finally gave a precise elucidation of the mystery of light,
revealing it to be an undulating electromagnetic field. An electric field varying in space
and time generates a magnetic field varying in space and time, which in turn generates an
electric field varying in space and time, and thus the wave propagates through space and
time. The speed of propagation c depends only on how oscillating electric and magnetic
fields generate each other, and that, as the reader may recall or have heard, does not depend
on the observer.

On that occasion with the fly in the car, I was riding in the back seat, and I had a camera3

with me. I took a picture of a friend riding in the front seat next to the driver and the
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flash went off. Telling my friend that the speed of light is∗ 186,000 × 3,600 = 669,600,000
miles per hour, I asked my friend how fast a hitchhiker standing by the roadside would
have seen the flash of light go by. Her answer, indeed the only intuitively reasonable and
incontrovertible answer, was 70 + 669,600,000 = 669,600,070 miles per hour.

But this contradicts Maxwell’s equations.
To read this book, for the most part you do not need to have completely mastered

Maxwell’s theory of electromagnetism (although it would help). I will even derive it later.
At this point in our development, the single most important point is that light does not
obey the law of addition of velocities (4) that everyone took to be totally obvious. For light,
both observers measure the same speed:

c = c (10)

As I mentioned in chapter I.1, in the showdown between these two equations, (4) and (10),
the law of addition of velocities blinked and had to be modified.

This great antinomy made him stuck

Various eminent physicists in the late 19th century realized that they could reconcile
the contradiction between Maxwell’s theory and the law of addition of velocities if they
postulated that light, just like sound, had to propagate in a medium, an ether pervading
the universe. The speed of light c determined by Maxwell’s theory is the speed of light as
seen by an observer at rest with respect to the ether. As the earth moves through the ether,
the speed of light measured on earth would vary.

Notice that the existence of the ether would have profound implications for the foun-
dation of physics, namely, that absolute rest could be defined as rest with respect to the
ether. Ms. U and Mr. P could determine who is at rest and who is moving.

As you may have heard, the experimental evidence was against the infamous ether.
In 1887 (when Einstein was 8 years old), Michelson and Morley performed a famous
experiment to detect the ether and failed. By the way, Einstein claimed that he was guided
solely by Maxwell’s equations and had never heard of the experiment.

Indeed, Einstein even contemplated his own experimental setup to look for the ether.
In an impromptu speech given in December 1922 in Kyoto, Japan, describing how he had
discovered special relativity, he said that he had not doubted the existence of the ether
and that he had even thought of an experiment using two thermocouples to measure the
difference in the heat generated by two light rays, one moving in the same direction as the
earth, the other in the opposite direction.

A pair of thermocouples to measure the difference in the heat generated by the two
light rays, yeah right! You might have smiled: good old Albert was a far better theorist
than experimentalist. Michelson and Morley had a far better idea, to interfere the two light
rays. Putting that aside, you could sense Einstein’s frustration. In 1922, he said something

∗ Since this true story took place in southern California, we use “royal” rather than “revolutionary” units here.
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to the effect that this “great antinomy,” between Maxwell’s equations and the addition of
velocities, had really made him stuck.

Theoretical physicists love nothing better than a major contradiction between two well-
established results, each seemingly beyond reproach. In this case, it was a shoot-out
between electrodynamics and the addition of velocities. Einstein and his contemporaries
were inclined to blame electromagnetic theory. The law of addition of velocities seemed
rock solid. It took the cumulative genii of Lorentz, Fitzgerald, Poincaré, Einstein, and
others to suspect that something was wrong with (1).

Appendix: Galilean invariance and fluid dynamics

Most texts pass over the Galilean transformation in a headlong rush toward special relativity. I like to mention
that in fact, Galilean invariance offers us a powerful and often useful constraint4 on Newtonian physics.

You may or may not know that much of fluid dynamics is governed by the Navier-Stokes equation (with ν

denoting the viscosity, ρ the density, and P the pressure):

∂ �v
∂t

+ (�v . �∇)�v = ν∇2�v − 1
ρ

�∇P (11)

The pressure gradient ∇P provides the driving force, and the appearance of the mass density ρ comes from the
m in F =ma. I will now give you a quick derivation using Galilean invariance.

Suppose that Ms. Unprime wants to study fluid dynamics but has never heard of the Navier-Stokes equation.
She proceeds to write an equation for ∂ �v

∂t
, where �v(t , �x) is the fluid velocity at the point �x at time t . What are

the possible terms in this equation? By rotation invariance, we are to construct vectors out of what is available,
namely �v(t , �x) and �∇ = ( ∂

∂x
, ∂
∂y

, ∂
∂z
).

The key to the symmetry approach presented here is to require that whatever equation Ms. Unprime writes
down has to be the same as what Mr. Prime writes down. Mr. Prime sees the fluid moving with the velocity
�v′(t ′ , �x′)= �v(t , �x)+ �u. In what follows, it is sometimes convenient to take �u to point in the x direction, but it is
also easy to write (1) a bit more generally: t ′ = t , �x′ = �x + �ut . First, ∂

∂x′ = ∂t
∂x′ ∂

∂t
+ ∂x

∂x′ ∂
∂x

= ∂
∂x

, that is, �∇′ = �∇.
Next, we have ∂

∂t ′ = ∂t
∂t ′

∂
∂t

+ ∂ �x
∂t ′

. �∇ = ∂
∂t

− �u . �∇ (as usual, the symbol ∂
∂t ′ indicates that the partial derivative is

to be taken with �x′ held fixed, and so in the last step, since �x = �x′ − �ut ′, we have ∂ �x
∂t ′ = −�u).

Let us now express what Mr. Prime writes down in terms of what Ms. Unprime would write down. First,
∂ �v′
∂t ′ = ∂(�v+�u)

∂t
− (�u . �∇)(�v + �u)= ∂ �v

∂t
− (�u . �∇)�v, since �u is constant by assumption. Next, observe that

(�v′ . �∇′)�v′ = ((�v + �u) . �∇)(�v + �u)= (�v . �∇)�v + (�u . �∇)�v

Thus, we learn that the differential operator

∂ �v′

∂t ′
+ (�v′ . �∇′)�v′ = ∂ �v

∂t
− (�u . �∇)�v + (�v . �∇)�v + (�u . �∇)�v = ∂ �v

∂t
+ (�v . �∇)�v (12)

is invariant under Galilean transformation. Thus, Galilean invariance mandates that the combination D�v
Dt

≡
∂ �v
∂t

+ (�v . �∇)�v appears in the equation for fluid flow. We also note, more trivially, ∇′2�v′ = ∇2�v.
Therefore, requiring that Mr. Prime and Ms. Unprime observe the same physics, we arrive at the Navier-Stokes

equation5 (11).
One final comment based on symmetry: under time reversal, ∂

∂t
and �v change sign, but not �∇. Hence, the

term ∇2�v in (11) violates time reversal. Since in Newtonian physics, time reversal is violated by friction, we can
identify the coefficient ν as a measure of viscosity. If ν = 0, then (11) is known as the Euler equation.
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Exercise

1 In solving problems in mechanics, when we go from the lab frame to the center of mass frame, or vice versa,
we are invoking Galilean invariance of Newton’s laws without saying so explicitly. Here is a classic example.
Let a billiard ball hit another billiard ball at rest elastically head-on. Show that the two balls move off at right
angles to each other, as every pool shark knows.

Notes

1. A. Einstein, The Meaning of Relativity, p. 2.
2. We are implicitly assuming that even if the tossing of sticks might have done something to their lengths,

this effect does not depend on whether a stick is tossed to the right or to the left. Alternatively, Mr. P and
Ms. U could toss pre-cut sticks to each other.

3. By the time this book was finished, the camera had morphed into a cell phone.
4. For application to a problem on surface growth, see QFT Nut, chapter VI.6.
5. It is instructive to compare this symmetry-driven derivation with the standard textbook derivation, for

example, J. S. Trefil, Introduction to the Physics of Fluids and Solids, Pergamon Press, 1975, pp. 5 and 127.



III.2 Einstein’s Clock and Lorentz’s Transformation

Alice said, “In our country, there’s only one day at a time.” To
which the Red Queen responds, “That’s a poor thin way of doing
things. Now here, we mostly have days and nights two or three
at a time, and sometimes in the winter we take as many as five
nights together—for warmth, you know.”

—Lewis Carroll

The patent clerk invents a clock

So, how are we to modify the Galilean transformation laws so that the speed of light c does
not obey the everyday understanding of how velocities add? Somehow, particles of matter
(my friends and I, and the fly, in the story from the previous chapter) and particles of light
(the camera’s flash) do not tally the passage of time and space in the same way.

In the prologue, we saw how Einstein, through a thought experiment, showed that
simultaneity must fail. In another elegant thought experiment, Einstein proposed a clock
consisting of a pulse of light bouncing between two mirrors separated by distance L

(figure 1a). He was, after all, a patent examiner living in a time of technological innovations1

of all sorts, including ever-better chronometers.2 Ms. Unprime has one of these high-tech
clocks with her. For each tick-tock, three events occur: A= light leaves the lower mirror,
B = light bounces off the top mirror, and C = light arrives back at the lower mirror.

Let us write down the separation between events A and C in space and time. Evidently,

x = 0, 
y = 0, 
z= 0, since the pulse of light gets back to where it started. By construc-
tion, 
t = 2L/c.

Mr. Prime, the observer on the ground, watches the train carrying Ms. Unprime move
by with speed u in the x direction and sees a pulse of light bouncing up and down in the y
direction. What is the separation betweenA andC as seen by Mr. Prime? Since he sees the
clock moving along the x-axis, he notes that 
y′ = 0, 
z′ = 0 (that’s what “moving along
the x-axis” means). But 
x′, unlike 
x = 0, is nonzero and is given by 
x′ = u
t ′ (that’s
what “moving with speed u” means).

But how do we determine 
x′ and 
t ′ separately?
Use the fabulously astonishing equation c = c!
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(a)

(b)

L

L

1–2uΔt′ 1–2uΔt′

Figure 1 Einstein’s clock in its rest frame (a) and in a
moving frame (b).

It follows then that 
t ′ is the distance traveled by the light pulse divided by c. But what
is the distance traveled? Ask Mr. Pythagoras for help! We have two right-angled triangles
back to back, each with right sides (figure 1b) with lengths 1

2u
t
′ and L, and hypotenuse√( 1

2u
t
′)2 + L2. So, between tick and tock, light travels a distance of 2

√( 1
2u
t

′)2 + L2,
and hence

c
t ′ = 2

√(
1
2u
t

′
)2 + L2 (1)

Anybody who got a passing grade in high school algebra could solve this equation to
determine 
t ′ and hence obtain 
x′. (See exercise 1.) But a much more clever strategy is

to recall that 
x′ = u
t ′ and to substitute this into (1), obtaining c
t ′ = 2
√
( 1

2
x
′)2 + L2.

Now square this equation to obtain (c
t ′)2 = 4[( 1
2
x

′)2 + L2]. Lo and behold, we have

(c
t ′)2 − (
x′)2 = 4
[(

1
2
x

′)2 + L2
]

− (
x′)2 = 4L2 = (c
t)2 = (c
t)2 − (
x)2 (2)

since
x = 0. A fortiori, since
y′ =
y and
z′ =
z this also implies (c
t ′)2 − (
x′)2 −
(
y′)2 − (
z′)2 = (c
t)2 − (
x)2 − (
y)2 − (
z)2.

We can now consider an observer named Double Prime, with respect to whom the
mirrors are moving at some other speed along the x-axis. By the same reasoning, (c
t ′′)2 −
(
x′′)2 − (
y′′)2 − (
z′′)2 = (c
t)2 − (
x)2 − (
y)2 − (
z)2. Thus, we conclude that the
quadratic form (c
t)2 − (
x)2 − (
y)2 − (
z)2 must be the same3 for all observers in
uniform motion relative to one another.

By this clever thought experiment, Einstein used the Pythagoras theorem for space to
obtain a sort of generalized Pythagoras theorem for space and time.

Distinction between a very good physicist and a great physicist! A very good physicist
knows math (high school algebra in our case) and can solve equations (solve for
t ′ in our
example), but a great physicist listens to what the equations are telling him or her (that
Nature likes Pythagoras theorem so much that she wants to generalize it!).
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Lorentz’s transformation

He meant more than all the others I have met on life’s journey.
—Einstein speaking of Lorentz

What a guy! Did he mean to include family and friends in “all the others”?
Let us now see how we can modify the Galilean transformation (III.1.1), so that (c
t)2 −

(
x)2 − (
y)2 − (
z)2 does not depend on the observer.
First, the relation between (t ′, x′, y′, z′) and (t , x , y , z) must be linear, since nothing

prevents us from scaling {t ′, x′, y′, z′, t , x , y , z} by a common multiplicative factor (in
other words, {t ′, x′, y′, z′, t , x , y , z} → {λt ′, λx′, λy ′, λz′, λt , λx , λy , λz}). Thus, we can’t
have something like t ′ equal to t + ax2 with some constant a. The relation has to be linear.∗

Second, we have the seemingly innocuous requirement that as u→ 0, the transforma-
tion must reduce to the Galilean transformation. But, importantly, notice that before the
realization that c is a universal quantity of the universe, dimensional analysis alone would
have stopped our effort cold at this point. Without c, we have only x and u to play with,
and so the only quantity with dimension of time is x/u. The linearity requirement plus
dimensional analysis dictates the form t ′ = t + ax/u with some numerical constant a, but
this makes no sense as u→ 0. We are forced to t ′ = t .

If c is not a universal constant, we are stuck with the Galilean transformation. But with
c now off the bench and on the field, suddenly we have a new ball game: the combination
ux/c2 has dimension of time.

Now we can write t ′ = t + ζux/c2, with ζ some function of u
c

to be determined. But this
is not yet the most general relation. We could write t ′ = w(t + ζux/c2), with w also some
function of u

c
to be determined, provided thatw(u

c
= 0)= 1 so that we recover the Galilean

transformation.
Similarly, we can modify the Galilean relation x′ = x + ut to x′ = w̃(x + ut), where w̃

is also some unknown function of u
c

such that w̃( u
c

= 0)= 1. Notice that we do not write
x ′ = w̃(x + ζ̃ ut), with ζ̃ yet another function of u

c
, because we could simply give the name

u to the combination ζ̃ u. The relative velocity u between the two observers is defined by
the statement that x′ = 0 implies x = −ut . And of course we still have y′ = y and z′ = z.

Let us impose the requirement that for observers in uniform relative motion, the
combination (c
t)2 − (
x)2 − (
y)2 − (
z)2 does not depend on the observer. As already
mentioned in the prologue, clearly it would be a good idea not to use some dumb English
king’s foot to measure distance, but instead to use something such as the lightsecond, so
that† the speed of light c = 1. The algebra becomes cleaner.

∗ Another argument is that if the relation were not linear, free particle motion would look different to different
observers.

† In other words, we want to use the same units along the t -axis and x-axis. Similarly, in studying rotations,
it is a good idea (and obvious common sense) to use the same units along the x-axis and along the y-axis to
measure length. Think about what rotations would look like using centimeters along the x-axis and kilometers
along the y-axis.
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I might add that some beginning students are nervous about c suddenly disappearing.
Please be reassured that you can always restore c easily using dimensional analysis.

Since we have written our transformation such that the origins of the primed and
unprimed coordinates coincide, we can simply demand t ′2 − x′2 = t2 − x2. Expanding
w2(t + ζux)2 − w̃2(x + ut)2 = t2 − x2, we obtain 3 equations,∗ which determine the 3
unknowns to be w = w̃ = 1√

1−u2
and ζ = 1.

We have thus derived the Lorentz transformation† for a boost in the x direction:

ct ′ = ct + u
c
x√

1 − u2

c2

x ′ = x + u
c
ct√

1 − u2

c2

y ′ = y

z′ = z (3)

with c restored for the reader’s convenience. You are invited to write down the Lorentz
transformation for a boost in an arbitrary direction �u.

By construction, the Lorentz transformation reduces to the Galilean transformation in
the domain of everyday experience, namely in the limit u � c. Simply take the c → ∞
limit.

Since
√

1 − u2

c2 becomes imaginary for u > c, we learned that a universal speed limit
u≤ c exists. The train cannot go faster than the speed of light without all of our equations
breaking down.

Note that cdt ′ = cdt+ u
c dx√

1− u2

c2

�= cdt ! Our fallacy was that we thought for sure that when

1 second passed for my friends and I, and the fly, 1 second also passed for the hobo
hitchhiker. This assumption went into the derivation of Galileo’s common sense addition
law of velocities, which is so common sensical that we invoke it in everyday life without
ever feeling the need to prove it.

There is no universal clock in the universe ticking off the same universal time for
everyone.

∗ Namely w2 − w̃2u2 = 1, w2ζ 2u2 − w̃2 = −1, and w2ζ = w̃2, upon equating the coefficients of t2, x2,
and tx.

† Interestingly, in 1887, the German physicist W. Voigt came close to having this transformation. In Voigt’s

transformation, the right hand side of (3) was divided by
√

1 − u2

c2 . Not knowing Voigt’s work, in 1895, Lorentz
derived the transformation in a better form than Voigt’s. J. Larmor found the exact form in 1900. Not knowing
Larmor’s work, Lorentz discovered the exact form in 1904. In 1905, H. Poincaré, knowing only of Lorentz’s work,
developed the transformation further and named it the Lorentz transformation. As for Einstein, he only knew
the 1895 version of the Lorentz transformation. The term “Lorentz transformation” is an example of the Matthew
principle: Whoever has will be given more. . . . Whoever does not have, even what he has will be taken from him
(Matthew 13:12).
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Light cone coordinates

So there we have it, the Lorentz transformation that replaces the Galilean transformation:

t ′ = t + ux√
1 − u2

x′ = x + ut√
1 − u2

y′ = y

z′ = z (4)

(We have set c = 1 once again.)
Remarkably, once we require that t ′2 − x′2 = t2 − x2, the derivation takes only a few

lines of high school algebra. In fact, the derivation becomes even simpler if we use the so-
called∗ light cone coordinates x± ≡ t ± x I introduced back in chapter II.3. Indeed, there
I already gave you a sneak preview of the Lorentz transformation, in the context of the
purely Newtonian problem of a vibrating string, not anywhere near an electromagnetic
wave and its universal speed c! One of the most appealing features of theoretical physics
is its unified perspective.

The key observation is the identity a2 − b2 = (a + b)(a − b), so that t2 − x2 = (t + x)(t −
x)= x+x−. (As usual, we consider two observers in relative uniform motion along the x
direction, with y and zmerely going along for the ride and hence asking to be suppressed.)
Evidently, x+x− is left invariant if we multiply x+ by some factor and divide x− by the same
factor. The Lorentz transformation is strikingly simple in these coordinates:

x′+ = eϕx+ and x′− = e−ϕx− (5)

with ϕ some real parameter.
From (5) you can immediately recover (4): t ′ = 1

2(x
′+ + x′−) = 1

2(e
ϕx+ + e−ϕx−) =

(cosh ϕ)t + (sinh ϕ)x, and similarly x′ = (sinh ϕ)t + (cosh ϕ)x. It is easy to relate the
boost parameter or angle ϕ to the relative velocity u. From the condition that x′ = 0 implies
x = −ut , we discover that

u= sinh ϕ

cosh ϕ
= tanh ϕ (6)

(Purists might frown at physicists calling ϕ an angle, since it ranges from −∞ to +∞ as u
ranges from −1 to +1, but the terminology has the virtue of emphasizing the connection†

with the rotation angle.) Using the identity cosh2
ϕ − sinh2

ϕ = 1 mentioned back in
chapter II.3, we then obtain

cosh ϕ = 1√
1 − u2

and sinh ϕ = u√
1 − u2

(7)

∗ The terminology will become clear in the next chapter.
† See appendix 1 of chapter III.3 for further discussion.



III.2. Einstein’s Clock and Lorentz’s Transformation | 171

The light cone coordinates thus provide a “10-second derivation” of the Lorentz trans-
formation. In many situations (for example, the development4 of string theory), the coor-
dinates x± are much more convenient than t and x. In the same way, an earlier generation
found that rotations are more easily handled by going to complex and polar coordinates
z= x + iy = reiθ (and z∗ = x − iy = re−iθ ).

How velocities actually add

We can now easily derive the correct law of addition of velocities. I will let you work out
the more general case (exercise 3); here we consider the simple case of an object moving
in the x direction. The relevant part of (4) reads

t ′ = t + ux√
1 − u2

x′ = x + ut√
1 − u2

(8)

Let the velocity of an object as seen by Ms. U be v = dx
dt

and as seen by Mr. P on the
ground be v′ = dx′

dt ′ . Then, dividing dx′ by dt ′ as given by (8), we obtain

v′ = dx′

dt ′
= udt + dx

dt + udx
=

dx
dt

+ u

1 + udx
dt

= v + u

1 + uv
(9)

Instead of v′ = v + u, the correct law of addition of velocities contains a crucial denomi-
nator:

v′ = v + u

1 + uv
(10)

The function v′ ≡ fu(v) has some remarkable properties. It is symmetric under u↔ v,
as it should be. If the object is slowly moving with v � 1, then v′ � v + u, in accordance
with everyday intuition. But if the object happens to be a particle of light so that v = 1,
then v′ = 1+u

1+u = 1 independent of u, contrary to everyday intuition. If we solve (10) for

v = f−1
u
(v′), we obtain v = v′−u

1−uv′ = f−u(v′), consistent with f−u(fu(v))= v, of course. If
Mr. P sees Ms. U going by with velocity u, then of course Ms. U would see Mr. P going by
with velocity −u.

To “feel” how counterintuitive (10) is, imagine yourself carrying the ball in a game of
American football, running toward the goal line at 9 meters per second. Behind you is
the safety, chasing after you at 10 meters per second. You feel the safety gaining on you
at a relatively benign 1 meter per second. But suppose the safety had dropped way back
toward the goal line and is now coming at you at −10 meters per second. You see him
fast approaching at a bone-crunching 19 meters per second, a factor of 19 faster! (See
figure 2.) Now suppose the safety has strapped on a rocket moving at near light speed.
Then, regardless of whether he is chasing after you or coming toward you, you see him
closing in at v = v′−u

1− uv′
c2

|v′�±c � ±c. The rate of approach is almost the same in the two

cases, and becomes the same as v′ reaches light speed.
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(a)

(b)

2323

2323

Figure 2 Relativity in a game of Ameri-
can football.

“As the ancients dreamed”

In a certain sense, therefore, I hold it true that pure thought can
grasp reality, as the ancients dreamed.

—A. Einstein, 1954

I do not want to go into the historical controversy of whether Einstein knew about the
Michelson-Morley experiment when he worked out special relativity. I am inclined to
believe his statement that he didn’t. The independence of c on the observer follows from
Maxwell’s theory, while begging the question of what medium electromagnetic waves
propagate in. Instead, I discuss the existence of a speed limit.

Let us imagine how a philosopher (or perhaps an “ancient” in a civilization far far away)
could have argued. Suppose there is no speed limit. Then something could have gotten
from here to anywhere else in the universe in an instant. This is clearly absurd. So suppose
there is a speed limit c. An observer sees this thing moving at the speed c. But another
observer moving at a speed u in a direction opposite to this thing would, according to the
Galilean transformation, see it moving at a speed c + u, but this would contradict c being
a speed limit. Ergo, the common sense Galilean transformation has to be modified.

This is not how the Lorentz transformation was discovered in our civilization, but it
could have happened this way elsewhere. To me, the logical fallacy in this argument by
pure thought is that it may take an infinite amount of energy to make something go at
infinite speed. Indeed, that is what happens in a Newtonian universe, which is logically
consistent if you don’t ask disallowed questions such as how the universal clock was set
up. (Or, who set it up?)

This brief digression shows why it may be wise to focus on physics.
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Exercises

1 Derive the Lorentz transformation directly by solving (1).

2 Show that the inverse transformation giving t , x , y , z in terms of t ′ , x ′ , y′ , z′ is given by (3) with u→ −u.

3 Derive the law of addition of velocities in general, when �u and �v point in different directions. The law must
obey rotational invariance.

4 Consider a series of observers, with each observer seeing the preceding observer moving away along the x-
axis with speed u. Let the 0th observer see a particle moving with speed v0 in her frame. Then the (k + 1)st
observer sees the particle moving with speed vk+1 = vk+u

1+uvk . Find the limiting value of vk as k tends to infinity.

Notes

1. According to the literary scholar Dame Gillian Beer, around 1865, when Lewis Carroll, an early practitioner of
photography, wrote Alice in Wonderland, photography “froze or made portable a moment and a place.” To me,
that could have easily led to the concept of events in spacetime, as we will discuss in the next chapter. Carroll
was notoriously concerned with the notion of time, with for example the white rabbit constantly consulting
his pocket watch, an affectation and necessity when railways, with timetables and Einstein’s trains, came into
common use. To a physicist like myself, the two Alice books are full of allusions to concepts from physics:
gravity, scale transformation, and mirror reflection, to name a few.

2. P. Galison, Einstein’s Clocks, Poincaré’s Maps.
3. Some authors state that the invariance of this quadratic form follows immediately from (c
t)2 = (
x)2 +

(
y)2 + (
z)2 and (c
t ′)2 = (
x′)2 + (
y′)2 + (
z′)2. At best, this argument is highly misleading and
incomplete: if you know only that (c
t ′)2 − (
x′)2 − (
y′)2 − (
z′)2 = (c
t)2 − (
x)2 − (
y)2 − (
z)2

when both sides vanish, you cannot conclude that they are equal in general. You need Einstein and his clock.
4. See, for example, B. Zwiebach, A First Course in String Theory, 2009.



III.3 Minkowski and the Geometry of Spacetime

Unifying time and space

Henceforth space by itself, and time by itself, are doomed to fade
away into mere shadows, and only a kind of union of the two will
preserve an independent reality.

—Hermann Minkowski

In a far reaching move, Hermann Minkowski (1864–1909) introduced geometry into
special relativity. Some of the notions commonly attributed to Einstein, such as a 4-
dimensional∗ spacetime, are actually due to Minkowski.

In Euclidean space, the invariance of the combination dl2 = dx2 + dy2 + dz2 under
rotation allows us to define dl as the distance between two points. Two observers whose
coordinate systems are related by a rotation measure the same distance. Indeed, as I
emphasized in chapter I.3, the invariance of dl2 defines rotation.

With profound insight, Minkowski realized in 1907 (a mere1 2 years after Einstein
introduced special relativity) that the invariance of the combination dt2 − dx2 − dy2 − dz2

allows us to talk about the “distance” or “separation” between two points in spacetime. We
saw in chapter III.2 that this invariance determines the Lorentz transformation. Similar to
the case of rotation, two observers in uniform motion relative to each other can now agree
on the spacetime distance† between two points.

∗ In fact, psychologists tell us that some of our difficulties in life stem from a natural tendency to view time
as if it were like a spatial dimension, as reflected in many languages. In English, one says that, for example, the
past is behind us, we are rushing toward the future, and so on.2

† As an example of a lyrical confounding of space and time, consider Rudyard Kipling’s line “Damned from
here to eternity,” which subsequently lent itself to the title of a famous novel and film, not to mention a Yale
drinking song. Sounds so much better than “from now to eternity,” something that a Galilean physicist might
have said.
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Euclidean geometry is specified by the distance between two nearby points in space,
given by dl2 = dx2 + dy2 + dz2, while Minkowskian geometry is specified by the distance
between two nearby points in spacetime, given by ds2 = −dt2 + (dx2 + dy2 + dz2). The
quantity ds2 naturally generalizes Pythagoras’s dl2 and allows us to do geometry in space-
time.∗

The “modern” way of looking at special relativity is to emphasize the geometry of
spacetime, an approach which will lead us naturally to general relativity and Einstein
gravity.

Distance in Minkowskian geometry

With this singular minus† sign in ds2, the geometry of Minkowski spacetime is definitely
and defiantly not Euclidean. In particular, the infinitesimal quantity ds2 = −dt2 + (dx2 +
dy2 + dz2) between two nearby points may not even be positive. Conceptually, it may be
preferable to think of ds2 as a peculiar symbol in its own right, not necessarily as the square
of a real quantity. We say that the separation between two nearby points in spacetime is
timelike if ds2 < 0, spacelike if ds2 > 0, and lightlike or null if ds2 = 0. The term “lightlike,”
to be used interchangeably with “null” in this text, is evidently due to the fact that light
traces out a straight line path in spacetime given by dt2 = (dx2 + dy2 + dz2).

dt2 > (dx2 + dy2 + dz2) timelike

dt2 = (dx2 + dy2 + dz2) lightlike or null

dt2 < (dx2 + dy2 + dz2) spacelike (1)

The classification timelike, lightlike or null, and spacelike, can obviously be applied to
curves in Minkowski spacetime, not just straight lines. A curve is timelike if the separation
between any two infinitesimally nearby points on the curve is timelike. In other words, the
tangent vector on a timelike curve is a timelike vector. The worldline of a massive particle
is timelike. Similarly, we can define spacelike curves. The worldline of a massless
particle (like a photon) is lightlike or null.

It is hardly surprising, then, that many geometrical facts we take for granted no longer
hold true in Minkowskian spacetime. In particular, a straight line between two points in
spacetime is not necessarily the path of shortest distance.

Define the straight line “distance” between two points separated by 
t , 
x, 
y, and 
z
to be (
t)2 − (
x)2 − (
y)2 − (
z)2. Consider the triangle in the (t -x) plane formed
by the three points A = (0, 0), C = (2, 0), and B = (1, x) for x < 1. See figure 1. The
three sides have “lengths” dAC = √

22 − 02 = 2 and dAB = dBC = √
1 − x2. Notice that

∗ Perhaps a more compact word is “zaum,” made up from the German words “Raum” and “Zeit,” which form
the title of the classic book by Hermann Weyl on space and time.

† Imagine telling Pythagoras that time has something to do with flipping a sign in his magical formula. You
would have been certified as a total nut. We now know that time differs from space by a sign, but that hardly
means we understand time. Physicists’ time is not the same as psychological time, whatever that is.
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x

Figure 1 A straight line between two points in
spacetime is not necessarily the path of shortest
distance. In the triangle shown, the sum of the
length of the two sides, AB and BC, is less than
the length of the side AC.

dAB + dBC = 2
√

1 − x2 is always less than dAC = 2. Indeed, as x → 1, the distances
dAB = dBC approach 0, becoming null or lightlike. That’s what a minus sign can do for you!

This little example captures quite a bit of the geometry of Minkowski spacetime, as we
will see. In exercise 10, you will generalize this example.

“A stubbornly persistent illusion” (?)

With this most valiant piece of chalk I might project upon the
blackboard four world-axes. Since merely one chalky axis, as
it is, consists of molecules all a-thrill, and moreover is taking
part in the earth’s travels in the universe, it already affords us
ample scope for abstraction; the somewhat greater abstraction
associated with the number four is for the mathematician no
infliction. . . . Then we obtain, as an image, so to speak, of the
everlasting career of the substantial point, a curve in the world
a world-line. . . . The whole universe is seen to resolve itself into
similar world-lines, and I would fain anticipate myself by saying
that in my opinion physical laws might find their most perfect
expression as reciprocal relations between these world-lines.

—Hermann Minkowski3

That piece of chalk was certainly valiant. In Minkowski spacetime, time and space are
distinguished only by a sign, but what a sign! No doubt one of the most significant∗ in all
of physics.

∗ Like objects repel in electromagnetism and attract in gravity. This amazing fact, which to a large extent is
responsible for the physical world as we know it, can be explained in terms of this sign. See QFT Nut, p. 37.
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t

x

Figure 2 The worldlines of several particles.

Since an event is specified by where and when it happened, we call a point in spacetime
an event. As a particle moves about in spacetime, it traces out a curve known as the
worldline. (See figure 2, in which we see the worldlines of several particles, including
one at rest.)

The distinguished physicist George Gamow wrote a charming autobiography attractively
titled My World Line. You can imagine the world as consisting of a tangle of worldlines,
with some coming together and intertwined with one another for a while and then moving
apart. Somehow, we can experience this tangle only one time slice at a time.

This picture of a tangle of worldlines, perhaps with a reality that goes beyond time,
has prompted many pseudo-philosophical ramblings. Einstein himself gave in to this
temptation. After the sudden death of his school friend Michele Besso, who had helped
him understand time in special relativity, Einstein wrote, only weeks before his own death
(as it would turn out) to Besso’s son: “Now he has departed from this strange world a little
ahead of me. That signifies nothing. For us, physicists in the soul, the distinction between
past, present, and future is only a stubbornly persistent illusion.”4

Light cone

Light propagates at the speed of light, that is, with dt2 = dx2 + dy2 + dz2, as already
mentioned above. Thus, light rays emitted from the origin of spacetime span a cone,
known as the future light cone, in Minkowski space, defined by t2 = x2 + y2 + z2 and
t ≥ 0. Similarly, light rays that reach the origin span the past light cone defined by t2 =
x2 + y2 + z2 and t ≤ 0. (See figure 3, in which we have to suppress the z-axis.) Note that
every point in spacetime has its own future and past light cones. Light cones everywhere!

Since a material object can’t move faster than c, its worldline is subject to the constraint
dt2 ≥ dx2 + dy2 + dz2, with the equality allowed only if the object is massless. In other
words, at all points along the worldline of a massive particle, its slope has to be greater
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past light cone

future light cone A
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Figure 3 The future and past light cones.

A
B

C

Figure 4 A particle must move inside its future
light cone at all points along its worldline.

than 45◦. The particle must move inside its future light cone at all points, as indicated in
figure 4.

Causality thus states that what happens at a point O in spacetime (see figure 3) can
only influence what happens inside its future light cone but not what happens outside
its future light cone (such as the event A in figure 3). Similarly, only events that occur
inside its past light cone (such as the event B in figure 3) can influence what happens
at O.

Note that if we restore c, the light cone flattens out as c → ∞, so that the future light
cone encompasses all of future t ≥ 0, and we are back to the Galilean view of space and
time. (In figure 5, call where we are sitting the origin of spacetime; then the entire shaded
region is in our past “light cone.”)
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t

x ⇒

t

x

Figure 5 The Galilean limit of the past light cone.

Proper time

Consider two events A and B, infinitesimally separated, on the worldline shown in figure
4. Our two observers Ms. Unprime and Mr. Prime agree on the Minkowskian distance
between A and B, namely dt2 − dx2 − dy2 − dz2 = dt ′2 − dx′2 − dy′2 − dz′2. That’s the
whole point of special relativity! I will go almost painfully slow here for reasons that will
become clear. First, let the figure shown be the one Ms. Unprime would actually draw,
using her clocks and rulers. Mr. Prime would draw a different, but analogous, figure (which
we are not showing) using his clocks and rulers.

Suppose the worldline in figure 4 is actually that traced out by a Dr. D, using coordinates
t ′′, x ′′, y′′, and z′′. Since the worldline is curved, Dr. D is actually accelerating this way and
that, definitely not an inertial kind of guy. To Dr. D, the spatial separation between A and B
is given by dx′′ = 0, dy ′′ = 0, dz′′ = 0, of course. You are not going anywhere in your rest
frame, by definition.

Now, special relativity informs us that the quantity dt ′′2 − dx′′2 − dy′′2 − dz′′2 = dt2 −
dx2 − dy2 − dz2 = dt ′2 − dx′2 − dy′2 − dz′2 is the same for all observers. Thus, it makes
sense for Ms. Unprime to define

dτ 2 ≡ dt2 − dx2 − dy2 − dz2 (2)

Since dx′′ = 0, dy ′′ = 0, dz′′ = 0, we have dτ 2 = dt ′′2 − dx′′2 − dy′′2 − dz′′2 = dt ′′2, so that
we can interpret dτ as the actual biological time elapsed between A and B as experienced
by Dr. D, were he or she a biological organism. We call dτ the proper time interval∗ for
Dr. D.

Notice that dτ is not the proper time lapse as experienced by Ms. Unprime. Nor is it the
proper time as experienced by Mr. Prime. The point of special relativity is that Ms. Unprime
and Mr. Prime agree that dτ is the proper time experienced by Dr. D.

∗ The term “proper” time is meant to refer to the time felt by Dr. D him- or herself, but to me hints of a lesson
in etiquette. A better term would have been “eigenzeit” or “eigentime,” as in “eigenvalue” or “eigenvector.”
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Distance measure in spacetime

The proper time naturally provides a “distance” measure in spacetime along an observer’s
worldline. What is the proper time experienced by Dr. D between two events A and C far
apart on his or her worldline? In physics, we assume that time is additive, and so we simply
sum up the infinitesimal proper time lapse to obtain

∫ C
A dτ . The statement, inherent in

Riemannian geometry and Einstein gravity, is that space and time can be experienced in
infinitesimal bite-sized segments. I don’t see how we could even do physics without this,
but of course it is still an assumption.

We have (compare this with the length of a curve given in (II.2.2))

∫ C

A
dτ =

∫ C

A

√
dt2 − d �x2 =

∫ C

A
dτ

√(
dt

dτ

)2

−
(
d �x
dτ

)2

=
∫ C

A
dt

√
1 −

(
d �x
dt

)2

(3)

I have purposely given four different expressions for the spacetime distance between A
and C. The second expression emphasizes that it is completely parametrization invariant.
The third expression uses the proper time itself as the integration parameter. The fourth
expression uses coordinate time as the parameter. Whose coordinate time? Ms. Unprime’s.

The fourth expression in (3) also explains our observation about the triangle in figure 1.
The line AC is in fact the path of longest distance between A and C, since d �x

dt
= 0 maximizes

the square root in that fourth expression in (3). Any curve (as long as it doesn’t have any
spacelike segment, for which the proper time interval in the integrand would be imaginary)
joining A and C will be shorter in length, thanks to the minus sign in (3).

One must exercise considerable care in looking at spacetime diagrams such as those in
the next chapter. It is easy to fall into the trap of thinking Euclidean.

Motion of a free particle

Students sometimes feel that the equation of motion of a particle can be derived somehow.
To be contrary, it has to be abstracted from empirical observations and then enunciated
by some great physicist, made great by said enunciation. Newton enunciated that, in the
absence of external forces, a particle will maintain a constant velocity. In particular, if the
particle is at rest, it will remain at rest. Hence the equation of motion d2 �X

dt2
= 0, or in other

words, d �X
dt

stays unchanged.
How does a free particle move in special relativity? Again, the answer had to be enunci-

ated by Einstein and then verified by experiments. But since Einstein came after Newton,
the postulated equation must reduce to Newton’s equation for a slowly moving particle. In
addition, there is the very stringent requirement that Ms. Unprime and Mr. Prime have to
agree that the particle is free. Both of these requirements are satisfied by

d2Xμ

dτ 2
= 0 (4)
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Here Xμ(τ) = (X0(τ ), Xi(τ)), with i = 1, 2, 3, denotes the location of the particle in
spacetime as measured by Ms. Unprime, and τ is the proper time determined by dτ =√
(dX0)2 − (d �X)2. To see what equation Mr. Prime subscribes to, we simply note that X′

is related to X by a linear transformation, X′μ =�μ
ν
Xν, and so

d2X′μ

dτ 2
=�μ

ν

d2Xν

dτ 2
= 0 (5)

and that dτ is the same for Ms. Unprime and Mr. Prime. Note that all we need here is
that the relation between X′ and X must be linear and that �μ

ν
must depend only on the

relative velocity between the two observers, so that it can pass through d2

dτ 2 untouched.
We will come back to the issue of how physical quantities observed by Ms. Unprime and
Mr. Prime are related in chapter III.6.

The Minkowskian metric for spacetime

Clearly, a more compact notation would be desirable. Let us write dτ 2 = dt2 − dx2 − dy2 −
dz2 = −ημνdxμdxν, with x0 ≡ t and ημν defined by

η00 = −1, η11 = η22 = η33 = +1, and ημν = 0 if μ �= ν (6)

As always, the Einstein summation convention holds unless stated otherwise.
You should be reminded of the distance squared between two nearby points in generi-

cally curved spaces ds2 = gμνdx
μdxν, with the metric gμν that we studied in chapters I.5

and I.6. We may regard ημν as the flat Minkowskian metric of spacetime, just as we regard
δij as the Euclidean metric of ordinary flat space. Geometry was originally the science of
measuring the earth; here we are measuring spacetime.

From here on, the discussion parallels completely the discussion of rotation in chapter
I.3 and of curved spaces in chapters I.5 and I.6, except that ημν replaces δij and gμν,
respectively. Inevitably, I will repeat some of the earlier discussions, as I will be talking
about vectors and tensors, upper and lower indices, all that good stuff. Given the confusion
that some beginning students have, I feel quite strongly that some repetition is worthwhile.
Indeed, my pedagogical strategy in this text is to proceed as follows:

rotation → coordinate transformation → curved space → Minkowskian spacetime

→ curved spacetime

These five topics can, and should, be treated as an organic whole.
As in our earlier discussions, dxμ = (dt , dx , dy , dz) defines the basic or ur-vector. A

vector pμ in spacetime is defined as a set of four numbers pμ = (p0, p1, p2, p3) that
transform in the same way as dxμ transforms under the Lorentz transformation. It is
sometimes called a 4-vector to distinguish it from ordinary 3-vectors in space. Evidently,
the 4-vector pμ contains the 3-vector pi = (p1, p2, p3).

The square of the length of the 4-vector p is defined as p2 ≡ p . p ≡ ημνp
μpν. (The

dot will be often omitted henceforth.) Indeed, just as rotations can be defined as linear
transformations that leave the lengths of 3-vectors unchanged, Lorentz transformations
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are defined as linear transformations that leave the (Minkowskian) lengths of 4-vectors
unchanged. In particular, dτ 2 = ημνdx

μdxν is left invariant.
For two arbitrary 4-vectors p and q, consider the vector p + αq (for α an arbitrary real

number) and its length squared p2 + 2αp . q + α2q2. Since α is arbitrary and since Lorentz
transformations leave lengths unchanged, they also leave the scalar dot product between
two 4-vectors

p . q ≡ ημνp
μqν = −p0q0 + p1q1 + p2q2 + p3q3 (7)

unchanged. (Recall that we used a similar argument in chapter I.3.)

Indices upstairs and downstairs

Earlier, in our discussion of curved surfaces in chapter I.6, I snuck in lower indices by
writing the indices on gμν as subscripts. Here, I have done the same, writing ημν as an
object carrying lower indices.

Thus far, ημν is the only object with lower indices. When we want to sum over two indices
μ and ν, the rule is that we multiply by ημν and invoke Einstein’s repeated summation
convention. We say that we have contracted the two indices. For example, given two
vectors pμ and qμ, we might want to contract the indices μ and ν in pμqν and obtain
p . q ≡ ημνp

μqν. Another example: given pμqνrρsσ , suppose we want to contract μ with
ρ. Easy, just write ημσηνρp

μqνrρsσ = (p . s)(q . r). Savvy readers will recognize that I
am going painfully slowly here for the sake of those who have never seen this material
before.

So far so good. All vectors carry upper indices, and the only object that carries lower
indices is η.

The next step is purely for the sake of notational brevity. To save ourselves from con-
stantly writing the Minkowski metric ημν, we define, when we are given a vector pμ, a
vector with a lower index

pν ≡ ημνp
μ (8)

In other words, if pμ = (p0, �p) then pμ = (−p0, �p). Thus, p . q = pμq
μ = −p0q0 + �p . �q .

(Notice that the same dot in this last equation carries two different meanings: the scalar
product between two 4-vectors on the left hand side and between two 3-vectors on the
right hand side, but there should be no confusion.) With this notation, we can write
p . q = pνq

ν = pνqν. Similarly, an expression ημνpμqνηρσ rρsσ can be written more simply
as pνqνrσ sσ . The Minkowski metric has been folded into the indices, so to speak.

Just a convenient notation

Unaccountably, some students are twisted out of shape by this trivial act of notational
sloth. “What?” they say, “There are two kinds of vectors?” Yes, fancy people speak of
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contravariant vectors (pμ for example) and covariant vectors (pμ for example), but let
me assure the beginners that there is nothing terribly profound∗ going on here. Just a
convenient notation.

Let us immediately clear up some potential questions about the notation. Some students
have asked why there isn’t a distinction between upper and lower indices for ordinary
vectors. The answer is that we could have, if we wanted to, written the Euclidean metric δij
with lower indices back in chapter I.3 and risked confusing the reader at that early stage.
But there is no strong incentive for doing that: the Euclidean metric does not contain any
minus signs, while the Minkowskian metric necessarily has one negative sign and three
positive signs to distinguish time from space. The upper and lower index notation serves
to keep track of the minus signs. In the Euclidean case, if we define pi = δijp

j , the vector
pi would be numerically the same as the vector pi. In Minkowski space, p1 = p1, p2 = p2,
and p3 = p3, but p0 = −p0.

The next question might be: given pμ, how do we get back to pμ?
Here is where I think beginners can get a bit confused. If you have any math sense at all,

you would expect that we use the inverse of η, and you would be absolutely right. Surely,
if you use η to move indices downstairs, you would use the inverse of η to move them
upstairs. But the inverse of the matrix⎛
⎜⎜⎜⎜⎜⎝

−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1

⎞
⎟⎟⎟⎟⎟⎠

is itself. So traditionally, the inverse of η is denoted by the same symbol, but with two upper
indices, like this: ημν. We define ημν by η00 = −1, η11 = η22 = η33 = +1, and ημν = 0 if
μ �= ν.

Indeed, ημν is the inverse of ημν regarded as a matrix: ημνηνλ = δ
μ
λ , where the Kronecker

delta δμλ is defined, as usual, to be 1 if μ = λ and 0 otherwise. It is worth emphasizing
that while ημν and ημν are numerically the same matrix, they should be distinguished
conceptually. Let us check the obvious, that the inverse metric ημν raises lower indices:
ημνpν = ημνηνλp

λ = δ
μ
λ p

λ = pμ. Yes, indeed.
Confusio: “Ah, I get it. The same symbol η is used to denote a matrix and its inverse,

distinguished by whether η carries lower or upper indices.”
From this we see that the Kronecker delta δμλ has to be written with one upper and one

lower index. In contrast, ημ
ν

does not exist. And there is no such thing as δμν or δμν. Also
note that the Kronecker delta δ does not contain any minus signs, unlike the Minkowski
metric η.

It follows that the shorthand ∂μ for ∂
∂xμ

has to carry a lower index, because ∂μxν = ∂xν

∂xμ
=

δν
μ

. In other words, for the indices to match, ∂μ must be written with a lower index. This

∗ Of course, if you woke up one day and discovered that you were a mathematician or a mathematician-want-
to-be, you should and could read more profound books.
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makes sense, since the coordinates xμ carry an upper index but in ∂
∂xμ

, it appears in the
denominator, so to speak. We will use this fact repeatedly. Once again, we already know
this from chapters I.5 and I.6.

Let me emphasize again an extremely useful feature of this notational device. In the
Einstein convention, a lower index is always contracted with an upper index (that is,
summed over), and vice versa. Never never sum two lower indices together, or two upper
indices together! If you ever encounter an expression in which two lower (or two upper)
indices are summed over, you know that there is a mistake∗ somewhere.

At the risk of repeating the obvious, remember, there is nothing profound† going on
here. The whole business of introducing upper and lower indices is just for notational
convenience. You are to read (8) as merely a definition introduced to save writing.

Spacelike and null surfaces

Now that space is married to time, what do we mean by the term “space”? Evidently, a
t = constant slice of Minkowski spacetime can be regarded as space. But the time and
space axes of another observer would in general be tilted with respect to yours, so a tilted
slice should also count. Such considerations lead us to generalize the concept of space
to spacelike surfaces to be defined below. Well, we learned how to characterize surfaces
embedded in Euclidean space in chapters I.6 and I.7, defining tangent vectors lying in the
surface and normal vectors (usually only one of them) perpendicular to the surface. Here
we do the same for surfaces embedded in Minkowski spacetime.

So, a surface in Minkowski spacetime consists of the set of points satisfying some
(reasonable) equation of the form F(x0, x1, x2, x3) = 0 (a special case of which is x0 =
f (x1, x2, x3)). Here the word “surface” is used in a generalized sense, not necessarily a 2-
dimensional surface of the kind we encounter in everyday life. The Jargon Guy yells, “Call it
a hypersurface!” but we ignore him. A surface is called spacelike if the separation between
any two infinitesimally nearby points on the surface is spacelike. The three tangent vectors
are everywhere spacelike. The normal to the surface is then a timelike vector. Notice that
this definition allows for the possibility that the surface is curved. Thus, when we get to
curved spacetime in part V, the same definition is still serviceable and provides what we
mean by “space.”

∗ In practice, this evident truth is used as follows: people can afford to be sloppy in intermediate stages of a
calculation, but then they move indices up and down at the end to satisfy this rule.

† Once, when I taught special relativity, I surveyed the students to find out what, if anything, they found
confusing or deficient in the textbook I used. One student, a kind of super-Confusio, told me that the textbook
never explicitly said that pμqμ and pλqλ are actually the same and it took him, poor fellow, a long time to figure
it out. Let it be recorded that this textbook explicitly states that p0q

0 + p1q
1 + p2q

2 + p3q
3 =∑

κ pκq
κ = pσq

σ =
ησρp

ρqσ = pρησρq
σ = pρηρσq

σ = pρqρ = pζq
ζ = pπq

π (with the last choice, although perfectly okay, not gen-
erally advisable, given the cultural baggage5 associated with π ). Got that? The so-called dummy summation
variables are just dummies to keep track of things.
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Surfaces generated by light rays, not surprisingly, form another important class of
surfaces known as null surfaces. Write Minkowski spacetime in spherical coordinates,
with ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2. In these coordinates, the metric is given by
gtt = −1, grr = 1, gθθ = r2, gϕϕ = r2 sin2 θ , with all other components equal to 0 (in other
words, exactly the same as in chapter I.5 except for the addition of the time coordinate). Now
consider the light cone defined by the equation t = r in these coordinates (t , r , θ , ϕ) and
formed physically by light rays going radially outward from the origin, along the trajectory
(dt , dr , dθ , dϕ)∝ lμ = (1, 1, 0, 0). This tangent vector along the light cone is clearly null,
since gμνlμlν = gtt l

t lt + grrl
rlr = −1 + 1 = 0.

The other two tangent vectors are given by

hμ = (0, 0, r−1, 0) and kμ = (0, 0, 0, (r sin θ)−1)

(We have normalized them to gμνhμhν = 1 and gμνkμkν = 1.) Evidently, they are spacelike
and orthogonal to lμ, since gμνlμhν = 0 and gμνl

μkν = 0. They are also mutually orthog-
onal, since gμνhμkν = 0. These three 4-vectors l, h, k furnish the three tangent vectors to
the surface.

Now comes the fun part. What is a 4-vector normal to the null surface? The answer is
evidently l itself! Since gμνlμlν = 0, l is “Minkowski perpendicular” to itself, and further-
more, to h and k. In other words, l is Minkowski perpendicular to all three tangent vectors
lying in the null surface.

We could utter the following peculiar-sounding statement: the normal to a null surface
is a null vector that lies in the surface. Minus signs could do “funny tricks” for us that
Euclid never dreamed of!

The null surface of the light cone has another peculiar property: it’s a “one way” surface.
Think of a massive particle moving along a timelike worldline. Once it enters into a given
light cone, it can’t get out again. If we think of the null surface as a membrane, it is
permeable only in one direction just like a certain hotel (in California): you can check
in, but you can never leave.

The relativistic Doppler shift

As a simple application of the 4-vector formalism and as a break from a rather for-
mal discussion, let’s derive the relativistic Doppler effect. Consider an electromagnetic
wave observed by Ms. Unprime and described schematically by cos(ωt − �k . �x)= cos kx =
cos ημνkμxν, where we have defined the 4-vector k = (ω, �k) with the circular frequency ω
and the wave vector �k. As usual, ω2 = �k2. The physical requirement k′x′ = kx is satisfied
if k transforms like x, that is, like a 4-vector.

What is the frequency and wave vector observed by Mr. Prime? The answer, namely the
relativistic Doppler formula, follows almost instantly from the Lorentz transformation:
ω′ = (ω + ukx)/

√
1 − u2, k′

x
= (kx + uω)/

√
1 − u2, k′

y
= ky, k′

z
= kz. We obtain thus

ω′ = ω(1 + u cos θ)/
√

1 − u2 (9)
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where θ is the angle between �k and �u. As the train is approaching Mr. Prime, θ � 0,

ω′ � ω

√
1+u
1−u , and so the frequency observed by Mr. Prime increases; in other words, it

is blue shifted. As the train recedes, θ � π , ω′ � ω

√
1−u
1+u , and the frequency is redshifted.

Compare this derivation with the elementary nonrelativistic discussion involving, if the
source is receding along the line of sight, the extra distance the next crest of the wave has
to travel and so on and so forth. Note that we have an extra relativistic factor of 1/

√
1 − u2,

which we will identify in the next chapter as due to time dilation.

One unified language

We derived the Lorentz transformation in the preceding chapter, but it is instructive to
derive it again. Let p and q be two arbitrary 4-vectors. Consider the linear transformation

p′μ =�μ
σ
pσ and q ′μ =�μ

σ
qσ (10)

Notice the upper-lower summation convention. For � to be a Lorentz transformation, we
require p′ . q ′ = p . q, that is,

p′ . q ′ = ημνp
′μq ′ν = ημν�

μ
σ
pσ�ν

ρ
qρ = p . q = ησρp

σqρ (11)

Since pσ and qρ are arbitrary, � must satisfy

ημν�
μ
σ
�ν

ρ
= ησρ (12)

Just as we determined rotations as transformations that left �p . �q invariant (in chapter
I.3), here we determine Lorentz transformations as those transformations that leave p . q
invariant. You also may recognize that �μ

σ
is playing the same role as Sμ

σ
in chapter I.5.

Indeed, in parallel with the discussion there, let us define the transpose by (�T ) μ
σ

=�μ
σ

(note the position of the indices!), so that we may write (12) as (�T ) μ
σ
ημν�

ν
ρ

= ησρ, or
more succinctly, �T η�= η.

I find it rather pleasing to have one unified language to describe four apparently different
subjects: rotation, change of coordinates, flat space, and Lorentz transformation. As I
have alluded to and as you will soon see, the same language is used in studying curved
spacetimes.

For the sake of the super-Confusio mentioned in the preceding footnote and first alluded
to in chapter I.6, let me stress once again that repeated indices are summed over and so
can be represented by any letter we wish, as long as it’s a letter in whatever alphabet you
are using that we haven’t yet used in the same expression. For instance, we could write
(11) just as well as p′ . q ′ = ηϕψp

′ϕq ′ψ = ηϕν�
ϕ
κ
pκ�ν

μ
qμ = p . q = ηκμp

κqμ. Since there
are only so many letters in the alphabets commonly used in physics, you will often see
the same expression written (as in the example here) with completely different letters,
particularly when we get to general relativity.
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Lorentz algebra

Following Sophus Lie once again, we consider an infinitesimal transformation �μ
σ

�
δμ
σ

+ ϕKμ
σ

(with the Kronecker delta defined earlier), just as in chapter I.3 we considered
an infinitesimal rotationR � I + θJ . As indicated above for (�T ) μ

σ
, we should also define

(KT ) μ
σ

= Kμ
σ

. Inserting this infinitesimal transformation into (12), we obtain, to leading
order in ϕ,

Kμ
σ
ημρ + ησνKν

ρ
= 0 (13)

which we can write as

KT η = −ηK (14)

We are to solve (14) for the unknown 4-by-4 matrix K, but actually this problem involves
only 2-by-2 matrices. Consider a boost in the x direction. Since y′ = y and z′ = z, there is
no point in dragging them around, and we can focus on the 2-dimensional space spanned

by t and x, so that effectively η =
(−1 0

0 +1

)
and we are to solve (14) for the effectively

2-by-2 matrix K. The solution is

K =
(

0 1

1 0

)
(15)

(If you have taken a course on quantum mechanics and know what Pauli matrices σi are,
you can see that K and −η are justσ1 andσ3, the first and the third Pauli matrix, respectively.
Finding the solution is a snap. Noting that σ1 is symmetric and that it anticommutes with
σ3 gives us (15) immediately.)

You should appreciate, exactly as in chapter I.3 for rotations, how easy it is to solve the
Lorentz condition for infinitesimal boosts. To leading order in ϕ, with t ′ � t + ϕx and
x′ � x + ϕt , we have t ′2 − x′2 � t2 − x2 + 2ϕ(tx − xt)= t2 − x2.

Note a crucial difference between infinitesimal boosts and rotations: K is symmetric,
while in contrast, J is antisymmetric (see I.3.7). Indeed, if we replace η → I , K → J in
(14), we obtain J T = −J .

As Lie had assured us, just as in our discussion of rotation, once we have determined the
infinitesimal boost, we can generate finite boosts by repeatedly boosting by an infinitesimal
amount. For ϕ finite and N large, write �( ϕ

N
)� I + ϕ

N
K � e

ϕ
N

K. For a finite boost, then
�(ϕ)= (�(

ϕ
N
))N = eϕK. Expanding the series, we obtain

�(ϕ)= eϕK =
∞∑
n=0

(ϕ)nKn/n! =
( ∞∑
k=0

ϕ2k/(2k)!

)
I +

( ∞∑
k=0

ϕ2k+1/(2k + 1)!

)
K

= cosh ϕ I + sinh ϕ K

=
(

cosh ϕ sinh ϕ

sinh ϕ cosh ϕ

)
(16)
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Note that we used K2 = 1 in crucial contrast to J 2 = −1 for rotation. Thus, we obtain

t ′ = cosh ϕ t + sinh ϕ x

x′ = sinh ϕ t + cosh ϕ x

y′ = y

z′ = z (17)

with y and z brought back in.
And thus, once again we have derived the Lorentz transformation. I hope that you

appreciate how elegant Lie’s method is compared to the brute force method we used in
the preceding chapter.

For two successive boosts in the x direction, �(ϕ1)�(ϕ2)=�(ϕ1 + ϕ2). The parameter
ϕ, sometimes called rapidity, combines additively. This also implies that�−1(ϕ)=�(−ϕ).

Also, (13) can be rearranged as ηρμKμ
σ
ησν = −Kν

ρ
, which implies that ηeϕKη = e−ϕK

and hence (since �= eϕK) ηρμ�μ
σ
ησν = (�−1)ν

ρ
. We could of course verify this explicitly

using (16):(−1 0

0 +1

) (
cosh ϕ sinh ϕ

sinh ϕ cosh ϕ

) (−1 0

0 +1

)
=
(

cosh ϕ − sinh ϕ

− sinh ϕ cosh ϕ

)
(18)

We note for future use that since cosh2
ϕ − sinh2

ϕ = 1, the Jacobian det � for Lorentz
transformations, just as for rotations, is equal to 1. Thus, d4x′ = d4x: spacetime volume
is unchanged.

It is instructive at this point to work out how pν transforms:

p′
ν
≡ ηνμp

′μ = ηνμ�
μ
σ
pσ = ηνμ�

μ
σ
ησρpρ = (�−1)ρ

ν
pρ (19)

Thus, while a vector with an upper index transforms with �, a vector with a lower index
transforms with �−1. They transform oppositely.

Note carefully the locations of various indices in the above discussion. Note also from
(16) that� and�−1 are symmetric as matrices. As an exercise, we could verify explicitly that
∂μ ≡ ∂

∂xμ
transform like a vector with a lower index, as we argued earlier. Since x′μ =�μ

ν
xν,

we have xν = (�−1)ν
ρ
x′ρ and hence ∂ ′

μ
= ∂

∂x′μ = ∂xν

∂x′μ ∂
∂xν

= (�−1)ν
μ
∂ν.

Lorentz tensors

Henceforth, physics is required to be invariant not only under rotations but also under
boosts. (Clearly, in addition to the boost along the x direction displayed in (17), we can
also boost along the y and z directions.) The set of all rotations and boosts is known as the
Lorentz group, which we will discuss in more detail in appendix 1. The rotation group is
evidently a subgroup of the Lorentz group.

The concept of tensors as discussed in chapter I.4 can be immediately generalized.
Mimicking the discussion for the rotation group, we immediately define a tensor with 2
upper indices T μν to be something that transforms as T μν → T ′μν = �μ

σ
�ν

ω
T σω. The

earlier discussion goes through; in particular, the symmetric and antisymmetric parts
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(Sμν ≡ T μν + T νμ and Aμν ≡ T μν − T νμ) of T μν transform separately, furnishing a 4 .

5/2 = 10-dimensional and a 4 . 3/2 = 6-dimensional representation, respectively. Just as
vectors can carry lower as well as upper indices, so can tensors. We may lower and raise
indices at will, using ημν and ημν, respectively. For example, T σλ

νρ
≡ ηνκT

κσλ
ρ

.

Euclid did not forbid you to study curves

It is worthwhile to underline a deep-seated but common misunderstanding that exists
among some students of special relativity. The subject is concerned with the physics seen
by two observers in uniform motion relative to each other. Absolutely nothing says that
the objects∗ they are studying have to move at constant speed. The confusion appears to
stem from thinking that special relativity is only capable of dealing with objects that do
not accelerate and that you need general relativity.†

Put differently, special relativity teaches us how dx′μ and dxμ are related, but nothing
in the Lorentz transformation requires that d2x′μ

dτ 2 and d2xμ

dτ 2 vanish.
There are actually misguided people walking around talking about the twin “paradox.”

A guy takes off in a rocketship while his twin stays home. When he comes back, he finds
that the stay-at-home twin has aged a lot more.6

So? The twin “paradox” is resolved by pointing out that it is not a paradox at all.7 In
ordinary space, nobody claims that the lengths of different paths connecting two points
are necessarily the same. A guy drove from Los Angeles to San Francisco via Las Vegas. His
twin drove directly from Los Angeles to San Francisco. When they met, the guy who went
to Las Vegas found that he had burned up more gas than his twin did. That is no more a
paradox than the twin paradox is a paradox. The lengths of different paths connecting two
points in spacetime can of course be different. Indeed, it would be quite amazing if the
lengths of entirely different paths connecting two points in spacetime turn out to be the
same. If the twins were the same age when they met, now that would be quite a paradox
indeed!

At big accelerators, unstable particles zip around the ring at speeds close to c. A particle
of the same type sitting in the lab has long decayed, while its “twin” is still speeding around
the ring. That the twin paradox is not a paradox is a solid experimental fact that has been
verified countless times.

In the twin paradox, two observers (Ms. Unprime and Mr. Prime) in relative uniform
motion observe the two twins. Notice that the stay-at-home twin is not required to sit still.
What special relativity requires is that the two observers agree on the proper time that has
elapsed for the stay-at-home twin when his wandering sibling returns. The two observers

∗ The theory of special relativity does not care whether these objects are animate or not: they could be charmed
mesons or other observers.

† This is manifestly untrue: accelerators accelerate particles, but to master particle physics, students do not
necessarily have to become proficient in general relativity.
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also must agree on the proper time that has elapsed for the wandering twin. What is not
required at all is that these two proper times agree.

Perhaps I should say something even more obvious. Euclidean geometry is left invariant
by rotations, but this does not mean we are allowed to study only straight lines in Euclidean
space. We are of course also free to study curves. What Euclid requires is that two observers
whose coordinates are related by a rotation must agree on the length of a given curve, but
it would be absurd to insist that they proclaim all curves to have the same length.

So, let me say it again: just as Euclid did not forbid you to study curves in his space,
Einstein did not forbid you to study curves in his spacetime. Indeed, the equation of motion
of a free particle (4) may be immediately generalized to that of a particle acted upon by an
external force:

m
d2Xμ

dτ 2
= Fμ (20)

This is just Newton’s law m�a = �F promoted to Einstein’s world. (We will talk a lot more
about promotion in chapter III.6.) The requirement that Ms. Unprime and Mr. Prime
subscribe to the same equation means that the force has to be promoted from a 3-vector
�F to a 4-vector Fμ, so that Mr. Prime would see the force F ′μ =�μ

ν
F ν. (We will see an

explicit example of this when we discuss electromagnetism in chapter IV.1.)
To underline the fact that special relativity can be applied to observers undergoing

arbitrary accelerations, I will let you prove a basic fact about acceleration in Minkowski
spacetime, calculate how a constantly accelerating particle would move, and develop the
concept of Fermi-Walker transport in the exercises.

Lorentz, Poincaré, and Einstein: “to not trouble . . . old habits”

The intellectual history of special relativity is exceptionally fascinating because, in contrast
to general relativity, which was born largely through the labor of a single man, so many
great minds participated in developing special relativity, with several coming to within
a whisker of the final theory. Henri Poincaré in particular developed the Lorentz trans-
formation into the form now known to us, but without taking that final leap of forcing
the mathematics on physics.∗ Many felt that8 perhaps Einstein got too much credit and
Poincaré too little. The French physicist Thibault Damour had examined this point in depth
and concluded that the cartoon history, giving Einstein most of the credit, is largely cor-
rect.9 I think that Lorentz and Poincaré quite simply did not enjoy the boldness of youth:
in 1905, both were in their early 50s, while10 Einstein was 26. Indeed, months before his
death in 1912, Poincaré wrote: “Today some physicists want to adopt a new convention. It
is not that they are forced to; they judge this new convention to be more useful, that is all;
and those who are not of the same opinion may legitimately keep the former convention

∗ Some theoretical physicists think that the pendulum has perhaps swung to the other extreme: these days,
the leap may be leapt before doing anything else.
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in order to not trouble their old habits. I think, between us, that this is what they shall do
for a long time.”11

I trust that you, the astute reader, after getting to this point, could explain to Poincaré that
the work of Einstein and Minkowski (whom he did not refer to by name) was not merely a
convention one could choose not to adopt. The telling phrase here, and a warning to you,
is “to not trouble their old habits.” So reader, whatever your age may be, remember “the
boldness of youth.”

I close with a “pregnant” quote from Minkowski: “The essence of this postulate may
be clothed mathematically in a very pregnant manner in the mystic formula 3 . 105 km =√−1 secs.”12 I like his choice of words.

Appendix 1: Generalized “rotation” groups

Looking at the boost in the x direction (17), you might have been struck by its uncanny resemblance to a rotation
in the (t -x) plane, except that cosine and sine have been replaced by their hyperbolic counterparts and that a
minus sign has disappeared. Surely, this is not an accident. Indeed, recall from chapter I.3 that the rotation
group in SO(D) is defined as the set of all linear transformations d �x ′ = Rd �x on a collection of D real variables
(dx1, dx2, . . . , dxD), such that the quadratic form ds2 = ∑D

i=1(dx
i)2 is left unchanged and det R = 1 (this

specifies the S in SO(D)).
Our experience with Minkowski geometry warmly invites us to generalize. Define the group SO(m, n) as the

set of all linear transformations d �x′ = Rd �x on a collection of D real variables (dx1, dx2, . . . , dxm+n), such that
the quadratic form ds2 =∑m

i=1(dx
i)2 −∑m+n

i=m+1(dx
i)2 = ημνdx

μdxν is left unchanged and det R = 1. (Here ημν
denotes a generalized Minkowski metric, namely a diagonal (m+ n)-by-(m+ n)matrix withm (+1)s and n (−1)s
along the diagonal. The indices μ and ν range over 1, 2, . . . , m+ n.) These transformations form a group, since
if R1 and R2 leave the quadratic form invariant, then R1R2 also leaves the quadratic form invariant. The other
defining requirements of a group are even more obviously satisfied. The two integers (m, n) are known as the
signature of the group. (Incidentally, as mentioned in the text, quantities such as ds2 and dτ 2 are not necessarily
positive.)

Clearly, the groups SO(m, n) and SO(n, m) are the same: if ds2 is left invariant, then so is −ds2. The Lorentz
group is then simply SO(3, 1). The rotation groups and the Lorentz group can thus be studied in a unified fashion
as special cases of SO(m, n).

Again, the Lie algebra of SO(m, n) is obtained by studying the infinitesimal transformation R � I +
i
∑

μν θ
μνJμν , with real parameters θμν , the analogs of the angles ϕ and θ in our earlier discussions. You

can verify that the entire discussion in appendix 2 to chapter I.3 and in this chapter can be repeated, with the
Kronecker delta δmn replaced by the generalized Minkowski metric ημν . In particular, the commutation relations
between the generators Jμν can be carried over from (I.3.23):

[Jμν , Jρσ ] = i(ημρJνσ + ηνσJμρ − ηνρJμσ − ημσJνρ) (21)

We specialize to the Lorentz group SO(1, 3) or SO(3, 1). Reverting to standard physics notation, we have 3
boosts generated byKi ≡ J0i and 3 rotations by Ji = 1

2εijkJjk. We can read off from (21) the commutation relation
between boosts and rotations:

[Jx , Jy ] = [J23, J31] = −iη33J21 = iJ12 = iJz (22)

[Jz , Kx ] = [J12, J01] = −iη11J20 = iJ02 = iKy (23)

[Kx , Ky ] = [J01, J02] = +iη00J12 = −iJz (24)

All other commutation relations can be gotten from cyclically permuting the ones displayed here.
The relation (22) generates the subalgebra corresponding to the rotation subgroup SO(3) of SO(3, 1), familiar

from chapter I.3. The relation (23) tells us that the 3 boost generators (Kx , Ky , Kz) transform as a 3-vector under
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the rotation group, exactly as you would expect. (To see this, consider Kx(θ)≡ e−iθJzKxe
iθJz. Differentiating, we

obtain

dKx(θ)

dθ
= e−iθJz(−i)[Jz , Kx ]eiθJz = e−iθJzKye

iθJz ≡Ky(θ)

Similarly,
dKy(θ)

dθ
= −Kx(θ). Solving, we obtainKx(θ)= cos θ Kx + sin θ Ky andKy(θ)= − sin θ Kx + cos θ Ky .)

The third relation (24) is the most interesting: it shows that successively boosting in the x and y directions can
produce a rotation13 about the z-axis.

This set of commutation relations underlies many interesting developments14 in quantum field theory, such
as the Dirac equation, the Weyl equation, parity violation in the weak interaction, helicity spinors, and twistors,
to name a few.

We also note that the differential representation of the rotation generators mentioned in chapter I.3 may be
immediately promoted to the differential representation of the generators of SO(m, n)

Jμν = i(xμ∂ν − xν∂μ) (25)

Note that since Jμν is defined with two lower indices, our index convention requires xμ = ημνx
ν , rather than

xμ, to appear on the right hand side. Thus, in calculating the commutator in (21) when we push a ∂ρ = ∂
∂xρ

, for
example, past xμ = ημνx

ν , we will get ημρ . This is another way of seeing why the generalized Minkowski metric
appears in (21).

Finally, we check explicitly that (17) analytically continues to a rotation. Write t = x0 = ix4 and ϕ = iθ and
continue to x4 and θ real. Then cosh ϕ = 1

2 (e
ϕ + e−ϕ) → 1

2 (e
iθ + e−iθ ) = cos θ and sinh ϕ = 1

2 (e
ϕ − e−ϕ) →

1
2 (e

iθ − e−iθ )= i sin θ . Then the relevant part of (17) becomes (we write x1 for x)

x′4 = cos θ x4 + sin θ x1

x ′1 = − sin θ x4 + cos θ x1 (26)

precisely a rotation in the (1-4) plane. The Lorentz group SO(3, 1) is intimately connected to the 4-dimensional
rotation group SO(4). Clearly, linear transformations that leave (x0)2 − �x2 invariant upon analytic continuation
x0 → x4 leave (x4)2 + �x2 = (x1)2 + (x2)2 + (x3)2 + (x4)2 invariant. Going from x0 to x4, known as Wick rotation,
is a standard procedure in quantum field theory.15

Appendix 2: From the Lorentz algebra to the Poincaré algebra

The set of generators Jμν can be supplemented by the generators of translationPμ = i∂μ. We see thatPμ generates
translation by acting with it: (I − iaμPμ)x

λ = (I + aμ∂μ)x
λ = xλ + aλ. This is of course the same way we see that

Jμν generates rotations and boosts. (Even farther back, in chapter I.3, we saw that Jz = i(y ∂
∂x

− x ∂
∂y
) generates

rotation about the z-axis: act with I + iθJz on (x , y , z).)
Thus, the Lorentz algebra defined by (21) can be extended to the so-called Poincaré algebra, generated by

(Jμν , Pμ). In addition to the commutation relation (21), we now have

[Pμ , Pν ] = 0, [Jμν , Pρ ] = i(ημρPν − ηνρPμ) (27)

Exercises

1 Write dτ 2 in light cone coordinates.

2 Just as we are allowed to change coordinates in Euclidean space and in curved spaces, of course we are
also free to change coordinates in Minkowski spacetime. Consider, for example (after going to the usual
spherical coordinates x = r sin θ cos ϕ , y = r sin θ sin ϕ , z= r cos θ ), the transformation t = ρ sinh T , r =
ρ cosh T , introduced by Rindler, with T ranging from −∞ to ∞ and ρ ranging from 0 to ∞. Show that
dτ 2 = dt2 − dx2 − dy2 − dz2 = ρ2dT 2 − dρ2 − ρ2 cosh2

T (dθ2 + sin2 θdϕ2). For fixed θ and ϕ, the lines of
constant ρ trace out hyperbolas in the (t -r) plane as T ranges from −∞ to ∞. Note that, since r > |t |, the
coordinates (T , ρ , θ , ϕ) cover only one quadrant or wedge of Minkowski spacetime (figure 6).
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t

r

Figure 6 Rindler coordinates cover only one
quadrant or wedge of Minkowski spacetime.

3 As emphasized in the text, we can certainly describe accelerating particles in special relativity. Consider the
4-velocity V μ = dxμ

dτ
and the 4-acceleration aμ = dV μ

dτ
= d2xμ

dτ 2 . Show that aμV μ = 0, so that in the rest frame
of the particle, aμ = (0, �a).

4 Show that the worldline of a particle with acceleration given by aμaμ = g2, with g a constant, is a hyperbola.

5 Fermi-Walker transport: Consider an observer undergoing arbitrary acceleration, carrying with her a vector
Wμ. The vector Wμ is said to be Fermi-Walker transported if it varies along the observer’s worldline
according to

dWμ

dτ
= (V μaν − aμV ν)Wν (28)

(a) Show that the velocity V μ is Fermi-Walker transported.
(b) Show that ifUμ andWμ are both Fermi-Walker transported, the scalar productUμW

μ is left unchanged.
These results imply the physically sensible conclusion that an observer in an accelerating rocketship

can perfectly well enjoy the benefits of having an orthonormal coordinate frame. Our observer can set up,
at some proper time, an orthonormal coordinate frame consisting of her 4-velocity, namely the timelike
vector V μ and three spacelike unit 4-vectors eμ

a
(with a = 1, 2, 3), satisfying the orthonormal conditions

ea . eb = δab, V . ea = 0, and of course V . V = −1. In her rest frame, V μ = (1, 0, 0, 0), and she can choose
e
μ
1 = (0, 1, 0, 0), e

μ
2 = (0, 0, 1, 0), e

μ
3 = (0, 0, 0, 1). If she Fermi-Walker transports eμ

a
, then the result of

this exercise guarantees that the orthonormal coordinate frame will remain orthonormal: the orthonormal
conditions ea . eb = δab, V . ea = 0, and V . V = −1 are all preserved.

6 Work out explicitly how the components F 0i and F ij of the antisymmetric tensor Fμν introduced in chapter
I.6 transform under a Lorentz transformation.

7 Show that the signature is an invariant. (This was known in the 19th century as Sylvester’s law of inertia.
Sylvester will appear again in chapter III.5.)

8 Follow a boost in the x direction with a boost in the y direction. Take the infinitesimal limit and compare
with (24).

9 We observe an experimentalist moving by with 4-velocity uμ and a particle zipping by with 4-momentum
pμ. Show that magnitude of the particle’s 3-momentum as seen by the experimentalist is given by

| �p| =
[
(p . u)2 + (p . p)2

]1/2
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10 Generalize the triangle shown in figure 1 by letting B = (t , x) for 0 < x < t , while keeping A = (0, 0) and
C = (2, 0) fixed, so that all three sides are timelike. By symmetry, we can take 0 < t < 1. Show that dAB + dBC
is always less than dAC = 2. This exercise can be interpreted as the twin paradox. One twin stays at home,
while the other goes from A to B and then from B to C. By the way, although both in the text and here, the
side AC is aligned with the time axis, the situation analyzed is actually more general, since by a Lorentz
transformation, we can always bring AC to align with the time axis.

Notes

1. It puzzles me somewhat that Lorentz and Einstein did not realize this. Poincaré apparently did. See
T. Damour, Once Upon Einstein.

2. L. Boroditsky, Cognition 75 (2000), p. 1.
3. Translation of an address delivered at Cologne, 1908. Reprinted in The Principle of Relativity: A Collection of

Papers by A. Einstein, H. Lorentz, H. Weyl and H. Minkowski, with Notes by A. Sommerfeld, Dover, 1952.
4. F. Dyson, Disturbing the Universe, Harper and Row, 1979, chapter 17.
5. See, for example, Fearful, p. 169.
6. Einstein had introduced in his 1905 paper what later became known as the clock paradox. The twins were

introduced by P. Langevin in 1911.
7. This “resolution” of the twin “paradox” has already been emphasized in several well-known textbooks. See,

for example, W. Rindler, Relativity, p. 77; J. B. Hartle, Gravity, p. 65.
8. Indeed, within days of writing this, I got into a heated argument on a social occasion with a Caltech physicist

about this very point. I was arguing in Einstein’s favor.
9. T. Damour, Once Upon Einstein, p. 49.

10. Note in this connection that Newton was 24 in 1666, his miraculous year.
11. H. Poincaré, “Space and Time,” paper presented at a conference at the University of London, May 4, 1912

(Scientia 12 (1912), p. 159 [in French]).
12. H. Minkowski, “Space and Time,” in A. Einstein et al., The Principle of Relativity.
13. This mathematical fact leads to the physical phenomena of Thomas precession and spin-orbit coupling in

atomic physics.
14. See, for example, S. Weinberg, The Quantum Theory of Fields; QFT Nut.
15. For example, QFT Nut, pp. 12 and 23.



III.4 Special Relativity Applied

Scarcely anyone who truly understands relativity theory can
escape this magic.

—A. Einstein

Events and worldlines

Now that we have the Lorentz transformation∗

t ′ = t + vx√
1 − v2

x′ = x + vt√
1 − v2

(1)

and its inverse (obtained instantly by flipping v to −v)

t = t ′ − vx′
√

1 − v2

x = x′ − vt ′√
1 − v2

(2)

we are ready to work out all kinds of problems involving special relativity. Hopefully, a
few examples will suffice to give you the idea of how to proceed in tackling this kind of
problem.

Many students, and not a few professionals, get easily confused by problems in special
relativity. I recommend the following plodding, but almost foolproof, method. Make a list
of all the relevant events and their given locations in spacetime. Recall from the preceding
chapter that an event is specified by where and when it occurred, that is, by a point in
spacetime. Even better, if necessary, work out the relevant worldlines. The locations of the
relevant events are given sometimes in the primed frame, sometimes in the unprimed
frame, and sometimes “in a mixture” with some events located in one frame and others
located in the other frame. After all the locations are written down, then it is just a matter

∗ For the relative velocity between the two frames, we have switched from u, used in the preceding chapter, to
v here.
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Figure 1 The tick (B) and the tock (D) of a clock as seen by two different
observers.

of elementary algebra to work out the desired information using (1) and (2). You are free to
call either frame the primed frame, and the other unprimed, whatever seems more natural
or would make the arithmetic “look better.” Often the solution can be found more quickly
by using a clever observation, typically based on invariance. This will be illustrated below
in our examples.

Time goes by

Perhaps the most astonishing prediction of special relativity is that time flows at different
rates for different observers. The discussion in the preceding chapters already implies this,
but let us now work out the effect carefully.

Provide two observers, Ms. Unprime and Mr. Prime, with identically manufactured
clocks, going tick tock tick tock. Consider two spacetime events: Ms. Unprime’s clock
ticks, an event we call B, then her clock tocks, an event we call D. Denote by T the time
between tick and tock. We now write down the spacetime location of these two events with
pedantic care:

B: (t , x)B = (0, 0)

D: (t , x)D = (T , 0) (3)

Note that xB = 0 = xD: in the unprimed frame, the clock did not move (figure 1a).
Mr. Prime sees Ms. Unprime go by with her clock. We simply plug in (1) to find the

locations of these two events in the primed frame (figure 1b):

B: (t ′, x′)B = (0, 0)

D: (t ′, x′)D =
(

T√
1 − v2

,
vT√
1 − v2

)
(4)

For example, x′
D = xD+vtD√

1−v2
= vT√

1−v2
, since xD = 0 and tD = T . Mr. Prime sees the time

interval

t ′D − t ′B = T√
1 − v2

> T (5)
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between a tick and a tock on Ms. Unprime’s clock. This interval is larger than the interval
T between a tick and a tock on his clock. Thus, we have shown that an observer sees a
moving clock as running slow, an effect known as time dilation. The clock at rest in the
observers frame has tocked before the moving clock tocks.

Each accuses the other of having a clock that runs slow

Now Confusio looks agitated. He cries out, “Wait a second here! But to Ms. Unprime,
Mr. Prime is the one zipping by with his clock. The very principle of relativity states that
either observer could claim to be at rest. How can two observers, each accusing the other
of having a clock that runs slow, both be right? This flies in the face not only of common
sense, but of logic itself!”

Ah, generations of students have run afoul of this point, a common confusion that
has generated a seemingly endless stream of crackpot claims that Einstein must be
wrong. “You mean to say that Ms. Unprime says that Mr. Prime’s clock runs slow and
Mr. Prime says that Ms. Unprime’s clock runs slow, and yet both of them are absolutely
correct?!”

To see that there is no contradiction, first note that a quicker way of deriving time
dilation is to simply difference the first equation in (1) and set
x = 0, thus concluding that

t ′ =
t/

√
1 − v2 in agreement with (5). But now suppose we difference the first equation

in (2) and set
x′ = 0, thus obtaining
t =
t ′/
√

1 − v2. Compare this with what we had a
moment ago. The two conclusions, 
t ′ =
t/

√
1 − v2 in one case, and 
t =
t ′/

√
1 − v2

in the other, do not contradict each other, because one is derived with
x = 0 and the other
with 
x′ = 0. Logic still stands.

The lesson is simply that when we difference or differentiate we have to specify what
we hold fixed.

When does Mr. Prime’s clock tock?

Confusio looked convinced but still puzzled. We gently advised him to go read this chapter
(up to this point) again. He came back the next day saying, “In the first section of this
chapter, you said to make a list of all the relevant events. Then in the second section, you
listed two events: event B when Ms. Unprime’s clock ticks, and event D when her clock
tocks. What about Mr. Prime’s clock? When does it tick and tock?”

“Aha!” We all cried in unison, including Mr. Prime, Ms. Unprime, and Confusio.
Confusio grumbled, “There ought to be two other events: event B′ when Mr. Prime’s

clock ticks, and event D′ when his clock tocks. You didn’t talk about those.”
Mr. Prime said, “I can always set my clock to tick when Ms. Unprime’s ticks, so that

B = B′.”
In other words, B and B′ are one and the same event. There are actually 3 events to

reckon with: B, D, and D′. The key question is then “When does Mr. Prime’s clock tock?”
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So in addition to (3) and (4), we should also write

B′(= B): (t ′, x′)B′=B = (0, 0)

D′: (t ′, x′)D′ = (T , 0) (6)

Watch the primes and absence of primes like a hawk! The fact that the same T appears in
(3) and (6) is part of the clock manufacturer’s warranty.

Now, all we have to do is to plug (6) into (2) to find the spacetime locations of events
B′(= B) and D′ in the unprimed frame:

B′(= B): (t , x)B′=B = (0, 0)

D′: (t , x)D =
(

T√
1 − v2

,
−vT√
1 − v2

)
(7)

Thus, Ms. Unprime sees the time interval

tD′ − tB′ = T√
1 − v2

> T (8)

between a tick and a tock on Mr. Prime’s clock.
Compare and contrast (5) and (8).
Confusio exclaims, “I see! The confusion that befuddled, and befuddles, generations of

students is really a case of bad notation alert! The notations
t ,
t ′, and so forth correspond
to time differences for different pairs of events.”

Birth and death of particles

In everyday life, v � 1, so the effect of time dilation is minimal, but in high energy physics,
particles typically move almost at light speed, and time dilation is of central importance
to experimentalists. For instance, a cosmic ray particle (a proton, for example) may crash
into a nucleus in a photographic emulsion, thus producing an unstable particle moving at
speed v and disintegrating at a distance L downstream. What is the particle’s lifetime T
in its rest frame, that is, its intrinsic lifetime?

The two relevant events are B, the birth of the particle, and D, its death. Let the lab frame
the experimentalist is sitting in be primed, and the rest frame of the particle be unprimed.
The preceding analysis immediately applies. (Now you see why I used the letters B and D
earlier in (3) and (4).)

In its own rest frame, the particle did not go anywhere: it died where it was born.
That’s what “at rest” means! Therefore, 
x = 0, and so from (1), we obtain the time
elapsed between birth and death of a fast moving particle as seen by the experimentalist
Tlab ≡ t ′D − t ′B = T√

1−v2
. As v → 1, Tlab can become much larger than the particle’s intrinsic

lifetime T . The distance traversed (in the lab frame, of course) is given by L = 
x′ =
vT√
1−v2

. Knowing L and v, the experimentalist can solve to obtain the intrinsic lifetime

T = √
1 − v2L/v.

Time dilation facilitated the measurement of particle lifetimes in the early days of
particle physics: fast moving particles can live for quite a while in the lab frame, so that the
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track of a decaying high energy particle can be recorded in some medium. Experimentalists
could literally measure L with a ruler. That there is indeed time dilation has been verified
experimentally countless numbers of times.

A faster way of solving this problem is to use the invariance of the proper time interval
as discussed in the preceding chapter: (tD − tB)

2 − (xD − xB)
2 = (t ′D − t ′B)

2 − (x′
D − x′

B)
2,

namely [(T , 0)− (0, 0)]2 = T 2 = [(Tlab, vTlab)− (0, 0)]2 = T 2
lab(1 − v2), and so we obtain,

once again, Tlab = T√
1−v2

. As indicated in figure 1, the line joining B and D looks longer

in (1b) than in (1a), but because of the minus sign in the Minkowski metric, the two lines
actually have the same “length.”

Lorentz-Fitzgerald length contraction

After the discussion of time dilation, it is easy to understand that with two rulers moving
relative to each other, each could see the other as having become shorter. Again, let’s go
slowly. Consider an observer watching a ruler going by. Let us call the rest frame of the
ruler the unprimed frame.

The back end of the ruler traces out the worldline (t , x)B = (t , 0), in other words, a line
parametrized by tB(t)= t , xB = 0. The statement that the length of the ruler is L means
that the front end traces out (t , x)F = (t , L). (See figure 2a.) Here, t is to be thought of
as a parameter that runs from −∞ to ∞. In the primed frame, according to (1), these
two worldlines are described by (t ′, x′)B = ( t√

1−v2
, vt√

1−v2
) and (t ′, x′)F = ( t+vL√

1−v2
, L+vt√

1−v2
).

Again, t is to be thought of as a parameter that runs from −∞ to ∞. To be utterly pedantic,
let me state that we are here dealing with four functions of t : t ′B(t)= t√

1−v2
, x′

B(t)= vt√
1−v2

,

t ′F(t) = t+vL√
1−v2

, and x′
F(t) = L+vt√

1−v2
. Let’s plot (figure 2b) these two lines in the primed

coordinates, just two parallel straight lines both with slope 
x′

t ′ = v.

(b)

t′

B

O 1 – v2L < L√⎯

F

x′

(a)

t

B

O L

F

x

Figure 2 The back end (B) and the front end (F) of a ruler as seen by two different observers:
(a) an observer at rest with the ruler and (b) an observer watching the ruler move by.



200 | III. Space and Time Unified

The key point is that as far as Mr. Prime is concerned, the length of the ruler is given
by x′

F − x′
B evaluated at the same time, that is, for t ′F = t ′B. Graphically, we see that we can

choose any value of t ′F and t ′B, as long as they are equal. So choose t ′F = t+vL√
1−v2

= 0, which

gives t = −vL and thus x′
F

= L+v(−vL)√
1−v2

= √
1 − v2L<L. According to Mr. Prime, the ruler

has length less than L: it has contracted!
Again, you can see that, pace the crackpots, there is no logical contradiction with the

two observers each claiming the other’s ruler has contracted. According to Ms. Unprime,
the length of the ruler is defined by xF − xB evaluated for tF = tB. For Mr. Prime, the length
of the ruler is given by x′

F − x′
B evaluated for t ′F = t ′B, most certainly not for tF = tB!

Just as in the time dilation discussion, the result for length contraction can be obtained
almost instantly by differencing (1) or (2), evaluating
x with
t = 0, or
x′ with
t ′ = 0.

Historically, Fitzgerald had the clever idea that if moving rulers are contracted, then we
could understand the puzzling result of the Michelson-Morley experiment.

Dueling theorists and the fall of simultaneity

For our next example, let us go back to the dueling theorists described in the prologue, on
pages 7–9. We have three events, V = Professor Vicious at the rear of the carriage pushing
the button to signal that she has finished her calculation, N = Dr. Nasty at the front end of
the carriage pushing the button, and G = the gong bonging indicating that it has detected
the arrival of two pulses of photons at the same instant. In the unprimed frame on the
train, we write down

V : (t , x)V = (0, −L)
N : (t , x)N = (0, +L)
G : (t , x)G = (L, 0) (9)

We have set the length of the carriage to be 2L, with the detector located in the middle.
Since photons went from N to G, the invariant interval between G and N must vanish
(and similarly for the invariant interval between G and V). This requirement fixes tG = L

(indeed, the invariant interval between G and N is equal to (L− 0)2 − (0 − L)2 = 0).
Now that we have listed the three events, it is, as I said, more or less foolproof to find the

primed coordinates for these events by simply plugging the unprimed coordinates given
in (9) into the Lorentz transformation in (1): t ′ = t+vx√

1−v2
, x′ = x+vt√

1−v2
. Thus, we have

V : (t ′, x′)V =
( −vL√

1 − v2
,

−L√
1 − v2

)

N : (t ′, x′)N =
(

vL√
1 − v2

,
L√

1 − v2

)

G : (t ′, x′)G =
(

L√
1 − v2

,
vL√

1 − v2

)
(10)

We see immediately, with no further ifs and buts, that in this frame, event N occurs after
V: t ′N − t ′V = 2vL/

√
1 − v2 > 0. The Swede standing on the platform has no doubt that Dr.

Nasty does not get to go to Stockholm.
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Figure 3 The pole in the barn.

As a check on our calculation, we can compute in the primed frame the velocity of
light getting from the point V to the point G in spacetime: 
t ′ = t ′G − t ′V = (1+v)L√

1−v2
and


x′ = x′
G − x′

V = (v+1)L√
1−v2

giving 
x′

t ′ = 1. The reader can easily check that in getting from

point N to point G, the velocity of light equals 
x′

t ′ = −1. These results of course just reflect

the invariance of the interval (
t ′)2 − (
x′)2 = 0 = (
t)2 − (
x)2.

Pole in the barn

Another apparent paradox that has confounded generations of students is the traditional
pole in the barn problem, often given on exams.

One fine day, Ms. Unprime is possessed by a maniacal desire to run at almost light speed
carrying a pole of length L toward a barn of length L. (See figure 3.) The farmer who owns
the barn, Mr. Prime, calmly watches. To him, the pole has contracted and thus should fit
easily inside the barn. But to Ms. Unprime, the barn, rushing toward her, has contracted
alarmingly.

To dramatize the story further, suppose that Mr. Prime, also afflicted by some mental
disorder, closes the front door of his barn while leaving the back door open. He has rigged
things up with fancy electronics so that the front door won’t fling open until the instant
the back end of the pole gets inside the barn—that is, as soon as it passes the back door.
For good measure, although not actually necessary for the narrative, at that instant, the
back door will slam shut. Will there be a crash, or will Ms. Unprime sail right through?

Most importantly, stay calm. (That is, you the exam taker.) Write down the 4 relevant
worldlines, that of the back end of the pole (Pb), the front end of the pole (Pf), the back
door of the barn (Bb), and the front door of the barn (Bf):

(t , x)Pb = (t , 0), (t , x)Pf = (t , L) (11)

and

(t ′, x′)Bb = (t ′, 0), (t ′, x′)Bf = (t ′, L) (12)

Notice that we have written down these two pairs of parallel lines in their respective rest
frames (figure 4a,b). Plugging (11) into (1), we obtain
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1 – v2L√⎯

1 – v2√⎯

(c) (d)
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x

front door
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1 – v2L√⎯

front end
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t′

Bb Pb

O L

Bf
Pf

x′
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(a) (b)

t

Pb

O L

Pf
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t′
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O L

Bf

x′

Figure 4 The pole in the barn as seen in spacetime.

(t ′, x′)Pb =
(

t√
1 − v2

,
vt√

1 − v2

)
, (t ′, x′)Pf =

(
t + vL√

1 − v2
,
L+ vt√

1 − v2

)
(13)

Plugging (12) into (2), we obtain

(t , x)Bb =
(

t ′√
1 − v2

,
−vt ′√
1 − v2

)
, (t , x)Bf =

(
t ′ − vL√

1 − v2
,
L− vt ′√

1 − v2

)
(14)

(Is this plodding enough for you? Yes, plodding but foolproof.)
Note that in (14), as t ′ varies, (t , x)Bb and (t , x)Bf trace out two parallel lines with

slope 
x/
t = −v as indicated in figure 4c. (This provides a slight check against copying
errors.) To construct the figure, we have to figure out where the line Bf intersects the
x-axis. Simply set tBf in (14) to 0, thus giving t ′ = vL. Plugging that into (14), we obtain
xBf (at tBf = 0)= L(1−v2)√

1−v2
= √

1 − v2L<L. We are of course just rediscovering the Lorentz-

Fitzgerald length contraction.



III.4. Special Relativity Applied | 203

Similarly, in (13), as t varies, (t ′, x′)Pb and (t ′, x′)Pf trace out two parallel lines with slope

x′/
t ′ = v as indicated in figure 4d. You can verify that the line Pf intersects the x ′-axis
at x′

Pf (at t ′Pf = 0)= √
1 − v2L < L.

Now we go from worldlines to events. An important event in the story is when the back
end of the pole (Pb) reaches the back door of the barn (Bb). Recall that at that instant,
Mr. Prime flings open the front door of the barn.

You should be able to see right off when that occurs, but let us be plodding. Set

(t , x)Pb = (t , 0) from (11) to (t , x)Bb =
(

t ′√
1−v2

, −vt ′√
1−v2

)
from (14). It is important to note

that we set coordinates equal in the same frame of course, namely (t , x)Pb = (t , x)Bb. The
resulting two equations, namely t = t ′√

1−v2
and 0 = −vt ′√

1−v2
, give t ′ = 0 and t = 0. Thus, in

fact, this event occurs at the origin in both the primed and unprimed frame, which reflects
our wisdom in setting our coordinate systems. (Did you figure that out without solving the
equations like a plodder? You can see it from figure∗ 4c,d.)

At that instant, the front door of the barn opens. For Ms. Unprime, this occurs at

(t , x)Bf (when front door of barn opens) =
(

−vL√
1−v2

, L√
1−v2

)
. Note that tBf (when front

door of barn opens)< 0. More importantly, xBf (when front door of barn opens) =
L√
1−v2

> L, and she sails right through! (See figure 4c.)

It is interesting to check the spacetime location of another important event, the be-
ginning of the pole’s exit from the barn, namely when the front end of the pole (Pf)
passes through the front door of the barn (Bf). In the unprimed coordinates, this occurs

when (t , x)Pf = (t , L) is equal to (t , x)Bf =
(

t ′−vL√
1−v2

, L−vt ′√
1−v2

)
. Solving the two equations

t ′ − vL = √
1 − v2t and L− vt ′ = √

1 − v2L, we obtain t = (
√

1 − v2 − 1)L/v < 0 and
x = L. Similarly, in the primed frame, the exit occurs at t ′ = (1 − √

1 − v2)L/v > 0 and
x′ = L. See figure 4c,d.

Uncommon sense in, uncommon sense out

As I was finishing this book, I happened to have dinner with a distinguished condensed
matter physicist. He mentioned that he was teaching a course on special relativity and
that he didn’t like the textbook, because it gave the students the impression that special
relativity consisted of a series of paradoxes. I couldn’t agree with him more. I told him that
I was writing a textbook on special relativity and I had limited the number of paradoxes. In
my opinion, the pedagogically correct way of presenting special relativity is to emphasize,
as I tried to do in the preceding chapter, the geometry of spacetime, a point of view that
generalizes naturally to the curved spacetime of general relativity.

∗ By the way, for the sake of clarity, I did not superpose the images in figure 4a–d. This is why this
figure has four parts, a, b, c, and d. Also, notice that figure 2a,b (describing length contraction) is contained
in figure 4c,d.
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The paradoxes∗ are of course helpful in making students understand the subtle is-
sues behind the Lorentz transformation, and they played an important clarifying role
historically. But once we accept that the speed of light is a universal constant, a state-
ment that blatantly contradicts the velocity addition law of Newtonian physics, we can
expect to encounter situations that defy the common sense built on our everyday expe-
riences. As already mentioned in the prologue, we could say, paraphrasing computer
scientists, uncommon sense in, uncommon sense out. All these apparent paradoxes con-
tradict our Newtonian intuition, but they could not possibly contradict logic, as I have
emphasized here.

These puzzles are best regarded as refreshing reminders of how counterintuitive special
relativity actually is. In fact, they play almost no role in actual research in high energy
physics. Lorentz invariance is actually built into the grammar of the language used in
high energy theory, namely quantum field theory, from the start.

Causality and temporal ordering

Although simultaneity fails, causality still holds, as I emphasized in the preceding chapter.
Particles have to propagate inside their future light cones. In particular, temporal ordering
cannot depend on the observer.

More explicitly, consider a particle, either a material particle or a particle of light,
propagating from event A to event B, that is, event B is in the causal future of event A.
In other words, 
t ≡ tB − tA > 0 and |
x| ≡ |xB − xA| ≤
t . Is it possible to reverse the
temporal ordering by going to another frame?

We simply difference (1): 
t ′ = (
t + v
x)/
√

1 − v2. Since v2 ≤ 1, 
t ′ cannot go neg-
ative. Temporal ordering is maintained.

But perhaps this discussion suggests to you how temporal ordering might be reversed
under certain circumstances. What are these circumstances? See if you can figure it out!

Well, just by eyeball, we can see from 
t ′ = (
t + v
x)/
√

1 − v2 that we can make 
t ′

vanish by choosing v = −
t/
x. But v2 = (
t/
x)2 has to be less than 1, which is only
possible if (
t)2 < (
x)2 ≤ (
x)2 + (
y)2 + (
z)2, that is, if the two events A and B are
spacelike with respect to each other. By continuity, if we can choose a v that makes 
t ′

vanish, we can have a v that makes 
t ′ go negative.
So, it is possible to reverse the temporal ordering of two events if they are spacelike with

respect to each other, which means precisely that they could not affect each other causally.
There is still sanity within the craziness, so to speak.

Next, what does a reversed time ordering imply for physics? The answer is in the
appendix.

∗ In high school math, you shouldn’t spend all your time doing trick problems in a puzzle book. It’s more
important to grasp the general principles.
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Special relativity and starting your car

No doubt, time dilation and the creation of antiparticles (see the appendix) at high energy
accelerators are plenty stunning, but still, it would appear that special relativity is totally
remote from everyday life. Not so! In 2011, a mere 106 years after Einstein’s paper, it
was discovered1 that relativistic effects account for about 1.8 volts out of the 2.1 volts
produced by the common lead-acid battery. This is because the lead nucleus is so massive
that the motion of the electrons around it is highly relativistic. So, the next time you hear
a car start up somewhere, you can mutter to yourself, “Ah, the Lorentz transformation
again!”

“From the very first line I am stopped by ‘signs’ ”

On March 31, 1922, the new global celebrity Albert Einstein made a triumphant visit to
Paris, greeted by headlines like “Time Does Not Exist, Says Einstein.” A huge crowd tried
to get in to hear his lecture. Among those caught up in the excitement was Marcel Proust,
the famous author of the masterwork À la recherche du temps perdu [In Search of Lost Time],
with its wistful message that the passage of time was merely an illusion. Indeed, Proust
even thought of time as a dimension analogous to space. He wrote2 to a physicist friend:

How I would love to speak to you about Einstein! Although it has indeed been written to me

that I derive from him, or he from me, I do not understand a single word of his theories,

not knowing algebra. And I doubt for my part that he has read my novels. It seems we have

analogous ways of deforming Time. But I cannot figure it out for myself, because it is me, and

we don’t know each other, nor can I do so for him because he is a great mind in sciences that

I am ignorant of, and from the very first line I am stopped by “signs” that I don’t recognize.

Appendix: Appearance of antimatter

It is possible to skip this appendix upon a first reading, as subsequent material will not depend on it. The
discussion in this chapter, indeed in most of this textbook, is entirely classical. But as was mentioned in the
introductory chapters, our real world is fundamentally quantum. The only knowledge of the quantum world I
require of you for the following discussion is Heisenberg’s uncertainty principle. According to Heisenberg, due
to fundamental limitations on what we can know about the microscopic world, we cannot measure all observables
to arbitrary accuracy. As a result, it is possible to have spacelike propagation |
x|>∼
t , but only for a very short
time limited3 by the mass of the particle. In figure 5a, we show an actual physical process in which (left half of
the diagram) a proton turns into a neutron by emitting a pion (known as the π+), which by charge conservation
necessarily carries positive charge. This is event A. In event B, the π+ is absorbed (right half of the diagram) by
a neighboring neutron, which as a result turns into a proton. This process generates an attraction between the
proton and the neutron, thus accounting for the strong or nuclear force.

Spacelike propagation is allowed, as Heisenberg said, only for a short time and over a small distance given by
the inverse of the pion mass (in natural units). Indeed, since the range of the nuclear force was known, Hideki
Yukawa was able to predict, in 1935, the mass of the hitherto unknown pion. We cannot go into further details
here. Instead, let us ask what an observer zipping by would see.
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Figure 5 The need for antimatter. (a) A proton turns into a neutron by emitting a
positively charged pion, which is subsequently absorbed by a neighboring neutron,
which as a result turns into a proton. (b) The same process as seen by a different
observer: a neutron turns into a proton by emitting a negatively charged pion, which
is subsequently absorbed by a neighboring proton, which as a result turns into a
neutron. (The time axis is along the vertical direction.) This figure, which describes
a physical process in spacetime, is known as a Feynman diagram.

Since the pion propagates over a spacelike interval, it is possible for this observer to see a temporal ordering
in which event A occurs after event B, as was explained in the text. Thus, she would see (figure 5b) the neutron
turning into a proton (right half of the diagram) by emitting something (event B). But by charge conservation,
this something necessarily has to carry a negative charge!

In other words, given the π+, theoretical physics has predicted a negatively charged pion with exactly the same
mass, known as the π−. To finish the story, the π− is then absorbed (event A) by the neighboring proton, which
as a result turns into a neutron.

The π− is the antiparticle of the π+. In essence, this is the kind of physical reasoning that led Dirac to predict
the existence of antimatter in 1928. I hope to give you, by this brief heuristic argument, some flavor of what
might happen when you marry quantum mechanics to special relativity. In our story, the key is electric charge
conservation. In the microscopic world, several other charges are also conserved, and thus a particle and its
antiparticle necessarily carry opposite charges.

Incidentally, you can see that the discussion here is a generalization of the Vicious versus Nasty story in the
prologue.

Notes

1. R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykk, and P. Zaleski-Ejgierd, “Relativity and the Lead-Acid Battery,”
Phys. Rev. Lett. 106 (2011) 018301.

2. T. Damour, Once Upon Einstein, p. 34.
3. The uncertainty principle states that
E
t ∼ �. Here
E >m, which implies
t < �/m. For details, consult

a textbook on quantum field theory, such as QFT Nut.



III.5 The Worldline Action and the Unification of
Material Particles with Light

A child’s way of calculating square roots

Imagine yourself a bright young theoretical physicist toward the end of the 19th century.
You felt annoyed about how light and material particles were treated differently. You
admired Fermat’s least time principle for light beams, so elegantly stated.

Such simplicity, light in a hurry! In contrast, look at the Euler-Lagrange action for
material particles

S =
∫

dt

[
1
2m

(
d �x
dt

)2

− V (x)

]
(1)

Clunky in comparison.
Then you put this thought aside and went on with your day-to-day research—you did

need to get tenure. In spite of what people like deans say, day-to-day research was what led
to all the good stuff, not the very best stuff, but the good stuff, in academic life. One day,
while sitting in your office daydreaming, you remembered the first time you learned about
the concept of a square root. You learned that the square root of 25 is 5, of 36 is 6, and so on.
But soon, since you were one of those smart kids who grew up to be theoretical physicists,
you wondered about the square root of a number that was not obviously the square of an
integer. What is the square root of 24, for example? You used the time honored method of
trial and error. So you multiplied 4.9 by itself, 4.8 by itself, and so forth. Pretty soon you
could guesstimate square roots quite well. Some time later, you learned about the brilliant
idea∗ of representing numbers by letters. The formula you wanted turned out to be

√
a2 − ε2 � a − ε2

2a
+ . . . (2)

∗ In 820, while working in the House of Wisdom in Bagdad, the Persian Al-Khwārizmı̄, whose name gave us
the words “algorithm”1 and “logarithm,” proposed a method of calculation he called al-jabr.
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which you verified by squaring the right hand side
(
a − ε2

2a

)2 = a2 − ε2 + ε4

4a2 : the error in
(2) is of higher order.

A few days after your daydream, you look at the action for material particles again. Even
without the external potential V (x), the action still does not look like it could be simplified
to look like anything as elegant as Fermat’s least time principle. You do what A. Zee in
chapter III.1 of his gravity book said the calculus textbook he had in high school told him
never to do: think of derivatives as fractions. You do precisely that and cancel off one power
of dt :

S =
∫

dt 1
2m

(
d �x
dt

)2

= 1
2m

∫
(d �x)2
dt

(3)

Now you are offended by the totally different ways in which space and time are treated.
The undemocratic treatment of d �x and dt irritates your liberal ideal deeply. Yes, the dean
keeps reminding the physics faculty that every subject on campus is equally worthy of
respect. That d �x appears squared in (3) more or less follows from rotational invariance,
but why does dt deserve only one power? What a strange combination, (
�x)2


t
, the square

of something divided by something else!
Then your subconscious nudges you: you have seen this combination before, the square

of something divided by something else! Oh dear reader, where but where have you seen
this before?

Speak, memory

Aha! You rewrite (3) as ε2

2a � −√
a2 − ε2 + a + . . . . In other words,

(
�x)2
2
t

= c
(
�x)2
2c
t

= −c
√
(c
t)2 − (
�x)2 + c2
t (4)

To get the dimensions to come out right, you are forced to introduce a constant c with the
dimension of a speed. What could it be?

You realize that the only speed around with any intrinsic significance is the speed of
light. Notice that this c literally muscles its way in for dimensional reasons. We didn’t go
looking for the speed of light, the speed of light came looking for us. So you write the
action for a point particle as

S = −mc
∫ √

(cdt)2 − (d �x)2 +mc2
∫

dt

The relativistic point particle action

The term mc2 ∫ dt =mc2(tfinal − tinitial) in the action S treats dt and d �x differently, and
thus would negate your entire philosophy. But fortunately, its variation vanishes, since the
initial and final times are fixed. Hence, this term in the action does not contribute to the
equation of motion, and so the action principle allows you to drop this offending term.
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All looks great then, and so you quickly publish the action S = −mc ∫ √(cdt)2 − (d �x)2,
which in units with c = 1 reads

S = −m
∫ √

dt2 − (d �x)2 (5)

This action, compared to (3), treats space and time much more democratically.
It didn’t happen this way in our civilization, but it could have happened this way in some

other civilization far far away. I like writing alternative physics history.
Of course, what actually happened was that your paper was rejected by a succession of

referees. One of them told you that you should brush up on your calculus. Didn’t you know
that integrals are supposed to have the form

∫
dt of some function of t? This guy is easy

to take care of: you write

S = −m
∫

dt

√
1 −

(
d �x
dt

)2

(6)

To show another referee that you can reproduce Newtonian mechanics, you expand (6)
and rearrange slightly to obtain

S =
∫

dt

{
m

2

(
d �x
dt

)2

−m+ . . .

}
(7)

Heavens to Betsy, you even get that most famous 1
2 in physics history, as in 1

2mv
2, which

in hindsight has been whispering “Square root square root” for centuries.

The one formula even the person in the street knows

You don’t know how to incorporate a potential; just adding −∫ dtV (x) to the action (5), as in
(1), would again favor dt . But if you had a potential as in (1), then in the nonrelativistic limit
of (7), m would just be added to the potential V (x). You submit another paper interpreting
the extra term m as a rather peculiar kind of potential energy.

Even a particle just sitting there has energy, in fact an enormous amount of energy
compared with the kinetic energy 1

2mv
2 it could acquire in everyday life, with v � c. Let’s

restore c and repeat the derivation: S = −mc ∫ √(cdt)2 − d �x2 = −mc ∫ dt√c2 − ( d �x
dt
)2 =

−m ∫
dt{c2 − 1

2(
d �x
dt
)2 + . . .} = ∫

dt{ 1
2mv

2 −mc2 + . . .}. The referee snarled that this au-
thor didn’t even know that an additive constant inV (x)mattered not a whit. Paper rejected.

Phew! It’s a good thing that you got tenure first before pursuing this stuff. Meanwhile,
in a civilization in another galaxy far far away, a man named Albert discovered what is
probably the most famous equation of all time2

E =mc2 (8)

More likely that the proverbial guy in the street has heard of this equation than of F =ma!
At first sight, it may seem strange that the two terms in S, with opposite signs, both

correspond to energy. Hamilton was clever enough to resolve this apparent problem.
Recall from chapter II.3 that for the Lagrangian L(q̇ , q), the Hamiltonian is given by
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H(p , q)= pq̇ −L(q̇ , q)with p = δL
δq̇

. Hence, if we were givenL= 1
2mq̇

2 −mc2, we would

have p =mq̇, thus giving H = pq̇ − ( 1
2mq̇

2 −mc2)= p2

2m +mc2, which is exactly right for
the energy of the system: kinetic energy plus mc2. Well, all we’re saying is that mc2 should
be counted as part of the potential energy.

A symmetry pops out

Meanwhile, a mathematician friend of yours—could have been James Joseph Sylvester,
a rather astute fellow, since he demanded that his salary from Johns Hopkins University
be paid in gold before accepting its invitation to move from England to a scientifically
impoverished but economically upstart country called the United States—told you about
some fancy-pants math called matrix theory. He pointed out that if you defined a 4-by-
4 diagonal matrix ημν with (−1, +1, +1, +1) along the diagonal, you could write the
combination dt2 − d �x2 in your action (5) more compactly as −ημνdxμdxν, defining x0 = t .

At first you dismissed this as mere notational dressing, but after studying this matrix
theory, you realized that your action did not change under the linear transformation

dxμ →�μ
σ
dxσ (9)

provided that ημν�μ
σ
�ν

ρ
= ησρ, a matrix equation to be solved for�. Nature has a “hidden”

symmetry that extends and generalizes rotation! Of course, by this point, you did not even
dream of publishing your discovery any more. You just showed it to Sylvester, who thought
it might be somehow related to invariant theory, later developed into group theory.

Ah, the joy of hindsight!3 If you were around earlier and felt the ugliness4 of the
Newtonian action (1), you too could have discovered special relativity, and perhaps even
the group theory of linear transformations!

Action, geometry, and mass as a conversion factor

The action for a relativistic point particle has the elegant form

S = −m
∫ √

−ημνdxμdxν (10)

Recognizing ημνdx
μdxν as the Minkowskian distance squared between neighboring

points, we see that the particle’s action is (up to an overall constant) the distance it has
travelled in spacetime. An appealingly geometric∗ picture!

Indeed, if we were told to construct the action for a point particle, the only coordinate
invariant quantity we have available is the “length” or proper time duration of the worldline

∗ Invite yourself at this point to generalize this action to that for a relativistic string. See, for example, QFT
Nut, chapter IV.4 and a later section in this chapter.
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τ

x

t

Figure 1 The action for a point particle. The only coordinate
invariant quantity we have available is the “length” or proper
time duration of the worldline traced out by the particle.

traced out by the particle (figure 1), namely
∫
dτ = ∫ √−ημνdxμdxν. We call the propor-

tionality factor the mass of the particle. If you like, that provides one cool definition, a
rather profound one at that, of mass: mass is the conversion factor between geometry (the
length of the worldline) and physics (the action).

Bad notation alert! In fact, it is the same alert as in chapter II.1. The symbol xμ refers
to the spacetime coordinates of the particle traversing spacetime, not spacetime itself.
Again, this is laid bare by considering the case of many particles labeled by an index

a with S = − ∑
a ma

∫ √−ημνdxμa dxνa . The bad notation is best avoided by denoting
the spacetime coordinates of the point particle by Xμ (as we already did in passing in
chapter III.3): here, unlike in chapter II.1, qμ would be nonstandard and a bit pedantic.

Let us now go back to a single particle merely for ease of writing; you could add the
summation sign if you want. With ζ any parameter that varies monotonically along the
worldline so that we can write Xμ(ζ ) as a function of ζ , we can write the action as

S = −m
∫ √

−ημνdXμdXν = −m
∫

dζ

√
−ημν dX

μ

dζ

dXν

dζ
=
∫

dζL (11)

The length of the worldline, being a geometric quantity, is manifestly reparametrization
invariant, that is, independent of our choice of ζ as long as it is reasonable. As already
remarked in chapter II.2, this is one of those “more obvious than obvious” facts, since∫ √−ημνdXμdXν is manifestly independent of ζ . Indeed, everything is the same as in
chapter II.2, except that here the metric signature is spacetime rather than space, that is,
Minkowskian rather than Euclidean.

The Lagrangian has a rather odd-looking square root form (just as in chapter II.2)

L= −m
(

−ημν dX
μ

dζ

dXν

dζ

) 1
2

(12)

but that does not stop us from sticking the Euler-Lagrange variation to it. Since L is
independent of X, we obtain the equation of motion

d

dζ

⎛
⎝ δL

δ dX
λ

dζ

⎞
⎠= 0 =m

d

dζ

(
1
L
ημλ

dXμ

dζ

)
(13)
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To simplify (13), we exploit the freedom in choosing ζ and set dζ to dτ , so that L= −m.
Then (13) becomes

d2Xμ

dτ 2
= 0 (14)

as we already learned in chapter III.3 (and in some sense even in chapter II.2).
Indeed, the geometrical action (11) was already foreshadowed by the triangle shown in

figure III.3.1 and discussed in chapter III.3.

Unification of material particles with light

At the beginning of this chapter, you felt annoyed about how light and material particles
were treated differently. Now you can actually do something about it. The nonrelativistic
action (1) is manifestly incapable of describing a photon, the ultrarelativistic particle of
light. The relativistic action (11), in contrast, might yet have a fighting chance.

At first glance, things do not look good, since the action (11)S = −m ∫
dζ
√

−ημν dXμ

dζ
dXν

dζ

does not make sense for a massless particle. To remedy this, consider another action:

S̃ = − 1
2

∫
dζ

(
σ(ζ )

(
dX

dζ

)2

+ m2

σ(ζ )

)
(15)

where (as always) ( dX
dζ
)2 = −ημν dXμ

dζ
dXν

dζ
.

This action looks strange at first sight: not only does it depend on the spacetime trajectory
Xμ(ζ ) of our point particle, it also contains another dynamical variable σ(ζ ). Notice,
however, that dσ

dζ
does not appear in the action. Thus, the Euler-Lagrange equation for

σ(ζ ), namely d
dζ

(
δS̃

δ dσ
dζ

)
− δS̃

δσ
= 0, collapses to δS̃

δσ
= 0:

m2

σ(ζ )2
=
(
dX

dζ

)2

(16)

This is an algebraic equation, not a differential equation, for σ(ζ ). In other words, the
dynamical variable σ(ζ ) does not have dynamics of its own but rather is totally yoked5 to
Xμ(ζ ).

In fact, if we use (16) to eliminate σ in S̃, we recover S. Thus, the two actions, S and S̃,
are equivalent in the sense that they yield the same equation of motion for the particle.

We can easily verify this equivalence explicitly. Varying S̃ with respect to Xλ, we obtain
d
dζ

(
δS̃

δ dX
λ

dζ

)
= d

dζ

(
σημλ

dXμ

dζ

)= 0, since S̃ does not depend on X explicitly. (Compare this

with (13).) Using the equation of motion for σ to eliminate it from this equation of motion
for X, we obtain

d

dζ

⎛
⎜⎝ m√

( dX
dζ
)2
ημλ

dXμ

dζ

⎞
⎟⎠= 0
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As we have done many times by now, we use our freedom in choosing ζ and set dζ to dτ ,
which is defined by ( dX

dτ
)2 = 1. Then this simplifies to d2Xμ

dτ 2 = 0, and we recover (14).
You might say that the introduction of σ is a cheap6 trick to get rid of the square root in

the action S in (11). Indeed, (16) is trying to tell us that σ−1 is a proxy for the square root.

Massless particles

After this slightly long, although straightforward, manipulation, you might have lost sight
of what we want to achieve. Let me remind you: we would like to have a unified treatment of
massive and massless particles. Newtonian physics cannot deal with massless particles at
all. It hardly makes sense to set m= 0 in F =ma. Nor is the action S in (11) up to the task.

Now, ta dah, setting m= 0 in S̃, we obtain an action

Smassless = 1
2

∫
dζ

(
σημν

dXμ

dζ

dXμ

dζ

)
(17)

which makes perfect sense. Varying with respect to σ(ζ ) now gives

ημνdX
μdXν = 0 (18)

for a massless particle, or in other words, (d �X)2 = (dX0)2. We recover what we have always
known, that massless particles travel at the speed of light.

To be massless in the contemporary world

To me, one truly profound intellectual triumph of special relativity, with far-reaching
impact on contemporary particle physics, is the notion of a massless particle. To appreciate
how mysterious and alien this concept is, try explaining it to an intelligent person who
happens not to be a physicist. One problem is the definition of mass in elementary physics
texts: typically, mass is said to be the amount of substance contained in the object. You
mean something without substance can still have energy and momentum?

But we could perfectly well set m= 0 in the Einsteinian E =√ �p2 +m2, in contrast to

the Newtonian EK = �p2

2m . In contemporary particle physics,7 all the known particles—the
various quarks, the electron, the electron neutrino, and their various cousins; the photon
and its various cousins responsible for the strong and weak interactions; and the graviton,
responsible for gravity—all of them start out in life∗ massless. (They acquire masses only
later, through a phenomenon known as spontaneous symmetry breaking that does not
concern us here.)

Before 1905 and special relativity, there was no need for a massless particle. Light was
known to be a wave. But 1905, Einstein’s annus mirabilis, was also the year Einstein came
up with the Nobel Prize–winning idea of light as consisting of photons.

∗ More precisely, the quantum fields corresponding to all known particles appear in the action as massless
fields.
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Figure 2 A Babylonian tablet (drawn in a modern pictorial representation).

Babylonian tablet

There is a Babylonian tablet from about 6,000 years ago on which figure 2 was inscribed.∗

Can you figure out what it says?
Take the small square of side b and replace it by a rectangle of equal area, of sides a and

b2/a. Cut the rectangle into two equal smaller rectangles, and paste them onto the sides,
kitty-corner, of the large square of side a. The author of the tablet was trying to tell you that
the result is almost a square of side a + b2

2a .
Here is the algebraic translation of the Babylonian tablet

√
a2 + b2 � a + b2

2a
+ . . . (19)

Clever, no? That guy would have surely gotten the Fields Medal had it existed. That tablet
blew me away when I saw it. I wondered whether that Babylonian could have thought, in
his wildest imagination, that his discovery also held the secret of space and time. If so, he
deserved the Nobel Prize in addition to the Fields Medal.

∗ What figure 2 shows is of course my attempt at copying the tablet, not the original tablet.
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Appendix 1: The preferred parameter choice for massless particles

As before, if we use the parameter ζ , somebody else could use ζ ′ as long as the two parameters are re-
lated by a smooth monotonic function. We couldn’t have lost the reparametrization invariance enjoyed by
the action S by going to an equivalent form. To verify this, change variable ζ → ζ ′ in S̃ and write S̃ =
− 1

2

∫
dζ ′ dζ

dζ ′
(
σ(ζ )(

dζ ′
dζ
)2( dX

dζ ′ )2 + m2

σ(ζ )

)
. Upon defining σ(ζ )≡ σ ′(ζ ′) dζ

dζ ′ , we recover the same form (15) of S̃ as

expected.
So then, is there a “best” choice for ζ ? For massive particles, we know the answer: proper time. But what is

the best choice for a massless particle, for which proper time has no meaning?
When we vary S̃ with respect to Xμ, we obtain d

dζ
(σημν

dXν

dζ
)= 0. Multiply this by σ and go to a parameter

ζ ′ defined by σ(ζ )= dζ
dζ ′ . Then this equation of motion becomes simply d2Xν

dζ ′2 = 0. A parameter that makes the

equation of motion take on this simple form is known as an affine parameter. (I must confess that I have always
disliked this wishy-washy word “affine”—none of the strength of character of a word such as “entropy,” for
example.)

Let’s see what this somewhat formal discussion is all about in the case of a photon propagating along, say the
x direction. We don’t have to solve any equation of motion to know that Xμ is proportional to (1, 1, 0, 0). End of
story. No need to parametrize this worldline going across Minkowski spacetime at 45◦. The equation (18) stands
on its own merits: it does not need a parameter.

But if you insist, you could write Xμ = f (ζ )(1, 1, 0, 0) with some monotonic function f . Then d2Xν

dζ 2 =
(f ′′/f )Xμ. To make life easier, we should obviously choose f to be a linear function of ζ . I explain all this
seemingly useless stuff here, because we will encounter similar considerations in curved spacetime. To me, the
pages some texts spend on the affine parametrization of massless particles literally amounts to much ado about
nothing.

Appendix 2: Baby string theory

The take-home message is that the action principle together with symmetry makes for a powerful combination.
Indeed, so powerful that it enables us to generalize the action for a relativistic particle almost immediately to the
action for a relativistic string.8 The reader seeing all this for the first time might wish to skip this appendix.

The location of a point particle in d-dimensional spacetime is given by Xμ(τ), with μ= 0, 1, . . . , d − 1, and
that is that. In contrast, the location of a string in d-dimensional spacetime is given by Xμ(τ , σ), where σ is a
parameter telling us where we are along the length of the string. For an open string, σ starts at 0 on one end
of the string and ends at some σ∗ at the other end. Thus, Xμ(τ , 0) and Xμ(τ , σ∗) give the locations of the two
ends. For a closed string, σ is conventionally taken to range between 0 and 2π , with the two ends identified:
Xμ(τ , 0)=Xμ(τ , 2π).

As τ varies, Xμ(τ) sweeps out a worldline. In precisely the same way, the location Xμ(τ , σ) of a string sweeps
out a world sheet, an open sheet (figure 3a) with a boundary for the open string, and a cylindrical tube (figure
3b) for the closed string.

You learned way back in chapter I.6 how to embed a curved surface in a higher dimensional space. Now is
the time to put your knowledge to good use! Denote∗ σ 0 = τ ,σ 1 = σ . Then σα (α = 0, 1) provides a coordinate
system on the surface swept out by the string. Recall from chapter I.6 that a metric is induced on the surface, in
this context by the ambient Minkowski metric ημν :† Gαβ = ημν∂αX

μ∂βX
ν , where ∂αXμ = ∂Xμ

∂σα
.

In the case of the point particle, the only quantity with intrinsic geometric significance is the length of the
worldline. For the string, the corresponding quantity is the area of the world sheet. But you know from chapter
I.5 how to write down the area of a surface, namely

∫
d2σ

√
det G, where det G denotes the determinant of the

2-by-2 matrix Gαβ and d2σ ≡ dτdσ . The basic action for string theory

SNambu-Goto = T

∫
dτdσ

√
det G (20)

∗ Sometimes σα is called xα, but we want to avoid confusion with the xμ appearing earlier in this chapter.
† To avoid confusion, I call the induced metric G, not g as in chapter I.6.
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Figure 3 A string sweeps out a world sheet: (a) an open sheet with a
boundary for an open string and (b) a cylindrical tube for a closed string.

was first proposed by Nambu and Goto. The overall constant T , with dimensions of 1/(length)2 or mass/length,
may be interpreted as the string tension (as in chapter II.1).

We can readily verify that if we change the coordinates σα on the world sheet, we leave the string action invari-
ant. Under a “world sheet” reparametrization σα → σ ′α(σ ), the integration measure changes by d2σ = d2σ ′J ,
where the Jacobian J is the determinant of the 2-by-2 matrix sα

β
≡ ∂σα

∂σ ′β . Meanwhile,Gαβ = ημν
∂Xμ

∂σ ′γ ∂Xν

∂σ ′ε ∂σ
′γ

∂σα
∂σ ′ε
∂σβ

=
G′
γ ε
(s−1)γ

α
(s−1)ε

β
, so that det G= J−2det G′. Thus, finally

∫
d2σ

√
det G= ∫

d2σ ′√det G′, and the action is in-
deed geometrical.

Exercises

1 In a precise parallel with the discussion for the point particle, we can avoid the square root in the Nambu-Goto
action and instead use the action

S = 1
2T

∫
dτdσγ

1
2 γ αβ(∂αX

μ∂βXμ) (21)

with γαβ (= det γαβ) an auxiliary variable playing the same role as the auxiliary variable in (15). Show that S
is equivalent classically to SNambu-Goto.

2 Show that the string action is invariant under an arbitrary local rescaling

γαβ(τ , σ)→ e2ω(τ ,σ)γαβ(τ , σ)

known as a Weyl transformation. As a result, the equations of motion determine γαβ only up to this rescaling.

Notes

1. No, Al Gore did not invent “algorithm.”
2. In 1908, Einstein wrote to Johannes Stark complaining that the latter did not properly acknowledge his

priority in deriving E =mc2. Stark wrote back, and Einstein was appropriately apologetic, writing “People
who have been privileged to contribute something to the advancement of science should not let such things
becloud their joy over the fruits of common endeavor.” By the way, Stark later called Werner Heisenberg “a
white Jew” for defending Einstein’s theory of relativity.

3. Psychologists have quantified this phenomenon of feeling that in hindsight things always seem so easy
(B. Fischoff, J. Exp. Psych. 3 (1977), p. 349).
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4. The ugliness can be quantified by comparing the symmetry groups of nonrelativistic and relativistic physics,
the Galilean group versus the Lorentz group. See F. Dyson, “Missed Opportunities,” Bull. Am. Math. Soc. 78,
(1972), p. 635.

5. In quantum field theory, something like σ(ζ ) is known as an auxiliary field.
6. Albeit one used quite often in quantum field theory and string theory!
7. I remember vividly arguing with my professor S. B. Treiman when I was an undergraduate. He had told

me about the soft photon theorems in particle physics, which describe the interaction of the photon with
charged particles in the limit that the photon’s energy and momentum go to zero. I thought that the photon
ceased to exist, but he reminded me that the photon’s spin was still there. I simply could not understand
how something with no mass, no energy, no momentum, and no quantum number could still be spinning.

8. J. Polchinski, String Theory, vol. 1.



III.6 Completion, Promotion, and the Nature of
the Gravitational Field

Natural and unnatural quantities

We now know that nonrelativistic physics is but an approximation to a deeper truth. Since
physics is Lorentz invariant, all physical quantities have to transform in a well-defined
fashion under the Lorentz group, namely according to some definite representation of
the group. The 3-vector d �x has to be unified with the 3-scalar dt to form a 4-vector
dxμ = (dt , d �x). Neither d �x nor dt is relativistically complete. As Minkowski foresaw,
space by itself, and time by itself, have now “faded away into mere shadows,” at least
in fundamental physics.

In this chapter, we will study how various quantities in nonrelativistic physics are to be
“completed and promoted.” Doing this, we will also discover the nature of the gravitational
field and be one step closer to the main subject of this book.

Completion and promotion

Consider the 3-velocity �vN ≡ d �x
dt

. What an awkward quantity, a 3-vector d �x divided by a 3-
scalar dt that happens to be the “time component” of a 4-vector. Ugh! A 3-vector divided
by a 3-scalar, with neither transforming nicely under the Lorentz group. Gimme a break,
no way the resulting object �vN is going to transform nicely!

In contrast, consider a 3-vector d �x divided by a Lorentz scalar, namely dτ (defined as al-
ways by dτ 2 = −ημνdxμdxν = dt2 − d �x2). Now we are talking: the resulting object d �x

dτ
can

be contained in a 4-vector. Indeed, let us define �v ≡ d �x
dτ

, a 3-vector whose relativistic com-
pletion is naturally the 4-vector vμ ≡ dxμ

dτ
. (In other words, �v consists of the vi components

of the 4-vector vμ.) The velocity vμ is the right thing to study.
If you insist, as some authors do, on writing relativistic quantities in terms of “non-

relativistic quantities,” you can do it (it’s a free country), but it’s best not to do so. For
example, since dt

dτ
= dt√

dt2−d �x2
= 1√

1−( d �x
dt
)2

, we can write
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vμ = dxμ

dτ
=
(
dt

dτ
,
d �x
dt

dt

dτ

)
=
⎛
⎜⎝ 1√

1 − v2
N

,
�vN√

1 − v2
N

⎞
⎟⎠

(with v2
N

= �vN . �vN ) and other awkward looking relations such as �v = v0�vN . It may be
convenient on occasions, but it sure ain’t natural.

In theoretical physics, you are free to define any quantity you want, but two criteria are
of prime concern: (1) whether the quantity you define is useful in the particular situation
you are considering, and (2) whether the quantity you define is conceptually natural and
thus serves to deepen, rather than confound, your understanding.

Our discussion makes clear that �vN ≡ d �x
dt

and �v ≡ d �x
dτ

represent different quantities.
Some of the confusion over special relativity stems from confounding the two different

velocities. Note that �vN , not �v, is the velocity that appears in the factor
√

1 − v2
N . To

compound the confusion, people often omit the subscript N , a standard practice that we
will also indulge in. Note also that while �v2

N
≤ 1, the quantity �v2 ranges from 0 to ∞. Never

mind what the subscript N stands for (but if you insist, you could try “Newtonian”). (In
this connection, some authors also adopt for �vN the unfortunate notation �vNR with NR

standing for “nonrelativistic,” even though �vNR can get up to light speed.)

Laws to be promoted

Concepts (such as viN ) appropriate for space and time should be promoted to concepts
(such as vμ) appropriate for spacetime. Correspondingly, the laws of physics have to be
promoted also. Toward the end of chapter I.3 on rotation, I explained why physicists insist
that physical quantities must transform “nicely.” (The reader new to this might want to
reread what I said there.) The niceness is not so much an aesthetic nicety but rather the
fundamental requirement that physical laws should not depend on the observer. Physics
must be independent of physicists!

Consider the law of momentum conservation. Multiplying vμ by the mass, we have
the 4-momentum pμ =mvμ =mdxμ

dτ
of a particle of mass m moving with 4-velocity vμ.

The conservation of nonrelativistic 3-momentum �pN = m�vN in nonrelativistic physics
strongly suggests that the 4-momentum pμ = mdxμ

dτ
is also conserved. (Ultimately, this

statement has to be verified by empirical measurement rather than by philosophical
pronouncements, of course.)

In particle physics, two particles of momentum p1 and p2 collide to produce a bunch of
particles (could be two or could be two hundred, all with different masses). Momentum
conservation states that

∑
(aεI ) p

μ
a

= ∑
(aεF ) p

μ
a

. Here the index a labels the different
particles, and the subscripts on the sums, (a ε I ) and (a ε F ), instruct us to sum over all
the particles in the initial and final states, respectively. This is just the direct generalization
of the familiar

∑
(aεI ) �pNa =∑

(aεF ) �pNa. Now let us defineKμ ≡∑
(aεI ) p

μ
a

−∑
(aεF ) p

μ
a

,
so that momentum conservation statesKμ = 0. The whole point is that sinceK ′μ =�μ

ν
Kν,

if Kμ = 0, then K ′μ = 0.
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If Ms. Unprime has momentum conservation, then Mr. Prime better have momentum
conservation also. This is the reason momentum must transform like a 4-vector in a
Lorentz invariant world. We are not saying anything conceptually different from what we
said at the end of chapter I.3. (Note also that this discussion does not depend in any way on
the details of particle physics except that particles can be produced in collisions.) Indeed,
we had already used this argument in chapter III.3 when we “guessed” what the equation
of motion of a free particle must look like: one requirement was that Ms. Unprime and
Mr. Prime subscribe to the same equation, which amounts to saying that d2xμ

dτ2 transforms
like a 4-vector. (Notice that in this chapter, we are slipping back into the bad notation of
using xμ for the location of the particle.)

But now comes the important point, indicating that we have gone past rotational invari-
ance. The power of Lorentz invariance is such that you cannot conserve pi without also
conserving p0, since they transform into linear combinations of each other.

Let us expand p0 = m dt
dτ

= m√
1−v2

N

to find out what it is. Restoring c, we have p0 =
mc2 + 1

2mv
2
N

+O(v4
N
). The big surprise (as we have already seen in the preceding chapter)

is of course that the Newtonian kinetic energy 1
2mv

2
N

is not the leading term in the
expansion of p0 but the second term. Even a particle at rest has energy!

The most famous formula in physics

What we have discovered is that p0 is the energy of a particle of mass m moving with 4-
velocity vμ, not exactly the energy we knew, but the energy we knew plus mc2 (and an
infinite series besides)! So we officially give p0 another name, namely E ≡ p0.

A “real” relativistic physicist should of course not write the nonrelativistic formula∗

E =mc2. You might tell your lay friends that the pros write E =mc2 as

−p2 =m2 (1)

since we have p2 = ημνp
μpν = −(p0)2 + ( �p)2 =m2(ημν dxμdτ dxν

dτ

)= −m2, using the defini-
tion of dτ 2 in the last step. We should think of (1) as a constraint on p, a constraint known
as the mass shell or on shell condition, because in the 4-dimensional space spanned by
pμ = (p0, �p), (1) restricts the momentum to a hyperbolic shell defined by (p0)2 − ( �p)2 =
m2.

∗ Einstein’s famous paper1 contained the result

K0 −K1 = L

V 2

v2

2

What! It doesn’t look like E =mc2 to you? Einstein is telling us that when an object moving at velocity v radiates,
its kinetic energy K changes by (in modern notation) δK = δE

c2
v2

2 . (In his paper, L denotes the energy emitted
in radiation and V the speed of light.) See appendix 1. He then goes on to say, a couple of paragraphs later, “It is
not excluded that it will prove possible to test this theory using bodies whose energy content is variable to a high
degree (e.g., radium salts).”
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It is worth emphasizing that the relation (1) holds in any frame for any particle, including
those for which m= 0. The same is not true of the more famous E =mc2.

Strictly speaking, the conservation of pμ (and hence of p0) must be regarded as a the-
oretical suggestion, albeit a very strong suggestion, to be verified by careful experimental
measurements. Indeed, so far we have only noninteracting free particles. At this stage, we
do not even know how to include interactions between particles. The nonrelativistic expe-
dient of introducing a potentialV (�x1 − �x2) does not work, since it is not Lorentz invariant.∗

Here the power of Noether’s theorem shines through. Without having to specify the in-
teraction, we know that pμ conservation will follow as long as the interaction is invariant
under spacetime translation; that is, it does not depend on any specific point in spacetime,
which certainly seems reasonable. Recall from chapter II.4 that in nonrelativistic physics,
conservation of 3-momentum and of energy follow from invariance under translation in
space and in time, respectively. It is pleasing that these two translation invariances are now
unified into a single invariance, just as space and time are unified into spacetime.

Logically, nothing in our discussion says that mass can change and the enormous
amount of energy locked up in the rest energy mc2 can be released. As you know, that
is indeed possible. But input from atomic, nuclear, and particle physics is needed to tell
us how and when mass can change.

Relativistic kinematics

To illustrate what 4-momentum conservation (henceforth, just momentum conservation)
can do, let us go through Compton scattering, in which a photon† of momentum k hits
an electron at rest and goes off with momentum k′. See figure 1 depicting this process
in the lab frame. Let us find the frequency ω′ of the outgoing photon as a function of the
scattering angle θ in the lab frame as measured from the direction of the incoming photon.

Momentum conservation gives k + p = k′ + p′, with p the initial and p′ the final
momentum of the electron. Note that we are always talking about 4-momentum unless
otherwise stated. The desired quantity can be extracted from the relativistic invariant k′ . p,
which is equal to −mω′ when evaluated in the lab frame in which p = (m, �0). (Notice that
we do not simply say that k′ . p is equal to −mω′. We must specify the frame, sinceω′ is not
a Lorentz invariant quantity.) We have k′ . p = k′ . (k′ + p′ − k)= k′ . p′ − k′ . k. In the first
equality, we used momentum conservation; in the second, we used the fact that the photon
is massless to set k′2 = 0 invoking (1). From k + p = k′ + p′, it follows that (k + p)2 = (k′ +
p′)2. Since (k + p)2 = 2k . p −m2 and (k′ + p′)2 = 2k′ . p′ −m2, we obtain k . p = k′ . p′.
Combining this with the previous relation, we find k′ . p = k . p − k′ . k. Evaluating this in

∗ To introduce interactions correctly, we have to use fields, as we will see. Classical field theory suffices; no
need for quantum field theory yet.

† In Einstein’s other great 1905 paper, he introduced the concept of the photon and showed that its energy and
3-momentum is given by E = �ω and �p = ��k, respectively. We are using natural units with � = 1 and denoting
the photon 4-momentum by k = (ω, �k).
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θk

k′

p′

Figure 1 Compton scattering. A photon of
momentum k hits an electron at rest and
goes off with momentum k′ at an angle θ .

the lab frame, we obtain mω′ =mω − (ω′ω − �k′ . �k)=mω − ωω′(1 − cos θ), and thus2

ω′ = ω

1 + ω
m
(1 − cos θ)

(2)

Note the downward shift of the photon frequency as a function of scattering angle. (Rel-
ativistic kinematics alone cannot tell you the range of angles the photon prefers to come
out in, namely the differential cross section.)3

This example provides a prototype for how such problems, typical of particle physics
and astrophysics, should be approached. First, write the quantity you want to determine in
terms of some Lorentz invariant. Then use the equations you have, namely the mass shell
condition for each particle and momentum conservation. It is best to keep the calculation
Lorentz invariant until the last stage, at which point you can evaluate the result in any
frame you like.

The relativistic Doppler shift again

The preceding discussion gives an alternative derivation of the relativistic Doppler shift.
Suppose a particle of momentum p emits a photon of momentum k, which is then
absorbed by a particle of momentum p′.

To obtain the frequency shift, our strategy is to evaluate the Lorentz scalar k . p′ in two
frames and demand that the results agree. In the rest frame of the emitting particle, p =
(m, �0), k = (ω, �k), and p′ =m′

(
1√

1−�v2
, �v√

1−�v2

)
, where �v is the velocity of the absorbing

particle in the rest frame of the emitting particle, so that∗ k . p′ = −m′(ω− �v . �k)/√1 − �v2.
(Note that we do not assume that the emitting particle and the absorbing particle necessar-
ily have the same mass.) However, in the rest frame of the absorbing particle, p′ = (m′, �0)
and k = (ω′, �k′), where ω′ is the frequency of the photon seen by the absorbing particle, we
have k . p′ = −m′ω′. Since the scalar k . p′ has the same value in all frames, we equate these
two expressions for k . p′ to obtain ω′ = (ω− �v . �k)/√1 − �v2. Writing �v . �k = ω|�v| cos θ , we

∗ Note that here �v is the concept previously known as �vN . I got tired of writing the clarifying subscript. A
simple rule (as has already been mentioned): the �v inside the famous square root

√
1 − �v2 is �vN .
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see that this agrees with our result in (III.3.9). With the convention here, θ = 0 means that
the receiver is receding and hence sees a redshift.

The particles in this “particle physics” derivation could be replaced by observers of
course. Let each observer “carry” a 4-vector U , which has the form Uμ = (1, �0) in his or
her rest frame. Then simply replace p and p′ in the derivation by U and U ′, respectively,
since the masses m and m′ are not relevant to this discussion. We will encounter Uμ again
later in this chapter.

Currents

Our next example of relativistic completion is a bit more involved. Consider the number
density (of atoms, molecules, particles, or any objects which cannot disappear into thin
air) n(t , �x). This quantity, the number of particles per unit volume, is a rotational scalar.
Think of a bunch of particles sitting inside a box. Rotations change neither the volume of
the box nor the number of particles inside.

Now the question: Does n(t , �x) relativistically complete into a Lorentz scalar or some-
thing else? In general, there is no algorithm such that you can simply turn the crank and
answer this question. To obtain the answer, you need to exercise some physical insight
or mathematical savvy. For this simple example, I will give a physical argument, to be
followed by a more formal mathematical analysis.

To an observer moving by, the box is Lorentz contracted (figure 2) in the direction of
motion by

√
1 − �v2 and thus its volume is diminished by this factor. (Incidentally, as already

mentioned earlier, the �v2 that appears in this square root factor stands for �v2
N

; we will
henceforth suppress the subscript N .) Since the number of particles inside is unchanged,
we conclude that the number density as seen by this observer is larger than the number
density seen by an observer at rest with the box by 1/

√
1 − �v2. In other words, n(t , �x)

transforms like the time component of a 4-vector.
Physically, it is obvious what the other 3 components are. This observer sees the particles

moving and thus observes a current density. The most naive guess that the rotational

(a) (b)

Figure 2 (a) A box containing a certain number of
particles inside. (b) To an observer moving by, the
box is Lorentz contracted, and thus the number
density as seen by this observer is larger than the
number density seen by an observer at rest with
the box.
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scalar n(x) is promoted to a Lorentz scalar is wrong. Rather, it is promoted to be a
component of a Lorentz vector nμ(x) = (n0(x), ni(x)), a 4-current. Nothing strange or
unusual here: after all, energy, a rotational scalar, is promoted to be a component of the
momentum pμ. As a check, apply the transformation law for a Lorentz vector. To the
observer at rest with the box, nμ(x)= (n, �0). Thus, to the observer watching the box go by

(figure 2) along the 1-axis say, Lorentz transformation gives n′0 = n0+|�v|n1√
1−�v2

= n√
1−�v2

≥ n and

n′1 = |�v|n0+n1√
1−�v2

= n|�v|√
1−�v2

≥ n|�v|, as we argued physically. The inequalities indicate Lorentz

contraction.
We next give a more mathematical treatment, reaching the same conclusion in the end.

For simplicity, suppose we have only one particle sitting at the origin. Then n(t , �x) =
δ(3)(�x), with the 3-dimensional delta function introduced in chapter II.1. In other words,
n(t , �x) is concentrated at the origin, vanishing everywhere else and unchanging in
time. Check to make sure that we have one particle:

∫
d3x n(t , �x) = ∫

d3x δ(3)(�x) =∫
dx

∫
dy

∫
dz δ(x)δ(y)δ(z)= 13 = 1as expected. More importantly, this shows that δ(3)(�x)

is rotationally invariant,∗ since d3x is rotationally invariant. Our challenge is now to write
n(t , �x)= δ(3)(�x) in a relativistic form.

Introduce the worldline of the particle traced out by qμ(τ). For a particle just sitting
there, q0(τ )= τ , �q(τ)= 0, and dτ 2 = −ημνdqμdqν. (Now is a good time to recall the bad
notation alerts I sounded repeatedly in part I concerning the distinction between x and q,
between spacetime and some particle’s location. In other words, x is where you are and q
is where the particle is. Here the word “when” is subsumed into “where” (in spacetime) as

per Minkowski.) Write δ(3)(�x)= ∫
dτδ(x0 − q0(τ ))δ(3)(�x)= ∫

dτ
dq0

dτ
δ(x0 − q0(τ ))δ(3)(�x −

�q(τ))= ∫
dτ

dq0

dτ
δ(4)(x − q(τ)). Here we have introduced the 4-dimensional delta function

δ(4)(x)≡ δ(x0)δ(3)(�x), which (in analogy with the discussion for δ(3)(�x) being a rotational
scalar) we argue is a Lorentz scalar, since

∫
d4xδ4(x) = 1 and d4x is Lorentz invariant

(recall chapter III.3).
For the abecedarian struggling to follow this, it may seem a totally pointless academic

exercise in which we make things progressively more complicated. For example, in the

second equality, we rewrote 1 as dq0

dτ
and introduced 0 = �q(τ). But of course there is

a point; otherwise this wouldn’t appear in a textbook. The point is that the expression
we ended up with is manifestly the time component of the Lorentz 4-vector nμ(x) =∫
dτ

dqμ

dτ
δ(4)(x − q(τ)). Everything on the right hand side is a Lorentz scalar except for

the 4-vector dqμ

dτ
. Indeed, by Lorentz, this expression, now that we have it in this form,

holds for any worldline qμ(τ), not just the simple form we had above. Furthermore, we
can sum over an arbitrary number of particles. See figure 3.

To summarize, we define the number current (4-current, to be pedantic) as

nμ(x)=
∑
a

∫
dτa

dqμ
a

dτa
δ(4)(x − qa(τa)) (3)

∗ You have essentially shown this already in exercise I.3.2.
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x

qμ
a(τa)

t

Figure 3 Defining the number current as a 4-vector in spacetime;
the dashed line indicates a moment in time.

with dτ 2
a

= −ημνdqμa dqνa . It transforms correctly and reduces in the appropriate limit to
something with vanishing space components and a time component equal to what we
would call a number density. What more could you want?

In chapter I.4, I explained that an irreducible representation of a group, upon restriction
to a subgroup, will become reducible and break up in general into a direct sum of a number
of smaller representations of the subgroup. Thus, the 4-dimensional representation of
the Lorentz group SO(3, 1), upon restriction to the rotation group SO(3), breaks up as
4 → 3 + 1, a 3-vector and a 3-scalar. Here we are asking the reverse: given a rotational
scalar (what we also call a 3-scalar), which representation of SO(3, 1) does it come from?
In general, there is no unique answer. We have to appeal to physical considerations as is
done here.

Current conservation

Another nice feature is that the conservation of the number of particles we started out
with, d

dt
n(t , �x)= d

dt
δ(3)(�x)= 0, is instantly generalized to

∂μn
μ ≡ ∂nμ

∂xμ
= ∂n0

∂t
+ ∂ni

∂xi
= ∂n0

∂t
+ �∇ . �n= 0 (4)

known as the continuity equation. You no doubt encountered this when you first learned
what a divergence �∇ . �n was. You were probably taught to draw a little cube and to add up
the number current flowing in and out of the six faces of the cube. Under rotations, ∂0n

0

and ∂ini both transform as 3-scalars, but under Lorentz transformations, they are revealed
as parts of the same package ∂μnμ.

Admire the power of Lorentz invariance: it mandates that dn
dt

must be promoted to ∂μnμ.
Nevertheless, it may also be instructive to verify (4) laboriously. Acting with ∂μ on (3),

we encounter ∂μδ(4)(x − qa(τa))= − ∂

∂q
μ
a

δ(4)(x − qa(τa)) and hence the integral

−
∫

dτa
dqμ

a

dτa

∂

∂q
μ
a

δ(4)(x − qa(τa))= −
∫

dτa
d

dτa
δ(4)(x − qa(τa))= −δ(4)(x − qa(τa))|τa=∞

τa=−∞ = 0

since4 q0
a
(±∞)= ±∞, while t ≡ x0 is some fixed instant in time.
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x

∂V ∂V

V

qa

t

Figure 4 Counting the number of particles inside some 3-volume
V at some time t . Here ∂V indicates the boundary of V .

Another instructive exercise is to integrate n0(t , �x) over some 3-volume V at some time
t (figure 4). We encounter δ(t − q0

a
(τa))

∫
V
d3xδ(3)(�x − �qa(τa)), with the integral giving 1

if the particle is inside V at that time and 0 if not. Note the time delta function “slices” the
worldline and fixes τa to be that value at which q0

a
(τa)= t . Thus,

∫
V

d3x n0(x)=
∑
(aεV )

∫
dτa

dq0
a

dτa
δ(t − q0

a
(τa))=

∑
(aεV )

∫
dq0

a
δ(t − q0

a
)=

∑
(aεV )

1 =NV (t)

giving precisely the number of particles inside V. You may find this all quite involved, but
it is actually just telling you the obvious. Furthermore, applying (4), we have d

dt
NV (t)=∫

V
d3x d

dt
n0(x)= − ∫

V
d3x ∂n

i

∂xi
= − ∫

∂V
dSi n

i (using the divergence theorem): the change
inNV (t)with time is of course given by integrating the number current ni flowing through
the surface element dSi forming the surface ∂V enclosing V .

We went through the number current in detail to save work later. Indeed, we can now
write down the relativistic form of the electromagnetic current without further ado by
simply including the charge ea carried by the ath particle:

Jμ(x)=
∑
a

ea

∫
dτa

dqμ
a

dτa
δ(4)(x − qa(τa)) (5)

By the same considerations as above, we obtain the conservation of the electromagnetic
current

∂μJ
μ = 0 (6)

Energy momentum tensor

Moving on from the number density, we can now easily study energy density. As before,
consider a bunch of particles sitting in a box. As is obvious by now, in nonrelativistic
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physics, energy density, which we denote by ρ(t , �x), is a rotational scalar, since energy
and the volume of the box are both rotationally invariant. How does it transform under a
Lorentz transformation?

We simply invoke our physical argument again. Our moving observer not only sees the
box contracted, but he also sees the particles moving; thus ρ(t , �x) is enhanced by not one,
but two factors of 1/

√
1 − v2. From what we learned in chapter III.3, it transforms like

the time-time component T 00(x) of a 4-tensor T μν(x), known as the energy momentum
tensor (also called the stress energy tensor by some). In other words, this observer sees

T ′00 =�0
μ
�0

ν
T μν =�0

0�
0
0T

00 =
(

1√
1−v2

)2
T 00 (since for the unprimed observer the only

nonvanishing component of T μν is T 00).
Just as for the number current (3), for which we count the particles, and for the electro-

magnetic current (5), for which we add up the charges, here we tally the 4-momentum pν
a

carried by each particle. We write down instantly the energy momentum tensor

T μν(x)=
∑
a

∫
dτa

dqμ
a

dτa
pν
a
(τa)δ

(4)(x − qa(τa))=
∑
a

∫
dτa

(
ma

dqμ
a

dτa

dqν
a

dτa

)
δ(4)(x − qa(τa)) (7)

We already know that we need a tensor. Gratifyingly, dq
μ
a

dτa

dqνa
dτa

, the product of two vectors, is
manifestly a tensor. The second form in (7) emphasizes that T μν(x) is a symmetric tensor
and thus possesses 4.5

2 = 10 independent components.
We now have the energy momentum conservation law (exercise 3)

∂μT
μν(x)= 0 (8)

in parallel with the current conservation law (6). Just as before when we counted the
number of particles in a volume V , the amount of energy momentum contained in the
volume V is given by
∫
V

d3xT 0ν(x)=
∑
(aεV )

∫
dτa

dq0
a

dτa
pν
a
δ(x0 − q0

a
(τa))=

∑
(aεV )

pν
a

≡ P ν
V
(t) (9)

In the second equality, we again use dτa
dq0

a

dτa
= dq0

a
to convert the integral over τa into

an integral over q0
a

to knock off the remaining δ function. (As they say, the first time a
philosopher, the second time a connoisseur. In physics, you are a world expert the second
time you use a trick.) We obtain the total 4-momentumP ν

V
(t) contained inside the 3-volume

V at time t .

Stress

Again, to the beginner, it may seem at first sight a bit odd that we would take something like
T 0ν(x), which carries an explicit time index, and integrate it over the Lorentz noninvariant
3-volume. But d3x is precisely looking for something that transforms like dt to “complete
itself.”
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Confusio nods: “Yes, I can see from (9) that T 0ν(x) = (T 00(x), T 0i(x)) describes the
spatial densities of energy and momentum, but I have a harder time picturing T ij(x).”

Well, Confusio, you are not alone. Most people have trouble. It might help to note that
(as before for the number current) we have d

dt
P ν
V
(t) = ∫

V
d3x

∂T 0ν(x)
∂t

= − ∫
V
d3x ∂T

iν

∂xi
=

− ∫
∂V

dSi T
iν. Set ν = j . Then

d

dt
P
j

V
(t)= −

∫
∂V

dSi T
ij (10)

tells us that the time rate of change of the 3-momentum P
j

V (t) (hence a force) has to
do with T ij acting on the surface element dSi. In other words, T ij is a force per unit
area, and hence must be a pressure pushing in the j th direction, exerted on an area
element pointing in the ith direction. Note that since T ij = T ji, this pressure is the same
as the pressure pushing in the ith direction, exerted on an area element pointing in the
j th direction. This physical picture also underlines the tensorial character of T ij : there
are two directions involved when you press against a surface. Does that make sense,
Confusio?

“Yes indeed, one for the direction of the force, the other for the orientation of the
surface.”

Thus, some authors call the energy momentum tensor the stress energy tensor.
Incidentally, this discussion shows explicitly that upon restriction (recall chapter I.4)

to the rotation subgroup, the 10-dimensional representation of the Lorentz group de-
composes as 10 → 1 + 3 + 6, namely T μν = {T 00, T 0i , T ij}.

At a specific time

We could do the integrals in (3), (5), and (7), if our little hearts desire. To do this, I need to
teach you an identity. Since the delta function is a big spike with total area under the peak∫∞
−∞ dx δ(x)= 1, we have

∫∞
−∞ dx δ(x)s(x)= s(0) for a sufficiently smooth function s(x).

Also,∫ ∞

−∞
dx δ(bx)s(x)=

∫ ∞

−∞
dx

δ(x)

|b| s(x)= s(0)
|b|

where the factor of 1/b follows from dimensional analysis. (To see the need for the
absolute value, simply note that δ(bx) is a positive function. Alternatively, change the
integration variable from x to y = bx: for b negative, we have to flip the integration limits.)
A trivial generalization is

∫∞
−∞ dx δ(b(x − a))s(x)= s(a)

|b| . Once we know how to deal with
a linear function inside the delta function, we can handle any smooth function f (x) inside
the delta function. Denote the zeroes of f (x) by xA (in other words, f (xA) = 0) and
write f ′(xA) = df

dx
(xA). Expand the function f (x) around its zeroes. Break the integral∫∞

−∞ dx δ(f (x))s(x) into pieces, each containing a zero xA. Hence the identity
∫ ∞

−∞
dx δ(f (x))s(x)=

∑
A

s(xA)

|f ′(xA)|
(11)
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(I trust you to deal with nongeneric cases, such as what happens if f ′(xA) vanishes for
some A.)

We now focus on an integral
∫
dτaδ(t − q0

a
(τa))s(τa) in (3), singling out the time delta

function as the one we are knocking off and calling the rest of the integrand s(τa). Applying
the identity (11), we find that the integral equals s(τa)/|(dq0

a
/dτa)| evaluated at the value

of τa that solves the equation q0
a
(τa)= t . Once again, this may seem rather sophisticated

to the reader seeing it for the first time, but it is simply determining the proper time
τa of particle a as it crosses the specified time slice t . (See figure 3.) Since worldlines
cannot go backward, the sum in (11) reduces to just one term. Thus, we encounter
(dqμ

a
/dτa)/(dq

0
a
/dτa)= (1, viN ,a) as defined earlier and (3) breaks up into

n0(x)=
∑
a

δ(3)(�x − �qa(τa))

ni(x)=
∑
a

vi
N ,aδ

(3)(�x − �qa(τa)) (12)

(with τa defined by q0
a
(τa) = t) precisely as we would expect. (Reneging on our earlier

promise, we put back the subscript N here for emphasis.)
Similarly, when we do the integral in (7), we encounter pν

a
(τa)(dq

μ
a
/dτa)/(dq

0
a
/dτa),

which we write as pμ
a
(τa)p

ν
a
(τa)/Ea(τa) (since Ea =m

dq0
a

dτa
= p0

a
is just another name for

p0
a
). Thus,

T μν(x)=
∑
a

pμ
a
(τa)p

ν
a
(τa)

Ea(τa)
δ(3)(�x − �qa(τa)) (13)

The denominator Ea may seem a bit off to you, but you will soon see that it plays a
necessary role.

Perfect fluids and the comoving observer

Consider a system of many particles. If the spatial separation between particles and the
mean time between collisions are much less than the length and time scales we are
interested in, we have a fluid (a term used loosely here to include gases). The various
currents we have been discussing all become smooth functions of x. At a given point in
spacetime, the fluid moves with a 4-velocity Uμ(x) normalized to

ημνU
μUν = UνUν = −1 (14)

For instance, the number current would then be given by nμ(x)= n(x)Uμ(x).
For an observer going with the flow so to speak, known as a comoving observer,

U0 = 1, Ui = 0, and thus n(x) is just the number density seen by the comoving
observer.

If the fluid is isotropic as seen by the comoving observer (that is, the fluid does not have
a special direction in its local rest frame), it is said to be perfect.

SinceUi = 0 and there is no other 3-vector available to construct T 0i out of, T 0i vanishes,
by rotational invariance. Furthermore, the only thing we have available to construct the
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symmetric rotational tensorT ij is the Kronecker delta δij . Hence the stress energy tensor of
a perfect fluid at that point has the form T 00(x)= ρ(x), T 0i(x)= 0, and T ij(x)= P(x)δij ,
with ρ and P some function of x. Written out as a matrix, we have

T μν =

⎛
⎜⎜⎜⎜⎜⎝

ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

⎞
⎟⎟⎟⎟⎟⎠ (15)

Let us invite ourselves to express this in terms of Uμ and ημν. As you can quickly verify
component by component,

T μν(x)= (ρ(x)+ P(x))Uμ(x)Uν(x)+ P(x)ημν (16)

Note that Uμ may vary from point to point, of course. As another easy check, note that in
the comoving frame, with the form (16), the conservation law ∂μT

μν = 0 reduces to ∂ρ
∂t

= 0
for ν = 0 and ∂P

∂xi
= 0 for ν = i.

Moving fluids

What if the fluid is moving, as fluids are wont to do?
Behold the power of Lorentz invariance. Simply go to the frame of an observer moving

relative to our comoving observer. To this observer, the perfect fluid is moving. All we have

to do is Lorentz boost the 4-vector Uμ = (1, �0) to Uμ =
(

1√
1−�v2

, vi√
1−�v2

)
. As we have been

saying until we are practically hoarse, if a tensor equation like (16) holds in one frame, it
holds in all frames. Thus, for example, the energy density of a moving fluid is

T 00(x)= (ρ + P)(U0)2 − P = ρ + P

1 − �v2
− P = ρ + �v2P

1 − �v2
(17)

Without the power of a symmetry argument, it would be somewhat challenging to work
out the relativistic corrections embodied in (17). Note that relativistically, the pressure P
contributes to the energy density T 00. I won’t deprive you of the fun of working out the
other components. (See exercise 4, from the result of which you can also see when T ij for
i �= j might be nonzero.) As should be clear from our discussion, here ρ, P , and �v can all
depend on x.

Two gases for cosmology

We now go back to (13) and calculate ρ and P for two important cases. To say that we have

a fluid means that we are to average the factor p
μ
a (τa)p

ν
a(τa)

Ea(τa)
in (13) over the multitude of

particles. By definition, a perfect fluid means that there is no preferred direction in the
comoving frame: the 3-vector �pa(τa) points in all possible directions, so that p0

a
(τa)p

i
a
(τa)

averages to 0, giving T 0i = 0, thus confirming our earlier conclusion using rotational
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invariance. Next, recall exercise I.3.5, which showed that pi
a
(τa)p

j
a
(τa) becomes 1

3 �p2
a
(τa)δ

ij

when averaged over all directions. Thus, for a perfect fluid,

ρ =
〈∑

a

Ea(τa)δ
(3)(�x − �qa(τa))

〉

P =
〈∑

a

�p2
a
(τa)

3Ea(τa)
δ(3)(�x − �qa(τa))

〉
(18)

where the angled brackets indicate averaging over particles (an averaging implied by the
sum already for a macroscopically large number of particles). Since for each particle,
E2 = �p2 +m2 ≥ �p2, we have ρ ≥ 3P ≥ 0. We can evaluate this result in two extreme cases.

For a nonrelativistic gas, E =m+ �p2

2m + . . . . Statistical mechanics teaches us that the
quantity called temperature T is twice the energy∗ possessed by each degree of freedom.
Each (monoatomic) gas particle has three kinetic degrees of freedom, so that its average
kinetic energy is just 3

2T . Thus, using (18), we obtain the ideal gas law ρ = n(m + 3
2T )

and, since 〈 �p2
a(τa)

3Ea(τa)
〉 � �p2

3m = 2
3

�p2

2m = 2
3(

3
2T ) = T , we have P = nT , or PV = NT in more

elementary notation. A nice derivation of the equation of state of an ideal gas, no? As we
have suspected all along, P is in fact the pressure.

For a highly relativistic gas, E = | �p| + . . . and so ρ � 3P . In particular, the pressure of
a photon gas is given by

P = 1
3ρ (19)

Note from (15) that in this case, the energy momentum tensor is traceless: ημνT μν =
−ρ + 3P = 0.

In modern cosmology, the content of the universe is typically treated as a perfect fluid,
as we will see in chapter VIII.1.

Nature of the gravitational field

Our simple intuitive argument involving moving particles in a contracting box (which
shows that the energy density T 00, a rotational scalar, is promoted to a component of a 2-
indexed tensor) gives us a tantalizing hint of the nature of the gravitational field. Already in
chapters II.1 and II.3, I reminded you that in Newtonian gravity, the gravitational potential
� satisfies Poisson’s equation �∇2�(�x)= 4πGρ(�x).

But if ρ is promoted, then it appears that � should also be promoted to the time-time
component of a 2-indexed tensor, so that the two sides of whatever equation we have in
Einstein gravity to determine � in terms of ρ would transform in the same way. This
strongly suggests that the gravitational field is a tensor field. We will see in chapter VI.1
that this guess is correct. Furthermore, �∇2 is clearly not Lorentz invariant and should be

∗ We omit the historical conversion factor k between degree and the unit of energy introduced by Boltzmann.
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promoted to −∂2 = ημν∂μ∂ν = −∂2
t

+ �∇2. We will develop this line of thought further in
chapter IX.5.

Appendix 1: Einstein’s derivation of the amusing and seductive E = mc2

Did you know that Einstein didn’t have E =mc2 in his first paper on special relativity? This famous relation5

appeared a few months later in a very brief note. Einstein wrote to a friend excitedly: “One more consequence of
the paper on electrodynamics has also occurred to me. . . . The argument is amusing and seductive; but for all
I know the Lord might be laughing over it and leading me around by the nose.”

As we all know, the Lord did not lead Einstein around by the nose.
The derivation I gave in this chapter of this relation is “modern” and more or less standard. Here I will describe

an elegant derivation∗ given by Einstein in 1946, which surprisingly, is omitted from most textbooks6 and so is
in danger of being forgotten.

Suppose Ms. Unprime observes an atom of mass M at rest emitting two photons with equal and opposite
momenta, thus leaving the “daughter atom” at rest. See figure 5a,b. Let Mr. Prime move with velocity −v in a
direction (call it the x-axis) perpendicular to the direction defined by the motion of the photons. We will take v � c

so that we can use Newtonian mechanics to describe the motion of the atom before and after the emission. Thus,
Mr. Prime sees, before the emission, an atom moving along the x-axis with velocity v, and, after the emission,
the daughter atom moving along the x-axis with velocity v, together with two photons with the x components of
their velocities equal to v. See figure 5c,d. Given that the speed of light is c, it follows that the two photons move
away from the x-axis at an angle θ given by cos θ = v/c, as indicated in the figure. (We are taking v � c so the
figure is not to scale.)

The key ingredient in the argument is that a photon carrying energy Eγ has momentum pγ = Eγ/c, a result
that goes back in some sense to Einstein’s own Nobel Prize–winning work on the photoelectric effect. (Here is a
nifty derivation. By dimensional analysis, pγ must be a constant times Eγ/c. But Mr. Maxwell already calculated
the momentum carried by an electromagnetic wave (using the Poynting vector, remember?) to be equal to the
energy of the wave divided by c. Thus, if we think of the wave as a stampede of photons, we could argue that the
constant must be 1.)

Momentum conservation holds trivially for Ms. Unprime. Now watch Mr. Prime impose momentum conserva-
tion in the x direction. The x component of the photon momentum is px

γ
= cos θEγ /c= vEγ /c

2. So momentum
conservation requires

Mv =mv + 2
vEγ

c2
(20)

Here, just to keep an open mind, we write the mass of the daughter atom as m, which may well be equal to M ,
the mass of the atom before emission. As you know, before Einstein, most physicists would have thought that
m=M . But now we see immediately that momentum conservation cannot be satisfied unless m<M . Cool, eh?
From this argument, it already follows that during emission the atom must lose mass.

Next, Mr. Prime applies energy conservation, as any decent physics student would. Before emission, the atom
has energy A+ 1

2Mv2. Again, to be open minded, we add a constant A, which Mr. Newton did not know about,
to his kinetic energy. The atom loses mass, and so might end up possessing less of everything. Similarly, we
suppose that after emission, the atom has energy a + 1

2mv
2. Energy conservation now requires

A+ 1
2
Mv2 = a + 1

2
mv2 + 2Eγ = a + 1

2
mv2 + (M −m)c2 (21)

where in the last step we used (20). By assumption v � c, so we can drop the v2 terms (the energy conservation
equation is consistent as written, since in the derivation we already have dropped terms suppressed by v/c). We
thus obtain A− a = (M −m)c2, or in other words, δE = (δm)c2. Following Einstein, we integrate this to obtain
E =mc2.

Nowadays, I could have used the decay of the neutral pion into two photonsπ0 → γ + γ instead of the radiative
emission of an atom and simplified the derivation slightly (since the π0 meson has no daughter, so to speak).

∗ I like Einstein’s 1946 derivation much better than his original 1905 derivation, which invoked the Lorentz
transformation and was unnecessarily complicated.
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θ

⇒

⇒

(a)

y
m

v v
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(d)

Figure 5 Einstein’s nearly forgotten 1946 derivation of E = mc2.
(a) Ms. Unprime observes an atom of mass M at rest. (b) The atom
subsequently emits two photons with equal and opposite momenta,
thus leaving the daughter atom of mass m at rest. (c) Mr. Prime
observes an atom moving along the x-axis with velocity v. (d) The
atom subsequently emits two photons. To Mr. Prime, the daughter
atom continues to move along the x axis with velocity v, and the two
photons have velocities with x-components equal to v.

But it would be somewhat unfair, since the possibility of a massive particle disappearing into two poufs of energy
was hardly conceivable back then. Of course, if we are allowed to use the entire formalism of Lorentz vectors,
we could simply write down the conservation of 4-momentum pπ = kγ + qγ and evaluate it in the rest frame of
the pion.

Appendix 2: Conservation and relativistic fluid dynamics

This appendix may be omitted upon first reading. Fluid dynamics describes how stuff, energy, and momentum
flow from place to place as a function of time and is thus governed by the two conservation laws (4) and (8).

Written out more explicitly, ∂μnμ = 0 becomes

∂0

(
n√

1 − �v2

)
+ ∂i

(
nvi√
1 − �v2

)
= 0 (22)

Plugging the perfect fluid form (16) into ∂μT μν = 0, we have

{∂μ[(ρ + P)Uμ]}Uν + (ρ + P)Uμ∂μU
ν = −ημν∂μP (23)

It takes some work to massage this into shape. Divide the four equations in (23) into one “time equation,” obtained
by setting ν = 0, and three “space equations,” obtained by setting ν = i. Solve the time equation for the quantity in
the curly brackets, ∂μ[(ρ + P)Uμ] = 1

U0 [∂0P − (ρ + P)Uμ∂μU
0], and plug this back into the space equations. We
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encounter∗ vi ≡ Ui

U0 and the differential operator Uμ

U0 ∂μ = ∂
∂t

+ �v . �∇, which the reader familiar with elementary
fluid dynamics will recognize as the convective derivative. (Indeed, we derived it in the appendix to chapter III.1
using Galilean invariance.)

After the dust settles, we obtain the relativistic Euler equation(
∂

∂t
+ �v . �∇

)
�v = −

(
1 − �v2

ρ + P

) (
�v ∂P
∂t

+ �∇P
)

(24)

The reader just alluded to would notice that the usual nonrelativistic Euler equation (also known as the Navier-
Stokes equation and referred to as such in chapter III.1) ( ∂

∂t
+ �v . �∇)�v = − 1

ρ
�∇P emerges in the limit v � 1 and

P � ρ.
We have thus far extracted 3 equations, namely (24), out of the 4 equations contained in (23). To extract the

remaining equation, contract (23) with Uν and use 0 = ∂μ(U
νUν)= 2(∂μUν)Uν obtained by differentiating (14).

We find

∂μ[(ρ + P)Uμ] = Uμ∂μP “mystery equation” (25)

which you may or may not recognize.
What do we do with this? The clever trick is to go back to (4) ∂μnμ = ∂μ(nU

μ)= 0 and write the left side of this
“mystery equation” as ∂μ[(ρ + P)Uμ] = ∂μ[( ρ+P

n
)nUμ] = nUμ∂μ(

ρ+P
n
)= nUμ∂μ(

ρ
n
)+ nPUμ∂μ(

1
n
)+ Uμ∂μP .

Thus, the mystery equation becomes Uμ∂μ(
ρ
n
)+ PUμ∂μ(

1
n
)= 0.

Still don’t recognize this? We have already exploited our knowledge of statistical mechanics; now we invoke
thermodynamics. First, notice that ρ

n
and 1

n
are energy and volume per particle, respectively. Second, recall the

first law of thermodynamics dE + PdV = T dS, with S the entropy. Define s as the entropy per particle. Since
Uμ∂μ is proportional to the convective derivative, we see that the mystery equation tells us that, as the fluid flows
along, the changes in energy and in volume per particle are related by7

d

(
ρ

n

)
+ Pd

(
1
n

)
= T ds (26)

In other words, the mystery equation says T Uμ∂μs = 0, that is,

(
∂

∂t
+ �v . �∇

)
s = 0 (27)

We obtain the convective conservation of specific entropy and have shown that the flow is adiabatic. Very
satisfying! No dissipation in a perfect fluid.

The set of equations, continuity (22), Euler (24), entropy conservation (27), together with an equation of state
relating P and ρ and thus specifying the fluid, allows us to solve for the motion of the fluid.

When I see elegant relativistic equations, (4) ∂μnμ = 0 and (8) ∂μT μν = 0 in this case, split up brutally† into
their space and time components (22), (24), and (27), I must say that I am reminded of the biblical injunction
“What therefore God hath joined together, let not man put asunder.”

Appendix 3: The speed of sound

We now use the formalism of the preceding appendix to calculate the speed of sound in a static relativistic fluid.
We will need the result when we discuss cosmology in chapter VIII.3.

Consider a density wave described by n= n̄+ δn, ρ = ρ̄ + δρ, P = P̄ + δP , s = s̄ + δs, and �v = �0 + δ�v. The
equilibrium quantities, indicated by an overbar, do not depend on space and time. We have also indicated that
the fluid velocity vanishes before the density wave comes along. You probably know what to do: simply expand
the relevant equations in the preceding appendix to first order in the small quantities δn, δρ, δP , δs, and δ�v.

∗ A question for you: is this �v or �vN from the second section of this chapter?
† Yes, I know. In the real world, plenty are put asunder.
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First, continuity (22) gives ∂
∂t
δn+ n̄∇ . δ�v = 0. Second, Euler (24) tells us that ∂

∂t
δ�v = − 1

ρ̄+P̄ �∇δP . Third, (27)

says that to leading order ∂
∂t
δs = 0: the specific entropy does not change, which by the first law of thermodynamics

(26) implies n̄δρ = (ρ̄ + P̄ )δn. Define∗

c2
s
=
(
∂P

∂ρ

)
s

= δP

δρ
(28)

Note that the derivation given here specifies that ∂P
∂ρ

is to be evaluated at fixed specific entropy. This enables us to

eliminate δP = c2
s
δρ = c2

s
(ρ̄ + P̄ )δn/n̄ in the equation for δ�v, so that ∂

∂t
δ�v = −(c2

s
/n̄) �∇δn. Putting this into the

equation for δn, we finally obtain the wave equation

∂2

∂2t
δn− c2

s
�∇2δn= 0 (29)

(Recall that you have encountered the 1-dimensional version of this equation in appendix 2 to chapter II.3.) For
example, for a plane wave propagating along the x direction, a particular solution is δn∝ sin{k(x − cst)}, thus
showing that cs as defined in (28) is in fact the speed of sound.

Plugging in (19), we find that for a highly relativistic gas

cs = 1√
3

(30)

It is instructive to compare the differential operator ∂2

∂2t
− c2

s
�∇2 that appears in (29) with the Lorentz invariant

operator ∂2 = ημν∂μ∂ν = ∂2
t

− c2 �∇2 mentioned earlier. We have restored the speed of light c to emphasize that the
two operators have the same form, with cs playing the role of c, as was already foreshadowed by the discussion
of the baby string in appendix 3 in chapter II.3.

Appendix 4: The current in string theory

This appendix may also be omitted upon first reading. Here we work out the current associated with a point
particle as it traces out a worldline qμ(τ). It is more or less straightforward to generalize this to an extended
object like a string. Quite aside from string theory, there is also the possibility that our universe may contain
what are known as cosmic strings.

In the preceding chapter, we worked out the string action. Recall that at a given value of τ , we also have to
specify where we are along the string by another parameter σ . In other words, the spacetime location of a point
on the string is specified by† qμ(τ , σ). In contrast to the case of a particle, qμ now depends on two parameters
τ and σ .

Think about how to generalize the current Jμ(x)= ∫
dτ

dqμ

dτ
δ(4)(x − q(τ)) associated with a point particle to

the current associated with a string. Try not to read ahead immediately. See if you can write it down.
I now give you hints galore. The current should of course also contain δ(4)(x − q(τ , σ)): no current if you

are not where the string is. We need to integrate over both τ and σ . In other words, the current should have the
form ∼ ∫

dτdσMδ(4)(x − q(τ , σ)). It remains to identify the mystery factor M, the generalization of dqμ

dτ
in the

particle case. We now have at our disposal ∂τqμ ≡ ∂qμ

∂τ
and ∂σqμ ≡ ∂qμ

∂σ
.

Geometry and symmetry provide the guiding lights once again. As in the discussion of the string action in
the preceding chapter, we insist that the current must be unchanged if we choose a different parametrization
τ → τ ′(τ , σ), σ → σ ′(τ , σ). As I said earlier, the second time around you are already an expert. Since the
integration measure dτdσ = dτ ′dσ ′J changes by a Jacobian (given as usual by a determinant), as discussed

∗ Note that the first subscript s refers to “sound” and the second to “specific entropy.”
† To conform to the notation used in this chapter, we use q instead of X. For a certain type of reader, I can

only offer Ralph Waldo Emerson’s famous dictum: “A foolish consistency is the hobgoblin of little minds, adored
by little statesmen and philosophers and divines.” I will assume henceforth that the reader is neither a little
statesman nor a divine.
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in the preceding chapter, we need M to be a determinant to counteract J . Evidently, the factor dqμ

dτ
in the particle

current is generalized to the determinant of the 2-by-2 matrix
(
∂τq

μ ∂τq
ν

∂σq
μ ∂σq

ν

)
.

Thus, the current associated with a string is given by

Jμν(x)=
∫

dτdσ det
(
∂τq

μ ∂τq
ν

∂σq
μ ∂σq

ν

)
δ(d)(x − q(τ , σ)) (31)

for μ, ν = 0, 1, . . . , d − 1.
The determinant is antisymmetric under the exchange μ↔ ν: we are led to an antisymmetric tensor current

Jμν . Thus, the analog of the electromagnetic potential Aμ(x) coupling to the particle current Jμ has to be an
antisymmetric tensor field Bμν(x) coupling to the string current Jμν .

Exercises

1 As you probably know, the universe is suffused with a cosmic microwave background. A high-energy charged
particle (such as an electron or a proton) traversing this background will occasionally hit one of these
microwave photons, transferring its energy to the photon in what is known as inverse Compton scattering.
Indeed, observationally, it is often by detecting these high-energy photons that we deduce the presence of
sources of high-energy electrons. Show that, upon impact by a highly energetic electron (say) of energy E,
the maximum energy the photon can have is given by ω′ � E

1+ m2
4ωE

, with m the mass of the electron and ω

the energy of the microwave photon.

2 Consider a process in which two particles go into two particles p1 + p2 → p3 + p4. All 4 particles may
have different masses p2

a
= −m2

a
for a = 1, 2, 3, 4. Apparently, we can form 3 Lorentz invariants, namely

s ≡ (p1 + p2)
2 = (p3 + p4)

2, t ≡ (p1 − p3)
2 = (p2 − p4)

2, and u ≡ (p1 − p4)
2 = (p2 − p3)

2. But we have
known since childhood that there are only two kinematic variables in 2-to-2 scattering: the total energy and
the scattering angle. Show that a Lorentz invariant identity connects s, t , and u.

3 Verify (8) directly by plugging in (7).

4 Work out T 0i and T ij for a moving perfect fluid.

(a) Apply the result to a fluid moving in the x direction. Show that T xx = ρv2+P
1−v2 , which deviates from the

nonrelativistic result T xx = P . Also, show that T xy = 0 and T yy = P . Are you surprised?
(b) More generally, under what circumstances would T ij �= 0 for i �= j?

5 Upon restriction of the Lorentz group to its rotation subgroup, the symmetric tensor T μν decomposes as
10 → 1 + 3 + 6, as was shown in the text. Consider the antisymmetric tensor Fμν = −Fνμ. Show that it has
6 components and that it decomposes as 6 → 3 + 3.

6 Verify that the string current Jμν does not depend on the coordinate choice on the world sheet or world tube.

7 Show that Mμν = ∫
d3x(xμT 0ν − xνT 0μ) describes the angular momentum of the system.

Notes

1. A. Einstein, “Does the Inertia of a Body Depend on Its Energy Content?” Ann. Phys. 18 (1905), p. 639.
2. For the historical importance of this result, see R. Baierlein, Newton to Einstein.
3. For that you need quantum field theory (for example, QFT Nut, chapter II.8), but way back when, the result

(2) empirically verified sufficed for a Nobel Prize. Of course, the prize was actually for discovering the effect.
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4. By the same token, if a worldline terminates, then the number of particles is not conserved at that instant. In
particle physics, one particle can decay into other particles, for example, in the decay of a negatively charged
pion into an electron and an antineutrino π− → e− + ν̄. The worldline of the pion would then terminate
at some point P in spacetime, while the worldlines for the electron and the antineutrino would commence
there. For the level of discussion in this chapter, this is hardly something the reader needs to be concerned
about. Note, however, that this notion of worldlines ending and beginning contains the seeds of Feynman
diagrams. See, for example, QFT Nut.

5. Interestingly, there was a history of speculations in the 19th century concerning the energy contained in
mass. See J. Stachel’s commentary in A. Einstein, Einstein’s Miraculous Year.

6. A notable exception is R. Baierlein, Newton to Einstein. I am grateful to R. Baierlein for providing me the
original reference: A. Einstein, Technion Yearbook 5 (1946) p. 16.

7. Some technical assumptions, the discussion of which would take us too far afield, have been implicitly made
here. What we have shown here is that the flow is adiabatic; hence the fluid does not exchange heat as it
flows. To say that the right hand side of (26) is T ds requires an additional assumption: the flow is quasistatic
between consecutive states of thermodynamic equilibria, for which entropy is defined. This assumption can
be justified under some circumstances.



Recap to Part III

In the showdown between t ′ = t and c′ = c, the former blinked, and lost.
With t ′ no longer chained to t , Lorentz found a nicer transformation than the one Galileo

found, a transformation that was more symmetrical and associated with a better group,
and hence is more pleasing to the eye. The group consists of “rotations” in a (3 + 1)-
dimensional spacetime.

Instead of approaching special relativity as a series of would-be paradoxes, we should
learn to appreciate the geometry of Minkowskian spacetime in which a straight line
between two points may be the longest, rather than the shortest, path. The key to the action
governing the motion of particles in this spacetime was hidden in how Babylonians, and
smart school children, figure out the square root of a number that is almost, but not quite,
a perfect square.

Various physical quantities had to be promoted and completed. Not only did this reveal
a terrifying secret about the energy locked up in mass, it also gave us a clue about the true
nature of the gravitational field.

Incidentally, we might as well drop the prime and simply write c = c.
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IV.1 You Discover Electromagnetism and Gravity!

A bright young theoretical physicist

Once again, imagine yourself a bright young theoretical physicist in some civilization far
far away, perhaps the same guy in chapter III.5 or perhaps a successor who discovered that
guy’s obscure work. Who knows what the environment is like, perhaps the civilization is
floating in some molecular cloud, and who knows what the order of physics discoveries
might be in an environment radically different from ours? Perhaps the speed of light was
established to be independent of observers in relative uniform motion before electromag-
netism was understood.

Every morning (assuming such a phenomenon exists over there), you admire the ele-
gance of the action

S = −m
∫ √

−ημνdxμdxν = −m
∫ √

dt2 − d �x2 (1)

Elegant indeed! But how do you get the particle to interact with the rest of the world?
You look at the nonrelativistic action

SNR =
∫

dt

(
1
2m

(
d �x
dt

)2

− V (x)

)
(2)

for inspiration. The point particle interacts with the world through the external potential
V (x). How do you include V (x) in the relativistic point particle action (1)?

Two options: Outside or inside

One day, you realize that you could put V (x) either outside or inside the square root in (1).
So, you excitedly write a paper proposing not one, but two, possible actions:
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Option E: S = −
∫

{m
√

−ημνdxμdxν + V (x)dt} (3)

or

Option G: S = −m
∫ √(

1 + 2V
m

)
dt2 − d �x2 (4)

In option G, you have to expand twice to get back to the nonrelativistic action. First, take
|d �x| � dt (that is, the distance the particle traverses, |d �x|, is tiny compared to cdt) so that

S � −m
∫ ⎧⎪⎨
⎪⎩
√

1 + 2V
m
dt − d �x2

2
√

1 + 2V
m
dt

⎫⎪⎬
⎪⎭ (5)

Second, take the potential energy V to be much smaller than m (that is, the rest energy

mc2), so that
√

1 + 2V
m

� 1 + V
m

. Note that in (5), the second term is already much smaller

than the first term, so we do not have to keep the V
m

correction to the second term. Thus,

S � −m
∫ {(

1 + V

m

)
dt − d �x2

2dt

}
=
∫

dt

{
1
2m

(
d �x
dt

)2

− V −m

}
(6)

The action in option G leads to the Newtonian action (2) in the appropriate limits, but with
a mysterious additive constant −m that does not figure in the equation of motion. Well,
the real you knows what that is.

You excitedly submit to a journal, and this time, remarkably, you actually get a perspi-
cacious referee, who rejects the paper saying that the added term, in both option E and
option G, is manifestly not Lorentz invariant: dt plays a more privileged role than d �x. Boy,
didn’t think of that! Dumb!

Symmetry, completion, and promotion

A clarifying comment about symmetry and invariance: consider the harmonic oscillator,
that is, (2) with V (x)= − 1

2kx
2. It is not translation invariant, but in a trivial way. We have

simply excluded the much heavier mass that the spring is anchored to. Including that heavy
mass, we replace (2) by SNR = ∫

dt ( 1
2m(

d �x
dt
)2 − V (x − X) + 1

2M(d
�X
dt
)2), or, if we insist

on focusing on the small mass tied to the spring, by S′
NR = ∫

dt ( 1
2m(

d �x
dt
)2 − VX(x)) with

an external potential VX(x)≡ V (x −X) that depends on some parameter X. Translation
invariance holds if we transform both x → x + a and X →X + a.

Any beginning student of physics understands all this. Similarly here, if we think of the
external potential V (x) as imposed from the outside and fixed, then of course the action
can never be made invariant. It is understood that we also have to transform V (x).

You think hard, but confound it! Option E in (3) and option G in (4) are the only two
possibilities you can think of. Either the added interaction term is inside the square root
or it is outside. Inside or outside. Where else could it be? Puzzled, you file the manuscript
away in a drawer. Years later, you decide to come back to it and see if you can make it
Lorentz invariant.
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Dear reader, who may or may not be the same person as the you with the two marvelous
actions, can you see how? The key is the relativistic completion we learned in chapter III.6.

Electromagnetism and gravity

You stare at option E in (3) for the longest time, and suddenly it becomes obvious! You
have to relativistically complete the action. Promote V (x) to be the time component A0(x)

of a Lorentz vector field Aμ(x), and V (x)dt could be just the first term in Aμ(x)dx
μ =

A0(x)dt + Ai(x)dx
i. You merely have to introduce a vector field Aμ(x) into the universe!

You propose the action

Option E improved: S =
∫

{−m
√

−ημνdxμdxν + Aμ(x)dx
μ} (7)

Comparing with (2), we see that we should identifyA0 = −V . When we Lorentz transform
xμ, we must Lorentz transformAμ(x) as well, just as in the example with the spring tied to
an external massive object. (It is also implicitly understood that the argument x in Aμ(x)

now includes time as well as space.) The expression Aμ(x)dx
μ, the contraction of two

Lorentz vectors, is manifestly a Lorentz scalar. With this understanding, the action S in (7)
is Lorentz invariant.

After this great triumph, you immediately try to relativistically complete option G also.
Staring at the expression (1 + 2V

m
)dt2 − d �x2 inside the square root in (4), you understand

that the key is democracy between dt and d �x. If dt2 is multiplied by some function, then
d �x2 should be too. Denoting (1 + 2V

m
) by g, you write something like g(x)dt2 − g̃(x)d �x2,

with g and g̃ depending on spacetime. But Lorentz transformations “mix up” g and g̃. Even
worse, dt2 gets transformed into a linear combination of dt2, dxi, and dtdxi. It would seem
that you can’t get away without including dtdxi inside the square root.

Eventually, you realize that (up to a sign) dt2 − d �x2 started out in life as the Lorentz
tensor dxμdxν contracted with the Minkowski metric ημν, and so the answer has been
staring you in the face: you must relativistically complete by promoting (1 + 2V

m
) to be

the time-time component of a Lorentz tensor gμν(x). In other words, you should promote
ημνdx

μdxν to gμν(x)dxμdxν, that is, promote the fixed numerical matrix ημν to a matrix
field gμν(x) varying in spacetime.

So you introduce the tensor field gμν(x) into the universe, and quickly publish another
action:

Option G improved: S = −m
∫ √

−gμν(x)dxμdxν (8)

You now understand (4) as a mere special case of (8), upon restricting gμν(x) to the special
form g00 = −(1 + 2V

m
), g0i = gi0 = 0, and gij = δij .

With these three papers, you are bound for the extragalactic version of Stockholm
for sure!

Dear reader, you might have realized that the extragalactic version of you has just
discovered electromagnetism and gravity. A double whammy! If not, read on.
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Electromagnetism pops out of special relativity

Let us look at electromagnetism (option E) first and postpone gravity (option G) until
chapter IV.3.

Excitedly, you vary the action in (7) to see what you get. As always, we parametrize with
the proper time:

S = −m
∫

dτ

√
−ημν dx

μ

dτ

dxν

dτ
+
∫

dτAμ(x(τ))
dxμ

dτ
(9)

Note that in the second term,Aμ is evaluated at the spacetime position xμ(τ) of the particle.
In other words, the field Aμ(x) pervades spacetime, but the particle only samples the field
at its particular location.

The variation of the first term in (9) is easy and was done in chapter III.5, which we
repeat here for convenience:

δ

(
−m

∫
dτ

√
−ημν dx

μ

dτ

dxν

dτ

)
=m

∫
dτ ημν

dxμ

dτ

dδxν

dτ
= −m

∫
dτ ημρ

d2xμ

dτ 2
δxρ (10)

Notice that in the last step, for later convenience, we have renamed a dummy.
The variation of the second term in (9) is a bit more involved:

δ

∫
dτAμ(x)

dxμ

dτ
=
∫

dτ

{
Aμ(x)

dδxμ

dτ
+ [∂νAμ(x)δx

ν]
dxμ

dτ

}
(11)

We have to remember that Aμ(x) depends on x in order not to miss the ∂νAμ(x) term in
(11). Integrate the first term in (11) by parts:∫

dτAμ(x)
dδxμ

dτ
= −

∫
dτ

dAμ(x)

dτ
δxμ = −

∫
dτ∂νAμ(x)

dxν

dτ
δxμ (12)

Putting the two terms together and renaming indices, we find

δ

∫
dτAμ(x)

dxμ

dτ
=
∫

dτ(∂μAν − ∂νAμ)
dxν

dτ
δxμ (13)

The antisymmetric tensor field

Fμν(x)≡ ∂μAν(x)− ∂νAμ(x) (14)

just popped out! Some readers may recognize this as the electromagnetic field; if you don’t,
once again read on.

Putting (10) and (13) together, we have

δS =
∫

dτ

(
−mημρ d

2xμ

dτ 2
δxρ + Fμν

dxν

dτ
δxμ

)
(15)

Now define Fμ
ν
≡ ημλFλν so that the last term in (15) can be written as Fμ

ν
dxν

dτ
ημρδx

ρ.
Setting the coefficient of ημρδxρ to zero, we obtain the equation of motion

m
d2xμ

dτ 2
= +Fμ

ν
(x)

dxν

dτ
(16)

which has precisely the form given in (III.3.20).
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Lo and behold, we have discovered the Lorentz force law (more below) for a charged
particle moving in an electromagnetic field! We have discovered electromagnetism!

Electromagnetism came looking for us

We did not go looking for electromagnetism; electromagnetism came looking for us. Some
readers may need to be reminded that Fμν represents the electromagnetic field and that
(16) describes a charged particle in an electromagnetic field. Before showing that, let’s
do something simpler: we check that we recover Newton’s equation in the nonrelativistic
limit. Since dt = dx0 � dxj and (dx0)2 − d �x2 = dτ 2, we have dt

dτ
� 1 � dxj

dτ
. Setting μ to i

in (16) gives md2xi

dt2
� F i

ν
(x) dx

ν

dτ
� F i

0(x). Comparing (2) and (7), we are reminded that the
only nonzero component ofAμ(x) isA0(x)= −V (�x), so thatF i

0 = Fi0 = ∂iA0 = −∂iV . We

recover Newton’s second lawmd2�x
dt2

= −�∇V , hardly surprising given how we went from (2)
to (7).

Next, we identify the usual electric �E and magnetic �B field as follows:

B3 ≡ F 12 = F12, B1 ≡ F 23 = F23, B2 ≡ F 31 = F31,

E1 ≡ F 01 = −F01, E2 ≡ F 02 = −F02, E3 ≡ F 03 = −F03 (17)

We also write �B = (B1, B2, B3) and �E = (E1, E2, E3). (At this stage in the book, I hardly
need to remind the reader that while �B and �E transform like 3-vectors under rotation, they
are not the spatial components of two 4-vectors. In particular, the index i on Bi (and ditto
on Ei) is not to be lowered and raised by the standard rules for Lorentz indices. They are
just convenient labels.)

To show that (16) indeed reproduces the Lorentz force law, let us write it in terms of the
4-momentum pμ =mdxμ

dτ
:

dpμ

dτ
= Fμ

ν
(x)

dxν

dτ
(18)

Look first at the spatial components. Setμ to 1: then dp1

dτ
= −F 10 dx0

dτ
+ F 12 dx2

dτ
+ F 13 dx3

dτ
.

(Here we raised the lower index on Fμ
ν

using the Minkowski metric ηλν and used the

antisymmetry of Fμν.) With the identification in (17), we obtain dp1

dτ
= E1dx0

dτ
+ dx2

dτ
B3 +

dx3

dτ
B2. Multiply throughout by dτ

dt
to convert the derivatives with respect to τ to derivatives

with respect to t . (This step is optional and in fact best omitted.) By rotational symmetry,
we can write this as

d �p
dt

= �E + �v × �B (19)

with �v = d �x
dt

. The Lorentz force law just popped out!
Good. We just found out what the spatial components of (18) say. What about the time

component? Three guesses.

The time component μ= 0 of (18) tells us that dp0

dτ
= F 0

i
(x) dx

i

dτ
. But because p0 is just

the energy E of the particle, we learn, upon multiplying by dτ
dt

and defining �v = d �x
dt

, that

dE

dt
= �E . �v (20)
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describing how a charged particle in an electric field �E gains energy E. It is worth
emphasizing that (19) and (20) are fully, but not manifestly, relativistic.

What I have done here is write a bit of an alternative history of physics in a galaxy far
far away. Imagine that in this civilization, we knew nothing about electromagnetism, but
somehow, by doing an experiment, our savants discovered to everybody’s astonishment
that the speed of light is a universal constant independent of the observer. Then by studying
the addition of velocities, we discovered special relativity and then electromagnetism. This
was not how it happened in our civilization, but it could have.

The notion of charge

Once again, it is time for a bad notation alert! As before, it would be best to denote the
position of the particle not by the generic x, but by q or X. Let us choose X and write

S = −m
∫

dτ

√
−ημν dX

μ

dτ

dXν

dτ
+
∫

dτAμ(X(τ))
dXμ

dτ
(21)

This makes clear that in (16), the electromagnetic field Fμ
ν
(x) is to be evaluated at the

position of the particle, as was already emphasized in the discussion following (9).
As always, the point becomes glaringly clear if we think about the case of many particles

labeled by a = 1, 2, . . . , N , possibly with different masses ma. Indeed, denote the space-
time position of particle a by Xa. In the generalization of (21), Aμ(x) is to be evaluated
at x =Xa(τ). In other words, while Aμ(x) exists throughout spacetime, in the action, it
“knows” about particle a only through Xa(τ). This is what we mean by saying that the
action is local. Of course, the electromagnetic field could acquire dynamics of its own (as
we will see in the next chapter), in which case the physical effects of the electromagnetic
field would be propagated throughout spacetime.∗

So, write the action

S = −
∑
a

ma

∫
dτa

√
−ημν dX

μ
a

dτa

dXν
a

dτa
+
∑
a

ea

∫
dτaAμ(Xa(τa))

dXμ
a

dτa
(22)

When we do that, we bump up against another important point. We see that if we have
more than one particle, then when we add the interaction term between particles and field
to the action, we can allow, as in (22), each particle to “couple” to the new field Aμ with a
different strength1 ea, which we will call charge. In contrast, in (21), there is no point in
introducing e, since it could be absorbed into the definition of Aμ. The action produces
the equations of motion:

dpμ
a

dτa
= eaF

μ
ν
(Xa(τa))

dXν
a

dτa
(23)

∗ Verily, this is why we need fields: we like to have a local action, but at the same time, also physical effects
that can propagate from one point to another.
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I prefer to write (22) in a parametrization independent form:

S =
∫ ∑

a

{
−ma

√
−ημνdXμ

a dX
ν
a

+ eaAμ(Xa)dX
μ
a

}
(24)

Relativistic unification

In our study of physics, we typically encounter the two vector fields �E and �B in stages
and are then told that they are components of an electromagnetic field tensor Fμν. In
fact, if we are allowed an antihistorical perspective, we see that, given special relativity, we
could have anticipated the packaging of two 3-vectors into an antisymmetric tensor with a
combination of physical and mathematical considerations.

Einstein’s special relativity forcefully unifies �E and �B. In chapter III.6, we spoke of
relativistic completion. Suppose at the dawn of special relativity, you were given �E and �B
and asked to complete them. Your first thought, that the 3-vector �E gets promoted to be
part of a 4-vector, cannot be correct: this would mean that under a boost, the change of �E
is a rotational scalar, but since Øersted’s great discovery in 1820, it has been known that
�E transforms into a linear combination of itself and �B. Thus, the simplest guess is that
the two 3-vectors �E and �B get unified into an antisymmetric Lorentz tensor. (Also recall
exercise III.6.5.)

The electric field and the magnetic field are unified when time and space get unified.
To many theoretical physicists, the identification in (17), important though it is to make
contact with experimental physics, is akin to taking an exquisite object of art and pulling
it apart.

Exercise

1 Show that the Lorentz force law (18) is consistent with p2 being a constant.

Note

1. Note that the ea can be arbitrary real numbers of either sign. To understand why the electron charge is
precisely equal and opposite to the proton charge, you would have to learn quantum field theory. See QFT
Nut, chapter VII.5.
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The electromagnetic field in action

After your triumph in the preceding chapter, people naturally ask you how the field Aμ(x)

is generated. Electrodynamics should be a mutual dance between particles and field. The
field causes the charged particles to move, and the charged particles should in turn generate
the field.

We had the first half of this dynamics in the preceding chapter. Now we have to describe
the second half; in other words, we are going to look for the action governing the dynamics
of Aμ(x).

To construct the action, as we have seen many times by now, it is imperative that we
understand all the relevant symmetries first. Lorentz invariance has to be imposed of
course. But then a brilliant young physicist, not you this time for a change, notices a
peculiar invariance of the term you added to the action∫

Aμ(x)dx
μ (1)

Recall that xμ(τ) here represents the trajectory of a charged particle.

Gauge invariance

Consider the transformation

Aμ(x)→ Ãμ(x)= Aμ(x)+ ∂μ�(x) (2)

for some function �(x). Then (1) changes by∫
∂μ�(x)dx

μ =
∫ τf

τi

dτ
dxμ

dτ
∂μ�(x)=

∫ τf

τi

dτ
d�(x)

dτ
=�(x(τ))

∣∣∣∣
τf

τi

(3)

Formally, we take the beginning and end of the particle’s trajectory in the far past and
future and assume that �(x) vanishes at infinity. Then the action does not change under
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the transformation in (2), known as a gauge transformation. We have discovered a hidden
symmetry of the action, called gauge invariance.

Strictly speaking, a gauge symmetry of the type discussed here is not a symmetry,
but rather a redundancy in the description. The statement here is that Aμ(x) and Ãμ(x)

describe the same physics; in other words, Aμ(x) contains degrees of freedom that are not
physical, which could be removed by appropriate choices of �(x). There is a great deal
more I could say about this rather subtle subject, but for now I am content to refer you to
various field theory texts.1

In the preceding chapter, the electromagnetic field strength tensor

Fμν(x)≡ ∂μAν(x)− ∂νAμ(x) (4)

which contains the familiar electric and magnetic fields, naturally emerged when we varied
(1). Now we understand on symmetry grounds why this particular combination must
appear. Whatever emerges from varying a gauge invariant action has to be gauge invariant.
The gauge potential A is not gauge invariant, but the field strength F is. Under a gauge
transformation, we have

Fμν → ∂μ[Aν(x)+ ∂ν�(x)] − ∂ν[Aμ(x)+ ∂μ�(x)] = Fμν + ∂μ∂ν�− ∂ν∂μ�= Fμν (5)

so that Fμν does not change.
Thus, the action for electrodynamics we are searching for should be constructed out of

Fμν(x). To obtain a Lorentz invariant object, the simplest possibility would be to “square”F
and contract the indices, obtaining FμνFμν. Note that this term also contains two powers
of the time derivative ∂

∂t
, in line with all the actions we have encountered thus far. We

integrate this Lorentz scalar over spacetime
∫
d4x(− 1

4F
μνFμν) and add it to the action we

had in (IV.1.21). (The factor − 1
4 is conventional.)∗

Discovering Maxwell

We have discovered Maxwell’s Lagrangian!
The Maxwellian Lagrangian† L = − 1

4F
μνFμν when expanded out contains a number of

terms, in particular (∂0Ai)
2. The two powers of ∂0 are the same as the two powers of time

or proper time derivative in the Newtonian Lagrangian ( d �x
dt
)2 or the Lorentzian Lagrangian

ημν
dxμ

dτ
dxν

dτ
.

The bad notation that I keep harping on is particularly bothersome here. It is impor-
tant to carefully distinguish between dynamical variables and mere labels. In Newtonian
mechanics, the position of the particle �x(t), or better, �qa(t) or �Xa(t), is the dynamical vari-
able. We have also indicated the possibility of having several particles, labeled by a. Here

∗ Once we have discovered the possibility of including charge, as in (IV.1.23), we are free to scale Aμ → λAμ

and the charges accordingly, and thus set the coefficient of FμνFμν in the action to be any real number we like.
† Some purists insist on calling L a Lagrangian density, since it is

∫
d3xL that has the same status as the point

particle Lagrangian L= m
2 (

d �q
dt
)2. I would rather abuse terminology than clutter the page.
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the dynamical variable is a field Aμ(x), perhaps better written more explicitly as Aμ(�x , t),
whose time dependence we want to study. We see clearly that the �x, which the dynamical
variable Aμ depends on, is a label, not a dynamical variable: it tells us which Aμ we are
talking about, namely the Aμ at the spatial location �x. Thus, the translation table2 from
the mechanics of several particles to a field theory (such as Maxwell’s Lagrangian) contains
a → �x and �Xa(t)→ Aμ(�x , t).

Because of gauge invariance (2), the vector field Aμ contains fewer degrees of freedom
than meet the eye, reflecting the redundancy I mentioned earlier. As you already know
from classical electromagnetism, you have to practice the arcane art of fixing the gauge,3

after which an electromagnetic wave has only two polarizations. In quantum field theory,
you learn to quantize the electromagnetic field. When you do this, the electromagnetic
field is described in terms of photons. Even though the photon carries spin 1, it has only4

two spin states, corresponding to the two polarizations of the classical wave.

Coupling of field and particles

So now we have the complete action for charged particles and the electromagnetic field:

S =
{∫ ∑

a

(
−ma

√
−ημνdXμ

a dX
ν
a

+ eaAμ(Xa)dX
μ
a

)}
−
∫

d4x 1
4F

μνFμν (6)

I have purposely written it in this peculiar form to emphasize that the nature of the
integral differs significantly for the three terms. The first term describes free massive
particles. The third term describes a field. The world of particles and the world of the field
would be forever estranged were it not for the second term, which couples particles and
field.

This may remind you of something you have seen. Indeed, back in chapter II.3, we wrote
down the action for Newtonian gravity consisting also of three terms:

S =
∫

dt

{∑
a

1
2ma

(
dqa

dt

)2

−
∫

d3x

(∑
a

maδ
(3)(x − qa(t))�(x , t)

)
−
∫

d3x
1

8πG
(∇�)2

}
(7)

The first term describes the dynamics of the particles, the third term describes the grav-
itational field �(x , t), and the second term couples the particles and the field together.
In Newtonian gravity, the field dictates how the particles move, and the particles in turn
generate the field.

In exactly the same way, in electromagnetism, the field dictates how the particles move,
and the particles in turn generate the field.

How the field moves

To obtain the equation of motion for the electromagnetic field, we vary S with respect
to the field Aμ(x). But we already learned how to vary with respect to a field, also in
chapter II.3, when we discussed the dynamical string described by the field φ(t , x). The
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only complication for the electromagnetic field is the presence of Lorentz indices, but they
mostly just go along for the ride, so to speak.

Let’s start by varying the integrand of the third term in (6): δ(FμνFμν)= 2FμνδFμν =
4Fμν∂μδAν. (The reader should understand the two factors of 2 and hence the conventional
choice of 1

4 in (6).) Thus, the variation of the third term is

δ

∫
d4x(− 1

4F
μνFμν)=

∫
d4x ∂μF

μν(x)δAν(x) (8)

where we have integrated by parts. The first term in (6) does not depend on the field and
so may be ignored. Thus, were the second term not present, we would have obtained, by
setting the variation to zero, the free Maxwell’s equations

∂μF
μν = 0 (9)

Return of the current

But the second term in (6), indicating the presence of charged particles, is usually there. It
is written as an integral over the particle trajectories. In contrast, the third term is written as
an integral over spacetime. To compare the variation of the second term with the variation
of the third term, we have to write the second term also as an integral over d4x, so that the
two terms have the same form. But we know how to do this. Indeed, (7) provides a strong
hint. Use the Dirac delta function introduced in chapter I.1!

Recall from chapter III.6 that the delta function is defined by
∫
dx δ(x − y)f (y)= f (x)

for any reasonably smooth function f (x). There we also generalized to the 4-dimensional
delta function, defined in an obvious way by δ(4)(x −Xa)≡ δ(x0 −X0

a
)δ(x1 −X1

a
)δ(x2 −

X2
a
)δ(x3 −X3

a
). In other words, δ(4)(x −Xa) vanishes unless xμ and Xμ

a
are equal compo-

nent by component.
With this quick review, we now write Aμ(Xa)= ∫

d4x δ(4)(x −Xa)Aμ(x), and thus the
second term in (6) as

∑
a

ea

∫
dτaAμ(Xa)

dXμ
a

dτa
=
∫

d4x
∑
a

ea

∫
dτa δ

(4)(x −Xa)Aμ(x)
dXμ

a

dτa
(10)

You might recognize that this form is analogous to the form of the second term in (7),
except that the physics is relativistic here and nonrelativistic there.

Now vary Aμ(x) to obtain
∫

d4x
∑
a

ea

∫
dτa δ

(4)(x −Xa)
dXμ

a

dτa
δAμ(x) (11)

Very nicely, we see the return of the 4-current defined in chapter III.6

Jμ(x)=
∑
a

ea

∫
dτa δ

(4)(x −Xa)
dXμ

a

dτa
(12)

We can then write (11) more compactly as
∫
d4x Jμ(x)δAμ(x).
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Maxwell’s equations

Combining (8) and (11), we find

∂μF
μν(x)= −J ν(x) (13)

These are of course Maxwell’s equations governing the dynamics of the field, telling us how
the electromagnetic field is generated by the movement of charged particles in spacetime.

To write these equations in terms of the familiar electric �E and magnetic �B fields, we
simply use the identification given in IV.1.17.

First, look at the time component (ν = 0) of (13). We have ∂iF i0 = −∂iEi = −�∇ . �E =
−J 0. Calling J 0 the charge density ρ, we recover the familiar∗

�∇ . �E = ρ (14)

Next, look at a spatial component by setting ν to 3, for example. Note that ∂μFμ3 =
∂0F

03 + ∂1F
13 + ∂2F

23 = ∂0E
3 − ∂1B

2 + ∂2B
1. Thus, we obtain

�∇ × �B = ∂ �E
∂t

+ �J (15)

Seeing (14) and (15) emerge so naturally, you naturally wonder where “the other half of
Maxwell’s equations” are, namely the ones that do not involve the current. The answer is
that they are actually identities.5

The point is that the electromagnetic field Fλσ is not any garden variety antisymmetric
tensor, but the relativistic curl of a 4-vector: Fλσ = ∂λAσ − ∂σAλ. To exploit this bit of
information, let us define, in analogy with the 3-dimensional antisymmetric symbol εijk,
the 4-dimensional antisymmetric symbol† εμνλσ by ε0123 = 1 and the rest determined by
antisymmetry. (For example, ε2031 = −ε2013 = +ε0213 = −ε0123 = −1.) Newton and Leibniz
tell us that derivatives commute (as in (5)). Therefore,

εμνλσ∂νFλσ = εμνλσ (∂ν∂λAσ − ∂ν∂σAλ)= 2εμνλσ∂ν∂λAσ = 0 (16)

If we write out (16) explicitly in terms of �E and �B, we obtain the “missing Maxwell’s
equations.” Set μ to 3 to obtain −∂0F12 + ∂0F21 + 2(∂1F02 − ∂2F01) = 0. Translating, we
find

�∇ × �E = −∂ �B
∂t

(17)

Similarly, setting μ to 0, we find6

�∇ . �B = 0 (18)

∗ We could also run the argument the other way. After reading chapter III.6 on relativistic completion, you
could have contemplated the equation of electrostatics (14). Since �∇ and ρ are both being promoted to 4-vectors,
�E has to be part of a 4-tensor. We could then discover Fμν .

† Also known as the Levi-Civita symbol. Note that in d-dimensional spacetime, εμνλ...σ carries d indices with
ε012...d−1 = 1.
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One appealing feature of this approach is that the correct form of the electromagnetic
current (12) emerges naturally. Furthermore, applying ∂ν to (13), we recover current
conservation

∂νJ
ν = 0 (19)

since Fμν = −Fνμ is antisymmetric.
The reader may be bothered, yet again, by the asymmetry between particles and field as

manifested here in (6). The integration runs over the worldlines of the particles and over
all of spacetime for the field. We need quantum field theory to tell us how to remove this
asymmetry regarding how particles and field are treated.

If you have taken a course on electromagnetism, you would recognize that this elegant
treatment has captured the essence of the subject.

Einstein’s legacy to physics

When I was in high school, I came across a popular account of Einstein’s theories. Like
the typical layperson, I was captivated by the outlandish and bizarre aspects of Einstein’s
universe. Later, in college, after I had mastered enough physics and mathematics to
understand Einstein’s work, I marveled at the mathematical subtleties involved, and I
saw Einstein’s strange conclusions as perfectly logical consequences of his theory. But as
I learned more physics and started doing research, I finally realized the true intellectual
legacy7 Einstein bequeathed to later generations of physicists amounted to nothing less
than a new way of doing physics.

To appreciate Einstein’s insight, let us review the schema followed in developing that
quintessential 19th century theory, the theory of electromagnetism. By fooling around with
frog’s legs and wires, physicists saw that Nature behaves in a certain pattern, summarized
by Maxwell’s equations. The equations, once written down, sing out a song, waiting
patiently for someone with ears to hear. Finally, a bright young fellow comes along and
hears the equations saying that they are Lorentz invariant. This fellow then realizes that
the symmetry demands a revision of all of physics.

After Einstein worked out special relativity, it dawned on him and some of his contem-
poraries, Minkowski in particular, that the logical arrows in this schema may be reversible.
Suppose that it was secretly revealed to us, in the dark of night, that the world is Lorentz
invariant. Knowing this, can we deduce Maxwell’s theory and hence, the facts of electro-
magnetism, without ever stepping inside a laboratory?

To a large extent, we can! The requirement of Lorentz invariance is a powerful constraint
on Nature. Maxwell’s equations are so intricately interrelated by this invariance that, given
one of the equations, we can deduce the others. Start with, say, Coulomb’s law describing
how the electric field produced by a charge decreases as one moves away from the charge.

We are given a symmetry that relates space to time, the electric to the magnetic. So, not
surprisingly, we also would know how a magnetic field would vary in space.



254 | IV. Electromagnetism and Gravity

Einstein taught us to deduce physics from symmetry, instead of symmetry from physics.
In Philip Roth’s The Ghostwriter, one of the characters, a famous writer, tells another
character that he always writes one sentence before lunch. After lunch, he turns the
sentence around, and he spends his life turning sentences around and around in his head.
In much the same way, theoretical physicists turn logical structures around and around in
their heads. Einstein and Minkowski realized that one can turn the logical arrows of the
19th century around.

Having grasped the power of symmetry, Einstein put it to use in developing his the-
ory of gravity. Instead of laboriously distilling this theory from a motley collection of
experimental facts and then extracting a symmetry, he formulated a symmetry empow-
ering him to write down his theory of gravity in one fell swoop. To appreciate this, let
us imagine what would happen if physicists followed the 19th century schema in study-
ing gravity, as some physicists tried to do. After years of carefully studying planetary
orbits, astronomers would have noticed absolutely minute deviations of the orbits from
the Newtonian prediction. To account for this, physicists would add a tiny correction to
Newton’s law of gravity. More careful study would reveal that this is still inadequate, and
physicists then would be compelled to correct Newton’s law by an even tinier amount.
In practice, this program would quickly grind to a halt. But even if we imagine that
physicists were able to determine as many correction terms as they like, it would take
a stroke of mathematical genius to see that the corrections would all combine to pro-
duce a rather different theory. The theory in the intermediate stage would be a compli-
cated mess.

I regard Einstein’s understanding of how symmetry dictates design as one of the truly
profound insights in the history of physics. Fundamental physics is now conducted largely
according to Einstein’s schema rather than that of 19th century physics. Physicists in
search of the fundamental design begin with a symmetry, then check to see whether its
consequences accord with observation. But how is a physicist to get to square one in playing
Einstein’s game? the reader might ask. Presumably, no one is going to come in the dark
of the night and whisper to us the symmetries Nature has woven into her tapestry. If
an architect’s client wants to have symmetrical designs but won’t tell the architect what
symmetry he has in mind, how is the architect to find out?

Well, physicists can extract the symmetry from known experimental facts. That is what
Einstein did. The difficult part is to decide on the one most relevant fact that allows
formulation of a symmetry. Out of the many facts known about gravity, Einstein fastened
onto, as we will see, the fact that objects fall at the same rate, regardless of mass. He
did not use, for example, the fact that the gravitational attraction between two objects
varies inversely as the square of the distance between them. This and all other known
facts emerge, as we will see in detail in Book 2, as consequences of the symmetry imposed
on gravity.

An interesting historical fact is that some of Einstein’s contemporaries, such as Lorentz,
who had been struggling to produce a dynamical theory of the electron and of the ether,
thought Einstein had cheated. Einstein simply imposed the principle of relativity and
deduced the consequences. These other physicists felt that the principle of relativity should
emerge from the dynamics.



IV.2. Electromagnetism Goes Live | 255

Perhaps some of the biggest puzzles of contemporary physics are waiting for a
principle—a principle to be imposed, not derived.

Exercises

1 Show that L = 1
2 (

�E2 − �B2).

2 (a) Show that the symmetric tensor defined by

T μν = F
μ
λ F

νλ − 1
4 η

μνFσρF
σρ (20)

satisfies the conservation law ∂μT
μν = 0, in the absence of charged particles of course.

(b) Since charged particles and the electromagnetic field interact, that is, the particles and the field can
exchange energy and momentum, we would not expect ∂μT μν = 0 to hold in the presence of charged
particles. Add the energy momentum tensor T μν

particles of point particles defined in (III.6.7) to the en-

ergy momentum tensor in (20), which we will now call T μν

electromagnetic. Show that the resulting energy

momentum tensor T μν = T
μν

particles + T
μν

electromagnetic satisfies ∂μT μν = 0.
Later, in chapter VI.4, when we get to energy momentum in curved spacetime, this will become much

clearer with a more powerful formalism.

3 Show that, in the absence of charged particles, T 00 = 1
2 (

�E2 + �B2), the standard expression for the energy
density of an electromagnetic field. This suggests that T μν is the energy momentum tensor of the electro-
magnetic field. We will show that this is in fact the case in chapter VI.4.

4 Calculate ∂0T
00 = 1

2
∂
∂t
( �E2 + �B2) using the standard Maxwell’s equations.

5 Evaluate the dual electromagnetic tensor F̃μν = − 1
2 εμνλσF

λσ . Explain why it is called dual.

6 Derive the identity ηλσ (FμλF νσ − F̃ μλF̃ νσ )= 1
2η

μνFρτFρτ .

7 Use the identity in the preceding exercise to show that the energy momentum tensor of the electromagnetic
field can be written in the symmetric form

T μν = 1
2ηλσ (F

μλF νσ + F̃ μλF̃ νσ )

8 Show that we can construct only two scalars that are quadratic in the electromagnetic field. Identify them in
terms of �E and �B.

9 Show that the T μν for the electromagnetic field as given in exercise 2 has zero trace.

10 If you remember what the virial theorem in classical mechanics8 is, you may be wondering about its rela-
tivistic generalization. Consider a system consisting of charged particles interacting with the electromagnetic
field. Assume that the motion of the particles is confined to a finite region and that the electromagnetic field
vanishes at spatial infinity. Physically, this means that we do not allow electromagnetic radiation to escape to
infinity. Mathematically, we can then freely integrate by parts. Calculate the trace of the energy momentum
and from this deduce the relativistic virial theorem. Hint: This is not an easy problem; you need to use some
results from chapter III.6.

Notes

1. For example, S. Weinberg, The Quantum Theory of Fields; QFT Nut; and so forth.
2. See QFT Nut, p. 19.
3. We will do this for gravitational waves in Part IX.
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4. Normally in quantum mechanics, a spin 1 particle has 3 spin states. For a discussion of why a massless
spin 1 particle has only 2 spin states, see, for example, QFT Nut, chapter III.4.

5. Whether they are equations or identities depends on whether you regard Aμ or Fμν as fundamental. In the
quantum world, you are forced to treat Aμ as fundamental.

6. See QFT Nut, chapter IV.4.
7. This section is adapted from pp. 95–100 of my popular book Fearful, written for the educated public.
8. See, for example, H. Goldstein, Classical Mechanics.



IV.3 Gravity Emerges!

Forced to a tensor field

Now that we have dealt with electromagnetism, we turn to gravity, or rather option G in
chapter IV.1. Recall that you obtained

Option G improved: S = −m
∫ √

−gμν(x)dxμdxν (1)

with g00 = −(1 + 2V
m
), g0i = gi0 = 0, and gij = δij as a special case.

Remarkably, if you put the Newtonian potential term V dt outside the square root, you
are led to a vector field Aμ, but if you put it inside, you are forced to a tensor field: two
indices are needed to match dxμdxν. In a sense, we have to thank Pythagoras for this
tensor field.

Time and gravity

For the moment, let’s treat the special case

S = −m
∫ √(

1 + 2V
m

)
dt2 − d �x2 (2)

The fraction V/m looks a little strange, but then you suddenly realize that if the particle,
of massm, is living in a gravitational potential V = −GMm/r , mwould cancel out, so that

S = −m
∫ √(

1 − 2GM
r

)
dt2 − d �x2 (3)

That the massm cancels out depends of course on the profound observational fact that the
inertial mass and the gravitational mass are equal, as we have alluded to already several
times, in chapters I.1, II.3, and so forth.
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Suppose this particle is actually a clock, sitting still in the potential (so that d �x = 0).

Then S = −m ∫ √(
1 − 2GM

r

)
dt2 � −m ∫

(1 − GM
r
)dt . But for a particle at rest, this is just

−m ∫
dτ with τ the proper time. Hence, dτ = (1 − GM

r
)dt or 
t =
τ/(1 − GM

r
) > 
τ .

You have discovered that in a gravitational field, a clock runs slow.
Gravity affects the flow of time! An astounding statement.

Universality of gravity

In sounding a bad notation alert, in several instances, we used the trick of considering
several particles instead of a single particle to render the notational defect glaringly obvious.
For example, using this trick in the discussion leading up to (IV.1.21,23), we were led to the
notion of electric charge. So, consider a bunch of particles with different masses. Instead
of (2), we have

S = −
∑
a

ma

∫ √(
1 + 2V (xa)

ma

)
dt2
a

− d �x2
a

(4)

A serious conceptual problem becomes apparent: unless the potential evaluated at xa is
proportional to ma, particles with different masses would experience the passage of time
differently. Ultimately, we have to ask our experimental colleagues, of course, if they know
of such an effect. They don’t, and so we can say with some confidence that (4) does not
describe the physical world as we know it unless V (xa), the potential experienced by the
particle, is proportional to ma. Remarkably, the gravitational potential has precisely this
property.

Curved spacetime came looking for us

Of course, this assertion that the gravitational mass and inertial mass are equal has
to be tested by performing experiments to ever increasing accuracy. Our experimental
colleagues have assured us (and continue to assure1 us) that, yes, this is indeed the case;
therefore, we can describe a bunch of relativistic particles in a gravitational field by the
action

S = −
∑
a

ma

∫ √
−gμν(xa)dxμa dxνa (5)

with gμν(xa) independent of the properties of the particle a, such as its mass.
Now comes your (actually, Einstein’s) profound insight. Aha, you say, this looks just like

the length of different curves in curved spaces that we discussed in part I, except that here
we have both space and time. So particles in a gravitational field move as if they were in
curved spacetime!

We did not go looking for curved spacetime. Curved spacetime came looking for us!
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This represents one of the quickest ways I know of introducing curved spacetime.
Curved spacetime follows from your desire to stick the Newtonian potential V inside the
square root in (2).

To summarize, the interpretation of gravity as the effect of curved spacetime is possible
only because gravity is universal. Thanks to the equality of gravitational mass and inertial
mass, the effect of a gravitational field on the motion of particles does not depend on the
particle, whether it is an apple or a rock.

This is not how gravity was discovered on the planet Terra. But as I mentioned earlier,
I can imagine a civilization (in a molecular cloud?) without a Newton, without apples and
rocks, which somehow discovers that light travels at a universal speed. Along comes some
bright young theorist who tries to stick the potential term inside the square root. He or
she (or whatever) would then discover universal gravity.

Gravitational redshift

Let’s go back to the prediction that gravity slows down the flow of time. The universality of
gravity means that all clocks, regardless of manufacturer, slow down by the same amount.

The Smart Experimentalist∗ pipes up: “But how can you observe this effect if all physical
processes at a given point slow down by the same factor?”

Hmm, well yes, we are stumped. But she is just thinking out loud, and continues, “We
compare the flow of time at different points! We could send a signal, say a photon, from
here to there in a gravitational field. If clocks run at different rates at different places in a
gravitational potential well, then the frequency of a photon climbing out of a gravitational
well would be shifted toward the red.”

Excellent suggestion! More on this prediction of gravitational redshift by Einstein later!

A recurring theme of modern physics

Let’s summarize how you discovered electromagnetism in the preceding chapters. Gener-
alizing the potential term V (�x)dt to Aμ(x)dx

μ, you uncovered a hidden gauge invariance,
which then completely fixes the form of the electromagnetic field Fμν(x) ≡ ∂μAν(x) −
∂νAμ(x) and subsequently the action governing its dynamics. The long trudge (not to
mention the drudge) through the electromagnetic courses you took “merely” amounts
to studying this dynamics for ever more involved situations involving wires, conducting
plates, frog’s legs, and so forth.

In discovering gravity, you are led by Lorentz invariance to the action (5). Being a
graduate of part I of this book, you immediately recognize that this action enjoys an
even richer “hidden” invariance: we can transform xμ → xμ(x′) so that gμν(x)dxμdxν =
g′
λρ
(x′)dx′ρdx′σ and leave the action invariant. Much of general relativity is concerned

∗ Like Confusio, also a character from QFT Nut.
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with this freedom to make coordinate transformations. Your next task, in analogy with the
electromagnetic story, is to exploit this invariance to find the action governing the dynamics
of the gravitational field, the analog of Maxwell’s action for the electromagnetic field.

A recurrent theme of modern theoretical physics has been unification and the resulting
discovery of ever deeper invariances in the laws of physics.

Note

1. Read about the work of E. Adelberger and the Eöt-Wash group at the University of Washington: http://www.
npl.washington.edu/eotwash/. See also the discussion and the endnotes in chapter I.1.



Recap to Part IV

Living in a galaxy far far away, you admire the beauty of the relativistic free particle action
and contemplate how to deprive the particle of its freedom.

As far you can see, there are only two options: put the potential either outside, or inside,
the square root. Two, and (apparently) only two, options.

With the first option, you discover how charged particles hear the electromagnetic field,
and even better, you also discover the gauge principle. Understanding the gauge principle,
you can understand how the electromagnetic field responds to the movement of charged
particles.

Intoxicated by your success, you go on to discover “half of gravity” by sneaking the
potential into the square root. You then come to the astonishing insight that gravity slows
down the flow of time. You sure are a smart guy, no doubt about it.

Hindsight is oh so easy.





BOOK TWO

From the Happiest Thought to the Universe





Prologue to Book Two

The Happiest Thought

The happiest thought of his life

I was sitting in a chair in the patent office in Bern when all of
a sudden a thought occurred to me: “If a person falls freely he
will not feel his own weight.” I was startled. This simple thought
made a deep impression on me. It impelled me toward a theory
of gravitation.

—A. Einstein

One November day in 1907, Einstein had what he later called the happiest thought1 of
his life. In 1905, he had his annus mirabilis, producing five papers2 that shook physics
to its foundation, including not only the papers founding the theory of special relativity
but also the paper on the photoelectric effect that helped establish quantum physics and
introduced the concept of the photon. You would have thought that Einstein would have
been made a full professor on the spot if the physics community had any sense at all. Well,
he was indeed promoted, a year later, to technical expert second class in the patent office.

An April Fools’ prank

To understand what the daydreaming second class expert was happily thinking about,
let’s play an elaborate April Fools’ Day prank on one of our friends. While the guy is
asleep, put him in a spacious box elaborately furnished inside to look exactly like his living
room. We then drop the box from a high-flying airplane (see figure 1). When our friend
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Figure 1 A living room falling.

wakes up, he thinks that he is in his living room. Curiously, though, he feels that he is
floating.3 To an observer on the ground, our friend and his living room are hurtling toward
a crunching rendezvous with the ground. Our friend, however, is blissfully unaware of the
impending disaster. Since he is accelerating downward at the same rate as the box and all
the objects contained inside, he feels that he is not moving downward at all relative to his
surroundings. A slight spring in his step and he finds himself drifting toward the ceiling.
He feels that he is floating. But this action is interpreted by the ground observer quite
differently: our friend, by stepping on the floor, has at the same time decreased slightly
his downward velocity and increased slightly the box’s downward velocity. He thinks he
is floating upward but in reality his downward plunge is accelerating at the same rate as
before.

Indeed, this awfully unethical April Fools’ joke has already been tried: we put astronauts
inside a box called a spaceship and drop it out of the sky. To be humane, we give the box
a forward motion so that as soon as the box drops, the ground would have the good sense
of curving away by just the right amount, so the box stays up at the same altitude. When
you see on TV an astronaut floating in space, with the announcer commenting in the
background that the astronaut is in the zero-g environment of space 100 miles above our
heads, you of course know better, since you are capable of reading this book. The astronaut
is in a 0.95-g environment, subject to only 5% less gravity than we are. He is floating
because he is falling, and because he is falling, he does not feel that he is falling, just as
the young technical expert second class thought.
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A birthday toy

On Einstein’s 76th and last birthday in 1955, his neighbor Eric Rogers presented him with
a toy4 constructed for the occasion. (In figure 2a, I show the engineering drawing for the
toy, and in figure 2b, a photo of the toy constructed for me by Louis Grace.) Basically, a
spring tries to pull a ball hanging limply outside into a cup but is too weak to do so. The
challenge is to get the ball into the cup. The historian of science I. Bernard Cohen visited
Einstein not long after, and he wrote:

At last I was taking my leave. Suddenly Einstein turned and called “Wait. Wait. I must show

you my birthday present.” Back in the study I saw Einstein take from the corner of the room

what looked like a curtain rod five feet tall, at the top of which was a plastic sphere about

four inches in diameter. “You see,” said Einstein, “this is designed as a model to illustrate the

equivalence principle. . . . ” A big grin spread across his face and his eyes twinkled with delight

as he said, “And now the equivalence principle.” Grasping the gadget in the middle of the long

brass curtain rod, he thrust it upwards until the sphere touched the ceiling. “Now I will let it

drop,” he said, “and according to the equivalence principle there will be no gravitational force.

So the spring will now be strong enough to bring the little ball into the plastic tube.” With that

he suddenly let the gadget fall freely and vertically, guiding it with his hand, until the bottom

reached the floor. The plastic sphere at the top was now at eye level. Sure enough, the ball rested

in the tube.5

(a) (b)

Figure 2 (a) An engineering drawing of the old man’s toy. (b) The toy constructed for the author,
shown in its two states.
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Much more about the equivalence principle later, but for now, note that the ball is just
as easily fooled as an astronaut. When Einstein let his toy fall, the ball, precisely because it
was falling, did not feel any gravity; the ball was the stand-in for the falling person in the
patent clerk’s daydream.6 The spring, normally too weak to pull the ball up against gravity,
now seized the chance to yank the ball into the cup.

The falling candle

Einstein loved to pop playful little puzzles on his visitors. He was equally delighted whether
or not they knew the answers. If they didn’t, he would get a big kick out of explaining it.
Let’s see if you figure this one out. Suppose you have just lighted a candle in an elevator
when, unfortunately, the cable breaks. The elevator falls freely. What happens to the candle
flame? Try to answer the grinning old man looking at you with a twinkle in his eyes.

“In proportion to its quantity”

After dinner, the weather being warm, we went into the garden and drank thea, under the

shade of some apple trees,∗ only he and myself. Amidst other discourse, he told me he was

just in the same situation, as when formerly, the notion of gravitation came into his mind.

It was occasion’d by the fall of an apple, as he sat in a contemplative mood. Why should that

apple always descend perpendicularly to the ground, thought he to himself. . . . Assuredly, the

reason is, that the earth draws it. There must be a drawing power in the matter: and the sum of

the drawing power in the matter of the earth must be in the earths center, not in any side of the

earth. Therefore dos this apple fall perpendicularly, or towards the center of the earth. If matter

thus draws matter, it must be in proportion of its quantity. Therefore the apple draws the earth,

as well as the earth draws the apple. That there is a power, like that we here call gravity, which

extends its self thro’ the universe. [W. Stukeley,7 in his memoir of Sir Isaac Newton]

To understand gravity in more detail, let us consider our April Fools’ prank again. For
the prank to work, it is crucial that all objects fall at exactly the same rate. Suppose to
the contrary that the box falls faster than our friend. Then our friend would find himself
pinned to the ceiling, which he would interpret as being due to the presence of a force
pushing him up. Conversely, if the box were to fall slower, our friend would feel a force
pulling him to the floor. The extreme case in which the box is not falling at all is of course
the normal situation, with the box resting on the house foundation.

That objects all fall at the same rate regardless of their composition is contrary to
everyday intuition, but as Galileo suspected, our everyday experiences are distorted by
air resistance. As you know, and as I explained in chapter I.1, inertial mass is equal to

∗ Supposedly, a descendant of Newton’s apple tree8 now stands outside Trinity College in Cambridge, England.
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gravitational mass, and so the motion of an object in a gravitational field does not depend
on its mass: in a vacuum, a feather and a cannonball fall at the same rate.9

Physics students generally identify Einstein as the person who brought fame to various
gedanken experiments. But in fact thought experiments go way back to Galileo, at least.
The following is taken straight from his “Discorsi e dimostrazioni matematiche” (1628):

Salviati: If then we take two bodies whose natural speeds are different, it is clear that on

uniting the two, the more rapid one will be partly retarded by the slower, and the slower will

be somewhat hastened by the swifter. Do you not agree with me in this opinion?

Simplicio: You are unquestionably right.

Salviati: But if this is true, and if a large stone moves with a speed of, say, eight while a smaller

moves with a speed of four, then when they are united, the system will move with a speed less

than eight; but the two stones when tied together make a stone larger than that which before

moved with a speed of eight. Hence the heavier body moves with less speed than the lighter;

an effect which is contrary to your supposition. Thus you see how, from your assumption that

the heavier body moves more rapidly than the lighter one, I infer that the heavier body moves

more slowly.10

Universality of gravity and a ball of whiskey

Let’s try to imagine the patent clerk’s train of thought. A falling person does not know he is
falling, because everything around him is falling at the same rate, in other words, because
of the universality of gravity. Can I turn this around? Gravity must be universal because a
falling person does not know he is falling. In a way, falling cancels out gravity. Hmmm,
suppose I somehow reverse falling by thrusting upward. Can I then produce gravity? Aha!

To understand what Einstein had in mind, let us inflict an even more elaborate April
Fools’ joke on our friend. This time, while he is asleep, we put him inside a box and fly
him deep into intergalactic space, far away from any gravitational field of force. Now rev
up the engine and accelerate the whole contraption at a constant rate. When he wakes up,
he notices nothing unusual at all. No floating sensation this time. He drops an apple, and
it promptly falls to the floor (figure 3). But to an outside observer, floating in space and
watching the spaceship go zinging by, the dropped apple is actually floating in space in
happy ignorance of the fact that the floor is rushing at it with ever-increasing speed. If we
accelerate the rocket at precisely the right rate, our friend would see the apple falling to
the floor exactly as if he were back on earth. Keep in mind the key phrase “as if” for future
reference.

By accelerating the rocket—in effect, reversing free fall—we can produce gravity. Clearly,
if our friend had dropped a stone as well as the apple from the same height from the floor,
the stone and the apple will “fall” and hit the floor at exactly the same instant.

But what is to him a mysterious universality is laughably obvious to the observer floating
about outside: the floor is moving up to meet the floating apple and stone and so obviously
arrives at the two objects at the same time.
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Figure 3 The floor rushing up to meet the apple.

In one of the Tintin stories, Captain Haddock has smuggled on board a spaceship a bottle
of whiskey hidden inside a hollowed-out book on cosmology.11 Just as he was about to set
lips to glass, a bumbling character named Thomson accidentally turns off the spaceship’s
engine. The spaceship stops accelerating. The whiskey, suddenly feeling no gravity, has
no further compunction to stay inside the glass: it exploits surface tension to curl itself
up into a ball and floats out of the glass. Tintin then manages to turn the engine back on.
The spaceship accelerates. Gravity comes back on, and Captain Haddock and the ball of
whiskey crash to the floor.

Confusio: “I get it! So, an apple and a stone dropped from the Leaning Tower of Pisa did
not fall, but were suspended motionless in space. It was actually the ground which rushed
up to meet them! That would explain why the apple and the stone hit the ground at exactly
the same instant. The relativity of motion!”

Indeed, a mite on the ground looked up at the enormous apple coming down and saw his
entire life flash by him in an instant, but a mite on the apple, equally terrorized, watched
the ground rushing up to crush her.

“As if” is good enough

But yet, this sounds like total nonsense. The earth carrying the Leaning Tower and the
entire town of Pisa rushing up toward the apple and the stone? How could you explain
gravity with that peculiar hallucination? Besides, all around the world, people are dropping
things, ripe fruits are falling down from trees, and nerdy physicists are tripping all over
themselves. The earth would have to be rushing this way and that.
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Nevertheless, the notion of the ground rushing up to meet the apple and the stone is
such an amazingly simple explanation of why the apple and the stone hit the ground at
exactly the same instant—there must be some element of truth to it.

To make sense out of nonsense, the key insight is that “as if” is good enough. The
ground does not literally have to rush up. It is enough to say that gravity behaves as if the
ground were rushing up. We can formulate this more academically by calling the “as if”
an equivalence.

Einstein’s equivalence principle

Dear reader, together we have arrived at Einstein’s equivalence principle. This profound
and fundamental principle states that, in a small enough region of spacetime, no experi-
ment can tell us whether we are in a gravitational field or in an accelerating frame.

Note the caveat of a “small enough region of spacetime,” where by small enough we
mean a region small compared to the characteristic size of the gravitational field. This is
easy to comprehend. Suppose our friend dropped the stone and the apple on earth rather
than in a box accelerating in empty space. We eternal students of physics, not to mention
Newton and his friend Stukeley, know that the stone and the apple do not fall down, but
that they fall toward the center of the earth (recall chapter I.2). Indeed, as the stone and
the apple fall, they approach each other slightly, the effect being suppressed by the ratio
of the separation between the stone and the apple to the radius of the earth. By careful
measurement of this so-called tidal effect (recall chapter I.4), we can in fact determine
whether we are in the earth’s gravitational field or in an accelerating box.

The equivalence principle is a statement about physics in a small region of spacetime.

Exercise

1 What happens to the flame of a falling candle?

Notes

1. This prologue is based in part on A. Zee, An Old Man’s Toy.
2. Einstein, Einstein’s Miraculous Year .
3. You can now experience this for yourself if you are willing to pay. Einstein’s happy thought is being exploited

commercially. See www.gozerog.com.
4. A. Zee, An Old Man’s Toy. See also A. Zee, in E = Einstein, ed. D. Goldsmith and M. Bartusiak, Sterling, 2007,

p. 223.
5. I. Bernard Cohen, “An Interview with Einstein,” Scientific American, July 1955, p. 73.
6. For a brief discussion of acrophobia, elevator phobia, and daydreams, see Toy/Universe, pp. 17, 257.
7. See Toy/Universe.
8. For a sketch of Newton’s life and his encounter with that famous apple, see Toy/Universe, pp. xv–xvii.
9. Now you can see this amazing fact on the web.

10. S. Drake, Galileo Galilei, Two New Sciences. Copyright © 1974 by the Regents of the University of Wisconsin
System. Reprinted by permission of The University of Wisconsin Press.

11. By Lemâıtre? Could have been a book on gravity, I’m not sure. See Toy/Universe, p. 15.





Part V Equivalence Principle and Curved Spacetime





V.1 Spacetime Becomes Curved

A mysterious force emanating from the Bering Strait

Imagine flying from Los Angeles to Taipei. Flipping idly through the back of an in-flight
magazine (or more likely the flight map on the video by the time I finish this book), you
might notice that the plane follows a curved path arcing toward the Bering Strait. Is the
Bering Strait exerting a mysterious attractive force on the plane?

On your next trip you try another airline. This pilot follows exactly the same curved path.
Don’t these pilots have any sense of personality or originality? Why don’t they sometimes,
just for the heck of it, swing south and fly over Hawaii, say? They seem to prefer to fly
over1 grim and unsuspecting Inuit hunters rather than cheerful Polynesian maidens.

Not only is the mysterious force attractive, it is universal, independent of the make of the
airplane. Should you seek enlightenment from the guy sitting next to you? Dear reader,
surely you are chuckling. You know perfectly well that the Mercator projection distorts
the earth, and pilots follow scrupulously the shortest possible path between Los Angeles
and Taipei. The answer to the universality of the mystery force is to be sought, not in the
physics, but in the economics, department.

But is it so laughably obvious? Consider the leading theoretical physicists before Einstein
came along. They knew the well-verified experimental fact that all things fall at the same
rate, be it an apple or a stone. Perhaps the fact that an apple and a stone would fall in
exactly the same way in a gravitational field is no more amazing than different airlines,
regardless of national or political affiliation, would choose exactly the same path getting
from Los Angeles to Taipei. An apple or a stone traverses the same path in spacetime, just
as a commercial flight follows the same path on the curved earth regardless of the airline.2

In hindsight, we might see an “obvious” connection, but hindsight3 is of course way too
easy. For three hundred years, the universality of gravity has been whispering “curved
spacetime” to us.

As I said in chapter IV.3, we did not go looking for curved spacetime, curved spacetime
came looking for us!
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No gravity, merely the curvature of spacetime

Just as there is no mysterious force emanating from the Bering Strait, one could say that
there is no gravity, merely the curvature of spacetime. The gravity we observe is due to the
curvature of spacetime. More accurately, gravity is equivalent to the curvature of spacetime,
or gravity and the curvature of spacetime are really the same thing.

To summarize and to underline the point, Einstein says that spacetime is curved and that
objects take the path of least distance in getting from one point to another in spacetime.
Environment dictates motion. The curvature of spacetime tells the apple and the stone to
follow the same path from the top of the tower to the ground. The curvature of the earth
tells the pilots to follow the same path from Los Angeles to Taipei.

This amazing revelation about the role of spacetime offers an elegantly simple explana-
tion of the universality of gravity. Gravity curves spacetime. That’s it. Spacetime is curved
and gravity’s job is done. It’s now up to every particle in the universe to follow the best path
in this curved environment. This explains why gravity acts indiscriminately on every parti-
cle in exactly the same way. Next time you take a nasty fall, whether on the ski slope or in the
bathtub, just think, every particle in your body is merely trying to get the best deal for itself.

Acceleration

In the prologue to book two, you read about Einstein’s happy thought that being in an
accelerated frame is equivalent to being in a gravitational field. The parable here suggests
that gravity is a manifestation of curved spacetime. Let us now substantiate these analogies.

Warm up with the simplest example of a freely moving Newtonian particle in one spatial

dimension obeying d2y

dt2
= 0. (To avoid writing primes in the subsequent discussion, we

call the spatial coordinate y instead of x′.) Let us now transform to an accelerated frame.
Instead of the linear Galilean transformation, we now have y = x − 1

2at
2. Differentiating

twice, we obtain

d2y

dt2
= d2x

dt2
− a (1)

Thus, the observer in the accelerated frame insists that there is a force, given by the mass
m of the particle times

d2x

dt2
= a (2)

Note that the force is proportional to the inertial mass. Simple yet profound!
This is all familiar stuff, experienced often in daily life. Riding in a speeding car, we are

thrown forward when the driver suddenly slams on the brake. Beginning physics students
learn this as the “effect of inertia.” A wet dog shaking itself dry knows how to exploit this
effect.



V.1. Spacetime Becomes Curved | 277

Repeat this little discussion for a relativistic particle. Suppose that an observer, living
in Minkowskian spacetime with dτ 2 = −ηρσdyρdyσ , sees no force acting on a particle,
that is,

d2yρ

dτ 2
= 0 (3)

What does the other observer see?
Instead of the simple relation between y, x, and t in our warm-up Newtonian example,

we now let the coordinates yρ be related to the other observer’s coordinates xμ by a
general coordinate transformation specified by 4 functions yρ(x). Now it’s just a matter of
arithmetic, albeit highbrow arithmetic, to work out what (3) implies for d2xρ

dτ 2 . Just plug in,
then chug away. Differentiating yρ once, we get

dyρ

dτ
= ∂yρ

∂xμ

dxμ

dτ
(4)

Differentiating yρ twice, we get

d2yρ

dτ 2
= ∂yρ

∂xμ

d2xμ

dτ 2
+ ∂2yρ

∂xμ∂xν

dxμ

dτ

dxν

dτ
(5)

Thus, if one observer sees a freely moving particle d2yρ

dτ 2 = 0, the other sees

d2xλ

dτ 2
+
(
∂xλ

∂yρ

∂2yρ

∂xμ∂xν

)
dxμ

dτ

dxν

dτ
= 0 (6)

We have multiplied by ∂xλ

∂yρ
and used ∂xλ

∂yρ
∂yρ

∂xμ
= ∂xλ

∂xμ
= δλ

μ
. The “x observer” sees a force

acting on the particle: d2xλ

dτ2 does not vanish. Compare (2) and (6). The latter is just a more
complicated version of the former; the physics involved is essentially the same.

Curved space and curved spacetime

“But wait a minute!” you exclaim. “It all looks familiar. Didn’t we see this somewhere
already?”

Yes indeed, way back in chapter II.2, Professor Flat explained that, in a locally flat region,
the geodesic equation for a curved space reduces to the equation for a straight line, as
anybody would expect. There we didn’t include time, and the geodesic is parametrized
by the length defined by ds2 = δρσdy

ρdyσ ; here the path followed by the particle is
parametrized by the proper time defined by dτ 2 = ηρσdy

ρdyσ . The role of Euclid’s δ is
played by Minkowski’s η.

The metric for curved spacetime can hardly wait to pop out. Given that the “y observer”
sees the Minkowski metric, what metric does the “x observer” see? The invariance of the
proper time interval gives instantly

dτ 2 = ηρσdy
ρdyσ = ηρσ

∂yρ

∂xμ

∂yσ

∂xν
dxμdxν (7)
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Thus, the “x observer” sees the metric

gμν = ηρσ
∂yρ

∂xμ

∂yσ

∂xν
(8)

Define the Christoffel symbol as

�λ
μν

≡ ∂xλ

∂yρ

∂2yρ

∂xμ∂xν
(9)

and you literally see (6) morph into the geodesic equation (II.2.19) found by minimizing
the length of a curve (II.2.13) before your very eyes.

I cordially invite you to go back to chapter II.2 and compare our discussion of curved
spacetime here with the discussion of curved space there. Everything looks the same. For
example, the connection between �λ

μν
and the metric goes through as before. Observe that

we are on the right track: �λ
μν

depends on the second derivative of y with respect to x.
Thus, if the relationship between y and x is linear, as given by a Lorentz transformation
or a simple rotation, then indeed d2xλ

dτ 2 = 0, and there is no gravitational force. Comparing
(8) and (9), you see that �λ

μν
can be constructed out of the metric and its first derivatives

∂ωgμν, just as in chapter II.2.
The astute reader would recognize that the discussion of the geodesic equation in

chapter II.2 is just the mathematician’s version of the physicist’s equivalence principle
that we can always go to an inertial frame in which there is no gravity. Translation: locally
flat coordinates = inertial frame, and Christoffel symbol = force attributed to gravity.

We will explore motion in curved spacetime in detail in the next two chapters.
Since the laws of arithmetic are reversible, we can reverse the logic. Here we start with

a particle happily cruising in flat spacetime (3), free from the demand of any force. We
then make an arbitrary coordinate transformation, writing y(x) for y. Apply the chain rule
of elementary calculus, and we discover the geodesic equation (6) and curved spacetime
(8). Now reverse the logic: start with a particle in a gravitational field, go to a locally flat
region of spacetime (sometimes called a locally inertial frame) in which �λ

μν
vanishes,

and watch (6) simplify dramatically to the motion of a freely moving particle (3). This
is of course Einstein’s happy thought again: a freely falling person does not feel any
gravity.

Fictitious forces

Some older books call the force in (2) an “inertial force,” but wait, particle theorists assure
us that there are only the strong force, the weak force, the electromagnetic force, and the
gravitational force. So, what is an inertial force?

In high school, I was also terribly confused4 by the centrifugal force. The book said
the force was “fictitious,” but yet I remembered that as a little kid riding the Merry-Go-
Round, I was told in no uncertain terms that I must hold on tight. I certainly felt all these
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fictitious forces. Even more puzzling: the book went on to mention the centripetal force.
Why couldn’t the book make up its mind? Is it fugal∗ or is it petal†?

You know the resolution of all this confusing talk: the book was just moving bits and
pieces of d2�x

dt2
back and forth between the right hand side and the left hand side of ma = F .

What you call force I could call a piece of the acceleration, and what you call centripetal
I could call centrifugal. Einstein’s insight was that the most commonly experienced force
of all, the gravitational force, may be an example of a “fictitious force.”

Exercise

1 A helium balloon is attached to a child’s seat in the back of a car. When the speeding car suddenly brakes to
a stop, how does the balloon move?

Notes

1. I am abusing geography slightly in the same way I occasionally abuse notation.
2. Referring back to (IV.3.4), we see that if the gravitational mass is not equal to the inertial mass, this would

correspond to, in our analogy, different airplanes seeing a different curvature of the earth.
3. Staircase wit, l’esprit d’escalier, Treppenwitz; firing the cannon after the cavalry had already charged by you.
4. I can’t blame the teacher since I did not get to take a physics course.
5. The next line is “Sic transit gloria mundi”.
6. The next line is “Gather ye rosebuds while ye may.”
7. The root “petere,” for “to desire” or “to seek,” appears in words like “appetite” and “petition.”

∗ As in5 “Tempus fugit.”
† As in6 “All flowers wilt”—just kidding.7
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The equivalence principle predicts

We learned in the prologue to book two (and in the preceding chapter) that, in a small
enough region of spacetime, no experiment can tell us whether we are in a gravitational
field or in an accelerating frame.

Einstein’s theory of gravity is built on this equivalence principle. As I suggested heuristi-
cally, through thought experiments and parables, the equivalence principle leads us directly
to an understanding of the gravitational field as a manifestation of curved spacetime.1 At
this point, many textbook authors start to wring their hands, fretting about the long road
ahead, and warning their readers about the considerable mathematical machinery involved
in mastering Riemannian geometry. Of course, all this is true; to say the contrary would
be like saying that you could master Newtonian mechanics without learning calculus. But
by arranging the material so that you started by learning to hop from coordinate trans-
formations to curved surfaces, I hope that by now you have already absorbed enough of
the relevant mathematics so that the rest of the road we have to travel will not look so
formidable.

Before we start developing Einstein gravity, I want to mention that two of its most
striking predictions, namely the deflection of light and the gravitational redshift, follow
directly from the equivalence principle.

Recall from the prologue to book two that there are two distinct April Fools’ thought
experiments we can contemplate doing. In one, we put our friend in a box in empty
space, far from any gravitational field, and accelerate the box. In the other, we drop the
box in some gravitational field, such as that of the earth. It would be instructive to derive
both predictions using the two different thought experiments, which I will refer to as
“Accelerated” and “Dropped,” respectively, sort of how a funding agency would file away
these two kinds of experiments.
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Bending of light

Thought experiment “Accelerated”

Our friend drops an apple, and it promptly falls to the floor. The apple does what it has
always done. But to the observer floating outside, the floor is rushing, “rushing up” as
we are almost tempted to say, with ever increasing haste, to meet the apple. Then our
friend, quite a quirky person, fires a laser gun at a wall. He notices that the red spot is
located below the mark he aimed at. No question about it, light falls in a gravitational
field! The laser beam bends in a graceful parabola, like any material object thrown at that
wall.

But the outside observer would describe what happened quite differently. He sees the
laser beam moving in a straight line, since there is no gravitational field around. But the
wall had moved “upward” in the time it took the beam to cross the room. See figure 1a.
Amazingly simple and beautiful argument! The equivalence principle settles, once and for
all, the question whether light falls.

It is worth remarking that, while this argument, often given in popular physics books,2

establishes that light falls, it does not determine the actual amount precisely. The reason is
that it does not take the intrinsically relativistic nature of light into account; the argument
would apply even if the laser beam consists of a stream of tiny particles obeying Newtonian
mechanics and moving at speed c, as in Newton’s corpuscle theory of light. In chapter VI.3
we will do the calculation in Einstein’s theory and show that the amount of bending is twice
the Newtonian value.

(a) (b)

laser light
hits here

laser light
hits here

Figure 1 Firing a laser gun at a wall in (a) an accelerating box deep in space and (b) a box dropped from a great
height above the earth.
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Thought experiment “Dropped”

Now consider the other thought experiment of dropping the box with our friend in it from
a great height above the earth (figure 1b). A dropped apple floats in space, and our friend
is blissfully unaware of any gravitational field. He fires the laser gun, and sure enough, it
hits the exact spot he aimed for. Why shouldn’t it? There is no gravitational field around.
A freely falling person does not know gravity!

But the outside observer sees the entire box falling. The spot marked on the wall for
target practice has dropped in the time it took the laser beam to get there. For the laser
beam to hit the spot, it must have fallen exactly as much as the wall. To her, standing on
earth, there is a gravitational field and light falls.

Very nicely, both thought experiments reach the same conclusion.

Gravitational redshift

Thought experiment “Accelerated”

Back in the box accelerating in deep space, our friend now fires his laser gun at the ceiling.
(More than being quirky, he might have some personality disorder.) First, what does our
all-seeing outside observer see? By the time the light gets up to the ceiling, since the box is
accelerating, the detector attached to the ceiling is moving faster than when the shot was
fired. Plain old Doppler effect tells us that the detector will see light of a lower frequency.
Our friend, since he is convinced he is in some gravitational field, concludes that light
redshifts as it “climbs” from a point of lower gravitational potential to a point of higher
gravitational potential. In other words, the outside observer sees a Doppler redshift, while
our friend the inside observer sees a gravitational redshift (figure 2a).

Not only is the equivalence principle argument direct and convincing, it allows us to
calculate the effect using literally freshman physics! Let the height of the ceiling from the
floor be h. So light took time 
t = h/c to get from the floor to the ceiling, by which time
the ceiling is moving with speed v = g
t = gh/c in a frame in which it was at rest at time
t −
t . For gh/c � c, we don’t even need the fancy relativistic Doppler result derived in
chapter I.3, merely the elementary Doppler shift result 
ω/ω = −v/c = −(gh/c)/c. The
situation gh/c � c corresponds to a weak gravitational potential �= gh (recall that � has
been defined as the potential energy per unit mass ever since part I). We thus conclude
that 
ω/ω = −(gh/c)/c = −(�ceiling −�floor)/c

2.
The equivalence principle tells us that this holds in any weak gravitational field:(
ωreceiver − ωemitter

ωemitter

)
= −

(
�receiver −�emitter

c2

)
(1)

To check the sign in (1), remember that�higher >�lower where�higher is the potential at
the tree branch where the apple was hanging and �lower is the potential at Newton’s head.
Note that the terms “higher” and “lower” are in accordance with everyday usage. Thus, if
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(a)

detector

(b)

Figure 2 Firing a laser gun at the ceiling in (a) an accelerating box deep in space and (b) a box dropped from a
great height above the earth.

the emitter is on the floor and the receiver is on the ceiling, the right hand side in (1) is
negative, and the frequency received is lowered toward the red.

Thought experiment “Dropped”

What about the other thought experiment, in which the box with our friend inside is
dropped from a great height? (See figure 2b.) He invokes the daydreaming clerk’s happy
thought, that a falling person does not feel gravity. Indeed, he is happily floating, in the
idealized freely moving inertial frame that elementary physics is described in. So, of course,
the light detector in the ceiling registers the same frequency: why would the light change
its frequency propagating in an inertial frame in the absence of the gravitational field?
In fact, being an accomplished experimentalist, he rigs up the detector to flash a signal
indicating “Yes, same frequency!”

The observer standing on earth sees the signal and is puzzled. She observes the detector
rushing down toward the light and so should see a Doppler blue shift and register a higher
frequency. Being an insightful theorist, she eventually suspects that there must be another
effect that cancels the Doppler blue shift: the earth’s gravitational field must shift the light’s
frequency toward the red by precisely the same amount as the Doppler shift.

Instructively, in these thought experiments, although the two observers disagree on what
is going on, they come to the same conclusion: when a photon “climbs up” a gravitational
potential, its frequency redshifts.
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Gravity affects the flow of time

Actually, we already had a hint of gravitational redshift back in chapter IV.3 when the bright
young physicist tried to incorporate the physical notion of a potential into the relativistic
action for a point particle. In option G, the action is modified to

S =
∫ √

(1 + 2�(�x))dt2 − d �x2

Let me remind you that, in particular, for a particle at a fixed position, its proper time in-
terval is given by dτ =√

(1 + 2�(�x))dt � (1 +�(�x))dt . Gravity affects the flow of time.
The change in this flow of time translates into a change in frequency: frequency effec-
tively depends on where you are according to ω(�x)∝ 1/(1 +�(�x))� 1 −�(�x). In other
words, ωreceiver

ωemitter
� 1−�receiver

1−�emitter
� 1−�receiver +�emitter. Restoring a factor of c2 by dimensional

analysis, we recover precisely (1).
Incidentally, this also resolves an apparent puzzle. When you first heard about the

gravitational redshift, you might have wondered how counting the number of waves that
pass by per unit time could be affected by gravity. The answer is that gravity affects the
running of the clock used to define “unit time.”

The Smart Experimentalist

As we will discuss in chapter VI.3, the deflection of light was observed soon after Einstein
proposed his theory of gravity in 1915. In contrast, almost 50 years had to pass before
gravitational redshift was verified. While the two effects are conceptually almost equally
easy to understand, one effect challenges the experimentalist much more severely.

For the sun, �(surface of sun)/c2 =GM/(Rc2)∼ 10−6. How do you disentangle this
tiny frequency shift of one part in a million from the standard Doppler shift due to the
thermal motion of the emitting atom on the solar surface? With GM/(Rc2) ∼ 10−9 for
the earth, terrestrial experiments seemed even more out of reach until the discovery in
1958 of the Mössbauer effect. Normally, emission lines from an atom in a crystal are
broadened by recoil and by the interaction of that particular atom with its neighbors, all
in thermal agitation. Mössbauer discovered (while a graduate student) that under certain
circumstances, the atoms are all locked together so that the recoil is transferred to the
crystal as a whole and the emission lines are much sharpened. In a famous experiment
performed in a tower∗ of the Harvard physics building, Pound and Rebka in 1960 exploited
the Mössbauer effect to verify the gravitational redshift.

Here comes our friend the Smart Experimentalist. “The tower is only about h = 20
meters high, and so the effect is only (GM/(Rc2))(h/R)∼ 10−15! How would one of you

∗ The tower was built as part of a deal to recruit Edwin Hall (1855–1938) from Johns Hopkins University,
where he had discovered the effect bearing his name. Hall believed that a similar effect might exist for gravity,
hence the tower.
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theorists do the experiment?” Think for a moment, particularly if you are a theorist. The
answer is in the appendix.

The power of the equivalence principle

Let us appreciate the far-reaching power of the equivalence principle. Suppose we have
mastered the physics of a certain class of phenomena in the absence of gravity. In other
words, we understand the physics in flat Minkowskian spacetime. It doesn’t matter what
kind of physics; it could be the physics of quarks interacting with gluons, for example.
Thanks to the equivalence principle, we know immediately the corresponding physics
in the presence of gravity. All we have to do is to go to an accelerating frame. But this
amounts to a change of coordinates, and we know how to do that in general. As we saw in
the preceding chapter, to write down the physics in the presence of gravity, all we have to
do is replace flat spacetime with curved spacetime.

In the simplest case of a point particle, we merely have to replace the Minkowski metric
ημν in the action S = −m ∫ √−ημνdxμdxν by the general metric gμν(x). There, we have
it without doing any work! The action for a particle moving in a gravitational field is

S = −m
∫ √

−gμν(x)dxμdxν (2)

Well, well, it is precisely option G in chapter IV.3.
Later in chapters V.4 and V.6, you will see more examples of the equivalence principle

in action.

A matter of words: Gravitational field “versus” curved spacetime

We now understand that the gravitational field is a manifestation of curved spacetime, or
perhaps more accurately, that the gravitational field and curved spacetime are effectively
the same thing. In the parable given in chapter V.1, the Bering Strait does not exert a
mysterious force on a plane flying from Los Angeles to Taipei. Rather, the plane is following
the curvature of the earth. We could say that there is no such thing as gravity, only curved
spacetime.

But you could say with equal justification that spacetime does not exist; there is only
the gravitational field. To me, it is just a matter of words, and the only relevant issue is
which language you find more useful to think in. Some authors3 like to make dramatic
pronouncements, something along the following: space has disappeared, time has dis-
appeared, spacetime has disappeared! Yes, indeed, with a gravitational field and hence
the geodesics of test particles, you can determine where and when without “referring” to
an underlying spacetime. Einstein himself, in his more philosophical moments, adopted
this point of view, writing in 1916 that “the requirement of general covariance takes away
from space and time the last remnant of physical objectivity.” In other words, there is
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no spacetime, only a bunch of fields interacting with one another,∗ with the gravitational
first among equals. As a quantum field theorist, this picture appeals to me also, with the
gravitational field providing an arena for the other fields to play in.

However, I think that most physicists, myself included, find it more natural to think
of particles and fields moving in a curved spacetime seeking the best action deal for
themselves. But as I said, it is merely a matter of words, and in the end, it is the equations
that matter.

A misconception

I conclude by mentioning a common misconception. Some textbooks state that Einstein
gravity is based on the principle of general covariance. If we interpret this principle as
stating that we are free to choose whatever coordinate system we like, then this statement
by itself is empty of content, or misleading at best. We’ve always had that freedom, even
in Newtonian physics; perhaps we have forgotten, because we usually choose coordinates
that make the equations look the simplest.

The correct statement is that Einstein gravity is based on the equivalence principle,
which relates two physical situations, one with a gravitational field and one without. This
is quite different from a symmetry, such as rotation or special relativity, which tells us that,
under rotation or Lorentz transformation, respectively, physical laws are left invariant. I
cannot emphasize this point enough.

More precisely, we note that for each of the effects described in this chapter, the fund-
ing agency was generous enough to support two different experiments, one filed under
“Accelerated,” the other called “Dropped.” For each of these experiments, two principal
investigators are involved: an “inside” observer and an “outside” observer. Consider again
the gravitational redshift. In the Accelerated experiment, we could rig up the detector on
the ceiling to email the frequency reading to the two observers. No doubt about it, both
observers write down that the frequency has shifted toward the red.

Confusio: “I see that the confusion some students have may have stemmed from an
inherent sloppiness in the English language. You wrote that the outside observer sees a
Doppler redshift, while the inside observer sees a gravitational redshift. What do you mean
by the word ‘sees’?”

Confusio is absolutely right. At the cost of being more wordy, we should have said that
the outside observer thinks that he sees a Doppler redshift, while the inside observer
thinks that he sees a gravitational redshift, even though they agree on the actual amount
of frequency shift.

The equivalence principle is not a statement that “physics” does not depend on the
observer (as in the corresponding statements for rotation invariance or special relativity).
It does! One observer sees a gravitational field, the other does not. But now the Talmudic
quibble could be over what we mean by the word “physics.” The two observers see the same

∗ Quantum field theory teaches us that particles are ultimately manifestations of fields.
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frequency shift: they receive the same email from the detector. But they offer different
theoretical interpretations for the same redshift, as due to acceleration for the outside
observer, and to gravity for the inside observer.

Similarly, in the Dropped experiment, both observers are told by the detector that there
isn’t any frequency shift. But while the inside observer thinks that he is freely moving,
the outside observer publishes an explanation that the gravitational redshift has canceled
a Doppler blue shift.

Appendix: The “meaning” of gravity?

Okay, did you figure how those smart experimentalists did it way back when?∗ The clever idea is to move the source
(or the receiver) up and down at precisely calibrated speeds, thus exploiting the Doppler redshift to alternately
add to or subtract from the gravitational redshift.

The gravitational redshift was later verified to a much higher degree of accuracy by launching a rocket carrying
a maser to a height of 104 km, comparable to the radius of the earth. Experimental physicists like to say that
yesterday’s discovery is today’s calibration and tomorrow’s background. Nowadays, the gravitational redshift
appears as a necessary correction term in the global positioning system (GPS) that many use routinely without
giving it a second thought.† General relativity has entered into everyday life.

Incidentally, the 19th century tower was not equipped with an elevator. Pound and his assistants had to carry
the heavy equipment up the narrow tower in mountaineering backpacks. Years later, I heard Pound joke that by
performing this experiment, he had truly learned the meaning of gravity.

Exercise

1 A high precision atomic clock is carried on a plane flying eastward around the world. Calculate the fractional
time shift between the time elapsed as measured by this clock versus a clock kept on the ground (and versus
a clock on a plane flying westward around the world). (The experiment has been carried out.) Hint: Both
special and general relativity come in. Do the calculation for the idealized case (of course): plane flying along
equator at a constant altitude, earth’s spin axis perpendicular to the equatorial plane, and so on.

Notes

1. My wife and I bought our son Max a few balls when he was about 1 year old. I expected that he would learn
about Newtonian, or at least Aristotelian, mechanics, but no, he graduated right off to Einsteinian mechanics.
The newly installed wood floor in our house, while level and flat to the eye, is in fact not: the balls follow
noticeably curved paths. See also Toy/Universe, figure 2.4 on p. 26.

2. For example, Toy/Universe.
3. For example, C. Rovelli, in Quantum Gravity.
4. C. W. Chou et al., Science 329 (2010), p. 1630.

∗ The technology of clocks has improved so much in 50 years that now one merely has to raise one clock
by 33 centimeters relative to another to detect4 a difference. Incidentally, with the same technology, time
dilation in special relativity has been measured down to speeds of about 35 kilometers per hour.
† And let’s not forget that the laser and the sensor used in the system are based, respectively, on the
concept of stimulated emission set forth in Einstein’s 1917 paper on radiation and on the photoelectric
effect explained in his 1905 Nobel Prize–winning paper.
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From curved space to curved spacetime

I set up this book so that it is now a cinch for you to jump from curved space to curved
spacetime. Given that you have played around with curved spaces, understood Minkowski’s
geometry of spacetime, and heard what Professor Flat said about local flatness, you are
more than ready to play with curved spacetimes.

You understood Professor Flat’s explanation that in a small enough region around any
given point, it is always possible to go to locally flat coordinates, a definition of Riemannian
manifold if you like. Easy: a simple matter of diagonalizing a matrix and counting the
degrees of freedom we have in changing coordinates to cancel off the linear deviations
from flatness.

Well, we can jump from curved spaces to curved spacetimes immediately, if by flat
we now mean Minkowskian flat, rather than Euclidean flat. The entire discussion in
chapter I.5 can be taken over; you merely have to mentally replace δμν by ημν.

A d = (D + 1)-dimensional curved spacetime, with D spatial dimensions and one
temporal dimension, is defined by

ds2 = gμν(x)dx
μdxν (1)

with μ, ν = 0, 1, . . . , D taking on d =D + 1 values, such that at any given point x∗ we
can transform the coordinates so that gμν(x∗) becomes ημν (with, as usual, η00 = −1, and
ηii = +1, i = 1, . . . , D, and ηij = 0 otherwise). We normally take D = 3 for the spacetime
we are living in.

My pedagogical strategy is to let you play around with a couple of examples of curved
spacetime instead of giving you a long formal exposition.
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The simple spacetime we quite likely live in

Our first example is the spacetime described by

ds2 = −dt2 + a(t)2d �x2 = −dt2 + a(t)2(dr2 + r2d�2) (2)

where d�2 = dθ2 + sin2 θdϕ2 represents the usual spherical coordinates. At any given time
t , the spatial geometry dS2 ≡ a(t)2d �x2 is just the familiar flat Euclidean space E3 we deal
with every day, homogeneous (that is, every point is just as good as every other point) and
isotropic (every direction is as good as any other direction).

The proper distance between two points (t , �x) and (t , �x + d �x) at the same time but
separated infinitesimally by d �x is then given by a(t)|d �x|. Thus, with a(t) (known as the
scale factor of the universe) some function of t , this spacetime could describe an expanding
or contracting universe. Eventually, we will learn about the dynamics driving the time
evolution of a(t), but for the moment, we are just going to describe and explore this
particular spacetime with a given a(t). Not only is (2), which I will refer to as the expanding
universe∗ for short, the simplest curved spacetime I know of, but it is also quite likely the
spacetime we live in.

For phenomena with a characteristic time scale small compared to the time scale on
which a(t) varies, the spacetime is effectively locally Minkowskian. Almost trivially, at any
point in spacetime, we simply define yi by dyi = a(t∗)dxi, and we have gμν(y∗)= ημν after
changing coordinates from (t , �x) to (t , �y).

A historical note. Metrics akin to (2), now almost universally and erroneously attributed
to Willem de Sitter (1872–1934), were first written down in 1925 by Georges Lemâıtre
(1894–1966). In 1917, de Sitter wrote down a metric that was not homogeneous in space,
an error corrected later by Kornel Lanczos (1893–1974) and Hermann Weyl (1885–1955)
independently. It has been said1 that “Lanczos had the key to an expanding universe in
his hands, but he did not unlock the door.” Let that be a lesson to the reader! Lemâıtre
arrived at the metric2 (2) independently, but in contrast to Lanczos and Weyl, understood
the physics of the expanding universe. (Hence the quote about Lanczos.)

Motion in curved spacetime

Life is easy. Since you already know how to determine geodesics in curved space, you
know how to determine geodesics in curved spacetime and hence the paths followed
by free particles. Indeed, I even used the notation gμν in chapter II.2. Hence, as was

already discussed in the preceding chapter, you could lift the geodesic equation d2Xλ

dτ2 +
�λ
μν

dXμ

dτ
dXν

dτ
= 0 in its entirety from chapter II.2 and use it in curved spacetime. As was

∗ A common misconception3 is that cosmic expansion causes all distances to scale up, which is manifestly
false. For example, locally, the earth and the moon are bound to each other and the distance between them is not
expanding.
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explained in chapter II.2, it is actually simpler to extremize the action

S = −m
∫

dτ

{(
dt

dτ

)2

− a(t)2
(
d �x
dτ

)2
} 1

2

(3)

directly. We obtain

d2t

dτ 2
+ a(t)ȧ(t)

(
d �x
dτ

)2

= 0 (4)

and

d

dτ

(
a(t)2

d �x
dτ

)
= 0 ⇒ d2�x

dτ 2
+ 2ȧ(t)

a(t)

dt

dτ

d �x
dτ

= 0, (5)

plus of course(
dt

dτ

)2

− a(t)2
(
d �x
dτ

)2

= 1 (6)

Except for a sign here and there, everything is the same as in chapter II.2.
As before, we are to solve two out of three equations. Let us choose (5) and (6). When I

was an undergrad, I had a professor who liked to say that some equations are so simple that
you only need your eyeballs, not your brain, to solve them. Speaking more academically,
we can solve (5) and (6) immediately by inspection.

Lines of constant �x with τ = t are geodesics, and thus, in this universe, lazily going along
with the flow is your best bet for extremizing the action. More seriously, on cosmological
scales with galaxies treated as points, we could label individual galaxies appropriately and
use the labels as the �x coordinates. A coordinate system based on a network of geodesics
is known as comoving coordinates. (Recall that we already met comoving observers in our
discussion of perfect fluids in chapter III.6.) See the appendix.

For future use, we read off the Christoffel symbols from (4) and (5):

�0
ij

= aȧδij , �i0j = �i
j0 = ȧ

a
δi
j

(7)

with all other components vanishing.

Definition of spatial distance in a general curved spacetime

Many things are said by many physics texts to be obvious. My self-proclaimed goal is
to try not to say something is obvious unless it really is obvious by some community
standard. In a previous section, I said that the proper distance between two points sep-
arated infinitesimally by d �x is given by a(t)|d �x|. That was pretty obvious, but perhaps we
ought to be more careful. After all, with spacetime warped this way or that, our intuition
might fail.

Instead of the simple spacetime in (2), we now consider the general spacetime described
by ds2 = gμν(x)dx

μdxν = g00(x)dt
2 + 2g0i(x)dtdx

i + gij(x)dx
idxj . To keep things spe-

cific and focused, imagine that we are sitting at a point with spatial coordinates xi + dxi
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tF

dx

x + dxx
tS = tF + dt–

tR = tF + dt+

dt–

dt–

0

dt+

dt+

dt+ – dt–

Figure 1 The operational definition of the
distance to a nearby point involves sending
a light beam to that point and waiting for it to
bounce back to us.

and our friend is sitting at a nearby point with coordinates xi. Intuitively, you might feel
that the distance dl between us and our friend is given by dl2 ∼ gijdx

idxj . But with g0i �= 0,
our intuition may be a bit shaky. Besides, what role does g00 �= −1 play?

The Smart Experimentalist pops up again and says, “Distance is not some fancy theoreti-
cal construct but the result of an actual measurement.” She instructs us that the operational
definition of distance involves sending a light beam to our friend and waiting for it to
bounce back to us. What else could we do?

Let’s set up the situation with a bit of care (figure 1). Denote by tF the coordinate time
when our friend received the signal, by tS = tF + dt− the coordinate time when we sent
the signal, and by tR = tF + dt+ the coordinate time when we received the return signal.
(The peculiar notation dt± will become clear soon.) The event of our friend receiving
the signal has spacetime coordinates (tF , xi). The two events, sending the signal and
receiving the return signal, have spacetime coordinates (tF + dt−, xi + dxi) and (tF +
dt+, xi + dxi), respectively. Thus, these two spacetime events have coordinates differing
by (tF + dt+, xi + dxi) − (tF + dt−, xi + dxi) = (dt+ − dt−, 0), and hence the elapsed
proper time (defined as usual by dτ 2 = −ds2) between the two events is given by dτ =√−g00(dt+ − dt−). Note that our, and our friend’s, spatial coordinates have not changed:
that’s what the word “sitting” means. The distance dl between us and our friend is defined
to be dτ divided by 2c, in other words, the elapsed proper time we experienced (not some
unphysical coordinate time!) divided by light speed and a factor of 2 (to account for the
round trip our light signal took).

Indeed, we measure the distance between the earth and the moon, or for that matter,
between an aircraft and a control tower, in precisely this way using radar ranging. And
of course these days anybody using the global positioning system (GPS) is, knowingly
or unknowingly, exploiting this method to pinpoint locations, as already mentioned in
chapter V.2.
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We now also understand what “nearby” means: the spacetime interval during which the
bouncing of light (or radar, laser, whatever) takes place has to be sufficiently small so that
we can neglect any variation in the metric. Treating gμν(x) as constants will really simplify
the calculation. Since ds = 0 for light, the path traced by our light ray satisfies

0 = g00(x)dt
2 + 2g0i(x)dtdx

i + gij (x)dx
idxj (8)

This quadratic equation for dt determines how much coordinate time has elapsed when
light traverses dxi. Solving, we obtain the two roots

dt± = 1
g00

(
−g0idx

i ±
√
(g0idx

i)2 − g00gijdx
idxj

)

Hence the square of the operationally defined distance dl is given by4

dl2 = −g00

(
1
2 (dt+ − dt−)

)2 =
(
gij − g0ig0j

g00

)
dxidxj (9)

We see the role played by g00 and the off-diagonal components of the metric g0j . As
indicated, they correct the naive answer dl2 ∼ gijdx

idxj . Fortunately, g0j vanishes in most
of the spacetimes we will look at (see, however, exercise 2), including various universes
(17) to be explored later in this chapter and the Schwarzschild spacetime to be studied
in the next chapter. In particular, for the expanding universe (2), our naive supposition
dl2 = (a(t)d �x)2 is indeed correct. Later, in chapter VII.5, when we study rotating black
holes, we will encounter a spacetime with g0j �= 0 and g00 �= −1.

Distances in an expanding universe

The result (9) holds only for nearby observers. To calculate the distance between two distant
observers, we will in general have to integrate along lightlike geodesics. For (2), the metric
is so simple that we can do this radar ranging calculation explicitly.

Since space is completely homogeneous and isotropic, we can, with no loss of generality,
suppose that we are sitting at the origin r = 0 and our friend is living in a distant galaxy at
r = R. We saw earlier that an inertial observer can stay at rest at a fixed value of �x. Indeed,
this follows from a symmetry argument, since there is no special direction for the inertial
observer to move in. Since space is homogeneous and isotropic, why should this observer
move to �x +
�x any more than to �x −
�x?

Let us determine the distance to our friend. Send a signal at time tS and wait for the
return signal at tR. Denote by t (R; tS) the time when our friend receives the signal. Note
that, in an expanding universe, this time depends not only onR but also on when we send
the signal. Setting ds = 0 in (2) for light travel and taking the root dt = a(t)dr , we have for
the outbound trip from (tS , 0) to (t (R; tS), R) the relation

R =
∫ R

0
dr =

∫ t (R;tS)

tS

dt

a(t)
(10)
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The second equality determines t (R; tS). For the return trip from (t (R; tS), R) back to
(tR , 0), we take the other root and obtain − ∫ 0

R
dr = ∫ tR

t (R;tS)
dt
a(t)

. Adding, we obtain 2R =∫ tR
tS

dt
a(t)

. We define the distance between us and our friend by

D(R; tS)= 1
2 (tR − tS) (11)

Communication in an expanding universe

The scale factor a(t) of the universe∗ will have to be determined by observation and by
theory (which we will get to in chapter VI.3). Until a decade or so ago, it was thought
that the universe was expanding like a power law a(t)∝ tα. But as you may have heard,
observational evidence now suggests that our universe is well described by (10) with
a(t)= eHt for some constant H , known as the Hubble parameter. (Note that we have set
the origin of time.)

If somebody gives us a(t), then we can evaluate t (R; tS) andD(R; tS) using (10) and (11),
respectively. To illustrate what is going on, I will do the exponential case and let you do
the power law case as an exercise. Integrating (10), we obtain R = 1

H
(e−HtS − e−Ht(R;tS)).

Evidently, we should measure distance and time in units of the Hubble distance or Hubble
time RH ≡ H−1; that is, we could set H = 1 to lessen clutter. Without pausing to solve
R = e−tS − e−t (R;tS), we can see that as R increases, t (R; tS) increases. This makes sense:
the farther away our friend is, the later she will receive our signal.

But now comes an interesting observation: there exists a Rmax = e−tS at which t (R; tS)
reaches infinity. Thus, if our friend is located farther away from us than that, she will never
receive our signal. In other words, if R >Rmax, our signal will not be able to catch up with
her. The universe, expanding too fast for light to keep up, is said to have an event horizon,
known as the de Sitter horizon. The terminology is in analogy with the fact that we cannot
see beyond the (everyday) horizon. Note that the later we send the signal, the smaller is
Rmax. With the passage of time, the horizon closes in on us.

Next, solving 2R = e−tS − e−tR, we obtain the distance between us and our friend

D(R; tS)= 1
2 (tR − tS)= − 1

2 log(1 − 2RetS) (12)

Note that the distance depends on tS, as it should since the universe is changing. ForR � 1
(that is, for nearby objects), we recover D(R; tS)� RetS , as we would expect from (9). In
contrast, for far away objects, as RetS → 1

2 from below, D(R; tS) → ∞. In other words,
in the regime Rmax > R > 1

2Rmax, we never hear back from our friend, even though she
receives our message. This makes sense: between the time we sent our message and the
time our friend sends her response, the universe has expanded some more. Light can get
from us to her, but won’t make it back from her to us.

∗ We will discuss cosmology in more detail later. Clearly, the metric (2) is applicable to the universe only on
cosmic distance scales, over which the universe appears to be homogeneous and isotropic.
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t

r

Figure 2 In an expanding universe, the light cones get ever narrower and
sharper as time goes on.

Referring back to (10), we see that the existence of an event horizon hinges on the
integral

∫∞ dt
a(t)

being finite: an exponentially growing a(t) certainly renders the integral
convergent.

Observers in an exponentially expanding universe do not move faster
than the speed of light

Confusio: “Doesn’t that mean that forR >Rmax, our friend is moving away faster than the
speed of light, like∗ Ms. Bright? Doesn’t that violate special relativity?”

No, all that special relativity requires is that the worldline of physical particles lies inside
the local light cone. In other words, physical particles only have to compare themselves
with the light rays around them. At any given point, the trajectories of outgoing light rays
in the radial direction are defined by dt = a(t)dr = eHtdr : the light cones are getting ever
narrower and sharper as time goes on (figure 2). Nevertheless, the worldlines of physical
particles, and of our friend in particular, stay within the light cone. General relativity cannot
possibly violate special relativity; after all, one is built on the other.

In a universe with a(t)= eHt , galaxies will pass out of our horizon one after another.
Eventually, we will be left all alone, like unfortunates marooned on a desert island watching
the pirate ship about to pass over the horizon.

∗ You’ve probably read about her. No? Here is her story:5 There was a young lady named Bright / Whose speed
was far faster than light / She went out one day / In a relative way / And returned on the previous night.
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Cosmological redshift

Suppose that a proper time interval 
tS after we sent our initial pulse to our friend, we
send another pulse. To lessen clutter, write T for t (R; tS), the time she receives the initial
pulse. For her, the proper time interval 
tR between the two pulses follows immediately
from (10): R = ∫ T

tS

dt
a(t)

= ∫ T+
tR
tS+
tS

dt
a(t)

, which for a time interval much smaller than the

characteristic time scale of a(t) is given by 
tR
a(T )

= 
tS
a(tS)

. We can translate this immediately
into a frequency shift for an electromagnetic wave emitted with frequency ωe:

1 + z≡ ωe

ωr
= a(T )

a(tS)
(13)

where we have defined the redshift factor zused by astronomers. In an expanding universe,
a(T ) > a(tS) and so z > 0, corresponding to a redshift. The frequency ωr at receipt is less
than the frequency at emission ωe.

I must emphasize that, in this chapter, for pedagogical clarity I have often specialized to
the case a(t)= eHt to illustrate the point being made, but evidently our discussion often
holds for other forms of a(t). For example, the derivation of the redshift formula (13) does
not depend at all on the assumed form of a(t). As I said, you will eventually learn how to
determine a(t) given the content of the universe.

Light rays at 45°

It is rather inconvenient to have the shape of the light cone depend on where we are.
Now that we have built up some intuition about Minkowski spacetime, we would prefer
radial light rays to always travel along the 45◦ lines. You can readily accomplish this by a
coordinate change. I will take you through the rather simple steps involved. Change t to η
and require ds2 = dt2 − a(t)2d �x2 = b(η)2(dη2 − d �x2) with some unknown function b(η).
The coefficient of d �x2 tells us that b(η)= a(t), which allows us to determine η in terms of
t by the relation dη = dt

b(η)
= dt

a(t)
.

The variable η is sometimes known as cosmic time. At a given cosmic time η, spacetime
is Minkowskian, and light propagates along 45◦ lines dη = ±|d �x| in the (η, �x) plane.

For any given a(t), we can work everything out explicitly. For example, suppose a(t)=
(t/T )

1
2 , with T some characteristic time scale, which as we will see in chapter VIII.1,

may have been the case in the early universe. Then η = 2(T t)
1
2 (an irrelevant integration

constant has been absorbed into η) and

ds2 =
(
η

2T

)2

(−dη2 + d �x2) (14)

For a(t)= eHt , the variable η = −e−Ht/H increases from −∞ toward 0 as t goes from
−∞ to +∞. Note that our sign choices are such that dt and dη have the same sign and
that η < 0. We obtain

ds2 = 1
(Hη)2

(−dη2 + d �x2) (15)
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Closed and open universes

“Sandage, can you really envisage curved space and the beauties
of Riemannian geometry, so necessary for relativity?” I replied,
“No, Father, I have tried and tried, using all the tricks known to
visualize curved space, but my visualizations have so far failed.”
Lemaı̂tre then sighed and said, “I understand, but it is a pity
because the visualization is so beautiful. Perhaps it might be
best for you to change fields.” He said it gently, like a father to
a son.6

—the distinguished cosmologist Allan Sandage,
recalling his encounter with Georges Lemaı̂tre

in 1961 in Santa Barbara, California

Whew! Perhaps we should change fields. Well, the only way to gain some intuitive feel
for curved spacetimes is to be exposed to several examples, and that’s what we start to
do here. Incidentally, Lemâıtre was a Catholic priest, hence the form of address used by
Sandage.

After Lemâıtre proposed (2) in 1925, he was unhappy about the Euclidean character of
space. Spacetime is curved, but space is flat. Then in 1927, he managed to write down the
modern form with space compactified into a 3-sphere S3. It should not take you 2 years,
however, given that you were exposed to S3 back in chapter I.6. Simply replace the metric
(dr2 + r2d�2) for Euclidean 3-space E3 in (2) by the metric

⎛
⎝ 1

1 − r2

L2

dr2 + r2d�2

⎞
⎠

for S3. Indeed, from chapter I.6, you even know how to write down the metric for the
hyperbolic space H 3 (I.6.15). Thus, we can combine these three cases into

ds2 = −dt2 + a(t)2

⎛
⎝ 1

1 − k r2

L2

dr2 + r2d�2

⎞
⎠ (16)

with the integer k = 1, 0, or −1 corresponding to a (spatially) closed, flat, or open universe,
respectively. Much of the discussion in this chapter can then be repeated for the k = ±1
cases, which I will leave to you in the exercises.

As we will see in part VIII, the universes described by (16), commonly called Friedmann-
Robertson-Walker universes, form the basis of modern cosmology. More correctly, they
should be called Friedmann-Lemâıtre-Robertson-Walker, or perhaps simply Friedmann-
Lemâıtre universes, since the work of Robertson and of Walker7 was considerably later, in
the 1930s.
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You might have noticed that we can absorb∗ the length scale L into r . Actually, some
authors do precisely that and write ds2 = dt2 − a(t)2

( 1
1−kr2dr

2 + r2d�2), so that r is
dimensionless. But I think this confuses some people, because it now seems that k = ±1, 0
are three discrete possibilities. One often hears the assertion that “the universe is now
known to be flat” as if it were an absolute statement.† In fact, physical observation can
only give us a (possibly very large) lower bound on L. For this reason, the reader will see
me often laboriously dragging L around when I could have chucked it.

It is often convenient to transform coordinates by setting Lψ = L
∫
dψ = ∫

dr√
1−k r2

L2

in

(16). Integrating, we have r = sin ψ (closed), r = ψ (flat), r = sinh ψ (open) for the three
cases. Thus, the closed, flat, and open universe are described by

ds2 = −dt2 + L2a(t)2(dψ2 + sin2 ψd�2) (closed) (17)

ds2 = −dt2 + L2a(t)2(dψ2 + ψ2d�2) (flat) (18)

and

ds2 = −dt2 + L2a(t)2(dψ2 + sinh2
ψd�2) (open) (19)

The reader may recall from chapter I.6 that the spatial section for the closed and open
universe describes the 3-dimensional sphere S3 and hyperbolic space H 3, respectively.

Proper distances in cosmology and a “cosmic conspiracy”

In the literature, people often invite themselves to define, perhaps a bit sloppily, a “proper
distance” d(t , R) between two distant points (t , 0, θ , ϕ) and (t , R , θ , ϕ) by integrating the
length segment dl =√

grr(t , r)dr derived in (9):

d(t , R)≡ a(t)

∫ R

0

dr√
1 − k r2

L2

(20)

But we just did this integral. Thus, we have

d(t , R)= a(t)L sin−1(R/L) (closed)

d(t , R)= a(t)R (flat)

d(t , R)= a(t)L sinh−1
(R/L) (open) (21)

As expected, for small R, d(t , R)� a(t)R. For the closed universe, d(t , R) is only defined
for R ≤ L.

You might wonder why d(t , R) is so proper: as we have seen in the derivation of (9),
a(t)|
�x| is the actual operational distance between two neighboring points separated

∗ For a more careful treatment, see chapter X.1.
† Next time you hear this statement, you will know to ask how a physical measurement could possibly give

an exact result without any error bars. Typically, the speaker will mumble something about k being a discrete
variable that can only take on three integer values k = 1, 0, and −1.
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by 
�x only if the separation is infinitesimal. Nevertheless, d(t , R) is useful because for
R �L, it agrees with the variety of distance measures∗ used by observational cosmologists.

As emphasized by Weinberg,8 for example, to interpret d(t , R) as a physical distance
requires what he called a cosmic conspiracy. We need to line up, between r = 0 and r = R,
many comoving observers, each separated from the next by some infinitesimal dr . At some
agreed-upon cosmic time t , they would bounce light off a nearby observer to measure the
proper distance

√
grr(t , r)dr to that proximate neighbor and report the result to some

central authority, who sums up
√
grr(t , r)dr and then multiplies by a(t) to form d(t , R)

as per (20).

Appendix: Comoving coordinates

The reader can skip this appendix on comoving coordinates upon a first reading.
Before we can describe what they are, our friend the Jargon Guy pops up and says that comoving coordinates

are also known as Gaussian normal. Thank you, but let’s give a physical rather than mathematical description.
As mentioned in the text, a collection of freely falling particles (such as galaxies in the context of cosmology, or
the dust in a collapsing cloud on its way to form a star or a black hole) naturally provides a set of coordinates that
makes particularly good sense to physicists. We use some suitable labels on the particles as the �x coordinates.
For t , we use the proper time experienced by the particle. In other words, imagine each particle carrying a clock,
the reading on which we take to be t .

This last statement implies that dτ 2 = −gμνdxμdxν evaluated for d �x = 0 is equal to dt2, that is, −g00dt
2 = dt2.

Thus, in comoving coordinates, g00 = −1.
That the particles are freely moving means that constant �x corresponds to geodesics, with t = τ . Setting

�x constant in the geodesic equation d2xi

dτ 2 + �i
μν

dxμ

dτ
dxν

dτ
= 0, we learn immediately that �i00 = 0, which by the

definition of �ρ
μν

implies gij∂tg0j = 0. For the sort of spacetimes we will deign to consider, gij is nonsingular, so
we can conclude that

∂tg0j = 0 (22)

What we would like to get is g0j (t , �x)= 0. Notice that (22) tells us that if we could fulfill our heart’s desire at one
particular instant in time t , we have it for all time.

By now you know the trick we have at our disposal: find a coordinate transformation to get rid of g0j .
We are free to go around resetting the clocks on each particle, namely t = t ′ − f (�x′) and �x = �x′, so that
g′

0j = gμν
∂xμ

∂x′0
∂xν

∂x′j = g0j − ∂f

∂xj
.

The trouble is that to get g′
0j = 0, we have three (in general, d − 1) equations for one unknown function f .

So we can’t do it in general. But we can do it in two cases.

1. Spherical symmetry. Since dθ and dϕ must appear in the combination dθ2 + sin2 θdϕ2, the components
g0θ and g0ϕ vanish, and the three equations collapse to one: ∂f

∂r
= g0r , with the solution f (r) =∫ r

dr ′g0r(r
′), possible because g0j does not depend on t by (22). Dropping primes, we arrive at the

comoving coordinates

ds2 = −dt2 + B(t , r)dr2 + C(t , r)(dθ2 + sin2 θdϕ2) (23)

This metric, depending on two unknown functions of t and r , would be particularly suitable for studying
the gravitational collapse of a spherical cloud of dust.

2. Polar-like coordinates. At t = 0, around a specified particle, we can always go to locally flat coordinates
yμ. We have g0j (0, �x)= ημν(

∂yμ

∂x0
∂yν

∂xj
)t=0. Suppose these coordinates have the following two properties:

∗ For example, they define a luminosity distance by measuring the apparent brightness of standard candles.
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(a) ( ∂y
0

∂xi
)t=0 = 0 and (b) ( ∂y

i

∂t
)t=0 = 0. Condition (a) says that the separation yμ(0, �x + δ�x)− yμ(0, �x)�

δ�xi( ∂yμ
∂xi

)t=0 between the specified particle and its neighbors is purely spatial, that is, it vanishes when
μ= 0. Condition (b) says that the movement of the particle in spacetime is purely temporal. It then
follows that g0j (0, �x)= 0 and hence by (22), g0j (t , �x)= 0. We arrive at

ds2 = −dt2 + gij (t , �x)dxidxj (24)

Note that in the text, for the universe, we have the additional requirements of homogeneity and isotropy,
which restrict the spatial metric gij further and license us to write (16).

To help you understand conditions (a) and (b) better, let me reveal that the familiar polar coordinates
and spherical coordinates are Gaussian normal coordinates for E2 and E3, respectively. To see this,
simply let t → r , xi → θi , and flip a sign to rewrite (24) as

ds2 = dr2 + gij (r , θ1, . . . , θD−1)dθidθj (25)

In going from spacetime to space, we see that “a collection of freely falling particles” gets translated
into “a collection of straight lines,” the locally flat coordinates yμ into “Cartesian coordinates” centered
at the point we are focusing on, with yr pointing in the radial direction and yi in the angular direction.

Condition (a) says that
(
∂yr

∂θi

)
r=a = 0, and condition (b) that

(
∂θi

∂r

)
r=a = 0. Draw a picture for polar

coordinates to see for yourself that it all makes sense. We have replaced the arbitrary setting t = 0 on
the clock in the spacetime discussion by r = a in the polar discussion to avoid the inconvenient fact
that even at physicists’ level of rigor, polar coordinates are ill defined at the origin.

Physicists have generally borrowed the principle of presumed innocence from the Anglo-American
legal system. As implied in the introduction to this chapter, we will happily presume, unless proven
otherwise, that what we know about space works for spacetime also (except for the obvious stuff due
to the crucial flip of sign). Here is an interesting example of going the other way, using the physics of
freely falling dust to illuminate something about space, something that presumably even Gauss had to
work a little to figure out.

Exercises

1 Show that (5) and (6) imply (4) by differentiating ( dt
dτ
)2 − a(t)2( d �x

dτ
)2 with respect to τ .

2 Consider ds2 = −dt2 − 2 sin xdtdx + cos2 xdx2 + dy2 + dz2. Using (9), calculate dl between two points
separated by dx. Can you explain the result you obtain?

3 Explore the behavior ofD(R; ts) for two cases of power law a(t)∝ tα: α = 2
3 for a universe dominated by cold

matter, and α = 1
2 , by radiation (as we will see in chapter VIII.1).

4 Evaluate the redshift formula for a universe with an exponentially growing a(t) and for a universe with a
power law a(t).

5 Derive (17).

6 Derive (21).

7 Show that the relation between redshift and scale factor derived in the text for the flat universe holds just as
well for curved universes.

8 Extend the discussion in the text for k = 0 to the cases k = ±1.
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Notes

1. H. Nüssbaumer and L. Bieri, Discovering the Expanding Universe, p. 196.
2. For all historical remarks in this chapter, see H. Nüssbaumer and L. Bieri, Discovering the Expanding Universe,

particularly pp. 195–199.
3. See http://www.youtube.com/watch?v=5U1-OmAICpU.
4. We encounter g00/(g00)

2 = −1/g00.
5. See Fearful, pp. xx and 68.
6. H. Nüssbaumer and L. Bieri, Discovering the Expanding Universe, p. xvii.
7. I talked to a few cosmologists while writing this book. They were unanimous that the terminology “Robertson-

Walker universe” should be dropped.
8. S. Weinberg, Gravitation and Cosmology, p. 415.



V.4 Motion in Curved Spacetime

Presence of external forces

I explained in chapter V.1 that we can, with no further work, simply lift the geodesic
equation

d2Xλ

dτ 2
+ �λ

μν

dXμ

dτ

dXν

dτ
= 0 (1)

from part II of this book and study motion in curved spacetime. Indeed, we did precisely
that in the preceding chapter. Unfortunately, the frequent appearance of (1) leads some
students to a misconception that material particles and observers are obliged to follow
geodesics. To the contrary, as a young observer, you are certainly free to strap a rocket pack
to your back and blast off in this direction or that.

The geodesic equation (1) describes the motion of a particle in the absence of any other
force besides gravity, as is clear from the derivation in chapter V.1. With another force
present, the particle follows

d2Xλ

dτ 2
+ �λ

μν

dXμ

dτ

dXν

dτ
= f λ(X) (2)

In particular, in an electromagnetic field, the force is given by

f λ(X(τ))= − e

m
Fλ

ν
(X(τ))

dXν

dτ

for a particle of charge e and mass m. Here Fλ
ν
= gλμFμν. (See chapter V.6 for further dis-

cussion.) Note the glaring contrast between the gravitational force and the electromagnetic
force: one is universal, the other not. In other words, the left hand side of (2) makes no
reference to any properties of the particle, while the right hand side depends on the ratio
e/m, which varies enormously from particle to particle.

That Einstein could write down the equation of motion in the combined presence of a
gravitational and electromagnetic field, rather than spend years looking for a more general
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general relativity, testifies to the power of the equivalence principle. We simply promote
(IV.1.16) to (2). Conversely, setting gμν to ημν in (2), we revert back to (IV.1.16).

What is a free particle?

Physicists are fond of speaking of free particles: a particle moving in the absence of any
external forces is said to be free. But in Einstein gravity or general relativity, the concept is
subtly different. In Einstein gravity, a particle following a geodesic in spacetime described
by (1) is said to be free. In other words, a free particle∗ is not acted upon by any external
forces except for gravity. In Einstein’s theory, the gravitational field is equivalent to curved
spacetime.

Part of the confusion can be regarded as semantic. We could say that there is no gravity in
Einstein gravity, only curved spacetime. Perhaps the best policy is to dispense with words
and look at only the equations. If the motion of a particle satisfies (1), it is free. If the
motion of a particle satisfies (2), it is not free.

Let’s put it more dramatically to underline the point. As you fall, at ever increasing speed,
into the unrelenting clutch of a black hole, perhaps never again to be released, you are free.
But if you turn on your rocket pack as you approach the horizon, and blast your way back
out to infinity to live out the rest of your days, you are not free. While a layperson might
find these statements paradoxical, you and I happily know that they originate in the patent
clerk’s happy thought, that a freely falling particle does not feel gravity.

Recovery of Newtonian motion in a gravitational field

Einstein’s description of a particle moving in a gravitational field—that the particle is
seeking the “best” possible path in spacetime—is at first sight strikingly different from
Newton’s—that the particle is acted on by a force. One advantage of the action principle
treatment given in part IV of this book is that it renders going from Newton to Einstein
more natural and makes clear that Einstein’s description must reduce to Newton’s.

Let’s recover Newton’s equation from Einstein’s equation. This is not entirely obvious,
since the geodesic equation (1) appears to give the 4-acceleration d2Xλ

dτ 2 in terms of two
powers of the 4-velocity dXμ

dτ
.

To recover the Newtonian limit, three conditions must be met:

1. The particle moves slowly: dXi

dτ
� dX0

dτ
.

∗ As you know, the term “test particle” is often used to emphasize that not only is the particle small enough for
its internal structure not to be relevant but it is also insignificant enough not to affect whatever is producing the
external forces. In the case of Einstein gravity, when we say particle, we assume that the particle does not affect
and modify the curved spacetime it is in. As you also know, this idealizing and simplifying assumption often
does not hold in physically interesting situations, such as two black holes circling each other. See chapter X.4 for
a first step away from (1).



V.4. Motion in Curved Spacetime | 303

2. The gravitational field is weak, so that the metric is almost Minkowskian: gμν � ημν + hμν,

with h small in the sense that we can neglect terms quadratic in h.

3. The gravitational field hμν does not depend on time.

Condition 1 means d2Xλ

dτ 2 + �λ00

(
dX0

dτ

)2 � 0, while 2 and 3 imply�λ00 � − 1
2η

λρ∂ρh00, so that

�0
00 � − 1

2∂0h00 = 0 and �i00 � 1
2∂ih00. The geodesic equation (1) then reduces to d2X0

dτ 2 � 0

(which implies that dX
0

dτ
is a constant) and d2Xi

dτ 2 + 1
2∂ih00

(
dX0

dτ

)2 � 0, which sinceX0 = t � τ

(because of (1)) becomes d2Xi

dt2
� − 1

2∂ih00. Thus, if we identify the gravitational potential

� by h00 = 2�= − 2GM
r

, we obtain Newton’s equation d2 �X
dt2

� −�∇�. As you see, the secret
to Newton’s equation emerging is that in the “force term” dXμ

dτ
dXν

dτ
, the time component

dominates the space components.
This derivation shows that far from a spherically symmetric mass distribution, the

spacetime metric must be such that g00 → 1 − 2GM
r

. Notice also that our derivation does
not depend on hij , nor on h0j , as long as they are time independent.

The result we just obtained, that g00 � 1 − 2GM
r

in the Newtonian limit, is entirely
consistent with option G in chapter IV.1.

Gravitational redshift

In chapter V.2, we derived gravitational redshift using the equivalence principle. Let us
derive this result again using curved spacetime. For pedagogical clarity, we assume that the
spacetime is static, in other words, that the metric does not depend on the time coordinate
t (for example, the metric to be presented in the next section).

Suppose an observer (call him the emitter) located at some fixed �xE sends light signals at
regular intervals, separated by 
τE, as measured by his proper time, of course, to another
observer (call her the receiver) at some fixed �xR. Consider a particular light signal traveling
from �xE to �xR following some trajectory (which, using the metric, we could determine, but
which, as we will see presently, we don’t need to know). In a static spacetime, physics is
invariant under translation in time. Thus, the next signal would travel (see figure 1) by the
same trajectory simply displaced by coordinate time 
tE =
τE/

√−g00(�xE). (Since this
observer is fixed at �xE, for him dτ 2 = −gμνdxμdxν = −g00(�xE)dt2.)

Here is the question for you to work out before reading on. When will the receiver receive
the next signal?

In coordinate time, she receives this signal 
tE after the preceding signal (according to
the time translation invariant argument just given). But we have to express this in terms of
the receiver’s proper time (namely the time she experiences). For the receiver, the proper
time interval between the two signals is given by


τR =√−g00(�xR)
tE =
τE

(√
g00(�xR)/

√
g00(�xE)

)
(3)

We can translate this result into the frequency shift for an electromagnetic wave. Just
think of the successive crests of the wave as the signals. Thus, the frequency ωR seen by
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ΔtE

ΔtR = ΔtE

xE xR

Figure 1 In a static spacetime, physics is invariant
under translation in time. A light signal sent after
another light signal would travel by the same tra-
jectory simply displaced by some coordinate time.

the receiver is related to the frequency ωE of the emitter by

ωR = ωE

√
g00(�xE)
g00(�xR)

(4)

We assumed that the emitter and receiver are fixed at �xE and �xR, respectively, but for (4)
to hold, all that is required is that the emitter and receiver do not move appreciably during
a time ∼ 1/ω.

Note that all we used is that the metric is time translation invariant. In particular, in the

weak field limit, we have the fractional frequency shift (ωR − ωE)/ωE �
√

1+2�(�xE)
1+2�(�xR) − 1 �

�(�xE)−�(�xR). A receiver located in a region with a higher gravitational potential sees a
lower frequency. We have recovered the gravitational redshift, which we derived using the
equivalence principle in chapter V.2. A useful mnemonic is that a photon of energy �ω loses
energy when climbing out of a gravitational potential well, but this mnemonic does not
amount to a correct argument,1 since it confounds a quantum relation with a Newtonian
concept (namely the gravitational potential, which cannot be applied to a massless particle
anyway).

As this derivation makes clear, and as was already mentioned in chapter V.2, what is
commonly called gravitational redshift should more accurately be called gravitational time
dilation. The phenomenon involved does not have to be characterized by a frequency at all.

Spacetime around a spherically symmetric mass distribution

We are not yet in a position to determine the metric in any given physical situation, but
from symmetry alone, we can learn a lot about the spacetime metric gμν. The expanding
universe in the preceding chapter is a good example. Here we examine the spacetime
around a spherically symmetric mass distribution. The mass distribution may depend on
time, such as that of a pulsating spherical star, for example.
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Because of general coordinate invariance, we have considerable freedom in choosing
the coordinates. This corresponds to picking a gauge in electromagnetism. At this point,
the rich man with his or her wealth of fancy terms starts talking about Killing vectors, and
possibly even foliation. We will get to all that later. But for the moment, it is pedagogically
more transparent to follow the poor man’s way,∗ using explicit nuts and bolts, wearing no
fancy pants.

By assumption, space is isotropic: there is no privileged direction. Thus, the differential
elements we use must be rotation invariant, and there are three such elements: dt ,
d �x2 = d �x . d �x, and �x . d �x. Go to spherical coordinates so that as usual, d �x2 = dr2 +
r2(dθ2 + sin2 θdϕ2)= dr2 + r2d�2. Differentiating r2 = �x . �x, we have rdr = �x . d �x and
so (�x . d �x)2 = r2dr2.

Pythagoras (as generalized to spacetime) requires the line element ds2 to be quadratic
in dt and d �x. The inventory just given shows that we have four quadratic differentials to
construct ds2 with, namely dt2, dtdr , dr2, and d�2. Isotropy means that the coefficients of
these quadratic differentials in ds2 cannot depend on θ and ϕ, and they are thus functions
of only t and r . Putting it all together, we obtain ds2 = −U(t , r)dt2 − 2V (t , r)dtdr +
W(t , r)dr2 + (X(t , r))2d�2 with four arbitrary functions of t and r .

Spherical symmetry has gotten us quite far, but we still have the freedom of changing
coordinates. First, define a new radial coordinate r̃ =X(t , r), so that dr̃ = ∂tX(t , r)dt +
∂rX(t , r)dr . Eliminate r and dr in terms of r̃ , t , dr̃ , and dt in ds2 to obtain a mess of the
form ds2 = −Ũ (t , r̃)dt2 − 2Ṽ (t , r̃)dtdr̃ + W̃ (t , r̃)dr̃2 + r̃2d�2. We have effectively gotten
rid of X(t , r).

There is no need to work out the mess; we merely note that it has the indicated
form. Now we simply rename functions and variables by dropping the twiddles to obtain
ds2 = −U(t , r)dt2 − 2V (t , r)dtdr + W(t , r)dr2 + r2d�2. (These are of course not the
same functions we started out with, but there is no point in using up more letters.)

Suppose somebody gives us this ds2 with these three functions U , V , and W . We now
show that we still have enough freedom to get rid of the nasty dtdr term. Define a new time
coordinate t̃ by dt̃ = ζ(t , r)(Udt + V dr)= ∂t�(t , r)dt + ∂r�(t , r)dr , where the unknown
function ζ(t , r) is determined by the condition that the second equality holds for some �.
In other words, we require that ζ(Udt + V dr)be a total differential, so that the first equality
makes sense. (The reader familiar with partial differential equations will recognize this as
an often used trick.) Evaluating ∂t∂r�= ∂r∂t�, we find ∂t(ζV )= ∂r(ζU). Given U(t , r),
V (t , r), and the initial value ζ(0, r), we can determine ζ(t , r)by integrating this equation in
t . In any case, we don’t care about all the details, merely that in principle there exists a t̃ with
the stated property dt̃ = ζ(t , r)(Udt + V dr). Eliminating dt inU(t , r)dt2 + 2V (t , r)dtdr ,
we find that this expression becomes (ζ 2U)−1dt̃2 − Y (t̃ , r)dr2, where Y (t̃ , r) is some
function we don’t need to determine. All we care about is good riddance to the nasty
cross term.

∗ In theoretical physics, we also have the smart man and the dumb man. It may be swell to be a smart rich
man, but I would venture that being a dumb rich man may be worse than being a dumb poor man.
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Putting it altogether, dropping twiddles, and renaming functions, we finally obtain

ds2 = −A(t , r)dt2 + B(t , r)dr2 + r2d�2 (5)

To summarize, we have used the spherical symmetry and exploited our freedom to
change coordinates to reduce gμν(x), potentially 10 functions each of 4 variables, toA(t , r)
andB(t , r), 2 functions each of 2 variables. This enormous simplification is typical of many
problems in general relativity.

The geometrical meaning of this metric is easy to grasp without any fancy math. Space
is “foliated” by spheres S2, each with area 4πr2, and with the gap between “successive”
spheres, that is, the distance between (r , θ , ϕ) and (r + dr , θ , ϕ), given byB(t , r)dr . When
coordinate time changes by dt , the elapsed proper time felt by different observers fixed at
different values of r is given by A(t , r)dt .

Motion in a static isotropic spacetime

Let us restrict the mass distribution further to be static, so thatA(r) andB(r) do not depend
on time. Thus, the most general static and isotropic metric

ds2 = −A(r)dt2 + B(r)dr2 + r2d�2 (6)

can be written in terms of two functions2 A(r) andB(r) of a single variable r . At this point,
we do not know anything about these two functions, except that, far away from the mass,
A(r) � (1 − 2GM

r
) as r → ∞, so that we recover the Newtonian gravitational potential

�(r) = −GM
r

. To determine A(r) and B(r), we would need to master the dynamics of
the gravitational field, and we won’t get to that until part VI. But meanwhile, we can start
studying the motion of a particle, such as a planet, in this curved spacetime by varying the
Lagrangian

L=
[
A(r)

(
dt

dτ

)2

− B(r)

(
dr

dτ

)2

− r2
(
dθ

dτ

)2

− r2 sin2 θ

(
dϕ

dτ

)2
] 1

2

(7)

By now, we can practically vary in our heads and immediately write down the 4 equations:

d

dτ

(
A(r)

dt

dτ

)
= 0 (8)

d

dτ

(
B(r)

dr

dτ

)
+ 1

2A
′(r)

(
dt

dτ

)2

− 1
2B

′(r)
(
dr

dτ

)2

− r

(
dθ

dτ

)2

− r sin2 θ

(
dϕ

dτ

)2

= 0 (9)

d

dτ

(
r2dθ

dτ

)
− r2 sin θ cos θ

(
dϕ

dτ

)2

= 0 (10)

d

dτ

(
r2 sin2 θ

dϕ

dτ

)
= 0 (11)

These are of course precisely the equations contained in (1). For example, (10) is just
d
dτ
(gθθ

dθ
dτ
)= 1

2(
∂
∂θ
gϕϕ)(

dϕ
dτ
)2.
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It is important to remember, from our discussion in chapter II.2, that we are entitled
to trade any one of the 4 equations (8–11), which all involve second derivatives, for the
defining equation for dτ ,

A(r)

(
dt

dτ

)2

− B(r)

(
dr

dτ

)2

− r2
(
dθ

dτ

)2

− r2 sin2 θ

(
dϕ

dτ

)2

= 1 (12)

which only involves first derivatives. Of course, if we had any sense, we would trade (9) for
(12). With this trade, these equations are not that difficult to solve.

That math professor I referred to in the preceding chapter would dismiss most theorems
as being so obvious that they are “self-proving.” In the same sense, (8) and (11) are self-
solving, yielding

dt

dτ
= ε

A(r)
(13)

and

dϕ

dτ
= l

r2 sin2 θ
(14)

with ε and l two integration constants. (Do these two equations say anything to you?)
Furthermore, we can solve (10) by setting θ(τ )= π

2 . This is of course another consequence
of the rotational symmetry of the problem: the planet stays in the equatorial plane.

Plugging all this into (12), we obtain

ε2

A(r)
− B(r)

(
dr

dτ

)2

− l2

r2
= 1 (15)

Cleaning up and rearranging a bit, we find that, remarkably enough, we can cast this
equation for an Einsteinian particle moving in curved spacetime in the form of an equation
for a Newtonian particle (of unit mass) moving in a potential v(r) with zero total energy
(with τ playing the role of time):

1
2

(
dr

dτ

)2

+ v(r)= 0 (16)

with

v(r)= 1
2B(r)

(
1 + l2

r2

)
− ε2

2A(r)B(r)
(17)

Once we are given A(r) and B(r), we merely have to solve a Newtonian problem in an
unfamiliar potential!

How light moves

Earlier in this chapter, we recovered Newtonian motion for a slowly moving particle. Now
let us treat the opposite limit and ask how light, or an ultrarelativistic particle, would move
in curved spacetime.
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That’s easy to do. Back in chapter III.5, we unified the action principle for material
particles and the action principle for light, which I regard as one of the great achievements
of special relativity. No more Lagrange on the one hand, and Fermat on the other!

The equivalence principle now makes our life sweet: we merely have to take what we
did in chapter III.5 and promote the Minkowski metric ημν to gμν.

So write the action S = −m ∫ √−gμν(X)dXμdXν (look at the manifest parametrization
independence since there is no parameter!) for a particle of mass m in the form S̃ =
− 1

2

∫
dζ
(
σ(dX

dζ
)2 + m2

σ

)
, where ( dX

dζ
)2 = −gμν dXμ

dζ
dXν

dζ
, so that we can take the massless

limit to obtain

Smassless = 1
2

∫
dζ σ(ζ )gμν(X(ζ ))

dXμ

dζ

dXν

dζ
(18)

Varying with respect to σ(ζ ) tells us that for a massless particle,

gμνdX
μdXν = 0 (19)

Varying with respect to X, we obtain (just as back in (II.2.16))

d

dζ

(
σgμρ

dXμ

dζ

)
− 1

2
(∂ρgμν)σ

dXμ

dζ

dXν

dζ
= 0

As in appendix 1 in chapter III.5, it is clearly advantageous to define an affine parameter
by dζ = σ(ζ )dζ ′. Dropping the prime, we obtain

d2Xλ

dζ 2
+ �λ

μν

dXμ

dζ

dXν

dζ
= 0, (20)

which looks superficially the same as (1). The difference is in the parameter choice. As
usual, we trade the most complicated equation among (20) for (19), as has been explained
ad nauseum starting in chapter II.2.

It is perhaps good to summarize this business about natural parametrization. For curves
in space, the length along the curve provides the natural parameter. For the worldline of
a particle in spacetime, the proper time, namely the elapsed time in the rest frame of the
particle, is the obvious candidate. For a massless particle such as the photon, no natural
candidate presents itself, and we choose whichever parameter will make life easier.

So, for light moving in the spacetime described by the metric (6), we have the same
equations as (8–11) but with the proper time τ replaced by the “affine parameter” ζ . For
a photon moving in the equatorial plane (so that (10) is solved by θ = π

2 ), we have, once
again, dt

dζ
= ε

A(r)
and dϕ

dζ
= l

r2 , with ε and l two integration constants. Inserting this into

(18), we obtain ε2

A(r)
− B(r)( dr

dζ
)2 − l2

r2 = 0 (which, of course, is just (15) with the right hand
side set to 0 and with τ → ζ ). After rearranging, we obtain

1
l2

(
dr

dζ

)2

+ 1
B(r)

(
1
r2

− ε2

l2A(r)

)
= 0 (21)

Once again, this looks like a Newtonian problem in an unfamiliar potential. But we still
have the freedom of scaling the affine parameter ζ → ζ/ l, and thus we learn that the
physics does not depend on ε and l separately, but only on b2 ≡ l2

ε2 .
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r

φ

incoming photon

b

Figure 2 The impact parameter b in a scattering process.

A better way of saying this is to eliminate the affine parameter ζ by dividing dr
dζ
/
dϕ
dζ

= dr
dϕ

,
so that(

dr

dϕ

)2

= r4

B(r)

(
1

b2A(r)
− 1
r2

)
(22)

To identify this mysterious quantity b, we let r → ∞, where space is nice and flat so high
school geometry applies. Then (22) becomes ( dr

dϕ
)2 � r4

b2 , which has the solution rϕ � b.
Thus, we see that b is what in a scattering process is called the impact parameter. See
figure 2.

The fact that in a static isotropic spacetime, the motion of material particles and of light
both reduce to a Newtonian problem can be traced back to the metric ds2 = gμνdx

μdxν

being a quadratic form, and so in a sense, ultimately to Pythagoras.

Parametrized post-Newtonian approximation

We still have some distance to go before we learn how to determine A(r) and B(r) (in
chapter VI.3), but meanwhile, dimensional analysis can take us quite far. You have probably
heard of the celebrated solar system tests of Einstein gravity (which we will come to in
chapter VI.3), such as the precession of the planet Mercury and the bending of starlight as
it passes by the sun. Since G and the mass of the sun M always occur in the combination
GM , as was already mentioned in part 0, A(r) and B(r) can only be functions of GM

r
. The

gravitational field in the solar system is so weak (GM
r

� 1) that it is entirely adequate for
these classic tests to expand and keep only the leading terms in the so-called parametrized
post-Newtonian (PPN to those who love acronyms) approximation:

A(r)= 1 − 2GM
c2r

+ 2(β − γ )

(
GM

c2r

)2

+ . . .

B(r)= 1 + 2γ
(
GM

c2r

)
+ . . . (23)

I have purposely restored c, so that you can see that the expansion parameter is the ratio
of the Newtonian gravitational potential energy of a unit mass test particle to its rest mass.
It is also illuminating to take the large c limit:

ds2 = −A(r)c2dt2 + B(r)dr2 + r2dθ2 + r2 sin2 θdϕ2

→ −c2dt2 + d �x2 + 2GM
r

dt2 +O

(
1
c2

)
(24)

Recall chapter IV.1.
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As you will see in chapter VI.3, Einstein gravity gives β = 1 and γ = 1. Over the years
since 1915 there have been competing theories of gravity giving other values, but they have
generally fallen by the wayside. Current observations bound the deviation of β and γ from
1 by two parts in 104 and in 105, respectively. Einstein gravity is in excellent agreement3

with observation, at least in this post-Newtonian approximation.

Conservation laws and Killing vectors

You may have recognized (13) and (14) as the general relativistic versions of energy
conservation and angular momentum conservation, respectively. Going back, you see that
these two conservation laws follow from the fact that the metric gμν in (6) does not depend
on t and on ϕ, respectively.

In general, if the metric gμν does not depend on a particular coordinate xλ, then
the geodesic equation for that coordinate, obtained as always (of course) by varying∫
(gμνdx

μdxν)
1
2 with respect to xλ, simplifies immediately to

d

dτ

(
gλμ

dxμ

dτ

)
= 0 (25)

(In our example, (25) corresponds to (8) and (11).) In other words, gλμ
dxμ

dτ
does not change

as the particle moves along the geodesic. (For a massless particle, we merely replace the
proper time by an affine parameter.)

Since we are just applying the action principle, Noether’s theorem (as discussed in
chapter II.4) directly implies these conservation laws. The action here

∫
(gμνdx

μdxν)
1
2

does not change upon shifting xλ by a constant.
This discussion can be rendered more formal as follows. Let the metric be invariant

upon xμ → xμ + εξμ, with ε some infinitesimal. Then ξ . dx
dτ

= gμνξ
μ dxν

dτ
is conserved.

In general, there may be several such ξs, known as Killing vectors. In our example,
ξμ
e

= (1, 0, 0, 0) and ξμl = (0, 0, 0, 1).
I rather dislike such apparently useless formal manipulations, but later in chapter IX.6,

we will see that Killing vectors describe isometries of spacetime, an important and useful
concept. For now, however, simply think of writing ξ . dx

dτ
as a shorthand for the more

descriptive gλμ
dxμ

dτ
. Another way of saying this is that the momentum of a particle as

usually defined
(
pμ = mdxμ

dτ

)
is not conserved, but its component ξ . p along a Killing

vector is. With our sign convention, the energy of the particle is given by E = −ξe . p and
the angular momentum by L= ξl . p =mr2 sin2 θ

dϕ
dτ

.

Appendix: Christoffel symbols around a time independent
spherically symmetric mass distribution

We can read off the Christoffel symbols from the geodesic equations. For instance, (8) works out to be d2t
dτ 2 +

A′(r)
A(r)

dr
dτ

dt
dτ

= 0, from which we read off �t
tr

= �t
rt

= A′
2A . We will now list all of them:
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�t
tr

= A′

2A
, �r

tt
= A′

2B
, �r

rr
= − B ′

2B
, �r

θθ
= − r

B
, �r

ϕϕ
= − r sin2 θ

B
,

�θ
rθ

= 1
r

, �ϕ
rϕ

= 1
r

,

�θ
ϕϕ

= − sin θ cos θ , �
ϕ
θϕ = cot θ (26)

with all other components not related to these by symmetry vanishing.
We can understand a lot by symmetry considerations. For example, because the metric is invariant under

t → −t , Christoffel symbols with an odd number of t indices must vanish. Also, �θ
ϕϕ

= − sin θ cos θ , �ϕθϕ = cot θ
are the same as those for S2 found way back in chapter II.2 and merely reflect the spherical symmetry of the
metric.

See also exercise 3.

Exercises

1 Work out the potential v(r) in the parametrized post-Newtonian approximation, assuming that β and γ are
of order unity, and sketch its general form.

2 Calculate �ν
μν

for the Christoffel symbols in (26) and verify an identity derived in chapter II.2.

3 Find the Christoffel symbols for the time dependent spherically symmetric spacetime in (5). Show that we
simply have to add4

�t
tt

= Ȧ

2A
, �t

rr
= Ḃ

2A
, �r

tr
= Ḃ

2B
(27)

(with the dot indicating ∂
∂t

) to the list in (26). Note that this is consistent with the transformation t → t .

4 Show that in the spacetime ds2 ≡ dt2 + 1
1− 2GM

r

dr2 + r2d�2, particles with constant r , θ , ϕ are actually freely

falling.

5 Show that in the spacetime ds2 ≡ 1
1− 2GM

r

dt2 + 1
1− 2GM

r

dr2 + r2d�2, freely falling particles with constant θ , ϕ

starting at r > 2GM actually fall toward larger r .

6 Show that the geodesic followed by a massless particle is also the geodesic followed by a massless particle in
a conformally equivalent spacetime.

Notes

1. Beware of some textbooks on this point!
2. A historical note: until the 1950s, the notation g00 = −eμ(r) and grr = eν(r) (or this form with some other

“suitable” letters) was used. The “nonexponential” notation used here appeared later.
3. Periodically, there are reports of deviation from our understanding of gravity, both Newtonian and Ein-

steinian. Most of these eventually either go away with better measurements or are found to be due to
“mundane” causes. (No doubt some 19th century physicists could say the same about Mercury’s perihelion
precession (see chapter VI.3) before Einstein came along.) One interesting anomaly is the so-called Pioneer
anomaly regarding the observed accelerations of the Pioneer 10 and Pioneer 11 spacecrafts after they passed
out of the solar system. As this book was being completed, this anomaly had been determined to be due to
mundane causes.

4. In S. Weinberg, Gravitation and Cosmology (1972 edition), �t
rr

is missing a time derivative on p. 336.



V.5 Tensors in General Relativity

The mother of all vectors

I have insisted again and again that the laws of physics should be expressed in terms of
vectors and tensors, so that what different observers see can be simply related. I will now
talk about vectors and tensors for the third time.

My pedagogical philosophy in this book can be expressed as “one baby step at a time.”
We started with a discussion of vectors and tensors under rotations in chapter I.3. Then we
discussed vectors and tensors in special relativity, and encountered the novelty of having
to keep track of upper and lower indices. The coordinates transform as x′μ = �μ

ν
xν, or

better, the coordinate differentials transform as dx′μ =�μ
ν
dxν. In this case, the insistence

on talking about differentials hardly matters, since �μ
ν

is a constant matrix and so the
differential version of the transformation follows trivially upon differentiating: dxμ and
xμ transform in the same way.

In both these cases, rotation and Lorentz transformation, vectors are defined as objects
that transform like dxμ: we could say that dxμ is the “ur-vector” or “the mother of all
vectors.” Tensors are then defined as objects that transform as if they were built out of
vectors.

Now that we have mastered these two baby steps, we are ready to leap to vectors and
tensors in general relativity!

Under a general coordinate transformation x → x′(x), the coordinate differentials trans-
form as

dx′μ = (
∂x′μ

∂xν
)dxν ≡ Sμ

ν
(x)dxν (1)

To save writing, we have defined the transformation matrix Sμ
ν
(x), which plays the same

role as�μ
ν

in a Lorentz transformation, but with one huge difference: unlike�, S depends
on x. The transformation law changes from place to place.
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Another important point is that our insistence on coordinate differentials, which seemed
so academic and nit-picking, has finally become de rigueur: by definition dxμ, but not xμ,
transforms like a vector. In general, the transformation xμ → x′μ is arbitrary and nonlinear.

You must master this point: dxμ transform linearly, but not xμ. There is all the difference
in the world between these two different mathematical creatures.

Indeed, I have prepared you for these two steps also in chapters I.5 and I.6, discussing
coordinate transformation and curved spaces. The formalism here is exactly the same,
except the signature is that of spacetime rather than that of space. You have already en-
countered essentially everything we will discuss presently. As I anticipated in chapter I.5,
the concepts needed for curved spacetimes have their seeds in the conceptually simple
transformation from Cartesian coordinates to spherical coordinates that every physicist has
dealt with since childhood. The point we just emphasized can already be seen in making a
coordinate transformation: while x , y , z and r , θ , ϕ are related to each other nonlinearly,
dx , dy , dz and dr , dθ , dϕ are related to each other linearly. Granted, the matrix that
relates dx , dy , dz and dr , dθ , dϕ may have elements that involve highly nontrivial func-
tions (such as trigonometric and inverse trigonometric functions), but the important
property is the linearity. To repeat, although the functions Sμ

ν
(x) may be algebraically

quite complicated, the relation dx′μ = Sμ
ν
(x)dxν is nevertheless linear and hence easy to

manipulate.

Vectors and the construction of tensors

A vector Wμ(x) (or more precisely a vector field: a vector that depends on x) is defined as
something that transforms under a general coordinate transformation like the ur-vector
dxμ does in (1):

W ′μ(x′)= Sμ
ν
(x)Wν(x) (2)

Notice that W ′μ is evaluated at x′, while Wν is evaluated at x, but these are just different
coordinate values describing the same point P.

Remember the student in chapter I.4 who was puzzled by the statement that a tensor is
something that transforms like a tensor. In fact, he should already have been puzzled by
the statement that a vector is something that transforms like a vector, an example of which
is the ur-vector dxμ.

Just as before, we define a 2-indexed tensor T μν(x) as something that transforms like

T ′μν(x′)= Sμ
ρ
(x)Sν

σ
(x)T ρσ (x) (3)

We can now go on to define tensors with as many indices as we want, transforming like

T ′μν ...ω(x′)= Sμ
ρ
(x)Sν

σ
(x) . . . Sω

τ
(x)T ρσ ...τ (x) (4)

As I warned you, I am literally saying some of these things for the third time.
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Upper and lower indices

The transformation of the metric is fixed by the invariance of the proper length, exactly as
in chapter I.5, when we rather innocently first changed coordinates,

ds2 = g′
ρσ
(x′)dx′ρdx′σ = gμν(x)dx

μdxν = gμν(x)
∂xμ

∂x′ρ
∂xν

∂x′σ dx
′ρdx′σ (5)

so that

g′
ρσ
(x′)= gμν(x)(S

−1)
μ

ρ
(x)(S−1)

ν

σ
(x) (6)

with the definition (S−1)
μ

ρ
≡ ∂xμ

∂x′ρ once again. For your enlightenment, I even used the
same notation in chapter I.5. And, yes, yet once again, using the chain rule discovered by
our forefathers who invented calculus, we verify (S−1)

μ

ρ
Sρ
ν

= ∂xμ

∂x′ρ ∂x
′ρ

∂xν
= ∂xμ

∂xν
= δμ

ν
, so that

S−1 is indeed the inverse of S.
A few points are worth emphasizing here. The need to maintain the summation conven-

tion of always summing an upper index with a lower index forces gμν to carry lower indices,
since it is by definition yoked to dxμdxν. The transformation is then thrust upon us.

Tensors with upper indices transform as in (4) with S, while here a tensor with lower
indices, namely the metric itself, transforms “oppositely” with S−1, namely like g′

ρσ
=

gμν(S
−1)μ

ρ
(S−1)ν

σ
. No surprise here at all: the upper and lower indices are contracted in

the invariant ds2 = gμν(x)dx
μdxν. Exactly as in chapter III.3, we can define the transpose

of S−1 by
(
(S−1)T

) μ
ρ

≡ (S−1)μ
ρ
. (Notice that, just as in chapter III.3, when we transpose we

do not move anybody up and down stairs.) We can then write g′ = (S−1)T gS−1, regarding
the metric as a matrix.

Thus far, I have carefully indicated that unprimed tensors depend on x and primed
tensors depend on x′. (Of course, since x and x′ are related, we can always regard a function
of x′ as a function of x and vice versa, but this way, in which things are usually written,
is more natural.) We adopt the convention of thinking of S and S−1 as functions of x. To
avoid clutter, we will henceforth often suppress the x and x′ dependence of various objects
if there is no risk of confusion.

Once again, as in our earlier discussion of coordinate changes and curved spaces, we can
use the metric gμν(x) to lower indices. Given a vector Wν, we invite ourselves to construct
a vector with lower index

Wμ ≡ gμνW
ν (7)

No prize for your correct guess on how Wμ transforms:

W ′
ρ

≡ g′
ρσ
W ′σ = gμν(S

−1)μ
ρ
(S−1)ν

σ
Sσ
ω
Wω =Wμ(S

−1)μ
ρ

(8)

Speaking colloquially, we can say that when a lower index and an upper index (σ in this
example) are summed over as in the Einstein convention, the associated transformation
matrices S−1 and S knock each other off. Compare (8) with (2).
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Given two vectors W and U , we can form, in analogy with ordinary Euclid 3-vectors and
Lorentz 4-vectors, the dot product WμU

μ = gμνW
νUμ. In light of the preceding remark,

we expect WμU
μ to transform like a scalar, that is, it does not transform at all: indeed,

W ′
ρ
U ′ρ =Wμ(S

−1)μ
ρ
Sρ
ν
Uν =WμU

μ (9)

As far as the transformation properties are concerned, the summed-over pair of indices
effectively disappear. Indeed, we can define φ(x)≡Wμ(x)U

μ(x), and it transforms like a
scalar φ′(x′)= φ(x).

Now that we know how a vector with a lower index transforms, we can define tensors
with lower indices. For example, the tensor Tμνρ transforms as if it were (even though it is
not) built up of three vectors WμVνUρ. Indeed, we can clearly define tensors with arbitrary
numbers of upper and lower indices, transforming like

T ′μν ...ω
η...κ = Sμ

ρ
Sν
σ

. . . Sω
τ
T
ρσ ...τ
ζ ...ψ (S−1)ζ

η
. . . (S−1)ψ

κ
(10)

You get the idea before I run out of Greek letters! As before, fancy people who like big
words call the upper indices contravariant and the lower indices covariant. Upper and
lower indices transform oppositely.

Certainly, there are deep mathematical reasons underlying the appearances of upper
and lower indices, but at a pedestrian level, just as in our discussion of Lorentz vectors
and tensors, you can simply regard lower indices as a notational device to avoid writing
gμν all the time. Also not surprisingly, since we use gμν to lower indices, we might expect
to use its inverse to raise them.

We define the inverse metric gσμ by gσμgμν = δσ
ν

. In other words, define the inverse
metric as the inverse of the metric regarded as a matrix. (As I remarked in connection with
the Minkowski metric ημν and its inverse ησμ, the spacetime metric gμν and its inverse
gσμ are also denoted by the same letter g but distinguished by the position of their indices,
a potential source of confusion for some seeing this for the first time. Things are just as in
chapter III.3, where we used the Minkowski metric ημν and its inverse to lower and raise
indices, respectively.)

We can check that the inverse metric raises indices by contracting gσμ with Wμ:
gσμWμ = gσμgμνW

ν = δσ
ν
Wν =Wσ ; indeed, we get Wσ back. Once again, as in our dis-

cussion of Lorentz tensors, we can lower and raise indices at will using gμν and gμν,
respectively. For example, T σλ

νρ
≡ gνκT

κσλ
ρ

. Incidentally, it is common practice to use the
same letter T to denote entirely different tensors, distinguished by the number and kind
of indices they carry.

Taking the inverse of g′ = (S−1)T gS−1, we see that g′−1 = Sg−1ST , or written out more
explicitly,

g′λρ(x′)= Sλ
κ
gκω(x)(ST ) ρ

ω
= Sλ

κ
Sρ
ω
gκω(x) (11)

We can, if you wish, check the obvious, that the transformed g′λρ is indeed the inverse of
the transformed g′

ρσ
in (6):

g′λρg′
ρσ

= Sλ
κ
Sρ
ω
gκωgμν(S

−1)
μ

ρ
(S−1)

ν

σ
= Sλ

κ
gκμgμν(S

−1)
ν

σ
= Sλ

κ
δκ
ν
(S−1)

ν

σ
= δλ

σ
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By now, you should be familiar with how this works; for example, in the second equality,
Sρ
ω

and (S−1)
μ

ρ
knock each other off.

To summarize, we can define tensors with however many upper and lower indices we
like. Each upper index transforms with S, and each lower index with S−1. For example, a
tensor with one upper and three lower indices transforms like

W ′λ
ρμν

= Sλ
σ
Wσ

ωηκ
(S−1)

ω

ρ
(S−1)

η

μ
(S−1)

κ

ν
(12)

In the repeated index summation convention, we are allowed to contract an upper index
with a lower index, namely to set them equal and sum over them. For example, setting λ
equal to μ in (12) and summing over them, we obtain

W ′μ
ρμν

= Sμ
σ
Wσ

ωηκ
(S−1)

ω

ρ
(S−1)

η

μ
(S−1)

κ

ν
= δη

σ
Wσ

ωηκ
(S−1)

ω

ρ
(S−1)

κ

ν
=Wη

ωηκ
(S−1)

ω

ρ
(S−1)

κ

ν

In other words, as you might expect, Wωκ ≡Wη
ωηκ

transforms like a tensor with two lower
indices: in (12), the S knocks off an S−1 as explained earlier.

You are never allowed to contract an upper index with an upper index, or a lower
index with a lower index. The reason is obvious. Suppose you set μ and ν equal in (12)
and sum. You would encounter, instead of an S and an S−1 knocking each other off,∑

μ (S
−1)

η

μ
(S−1)

κ

μ
, which is not anything in particular. If you want to set two upper indices

(or two lower indices) equal and sum over them, the correct procedure is to multiply by the
metric (or the inverse metric). For example,Wλ

ρμν
gμν is a legitimate tensor. We can regard

the contraction with the metric (or the inverse metric) as a two-step process: we use the
metric to lower (or the inverse metric to raise) one of the two indices, and then contract an
upper index with a lower index. Thus, in our example, first define Wλω

ρμ
≡Wλ

ρμν
gων and

then evaluate Wλμ
ρμ

.
I keep belaboring the obvious, but as I said earlier in chapter I.5, I want to make

sure that the rest of the book will not pose any difficulty for you. We can of course also
contract an upper index from one tensor (for exampleAμν

σ
) with a lower index from another

tensor (for example Bτ
λωρη

). This is a trivial statement, as we can always define the tensor
T
μντ
σλωρη ≡ Aμν

σ
Bτ
λωρη

and then contract any upper index with any lower index on T (for
example, T μντ

σλωνη producing the tensor T μτ
σλωη).

It might be worth emphasizing that I always write the coordinates xμ with an upper
index. Formally, if we run into the combination gμνdx

ν, we could call it dxμ if we insist,
but the symbol xμ by itself is meaningless, or at least not useful.

Quotient theorem

I close by mentioning an obvious truth that is sometimes elevated to the status of a theorem.
As I just said, if you multiply two tensors together and contract some upper indices with
lower indices, the result is evidently a tensor. For example, if Q and W are tensors, then
Pσ
η
= QωκWσ

ωηκ
is a tensor. The proof is straightforward: when we go from unprimed

to primed coordinates, for each pair of contracted indices, S and S−1 knock each other
off, and the various Ss and S−1s left dangling are precisely what are needed to make the
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left hand side a tensor. The quotient theorem states that given two tensors P and W and
Pσ
η
= QωκWσ

ωηκ
, we can conclude that Q is a tensor. I will leave it to you to prove this

more than plausible assertion by simply writing down the transformed versions of this
equation and “peeling off” Ss and S−1s. Think of tensors as delicate contraptions “turned”
by various factors of Ss and S−1s upon a coordinate transformation. Unless Q also gets
turned by the appropriate factors of Ss and S−1s, there is no way that P will transform
correctly. I will often use this theorem implicitly.

Lorentz transformation, change of coordinates, curved space,
and curved spacetime: Not quite the same deal

I keep emphasizing that one unified formalism can be used to discuss rotation, Lorentz
transformation, change of coordinates, curved space, and curved spacetime. But it is also
important to understand the crucial differences among them. Let us summarize and
contrast.

A Lorentz transformation � transforms the Minkowski metric into itself (as stated
in (III.3.8):

ηρσ = (�T ) μ
ρ
ημν�

ν
σ

(13)

This requirement of invariance imposes a restriction on � and defines the Lorentz group.
Rotations may be treated as a special case of this. We simply mentally replace η by the
unit matrix and � by R. The restriction on R defines the rotation group.

When we transform coordinates, or study curved space, we have

g′
ρσ
(x′)=

(
(S−1)T

) μ

ρ
gμν(x)(S

−1)
ν

σ
(14)

While (14) looks deceptively similar to (13) with S−1(x) playing the role of �, it conveys
quite a different message. This equation is not an invariance requirement like (13), but
rather informs us about how the metric gμν transforms under a coordinate transformation
described by S(x): it tells us what g′

ρσ
(x′) is. However, there is also a subtext about

invariance, namely a statement of how two metrics g′ and g should be related in order
to describe the same geometric entity. A key difference is that in the left hand side of
(13), primed quantities are nowhere to be found. In contrast to (14), (13) informs us
that a very special metric, written down by a certain Mr. Minkowski, and before him a
certain Mr. Pythagoras, is left unchanged by a group of linear transformations, Lorentz
transformations in one case, and rotations in the other.

The equivalence principle is not a statement about symmetry

Next, as we proceed from curved space to curved spacetime, we need Mr. Einstein’s
additional insight of linking the metric to the gravitational field. Formally, we have the same
equation (14), but now it informs us that the physics of one observer under the influence
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of a gravitational field is related to the physics of another observer under the influence of
some other gravitational field. In particular, according to the equivalence principle, one
observer could even feel no gravitational field; that is, gμν may happen to be equal to ημν.
In this sense, the equivalence principle is reminiscent of the statement that we can always
transform to locally flat coordinates.

In short, a coordinate transformation in general relativity relates the physics seen by
two different observers, even if one of them reports seeing a gravitational field and the
other not. If you wish, you could say that there is no such thing as a gravitational field,
only curved spacetime, or vice versa, as discussed in chapter V.2.

Differentiating scalars, vectors, and tensors

Let φ(x) be a scalar under general coordinate transformation, so that φ′(x′)= φ(x). How
does ∂μφ(x) transform? Again, by now, you would have guessed that it transforms like a
vector with a lower index, and indeed

∂ ′
μ
φ′(x′)≡ ∂φ′(x′)

∂x′μ = ∂xν

∂x′μ
∂φ(x)

∂xν
= ∂νφ(x)(S

−1)
ν

μ
(15)

Speaking loosely, we might say that in the definition ∂μ ≡ ∂
∂xμ

, since the upper index μ
appears in the denominator, it acts effectively as a lower index. Another way of thinking
about this is to regard ∂μ, the ur-vector with a lower index, as the “dual” of dxμ, the ur-vector
with an upper index.∗ It is useful to remember that

∂ ′
μ

= (S−1)
ν

μ
∂ν (16)

We write (S−1)
ν

μ
to the left of ∂ν to make clear that the derivative does not act on S−1.

An important question: given a vector Wμ(x), do you expect ∂λWμ(x) to transform as a
tensor? Think about this for a moment before reading on.

Some key things to know about tensors

Let us collect together some key things you have learned about tensors in general relativity:

1. The indices on a tensor transform independently, that is, as if the other indices were not

there.

2. Tensors in general relativity work pretty much the same way as the tensors you are familiar

with in connection with the rotation group except for two important differences:

a. The transformation matrix Sμ
ν

changes from place to place.

b. There are two floors, and you have to use gμν and gμν to move indices upstairs and

downstairs.

∗ Some readers may recognize that I am sneaking in some notions of a more modern approach to vector and
tensor analysis by speaking of dxμ and ∂μ as dual ur-vectors.
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3. Always contract an upper index with a lower index. It doesn’t make sense to contract an upper

index with an upper index. You can multiply two upper indices by gμν, but that amounts to

moving one of them downstairs first, and then contracting.

4. The coordinate xμ is not a vector, but dxμ is.

5. The two ur-vectors dxμ and ∂μ transform oppositely.

6. The ordinary derivative of a tensor is not a tensor. You must use the covariant derivative.

Statement 6 answers the question I asked you in the previous section. The next chapter
is devoted to explaining and elaborating this statement, in particular, to finding out what
the covariant derivative is.

Appendix: Index-free representation of vector fields

Statement 5 suggests that dxμ and ∂μ could be used as basis vectors. We could exploit this observation to develop
an index-free formalism along the following line. Given a vector field Aμ(x), we can define an index-free object
A(x)≡ Aμ(x)∂μ. An abecedarian might take some time to get used to this notion of regarding vector fields as
differential operators, but it leads us naturally to consider the commutator C = [A, B]. More explicitly, Cν∂ν =
(Aμ∂μ)(B

ν∂ν)− (A↔ B)=Aμ(∂μB
ν)∂ν − (A↔ B), since ∂μ∂ν = ∂ν∂μ. Thus, Cν =Aμ(∂μB

ν)− Bμ(∂μA
ν). In

other words, we differentiate the vector field B in the direction of the vector field A, interchange A and B, and
then compare the two results.

If you are reminded of the commutators in the Lie algebra introduced way back in appendix 2 to chapter I.3,
you might have also suspected that a deep connection exists. Indeed, the notion of representing generators by
differential operators instead of matrices also appeared there. For example, we had −iJz = (y ∂

∂x
− x ∂

∂y
) for the

generator of rotations about the z-axis. In the notation used in the preceding paragraph, what we did in chapter
I.3 amounts to writing −iJz =Aμ∂μ with the vector field Aμ defined by (y , −x , 0). This provides another way of
calculating the Lie algebra for the rotation group, for example, [Jx , Jy ] = iJz. You can readily verify this relation,
regarding Jx , Jy , and Jz as differential operators and using elementary calculus.

Similarly, given a vector field Aμ(x) with a lower index, we can define an index-free object A(x)≡Aμ(x)dx
μ.

We will come back to this in chapter IX.3.



V.6 Covariant Differentiation

“How do you transform?”

In our continued effort to honor the fundamental principle that physics does not depend
on the physicist, we have to ask, sort of as in daily life, every new object or expression
we encounter, “How do you transform?”1 Physical laws are to be formulated in terms of
objects that transform properly.

In the preceding chapter, we verified that, given a scalar φ(x), its derivative or “gradient”
∂μφ(x) transforms like a vector with a lower index. This also justifies the shorthand
notation ∂μ ≡ ∂

∂xμ
. Taking the partial derivative of an object, we add a lower index to the

object. Quite naturally, we would like to go from scalar to vector and beyond.
At the end of the preceding chapter, I asked you a crucial question: given a vectorWμ(x),

how does ∂λWμ(x) transform? Naively (actually, very naively), you might guess, just by
looking at the indices the object ∂λWμ carries, that it transforms like a tensor T μ

λ with
one upper and one lower index. But you can see that can’t be true just by looking at the
transformation law for Wμ(x)

W ′μ(x′)= Sμ
ν
(x)Wν(x) (1)

The object ∂λWμ(x) transforms to ∂ ′
λ
W ′μ(x′). We have ∂ ′

λ
= (S−1)

ρ

λ
∂ρ by the chain rule. So

act with ∂ρ on (1) using the product rule. We watch, in horror, ∂ρ hitting Sμ
ν
, thus wrecking

the nice tensor transformation law. Instead, we obtain

∂ ′
λ
W ′μ(x′)= ∂W ′μ(x′)

∂x′λ = ∂xρ

∂x′λ
∂

∂xρ
(Sμ

ν
(x)Wν(x))

= (S−1)
ρ

λ
Sμ
ν
∂ρW

ν + ((S−1)
ρ

λ
∂ρS

μ
ν
)Wν (2)
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The fact that the transformation S varies from place to place has negated the naive guess. If
the second term, which comes from differentiating S, were absent, ∂λWμ would transform
like a tensor!∗ The naive guess would be valid.

Wanted: A derivative that transforms properly

What is happening is quite clear: as the vectorW varies from a given point to a neighboring
point, the coordinate axes that define the components ofW also change. This suggests that
we can define a more suitable derivative, known as the covariant derivative and written as
DλW

μ, to take this effect into account, so that DλW
μ would transform like a tensor with

one upper and one lower index.
It is also instructive here to compare (2) with something from way back, (I.4.3). There

the rotation matrix R, the analog of S here, sails right past the derivative, so that, under
rotations, the derivative of a vector field is a tensor. The other difference is that R−1 = RT ,
which is not true for S.

We already encountered a similar problem in chapter I.5. The simple minded divergence
∂μW

μ(x) does not transform properly: ∂μWμ(x) �= ∂ ′
μ
W ′μ(x′). It has to be corrected by an

additive term to

DμW
μ = ∂μW

μ +
(

1√−g ∂μ
√−g

)
Wμ (3)

This offers a strong hint about what to do. Construct DλW
μ by adding something to

∂λW
μ to cancel the second term in (2). We want the covariant derivative DλW

μ to have
many of the properties enjoyed by the ordinary derivative ∂λWμ, for example, linearity in
W (so that multiplying W by 2, say, doubles DλW

μ), which requires that the added term
must be linear in W just as in (3). The most general expression with the correct index
structure is then DλW

μ ≡ ∂λW
μ + �̃

μ
λνW

ν. We need an object �̃ with one upper index and
two lower indices, and we specifically want it not to be a tensor.

But we are already acquainted with such an object, the Christoffel symbol � from way
back in chapters I.7, II.1, II.2, and V.3. Our notation �̃ is intentionally suggestive! To see
that � might work, we recall its definition:

�
μ
λν ≡ 1

2g
μσ (∂λgνσ + ∂νgσλ − ∂σgλν) (4)

It involves ordinary partial derivatives of the metric tensor gμν and thus, for the same
reason as in (2), � can’t possibly transform like a tensor. We can thus hope that the
nontensorial piece in the transformation law of�will cancel precisely the unwanted second
term in (2). This “smells right”: the derivatives of gμν in (4) describe the very effect we are
worried about, namely the variation from point to point of the coordinate axes relative to
which the components of our vector Wμ are defined.

∗ One of my professors, the distinguished theoretical physicist Murph Goldberger, was fond of shouting, “If
my aunt had balls, she would be my uncle!” Believe me, this made a deep impression on a Chinese kid fresh
from Brazil.
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Overheard at a party: “What, you’re also not a tensor? Me neither!” “Maybe we could hook
up and become a tensor?” There is a Chinese saying that those who are similarly afflicted
empathize with one another. And so ∂λW

μ and �
μ
λνW

ν could join hands to form one of
those ideal couples in which one person’s character defects cancel the other person’s.

Canceling the nontensorial pieces

So let’s define the covariant derivative

DλW
μ ≡ ∂λW

μ + �
μ
λνW

ν (5)

and show that it indeed transforms like a tensor. (At this point, we actually do not know that
the two terms in (5) should be added with relative coefficient 1. But instead of cluttering
things up with an arbitrary constant in front of the second term, we will show that the
expression as written works.)

In fact, we already know how the Christoffel symbol transforms! Go back to what
Professor Flat taught us in chapter II.2. For convenience, I copy (II.2.31) here (after
relabeling some indices):

�
′μ
λκ = Sμ

η
(S−1)

ω

λ
(S−1)

σ

κ
�η
ωσ

+ Sμ
η
(S−1)

ρ

λ
∂ρ(S

−1)
η

κ
(6)

We now plug this into (5) and show that DλW
μ transforms nicely like a tensor.

Deep down in our hearts we already know∗ that it must work. Still, it is fun to see how
the different pieces come together and knock each other out.

From (6), we see that we need to determine ∂S−1. For any (invertible) matrix M ,
differentiate MM−1 = I to obtain (∂M)M−1 +M∂M−1 = 0, which allows us to relate the
derivative of M−1 to the derivative of M :

∂M−1 = −M−1(∂M)M−1 (7)

Notice that this generalizes what you learned in a calculus course on how to differentiate
the inverse of a function d

( 1
f

)= − df

f 2 .
Using the identity (7), we write the second term in (6) as

Sμ
η
(S−1)

ρ
λ∂ρ(S

−1)η
κ

= −(S−1)
ρ
λ(∂ρS

μ
σ
)(S−1)σ

κ

Plugging this into (6) and multiplying �′μ
λκ byW ′κ = Sκ

τ
Wτ , we finally obtain (after quickly

renaming indices)

�
′μ
λκW

′κ = Sμ
ν
(S−1)

ρ
λ�

ν
ρτ
Wτ − ((S−1)

ρ
λ∂ρS

μ
τ
)Wτ (8)

Again, for convenience, I copy the nasty (2) we started this chapter with here:

∂ ′
λ
W ′μ(x′)= (S−1)

ρ

λ
Sμ
ν
∂ρW

ν + ((S−1)
ρ

λ
∂ρS

μ
ν
)Wν (9)

∗ From a review of my book QFT Nut for the American Mathematical Society: “It is often deeper to know why
something is true rather than to have a proof that it is true.”
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Adding (8) and (9), we see that the character defect in each of them cancel each other, so
that indeed D′

λ
W ′μ(x′) = (S−1)

ρ

λ
Sμ
ν
DρW

ν transforms like a tensor with one upper and
one lower index.

The covariant derivative from geometry

Another motif from an earlier part of this book resonates with the present discussion.
Recall that, in chapter I.7 on classical differential geometry, the mite professors came
to the concept of covariant derivative by simply dropping from the vector ∂ν �W(x) the
component sticking out of the surface. Also recall that in exercise I.7.6, you showed
that �eρ . �eμ,ν = �ρ .μν. From the definition of the basis vectors �eμ = ∂μ �X = ∂ �X

∂xμ
, we see

that under the coordinate transformation x → x′, we have �e ′
μ

= ∂ ′
μ

�X = (S−1)
ν

μ
�eν and so

�′
ρ .μν = �e ′

ρ
. �e ′

μ,ν = (S−1)
σ

ρ
(S−1)

η

ν
�eσ . ∂η((S−1)

ω

μ
�eω). We can see the transformation law

of Christoffel symbols emerging.
Although the discussion of classical differential geometry in chapter I.7 is nominally

only for surfaces, it clearly generalizes to curved spaces and spacetimes. Some readers
might prefer this derivation, which is more geometrical and intuitive.

In contrast, the derivation given in the preceding section, based on requiring thatDλW
μ

transform properly, is more abstract and high powered. As I mentioned, this requirement
of proper transformation pervades theoretical high energy physics in recent decades. In
this sense, this derivation might be considered more modern and general.

A wildly varying vector field?

At this point, our friend the rich man could start spouting fancy talk about the covariant
derivative, presumably without writing down a single index and disdaining such “quaint
old-fashioned notions” as transformation, and thus cause our other friend the Jargon Guy
to become flush with joy. Instead, let’s be more modest and, together with our friend the
poor man, try to understand what the covariant derivative really means by working out a
simple example. Again, a tale best told through a fable.

A civilization of mites used the coordinates r , θ with the metric grr = 1, grθ = 0, gθθ =
r2. One day they discovered a wild and woolly vector field Wμ(x), which they eventually
determined to be given by Wr(r , θ)= cos θ , Wθ(r , θ)= − 1

r
sin θ (measured with error

bars of course but well described phenomenologically by these expressions). For example,
a scientific expedition sent to the point (r , θ) = (3, 30◦) measured Wr(3, 30◦) =

√
3

2 ,
Wθ(3, 30◦)= − 1

6 . Another expedition sent elsewhere reported vastly different values for
Wμ, and so on. Eventually, a table of the 4 quantities ∂λWμ was published to guide travelers.

One day, a bright young guy pointed out that the mite savants should have calculated
the covariant derivatives DλW

μ = ∂λW
μ + �

μ
λνW

ν, instead of the ordinary derivatives
∂λW

μ. The symbol �μλν had already been determined (way back in chapter II.2 by studying
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geodesics) to be �r
θθ

= −r and �θ
rθ

= 1
r
. For example,DrW

θ = ∂rW
θ + �θ

rθ
Wθ = 1

r2 sin θ +
1
r
(− 1

r
sin θ)= 0. You should now go on and verify that all 4 quantities DλW

μ vanish.
Quickly, another young guy showed the elderly savants that if they were to transform

coordinates to x = r cos θ , y = r sin θ , then in these newfangled coordinates, Wx =
∂x
∂r
Wr + ∂x

∂θ
Wθ = cos θWr − r sin θWθ = 1 and (as you should show) Wy = 0. After the

fact, the savants plotted Wr(r , θ)= cos θ , Wθ(r , θ)= − 1
r

sin θ in polar coordinates and
saw that, indeed, the vector field Wμ was constant. That ∂λWμ did not vanish was merely
due to the coordinate basis vectors �er and �eθ varying.

The young guys explained: “Saying that a vector field is constant must mean that the
covariant derivatives, instead of the ordinary derivatives, vanish.” Since DλW

μ is a tensor,
if it vanishes in one coordinate system, it vanishes in all coordinate systems. The same
statement cannot be made of a nontensor like ∂λWμ.

Covariant derivative of tensors

We have determined the covariant derivative of a vector with an upper index. What about
the covariant derivative of a vector with a lower index?

Here I will switch to the more compact notation W
μ
,λ ≡ ∂λW

μ and W
μ
;λ ≡DλW

μ (the
first of which you already encountered in chapter I.7), also commonly used.

As we have seen, the covariant derivative of a scalar is simply the ordinary derivative:
suffices to fix the covariant derivative of a vector with a lower index. Insisting that the
covariant derivative, just like the ordinary derivative, satisfies the product rule, we have
(UμW

μ);λ = Uμ;λW
μ + UμW

μ
;λ. In contrast, since UμW

μ is a scalar, we have

(UμW
μ);λ = (UμW

μ),λ (10)

For convenience, let us rewrite (5) in this semicolon notation as

W
μ
;λ =W

μ
,λ + �

μ
λνW

ν (11)

We see that the condition (10) is satisfied if

Uμ;λ = Uμ,λ − �σ
μλ
Uσ (12)

Contrast the minus sign in (12) with the plus sign in (11). We can readily check that the
opposite signs ensure that the Christoffel symbols cancel out, thus giving us (10):

(UμW
μ);λ = (Uμ,λ − �σ

μλ
Uσ)W

μ + Uμ(W
μ
,λ + �

μ
λνW

ν)= Uμ,λW
μ + UμW

μ
,λ = (UμW

μ),λ

The covariant derivative of tensors with more indices, such as T μν
ρ

, can be worked out
by pretending that T μω

ρ
=WμYωUρ is made up of three vectors, so that we can use (11)

and (12) repeatedly. The pretense works because all we care about in this context is the
transformation property of T rather than its true nature. Thus,

T
μω
ρ;λ = T

μω
ρ ,λ + �

μ
λνT

νω
ρ

+ �ω
λν
T μν
ρ

− �σ
ρλ
T μω
σ

(13)

Once you know how to differentiate vectors, you know how to differentiate tensors.
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The general rule should be obvious: colloquially, for each upper index, attach a +�,
and for each lower index, attach a −�. We now know how to repeatedly take the covariant
derivative. For example, since Uμ;λ is a tensor, we can apply the rule and write

Uμ;λ;ρ = Uμ;λ,ρ − �σ
μρ
Uσ ;λ − �σ

λρ
Uμ;σ (14)

Starting from (11), we defined the covariant derivative in such a way that the product rule
is clearly satisfied. For example, (Sν

τ
T μω
ρ

);λ = Sν
τ ;λT

μω
ρ

+ Sν
τ
T
μω
ρ;λ .

Mirror mirror on the wall, what is the most special tensor of them all? I trust that the
magic mirror would say the metric tensor gμν. Would you be surprised to learn that the
covariant derivative of the metric tensor vanishes? You should check that indeed

gμν;λ = 0 (15)

Of course, the ordinary derivative gμν ,λ is assuredly not zero. In other words, the metric
tensor is not (necessarily) constant, but it is always covariantly constant. That sure makes
sense.∗

In the preceding chapter, I defined the commutator C = [A, B] of two vector fields Aμ

and Bν. Since the Christoffel symbol is symmetric in its two lower indices, the ordinary
derivative in the definition can in fact be replaced by covariant derivatives:

Cν = [A, B]ν = Aμ(∂μB
ν)− Bμ(∂μA

ν)= Aμ(DμB
ν)− Bμ(DμA

ν) (16)

To get a feel for the covariant derivative, you should practice writing down a few more
examples.

Electromagnetism in curved spacetime

Notice that the covariant curl is equal to the ordinary curl

Uμ;λ − Uλ;μ = Uμ,λ − Uλ,μ (17)

The Christoffel terms cancel. In particular, in curved spacetime, the electromagnetic field
strength is still† given by Fμν = ∂μAν − ∂νAμ, a fact we can now exploit.

In chapter V.2, I extolled the power of the equivalence principle. As another exam-
ple, the equivalence principle tells us that we can immediately obtain the action of an
electromagnetic field in the presence of a gravitational field by promoting the Maxwell
action − 1

4

∫
d4x FμνFμν = − 1

4

∫
d4x ηλμηρνFλρFμν in (IV.2.6) to

SMaxwell = − 1
4

∫
d4x

√−ggλμgρνFλρFμν (18)

∗ Some people prefer the following slightly more mathematical approach to the covariant derivative. After
defining DλW

μ ≡ ∂λW
μ + �̃

μ
λνW

ν with an unknown object �̃, as was done earlier in this chapter, extend the
definition to the covariant derivative of a tensor. Then impose the condition Dλgμν = 0 to determine �̃.

† Indeed, in chapter V.4, you might have wondered how Fμν is defined in curved spacetime.
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In light of the preceding remark, in (18) the effect of the gravitational field on electromag-
netism has been explicitly displayed.

A matrix identity, the patented “1-2” test, and the covariant divergence

We have one loose end to tie up. As noted in (3), we have already encountered the covariant
divergence DμW

μ = 1√−g ∂μ(
√−gWμ) way back in chapter I.5. However, we can also

obtain the covariant divergence by contracting the indices in (5):DμW
μ = ∂μW

μ + �μ
μν
Wν.

From (4), we have �μ
μν

= 1
2g

μσ∂νgμσ .
For these two forms to agree with each other, so that the laws of arithmetic are upheld,

we must have gμσ∂νgμσ = 1
g
∂νg. There must be a cool matrix identity2 involving the

determinant, and indeed there is!
For any diagonalizable matrix M

log det M = tr log M (19)

(The logarithm of a matrix can be formally defined by a power series log M = log(I −
(I − M)) =∑∞

k=1(I − M)k/k.) To prove (19), simply diagonalize M = A−1DA with D

a diagonal matrix with entries d1, d2, . . . , ddimension of M . Then log det M = log det D =
log

∏
j dj =∑

j log dj = tr log D = tr A−1(log D)A= tr log M , and we have proved (19).
Differentiate (19) to get∗ (det M)−1∂ det M = ∂(tr log M)= tr(∂ log M)= tr(M−1∂M).

In particular, substituting the metric gμσ for Mμσ , we obtain the desired equality

1√−g ∂ν
√−g = 1

2g
∂νg = 1

2
∂ν log g = 1

2
gσμ∂νgμσ = �μ

μν
(20)

Using (20), we readily verify that the usual identities involving the partial derivative also
work for the covariant derivative, provided that the correct integration measure d4x

√−g
is used instead of d4x. For example, from (20), it follows that∫

d4x
√−gDμW

μ =
∫

d4x
√−g(∂μWμ + �μ

μν
Wν)

=
∫

d4x
√−g

(
−
(

1√−g ∂μ
√−g

)
Wμ + �μ

μν
Wν

)
= 0

(Of course, this also follows directly from the covariant divergence

DμW
μ = 1√−g ∂μ(

√−gWμ)

which we started this discussion with.)
Integration by parts also works in the same way. For example,∫

d4x
√−gKλμDλWμ = −

∫
d4x

√−g(DλK
λμ)Wμ (21)

This follows from what we just learned (
∫
d4x

√−gDλ(K
λμWμ)= 0) and the product rule.

∗ By the way, to verify matrix identities of this type, you can always apply my patented “1-2” test: check it for
1-by-1 and 2-by-2 matrices.
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Appendix 1: Differentiation along a curve

Given a curve C parametrized by ζ and described by X(ζ), we might be interested in how various quantities
defined on the curve change as we move along the curve. An everyday example might be the temperature along a
highway we are driving on. More relevant to physics, an example might be the direction in which a macroscopic
object (like a gyroscope) or a microscopic object (like an elementary particle) is spinning, with C its worldline. In
fact, let us focus on a vector Wμ(ζ ), with the word “vector” implying that under a coordinate transformation,

W ′μ(ζ )= Sμ
ν
(X(ζ ))Wν(ζ ) (22)

It is important to realize that we are not talking about a vector field Wμ(x), as in the text. Our vector Wμ(ζ )

is meaningful only on C. For example, the spin of an electron is defined only on its worldline.
Note also that I did not say that the curve C is necessarily a geodesic. Our gyroscope could be inside some

rocketship in full throttle blasting by some black hole, for example, and not in free fall.
The question is how to differentiateWμ(ζ ) along C. By now you have caught on that the naive proposal dWμ(ζ )

dζ

is not going to cut it: it does not transform like a vector. From (22) we have

dW ′μ(ζ )
dζ

= Sμ
ν
(X(ζ ))

dWν(ζ )

dζ
+ (∂λS

μ
ν
(X(ζ )))V λ(ζ )Wν(ζ ) (23)

where V λ(ζ )≡ dXλ(ζ )
dζ

is the tangent or velocity vector to the curve C at the point X(ζ). If only the first term on

the right hand side of (23) were present, then dWν(ζ )
dζ

would transform like a vector.

But by now you also know how to fix this problem. Define the covariant derivative DWμ(ζ )
Dζ

along the curve by

DWμ(ζ )

Dζ
= dWμ(ζ )

dζ
+ �

μ
λν(X(ζ ))V

λ(ζ )Wν(ζ ) (24)

Using (6), you can check that DWμ(ζ )
Dζ

indeed transforms like a vector: DW ′μ(ζ )
Dζ

= Sμ
ν
(X(ζ ))

DWν(ζ )
Dζ

.
In part IX, we will come back to this covariant derivative along a curve.

Appendix 2: Lie derivative

Given a vector fieldV μ(x), we physicists can readily picture it as the local velocity field of a fluid, albeit in spacetime
rather than in space. Speaking loosely, we can mentally “fill in” the flow by connecting the “feathered ends” of
V μ(x) and construct the trajectories of an infinitesimal fluid element. See figure 1. More formally, integrate the
first order equation dXμ

dτ
= V μ(X(τ)) for Xμ(τ).

Now suppose we are given a tensor field W
...
... (x) in addition to V μ(x). We could differentiate W

...
... (x) by

comparing its value at two nearby points P and Q. More precisely, let the coordinates of P and Q be x and x̃,

Figure 1 A vector field
visualized as a fluid.
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respectively; then W
...
... (x̃)−W

...
... (x)→ (x̃ − x)ν∂νW

...
... (x), as Newton and Leibniz taught us. No mystery there,

we have known this as the ordinary derivative since childhood.
Sophus Lie now invites us to do something different. Let x̃ be the location that the fluid element at x flows to:

x → x̃μ = xμ + dτV μ(x(τ)). For pedagogical clarity, let us specialize to the case of a vector fieldWμ(x) instead of
W

...
... (x); you can always fill in the dots on W

...
... (x) to your heart’s content later. Lie says, “Going with the flow, we

‘drag’ Wμ(x) to the point x̃ by regarding x → x̃μ = xμ + dτV μ(x(τ)) as a coordinate transformation.” In other
words, we define W̃μ(x̃)=Wν(x) ∂x̃

μ

∂xν
=Wμ(x)+ dτWν(x)∂νV

μ(x(τ)). We are now supposed to compare this
with the vector field Wμ evaluated at Q, namely Wμ(x̃). Got that?

Lie tells us to do something different from what Newton and Leibniz told us to do: instead of comparing
Wμ(x̃) with Wμ(x), compare Wμ(x̃) and W̃μ(x̃). So, take the limit Wμ(x̃)− W̃μ(x̃)� dτV ν(x(τ ))∂νW

μ(x)−
dτWν(x)∂νV

μ(x(τ)).
To underline what we are doing, speak colloquially for a moment. “Let’s be cool and go with the flow, but

hmm, somehow this vector we are carrying is not as relaxed as we are and is not pointing in the direction we
expect; something must be acting on this vector.” This difference, between actual (namely Wμ(x̃)) and expected
(namely W̃μ(x̃)), is what we want to measure.3

Given two vector fields V μ(x) and Wμ(x), define the Lie derivative of Wμ(x) in the direction of V μ(x) by

LVW
μ(x)≡ V ν(x)∂νW

μ(x)−Wν(x)∂νV
μ(x)= V ν(x)DνW

μ(x)−Wν(x)DνV
μ(x) (25)

In the last step, we replace ∂ν by Dν , which you can verify is allowed, since the Christoffel symbol is symmetric
in its two lower indices. This should remind you of a similar step in the text when we discussed the commutator
C = [A, B] of two vector fields. Indeed, the connection between the two discussions should leap out at you: the Lie
derivative LVW

μ is just the μ component of the commutator [V , W ], namely LVW
μ = [V , W ]μ. Those readers

who know that Lie algebras are constructed out of commutators (as we saw in chapter I.3) would not be surprised
that the same person was responsible for the Lie derivative and Lie algebra. Mathematically, the Lie derivative
is regarded as being a more “primitive” concept than the covariant derivative, since, as shown in (25), it can be
defined without referring to the Christoffel symbol.

The last step in (25) suggests defining the covariant derivative in the direction of a given vector V by
DV ≡ V ν(x)Dν . (The notation ∇V is also often used.) In fact, we now see that, in (24), ifWμ is a vector field, then
the derivative along a curve is just DVW

μ, with V the tangent vector of the curve.
Misconception alert! We can replace the ordinary derivative by the covariant derivative in [V , W ]μ (as shown

in (25)), but not in [V , W ]. In other words, [V , W ] �= [DV , DW ].
Going through the same steps for a vector field with a lower index Uμ(x), we obtain

LVUμ(x)≡ V ν(x)∂νUμ(x)+ Uν(x)∂μV
ν(x)= V ν(x)DνUμ(x)+ Uν(x)DμV

ν(x) (26)

Various properties of the Lie derivative follow. For example, it satisfies the product rule: LV (UμYλ) =
(LVUμ)Yλ + Uμ(LV Yλ). This allows us to define the Lie derivative of tensors immediately: as in the discus-
sion surrounding (13), simply pretend that the tensor is a product of vectors with upper and lower indices. For
example,

LVWμλ = V ν∂νWμλ +Wνλ∂μV
ν +Wμν∂λV

ν (27)

A trivial example is that the Lie derivative of a scalar is just LV φ = V ν∂νφ.
A tensor W ...

... is said to be Lie transported along a curve if its Lie derivative along the curve vanishes, namely
LVW

...
... = 0, with V the tangent vector to the curve. To understand physically what the mathematician is talking

about, think of the curve as your geodesic as you move through spacetime. Set up coordinates so that x0 is
just your proper time and x1, . . . , xd−1 are constant along your geodesic. (Indeed, set them all to 0; you are at
the center of your universe.) Then V μ = dXμ(τ)

dτ
= (1, 0, . . . , 0). Look at (27), for example: with this coordinate

choice, since ∂μV ν = 0, we have 0 = LVWμλ = V ν∂νWμλ = ∂0Wμλ. The math types make it sound mysterious,
but a tensor Lie transported along your geodesic is simply a tensor that does not change in time (your proper
time, that is).

The curve in the definition of Lie transportation does not necessarily have to be a geodesic: I just pick it as an
example. It could be a curve in a flow field V (x). People in the New Age talk about going with the flow, but what
should they do with the vectors and tensors they want to carry with them? Lie transport them, that’s what.
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Appendix 3: Transforming the Christoffel symbol by brute force

You can skip this appendix and the next one upon a first reading of the text. They are for those readers who thirst
for explicit computation, not believing in anything until they have ground it out.

To work out how �
μ
λν transforms, you can just plug the transformation law g′

νσ
(x′)= gωτ (x)(S

−1)
ω

ν
(S−1)

τ

σ

into (4) and proceed by brute force. It will be convenient in this calculation to keep referring to the collection of
formulas in the back of the book.

As I explained, if we could sail the various factors of S−1 past the derivatives in (4), � would transform like
a tensor with one upper index and two lower indices. In fact, we can’t, and there are extra terms involving the
derivatives acting on S−1, so that we expect

�
′μ
λν = Sμ

σ
(S−1)

ρ

λ
(S−1)

τ

ν
�σ
ρτ

+M
μ
λν (28)

where Mμ
λν involves ∂S−1. The claim is that Mμ

λνW
ν will cancel the unwanted term in (2).

Let us now take a deep breath and churn through this straightforward though somewhat laborious calculation,
starting from the definition �

μ
λν ≡ 1

2g
μσ (∂λgνσ + ∂νgσλ − ∂σgλν). Perhaps you should try to do it first. I should

warn you though, you have to slog through a swamp of indices. Don’t give up too soon! It is merely an exercise
in multivariable calculus after all, keeping track of various partial derivatives.

Focus on a piece of �μλν (say, gμσ∂λgνσ ), and ask how it transforms. Let’s first suppress indices to get oriented:
g

..
∂g.. transforms into ∼ SSg

..
S−1∂(g..S−1S−1). Looking only at the terms generated when ∂ hits S−1, we have

∼ SSS−1S−1∂S−1 ∼ S−1(∂S)S−1.
I am now going to keep careful track of the indices, which of course makes the calculation seem clunky (and

confusing when it in fact isn’t). First,

∂λgνσ → ∂ ′
λ
g′
νσ

= ∂ ′
λ
[gωτ (S

−1)
ω

ν
(S−1)

τ

σ
] (29)

There are two kinds of terms: those in which the derivative hits gωτ (x) and those in which it hits the S−1s.
Clearly, the first kind of terms (S−1)

ρ

λ
∂ρgωτ (S

−1)
ω

ν
(S−1)

τ

σ
, those that are present even if S does not vary from

place to place, will take care of themselves. As the discussion after (2) made clear, we should focus on the
troublemakers, namely the second kind of terms contained in ∂ ′

λ
g′
νσ

due to the variation of S, for which we invent

on the spot a double bracket notation {{∂ ′
λ
g′
νσ

}}. To save writing, defineKω
λν

≡ ∂ ′
λ
(S−1)

ω

ν
= ∂ ′

λ
∂xω

∂x′ν = ∂2xω

∂x′λ∂x′ν . Then,
corresponding to ∂ ′

λ
in (29) hitting one or the other of the two S−1s in the square bracket, we obtain two terms

{{∂ ′
λ
g′
νσ

}} = gωτ {Kω
λν
(S−1)

τ

σ
+Kτ

λσ
(S−1)

ω

ν
}.

You may not recall instantly, but this has precisely the form of the little lemma you proved way way back in
exercise I.4.8, namely Hλ.νσ =Gλν .σ +Gλσ .ν , where Hλ.νσ ≡ {{∂ ′

λ
g′
νσ

}} is manifestly symmetric under ν ↔ σ ,
and Gλν .σ ≡ gωτK

ω
λν
(S−1)

τ

σ
is manifestly symmetric under λ↔ ν. To determine how �

μ
λν transforms, we need

precisely the combination found in that exercise: Hλ.νσ +Hν .σλ −Hσ .λν = 2Gλν .σ = 2gωτKω
λν
(S−1)

τ

σ
.

Putting it altogether, we obtain {{�′μ
λν}} = 1

2S
μ
ρ
Sσ
κ
gρκ(2gωτKω

λν
(S−1)

τ

σ
) = Sμ

ρ
K
ρ
λν = Sμ

ρ
(S−1)

κ

λ
∂κ(S

−1)
ρ

ν
=

(S−1)
κ

λ
(S∂κS

−1)μ
ν
= −(S−1)

κ

λ
((∂κS)S

−1)μ
ν
. In the last step, we used the matrix identity (7). This is precisely

what we heuristically guessed forM ′μ
λν ≡ {{�′μ

λν}}. Note that the factor 1
2 in the definition of the Christoffel symbol

is needed here.
Thus, {{�′μ

λνW
′ν}} = −((S−1)

κ

λ
∂κS

μ
η
)Wη, precisely the negative of the unwanted second term in (2). So indeed

we have D′
λ
W ′μ = (S−1)

ρ

λ
Sμ
ν
DρW

ν , and DλW
μ transforms as a tensor as desired. It all seems a bit complicated,

but in fact it is simple: as I explained in the text, the two terms in DλW
μ each produce unwanted terms, but they

cancel each other.
Incidentally, if we write out S, S−1, and K explicitly, we have found here that

�
′μ
λν = ∂x′μ

∂xσ

∂xρ

∂x′λ
∂xτ

∂x ′ν �
σ
ρτ

+ ∂x′μ

∂xη

∂2xη

∂x′λ∂x′ν (30)

which agrees with (6), namely what we had back in chapter II.2, of course.
Note that the first term is the “uninteresting” part, gathered up from those terms that we said would take care

of themselves. It tells us how the Christoffel symbol would have transformed had it been a tensor. We worked
hard to obtain the second term, which, as anticipated, depends on the second derivative ∂2xη

∂x′λ∂x′ν , in other words,
on the variation of S−1 from place to place. The presence of the second term indicates, as emphasized again and
again, that the Christoffel symbol is not a tensor.
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Appendix 4: Arguing from the geodesic equation

The computation in the preceding appendix involves a fair amount of work. In this appendix, we will try to avoid
work by winging it as much as possible.

Our starting point is the geodesic Xμ(τ), which we first met way back in chapter II.2, and then again in
chapter V.1, determined by

dV ρ

dτ
+ �ρ

μν
V μV ν = 0 (31)

with V μ ≡ dXμ

dτ
.

First a notational clarification and a bad notation alert! The geodesic is a curve defined by Xμ(τ), with
dτ 2 = −gμν(X(τ))dXμdXν . The velocity vector is defined byV μ(τ)= dXμ(τ)

dτ
. Strictly speaking, it is not correct to

write V μ(X(τ)), as some authors sometimes somewhat sloppily do. This notation suggests that there is a vector
field V μ(x) (and there isn’t) defined all over spacetime, and V μ(X(τ)) is equal to V μ(x) evaluated at x =X(τ).
In fact, V μ(τ) is only defined on the particle trajectory (be it a geodesic or not).

Under a coordinate transformation x → x′(x), the ur-vector dxμ → dx′μ = ( ∂x
′μ

∂xν
)dxν ≡ Sμ

ν
(x)dxν . The ve-

locity V μ is most certainly a vector, since dXμ → dX′μ = Sμ
ν
(X)dXν is a vector and dτ is a scalar. So V ′μ(τ)=

Sμ
ν
(X(τ))V ν(τ ). Note that the transformation matrix Sμ

ν
(x) is evaluated at x =X(τ).

There are levels of the game4 in theoretical physics as in any other substantive endeavor. After we learn the
geodesic equation (31), we could go on happily solving for geodesics in any given spacetime until we are blue in
the face. On a deeper level, however, we can ask what (31) teaches us about curved spacetime.

The left hand side of (31) carries a single free index ρ and thus looks like a vector. It better be a vector,
since otherwise what one observer sees as a geodesic would not be a geodesic to another observer. Suppose
Ms. Unprime writes (31). If the whole package on the left hand side of (31) transforms as claimed, Mr. Prime

would have dV
′ρ

dτ
+ �

′ρ
μν
V

′μV
′ν = Sρ

σ
( dV

σ

dτ
+ �σ

ηω
V ηV ω)= 0. The two observers agree that particles move along

geodesics in spacetime. We have insisted again and again that the laws of physics must transform appropriately,
and here is yet another example.

Instead of spacetime, we can talk about curved space (in which case τ in (31) would denote length rather
than proper time). A geodesic curve as the path of shortest distance between two points has intrinsic geometric
meaning and so cannot possibly depend on the coordinate system we use to describe it. For example, a great
circle on the globe does not depend on the particular system of latitude and longitude we happen to use because
of British naval power. The geodesic has to satisfy (31) in all coordinates.

But, for the same kind of reason as in (2), we see that while V ρ is a vector, dV ρ

dτ
assuredly is not. Indeed,

dV ′ρ(τ )
dτ

= d
dτ
(Sρ

ν
(X(τ))V ν(τ )) = Sρ

ν
(X(τ)) d

dτ
V ν(τ ) + ( d

dτ
Sρ
ν
(X(τ)))V ν(τ ). The derivative d

dτ
also acts on the

transformation matrix S as it varies along the geodesic. Sound familiar? Thus, dV ρ

dτ
would have been a vector,

had it not been for the second term ( d
dτ
Sρ
ν
)V ν = dXλ

dτ
(∂λS

ρ
ν
)V ν = (∂λS

ρ
ν
)V λV ν .

As in appendix 3, use the notation {{ dV ρ

dτ
}} ≡ ∂λS

ρ
σ
V λV σ to indicate the extra term that prevents dV ρ

dτ
from

being a vector. Using the notation introduced in (28), we also have for the second term in (31) {{�ρ
μν
V μV ν}} =

Mρ
μν
S
μ
λS

ν
σ
V λV σ . Thus, the requirement {{ dV ρ

dτ
+ �ρ

μν
V μV ν}} = 0 gives us (∂λSρσ +Mρ

μν
S
μ
λS

ν
σ
)V λV σ = 0. Here

comes the nonrigorous part, which renders the argument heuristic. We argue that ∂λSρσ +Mρ
μν
S
μ
λS

ν
σ

= 0, even
though we have only shown that this quantity vanishes when multiplied by V λV σ and evaluated on a geodesic.
We could of course show by explicit and laborious calculation, as was done in appendix 3, that this is in fact true.
But it is nevertheless highly plausible, since it holds for any geodesic.

So we feel that it must be true. Once again, I can appeal to what the American Mathematical Society said,
as recounted in a footnote in this chapter. Multiplying by S−1 (and relabeling indices), we have (S−1)

ρ

λ
∂ρS

μ
σ

+
M

μ
λνS

ν
σ

= 0. In contrast, looking at (5), (28), and (2), we have {{DλW
μ}} = ((S−1)

ρ

λ
∂ρS

μ
σ

+M
μ
λνS

ν
σ
)Wσ = 0, so

that as claimed, the covariant derivative DλW
μ transforms like a tensor.

You perhaps see that this heuristic argument is actually quite simple, even though writing it all out involves
way too many words.

At the risk of repeating myself, I close this appendix with two important clarifying remarks:

1. The geodesic equation is guaranteed to transform like a vector, because the action it was derived from
is manifestly a scalar; in other words, the left hand side of (31) comes from varying an action invariant
under general coordinate transformation.
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2. Beginning students are puzzled by the statement “a tensor is something that transforms like a tensor”
(as mentioned in chapter I.4), because they rarely encounter something that does not transform like a
tensor. To understand something, it is often easier to understand what would negate that something.
Here we encounter two objects ∂λWμ and �

μ
λνW

ν that are not tensors, even though they have indices
and everything. When they are added together, their separate nontensorial characters cancel out, kind
of like in the ideal couple alluded to earlier.

Appendix 5: A constant vector field

It is often illuminating to look at important concepts from different angles. In this spirit, let me introduce you
to another friend of mine, the naive guy.

He tells us excitedly, “I have discovered a constant vector field. I spent years measuring its 16 derivatives
∂μW

λ(x) in my lab and found that they all vanish within experimental error!”
We explain, “Well, first, your statement is local to your lab, but more importantly, your concept of con-

stant vector field is special to your coordinate system. In our coordinates, ∂ ′
μ
W ′λ(x′)= (S−1)

ν

μ
∂ν [Sλ

ρ
Wρ(x)] =

(S−1)
ν

μ
(∂νS

λ
ρ
)(S−1)

ρ

σ
W ′σ (x′)≡ −�′λ

μσ
(x′)W ′σ (x′) are not zero.”

The naive guy lapses into stunned silence. But we soothe his disappointment by pointing out that his concept
of a constant vector field is still useful but has to be defined as a vector field whose covariant derivatives
D′
μ
W ′λ(x′)≡ ∂ ′

μ
W ′λ(x′)+ �′λ

μσ
(x′)W ′σ (x′) vanish.

Together with the naive guy, we work out (the third equality follows from (7))

�′λ
μσ
(x′)= −(S−1)

ν

μ
(∂νS

λ
ρ
)(S−1)

ρ

σ
= −(S−1)

ν

μ
[(∂νS)(S

−1)]λ
σ

= (S−1)
ν

μ
(S∂νS

−1)λ
σ

= ∂x′λ

∂xρ

∂2xρ

∂x′μ∂x′σ (32)

in agreement with (30). This shows that the naive guy’s concept of constancy holds only in those coordinates
related linearly to his, namely xμ = ax ′μ + bμ. Then we have �′λ

μσ
(x′)= 0. He happens to have chosen locally flat

coordinates!

Appendix 6: Lie derivative once more

It may be worthwhile to approach the Lie derivative from a slightly different direction. In elementary physics,
you learned about the gradient of a function �∇f and the rate of change of f in the direction of a given vector �v,
namely �v . �∇f .

Given a vector field V μ(x) and a scalar field φ(x), we use this notion to define the Lie derivative LV φ ≡ V ν∂νφ.
We then attempt to generalize this to the Lie derivative of a vector field Wμ(x).

For our first try, we write down V ν(x)∂νW
μ(x), but this does not transform properly. In the text, by promoting

∂ν to the covariant derivative Dν we could make V ν(x)DνW
μ(x) transform like a vector. But another possibility

suggests itself: Wν(x)∂νV
μ(x) also transforms badly, and as described somewhat picturesquely in the text, two

objects both with character defects could join together to form a couple in which the defects cancel out. Thus,
we are led to define

LVW
μ ≡ V ν∂νW

μ −Wν∂νV
μ = −LWV

μ (33)

and then to show that it transforms properly.
Insisting on LV (W

μUμ) = V ν∂ν(W
μUμ) (since WμUμ is a scalar) and the product rule LV (W

μUμ) =
(LVW

μ)Uμ +Wμ(LVUμ), we are forced to

LVUμ = V ν∂νUμ + Uν∂μV
ν (34)

Compare the opposite signs in (33) and (34) with the opposite signs in (11) and (12).
Now that we have (33) and (34), we can define LV acting on any tensor by pretending that it is composed by

multiplying vectors together (for example, pretending that T μ
νρ

is equal to WμUνYρ) and invoking the product
rule. Thus, LV Tμν = V λ∂λTμν + Tλν∂μV

λ + Tμλ∂νV
λ.
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In chapter IX.6, we will pose the following question. Given a metric gμν , does there exist a vector field ξ(x)

such that its Lie derivative acting on the metric vanishes? If so, then ξ(x) is known as a Killing field. We see that
the condition for a Killing field to exist is

Lξgμν = ξλ∂λgμν + gλν∂μξ
λ + gμλ∂νξ

λ = 0 (35)

We will study this equation in detail in chapter IX.6.

Appendix 7: Curved spacetime in the lab?

The subject of this appendix is somewhat off the subject of this chapter, but I wish to introduce you to an
interesting and amusing area of physics, namely that of constructing analog curved spacetime in the lab. Before
you say “what?”, note the word “analog.”

To set up the discussion, consider a scalar field ϕ(x) in Minkowski spacetime governed by the action S =
− ∫

ddx( 1
2η

μν∂μϕ∂νϕ + V (ϕ)), with V (ϕ) some function of ϕ. (You might recall that we first encountered an
action of this form way back in appendix 2 of chapter II.3, before we even got to special relativity.) To keep the
discussion simple, we will ignore V (ϕ) or simply set it to 0.

In the discussion leading up to (18), we showed the power of the equivalence principle. We obtained the action
of an electromagnetic field in the presence of a gravitational field by simply replacing the Minkowski metric ημν
in the Maxwell action by gμν . We now repeat this amazing feat: we obtain the action governing a scalar field in
curved spacetime, namely S = − 1

2

∫
ddx

√−ggμν∂μϕ∂νϕ.
Phew, that was easy! Exactly: the equivalence principle is powerful stuff.
Now that we have followed Einstein to the scalar field action in curved spacetime, we follow Euler and Lagrange

to the corresponding equation of motion, namely ∂μ
(

δL
δ∂μϕ

)
= 0. This works out to be

1√−g ∂μ(
√−ggμν∂νϕ)= 0 (36)

Applying what we learned in this chapter, we recognize this as just DμD
μϕ = 0, the curved spacetime version of

the flat spacetime equation of motion ∂μ∂
μϕ = 0.

Fine—now what? The point is that (36), when written out in terms of ∂
∂t

, ∂
∂x

, ∂
∂y

, and so on (with a slight abuse
of notation here), is just a second order partial differential equation. But second order partial differential equations
appear in many areas of physics, and some of these could be written as (36) for some gμν . For example, consider
the Bose-Einstein condensate as a fluid.5 Its phase angle ϕ(t , �x) satisfies a second order partial differential
equation; when written in the form given in (36), the equation can be interpreted as a scalar field moving in
curved spacetime. For instance, terms that involve both ∂

∂t
and ∂

∂x
correspond to the entry gtx in gμν in (36). The

name of the game is to set up some flow in the lab (such as that of a fluid rushing down a drain) that corresponds
to an interesting analog curved spacetime, such as that of a black hole!

Incidentally, we will come back to the scalar field action in curved spacetime in chapter VIII.4, when we discuss
inflationary cosmology.

Exercises

1 Show that the divergence of a tensor is given by DμT
μν = ∂μT

μν + �
μ
μλT

λν + �ν
μλ
T μλ.

2 Given the covariant derivativeDνW
μ in (5), integrate

∫
dDx

√−gT ν
μ
DνW

μ to obtain the covariant divergence
of the tensor T ν

μ
. Verify that it agrees with the result of (1).

3 Using the explicit expression for the Christoffel symbol in terms of the metric, show that Dλgμν = 0. Note
that in contrast ∂λgμν definitely does not vanish. Thus, the metric is a very special tensor: it is the tensor
with two lower indices that is covariantly constant. Also, note that the condition Dλgμν = 0 can be used to
determine the Christoffel symbol. Check this for the sphere. Show also that Dλg

μν = 0.
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4 Add to the electromagnetic action a term coupling Aμ to a current and vary to find Maxwell’s equations in
curved spacetime.

5 Evaluate the electromagnetic action in the expanding universe discussed in chapter V.3 in terms of the electric
and magnetic fields.

6 Define the covariant derivative of a scalar along a curve.

7 Define the covariant derivative of a tensor along a curve.

Notes

1. The question “How do you do?”—perhaps short for “How do you do it day after day?”—could be stated as
“How do you transform under time translation?”

2. Incidentally, you will also need this identity repeatedly when doing quantum field theory.
3. To use a stock market analogy, it is not the change in earnings, but the difference between actual earnings

and expected earnings, that counts.
4. J. McPhee, Levels of the Game, Farrar Straus Giroux, 1979.
5. See the interesting work of Luis Garay, in particular a talk he gave in Leiden in 2007.



Recap to Part V

If you hold a ketchup bottle upside down and wait for the ketchup to come out, you are
applying gravity, but if you shake the bottle or hit it, you are applying the inertial principle,
though in both cases merely in the Newtonian limit. The truly amazing thing is that the
second strategy, involving accelerating frames, contains the seed of the first strategy!

Remarkably, any layperson familiar with airline maps can grasp Einstein’s equivalence
principle, one of the deepest and most powerful principles in physics.

The message is that if you know how to change coordinates, you almost know curved
space and curved spacetime, and once you know how to find “straight” lines in curved
space, you know how to track the motion of particles in curved spacetime!

Honoring the fundamental principle that physics should not depend on the physicist,
we have to understand how things transform. Understanding that, we know how to
differentiate.

Interestingly, analog curved spacetimes may appear in an actual lab.



Part VI Einstein’s Field Equation Derived and Put to Work





VI.1 To Einstein’s Field Equation as Quickly as Possible

Years of intense longing

[Now] the happy achievement seems almost a matter of
course. . . . But the years of anxious searching in the dark,
with their intense longing, their alternations of confidence and
exhaustion, and the final emergence into the light;—only those
who have experienced it can understand that.

—A. Einstein1

Traditionally, students of general relativity often feel like foot soldiers in the Napoleonic
army on an interminable march2 toward Moscow. After conquering tensors, there is the
battle of differential geometry, and on, and on. I certainly felt that way. For many, even
learning Einstein gravity could be characterized as “intense longing, alternating with
confidence and exhaustion.” In this chapter, I will attempt the pedagogical equivalent of
airlifting you, given that you now know how to differentiate a vector, directly to Einstein’s
action for gravity.

Let me take you to Einstein’s field equation as quickly as possible, starting with what
you already know. My pedagogical philosophy is to keep things as simple as possible. I
will necessarily have to take shortcuts, but when I do, I will alert you. I could elaborate and
expand on each point, but it is better to come back and do that later. Remember, it took
Einstein 10 years to get there. Rather than deriving everything at once, we will wing it at
times; you will see what I mean.

Before we start, let’s take stock of our situation. Thanks to the equivalence principle
(whose essence I claim that Galileo could have understood), you and I know that gravity
amounts to curved spacetime. Thanks to how I set up this book, starting with coordinate
changes leading immediately to curved space, and with the action principle capable of
incorporating immediately a curved background, you and I have come a very long way
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indeed. If somebody gives us a curved spacetime, we could jump to it and figure out how
particles, massive or massless, move in this curved spacetime.

But you and I do not know how to generate this spacetime. Yes, we know how to use
symmetry to restrict the form of the metric, as in chapters V.2 and V.3, so that it depends on
merely one or two functions in the more symmetric cases (a(t) for the expanding universe,
and A(r), B(r) for the Schwarzschild metric). But how to determine these functions?

Let’s understand where we are by analogy with what we know already. In Newtonian
gravity, we first learned in chapter I.1 how particles move in a gravitational field �(�x). But
it was not until chapter II.1 that we, suitably inspired by the hanging membrane, figured
out how to determine �(�x): simply add

∫
dtd3x ( �∇�)2 to the action, that is, ( �∇�)2 to the

Lagrangian. In electromagnetism, our present situation with regard to gravity is analogous
to our knowing, in chapter IV.1, the Lorentz force law telling us how particles move in an
electromagnetic field, but not Maxwell’s equations. This was remedied in chapter IV.2 by
adding FμνFμν = (∂μAν − ∂νAμ)(∂λAρ − ∂ρAλ)η

μληνρ to the Lagrangian.

Searching for something containing two derivatives

In all these cases, we add to the Lagrangian a term quadratic in the field (� in one case,
Aμ in the other) and quadratic in derivatives (spatial or temporal). In fact, all this parallels
the point particle Lagrangian 1

2m(
d �q
dt
)2. As Einstein said, it now “seems almost a matter of

course,” at least in hindsight. To describe the dynamics of the gravitational field, we are
evidently invited to add a term involving two powers of derivative acting on the metric, a
term that reduces to ( �∇�)2 in the nonrelativistic weak field limit.

The search for actions containing two powers of ∂
∂t

has served as a “golden” guiding
principle in theoretical physics: golden because it has worked3 from Newtonian mechan-
ics to grand unified theory, and because theoretical physicists do not know how to handle
the inherent instability4 in dynamics with higher powers of time derivative, a little known
instability discovered in 1850 by the Russian M. V. Ostrogradsky. We have already encoun-
tered this principle as far back as chapter II.3 (see appendix 1), and we will encounter it
again on a number of occasions. In this chapter we will see that it works for Einstein gravity.

We also immediately notice some crucial differences. In Newtonian gravity and in
Maxwellian electrodynamics, the relevant fields � and Aμ vanish∗ in the absence of the
gravitational field and the electromagnetic field, respectively. In contrast, in the absence
of a gravitational field, we know that gμν reduces to ημν. Indeed, we know from our
discussions in chapters IV.1 and V.2 that in the weak field limit, g00 � −(1 + 2�). In
general, let’s write gμν = ημν + hμν; it is hμν that measures the deviation of the spacetime
from flat spacetime and that may play a role analogous to � and Aμ. Furthermore, we
expect that the inverse metric gμν will also appear in the Lagrangian (since in Maxwell’s
Lagrangian, ημν already enters, and certainly there is no reason for gμν not to appear). If

∗ Up to a trivial additive constant in the case of � and a gauge transform in the case of Aμ.
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so, since gμν is the inverse of gμν = ημν + hμν and hence an infinite series in the field
hμν, we might anticipate that the gravitational Lagrangian we are searching for may be
considerably more complicated than quadratic in hμν. (In other words, it may only be
in the weak field limit that the Lagrangian has the schematic form ∼ (∂h)2. For further
discussion along this line, see chapter IX.5.)

An important consideration is the restriction imposed by symmetry. In Newtonian
gravity, rotational symmetry forbids us to write, instead of the familiar and nice

( �∇�
)2 =

(
∂�

∂x

)2

+
(
∂�

∂y

)2

+
(
∂�

∂z

)2

something dreadful like

ax

(
∂�

∂x

)2

+ ay

(
∂�

∂y

)2

+ az

(
∂�

∂z

)2

+ bxy

(
∂�

∂x

∂�

∂y

)
+ . . .

with arbitrary coefficients ax , ay , . . . . (In other words, we know from experiments that
space does not pick out a special direction, and so ax = ay, bxy = 0, and so forth to a
high degree of accuracy.) In the case of electromagnetism, we have Lorentz symmetry
and gauge invariance, which together fix the form FμνF

μν. (I have already emphasized
in chapter IV.2 that gauge invariance is not a symmetry as such, but a redundancy in the
description:Aμ andAμ + ∂μ�describe the same physics.) Thus, for example, we can’t have
something like ∂μAν∂λAρη

μληνρ for the electromagnetic Lagrangian. In the case of gravity,
the requirement is even more stringent: the action must be invariant under coordinate
transformations x → x′(x). Again, this indicates a redundancy in the description: different
coordinate systems can describe the same spacetime.

Einstein’s search for action and Riemann’s quest for curvature

At this point, you might suddenly realize that Einstein’s search for an action for gravity is
more than intimately linked to Riemann’s quest for an invariant or a covariant description
of curvature. We kept saying in part I that the Riemann curvature tensor must involve two
powers of derivatives acting on the metric and must transform properly as a tensor. Here
we want to find an action. Indeed, in this chapter, we will solve both problems at once: find
the Riemann curvature tensor and the action for gravity. Two birds with one stone!

In the history of the intersection between physics and mathematics, this realization, that
gravity and curvature are one and the same, represents one of the most profound insights
ever. Perhaps we are reminded of the search for a mechanics of motion and the quest for
a calculus to describe infinitesimal change. There the solution was essentially provided by
one single person.

Incidentally, even with all this background, the correct form for what we seek is far from
obvious. You could challenge yourself by finding it without reading on. The invariance of
the action under coordinate transformations suggests an expression with two powers of the
covariant derivative Dλ and the metric, but we also know that Dλgμν vanishes identically.
So the correct expression must involve terms with the ordinary derivative acting on the
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metric but arranged in such a way that the entire package is invariant under coordinate
transformations.

Breaking the Newton-Leibniz rule

After all this preamble, setting the stage as it were, we now roll up our sleeves and get to
work. Start with what you know: the covariant derivative of a vector with a lower index:

DνSρ = ∂νSρ − �σ
νρ
Sσ (1)

Let us first go back to elementary calculus. Given the value of a function f (x) and its
derivative at some point x, then the value of the function at the point x + δx a short distance
away is of course given by (1 + δx d

dx
)f (x)� f (x + δx). Think of the operation (1 + δx d

dx
)

as a translation operator: it moves or translates the function from the point x to the point
x + δx. Generalize to 2-dimensional flat space. Consider a small rectangle with opposite
corners at (x , y) and (x + δx , y + δy). To find the value of a function at (x + δx , y + δy),
we can translate first in the x direction and then in the y direction:(

1 + δy
∂

∂y

) (
1 + δx

∂

∂x

)
f (x , y)=

(
1 + δx

∂

∂x
+ δy

∂

∂y
+ δxδy

∂

∂y

∂

∂x

)
f (x , y) (2)

We apply the translation operator in the x direction, followed by the translation operator
in the y direction.

Now let us ask a seemingly pointless question: suppose we translate first in the y

direction and then in the x direction. We could travel from the corner (x , y) to the
diagonally opposite corner (x + δx , y + δy) along the edges of the rectangle in two different
ways. You say, we would get the same answer, of course. Indeed, the difference between
the two ways of getting f (x + δx , y + δy) is equal to({

1 + δx
∂

∂x
+ δy

∂

∂y
+ δxδy

∂

∂y

∂

∂x

}
− (x ↔ y)

)
f (x , y)= δxδy

[
∂

∂x
,
∂

∂y

]
f (x , y)= 0 (3)

where I have introduced the commutator5 [ ∂
∂x

, ∂
∂y

] ≡ ∂
∂x

∂
∂y

− ∂
∂y

∂
∂x

. In the last step, I used
the Newton-Leibniz rule that the order of taking derivatives does not matter.

Now that you have mastered this laughably easy stuff, we are ready to move on to curved
space. Instead of a simple function f (x), we will translate an arbitrary vector Sρ(x). We
apply the translation operator to (1 + (δ1x)

νDν), since we have just learned that in curved
space, the ordinary derivative ∂ν is to be replaced by the covariant derivativeDν. Here (δ1x)

denotes an infinitesimal displacement with components (δ1x)
ν (with ν = 0, 1, . . . , d).

Let us now play the same game as before and consider a curved “rectangle” with (δ1x)

along one edge, and some other infinitesimal displacement (δ2x)= (δ2x)
ν along the other

edge. See figure 1. We translate Sρ(x) first along (δ1x) and then along (δ2x). The result
is then (1 + (δ2x)

μDμ)(1 + (δ1x)
νDν)Sρ(x). We then go the other way around, with the

result (1 + (δ1x)
νDν)(1 + (δ2x)

μDμ)Sρ(x). The difference in the two results is then given
by (δ2x)

μ(δ1x)
ν[Dμ, Dν]Sρ(x). Were we in flat space, this quantity would have been zero.
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δ1x

δ2x

Figure 1 Displacing a vector in two different ways
to the opposite corner of a curved rectangle.

Thus, the nonvanishing of this quantity measures the curvature at the point described
by x.

So, let’s compute this commutator of two covariant derivatives acting on our vector S:
[Dμ, Dν]Sρ =DμDνSρ −DνDμSρ.

Before we drown in a sea of indices, let us anticipate the structure of what we will get
by schematically doing the calculation, suppressing all but the two most essential indices:
[Dμ, Dν]Sρ ∼ (∂μ + �

.
μ.)(∂ν + �

.
ν .)S. − (μ↔ ν). Remarkably, we will not end up with any

partial derivative ∂ acting on S. First, obviously ∂μ∂ν − (μ↔ ν) vanishes, once again as
Newton and Leibniz assured us. But what about one power of ∂ acting on S? The relevant
terms are �.

μ.∂νS. + �
.
ν .∂μS. − (μ↔ ν), which vanishes. (We will shortly put in all the

indices and do it more carefully.) Thus, impressionistically, we obtain

[D., D.]S. ∼ [∂. + �
.
.., ∂. + �

.
..]S. ∼ (

(∂.�
.
.. + �

.
..�

.
..)− (. ↔ .)

)
S. (4)

The result turns out to be S multiplied by a tensor:

[Dμ, Dν]Sρ = −Rσ
ρμν

Sσ (5)

(The minus sign is to conform to convention.) As the use of the capital letterRmay suggest,
Rσ

ρμν
is the celebrated Riemann curvature tensor. It is manifestly a tensor, since the left

hand side of (5) is a tensor: DμDνSρ and DνDμSρ are both tensors, and the difference
between two tensors is a tensor.

Riemann curvature tensor

What are the differential laws which determine the Riemannian
metric (i.e. gμν) itself? . . . [The] solution obviously needed
invariant differential systems of the second order taken from
gμν. We6 soon saw that these had already been established by
Riemann (the tensor of curvature). We had already considered
the right field equation for gravitation for two years before the
publication of the general theory of relativity, but we were unable
to see how they could be used in physics. On the contrary I
felt sure that they could not do justice to experience. Moreover
I believed that I could show on general considerations that a
law of gravitation invariant in relation to any transformation
of coordinates whatever was inconsistent with the principle of
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causation. These were errors of thought which cost me two years
of excessively hard work, until I finally recognized them as such
at the end of 1915 and succeeded in linking the question up
with the facts of astronomical experience, after which I ruefully
returned to the Riemannian curvature.

—A. Einstein7

Now let’s compute for real, keeping track of all indices. We learned in (V.6.14) that the
second covariant derivative is given by

DμDνSρ = ∂μ(DνSρ)− �σ
μν
DσSρ − �σ

μρ
DνSσ (6)

To calculate [Dμ, Dν]Sρ, we are to subtract from (6) the expression we obtain by interchang-
ing μ and ν in (6). We notice that the second term is symmetric in μ and ν and so can be
dropped. Next, for DνSρ in the first and third terms, we insert the expression in (1). Thus,

[Dμ, Dν]Sρ = ∂μ(∂νSρ − �σ
νρ
Sσ )− �σ

μρ
(∂νSσ − �κ

νσ
Sκ)− (μ↔ ν)

= ∂μ∂νSρ − (∂μ�
σ
νρ
)Sσ − �σ

νρ
∂μSσ − �σ

μρ
∂νSσ + �σ

μρ
�κ

νσ
Sκ − (μ↔ ν) (7)

Indeed, the calculation is even simpler than shown here if we trust the preceding argument
and do not even bother to write down any term involving ∂.S. and ∂.∂.S.. But let’s be careful.

Happily, lots of terms knock each other off when we antisymmetrize inμ and ν. The first
term goes away, and the third and fourth terms go away together, in accordance with our
earlier “sloppier” argument. Thus we are left with (for convenience, we have interchanged
the dummy indices κ and σ in the fifth term in (7))

[Dμ, Dν]Sρ = −(∂μ�σνρ)Sσ + �κ
μρ
�σ

νκ
Sσ − (μ↔ ν)

= −
(
∂μ�

σ
νρ

− �κ
μρ
�σ

νκ
− (μ↔ ν)

)
Sσ (8)

in agreement with (4). Comparing with (5), we obtain the defining expression for the
Riemann curvature tensor:∗

Rσ
ρμν

= (∂μ�
σ
νρ

+ �σ
μκ
�κ

νρ
)− (∂ν�

σ
μρ

+ �σ
νκ
�κ

μρ
) (9)

Note that once we arrive here, we could care less about Sρ: it is just a convenient crutch.
In summary, as anticipated, curvature expresses the failure of the Newton-Leibniz rule

for covariant derivatives.† Since the Christoffel symbol has the schematic form �
.
.. ∼

g
..
∂.g.., the curvature tensor R.

... involves‡ two derivatives acting on the metric, as we
anticipated, here and as far back as in chapter I.6.

∗ In part IX, we will give two alternative derivations of Rσ
ρμν

, one based on parallel transport (and closely

related to the derivation given here) and one based on geodesic deviation.
† This derivation has the added advantage that when and if you study Yang-Mills theory, you will see essentially

the same argument. The Yang-Mills field strength is also given by the commutator of two covariant derivatives.
Indeed, if you are familiar8 with the gauge invariant derivative in electromagnetismDμ ≡ ∂μ − iAμ, we also have
[Dμ , Dν ] = −iFμν , the electromagnetic field strength.

‡ The curvature tensor clearly involves ∼ ∂∂g and ∼ ∂g∂g. When evaluating ∂.g.., note that g.. is the inverse
of g.. and recall the identity (V.6.7).
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In a locally flat coordinate system, the Riemann curvature tensor expresses the second
order deviation of the metric from being flat, as we discussed in part I. In fact, Rσ

ρμν
is the

only tensor we can form out of two derivatives acting on the metric.
Professor Flat pops up, declaring, “That’s easy to prove! Suppose there is another tensor

with the same properties as the Riemann curvature tensor. Form the difference 
σ
ρμν

.
Since 
 vanishes in a locally flat system and since it is a tensor by assumption, it vanishes
in all frames.” This uniqueness is of crucial importance when we come to construct the
action for gravity.

Symmetry properties of the Riemann tensor

The Riemann curvature tensor Rλ
ρμν

is a formidable object, but fortunately it enjoys
various symmetry properties upon interchange of indices that will make our lives a lot
easier. Already, from the derivation in (8) and (9), we know that it is antisymmetric under
the interchange of μ and ν:

Rλ
ρμν

= −Rλ
ρνμ

(10)

To discover further symmetries, we first let the four indices have, at least nominally, equal
status. Thus, let us lower the index λ: Rτρμν = gτλR

λ
ρμν

.
What makes us think that there are additional symmetries? Our fingers. We count. Way

back when in chapter I.6, we counted that 20 numbers were required to specify curvature
in 4-dimensional spacetime. Here we count 4 × 4 × 1

2(4 × 3)= 96 components in Rτρμν

thus far, which have to be reduced to 20 by symmetries.
Professor Flat ambles by again, just in time to save us a lot of work. He says: “Since

you are looking for symmetry properties of a tensor, you could simply go to a locally flat
coordinate system around some generic point P, just as in chapter I.6.”

So, translate our coordinate system so that P is at the origin x = 0. Expanding, we write

gτμ(x)= ητμ + Bτμ,λσx
λxσ + . . . (11)

where the Taylor coefficient Bτμ,λσ is, by construction, symmetric under the interchange
of τ and μ or of λ and σ . (Recall from chapter I.6 that the comma on the quantity B is
purely for typographical convenience: it helps us separate mentally two sets of indices τμ
and λσ that appear for different reasons.)

Good! Plug this into �λ
ρν

≡ 1
2g

λτ(∂ρgτν + ∂νgτρ − ∂τgρν) to find

�λ
ρν

= ηλτ (Bτν ,κρ + Bτρ ,κν − Bρν ,κτ )x
κ + . . . (12)

As expected, �λ
ρν

vanishes at the point P, and thus the expression (9) for the Riemann
curvature tensor simplifies enormously to Rλ

ρμν
= ∂μ�

λ
ρν

− (μ↔ ν). Furthermore, the ∂μ
acting on �λ

ρν
merely removes xκ from the right hand side of (12) and sets the index κ to

μ in what is left. We thus find easily

Rλ
ρμν

= ηλτ (Bτν ,μρ + Bτρ ,μν − Bρν ,μτ)− (μ↔ ν) (13)



344 | VI. Einstein’s Field Equation Derived and Put to Work

Note that the middle term in the parentheses is symmetric in μν and hence goes away.
Lowering the λ index, we obtain

Rτρμν = Bτν ,μρ − Bρν ,μτ − (μ↔ ν)= Bτν ,μρ − Bρν ,μτ − Bτμ,νρ + Bρμ,ντ

= (Bτν ,ρμ + Bρμ, τν)− (Bρν , τμ + Bτμ,ρν) (14)

To our surprise, we have

Rτρμν = −Rρτμν (15)

as we could already have seen from the second term in (14). The antisymmetry of the
Riemann curvature tensorRτρμν in the last pair of indices is, as remarked already, obvious
from its construction, but this antisymmetry in the first pair of indices τρ catches us by
surprise. It was completely obscured in (8) and in (9). (In chapter IX.7, we will give a better
understanding of this unexpected symmetry.)

Staring at (14) and remembering the symmetry properties ofB.., .., we next discover that
the Riemann tensor is symmetric upon interchange of the first and second pair of indices:

Rτρμν = Rμντρ (16)

Note that (10) and (16) imply (15). In the same way, looking at (14), you can prove cyclicity
in the last three indices: Rτρμν + Rτμνρ + Rτνρμ = 0.

Professor Flat: “Let me stress it again. Since these symmetry relations are tensor equa-
tions, they hold in any coordinate system, even though they are derived in a locally flat
coordinate system.”

As an exercise, you can show by explicit counting that, in 4-dimensional spacetime,
the 96 components in Rτρμν indeed reduce to 20 independent components, thanks to the
symmetry relations just proved.

Onward to the Einstein-Hilbert action

The last month I have lived through the most exciting and
the most exacting period of my life. . . . I saw clearly that a
satisfactory solution could only be reached by linking [the theory
of gravity] with Riemann variations.

—A. Einstein, writing to Arnold Sommerfeld, late 1915

After all this math, let us not lose sight of what we are after: we want to construct an action
for gravity, an action to describe how spacetime curves under the grip of gravity. The action
is required to be invariant under general coordinate transformations. It certainly must not
depend on the observer! Remarkably, this requirement determines the action uniquely.

As explained earlier in chapter I.5, the coordinate invariant volume element is not d4x,
but d4x

√−g where g = det(g..) denotes the determinant of the metric tensor regarded
as a matrix. (For spacetime, g is negative, hence the minus sign.) Thus, we demand
an action of the form Sgravity = ∫

d4x
√−g(x)A(x), where A is a scalar (in other words,
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A′(x′) = A(x) under a general coordinate transformation). For the action to govern the
dynamics of spacetime curvature, the unknown scalar A should contain two derivatives
acting on the metric, as already mentioned in chapter IV.2 and as explained earlier in this
chapter.

You say, now that we have the Riemann curvature tensorRτρμν, we could simply contract
all the indices to obtain a scalar, namely a tensor with no indices. This scalar would then
allow us to construct the action.

More explicitly, the first step in the process would be to multiply the curvature tensor by
the metric tensor and sum over indices, obtaining a tensor with two indices. For example,
we could construct gτμRτρμν, which is evidently a tensor with two lower indices ρ and ν.
We say that we have contracted the indices τ andμ. We then repeat the process, multiplying
by gρν to obtain gρνgτμRτρμν.

Now we see why we have to study the symmetry properties of the curvature tensor. We
need to know how many distinct scalars we can construct.

We want to get to Einstein gravity as quickly as possible, but not any quicker! Pausing
to study the symmetry properties of the curvature tensor was unavoidable.

Indeed, some of the possible contractions turn out to give zero. For example, if we
start by contracting μν, the result gμνRτρμν would evidently vanish, since Rτρμν is anti-
symmetric in μν by construction, while gμν is symmetric. (To see this, note that gμνRτρμν

= gνμRτρμν = −gνμRτρνμ but an object equal to its negative can only be zero. Remember
exercise I.4.5?)

But from what we just learned in (15), we can’t contract τρ either. We can contract τμ
and define a 2-indexed tensor known as the Ricci∗ tensor by

Rρν(x)≡ gτμ(x)Rτρμν(x) (17)

But this is the only possibility! All the other contractions you can think of either vanish
(as mentioned above) or give the Ricci tensor again up to an overall sign. For instance,
gρμRτρμν = −gρμRρτμν = −Rτν. You can get only one single 2-indexed tensor by con-
tracting two of the four indices of the Riemann tensor!

Notice that (16) implies that the Ricci tensor is symmetric.
Now there is only one way, duh, to contract the two indices on the Ricci tensor:

R(x)≡ gρν(x)Rρν(x) (18)

This second contraction produces a scalar very imaginatively named the scalar curvature
and also denoted by the letter R. I trust you not to be confused by this standard notation:
there are three different tensors, all carrying the nameR in honor of Riemann (or perhaps
also Ricci!). The Riemann, Ricci, and scalar curvatures are distinguished by how many
indices they carry: 4, 2, or 0, respectively.

In summary, out of the Riemann curvature tensor, we can form one and only one scalar,
namelyR(x). Remarkable! Under a general coordinate transformation, the 20 components

∗ Gregorio Ricci-Curbastro shortened his last name when he published the most important paper of his career.
Perhaps there is a lesson in there somewhere for the reader.
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(for 4-dimensional spacetime) of the curvature tensor transform into linear combinations
of each other with coefficients that depend on the transformation, but out of these, only
one combination remains unchanged. The scalar curvature is the unique scalar we can
form out of the metric and two powers of derivatives.

Thus, general coordinate invariance fixes the action for gravity uniquely to be I =∫
d4x

√−g(x)R(x), the spacetime integral of R(x), times some overall constant.
Let us do some simple dimensional analysis. The action has dimensions of mass

times length, which we will write as ML. (To see this, simply recall the action for a
point particle Spoint particle = −m ∫

dτ . We are of course using units in which c = 1.) In
contrast, the metric g.. is dimensionless and R, constructed out of the metric and two
derivatives, has dimension 1

L2 . Hence the integral I has dimension L4 1
L2 = L2. To obtain

the action, we have to divide the integral by a constant with the dimensions of L
M

to get the
dimension right. But recall from the introduction that Newton’s constant G has precisely
dimension L

M
.

A highly satisfying fact! Einstein did not have to introduce any9 new fundamental
constants into physics to construct his theory of gravity. The action can only be S =
aG−1 ∫ d4x

√−gR, with a some pure number fixed by the requirement that S reduces
to Newtonian gravity in the appropriate limit. As we will see, a = 1

16π , but we will not need
this historical number for quite a while.

The action for gravity, known as the Einstein-Hilbert action after its two discoverers, is
thus (trumpets please)

SEH ≡ 1
16πG

∫
d4x

√−gR (19)

The Einstein-Hilbert action possesses a wonderfully unique quality. As Ludwig Beethoven
declared about his composition, “Muß es sein? Es muß sein.” [Must it be? It must be.] Art
in its perfection must be a necessity.10 (See figure 2.)

We conclude that the action11 of the universe is given by

S = SEH + Smatter (20)

Figure 2 “Must it be? It must be.” (Illustration adapted from Fearful.)
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where Smatter is defined as the action for everything else (for example, including the
electromagnetic field).

Einstein’s field equation

After we finish celebrating our success in deriving the action for gravity, we realize that,
as Euler and Lagrange remind us, we still have to vary the action S with respect to the
gravitational field gμν to obtain Einstein’s field equation. This variation turns out to involve
a bit of work. For instance, to determine how R varies with respect to gμν, we have to
determine how the Riemann curvature tensor varies, and to get that, we have to determine
how the Christoffel symbol varies. Not that difficult to do, but it involves some set up. We
will postpone this until chapter VI.5.

Meanwhile, I will show you that we can get remarkably far doing practically no work.
First, without sweating through the actual varying, we will give a name to the result. Define
a tensor with two upper indices Kμν(x) by

δI = δ

∫
d4x

√−g(x)R(x)≡
∫

d4x
√−g(x)Kμν(x)δgμν(x) (21)

In varying S in (20), we have to vary Smatter also, of course. Here, in the spirit of getting to
Einstein’s field equation as quickly as possible, I will take a shortcut. We content ourselves,
for the moment, with Einstein’s field equation for empty spacetime; that is, we drop Smatter

from the action, so that we avoid having to vary Smatter. With that simplification, the field
equation is given simply by Kμν(x)= 0.

As we will see, this suffices to derive the Schwarzschild metric and hence the physics
of the three classic tests and of black holes.

So, let us try to get away with doing as little work as possible. Even though we don’t
know what Kμν is, we know a lot about him. Since in (21), the two derivatives contained
in R(x) cannot disappear into thin air, Kμν(x) must contain two derivatives, no more, no
less. Also, Kμν is manifestly a tensor, since in (21) δI is a scalar and δgμν is a tensor.

So list all the tensors with two upper indices we know of. The metric tensor gμν comes
to mind (of course), but it does not contain derivatives. However, we could multiply gμν

by the scalar curvature, which does contain two derivatives, just what we need. So gμνR
is one candidate. Next up is the Ricci tensor Rμν, which also contains two derivatives.
That’s it. (You might suggest, for example, the tensor RρμσνRρσ , but it contains four
derivatives.) In other words, Kμν must be a linear combination of gμνR and Rμν: Kμν =
A(Rμν + αgμνR), with A and α two unknown numerical constants we will have to work
to determine.

Hence, with almost no work, we obtain Einstein’s field equation in empty spacetime:

Kμν = A(Rμν + αgμνR)= 0 (22)

The constantA cannot vanish, since that would imply that the proposed action is indepen-
dent12 of the metric. Next, multiplying (22) by gμν, we obtain (1 + 4α)R = 0. Unless we



348 | VI. Einstein’s Field Equation Derived and Put to Work

Figure 3 Einstein writing his field equation.

are extremely unlucky and α turns out to be − 1
4 (we will verify soon enough that it is not),

we can conclude that R = 0. Hence (22) says that

Rμν = 0 (23)

This is the Einstein field equation in empty spacetime. (In figure 3, we see Einstein
writing13 this famous equation.) It says that the Ricci tensor vanishes. We speak of the
field equation in the singular, but in fact it consists of a set of equations according to the
values taken byμν. It is important to realize that the vanishing of the Ricci tensor does not
imply the vanishing of the Riemann curvature tensor. Evidently,Rμν(x)= gτσ (x)Rτμσν(x),
given by a sum over the components of the Riemann curvature tensor, can vanish without
Rτμσν(x) having to vanish. Were the Riemann curvature tensor zero, spacetime would be
flat. Einstein tells us that, in empty spacetime, a particular sum of the various components
of the Riemann curvature tensor vanishes.
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We are now in a position to derive the celebrated Schwarzschild metric around a mass
distribution, study black holes, and even play with the universe under some circumstances.
See the following chapters.

I will show by a simple calculation in appendix 1 that α �= − 1
4 . I could have done it here,

but I did not want to slow us down on our way to the famous field equation for empty
spacetime.

What we have done

Since this has been a lightning fast way—the fastest I know of—of deriving the Ein-
stein field equation (albeit in empty spacetime), it is worthwhile summarizing what we
have done.∗

Ever since chapter IV.3, we have suspected that the action for the gravitational field has
to contain two powers of derivatives acting on the dynamical variable, namely the metric.
And even earlier, ever since chapter I.6, we have anticipated (more than once in fact) that
the curvature is given by two powers of derivatives acting on the metric.

To determine the curvature tensor, we acted with the commutator [Dμ, Dν] on some
arbitrary vector field Sρ(x). This involved two powers of derivatives and the metric tensor
all over the place, and thus had the structure we were looking for. The beginner might
have felt a bit overwhelmed by the plethora of indices, but in fact it only took two lines to
get from (6) to (8). Once we obtained the curvature tensor Rσ

ρμν
, we followed Professor

Flat, as always, to locally flat coordinates and worked out the symmetry properties of the
tensor, which showed us that there was one, and only one, scalar we can form to put into
the action.

Thus was the Einstein-Hilbert action SEH uniquely determined.
If we dispense with matter for the time being, we don’t even have to do any work varying

to obtain the equation of motion δSEH
δgμν

= 0. If a certain constant (α in (22)) does not have
a particular value, we can wing it and argue by symmetry considerations that the field
equation amounts to simply Rμν = 0. In the next chapter, we will solve this equation.

Riemann curvature tensor

During our headlong sprint to the field equation, we barely noticed that we derived the
long-sought expression for the Riemann curvature tensor. From way back early in this
book, already in part I, we have talked about curvature and have sought to calculate it.
We discussed some intuitive methods. You might recall that one method, if the space is
a surface, involves marking out a circle and measuring its radius and circumference. In
another, we have to determine the tangent plane. More generally, we can go to locally

∗ After we had worked out the symmetry properties of the Riemann tensor, we could, of course, have argued
directly from (22) without mentioning the action. See appendix 6 in chapter VI.5.
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flat coordinates and calculate the quadratic deviation of the metric. All these methods,
while conceptually clear, are rather unwieldy to implement in practice, adequate mostly
for curved surfaces only. With this perspective, we can appreciate the power of the Riemann
curvature tensor. Given a metric, determine the Christoffel symbols (most efficiently by
using the action principle to obtain the geodesic equations). Then simply plug in (9) to
obtain the curvature.

For fun, we can try it on the sphere with ds2 = dθ2 + sin2 θdϕ2. Note from chapter
II.2 that the only nonvanishing components, �θ

ϕϕ
= − sin θ cos θ and �

ϕ
θϕ = cos θ

sin θ
, are

independent of ϕ, and soRϕ
θϕθ = (∂ϕ�

ϕ
θθ + �ϕ

ϕκ
�κ

θθ
)− (∂θ�

ϕ
ϕθ + �

ϕ
θκ�

κ
ϕθ
)= −(∂θ�ϕϕθ +

�
ϕ
θϕ�

ϕ
ϕθ)= −(∂θ cos θ

sin θ
+ ( cos θ

sin θ

)2)= +1. We know from chapter I.6 that in 2 dimensions,
the Riemann curvature tensor has only one component. So all the other components
must either vanish or be related to the one we just calculated: for example, Rθ

ϕθϕ
=

gθθRθϕθϕ = Rθϕθϕ = Rϕθϕθ = gϕϕR
ϕ
θϕθ = sin2 θ . Thus, Rθθ = 1 and Rϕϕ = sin2 θ , giving

R = gθθRθθ + gϕϕRϕϕ = 2, a constant, as might be expected.
Best of all, the procedure is straightforwardly algorithmic, and you can easily instruct a

computer to produce the curvature tensor once you input the metric. Even with my rather
rudimentary computer skills, I was able to do it.

Appendix 1: A scaling argument on the way to Einstein’s field equation

In the text, instead of sweating through actually varying the action with respect to gμν , we winged it, arguing from
symmetry and other general considerations that the variation must have the form (21): δI = δ

∫
d4x

√−gR =∫
d4x

√−gA(Rμν + αgμνR)δgμν . In this expression, we must take for δgμν an arbitrary variation, as Euler and
Lagrange had instructed us.

We now give a simple proof that α cannot be − 1
4 . The trick is to consider a specific, rather than an arbitrary,

variation, and to pick an especially simple variation, namely gμν(x)→ g̃μν(x)=�2gμν(x) with � a number. In
other words, we scale∗ the metric. For an infinitesimal transformation, we write �2 � 1 + ε. Then δgμν(x) ≡
g̃μν(x)− gμν(x)� εgμν(x).

Under gμν →�2gμν , we have � ∼ g
..
∂.g.. →�−2�2g

..
∂.g.. ∼ �, that is, � → � and so R.

... ∼ ∂� + �� →
R

.
..., thus leading to R.. → R.. and R = gμνRμν →�−2R. Since g →�8g (being the determinant of a 4-by-4

matrix), we obtain I →�4�−2I =�2I and hence δI =�2I − I � εI , where in the last step we have gone to
the infinitesimal limit �2 � 1 + ε. However, plugging δgμν = εgμν into (21), we have

δI = ε

∫
d4x

√−gA(Rμν + αgμνR)gμν = εA(1 + 4α)
∫

d4x
√−gR = εA(1 + 4α)I

Equating our two results for δI , we find A(1 + 4α) = 1. Ta dah, α �= − 1
4 . In chapter VI.5, we will show that

α = − 1
2 .

Conceptually, it is important to realize that the transformation gμν(x)→ g̃μν(x)=�2gμν(x) is not a general
coordinate transformation. Of course not, since the general coordinate invariant object I actually varies under
this transformation. But students are often confused, because it looks like a general coordinate transformation. Be
careful! If we plug the coordinate transformation x′μ = xμ/� into the general formula g′

ρσ
(x′)= gμν(x)

∂xμ

∂x′ρ ∂xν

∂x′σ ,
we obtain g′

μν
(x/�) = �2gμν(x). The crucial difference is that the argument on the left hand side is not x,

but x/�.

∗ See chapter IX.9 for a more extensive discussion of this and related transformations.
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Appendix 2: A mnemonic

The expression for the Riemann curvature tensor in (9) is perhaps the most involved you have encountered thus
far in your study of physics, and so I am moved to say a few words about how it is not that hard to remember.
Of course, in general, there is not much point to memorizing physics formulas: it is much better to reconstruct
them when needed, or failing that, to look them up.

For convenience, let me repeat (9) here:

Rσ
ρμν

= (∂μ�
σ
νρ

+ �σ
μκ
�κ

νρ
)− (∂ν�

σ
μρ

+ �σ
νκ
�κ

μρ
) (24)

First, the general structure is clear from our schematic derivation Rσ
ρμν

∼ [∂ + � , ∂ + �] ∼ ∂.�.
.. + �

.
..�

.
... No

doubt, everybody could come up with a different mnemonic for where the indices go. We need only construct the
first half of the expression in (24), since we can obtain the second half by interchanging μ↔ ν in the first half.

We have three lower indices but only one upper index on Rσ
ρμν

so σ is “king.” In the first term ∂.�σ.., the only
question is which of the three lower indices on Rσ

ρμν
goes on the partial derivative? It can’t be ρ, because �σ

μν

is symmetric in μν, but Rσ
ρμν

is antisymmetric by construction. It could be μ or ν, but μ “comes before” ν in
Rσ

ρμν
, and so we pick∗ him, marking μ as “special.” So of the 4 indices, we have separated two guys, “king” and

“special.” The first term in (24) is thus uniquely fixed as ∂μ�σνρ . In the second term �
.
..�

.
.., we have two upper

slots and four lower slots for us to lodge one upper index σ and three lower indices ρμν into. Once we put σ in,
since we don’t have another upper index, the remaining upper slot in �σ..�

.
.. has to be occupied by a dummy

index κ to be summed with its lower counterpart: but this lower κ cannot be on the same � as the upper κ , since
we know from chapter V.6 that �κ

νκ
simplifies, and we don’t remember that happening in the derivation. So for

the second term, we have �σ.κ�
κ.. thus far. We also know that �κ.. cannot be �κ

μν
by symmetry; thus, the indices

μ and ν can’t be on the same �. Since μ is “special,” he clamors to be with the “king” on the same �. So we
arrived at �σ

μκ
�κ

νρ
. Finally, remember to antisymmetrize in the last two indices.

Anyway, that is how I do it, but the reader might come up with a better way. These days, of course, as I
said, what I do is simply write an algebraic manipulation program once and for all. If you are marooned on a
deserted island, probably your best tack would be to go through the simple derivation commuting two covariant
derivatives.

In chapters IX.7 and IX.8, I will describe a more powerful method for calculating curvature using differential
forms.

Exercises

1 Given two vector fields Wρ and Uρ on the sphere (with ρ = θ , ϕ of course), calculate DνWρ and DνU
ρ

explicitly. As a small check, show that (DνWρ)U
ρ +Wρ(DνU

ρ) is equal to ∂ν(WρU
ρ).

2 Evaluate (5) explicitly on the sphere and thus obtain the Riemann curvature tensor for the sphere.

3 Derive from (14) another important property, namely that the curvature tensor has the cyclic symmetry

Rτρμν + Rτμνρ + Rτνρμ = 0

We hold the index τ fixed and cylically permute the triplet ρμν. Again, this is hardly evident from (9). Show
that this imposes d(d − 1)(d − 2)(d − 3)/24 constraints.

4 Combine the definition of the Riemann curvature tensor in (5) Vρ;μ;ν − Vρ;ν;μ = −Rσ
ρμν

Vσ with exercise 3
to show that, for any vector V,

∗ Some authors pick ν as special because he is last. A word of caution: the curvature tensors used in the
literature can thus differ by an overall sign.
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Vρ;μ;ν − Vρ;ν;μ + Vν;ρ;μ − Vν;μ;ρ + Vμ;ν;ρ − Vμ;ρ;ν = 0 (25)

We will need this when we discuss isometries in chapter IX.6.

5 Show that (5), which says that Vρ;μ;ν − Vρ;ν;μ = −Rσ
ρμν

Vσ for any vector, can be generalized to any tensor,
for example, Tμρ;ν;ω − Tμρ;ω;ν = −Rσ

μνω
Tσρ − Rσ

ρνω
Tμσ .

6 Given its various symmetry properties, the Riemann curvature tensor in 2 dimensions has only one inde-
pendent component R1212, with all other vanishing components related to it. Various components, such
as R1122, all vanish. Show that all these facts can be summarized compactly by the expression Rτρμν =
R1212(gτμgρν − gτνgρμ)/g, with g = det g = g11g22 − g12g21. Contract to find the Ricci tensor and the scalar
curvature. Show that Rτρμν = 1

2R(gτμgρν − gτνgρμ).

7 In cases where the metric has the form (11), (14) gives an alternative to calculate the Riemann curvature
tensor. Do this for the example in chapter I.6 with the metric ds2 = dx2 + dy2 + dz2 = dx2 + dy2 + ((ax +
cy)dx + (by + cx)dy)2. Show that it is given by

R1212 = 2B12, 12 − B11, 22 − B22, 11

Hint: The first term on the right hand side of (11) is B11, 22, which is the coefficient of y2 in g11, which we
can read off as c2.

8 Back in chapter I.5, I asked which of the two spaces described by ds2 = (1 + u2)du2 + (1 + 4v2)dv2 + 2(2v −
u)dudv and ds2 = (1 + u2)du2 + (1 + 2v2)dv2 + 2(2v − u)dudv is curved. Now you can answer this question
readily.

9 Consider a (4 + 1)-dimensional spacetime with ds2 = ημνdx
μdxν + φ(x)2dy2. Note that the 4th spatial

coordinate is called y and that the function φ(x) does not depend on y. Show that the scalar curvature
is given by R = −2 φ

φ
, where φ ≡ 1√−g ∂μ(

√−ggμν∂νφ) simplifies in the present instance to ημν∂μ∂νφ.
We will need the result of this exercise in chapter IX.1.

10 Petrov notation: group the four indices carried by Rτρμν into two sets of two, in other words, write RAB with
the indices A≡ (τρ) and B ≡ (μν) and regard RAB as a matrix. The various symmetry properties can then
be interpreted as properties of this matrix.
(a) Show that the indices A and B each take on 1

2d(d − 1) values.
(b) Show that RAB is a symmetric matrix, and count the number of independent components it contains

due to this fact.
(c) Count the number of independent components after imposing the constraints mandated by exercise 3.

Show that the resulting number of independent components contained in the Riemann curvature tensor
agrees with that given in chapter I.6. Hint: Check your computation after each step for some small values
of d .

11 Is there a dimension d in which the Riemann and the Ricci tensors have the same number of independent
components? Hint: The answer is contained in the next exercise.

12 The result of exercise 11 suggests that, for d = 3, there exists a relation between the Riemann and the Ricci
tensors. Using various properties of these tensors, you can practically write down this relation:

Rτρμν = gτμRρν − gτνRρμ − gρμRτν + gρνRτμ − 1
2 (gτμgρν − gτνgρμ)R

Prove this. Hint: Ask Professor Flat for help.

13 Given a metric gμν , let’s construct another metric g̃μν(x) = �2(x)gμν(x). The two metrics are said to be
conformally related. (Recall that way back in chapter I.5, you worked with conformally flat metrics in an
exercise. In the present terminology, a metric is said to be conformally flat if it is conformally related to the
flat metric.) Show that various quantities calculated for g̃μν can be expressed in terms of the corresponding
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quantities calculated for gμν as follows:

�̃
μ
νλ = �

μ
νλ + 1

�
(δμ
ν
∂λ�+ δ

μ
λ ∂ν�− gνλg

μρ∂ρ�) (26)

R̃μ
νλσ = Rμ

νλσ − (
δ
μ
λ δ

ρ
σ
δω
ν

− δμ
σ
δ
ρ
λδ

ω
ν
+gνσgμωδρλ − gνλg

μωδρ
σ

) Dρ∂ω�

�

+ (
2δμλ δ

ρ
σ
δω
ν

− 2gνλg
μωδρ

σ
+ 2gνσg

μωδ
ρ
λ − 2δμ

σ
δω
ν
δ
ρ
λ + gνλg

ρωδμ
σ

− gνσg
ρωδ

μ
λ

) (∂ρ�)(∂ω�)
�2

R̃νλ = Rνλ−
[
(d − 2)δρ

ν
δω
λ

+ gνλg
ρω
] Dρ∂ω�

�
+ [

2(d − 2)δρ
ν
δω
λ

− (d − 3)gνλg
ρω
] (∂ρ�)(∂ω�)

�2

R̃ = R

�2
−2(d − 1)gρω

Dρ∂ω�

�3
−(d − 1)(d − 4)gρω

(∂ρ�)(∂ω�)

�4
(27)

Here we can of course always write Dρ∂σ� more symmetrically as DρDσ�. Some of these expressions
suggest that we write �= eω, as some authors prefer.

14 For a conformally flat metric g̃μν , the results of the preceding exercise are particularly useful, since Rμ
νλσ

and all the curvature invariants derived from gμν vanish. Recall that the sphere is conformally flat, with

ds2 =
(

1 + ρ2

4L2

)−2
(dρ2 + ρ2dϕ2). Verify that the curvature of the sphere is in fact constant using the results

of the preceding exercise.

15 Weyl tensor: the Weyl tensor in d-dimensional spacetime (or space) is defined by

Cμνρσ ≡ Rμνρσ + (d − 2)−1(gμσRρν + gνρRσμ − gμρRσν − gνσRρμ)

+ ((d − 1)(d − 2))−1(gμρgσν − gμσgρν)R

(a) Show that the Weyl tensor has all the same symmetries as the Riemann tensor but that in addition it is
traceless: if we contract any pair of indices carried by the Weyl tensor with the metric, we get nothing.

(b) Using the result of exercise 12, show that if two metrics g̃μν and gμν are conformally related, C̃μ
νρσ

=
Cμ

νρσ
(note the one raised index). It follows that the Weyl tensor vanishes if the metric is conformally

flat. Hence, the Weyl tensor is also known as the conformal tensor and can be used to test for conformal
flatness (just as the Riemann tensor is used to test for plain old flatness).

16 Recall from chapter V.6 the definition ofDV associated with a vector field V . Show that for three vector fields
U , V , W , we have

DUDVW
λ −DVDUW

λ =D[U ,V ]W
λ + Rλ

σμν
UμV νWσ

17 Show that the space described by ds2 = y2dx2 + x2dy2 is actually flat (a) by direct calculation of the Riemann
curvature and (b) by showing that the metric is conformally flat and then using the result of exercise 13.

Notes

1. A. Einstein, Essays in Science, p. 84.
2. Not to mention the Long March!
3. As explained in QFT Nut, and as we will briefly describe in an appendix to chapter IX.7, the Dirac action

for spin 1
2 fields provides an interesting “exception,” but not truly an exception, as we could formulate the

principle more cumbersomely by saying “two or fewer powers” rather than “two powers.”
4. For a pedagogical discussion, see R. Woodard, arXiv:0907.4238, p. 31.
5. Recall chapter I.3 on rotations.
6. In the previous paragraph, Einstein wrote, “I worked on these problems from 1912 to 1914 together with my

friend Grossmann.”
7. A. Einstein, Essays in Science, p. 83.
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8. The appearance of the imaginary unit i indicates that in electromagnetism, the covariant derivative is to be
understood in the context of quantum mechanics. In contrast, in gravity, the covariant derivative is a purely
classical construct. You may or may not know that the Schrödinger equation for a (nonrelativistic) charged
particle in a magnetic field reads

i
∂ψ

∂t
=Hψ = − 1

2m
( �∇ − i �A)2ψ (28)

which (as you can see) is obtained from the Schrödinger equation in the absence of the magnetic field by
turning the ordinary derivative �∇ into the covariant derivative �∇ − i �A. The relativistic completion of this is
evidently ∂μ − iAμ. For those readers unfamiliar with (28), here is a quick derivation. Start with the classical

Lagrangian for a charged particle in a magnetic fieldL= m
2 (

d �q
dt
)2 − �A . d �q

dt
. (This is simply the nonrelativistic

version of the Lagrangian, which can be read off from the action studied in chapter IV.1, with the proper
time τ replaced by time t . We also denote the position of the particle by �q to conform to standard usage in
this context.) The conjugate momentum is then given by �p = δL

δ
d �q
dt

=m
d �q
dt

− �A. Eliminating d �q
dt

= ( �p + �A)/m
in the Hamiltonian (recall chapter III.5) H(p , q)= �p . d �q

dt
− L(�q , d �q

dt
), we obtain H = 1

2m ( �p + �A)2. Finally,
we go from classical mechanics to quantum mechanics by setting �p → i �∇, thus obtaining (28).

9. In contrast, in contemporary particle theory, every time we turn around to construct a new action (following
Einstein’s lead in fact) to explain something or another, we run into what seem like 29 new and hitherto
unmeasured constants. Imagine what the history of Einstein gravity would have been like if the action
contained 7 constants and experimentalists had to go out and measure 6 of them.

10. Fearful, pp. 93–94.
11. To me, the Einstein-Hilbert action is just about the simplest, and hence the most beautiful, action in all of

physics. Of course, as they say, simplicity is in the eyes of the beholder, and you the beholder have to know
what the letter R stands for.

12. In that case, I would be a topological invariant; we are implicitly assuming that it is not.
13. From the back cover of the Japanese translation of my popular book An Old Man’s Toy. As far as I know,

Einstein did not write backward as a matter of habit. The photo was just printed this way, showing that my
Japanese publisher did not know Einstein gravity. One of my distinguished colleagues quipped that Einstein
would naturally write in Hebrew.
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The universe made as simple as possible, but not any simpler

[I had] again committed, in regards to gravity, something which
puts me in danger of being shut up in an insane asylum.

—Einstein, writing to Paul Ehrenfest on February 4, 1917

Newton was bold enough to apply his mechanics to the celestial sphere where the planets
reside. But the audacity of Einstein, thinking that the universe could1 be described by an
equation! Turned out that he was right and in no danger of being dragged away by men in
white coats.

In the preceding chapter, we derived, with scandalously little work, Einstein’s field
equation

Rμν(x)= 0 (1)

in empty spacetime. We first deduced on general grounds, invoking symmetry consider-
ations with gleeful abandon, what the action for Einstein gravity must be. Then, instead
of carefully varying the action as dutiful scholars would, we winged it like a lazy southern
Californian, and arrived at (1). We could now derive the warped spacetime around a mass,
a star or a black hole, but I will postpone that until the next chapter.

In the spirit of the preceding chapter, I would like to get you to cosmology as quickly as
possible.
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Filling the universe with a constant energy density

We obtained (1) for empty spacetime. Here, let’s get the universe expanding by filling it
with the “simplest stuff”∗ we know of, namely a positive† constant energy density �.

It is instructive to go all the way back to the most elementary example of an action,
namely the action of a nonrelativistic particle in a potential

Snonrelativistic particle =
∫

dt

(
1
2
m

(
dq

dt

)2

− V

)

and ask how we would include a constant energy density � pervading all of space. Well,
the resulting total energy amounts to, duh,

∫
d3x�, thus shifting the potential V →

V + ∫
d3x� and hence adding to the action the term −∫ dt ∫ d3x�. Before Einstein,

nobody would care about an additive constant in the potential: the equation of motion
is not sensitive to it. Indeed, the particle does not even know that we added something:
the dynamical variable q does not appear anywhere in the added term.

But in curved spacetime, we know that the 4-volume element dtd3x = d4x has to be
modified to d4x

√−g.
So yes, gravity knows. No way to sneak around gravity and stealthily add a constant to

the Lagrangian.
Thus, we add to the Einstein-Hilbert action SEH the outrageously simple term

Scosmological = −
∫

d4x
√−g�

as was first done by Einstein, who referred to � as the cosmological constant.‡

In the late 1990s, observational cosmologists discovered that the universe is suffused
by a mysterious dark energy. The origin of this dark energy remains shrouded in mystery.
But over the years, observational cosmologists have established, with ever diminishing
uncertainty, that the density of dark energy is constant in spacetime. Consequently, many
theoretical physicists believe that the dark energy may well be the fabled cosmological
constant � introduced by Einstein. As I said, the spirit here is to get you to cosmology
and our first application of Einstein’s field equation as quickly as possible. Thus, we will
postpone a more detailed discussion of observational cosmology until later in this chapter.

Instead, we rush headlong to the action

S = SEH + Scosmological =
∫

d4x
√−g

(
1

16πG
R −�

)
(2)

We now hold the action of a universe in our hands. (“Amazing!” I say.)

∗ To get to cosmology, albeit a purely hypothetical cosmology, even more quickly than as quickly as possible,
fill the universe with only the gravitational field. See exercise 1.

† In chapter IX.11, you will learn that a negative constant energy density�would lead to a completely different
kind of spacetime.

‡ While the cosmological constant may be mathematically simple to describe, it may be one of the most
mysterious concepts in theoretical physics. See chapter X.7.
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An equation of motion for the universe

Instead of Einstein’s field equation in empty spacetime (1), we now have Einstein’s field
equation in the presence of the cosmological constant, namely

δS = δ(SEH + Scosmological)= 0

Dutiful scholars would now vary Scosmological. Actually, that’s very easy to do, and if you
remember (V.6.20), you already know how to do it.

But in keeping with the spirit of the preceding chapter, we will keep things easier than
easy and try to get away with doing as little work as possible. We argue that when we vary
Scosmological with respect to gμν, the result must be proportional to �gμν since there is no
other tensor around: only the determinant of the metric appears in Scosmological. Also, the
spacetime derivative ∂ does not appear. Thus, we obtain

A(Rμν + αgμνR)= −16πGβ�gμν (3)

where β is some numerical constant, which we will put off computing until chapters VI.4
and VI.5.

In the preceding chapter, the right hand side is equal to 0. Here we have sort of the
next best thing: the right hand side, while not 0, is proportional to gμν. Just as in the
preceding chapter, we can clean up (3) by contracting it with gμν. We getA(1 + 4α)R =R =
−16πG(4β�), where in the second equality we used a result from the preceding chapter.
The scalar curvature R is some constant times �. Eliminating R in (3), we arrive at

Rμν = +�̃gμν (4)

with �̃ equal to some numerical constant times �. This equation describes the dynamics
of a universe filled with a constant energy density proportional to �.

An exponentially expanding universe

Let us now plug the Lemâıtre–de Sitter metric

ds2 = −dt2 + a(t)2d �x2 (5)

from chapter V.3 into (4). Note that there we studied the properties of the spacetime
described by (5) for some assumed a(t), but now we are in the much more powerful
position of being able to determine this function.

In chapter V.3, we computed the nonvanishing Christoffel symbols to be

�0
ij

= aȧδij and �i0j = �i
j0 = ȧ

a
δi
j

(6)

Given this, we could now plow ahead and compute the Ricci tensor Rμν, plug it into (4),
and solve for a(t). As easy as pie, actually. But in keeping with our lifestyle, let’s wing it
first.
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First, as we have been saying ever since chapter I.5, curvature involves two powers of
derivatives, so Rμν should involve ä and ȧ2. Second, consider the coordinate transfor-
mation �x = λ �̂x for some arbitrary constant λ, keeping t unchanged, then a(t)= λ−1â(t).
But by the transformation law of tensors, R̂00 = R00, R̂ij = λ2Rij . So R00 must have the
form ä/a and (ȧ/a)2, and hence the time-time component of (4) gives an equation like
ä/a + (ȧ/a)2 ∼ �̃ with various unknown numerical coefficients.

We see immediately that the solution is a = eHt withH 2 ∼ �̃. An exponentially expand-
ing universe, as discussed in chapter V.3, pops out!

Solving Einstein’s field equation

Actually, it is not hard at all to calculate properly like a decent hard-working physicist. Insert
(6) into the formula for the Ricci tensor obtained by contracting the Riemann curvature
tensor (VI.1.9):

Rμν = Rσ
μσν

= (∂σ�
σ
μν

+ �σ
κσ
�κ
μν
)− (∂ν�

σ
μσ

+ �σ
κν
�κ
μσ
) (7)

Since the spatial slice of our metric is rotational invariant, we already know thatR0i vanish
and Rij ∝ δij . We obtain

R00 = −(∂0�
σ
0σ + �σ

κ0�
κ
0σ )= −

[
3∂0(

ȧ

a
)+ 3(

ȧ

a
)2
]

= −3
ä

a
(8)

and

Rij = (∂0�
0
ij

+ �l0l�
0
ij
)− (�k0j�

0
ik

+ �0
kj
�k
i0)=

[
∂0(aȧ)+ (3 − 2)

ȧ

a
(aȧ)

]
δij = (2ȧ2 + aä)δij (9)

Note that the scaling conditions R̂00 = R00, R̂ij = λ2Rij we derived are indeed satisfied by
the computed Rμν.

We could now solve (4), consisting of the two equations

R00 = −3
ä

a
= −�̃ (10)

and

Rij = (2ȧ2 + aä)δij = �̃a2δij (11)

By eyeball, we find the solution a = eHt withH 2 = �̃/3. Isn’t it easy? (Actually, I cheated
you a teeny bit here. You can either figure out my sleight of hand, or wait until chapter VI.5,
where it will be revealed to you.)

Proceeding more carefully, we could use (10) to eliminate ä in (11), thus obtaining
ȧ2 =H 2a2 with the two roots ȧ = ±Ha related by the time reversal transformation t →
−t . These two equations are solved, respectively, by a = eHt (describing an expanding
universe) and a = e−Ht (describing a contracting universe). This agrees with the invariance
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under time reversal of Einstein gravity and more generally of the fundamental laws of
physics.

You may have noticed an apparent “miracle” here: we have two differential equations
for one unknown function and they “happen” to be compatible. In chapter VI.4, you will
acquire a deeper understanding of this rather mysterious fact.

Dark energy

As you have surely heard, and as I mentioned earlier, observational cosmologists made the
astonishing discovery that the dominant content of our universe consists of a previously
unknown dark energy. They counted the number of a certain type of supernova (called
type Ia) that had been established as “standard candles,” namely objects whose intrinsic
brightness was known. Thus, from its observed brightness, the distance to the supernova
could be fixed. The observational data indicate, to everybody’s surprise, that the expansion
rate of the universe is accelerating, an amazing discovery made even more dramatic2 by
the fact that it was made almost simultaneously by two competing teams.

The expansion history of the universe is determined by its content, as we have seen in
this chapter and as we will see in more detail in part VIII, and an accelerating expansion
rate is precisely what is indicated by (10). Thus, the data and Einstein gravity suggest a
constant energy density. As I mentioned, the cosmological constant provides the simplest
(and most compelling) explanation. (The alternative is to throw in any number3 of scalar
fields that do not vary in space.)

Since the original discovery, more observations have been made. Phenomenologically,
the data are fitted by assuming that the universe is filled with a component described
by the equation of state of the form P = wρ relating pressure to energy density. The
parameter w =w(z) is taken to be a function of the redshift z. The data indicate that w(z)
is nearly constant and close to −1. As we will see in the next section, for the cosmological
constant, w = −1.

In Planck’s natural units, the observed∗ � is of order (10−3 eV)4. The dark energy
accounts for something like ∼74% of the total mass content of the universe. The other
26% consists of mostly dark matter with a few percent of intergalactic gas and stars thrown
in. Thus, the universe we have studied in this chapter, without having to break a sweat,
could in fact provide a first approximation to our universe.

A major goal of observational cosmology over the next decade or so is to either establish
or rule out the supposition that the density of dark energy is in fact constant in spacetime. In
this golden age of cosmology, we should not be surprised, of course, if observations reveal
more unexpected facts about the universe, but in this text, to streamline the theoretical
presentation, we will assume that dark energy could be represented by �.

∗ One aspect of the mystery is that ∼10−3 eV is also roughly the not-yet-understood scale characteristic of
neutrino masses. Pure coincidence?
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Negative pressure

The dark energy has some rather peculiar properties. The popular media often give the
impression that the strange properties of dark energy somehow have something to do with
Einstein, whom nobody could understand anyway. In fact, the strange properties follow
from elementary physics and the statement that the energy density is constant.

Consider a container (think of a balloon) of volume V filled with some stuff, be it a gas
or something else. Now squeeze on the container and change the volume by dV . Then the
energy in the container increases by dE = −PdV , which in fact defines the pressure P
exerted by the stuff. Note that dV < 0 (squeezing), dE > 0, and P > 0. This of course just
states energy conservation∗: the work you have done by squeezing is −PdV .

Once we say that the energy density is a positive constant�, then we are immediately led
to something bizarre. Since E =�V , then dE =�dV < 0 since dV < 0. But with dE < 0
and dV < 0, dE = −PdV tells us that the pressureP must be negative! (Indeed, you could
see that P is just −�.) So instead of resisting your squeeze, the balloon or container would
suck your hands in.

The “rich man” has a fancier but still elementary way of saying this. Recall (III.6.16)
from way back, that the energy momentum tensor of a perfect fluid is given by T μν =
(ρ + P)UμUν + Pημν in flat spacetime, promoted to T μν = (ρ + P)UμUν + Pgμν in
curved spacetime. Since the dark energy is allegedly constant in spacetime, there is no
Uμ available and so T μν = Pgμν. The energy density is thus given by T 00 = Pg00 = −P .
We conclude that, since � is the energy density, a positive � gives a negative pressure
P = −ρ = −�, reaching the same conclusion† as the “poor man.” The rich man might
criticize the poor man’s approach by asking him or her to find a container to contain the
dark energy. The material scientists have yet to come up with such a container.

What is not forbidden is mandatory

Historically, Einstein added the cosmological constant � to his theory and then later
removed it. Although Einstein, with his groundbreaking work on the photoelectric effect,
was indisputably one of the founders of quantum mechanics, he was first and foremost
a classical physicist. (Such was his greatness that he could be both at the same time.) In
classical physics, one could include or exclude possible terms in the action as one pleases;
the goal is to include enough terms to account for observations.

But quantum physics, with its probabilistic character and constant fluctuation, differs
profoundly from classical physics. If you neglected a term not specifically forbidden by

∗ More generally, the first law of thermodynamics states dE = T dS − PdV , but here we are not increasing
the entropy S and there is no temperature.

† In chapter VI.5, we will derive T μν = −�gμν directly from Scosmological, using the approach of an “even richer
man.”
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a fundamental principle, quantum fluctuations would force that term on you. You must
have a reason for why a given term should not be there. Roughly, that is because quantum
physics is probabilistic. Physicists can only determine the probabilities of various processes
occurring. Any process not explicitly forbidden∗ will occur, even though the probability of
the process actually occurring may be very small.

Thus, in the quantum world, Einstein is no longer allowed to remove the cosmological
constant � from his theory.

In part II, we touched upon the notion of a classical field theory, and in part IV
we studied electromagnetic field theory. Fields exhibit waves schematically of the form
sin(ω(�k)t − �k . �x). In classical physics, the waves could be quiescent. Just as a harmonic
oscillator in quantum mechanics could never be at rest and thus has a minimum energy of
1
2�ω, a quantum field could never be quiescent and thus contributes a minimum energy
density ∼∫ d3k 1

2�ω(�k) to spacetime. The puzzle for quantum field theorists is not whether
� is present in the action, but why observationally it has the value it does. We will come
back to this in chapter X.7.

Exercises

1 An even simpler, but less physical, universe than the one described here was discovered by E. Kasner in 1921
(Am. J. Math., vol. 43, p. 217). Show that the metric ds2 = −dt2 + (t2pdx2 + t2qdy2 + t2rdz2) with three
constants p , q , r solves Einstein’s equationRμν = 0 provided that p + q + r = p2 + q2 + r2 = 1. The Kasner
universe expands or contracts at different rates along the three different spatial directions.

2 The Kasner universe generalizes nicely to higher dimensions. Let’s go to a 5-dimensional metric by adding
t2sdw2 to the ds2 in the preceding exercise. Solve.

3 You might have noticed that the numbers 3 and 2 in (8) and (9), respectively, depend on the dimension of
space. Determine these numbers for arbitrary dimensions.

Notes

1. I must confess that occasionally I am also beset by nameless doubts. See the Closing Words to this book.
2. For an entertaining and exciting account, see Y. Bhattacharjee’s article “A week in Stockholm” (Science 2012,

vol. 336, p. 28). The 2011 Nobel Prize in Physics was awarded for the discovery of dark energy.
3. That’s because (at least in part) scalar fields are free, in the sense that they cost nothing.

∗ In T. H. White’s The Once and Future King, the boy Arthur dreams of visiting a kingdom governed on the
principle that whatever is not forbidden is mandatory. The story inspired the physicist Murray Gell-Mann to quip
that in quantum physics what is not taboo is a commandment.



VI.3 The Schwarzschild-Droste Metric and Solar System
Tests of Einstein Gravity

Gravity in empty spacetime

In empty spacetime (around a star or a black hole for example), we learned in chapter VI.1
that the Ricci tensor vanishes:

Rμν = 0 (1)

As remarked earlier, since the Ricci tensor is constructed by summing various components
of the Riemann tensor, this does not necessarily mean that Rσ

ρμν
= 0, which would imply

that spacetime is Minkowski flat.
Consider a spherical mass distribution, such as a star, of mass M and radius R. Outside

the massive lump, we already know what the spacetime metric looks like from chapter V.4:

gtt = −A(r), grr = B(r), gθθ = r2, gϕϕ = r2 sin2 θ (2)

with all off-diagonal components vanishing. Indeed, we even listed all the Christoffel
symbols in the appendix there. But back then, we had no idea what A and B were. Now
we have (1).

Our job is conceptually straightforward. Compute the Riemann curvature tensor and
thence the Ricci tensor. Then determine the two unknown functions A and B by solving
Einstein’s equation (1) with the boundary condition A(r)→ (1 − 2GM

r
) and B(r)→ 1 as

r → ∞.

Newton had his plague and Schwarzschild his heavy gunfire

As you see, the war treated me kindly enough, in spite of the
heavy gunfire, to allow me to get away from it all and take this
walk in the land of your ideas.

—Karl Schwarzschild, writing to A. Einstein
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I hope that you have been enjoying your “walk in the land of ideas,” hopefully in pleasant
surroundings, without being bothered by heavy gunfire.

In 1915, the very same year that Einstein published his theory of general relativity,
Karl Schwarzschild (1873–1916), an officer serving in the German army on the Russian
front during World War I, wrote to Einstein saying that he had found1 the solution for
the spacetime metric around a spherical mass distribution. Interestingly, in Einstein’s
celebrated 1915 article, he only found an approximate solution valid for large r (using
Cartesian coordinates!?), which was in fact adequate for his purpose of working out
observational tests of his theory. By the way, the family name Schwarzschild means “black
sign” or “black shield,”2 not “black child,” contrary to what many (non-German-speaking)
students of general relativity believe. Tragically, Schwarzschild died a year later of a painful
autoimmune disease contracted on the battlefield.

So, you should be able to work out the solution in the tranquility and privacy of your own
home. Here is what you do. Since you already have the Christoffel symbols, you simply
plug in the appropriate formulas and calculate the Riemann curvature tensor. Then sum
over a pair of indices to find the Ricci tensor. Set the Ricci tensor to 0, and solve for A and
B. In fact, you could even bypass the Riemann curvature tensor and compute the Ricci
tensor directly. Do this before reading on and be glad you are not on the Russian front.

The Schwarzschild solution

You look up the formula for the Ricci tensor

Rνρ = (∂σ�
σ
νρ

+ �σ
σκ
�κ

νρ
)− (∂ν�

σ
σρ

+ �σ
νκ
�κ

σρ
) (3)

and plug in the Christoffel symbols from chapter V.4. It is a bit tedious but totally straight-
forward. For example,

Rtt = (∂σ�
σ
tt

+ �σ
σκ
�κ

tt
)− (∂t�

σ
σ t

+ �σ
tκ
�κ

σ t
)= ∂r�

r
tt

+ �σ
σr
�r

tt
− 2�t

tr
�r

tt

=
(
A′

2B

)′
+
(
A′

2A
+ B ′

2B
+ 2
r

) (
A′

2B

)
− 2

(
A′

2A

) (
A′

2B

)

=
(
A′′

2B

)
− A′

4B

(
A′

A
+ B ′

B

)
+ A′

rB
(4)

Proceeding in this way, you obtain

Rtt = A′′

2B
+ A′

rB
− A′

4B

(
A′

A
+ B ′

B

)
(5)

Rrr = −A′′

2A
+ B ′

rB
+ A′

4A

(
A′

A
+ B ′

B

)
(6)

Rθθ = 1 − 1
B

− r

2B

(
A′

A
− B ′

B

)
(7)

and Rϕϕ = sin2 θRθθ . All other components vanish.
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Again, some features are easy to understand by symmetry considerations. For example,
consider the coordinate transformation t = at̃ . Then Ã= a2A, withB unchanged. ThatRμν

should transform appropriately gives a check on (5–7). The vanishing of the off-diagonal
components follows from rotational invariance and the t → −t symmetry of the metric.

At this point, you might be worried that you have 3 second order coupled ordinary
differential equations, Rtt = 0, Rrr = 0, and Rθθ = 0 for 2 unknown functions A and B.
Einstein’s beautiful theory might yet be inconsistent and fall flat on its face. Now you recall
that a similar worry presented itself in the preceding chapter: there were 2 equations for 1
unknown function a(t), but then an apparent “miracle” happened and things worked out
okay. So let’s proceed and see what happens.

Staring at (5) and (6), you realize that a good strategy is to get rid of the second derivative.
So form Rtt

A
+ Rrr

B
= 1

rB

(
A′
A

+ B ′
B

)= 0. This instantly solves itself asAB = 1, where we fixed
the integration constant by the boundary condition at r → ∞. Eliminating A′

A
= −B ′

B
in (7),

we obtain r( 1
B
)′ + 1

B
= 1, with the solution 1

B
= 1 + b

r
, and so A= 1 + b

r
. The boundary

condition at infinity fixes the integration constant b to be −2GM .

An amazing identity?

It remains for us to hold our breath and plug the solution into, say,Rrr = 0 to see whether it
is solved. It works! An apparent miracle happens again. Since we physicists do not believe
in miracles, there must be an amazing identity we don’t yet know about. Be patient. I will
get to this identity in the next chapter. (Alternatively, you could try to discover this identity!)
We are in good company, since for many years Einstein did not know about this identity
either, and this ignorance was one of the reasons that it took him 10 years to get to his field
equations.

How does the radius come in?

Meanwhile, let’s try to imagine the excitement Schwarzschild must have felt in the
trenches, discovering that the curved spacetime around a spherical mass distribution
of mass M and radius R is described by this remarkable metric

ds2 = −
(

1 − 2GM
r

)
dt2 + 1

(1 − 2GM
r
)
dr2 + r2(dθ2 + sin2 θdϕ2) (8)

soon to be named after him.∗ Einstein was elated when he learned that his highly nonlinear
field equations had such a simple solution. A priori, A and B could have been two totally
complicated functions.

Confusio suddenly speaks up. “Where is the dependence on the radius R?”

∗ See appendix 5.
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Good question! The answer is of course that the solution (8) only holds for r > R. For
r < R, the empty spacetime field equation Rμν = 0 that we obtained in chapter VI.1 by
winging it is obviously not valid. If we are talking about the sun, for example, we would
have to take into account the hot gas in the solar interior.

The Schwarzschild coordinate singularity

After admiring this metric for a while, you might start worrying again even if you were not
born a worrywart. What about gtt vanishing and grr blowing up at the Schwarzschild radius
rS ≡ 2GM? And vice versa for gtt = 1/gtt and grr = 1/grr? Indeed, both Schwarzschild and
Einstein were alarmed by this and thought somewhat confusedly3 about this problem.∗

First of all, these metric coefficients, being components of a tensor in a particular
coordinate system, depend on the coordinate system. Just as the usual spherical coordinate
is no good at the north and south poles, we could merely have made a bad coordinate choice
at r = rS. Indeed, for the sphere, we also have chosen (in chapter I.6) coordinates in which
the metric blows up on the equator. In chapter VII.2, we will show that this is indeed
the case by exhibiting a set of coordinates, namely the Kruskal4 coordinates, in which the
Schwarzschild solution is not singular at rS. In fact, allow me to remind you that, way back
in chapter I.6, we already discussed the distinction between a coordinate singularity and
an actual or physical singularity, where the geometry itself goes out of control. Remember
the Einstein-Rosen bridge, a kind of tunnel or “wormhole” between two flat spaces?

There is a relatively quick way to allay your worry. Let us look at a scalar quantity such

as5RμνρσRμνρσ ,† which turns out to be
12r2

S
r6 , with a perfectly innocuous behavior around

r = rS.
Why look at a scalar? Because scalars transform like S′(x′)= S(x). Thus, if a scalar blows

up in one coordinate system, it blows up in all coordinate systems. It follows that if a scalar
blows up, then we are in trouble. Tensors, in contrast, can “catch” a singularity going from
one coordinate system to another: they might get infected by various factors of ∂x′μ

∂xν
in their

transformation law. Hence, if a component of a tensor, such as grr and gtt , blows up in one
coordinate, it does not mean that it will blow up in all coordinate systems. The Mercator
map is no good at the poles, but it does not mean that the poles have anything singular
about them.

You see that it was totally worth it to learn about scalars and tensors! Of course, calculat-
ing one scalar does not prove anything: we have to check out all the scalars. I won’t digress
by discussing how many “fundamental” scalars there are in a Riemannian spacetime. But
verifying that at least one scalar, namely RμνρσRμνρσ , is perfectly well behaved at rS does
allay our anxiety a bit. In fact, as we will see in chapter VII.2, the singularity at rS exhib-
ited in the metric is merely due to a poor coordinate system, of the type of singularity we
encounter at the poles in a Mercator map.

∗ At one point, Einstein thought that a particle falling in would bounce back at r = rS.
† The Jargon Guy tells us that this is known as the Kretschmann scalar.
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Incidentally, that RμνρσRμνρσ blows up at r = 0 shows that a real physical singularity
lurks there: Einstein theory as we know it must break down at infinite spacetime curvature.

Here is a simple but striking example of a coordinate singularity. Transform coordinates
by plugging x = 2ρ

1
2 into dl2 = dx2 + dy2 to obtain dl2 = (dρ2/ρ) + dy2. The metric

appears to blow up at ρ = 0, but that’s merely due to a bad coordinate choice, as you can
see as clear as day. For ρ negative we appear to have pulled a spacetime out of a space hat!
Let w = −ρ > 0 for ρ negative, and define t = 2w

1
2 , so that6 ds2 = dl2 = −dt2 + dy2! Of

course, ρ negative is precisely where the original coordinate x makes no sense.

A whiff of the black hole

Although the singularity at r = rS is merely due to a bad choice of coordinates, it leads
nevertheless to important physics, as we will explore in chapter VII.2. Our answer to
Confusio’s question provides a first hint: if R > rS = 2GM , then we do not have to worry
about this singularity. But this condition, as we discussed way way back in part 0, is
precisely that given by Michell and Laplace for the mass M not to be a black hole!

Meanwhile, we will work out Einstein’s two celebrated solar system tests.∗ For the sun,
rS ∼ 3 km, which is tiny compared to its radius R�. This again reflects the weakness of
the gravitational force. For your information, for various astrophysical objects, the typical
values of rS/R are given by 10−9 (earth), 10−6 (sun), 10−4 (white dwarf), and 10−1 (neutron
star).

The deflection of light and a factor of 2

For the deviation of light by the sun I obtained twice the former
amount.

—A. Einstein, writing to Arnold Sommerfeld, late 1915

Newton himself wondered, “Do not Bodies act upon Light at a distance, and by their action
bend its Rays?” In 1801, Johann Soldner used Newton’s corpuscular theory supposing
light to consist of a stream of miniscule particles and calculated the deflection of light by
astronomical objects, thus obtaining the Newtonian value against which we now compare
Einstein’s value. Recall that you did this very same calculation as an exercise way back in
chapter I.1.

History often takes curious turns. In 1911, Einstein, unaware of Soldner’s calculation,
predicted that light would bend in a gravitational field in his still-evolving theory of gravity.

∗ By now, there are a number of other tests. In appendix 2, we discuss radar echo delay. Some tests actually test
the equivalence principle. For example, Nordtvedt noted that accurate measurements of the earth-moon distance
would reveal whether the earth and the moon fall toward the sun at slightly different rates. Thus far, Einstein
has triumphed. Otherwise, you would have heard about it, duh.
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He followed a naive approach, reasoning that since energy was equivalent to mass, the
photon could be thought of as having a tiny mass. In hindsight, we see that Einstein would
simply recover the Newtonian value. In fact, the correct answer is a factor of 2 larger, as
we will now derive.

Back in chapter V.4, we had already worked out the motion of light and material particles
in a static isotropic Einstein spacetime described by two unknown functions A(r) and
B(r). Now that we know what they are, all we have to do is plug these into the appropriate
equations from that chapter, namely AB = 1 and B−1 = 1 − 2GM

r
.

Often, it is convenient to use units in which G is set to 1. Then, (V.4.22) in particular
gives us ( dr

dϕ
)2 + r2(1 − 2M

r
)= r4

b2 . As in chapter I.1, change variable from r to u= 1/r , so

that r ′ ≡ dr
dϕ

= − 1
u2u

′ with u′ = du
dϕ

. Then,

u′2 + u2 − 2Mu3 = 1
b2

(9)

Differentiating, we obtain the “analog Newtonian” equation

u′′ + u= 3Mu2 (10)

with ϕ playing the role of time.
Without the M term, this is the harmonic oscillator equation, with the solution bu=

sin ϕ, which you recognize as just saying that light moves in a straight line. This suggests
that we treat the M term as a perturbation. Plugging in bu = sin ϕ + bu1, we have,
keeping only first order terms, u′′

1 + u1 � 3(M/b2) sin2 ϕ. The solution to this order is then
bu� sin ϕ + (M/b)(2 − sin2 ϕ). For a light ray grazing the sun, the expansion parameter
M/b∼ rS/R� is just the ratio of the sun’s Schwarzschild radius to its actual radius, which,
as we anticipated, is tiny.

To work out the deflection, refer to figure 1 and warm up with the no-deflection case (that
is, withM set to 0) bu= sin ϕ. As r → ∞, u→ 0, which corresponds toϕ = 0 andϕ = π . No
deflection, as expected. With M �= 0, for r → ∞, u→ 0, the resulting quadratic equation
for sin ϕ yields two roots. We reject one of these roots as unphysical, with the other root
being sin ϕ(r = ∞)= −2M/b. As the light is coming in from infinity, ϕ = −2M/b, and
as it is going out to infinity, ϕ = π + (2M/b). Thus, Einstein, realizing his error in 1911,
obtained in 1915 a deflection of 
ϕ = 4M/b = 4GM�/R� � 1.75′′, twice the Newtonian
value.

Shortly after the end of World War I, the Royal Society financed two expeditions, one to
Brazil led by Andrew Crommelin and one to Africa led by Arthur Eddington, to observe the
total solar eclipse∗ of May 29, 1919, with the express purpose of testing Einstein’s theory.
If the light from a distant star bends as it glazes the edge of the sun (so that the deflection
of light predicted by Einstein would be as large as possible), then the position of the star
would appear to be shifted from its known position.

∗ As a naive theorist, Einstein wrote to George Hale, the director of the Mount Wilson Observatory, wanting
to know “how close to the Sun fixed stars could be seen in daylight” (italics Einstein’s).7 Hale explained that
exploiting a solar eclipse would be more promising.
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Figure 1 The deflection of light.

Mercury and heart palpitations

Imagine my joy at . . . the result that the equations give the
perihelion motion of Mercury correctly. For a few days I was
beside myself with joyous excitement.

—A. Einstein, writing to Paul Ehrenfest, 1916

For two centuries after Newton, due to the efforts of greats like Lagrange, Laplace, Bessel,8

and Le Verrier, planetary orbits were calculated to astonishing accuracy. The perihelion of
Mercury was observed to advance (as depicted, vastly exaggerated, in figure 2) by something
like 5,600′′ (seconds∗ of arc) per century. After all the known effects (for example, the pull
of Jupiter accounted for 153′′) were taken out, a troublesome discrepancy of 43′′ per century
remained. On the basis of a similar discrepancy in the orbit of Uranus, Urbain Le Verrier
(1811–1877) had triumphantly predicted the existence of the previously unknown Neptune.
A planet named Vulcan was similarly predicted to orbit between the sun and Mercury, but
it was never found.

Then Einstein proposed his curved spacetime, and out pops the 43′′ per century. Amaz-
ing! I still find it incredible that this clunk of rock would know, every time it completes
a revolution around the sun, to move ahead by a teeny bit precisely as dictated by the
curvature of spacetime. It’s a tribute not only to Einstein, but also to all those celestial me-
chanicians from Tycho Brahe on, whose massive efforts allow us inhabitants of the third
planet from the sun to understand the movement of the celestial sphere at this level of
minute detail.

∗ Have you ever wondered what the term “second” used in measuring angles and time has to do with the
notion of the ordinal number “second”? Well, the first is a corruption of a phrase containing the second. Ptolemy
proposed subdividing the degree in mapping heaven and earth, and his subdivisions became known in Latin as
“partes minutae primae” and “partes minutae secundae.”
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Figure 2 Mercury’s perihelion advances
(vastly exaggerated).

The calculation of the perihelion shift,9 while a monument to theoretical physics,
amounts “merely” to a beautiful exercise in Newtonian mechanics as I have already said,
and so reluctantly I will relegate it to appendix 1.

Later, Einstein told his friend Adriaan Fokker10 (1887–1972) that he had heart palpi-
tations when he got the 43′′ per century. He also wrote to his friend Sommerfeld saying
“How helpful∗ to us here is astronomy’s pedantic accuracy, which I often used to ridicule
secretly!”11

Einstein’s luck

It is legitimate to speak of a pound of light as we speak of a
pound of any other substance. . . . I have calculated that . . . an
Electric Light Company would have to sell† light at the rate of
£140,000,000 a pound.

—Arthur Eddington

It’s Eddington’s deflection of light that made Einstein a worldwide celebrity—the general
public could hardly be expected to care about the perihelion of Mercury. But space warp?
Now that’s another story! J. J. Thomson, the discoverer of the electron, presiding over a
special meeting at the Royal Society convened to announce the result of the solar eclipse
expeditions, hailed the result as the most important since Newton’s work and Einstein’s
theory as “one of the highest achievements of human thought,” which regrettably, he
added, was incomprehensible. “No one can understand the new law of gravitation without
a thorough knowledge of the theory of invariants and of the calculus of variations.” Well,
dear reader, I gave both of them to you already back in part I and part II, respectively.

I can now also tell you that it was not a reporter who asked Eddington the question in
the famous story I recounted in the preface. It was Ludwik Silberstein, a Polish-American
physicist who had studied Einstein’s theory. According to one account, he was expecting

∗ Newton similarly benefited from the labor of Brahe and Kepler. By the way, the Danes say that they’ve had
a “Tycho Brahe day,” meaning that they’ve had a really bad day.

† At 1920 prices. Remember my ranting and raving in the introduction about using sensible units, not
something like pound per pound.
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Eddington to name him, Silberstein, as the third. Thus, Eddington’s response could be
seen as not only arrogant, but insultingly arrogant. Later, Silberstein claimed to have
discovered a fatal flaw in Einstein’s theory, thus provoking the 1935 Einstein-Silberstein
debate, which evidently Einstein won.

Einstein was quite capable of pulling the leg of his friend Max Planck, once remarking:

[Max Planck] was one of the finest people I have ever known . . . but he didn’t really understand

physics, [because] during the eclipse of 1919 he stayed up all night to see if it would confirm

the bending of light by the gravitational field. If he had really understood [the general theory

of relativity], he would have gone to bed the way I did.12

But that was staircase wit on Einstein’s part. In fact, he was almost preternaturally lucky,
as documented by Waller.13 After Einstein’s mistaken calculation in 1911, reproducing
Soldner’s 1801 Newtonian result, there was in 1912 an Argentinian eclipse expedition
that encountered bad weather. Next, with Einstein still blissfully unaware of his error, he
convinced his friend the astronomer Erwin Freundlich to organize an expedition, financed
by the munitions manufacturer Krupp, to observe the deflection of light during a solar
eclipse in the Crimea on August 21, 1914.14 Not surprisingly, but fortunately for Einstein,
the German astronomers, with all their telescopes and financing by Krupp, were promptly
arrested by the Russians as spies.

Meanwhile, during the war, Einstein discovered his factor-of-2 error. Without these
twists and turns of history, his celebrity-making triumph might have been a wet fizzle.
It has also been suspected that Eddington, an enthusiast for Einstein’s theory, might have
fudged15 the data in Einstein’s favor. He was also an ardent pacifist, like Einstein, and
might have been eager to show British support for the work of a German citizen.

Gravitational lensing

In less than a century, the deflection of light has come a long way, from a minute effect to
a major tool in our exploration of the universe. As you have no doubt heard, and as was
mentioned in chapter VI.2, matter in the universe appears to be dominated by an unseen
dark matter, rather than the luminous matter we know and love, consisting of nucleons
and electrons. Dark matter, while it does not emit or absorb light, interacts gravitationally
and thus clumps. Indeed, it is now believed that the galaxies consist of enormous lumps
of dark matter, each with an island of luminous matter sort of floating inside. Consider
a distant light source (a quasar, a supernova, a galaxy—it does not matter what). Suppose
that a large distribution of unseen dark matter is located between us and the light source.
One way we could detect the presence of this distribution is by how it deflects the light
from the distant source, known as gravitational lensing.

For several reasons, I will not go into a detailed discussion of this rapidly developing
and important subject. Once we work out how a light ray deflects, the rest of the lensing
calculation involves rather intricate though straightforward trigonometric and algebraic
equations that have nothing to do with general relativity as such. For comparison with
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observational data, there are of course numerous effects to be taken into account, such as
the possibility that both the light source and the dark matter distribution could be moving
at close to light speed relative to us. I will however make the important and interesting
remark that the deflection angle 
ϕ increases with decreasing impact parameter b. With
the kind of lens you are used to, such as the pair inside your head you are using to read
this sentence, the deflection angle 
ϕ decreases with decreasing impact parameter b and
thus leads to focusing. Gravitational lensing works oppositely, thus producing in some
circumstances ring-like images known as Einstein rings.

I could perhaps close this section by paraphrasing my colleague Tommaso Treu, a
distinguished practitioner of gravitational lensing, that this exciting subject, including
Einstein rings, is best appreciated by raising a wine glass filled with a fine white wine
to the candles illuminating an elegant dinner.

Appendix 1: Planetary orbit in the Schwarzschild metric

We start by plugging A and B, as given in (8), into (V.4.15) to obtain (with a tiny notational change)

1
2

(
dr

dτ

)2

+ v(r)= 1
2 (ε

2 − 1) (11)

with the potential

v(r)= 1
2

[(
1 + l2

r2

) (
1 − 2M

r

)
− 1

]
= 1

2

[
l2

r2
− 2M

r
− 2Ml2

r3

]
(12)

Recall from (V.4.13) that ε is defined by dt
dτ

= ε

1− 2M
r

; in other words, ε is the value of dt
dτ

at r = ∞, namely the

energy of the particle divided by its mass.
It is instructive to compare with the Newtonian potential in chapter I.1. The first term in v(r) is the familiar

centrifugal term, the second is the universal gravitational attraction. Remarkably, going from Newton to Einstein,
we merely have to add to the potential an extra 1

r3 term. Also, we have d
dτ

instead of d
dt

. We now bring what we
learned in classical mechanics to bear on (11).

To determine the shape of the orbit r(ϕ) and hence the perihelion shift, we repeat what we did for the deflection

of light and define r ′(ϕ)= dr
dϕ

= dr
dτ
dϕ
dτ

= r2ṙ/ l, since, as you recall from (V.4.14), dϕ
dτ

= l

r2 , with l the conserved

angular momentum (per unit mass) of the particle. As in the deflection of light calculation, change variable from
r to u= 1/r . Plugging all this into (11) and (12), we obtain16 (with u′ = du

dϕ
)

u′2 + u2 − 2σu− λu3 = 2E (Einstein) (13)

where we have defined σ ≡ M/l2, λ ≡ 2M , and 2E ≡ ε2 − 1. What we should do is of course compare this
Newtonian problem with the Newtonian problem you, yes you, solved back in chapter I.1, namely

u′2
0 + u2

0 − 2σu0 = 2E (Newton) (14)

with the obvious solution u0 = σ(1 + e cos ϕ). As we discussed in chapters I.1 and I.4, not to precess is the
exceptional case, valid only for Newton’s inverse square force.

We now treat the λ term in (13) as a perturbation. (Incidentally, even though you already know that λ is tiny,
you are invited to plug in the numbers and show that λ∼ 10−8 for Mercury.) Thus, write u= u0 + u1, with u1 of
order λ, plug into (13), and collect terms of order λ. We obtain

− sin ϕ u′
1 + cos ϕ u1 = λσ 2

2e
(1 + e cos ϕ)3 (15)

At this point, the typical student would fire up the computer and push a few buttons to obtain the solution u1(ϕ),
and indeed, we could all do exactly that. But it is also rather neat to think through the problem.
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The left hand side of (15) is linear in u1, with the driving term on the right hand side given by a sum of 1,
cos ϕ, cos2 ϕ, and cos3 ϕ. We might expect u1 to be given by an analogous sum of terms. But we are not interested
in most of these terms. The constant term in u1, for example, when added to u0, would just shift σ by one part in
108. Periodic terms, such as cos2 ϕ, also do not interest us; after ϕ → ϕ + 2π , they would just return u= u0 + u1
and hence r to the same place. We want aperiodic terms, such as ϕ, ϕ sin ϕ, and ϕ cos ϕ. You can see by inspection
that the first possibility doesn’t work, but the second does (since − sin ϕ(ϕ sin ϕ)′ + cos ϕ(ϕ sin ϕ)= − sin2 ϕ

and the right hand side contains cos2 ϕ) and the third doesn’t. (If you must know, the complete solution to (15)
has the form u1 = α + β cos ϕ + γ cos2 ϕ + 3

2λeσ
2ϕ sin ϕ, where we do not give a flying nickel about α , β , γ ,

which, however, you can determine easily enough.)

We thus obtain, following Einstein, that u� σ
(

1 + e cos ϕ + 3
2λeσϕ sin ϕ

)
� σ

(
1 + e cos

{(
1 − 3

2λσ
)
ϕ
})

.

For r to reach the same value it had at ϕ = 0, we need to have ϕ = 2π/
(

1 − 3
2λσ

)
. In other words, the perihelion

advances by∗ 
ϕ = 3πλσ = 6π(M/l)2.

Appendix 2: Radar echo delay

To these two classic tests, deflection of light and perihelion shift, we can now add radar echo delay, proposed
and pushed through by Shapiro in the 1960s. A radar beam is bounced off the planet Venus, and the time it
takes for the echo to get back to the earth is carefully measured. The terminology “delay” is unfortunate. Like
everything else, the photons in the beam get the best possible deal in the curved spacetime around the sun: they
follow a geodesic of course. So what is the “delay”? The delay is in comparison with what would be expected in
a Newtonian world.

By now you should be able to work out this problem by yourself without reading on. Just plug in the appropriate
formulas in chapter V.4 and in this chapter. A hint: for the two classic tests, we need the expression for dϕ/dr ,
but for the radar echo delay, we need dt/dr instead.

So, look up the expression (V.4.21) for dr/dζ and the conservation law dt/dζ = ε/A(r). Eliminate the affine
parameter ζ by dividing. We obtain

(
dr

dt

)2

= A(r)

B(r)

(
1 − b2A(r)

r2

)
=
(

1 − rS

r

)2 (
1 − b2

r2

(
1 − rS

r

))
(16)

(with the Schwarzschild radius rS = 2GM , as you may recall). The first expression is general, the second is specific
to the Schwarzschild solution. As explained in chapter V.4, physics does not depend on ε and l separately, but
only on b2 ≡ l2

ε2 . The radius r0 at closest approach to the sun (see figure 3) is determined by dr
dt

|r=r0 = 0. Thus,

from (16), we find b2 = r2
0/
(

1 − rS
r0

)
� r2

0

(
1 + rS

r0

)
. In the context of this problem, the notion of impact parameter

is not relevant, and thus we trade b for r0. Evidently, the effect is maximized if the beam gets as close to the sun
as possible, which occurs when Venus and the earth are at opposite sides of the sun. Thus, in this problem we

have rE, rV � r0 � rS, and so we expand dt
dr

to first order in rS: dt
dr

�
(

1 − r2
0
r2

)− 1
2
(

1 + 2r+3r0
2(r+r0)

rS
r

)
.

The time t (r1, r2) for the radar beam to get from r1 to r2 is given by t (r1, r2)= ∫ r2
r1
dr dt

dr
(by convention, for

r2 > r1, since in the expression for dt
dr

given above we have taken the positive root in (16)). The time for a round
trip from the earth to Venus is thus given by T (rE, rV, r0)= 2(t (r0, rV)+ t (r0, rE)). As a very small check, let

us compute the time with rS set to 0: tN(r1, r2)= ∫ r2
r1
dr
(

1 − r2
0
r2

)− 1
2 =

√
r2

2 − r2
0 −

√
r2

1 − r2
0 (for r1, r2 > r0), in

agreement with expectation. Talk about misleading terminology to call this the Newtonian time against which we
define the “delay”; we might call it more accurately the Minkowskian time, or perhaps even the Pythagorean time.

In any case, the time delay is given by 
T (rE, rV, r0)= 2(
t(r0, rV)+
t(r0, rE)) with


t(r0, rV)= rS

∫ r1

r0

dr

(
1 − r2

0

r2

)− 1
2 2r + 3r0

2r(r + r0)
= rS

⎛
⎜⎝ 1

2

√
r − r0

r + r0
+ log

r1 +
√
r2

1 − r2
0

r0

⎞
⎟⎠ (17)

∗ Recently a friend of mine remarked to me over dinner that anybody who has read a book on general relativity
knows how to calculate the 43′′ per century, but how many physicists can calculate the 5,600′′ per century? Ouch,
point well taken!
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Figure 3 Radar echo delay. V stands for Venus,
E for the earth.

(While we could evaluate the integral17 exactly, to extract the leading logarithmic term
t(r0, rV)∼ rS(log(r1/r0)+
. . .) for r1 � r0, we can simply set r0 to 0 in the integral.) I won’t bother to put together a final expression for

T (rE, rV, r0) for you, but I do wish to remark that, as usual, it takes herculean effort to realize the actual
experiment with such a tiny effect. We have not even mentioned various necessary corrections, such as the
propagation of the radar beam through the solar corona. Shapiro was able to verify Einstein’s theory to a couple
of percentage points, but over the decades, the accuracy has now been improved to about a tenth of a percent,
using satellites carrying frequency dependent transponders rather than using Venus.

By the way, just about nothing sets off a stampede of crackpots saying that Einstein was wrong than a
newspaper report about the latest radar echo delay measurement. The unfortunate word “delay” suggests to
the uninformed that light does not actually move at the speed of light. You of course know better: (V.4.21) for
dr/dζ comes directly from gμνdx

μdxν = 0.

Appendix 3: Time dependent spherically symmetric mass distribution and
the Jebsen-Birkhoff theorem

Jørg Tofte Jebsen in 1921 and George Birkhoff in 1923 showed that, remarkably, the Schwarzschild solu-
tion continues to hold outside a time dependent spherically symmetric mass distribution. This result, evi-
dently of great relevance in studying the gravitational collapse of a spherically symmetric dust cloud to form
a black hole, is known18 as Birkhoff’s theorem in most textbooks. I will walk you through a proof by direct
computation.

In exercise V.4.3, you showed that time dependence leads to three more nonvanishing Christoffel symbols,
namely�t

tt
= Ȧ

2A , �t
rr

= Ḃ
2A , �r

tr
= Ḃ

2B , with odd numbers of the t index. This introduces one more nonvanishing
component in the Ricci tensor:

Rtr = Ḃ

rB
(18)

The three components we already had in (5–7) acquire additional terms as follows:

Rtt = A′′

2B
+ A′

rB
− A′

4B

(
A′

A
+ B ′

B

)
− B̈

2B
+ Ḃ

4B

(
Ȧ

A
+ Ḃ

B

)
(19)

Rrr = −A′′

2A
+ B ′

rB
+ A′

4A

(
A′

A
+ B ′

B

)
+ B̈

2A
− Ḃ

4A

(
Ȧ

A
+ Ḃ

B

)
(20)

Rθθ = 1 − 1
B

− r

2B

(
A′

A
− B ′

B

)
(21)

and of course we still have Rϕϕ = sin2 θRθθ .
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This looks like a scary mess,∗ but fortunately here we only want to solve Einstein’s equation in empty spacetime,
outside the mass distribution. The equation Rtr = 0 tells us immediately that Ḃ = 0. Happily for us, we see that,
in Rtt and Rrr , Ȧ appears multiplied by Ḃ and so drops out.

Alternatively, the equation Rθθ = 0 tells us that, since B does not depend on t , (log A)′ = A′
A

depends only on
r . Thus, log A is the sum of a function of r and a function of t , and hence A is the product of a function of r and
a function of t , namely A= f (t)(1 − 2GM

r
), with f (t) some unknown function. But we can then simply define

dt̃ =√
f (t)dt to get rid of f (t).

Thus, the Schwarzschild solution holds outside a spherically symmetric mass distribution, even if it varies
in time. We will come back to the Jebsen-Birkhoff theorem in chapter IX.4. For now, note that the theorem is
the general relativistic analog of Newton’s two superb theorems mentioned way back in chapter I.1. To solve
Einstein’s field equation for the empty spacetime inside a spherical shell, simply go through all the same steps
as in solving the Einstein field equation outside a spherically symmetric mass distribution, except that when
you obtain 1

B
= 1 + b

r
, you have to set the integration constant b to 0, since the spacetime must not be singular

at r = 0.

Appendix 4: Weyl’s shortcut to Schwarzschild

It is amusing to mention a quick, but not totally kosher, way19 to the Schwarzschild solution given by Weyl, which
Einstein professed in his writings to like.20

Weyl simply plugs the Ansatz for the metric (1) into the Einstein-Hilbert action SEH-Weyl =
∫
d4x

√−gR to
obtain an “effective” action Seffective(A, B). Any student who understands the variational principle could tell him
this is not† quite legitimate. The correct procedure is of course to plug the Ansatz into the equations of motion
obtained by varying the action. The rigorous mathematical justification21 of what Weyl did took almost a century.22

The determinant of the metric −g = ABr4 sin2 θ is easy. The scalar curvature

R = gμνRμν = −Rtt

A
+
(
Rrr

B
+ 1
r2

(
Rθθ + 1

sin2 θ
Rϕϕ

))
= −Rtt

A
+
(
Rrr

B
+ 2
r2
Rθθ

)
(22)

is evaluated using (5–7). Weyl found that the substitution A= a2b and B(r)= 1/b(r) simplifies the resulting
mess considerably.‡ After integrating by parts, Weyl found that the action Seffective(A, B) becomes

SEH-Weyl = 8π
∫

dt

[∫
dr ra

(
b′ + b

r
− 1
r

)]
= 8π

∫
dt

{∫
dr r(1 − b)a′

}
(23)

where in the last step, we integrated
∫
dr rab′ = − ∫

dr (ra′ + a)b by parts. In other words, Weyl dropped surface
terms left and right. In fact, we can drop the integration over t just as we had integrated over θ and ϕ. Weyl was
left with the amazingly simple effective action

Seffective(a , b)= −
∫ ∞

0
dr r(1 − b)a′ (24)

VaryingSeffective with respect to b gives a′ = 0, and with respect to a gives (r(1− b))′ = 0. Fitting to the boundary
conditions at spatial infinity gives a = 1 and b = 1 − 2M

r
, in other words, the Schwarzschild solution. (Recall an

exercise you did back in chapter II.1.)
Actually, in my humble opinion, even by committing an illegitimacy, Weyl did not save all that much in

arithmetic. In chapter VI.4, I will show that, if we are allowed to integrate by parts and throw away boundary
terms with no questions asked, then we can write the Einstein-Hilbert action as SEH = ∫

d4x
√−g[�ρσλ�

σ
ρν
gλν −

(�
ρ
νλg

λν)�η
ρη

], after considerable formal manipulations. If we are allowed to start with this action and use Weyl’s
trick, then we can avoid calculating any of the curvature tensors and do save some arithmetical drudgery (which
in any case we could foist on a computer, not to mention a competent student).

∗ As a check, note that Rtt and Rrr transform correctly under the scaling t → λt , A→ λ−2A, and B → B.
† To find the minimum of f (x1, . . . , xn) we should of course solve ∂f

∂xi
= 0, i = 1, . . . , n with the appropriate

Ansatz, instead of plugging some Ansatz for x1, . . . , xn into f first and then differentiating. But if both
the Ansatz and the actual solution possess the same high degree of symmetry, it might perhaps be okay.

‡ You might have noticed that this substitution is designed, with hindsight, to “deal with” the two combinations
( A

′
A

+ B ′
B
) and ( A

′
A

− B ′
B
) that appear in the Ricci tensor.
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Appendix 5: Droste’s solution of Einstein’s field equation

Amazing though Schwarzschild’s story is, what happened to the obscure Dutchman Johannes Droste (1886–
1963) is perhaps no less remarkable.23 Droste, who received his doctorate in 1916 with Lorentz in Leiden, solved
Einstein’s 1915 field equations around a spherically symmetric mass, starting with the preliminary version of
the field equation published by Einstein in 1913. His work24 was communicated by Lorentz to the Royal Dutch
Academy of Sciences on May 27, 1916, a few months after Einstein had communicated Schwarzschild’s solution
to the Prussian Academy of Sciences on January 13, 1916. In my opinion, Droste’s paper is cleaner and less
confused than Schwarzschild’s, and furthermore contains an analysis of the motion of a particle in the spacetime.
Interestingly, Droste also used Weyl’s approach, which we explained in appendix 4 and which Einstein liked so
much, long before Weyl. For some reason, the physics community totally ignored this work. Droste became a
high school teacher, and later a professor of mathematics at Leiden University. (While writing this appendix,
I asked a professor of physics at Leiden University, who said he had never heard of Johannes Droste. He did
tell me, however, that “Droste” was well known in the Netherlands as a brand of cocoa powder, after which the
Droste effect [an apparently infinite regression of pictures within pictures25] was named. He told me of his fond
childhood memory26 of drinking hot chocolate while being fascinated with infinity.)

I was quite astonished by this story. Somehow, Lorentz never mentioned his student’s work to Einstein. Or
perhaps he did, but Einstein chose to promote Schwarzschild, who after all died rather tragically. But why didn’t
Droste protest every time the Schwarzschild solution was mentioned? Perhaps we simply live in a noisier and
more assertive era. Here is an interesting tale for a budding historian of physics to look into.

In the appendices to the chapter, I tell you about, not one, but two young guys getting shafted by the
establishment.

Exercises

1 Calculate the Ricci tensor in terms of A and B.

2 Calculate the Riemann tensor in terms of A and B.

3 Show that the Schwarzschild metric can be written in the isotropic form

ds2 =
(

1 − GM
2ρ

1 + GM
2ρ

)2

dt2 −
(

1 + GM

2ρ

)4 (
dρ2 + ρ2(dθ2 + sin2 θdϕ2)

)
(25)

Where is the horizon?

4 Show that the Schwarzschild metric can be written in the harmonic form

ds2 =
(

1 − GM
R

1 + GM
R

)
dt2 −

(
1 + GM

R

)2

d �x2 −
(
GM

R2

)2
(

1 + GM
R

1 − GM
R

)
(�x . d �x)2 (26)

with R = �x2.

5 Show that in the parametrized post-Newtonian approximation described in chapter V.4, the deflection of

light is given by 
ϕ =
(

1+γ
2

)
(
ϕ)Einstein, and the perihelion shift by 
ϕ = (

2−β+2γ
3 )(
ϕ)Einstein.

6 Show that

ds2 =
(

1 − 2M
r

− r2
)
dt2 −

(
dr2

1 − 2M
r

− r2
+ r2d�2

2

)

satisfies the Einstein field equation Rμν = −3�gμν with a cosmological constant. This is known as the
Schwarzschild–de Sitter spacetime. We will come back to this in chapter IX.10.
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7 Show that in (4 + 1)-dimensional spacetime, the analog of the Schwarzschild solution is given by

−ds2 = −
(

1 − r2
S

r2

)
dt2 +

(
1 − r2

S

r2

)−1

dr2 + r2d�2
3

where d�2
3 is the metric on the 3-sphere S3.

Notes

1. It is less well known that while on the front, he also wrote a paper on the Stark effect. Perhaps it is only a
slight exaggeration to say that these days there are professors of general relativity walking around proudly
ignorant of atomic physics (and professors of atomic physics proudly ignorant of general relativity).

2. Some would say that this is a highly appropriate name for someone who discovered black holes.
3. Historically, the horizon was a source of great confusion, and Kruskal’s contribution cannot be overestimated.

For example, on p. 203 of Bergmann’s textbook Introduction to the Theory of Relativity (with a foreword by
A. Einstein) (1976 Dover edition, originally published in 1942), he quoted Robertson as concluding that “at
least part of the singular character” of the metric at r = 2GM must be attributed to the choice of coordinates.
Curiously, people at the time did not follow the modern expedient of simply noting the smoothness of the
Riemann curvature tensor, which Schwarzschild himself, at the very least, must have calculated. Bergmann
then went on and cited a paper by Einstein (Ann. Math. 40 (1939), p. 922) purportedly showing that in a toy
model of a spherical cluster of noninteracting particles, the Schwarzschild singularity could not form. The
general feeling was that the Schwarzschild singularity could not occur in nature.

4. The second and third sentence in Kruskal’s paper read: “Kasner, Lemâıtre, Einstein and Rosen, Robertson,
Synge, Ehlers, Finkelstein, and Fronsdal have shown that the singularities at r = 0 and r = 2GM are very
different in character. Their conclusion—that there is no real singularity at r = 2GM—can be demonstrated
by a choice of coordinates seemingly simpler and more explicit than any introduced so far to this end.” The
papers cited range from Kasner’s in 1921 to Fronsdal’s in 1959. I am assuredly not a historian, but this
certainly indicates that after 44 years, the issue of the “spherical singularity” was about to be settled in 1960.

5. Notice also that you calculated only the Ricci tensor (which, being zero, manifestly does not blow up at rS)
but not the full Riemann tensor, which you can now do as a tedious exercise.

6. This is, of course, Minkowski’s “mystical” substitution x = it .
7. A photograph of this letter (in German) is in the Huntington Digital Library (http://hdl.huntington.org).
8. Most physics students associate Friedrich Bessel with cylindrical coordinates, but in fact his work with Bessel

functions (actually first discovered by Daniel Bernoulli) was largely in connection with perturbations of
planetary orbits.

9. In 2012, astronomers discovered a star that has an orbital period of only 11.5 years around the Milky Way’s
central black hole. This will, in due time, give another test of Einstein’s prediction of the perihelion shift.

10. Not to be confused with his cousin the aircraft maker.
11. Einstein to Sommerfeld, December 9, 1915: “Wie kommt uns da die pedantische Genauigkeit der Astrono-

mie zu Hilfe, über die ich mich im Stillen früher oft lustig machte!” The Collected Papers of Albert Einstein,
vol. 8, The Berlin Years: Correspondence, 1914–1918, ed. Robert Schulmann et al., Princeton University Press,
1998, p. 217; English translation by Ann Hentschel, cited from the companion translation volume, p. 159.

12. Quoted in A. Calaprice, ed. The Expanded Quotable Einstein, Princeton University Press, 2000.
13. J. Waller, Einstein’s Luck.
14. If you’ve heard the phrase “the guns of August,” which inspired a book with that title, you would know that

the timing was optimal for Einstein, as it would turn out.
15. For a contemporary study exonerating Eddington, see D. Kennefick, “Testing Relativity from the 1919

Eclipse—A Question of Bias,” Physics Today, March 2009, p. 37.
16. Note that by differentiating (13) for the perihelion motion, we obtain basically the same differential equation

as in (10) for the deflection of light, perhaps not surprisingly.
17. Note Newton’s greatness. In calculating the deviation from Newtonian physics, the mathematics we use is

all Newtonian.
18. Perhaps this is because Birkhoff was a famous professor at Harvard, while Jebsen (1888–1922) died young

(of tuberculosis) and obscure. This is another example of the Matthew principle cited in chapter III.2. For
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the discovery of Jebsen’s paper, see S. Deser, Gen. Relativ. Gravit. 37 (2005), p. 2251, and N. V. Johansen and
F. Ravndal, arXiv 0508163.

19. H. Weyl, Space-Time-Matter, Dover, 1952; S. Deser and B. Tekin, Class. Quantum Grav. 20 (2003), pp. 4877–
4883; S. Deser and J. Franklin, Am. J. Phys. March 2005, pp. 261–264.

20. “The derivation given by Weyl in his book “Raum-Zeit-Materie” is particularly elegant.” A. Einstein, The
Meaning of Relativity, Princeton University Press, 2004, p. 94.

21. R. S. Palais, Comm. Math. Physics, 69 (1979), p. 19.
22. Perhaps ironically one of the leading mathematicians of his time. Those who say that my textbooks are not

rigorous enough for them, take note! Winging it often turns out to lead to the right answer.
23. I am grateful to Gary Gibbons for telling me about Droste during a visit to Trinity College.
24. J. Droste, reprinted in Gen. Rel. Grav. 34 (2002), p. 1545. See the historical notes by T. Rothman and by

C. Beenakker, pp. 1541 and 1543.
25. If you search the web for the Droste effect, you will see why it is named after cocoa powder. I was tempted

to make this an endnote inside an endnote.
26. Beats Proust any day. Recall also chapter III.4.



VI.4 Energy Momentum Distribution Tells Spacetime
How to Curve

The action of the world

In chapter VI.1, we arrived at the action of the world (whoa!) S = SEH + Smatter. Here SEH

denotes the Einstein-Hilbert action and Smatter a sum of various matter actions, such as
the action for point particles and the Maxwell action for the electromagnetic field. (As
already mentioned in chapter VI.1, in Einstein gravity, the term “matter” is often used in
an extended sense to include everything else besides gravity, such as the electromagnetic
field, which we normally do not think of as matter.)

We have to vary S = SEH + Smatter with respect to the gravitational field gμν to obtain the
full field equation for Einstein gravity. Thus far, we have avoided∗ varying Smatter. In this
chapter, we will learn how to vary several different forms of Smatter.

First, how do we obtain Smatter, as for example the Maxwell action for the electromagnetic
field in curved spacetime? As explained in chapters V.2 and V.6, when we discussed the
power of the equivalence principle, we simply† take the flat spacetime actions we have
known and loved, such as the Maxwell action, and promote them to curved spacetime by
replacing the Minkowski metric ημν by gμν.

The energy momentum tensor once again

Second, what do we get when we vary Smatter? Write the variation of Smatter as δSmatter =
1
2

∫
d4x

√−g T μν(x)δgμν(x). In other words, define

T μν(x)≡ 2√−g
δSmatter

δgμν(x)
(1)

∗ In chapter VI.2, we guessed what varying the exceptionally simple Scosmological = − ∫
d4x

√−g� would give
us, rather than actually varying it.

† See appendix 3 in chapter IX.7 for an exception to this statement.
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so that the field equation now has the form (recall the notation of chapter VI.1) A(Rμν +
αgμνR)= T μν.

By this point, you understand that T μν(x) defines a symmetric 2-indexed tensor at every
point in spacetime. Furthermore, it appears in the field equation for Einstein gravity and
determines the curvature of spacetime. So what could it be?

Remember the energy momentum tensor T μν we derived in chapter III.6? Indeed, you
might accuse me of trying to sneak one past you by using the same notation. Yes, as
you might have guessed, the T μν here is the curved spacetime generalization of the T μν

there. Physically, it makes sense that the distribution of energy momentum determines
the curvature. The energy momentum tensor T μν appears in the Einstein’s equation as
a source for the gravitational field, just as the electromagnetic current Jμ appears in
Maxwell’s equation as a source for the electromagnetic field. In fact, you can see that what
we are doing is analogous to what we did in chapter IV.2; one difference is that we have to
carry one more index around.

We have arrested the suspect, but how do we convict him? Already, we have mentioned
a load of circumstantial evidence.∗ We will now identify T μν for a number of cases, show
that the integral

∫
V
d3x

√−gT 0ν gives the energy and the momentum contained in the
volume V , and verify that T μν reduces correctly to the energy momentum tensor we knew
and loved in flat spacetime back in chapter III.6. Most importantly, we will show the court
that the T μν defined in (1) is covariantly conserved

DμT
μν = 0 (2)

which reduces correctly to the familiar ∂μT μν = 0 in the flat spacetime limit. If it waddles
and quacks like a duck, then it is a duck.

We did not go looking for the energy momentum tensor, but the energy momentum
tensor came looking for us!

Energy and momentum of point particles

Let’s see how (1) works for the simple case of a gas of point particles that do not interact
with one another, known as dust in general relativity and cosmology. The action reads

Sparticles = −
∑
a

ma

∫
dτa

√
−gμν(Xa)

dX
μ
a

dτa

dXν
a

dτa
(3)

You have encountered this action in flat spacetime several times already, in chapters III.5
and IV.2. The equivalence principle again roars with its awesome power: simply replace

∗ Another clue comes from the equation for the Newtonian gravitational potential: ∇2� = 4πGρ. In a
relativistic theory, the mass density ρ is replaced by the energy density, and we can’t speak of energy density
without talking about momentum density as well. This suggests that the right hand side of Einstein’s field
equation should involve energy and momentum density. See chapters III.6 and IX.5.
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ημν by gμν and behold the action in its full glory in curved spacetime. Varying Sparticles with
respect to gμν(x) and using (1), we obtain

T μν(x)= 2√−g(x)
δ

δgμν(x)
Sparticles

= 1√−g(x)
∑
a

ma

∫
dτa

1√
−gσρ(Xa)

dXσ
a

dτa

dX
ρ
a

dτa

dXμ
a

dτa

dXν
a

dτa
δ4(x −Xa(τa))

= 1√−g(x)
∑
a

ma

∫
dτa

dXμ
a

dτa

dXν
a

dτa
δ4(x −Xa(τa)) (4)

where as usual the third equality follows from the sensible parametrization of the particle

worldlines, namely defining τa by setting gμν(Xa)
dX

μ
a

dτa

dXν
a

dτa
= −1. As we suspected, T μν(x)

is precisely the curved spacetime generalization of the energy momentum tensor we first
encountered in Minkowskian spacetime. Setting gμν to ημν, we recover (III.6.7): the “only”
difference is the appearance of the density factor 1/

√−g, which is precisely what is needed
to counteract the

√−g in the volume factor when we integrate over T 0ν to obtain the energy
and momentum of the particles. Indeed, this provides a nice formal check of our more
laborious, but more physical, derivation in chapter III.6. It also shows that the plus sign
in (1) comes from the minus sign in (3), which was needed (as was first explained back in
chapter III.5) to reproduce the Newtonian action for a point particle.

A common sign error

I must emphasize, once again, that the gravitational field is gμν, not gμν. The reason is
that from the very beginning, we defined coordinates to carry upper indices, and so for
point particles the dynamical variables Xμ

a
carry an upper Lorentz index. Thus, particles

couple to gμν, not gμν. In varying the action here, we are required to hold the dynamical
variables Xμ

a
fixed as we did in (4). Of course, once we obtain T μν, we can lower indices at

will using the metric and define Tμν ≡ gμλT
λρgρν.

People sometimes commit a sign error here. For an invertible matrix M, recall from
(V.6.7) that δM−1 = −M−1δMM−1. Applying this to the metric, we have

δgρσ = −gρμδgμνgνσ (5)

(Note the sign, which we can verify in the 1-by-1 case: δx−1 = −x−2δx.)
Were we to define a Tμν by varying with respect to gμν in (1), we would have produced

an erroneous sign. I will show you this schematically, omitting inessential factors. Given a
matter action S(Xμνgμν)= S(Xρσg

ρσ ), we have δS = S′ Xμνδgμν, but δS = S′Xρσδg
ρσ =

S′Xρσ(−1)gρμδgμνgνσ = −S′Xμνδgμν. This slightly subtle point is sometimes not made
sufficiently clear. The point is of course that in varying, you have to specify∗ what is being
held fixed.

∗ As in thermodynamics.
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Energy momentum in the electromagnetic field

Let me now show you the power of this definition of T μν by obtaining results that
may be familiar to you about the electromagnetic field in flat spacetime. Promote the
Maxwell action SMaxwell = ∫

d4xLMaxwell = − 1
4

∫
d4xFμνF

μν = − 1
4

∫
d4xησζηλρFσλFζρ

for the electromagnetic field in Minkowskian spacetime introduced in chapter IV.2 to

SMaxwell = − 1
4

∫
d4x

√−ggσζgλρFσλFζρ (6)

in curved spacetime. Next, vary as in (1) and thus calculate T μν of the electromagnetic
field.

The important point here is that Aμ, not Aμ ≡ gμνAν, is the dynamical variable and
is to be held fixed. One way to see this is to recall that in our discussion (chapter IV.2)
of electromagnetic gauge invariance, Aμ goes with ∂μ ≡ ∂

∂xμ
. So the mnemonic is that

Xμ
a

and Aμ are the dynamical variables. Another important bit of information you should
recall is that, as explained in chapter V.6, the covariant curl is equal to the ordinary curl
DμAν −DνAμ = ∂μAν − ∂νAμ, so that Fμν does not depend on the metric.

Here, we have to vary the determinant g = det gμν, but we did that already back in
chapter V.6. For convenience, I will repeat it here. Using the identity log det M = tr log M ,
we obtained δ det M = det Mδ(tr log M)= det M tr(M−1δM) and thus

δ
√−g = 1

2
√−ggμνδgμν (7)

(To check, we again go to the 1-by-1 case: δ
√−x = 1

2
√−xx−1δx.)

Now we’re ready to vary:

T μν(x)= 2√−g(x)
δ

δgμν(x)
SMaxwell

= − 2

4
√−g(x)

δ

δgμν(x)

∫
d4y

√−g(y)gσζ (y)gλρ(y)Fσλ(y)Fζρ(y)

= F
μ
λ(x)F

νλ(x)− 1
4g

μν(x)Fσρ(x)F
σρ(x) (8)

To obtain the last expression, we used (5) and (7). Note the local character of the energy
momentum tensor.

The energy momentum tensor (8) of the electromagnetic field contains two pieces. Take
the trace and watch the results from the two pieces cancel each other:

T ≡ gμνT
μν = gμν(F

μ
λ F

νλ − 1
4g

μνFσρF
σρ)= 0 (9)

Note how various signs play a crucial role here.
The energy momentum tensor of the electromagnetic field is traceless.∗ Interestingly, in

chapter III.6, we derived the tracelessness of the energy momentum tensor of a photon gas

∗ Looking ahead, we remark here that this is related to the invariance of the Maxwell action under scale
transformation. We will discuss scale invariance in chapter IX.9.
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coming from a rather different direction. This is an example of the “particle-field duality”
that is at the core of quantum field theory.

Electromagnetism in flat spacetime

It is instructive to make contact with what you know about electromagnetism in flat
spacetime, either from chapter IV.1 or IV.2. Recall that the field strength Fμν is related
to the electric and magnetic fields by F0i = Ei and Fij = 1

2εijkBk.
Well, simply demote gμν in (6) and (8) to ημν. The Maxwell Lagrangian (6) becomes

L = − 1
4FμνF

μν = − 1
4 (−2

∑
i

F 2
0i +

∑
i

∑
j

F 2
ij
)= 1

2 (
�E2 − �B2) (10)

where for clarity, I have reinstated the summation sign. Next, work out the different compo-
nents of T μν and compare with what you know, either from a course on electromagnetism
or with exercise IV.2.2. The energy density is given by

T 00 = T00 = +F 0
λ
F 0λ + η00L = + �E2 − 1

2 (
�E2 − �B2)= 1

2 (
�E2 + �B2) (11)

(Note that in Minkowski spacetime T 00 and T00 are numerically the same.) That’s com-
forting to see an energy density we’ve known from “childhood”: the energy density is a
rotational scalar to which the electric and the magnetic fields contribute equally.

Contrast the signs in (10) and (11). The signs work just as in Newtonian mechanics,
where the energy is the sum of the kinetic and potential energies, while the Lagrangian
is the difference. In electromagnetism, the electric field plays the kinetic role, while the
magnetic field plays the potential role. Indeed, the electromagnetic field may be regarded as
a collection of an infinite number of harmonic oscillators. This view provides one possible
starting point for quantum field theory.

Next, calculate the momentum density

T0i = F0λF
λ
i

= F0jFij = εijkEjBk = ( �E × �B)i (12)

The Poynting vector you learned in electromagnetism has just emerged! It is the simplest
rotational vector you can form out of the electric and the magnetic fields with the correct
transformation properties under reflections in space and in time.

Interaction among different matter sectors

Thus far, we have treated Sparticles and SMaxwell in turn. But now consider the action
Sparticles + SMaxwell + Sinteraction, where, as we first saw in chapter IV.2,

Sinteraction =
∑
a

ea

∫
dτa

dXμ
a

dτa
Aμ(Xa) (13)

with ea the charge of particle a. All we have to do is to plug this action into (1) and turn
the crank.

“But I don’t see gμν anywhere in (13),” Confusio pipes up.
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Indeed, for once Confusio is right: perhaps surprisingly, Sinteraction does not contribute to
T μν according to (1). Thus, for charged particles interacting with one another, the energy
momentum tensor that the gravitational field responds to is just the sum of the energy
momentum tensors in (4) and (8):

T μν = T
μν

particles + T
μν

Maxwell

≡ 1√−g
∑
a

ma

∫
dτa

dXμ
a

dτa

dXν
a

dτa
δ4(x −Xa)− F

μ
λ F

νλ + 1
4
gμνFσρF

σρ (14)

However, as we would expect physically, since the charged particles and the electromag-
netic field can exchange energy and momentum, the tensors T μν

particles and T
μν

Maxwell are no

longer separately conserved. Only T μν is conserved.1 We will reach a deeper understanding
of this point in appendix 1.

What exactly are energy and momentum, anyway?

You started studying physics by learning about mass, energy, momentum, all sorts of great
stuff like that. But what exactly is energy and momentum anyway? I want to emphasize here
that (1) gives us a fundamental definition of energy (and hence mass) and momentum.
Energy momentum is what the graviton listens to, just as electric charge is what the photon
listens to. (The graviton is of course the particle associated with the field gμν .) In other
words, energy momentum as embodied in T μν is what appears in the right hand side of
Einstein’s field equation: it is the stuff that tells spacetime how to curve.

As is evident from the electromagnetic example, this definition is useful even if we are
not interested in curved spacetime per se. Given an action in flat spacetime, we can always
temporarily promote ημν to gμν, multiply d4x by

√−g, use (1) to find T μν(x), and then
set gμν back to the Minkowski metric ημν . We are guaranteed, as we will show shortly, to
obtain an energy momentum tensor satisfying DμT

μν(x)= 0, and hence ∂μT μν(x)= 0
in flat spacetime. In contrast to a formula like EK = 1

2mv
2, the definition (1) of energy

momentum can be applied to any theory based on the action principle, such as quantum
field theory.2 You will explore this further in exercise 4.

More importantly, this fundamental definition of the energy momentum tensor leads us
to a deep understanding of why energy and momentum are conserved. As the derivation is
a bit long, I place it in appendix 1, where I will show that the conservation law DμT

μν = 0
follows elegantly from the principle of general invariance. We would expect T μν to have
“nice” properties; it is the variation not of any old piece of junk, but of an exquisite object
that controls how things move and that does not change under coordinate transformations.

Appendix 1: Conservation of energy momentum

As I emphasized way back in chapter II.4, conservation laws and symmetries are intimately connected. Here we
will exploit the general invariance of the matter action Smatter to prove energy momentum conservation. We could
discuss this in the abstract, but just to be concrete, let us specialize to SMaxwell = − 1

4

∫
d4x

√−ggσζgλρFσλFζρ .
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In other words, we are taking the action for the world to be S = SEH + SMaxwell, namely a world with only gravity
and electromagnetism, and nothing else.

Be forewarned. The following derivation may appear rather long to the novice, but it is completely general
and hence quite profound. Every step may seem trivially true, but that might well be the way of the Zen master.
Don’t be lulled to sleep, and watch the primes, and even more importantly, the absence of primes, like a hawk.

General invariance means that SMaxwell remains unchanged if we make these replacements:

x → x′ , gρσ (x)→ g′
ρσ
(x′), gμσ (x)→ g′μσ (x′), Aρ(x)→ A′

ρ
(x′) (15)

This may seem like a long list, but you understand that all we are doing is making a coordinate transformation. As
always, g′

ρσ
(x′) = gμν(x)(S

−1)
μ

ρ
(S−1)

ν

σ
, g′μσ (x′) = Sμ

ρ
Sσ
τ
gρτ (x), A′

ρ
(x′) = Aμ(x)(S

−1)μ
ρ
, with Sμ

ν
≡ ∂x′μ

∂xν
and

(S−1)
μ

ρ
≡ ∂xμ

∂x′ρ .
We presently specialize to an infinitesimal transformation x′μ = xμ + εμ(x) so that, to leading order, Sμ

ν
=

δμ
ν

+ ∂νε
μ(x) and (S−1)

μ

ρ
= δμ

ρ
− ∂ρε

μ(x). Then A′
ρ
(x′)= Aμ(x)(S

−1)μ
ρ

= Aρ(x)− Aμ(x)∂ρε
μ(x) and

g′
ρσ
(x′)= gμν(x)(S

−1)
μ

ρ
(S−1)

ν

σ
= gρσ (x)− gμσ (x)∂ρε

μ(x)− gρν(x)∂σε
ν(x) (16)

Keep that in the back of your mind.
After we make those replacements in (15), we end up with

SMaxwell = − 1
4

∫
d4x ′√−g′(x′)g′σζ (x′)g′λρ(x′)F ′

σλ
(x′)F ′

ζρ
(x′)

(with F ′
μν
(x′)= ∂ ′

μ
A′
ν
(x′)− ∂ ′

ν
A′
μ
(x′)). We have exactly the same SMaxwell we started with, and so δSMaxwell = 0.

Looks like we did nothing! We have merely verified that SMaxwell is invariant under general coordinate
transformation. But the magic trick is about to begin.

Since x′ is a dummy integration variable, we can erase all the primes on x′ in that integral for SMaxwell displayed
in the preceding paragraph. So go ahead and do it. I will wait for you.

You didn’t erase the prime on g′ and A′, did you?
If you did, you need to review your calculus. The dummy x′ can be replaced by anything you want, in particular

x. But of course you and I have no right to erase the primes on the dynamical fields g′
ρσ

and A′
ρ
. (Here and

henceforth, all statements made about g′
ρσ

also apply mutatis mutandis to g′μσ , which after all just denotes the

inverse.) In other words, SMaxwell = − 1
4

∫
d4x

√−g′(x)g′σζ (x)g′λρ(x)F ′
σλ
(x)F ′

ζρ
(x). The net effect is that we have

replacedAρ(x)→A′
ρ
(x)=A′

ρ
(x′)− (A′

ρ
(x′)−A′

ρ
(x)) and gρσ (x)→ g′

ρσ
(x)= g′

ρσ
(x′)− (g′

ρσ
(x′)− g′

ρσ
(x)). To

leading order in ε, we made the change

δgρσ (x)
specific ≡ g′

ρσ
(x)− gρσ (x)= {g′

ρσ
(x′)− gρσ (x)} − {g′

ρσ
(x′)− g′

ρσ
(x)}

= −
(
gμσ (x)∂ρε

μ(x)+ gρν(x)∂σε
ν(x)+ ελ∂λgρσ (x)

)
+O(ε2) (17)

In the last step, we simplified the first bracket using (16), which I told you to keep in the back of your mind, and
the second bracket using calculus to the order indicated. We put a superscript on δgρσ (x) to remind us that this
is a specific variation of the metric, given by the specific form in (18), not a general variation.

Recalling chapter V.6, you might have recognized that we can write this in terms of covariant derivatives of εμ:

δgspecific
ρσ

= −(ερ;σ + εσ ;ρ)+O(ε2) (18)

(Incidentally, the expression inside the parentheses could also be written in terms of the Lie derivative
Lεgρσ .)

Similarly, we can work out the change δAρ(x)
specific ≡A′

ρ
(x)−Aρ(x) to be some specific expression involving

ε and its derivatives, the same kind of expression as in (18) but, as you will see, we don’t need to know the
specific form.

As I said, everything seems trivial step by step. But now let us put the pieces together: the variation δSMaxwell
consists of two terms, one due to the variation δAρ(x)

specific, the other to δgρσ (x)specific. Since we also know that
δSMaxwell vanishes by general invariance, we obtain

0 = δSMaxwell =
∫

d4x(. . .)ρδAρ(x)
specific + 1

2

∫
d4x

√−g T ρσ (x)δgρσ (x)
specific (19)

by virtue of (1).
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In the first term, the expression denoted by (. . .)ρ vanishes. Indeed, according to Euler and Lagrange, that is
how we derive the equation of motion for the electromagnetic fieldAρ(x). We vary the action SMaxwell with respect
to a general variation of Aρ(x) and set that variation of the action to 0 to obtain the equation of motion. If this
variation of SMaxwell vanishes for a general variation δAρ(x), then a fortiori it vanishes for the specific variation
δAρ(x)

specific. This point is worth emphasizing: the rest of this derivation can proceed only if the electromagnetic
field satisfies Maxwell’s equations. But of course: the energy momentum tensor (8) of the electromagnetic field
can hardly be expected to be conserved if the electromagnetic field is not going to vary in time according to
the rules!

To obtain the second term in (19), we use the definition (1), substituting for δgρσ the specific variation
δgρσ (x)

specific in (18). We thus conclude that 0 = ∫
d4x

√−g T ρσ (x)δgρσ (x)
specific.

Confusio looks puzzled. We knew he would!
“You mean (1) is just zero?”
“No! The statement in (1) says that if you vary Smatter by varying gμν arbitrarily, the coefficient gives you T μν .

It is the definition of T μν ,” you and I say in unison, “but the statement we just derived says that the variation of
Smatter vanishes for a specific δgρσ (x)specific as given in (18).”

So, we just derived∫
d4x

√−g T ρσ (ερ;σ + εσ ;ρ)= 0 (20)

The expression in the parentheses in (20), since it is multiplied by a symmetric tensor, can be replaced by 2εσ ;ρ .
A (covariant) integration by parts immediately gives (since εμ(x) is arbitrary) what we set out to prove:

DρT
ρσ = 0 (21)

For the discussion in the next appendix, it is also illuminating to write (21) as

DρT
ρσ = 1√−g ∂ρ(

√−gT ρσ )+ �σ
ρλ
T ρλ (22)

Some remarks follow.

1. It is clear from the derivation that we get covariant conservation of the energy momentum tensor only if
the equations of motion for the matter degrees of freedom (here the electromagnetic field) are satisfied.
This makes physical sense of course.

2. Here we set Smatter to SMaxwell to be concrete, but clearly all the action—pardon, all the juice—is in
the variation of gμν . The electromagnetic field Aρ(x) just went along for the ride. We didn’t even need
to know in detail the expression for δAρ(x)

specific and (. . .)ρ in (19). Indeed, Smatter, the action for
everything else in the universe besides the gravitational field, may very well contain 47 fields all madly
interacting with one another. Then the first term in (19) would be replaced by the sum of 47 analogous
terms, with Euler and Lagrange assuring us that every one of the 47 analogs of (. . .)ρ would vanish.

3. I am assuming that the only field you the reader know about is the electromagnetic field, and that
you are reading this book to learn about the gravitational field. At this stage, you might think of what
we normally call matter as a collection of particles described by Sgas. But when you go on to quantum
field theory, you will learn that everything in the universe is described by fields, hence the preceding
remark. The ugly asymmetry in treating particles and fields at this level of physics in fact provides a
strong motivation for the development of quantum field theory, as already alluded to in chapters II.3
and IV.2.

4. I leave it to you as an exercise to derive energy momentum conservation for Sgas.

5. Refer back to the point made in remark 2. The action for everything else in the universe besides the
gravitational field, Smatter, contains many terms. Some terms describe interactions among different
dynamical variables; for example, the term (13) contains both Xμ

a
and Aμ(x). These terms contribute

to the equations of motion of course and hence to the derivation of (20). Thus, the conservation law
DμT

μν = 0 indeed takes into account the interactions among different types of matter, as it must on
physical grounds.

6. Notice that in determining the energy momentum tensor and in proving that it is conserved, we vary
not the entire action of the world S = SEH + Smatter, but only Smatter. This is crucial.

7. As I have said, in theoretical physics, often the more profound results have simple, almost trivial,
derivations, at least in hindsight. Now that you understand energy momentum conservation in curved
spacetime, you can see that much of the long discussion leading up to (19) could in fact have been
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dispensed with. All we need is δgspecific
ρσ

= −(ερ;σ + εσ ;ρ) (see (18)) under an infinitesimal coordinate
transformation.

Suppose we have a generic matter action Smatter with the dynamical variable � (whose indices, if any, we
suppress). Then general coordinate invariance says, simply and clearly,

0 = δSmatter =
∫

d4x(. . .)δ�(x)specific + 1
2

∫
d4x

√−g T ρσ (x)δgρσ (x)
specific

= 1
2

∫
d4x

√−g T ρσ (x)δgρσ (x)
specific (23)

where the third equality follows from the matter equation of motion. (As noted in remark 3 above, the mat-
ter variation may involve a sum of terms.) Plugging in δgspecific

ρσ
, we obtain energy momentum conservation

immediately.∗ See also exercise 5.

Appendix 2: Energy momentum of the gravitational field

The presence in (22) of the second term, mandated by the construction of the covariant derivative and the fact
that the energy momentum tensor carries two indices, indicates that the conservation of energy momentum in
general relativity is more subtle than you might have expected. Contrast this with the covariant conservation of a
current (the electromagnetic current, for example) DρJ

ρ = 0, which if written out, reads 1√−g ∂ρ(
√−g J ρ)= 0.

Integrate this over a 4-dimensional spacetime region V :∫
V
d4x

√−gDρJ
ρ = 0 =

∫
V
d4x∂ρ(

√−g J ρ)=
∫
∂V
dSρ

√−g J ρ

where ∂V denotes the boundary of V and dSρ a 3-dimensional “surface” element. We see that the factors of√−g are arranged in precisely such a way as to allow us to use the divergence theorem suitably generalized to
4-dimensional spacetime. This is in accord with our physical intuition that DρJ

ρ = 0 implies that current does
not flow out of the 4-dimensional spacetime region.

The second term in (22) tells us that (21) no longer implies that
∫
∂V dSρ

√−g T ρλ vanishes. But this apparently
puzzling conclusion is in fact physically correct. Since the gravitational field itself carries energy momentum,
we cannot possibly demand that T ρλ does not flow out of a 4-dimensional spacetime region.

Indeed, the equivalence principle asserts forcefully that any definition of the energy momentum carried by
the gravitational field cannot possibly be valid locally. We know that locally, we can always transform away the
gravitational fields.

I might mention in passing, merely for the sake of completeness, that it is possible3 to find an object with
two indices tρλ, known as the energy momentum pseudotensor, such that ∂ρ(T ρλ + tρλ)= 0. I strongly prefer
to stay away from objects that are manifestly not tensors, and equations (such as the one just mentioned) that
hold only in a specific coordinate system seem to be contrary to the very spirit of relativity. Suffice it to note that
the ensuing discussion can become extremely involved.

Exercises

1 Show that Tij = −(EiEj + Bi Bj)+ 1
2 δij (

�E2 + �B2) and hence T = 0 in flat spacetime.

2 Show that the stress energy tensor obtained from Sparticles is covariantly conserved.

3 Verify explicitly that T μν in (14) for a collection of charged particles is covariantly conserved.

∗ Incidentally, this is very similar to the derivation of current conservation in electromagnetism using gauge
invariance.
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4 Show that for the action (introduced in appendix 7 in chapter V.6)

Sscalar = −
∫

d4x
√−g

(
1
2 (∂ϕ)

2 + V (ϕ)
)

(24)

where (∂ϕ)2 ≡ gλρ∂λϕ∂ρϕ, the energy momentum tensor is given by

T μν = ∂μϕ∂νϕ − gμν
((

1
2∂ϕ

)2 + V (ϕ)

)
(25)

As you will learn in a course on quantum field theory, Sscalar describes a self-interacting scalar field. Evaluate
T 00 in flat spacetime.

5 Pedagogically, the derivation of energy momentum conservation can be made even more transparent by using
the cosmological action Sc = �

∫
d4x

√−ggσζgλρ rather than SMaxwell, since there is no electromagnetic
gauge potential to keep track of. Work this out.

6 Note that in deriving (18), we did not use any specific property of gμν . In other words, show that for any
two-indexed tensor sμν(x), we have

δsρσ (x)
specific ≡ s′

ρσ
(x)− sρσ (x)= −

(
sμσ (x)∂ρε

μ(x)+ sρν(x)∂σε
ν(x)+ ελ∂λsρσ (x)

)
+O(ε2) (26)

You can readily generalize this expression to any tensor.

7 Suppose you are given the energy momentum tensor of a point particleT μν(x)= m√−g(x)
∫
dτ dXμ

dτ
dXν

dτ
δ4(x −

X(τ)). Show that energy momentum conservation DμT
μν = 0 requires that the particle follows a geodesic,

precisely as you would expect.

8 In cosmology, a ideal fluid that exerts no pressure is known as dust. Show that with T μν = ρUμUν , energy
momentum conservation implies UμDμU

ν = 0.

Notes

1. Historically, the realization that the sum of “different forms” of energy is conserved represents a tremendous
conceptual advance for physics. It was enunciated by, among others, Count Rumford of the Holy Roman
Empire. While supervising the boring of cannons in Bavaria, he noticed how hot the cannons became and
theorized that the heat was put in there by the team of horses doing the boring work. Incidentally, Count
Rumford was born Benjamin Thomson in Massachusetts: he fled to England on the eve of the American
revolution, what we would call a traitor then and now. His nobility was bestowed by the ruler of Bavaria,
whom he served. While professionally I benefited from his conservation principle, personally I benefited,
when I lived in Munich, from the English garden he established there. Count Rumford later endowed the
Rumford professorship at Harvard University, where he allegedly, as a poor boy growing up, audited physics
courses without permission. Somehow they don’t make physicists like that any more.

2. QFT Nut, p. 78.
3. See L. D. Landau and E. M. Lifschitz, The Classical Theory of Fields, Addison-Wesley, 1971.
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Einstein was . . . one of the friendliest of men. I had the
impression that he was also, in an important sense, alone. Many
very great men are lonely.

—Freeman Dyson1

The Einstein tensor

In a mockery of a standard proverb, we kept putting off until tomorrow what we did not
need today. Ever since chapter VI.1, we have been avoiding the labor of varying the Einstein-
Hilbert action

SEH ≡ 1
16πG

∫
d4x

√−gR (1)

with respect to gμν for as long as we could. Amusingly, we managed to get pretty far;
without ever varying SEH, we worked out an expanding universe in chapter VI.2 and the
Schwarzschild solution around a star or a black hole in chapter VI.3. Finally, finally, we
now do the heavy lifting and vary SEH. But as we will see presently, thanks to an identity,
the task is not as onerous as we feared. In fact, with our setup, it is downright easy.

So let us vary I ≡ ∫
d4x

√−ggσρRσρ. We need to vary gσρ,
√−g, and Rσρ with respect

to gμν. There are thus three pieces that we will attend to in turn.
But wait, didn’t we already learn how to vary gσρ and

√−g back in chapter V.6? Indeed,
we did it again in the preceding chapter. Thus, two of the three pieces are really easy.

First, the easiest piece: δ1I = ∫
d4x

√−gRσρδg
σρ . Use (VI.4.5), δgσρ = −gσμδgμνgνρ,

to obtain δ1I = ∫
d4x

√−gRσρ(−gσμδgμνgνρ)= − ∫
d4x

√−gRμνδgμν.
Next, vary the determinant g = det gμν. Use (VI.4.7), δ

√−g = 1
2
√−ggμνδgμν, to obtain

δ2I = ∫
d4x

√−g( 1
2g

μνR)δgμν .
To keep count, we have thus far (δ1 + δ2)I = − ∫

d4x
√−g(Rμν − 1

2g
μνR)δgμν . The

particular combination of Ricci and scalar tensors that appears here is so important that
it is known as the Einstein tensor2

Eμν ≡ Rμν − 1
2gμνR (2)
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Finally, we tackle the most frightening piece of all: δ3I = ∫
d4x

√−ggμνδRμν . We are
to subtract the Ricci tensor Rμν calculated from the metric gμν from R̃μν calculated from
g̃μν = gμν + δgμν to obtain δRμν . Given the rather complicated expression for the Riemann
and Ricci tensors, this would seem to involve a lot of work.

Palatini identity

Fortunately, our lives are made easy by some key observations. To get oriented, let’s not
worry about indices and vary the schematic expression (with antisymmetrization under-
stood) for the Riemann tensor R.

... ∼ ∂.�.
.. + �

.

..�
.
.. to obtain δR

.
... ∼ ∂.δ�.

.. + δ�
.
..�

.

.. +
�

.

..δ�
.
... So the calculation depends on first determining δ�ρμλ.

Look at how the Christoffel symbols transform from (II.2.29) and (V.6.6):

�
′μ
λκ = Sμ

η
(S−1)

ω

λ
(S−1)

σ

κ
�η
ωσ

+ Sμ
η
(S−1)

ρ

λ
∂ρ(S

−1)
η

κ
(3)

At the risk of repeating ourselves, we emphasize again what we mean by varying �ρμλ. We

are to calculate�ρμλ using the metric gμν and �̃ρμλ using a metric g̃μν slightly different from

gμν, and then calculate the difference δ�ρμλ = �̃
ρ
μλ − �

ρ
μλ.

Confusio: “So it is not about comparing �′ρ
μλ and �ρμλ?”

No no no! We are varying gμν, not transforming gμν.
But that’s a common confusion, because in fact we are going to use (3) right now. Under

the same coordinate transformation as in (3), �̃′ρ
μλ and �̃

ρ
μλ are going to be related by an

equation obtained from (3) simply by putting tildes on the �s, namely

�̃
′μ
λκ = Sμ

η
(S−1)

ω

λ
(S−1)

σ

κ
�̃η
ωσ

+ Sμ
η
(S−1)

ρ

λ
∂ρ(S

−1)
η

κ
(4)

Subtracting (3) from (4), we obtain

δ�
′μ
λκ ≡ �̃

′μ
λκ − �

′μ
λκ = Sμ

η
(S−1)

ω

λ
(S−1)

σ

κ
(�̃η

ωσ
− �η

ωσ
)= Sμ

η
(S−1)

ω

λ
(S−1)

σ

κ
δ�η

ωσ
(5)

The inhomogeneous term ∼ SS−1∂S−1 in (3) that makes the Christoffel symbol not a
tensor gets subtracted away. Remarkably, in contrast to�ρμλ, which is assuredly not a tensor,

the variation δ�
ρ
μλ = �̃

ρ
μλ − �

ρ
μλ is a tensor.

This exemplifies precisely what we talked about in chapter V.6: the “character defects” in
�
ρ
μλ and �̃ρμλ cancel out. Exploiting this fact, we can derive a nice identity for the variation

of the Riemann curvature tensor.
Professor Flat pops up just in time, up to his usual trick. “Go to locally flat coordinates,”

he urges us. Look at δR.
... ∼ ∂.δ�.

.. + δ�
.
..�

.

.. + �
.
..δ�

.

... At a point where the coordinates
are flat, �.

..(x)= 0, and our expression simplifies to δR.
... ∼ ∂.δ�.

.., so that

δR
ρ
μσλ(x)= ∂σδ�

ρ
μλ(x)− ∂λδ�

ρ
μσ
(x) (6)

But at that point, since �
.
.. = 0, the ordinary derivative ∂ is the same as the covariant

derivative D, thus enabling us to write

δR
ρ
μσλ =Dσδ�

ρ
μλ −Dλδ�

ρ
μσ

(7)

an equality known as the Palatini identity.
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Professor Flat reminds us once again that since the Palatini identity is an equality
between tensors, it holds not only for locally flat coordinates, but in general!

In particular, the variation of the Ricci tensor is given by

δRμν = δRρ
μρν

=Dρδ�
ρ
μν

−Dνδ�
ρ
μρ

(8)

and so δ3I = ∫
d4x

√
ggμν(Dρδ�

ρ
μν

− Dνδ�
ρ
μρ
). Now integrate by parts (as explained in

chapter V.6) and use the identity (V.6.15) Dρg
μν = 0. Happily, we conclude that δ3I is a

surface term and does not affect the equation of motion!

The Einstein field equation

Putting it altogether, we have δI = (δ1 + δ2 + δ3)I = − ∫
d4x

√−g(Rμν − 1
2g

μνR)δgμν+
a surface term.3 Remember, the 1

2 comes from varying the square root, and the relative
minus sign from varying the inverse.

In chapter VI.1, we tried to avoid work and simply denote the relative coefficient between
Rμν and gμνR by α. This unknown constant α turns out to be − 1

2 �= − 1
4 , as we had hoped

all along, and so everything we did in chapters VI.2 and VI.3 is okay. (Also note that
A = −1, and so the result A(1 + 4α) = 1 we obtained in appendix 1 to chapter VI.1 is
indeed satisfied.)

Noting that SEH = 1
16πGI , we obtain

δS = δSEH + δSmatter =
∫

d4x
√−g

{
− 1

16πG
(Rμν − 1

2g
μνR)+ 1

2T
μν

}
δgμν (9)

We have derived the wondrous glorious stupendous tremendous Einstein’s field equa-
tion

Rμν − 1
2g

μνR = +8πGT μν (10)

A parade of greats, Euler, Lagrange, Riemann, Christoffel, Ricci, Einstein, Palatini, and
many many others, have brought us to this, one of the most profound statements in
physics: The distribution of energy in spacetime governs the curvature of spacetime.

Often T μν is given explicitly in a relative simple form, for example, T μν = (ρ +
P)UμUν + Pgμν for a perfect fluid. A trivial rewrite of (10) is thus more convenient:
contract (10) with gμν to obtain R = −8πGT so that

Rμν = 8πG
(
T μν − 1

2g
μνT

)
(11)

Einstein remarked that the left hand side of his field equation (10) was born elegantly of
geometry, while the right hand side seemed to have an ugly ad hoc quality, with one term
after another thrown in∗ according to what kind of matter we chose to fill spacetime with.

∗ This was particularly true in Einstein’s time, when matter was poorly understood. Hence Einstein’s unreal-
ized dream of a unified field theory with matter also described in geometrical terms.
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Theoretical physicists have joked ever since that even Nature appears to prefer the left over
the right.

The Newtonian limit

We have one remaining task: show that G is what Newton said it was. Recover Newtonian
gravity in the appropriate limit. In other words, we will verify the overall coefficient in the
Einstein-Hilbert action (1).

Consider the weak gravitational field limit in which spacetime deviates little from
Minkowskian. Write gμν = ημν + hμν and expand Rμν to linear order in h. First, �ρ

μν
=

1
2η

ρλ(∂μhνλ + ∂νhμλ − ∂λhμν) + O(h2), so that Rσ
ρμν

= (∂μ�
σ
νρ

+ �σ
μκ
�κ

νρ
) − (∂ν�

σ
μρ

+
�σ

νκ
�κ

μρ
)= ∂μ�

σ
νρ

− ∂ν�
σ
μρ

+O(h2). We obtain

Rμν = − 1
2
(∂2hμν − ∂μ∂λh

λ
ν
− ∂ν∂λh

λ
μ

+ ∂μ∂νh
λ
λ
)+O(h2) (12)

where evidently, to leading order, indices are raised by the Minkowski metric: hλ
ν
= ηλμhμν.

Recall, from chapter V.4, that to recover Newtonian gravity we only need hμν not to
depend on time. ThenR00 � − 1

2∇2h00 = ∇2�, upon noting (from chapter V.4, and earlier,
chapter IV.3) that the Newtonian potential is given by � = − 1

2h00. (Recall also (V.4.24)
in which we restored c and took the nonrelativistic limit.) For Newtonian matter, T00 �
ρ � Tij , so that T00 − 1

2η00T � 1
2ρ. The field equation (11) thus reduces to ∇2�= 4πGρ,

showing that we have the right coefficient in (1).

Dark energy again

Back in chapter VI.2, I did not vary the action Scosmological = − ∫
d4x

√−g� but merely
argued on symmetry grounds what the energy momentum tensor of an expanding uni-
verse must be, up to an overall constant. Using (VI.4.8), we can now vary instantaneously:
δScosmological = − ∫

d4x ( 1
2
√−ggμν)δgμν� and thus by (VI.4.2),

T μν = −�gμν (13)

In the flat spacetime limit, the energy density becomes T 00 = −�η00 =� as expected.
With T = 4�, the field equation (11) then reads

Rμν = 8πG�gμν (14)

The temporary symbol �̃ used in chapter VI.2 is in fact just 8πG�, so that the Hubble
parameter was determined to be

H 2 = 8πG
3

� (15)
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(The slight cheat I committed back in chapter VI.2 was assuming implicitly that �̃ and �
have the same sign.) Note that the expanding universe (with its flat space∗) we discussed
in chapter VI.2 only makes sense with a positive cosmological constant.

There is a silly debate regarding whether in (14) the � term should be placed on the
left or right hand side, silly because those of you who have mastered algebra certainly feel
free (free country, remember?) to move it to the left hand side. But some people who write
the � term on the left hand side then think of it as part of gravity, and go on to say that
anti-gravity, or a new repulsive force, has been found, a language I strongly disfavor. The
justification for this ill-advised language is that the only dynamical variable appearing in
Scosmological is the metric. But as we saw in chapter VI.2, Scosmological is inevitably produced
by fluctuating matter fields.

Bianchi identity

One reason that it took Einstein 10 arduous years, from 1905 to 1915, to derive the field
equation was that he didn’t know an identity due to Luigi Bianchi (1856–1928), which
we will now derive. We’ve had an inkling of the existence of this identity ever since
chapter VI.2.

Let us covariantly differentiate the Riemann curvature tensor DνR
ρ
μσλ =Dν{(∂σ�ρμλ +

�ρ
κσ
�κ
μλ
)− (∂λ�

ρ
μσ

+ �
ρ
κλ�

κ
μσ
)}. Naturally, our favorite person pops up. Go to locally flat

coordinates, he mimes. Then at the chosen point, the Christoffel symbol vanishes, and
this whole mess collapses dramatically to ∂νRρμσλ = ∂ν∂σ�ρ .μλ − ∂ν∂λ�ρ .μσ . (Note that
we have lowered the upper index.) Observe that the index structure on the right hand side
has the form (νσ λ)− (νλ σ). So, cyclically permute the three indices (νσλ) and add the
results. Out pops the Bianchi identity

DνRρμσλ +DσRρμλν +DλRρμνσ = 0 (16)

As always, because this is a tensor identity, it holds in general, even though it is derived in
locally flat coordinates. You shouldn’t even need Professor Flat to tell you that any more.

Contract this with gρσ . Remembering that the covariant derivative of the metric tensor
vanishes so that we can slip the metric tensor past the covariant derivative D, we obtain

DνRμλ +DρRρμλν −DλRμν = 0 (17)

where we used the antisymmetry of the Riemann tensor in the last two indices. Contracting
again with gμλ, we find DνR −DρRρν −DμRμν = 0, or written more compactly,

Dμ(Rμν − 1
2gμνR)=DμEμν = 0 (18)

∗ We will discuss the expanding universe with curved space when we explore cosmology in part VIII.
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This identity satisfied by the Einstein tensor (and a direct consequence of (16)) is some-
times also referred to as the Bianchi identity, although it should, more properly, be known
as the contracted Bianchi identity.

Einstein’s real blunder

Applying the contracted Bianchi identity (18) to the field equation (10), we obtain energy
momentum conservation

DμT
μν = 0 (19)

In most applications, we deal with an energy momentum tensor known to be conserved, so
that the Bianchi identity actually is telling us that the field equations are not independent:
one linear combination of the derivatives of the different equations vanishes identically.

Let us go back to the apparent miracle in chapters VI.2 and VI.3. In both, when we solved
for the metric, we had one more equation than unknowns but nevertheless we obtained
a consistent solution. Now we understand what is going on, thanks to Bianchi. We over
counted the number of equations by one: one linear combination is satisfied automatically.
In practice, this provides us with a useful check on our arithmetic.

In his epoch-making 1915 paper on gravity, Einstein actually did not use the action
principle, but wrote down the field equation directly by arguing what the left hand side
must be. (We will come back to this in chapter IX.5.) For a number of years, he struggled
with this approach, and at one point wrote down Rμν = 8πGT μν, which did not work,
since Bianchi identity applied to this would give DμTμν �= 0.

There is a lot of quasi-nonsense written about Einstein’s greatest blunder in introducing
the cosmological constant∗ which I find rather annoying.4 In my opinion, if the great man
had blundered at all, it was in not using the action principle (see, however, appendix 5).

Appendix 1: Bianchi identity

The Bianchi identity can also be derived as a special case of the Jacobi identity [A, [B , C]] + [B , [C , A]] +
[C , [A, B]] = 0, which you can prove by writing out all the terms on the left hand side. Here A, B , C are three
operators. (Or, you could argue that there are 2 × 2 × 3 = 12 terms on the left hand side, so that each of the 6
possible terms, for example ABC, must appear twice, once with a positive sign (in [A, [B , C]] in the example)
and once with a negative sign (in [C , [A, B]] in the example).) In particular,

[Dμ , [Dν , Dλ]] + [Dν , [Dλ , Dμ]] + [Dλ , [Dμ , Dν ]] = 0 (20)

Using (VI.1.5) [Dμ , Dν ]Sρ = −Rσ
ρμν

Sσ and the fact that the covariant derivative is distributive, we obtain the
Bianchi identity (16).

We now see that the “other half of Maxwell’s equations” εσμνλ∂μFνλ = 0 discussed in chapter IV.2 are in fact
Bianchi identities as we could see by setting the covariant derivatives in (20) to the quantum mechanical covariant

∗ Contrary to what is constantly reported, Einstein never said in print that the cosmological constant was his
greatest blunder. It was George Gamow, a jokester of record, who wrote that Einstein told him as much.
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derivative of electromagnetism in flat spacetimeDρ = (∂ρ − iAρ). (See an endnote in chapter VI.1 for a derivation
of the i.)

Appendix 2: Another derivation of the contracted Bianchi identity

It is illuminating to give yet another derivation of the contracted Bianchi identity. We simply modify the discussion
given in appendix 1 of chapter VI.4. There we derived energy momentum conservation using for the prototypical
matter action the Maxwell action SMaxwell. We are going to do unto the Einstein-Hilbert action SEH here what we
did unto SMaxwell there. It would be helpful for you to review the appendix in question now, as I am not going to
write out the steps in detail again.

We know that SEH is invariant under the replacements x → x′ , gρσ (x)→ g′
ρσ
(x′), and gμσ (x)→ g′μσ (x′). It

is instructive to compare the consequence of general invariance for SEH and SMaxwell. There, in chapter VI.4, after
a few steps we find that the general invariance of SMaxwell implies (VI.4.19)

0 = δSMaxwell =
∫

d4x(. . .)ρδAρ(x)
specific − 1

2

∫
d4x

√−g T ρσ (x)δgρσ (x)
specific (21)

Here, applying the same reasoning, we find that the general invariance of SEH implies

0 = δSEH = 1
16πG

∫
d4x

√−g (Rρσ − 1
2g

ρσR)(x)δgρσ (x)
specific

≡ 1
16πG

∫
d4x

√−gEρσδgρσ (x)
specific (22)

Note two differences between (22) and (21). First, there is not a δA term in (22), of course, since here we
don’t even have an A field to vary. Second, while the variation of SMaxwell with respect to the metric gives the
energy momentum tensor of the electromagnetic field, the variation of SEH with respect to the metric gives
the Einstein tensor.

As explained in appendix 1 of chapter VI.4, in (21) we then invoke the equation of motion for A, use
δgspecific

ρσ
= −(ερ;σ + εσ ;ρ), and integrate by parts, thus obtaining energy momentum conservation of the matter

fields DρT
ρσ = 0.

In (22), using the form of δgspecific
ρσ

and integrating by parts, we obtain the contracted Bianchi identity
DρE

ρσ = 0.
While the derivations of the two equations DρT

ρσ = 0 and DρE
ρσ = 0 appear superficially similar, we must

keep in mind an important conceptual difference. Energy momentum conservation of the matter fields follow
only if the matter fields satisfy their respective equations of motion, as makes sense physically. In contrast, the
contracted Bianchi identity is, well, an identity. This is rendered particularly clear in the derivation given here:
in one case, we have to invoke the relevant equation of motion, in the other case, not.

The contracted Bianchi identity DρE
ρσ = 0 and Einstein’s field equation Eρσ = 16πGT ρσ imply energy mo-

mentum conservation DρT
ρσ = 0. Conversely, the field equation and energy momentum conservation demand

the existence of an identity. As was mentioned in the text, Einstein’s ignorance of the contracted Bianchi identity
contributed to his difficulties in arriving at his field equation.

Appendix 3: The “total energy momentum tensor” vanishes

If we wish, we can extend the definition (VI.4.2) for the energy momentum tensor to the Einstein-Hilbert action
(1) and define T μν

gravity ≡ 2√−g
δSEH
δgμν

= − 1
8πG (R

μν − 1
2g

μνR), so that the field equation can be written as

T
μν

gravity(x)+ T
μν

matter(x)= 0 (23)

Some authors like to say that Einstein’s field equation tells us that the total energy momentum tensor is equal
to zero. I do not find this formulation particularly useful.∗

∗ For instance, we could move ma in F =ma to the left hand side, define −ma as the “inertial force,” and say
that the total force vanishes. Not a terribly useful way to think about the second law.
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Appendix 4: More on the variation of the Ricci tensor

We give an alternative, and perhaps simpler, proof that δRμν is a total derivative. From general considerations,
this tensor has to be constructed out of δg.. and two powers of the covariant derivative. Let’s classify all possible
terms according to where the indices μν go. There are three possibilities. Both indices are carried by δg: we have
D2δgμν . One of them is carried by δg: we have DμDλδgνλ (plus of course the term obtained by exchanging
μ and ν). Neither index is carried by δg: we have DμDνg

ρλδgρλ (recall that Dνg
ρλ = 0, and so it does not

matter whether the inverse metric is inside or outside the covariant derivatives). Each of these terms is a total
derivative.

Appendix 5: Palatini (actually Einstein) formalism

Here we write the action for Einstein gravity in the Palatini formalism

S = 1
16πG

∫
d4x

√−ggμνRμν(∂� , �)+ Smatter (24)

When shown this for the first time, your immediate reaction might be, “What? Isn’t this the same thing as
what we had in the text?” Indeed, your indignation is justified, but I have not yet specified for you the dynamical
variables, which you must insist on knowing immediately when you are shown an action.

Attilio Palatini chose to regard the metric gμν and the Christoffel symbol �σ
μν

as independent dynamical
variables. You say, “How could that be? Isn’t the Christoffel symbol defined in terms of the metric?” Yes, you are
totally right, but only in the standard formalism. You are now invited to contemplate the action in (24), in which
the symbol Rμν(∂� , �) is to be regarded as shorthand for

Rμν(∂� , �)= (∂σ�
σ
μν

+ �σ
κσ
�κ
μν
)− (∂ν�

σ
μσ

+ �σ
κν
�κ
μσ
) (25)

with � some unknown object carrying 3 indices. Note that the first term in (24) now involves only one power of
derivative; thus, the Palatini formalism is also known as the first order formalism for gravity.

Ask not what you can do for the Palatini formalism; ask what the Palatini formalism can do for you.
What it can do is to render the variation of S with respect to gμν “trivially” easy, since we don’t have to vary
Rμν(∂� , �): it doesn’t contain gμν . We almost “instantly” obtain Einstein’s field equation Rμν − 1

2g
μνR =

+8πGT μν .
But not so fast! We haven’t quite gotten Einstein’s field equation yet, since at this point, Rμν was just a symbol

for the mess in (25) involving the unknown object �. We get Einstein’s field equation only after we determine �
in terms of the metric.

How do we do that? Remember that we are treating � as an independent dynamical variable. Euler and
Lagrange tell us that we are obliged to also vary S with respect to �. Since Smatter does not depend on �, we only
have to vary gμνRμν(∂� , �) in the first term in S.

To avoid drowning in a sea of indices, let’s do it schematically, living what I call the unindexed life:

δ
(√−gg..

(∂.�
.
.. + �

.

..�
.
..)
)∼ √−gg..

(∂.δ�
.
.. + δ�

.

..�
.
.. + �

.

..δ�
.
..)∼ √−g(∂.g

.. + g
..
�

.

..)δ�
.
.. (26)

where in the last step, we integrated by parts, which we are effectively allowed to do since this variation is to be
performed inside an integral. Thus, upon setting the coefficient of δ�.

.. to zero, we end up with an equation of
the schematic∗ form � ∼ g∂g.

Three guesses on what the equation turns out to be when you keep track of the indices carefully. If you made
it this far in this book, surely you guessed �ρ

μν
= 1

2g
ρλ(∂μgνλ + ∂νgμλ − ∂λgμν). What else could it be? Consider

∗ Ha! We are now so schematic that we even drop the dots.
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this proved by the “what else could it be” method. You are of course urged to put all the indices back and check
this statement by direct computation.

Appendix 6: “The wretchedness of humanity”

In this book, I emphasize the action. In contrast, most textbooks I know approach the subject by trying to find an
equation of motion that reduces to Newton’s ∇2�= 4πGρ. I prefer the action approach, because contemporary
theoretical physics at the fundamental level deals mostly with actions and Lagrangians, not equations of motion.∗
The equation of motion approach goes something like the following. We know that � measures the deviation of
g00 from its Minkowski value, so let’s look for something with two derivatives acting on gμν that would reduce to
∇2�. We then argue that this something must be Rμν + βgμνR, with some unknown coefficient β. But for this
to be equal to T μν , we must have energy momentum conservation and thus Dμ(R

μν + βgμνR)= 0, which then
fixes β after some calculation. Arriving at Einstein’s field equation (10) this way is of course entirely equivalent
to the action approach. Each to his or her own taste, but if you are to move on to field theory and string theory,
you better get used to where the action is.

Ever since I was a student, I wondered why Einstein, who was surely familiar with the action principle, did not
follow the action principle, which would not have demanded that he knew the Bianchi identity and thus would
have significantly lessened his struggle. The answer is that, in fact, he did!

So a bit of history5 I learned while writing this text. Einstein was smarter than the textbooks that follow the
equation of motion approach make him out to be. He and his friend Marcel Grossmann published a paper in
1914 about a variational principle for gravity and then wrote to Lorentz about it. Stimulated by this letter, Lorentz
published a paper in 1915 varying a Lagrangian L(g , ∂g)without specifing what L was. Then, in a paper presented
to the Royal Prussian Academy of Sciences on November 4, 1915, Einstein obtained a set of field equations using
the action principle, but with an L that is not a scalar! Furthermore, he imposed the condition det(gμν)= −1.
Three weeks later, on November 25, 1915, Einstein presented to the same academy his field equations, but without
using the action principle.

But Einstein was scooped! On November 20, David Hilbert presented to the Göttingen Academy the gravita-
tional field equations he derived by varying an action. This action, as you know, is now called the Einstein-Hilbert
action. Quite rightly in the opinion of all physicists, Einstein is credited with this action, even though strictly
speaking, he found the equations of motion that emerge from the action rather than the action itself. The theo-
retical physics community is not a court of law: it regards Hilbert, although he did find the action first, as playing
second fiddle to Einstein.

Incidentally, historians of physics have come to a “belated decision in the Hilbert-Einstein priority dispute.”6

But at that time, Einstein didn’t know that history would be kind to him in this one respect. He was justifiably
worried and, perhaps less justifiably, angry. In fact, he was sufficiently incensed as to dash off a letter on Novem-
ber 26 to a friend. In the letter, the great man also bitterly denounced his estranged wife for her influence on
their children,7 but before launching into a diatribe about his personal life, he first accused Hilbert of stealing
his theory.

Einstein wrote, “The theory is of incomparable beauty. But only one colleague has really understood it, and he
is trying, rather skillfully, to ‘nostrify’ it. That’s Max Abraham’s coinage. In my personal experience, I’ve hardly
come to know the wretchedness of humanity better than in connection with this theory.”8 Well, dear reader,
nostrification is not only still practiced in theoretical physics, but ever more skillfully.

One could fantasize that had Einstein mastered the action approach and Riemann’s work, his travails over
the 10 years from special to general relativity could have been replaced by an inspired guess. Hilbert had a
tremendous advantage over the befuddled Einstein struggling to learn differential geometry: he was a leading
mathematician who obviously already knew the subject forward and backward. Moreover, he had worked on
the theory of invariants, a branch of mathematics concerned with the question of what is left unchanged by
a given set of transformations. He knew that the scalar curvature does not change under general coordinate
transformations. Thus, once the question was posed properly, Hilbert knew instantly that the sought-for action
governing spacetime must be the scalar curvature.

∗ Just flip through any textbook on quantum field theory.
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Here is a coda to the story. Now that Lorentz knew what L was, he studied∗ the action principle for gravity in
a series of papers, using a more general Smatter than Hilbert did. As for Einstein, a year later, on November 26,
1916, he presented a paper titled “Hamilton’s Principle and the General Theory of Relativity” in which he wrote
pointedly, “We shall make as few specializing assumptions as possible, in marked contrast to Hilbert’s treatment.”

Now I come back to the Palatini formalism. It is nowhere to be found in the paper Palatini presented to
the Circolo Matematico di Palermo on August 10, 1919! He improved Hilbert’s calculation and in fact had the
Palatini identity introduced in this chapter. What the textbooks now call the Palatini formalism was actually
invented in 1925 by Einstein! As the years passed, apparently people mixed up the Palatini identity and the
Palatini formalism, and various people, including Einstein,† referred to (24) as the Palatini formalism. After all,
both the Palatini identity and the Palatini formalism absolve us of having to vary the Ricci tensor, so it is easy to
mix up the two. This confusion has been perpetuated unwittingly in many textbooks (and wittingly in this one).

Appendix 7: An alternative form of the Einstein-Hilbert action

We can rewrite the Einstein-Hilbert action in an alternative form that I do not like for reasons that will become
clear but that I mention here for the sake of completeness. Looking up the expression for the Ricci tensor given
in (25), we write the action in (1) (suppressing the irrelevant overall constant) as

S =
∫

d4x
√−ggρνRρν =

∫
d4x

√−ggρν(∂σ�σνρ − ∂ν�
σ
σρ

+ �σ
σκ
�κ

νρ
− �σ

νκ
�κ

σρ
)

= SI + SII + SIII + SIV (27)

We next integrate by parts to get rid of the derivatives on the Christoffel symbols, assuming that all surface terms
can be thrown away. First we have

SI =
∫

d4x
√−ggρν∂σ�σνρ = −

∫
d4x∂σ (

√−ggρν)�σ
νρ

Differentiating, we write ∂σ (
√−ggρν) = √−g(�η

ση
gρν + ∂σg

ρν). Invoking the identity Dσg
ρν = 0 = ∂σg

ρν +
�
ρ
σλg

λν + �ν
σλ
gρλ, we can then write SI = − ∫

d4x
√−g(�η

ση
gρν − �

ρ
σλg

λν − �ν
σλ
gρλ)�σ

νρ
. Similarly, we obtain

SII = −
∫

d4x
√−ggρν∂ν�σσρ =

∫
d4x∂ν(

√−ggρν)�σ
σρ

=
∫

d4x
√−g(�η

νη
gρν − �

ρ
νλg

λν − �ν
νλ
gρλ)�σ

σρ

Adding, we find SI + SII = 2
∫
d4x

√−g[�ρσλ�
σ
νρ
gλν − (�

ρ
νλg

λν)�σ
σρ

]. We next observe that SIII + SIV, as written

in (27) with no further massaging needed, is just, interestingly, − 1
2 times this expression. Thus, we end up with

an alternative form for the Einstein-Hilbert action

S =
∫

d4x
√−g[�ρσλ�

σ
ρν
gλν − (�

ρ
νλg

λν)�η
ρη

] (28)

The reason that I don’t like this form of the action is now clear: the integrand is not a scalar under coordinate
transformation, as is the case for the Einstein-Hilbert action. Throwing boundary terms away at will has done
violence to the underlying invariance properties of the action. Nevertheless, this form of the action is useful in
some situations.

∗ Lorentz mentioned that the Belgian Théophile Ernest de Donder (1872–1957) also contributed. History
has not been kind to de Donder. (See, however, the footnote on p. 21 of QFT Nut.) The harmonic gauge to be
introduced in chapter IX.4 is also known as the de Donder gauge. Perhaps you have seen the famous photograph
of the post–quantum mechanics 1927 Solvay Conference? De Donder stood behind Dirac, who in turn was seated
behind Lorentz and Einstein.

† By that time, Einstein, assured of his place in history, could afford to be generous to a minor figure like
Palatini.
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Appendix 8: Diffeomorphism

Our good friend the Jargon Guy has been lobbying us to use the word diffeomorphism. “How can you write a
book on general relativity without saying diffeomorphism?” Fine. We will say it,9 here being as good a place
as anywhere. A map f of a manifold M onto itself that is smooth, differentiable, and invertible is called a
diffeomorphism. (Think of a sphere S2 being mapped onto itself.) Let a point P on the manifold be mapped
to a point Q= f (P ). Suppose that associated with each point P is a number T (P ). In other words, the function
T is defined on the manifold. Suppose also that the diffeomorphism moves the number T (P ) to the point Q.
We define a new function T̃ by

T̃ (Q)= T (P )= T (f−1(Q)) (29)

What thrills our friend the Jargon Guy is that all this could be done without “dirtying our hands” with
coordinates. Physically, we can imagine an incompressible fluid flowing on the sphere S2. A fluid element that
is at the point P now will arrive at the point Q after some time 
t . The number T (P ) could then represent a
physical property associated with the fluid element at P on the manifold. (For example, we could think of T as
temperature. Assuming that there is no heat transfer between neighboring fluid elements, T̃ (Q) would then be
the temperature at Q at a time 
t from now.) The diffeomorphism discussed here is also known as an active
diffeomorphism.

Descending to physics, we are now crass enough to introduce coordinates to cover local patches on the
manifold, as we have done since early on in this book. To please our friend, we put on our mathematical hats
and regard the coordinates xμ as an invertible smooth map x :M → Rd , associating d real numbers xμ(P ) with
each point P on the d-dimensional manifold M . We can now define T̂ (x)= T (P (x)), with P(x) denoting the
inverse map x(−1) :Rd → M ; in other words, T̂ (x) is the composition of this map with the map T :M → R.
Most physicists would probably drop the hat on T̂ and simply write T (x), but conceptually, T̂ and T are entirely
different creatures, and we will maintain the distinction for now to keep our friend happy.

Let us change coordinates x → x′ = F(x) so that as usual

T̂ ′(x′)= T̂ (x)= T̂ (F−1(x′)) (30)

The rigor minded refer to coordinate transformation as a passive diffeomorphism to distinguish it from an active
diffeomorphism.

Now comes the key point: (29) and (30) are structurally the same with f “corresponding” to F . Hence, an
action that does not distinguish between different coordinate choices is invariant under active diffeomorphisms.
But that has been precisely what we’ve been doing all along, but not stating explicitly. The whole point of this
appendix∗ is to formalize the obvious (and to show off our knowledge of the word “diffeomorphism” to our
friend).

Exercises

1 Check that varying the Palatini action with respect to �ρ
μν

gives the usual relation between the Christoffel
symbol and the metric.

2 Show that the Einstein tensor Eμν vanishes identically in 2-dimensional spacetime.

∗ After I wrote this appendix during final revision of this book, I sent it to a colleague, one of those distinguished
physicists listed in the preface. He sent back a terse email, complaining that the inclusion of diffeomorphism is
“like a scratch on a record playing the sublime music of gravity.” Then he told me, if I must include this kind of
stuff, to find a better place to hide it.
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Notes

1. F. Dyson, in New York Review of Books.
2. The notation Gμν is commonly used. In later chapters, we will use Gμν to denote the metric in higher

dimensional spacetime.
3. We are assuming that spacetime does not have a boundary, so that we can ignore this surface term. If

spacetime has a boundary, then we can add to the action an additional term defined on the boundary, known
as the Gibbons-Hawking-York boundary term, whose variation with respect to gμν is designed to cancel the
surface term we encounter here.

4. I would like to see discussions of whether the cosmological constant represents Einstein’s greatest blunder
banished forever from any sensible discourse on gravity. There is little hope of that.

5. M. Ferraris, M. Francaviglia, and C. Reina, “Variational Formulation of General Relativity from 1915 to 1925
‘Palatini’s Method’ Discovered by Einstein in 1925,” Gen. Rel. Grav. 14 (1982), pp. 243–254. Since the authors
are all Italians, I would surmise that their curt dismissal of Palatini was not driven by nationalistic pride.

6. From the abstract of the paper “Belated Decision in the Hilbert-Einstein Priority Dispute” by L. Corry, J. Renn,
and J. Stachel, Science 278 (1997), p. 1270: “A close analysis of archival material reveals that Hilbert did not
anticipate Einstein.” Also, Hilbert apparently did not know how to get the 1

2 in (10).
7. Einstein wrote:

My son [the 11-year-old Hans Albert] still hasn’t answered my inquiry about meeting. . . . That is surely
the influence of the woman. . . . You’ll see more and more, on which side goodwill and honesty are
to be found. There are reasons that I couldn’t abide staying with that woman, despite the tender love
that binds me to my children. When we first separated, the thought of my children stabbed me like a
dagger every morning when I woke up. Nonetheless, I never regret having taken the step.

Quoted in Physics Today, October 2005, p. 18.
8. Quoted in A. Fölsing, Albert Einstein: A Biography, Viking, 1997.
9. I follow the discussion in Quantum Gravity by C. Rovelli, Cambridge University Press, 2004.
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The initial value or Cauchy problem

The nonlinearity of Einstein’s field equation renders exact solutions rather unlikely, except
in situations endowed with a high degree of symmetry. The advent of computers has thus
resulted in the booming field of numerical relativity.1 It is definitely beyond the scope of
this textbook to go into details of numerical relativity, with its highly sophisticated methods
and approaches. Rather, the purpose here is to acquaint the reader with the formulation
of the initial value problem (also known as the Cauchy problem) in Einstein gravity.2

We all know how the initial value problem works in Newtonian mechanics. If we know
the position �q of a particle and its velocity d �q

dt
at some time t0, Newton’s law allows us to

determine d2�q
dt2

at that time. We thus know the position �q of the particle and its velocity
d �q
dt

at time t0 + δt for δt an infinitesimal. We then repeat this procedure, using a process
known as integration.

The initial value problem is particularly well suited to numerical work. Given the initial
data, namely the position �q of the particle and its velocity d �q

dt
at an initial time t0, the

computer has to be instructed on how to generate the corresponding data at a later time
t0 + δt , with δt small but finite. Once instructed, the computer can then blast away and
calculate the particle’s position and velocity at some later time t0 + T . It is of course a
science (and an art) to determine the optimal choice of δt for a given T and to make sure
that the roundoff errors at each step do not accumulate out of control.

This basic scheme of evolving the initial data in time can be immediately generalized,
first to the case of many particles (with the initial data now consisting of the position �qa and
the velocity d �qa

dt
of theN particles, a = 1, . . . , N ) and then to fields. Consider, for example,

the scalar wave equation (described in chapters II.3 and III.6) (∂μ∂μ −m2)φ(x)= 0, which
we now write as ∂2

0φ(t , �x)= (∇2 −m2)φ(t , �x). Note that the conceptual jump from many
particles to field involves promoting3 the discrete index a to the continuous spatial variable
�x (and trivially changing notation q → φ).
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The initial data now consist of the two functions φ(0, �x) and ∂0φ(0, �x). For ease of
writing, we set t0 = 0 now and henceforth. The scalar wave equation then allows us to evolve
these data in time. Knowing ∂0φ(0, �x), we can determine φ(δt , �x). The wave equation
then gives ∂2

0φ(0, �x), which then allows us to determine ∂0φ(δt , �x). The key here, as for
Newtonian mechanics, is that the equation of motion is second order, that is, it contains
∂2

0 = ∂2

∂t2
. Indeed, Newton’s deep insight was that dynamics involve the second derivative,

not the first.

Gauge freedom and initial value in Maxwell electromagnetism

All this is straightforward and elementary; the subtlety first arises in gauge theory. Consider
Maxwell electromagnetism. We are to solve (IV.2.13)

∂μF
μν = −J ν (1)

for the vector potential Aμ(x). (Since Fμν ≡ ∂μAν − ∂νAμ, the other “half” of Maxwell’s
equations ερσμν∂σFμν = 0 is identically satisfied.) Everything would appear to be the same
as before. Given the initial dataAμ(0, �x) and ∂0Aμ(0, �x), plus J ν(0, �x), we can then use (1),
which are again (apparently) second order differential equations in time, that is, equations
containing ∂2

0, to evolve the initial data. (Of course, we also have to include the equations
that tell the charges how to move, that is, how J ν(0, �x) changes with time, but that half of
the story is not the focus of our discussion here.) It would seem that the four equations in
(1) determine the four functions Aμ(x).

Not so fast! This is a gauge theory, and hence Aμ(x) and Ãμ(x) ≡ Aμ(x) + ∂μ�(x)

correspond to the same physics. In other words, the subsequent value of Aμ(x) should
be determined only up to an arbitrary function �(x) (taken to vanish smoothly together
with its first time derivative ∂0�(x) as x0 → 0, so that Aμ and Ãμ have the same initial
data).

The resolution of this apparent paradox is simply that the ν = 0 equation in (1) does
not involve ∂2

0 and is thus not a time evolution equation. We can see this explicitly:
−J 0 = ∂μF

μ0 = ∂iF
i0 = ∂i(∂

iA0 − ∂0Ai), and hence this equation contains only 1 power
of ∂0.

It would be good to express this more physically. If we write out this equation in more
elementary notation, we recognize it as simply Gauss’s law �∇ . �E = ρ. In the initial data,
once we write down some initial charge distribution ρ(0, �x), we are not allowed to write
down any old Aμ(0, �x) and ∂0Aμ(0, �x); these eight functions of �x must lead to an electric
field �E(0, �x) satisfying Gauss’s law. This makes physical sense.

We conclude that of the 4 equations in (1), one merely imposes a constraint on the initial
dataAμ(0, �x) and ∂0Aμ(0, �x). There are only three time evolution equations, which do not
determine the 4 unknown functionsAμ(t , �x) completely. But that is exactly right:Aμ(t , �x)
should be determined only up to the gauge function �(t , �x).

Let us give another demonstration that ∂μFμ0 contains only one power of ∂0. The proof
will be by contradiction. Consider the trivial identity ∂ν∂μFμν = 0, which follows from the
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antisymmetry of Fμν and the fact that ∂ν and ∂μ commute. Write out this identity∗ as
∂0(∂μF

μ0)= −∂i∂μFμi. Suppose ∂μFμ0 contains 2 powers of ∂0. Then the left hand side
of this identity would contain three powers of ∂0, but the right hand side manifestly has
no room for three powers of ∂0. Thus, we have proved what we set out to prove.

This proof using a trivial identity might seem to be overkill, given that the property we
want to prove, that ∂μFμ0 does not contain 2 powers of ∂0, is something we can see by
eyeball, as indicated above. However, this line of attack will turn out to be useful in the
context of Einstein gravity.

If Gauss’s law holds at the initial time, we expect it to continue to hold as the charges
rush madly about with the electric field changing accordingly. To verify this, simply
differentiate the quantity �∇ . �E − ρ with respect to time: ∂0( �∇ . �E − ρ)= �∇ . ∂0 �E − ∂0ρ =
�∇ . ( �∇ × �B − �J )+ �∇ . �J = 0, where we used a Maxwell equation and current conservation.
Thus, if the quantity �∇ . �E − ρ vanishes at the initial time, it will continue to vanish at later
times.

This physical check also leads to the trivial identity we used earlier. Write the quantity we
just calculated as ∂0(∂iF

i0 + J 0), and you see that its relativistic completion is ∂ν(∂μFμν +
J ν), which with ∂νJ

ν = 0 is just ∂ν∂μFμν.

Gauge freedom and initial value in Einstein gravity

We are now warmed up sufficiently to tackle Einstein’s field equations

Eμν ≡ Rμν − 1
2
gμνR = T μν (2)

(where we have dropped the 16πG for convenience). We expect that the initial data on the
t = 0 slice of spacetime consist of gμν(0, �x) and ∂0gμν(0, �x). (In general, the initial data
will be specified on some spacelike hypersurface, known as the Cauchy surface; we simply
assume that we can choose the t coordinate so that the hypersurface is described by t = 0,
at least locally.) Since the field equations contain two powers of spacetime derivative, as
we have long known, we would think that, given the metric and how it is changing with
time at t = 0, the field equations will give us ∂2

0gμν(0, �x). If so, then we could time evolve
the metric as in examples of Newtonian mechanics and the scalar wave equation. The 10
equations in (2) would then determine the 10 unknown functions gμν(x).

But we are forewarned by the example of Maxwell’s equations that things may not be
so simple. Indeed, the invariance of physics under general coordinate transformation
xμ → x′μ(x) allows us to eliminate 4 of the 10 unknown functions gμν(x). In other words,
Einstein’s field equations should not determine gμν(x) completely. Our experience with
the Maxwell case suggests that 4 of the 10 equations in (2) are not time evolution equations
but merely constraints on the initial data.

∗ Note that this identity together with Maxwell’s equation implies that the current must be conserved:
∂ν(∂μF

μν − J ν)= 0 gives ∂νJ ν = 0.
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Now that I have explained to you how things work in the Maxwell case, it should be fairly
clear to you how things work in the Einstein case. But historically, the great Einstein was
confused at this point. He concluded that he was faced with a logical choice: either (a) the
field equations are not deterministic, or (b) invariance of physics under general coordinate
transformation is too strong a requirement. Unfortunately, in 1914, he chose to abandon
invariance of physics under general coordinate transformation. Ouch, Albert, the wrong
choice! Fortunately, in 1915, with Hilbert breathing down his neck, Einstein’s brainpower
kicked into high gear, and he realized that the correct choice was (a). The field equations
do not, and should not, determine gμν(x) completely.

So, give me your best guess before reading on: which four of the equations in (2) are
not time evolution equations, that is, do not contain ∂2

0 acting on the metric?
Right, the claim is that E0ν = T 0ν amounts to constraints on gμν(0, �x) and ∂0gμν(0, �x).

Of course, you could verify this claim by working out E0ν directly, but things here are
not as simple as seeing by eyeball that ∂μFμ0 does not contain ∂2

0. As suggested by
the Maxwell example, we need the analog of the identity ∂ν∂μFμν = 0, namely the con-
tracted Bianchi identity DμE

μν = 0. Let us write this out in longhand: ∂0E
0ν = −∂iEiν +

terms involving the Christoffel symbols � times various Es.
Again, the proof is by contradiction. Suppose that E0ν contains ∂2

0. Then the left hand
side of the preceding equation contains ∂3

0. But nowhere on the right hand side can we
find ∂3

0. (For example, the Christoffel symbols contain ∂0 and theEs contain two powers of
∂0.) Contradiction and QED. In other words, the two powers of ∂0 contained in E0ν must
appear in the form g∂0g..∂0g... The four equations E0ν = T 0ν merely constrain the initial
data. (We are implicitly assuming that T 0ν does not contain ∂2

0, as is true of the standard4

energy momentum tensor we normally encounter.)
Confusio appears, well, confused. “Why must the right hand side also contain ∂3

0 if the
left hand side contains ∂3

0? Newton’s equation F = ma has ∂2
0 on one side but not the

other.” You explain to Confusio patiently, “We must distinguish between equations and
identities.5 The equations of motion are satisfied only by the actual solutions, while the
contracted Bianchi identity must be satisfied for any gμν.”

Again, this makes physical sense: after writing down some initial T 0ν(0, �x), you can’t
write down any old gμν(0, �x). You have to figure out how gμν(0, �x) and ∂0gμν(0, �x) are
constrained by T 0ν(0, �x). For Maxwell electromagnetism, you have a similar problem,
but writing down the charge distribution, you simply sum up the electric field due to
each charge. Here the constraint equationsE0ν = T 0ν are highly nonlinear, and in general
would require numerical methods to solve. Thus, before you solve the initial value problem
numerically, you may already have a nontrivial numerical problem to solve just to set up the
numerical problem! Before we start our lives as adults, we already have to solve problems
almost as hard as the problems we have to solve as adults.

By the way, as you recall from chapter VI.5, the contracted Bianchi identity plays the same
role as the identity ∂μ∂νFμν mentioned above: it implies energy momentum conservation
DμT

μν = 0.
Sometimes the initial data are specified on only a patch on the Cauchy surface. Then

the Cauchy problem is valid only in a bounded spacetime domain, namely the region that
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is in causal contact with the initial data. The boundary of that domain is called the Cauchy
horizon.

Appendix: Einstein’s confusion

The astute reader might notice that if we were to regard �E and �B as the dynamical variables rather thanAμ, there
would have been no hand-wringing over the initial value problem in electrodynamics. Given the initial values of
�E and �B, and the initial positions and velocities of the charged particles, the two Maxwell’s equations

∂ �E
∂t

= ( �∇ × �B)− �J (3)

∂ �B
∂t

= −( �∇ × �E) (4)

specify how �E and �B are to evolve and the Lorentz force law tells the charges how to move. The other Maxwell’s
equations �∇ . �E = ρ and �∇ . �B = 0 constrain the initial data.

Historically, up until 1915, Einstein was confused, because he thought that the metric gμν was analogous to
�E and �B, rather than to Aμ. He presented an infamous “hole argument” as follows. Given some initial data,
allow the field equations (which of course he was still searching for at the time) to evolve the metric gμν to later
time. Imagine a spacetime region in the future, which Einstein referred to as a hole. Now perform, inside the
hole, a general coordinate transformation that goes over smoothly to the identity transformation outside the hole.
Reasoning from the analogous problem in electromagnetism with �E and �B specified at some initial data, Einstein
was perplexed that the same initial data would lead to two different metrics inside the hole. As mentioned in
the text, he concluded that either the field equation cannot be covariant under coordinate transformation, or the
metric is not physical. Eventually it dawned on him that, in the context of the initial value problem, the metric is
actually analogous to Aμ, rather than �E and �B.

Given our present understanding of physics today, it is difficult to imagine that such a great mind could be
confused on “so elementary” a point. One possible explanation is thatAμ did not come to the forefront of physics
until the advent of quantum mechanics.6 Indeed, luminaries such as Oliver Heaviside7 had thundered that Aμ

should be consigned to the dustbins of history and that physics needed only �E and �B.
By the way, now you can understand Einstein’s rueful confession that I quoted in chapter VI.1: “I believed

that I could show on general considerations that a law of gravitation invariant in relation to any transformation
of coordinates whatever was inconsistent with the principle of causation . . . errors of thought which cost me
two years of excessively hard work.”8

Exercises

1 Verify by brute force computation thatE0μ does not contain ∂2
0. Hint: To save labor, ask Professor Flat for help.

2 As in the electromagnetic case, once the constraintE0ν = T 0ν is imposed at the initial time, the time evolution
equations guarantee that it will continue to hold, which makes physical sense. Verify this. In other words,
show that ∂0(E

0ν − T 0ν) vanishes.

Notes

1. Currently, a major effort is under way to understand binary black hole merger by a combination of numerical
and analytical methods. We will touch upon one aspect of this in chapter X.4.

2. I have benefited from a discussion with T. Jacobson.
3. See QFT Nut, p. 19.
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4. If you want to mess with nonstandard theories of matter and of gravity, then you would be obliged to examine
the initial value problem anew. See T. Jacobson, arXiv:1108.1496.

5. Not to belabor a point, but in my experience, there might still be a student who is confused. Tell him or her
to compare and contrast the equation (x − 1)(x + 1)= 2 and the identity (x − 1)(x + 1)= x2 − 1.

6. See QFT Nut, p. 245.
7. Oliver Heaviside, described by his best friend as a “first rate oddity,” was actually responsible for Maxwell’s

equations in the form we know them today. Self-educated, he never held an academic position. See B. J.
Hunt, Physics Today, November 2012, p. 48.

8. A. Einstein, Essays in Science, p. 83.



Recap to Part VI

Here we finally get to the heart of the matter, or rather, of the field: the gravitational field
is striving to extremize the scalar curvature. Remarkably, once we decide to regard the
metric as the dynamical variable, the action governing the gravitational field is uniquely
determined.

Arguing by symmetry, and essentially without doing any work, we can write down
Einstein’s field equation, and with that, start to unlock the expanding universe and the
secrets of the black hole.

Surprisingly, or perhaps not so surprisingly, the motion of particles of matter and of light
around a massive body can be determined by analog problems in Newtonian mechanics.
The second derivative, not the first nor the third, rules.

As lifelong students of physics, we have talked about energy and momentum for a long
time, but finally we know what they are. Energy and momentum are what the gravitational
field listens to.



Part VII Black Holes





VII.1 Particles and Light around a Black Hole

Ambling around a black hole

You have surely read popular accounts of black holes, without question one of the most
fascinating features of Einstein gravity. Indeed, already in the introduction, I gave the
heuristic Michell-Laplace 18th-century argument that a (spherical) object of mass M and
radius R is a black hole if

R < 2GM (1)

You learned in chapter VI.3 that the empty spacetime around a spherically symmetric
mass distribution is described by

ds2 = −
(

1 − rS

r

)
dt2 + 1(

1 − rS
r

)dr2 + r2d� (for r > R) (2)

with the Schwarzschild radius rS ≡ 2GM . As we noted, the radiusR of this spherical object
does not appear explicitly in ds2 but only implicitly, as we have indicated here. Since we only
solved Einstein’s field equation Rμν = 0 in empty spacetime, the Schwarzschild solution
(2) holds only for r > R.

The Schwarzschild radius of an ordinary massive object, the sun for example, is much
less than its characteristic size R and so would be located inside the object, where the
Schwarzschild solution is not relevant, as was already mentioned in chapter VI.3. Thus,
we don’t have to worry about the apparent singularity in ds2 at r = rS for stars and planets
and almost everything else.

By the same token, we now recognize that the prescient Michell-Laplace criterion (1)
amounts to saying that if a massive object is so compact that its actual size R is smaller
than its Schwarzschild radius, it is a black hole. In other words, an object small for its mass,
or equivalently, massive for its size, is a black hole. For a black hole, the surface defined
by r = rS, known as the horizon, is situated outside the black hole in empty spacetime,
where the Schwarzschild solution certainly holds. As we will see in detail in this chapter
and the next chapter, if an intrepid explorer reaches the Schwarzschild radius of such an
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object and crosses into the region where r < rS, he or she can never get back out to spatial
infinity. In short, for our purposes here, a black hole is defined as a massive object with
an accessible horizon.

The mystery of the black hole also deepens with the realization that spacetime is perfectly
smooth there (as indicated by the behavior ofRμνλρR

μνλρ, for example). In the next chapter,
we will confirm our suspicion that the singularity in the metric at the horizon is merely
due to a poor choice of coordinates.

In this chapter, we focus on the motion of massive and massless particles around a black
hole, leaving various other issues for the next chapter.

A common misconception about black holes

A common misconception is that, around a black hole, an irresistible mysterious force
sucks everything in.∗ But in fact, physicists do not know of any additional force besides
the ones they usually enumerate. Gravity is gravity, and whether outside a regular star or
a black hole, we have the very same Schwarzschild metric. Thus, even if some evil power,
in an implausible sci fi movie, somehow manages to turn the sun suddenly into a black
hole, our earth, though deprived of its main energy source, would still calmly cruise along
the same orbit. What is true, as we will see in this and the following chapter, is that near a
black hole, spacetime can be warped so much that once trapped, even light cannot escape.

We will start by studying the motion of massive and massless particles, such as plan-
ets and photons, around a black hole. Indeed, in chapter V.4, we already worked out
the equations of motion for both particles and light in a general spherically symmetric
static spacetime described by two unknown functions A(r) and B(r). After we found the
Schwarzschild metric, all we had to do was plug inA(r)= 1 − rS

r
andA(r)B(r)= 1, which

was precisely what we did in chapter VI.3 to study the deflection of light and the perihe-
lion shift of Mercury. So we are all set and ready to go. Here, for convenience, I will list
again the relevant equations, which, I emphasize again, are precisely the same around a
black hole as around any other massive object. The only difference is whether or not the
equations are relevant all the way down to rS.

An unfamiliar Newtonian potential

We first study the case of a massive particle moving in the equatorial plane, with the two
conservation laws dt

dτ
= ε

1− rS
r

and dϕ
dτ

= l

r2 , where ε and l denote the energy and angular

momentum per unit mass of the particle, respectively. The motion of the radial coordinate
is governed by(

dr

dτ

)2

− rS

r
+ l2

r2
− l2rS

r3
= ε2 − 1 (3)

∗ Mark Twain allegedly said that the trouble with people is not that they know so little, but that what they know
is largely not true.
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V(r) ℓ = 6

ℓ = 0

r

Figure 1 The potential V (r) as a function of r
rS

for(
l
rS

)2 = 0, 1, 3, 5, 6. Note that on the scale of this

plot, the minimum of V (r) is hardly visible.

As already mentioned back in chapter V.4, we merely have to solve a Newtonian (except
that coordinate time has been replaced by proper time) problem in the potential∗

V (r)= − rS

r
+ l2

r2
− l2rS

r3
= −

(
rS

r

)
+
(
l

rS

)2
{(

rS

r

)2

−
(
rS

r

)3
}

(4)

The second form shows that if we measure r and l in sensible units, the potential is
surprisingly simple, controlled by the single parameter

(
l
rS

)2.
After all the Riemannian geometry, with space and time unified and curved this way and

that, the bottom line boils down, remarkably† enough, to a “pretend” Newtonian problem.
Life is sweet then: as long as you have mastered Newtonian mechanics, you can blast (3)

any which way you like, and many texts fill page after page with exhaustive and exhausting
studies of the resulting equations.

The first two terms in the potential V are our old friends, representing gravitational
attraction and centrifugal repulsion, respectively. The third term, call it the Einstein term,
represents a novel and unfamiliar effect. In the real Newtonian problem, for l = 0, we fall
into the singularity at r = 0, but for l �= 0, the centrifugal term keeps us from falling in
(as we discover every morning that the earth is still going around the sun). In contrast,

in the pretend Newtonian problem, for small r , the Einstein term
(− l2rS

r3

)
kicks in and

totally dominates the centrifugal term. Under the right circumstances, we could fall into
the singularity even with l �= 0.

Let us plot V (r) as in figure 1,
(
l
rS

)2 = 0, 1, 3, 5, 6. For l = 0, we have simply V (r)= − rS
r

,
but as we increase l, the potential soon develops a minimum and a maximum. Our revered
Newton taught us how to find them: set V ′(r)= 0 to obtain

rSr
2 − 2l2r + 3l2rS = 0 (5)

with the solutions

rmin = l2

rS

⎛
⎝1 +

√
1 − 3r2

S

l2

⎞
⎠ and rmax = l2

rS

⎛
⎝1 −

√
1 − 3r2

S

l2

⎞
⎠ (6)

∗ Note that in this “pretend” Newtonian problem, I define the “kinetic energy”
(
dr
dτ

)2
without the usual

factor of 1
2 to remove various factors of 2 in (VI.3.14) and (VI.3.15), rendering later expressions somewhat cleaner.

† Again, we have Pythagoras to thank.
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The critical value for these extrema to appear is
( lc
rS

)2 = 3. The shape of V (r) differs
according to whether l < lc or l > lc. I have intentionally omitted some of the labels in
figure 1. So, which curve in the figure corresponds to lc = √

3rS? Note also that rmin

approaches � 2l2/rS for large l and that the minimum is very shallow.

Radial plunge

For l < lc, the particle has no option but to fall in.
Consider the simplest case of an intrepid observer plunging into the black hole along

the radial direction, so that dϕ = 0, which by dϕ
dτ

= l

r2 corresponds to l = 0. To simplify
further, let the observer start with vanishing energy at r = ∞ (so that dt

dτ
|r=∞ = 1, which

by dt
dτ

= ε

1− rS
r

implies ε = 1). Then (3) implies dr
dτ

= −( rS
r

) 1
2 , which literally anybody could

integrate to give r
3
2 = r

3
2

0 − ( 3
2

)
r

1
2

S τ , with r0 the observer’s position at τ = 0.
The point is not our ability to solve a differential equation but that the observer reaches

the horizon rS at some finite proper time starting at some r0 > rS (a fact we can see directly
from the differential equation without integrating). Not only does the observer suffer no
harm as he crosses the horizon, he also gets there soon enough according to his clock.
After he passes the horizon, he eventually reaches the origin r = 0, also in finite proper
time, at which point he is crushed by infinite tidal forces as measured by (recall chapter

VI.3) RμνρσRμνρσ = 12r2
S

r6 .
Nevertheless, even though nothing appears to be singular at the horizon, the equation

dt
dτ

= ε

1− rS
r

indicates that something strange does occur there: as r → r+
S , the coordinate

time t → ∞. Our observer crosses the horizon at infinite coordinate time. To his friend
stationed at r = ∞ (“stationed” means that his friend has to fire small rockets occasionally
to avoid slowly falling toward the black hole) the observer appears to approach but never
quite cross the horizon. (The time experienced by the friend, namely her proper time,
coincides with coordinate time, since for her, dt

dτ
= 1.)

A small puzzle here for you: what happens to t as the observer crosses the horizon?
Recall our analysis of the gravitational redshift in chapter V.4, showing that the proper

time interval between the two signals as seen by the receiver is related to the proper time
interval as seen by the emitter 
τR =
τE(g00(rR)/g00(rE))

1
2 . So indeed, for the observer

stationed at r = ∞, the interval between signals sent by the infalling emitter gets infinitely

time dilated by the factor 1/
√

1 − rS
rE

as he approaches the horizon rE → rS.

Orbits with substantial angular momentum

By substantial angular momentum, I mean l > lc = √
3rS, so that V (r) has a maximum

and a minimum. As shown in figure 2, we now have three possible cases, depending on
the effective energy (ε2 − 1) as per (3):

1. For1 (ε2 − 1) > V (rmax), the particle sails over the top of the potential and thus spirals into

the black hole, as shown in figure 2a.
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(a)

(b)

(c)

V

V

r

r

r

ε2 – 1

Figure 2 For l > lc = √
3rS , there are three possible types

of orbit (shown at right), depending on the value of the
effective energy ε2 − 1. The potential V (r) is plotted
schematically at left (compare figure 1) to emphasize
its two extrema. (a) Effective energy ε2 − 1> V (rmax);
(b) V (rmax) > ε2 − 1> 0; (c) 0 > ε2 − 1> V (rmin).

2. For V (rmax) > (ε2 − 1) > 0, the particle bumps into the potential barrier and retreats back

to infinity. The shape of the orbit is shown in figure 2b.

3. For2 0> (ε2 − 1) > V (rmin), the particle is trapped in the potential, and follows an “elliptical”

orbit with a shifting perihelion (figure 2c).

If you want, you can work out the shape of these orbits by solving r(τ ) and ϕ(τ): just a
matter of showing off your ability to solve differential equations. You could always integrate
them numerically on a computer.

Circular orbits and Kepler

Looking at V (r), we see that there are two circular orbits with radius given by (6). The orbit

at rmax = l2

rS

(
1 −

√
1 − 3r2

S
l2

)
, perched at the maximum of V (r), is obviously unstable. Any

perturbation will either cause the orbiting particle to fall into the black hole or to move

toward the stable orbit at rmin = l2

rS

(
1 +

√
1 − 3r2

S
l2

)
. In contrast, the stable circular orbit

lives comfortably at the minimum of V (r).
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Interestingly, Kepler’s third law continues to hold, as we now show. The 4-velocity V μ =
(V t , 0, 0, V ϕ) of the planet, or whatever, is given by the conservation laws (V.4.13–14):
V t ≡ dt

dτ
= ε/

(
1 − rS

r

)
and V ϕ ≡ dϕ

dτ
= l/r2, with the two conserved quantities l determined

by (5)

l2 = 1
2
rSr

(
1 − 3rS

2r

)−1

and ε determined by (3)

ε2 = V (r)+ 1 =
(

1 − rS

r

)2 (
1 − 3rS

2r

)−1

(Here various quantities are to be evaluated at the radius of the orbit.)
Define the angular velocity �≡ dϕ

dt
= dϕ

dτ
/ dt
dτ

= V ϕ/V t . Note that � is defined in terms
of coordinate time, not proper time. Plugging in what we had, we obtain∗

�2 = rS

2r3
= GM

r3
(7)

Kepler’s third law survives Einstein.

Accretion disks: Mightier than nuclear fusion

As l decreases toward lc = √
3rS, the stable orbit with radius rmin = l2

rS

(
1 +

√
1 − 3r2

S
l2

)
keeps shrinking until rmin reaches its minimum value of

rISCO = rmin

∣∣∣
l=lc

= 3rS (8)

The orbit with radius rISCO is known as the innermost stable circular orbit in relativistic
astrophysics. Note that it sits well outside the Schwarzschild radius.

These simple remarks underlie the essential physics of accretion disks around black
holes. Around a black hole, infalling debris, consisting of matter from a companion star,
for example, forms a disk. Through dissipative processes, such as collisions between
particles and electromagnetic radiation, particles in the disk gradually lose energy and
angular momentum and move inward until they reach rISCO. From there, further loss of
angular momentum will cause them to fall in. By angular momentum conservation, this
process will cause the black hole to rotate, so that eventually the Schwarzschild solution is
no longer adequate. In chapter VII.5 we will discuss rotating black holes.

Black holes power some of the most spectacular processes known to astrophysics. What
fraction of the rest energy mc2 does a particle lose as it crashes inward to the innermost
stable circular orbit? As always, see if you can figure it out before reading on.

What is the energy of a particle in the innermost stable circular orbit? Using (4), we
evaluate V (r = rISCO, l = lc) = − 1

3 + 3
9 − 3

27 = − 1
9 . Setting dr

dτ
= 0 in (3), we find ε =

∗ A quick reminder of Kepler’s third law in Newtonian physics: v2/r = GM/r2, �2 = ((2π)/(2πr/v))2 =
GM/r3.
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√
1 − 1

9 = 2
√

2
3 . But from dt

dτ
= ε

1− rS
r

, we see that the particle started out at r = ∞ with

ε = 1. Thus, the fraction of energy ultimately lost to electromagnetic radiation amounts to
1 − 2

√
2

3 ≈ 0.06.
Is this a lot? What do we compare the 6% to? Consider nuclear fusion, which powers

the stars and the hydrogen bomb. Four protons are converted to a helium nucleus accom-
panied by the emission of two positrons and two neutrinos. The fraction of energy release
is calculated easily by comparing the mass of the helium nucleus to 4 times the mass of
the proton, according to what we learned back in part III. The fabled equation E =mc2,
yes! It turns out that in nuclear fusion, the energy released amounts to 0.7%. The black
hole is almost ten times more efficient. Later, we will see that a rotating black hole is even
more efficient!

Massless particle

For a massless particle, we have to replace the proper time τ by the affine parameter ζ .
Then, for a photon moving in the equatorial plane, we have (in parallel with the case of a
massive particle) dt

dζ
= ε

1− rS
r

and dϕ
dζ

= l

r2 , with ε and l two integration constants. The radial

coordinate of the worldline satisfies

1
l2

(
dr

dζ

)2

+ 1
r2

(
1 − rS

r

)
= ε2

l2
≡ 1
b2

(9)

From the displayed equations, we can see explicitly our freedom to scale the affine param-
eter by ζ → ζ/ l. As explained earlier, physics does not depend on ε and l separately, but
only on the impact parameter squared: b2 ≡ l2

ε2 .

Alternatively, eliminate the affine parameter ζ by dividing dr
dζ
/
dϕ
dζ

= dr
dϕ

, so that

(
dr

dϕ

)2

= r4

b2
− r

(
r − rS

)
(10)

(which we used in discussing light deflection) or by dividing dr
dζ
/ dt
dζ

= dr
dt

, so that

(
dr

dt

)2

=
(
r − rS

)2

r2

(
1 − b2

r3

(
r − rS

))
(11)

(which we used in discussing radar echo delay, in chapter VI.3).
The qualitative features of light moving around a black hole can be immediately read off

from (9), which with a particular choice of the affine parameter becomes ( dr
dζ
)2 + U(r)=

1
b2 . Plot the effective potential

U(r)= 1
r2

− rS

r3
(12)

For large r , U(r)� 1
r2 and goes up as r decreases, reaching a maximum value of Umax =

4/(27r2
S) at r = 3rS/2, then plunging downward to −∞. Thus, the motion of light can be

divided into three cases (figure 3):
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Figure 3 For light moving around a black hole, there
are three possible types of orbit (shown at right),
depending on the impact parameter. The potential U(r)
is plotted schematically (left). (a) Large impact parameter
1/b2 < Umax; (b) small impact parameter 1/b2 > Umax;
(c) impact parameter just right 1/b2 = Umax.

1. Large impact parameter 1/b2 <Umax: light comes in and then goes back out, corresponding

to the deflection of light we studied in chapter VI.3.

2. Small impact parameter 1/b2 >Umax: light comes in and plunges into the black hole.

3. The impact parameter is just right (1/b2 =Umax) to trap light going around in an (unstable)

circular orbit.

The precise shape of the orbit can be obtained by integrating (10).

A common confusion about plunging into a black hole

Confusio speaks up: “I have learned that the fundamental laws in classical physics (and also
quantum physics) are time reversal invariant,3 that is, they are unchanged upon t → −t .
I read that if we take a movie depicting a microscopic∗ process and run it backward, the
reversed process must also be allowed by the laws of physics. So why can’t I run the film
of the observer radially plunging into a black hole and watch him come flying out?”

∗ Thus excluding processes involving a macroscopic number of particles, with the attendant discussion about
entropy, second law, and so on and so forth. Indeed, you can’t make an egg out of an omelette.
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Well, well, that Confusio is more astute than we think. Indeed, the Lagrangian

L=
[(

1 − rS

r

) (
dt

dτ

)2

−
(

1 − rS

r

)−1 (
dr

dτ

)2

− r2
(
dθ

dτ

)2

− r2 sin2 θ

(
dϕ

dτ

)2
] 1

2

governing the motion of a particle in Schwarzschild spacetime is manifestly invariant
under t → −t . So where is the catch in the standard arguments4 about time reversal
invariance?

The catch, as I have already mentioned, is that the coordinate time t increases to +∞
as r → r+

S and then decreases from +∞ after the observer crosses the horizon. Indeed, as
is evident from the Lagrangian just displayed, t and r exchange roles for r < rS. The letter
“t” no longer denotes time! Much more on this in the next chapter.

The standard arguments about time reversal invariance work perfectly well as long as
r > rS. Thus, if we could somehow install a trampoline at r+

S just outside the black hole,
the observer in radial plunge could bounce back5 out to r = ∞, retracing his trajectory.

Appendix: Painlevé-Gullstrand coordinates

An interesting set of coordinates was introduced by Paul Painlevé∗ and Allvar Gullstrand† in 1921. In the
Schwarzschild metric ds2 = −(1 − v2)dt2 + 1

(1−v2)
dr2 + r2d�with v2 = rS

r
, let dt = dT − h(r)dr . We could take

h(r) to be any reasonable function of r , but a particularly nice choice is to make the coefficient of dr2 equal to 1,
which fixes h= v

(1−v2)
. We obtain

ds2 = −dT 2 +
(
dr +

√
rS

r
dT

)2

+ r2d� (13)

This shows conclusively that spacetime is not singular at r = rS, a point that was not widely appreciated until the
early 1960s. (More on this in the next chapter.) Recall from the text that an observer in radial plunge starting at

rest at infinity follows dr
dτ

= −
√

rS
r

. (See exercises 3 and 4.) Note also that in Painlevé-Gullstrand coordinates, a
slice of spacetime at fixed T corresponds to flat space.

Exercises

1 Show that in the derivation of Kepler’s third law, the results we obtained for V t and V ϕ satisfy the consistency
check gμνV μV ν = −1.

2 Determine the shape of the orbit of light in the presence of a black hole.

3 Verify that in Painlevé-Gullstrand coordinates, an observer in radial plunge starting at rest at infinity follows
dr
dτ

= −
√

rS
r

, as must be the case, since in transforming from the Schwarzschild coordinates, we did not

change r . Show also that dr
dT

= −
√

rS
r

.

∗ Twice the prime minister of France.
† Nobel Laureate in Physiology or Medicine 1911, he opposed giving Einstein the Nobel Prize for his theory

of special relativity.
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4 The preceding result shows that the velocity dr
dT

of the radially plunging observer reaches 1 at the horizon
and then goes to ∞ at the physical singularity at r = 0. You are of course sophisticated enough by now not
to dash off some crackpot claim that Einstein was wrong about the speed of light setting the ultimate speed
limit. Verify that dr

dT
is still less than the speed of light.

Notes

1. For the record, V (rmax)= h
(
h−

√
(h−3)h−2

)
(√

(h−3)h−h
)3 , with h≡

(
l
rS

)2
.

2. Again, for the record, V (rmin)= − h
(
h+

√
(h−3)h−2

)
(
h+

√
(h−3)h

)3 .

3. The only known exceptions occur in the decay of certain elementary particles.
4. I recommend J. J. Sakurai, Invariance Principles and Elementary Particles, chapter 4.
5. As I mentioned in chapter VI.3, Einstein did think erroneously that a particle falling into a black hole would

bounce back at the Schwarzschild radius.



VII.2 Black Holes and the Causal
Structure of Spacetime

Poor choice of coordinates

In the Schwarzschild solution, which I reproduce here for convenience,

ds2 = −
(

1 − rS

r

)
dt2 + 1(

1 − rS
r

)dr2 + r2d�2 (1)

the components of the metric g00 = −(1 − rS
r

)
and grr = (

1 − rS
r

)−1 change sign at r =
rS ≡ 2GM , a place known as the horizon, as was mentioned in the preceding chapter.
(The reason for the term “horizon” will become clear in this chapter.) What we call time t
and what we regard as the radial coordinate r exchange roles∗ inside the horizon, leading
us to expect that something extraordinary happens at the horizon. However, we learned in
chapter VI.3 (by computing RμνλρR

μνλρ, for example) that spacetime is perfectly smooth
there. We suspected that the singularity at the horizon was merely due to a nasty coordinate
choice (recall appendix 1 of chapter I.6). In this chapter, we will confirm this suspicion by
exhibiting a better behaved coordinate system near and inside the horizon.

Let’s look at radial light rays, for which dθ = 0 and dϕ = 0, so that we can effectively
suppress the angular coordinates. Their paths are determined, as usual, by ds2 = 0 =
−(1 − rS

r

)
dt2 + 1

(1− rS
r )
dr2, that is, by dt = ± 1

1− rS
r

dr = ± r
r−rSdr . For r > rS, the plus sign

describes outgoing light rays (dr > 0 for dt > 0), and the minus sign incoming light rays
(dr < 0 for dt > 0). Infinitely far away from the black hole, dt = ±dr and light rays move at
45◦. But as we move in close to the black hole, the angle the light rays make with the r-axis
increases with decreasing r until it reaches 90◦ at the horizon, as illustrated in figure 1.
The light cone closes up like a clam.

∗ Because of this role exchange, it has been suggested that the region r < rS be called not “inside the horizon”
as it is usually called, but “after the horizon.” By the same token, the Schwarzschild singularity at r = 0 is a
moment in time, not a place you visit.
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t

r
rS

Figure 1 The light cone closes up like a clam as r decreases toward the horizon.

Tilting light cones spill particles into the black hole

Let’s look for a better set of coordinates than (t , r)by massaging the Schwarzschild solution
as follows:

ds2 = −
(

1 − rS

r

) (
dt2 − 1

(1 − rS
r
)2
dr2

)
+ r2d�2

= −
(
r − rS

r

) (
dt + r

r − rS
dr

) (
dt − r

r − rS
dr

)
+ r2d�2

= −
(
r − rS

r

) (
dt̄ + dr

) (
dt̄ − r + rS

r − rS
dr

)
+ r2d�2 (2)

where we have defined dt̄ ≡ dt + rS
r−rSdr . (We could easily integrate this to determine t̄ (t , r)

up to an irrelevant additive constant, but it is not needed for our purposes here.) Note that
the angular part of the metric is just going along for the ride.

We now show that the coordinates (t̄ , r) are more suitable than (t , r) for describing
outgoing and incoming radial light rays. In the (t̄ , r) plane, the radial light rays follow
dt̄ + dr = 0 (incoming, since dr < 0 for dt̄ > 0) or dt̄ = r+rS

r−rSdr (outgoing for r > rS, since
then dr > 0 for dt̄ > 0). Thus, the incoming light rays always move at 45◦. In contrast,
the angle the outgoing light ray makes with the r-axis varies with r , starting out at 45◦ for
r � rS far from the black hole, slowly increasing with decreasing r until it reaches 90◦ at
the horizon, as shown in figure 2.

The light cone gradually tilts over. Once r < rS, the outgoing light ray no longer deserves
the name “outgoing”: the relation dt̄ = r+rS

r−rSdr = − r+rS
rS−r dr now implies that dr and dt̄ have

opposite signs, so that as t̄ increases, r decreases. See figure 2.
The extraordinary feature is that for r < rS, we no longer have any outgoing light rays!
All light rays are ingoing. A fortiori, material particles cannot escape, since their world-

lines have to lie inside the light cone. Inside the horizon, the tilting light cone appears to
“spill” the material particles contained inside toward r = 0.
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–t

horizonphysical
singularity

r
rS

Figure 2 In the (t̄ , r) plane, the light cone gradually tilts over. Inside the horizon, the tilting light
cone appears to “spill” the material particles contained inside toward r = 0.

As already remarked, invariant measures of spacetime curvature behave smoothly at the
horizon, and spacetime appears to be perfectly normal. What changes at the horizon is the
causal structure of spacetime, as we will see in more detail shortly. The (t̄ , r) coordinates
make clear that inside the horizon, light rays and particles can perfectly well reach r = 0;
the closing up of the light cone in the (t , r) plane as r → r+

S merely shows the inadequacy
of t as a coordinate.

Eternal versus actual black holes

Our description here is as if somebody manufactured a black hole a really long time ago,
somehow, and placed it at r = 0 at the beginning of time t = −∞. But the universe started
in a Big Bang. Thus, as a description of a black hole, the Schwarzschild solution in its
entirety, including the region inside the horizon, represents a mathematical curiosity,
not an actual physical situation. In contrast to this so-called eternal black hole, an actual
physical black hole represents a possible final state of stellar evolution. (If you don’t know
this, I will touch upon this fascinating story1 briefly in chapter VII.4.)

A realistic description of black hole formation can be enormously complicated, but in
theoretical physics, the process is often idealized as a spherically symmetric cloud of dust
collapsing. The technical term “dust” refers to a collection of particles, each following a
geodesic, that do not interact with one another directly. The worldline of a particle on the
surface of the dust ball is indicated schematically in figure 3a, which shows the interior
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r
rS

horizon

r = 0
singularity

particle on surface 
of dust cloud

surface of
collapsing star

Figure 3 A dust ball collapsing into a black hole. (a) The worldline of a particle on the surface of the dust ball;
the interior of the dust ball as a shaded region as shown in the (t̄ , r) plane. (b) The formation of a black hole,
with the angle θ suppressed.

of the dust ball as a shaded region. (Strictly speaking, inside the dust ball, the t̄ coordi-
nate may be inappropriate and so should be used only after the formation of the black
hole.) As usual, this depiction in the (t̄ , r) plane is (1 + 1)-dimensional, with θ and ϕ sup-
pressed. In figure 3b, we show the same process in a (2 + 1)-dimensional depiction, with θ
suppressed.

An escape attempt that barely failed

Imagine that after the formation of the black hole, a spherical shell of matter centered at
the origin comes crashing into the black hole. In other words, the dust ball was actually
enclosed by a spherical shell of dust. The collapse of the shell increases the mass of the
black hole fromM toM +
M , with a corresponding increase of the Schwarzschild radius
from rS to rS +
rS. See figure 4. The original horizon and the new horizon are indicated
by the dashed and solid lines, respectively.

Now consider a light ray emitted from inside the dust cloud, thinking to itself, “Phew,
I’m going to escape from this black hole!” but then just barely getting trapped by the more
massive black hole. This story of a barely failed escape attempt makes clear that the horizon
should be thought of as a surface formed by light rays in the (t̄ , r) plane moving “vertically,”
that is, at an angle of 90◦ with the r-axis, in other words, moving along the line r = rS. It
is a null surface (as first defined in chapter III.3).
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trajectory of light 
trying to escape

r

collapsing dust ball
forming a black hole

new horizon

another shell of collapsing 
matter falling into the black hole

Figure 4 After the formation of a black hole, a spherical shell of
matter centered at the origin comes crashing in, thus forming a
more massive black hole. A light ray emitted from inside the dust
cloud that would have escaped from the less massive black hole is
now trapped by the more massive one.

Light rays moving at 45◦

In the (t̄ , r) coordinates, ingoing radial light rays always move at 45◦ from the vertical,
suggesting to us that it might be nice to have outgoing radial light rays also move at 45◦ from
the vertical. Instead of this light cone that tilts as we approach the horizon, we would have a
fixed light cone, just as in Minkowskian spacetime. Kruskal2 and Szekeres independently
found3 the desired coordinates. In my experience, students are often confused, and so I
will go at a perhaps excruciatingly slow pace.

Once again, look at the second line in (2): ds2 = −( r−rS
r

)(
dt + r

r−rSdr
)(
dt − r

r−rSdr
)+

r2d�2, practically begging us to define

dp = dt + r

r − rS
dr and dq = dt − r

r − rS
dr (3)

Then

ds2 = −
(
r − rS

r

)
dpdq + r2d�2 (4)

with r to be regarded as a function of p and q. Indeed, d(p + q) = 2dt and
d(p − q) = 2r

r−rSdr = 2
(
1 + rS

r−rS
)
dr , so that p + q = 2t and p − q = 2r + 2rS log |r−rS|

rS
,
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with a convenient choice of integration constants. Note the need for the absolute value:
the integral of 1/x is log |x|, not log x!

For r � rS, we recover Minkowski spacetime, of course, with dp , dq → dt ± dr .
This suggests yet another change of coordinates: P = ep/2rS and Q= −e−q/2rS, so that

(4) becomes

ds2 = −4r3
S

r
e−r/rS sign

(
r − rS

)
dPdQ+ r2d�2 (5)

The appearance of the sign function stems from the appearance of the absolute value. The
only singularity is now at r = 0, which we know to be physical. (Note that while p and q

have the same dimension as r , the coordinates (P , Q) are dimensionless.)
Had we sloppily neglected the absolute value in integrating dr

r−rS and thus omitted the

sign function in (5), we would have been tempted to write V = 1
2(P +Q), U = 1

2(P −Q),
so that dV 2 − dU2 = dPdQ. But being careful, we see that if we want to have the nice
form

ds2 = −4r3
S

r
e−r/rS

(
dV 2 − dU2

)
+ r2d�2 (6)

we have to require dV 2 − dU2 = sign(r − rS)dPdQ with the sign function. We will deter-
mine V , U in a minute, but for now, let’s admire (6).

Radial light rays are determined by dU = ±dV . We have accomplished our goal of having
light rays move always at 45◦ from the vertical, so that material particles always move at
less than 45◦ from the vertical. Note that V is always the timelike coordinate; none of this
funny business that t sometimes denotes a timelike coordinate and sometimes a spacelike
coordinate.

Most of all, we see that, ta dah, the metric is not singular at all4 at the horizon r = rS,
but still singular at the origin r = 0, as it should be.

But as some of you know, and may even know very well, there is no free lunch. The
coordinate singularity at the horizon cannot simply vanish into thin air. Where is it? The
answer will be revealed in appendix 4 if you can’t figure it out in the mean time.

Kruskal-Szekeres coordinates

The requirement dV 2 − dU2 = sign(r − rS)dPdQ indicates that we should define, for
r > rS,V = 1

2(P +Q), U = 1
2(P −Q), and for r < rS,V = 1

2(P −Q), U = 1
2(P +Q). Note

the interchange between V and U outside and inside the horizon.
It is now simple and straightforward to determine V and U in terms of t and r in the

two regions. First,

V 2 − U2 = sign(r − rS)PQ= − sign(r − rS)e
(p−q)/2rS

= − sign(r − rS)(|r − rS|/rS)e
r/rS =

(
1 − r

rS

)
er/rS (7)
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The sign function disappears. (Also, note the factor
(
1 − r

rS

)= (rS − r)/rS, not
(
1 − rS

r

)=
(r − rS)/r as in the Schwarzschild metric!)

Second, for r > rS, V/U = (P + Q)/(P − Q) = (e(p+q)/2rS − 1)/(e(p+q)/2rS + 1) =
tanh t

2rS
, while for r < rS, V/U = (P −Q)/(P +Q)= coth t

2rS
. Evidently, the relation of

the Kruskal-Szekeres coordinates (V , U) and the Schwarzschild coordinates (t , r)depends
on the sign of (r − rS).

Outside the horizon, that is, for r > rS, since V/U = tanh t
2rS

, we have

V =
(
r

rS
− 1

)1/2

er/2rS sinh
(

t

2rS

)
, U =

(
r

rS
− 1

)1/2

er/2rS cosh
(

t

2rS

)
(8)

Inside the horizon, that is, for r < rS, since V/U = coth t
2rS

, we have

V =
(

1 − r

rS

)1/2

er/2rS cosh
(

t

2rS

)
, U =

(
1 − r

rS

)1/2

er/2rS sinh
(

t

2rS

)
(9)

Note that the factor ( r
rS

− 1)1/2 in one region and (1 − r
rS
)1/2 in the other are both real,

otherwise (8) and (9) would not make sense.

Kruskal-Szekeres diagram of the Schwarzschild black hole

We can now describe spacetime around a black hole using (V , U ) coordinates. See figure 5,
known as a Kruskal-Szekeres diagram.

Lines of constant t correspond to straight lines with some fixed slope as given by

V/U =�
(
r − rS

)
tanh

t

2rS
+�

(
rS − r

)
coth

t

2rS

as plotted in figure 5a. (The step function is defined as usual by �(x)= 1 for x > 0 and
�(x)= 0 for x < 0.)

From (7), we see that the lines of constant r correspond to hyperbolas in the (V , U)
plane, “vertically oriented” hyperbolas for r > rS and “horizontally oriented” hyperbolas
for r < rS. In particular, the physical singularity at r = 0 corresponds to the horizontally
oriented hyperbola V = +√

U2 + 1, with the plus sign mandated by (9). The horizon at
r = rS = 2M degenerates into the two straight lines V = ±U , as we could have deduced
from the fact that at the horizon, vertically oriented hyperbolas transition into horizontally
oriented hyperbolas.

From the Kruskal-Szekeres diagram, a small puzzle that might have bothered you
in the radial plunge discussion in the preceding chapter, namely what happens to
t after the observer passes the horizon, resolves itself. As he approaches the horizon, t
increases, reaching ∞ when he reaches the horizon, and after he passes the horizon,
t decreases from ∞. By now you know better than to claim, as some crackpots do, that he
gets to live his life backward: it is proper time that counts.

The moral of the story is that no single coordinate system is perfect. You would not
want to calculate the perihelion shift of Mercury using the (V , U) coordinates; the (t , r)
coordinates are clearly superior.
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V

U

V = U

r = M

r = 3M

observer
escapes

(a)

(b)

observer falling
toward black hole

no escape
after this point

r =
 2M

V = –U

line of constant t

line of constant r

r = 0

r = 0

V

U

light signal

Figure 5 Kruskal-Szekeres diagram of the Schwarzschild black hole. (a) Note
the lines of constant t and r . (b) As indicated by the dashed line, an observer
falling into a black hole can escape before reaching the horizon V = U .

A common misconception alert! The lines of constant r are not geodesics. To hover at
constant r outside a black hole requires constant and careful firing of a rocket pack strapped
to your back. (Keep in mind also that the angular coordinates θ , ϕ are suppressed, and so
each point in figure 5 corresponds to a unit sphere.)



VII.2. Black Holes and the Causal Structure of Spacetime | 427

However, the observer indulging in the extreme sport “radial plunge” is following a
geodesic, as shown in figure 5b. Note that the angle the curve makes with the vertical has
to be less than 45◦ at all points along the curve. As you can see, his worldline will eventually
end at the hyperbola V = +√

U2 + 1, where infinite tidal forces await him.
Observers in theoretical physics, however, are endowed with free will. Dear reader, as a

“young observer,” you could always strap a rocket pack on your back and fire it whenever
you wish. As indicated by the dashed line in figure 5b, you can always escape from the
black hole by firing your rocket pack before you reach the horizon V = U . But once you
pass the horizon, then no amount of firing would allow you to come back out. Indeed, even
light traveling along the 45◦ lines (V = U + positive constant) will eventually also end up
(as indicated by the dotted line) at the physical singularity (as indicated by the jagged line),
so that you can no longer send signals to your friends outside the black hole.

The gravitational time dilation discussed earlier also becomes clear pictorially. The
infalling observer sends off signals at regular proper time intervals, as indicated by the
wavy lines in the figure. As you can see, for the observer hovering at some constant r
outside the black hole, these signals arrive with ever increasing intervals between them.
It is worth emphasizing again that, once fallen through the horizon, the observer is not
in any way obliged to follow a geodesic. He could certainly fire his rocket pack and zip off
this way or that, frolicking inside a black hole, as long as his worldline makes an angle of
less than 45◦ with the vertical.

The Kruskal-Szekeres diagram is drawn for an eternal black hole. For an actual physical
black hole, the Kruskal-Szekeres diagram is physically relevant only to the right of the solid
line, which could also be taken to depict the geodesic of a particle on the surface of the
collapsing star.

Penrose diagrams

As this discussion makes clear, it is really advantageous to have radial light rays always
move along 45◦ lines. To this, Roger Penrose added another attractive feature of having the
range for the coordinates be finite. The resulting spacetime diagram is known5 as a Penrose
diagram and is extraordinarily useful for seeing the causal structure of the spacetime.

To see how this works, consider the easiest case of Minkowski spacetime ds2 = −dt2 +
dr2 + r2d�2. Write p = t + r , q = t − r (namely, go to the light cone coordinates men-
tioned in chapter III.3). Then ds2 = −dt2 + dr2 + r2d�2 = −dpdq + r2d�2. (Note that
our convention is consistent with the rS → 0 limit of what we had in (3) and (4).) Since
t ranges over (−∞, ∞) and r over (0, ∞), Minkowski spacetime covers the half plane
r > 0, each point of which corresponds to a sphere described by the suppressed angular
variables θ and ϕ. Lines of constant p correspond to t = −r + p, and of constant q to
t = r + q; the (p , q) coordinates are just the (t , r) coordinates rotated by 45◦. Note that,
since p − q = 2r > 0, the region (p < 0, q > 0) is not allowed. The half plane is divided
into three regions, with (p > 0, q > 0), (p > 0, q < 0), and (p < 0, q < 0), separated by
the two lines defined by q = 0 and p = 0, respectively.
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T

I+

I0

I–

R

A

B

Figure 6 Penrose diagram of Minkowskian spacetime: the future and past
null infinities are denoted by I+ and I−, respectively, the future and past
timelike infinities by I+ and I−, respectively, and the spacelike infinity by
I 0. Causal relationships can now be determined at a glance. For example, if
the observer at B wants to send a message to an observer at rest at r = 0, the
earliest the message could reach her would be at point A.

Since (p , q) range over (−∞, ∞), we could compactify them by a simple change of
variable p = tan P , q = tan Q, so that (P , Q) range over the finite range (−π

2 , π
2 ). Again,

spacetime consists of a triangle bounded by the three straight lines P = π/2, Q= −π/2,
and P =Q, divided into three regions, with (P > 0, Q> 0), (P > 0, Q< 0), and (P <

0, Q< 0). Finally, we can “rotate back” by writing T = P +Q, R = P −Q. The resulting
diagram is shown in figure 6. Minkowskian spacetime is represented by a triangle bounded
by the three straight lines T = π − R, T = −π + R , and R = 0.

Light rays (or null lines) propagate at 45◦, and so the future and past light cones are
easily drawn. (For example, the future light cone of the observer at B is indicated by the
dashed lines.)

As indicated in the figure, it is customary to denote the future and past null infinities
by I+ and I−, respectively,∗ where null lines originate and end up; the future and past
timelike infinities by I+ and I−, respectively; and the spacelike infinity by I 0. Keep in
mind that the angular coordinates have been suppressed, so that I 0 actually represents
“the sphere at infinity” often mentioned in physics.

∗ In case some people get bent out of shape, I might mention that for null infinity, I use the “calligraphic I” = I
(following, for example, S. Hawking and R. Penrose,6 while many authors use some version of the “calligraphic
J” = J (as defined by the TEX typesetting program). It is a trivial distinction, dependent merely on who your
teacher was in penmanship class.
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Figure 7 Penrose diagram of the Schwarzschild black hole.

Note that the specific “compacting” function tan used to relate a variable (P or Q, for
example) with a finite range to a variable (p or q, for example) with an infinite range hardly
matters in the present context. It is the causal structure of spacetime that we are after. For
Minkowski spacetime, evidently, every timelike worldline will end up at I+ (excepting
one line that ends up at I+). Causal relationships can now be determined at a glance. For
example, if the observer at B wants to send a message to an observer at rest at r = 0, the
earliest the message could reach her would be at point A. By the same token, if the observer
at B wants to get to r = 0, there is no way he could get there before point A.

We will have a bit more to say about Minkowski spacetime in appendix 5.
Now it is easy to draw the Penrose diagram for Schwarzschild spacetime: we simply bring

the various infinities in, just as we brought the various infinities in Minkowski spacetime
in. The result is shown in figure 7. If you want, you could work through the arithmetic
following the same procedure as for Minkowski spacetime, rotate by 45◦, compactify
variables, and then rotate back by 45◦, but there is no point in doing this.

Sewing spacetimes together

I now describe the formation of a black hole under the simplest circumstances that
theoretical physicists have come up with. The black hole is formed by the collapse of a thin
spherical shell of photons in Minkowski spacetime, all moving radially inward toward a
point. The description of the formation process involves “sewing” two distinct spacetimes
together. Roughly speaking, before the collapse of the shell of photons, spacetime is
Minkowski, while after the collapse, spacetime becomes Schwarzschild. Thus, we have
to join two distinct spacetimes together.

Let us start by envisaging the thin spherical shell of photons (a) in a Minkowski space-
time, and (b) in an eternal Schwarzschild spacetime. These scenarios are depicted in
figure 8a and figure 8b, respectively, with the shell represented by a double line. These two
figure panels represent situations in which the shell contains very little energy and has a
negligible effect on the existing spacetimes, Minkowski in one case and Schwarzschild in
the other.
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J

(b)

(c)

⇒

(a)

H

Figure 8 A thin spherical shell of photons, represented by a
double line, (a) in a Minkowski spacetime, and (b) in an eternal
Schwarzschild spacetime. (c) After excising the physically
irrelevant regions from the spacetime in panels a and b, we sew
together the two physically relevant regions to form one single
spacetime. Before reaching point H, you could still reach the
future timelike infinity. But after point H, your fate eventually
is to meet the singularity represented by the jagged line.

But now suppose that the shell of light contains sufficient energy to form a black hole.
Then the Minkowski spacetime above and to the right of the double line in figure 8a is no
longer relevant: a black hole has formed! That region of Minkowski spacetime should be
excised.

The situation is quite different in figure 8b. We are trying to describe the formation of a
black hole due to an incoming shell of light. Before the shell arrives, spacetime is supposed
to be Minkowskian. Thus, the region below and to the left of the double line in figure 8b is
physically irrelevant and should be excised. Also, we don’t think eternal black holes exist
physically, so in any case, the spacetime depicted in figure 8b should not be taken in its
entirety.

So, we cut off the parts of figure 8a and figure 8b that are irrelevant. Let us then “sew
together” the two physically relevant regions left in these two figures to form one single
spacetime, as shown in figure 8c. Before the shell arrives, we have flat spacetime, and af-
terward, a Schwarzschild spacetime containing a black hole. Thus, this cutting and sewing
construction provides us with a spacetime description of an idealized black hole forma-
tion process. The resulting Penrose diagram shows a black hole forming in an initially flat
spacetime, causing a horizon (indicated by the solid line in the Schwarzschild portion of
the composite spacetime, continued as a dotted line into the Minkowski spacetime before
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the shell of light arrives) and a physical singularity (indicated by the jagged line) to form.7

Note that all angles in this figure are at either 45◦ or 90◦.
This spacetime diagram tells an intriguing story. Suppose you are living a contented life

at the origin (indicated by the vertical line in the figure, which serves to represent your
worldline) of a Minkowski spacetime. You have no idea that a monster shell of light is
coming at you at light speed. Before point H, you could still blast off and reach the future
timelike infinity denoted by I+, if your rocket were fast enough. But after point H, you are
totally doomed: your fate is to meet the jagged line sooner or later.

This description indicates that the horizon is a global, not a local, concept characterizing
the causal structure. At point J, after you pass H, no signal from the monster shell of light
can have reached you yet, and you could well be minding your own business. But already
it is too late for you! No matter what you do, you would still be headed toward the physical
singularity.

Let me emphasize again that the coordinate independent measure of curvature
RμνρσRμνρσ = 12r2

S/r
6 evaluated at the Schwarzschild radius rS goes like 1/r4

S. Thus, by
taking rS = 2M large, we can make this measure of curvature as small as we like, so that
spacetime around a black hole could appear to be arbitrarily close to everyday flat space-
time. Nevertheless, the global causal structure of spacetime has been changed essentially
and irrevocably.

Appendix 1: Eddington-Finkelstein coordinates

I describe here a coordinate system first used by Eddington in 1924, and then rediscovered by Finkelstein in
1958. Speaking loosely, we can think of the Eddington-Finkelstein coordinates as something halfway between
the Schwarzschild and the Kruskal-Szekeres coordinates. Go back to the second line in (2), which I reproduce
here for convenience:

ds2 = −
(
r − rS

r

) (
dt + r

r − rS
dr

) (
dt − r

r − rS
dr

)
+ r2d�

Define dp = dt + r
r−rS dr as before but not dq. In terms of this new coordinate, we have dt − r

r−rS dr = dp −
2r
r−rS dr . Thus,

ds2 = −
(
r − rS

r

)
dp2 + 2dpdr + r2d� (10)

Radial light rays follow paths determined by solving
(
r−rS
r

)
dp2 = 2dpdr . Light rays along dp = 0 are always

ingoing. Light rays along
(
r−rS
r

)
dp = 2dr are outgoing for r > rS and ingoing for r < rS.

Recall that dt̄ ≡ dt + rS
r−rS dr . Be careful to distinguish dt̄ from dp! In fact, dp= dt̄ + dr , so that the dp= 0 light

rays are just the dt̄ + dr = 0 light rays discussed earlier. We can also integrate dp = dt̄ + dr = dt +
(

1 + rS
r−rS

)
dr

to obtain p = t̄ + r = t + r + rS log |r−rS|
rS

.

Appendix 2: Area of the horizon

We ask Confusio, “What is the dimension of the horizon of a black hole?” He responds, “Let’s see. Set r = rS + ε in
the Schwarzschild solution (1) to get ds2 � ε

rS
dt2 − r2

Sd�
2 (since dr = 0). Sure looks like it’s 2 + 1 dimensional.”
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Good. As we’ve noticed, Confusio is getting less confused by the day. Indeed, most people think of the horizon
as a mathematical 2-sphere surrounding the black hole. You add time and it’s 2 + 1 dimensional for sure.

But now set ε = 0. Time goes. Not just time goes by, but time literally goes. We are left with −ds2 = r2
Sd�

2;
the actual horizon, contrary to what the naive might think, is actually 2-dimensional and has an area

A= 4πr2
S = 16π(GM)2 (11)

That this 2-step discussion is even necessary points to the deficiency of the Schwarzschild coordinates. If
we set r = rS in the (p , q) coordinates (4), or V = U in the Kruskal-Szekeres coordinates (6), or r = rS in the
Eddington-Finkelstein coordinates (10), we obtain immediately −ds2 = r2

Sd�
2 and the area law (11).

Appendix 3: Misleading to show the black hole as a funnel or
as a rubber sheet

You’ve probably seen a picture of a black hole depicted as a kind of funnel, or alternatively as a rubber sheet
depressed by a heavy round mass. Far away from the funnel, or the depression in the rubber sheet, the surface
is supposed to be flat. I will pointedly not show this picture (you can draw it yourself based on the mathematical
description given below), but it and its variants have appeared in countless magazines, newspapers, popular
books, and even on the cover of a textbook. In many science museums, visitors are invited to toss a small ball
onto the surface of an actual funnel shaped construction. If you toss the ball with sufficient speed in an angular
direction, it will orbit around the central funnel, slowly spiraling into the dark “bottomless” pit in the center. And
of course, if you toss the ball in the radial direction, it will fall right in, “sucked in by the irresistible force” of
the black hole, often thought of as a “source of evil” in the visitor’s mind. You know of course that this display
depicts the sun equally well.

This museum display entertains the visitors and educates them to some extent, but D. Marolf has pointed out
that it is misleading at best. For sure, it has seriously confused some students.

This popular picture and the display that goes with it are obtained by setting t equal to some constant and
θ = π/2 in the Schwarzschild metric (1) to obtain

ds2 = 1(
1 − rS

r

) dr2 + r2dϕ2 (12)

which is then embedded in 3-dimensional Euclidean space E3. (The museum staff could hardly do otherwise.)
Using the usual cylindrical coordinates (z, ρ , ϕ) for E3, we specify the embedding by writing z = f (r), ρ = r ,
ϕ = ϕ. You can work out f (r) if you want, but it is not necessary here. In science museums, they don’t use the
actual f (r), but instead, use an f (r) such that f (r)→ constant for large r and f ′(a)= −∞ for some small value
of a. So you see why I don’t need to draw a picture for you!

Marolf’s point is that this picture represents a slice in time and is not directly connected to the gravitational
attraction of the black hole. (The actual force “sucking” the ball into the funnel is of course supplied externally,
by the earth.) In fact, there are spacetimes with the same t − ϕ slice as (12) but with totally different gravitational
fields as in the Schwarzschild case (as you saw in exercises V.4.4 and V.4.5).

To obtain a more appropriate representation of the black hole, we should take a slice of (1) with θ and ϕ both
constant (in contrast to the funnel picture based on a slice with t and θ constant) and then embed the slice in
(2 + 1)-dimensional Minkowski spacetime M2, 1. The resulting picture contains two flanges.8

Appendix 4: Wormholes and such

Confusio grumbles, “Did we not cheat? I can see that the metric in the Kruskal-Szekeres coordinates

ds2 = − 4r3
S

r
e−r/rS

(
dV 2 − dU2

)
+ r2d�2 (13)

[reproduced here for convenience] is free of the coordinate singularity at r = rS, but the transformation (8) and
(9) from (t , r) to (V , U) is not smooth as we cross over r = rS (that is, dV/dr , dU/dr are singular at r = rS).”

Indeed, Confusio is right, but that’s just the law of calculus: if we transform from singular to nonsingular
coordinates, the transformation necessarily must be singular. Think about it this way. Imagine a civilization far far
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away in which the metric (13) just fell on the head of a physicist who had never heard of the usual Schwarzschild
metric written in (t , r) coordinates. Or perhaps more likely, a mathematician simply presented it to a physicist,
saying, “Lo, behold this metric: it solves Einstein’s field equation in empty spacetime.” (The symbol r , defined

earlier in (7) by
(

1 − r
rS

)
er/rS = V 2 − U2, is a perfectly well-defined function of V 2 − U2 for 0 ≤ V 2 − U2 ≤ 1.)

What we should ask is how the original spacetime maps into the Kruskal spacetime. Indeed, (8) shows that
every point (t , r), for ∞> r > rS and ∞> t >−∞, maps to a unique point (V , U) in quadrant I in figure 7, and
(9) shows that every point (t , r), for rS > r > 0 and ∞> t >−∞, maps to a unique point (V , U) in quadrant II.
So the original spacetime maps only into half of the Kruskal spacetime, namely the half defined by V ≥ −U . The
crucial question is, what do we make of quadrants III and IV? They do not correspond to anything in the original
spacetime. For example, take the negative U -axis defined by V = 0, U < 0. Examining (9), we see that this does
not exist in the original spacetime. Mathematicians say that the Kruskal coordinates define an extension of the
Schwarzschild solution.

Physicists, including astrophysicists, typically take the attitude that for an actual black hole formed from a
collapsing star, a solution to Einstein’s field equation in empty spacetime is relevant only to the right of the
worldline of a massive particle in figure 5b. In other words, we now think of what we previously called the
worldline of an observer falling into an eternal black hole as the worldline of a particle on the surface of a
collapsing star. Quadrants III and IV in figure 7 are physically irrelevant (at least until further discoveries in
physics∗).

In contrast, mathematicians and speculators can certainly invite themselves (free country, remember?) to
study the spacetime described mathematically by (13). Looking at (13), we see that, since quadrant III is related
to I by U → −U , the two quadrants are the same: III also describes the outside of a black hole, approaching
an asymptotically flat spacetime. Quadrant IV is more peculiar, with a physical singularity at V = −√

U2 + 1.
Classical general relativity cannot tell us anything about what actually happens at a physical singularity except
that the theory breaks down. We need a theory of quantum gravity. Naively, we can draw lines coming out of this
physical singularity with light at 45◦ and so on, capable of propagating into I and III, so that it looks like what we
might call a “white hole,” whatever that means—a place where particles could come streaming out. Clearly, our
present understanding of physics does not allow us to say anything meaningful, which of course does not deter
people from publishing any number of speculative papers.

It is somewhat interesting to look at the V = 0 slice connecting the two asymptotically flat spacetimes I and

III and described by the 3-dimensional line element ds2 = 4r3
S
r
e−r/rSdU2 + r2d�2. By (8), V = 0 implies that

U =
(
r
rS

− 1
)1/2

er/2rS and dU = r

2r2
S(

r
rS

−1)1/2 e
r/2rSdr . Inserting into (13), we see that this spatial slice is described by

ds2 = 1
1 − rS

r

dr2 + r2d�2 (14)

The reader with a long memory would recognize this as the Einstein-Rosen bridge discussed way back in
chapter I.6, which John Wheeler9 picturesquely described as a wormhole.

The question naturally arises, if an eternal black hole exists somewhere, whether one could get through the
wormhole to another asymptotically flat universe. Inspection of the Penrose diagram in figure 8 shows that it is
not possible to get from I to III even if you were to travel at the speed of light. However, an observer starting in
I, after falling through the horizon into II, could receive signals originating from within III. In other words, our
intrepid observer, while unable to get to III, can look at part of III.

An important point is that while the Einstein-Rosen bridge can be studied as a static 3-dimensional space, the
wormhole is a dynamic entity evolving in time. Indeed, let’s take the V = V0 > 0 slice of the Kruskal spacetime.

(Recall that V is the timelike variable.) From (7), we have U = ±
√
V 2

0 −
(

1 − r
rS

)
er/rS. Substituting this and

V = V0 into (13), we find

ds2 = 1
1 − rS

r

(
1 − V 2

0 e
−r/rS) dr2 + r2d�2 (15)

We see that the throat of the wormhole, determined by the value of r where grr → ∞, decreases from rS at V0 = 0,
approaching 0 as V0 → 1, and reaches 0 when we hit the physical singularity at V0 = 1. The wormhole closes up
at the physical singularity. By dimensional analysis, since rS is the only dimensionful parameter around, we see
that the wormhole closes up† on a time scale of the order of rS.

∗ I subscribe to this attitude. What attitude you take is of course up to you.
† This classical analysis, like the rest of this chapter, completely ignores the increasingly large fluctuations

due to quantum gravity as we approach the physical singularity.
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Appendix 5: A bit more on Minkowski spacetime

In the text, we constructed the Penrose diagram for Minkowski spacetime as follows: rotate (by 45◦), compactify,
rotate back, that is, by the sequential changes of variables∗ t = 1

2 (p + q), r = 1
2 (p − q), p = tan P , q = tan Q,

T = P +Q, R = P −Q. The metric is transformed as

ds2 = −dt2 + dr2 + r2d�2
d−2

= −dpdq + 1
4 (p − q)2d�2

d−2

= 1
4 cos2 P cos2 Q

(
−dT 2 + dR2 + R2d�2

d−2

)
(16)

As explained in the text and as shown in figure 6, spacetime consists of a triangle. (Indeed, the factor
(cos2 P cos2 Q)−1 indicates that the coordinates end at P = π/2, Q = −π/2.) We see that ds2 is conformally
related (see exercise I.5.14) to ds̃2 = −dT 2 + dR2 + r2d�2

d−2. Recall that R runs between 0 and π , and thus in
spite of appearances, this spacetime, while conformally related to the flat Minkowski spacetime, is not flat. Space
consists of the sphere Sd−1, with R = 0 and R = π corresponding to the north and south poles, respectively.
Indeed, we might want to rename R as θ , the familiar latitude. (Note that we have generalized slightly from the
text to consider Md−1, 1 with no cost to us; as usual, the angular coordinates just go along for the ride.)

But if somebody handed us ds̃2 with T andR restricted to the triangular region, we could invite ourselves to ex-
tend this spacetime outside the triangle: simply let T run from −∞ to +∞. Without the factor (cos2 P cos2 Q)−1,
we can wander outside the triangle in figure 6 with impunity. The resulting spacetime has the topology of
R × Sd−1 and is known as the maximal extension of the Minkowski spacetime we started out with, which now
corresponds to a patch in this spacetime.

We now note that (1 + 1)-dimensional Minkowski spacetime is a special case: as we can see in (16), d�2
d−2

degenerates for d = 2. Instead of starting out with (t , r) with 0 ≤ r < ∞, we have (t , x) with −∞ < x < ∞
and thus

ds2 = −dt2 + dx2 = −dpdq = 1
4 cos2 P cos2 Q

(
−dT 2 + dX2

)

Now the coordinate X ranges between −π and π , in contrast to the coordinate R, which ranges between 0 and π
in the higher dimensional cases. Instead of a triangle, spacetime now consists of a diamond shaped region, that
is, a square rotated by 45◦. (Another way of saying this is that spatial boundary S0 is not connected and contains
2 points. In contrast, Sd−2 is connected for d > 2.)

For the statement that the maximal extension of Minkowski spacetime Md−1, 1 has the topology of R × Sd−1

to be applicable also for d = 2, we could identify the two points (T = 0, X = π) and (T = 0, X = −π). ThenM1, 1

is maximally extended to R × S1, familiarly known as the cylinder. We will come back to this in chapter IX.11.

Exercise

1 Show that for the actual Schwarzschild solution, the science museums should use f (r)= 2
√
rS(r − rS).

Notes

1. For readers utterly unfamiliar with the story, I recommend chapters 20–22 in R. Freedman and W. Kauffman,
The Universe.

2. Kruskal was a distinguished plasma physicist. This episode in the history of physics reminds us that there
is a huge gulf between “nonexperts” and crackpots.

3. In hindsight, it might seem somewhat surprising that the Kruskal coordinates were found only in 1960.
Allegedly, John Wheeler had to compel a reluctant Martin Kruskal to publish his work by writing it up for

∗ Note the factors of 2.
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him. M. Kruskal’s paper (Physical Review 119 (1960), p. 1743) carries a note stating “This work was reported
in abbreviated form by J. A. Wheeler on behalf of the author,” suggesting that Wheeler did indeed force
Kruskal to write it up.

4. In hindsight, it really is puzzling how the confusion over the nonexistent Schwarzschild singularity persisted
for so long. Apparently, G. Lemâıtre (recall chapter V.3; see also chapter VIII.1) had already shown in 1933 that
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8. See D. Marolf, arXiv:gr-qc/9806123 for more details.
9. As an undergraduate, I was a devotee of John Wheeler. In an article titled “John Wheeler’s mentorship: An

enduring legacy,” Physics Today 62 (2009), p. 55, T. M. Christensen wrote, “Among the eminent physicists
who were influenced as undergraduates by personal contact with Wheeler are James Hartle, David Sharp,
Bruce Partridge, Anthony Zee, and Gary Horowitz.” See also my letter in the same volume.



VII.3 Hawking Radiation

Quantum fluctuations can set you free

Nothing can get out of black holes. Spacetime is warped in such a way that, once inside the
horizon, even light can never emerge, as the Kruskal diagram shows for a Schwarzschild
black hole. We worked this picture out in detail in the preceding chapters.

But as you have no doubt heard, that picture, painted exclusively with classical physics,
no longer holds true when quantum effects are turned on, as we have already discussed in
the introduction to this text. Black holes radiate as black bodies, each with a temperature
characteristic of the specific black hole. Indeed, we were even able to determine, purely
by dimensional analysis supplemented by a bit of basic knowledge about gravity, that the
Hawking temperature for a Schwarzschild black hole is given by

TH ∼ 1
GM

∼ �c3

GM
(1)

with M the mass of the black hole. You may wish to go back to the introduction to review
how we did that. There we already noted that this simply derived result indicates that black
hole radiation ends explosively. As M decreases, T goes up.1

From (1), using the thermodynamic definition of entropy dM = T dS, we immediately
determined the entropy to be

S ∼GM2 ∼ GM2

�c3
(2)

I have used dimensional analysis to restore � in (1) and (2), thus showing clearly that
for � = 0, we have T = 0 and S = ∞, so that classically, black holes do not radiate.

We now try to understand how quantum effects could change the picture so drastically.
At the most handwaving and heuristic level, with quantum fluctuations, a photon can no
longer be sure which side of the horizon it is on, and thus there is some chance it could
get out. Let’s put substance on this basically correct explanation by learning about the
phenomenon of the restless vacuum in quantum field theory.
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The essence of quantum field theory in five minutes

What is quantum field theory? Why is quantum field theory necessary?
We need quantum field theory2 when we confront simultaneously the two great physics

innovations of the last century of the previous millennium: special relativity and quantum
mechanics. Consider a rocket ship moving close to light speed. You need special relativity
but not quantum mechanics to study its motion. In contrast, to study a slow electron
scattering off of a proton, you must invoke quantum mechanics, but you don’t have to
know a thing about special relativity.

It is in the peculiar confluence of special relativity and quantum mechanics that a new
set of phenomena arises: particles can be born and particles can die. It is this matter
of birth, life, and death that requires the development of a new subject in physics, that
of quantum field theory.∗ Let me explain presently how special relativity and quantum
mechanics together can lead to dramatically novel physics.

Consider empty spacetime. The vacuum, which we normally think of as vacuous, is (ac-
cording to quantum field theory) rather astonishingly actually a boiling sea of fluctuating
pairs of particles and antiparticles, containing, for example, pairs consisting of an electron
and a positron (the electron’s antiparticle).

Before special relativity came along, you couldn’t simply conjure up the mass of the
electron and of the positron out of the vacuum. But with Einstein’s gold-plated equation
E ∼mc2, you could if you have enough energy.

However, without quantum mechanics, the process is still forbidden by energy conser-
vation. Where would the necessary energy come from?

The gold-plated equation of quantum mechanics, Heisenberg’s uncertainty principle,

t ∼ �/
E, comes to the rescue. When Nature balances her accounts, she can tolerate
briefly a certain amount of fuzziness.

Thus, in a world with both special relativity and quantum mechanics, an electron and
a positron can pop out of the vacuum, but only for a characteristic time of at most† order

t ∼ �/(mec

2), a very small time interval by everyday standards, after which the electron
and the positron must annihilate each other and disappear back into the vacuum. Quantum
electrodynamics was invented partly to deal with this sort of vacuum fluctuation.

This heuristic discussion indicates that the fluctuations are universal and involve all
particle species, including the photon and the graviton (which happen to be their own
antiparticles). For massless particles such as the photon and the graviton, the denominator
in the estimate for 
t should be replaced by their characteristic energies.3

∗ I remark in passing that you have already seen repeatedly, in chapters II.3, IV.1–IV.3, VI.4, and VI.5
for example, another need for quantum field theory when we write down actions describing the interaction
between particles and the electromagnetic and gravitational fields. There was always an unbearable and unsightly
dichotomy between point particles on one hand, and spacetime-pervading fields on the other hand. It would be
intellectually more satisfying to treat all the elementary particles, the electron and all the rest, on the same footing
as fields.

† Since the minimum energy the electron and the positron can have is of order me.
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This boiling vacuum with all its agitation is irrelevant for a large chunk of physics. The
reason is that the time scale 
t over which a fluctuation occurs is much shorter than
the typical time scales explored in many areas of physics. In a collision between particles,
however, the fluctuating pair can borrow the required energy from the colliding particles
and thus evade the Heisenberg bound on 
t . The electron and positron pair does not
have to annihilate each other but can escape to infinity. Thus, we can scatter an electron at
high energy off a proton and produce an electron-positron pair, a process known as pair
production in quantum field theory.

In contrast, write down the Schrödinger equation for an electron scattering off a proton.
The equation describes the wave function of one electron, and no matter how you shake and
bake the mathematics of the partial differential equation, you will always have one and only
one electron. The Schrödinger equation is simply incapable of describing pair production.
Nonrelativistic quantum mechanics must break down under these circumstances.

Not quantum field theory in five minutes, of course, but the essence of quantum field
theory in five minutes!

Vacuum fluctuations near a black hole

Pairs of particles and antiparticles pop out of the vacuum for an instant and then van-
ish. These incessant but ephemeral fluctuations were largely of interest only to particle
physicists until Hawking came along.4

But what if the fluctuations occur near the horizon of a black hole?
As we have learned, Riemann curvature near the horizon scales like ∼ 1/r2

S ∝ 1/(GM)2,
and spacetime can be almost flat for M large. Unlike particle physics, Einstein gravity is
not normally concerned with high energies. But it’s not the curvature, rather the causal
structure, that matters!

At the horizon r = 2GM , the coefficients of dt2 and dr2 change sign, indicating that
time and space, and hence energy and momentum, are interchanged. A pair pops out
near the horizon. During the short time the pair can exist, one of them, say the antipar-
ticle to be definite, could fall through the horizon, at which point its energy becomes a
momentum component! The particle, liberated from the constraints of energy conserva-
tion and Heisenberg’s principle, can now exist forever and escape to infinity, where it tries
to live happily ever after without its partner.

In particle physics, colliding particles supply the energy needed to balance the books.
In Einstein gravity, while Nature compulsively balances her energy budget, we fool her by
dumping one of the particles of the pair down a black hole. The Heisenberg restriction on

t is evaded by changing what we mean by energy as the particle crosses the horizon.

In a Kruskal diagram, you can easily depict this process, showing the antiparticle falling
to its doom at r = 0 and the particle escaping to I+. To balance the energy momentum
budget, the black hole would have to lose a bit of mass and recoil a little. For a black hole
with massM much greater than the typical energy of the escaping particle, these effects are
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negligible. These fluctuations occur ceaselessly around the horizon, and thus we conclude
that the black hole radiates universally: all particles are involved.

A detailed quantum field theoretic calculation∗ should reveal to us the energy distribu-
tion of the radiated particles, which is precisely what Hawking did.

But even without doing the calculation, we can anticipate, if we are willing to play fast
and loose,† what the distribution has to be: the only universal energy distribution known
to physics is the Boltzmann distribution, and thus we expect that the probability for the
radiated particle to have energy E is proportional to e−E/TH for some temperature TH

characteristic of the black hole.
The kind of discussion given here is clearly meant to be heuristic. One caveat: a photon in

the Hawking radiation has characteristic energy ω∼ TH ∼ (GM)−1 and thus a wavelength
λ∼GM comparable to the size of the black hole. The very concept of a particle may be a
bit dicey.

Although many people believe that Hawking radiation provides a crucial clue to the
eventual understanding of quantum gravity, it is worth emphasizing that the calculation
leading to Hawking radiation does not involve quantum gravity as such. The role of
the gravitational field is to provide a spacetime with a peculiar causal structure for the
other fields to do their quantum fluctuating in. The Schwarzschild solution is still treated
classically.‡

An important clue is provided by the black hole information paradox, first articulated
by Hawking. Put at the most elementary level, the question is: what happened to the
information contained in the material that fell in to form a black hole? Eventually, we end
up with thermal radiation, which, according to standard considerations, does not contain
any information at all. The paradox may be sharpened as follows. Consider an initial
distribution of matter described by a pure state in quantum mechanics, which collapses to
form a black hole. After we wait long enough, this evolves into a thermal state described by
a density matrix in quantum mechanics. But quantum mechanical evolution is governed
by a unitary operator, which cannot possibly turn a pure state into a thermal state. Thus,
there appears to be a basic contradiction with quantum mechanics, hence a paradox. This

∗ At least with the benefit of hindsight, the calculation is not as difficult as you might think. Consider a black
hole radiating electrons and positrons, to be specific. We are not interested in the interaction of the electron
and positron with the electromagnetic field and with each other. In other words, we don’t need a full blown
mastery of quantum electrodynamics, but instead, we can treat the electron field as a free field propagating in
the Schwarzschild metric, that is, free except for the influence of gravity.5 Nevertheless, I choose not to do the
calculation here, as it involves a number of concepts from quantum field theory. Instead, I give in appendix 1 a
slick derivation of TH, which may well turn out to be more profound than the actual nitty-gritty calculation. For
those who want to go through an actual calculation, a good place to start is the paper by W. G. Unruh.6

† Objections to this kind of handwaving argument come readily to mind. Why are things in thermal equilib-
rium? The Boltzmann distribution presupposes some kind of heat bath. Where is it?

‡ In the introduction in part 0, in discussing the cube of physics, I associated the corner with G �= 0, � �= 0,
and c �= 0 with quantum gravity. I mentioned, in a footnote, a slight caveat to this statement. Here it is. While
G, �, and c all appear in (1) and (2), the calculation leading to them was done without quantizing gravity. Even
if we were to include the radiation of gravitons, the gravitons could be treated as small fluctuations superposed
on the classical gravitational field.
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subject has a long and controversial history that cannot possibly be covered here; you are
invited to trace back this history starting with the recent literature.7 One possibility is that
the naive view that, in a region in which the Riemann curvature tensor could be made
arbitrarily small, physics would be indistinguishable from flat spacetime, may be wrong.
The limit may turn out not to be smooth.

A semi-quantitative argument for Hawking radiation

Our friend the Smart Experimentalist suddenly speaks up, “Without knowing quantum
field theory, we should still be able to make the heuristic argument about the infalling
particle semi-quantitative. Think of an experimentalist at rest close to the horizon at
r = rS + a. She observes in her lab a particle-antiparticle pair popping out. The entire
lab falls freely and crosses the horizon. The horizon is not marked by a line or anything;
inside the lab is merely almost-flat, almost-empty spacetime.”

Confusio catches on enthusiastically. “The smaller a, the sooner we cross the horizon,
the shorter is 
t , and, so according to Heisenberg, the escaping particle could have a
higher energy. Oops, it seems that the characteristic energy of the particle detected at
infinity increases as a decreases.”

SE smiles, “Confusio, you forgot the gravitational redshift! Recall that energy is red-
shifted down by a factor given by the square root of g00 evaluated at r = (rS + a), which
almost by definition vanishes as we approach the horizon, as a → 0.”

Confusio is delighted. “Let’s hope that the two effects cancel out.”∗

I say to both of them, “We will let the attentive reader find out if the a dependence does
indeed cancel out.” Challenge yourself. See exercise 1.

“The consequences of my crime echo down to the end of time”

One afternoon in 1970, . . . I told [Bekenstein] of the concern I
always feel when a hot cup of tea exchanges heat energy with a
cold cup of tea. By allowing that transfer of heat . . . I increase
[the universe’s] microscopic disorder, its information loss, its
entropy. “The consequences of my crime, Jacob, echo down
to the end of time,” I noted. “But if a black hole swims by,
and I drop the teacups into it, I conceal from all the world the
evidence of my crime. How remarkable!” Bekenstein, a man of
deep integrity, takes the lawfulness of creation as a matter of
the utmost seriousness. Several months later he came back with
a remarkable idea. “You don’t destroy entropy when you drop
those teacups into the black hole. The black hole already has
entropy and you only increase it!”

—John Archibald Wheeler8

∗ This indicates that an observed photon in the Hawking radiation may have originated near the horizon with
trans-Planckian energy—a fact that you may or may not find disturbing.
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As this story told by Wheeler indicates, his student Jacob Bekenstein was the first
to recognize that black holes have entropy. In fact, as (2) shows, in classical general
relativity, not only does the Schwarzschild black hole have entropy, it also actually has
an infinite amount of entropy. This makes sense, since entropy is the logarithm of the
number9 of microstates10 that correspond to a single equilibrium macrostate, and we can
make a Schwarzschild black hole of a given mass M in an infinite number of ways, by
throwing any amount and any variation of stuff into it, provided that the total mass adds
up to M .

For something as fundamental as the entropy of black holes, we politely decline to use
ludicrous units, such as joules per degree centigrade, and so once again in this chapter, we
go back to the introduction to this text and recall the other profound concept mentioned
there, namely Planck’s insight into measurement. Recall that we have three fundamental

units to do physics with: the Planck massMP =
√

�c
G

, the Planck length lP =
√

�G

c3 , and the

Planck time tP =
√

�G

c5 . By now we understand well how length and time can be measured
with the same unit, so set c = 1 and write

G= l2P

�
= t2P

�
= �

M2
P

(3)

Note also that MPlP = �.
In the introduction, we already derived in these natural units the entropy of a Schwarz-

schild black hole: S ∼ GM2/� ∼ R2/�G ∼ A/l2P, with the surface area the black hole
A∼R2 ∼ r2

S ∼ (GM)2. I also told you there that you should be shocked, shocked, shocked.
The entropy of a physical system is normally extensive∗ and proportional to its volume. It
is as if the entropy of a black hole were to reside completely on its surface. Indeed, imagine
laying down a grid on the surface of a black hole. Somehow, each Planck-sized cell contains
one unit of entropy. This mysterious property of black holes, which represents one of the
deepest puzzles in theoretical physics, led ’t Hooft and Susskind separately to formulate
the so-called holographic principle (see chapter IX.11).

In appendix 1, we derive the precise expression TH = �c3

8πGM for the Hawking temper-
ature. Given this, we can use elementary physics to write down a precise expression for
the entropy: d(Mc2)= THdS = �c3dS/8πGM , which implies that S = 4πGM2/�c. Using
A= 4πr2

S and rS = 2GM/c2, we obtain

S = A

4l2P
(4)

(You could of course absorb the factor of 4 into the definition of lP if you want.)
When we take the classical limit by letting � → 0, we hold G, not MP, fixed. Indeed, MP

is not a concept in classical physics. In the classical treatment of black holes, the entropy
S ∝ �

−1 is formally infinite (as I have mentioned twice already), since the black hole can

∗ This is proved for systems with short-ranged interactions.
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be made in an unlimited number of ways. For dM = T dS to be satisfied, it is consistent
to set T = 0, which means the black hole does not radiate.

This suggests another handwaving (be warned!) argument for Hawking radiation, due
to Gibbons and Hawking. For the entropy S of a black hole to be finite, quantum physics
must somehow limit the number of ways a black hole can be made. Let us focus on the
difference in entropy between two black holes of mass M and M + dM . Consider the
relation dM = T dS: if dS is infinite, T would be 0, and we would have no radiation. As you
know, an elementary fact of quantum physics is that the size of a particle is characterized
by its de Broglie wavelength. A particle whose wavelength is much smaller than the
Schwarzschild radius rS can be regarded as a point particle and would fall in (depending on
its velocity and impact parameter, and so forth), but a particle whose wavelength is larger
than rS could simply pass the black hole by. Thus, a particle whose wavelength is larger
than GM but smaller than G(M + dM) is less likely to fall into the smaller black hole.
We thus argue that dS is actually finite when quantum mechanics is turned on. Once you
admit that dS is not infinite, then the relation dM = T dS no longer forces T to vanish,
and once you admit that T �= 0, we can then run our dimensional analysis argument.

The entropy of a black hole is finite, and so Wheeler was not able to violate the second
law of thermodynamics by throwing cups of tea into a passing black hole. As Bekenstein
explained to him and to the rest of us, he had merely increased the entropy of the black
hole. If Wheeler were right, we could all help to decrease the disorder in the universe by
simply dumping our mess into passing black holes.

’t Hooft’s bound

The mass and surface area of a Schwarzschild black hole are closely related. A rotating
black hole, however, has another dimensionful parameter, the angular momentum J , so
that its surface area A= A(M , J ) is a function of its mass M and angular momentum J ,
as we will see in chapter VII.5. Classically, the mass of a Schwarzschild black hole always
increases, and so by free association, one might be tempted to think, as people did around
the time of Bekenstein’s insight, that it is related to another quantity in physics that always
increases, namely the entropy. For a rotating black hole, however, as Penrose discovered
in 1969 and as we will explain in chapter VII.5, we can decrease M by a physical process.
But remarkably, the decrease in M is always accompanied by a decrease in J in precisely
such a way so that A always increases. This indicates that we should associate the entropy
of a black hole with its surface area.

Let’s go back to the Schwarzschild black hole. Imagine letting two black holes with
massesM1 andM2 slowly coalesce into a single black hole with massM1 +M2, neglecting11

the energy carried away by gravitational waves. Indeed, the surface area always increases:
(M1 +M2)

2 >M2
1 +M2

2.
Since the Planck area l2P is so ludicrously small (numerically, ∼ 2.6 × 10−66 cm2), any

macroscopic black hole has an enormous entropy, which as you might expect, greatly
exceeds the entropy of other physical systems.
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For comparison, consider a box of volume V filled with relativistic matter, for example
photons, characterized by a temperature T . By relativistic matter, we mean matter con-
sisting of particles whose masses are negligible compared to their energies. The entropy
and energy of a photon gas are worked out in textbooks on statistical mechanics, but for
our purposes, we can simply use dimensional analysis. In natural units, temperature T
has dimensions of energy or inverse length. In contrast, entropy S is dimensionless and
proportional to the volume of the box V ∼ L3, with L the characteristic size of the system.
So, the entropy can only be S ∼ L3T 3. Similarly, the energy density ε has dimensions of
mass over length cubed, or mass to the fourth power, and thus by dimensional analysis
ε ∼ T 4, leading to a total energyE ∼ L3T 4. As you will see presently, the overall numerical
factors here do not matter at all.

An almost universally accepted (but not yet mathematically proven) folk belief is that if
a physical system has a Schwarzschild radius rS ∼M larger than its size L, it will collapse
into a black hole. (The obesity index in the introduction!) Now consider a box of photons
so hot that, if we throw in just a bit more energy, the box will collapse and become a black
hole. The condition of being on the verge translates into E ∼ L3T 4 <∼ L, that is T <∼ 1/L

1
2 .

The entropy of the box is thus

S ∼ L3T 3 <∼ L
3
2 ∼ A

3
4 (5)

A box of electromagnetic radiation hot enough to be almost a black hole has an entropy
that can grow at most like the 3

4 power of area, rather than like the area, as is the case for
a black hole. Remember that we are using the Planck area to measure area with. Thus, for
A� l2P, this entropy is tiny compared to that of a black hole. This bound was obtained by
’t Hooft in 1993.

When do we need quantum gravity?

It is important to emphasize that in deriving Hawking radiation, we don’t have to quantize
the gravitational field. What we have to quantize is the particle being emitted: it and its
antipartner are the ones that are quantum fluctuating out of the vacuum. Gravity’s task is
to change the causal structure of spacetime, and Einstein’s classical theory is entirely up
to the job. No quantum gravity is needed.12

This may be an appropriate occasion to give a handwaving argument13 regarding when
we have to worry about the quantum nature of a field. Consider an object of mass M , for
example, you. As you walk around, you are surrounded by a gravitational field that in reality
consists of a swarm of gravitons. Let’s estimate N , the number of quanta in the swarm. If
the number of quanta in the field is of order 1, then we would certainly have to deal with
the quantum nature of the field. But if N � 1, then the field can be treated classically. To
estimate N , let the object be spherical,14 and imagine the swarm of gravitons spread out
in a spherical distribution with a characteristic size L. By the uncertainty principle, the
characteristic energy of a graviton is then of order ε ∼ �/L. The total energy contained
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in the gravitational potential φ = −GM/r is, according to the Newton-Einstein-Hilbert
action, given by

E ∼G−1
∫

d3x (∇φ)2 ∼G−1
∫

dr r2 (GM/r2)2 ∼GM2/L

Thus, the number of quanta equals N ∼ (GM2/L)/(�/L)∼GM2/� ∼ (M/MP)
2, where I

used (3) in the last step.
This is a pleasing result and presumably accords with your intuition: unless the mass

M is comparable to the Planck mass MP, you don’t need to lose any sleep over quantum
gravity at all. You certainly did not expect that the field surrounding you could not be
treated classically, did you? This heuristic argument applies to all masses, including black
holes. Thus, you only have to worry when the mass of the black hole drops to ∼MP as it
approaches its explosive end.15

The origin of the Bekenstein-Hawking entropy (4) poses a deep mystery. As already
mentioned, and as you know from a course on statistical physics, entropy measures the
number of microstates that correspond to a given macrostate. But no amount of staring at
the Schwarzschild metric, which is just a solution of some coupled differential equations,
is going to let you count the microstates. To address this mystery, a theory of quantum
gravity is no doubt needed. Indeed, one triumph of string theory as a candidate theory for
quantum gravity is to provide this counting. This was accomplished by Strominger and
Vafa in 1996 for a class of 5-dimensional extremal∗ black holes in string theory. The rea-
soning16 is highly technical and involves, for example, concepts such as supersymmetry.
Roughly speaking, the strategy involves adiabatically lowering the gravitational constant in
a thought experiment to the point when the black hole dissociates into a bunch of objects
specific to string theory known asD-branes, whose degrees of freedom one can count using
highly nontrivial techniques. Remarkably, the counting yields precisely the area-entropy
relation (4). Since then, much progress had been made, and now people understand what
is going on in (3 + 1)-dimensional spacetime, including some cases without supersym-
metry.17 At present, a straightforward accounting of the entropy of a plain Schwarzschild
black hole has not yet been accomplished.

I should warn you that the three appendices to this chapter are exceptionally demanding.
Some minimal knowledge of quantum and statistical mechanics is required to read these
appendices. Those readers who have never heard of quantum mechanics may wish to skip
the first two appendices, or at least read them with the appropriate attitude to get merely
a flavor of these more advanced topics.

Appendix 1: Determining the Hawking temperature

As I’ve long promised, ever since the introduction, we will now calculate the Hawking temperature TH, including
all the factors of 2 and π . These factors are not essential for our understanding of Einstein gravity, but we

∗ The term “extremal” will be explained in chapter VII.6.
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physicists, in contrast to talkers, do have to subscribe to the Feynman “shut up and calculate” dictum, at least
occasionally.

First, I have to tell you about a mysterious correspondence between quantum statistical mechanics and
quantum field theory. You have probably learned that in Heisenberg’s formulation of quantum mechanics, the
evolution of a quantum state after time T is governed by the evolution operator e−iHT , with H the Hamiltonian.
The probability amplitude for an initial state |I 〉 to end up in the final state |F 〉 is then given by

Z = 〈F | e−iHT |I 〉 (6)

Much of the work in quantum mechanics and in quantum field theory involves massaging (or beating) this
quantity into a form we can work with. For example, in the Dirac-Feynman path integral formulation,18 one
follows Newton and Leibniz by breaking up 〈F | e−iHT |I 〉 into infinitesimal factors and then expressing the
resulting product as an integral over all possible paths the classical system could have followed going from the
initial to the final state.

However, Boltzmann taught us that, at temperature T , the relative probability of a state |n〉 of energy En

occurring is given by e−En/T = e−βEn, where β ≡ 1/T , as usual. (You should not confuse the temperature T with
the time T in the preceding paragraph of course: the same letter for two different concepts in two different areas
of physics! The introduction of the inverse temperature β helps in this context; we won’t return to temperature
until later.) We define the partition function of a quantum mechanical system with the Hamiltonian H by

Z =
∑
n

〈n| e−βH |n〉 =
∑
n

e−βEn = Tre−βH (7)

The sum over states is represented by a trace, with e−βH regarded as a matrix. As is probably well known to you,
various physical qualities, such as the expected value of energy E ≡∑

nEne
−βEn/Z, can be extracted from the

partition function Z.
Evidently, there is a potentially profound correspondence between the two fundamental equations (6) and

(7). To go from (6) to (7), we simply replace the time T by −iβ, set |I 〉 = |F 〉 = |n〉, and sum over |n〉. What a
mysterious procedure! First, we make time imaginary. Then we force every state |n〉 to go back to itself. But how
can we make sure that every quantum state does this? We can if time is somehow cyclic, so that what is past is
the future. I have no idea what that means. The inverse temperature β is equal to the recurrence period in this
strange world with imaginary time.

Well, we don’t have to understand what any of this means, but we can certainly regard this as a devilishly nifty
computational trick. Consider a quantum field, be it the field of a photon, an electron, or whatever, propagating
in spacetime. Suppose it discovers that time is actually imaginary and cyclic. The field is fooled into thinking that
it is living in a temperature bath, to use a term from statistical mechanics, with the temperature determined by
the inverse of the recurrence period β of this bizarre imaginary time.

Amazingly, we can now use this strange observation to determine the temperature of the Hawking radiation
from a Schwarzschild black hole. Consider the electromagnetic field, for instance, governed by the action
S = ∫

d4x
√−g(− 1

4 g
μρgνσFμνFρσ ), propagating in the Schwarzschild spacetime described by

ds2 = −
(

1 − rS

r

)
dt2 +

(
1 − rS

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 (8)

with rS = 2GM . Near the horizon, ds2 � − r−rS
rS

dt2 + rS
r−rS dr

2 + r2
Sd�

2. Change variables from r to ρ given by

ρ2 = 4rS(r − rS). Then ρdρ = 2rSdr , so that ρ2dρ2 = 4r2
Sdr

2 or (r − rS)dρ
2 = rSdr

2. Plugging this into ds2, we
find that spacetime near the horizon is described by

ds2 � − ρ2

4r2
S
dt2 + dρ2 + r2

Sd�
2 → ρ2

4r2
S
dt2E + dρ2 + r2

Sd�
2

where in the last step, we set∗ t = −itE as per the mysterious procedure outlined above. If we now change variable,
setting tE = 2rSψ , we obtain

ds2 � dρ2 + ρ2dψ2 + r2
Sd�

2 (9)

We recognize that the first two terms describe a plane with polar radius ρ and polar angle ψ . The (3 + 1)-
dimensional spacetime has been analytically continued into a 4-dimensional Euclidean space consisting of a

∗ The subscript E stems from the terminology used in quantum field theory; upon time becoming imaginary,
(3 + 1)-dimensional Minkowskian spacetime morphs into 4-dimensional Euclidean space.
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plane, at every point of which is attached a sphere of radius rS. More importantly, since ψ is an angular variable,
we see that the “imaginary time” tE = 2rSψ has a recurrence period of 2rS(2π)= 4πrS. Thus, according to the
preceding discussion, the electromagnetic field propagating near the horizon of the Schwarzschild black hole
thinks that it is living in a heat bath with temperature

TH = 1
4πrS

= 1
8πGM

= �c3

8πGM
(10)

This is the Hawking temperature∗ of the black hole!
In Wigner’s influential essay “The Unreasonable Effectiveness of Mathematics in Physics,” he told a story

about two men sitting next to each other on a plane.19 One asked the other, “What do you do for a living?” The
man answered, “I work for the insurance company and I use math to predict how long people will live.” The first
man said, “You are pulling my leg; I don’t believe that you can do that.” So the second man pulled out a report
on which was written the Gaussian distribution. The first man pointed to the letter π , saying “But isn’t that the
ratio of the circumference of a circle to its diameter?” “Exactly.” The first man then exclaimed with a touch of
displeasure, “Now I know you were fooling around with me. What does the circle has to do with how long a man
will live?” In an updated version of this story, I imagine you answering, “I am a theoretical physicist and I figure
out how hot black holes are.” As your flight companion expresses a mixture of admiration and disbelief, you
show him (10). After he points to the π in the equation, you can tell him that it comes in because time moves in
a circle!

Appendix 2: The Unruh effect

A dutiful reader with a good memory might have recognized that the form ds2 � − ρ2

4r2
S
dt2 + dρ2 + r2

Sd�
2 of

the near-horizon Schwarzschild metric described in the preceding appendix looks like the Rindler metric ds2 =
−ρ2dT 2 + dρ2 + ρ2 cosh2

T d�2 worked out as an exercise back in chapter III.3. After appropriate rescaling,
the near-horizon Schwarzschild metric and the Rindler metric are in fact the same for fixed θ , ϕ (that is,
for d�2 = 0). Recall that we obtained the Rindler metric by changing the standard coordinates (t , r , θ , ϕ) for
Minkowski spacetime to the Rindler coordinates (T , ρ , θ , ϕ) by t = ρ sinh T , r = ρ cosh T and then plugging
these transformations into the Minkowski metric ds2 = −dt2 + dr2 + r2d�2. It is important to note that the
coordinate transformations just given have the ranges −∞< T <∞ and 0 < ρ <∞. Thus, the new coordinates
only cover the quadrant defined by r > |t |, as shown in figure III.3.6.

For fixed θ and ϕ, the lines of constant ρ trace out hyperbolas in the (t , r) plane as T varies from −∞ to
∞. It can now be revealed that these hyperbolas, as you may have already seen, are in fact the worldlines of
accelerating observers in Minkowski spacetime. Suppressing θ and ϕ and writing q0 = ρ sinh T , q1 = ρ cosh T

for the spacetime location of an observer labeled by the parameter ρ, we have for the proper time of the observer
dτ =√

(dq0)2 − (dq1)2 = ρdT . Thus, vμ ≡ dqμ

dτ
= dqμ

dT
/ρ = (cosh T , sinh T ). (As expected, ημνvμvν = −1, as per

the definition of proper time.) The acceleration is then aμ ≡ dvμ

dτ
= ρ−1(sinh T , cosh T ), where I display only the

2 nonzero components of the vector vμ. Hence ημνaμaν = ρ−2, the Lorentz invariant measure of the acceleration
squared, is a constant independent of T . Note that, for a given ρ, the minimum value of q1 is ρ, attained when
T = 0. It makes sense that the most highly accelerated observers, namely those with the smallest ρ, manage to
get the closest to the surface r = |t |, which defines the light cone centered at the origin.

With these preliminaries, we are now ready for the point of this appendix. Bill Unruh20 discovered that, as a
result of quantum fluctuations, an accelerated observer in Minkowski spacetime would perceive a bath of thermal
radiation. As we will see, this so-called Unruh effect is closely related to the Hawking effect. Just like the Hawking
effect, a proper derivation of the Unruh effect requires some knowledge of quantum field theory, which as I said,
I do not presume the typical reader of this book to have. Instead, let me give a handwaving argument.21

Let our accelerated observer carry a detector designed to detect quantum fluctuations in, say, the electromag-
netic field. The detector might consist of a quantum mechanical system with energy levels Ei , i = 0, 1, 2, . . . .
Every time the electromagnetic field causes a transition from some level i to level j , the detector will beep. Now

∗ Surely you would hit it big with mystical types if you tell them that temperature is equivalent to cyclic
imaginary time. At the arithmetic level, this connection merely comes from the fact that the central objects
in quantum physics e−iHT and in thermal physics e−βH are formally related by analytic continuation. Some
physicists, including me, feel that there may be something profound here that we have not quite understood.
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if the detector is being carried by a uniformly moving observer, and by Lorentz invariance it might as well be
sitting at rest, we know that nothing will happen. The reason is that a fluctuation that causes a transition from
i to j would be quickly followed, in a time of order �/|Ei − Ej | (which we assume to be much shorter than
the reaction time of the detector), by a counterfluctuation that would cause a transition from j back to i. (Some
readers might know that, in quantum field theory, fluctuations at different points in spacetime are correlated, as
quantified by the 2-point Green’s function of that field.) But if the detector is being accelerated, then by the time
the counterfluctuation comes along, it would be moving at a different velocity from before, that is, its rest frame
would differ from what it was before. The electromagnetic field �E(t , �x) and �B(t , �x), when Lorentz transformed
to the new frame, would not be quite right to cause the transition from j back to i. As a result of this mismatch,
the detector would indicate the presence of a bath of radiation. (What? You’re not convinced? Well, I did tell you
that the argument was going to involve hand waving.)

To me, a far more convincing heuristic argument is the essential equality between the near-horizon Schwarz-
schild metric and the Rindler metric, as indicated above. A quantum field only knows about the environment
it finds itself in through its knowledge of the metric. How does the detector “know” that it is being accelerated
rather than cruising near the horizon of a black hole? Thus, the Hawking effect and the Unruh effect are both
likely to be true (or, far less likely, to both be false).

A crucial feature common to both effects is the presence of a horizon. As you can see from figure III.3.6,
nothing from the region r < t for t positive could reach, even if it were traveling at the speed of light, the
accelerated observer. Thus, the surface defined by r = t , which we previously identified as the forward light
cone centered at the origin, effectively acts as a horizon. Indeed, figure III.3.6 resembles the Kruskal-Szekeres
diagram for the spacetime around a Schwarzschild black hole. Hence, we can invoke the argument given in this
chapter in support of Hawking radiation: quantum fluctuation produces a particle and an antiparticle, and before
they can come together, one of them goes beyond the horizon, leaving the other free to escape. These escaping
particles would constitute the Unruh radiation.

The temperature of the Unruh radiation can be estimated to be

TU ∼ a ∼ �a

c
(11)

by dimensional analysis, since the only quantity with the dimension of energy, or equivalently an inverse length,
is the magnitude of the acceleration a ∼ (ημνa

μaν)
1
2 .

Next, I will sketch, using broad brushstrokes, the serious derivation first presented by Unruh. Readers are
forewarned that this will require some knowledge of the quantum world, and those without this knowledge are
urged to skip the rest of this appendix.

In quantum mechanics, the position operator q(t) of a harmonic oscillator is expressed in terms of annihilation
and creation operators a and a† as follows: q(t)∼ ae−iEt + a†eiEt with E > 0 the characteristic energy of the
oscillator. The ground state of the harmonic oscillator, denoted by |0〉 (in a notation already used in this chapter), is
annihilated by the annihilation operator a in the sense that a |0〉 = 0. We generate the excited states |n〉 ∼ (a†)n| |0〉
by repeatedly acting with the creation operator a† on the ground state. (Hence it is actually more accurate, in the
context of quantum mechanics, to speak of a and a† as lowering and raising operators.) How do we know, of
a and a†, which one is the annihilation operator and which the creation operator? The answer goes back to the
fundamental requirement that the creation operator is to create a state with positive energy. Thus, a is always
associated with the positive energy wave function e−iEt and a† with eiEt .

In quantum field theory, these notions are generalized in a straightforward fashion. The generic field φ(t , �x),
namely the analog of q(t), depends on space as well as time, and so the positive energy wave function is
generalized to e−i(Et−�k.�x), that is, a wave in space and time, characterized by energy E and momentum �k.
Correspondingly, a(�k) and a†(�k) now depend on �k, and an integral over �k is required. Thus, we end up writing

φ(t , �x)∼
∫

d3k
(
a(�k)e−i(Et−�k.�x) + a†(�k)ei(Et−�k.�x))

All this is baby quantum field theory and is explained in any book22 on the subject. Bottom line: the field φ(t , �x)
is a linear combination of a(�k) and a†(�k), associated with e−iEt and eiEt , respectively. In fact, a quantum field
can be thought of as a collection of harmonic oscillators. An important conceptual difference between quantum
field theory and quantum mechanics is that the ground state |0〉 is now more properly called the vacuum state,
a state in which no particle is present and the field is quiescent. Acting with a†(�k) on |0〉 produces a state with a
particle carrying momentum �k: the operator a†(�k) is said to create a particle out of the vacuum.

For our purpose here, let us write, more schematically, φ ∼∑
α(aαfα + a

†
αf

∗
α
). (Here, ∗ denotes complex

conjugation.) The important point to take away is merely that the quantum field φ can be written as a linear sum
of annihilation and creation operators aα and a†

α capable of annihilating and creating particles. The subscript α
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labels the properties (such as momentum) the particles may carry. The corresponding wave functions are written
as fα and f ∗

α
, and the integral over �k is replaced by a sum over α. The vacuum state |0A〉 is defined as the state

annihilated by aα: aα |0A〉 = 0.
Relativity brings a new twist to this framework for studying quantum fields: different observers can disagree

politely over what they regard as time. For the case at hand, while an observer sitting at rest in Minkowski
spacetime uses t for his time coordinate, the accelerated observer would insist on using T for her time coordinate.
More generally, another observer could use as wave functions gβ and g∗

β
, instead of fα and f ∗

α
, and decompose

the quantum field as φ ∼∑
β(bβgβ + b

†
βg

∗
β
). She would use bβ and b†

β as her annihilation and creation operators,
and define her vacuum state |0B〉 as the state annihilated by bβ : bβ |0B〉 = 0.

This discussion shows that the concept of particles, and even that of the vacuum, depends on the observer.
In general, the wave functions gβ and g∗

β
can be written as linear combinations of fα and f ∗

α
. Since φ is the

same old φ regardless of observer, comparison of the two expressions for φ implies that aα and a†
α can be written

as linear combinations of bβ and b
†
β , and vice versa. This relationship between the two sets of annihilation and

creation operators is known as a Bogoliubov transformation.
We are getting close to the punchline! Suppose observer A says, “We are in the state |0A〉, and there aren’t

any particles around.” Observer B would disagree. To her, since aα is given as a linear combination of bβ and b†
β ,

schematically, aα ∼∑
β(Uαβbβ + Vαβb

†
β), the condition aα |0A〉 = 0 amounts to, schematically,

∑
β Uαβbβ |0A〉 ∼∑

β Vαβb
†
β |0A〉. In other words, bβ ||0A〉, far from being 0, is actually related to a linear combination of b†

β |0A〉.
Observer B would say that the state |0A〉 contains particles as defined by her. This may appear as a long winded
way of saying that |0A〉 is not equal to |0B〉, but it goes beyond that by indicating that the number of b-type
particles contained in |0A〉 can be calculated in terms of the coefficients in the Bogoliubov transformation.

Now we apply this to the situation at hand. An observer sitting at rest in Minkowski spacetime can insist that
no particle is present, and yet the accelerated observer will see a bath of particles. In other words, the Unruh
effect!

I hope that I have given you a flavor of the derivation and prepared you to read Unruh’s paper. For those
readers who know that the wave functions of a nonrelativistic single particle in a 1-dimensional box of length
L are given by, for n= 1, 2, . . . , ψn(x)= sin(nπx/L) for 0 ≤ x ≤ L, and ψn(x)= 0 otherwise, I can offer a toy
example that may or may not help.

Suppose our nonrelativistic particle is sitting in the ground state ψ1(x). The probability of finding the particle
in an excited state ψn>1(x) is strictly zero. Now suppose the box is suddenly expanded to twice its former size.
The wave functions are now given by, for n= 1, 2, . . . , �n(x)= sin(nπx/(2L)) for 0 ≤ x ≤ 2L, and �n(x)= 0
otherwise. Note that �n(x) is not the same as ψn(x). The initial wave function ψ1(x) can be expressed, according
to Fourier, as a linear combination of the new wave functions�n(x), namelyψ1(x)=∑

n cn�n(x). The probability
of finding the particle in an excited state with n > 1 is now nonvanishing, ∝ |cn|2. The sudden expansion of the
box has excited the particle. Note that in nonrelativistic quantum mechanics, if we start with a single particle, we
end with a single particle, albeit in an excited state.

When we go to quantum field theory, the role of the particle is played by a quantum field, and the particle
jumping into an excited state gets translated into the quantum field becoming excited and hence capable of
creating particles. (Do not confuse the notion of particles in nonrelativistic quantum mechanics with the notion
of particles in quantum field theory, which correspond to “excitations” in the quantum field. When excited, a
nonrelativistic particle jumps to a higher energy level; when excited, a quantum field creates particles.) I hope
that this toy example of an expanding box does not confuse you too much and that it conveys to you the possibility
that an expanding universe is able to create particles and antiparticles.

Appendix 3: Thermodynamics of spacetime and Einstein’s field equation

One intriguing, and possibly fruitful, approach, proposed by Jacobson,23 is to regard the entropy formula (4) as
fundamental and to derive Einstein’s field equation from it. To see how this is possible, consider an ideal gas in a
container of volume V and total energy E. Given S(E , V ), thermodynamics teaches us how to find the equation

of state. In general, dE = T dS − PdV , or dS = T −1(dE + PdV ). In other words, 1
T

=
(
∂S
∂E

)
V

and P
T

=
(
∂S
∂V

)
E

.

For an ideal gas, the entropy is given by the logarithm of the number of possible states. Since each molecule can
roam over the volume V, the number of accessible states is proportional to V N , and so we argue that the entropy
goes like S =N log V + f (E), with some function f (E). The second of the thermodynamic relations just given
then yields P

T
= N

V
, that is, the well-known equation of state PV =NT .
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At the level of this book, I can only sketch Jacobson’s argument in the crudest possible terms, just to show
how it might be possible for Einstein’s field equation to come out of the entropy formula. By necessity, I will
gloss over a great many technicalities and am intentionally vague at times. The following should be read more
as an enticement to look into the original literature than as an explanation.

Consider an infinitesimal amount of heat δQ going through a causal horizon: δQ is given by integrating the
energy flux, which depends on T μν , over the area A of the horizon. As a result, the area A changes, but the
change in area δA is determined geometrically by light rays near the horizon converging toward or diverging
away from one another. In chapter IX.3, starting from the geodesic equation, we will derive an equation (known
as the Raychaudhuri equation) governing the amount by which light rays converge or diverge. You would expect
this to be determined by the curvature of spacetime. Indeed, the Ricci tensor Rμν appears in the Raychaudhuri
equation. The entropy formula S = A (suppressing the irrelevant overall constant or choosing sensible units)
tells us how δS (which is related to δQ) is related to δA, and thus how T μν is related toRμν . The relation, perhaps
not surprisingly, turns out to be Einstein’s field equation.

I have brushed over a host of technicalities, but should have persuaded you that it is at least conceivable
that Einstein’s field equation could come out of the entropy formula and thermodynamics. Let me say it more
colloquially. The formulaS =A (rather thanS ∝ V ) is incredibly special and weird; how could the entropy possibly
be proportional to the area!!? Well, the physics of gravity has to be arranged in precisely such a way so that it
holds. (Jacobson intended his argument to hold for any spacetime, but for pedagogical clarity, I have focused
here on a black hole.)

Oh dear, if this view is correct,24 then Einstein’s field equation is demoted to the status of PV =NT , a mere
equation of state. If so, it may have important consequences. To quote Jacobson, “This perspective suggests that
it may be no more appropriate to quantize the Einstein equation than it would be to quantize the wave equation
for sound in air.”25

Exercise

1 Work out the heuristic calculation outlined in the text by SE and Confusio, thus obtaining another estimate
of TH.

Notes

1. This fact is sometimes somewhat misleadingly presented as something amazing about black holes. Actually,
it follows essentially from the virial theorem (see exercise 10 in chapter IV.2) and is generic to gravitating
systems, including stars. As a star loses its energy through radiation, it generically heats up.

2. This discussion is taken from p. 3 of QFT Nut, to which you are referred for more details.
3. To learn how quantum electrodynamics deals with the fluctuating photon, see QFT Nut, or any other

reputable quantum field theory text.
4. A definitive and detailed history of the discovery of Hawking radiation has yet to be written, as far as I

know. At the time, a Russian group consisting of Y. Zel’dovich, A. Starobinsky, and others was actively
working on radiation from rotating black holes (which we will discuss in chapter VII.5.) Unfortunately for
them, they had convinced themselves that Schwarzschild black holes do not radiate, an entirely plausible
supposition, since the Schwarzschild solution is static. Furthermore, even classically, rotating black holes
emit particles through the Penrose process (also to be discussed in chapter VII.5). Meanwhile, Don Page, a
graduate student at the California Institute of Technology, was also working on radiation from black holes
and discussing his calculations with R. Feynman. Page independently discovered that rotating black
holes radiate, and Feynman agreed with the conclusion, but then they discovered that Zel’dovich et al.
had beaten them to it. Several others, including Bill Unruh and Larry Ford, were also working on simi-
lar ideas. I was told that had Hawking not found the radiation from the Schwarzschild black hole, Unruh
probably would have. Incidentally, Hawking’s original motivation was actually to prove that Bekenstein’s
proposal that black holes had entropy was wrong. I am grateful to Gary Gibbons and Don Page for personal
accounts of the events surrounding the discovery of black hole radiation.

5. This suggests another way of understanding Hawking radiation, in terms of quantum tunneling. Work out
the wave equation of a quantum particle in the Schwarzschild metric. Classically, a particle inside the horizon
trying to get out is faced with a potential barrier, but a quantum particle could tunnel through the barrier.
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6. W. G. Unruh, Phys. Rev. D14 (1976), p. 870.
7. See A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, “Black Holes: Complementarity or Firewalls?”

arXiv:1207.3123v2. Note also the papers generated in response to this paper.
8. J. A. Wheeler, A Journey into Gravity and Spacetime, Scientific American Library, W. H. Freeman, 1990, p. 221.
9. Strictly speaking, since counting is involved, entropy is a concept of quantum statistical mechanics and does

not make complete sense in classical physics.
10. See, for example, R. Feynman, Statistical Mechanics.
11. Or surround a black hole of mass M with a spherical shell consisting of a large number of black holes with

masses Mj , which we allow to fall into the central black hole, giving us a black hole of mass M +∑
j Mj .

Then
(
M +∑

j Mj

)2
>M2 +∑

j M
2
j
.

12. Even in the Hawking radiation of gravitons from a black hole, we can imagine cutting the metric into two
pieces, a classical piece plus a small quantum piece, small in the sense that we can ignore the interaction
between the gravitons. This type of procedure will be used in discussing gravitational waves in chapter IX.4.

13. I heard this argument from G. Dvali.
14. That is, in the spirit of the famous book Consider a Spherical Cow by J. Harte, consider a spherical you.
15. Indeed, at one point, a contentious subject revolved around what you would expect to see: peculiar remnants

or nothing.
16. A. Strominger and C. Vafa, Phys. Lett. B 379 (1996), pp. 99–104, arXiv:hep-th/9601029.
17. A. Strominger, private communication.
18. This sentence is not intended to make sense in the context of this book. For a detailed explanation, see, for

example, chapter I.2 of QFT Nut.
19. Wigner had them sitting at a bar.
20. W. Unruh, Phys. Rev. D 14 (1976), p. 870.
21. I heard this from Bill Unruh (private communication).
22. For example, QFT Nut, p. 63.
23. T. Jacobson, Phys. Rev. Lett. 75 (1995), p. 1260; arXiv: 9504004v2, 1112.6215v2. See also T. Padmanabhan,

arXiv: 0911.5004. For more recent work, see E. P. Verlinde, JHEP 1104:029 (2011).
24. There are skeptics. One relativist I talked to scoffed that this merely proved that some people were able to

run the relevant equations backward. You judge for yourself.
25. T. Jacobson, Phys. Rev. Lett. 75 (1995), p. 1260.



VII.4 Relativistic Stellar Interiors

Interior of stars

In this chapter we study what general relativity has to say1 about the interiors of stars. We
are going to deal with only the most idealized situation. The magnificent complications of
stellar interior dynamics are far beyond the scope of this book.

In the simplest model, the star is assumed to be perfectly spherical (and hence nonrotat-
ing), with its interior consisting of a perfect fluid, a notion we defined way back in chapter
III.6. There we derived the energy momentum tensor of a perfect fluid in flat spacetime
T μν = (ρ + P)UμUν + Pημν, withUμ the local 4-velocity of the fluid. Once again, behold
the power of the equivalence principle! We merely have to promote ημν to gμν to obtain

T μν = (ρ + P)UμUν + Pgμν (1)

for curved spacetime.
Let’s plug this into Einstein’s field equation

Rμν = +κ
(
Tμν − 1

2gμνT
)

(2)

where we have introduced the shorthand κ = 8πG. With T = −ρ + 3P , we have

Rμν = +κ
[
(ρ + P)UμUν + 1

2 (ρ − P)gμν

]
(3)

Assume a static spherically symmetric interior described by the metric

ds2 = −A(r)dt2 + B(r)dr2 + r2d�2 (4)

The resulting Ricci tensor was calculated back in chapter VI.3. Recall that Rμν is diagonal
and that Rϕϕ = sin2 θRθθ .
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Solving for the spacetime inside the star

The static spherical symmetry implies physically that the fluid can’t flow, so that Ui = 0.
This is also forced upon us by (3) and the vanishing of R0i. The normalization condition
gμνU

μUν = −1 = −A(r)(U0)2 gives U0 =A− 1
2 and U0 = g00U

0 = −AA− 1
2 = −A 1

2 . Thus,
the field equation (3) implies

Rtt = A′′

2B
+ A′

rB
− A′

4B

(
A′

A
+ B ′

B

)
= 1

2κ(ρ + 3P)A (5)

Rrr = −A′′

2A
+ B ′

rB
+ A′

4A

(
A′

A
+ B ′

B

)
= 1

2κ(ρ − P)B (6)

Rθθ = 1 − 1
B

− r

2B

(
A′

A
− B ′

B

)
= 1

2κ(ρ − P)r2 (7)

We are to solve these three coupled ordinary differential equations.2

Back in chapter VI.3, we had the easier problem of solving (5–7) with their right hand
sides set to zero. Let us form the same combination Rtt

A
+ Rrr

B
+ 2Rθθ

r2 that served us well

there. We find the equation
(
1 − 1

B
+ rB ′

B2

)= κr2ρ, with a right hand side, though no longer
zero, depending only on ρ. Inspired by the Schwarzschild solution, we define a mass
function M(r) by

1
B

≡ 1 − 2GM(r)

r
(8)

Inserting this into the equation for B, we find

dM(r)

dr
= 4πr2ρ(r) (9)

which we can integrate immediately to obtain

M(r)≡ 4π
∫ r

0
dr ′r ′2ρ(r ′) (10)

According to the Bianchi identity (as explained in chapter VI.5), we can trade one of
the field equations (5–7) for DμT

μν = 0. Plugging in the perfect fluid energy momentum
tensor, noting that Dμg

λν = 0, and using the expression for the covariant divergence of a
tensor DμT

μν = 1√−g ∂μ
(√−gT μν

)+ �ν
μλ
T μλ, we have

0 =Dμ

{
(ρ + P)UμUν + Pgμν

}
= 1√−g ∂μ

{√−g(ρ + P)UμUν
}+ �ν

μλ
(ρ + P)UμUλ + gμν∂μP

= ρ + P

A
�ν00 + grν

dP

dr
(11)

The last equality follows since the only nonzero component of Uμ is U0, and the assumed
spherical symmetry implies that various quantities, such as the pressure P , depend on
r only.
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Looking up the list of Christoffel symbols, we see that the only nonvanishing �ν00 is
�r00 = A′

2B , so that we obtain the condition of hydrostatic equilibrium on the pressure
gradient P ′ = dP

dr
:

P ′

ρ + P
= − A′

2A
(12)

Stellar equilibrium

Let’s keep count. Of the three field equations (5–7), we have effectively used two, massaging
them into (10) and (12). We choose (7) as our final equation, from which we eliminate
B and A using (8) and (10), and (12), respectively. After some algebra, we arrive at the
Tolman-Oppenheimer-Volkoff 3 equation for relativistic stellar structure

dP

dr
= −GM(r)ρ(r)

r2

(
1 + P(r)

ρ(r)

) (
1 + 4πr3P(r)

M(r)

) (
1 − 2GM(r)

r

)−1

(13)

We also have to specify what the star is made of by giving the equation of state P = P(ρ),
relating pressure to density.

We can now work out the stellar structure in this idealized model. Given some equation
of state, eliminateρ in terms ofP , and then integrate the two coupled first order differential
equations (13) and (9) for P(r) and M(r). For some simple P = P(ρ), analytic solutions
may be found, but in general, it is necessary to numerically integrate outward from r = 0
with the boundary condition M(r = 0) = 0 (obviously) and some chosen value of the
central pressure P(r = 0) or equivalently, some central density ρ(r = 0). From (13), we see
that P(r) steadily decreases until it vanishes at some radiusR, which defines the radius of
the star. (The pressure vanishes in empty space outside the star, and so, if P(R) �= 0, there
would be an infinite pressure gradient at the surface, which is not physically acceptable.)
In other words, the radius R of the star is determined by P(R)= 0. The mass of the star
is then given by M = M(R). Thus, there is a one-parameter family of solutions, with the
mass M and radius R of the star dependent on P(r = 0).

At this point, we can also determine the spacetime inside the star. Already, B(r) is given
by (8). We insert (13) into (12) to obtain

A′

A
= 2GM(r)

r2

(
1 + 4πr3P(r)

M(r)

) (
1 − 2GM(r)

r

)−1

(14)

which typically we would have to integrate numerically inside the star.
Outside the star, however, M(r) = M and P(r) = 0, so we can integrate (14) almost

instantly to giveA= 1 − 2GM
r

. Nicely, the interior solution joins on with the Schwarzschild
solution with rS = 2GM = 2GM(R). This verifies the Newton-Jebsen-Birkhoff theorem yet
again.

The Tolman-Oppenheimer-Volkoff equation is written in a particularly attractive form
in (13) to exhibit the Newtonian limit explicitly. To see this, restore c by high school
dimensional reasoning. For example, denoting the dimension of P by [P ], we have
[P ] = [force/area] = [(ML/T 2)/L2] = [M/(LT 2)]. Similarly, [ρ] = [M/L3]. Thus, [P/ρ] =
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[(L/T )2], so that with nonrelativistic units, the expression in the first parentheses in (13)
should be written as

(
1 + P

ρc2

)
, which tends to 1 as c → ∞. (Actually, you know this al-

ready if you recall from chapter III.6 that for a nonrelativistic gas, the pressure is negligible
compared to the mass density.) You can convince yourself that the other two expressions
in parentheses in (13) also tend to 1 as c → ∞. Therefore, in the nonrelativistic limit the
Tolman-Oppenheimer-Volkoff equation reduces to Newton’s equation for stellar structure

dP

dr
= −GMρ

r2
(15)

which just says that the outward force due to pressure on an infinitesimal volume of stellar
material balances the inward force due to gravity. To see this, visualize a thin slab of stellar
material of cross-sectional area dA and bounded between r and r + dr . The net force due
to pressure is given by P(r)dA− P(r + dr)dA= − dP

dr
drdA, and the force due to gravity

by GM(ρdrdA)/r2. Note that here we have to invoke Newton’s two “superb theorems”
explained way back in our very first chapter, chapter I.1.

Quite remarkably, there is none of this talk about forces in the field equation (3), just
a statement about how the energy momentum tensor curves spacetime. A lot of physics
lurks secretly inside (3). To me, that’s part of the magic of theoretical physics.

Buchdahl’s theorem

A particularly simple (but somewhat unphysical) equation of state is that of an incom-
pressible fluid, namely ρ equal to a constant independent of the pressure. Then (10) may
be trivially evaluated, giving M(r)= (4π/3)r3ρ = (r/R)3M , where the radius of the starR
is determined by P(R)= 0, as explained earlier. The mass of the star M is equal to M(R).
Evidently, we will encounter the combinationGM , and so it is convenient to introduce the
symbol rS ≡ 2GM , even though we are talking about a star, rather than a black hole, here.

Things are now sufficiently simple for us to integrate the Tolman-Oppenheimer-Volkoff
equation (13) analytically. We obtain

P(r)= ρ

(
1 − rS

R

(
r
R

)2
) 1

2 − (
1 − rS

R

) 1
2

3
(
1 − rS

R

) 1
2 −

(
1 − rS

R

(
r
R

)2
) 1

2

(16)

The scale of P(r) is set by the constant density ρ.

For the central pressureP(0)= ρ
1−
(

1− rS
R

) 1
2

3
(

1− rS
R

) 1
2 −1

to be positive, we must have 3
(
1− rS

R

) 1
2 > 1,

with P(0) blowing up when the inequality becomes an equality. Thus, we require

R > 9
8 rS = 9

4GM (17)

Buchdahl’s theorem states that for any “reasonable” equation of state, the inequality (17)
holds. Recall the criterion rS >R for the star to become a black hole. Thus, Buchdahl’s star
can never become a black hole.
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Stellar collapse into black holes

Chandrasekhar . . . shows that a star of mass greater than a
certain limit M . . . has to go on radiating and radiating and
contracting and contracting until, I suppose, it gets to a few
km. radius, when gravity becomes strong enough to hold in the
radiation, and the star can at last find peace. . . . I think, there
should be a law of nature to prevent a star from behaving in this
absurd way.

—Arthur S. Eddington, comments at the Royal Astronomical
Society Meeting, on January 11, 1935

As I have already said, a detailed analysis of stellar equilibrium using various equations
of state P(ρ) is beyond the scope of this text, even though, as the reader probably knows,
the results from such an analysis constitute some of the most spectacular highlights of
stellar astrophysics. For example, if the pressure is supplied by the quantum motion of the
electrons in the star, namely the Fermi pressure of degenerate electrons (see any text on
statistical mechanics), the stellar mass M cannot exceed an upper limit of about 1.4M�,
known as the Chandrasekhar limit.

To study the collapse of a spherical cloud of matter into a black hole requires generalizing
the metric (4) used here to the time dependent metric mentioned in appendix 3 to chapter
VI.3. The analysis of the resulting Einstein field equation becomes considerably more
complicated.

I am content to point out a key physical feature of the relativistic equation for stellar
equilibrium. We see that the expression in the first parentheses in (13) effectively changes
the mass density ρ in Newtonian gravity (15) to ρ + P . This important piece of physics can
be traced all the way back to special relativity: pressure, being an energy density, counts
also as a mass density. Thus, as infalling matter piles onto a superdense star and squeezes
it gravitationally, the star resists by increasing its internal pressure P , which only adds to
the mass density bearing in. In essence, this vicious cycle is at the root of the physics of
black hole formation.

Gravitational binding energy and Einstein getting almost run over

Now that you are a budding relativist familiar with the Schwarzschild solution, weren’t you
pleased to see (8) and (9) appearing? But at the same time, did you not find the expression
for the total mass

M = M(R)= 4π
∫ R

0
drr2ρ(r) (18)

a bit odd? At first sight, it looks like the sum of the infinitesimal mass elements that make
up the star, but then you realize that space is curved!
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At a fixed instant in time t , space as a slice of spacetime is described (from (4)) by the
line element B(r)dr2 + r2d�2. Thus, some authors choose to define the integrated mass

M̃ = 4π
∫ R

0
drr2 ρ(r)√

1 − 2GM(r)
r

(19)

and regard the difference M̃ − M > 0 as the gravitational binding energy of the star. I
must emphasize, though, that I know of no simple experiment that would measure M̃ .
In contrast, since the exterior Schwarzschild geometry is determined by M , a distant
astronomer knowing Kepler’s laws and measuring the period of a planet orbiting the star
would end up calculating M .

I end this chapter by recounting a story told by George Gamow4 in his autobiography.
While crossing a street, Gamow mentioned to Einstein that Pascual Jordan had realized
that a star could be made of nothing if its negative gravitational energy balances its positive
rest mass energy. According to Gamow, “Einstein stopped in his tracks and . . . several cars
had to stop to avoid running us down.”

Appendix: The expanding universe again

I’d like to mention something amusing here. An astute reader might notice that the setup in this chapter, with the
metric ds2 = −A(r)dt2 + B(r)dr2 + r2d�2 in (4), also allows us to solve the equationRμν = −8πG�gμν that we
solved in chapters VI.2 and VI.5. We can solve for a universe filled with the cosmological constant (which may well
be the dark energy, as mentioned in chapter VI.2). For ρ =�, we have immediately M= 4π�r3/3. Furthermore,
with P = −�, the field equation (7) gives A= 1/B, where we have absorbed an integration constant. After some
algebra, we find that the metric in (4) works out to be

ds2 = −
(

1 −H 2r2
)
dt2 +

(
1 −H 2r2

)−1
dr2 + r2d�2 (20)

with H 2 = 8πG�/3 (as in chapter VI.5).
“What is going on?” you exclaim. Back in chapters VI.2 and VI.5, filling the universe with a cosmological

constant gave an exponentially expanding universe described by

ds2 = −dt2 + e2Ht
(
dx2 + dy2 + dz2

)
(21)

But what is expanding in (20)? That metric does not even depend on time! I will let you think about that one for
a moment.

It is the magic of coordinate transformation, of course! You can transform (20) into (21). Try it. The precise
relationship between these two apparently entirely different metrics will be revealed in chapter IX.10: they both
describe what is called de Sitter spacetime.

Another astute reader might notice that the solution here is not the most general. The equation (9) dM(r)
dr

=
4πr2� also allows the solution M =M + 4π�r3/3, with an arbitrary additive constant∗ M . Using (7), you can
check that A= 1/B continues to hold. Thus, another solution is given by

A= 1
B

= 1 − 2GM
r

−H 2r2 (22)

Interestingly, we can put† a black hole in de Sitter spacetime.

∗ Not to be confused with the mass of the star, of course. We are now talking about an entirely different physical
situation. This additive constant is not allowed in the context of the stellar problem, since spacetime is required
to be nonsingular at the center r = 0 of the star.

† This fact turns out to be of great relevance to recent developments in theoretical physics.



VII.4. Relativistic Stellar Interiors | 457

Exercises

1 Derive (16).

2 Find some analytic solutions of the Tolman-Oppenheimer-Volkoff equation. For help, read section 3 of
Tolman’s 1939 paper cited in the endnotes.

Notes

1. Actually, most stars never evolve into structures dense enough for general relativity to play a role.
2. It’s perhaps worth remarking somewhere, so it might as well be here, that Einstein’s quip regarding the

left hand side of his field equation versus the right hand side (mentioned in chapter VI.5) is not as clear-cut
as it sounds upon first hearing: in general, Tμν depends on the metric, so that geometry does not appear
exclusively on the left side. Here A and B appear explicitly on the right side of (5) and (6).

3. R. C. Tolman, Phys. Rev. 55 (1939), p. 364; J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55 (1939), p. 374.
4. G. Gamow, My World Line.
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Rotating bodies: General considerations

Rotating black holes are important for practical and theoretical reasons.
Astrophysical objects invariably rotate due to the chaotic way they are formed. For

normal stars, such as the sun, the amount of rotation, as measured by the rotational speed
v at the surface divided by c, is negligible. That’s why we are able to use the Schwarzschild
metric to describe the spacetime outside the sun. Around a black hole, however, infalling
debris invariably causes the black hole to spin, as we saw in chapter VII.1. Several important
astrophysical processes appear to be powered by rotating black holes. One of our goals in
this chapter is to understand how rotating black holes can be such powerful sources of
radiation.

Historically, the Schwarzschild horizon bothered the founding fathers of general rela-
tivity so much that some of them suggested that its presence is an artifact of the spherical
symmetry and that a rotating black hole would be free of such bizarre features. The discov-
ery of a rotating black hole solution of Einstein’s field equation by Roy Kerr in 1963 finally
put this supposition to rest.

This chapter may be skipped over upon first reading; a first understanding of Einstein
gravity does not require mastering the Kerr solution. Like the Schwarzschild spacetime,
the Kerr spacetime is a solution of Einstein’s field equation Rμν = 0 in empty spacetime.
We anticipate that there could be a horizon. A rotating object small enough to fit inside its
own horizon is known as a Kerr black hole.

Before we look at Kerr’s specific solution, let us see how far we can get with general
considerations. We assume stationary and cylindrical symmetry. Stationary means that
the object rotates with a constant angular velocity, so that the spacetime does not change
with time. With the usual coordinates (t , r , θ , ϕ), the metric components gμν(r , θ) are
functions only of r and θ , but not of t and ϕ. Furthermore, the solution must be unchanged
under the discrete transformation t → −t together with ϕ → −ϕ. This rules out in ds2

cross terms such as dtdr , drdϕ, and so forth, allowing only dtdϕ. (Convince yourself
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that by a coordinate transformation (see exercise 1), you can also eliminate the cross term
drdθ .) Hence in general, the spacetime outside is described by

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gϕϕdϕ

2 + 2gtϕdtdϕ (1)

with gtt , grr , gθθ , gϕϕ , gtϕ = gϕt five functions of r and θ . The appearance of the off-
diagonal component gtϕ = gϕt in the metric will lead to fascinating new physics.

The term gtϕdtdϕ in ds2 means that ds2 is no longer invariant under t → −t , as was
the case with the Schwarzschild solution. That the spacetime is invariant only under the
combined transformation t → −t and ϕ → −ϕ is a hallmark of rotation about the z-axis.

Note that we can also write

ds2 =
(
gtt −

g2
tϕ

gϕϕ

)
dt2 + gϕϕ (dϕ − ωdt)2 + grrdr

2 + gθθdθ
2 (2)

with ω(r , θ)≡ −gtϕ/gϕϕ.
That the metric gμν(r , θ) does not depend on t and ϕ immediately implies that two of the

equations of motion amount to conservation laws. Varying the action for a point particle

S =
∫ (

gttdt
2 + grrdr

2 + gθθdθ
2 + gϕϕdϕ

2 + 2gtϕdtdϕ
) 1

2 (3)

with respect to t gives the geodesic equation d
dτ
(gtt

dt
dτ

+ gtϕ
dϕ
dτ
)= 0, and with respect to

ϕ gives another geodesic equation d
dτ
(gϕt

dt
dτ

+ gϕϕ
dϕ
dτ
)= 0, which we recognize as energy

and angular momentum conservation, respectively. In other words, the quantities

ε = −
(
gtt

dt

dτ
+ gtϕ

dϕ

dτ

)
(4)

and

l = gϕt
dt

dτ
+ gϕϕ

dϕ

dτ
(5)

do not change along geodesics. More explicitly, a particle of mass m has momentum pμ =
mdxμ

dτ
, and its motion in spacetime conserves the components pt = gtνp

ν and pϕ = gϕνp
ν

(note the lowered indices).
More formally, our spacetime is isometric∗ under t → t + constant and ϕ → ϕ +

constant, and thus possesses two Killing vectors† ξe = (1, 0, 0, 0) and ξl = (0, 0, 0, 1). The
two quantities E = −ξe . p = −ξμ

e
pμ = −pt = −(gttpt + gtϕp

ϕ) and L= ξl . p = ξ
μ

l pμ =
pϕ = (gϕtp

t + gϕϕp
ϕ), corresponding to energy and angular momentum, respectively, are

conserved for particles moving around in the spacetime. (The quantities E and L are
simply ε and l, respectively, multiplied by m.)

It is worthwhile to comment on the signs in (4), (5), and the expressions just given forE
andL. In the (− + ++) convention used here, gϕϕ > 0. We define the angular momentum

∗ We will explore isometry in detail in chapter IX.6. For now the term “iso + metry” simply means that the
geometry stays the same.

† The rich man would want to write ξe = ξμ
e
∂μ = ∂

∂t
and ξl = ξ

μ

l ∂μ = ∂
∂ϕ

, as I explained back in chapter V.5.
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Figure 1 Frame dragging due to spacetime being deformed by a
rotating body.

of a particle whoseϕ coordinate increases with increasing proper time τ as positive. Hence,
angular momentum is +pϕ.

Frame dragging

From this general form, we can immediately deduce an interesting consequence. The
novel feature is that the angular momentum l ≡ gtϕ

dt
dτ

+ gϕϕ
dϕ
dτ

now consists of two terms,
thanks to the presence of the nondiagonal term gtϕ.

Drop a particle, massive or massless,∗ from far away, with vanishing initial angular
momentum† l = 0, toward the rotating body (notice that, thus far in the discussion,
nothing requires that the metric be that of a black hole). Far away, we expect spacetime to
approach Minkowskian, so that gtϕ → 0, gϕϕ → 1. Thus l = 0 means that dϕ

dτ
→ 0 far away,

as expected.
But as this particle approaches the rotating body, since the angular momentum l, being

conserved, stays at 0, the particle picks up, according to (5), a position dependent angular
velocity

ω(r , θ)≡ dϕ

dt
= dϕ

dτ

/
dt

dτ
= − gtϕ

gϕϕ
(6)

Angular velocity without angular momentum!
Note that this angular velocity is defined by the rate of change of ϕ with respect to

coordinate time, not proper time. Furthermore, recall thatω(r , θ)has already been defined
in (2): this discussion reveals its physical meaning.

We interpret this peculiar phenomenon, known as frame dragging, as due to spacetime
being deformed by the rotating body (see figure 1). We fix the direction of rotation by taking
gtϕ < 0 so that ω > 0 (since gϕϕ > 0 in our (− + ++) convention).

∗ For a massless particle, the parameter τ should be interpreted as an affine parameter, not proper time, as
has already been explained a number of times.

† As always, we prefer to be less wordy at the cost of some loss of precision. Thus, we generally eschew saying
things like “angular momentum per unit mass” if we can get away with it without confusing anybody.
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It is worth emphasizing that frame dragging is not a mysterious effect associated
somehow only with black holes, as some people confusedly think. It is a general relativistic
effect, which does not occur in Newtonian gravity, generated by any rotating massive body.
In particular, the earth drags the spacetime frame around it.

The Kerr solution turns out to be arithmetically complex, and so it would be advisable
to do a back-of-the-envelope estimate of this effect at this point. Let the body rotate with
angular velocity�∼ v/R, whereR denotes the object’s characteristic size. Through gravity
the object curves the spacetime around it, which causes the particle, in seeking the best
deal (namely the geodesic), to be1 “dragged along.” The strength of gravity is characterized
by the dimensionless ratio GM/Rc2, as we have seen many times. Thus, we might expect

ω ∼ GM

Rc2
�∼

(
GM

Rc2

) (
v

R

)
(7)

Let us also anticipate how the Kerr solution would be parametrized. In units with
G = 1 and c = 1, M has dimensions of length, and angular momentum J ∼ MvR has
dimensions of length squared. Let us measure rotation by the length a = J/M . Indeed,
it is convenient to continue using the length rS ≡ 2GM = 2M , even though we are not
dealing with the Schwarzschild solution here. We then have the dimensionless measure
of rotation 2a/rS = J/M2, which is of order ∼ v/c if we set R ∼ rS ∼M .

Stationary limit surface

Consider a light ray emitted, initially with dr = 0 and dθ = 0, from some point. We have
initially 0 = ds2 = gttdt

2 + 2gtϕdtdϕ + gϕϕdϕ
2. Solving this quadratic equation for dϕ,

we obtain

dϕ

dt
=

−gtϕ ±
√
gtϕ

2 − gttgϕϕ

gϕϕ
= − gtϕ

gϕϕ
±
√√√√(

gtϕ

gϕϕ

)2

− gtt

gϕϕ
(8)

To save writing, it is customary to define, as in (6), ω ≡ −gtϕ/gϕϕ > 0 (which we note is a
function of r and θ ).

Far away from the rotating body or black hole, with gtt < 0 and gϕϕ > 0, we have two
roots

�+ =
(
dϕ

dt

)
+

= ω +
√√√√ω2 +

∣∣∣∣∣ gttgϕϕ

∣∣∣∣∣> 0 (9)

and

�− =
(
dϕ

dt

)
−

= ω −
√√√√ω2 +

∣∣∣∣∣ gttgϕϕ

∣∣∣∣∣< 0 (10)

(Recall that ω > 0.) These two quantities, �+ and �−, one positive and one negative,
describe two light rays, known as corotating and counterrotating, respectively, emitted
in the same and in the opposite direction as the direction of rotation. Note that, except
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Figure 2 A schematic plot of�+ and�− in the equatorial plane as a function
of r for a Kerr black hole with rS = 3 and a = 1 (and hence rS+ = rS = 3
and r+ � 2.618). The upper and lower curves correspond to �+ and �−,
respectively. On the stationary limit surface r = rS+, gtt vanishes, so that
�+ = 2ω and�− = 0: the lower curve crosses the horizontal axis. The rotating
body has caused the counterrotating light on the stationary limit surface to
stand still. On the outer horizon, r = r+, �+ =�−, and the upper and lower
curves meet.

in the equatorial plane θ = π/2, light rays do not maintain dθ = 0; hence in general, �±
denotes the angular velocities at emission only.

It is worthwhile to note that the discussion here, which involves light, is not be confused
with the discussion of frame dragging in the preceding section, which applies to massive
as well as massless particles. In particular, there we specialized to l = 0 for simplicity.
In contrast, l is not specified here. Students sometimes confound these two distinct
discussions, since some of the same metric components, gtϕ and gϕϕ, are involved. Note,
however, that gtt , which appears in (9) and (10), did not enter into the discussion in the
preceding section.

Indeed, we are now going to talk about gtt . Far away, gtt ∼ −1< 0. Suppose that, as
we come in closer, there exists a surface, known as a stationary limit surface, on which
gtt = 0. Then on that surface, �+ = 2ω and �− = 0. The rotating body has caused the
counterrotating light on the stationary limit surface to stand still!

As we will see, in the Kerr solution, gtt does vanish as we come in. In figure 2, we plot
�+ and �− for a particular Kerr black hole.

By the discussion back in chapter V.4, the gtt = 0 surface is also the surface of infinite
redshift. It is worth emphasizing that for a rotating black hole, there is no a priori reason
why grr must blow up where gtt vanishes, as in the Schwarzschild solution.

Even closer in, gtt turns positive. Both

�+ = ω +
√
ω2 −

∣∣∣∣ gttgϕϕ

∣∣∣∣ and �− = ω −
√
ω2 −

∣∣∣∣ gttgϕϕ

∣∣∣∣
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are now positive. Even light can no longer move in the direction opposite to that of the
rotation. All particles are swept along, hence the term “stationary limit surface.” Inside
this surface, you are swept along with the flow no matter how powerful your rocket pack
might be. Everything is moving in the same direction as the central body rotates.

A clarifying remark here might be helpful. The angular velocities �± = (
dϕ
dt
)± refer to

how the test particle moves through the coordinateϕ fixed with respect to the stars. Relative
to the frame being dragged along, �+ − ω = (

dϕ
dt
)+ − ω and �− − ω = (

dϕ
dt
)− − ω remain

positive and negative, respectively.
Moving ever closer in, we may reach a point at which g2

tϕ
− gttgϕϕ = 0: on this surface,

corotating and counterrotating light are emitted with the same angular velocity�H ≡�+ =
�−. You have no choice as an observer: your angular velocity �observer, squeezed between
�+ and �−, must be equal to �H . Guess what the subscript H signifies.

Three regimes

In summary, we have described three regimes: (I) with �+ positive and �− negative, you
can move left or move right within limits; (II) with�+ and�− both positive, you are forced
to move right; and finally, (III) with �+ =�− both positive, you are forced to move right
in lockstep with everybody else.

Regarding gμν as the matrix⎛
⎜⎜⎜⎜⎜⎝

gtt gtϕ 0 0

gtϕ gϕϕ 0 0

0 0 grr 0

0 0 0 gθθ

⎞
⎟⎟⎟⎟⎟⎠

we readily recognize the combination

D ≡ g2
tϕ

− gttgϕϕ (11)

that appears in (8) as minus the determinant of the 2-by-2 submatrix in the upper left
corner. Note how D also appears in (2). The inverse matrix gμν is given by

gμν =

⎛
⎜⎜⎜⎜⎜⎝

−D−1gϕϕ D−1gtϕ 0 0

D−1gtϕ −D−1gtt 0 0

0 0 1/grr 0

0 0 0 1/gθθ

⎞
⎟⎟⎟⎟⎟⎠ (12)

Thus, at D = 0, the inverse metric gμν ceases to exist. Note also that grr = 1/grr .

Falling into a rotating black hole

We have tracked the angular velocity of a test particle of massm falling into a rotating black
hole. What about the other conserved quantity, its energy E?
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One subtlety is that, because of the presence of the unfamiliar cross term gtϕ in the
metric, we have to clarify in our own heads whether it is pt or pt that is conserved. The
conserved guy is in fact pt (which we identified as −E), as we have mentioned in passing.

We can solve the mass-shell condition p2 = gμνp
μpν = gμνpμpν = −m2 forE, as usual.

The key is to use the form gμνpμpν for p2, since as I just explained, pt (and pϕ) are
the conserved quantities we want to work with. Using the inverse metric (12), we write
gμνpμpν = −m2 as

−gϕϕp2
t
+ 2gtϕptpϕ − gttp

2
ϕ

+D

(
p2
r

grr
+ p2

θ

gθθ
+m2

)
= 0 (13)

withD = g2
tϕ

− gttgϕϕ, as defined in (11). Note the oddly mismatched indices. Since neither

pr = grrp
r nor pr is conserved, we might as well write p2

r

grr
= grr(p

r)2 =m2grr
(
dr
dτ

)2. In this

way, we express the last three terms in (13) as K ≡Dm2(grr( drdτ )2 + gθθ
(
dθ
dτ

)2 + 1
)
.

Solving the quadratic equation (13) for pt , we obtain

E = −pt = − gtϕ

gϕϕ
pϕ +

√
1
g2
ϕϕ

((
g2
tϕ

− gttgϕϕ

)
p2
ϕ

+ gϕϕK
)

(14)

Note that, importantly, we have chosen the + root, since far from the black hole (or for a
weakly rotating body), where spacetime becomes Minkowskian and sanity is restored, this
expression corresponds∗ to the correct E = +√ �p2 +m2, rather than to2 E = −√ �p2 +m2.
Once again, the weird-looking feature in (14), namely a term outside the square root, is
due to the presence of the cross term gtϕ in the metric. We will return to this expression
in appendix 1.

The Kerr black hole

Thus far, we have been squeezing physics out of the general stationary cylindrically
symmetric spacetime in (1). To go further and to see that what we say would happen actually
happens, we need the specific metric of a rotating black hole.

In 1963, Kerr found a solution3 of Einstein’s field equationRμν = 0 characterized by two
parameters rS and a with dimension of length:

ds2 = −
(

1 − rrS

ρ2

)
dt2 − 2rSar sin2 θ

ρ2
dtdϕ + ρ2



dr2 + ρ2dθ2

+
(
r2 + a2 + rSa

2r sin2 θ

ρ2

)
sin2 θdϕ2 (15)

with

ρ2 = r2 + a2 cos2 θ and 
= r2 + a2 − rrS (16)

∗ Take a particle at rest far away, so that dr
dτ

= 0, dθ
dτ

= 0, pϕ = 0, gϕϕ = 1, gtϕ = 0, gtt = −1, D = 1, K =m2,
and so E reduces to +√

m2.
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Note that in this chapter, rS is merely a convenient shorthand borrowed from our discus-
sion of the Schwarzschild black hole: nothing much happens to (15) at r ∼ rS.

Far away from the black hole, as r → ∞, spacetime approaches Minkowskian flat, as
we would expect. In particular, g00 → −(1 − rS

r

)
. Using a result we learned as far back as

chapter IV.3, we identify M = 1
2rS as the mass of the rotating black hole.

Our friend the Smart Experimentalist explains, “The mass of an astrophysical object
is not some symbol in a theoretical expression, but a quantity we should inquire of
the astronomer peering through the telescope. The astronomer tells us that the mass is
deduced from the orbit of a test particle, typically a planet, circling that object. Ultimately,
that’s related to the O(1/r) term in g00.”

Excellent! That’s the operational definition of mass. Similarly, the astronomer could
deduce the angular momentum of the astrophysical object in principle (if not in practice)
by watching how a gyroscope∗ circling the object precesses. That precession is governed
by the asymptotic behavior of gtϕ; in particular, for the Kerr solution, we detect a deviation
from Minkowski spacetime given by

−2gtϕdtdϕ = 2rSar sin2 θ

ρ2
dtdϕ → 2rSa sin2 θ

r
dtdϕ = 2rSa

r3
dt (xdy − ydx) (17)

upon reverting back, in the last step, to the usual Cartesian coordinates. The angular mo-
mentum of the object is defined to be J = 1

2rSa =Ma. Putting this into the form of the

metric in (2), we have ds2 = (
. . . + r2 sin2 θ

(
dϕ − 2J

r3 dt
)2 + . . .

)
, since ω = −gtϕ/gϕϕ →

(rSa sin2 θ/r)/r2 sin2 θ = rsa/r
3 = 2J/r3. (Note that as remarked earlier, J has dimen-

sions of length squared.) We should show at some point that this definition of J reduces
in the appropriate limit to what we commonly understand to be angular momentum; we
will do this in chapter IX.4. Thus,

a = J

M
= 2J

rS
(18)

In short, the Kerr solution is characterized by two lengths, rS and a, corresponding to mass
and angular momentum, respectively.

Considering that it took4 almost 50 years for this solution to be found (while the
Schwarzschild solution was found within a year of 1915), we realize that the Kerr met-
ric represents a highly nontrivial accomplishment.5 Unfortunately, there is not a sim-
ple6 derivation7 of the Kerr metric comparable to the straightforward derivation of the
Schwarzschild metric. See appendix 2 for a possible approach. Of course, it is straightfor-
ward, particularly with the help of a computer, to verify that (15) is in fact a solution.

For this text, I am content to merely introduce you to some key features.

1. Let’s check that our estimate of frame dragging in (7) is on the money: for a slowly rotating

body, ρ ∼ r and a = J/M ∼ Mvr/M ∼ vr , and so indeed ω ∼ gtϕ/gϕϕ ∼ (rSar/ρ
2)/r2 ∼

Ma/r3 ∼Mv/r2 ∼ (GM/Rc2)(v/R), in agreement with (7). In the last step, we tookR to be

∗ We will discuss the precession of gyroscopes in chapter IX.2.
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the size of a black hole and restoredG and c. If you like, you can regard this as a verification

of (18) up to an overall factor, at least for a slowly rotating body.

2. After admiring (15), we check that it reduces appropriately in various limits.

a. As r → ∞, the metric becomes asymptotically flat, as we have already noted.

b. As a → 0, we recover the Schwarzschild solution:

ds2
Kerr = ds2

Schwarzschild −
(

2rSa sin2 θ/r
)
dtdϕ +O

(
a2
)

(19)

c. As a particularly interesting limit, take M → 0 and J → 0, keeping the ratio a =
J/M fixed. We obtain

ds2 = −dt2 +
(
r2 + a2 cos2 θ

r2 + a2
dr2 +

(
r2 + a2 cos2 θ

)
dθ2 +

(
r2 + a2

)
sin2 θdϕ2

)
(20)

Are you surprised that you do not recover flat space? But perhaps after a moment

you remember appendix 2 from way way back in chapter I.5: (20) in fact describes

Minkowskian spacetime heavily disguised!

3. The general discussion in the preceding sections, in particular the result (6), holds for the

Kerr solution of course, with the off-diagonal metric componentgtϕ(r , θ)= −rSar sin2 θ/ρ2.

A particle dropped with l = 0 from far away attains the angular velocity

ω(r , θ)= − gtϕ

gϕϕ
= rSar

ρ2
(
r2 + a2

)+ rSa
2r sin2 θ

= rSar(
r2 + a2

)2 −
a2 sin2 θ
(21)

with 
 defined in (16).

4. The surface of infinite redshift gtt = 0, on which counterrotating light stands still, is given

by ρ2 = rrS, which has two solutions

rS± = 1
2

(
rS ±

√
r2

S − 4a2 cos2 θ

)
=M ±

√
M2 − a2 cos2 θ (stationary limit gtt = 0) (22)

There are thus two surfaces of infinite redshift, an outer and an inner. (Note that the S in

rS± is for stationary, while the S in rS is for Schwarzschild.)

5. In accordance with our general discussion earlier, the Kerr metric is invariant under t →
t + constant and ϕ → ϕ + constant and thus possesses two Killing vectors ξe = (1, 0, 0, 0)

and ξl = (0, 0, 0, 1).

6. The Kerr metric can be written in a number of different forms (see exercises 4 and 5).

Define �2 ≡ (r2 + a2)ρ2 + rSra
2 sin2 θ = (r2 + a2)2 −
a2 sin2 θ , so that gϕϕ = �2

ρ2 sin2 θ .

Then, for example, using (2), we can write

ds2 = −ρ2


�2
dt2 + ρ2



dr2 + ρ2dθ2 + �2

ρ2
sin2 θ(dϕ − ωdt)2 (23)

Another form is given by

ds2 = − 


ρ2

(
dt − a2 sin2 θdϕ

)2 + ρ2



dr2 + ρ2dθ2 + 1

ρ2
sin2 θ

(
(r2 + a2)dϕ − adt

)2
(24)

Physical and coordinate singularities

We see that the Kerr metric (15) is singular at ρ = 0 and at 
= 0.
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r+

r–

rS+

rS–

ergoregion

Figure 3 The surfaces r = r± (as explained in the text, surfaces of constant
r are not spheres) and the surfaces of infinite redshift r = rS±(θ) are shown
schematically. As indicated in the text, the surfaces touch pairwise at the north
and south poles. The region enclosed between the stationary limit surface
rS+ and the horizon r+ is known as the ergosphere or ergoregion. Inside
the stationary limit surface of a Kerr black hole, the coordinate t becomes
spacelike and energy morphs into momentum, but if you are outside the
horizon, you can still get out if you want.

In the limit a → 0, ρ = 0 reduces to r = 0, and 
= 0 to r = rS. Thus, our experience
with the Schwarzschild black hole suggests that ρ = 0 represents a physical singularity
and 
= 0 a coordinate singularity, a highly plausible supposition that we can check by
calculating RμνρσR

μνρσ , for example.
The physical singularity corresponds to, according to (16), r2 + a2 cos2 θ = 0, that is,

r = 0 and θ = 1
2π . But according to appendix 2 of chapter I.5, this describes a ring of

radius a.
In contrast, the coordinate singularities at 
= r2 + a2 − rrS = 0, that is, at

r± = 1
2

(
rS ±

√
r2

S − 4a2
)

=M ±
√
M2 − a2 (25)

describe two ellipsoids. See figure 3.

Extremal black hole

Note that (25) suggests, but does not prove, that |a| ≤M = 1
2rS, which according to (18),

corresponds to the maximum angular momentum

|J | ≤M2 (26)

An extremal Kerr black hole is one with angular momentum |J | =M2. Most astrophysical
black holes are observed to be nearly extremal, as would be expected if infalling debris
tends to increase the angular momentum. Theoretically, extremal black holes also play an
important role in string theory. Note that, heuristically, extremality is attained for MvR ∼
M2v ∼M2, that is v ∼ 1. So physically, it seems plausible that the angular momentum of a
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black hole is bounded. For a given mass, you can’t keep on pumping angular momentum
into the system.

The outer horizon

Let us locate ourselves at some point well outside the black hole (for r > r+ say, so that

> 0) and watch an outgoing photon. Setting ds = 0 in (15), we find that dr is given by
the positive square root of the quantity




ρ2

{(
1 − rrS

ρ2

)
dt2 + 2rSar sin2 θ

ρ2
dtdϕ − ρ2dθ2 −

(
r2 + a2 + rSa

2r sin2 θ

ρ2

)
sin2 θdϕ2

}

We want to see whether the photon manages to get out. So, we want to maximize dr .
Evidently, to do this, we should set dθ = 0. But because of the cross term gtϕ, we should not
set dϕ = 0, that is, restrict our attention to radial light rays, as we did for the Schwarzschild
black hole. Physically, this is clear.

We now move in closer and closer to the black hole. At some point, the photon will not
be able to get out. For r > rS/2, the quantity 
= r2 + a2 − rrS decreases as r decreases,
eventually vanishing, at which point dr = 0. The photon can no longer get out; this defines
the horizon. According to (25), the vanishing of 
 occurs at r±. Our suspicion, based on
applying the “correspondence principle” between the Kerr and Schwarzschild black holes,
turns out to be valid.

For definiteness, let us focus on what happens at r+ (which, as we can see from (25),
is indeed >rS/2). For further analysis, it is more convenient to use (23) rather than (15).
With ds = 0 and dr = 0 in (23), set 
= 0 to obtain

0 = ρ2
+dθ

2 + �2
+

ρ2+
sin2 θ

(
dϕ − ω+dt

)2 (27)

where the subscript + indicates that the various quantities are to be evaluated at r = r+:

ρ2
+ = r2

+ + a2 cos2 θ , ω+ = rSar+(
r2+ + a2

)2 = rSar+(
r+rS

)2 = a

r+rS
, �+ = r2

+ + a2 = r+rS (28)

Now we easily solve (27) to find dθ = 0 and

dϕ

dt
= ω+ = a

r+rS
(29)

In other words, on the horizon, light rays move along the trajectory

(dt , dr , dθ , dϕ)∝ lμ ≡
(

1, 0, 0,
a

r+rS

)
(30)

The horizon is a null surface spanned by this null vector lμ and two spacelike vectors,
which we can take to be hμ = (0, 0, 1, 0) and kμ = (0, 0, 0, 1). Note that these vectors are
orthogonal to lμ: for instance, gμνlμkν = gtϕ + gϕϕω+ = 0 by virtual of the definition of ω.
Note that the normal to this null surface is lμ itself. (Recall the discussion of the light cone
in Minkowski spacetime back in chapter III.3.)
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Take a constant t slice of this null surface. We obtain from (27) a 2-dimensional surface
with the line element

dS2 = ρ2
+dθ

2 + �2
+

ρ2+
sin2 θdϕ2 =

(
r2
+ + a2 cos2 θ

)
dθ2 +

(
r2
+ + a2

)2

r2+ + a2 cos2 θ
sin2 θdϕ2 (31)

Those readers with a good memory will recognize this as the squashed sphere you worked
out in exercise I.5.12. For an extremal black hole, the distance around a circle of fixed
longitude through the poles works out to be �3.82rS, considerably less than the distance
(extremal or not) around the equator 2πrS, in accordance with our intuition about how
spacetime might be squashed around a rotating black hole. Notice that all of this is
happening to empty spacetime; what is being squashed is not a spinning material sphere.
The area of this squashed sphere is given by

A=
∫

dθdϕ
√
g = 4π

(
r2
+ + a2

)
= 8π

(
M2 +

√
M4 − J 2

)
(32)

(with g the determinant of the metric in (31), as explained back in chapter I.5). As J → 0,
we recover the Schwarzschild result A= 16πM2.

Also, note that the combination D = g2
tϕ

− gttgϕϕ that appeared inside the square root
in (8) works out nicely to be 
 sin2 θ in the Kerr solution. Thus, the horizon (where 

vanishes) acquires another significance: as we have learned, it is where the corotating and
counterrotating light beams have the same angular velocity:

�H ≡�+ =�−

= ω
(
r = r+

)= a

r2+ + a2
= a

rSr+
= 2a

rS

(
rS +

√
r2

S − 4a2
)

= J

2M
(
M2 + √

M4 − J 2
) (33)

Ergoregion and the Penrose process

To summarize, there are two surfaces of infinite redshift, an outer and an inner,

rS± = 1
2

(
rS ±

√
r2

S − 4a2 cos2 θ

)
=M ±

√
M2 − a2 cos2 θ (stationary limit, gtt = 0) (34)

There are also two horizons, an outer and an inner,

r± = 1
2

(
rS ±

√
r2

S − 4a2
)

=M ±
√
M2 − a2 (horizon, 
= 0) (35)

I also remind the reader that in the Kerr solution D = g2
tϕ

− gttgϕϕ =
 sin2 θ vanishes at
the horizon. Hence, grr = −ρ2/
= −∞ and grr = 0 at the horizon.

For the rest of our discussion, we will focus on the outer stationary limit surface and the
outer horizon. For the Kerr black hole, these two surfaces, rS+ and r+, no longer coincide,
as is the case for the corresponding surfaces for the Schwarzschild black hole. Comparing
(34) and (35), we see that r+ ≤ rS+, with equality attained at the two poles. Thus, the outer
horizon lies inside the outer stationary limit surface, touching at the two poles, while
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the gap between the two surfaces is largest in the equatorial plane θ = π/2. We drop the
modifier “outer” henceforth.

The region enclosed between r+ and rS+ is known as the ergosphere (“ergo” being Greek
for work, as in ergonomics and erg). The somewhat more accurate but awkward term
ergoregion is also used. While particles cannot stay at rest in the ergoregion, they can still
escape to infinity since they are still outside the outer horizon. See figure 3.

The existence of a region between the stationary limit surface rS+ and the horizon
r+ allows exotic new physics not possible with the Schwarzschild black hole. Inside the
stationary limit surface of a Kerr black hole, strange things start happening: in particular,
the coordinate t becomes spacelike, and energy morphs into momentum. But if you are
outside the horizon, you can still get out to tell the tale! Much cooler to fall into a Kerr black
hole than into a Schwarzschild black hole.

Rather craftily, Penrose realized that these considerations allow us to extract energy from
a rotating black hole. Consider a process in which a particle called “infalling” falls in freely
from ∞. In the ergoregion, it goes into two particles called “outgoing” and “doomed,” with
their momenta arranged in such a way that while the doomed particle falls through the
horizon, the outgoing particle escapes, moving freely along its geodesic to ∞. This could be
a subnuclear process, such asπ+ →μ+ + ν (a pion decaying into a muon plus a neutrino),
or an entirely classical process in which∗ we throw a bad guy out of our rocketship.
Conservation of 4-momentum pin = pout + pdoomed holds, of course. Furthermore, along
the geodesics of the various particles, the quantities ξ . pin, ξ . pout, and ξ . pdoomed are
conserved, that is, they are constants of the motion. Here ξ can be either ξe or ξl. (I remind
you that ξe = (1, 0, 0, 0) and ξl = (0, 0, 0, 1) denote the two Killing vectors that the Kerr
spacetime possesses.) In other words, for each of the three particles, we have energy and
angular momentum conservation.

Confusio looks a bit bewildered. “It seems like we are talking about conservation in two
distinct ways.”

Indeed! The discussion in some textbooks appears to be confused on this issue. That the
sums of the momenta are the same before and after some local process is a direct conse-
quence of the equivalence principle, which says that in a small enough region of spacetime
(in a neighborhood around where the pion decays, for example), we can choose coordinates
so that physics is exactly as it would be in flat spacetime. More mathematically, it follows
fromDμT

μν = 0, which in turn follows from general covariance (as was discussed in chap-
ter VI.5). In contrast, the constancy of ξ . p along various geodesics follows from specific
properties of the spacetime we are in, namely its invariance under translation in t and ϕ.

Let us contract the Killing vector ξe with momentum conservation to obtain

ξe . pin = ξe . pout + ξe . pdoomed (36)

Write Ein(∞) ≡ −ξe . pin and Eout(∞) ≡ −ξe . pout to emphasize that these are the en-
ergies that the infalling and outgoing particles have at ∞, far away from the Kerr black

∗ This reminds me of action movies or kung fu stories in which, as you and a bad guy fall off a cliff, you,
being a physics student, give the bad guy a downward shove, and exploiting Newton’s law of action and reaction,
bounce back onto the cliff.
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hole. Of course, as always, being energies of physical particles, Ein(∞) and Eout(∞) are
necessarily positive. In sharp contrast, we write simply εdoomed ≡ −ξe . pdoomed, without
any (∞) symbol, to indicate that the doomed particle never gets out to flat spacetime, and
so εdoomed can be either positive or negative. Indeed, since gμνξμe ξ

ν
e

= gtt = −(1 − rrS
ρ2

)
> 0

for r < rS+, in the ergoregion, the Killing vector ξe is spacelike, and εdoomed is actually a
momentum rather than an energy. From (36), we have

Eout(∞)= Ein(∞)− εdoomed (37)

and so we conclude that indeed it is possible, with εdoomed < 0, to haveEout(∞) > Ein(∞),
that is, to get out more energy than we put in. The black hole would end up losing some of
its mass M in the deal. Note that, in contrast8 to the Hawking radiation discussed in the
preceding chapter, the Penrose process is completely classical.

Thus, at least in principle,9 we could solve10 both the world’s energy crisis and garbage
problem, haha.

Angular momentum loss

Confusio lights up: “Wonderful! But what about the other Killing vector ξl?”
Excellent question! Confusio is getting smarter by the day. Consider an observer inside

the stationary limit surface. Let his 4-velocity be given by Uμ = U0(1, 0, 0, �observer).
In other words, for this observer, dt

dτ
= U0 and dϕ

dτ
= U0�observer. The angular velocity

�observer must be positive, since like everybody else, the observer has to move in the
direction of rotation, as explained earlier. We now use basic linear algebra to write Uμ =
U0(ξe +�observerξl). It is worth emphasizing that the observer is not necessarily moving
along a geodesic; he is certainly free to purchase a rocket pack and attach it to his back.

What is the energy of the doomed particle as seen by this observer? As usual, this is
given by

−U . pdoomed = −U0(ξe . pdoomed +�observerξl . pdoomed)= U0(εdoomed −�observerLdoomed) (38)

whereLdoomed ≡ +ξl . pdoomed is the angular momentum (with the plus sign, as explained
earlier) of the doomed particle. But the energy of the doomed particle as measured by this
observer must be positive, and hence εdoomed ≥�observerLdoomed, which, since �observer is
positive, can be written as εdoomed/�observer ≥ Ldoomed.

In the Penrose process, εdoomed is negative, and soLdoomed must also be negative. By an-
gular momentum conservation, as the doomed particle falls into the black hole, it reduces
the black hole’s angular momentum. In other words, the mass and angular momentum
of the black hole change by δM = εdoomed < 0 and δJ = Ldoomed < 0, respectively.

Not only does the black hole lose mass in the deal, but it also loses angular momentum
by an amount δJ satisfying

δM

�observer
≥ δJ (39)

By extracting energy from a Kerr black hole, we also decrease its angular momentum and
hence reduce it eventually to a Schwarzschild black hole.
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It is important to note that even if the process is not Penrose, namely if εdoomed is positive,
we still have δM

�observer
≥ δJ , with δM positive in this case.

Area theorem

Recall the areaA= 8π
(
M2 + √

M4 − J 2
)

of the black hole from (32). In a Penrose process,
both M and J decrease. How does this area change? Varying, we find

1
8π

δA=
2M

(
M2 + √

M4 − J 2
)
δM − JδJ

√
M4 − J 2

= J√
M4 − J 2

(
δM

�H

− δJ

)
(40)

where we used (33) in the last step.
But since the inequality (39) holds for any observer, it also holds for an observer hovering

just outside the horizon, an observer whose angular velocity, as we saw in the discussion
leading up to (33), is equal to�H . Inserting δM

�H
≥ δJ (which, as we had emphasized, holds

regardless of whether the process is Penrose or not) into (40), we conclude that

δA≥ 0 (41)

Remarkably, the area always increases! This result is often stated as the second law of
black hole thermodynamics: no classical process can decrease the area of a black hole. As
mentioned in the preceding chapter, results like this inspired Bekenstein to conjecture
that the surface area of black holes should be associated with an entropy.

Appendix 1: First and second laws of black hole thermodynamics

Let’s now follow a particle falling through the horizon of a Kerr black hole. Return to (14), which we rewrite here
in a slightly more concise form for convenience:

E = −pt = +ωpϕ +
√√√√Dp2

ϕ

g2
ϕϕ

+ K

gϕϕ
(42)

with K =Dm2(grr(
dr
dτ
)2 + gθθ(

dθ
dτ
)2 + 1). Since pt is conserved along the particle’s geodesic, we can calculate it

at the instant the particle crosses the horizon, where D =
 sin2 θ vanishes. Things simplify enormously! Do
calculate before reading on.

Dear reader, if you drop the square root in (42), you would have made a hasty error. You should have checked
if anything is blowing up as D → 0. Indeed, as I noted after (35), grr = ρ2/
→ ∞, such that Dgrr → ρ2

+ sin2 θ .

In contrast, nothing much happens to (see (23), for example) gθθ = ρ2 and gϕϕ = �2

ρ2 sin2 θ . Hence, K →
ρ2

+ sin2 θ(m dr
dτ
)2+, so that K

gϕϕ
→ ρ4+

�2+
(m dr

dτ
)2+. Thus, evaluating (42) on the horizon, we determine the energy

of the infalling particle to be E =�HL+
√(

ρ2+
�+m

(
dr
dτ

)
+

)2
with L= pϕ. The mass and angular momentum of

the black hole change according to (recall (9))

δM =�HδJ + r2
+ + a2 cos2 θ

r2+ + a2
m

∣∣∣ dr
dτ

∣∣∣+ (43)
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You of course recall that we proved the area theorem δA ≥ 0 by inserting the key inequality δM
�H

≥ δJ into
(40). But now we learn more. We have identified what caused the area theorem to be an inequality rather than
an equality: radial movement.

This result also serves to convince us of the physically motivated conclusion we reached in the text, that the
angular momentum |J | cannot exceed M2. For an extremal black hole with J = M2, we see from (33) that
the angular velocity at the horizon �H = J

2M(M2+
√
M4−J 2)

evaluates to �H = 1
2M . Let us try to crank up J of

an extremal black hole past M2. But we just showed that δM ≥�HδJ = δJ
2M , that is, δM2 ≥ δJ . Try as we may,

we can’t get J to exceed M2.
We have already stated the second law of black hole thermodynamics. This conclusion allows us to formulate

also the first law. Write (40) as

δM =
√
M4 − J 2

16πM(M2 + √
M4 − J 2)

δA+�HδJ (44)

The coefficient of 1
8π δA in δM is known as surface gravity and is denoted by κ . Thus, κ =

√
M4−J 2

2M(M2+
√
M4−J 2)

for

the Kerr black hole (and κ = (4M)−1 for a Schwarzschild black hole).
If we make the correspondenceE ↔M , T ↔ κ/2π , and S ↔A/4 (as in chapter VII.3), then (44) has the same

form as the usual first law of thermodynamics dE = T dS + dW = T dS − PdV relating the change in energy
dE of a system to the work dW done. We could have used (33) to eliminate �H in (44), but the form as written
serves to show that the angular velocity �H is dual to the angular momentum J in the same way that pressure
P is dual to the volume V . The work done on the black hole by the infalling particle is �HδJ .

In thermodynamics, a process is reversible if dS = 0. Here too, a process with δA= 0 is said to be reversible.
Setting δA= 0 in (44) gives us a differential equation for M(J), which we can integrate to obtain

2M2
I

=M2 +
√
M4 − J 2 (45)

with MI an integration constant. Physically, we can use the Penrose process to decrease both M and J , taking

care to ensure that in (43),
∣∣∣ drdτ

∣∣∣+ = 0. In particular, we can start with a Kerr black hole, let J → 0, and end up

with a Schwarzschild black hole with mass MI . Conversely, we can start with a Schwarzschild black hole with
mass MI and crank up the angular momentum until we get an extremal black hole of mass

√
2MI .

Appendix 2: The Weyl approach to the Kerr black hole

In chapter VI.3 I mentioned in an appendix Weyl’s short-cut derivation of the Schwarzschild solution by
plugging the Schwarzschild metric directly into the Einstein-Hilbert action and varying, a procedure justified
mathematically only decades later. Following Weyl, Deser and Franklin11 proposed plugging ds2 = gttdt

2 +
grrdr

2 + gθθdθ
2 + gϕϕdϕ

2 + 2gtϕdtdϕ into the action and varying. As you may recognize, even with the short-
cut, the situation is enormously more complicated than for the Schwarzschild case: we end up with five coupled
partial differential equations for the five functions gtt , grr , gθθ , gϕϕ , gtϕ of r and θ . Deser and Franklin were able
to make further progress only by using symmetry and gauge arguments to restrict these five functions.

Appendix 3: Rotating black holes are powerful sources of radiation

We finally come to our stated goal of understanding why rotating black holes are such powerful sources of
radiation. In chapter VII.1, we calculated the amount of energy radiated by a particle in the accretion disk around
a Schwarzschild black hole as it falls in. Here we will do the analogous calculation for a Kerr black hole.

In chapters V.4, VI.3, and VII.1, the motion of particles, massive or massless, was worked out in Schwarzschild
spacetime. So by now you should be able to work things out for the Kerr spacetime,12 but as you might suppose,
the computations become considerably more involved. We now have only cylindrical, not spherical, symmetry, so
that for the motion of a particle, only the component of its angular momentum along the direction of rotation is
conserved. Thus, in general, the motion will not be confined to a plane, so that the orbits may be quite complicated.
The exception is for motion entirely within the equatorial plane defined by θ = π/2: then angular momentum
conservation guarantees that the particle will stay in the plane.
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Confusio looks puzzled for a moment, “But in chapter I.1, and in chapters V.4, VI.3, and VII.1, for both the
Newtonian and the Schwarzschild problems, we also kept the particle in the equatorial plane.”

Yes, but the difference is that in those cases, we could do that with no loss of generality, while here the
equatorial plane is singled out as special.

So set θ = π/2 and proceed as in chapter V.4. Compared to (V.4.11–12), the conservation laws are now
necessarily more complicated due to the nondiagonal term gtϕ in the metric. Write (4) and (5) as(

gtt gtϕ

gϕt gϕϕ

) (
ṫ

ϕ̇

)
=
(−ε

l

)
(46)

where I have used the shorthand ṫ = dt
dτ

and ϕ̇ = dϕ
dτ

. As we have discussed almost ad nauseum since chapter
II.2, together with two conservation laws, we also have what amounts to the definition of proper time, which
after setting θ̇ = 0 reads gtt ṫ2 + 2gtϕṫ ϕ̇ + gϕϕϕ̇

2 + grr ṙ
2 = −1. Calling the matrix in (46) G, we can write the first

three terms in this equation as

(ṫ ϕ̇)G

(
ṫ

ϕ̇

)
= (−ε , l)G−1GG−1

(−ε
l

)
= (−ε , l)G−1

(−ε
l

)
= (det G)−1

(
gϕϕε

2 + 2gtϕεl + gtt l
2
)

But we have already evaluated det G= gttgϕϕ − g2
tϕ

. Proceeding thus, we arrive at

ṙ2 − rS

r
+ l2 + a2 (1 − ε2)

r2
− rS(l − aε)2

r3
− ε2 + 1 = 0 (47)

Of course, as an immediate check, we can verify that for a = 0, we recover (VII.1.1) for the Schwarzschild black
hole. Remarkably, even though the Kerr metric is so much more complicated than the Schwarzschild metric, for
this special equatorial plane case, the effective Newtonian potential still consists of a 1/r , a 1/r2, and a 1/r3 term.

Confusio is quick to point out that, strictly speaking, this is no longer a standard Newtonian mechanics
problem, since the potential also depends on the effective energy ε2 − 1.

But Confusio, this is no objection at all. We are merely using Newtonian mechanics as a pedagogical aid
in solving an ordinary differential equation. In fact, let’s write (47) as ṙ2 + V (r ; l , a , rS, ε) = 0 and think of a
Newtonian particle with zero total energy moving in a potential V (r) that depends on a bunch of parameters l,
a, rS, and ε.

From this point on, the physics is conceptually the same as in the Schwarzschild case in chapter VII.1, and I
urge you to review the steps there. Physically, as before, a particle in the accretion disk, starting from far away,
crashes through the other particles in the disk and eventually elbows its way into the innermost stable circular
orbit, heating up the accretion disk and radiating away energy in the process. We thus have to find the radius
rISCO of the innermost stable circular orbit and evaluate V (rISCO) to find out what fraction of the rest mass of the
particle was lost to radiation.

For clarity, break the calculation into 3 steps.

1. As in chapter VII.1, we first solve dV (r ; l , a , rS, ε)/dr = 0 to determine

rmin(l , a , rS, ε) and rmax(l , a , rS, ε)

the locations of the minimum and maximum of the potential, respectively. Since, as we already
observed, V consists of a 1/r , a 1/r2, and a 1/r3 term, this step only requires solving a quadratic
equation.

2. The term “innermost” in the astrophysicist’s acronym ISCO refers to rmin(l , a , rS, ε) decreasing until
the minimum of the potential disappears at a critical value l = lc = lc(a , rS, ε) determined by solving
rmin(l , a , rS, ε)= rmax(l , a , rS, ε). Remarkably, after all the talk about stationary limit surface and frame
dragging, the astrophysically relevant calculation involves only high school level algebra (but very messy
algebra!).

3. The third and final step requires solving V (rISCO; lc , a , rS, ε)= 0. Since rISCO has been determined in
terms of (lc , a , rS, ε), and lc in terms of (a , rS, ε), this equation determines the dimensionless number
ε(a , rS) in terms of the two lengths (a , rS); hence ε depends on the ratio a/rS. As explained in chapter
VII.1, the fraction of energy lost to radiation is then given by 1 − ε(a/rS).

You are invited to carry out this calculation (perhaps numerically), which I have so kindly outlined for you.
You will discover that the particle, just as the light ray studied earlier in this chapter, can be corotating or
counterrotating. Intuition probably tells you that by corotating, you can get in closer to the black hole and hence
lose more energy. You could make up some nice plots of how the fraction of energy lost 1 − ε(a/rS) varies as a
varies.
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As for me, I am content to work out the extremal case a = rS/2 = M , for which the expressions involved
simplify quite a bit. Going through the steps outlined here, we find readily that∗ the fraction of energy lost is
given by 1 − 1√

3
� 0.42, a whopping 42% compared to the 6% for a Schwarzschild black hole, and the pitiful

0.7% for the thermonuclear processes that power the stars!

Exercises

1 Consider the terms a(r , θ)dr2 + 2c(r , θ)drdθ + b(r , θ)dθ2 in ds2 in (1). Show that by redefining r = f (r̃ , θ),
you can get rid of the cross term.

2 Evaluate the Kerr metric in the limit r → ∞.

3 Evaluate the Kerr metric in the limit a → 0.

4 Write gϕϕ =�2 sin2 θ/ρ2. Show that �2 = (r2 + a2)2 −
a2 sin2 θ and that the Kerr metric can be written
in the form

ds2 = −
− a2 sin2 θ

ρ2
dt2 − 2rSar sin2 θ

ρ2
dtdϕ + ρ2



dr2 + ρ2dθ2 + �2

ρ2
sin2 θdϕ2 (48)

5 Show that the Kerr metric can be written in the form (23).

6 Plot ω(r , θ) as a function of r for various values of θ and a.

7 Using rS as the unit of length, show that

rS�±(θ = π/2)=
(
g ± x

√
g2 + x(x − 1)

)
/
(
x3 + g2(x + 1)

)

with x ≡ r/rS and g ≡ a/rS. Note that

xS+ = rS+(θ = π/2)/rS = 1 and x+ = r+(θ = π/2)/rS = 1
2

(
1 +√

1 − 4g2
)

Plot rS�±(θ = π/2).

8 Show that in the equatorial plane, light rays follow

1
l2

(
dr

dζ

)2

+ 1
r2

{
1 − a2

b2
−
(

1 − sign(l)
a

b

)2
rS

r

}
= 1
b2

(49)

with as usual the impact parameter b = l
ε

. Compare with the corresponding Schwarzschild potential
1
r2

(
1 − rS

r

)
in (VII.1.12), which we can recover from the potential here by setting a = 0. An interesting new

feature here is the appearance of the sign function sign(l), reminding us that corotating and counterrotating
light behave differently.

9 For completeness, I write Kerr’s two original forms13 here: (I)

ds2 = −
(

1 − rrS

ρ2

) (
du+ a sin2 θdϕ

)2

+ 2
(
du+ a sin2 θdϕ

) (
dr + a sin2 θdϕ

)
+ ρ2

(
dθ2 + sin2 θdϕ2

)
(50)

∗ Also lc = rS√
3

and rISCO = rS
2 =M .
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with ρ2 = r2 + a2 cos2 θ as in the text, and (II)

ds2 = −dt2 + dx2 + dy2 + dz2 + rSr
3

r4 + a2z2

(
dt + r(xdx + ydy)

r2 + a2
− a(ydx − xdy)

r2 + a2
+ z

r
dz

)2

(51)

with the function r(x , y , z) defined by

x2 + y2

r2 + a2
+ z2

r2
= 1 (52)

Find the coordinate transformations that bring these into the Boyer-Lindquist form (15).

10 The Kerr-Schild form is obtained by noting that in (50), the dependence on the mass M of the black hole can
be explicitly split off by writing the metric as gμν = g0

μν
+ 2Mr

ρ2 lμlν , with g0
μν

independent of M and with the

vector lμ = (1, 0, 0, a sin2 θ) in the basis xμ = (u, r , θ , ϕ). Show that lμ is null (that is, lightlike) with respect
to both gμν and g0

μν
.

11 According to the preceding exercise, the Kerr metric in the limit M → 0 should give the Minkowski metric
heavily disguised as g0

μν
. Calculate the Riemann curvature tensor for g0

μν
.

Notes

1. Frame dragging: Consider a number of related slang expressions in various unrelated languages, for example
“draguer” in French (originally, to fish with a drag net), and “to drag or pull a girl along” in Cantonese.

2. A deep and involved song and dance in quantum field theory shows that the negative root, when correctly
interpreted, leads to the existence of antimatter. See QFT Nut or any other quantum field theory text.

3. As expressed in Boyer-Lindquist coordinates. Kerr originally wrote the solution in another form. See exer-
cise 9.

4. For an interesting discussion of the history, see D. L. Wiltshire, M. Visser, and S. M. Scott, eds., The Kerr
Spacetime: Rotating Black Holes in General Relativity, Cambridge University Press, 2009.

5. For a first-person account of the events leading up to the Kerr solution (and how the young Kerr was allowed
only 10 minutes at the conference where he presented his solution), see G. Dautcourt, “Race for the Kerr
Field,” arXiv:0807.3473. According to this author, the construction of the Berlin Wall affected the race.

6. For a detailed and rather technical analysis, see N. Straumann, General Relativity, pp. 432ff.
7. In 1968, B. Carter showed how, with various assumptions (such as separability), one could obtain the Kerr

metric.
8. There is, however, a formal similarity, with the role of the infalling particle in the Penrose process played by

a vacuum fluctuation in the Hawking process.
9. The interested reader can find a drawing in C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation,

showing an advanced civilization, having erected a spherical metal framework around a Kerr black hole,
dumping its garbage through the horizon.

10. Of course, if we were able to get ourselves near a Kerr black hole, we might as well navigate close to any old
sunlike star.

11. S. Deser and J. Franklin, arXiv: 1002.1066 (2010).
12. I should mention that for rotating spacetimes the analog of the Newton-Jebsen-Birkhoff theorem does not

exist. Outside a rotating star or planet that is not a black hole, the spacetime does not have to be the Kerr
spacetime; it merely has to approach the Kerr spacetime far away. (In chapter IX.4, we will see that the
spacetime outside a mass distribution could be given as a multipole expansion in terms of the T μν of the
mass distribution. Within some constraints, you have the freedom to arrange T μν and hence modify the
spacetime outside. Far away, however, the higher multipoles fall away, and the spacetime must approach
Kerr asymptotically.)

13. For a useful list of relevant results for the Kerr black hole, see the article by M. Visser in Wiltshire et al. ibid.



VII.6 Charged Black Holes

Black holes with electric charge

Reissner in 1916 and Nordström in 1918 discovered independently a spacetime with the
same setup as in the Schwarzschild solution, except that the central mass carries an electric
charge∗ Q. Since it is difficult† to imagine an astrophysical object with a large electric
charge, the solution is of theoretical, rather than practical, interest.

As is the case for Schwarzschild spacetime, the metric has the form ds2 = −A(r)dt2 +
B(r)dr2 + r2d�2 with A(r) and B(r) to be determined. In addition to Einstein’s equation,
we now also have to solve Maxwell’s equation DμF

μν = 1√−g ∂μ(
√−gFμν) = 0. Spheri-

cal symmetry implies that the electric field has only a radial component, which we will
call E = F0r = −Fr0, with the identification in terms of the field strength given in chap-
ter VI.4. Thus, F 0r = g00grrF0r = E/(AB). Also, g = −ABr4 sin2 θ . Maxwell’s equation
thus reduces to ∂r(r2E/

√
AB)= 0, with the solution

E = Q
√
AB

r2
(1)

The electric chargeQ is defined by the boundary conditionE(r)→Q/r2 as r → ∞. Since
the energy density contained in the electric field dies off rapidly, we expect spacetime to
be asymptotically flat, that is, A(r)→ 1, B(r)→ 1, as r → ∞. With F0r = −Fr0 the only
nonzero components of the field strengthFμν, the other Maxwell’s equation ερλμνDλFμν =
0 is trivially satisfied.

Next, we have to solve Einstein’s equation, now with a nonvanishing Tμν from the energy
momentum contained in the electromagnetic field. From chapter VI.4, we have Tμν =
FμλF

λ
ν

− 1
4g

μνFσρF
σρ. Recall that the energy momentum tensor of the electromagnetic

∗ The Kerr solution also can be endowed with an electric charge, in which case it is known as the Kerr-Newman
solution.

† Since any such object, if, say, positively charged, would attract electrons from its environment and repel
protons and so quickly neutralize its charge.
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field is traceless, so that Einstein’s equation (VI.5.10) reduces to

Rμν = 8πGTμν (2)

where the Ricci tensor Rμν was computed in chapter VI.3. As before, (2) contains three
equations, for μν = 00, rr , and θθ , but due to the Bianchi identity, only two of these
equations are independent and serve to determine the two unknown functions A and B.

Let us now compute T00 = grrF0rF0r − 1
4g00(2F0rF0r)g

00grr = (E2/B)+ 1
4 (−2E2)/B =

E2/(2B). Similarly, we find Trr = −E2/(2A) and Tθθ = r2E2/(2AB). Thus,BT00 +ATrr =
0, and soBR00 +ARrr = 0. At this point, either we look up the expression forR00 andRrr in
chapter VI.3, or we remember, if we are endowed with a great memory, that BR00 +ARrr

is proportional to the combination
(
A′
A

+ B ′
B

)
. Either way, we find

(
A′
A

+ B ′
B

)= 0 with the
instant solution AB = 1, just as in the Schwarzschild solution.

Things now simplify: in particular, Tθθ =Q2/(2r2). Putting this into the μν = θθ equa-
tion in (2), looking up Rθθ in chapter VI.3, and eliminating B = 1/A, we obtain A+ rA′ =
(rA)′ = 1 − (4πGQ2/r2) with the solution

A(r)= 1 − 2GM
r

+ 4πGQ2

r2
(3)

Also, as in the Schwarzschild case, the total mass M appears as an integration constant
fixed by the boundary condition as r → ∞.

You might have thought that solving the coupled Einstein and Maxwell equations would
be rather difficult, but thanks to spherical symmetry, the solution pops out easily and has
a remarkably simple form.1

Spacetime structure of the charged black hole

We now regard the Reissner-Nordström spacetime as a charged black hole (rather than a
charged star). I will merely sketch some salient features of the spacetime, referring you to
more specialized treatments. Indeed, the rest of this chapter may be omitted upon a first
reading and is not needed for the rest of this book. For the sake of clarity, let us use units
in which G= 1 and absorb the 4π in (3) into the definition of Q, so that we write

ds2 = −
(

1 − 2M
r

+ Q2

r2

)
dt2 +

⎛
⎝ 1

1 − 2M
r

+ Q2

r2

⎞
⎠ dr2 + r2d�2 (4)

Consider the function A(r)= −g00(r)= (
1 − 2M

r
+ Q2

r2

)= (r − r+)(r − r−)/r2 with

r± =M ±
√
M2 −Q2 (5)

Evidently, charged black holes fall into three categories: (a) subextremal, with Q<M ;
(b) extremal, withQ=M ; and (c) transextremal or “naked,” withQ>M . The terminology
will become clear shortly.



VII.6. Charged Black Holes | 479

Subextremal black hole

ForQ= 0, r+ = 2M and we recover the Schwarzschild black hole, of course. As r decreases
from infinity, the function A(r)= 1 − 2GM

r
decreases from 1 to −∞, crossing zero at the

Schwarzschild radius 2M . But as soon as we crank up Q, the +Q2/r2 electric term in (3)
takes over for small r , arresting the plunging A(r) and pulling it back up to infinity. (Plot
this!) The curious feature is that while t becomes a spacelike coordinate for r− < r < r+,
it goes back to being a timelike coordinate again once we get below r−. Indeed, in sharp
contrast to the Schwarzschild black hole, the physical singularity at r = 0 is timelike. In
other words, for small r , ds2 → −Q2

r2 dt
2 + r2

Q2dr
2 + r2d�2.

As we crank upQ further, atQ=M , the functionA(r) just barely touches the r-axis and
the two roots r± merge, with r+ = r− =M . This is known as an extremal black hole. We
will come back to it later. For now, let’s ask what happens if we crank up Q even further.

Naked singularity and cosmic censorship

For Q>M , the roots r± disappear. The function A(r)= −g00(r) does not vanish. It goes
from 1 at r = ∞ to ∞ at r = 0, staying positive the whole time. Similarly, 1/A(r) =
−g00(r) stays positive. Thus, in contrast to the subextremal black hole (which includes
the Schwarzschild black hole), t and r are perfectly respectable timelike and spacelike
coordinates, respectively, with a spacetime described by the Penrose diagram in figure 1.

Recall that for the Schwarzschild black hole, because of the horizon, signals from the
vicinity of the physical singularity at r = 0 cannot get out to an observer stationed at
r = ∞. Observers outside the horizon cannot see the singularity. General relativists rather
picturesquely say that the singularity is clothed by the horizon.

In contrast, here we have what is known as a naked singularity, visible to the outside
world. Signals from the vicinity of the physical singularity at r = 0 can get out to r = ∞.

There was a long history of hand-wringing over the appearance of naked singularity in
classical general relativity, culminating in the cosmic censorship conjecture. The conjec-
ture states that for reasonable initial conditions, a naked singularity cannot form. This
does not mean that Einstein’s field equation does not allow naked singularities: verily, the
Reissner-Nordström black hole for Q>M offers an example. But it is an eternal black
hole just sitting there; the conjecture addresses the issue of whether it could have formed.
I direct the interested reader to the vast literature devoted to the conjecture.

You may catch some flavor of the conjecture by noting that, in the Reissner-Nordström
example, M governs how the metric approaches Minkowskian as r → ∞ and thus by
definition is the total mass of the black hole. Because the electric force is repulsive, we
expect the electric field to contribute positively to M . In contrast, the gravitational force
is attractive, so we expect that it will contribute negatively. The transextremal condition
Q>M says that the black hole is not very massive for its charge. This implies a large



480 | VII. Black Holes

r = constant surfaces

timelike trajectories

i+

r+

r+

r+

r+

r+

r+

r+

r+

r– r–

r–

r–

r–

r–

i0 i0

i+

r = 0

r = 0

r = 0r = 0

i– i–

i+

i0 i0

i+

i– i–

Figure 1 Penrose diagram for a charged black hole.

negative gravitational contribution needed to cancel the positive electric energy. At issue
is whether the needed negative contribution is physically reasonable.

Although the conjecture sounds plausible, it has never been proved. The proof of the cos-
mic censorship conjecture constitutes a difficult mathematical challenge, but regardless,
the presence of naked singularities indicating a breakdown in our conception of space-
time is surely a problem for classical general relativity. Opinions differ on whether naked
singularities pose a problem for theoretical physics. Most people believe that quantum
gravity would “smooth out” a naked singularity; indeed, even our classical conception of
spacetime may disappear in whatever theory of quantum gravity we end up with.

One subject we do not go into in this book consists of the various rigorous singularity
theorems2 telling us in general under what circumstances various types of singularities
can and cannot occur. These theorems3 are typically proved by assuming that the metric
satisfies Einstein’s field equation with a physically reasonable∗ T μν.

∗ For example, that it must satisfy the strong energy condition to be discussed in appendix 3 of chapter IX.3.
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Extremal black holes neither attract nor repel

Let’s return to extremal black holes.4 You might have noticed that the extremal condition
Q2 = M2 suggests that the gravitational attraction −M2/r2 and the electric repulsion
Q2/r2 between two extremal Reissner-Nordström black holes balance each other. (Recall
that we have set G= 1 and absorbed a factor of 4π .) That there is no net force between
two extremal black holes indicates that we could put a bunch of these objects down at
arbitrary locations and they would just sit there. We could not do this with Newtonian
masses: they would fall toward one another. Nor could we do this with Coulomb charges.
But with extremal black holes, yes! Newton balances Coulomb.

This physical intuition, if true, implies an amazing mathematical fact: there must
exist an entire family of static solutions of the coupled Einstein and Maxwell equations
describing a bunch of extremal black holes just sitting there. As you will see in appendix 1,
it is not entirely trivial to find these solutions, but without the physical motivation, the
solutions would appear to be miraculous.5

Extremal black holes are in some sense exceptional objects,6 poised on the dividing
line between subextremal black holes and naked abominations, perhaps reminiscent of a
pencil balanced on its tip at the very edge of a table.

No-hair theorems

In my entire scientific life . . . the most shattering experience
has been the realization that an exact solution of Einstein’s
equations of general relativity, discovered by . . . Kerr, provides
the absolutely exact representation of untold numbers of massive
black holes that populate the universe.

—S. Chandrasekhar

When you read the preceding chapter on the Kerr black hole, were you as shattered as
Chandrasekhar was? What, you are still in one piece?

Consider two massive stars circling each other. To characterize the system completely,
we would have to give the mass and size of each of the stars, the chemical composition,
the temperature, the orbital parameters, and on and on—you get the idea. Eventually, they
approach each other, and after radiating some electromagnetic and gravitational waves,
form a rotating black hole. Now only two numbers, the mass M and angular momentum
J , suffice to characterize the system.

Amazingly, spacetime, in swallowing up matter and curling over to form a black hole,
manages to obliterate almost all the evidence, as it were. The Schwarzschild black hole is
characterized completely and exactly by its mass M ; the Reissner-Nordström black hole
by M and Q; the Kerr black hole by M and J ; and the Kerr-Newman black hole by M , J ,
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and Q. (We omit mentioning magnetic charge here; see exercise 3.) In practical terms, if
you were the commander of a spaceship approaching a planet, your second-in-command
might have to give you a massive computer file listing the location and height of every
mountain and so forth, but if you were approaching a black hole, only a tiny slip of paper
with a couple of numbers written on it would suffice.

So, what are so special about M , J , and Q? The answer should be clear to you: they
couple to the two infinite ranged fields we know about, namely the gravitational and the
electromagnetic field. All the other physical quantities that went into the making of the
black hole are subsequently hidden behind the horizon. Wheeler has summarized this
state of affairs by quipping that “Black holes have no hair.”

Appendix 1: Extremal black holes just sitting there

Let us now verify the physical argument that there must exist an entire family of static solutions of the coupled
Einstein and Maxwell equations describing a bunch of extremal black holes “just sitting there.” Start with a single

extremal black hole. With Q = M , the metric in (4) becomes ds2 = −
(

1 − M
r

)2
dt2 +

(
1

1− M
r

)2

dr2 + r2d�2.

Spherical coordinates are dandy for one black hole, but not so good when we have a whole bunch of them.
So, exploit our freedom to change coordinates and set r = ρ + M . A few lines of arithmetic lead us to ds2 =
−f (ρ)−2dt2 + f (ρ)2(dρ2 + ρ2d�2), with f (ρ) = 1 + M

ρ
. We next introduce Cartesian coordinates by setting

dρ2 + ρ2d�2 = dx2 + dy2 + dz2.
Now consider the Ansatz

ds2 = −f (x , y , z)−2dt2 + f (x , y , z)2(dx2 + dy2 + dz2) (6)

with f (x , y , z) some unknown function of x , y , z, not necessarily f (ρ). We are supposed to plug this into
Einstein’s equation.

We also need an Ansatz for the electromagnetic field. For a single extremal black hole, the only nonvanishing
component ofAμ (the factor of

√
4π in the following expression comes from our scalingQ so that extremal means

Q=M) is the time componentA0 =Q/(
√

4πr)=M/(
√

4π(ρ +M))= (1 − f (ρ)−1)/
√

4π , with f (ρ)= 1 + M
ρ

.
Our inspired guess is to set the only nonvanishing component of Aμ to be

A0(t , x , y , z)= 1√
4π

(
1 − f (x , y , z)−1

)
(7)

with the same unknown function f (x , y , z) as in (6).
A priori, it would seem hopeless that the Ansatz (6) and (7) with a single time independent function f (x , y , z)

could solve the numerous coupled Einstein and Maxwell equations, but as I said, we are buoyed by our faith in
our physical picture. Start with F0i = −∂iA0 ∝ (∂if )/f

2 (where evidently, ∂i ≡ ∂

∂xi
and (x1, x2, x3)= (x , y , z)).

Since g = −f 4, Maxwell’s equation 1√−g ∂μ(
√−gFμν)= 1√−g ∂i(

√−gF iν)= 0 reduces to ∂i(f 2F0i)= ∇2f = 0.
The unknown function f satisfies Laplace’s equation.

Next, to solve Einstein’s equation, we first have to compute the energy momentum tensor

Tμν = FμλF
λ
ν

− 1
4 gμνFσρF

σρ (8)

which I copy here for convenience. First, note that g00 = −1/f 2, g11 = f 2, g00 = −f 2, and g11 = 1/f 2, so that
F 01 = g00g11F01 = −(∂1f )/f

2 and FσρF
σρ = −2(∂if )2/f 4 (where (∂if )

2 = ∑
i ∂if ∂if ). Then T00 = F0iF

i
0 −

1
4 g00FσρF

σρ = (∂if )
2/(2f 6). Similarly, we have T11 = {(∂if )2 − 2(∂1f )

2}/(2f 2) and of course also the corre-
sponding expressions for T22 and T33. Clearly, T0i = 0, but T12 = −(∂1f )(∂2f )/f

2 does not vanish. A simple
check on the arithmetic is that the trace T = gμνTμν vanishes.

Onward to Einstein’s equation Rμν = 8πTμν . After some work, we find R00 = {(∂if )2 − f∇2f }/f 6, R11 =
{(∂if )2 − 2(∂1f )

2 − f∇2f }/f 2, and R12 = −2(∂1f )(∂2f )/f
2. Plugging in, we find, remarkably enough, that
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Einstein’s equation collapses to ∇2f (x , y , z) = 0, in agreement with what Maxwell’s equation demands. As I
explained, it is amazing, but perhaps a bit less amazing, given our physical motivation.

Well, we all know how to solve Laplace’s equation in empty 3-dimensional space. The general solution is

f (�x)= 1 +
N∑
a=1

Ma

|�x − �xa|
(9)

with the additive constant chosen so that A0 → 0 as �x → ∞. As promised, we have found a time independent
solution of the coupled Einstein-Maxwell equations describing N extremal black holes with arbitrary mass
Ma = Qa sitting at arbitrary locations �xa. They are not moving, because the force between any pair of black
holes vanishes! Note that (9) implies a highly nontrivial electric field �E.

There are no doubt more elegant ways to arrive at the solution, but in an introductory text, I prefer an explicit
calculation. The discussion provides an example of physical intuition leading to a mathematical result that would
otherwise be unsuspected.

Appendix 2: The interior of a subextremal Reissner-Nordström black hole

I sketch here what happens to an observer falling into a subextremal Reissner-Nordström black hole with
Q2 <M2. (Take the observer to be electrically neutral, so that there is no Lorentz force acting on him.) As he
falls past the horizon at r+, the physics is much the same as experienced by an observer falling past rS in a
Schwarzschild black hole. Indeed, for r <∼ r+, we have −g00(r)= (r − r+)(r − r−)/r2 � (r − r+)(r+ − r−)/r2

+,
which as expected, is close to the corresponding Schwarzschild expression (r − r+)/r+ for r+ � r−.

The key physics is that r has turned itself into a time coordinate, and the observer is obliged to keep moving
in the direction of decreasing r toward the physical singularity r = 0. But unlike the Schwarzschild case, the
observer falling into a subextremal Reissner-Nordström black hole is not doomed: once he gets past r−, the r
coordinate turns back into a space coordinate! In the region r < r−, the observer can move however he wants.
He could lazily fall in toward r = 0, but he could also move in the direction of increasing r by firing his rocket.
Once he gets past r−, the r coordinate turns into a time coordinate again, but this time, since he was moving in
the direction of increasing r , he is obliged to keep on moving in the same direction. Eventually, he zooms past
r+ and escapes from the black hole.

Just as in the Schwarzschild case, where we saw that (t , r) are not good coordinates to use, to make sense
of the story here, we also have to work and replace (t , r) by more sensible coordinates so as to eventually arrive
at the analog of the Kruskal extension of the Schwarzschild metric. We won’t go through that here, but have
shown the result in the form of a diagram (see figure 1), the analog of figure VII.2.7. In the Schwarzschild case,
the physical regions I and II are extended to regions III and IV. Here the physical regions we started out with
are repeated indefinitely. As indicated in the figure, our intrepid observer, when he zooms past r+, will actually
enter a different asymptotically flat spacetime than the one he started out from.

If you feel that the eternal Schwarzschild black hole with its Kruskal extension is more of a mathematical
construct than a physical entity, you would feel even more strongly about the subextremal Reissner-Nordström
black hole with its extension.

Exercises

1 Show that a photon moving in a radial direction in a subextremal Reissner-Nordström black hole follows a
path determined by dt

dr
= ± r2

(r−r+)(r−r−) . Integrate this equation.

2 Show that by defining dt̄ = dt + (A(r)−1 − 1)dr (in complete analogy to what we did in chapter VII.2), we
can write the Reissner-Nordström metric in the form

ds2 = −Adt̄2 + 2(1 − A)dt̄dr + (2 − A)dr2 + r2d� (10)

3 Find a solution describing a black hole endowed with a magnetic charge. In fact, you can write a solution
with both electric and magnetic charges. This merely reflects what is known as electromagnetic duality.



484 | VII. Black Holes

Notes

1. Here is a handwaving understanding of the solution. SinceA(r)→ 1− 2GM
r

as r → ∞,M represents the total
mass, including the electromagnetic contribution. As r decreases, by Newton’s second superb theorem (see

chapter I.1), we should subtract off the electromagnetic contribution ∼ 4π
∫∞
r

drr2 1
2
Q2

r4 = 2πQ2

r
and define,

heuristically, an effective mass M̃(r)∼M − 2πQ2

r
. We then guess thatA(r)∼ 1 − 2GM̃

r
= 1 − 2GM

r
+ 4πGQ2

r2 .
2. Proved by B. Carter, G. F. R. Ellis, S. Hawking, R. Penrose, and many others. I refer you to more advanced

monographs by some of these authors.
3. Just to give you a flavor of this kind of theorem, let me mention that one theorem states that, with the

strong energy condition, if a metric has a trapped surface from which light rays cannot escape, then either
a singularity or a closed timelike curve is present.

4. They have also played an important role in string theory.
5. This is why I give you the physics first, unlike some other authors.
6. The interested reader is referred to the literature, which can be traced from E. Poisson and W. Israel, Phys.

Rev. D 41 (1990), p. 1796, and D. Marolf, arXiv:1005.2999. Poisson and Israel found an instability associated
with the inner horizon of close-to-extremal but still subextremal black holes. Marolf, referring to this as the
“dangers of extremes,” suggests that the more remarkable features of the interior spacetime of extremal
black holes would in fact not survive any quantum fluctuation.



Recap to Part VII

Surprisingly, that innocuous gravitational action that leapt out at us is capable of altering
the causal structure of spacetime.

The 18th century fantasy of Michell and Laplace is realized by a global alteration of
spacetime. Even more amazingly, when quantum fluctuations are turned on, a hapless
member of a fluctuating pair could fall through the horizon, allowing its partner to escape
to infinity.

A rotating black hole can drag spacetime around with it and can convert mass into energy
at an efficiency almost 100 times higher than that of nuclear processes.

Charged and extremal black holes are fun objects to play around with, but perhaps more
importantly, the relativistic equation for stellar interiors can also be written down without
much fuss.





Part VIII Introduction to Our Universe





VIII.1 The Dynamic Universe

The universe comes to life

The Newtonian universe offers a rigid space for stuff to move in, but as we already saw
in chapter VI.2, the Einsteinian universe enjoys a life of its own, bending and curving,
reacting to the stuff that fills it. Stuff tells spacetime how to curve. The actors act back on
the stage.

Back in chapter VI.2 we made a mad dash to cosmology, but at that point, we didn’t
know enough and were able to fill the universe with only dark energy, presumed to be a
manifestation of Einstein’s cosmological constant. Later, in chapter VI.4, we learned how
to obtain, given a matter action, the corresponding T μν. We can now plug our favorite T μν

into the right hand side of Einstein’s field equation (VI.5.10)

Rμν = 8πGSμν ≡ 8πG(T μν − 1
2g

μνT ) (1)

thus filling up the universe with one ingredient or another, and watch the universe evolve
as dictated by (1).

Also, in chapter VI.2, we took the universe to be described by

ds2 = −dt2 + a2(t)((dx1)2 + (dx2)2 + (dx3)2)

While spacetime is curved, space itself is flat. Let us now generalize this description to

ds2 = −dt2 + a2(t)g̃ij (�x)dxidxj (2)

where g̃ij (�x) denotes a 3-dimensional metric associated with the space we live in. In other
words, the universe is regarded as a curved space described by dl2 = g̃ijdx

idxj , stretched
at any given instant by the function a(t), the scale factor of the universe. For the moment,
we leave g̃ij unspecified.
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It is conventional to normalize the scale factor by setting a(t0)= 1, with t0 the time at
present. Recall also from chapter V.3 that we can relate a(t) to the redshift z commonly
used by astronomers by

a(t)= 1
1 + z

(3)

(You can verify that the derivation given earlier goes through regardless of g̃ij .) A
large redshift z > 0 corresponds to a time when the universe was smaller by a factor
a(t) < 1.

The curvature of the universe

One goal of cosmology is to find out what the universe is filled with, and as a result, how the
universe expands. To study cosmic expansion, we have to calculate the Ricci tensor. Resort
to our usual trick of extracting the Christoffel symbols we need from the geodesic equations
obtained by varying

∫
[dt2 − a2(t)g̃ij (�x)dxidxj ]

1
2 , with dτ 2 = dt2 − a2(t)g̃ij (�x)dxidxj , as

has been explained ad nauseum in this text starting in chapter II.2. By now you can probably
do this with your eyes half closed.

For example, varying with respect to xl, we write the resulting Euler-Lagrange equa-
tion as

1
2a

2(t)∂lg̃ij
dxi

dτ

dxj

dτ
= d

dτ

(
a2(t)g̃li(�x)dx

i

dτ

)

= a2(t)g̃li(�x)d
2xi

dτ 2
+ 2ȧ(t)g̃li(�x) dt

dτ

dxi

dτ
+ a2(t)∂j g̃li(�x)dx

i

dτ

dxj

dτ
(4)

Multiplying by g̃nl and cleaning up, we obtain

d2xl

dτ 2
+ 2ȧ

a

dt

dτ

dxl

dτ
+ �̃l

ij

dxi

dτ

dxj

dτ
= 0 (5)

The Christoffel symbol for the spatial metric g̃ij

�̃l
ij

≡ 1
2 g̃

lk
(
∂j g̃ik + ∂ig̃jk − ∂kg̃ij

)
(6)

emerged rather nicely, but of course from general considerations, we knew that the
derivatives of g̃ij that appeared in (4) had to self-assemble appropriately. Note that the
derivation of (5) makes clear that g̃lk in (6) denotes the inverse of g̃ij , not the lk component
of gμν.

Varying with respect to t yields

d2t

dτ 2
+ aȧg̃ij

dxi

dτ

dxj

dτ
= 0 (7)

From (5) and (7), we read off the following nonvanishing Christoffel symbols:

�0
ij

= aȧg̃ij , �l0i =
ȧ

a
δl
i
, �l

ij
= �̃l

ij
(8)
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It is instructive to compare with what we had in chapter VI.2:�0
ij

= aȧδij , �i0j = �ij0 = ȧ
a
δij ,

and �lij = 0 for flat space (but curved spacetime!). Indeed, given these results, we could
have almost guessed (8).

From (8), a straightforward and not so tedious calculation then gives the following
nonvanishing components of the Ricci tensor:

R00 = −3ä
a

, Rij = R̃ij +
(

2ȧ2 + aä
)
g̃ij (9)

where R̃ij is the Ricci tensor for the spatial metric g̃ij . As in chapter VI.2, we can understand
the general features of these results, notably that R00 cannot depend on g̃. If we set g̃ij to
the flat metric, we should recover the result Rij = (2ȧ2 + aä)δij we had before. But if we
set a to a constant, we must have Rij = R̃ij . Hence, the result for Rij could also have been
anticipated.

Cosmological principle

A working assumption of cosmology is that on scales much larger than galaxies, the uni-
verse is homogeneous and isotropic: it has neither a special location nor a special direction.
This so-called cosmological principle, a direct intellectual descendant of the Copernican
principle, has been verified to remarkable accuracy observationally, notably by measure-
ments of the cosmic microwave background.∗ Of course, this “perfect” cosmological prin-
ciple may have to be modified at any moment by new and unexpected observations,† but
accepting it, we can then fix g̃ij (�x).

Intuitively, we readily understand that 3-dimensional spaces without special location
and direction more or less have to be the Euclidean 3-space E3, the 3-sphere S3, or its
hyperbolic cousin H 3, discussed really way back in chapter I.6. (In chapter IX.6, we will
make this expectation precise with a full-fledged discussion of isometry and maximally
symmetric spaces.) Indeed, in chapter V.3, we already explained that our universe could
be (spatially) closed, flat, or open, described by

ds2 = −dt2 + a(t)2

⎛
⎝ 1

1 − k r2

L2

dr2 + r2d�

⎞
⎠ (10)

with the integer k = 1, 0, and −1, respectively, known as a Friedmann-Lemâıtre-Robertson-
Walker universe. As was also explained there, we will be often tempted to absorb the length
scale L into r , so that r is then dimensionless and ds2 = −dt2 + R(t)2

( 1
1−kr2dr

2 + r2d�
)
,

withR(t)≡ La(t). With the convention a(t0)= 1, we haveL=R(t0)≡R0. Do not confuse

∗ We assert here that a decade or two ago, it was possible to write a text on gravity and include a more or
less complete discussion of observational cosmology. But by now, considering that we are living in a golden
age of cosmology, such a discussion would be either annoyingly brief or soon hopelessly out of date. Thus, I
cannot possibly do justice to observational cosmology and have to refer you to the standard texts on cosmology
by Dodelson, by Mukhanov, and by Weinberg. This remark applies to all the chapters in part VIII.

† Periodically, there are disturbing hints1 that the cosmological principle might fail.



492 | VIII. Introduction to Our Universe

R(t), which is evidently a length, with the scalar curvatureR. In any case, this is becoming
standard usage.

Plugging the spatial metric g̃ij defined by dl2 = g̃ijdx
idxj = 1

1−kr2dr
2 + r2d� into the

formula for the Ricci tensor, we obtain, after a straightforward calculation,

R̃ij = 2k
L2

g̃ij (11)

Indeed, we could have anticipated that the Ricci tensor R̃ij would turn out to be propor-
tional to g̃ij . What else could it be, for a space with no special direction and location? No
other symmetric 2-indexed tensor is lurking around. (In chapter IX.6, we will prove that
this property holds for any maximally symmetric space.) Furthermore, the Ricci tensor
vanishes when k = 0. Dimensional analysis nails down the 1/L2. Thus, you could say that
the calculation you just did (didn’t you?) is merely to get the 2 in (11).

Thus, in the end, the message is that life is simple: the spatial components of the
spacetime Ricci tensor (see (9) and (11)) are given by

Rij =
(

2ȧ2 + aä + 2k
L2

)
g̃ij =

(
2Ṙ2 + RR̈ + 2k

)
g̃ij/L

2 (12)

Note the distinction between the spatial components of the spacetime Ricci tensorRij and
the spatial Ricci tensor R̃ij . They are of course not the same.

Filling the universe with a perfect fluid

Let’s fill the universe up with a perfect fluid: it deserves no less.
We first worked out the energy momentum tensor T μν = (ρ + P)UμUν + Pημν of a

perfect fluid in flat spacetime back in chapter III.4, and then, for our discussion of stellar
interiors in chapter VII.4, promoted it, by invoking the equivalence principle, to the form

T μν = (ρ + P)UμUν + Pgμν (13)

appropriate for curved spacetime. We now use (13) to source the geometry of the universe.
Let’s write this out for a diagonal metric (such as the one we have here) in the comoving

frame (in which �U vanishes). First, the normalization condition gμνU
μUν = −1 reduces

to g00(U
0)2 = −1, so that Uμ = (1, �0)/√−g00. Thus, T 00 = (−g00)

−1(ρ + P) + Pg00 =
−ρ/g00 and T ij = Pgij .

In the present context, g00 = −1 and so T 00 = ρ and T ij = P

a2 g̃
ij in the comoving frame.

Let’s next see how energy momentum conservation

DμT
μν = ∂μT

μν + �
μ
μλT

λν + �ν
μλ
T μλ = 0 (14)

works in our expanding universe.
For ν = 0, using the diagonal character of T μν, the assumed spatial homogeneity of the

universe, and the list (8) of Christoffel symbols, we obtain DμT
μ0 = ∂0T

00 + �
μ
μ0T

00 +
�0
ij
T ij . Write this out more explicitly. First, look up in (8) that �μμ0 = 3ȧ

a
and �0

ij
= aȧg̃ij .

Plugging in our result T 00 = ρ and T ij = P

a2 g̃
ij in the comoving frame, we find �0

ij
T ij =

aȧ P

a2 g̃ij g̃
ij = 3P ȧ

a
, and thus
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ρ̇ + 3ȧ
a
ρ + 3P ȧ

a
= 0 ⇒ ∂0

(
ρa3

)
= −P∂0a

3 (15)

It is instructive to verify an identity we derived in chapter V.6: �μμλ = 1√−g ∂λ
√−g,

where g ≡ det gμν. Recall from way back in chapter I.5 that g does not transform as a
scalar, but that d4x

√−g does and so measures volume. Physically, suppose the comoving
observer marks out a spatial box measuring 
x1
x2
x3; then the volume of the box is
actually 
x1
x2
x3√−g. Here (−g) = a(t)6g̃, and thus the volume is proportional to

a(t)3
√

det g̃ij . The first factor a(t)3 takes into account the expansion of the universe, the

second the effect of spatial curvature. Now evaluate the λ= 0 component of the identity:
�
μ
μ0 = 1√−g ∂0

√−g = 1
a3∂0a

3 = 3ȧ
a

(since g̃ does not depend on t), in agreement with what
we had in (8). The identity works, of course; the pedagogical point, rather, is that this
little exercise sheds light on the physical meaning of the term 3ȧ

a
ρ in the conservation

law above: the energy density changes partly because the volume seen by the comoving
observer changes due to the expansion of the universe.

Now we also understand (15): the energy density also changes partly due to the pressure
acting on the comoving volume. It is satisfying to see the adiabatic version of the first law
of thermodynamics dE = −PdV recovered in (15), as already explained in chapter VI.2.

Next, we look at the ν = j component of (14). What could it possibly tell us? Go ahead,
take a guess before reading on.

Well, once again looking up in (8) the Christoffel symbols we need, we have DμT
μj =

∂μT
μj + �

μ
μλT

λj + �
j

μλT
μλ = ∂iT

ij + �̃i
il
T lj + �̃

j

il
T il. Plugging in T ij = P

a2 g̃
ij , we see that

DμT
μj = 0 means that

∂i

(
P

a2
g̃ij
)

+ P

a2

(
�̃i
il
g̃lj + �̃

j

ilg̃
il
)

= 1
a2

[
g̃ij∂iP + P

(
∂ig̃

ij + �̃i
il
g̃lj + �̃

j

ilg̃
il
)]

= 0

Since we are assuming spatial homogeneity, P (and anything else, for that matter) cannot
depend on xi. Physically, the pressure gradient ∂iP must vanish in the comoving frame,
since otherwise some sort of counterflow must occur to cancel out the pressure gradient.
The three terms in the round parentheses multiplying P collect nicely into the (spatial)
covariant derivative D̃ig̃

ij of the spatial metric, which vanishes identically, as we learned
back in chapter V.6.

Thus, the correct guess is thatDμT
μj = 0 tells us nothing at all: it is identically satisfied.

Did you pass the test? I know that all we are doing here is verifying the laws of arithmetic,
but nevertheless, I find it quite satisfying to see all the pieces coming together to form 0
identically.

Closed, open, and flat universes

We are now ready to solve the field equation (1). Using (13), we find T = ρ − 3P and hence
Sμν = (ρ + P)UμUν − 1

2(ρ − P)gμν, with S00 = 1
2(ρ + 3P), and Sij = 1

2(ρ − P)gij =
1
2(ρ − P)a2g̃ij . Recalling (9) and (12), we obtain

R00 = −3R̈
R

= 4πG(ρ + 3P) (16)
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and

Rij =
(

2Ṙ2 + RR̈ + 2k
)
g̃ij/L

2 = 4πG(ρ − P)g̃ij (17)

As might be expected, g̃ij cancels out, leaving behind

2Ṙ2 + RR̈ + 2k = 4πGR2
0(ρ − P) (18)

You now understand perfectly well that, thanks to the Bianchi identity, only one linear
combination of (16) and (18) is independent. Obviously, we would rather not deal with
second derivatives if we can help it. Using (16) to eliminate R̈ in (18), we finally end up
with a remarkably simple first order differential equation

Ṙ2 + k = 8πG
3

ρR2 (19)

Note that P does not appear in (19).
To determine cosmic expansion, solve (19) together with the conservation of energy and

momentum (15), which I reproduce here for convenience:

d(ρR3)= −PdR3, or
dρ

ρ + P
= −3

dR

R
(20)

(Note that dt cancels out.) Of course, we also have to say what the universe is filled with
by specifying an equation of state P(ρ). Once given this, we can then solve (20) for ρ as a
function of R, which we can then plug into (19) to solve for R(t).

A Newtonian mnemonic

Remarkably, a pseudo-derivation of the central equation (19) of Einsteinian cosmology can
be concocted using Newtonian mechanics. In a Newtonian universe filled with a constant
mass density (never mind that such a universe does not really make sense), consider a
large sphere of radius R(t) and an infinitesimal unit mass on the surface of the sphere.
The unit mass has kinetic energy 1

2Ṙ
2 and, by Newton’s superb theorems, potential energy

−G(4πR3/3)ρ/R. By energy conservation, its total energy 1
2Ṙ

2 −G(4πR3/3)ρ/R should
be conserved. Calling this constant − 1

2k, we obtain (19) and even understand where the
8π/3 comes from!

For k = −1, the total energy is positive, indicating that the Newtonian sphere could
expand indefinitely, roughly corresponding to an open universe. For k = +1 and negative
total energy, the sphere would ultimately have to yield to gravity and contract.

I do not take this Newtonian pseudo-derivation seriously but value it as a highly useful
mnemonic that could also serve to motivate pedagogically the subtle physics contained
in (19).

The universe expands according to what it is full of

To me, it is amazing that cosmic expansion is governed by two simple equations (19)
and (20). (Of course, this is largely due to the perfect cosmological principle.) In the next
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chapter, we will solve these two equations in detail. To get oriented, let’s solve them here
in various simple situations. Keep in mind that the dimensionless a and the dimensional
R = R0a are related trivially, and we can easily pass from one to the other.

First of all, we will see a posteriori that in studying the early universe, we can neglect
the curvature term k in (19), which thus becomes

ȧ2 ∝ ρa2 (21)

Secondly, as we will see a posteriori, to a good approximation, we can study the universe
filled with only one kind of stuff at a time.

Fill the universe with nonrelativistic matter, sometimes referred to as dust. As explained
back in chapter III.6, the equation of state is simply P = 0. Plug this into (20) to obtain

ρ ∝ 1
a3

matter (22)

which, when inserted into (21), gives a
1
2 ȧ ∝ 1, which implies that

a ∝ t
2
3 matter (23)

As another example, fill the universe with radiation (perhaps more accurately referred
to as relativistic matter), characterized by P = ρ/3, once again as explained back in chap-
ter III.6. Plug this into (20) to obtain d(ρa3)+ 1

3da
3 = 0, giving

ρ ∝ 1
a4

radiation (24)

which, when inserted into (21), gives aȧ ∝ 1, which implies that

a ∝ t
1
2 radiation (25)

With ρ going like either 1
a4 or 1

a3 , the right hand side of (19) blows up like either 1
a2 or

1
a

, respectively, as a → 0. Thus, our neglect of the curvature contribution k in the early
universe is entirely justified. You can solve (19) with the curvature term (see exercises 1–4)
and verify this claim. In any case, the present observation evidence favors a flat universe,
as was first described in (V.3.2).

You can understand both (22) and (24) easily using elementary physics.
For nonrelativistic matter, think of a bunch of nucleons or atoms sitting in a box of

linear dimension of order a. The energy density ρ is entirely due to the mass density. (The
kinetic energy is negligible by comparison, hence the pressure is negligible.) As the box
expands, the energy density ρ decreases like 1/a3, merely because the volume of the
box has increased like a3. Hence (22).

For relativistic matter or radiation, think of a photon gas characterized by a temperature
T . The properties of a photon gas are derived in detail in textbooks on statistical mechanics,
but for our purposes, we can simply use dimensional analysis, as we have done already
in chapter VII.3. There we showed that, in natural units, energy density ρ ∼ T 4 and the
entropy S ∼ V T 3. Since S is conserved as the box expands adiabatically, T ∝ 1/V

1
3 ∼ 1/a.

Hence ρ ∼ 1/a4, in agreement with (24). This dimensional argument underlines the fact
that the conclusion T ∝ 1/a holds only for a strictly massless particle.2
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radiation
ρr(a)

matter
ρm (a)

ρ

a

cosmological constant
ρΛ(a)

Figure 1 A schematic log-log plot of ρ versus the universe’s scale factor a

for radiation, matter, and the cosmological constant. As the universe evolves,
matter eventually dominates over radiation. As the universe evolves further, the
cosmological constant, which had been insignificant all along, eventually dominates
over matter. The cosmic coincidence puzzle is: Why now, when we are around?

The universe dominated

As we go back into the early universe, a → 0. Since radiation density goes like ρr ∝ 1
a4

while matter density goes like ρm ∝ 1
a3 , radiation eventually dominates over matter. See

figure 1. The universe started in a radiation dominated era and expanded into a matter
dominated era.

Since the temperature of the radiation T ∼ 1/a, as we go back into the early universe, T
keeps on increasing. As we will see in more detail in chapter VIII.3, in the early universe,
atoms and molecules were dissociated into nucleons and electrons, and even earlier,
nucleons in turn were dissociated into quarks and gluons. As T increases, the masses
of various particles become negligible compared to their kinetic energies of motion, so
that everybody becomes “radiation,” or more accurately, relativistic matter. Eventually, the
temperature formally reaches infinity, our equations become singular, and we have reached
the Big Bang.

Conversely, as the universe expanded, the radiation dominated era eventually gave way
to the matter dominated era. Thus, as we anticipated, during its evolution, the universe is
dominated by one kind of stuff or another.3

The preceding analysis indicates that we can cover both matter and radiation with the
generic equation of stateP =wρ, where evidentlyw= 0 for matter andw= 1

3 for radiation.
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Indeed, this equation of state even covers the cosmological constant, for which P = −ρ,
as was first mentioned in chapter VI.2. Again, plugging this equation of state into (20)

to obtain d(ρa3) + wρda3 = 0, we find ρ ∝ 1
a3(1+w) , and hence a ∝ t

2
3(1+w) by (21), thus

recovering our previous results as special cases.
In particular, for the cosmological constant,w= −1, and the universe expands according

to a ∝ t∞, which is just code for the exponential eHt behavior we found in chapter
VI.2. Correspondingly, ρ� ∝ a0, which is of course just a check, since we defined the
cosmological constant to be, duh, a constant. An important remark: in the early universe,
as a → 0, in light of (22) and (24), ρ� becomes negligible compared to ρr and ρm.

Critical density

In the previous section, to get oriented in cosmology and in the cosmos, we solved the
cosmological equation Ṙ2 + k = 8πG

3 ρR2 for the flat k = 0 universe. But it is not difficult
to see qualitatively what goes on in a closed universe

Ṙ2 + 1 = 8πG
3

ρR2 closed universe (26)

or an open universe

Ṙ2 − 1 = 8πG
3

ρR2 open universe (27)

Once you reach a qualitative understanding, a quantitative understanding is merely a
matter of showing off your ability to solve a first order ordinary differential equation.

Define the critical density

ρc ≡ 3Ṙ2

8πGR2
(28)

Note thatρc(t), which evidently is always nonnegative, depends on time in general. Beware:
by the term “critical density,” some people mean exclusively its present value ρc(t0).

Next, divide (26) and (27) by Ṙ2 to obtain

ρ

ρc
= 1 + Ṙ−2 closed universe (29)

for a closed universe and

ρ

ρc
= 1 − Ṙ−2 open universe (30)

for an open universe. Thus, to close the universe, ρ must be greater than the critical density
ρc. That sure makes sense: you need lots of stuff to curl space around to make it close upon
itself. In contrast, for ρ < ρc, the universe is open.

Consider a universe filled with only matter. Then from (22) ρ = ρ0R
3
0/R

3, where ρ0

evidently denotes the present density. For a closed universe, Ṙ2 = 8πGρ0R
3
0

3R − 1, and we see
that as the universe expands and R increases, the right hand side will eventually decrease
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to 0, so that Ṙ = 0. The universe stops expanding and starts to contract, as described by

the negative root in (26): Ṙ = −
√

8πGρ0R
3
0

3R − 1.

In contrast, a matter filled open universe, obeying Ṙ =
√

8πGρ0R
3
0

3R + 1, will expand

forever, eventually reaching Ṙ � 1, with a curvature driven expansion, even as the matter
density dilutes to practically nothing.

Next, consider a universe that is empty except for the cosmological constant. Of the
three kinds of stuff to fill the universe considered here, the energy density ρ� =� can be
negative, in contrast to matter density ρm and radiation density ρr.

From (29), we see that in a closed universe, ρ� > ρc and so a fortiori cannot be negative.
But (30) tells us that in an open universe ρ� can be either positive, in which case ρ� < ρc,
or negative with no restriction. From (27), we have Ṙ2 = 1 + 8πG

3 �R2. We see that if�> 0,
the universe will expand forever, while if �< 0, the universe expands until Ṙ reaches 0
and then starts to contract. As has already been mentioned, the evidence at present points
to a positive �.

Big Bang: From no space to space

We have avoided dealing with the time-time component (16) of Einstein’s field equation
− 3R̈

R
= 4πG(ρ + 3P), seeing that it involves a second derivative. However, it does convey

an important message: as long as ρ + 3P > 0, the acceleration R̈ < 0, so that Ṙ always
decreases, regardless of whether the universe is closed, flat, or open. Hence the curve
R(t) is convex downward. At present, Ṙ > 0, since we see redshifts. Extrapolating the
curve backward, we have thus proved that R(t)= R0a(t) must vanish at some point in the
past. (See figure 2.) The metric in (2) dτ 2 ≡ −ds2 = dt2 − a2(t)g̃ij (�x)dxidxj degenerates
to dτ 2 = dt2. No space! This spacetime singularity at which space disappears is known as
the Big Bang.∗

As long as there is a component of ρ that increases faster than 1/R2 as R → 0, we
can use (19) to reach the same conclusion we just proved. As we go back in time into
the early universe, the right hand side blows up, the curvature term in (19) becomes
irrelevant, Ṙ → ∞, and so R(t) eventually must vanish. This argument also indicates
that a universe containing only the cosmological constant could evade this argument and
avoid having a Big Bang in its past (as we have seen in chapter VI.2, and as we will see in
chapter IX.10).

As authors of popular physics books on the universe know, the most common mis-
conception of the proverbial man in the street regarding the Big Bang is that it describes
some kind of terrific primordial explosion, spewing matter every which way into space.
You of course know better. The Big Bang is actually the creation of space: from no
space to space, stretched by the factor a(t) ever since.

∗ Originally a derogatory term used by Fred Hoyle to champion the steady state theory of the universe.
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a(t)

Big Bang
✷

t

Figure 2 If ρ + 3P > 0, the scale factor of the universe is concave downward,
and thus must vanish at some point in the past.

Before the discovery of dark energy, it was thought that ρ + 3P > 0 imposes a rather
weak condition that surely the content of the universe must satisfy. Certainly, both rela-
tivistic matterP = ρ/3 and nonrelativistic matterP = 0 satisfy this condition with room to
spare. Well, the dark energy, with P = −ρ = −�, is able to violate precisely this condition.
Indeed, the simple universe discussed in chapter VI.2 with a(t)= eHt does not have a Big
Bang in its past.

In the next chapter we will study the cosmological equation in more detail.

Coincidence problem

With ρr ∝ 1/a4, ρm ∝ a3, and ρ� ∝ a0, the universe passes through three epochs: a ra-
diation dominated epoch early on, followed by a matter dominated epoch, which will
eventually give way to a dark energy dominated era. This brief history of the cosmos im-
mediately poses a coincidence puzzle. In the vast sweep of cosmic time, the period during
which ρm is comparable to ρ�, as is the situation now, represents but a blink. Is it a co-
incidence that we happen to inhabit the universe just as the two curves ρm(a) and ρ�(a)
are crossing each other? Or is there a deeper reason? Perhaps more likely, in my humble
opinion, our understanding of cosmology is simply incomplete.

An apparent paradox: More stuff makes the universe expand faster

Readers of popular physics books, and quite a few beginning students as well, are often
puzzled by Einstein’s cosmological equation Ṙ2 + k = 8πG

3 ρR2: it says that more stuff (a
larger ρ) would make the universe expand faster (a larger Ṙ). You might have thought that
the gravitational attraction exerted by a larger ρ would hold everybody back, thus slowing
down the expansion rather than speeding it up. What gives?
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I already alluded to the resolution of this apparent paradox. A particularly illuminating
discussion invokes time reversal invariance. Einstein gravity is time reversal invariant,
that is, the Einstein-Hilbert action is unchanged upon t → −t . If we take a movie of
the expanding universe and run it backward, the plot of the backward-running movie,
namely the story of a contracting universe, must also be allowed by the laws of physics.
Mathematically, this is implied by the appearance of Ṙ2 in (19) and hence the two solutions

Ṙ = ±
√

8πG
3 ρR2 − 1. Thus, if your intuition tells you that more stuff should speed up the

contraction, then it also tells you that more stuff also speeds up the expansion.
The common confusion is basically between velocity and acceleration,4 between Ṙ

and R̈. A somewhat less illuminating resolution of the apparent paradox is to invoke
the acceleration equation (16) we eliminated, namely 3R̈

R
= −4πG(ρ + 3P). If matter

is normal,5 that is, P > 0 and increases with increasing ρ, then more stuff (large ρ)
decelerates the universe more.

Einstein should do penance

In a recent historical study, Nüssbaumer and Bieri recounted the early history of the
universe at considerable variance from the cartoon history given in many popular accounts.
They made clear that Lemâıtre deserved much more credit than he had traditionally
received, and others less. They concluded their book by imagining, amusingly, a dinner6

gathering Einstein, de Sitter, Lemâıtre, Eddington, and Hubble. Lemâıtre emerged as a
triple winner, for his∗ expanding universe,7 for his seminal idea on what developed into
the Big Bang, and for associating the cosmological constant with the vacuum energy.
While the party toasted the tragically departed Friedmann,8 Einstein should, according
to Nüssbaumer and Bieri, “do penance.”9

A small story from this laudably balanced history is illuminating. After his friends
Eddington and de Sitter had both converted to the expanding universe, Einstein changed
his opinion also. In 1932, Einstein and de Sitter were both visiting the California Institute
of Technology, and they coauthored a paper that by all accounts would not have passed
the refereeing system10 had it not been authored by two big names. Nothing they said
had not already been said earlier by Friedmann, Lemâıtre, and Robertson. Eddington later
wrote:11 “Einstein came to stay with me shortly afterwards, and I took him to task about it.
He replied, ‘I did not think the paper very important myself, but de Sitter was keen on it.’
Just after Einstein had gone, de Sitter wrote to me announcing a visit. He added: ‘You will
have seen the paper by Einstein and myself. I do not myself consider the result of much
importance, but Einstein seemed to think that it was.’”

∗ It is worth quoting from a letter from M. Way and H. Nüssbaumer to Physics Today, August 2011, p. 8. “It
is widely held that in 1929 Edwin Hubble discovered the expanding universe and that his discovery was based
on his extended observations of redshifts in spiral nebulae. Both statements are incorrect. . . . There is a great
irony in these falsehoods still being promoted today. Hubble himself never came out in favor of an expanding
universe; on the contrary, he doubted it to the end of his days.” I am among those who oppose the continual
promotion of falsehoods in physics.
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Exercises

1 Solve the cosmological equation Ṙ2 + 1 = 8πG
3 ρR2 (19) for a radiation dominated closed universe. Plot your

result. Verify in exercises 1–4 that the curvature is negligible in the early universe.

2 Solve the cosmological equation for a radiation dominated open universe. Plot your result.

3 Solve the cosmological equation for a matter dominated closed universe. Plot your result.

4 Solve the cosmological equation for a matter dominated open universe. Plot your result.

5 For a universe containing only a cosmological constant, show that R(t) = H−1 cosh Ht if the universe is
closed, and R(t)=H−1 sinh Ht if the universe is open, with H 2 = 8πG�/3. Note that in the closed case,
the universe does not have a Big Bang; that is, R(t) never does vanish. Recall also the result R(t)= R0e

Ht

for a flat universe.

Notes

1. See for example, E. D. Kovetz, A. Ben-David, and N. Itzhaki, “Giant Rings in the CMB Sky,” Astrophys. J. 724
(2010), pp. 374–378.

2. Consider a box of neutrinos, which are known to have a very small mass m. As the box expands, elementary
quantum mechanics shows that the momentum p ∝ 1/a. When p drops below m, the neutrinos become
nonrelativistic, with an average kinetic energy of p2/(2m) ∝ 1/a2. The temperature of the neutrino gas,
defined to be the average kinetic energy, would then drop like T ∝ 1/a2.

3. Another useful way of plotting the behavior of the universe in different eras, which I learned from J. Bjorken,
is suggested by (21) and the various dependences of ρ on a. Plot log ȧ versus log a, that is, do a log-
log plot ȧ versus a. For dark energy (the cosmological constant), log ȧ = log a + constant; for radiation,
log ȧ = − log a + constant; for matter, log ȧ = − 1

2 log a + constant.
4. When I was a freshman, it was announced that John Wheeler would give an experimental (in the sense

of pedagogy rather than physics) course to a handpicked group of beginning students. Wheeler asked the
assembled students a series of questions to separate the goats from the elect, so to speak. I still remember
the question that eliminated the largest number of hopefuls. Does a tossed ball have zero acceleration at the
top of its flight?

5. Or, somewhat less restrictively, assume the equation of state P = wρ and (1 + 3w) > 0.
6. H. Nüssbaumer and L. Bieri, Discovering the Expanding Universe, p. 187.
7. Indeed, there is some shady business for a budding historian of physics to look into and clarify. Since

Lemâıtre’s seminal 1927 paper was published in French in an obscure Belgian journal, Eddington arranged
for it to be republished in English in 1931. But the two crucial pages containing Lemâıtre’s estimate of the
so-called Hubble constant were omitted in the English translation. Smells rather fishy to say the least. Some
reader should track down the person responsible for this omission.

By the time I was finishing this book, a couple of years after I wrote the words above, I learned that
M. Livio (Nature 479 (2011), p. 171, http://www.nature.com/nature/journal/v479/n7372/full/479171a.html)
had indeed tracked down the relevant documents and concluded that it was Lemâıtre himself who deleted
the crucial pages. One of Livio’s conclusions was disputed by S. van der Bergh in a letter to the editor (Nature
480 (2011), p. 321).

Based on what I read while writing this book and also my earlier popular book (An Old Man’s Toy), I feel that
the kindest thing I can say about Hubble is that he went out of his way not to acknowledge the contributions
of his contemporaries. I hope that Hubble’s status in cosmology will be reevaluated in the future.

8. For the story of how Aleksandr Friedmann died at the young age of 37, see Toy/Universe p. 85.
9. H. Nüssbaumer and L. Bieri, Discovering the Expanding Universe, p. 187.

10. Ibid., p. 148.
11. Ibid., p. 128.



VIII.2 Cosmic Struggle between Dark Matter
and Dark Energy

A cosmic diagram

The goal of this chapter is to derive the diagram shown in figure 1, which is sort of a
phase diagram describing the overall history of the universe according to what it contains.
The two axes are labeled by �m, 0 and ��, 0, two parameters that we will define in this
chapter and that measure how much matter and how much dark energy, respectively,
the universe contains at present. Here the term “matter” includes both dark and baryonic
matter, with the bulk (more than 80%) of it in dark matter, as we will see. As in chapter VI.2
and the preceding chapter, dark energy is presumed to be the manifestation of Einstein’s
cosmological constant. Thus, to a first approximation, you can think of the diagram as
describing the struggle between dark matter and dark energy.

In this highly simplified picture, the universe is specified by�m, 0 and��, 0. Notice that
this cosmic diagram contains two straight lines and two curved lines, dividing different
types of cosmic behavior.

Above the straight line ��, 0 = 1
2�m, 0, cosmic expansion accelerates: the universe will

expand faster and faster. Dark energy overwhelms dark matter. Below this line, cosmic
expansion decelerates.

Next, look at the line defined by�m, 0 +��, 0 = 1. The universe is spatially closed above
this line and open below it. A universe sitting right on this line is spatially flat. As explained
in the preceding chapters, in Einstein gravity, stuff curves space, so space can curl up on
itself. Lots of stuff in the universe closes it, while not enough stuff leaves it open.

The Big Bang is defined as the singularity in spacetime when the scale factor of the
universe a vanishes (as described in the preceding chapter). In figure 1, a curved line
starts from the point (�m, 0, ��, 0)= (0, 1). Below this line, the Big Bang banged. Above
this line, no Bang.

Indeed, back in chapter VI.2, we studied the universe described by (�m, 0, ��, 0) =
(0, 1), a flat universe with no matter, only a cosmological constant. We found there and in
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Figure 1 A cosmic diagram describing the overall history of the universe according to how
much matter and how much dark energy the universe contains at present.

chapter VI.5 that a(t)= eHt grows exponentially with the constant H = 8πG�/3. Thus, a
never does vanish, and there was no Big Bang. In other words, the point (�m, 0, ��, 0)=
(0, 1) belongs to the no Big Bang phase. The curved line tells us how much matter has to
be put in to produce a Big Bang.

You may have noticed another curve starting from the point (�m, 0, ��, 0)= (1, 0) and
barely curving upward. Now consider a curve consisting of two pieces joined together,
namely the curve just described and a straight line segment consisting of the portion of the
�m, 0 axis between the point (�m, 0, ��, 0)= (1, 0) and the origin (�m, 0, ��, 0)= (0, 0).
This composite curve defines the boundary between two phases. Above this line, the
universe will expand forever. Below it, the universe will eventually stop its expansion and
contract.

Study this figure and decide if it makes sense to you. Observational evidence suggests
that our universe lies inside the circle around (�m, 0, ��, 0)= (0.3, 0.7). Thus, according
to the cosmic diagram, our universe is flat and accelerating, with a Big Bang in its past
and never-ending expansion in its future.

The cosmological equation

The derivation of the cosmic diagram starts with the cosmological equation

Ṙ2 + k = 8πG
3

ρR2 (1)
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given in the preceding chapter. Define the Hubble∗ parameter

H ≡ ȧ

a
= Ṙ

R
(2)

Notice that we said Hubble parameter, not Hubble constant. Unless a(t) is a pure exponen-
tial (as in chapter VI.2),H will vary with time. In general, we will indicate the present value
of a variable by the subscript 0. Thus, H0 is the present value of the Hubble parameter.
Using (2), we rewrite (1) as

H 2 = 8πG
3

ρ − k

R2
(3)

What time is it over there?

For the cosmic clock, we have several choices.1 We could use the time from the Big
Bang t , or equivalently, the scale factor a(t). Physically, a better choice is the ambient
temperature T of the universe during the event under discussion (for example, radiation
decoupling, which occurred at T � 0.3 eV, as will be explained in the following chapter).
But observational cosmologists quite naturally use the redshift z. In chapter V.3 we derived
for light emitted at time te the relation

1 + z= 1
a(te)

(4)

where we have set a(t0)= 1 by convention.
Also, in chapter V.3, in defining proper distance, we encountered the integral R ≡∫ t0

te

dt
a(t)

, which we can now convert to an integral over redshift as used by cosmologists:

R =
∫ 1

a(te)

da

aȧ
=
∫ 1

a(te)

da

a2H
=
∫ z

0

dz′

H(z′)
(5)

Filling up the universe

The energy density ρ =∑
j ρj may consist of several components. For example, the index

j can take on several values: j = r ,m, and�, indicating radiation, matter, and cosmological
constant, respectively. For the purpose of this chapter, baryonic matter, luminous or not,
is lumped in with dark matter and collectively referred to as matter. As already mentioned,
we assume that the dark energy is a manifestation of the cosmological constant. It is
sometimes convenient to lump the curvature term in (3) into the energy density by defining
8πG

3 ρk ≡ − k

R2 . With these definitions, we may write (3) as

H 2 = 8πG
3

∑
j

ρj − k

R2
= 8πG

3

∑
n

ρn (6)

∗ Regarding Hubble’s discovery of the expanding universe, see the footnote on page 500 in the preceding
chapter. For the story of an unschooled mule driver who contributed to Hubble’s discovery, see Toy/Universe,
p. 52.
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where the index n runs over the set the index j runs over plus k. (Does the last phrase
make sense? If not, read the preceding sentence.)

A key physical feature of our present understanding of cosmology is that these different
ingredients do not interact with one another and are tied together only by gravity. You
might think that stars produce light, thus converting matter into radiation, but on the
cosmic scale, this effect is totally negligible, so that ρm and ρr evolve independently.

Let us divide (6) by H 2 and define

�j ≡ 8πG
3H 2

ρj = ρj

ρc
(7)

and

�k ≡ − k

H 2R2
= − k

Ṙ2
(8)

(Note that the sign of �k is opposite to that of k.) In (7), we have recalled that in the
preceding chapter, we defined the critical density2 ρc ≡ 3Ṙ2

8πGR2 = 3H 2

8πG . Thus, �j has the
pleasing interpretation as the ratio of the density of the “j th kind of stuff” to the critical
density.

As we will see, there is some arithmetical advantage to regarding the curvature term as
a kind of density, but physically, you should keep in mind that it originates in geometry.
With the definition

�≡
∑
j

�j (9)

(notice that � does not include the curvature contribution), we may rewrite (6) as

1 =�+�k =
∑
j

�j +�k =
∑
n

�n (10)

We can think of this as telling us that stuff plus curvature equals unity.
As discussed in the preceding chapter, the parameter � determines whether our uni-

verse is closed, flat, or open, according to whether �> 1, � = 1, or �< 1, since corre-
spondingly k could be equal to +1, 0, or −1, respectively. For many years, it was believed
that the universe was closed, but recent observational evidence indicates that � is very
close to 1, so that �k � 0 and the universe seems quite flat.

Thus far, we have been merely defining and rewriting. Much of this defining and
rewriting is to connect the terminology used by theoretical physicists to that used by
observational cosmologists. Recall that in the preceding chapter, we found that as the
universe expands, ρj varies according to ρj ∝ 1

a
3(1+wj ) ≡ 1

a
γj

. Let me remind you that

wr = 3, wm = 0, w� = −1 (11)

so that

γr = 4, γm = 3, γ� = 0 (12)
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Hence, setting a0 = 1, we have

�j =
(
H0

H

)2 1
aγj

�j , 0 (13)

(As usual, the subscript 0 indicates the present value of various quantities.) It is also
convenient to define the analogous expression for �k with γk = 2. We can then rewrite
(10) as

1 =
(
H0

H

)2 ∑
n

�n, 0

aγn
(14)

or

H 2 =H 2
0

∑
n

�n, 0

aγn
=H 2

0

(
�m, 0

a3
+ �r, 0

a4
+��, 0 + �k , 0

a2

)
(15)

The observed values for these cosmological parameters are

��, 0 ∼ 0.7, �m, 0 ∼ 0.3, �r, 0 ∼ 5 × 10−5 (16)

and H0 ∼ 70 km/sec/Mpc ∼ 2 × 10−18 sec, where 1 Mpc = 106 parsec or ∼3 × 1019 km.
The matter contribution �m, 0 to � consists of dark matter �dm, 0 ∼ 0.25 and baryonic

matter �b, 0 ∼ 0.04. The surprising discovery has been that the baryonic matter we know
and love comprises only a teeny contribution to the energy budget of the universe. Another
remarkable cosmological fact is that only a small fraction of the baryonic matter�∗ ∼ 0.008
resides in stars; the rest appears to be in interstellar and intergalactic gases.

Keep in mind that our index j runs over r, m, and �, while the index n runs over the
range of j plus the curvature term k.

Constructing a 2-dimensional map of universes

It may seem like the height of hubris, but within the context of this discussion, we can
characterize our universe in terms of three present-day values {�r, 0, �m, 0, ��, 0}. In fact,
since �r, 0 ��m, 0, ��, 0 we can make do with a 2-dimensional parameter space with the
two axes �m, 0 and ��, 0, which we could happily plot (see figure 1) on a piece of paper.
Note that the universe considered in chapter VI.2 sits at the point {�m, 0 = 0, ��, 0 = 1}.

Draw the line

�m, 0 +��, 0 = 1 (17)

From (10), �m, 0 +��, 0 +�k , 0 = 1, we see that the universe is closed above this line and
open below it. A universe sitting right on this line is flat.

Acceleration or deceleration?

At this point, let us also make use of the other Einstein field equation

R̈

R
= ä

a
= −4πG

3
(ρ + 3P)= −4πG

3

∑
j

(
1 + 3wj

)
ρj (18)
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which describes the acceleration of the cosmic expansion. Define the deceleration
parameter

q ≡ −aä

ȧ2
= − R̈/R

Ṙ2/R2
= + 1

2

∑
j

(
1 + 3wj

)
�j

= 1
2

(
2�r +�m − 2��

)
(19)

(Note that for many cosmological parameters, we could freely choose to use a orR.) That q
is defined with a minus sign (and thus known as the deceleration parameter) is historical:
before the discovery of the dark energy, it was thought that all possible values of wj were
positive and that the cosmic expansion was thus decelerating. You are of course free to
define the acceleration parameter Q≡ aä

ȧ2 if you like.
As explained in the preceding chapter, in the absence of the cosmological constant, or if

the cosmological constant � is negative, then q is manifestly positive, and the expansion
of the universe will slow down.

Since from (19), we have

−q0 =��, 0 − 1
2�m, 0 (20)

cosmic expansion is accelerating above the line

��, 0 = 1
2�m, 0 (21)

and decelerating below this line.

The fate of the universe

Will the universe expand forever? Did it have a Big Bang?
By now, you should have enough understanding to answer the following questions

qualitatively. If dark energy overwhelms dark matter, did it bang? Yes or no?
Let us now quantify the word “overwhelm” by determining the two curved lines in figure

1. Write (15) as

1
H 2

0
ȧ2 −

(
�m, 0

a
+ �r, 0

a2
+��, 0a

2 +�k , 0

)
= 0 (22)

which we can interpret as a Newtonian problem of particle of mass m≡ 2
H 2

0
with zero total

energy moving in a potential V (a)≡ −(�m, 0
a

+ �r , 0
a2 +��, 0a

2 +�k , 0
)
. We can eliminate

�k , 0 = 1 − (�m, 0 +�r, 0 +��, 0) by evaluating (15) at the present time.
Perhaps astonishingly, the Newtonian mechanical analog keeps popping up in general

relativity, whether we are studying the motion of a particle around a black hole or figur-
ing out how the universe evolves. By now you surely understand why this is so. In the
present context, Einstein’s field equation involves, by construction, two powers of deriva-
tives. Because of the perfect cosmological principle, the entire metric is described by one
function of a single variable, so that we have ordinary, rather than partial, differential equa-
tions. Thanks to Bianchi’s identity, we can eliminate the second derivative ä. As a result,
we happily end up with a problem in Newtonian mechanics, which we can readily solve
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V(a)

(a) (b) (c)

V(a) V(a)

a

aa
amax
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Figure 2 The cosmic potential for some representative values of (�m, 0, ��, 0) plotted against the scale factor of
the universe. (a) For (�m, 0, ��, 0)= (0.3, −0.8). The universe started in a Big Bang, with the present expansion
headed toward an eventual collapse back into a Big Crunch. (b) For (�m, 0, ��, 0) = (0.3, 0.8). The universe
started out in a Big Bang and then proceeds to expand forever. (c) For (�m, 0, ��, 0)= (2.2, 0.03). Note that this
is for large �m, 0 and small ��, 0, and that the maximum of the potential barely sticks above the horizontal axis.
Either the universe started in a Big Bang but will eventually collapse back, or the universe never did have a Big
Bang and will expand forever.

numerically in the general case. In fact, setting �r, 0 = 0, we can analyze the problem
completely, as we will now show.

To a good approximation, then, we have a Newtonian particle with zero total energy
moving in the potential (see figure 2)

V (a)= −
(
�m, 0

a
+��, 0a

2
)

− (
1 −�m, 0 −��, 0

)
(23)

Note that this cosmic potential is the sum of three terms: a −1/a term; an a2 term, whose
coefficient can take either sign; and a constant.

For small a, the potential V ∼ −�m, 0
a

is attractive like an inverse square law; for large
a, V ∼ −��, 0a

2 is repulsive or attractive, according to whether ��, 0 > 0 or < 0, like an
inverted or a normal harmonic oscillator, respectively. The constant term in V moves the
potential up or down. The boundary condition is that at present, a = 1 and ȧ > 0.

We can analyze the negative cosmological constant��, 0 < 0 case instantly. The potential

V (a)= −�m, 0
a

+ |��, 0|a2 − (1 −�m, 0 + |��, 0|) is entirely attractive. See figure 2a. The
particle is at present climbing the hill, but when it reaches the point where V (a)= 0, its
velocity vanishes (ȧ = 0), since it has zero total energy, as you recall. It then turns around
and slides back down the hill. In other words, the universe started in a Big Bang, with
the present expansion headed toward an eventual collapse back into a Big Crunch, when
a(t) will once again vanish. This takes care of the entire lower half plane ��, 0 < 0 in the
cosmic diagram.

We now take ��, 0 > 0. The potential now reaches a maximum at some amax. There are
two possibilities, as shown in figure 2b and figure 2c, according to whether the maximum
of the potential sits below the horizontal axis (that is, V (amax) < 0), or sticks up above the
horizontal axis (that is, V (amax) > 0).

Again, recall that the Newtonian analog particle has zero total energy. In the situa-
tion described in figure 2b, it has enough energy to reach the top of the potential and
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then cruise down. The universe started out in a Big Bang and then proceeds to expand
forever.

We have to divide the situation described in figure 2c further into two cases, according
to whether amax > 1 or amax < 1.

Suppose that amax > 1. Since at present, a = 1, by definition, with ȧ > 0 by observation,
then, as represented by the Newtonian particle, we have not yet gotten to the top of the
hill, which we are determinedly climbing. But when we reach V (a)= 0, we will run out
of steam; not having enough oomph to reach the top, we will fall back in toward a = 0. In
other words, the universe will eventually collapse.

Now suppose that amax < 1. Then we, presently at a = 1 with ȧ > 0, are already on the
other side of the hill and are happily rolling downhill with ever increasing speed. We have
never even been to a = 0: there was no Big Bang in our past. The universe never did have
a Big Bang and will expand forever.

Note that in both of these cases shown in figure 2c, the Newtonian particle, with its
zero total energy, can never have gotten above the horizontal axis. The entire history of the
universe is described by the piece of V (a) below the horizontal axis, either the piece on
the left or that on the right.

We thus see that the dividing lines between these different scenarios are determined by
first finding out if V ′(amax)= 0 has a solution, and if it does, then setting V (amax)= 0.
We can use one equation to eliminate amax in the other, thus obtaining a relation between
��, 0 and �m, 0, leading to the curves shown in the cosmic diagram. To determine the
behavior on the two sides of these curves, we have to further ascertain whether amax > 1
or amax < 1.

Quite remarkably, at this stage, to work out the cosmic diagram requires no more
than high school algebra, not even solving a differential equation. You should challenge
yourself before reading the solution, which I will relegate to the appendix. Observation-
ally, as I have already mentioned, the favored region forms a small circle∗ centered at
(�m, 0, ��, 0)= (0.3, 0.7), far from the two curves we just discussed (see figure 1). Never-
theless, theoretically it is quite interesting to work out these two curves.

Einstein’s static universe and his second greatest blunder

In the era when Einstein ever so boldly† ventured to apply his theory of gravity to the
entire universe, physicists were philosophically prejudiced in favor of a static universe.
Indeed, the expanding universe that we all, including the proverbial person in the street,
take for granted was inconceivable once upon a time. When Einstein found, to his horror,
that his field equation implied an expanding universe, he solved the perceived difficulty
by introducing a cosmological constant and showing that he could have a static universe if

∗ The size of the circle changes as observation improves.
† Indeed, fearing for the asylum. See the opening of chapter VI.2.
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�= 1
2ρm (as you can also show in exercise 3). He thus missed a tremendous opportunity

to predict that the universe expands.
For those who delight in yakking about Einstein’s greatest blunder, an idle preoccupation

that strikes me as somewhat unseemly, I have already expressed my humble opinion that
the greatest blunder was not the introduction of the cosmological constant, as the popular
press would have it (which is in fact required by quantum field theory, as I explained
in chapter VI.2 and will discuss in more detail in chapter X.7, and in any case appears
observationally to be here to stay). Rather, it was his failure to use the action principle.
With your indulgence, we will now talk about Einstein’s second greatest blunder, which is
not to check whether his solution was stable.

In light of the Newtonian analog potential in (23), this instability is starkly evident. Dif-
ferentiating and setting V ′(a) = �m, 0

a2 − 2��, 0a
2 to 0 and a to 1, we recover Einstein’s

condition 2��, 0 = �m, 0 expressed in the cosmologist’s language. Einstein’s static uni-
verse corresponds to sitting at the maximum of the potential in figure 2b.

Flow in the cosmic diagram

It is perhaps worth emphasizing that all relevant physics within the present context is
contained in the cosmological equation

Ṙ2 + k = 8πG
3

ρR2 (24)

and energy conservation

d

dt
ρa3 = −P da3

dt
(25)

The discussion here is merely expressing the same physics in a notation particularly
convenient for observational cosmology.

Thanks to the Bianchi identity, we can recover the rest of Einstein’s field equation from
(24) and (25). It is instructive to verify this. First, rewrite (25) as

ρ̇ + 3(ρ + P)
Ṙ

R
= 0 (26)

Next differentiate (24) to obtain an equation for R̈, eliminating Ṙ by using (24) and ρ̇ by
using (26). Not surprisingly, we get the time-time component of Einstein’s field equation:

R̈

R
= −4πG

3
(ρ + 3P) (27)

You are of course free to keep on massaging these equations every which way. For
example, we might ask how �j varies with time. Recalling the definition �j = 8πG

3H 2 ρj ,
we have

�̇j =�j

(
ρ̇j

ρj
− 2

Ḣ

H

)
= −�j

(
3
(
1 + wj

)
H + 2

Ḣ

H

)
(28)
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Figure 3 Neglecting radiation, we can picture the time evolution
of the universe as a fluid flowing in the 2-dimensional space
spanned by (�m, ��), plotted here for a universe in an expanding
phase. Of the three fixed points, (�m, ��)= (0, 1), (0, 0), and
(1, 0), only the one at (0, 1) is a stable attractor.

where in the last step, we used (26). Now

Ḣ

H 2
= 1
H 2

d

dt

(
Ṙ

R

)
= 1
H 2

(
R̈

R
−H 2

)
= −q − 1 = −1 − 1

2

∑
i

(
1 + 3wi

)
�i

using (19) in the last step. Inserting this into (28), we obtain the nifty equation

�̇j = +H�j

(
−3wj − 1 +

∑
i

(
1 + 3wi

)
�i

)
(29)

The rate of change of �j depends on the other �is. We can think of this as defining a flow
in the space spanned by the �js.

For example, if we neglect �r as before, we have

�̇m =H�m
(
�m − 2�� − 1

)
and �̇� =H��

(
�m − 2�� + 2

)
(30)

We can think of this as defining a velocity field �v = (�̇m, �̇�) for a fluid flowing in the
2-dimensional space spanned by (�m, ��), which we plot in figure 3, assuming that the
universe is in an expanding phase H > 0. To facilitate plotting the velocity field, notice
that �̇m < 0 above the line �� = 1

2(�m − 1) and > 0 below. Similarly, �̇� < 0 above the
line �� = 1

2�m + 1 and > 0 below. There are three fixed points, (�m, ��)= (0, 1), (0, 0),
and (1, 0), defined as places where the velocity field vanishes. The fixed point at (0, 1) is
stable, known variously as an attractor or a sink in different areas∗ of physics, in the sense

∗ In quantum field theory and in condensed matter physics, this kind of flow is known as a renormalization
group flow. The quantum and thermal fluctuations responsible for the flow are, however, completely absent in
the present context.
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that a particle flowing nearby would end up there. In contrast, we have two unstable fixed
points at (0, 0) and (1, 0). In particular, a universe at (0.3, 0.7) will eventually end up at
(0, 1). But we know all this already: dark energy in the form of a cosmological constant
will eventually overwhelm the dark matter.

We see the essential role played by the cosmological constant. In its absence, we have
a 1-dimensional flow along the �m axis, as shown in figure 3: if �m < 1, the universe
flows toward �m = 0, and if �m > 1, the universe flows to arbitrarily large values. Of the
two unstable fixed points in the 2-dimensional flow, the one at (0, 0) becomes stable if
we restrict the flow to be along the �m axis. When a positive ��, no matter how small, is
introduced, the fluid flows away from the�m axis:�� is known as a relevant perturbation.
Again, this is just old knowledge repackaged: as the universe expands, matter density is
diluted to nothing, while the cosmological constant remains constant. In a contracting
phase, as indicated by (30), everything is reversed, of course.

Is flat stable?

It is interesting to apply this flow language to the curvature density�k = − k

H 2R2 . Note that,
in contrast to k, the quantity �k is continuous rather than discrete, and so it makes sense
to talk about its rate of change. Going through similar steps as above, we obtain

�̇k = −2�k

(
Ḣ

H
+H

)
= 2�kHq =H�k

(
2�r +�m − 2��

)
(31)

Is a flat universe stable? If�k is strictly 0, that is, if the integer k = 0, then �̇� = 0 and�k

stays at 0. The issue is whether a universe with �k � 0 flows toward or away from �k = 0.
Again, assume that the universe is in an expanding phase, so that H > 0.

As you can see from (31), if 2�r +�m > 2�� (which is a fortiori satisfied if �� < 0 or
if there is no cosmological constant �� = 0), then �k = 0 is an unstable fixed point.

In contrast, if 2�r +�m < 2��, then �k = 0 is a stable fixed point. But since �r and
�m vanish rapidly, given enough time, this condition will eventually be satisfied. We will
return to this point in the next chapter.

Age of the universe

Since H0 has dimensions of inverse time, a rough estimate of the age of the universe is
simply tage = 1/H0, but given the accuracy to which the cosmological parameters are now
known, we can do better. Using (15), we obtain

tage =
∫ tage

0
dt =

∫ 1

0

da

a( ȧ
a
)

=
∫ 1

0

da

aH

= 1
H0

∫ 1

0

da

[�m, 0a
−1 +�r, 0a

−2 +��, 0a
2 + (1 −�m, 0 −�r, 0 −��, 0)]1/2

(32)
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In general, this will have to be integrated numerically. For a flat universe, if we neglect
radiation, the integral can be done exactly:

tage = 2
3H0

√
��, 0

log(

√
��, 0 +√

�m, 0 +��, 0√
�m, 0

)� 1.02H−1
0 (33)

Historically, the age of the universe presented a thorny issue for a long time, as it
came out shorter than the age of certain stars and galaxies estimated reliably using other
methods. Since a universe with only ��, 0 > 1 has no Big Bang and hence infinite tage, the
discovery of dark energy has evidently served to resolve this problem. Indeed, we can now
turn the argument around, so that we can use the inferred age of a galaxy observed at such
and such redshift to set a lower bound on ��, 0.

Appendix: Phase boundaries in the cosmic diagram

To determine the curves in figure 1, it turns out that we have to solve a cubic equation. So let’s first recall the
(hyperbolic) cosine and sine method for solving the cubic. A cubic equation can always be cast in the form
4x3 − 3x − s = 0. For our problem, we want the real positive root (and in case there are more than one, the
smaller of the two). For s > 1, there is one real positive root. Use the identity 4(cosh β)3 = 3 cosh β + cosh 3β.
Then the solution is evidently x = cosh β, with β determined by s = cosh 3β. For 0< s < 1, change the hyperbolic
cosine in the preceding to a cosine. For s < 0, use the identity 4(sin β)3 = 3 sin β − sin 3β. Then the solution is
x = sin β, with β determined by s = − sin 3β. In particular, as s → 0, the solution x → 0.

The case�m, 0 = 0 was treated in chapter VI.5. The case��, 0 = 0 is also easily analyzed by looking at a plot of

the potential V (a)= −�m, 0
a

− (1 −�m, 0). For �m, 0 < 1, the particle in the Newtonian analogy is unbound, and
the universe expands forever. For �m, 0 > 1, the particle is bound, and the universe expands and then collapses.

Taking �m, 0 �= 0, we divide V (a) by �m, 0 for convenience, so that we can write the potential effectively as

V (a)= −a−1 − 4x3a2 − (s − 4x3) after defining x ≡
(

�� , 0
4�m, 0

) 1
3 and s ≡ 1−�m, 0

�m, 0
. The condition V ′(amax)= 0 then

gives amax = 1
2x , which when substituted back, yields V (amax)= 4x3 − 3x − s. The condition V (amax)= 0 then

produces the cubic solved above.
For �m, 0 � 0, s � 1, and we have the solution3

��, 0 = 4�m, 0

(
cosh

[
1
3 arccosh

(
1 −�m, 0

�m, 0

)]) 1
3

= 1 − 3(�m, 0/2)
2
3 −�m, 0 + 3(�m, 0/2)

4
3 + . . . (34)

This gives the curve starting at the point (�m, 0, ��, 0)= (0, 1) separating universes that banged from those that
did not. Note that since s � 1, implying β � 1, then amax � 1 and the universe expands forever on both sides of
this phase boundary.

For �m, 0 � 1, we have the solution4

��, 0 = 4�m, 0

(
sin

[
1
3 arcsin

(
�m, 0 − 1

�m, 0

)]) 1
3

= 4
27 (�m, 0 − 1)3 − 8

27 (�m, 0 − 1)4 + . . . (35)

This gives the curve starting at the point (�m, 0, ��, 0)= (1, 0) separating universes that will expand forever from
those that will collapse. As indicated in the cosmic diagram, all these universes had a Big Bang in their past.

I envisage a titanic struggle between dark energy and dark matter. Dark matter hardly has a chance against
the explosively exponential expansion of a positive cosmological constant, but what we just learned is that for a
tiny ��, 0 > 0, a sliver of opportunity still exists for dark matter. For example, (35) tells us that for �m, 0 = 1.1, if
��, 0 <

4
27 × 10−3, then dark matter could still reverse the expansion.
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Note that before the discovery of dark energy, ��, 0 was presumed to vanish, and so cosmologists were
restricted to the �m, 0-axis. We can use the cosmic diagram to verify the results in the previous chapter. Thus,
along the �m, 0-axis, for �m, 0 < 1, the universe is open and expands forever, while for �m, 0 > 1, it is closed and
will eventually collapse. All these universes decelerate and had a Big Bang.

Exercises

1 For a flat universe filled with only nonrelativistic matter, show that tage = 2
3H0

and ρ = 1/(6πGt2).

2 For a flat universe filled with only relativistic matter, show that tage = 1
2H0

and ρ = 3/(32πGt2).

3 Obtain Einstein’s static universe directly from his field equation and determine the radius of his static
universe.

4 Derive the expression for the curvature density used by astronomers

�k(z)= �k , 0

�m, 0(1 + z)+�r, 0(1 + z)2 +��, 0(1 + z)−2 +�k , 0
(36)

5 Show that a flat universe containing any amount of �m, 0, but with ��, 0 < 0, will reach what is known as a
Big Crunch, a moment when a vanishes. Calculate the time to the end.

Notes

1. What Time Is It over There? is an interesting film by Ming-liang Tsai.
2. Note that if we define the Hubble length by L≡H−1 and regard it as some kind of radius of the universe,

we can massage the definition of the critical density ρc = 3H 2

8πG into the following: 2G(4πL3/3)ρc = L. If we
think, rather loosely, of the universe as a Euclidean ball of radius L and mass density ρc, and hence mass
M = (4πL3/3)ρc, this tells us that the Schwarzschild radius of the universe is equal to its radius, that the
universe is on the verge of being a black hole. This is of course just a heuristic way of interpreting what the
critical density means.

3. For those who find this functional form indigestible, I offer (and prefer) the alternate form��, 0 = 1
2�m, 0(k +

3k
1
3 + 3k− 1

3 + k−1), with k ≡ (1 −�m, 0 +√
1 − 2�m, 0)/�m, 0.

4. Again, as in the preceding endnote, I offer the alternate form��, 0 = i
2�m, 0(w − 3w

1
3 + 3w− 1

3 −w−1), with
w ≡ (

√
2�m, 0 − 1 + i(�m, 0 − 1))/�m, 0.



VIII.3 The Gamow Principle and a Concise History
of the Early Universe

A physical history of the universe

At one time, textbooks on Einstein gravity devoted1 a substantial fraction of their exposi-
tions to physical cosmology. In the intervening decades, cosmology has grown by leaps
and bounds, and any serious discussion of the subject requires a textbook2 of its own, as
I’ve said in chapter VIII.1. Here I can only give you a sketch of the physical history of the
universe, largely in qualitative3 terms. Thus, this chapter will consist of mostly talk.

But as a subscriber to Feynman’s aversion to all talk and no action, I feel compelled to
do one small calculation toward the end of this chapter. We will determine the position of
the first acoustic peak in the fluctuation of the cosmic microwave background.

The once-hot universe

Imagine that someone had filmed the universe’s evolution. In what follows, we will play
the movie backward and forward, rewind and fast forward. Let us start by playing the movie
backward, starting from the present.

The crucial feature of our universe is that it expands and hence cools. As was derived
in chapter VIII.1, the temperature of the radiation filling the universe varies with the
cosmological scale factor a(t) like T ∼ 1/a, so that, as we go back into the early universe,
T steadily increases. Yesterday was hotter than today by about 10−11%, not by much, but
a billion years ago, the universe was hotter by 7%. And so it goes. As Boltzmann and
others taught us, temperature measures the average energy of the particles in a thermal
distribution. Keep in mind that 1 eV ∼ 1.16 × 104 K, and so the photons in the cosmic
microwave background, nowadays at 2.7 K, are almost negligibly feeble on the scale of
atomic physics. But as we go back in time, these now frail photons once rampaged, ripping
atoms apart.
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Figure 1 In the primeval universe, photons rushed about
vigorously trying to prevent the electrons from attaching
themselves to the protons. A pictorial representation.

Next, play the movie forward, starting at a time when the temperature was way too hot
for atoms to exist. You might recall that the binding energy of the hydrogen atom is 13.6 eV.
So let us suppose that the typical energy of the photons far exceeds that. The universe was
a hot soup of electrons, protons, and so forth. (As we will see later, there were a small
number of deuterons, helium nuclei, and the like around, but to keep the story simple, we
will ignore them.)

The photons are constantly scattering off the charged particles: the photons and the
charged particles are said to be tightly coupled to each other. Occasionally, a proton and
an electron would come together and form a hydrogen atom, but almost immediately, a
photon would come along and knock the proton and the electron away from each other.
See figure 1.

Recombination delayed and decoupling

But the universe keeps on cooling, and the average energy of the photons keeps on
dropping. Eventually, the photons become too weak to ionize the hydrogen atom, at which
point, protons and electrons rush to pair off with each other.

This milestone in the life of the universe, the combination of protons and electrons into
hydrogen atoms, is known as recombination.∗ You might think that the recombination
would occur as soon as the temperature drops below ∼13.6 eV, but two physical effects
delay recombination. When we specify the temperature of a photon gas, we are talking
about the average energy of the photons. The photons in the tail end of the thermal dis-
tribution are much more energetic (by definition of “tail end”). Furthermore, the universe
contains vastly more photons than protons and electrons, by a factor of about 1010. Thus,
through the sheer numbers of photons, even if only a tiny fraction of them have ener-
gies in excess of 13.6 eV, the hydrogen atoms are still ripped apart as soon as they form.
Consequently, recombination does not occur until the universe has cooled to about 0.3 eV.

∗ Recombination surely ranks as one of the least appropriate physics terms: the protons and the electrons had
never been combined earlier.
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Since the photon interacts oppositely with the positively charged protons and the nega-
tively charged electrons in an atom, its interaction with an atom is vastly reduced compared
to its interaction with the proton or with the electron. (The net interaction with the atom
does not add up to exactly zero, because the electrons are spread out, while the protons are
concentrated in the nucleus.)

After recombination, the mean free path of the photons increases dramatically. There are
hardly any charged particles for the photons to scatter off, and the interaction of photons
with the atoms, as explained above, is relatively weak. Soon, the mean free path of the
photons exceeds the Hubble radius of the universe, and the photons are effectively free.
They are said to decouple.∗

Pale fire

Decoupling was a crucial event in the evolution of the universe, as was pointed out in 1948
by George Gamow, Ralph Alpher, and Robert Hermann. They realized that a pale shadow
of the fire that filled the early universe should still be visible.

After decoupling, radiation (photons) and matter (atoms) more or less go their separate
ways. These primeval photons interact so little with matter that through the eons, they
merely drift through the universe, getting redshifted down to a cosmic microwave back-
ground permeating the universe. Gamow and his collaborators proposed the detection of
these “relic photons” as a crucial test of the Big Bang. Finally, in 1965, Arno Penzias and
Robert Wilson of Bell Telephone Company fortuitously detected these telltale photons.

That the actual detection of these primeval photons was not made until 17 years after
the initial prediction, and then only by chance, poses something of a puzzle for historians
of physics. The technology was available in 1948. Why then had experimenters not tripped
over one another to look for the glow from the Big Bang?4

Primeval nucleosynthesis

As we go farther back in time, the universe gets even hotter. When the average energy gets
to about one tenth of an MeV, nuclei are ripped apart. (Again, when the average energy
of the particles is only one tenth of an MeV, quite a few photons already have energies in
excess of a few MeV.) The universe was too hot for nuclei to exist and consisted of a hot
cauldron of protons, neutrons, and electrons.

Now run the movie forward. The universe cools. Soon photons no longer have enough
energy to break up a deuteron, so that the deuteron, once formed, could stick around.
The number of deuterons increases rapidly. Violence fades as the universe ages. As the
deuterons drift around, some of them are hit by protons and neutrons. When a proton
sticks to a deuteron, a helium 3 nucleus results. When a neutron sticks to a deuteron, a

∗ Recombination and decoupling happen to occur at roughly the same time in our universe, but the events
are conceptually distinct.
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tritium nucleus results. And so on and so forth. The net result is that as the universe cools,
protons and neutrons stick to one another. The primeval soup of protons and neutrons is
converted into nuclei of various kinds, laying the foundation for the modern world. The
construction of atomic nuclei in the early universe, known as primeval nucleosynthesis,
is easy to understand qualitatively.

The Gamow principle

In 1948, the U.S. government declassified nuclear reaction rates—information about how
readily a proton or a neutron would stick to a given nucleus to form a larger nucleus. George
Gamow realized that with this information, he could calculate the relative abundance of
the elements in the universe.

I refer to this insight as the Gamow principle: If you understand the physics at the energy
scale E, then you can describe the evolution of the universe at temperature E.

As we travel back to the early universe in our mind, we go through the standard
curriculum of physics. After atomic physics comes nuclear physics. After nuclear physics
comes particle physics. After the known particle physics comes grand unified physics,
applicable when the universe was a soup of quarks, leptons, and grand unified gauge
bosons. After that comes string theory.

An obvious corollary follows: If you don’t understand the physics at a given energy scale,
then you can only speculate. For example, if you think that you understand physics above
the Planck scale MP ∼ 1019 GeV, then you could describe trans-Planckian cosmology. But
if you don’t, then all the talk amounts to mere speculation.

Perhaps paradoxically to the layperson (but not to you), the later the epoch, the more
detailed and involved the physics you would have to master to work out the cosmology of
the epoch. For example, around 100 million years after the Big Bang, hydrogen molecules
began to form, and it is essential to understand the difference between the excitation spec-
trum of the hydrogen molecule versus that of hydrogen atoms. Much of what happened
since then has to be worked out by massive numerical computation.5

Stellar nucleosynthesis

The universe is a spiraling Big Band in a polka-dotted speakeasy,
effectively generating new light every one-night stand.

—Ishmael Reed

Gamow originally thought that all nuclei were formed in primeval nucleosynthesis. It
later became clear, however, that nucleosynthesis essentially came to a halt shortly after
helium was formed. By that time, the expansion of the universe had reduced drastically
the numbers of protons, deuterons, and helium nuclei per unit volume. The collisions
between them were so infrequent that nuclear processes by and large came to a halt.
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But as the universe cools further, the electrons move ever more slowly. With the passing
of time, the universe becomes cool enough for the products of nucleosynthesis—the
protons, deuterons, and helium nuclei—to grab some passing electrons to form atoms.
After atoms form, the nuclei can no longer get close to one another. When two atoms get
close, the buzzing clouds of electrons keep the two nuclei far apart.

After primordial nucleosynthesis, the universe thus settles into a relatively dull exis-
tence, permeated by enormous clouds of gas, cool enough for atoms and molecules to
exist. However, gravity has already been hard at work, pulling together neighboring globs
of gas. Soon the first stars condense out of the primeval gas clouds. As the gas atoms rush
together to form a star, they crash into one another with such abandon that they rip elec-
trons off one another, thus allowing the nuclei to approach one another once again and
restart nuclear reactions. The universe is suddenly lit with lights beyond measure.

Inside the stars, a helium nucleus bumps into another helium nucleus, which stick to
each other to form a beryllium nucleus. Yet another helium nucleus wanders by, sticks
to the beryllium nucleus, and produces a carbon nucleus. Out of starfires we humans
become a possibility. Note the crucial difference between primeval nucleosynthesis and
stellar nucleosynthesis. In the primeval setting, nuclei were drifting farther and farther
apart in the expanding universe. But when they were confined inside stars, they were
bound to bump into one another. Thus deuterium, helium, and a little bit of lithium
were produced in the primeval universe, while the more massive nuclei were formed
later in stars. When some of the first-generation stars exploded, they ejected into space
these higher nuclei, among other things. Out of this ejected debris, a second generation
of stars soon condensed. These stars started out containing heavier nuclei like carbon, out
of which more and more complicated nuclei are manufactured. Eventually, these stars in
turn exploded and splattered themselves over the cosmos.

You can’t make much out of only hydrogen and helium, but with carbon, silicon, iron,
and so forth, the possibilities become endless. You can make rocks, for instance. Bits of
rocks come together to form rock piles, laughably minute specks of dust in the cosmic
scheme of things. On one of these specks, carbon atoms started connecting up with
hydrogen, oxygen, and so forth. Somehow, these bunches of atoms suddenly came alive.
Eons and lots of self-improvement courses later, this moving, eating, reproducing ooze
turned into what are known as human beings, who eventually end up writing and reading
textbooks on Einstein gravity.

The rich get richer

Gravity plays an all-important role in the formation of structures in the universe.
Let me first tell the story without dark matter.
About 40,000 years after the Big Bang, bits of matter started to come together, forming

enormous structures that eventually condensed into galaxies. Galaxy formation marked the
first step in the emergence of structures in our universe: Within the galaxies, protostars
soon formed.
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Long ago, Newton had already identified the basic physics responsible for the emergence
of structure: the inherent instability of gravity. In 1692, a certain Reverend Dr. Richard
Bentley wrote to Newton, arguing that the universal presence of gravity proved the exis-
tence of God, a view with which Newton was much in sympathy. A lively correspondence
followed. In one of his letters to Bentley, Newton suggested how structures could emerge
in the universe, as follows.

Imagine space filled uniformly with matter. Newton made the point that any irregularity,
no matter how minute, would grow larger. Consider a region with more matter per unit
volume than the surrounding regions. Being denser, the matter in this region would pull
matter in from the surrounding regions by the force of gravity. As a result, the matter
distribution in this region becomes even denser. The process accelerates—it is the cosmic
equivalent of the often-observed phenomenon that the rich get richer and the poor get
poorer.∗ “And thus might the sun and fixed stars be formed,” concluded Newton. (Galaxies
were unknown in Newton’s time.)

Newton’s scenario6 makes such obvious sense that it remains the basic explanation of
how structures emerged in the early universe. Small fluctuations in the density of matter
grew and became amplified.

In its intrinsic instability, gravity is dramatically different from the other forces. The
electromagnetic force, the other long-ranged force in Nature, is intrinsically stable, because
it acts oppositely on positive and negative charges. To see this stability, consider a gas
consisting of equal numbers of protons and electrons. An excessive concentration of
electrons in one region would be immediately smoothed out by the mutual repulsion
among the electrons. Unlike gravity, the electromagnetic force tends to smooth matter
out, counteracting gravity’s tendency to dump matter together.

Dissipative collapse

In 1902, the English physicist Sir James Jeans tried to calculate the size of the actual lumps
that would form. However, he did not know about the universe’s expansion. Clearly, cosmic
expansion, by thinning out the distribution to matter, works to slow down the formation
of lumps. In our analogy, cosmic expansion acts like taxation: as the rich get richer, part of
their wealth is continuously removed. But the tax rate is more or less flat: regions sparse
with matter are stretched out at essentially the same rate as those regions dense with
matter. A calculation7 including the effect of cosmic expansion, first done by the Soviet
physicist E. Lifschitz in 1946, shows that lumps will still form but at a far slower rate than
would have been the case were the universe static. With taxation, the rich continue to get
richer; they are merely slowed down.

∗ Introduced into sociology as the Matthew principle by R. K. Merton. We already cited this principle in
chapters III.2 and VI.3.
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As lumps of matter form, more atoms rush in toward the nearest lump. As they rush in,
they collide with one another, emitting photons that, since they hardly interact with atoms,
escape from the mad rush, thus carrying away energy. In this way, the atoms lose energy
and move ever more slowly, less and less able to resist the inward pull of gravity. And
thus matter collapses into increasingly compact lumps, in a process known as dissipative
collapse.∗ That atoms can radiate photons and dissipate energy is essential to the story.
Were there no mechanism for dissipation, the kinetic energy of the atoms would prevent
them from collapsing into lumps. They would simply bounce off one another.

Without gravity, we would not be

Thanks, gravity. How wonderful gravity is! Without it, we would not be. The universe
might have been a thin haze without much to recommend it. But gravity couldn’t have
done it alone. To me, it is awe inspiring how only the intricate intertwining of all four
forces manages to bring it off. As gravity strives to bring structures out of the haze, the
electromagnetic force is needed to carry the excess energy away. Once the particles quiet
down and gravity brings the primeval hydrogen and helium nuclei face to face, the strong
and the weak forces step in. The strong force causes nuclei to react with one another, thus
igniting the nuclear fire that brings warmth to the vast void. The weak force is crucial lest
stars become as uncivilized as nuclear bombs. Certain nuclear reactions can only proceed
through the weak force. Because the weak force is, well, weak, these reactions proceed
extremely slowly. As a result, the nuclear fires in stars burn at a stately pace. Meanwhile,
gravity is busily collecting the ejecta left by the dying stars of the first stellar generation
into planet-sized bits of interstellar dirt. The electromagnetic force is keeping busy, too.
It is transporting energy from the stars to warm these bits of dirt, and it is running all
kinds of chemical reactions, bonding one atom to another, so more and more interesting
structures can be built. It’s a team effort.

The problem of not enough time

The rich get richer, but there still is a problem that they often feel acutely: it takes time
to become rich. Similarly, it takes time for the density fluctuations to grow to the point
when structures can form. As explained above, we know when the fluctuations can start
growing (not until recombination) and how fast the fluctuations grow once they get going.
But in addition, we also know how large the initial density fluctuations were, thanks to
the cosmic microwave background. The photons that compose the cosmic microwave
background, having traveled unperturbed since the time of decoupling, tell us about the
matter distribution at the time.

∗ For an illustration of dissipative collapse, see figure 8.3 on p. 129 of Toy/Universe.
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Picture the primeval fluid sloshing back and forth in the universe. Photons leaving a
denser, and hence hotter, region would be more energetic, and photons leaving a less
dense region would be cooler. Thus, any density fluctuation in the universe at the time of
decoupling would be imprinted as a temperature fluctuation in the observed microwave
background. Indeed, at one time, this line of reasoning was used to predict the temperature
fluctuation in the microwave background.

We are going to discuss one aspect of this temperature fluctuation in some detail later,
but we might as well introduce the notation now. Let T (n̂) ≡ T (θ , ϕ) be the observed
temperature of the microwave background in the direction n̂ defined by the angles θ

and ϕ in spherical coordinates. As mentioned earlier, the average temperature 〈T 〉 =
1

4π

∫
dθdϕ sin θ T (θ , ϕ) was measured to be �2.725 K. Consider the fractional deviation

from the mean δT
T
(n̂)≡ (T (n̂)− 〈T 〉)/〈T 〉. One measure of the fluctuation is given by the

root-mean-square of the fractional deviation 〈( δT
T
)2〉, which was observed to be �10−5. This

observed value turned out to be significantly less than the predicted value, thus indicating
that the universe at decoupling was smoother than previously thought. But if the density
fluctuation at recombination started small, there was not enough time for it to grow into the
lumpy universe we know today. At one time, this posed a serious problem for cosmology,
a problem now resolved, as we will see presently.

Dark matter

Thus far, I have told the story of the early universe without dark matter. As was mentioned
earlier on various occasions, observational evidence indicates that the universe contains a
lot of dark matter particles, sometimes known as wimps.∗ For example, stellar movements
indicate that the dark matter in various galaxies outweighs the total collection of stars in
those galaxies. This astonishing conclusion completely revises our picture of galaxies. The
luminous matter we know and love, consisting of nucleons and electrons, is now seen as
bits of flotsam bobbing about in a sea of dark matter.

Dark matter now comes to the rescue of cosmologists perplexed by the “not enough
time” problem. By definition, dark matter does not interact electromagnetically. Since the
wimps do not interact with photons, unlike the charged protons and electrons, they can
start coming together gravitationally long before decoupling. Regions that happen to have
a somewhat denser distribution of wimps could start getting even denser by pulling in
wimps from the surrounding regions through gravity.

Meanwhile, the photons ignore the wimps as they struggle mightily to smooth out the
distribution of ordinary matter. All that labor would prove to be in vain. The wimps are
already condensing into lumps of dark matter, which tugged at the ambient ordinary matter
through gravity, urging the protons and electrons to fall in. As soon as decoupling occurred,
atoms formed, and ordinary matter, now neutral, fell into the ready-made dark matter

∗ An acronym for “weakly interacting massive particles.” It should be mentioned that as of this writing, the
actual particle (or particles) that dark matter consists of has not been directly observed and identified.
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lumps. With dark matter present, the formation of structures in the universe could start
earlier, without waiting for the formation of atoms.

Not only do the rich get richer, but the rich also can count on inheriting from the wimps.

First acoustic peak

After all this talk, let us do an actual calculation, as promised. The correlation function
defined by8

C(θ)≡
〈
δT

T

(
n̂1
) δT
T

(
n̂2
)〉

cos θ=n̂1.n̂2

(1)

evidently measures how the fractional deviations in temperature in two regions of the
sky separated by angle θ are correlated. We can expand this angular function in terms of
Legendre polynomials: C(θ)= 1

4π
∑∞

l=0 ClPl(cos θ).
The observational data, with Cl plotted against l (which you can think of roughly as the

conjugate of θ ), is shown in figure 2. Earlier you were asked to picture the primeval fluid
sloshing back and forth; hence the peaks in the plot are known as acoustic peaks. Note the
position of the first peak at l1 � 180, corresponding to the angle θ1 = π/l1.

Since the smaller values of l correspond to larger values of θ , the value of θ1 tells us about
the maximal angular size of the primeval density fluctuations. Let us use this observation
to estimate the position of the first acoustic peak. We will do it for a flat universe for
simplicity, and come back later to the question of how the curvature of the universe affects
the position.

Back in school, we learned that the angular size of an object is given by θ = λ/d, where
λ denotes the linear size of the object, that is, the distance between its two ends, and d the
distance from us to the object along the line of sight. Thus, to determine θ1 and hence l1,

10 100
ℓ

ℓ(ℓ + 1)Cℓ

1,000

Figure 2 Schematic representation of the observational data
on angular correlation in the fluctuations of the cosmic
microwave background; see the text for details.
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our task reduces to calculating two distances. Since we are calculating a ratio λ/d , we can
afford to be sloppy and drop common overall factors.

As explained in detail in chapter V.3, distance should be defined operationally by bounc-
ing light back and forth off the object of interest, as in radar ranging. For flat (k = 0)
spacetime, the relevant integral for the coordinate distance between two events 1 and 2 is
given by

d12 ≡ R12 =
∫ r2

r1

dr = c

∫ t2

t1

dt

a(t)
= c

∫ a2

a1

da

aȧ
≡ cJ12 (2)

(see (V.3.10), with the notation used there). Note that we have restored the speed of light. In
chapter VIII.1, we learned that a(t)∝ t

2
3 during the matter dominated era, and a(t)∝ t

1
2

during the radiation dominated era. Write a ∝ tγ , and hence ȧ ∝ tγ−1 ∝ a
γ−1
γ . The quantity

J12 defined in (2) for convenience thus turns out to be

J12 ∝
∫ a2

a1

da

a
a

1−γ
γ ∝

(
a

1−γ
γ

2 − a

1−γ
γ

1

)
(3)

During the matter dominated era, J12 ∝
(
a

1
2
2 − a

1
2
1

)
, and during the radiation dominated

era, J12 ∝ (a2 − a1).
Recall from chapter VIII.2 that the scale factor a is related to the redshift z by a =

1/(1 + z). The relevant numbers we need are zmdom � 8,800 when matter started dom-
inating over radiation, zdec � 1,100 when radiation decoupled from matter, and of course
z0 = 0 at present. Or equivalently a0 = 1, adec ∼ 10−3, and amdom ∼ 10−4. Since a0 � adec �
amdom, the evaluations of d and λ simplify, as we will see presently.

Now that I have set things up and told you the relevant numbers, we are ready to
calculate. First, let us calculate the coordinate distance d between decoupling and the
present. Since dark energy is only starting to take over now, it is an excellent approximation
in calculating d to assume a matter dominated universe in the eons between decoupling

and now. Thus, we have d ∝ c
(
a

1
2
0 − a

1
2
dec

)
� ca

1
2
0 = c.

The calculation of λ1 is slightly more involved. The maximum size of the density
fluctuation is limited by the distance that sound could have traveled since the Big Bang,
and hence by the speed of sound cs.

Normally, when we think of a sound wave, it can have any wavelength we like, but for
matter to oscillate together as a density wave, information has to be conveyed from one end
of the fluctuation to the other. In ordinary circumstances, compared to the characteristic
time scale of oscillation, a sound wave can be taken to have existed forever; that is, it can
be treated as a standing wave. In early cosmology, we have the extraordinary situation that
time itself had started only a little while earlier. Sound, or more accurately a density wave,
could not have gotten farther than a certain maximum distance∗ determined by the time
elapsed since the Big Bang.

∗ What we are discussing here is known as the sound horizon. The concept of a light horizon will be discussed
in the next chapter.
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Hence, the maximum size of the fluctuations in the primeval fluid when the cosmic
microwave photons decoupled is given by λ1 = cs

∫ tdec
0

dt
a(t)

= cs
∫ adec

0
da
aȧ

. The crucial point
is that the integral here is multiplied by cs, rather than c, as in the calculation of the
distance d .

This integral for λ1 is naturally divided into two pieces according to the behavior of a:
(a) from the Big Bang until matter dominance (call it BB to MD), that is, from t = 0 until
tmdom, and (b) from matter dominance to decoupling (call it MD to DEC). Using our results
for J12 during the matter dominated era and during the radiation dominated era, and the
numerical values of a given earlier, we see that the piece (MD to DEC) contributes much

more to the integral than does the piece (BB to MD), since a
1
2
dec − a

1
2
mdom � a

1
2
dec � a

1
2
mdom �

amdom.
Putting it altogether, and using cs = c/

√
3 from chapter III.6, we obtain

θ1 = csa
1
2
dec

ca
1
2
0

� 1√
3(1 + zdec)

(4)

In other words, l1 = π/θ1 � π
√

3(1 + zdec)� 180, in excellent agreement with the obser-
vational data shown in figure 2.

Effect of curvature on fluctuations in the cosmic microwave background

We did the calculation for a flat universe, but we could easily take into account the effect
of spatial curvature. (Recall exercise 6 in chapter V.3.) Since curvature hardly plays a
role in the very early universe, its effect is mainly in the calculation of d. Instead of
d = R = ∫ R

0 dr = c
∫ t0
tdec

dt
a(t)

≡ cJ as in (2), we have for the closed universe

∫ R

0

dr√
1 − r2

L2

= L sin−1(R/L)= cJ

so that d = R = L sin(cJ /L) < cJ . Thus, d is smaller, so that θ1 is larger. Hence in a
closed universe, l1 is smaller than what it would be in a flat universe.

This effect is also easy to understand pictorially. Think of yourself at the north pole
looking at a stick aligned east-west at some latitude. Picture the two geodesics reaching
you starting at the two ends of the stick. The angle between the two geodesics is larger
than it would be were the earth flat. See figure 3.

Figure 3 The effect of curvature on the
position of the first acoustic peak.
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For the open universe, replace the integral∫ R

0

dr√
1 − r2

L2

by
∫ R

0

dr√
1 + r2

L2

or effectively sine in the preceding paragraph by hyperbolic sine. Hence in an open
universe, l1 is larger than what it would be in a flat universe.

We conclude that

l1(open) > l1(flat) > l1(closed) (5)

The first acoustic peak is shifted to a smaller value of l for a closed universe, and to a larger
value of l for an open universe. The observational data on the position of the first acoustic
peak favor a flat universe.

Appendix: Baryogenesis and leptogenesis

In this appendix, we wade into particle physics, and the discussion will get somewhat involved. It is fine if you
choose to skip over this.

Imagine playing the cosmic movie backward from the time when the universe consists of a soup of protons,
neutrons, and electrons. Soon, the protons and neutrons in their turn are dissociated into quarks and gluons
(the “cousins” of the photon, which are responsible for the strong interaction), and a knowledge of quantum
chromodynamics, the theory of the strong interaction, is needed to work out the physical cosmology of this
epoch, in accordance with the Gamow principle.

At this point, you might well wonder where the quarks come from. While you are at it, how about the electrons?
To answer these questions, we will have to venture into more speculative areas of particle physics. Since the

requisite knowledge9 lies far outside the scope of this book, I will have to give an exceedingly brachylogous10

account meant only to give you an overview rather than understanding.
Protons, neutrons, and their various cousins are called baryons and carry what is known as baryon number

B. Similarly, electrons, electron neutrinos, and their various cousins are called leptons and carry what is known
as lepton numberL. After much travail, particle physicists now understand that each baryon is made out of three
quarks. Since baryon number is additive, each quark carries baryon number 1

3 .
For a long time, it was believed that baryon number B and lepton number L are separately conserved. We

now even understand why. When an electron emits or absorbs a photon, it remains an electron. Similarly, when
a quark emits or absorbs a photon, it remains a quark, in fact, exactly the same kind of quark. In other words,
the photon does not change the charged particle it interacts with. In contrast, the W boson, the cousin of the
photon that is responsible for the weak interaction, changes the electron into a neutrino, and a down quark into
an up quark, and so on. But in these weak interaction processes,B andL are still separately conserved. In the late
1960s, it was realized that the electromagnetic interaction and the weak interaction could be unified into a single
electroweak interaction. Meanwhile, the gluon, which I already alluded to as being responsible for the strong
interaction, changes an up quark of one color into an up quark of another color, and hence does not change the
baryon numberB. (I am assuming that you have heard somewhere that quarks carry a quantum number particle
physicists call color, hence the name quantum chromodynamics for the theory of the strong interaction.) The
gluon does not touch leptons at all.

What I have done here is outrageous, brushing over entire books on particle physics in a couple of short
paragraphs.11 Lest the reader lose sight of what we are doing, let me recap. Very roughly speaking, we would like
to understand why the universe contains this many electrons, this many protons, this many neutrons, and so
on. But electron number and proton number are not conserved. As a specific example, the neutron decays into
a proton, an electron, and an antineutrino of the electron type (written as n→ p + e− + ν̄e). The antineutrino
is assigned lepton number −1 (so that the neutrino has lepton number +1). In this process, neutron number
changes from 1 to 0, while proton number changes from 0 to 1. In contrast, we start out with B = 1, L= 0, and
end with B = 1, L= 0. Thus, it is not particularly useful to talk about electron number, proton number, neutron
number, and the like, since they are liable to change, but it does make good sense to count with baryon number
B and lepton number L.
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At this point, the astute reader surely realizes that, unless the universe is finite in extent, it is more appropriate
to talk about baryon number density nB (namely the number of baryons per unit volume) and lepton number
density nL rather than the total number B and L. Furthermore, it is more convenient to talk about the dimen-
sionless ratios nB/nγ and nL/nγ , since nγ is easily determined by the well-measured temperature of the cosmic
microwave background.

Incidentally, nγ provides a good measure of the entropy of the universe. Recall that I have already quoted
the observed value nB/nγ ∼ 10−10; in other words, the matter we know and love is truly a pitifully small
contamination of an otherwise pristine universe. Equivalently, we could also say that the entropy per baryon
is huge.

So, to understand the matter content of the universe, we would like to be able to calculate these two
cosmological quantities nB/nγ and nL/nγ from scratch. But starting with what?

Good question. The most appealing supposition is to imagine that right after the Big Bang, the universe is
pristine, with B = 0 and L= 0. The observed baryons and leptons are somehow generated later.

But, thus far in the story, B and L are separately conserved. Hence, if the universe started out with B = 0 and
L= 0, it would always have B = 0 and L= 0. In other words, as long as B and L are conserved, the baryons
and leptons of the universe have to be put in at the beginning: they are part of the initial conditions. While this
possibility may be theologically appealing to some people, the typical physicist would much prefer to be able to
calculate as many observed quantities as possible.

Thus, for an ab initio calculation of the baryon and lepton number of the universe at present, a necessary
ingredient is baryon and lepton number nonconservation.

Now again a lightning summary of the relevant particle physics. Until the early 1970s, particle physicists
thought of the four fundamental forces—the strong, the weak, the electromagnetic, and gravity—as unrelated.
First, the electromagnetic and the weak interactions were merged into a single electroweak interaction, as
mentioned above. Later, the strong and the electroweak interactions were further unified into a single interaction,
known as the grand unified interaction, with a characteristic energy scale of about 1016 GeV. In other words, the
grand unified theory predicts that in processes in which particles with energies of about 1016 GeV collide with
one another, the strong, the weak, and the electromagnetic forces become the same force. While experimental
confirmation remains lacking at present, there are various compelling theoretical reasons for believing in the
grand unified theory.12

So once again, we invoke the Gamow principle: if we think that we understand grand unified theory, then we
can discuss the universe in the grand unified era, when the temperature was of order 1016 GeV.

Reading the preceding description of the strong, the weak, and the electromagnetic interactions, you may
have realized that, with these interactions, quarks are always transformed into quarks and leptons always into
leptons. Before grand unification, you could take a piece of paper, draw a line down the middle, and write down
the names of all the quarks on the left side of the line, and the names of all the leptons on the right side of the
line. The fundamental forces act on these particles, the quarks and the leptons, transforming one particle into
another. But in all these transformations, a particle on one side of the line is never changed into a particle on the
other side. A quark is never transformed into a lepton, and a lepton is never transformed into a quark.

Grand unification erases the line drawn on that piece of paper. The worlds of quarks and leptons can no longer
be separated; the two worlds are unified. With grand unification come new transformations that change quarks
into leptons and vice versa.∗

With baryon and lepton number nonconservation, it is now possible to start the universe withB = 0 andL= 0,
and then through various processes during the grand unified era to generate nonvanishing B and L. After the
grand unified era, the universe is too cool for these baryon and lepton number nonconserving processes to
proceed, and we end up with the number of baryons and leptons that are observed at present.

∗ In Fearful, I spoke of a magician whose art is limited to transforming one animal into another animal,
one fruit into another. A rabbit and an apple are on the stage. The magician waves his cape, and, whoosh,
the rabbit and the apple are transformed into a fox and some sour grapes. The audience bursts into applause.
Whoosh! The fox and the grapes are gone, replaced by a mouse and a watermelon. But no matter how fantastic
the transformations, there always will be one animal and one fruit on stage. So, too, the fundamental forces
can only transform one quark into another quark, one lepton into another lepton. You may recognize that this
implies baryon conservation: the three quarks that made up a baryon can be transformed only into three other
quarks. There always will be three quarks, just as there always will be one animal on stage in the analogy. Onto
the stage struts a new magician, the mysterious and amazing Mr. Grand Unification. Applause, and whoosh!
The rabbit is transformed into an orange. No more animal on stage. So too in grand unified theory. Whoosh! No
more baryon on stage. The three quarks inside a proton can be transformed into leptons. Baryon number is no
longer conserved, and the proton can decay.
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At this point, we realize that there is another problem.
Back in chapter III.4, I mentioned one triumph of special relativity: when combined with quantum physics,

it necessarily leads to the existence of antimatter. For every particle, there is a corresponding antiparticle. Again,
in chapter VII.3, in discussing Hawking radiation, we talked about an electron and a positron (the antielectron)
popping out of the vacuum. Similarly, a proton and an antiproton can pop out of the vacuum. Particle physicists
define the antiproton to have B = −1, and the positron to have L= −1, so that these processes in which pairs of
particles and antiparticles pop out of the vacuum conserve B and L.

Furthermore, it was discovered that the fundamental laws of physics are invariant under an operation (known
as CP: charge conjugation followed by parity) that interchanges particles and antiparticles. In other words, physics
does not favor matter over antimatter, and vice versa.

So, here is the problem. Seen in this light, the problem of understanding the baryon and lepton content
of this universe becomes a problem of understanding the matter-antimatter asymmetry of the universe. Why
does matter dominate over antimatter in our universe? In other words, starting with B = 0 and L = 0, how
would the universe know to generate a positive baryon number, rather than a negative baryon number? Similarly
for the lepton number. If we truly understand what is going on, we should be able to calculate the sign as well
as the magnitude of nB/nγ (and similarly for nL/nγ ). Therefore, to cook up some baryons and leptons for the
universe, we have to introduce yet another ingredient into the story: we need to invoke physical processes that
would favor matter over antimatter.

Hence I need to mention one more thing about particle physics. In 1964, the belief that the laws of physics must
be invariant under CP was shattered by J. Cronin, V. Fitch, and collaborators.13 They found experimentally that,
in the decay (mediated by the weak interaction) of certain mesons, particles and antiparticles behave differently
by a tiny amount.

With CP violated experimentally and B and L violated theoretically, we finally have all the ingredients to
generate the baryon and lepton content of the universe during the grand unified era.14 The details do not concern
us, but the relevant processes involve the decay and interaction of various cousins of the photons present only
in the grand unified theory. Conceptually, our ability to calculate the matter content of the universe is not much
different from our ability to calculate the hydrogen and helium content of the universe, but it is much shakier
in accordance with the Gamow principle.

I end this rather long appendix by mentioning another twist to this story. Later, it was discovered theoretically
that the electroweak interaction also violates B and L, through nonperturbative effects (that explains why it was
not known earlier), but conserves B − L. Hence, people now claim that the baryons and leptons generated in
the grand unified era would get washed out in the electroweak era (that is, the universe would relapse back to a
state with B = 0 and L= 0).

Instead, according to one scenario known as leptogenesis, during the electroweak era, processes involving
neutrinos are supposed to generate L, which, since B − L is conserved, would also generate B as a kind of
collateral damage. Some people swear by this leptogenesis scenario, but to some others, the original scenario of
a grand unified birth seems much simpler and cleaner.

Notes

1. For example, S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of
Relativity, Wiley, 1972.

2. S. Weinberg, Cosmology, Oxford University Press, 2008, and ibid.; V. Mukhanov, Physical Foundations of
Cosmology, Cambridge University Press, 2005.

3. Indeed, much of the exposition is adapted from Toy/Universe. The reader who is totally ignorant of cosmology
might find this popular book an easy introduction to the subject.

4. Steve Weinberg has given a fascinating analysis of this question. More often than not, history does not develop
in a straight line. For one thing, Gamow botched the details of primordial nucleosynthesis. He arbitrarily
supposed that the early universe contained neutrons but not protons. For this and other reasons, the Big
Bang cosmology of Gamow was not taken seriously and gradually faded from the general consciousness.
Penzias and Wilson were totally unaware of Gamow’s prediction that a faint glow from the Big Bang ought
to be observable; they were trying to eliminate an annoying hum in an antenna they were working on. Quite
remarkably, not 50 miles from them but unbeknownst to them, a group of physicists at Princeton University
consisting of Robert Dicke, P. G. Roll, and David Wilkinson, were setting up an experiment to detect whether
the universe had once been hotter. They had also forgotten Gamow’s calculation. At Dicke’s suggestion, a
young theorist named James Peebles worked out primeval nucleosynthesis all over again. He was thus able to
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predict the expected average energy of the microwave photons. Unfortunately for the Princeton group, they
were beaten to the punch. When they heard about the persistent hum picked up at the telephone company lab,
they were thunderstruck and immediately realized the magnitude of what Penzias and Wilson had discovered
serendipitously.

5. For an easy account of what happened to the universe starting from about 400,000 years, see T. Abel, Physics
Today, April 2011, p. 51.

6. Incidentally, Historians know about Newton’s letters because in 1756, Bentley’s heirs published them under
the title “Four Letters from Sir Isaac Newton to Doctor Bentley Containing Some Arguments in Proof of a
Deity.”

7. For an easy pedagogical introduction to structure formation, see A. Zee, Unity of Forces in the Universe,
volume II, chapter XII. A simple version of the calculation referred to here is given in the appendix.

8. The angle brackets denote averaging over an ensemble of realization of the fluctuation. There is a slight
subtlety here, since we have only one universe. In practice, δT

T
(n̂) is expanded into multiple moments and the

average is taken over different azimuthal moments. We won’t go into such details of observational cosmology
in this text.

9. See, for example, QFT Nut, part VII.
10. Recall the brachistochrone problem from chapter II.1.
11. For a more leisurely account at the level of popular physics books, see Fearful.
12. I discuss grand unified theory in considerable detail at the level of popular physics in Fearful.
13. Incidentally, both Jim Cronin and Val Fitch influenced my formation as a physicist.
14. The early work in the context of grand unified theory was done by M. Yoshimura, S. Dimopoulos, L. Susskind,

D. Toussaint, S. Treiman, F. Wilczek, A. Zee, and others. Later, it became known that in the Soviet Union,
A. D. Sakharov had discussed the general framework for generating the baryon content of the universe in
1967, long before the invention of grand unified theory. See A. Zee, Unity of Forces, chapter XI.
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Traditional cosmology beset by problems

Before the discovery of dark energy in 1999, it was presumed that the cosmological constant
was zero and cosmic expansion was driven entirely by matter and radiation. By the late
1970s, it gradually became clear that Big Bang cosmology as understood at that time was
beset by several serious problems, known as the horizon problem, the homogeneity and
isotropy problem, the flatness problem, and the relic problem. We will first discuss these
problems in turn1 before turning to inflationary cosmology.

Horizon problem

At any given time t after the Big Bang, light, even traveling at the universe’s ultimate speed
limit, could not have gotten arbitrarily far. There had not been enough time to have gotten
farther than a certain horizon2 distance dhorizon(t) to be defined below. Thus, two points
farther apart than dhorizon(t) could not have been in causal contact with each other. Using
the cosmic time η introduced in chapter V.3, we can make this starkly clear pictorially
(figure 1). As in Minkowski spacetime, light moves along 45◦ lines. As indicated, events
A and B are in the future light cone of O, and B and C are in the future light cone of P.
Events A and B are causally correlated: events at η0 could have influenced both of them.
Similarly, events B and C are causally correlated, but not events A and C. I daresay that
even the proverbial guy in the street could understand this point.3

Consequently, the early universe can be regarded as cut up into small patches called
causal domains, with different causal domains uncorrelated with one another. True, the
universe has expanded a great deal since then, and you might think that these primeval
casual domains are now huge, but a power law expansion driven by matter and radiation
proved to be insufficient. In this traditional Big Bang scenario, we would expect the present
universe to look like patches of causal domains, rather than the homogeneous smooth
universe that it actually is.
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Figure 1 Causal domains in the early universe: Events A and
B are causally correlated; similarly, events B and C are causally
correlated, but not events A and C.

Homogeneity and isotropy problem

The universe is homogeneous and isotropic, and that’s of course why cosmic expansion
can be studied so simply with an ordinary differential equation, as in chapter VIII.1. But
the universe is way too homogeneous and isotropic!

As mentioned in the preceding chapter, the temperature variation of the cosmic mi-
crowave background amounts to only 〈( δT

T
)2〉 � 10−5 across the sky. How can causally

uncorrelated domains end up having almost the same temperature? The size of
these patches should be determined by dhorizon(t) at photon decoupling, because ever
since that time, photons have been streaming freely. How did the universe get to be so
smooth?∗

Before the late 1970s, some physicists would argue that this homogeneity problem is a
matter of the initial conditions the universe started with, and hence outside the purview
of theoretical physics.

Flatness problem

From (VIII.2.29), we learned that �k, which measures the curvature of the universe,
evolves according to �̇k =H�k(2�r +�m − 2��). At one time, it was thought that �� is
strictly zero, and so

�̇k =H�k(2�r +�m) (1)

Since (2�r + �m) > 0, any deviation away from �k = 0 is unstable. As long as �k is
not 0, its magnitude would grow regardless of its sign. How did the universe get to be
so flat?

∗ As explained also in the preceding chapter, the homogeneity problem implies there was not enough time
for the irregularities at the time of decoupling to grow into the structures we see today. That problem was solved
by dark matter getting a head start on growing structures.
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Relic problem

One consequence of the grand unified theory mentioned in the preceding chapter is that
it should contain a certain number of magnetic monopoles and antimonopoles per unit
volume left over as a relic of the grand unified era, at a level totally in contradiction with
observation. Indeed, as you no doubt know, the magnetic monopole has never been ob-
served. If we claim that we understand the grand unified theory, then the Gamow principle
tells us that the absence of relics from the grand unified era poses a serious problem. After
all, the relic from the atomic era, namely the cosmic microwave background, is well mea-
sured. But a conservative would say that we understand atomic physics so much better
than grand unified physics.

Distance to the horizon

Let us now calculate the distance to the horizon. In chapter V.3, we introduced the proper
distance4

d(t , R)≡ a(t)

∫ R

0

dr√
1 − k r2

L2

between two distant points with coordinates (t , 0, θ , ϕ) and (t , R , θ , ϕ). Evidently, it is
a function of two variables t and R. The horizon distance dhorizon(t), a function of one
variable, is defined by choosing R to be the coordinate distance light could have traversed
by time t , starting at the Big Bang. Since light rays follow paths determined by ds = 0, that

is, by dt/a(t)= dr/

√
1 − k r2

L2 , the horizon distance is given by

dhorizon(t)= a(t)

∫ R

0

dr√
1 − k r2

L2

= a(t)

∫ t

0

dt ′

a(t ′)
(2)

In other words, it is the coordinate distance
∫ t

0 dt
′/a(t ′) expanded by the scale factor a(t)

at time t .
Recall also from chapter VIII.1 that a(t) ∝ tγ , with γ = 1

2 for a radiation dominated
early universe and γ = 2

3 for a matter dominated early universe. (The overall constant
A in a(t) = Atγ obviously cancels out in dhorizon(t).) So, evaluate the integral in (2):
J (t , t0)≡ ∫ t

t0
dt ′/a(t ′)= A−1(1 − γ )−1(t1−γ − t

1−γ
0 ).

For (1 − γ ) > 0, as is the case for the traditional radiation or matter dominated early
universe, J (t , t0) receives most of its contribution from late times. In fact, for our purposes
here, we can let t0 → 0, so that

dhorizon(t)= (1 − γ )−1t (3)

grows linearly with time.
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For (1 − γ ) < 0, that is, if γ > 1, the situation is obviously reversed: the regime around
t0 contributes the most to J (t , t0). Evidently, the steep decrease of the integrand as
time increases is responsible. In the extreme case, a(t) ∝ eHt ∼ t∞, J (t , t0)= (e−Ht0 −
e−Ht)/H so that

dhorizon(t)= 1
H

(
eH(t−t0) − 1

)
(4)

grows exponentially.

Inflationary epoch

With the blinding clarity of hindsight, we now see that all these problems can be solved
if the early universe went through an inflationary epoch,5 during which it expanded
exponentially. As was just shown, dhorizon(t) would then grow exponentially, thus solving6

the horizon and homogeneity problems, and as we will see below, also the flatness problem.
In addition, this exponential expansion would greatly dilute the density of any hitherto
unobserved and hence undesirable relics.

Before I go further, let me warn the reader that as this book goes to press, there is
considerable debate regarding whether inflationary cosmology is still viable.7 You will have
to form your own opinion over the coming years.

As you have known since chapter V.3, the desired exponential expansion can be pro-
duced readily by a constant energy density corresponding to some effective cosmological
constant. With a cosmological constant, (1) is replaced by

�̇k =H�k(2�r +�m − 2��) (5)

With (2�r +�m − 2��) < 0, the flow around small�k goes from being unstable to stable,
and the flatness problem is solved. Any initial value �k gets driven to 0.

One triumph of inflation is that it can account for the origin of the density fluctuations
needed (as explained in the preceding chapter) for the growth of structures. Where did
these density fluctuations come from? How did they get put in at the Big Bang? These are
all questions you might have asked. You might even have thought of quantum fluctuations,
which, since we live in a quantum universe, are inevitably present. Before the inflationary
universe was proposed, people would have immediately dismissed the notion of quantum
fluctuations being responsible for the density fluctuations in the primeval universe; the
quantum length scale on which these fluctuations occur would seem to be irrelevantly mi-
nuscule compared to cosmological distance scales. However, in an inflationary scenario,
the fluctuations could have stretched out enormously. Furthermore, after this inflationary
stretching, the resulting spectrum of density fluctuations would end up having no char-
acteristic length scale, giving rise to the scale-free spectrum proposed by E. R. Harrison
and Y. B. Zeldovich long before inflation was invented. I will leave detailed calculations
of the primeval density fluctuation to more specialized texts. Remarkably, fluctuations be-
gotten by the quantum and stretched by inflation could have led to the structures we see
around us.



534 | VIII. Introduction to Our Universe

An inflationary universe

That the universe went through some sort of inflationary epoch during which it expanded
exponentially seems quite compelling, but the specifics of any of the proposed mechanisms
should probably be taken with a grain of salt and a smile.

Numerically, to accord with observation, the scale factor a(t) needs to have expanded by
a factor of 1030, starting from ∼10−36 second after the Big Bang to ∼10−35 second after
the Big Bang. The required number of e-foldings is thus 30 log 10 ∼ 70. Note that these
numbers do not come out of the theory but are required to accord with experiment.

In Einstein gravity, it is easy to cause the universe to expand exponentially: all you have
to do, as we saw in chapter VI.2, is to introduce a constant energy density in the vacuum,
effectively a cosmological constant. In particle theory, it is easy to produce a constant energy
density: a scalar field that does not vary in spacetime would do that, as you learned in
chapter VI.4. Thus, with the benefit of hindsight, it is doubly easy to make the universe go
through an inflationary epoch.

Amusingly, Einstein’s introduction of the cosmological constant, far from a blunder as
the uninformed called it, turns out to be essential for cosmology, both observationally and
theoretically.

Indeed, you worked out in exercise VI.4.4 that, for a scalar field governed by the ac-
tion Sscalar = − ∫

d4x
√−g( 1

2(∂φ)
2 + V (φ)) (with (∂φ)2 = gμν∂μφ∂νφ), the energy mo-

mentum tensor is given by T μν = ∂μφ∂νφ − gμν( 1
2(∂φ)

2 + V (φ)). For φ(x) constant,
T μν = −gμνV (φ). Actually, we don’t even need to calculate the energy momentum ten-
sor; we can see directly from the action that, as explained in chapter VI.2, a constant in
V (φ) corresponds to a constant energy density.

One difficulty confronting inflationary theories is known as the graceful exit problem:
how do you end inflation once you have had your fill of the 70 e-foldings? Another puzzle is
why the effective cosmological constant was once large (so as to dominate the contribution
of the relativistic matter, namely radiation in the generalized sense, to the energy density)
but is now so incredibly small.∗

Since we know almost nothing about the origin of this scalar field, called rather unimag-
inatively the inflaton, and the physics that goes with it, people feel free to draw whatever
V (φ) would produce a desired outcome, for example, the “slow roll” potential shown in
figure 2. In this pictorial analogy, the inflaton φ is supposed to start out on the nearly flat
plateau and slowly roll downhill (see the appendix), ending up in a minimum that is many
orders of magnitude smaller.

Not surprisingly, this has generated in the theory literature a multitude of scenarios that
go under such names as old inflation, new inflation, chaotic inflation, eternal inflation, and
stochastic inflation. Invent your own! In chaotic inflation, one does not need to fine-tune
the potential V (φ); instead the universe is vast and inhomogeneous, with V (φ) taking on

∗ We will return to the cosmological constant in chapter X.7.
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V(φ)

φ

Figure 2 The inflaton potential.

random values in different regions, so that some regions inflate rapidly, while others may
inflate less rapidly or even shrink. One then argues that the probability is overwhelming
that we would find ourselves in a region that has undergone an inflationary phase, just
because such regions occupy exponentially more volume than others.

As I said earlier, in recent years, inflationary cosmology has been faced with mounting
difficulties and increasing criticism. I close by mentioning that there are a number of
interesting alternatives.8

Appendix: Slow roll scenario

Here I sketch the popular slow roll scenario. Start with the energy momentum tensor for a scalar field φ,
the inflaton, namely T μν = ∂μφ∂νφ − gμν( 1

2 (∂φ)
2 + V (φ)). It takes on the form of a perfect fluid T μν = (ρ +

P)UμUν + Pgμν , with Uμ = (∂μφ/
√−(∂φ)2, �0),

ρ = − 1
2 (∂φ)

2 + V (φ) (6)

and

P = − 1
2 (∂φ)

2 − V (φ) (7)

If we imagine that φ(t , �x)= φ(t) could be independent of space, then ρ = 1
2 φ̇

2 + V (φ) and P = 1
2 φ̇

2 − V (φ),
and the inflaton obeys the equation of motion

φ̈ + 3Hφ̇ + V ′(φ)= 0 (8)

and the expansion of the universe is

H 2 = 1
3

(
1
2 φ̇

2 + V (φ)
)

(9)

in units with 8πG= 1. Note that since we suppressed the spatial dependence by decree, the equation of motion
(8) is that of a point particle rolling in the potential V (φ). Crucially, the expansion of the universe provides a
friction term ∼Hφ̇.

We can obtain an inflationary epoch if the inflaton varies sufficiently slowly in time so that φ̇2 � V (φ). Then
(9) becomes

H 2 � 1
3V (φ) (10)

with the Hubble parameter approximately constant in time, producing an effective cosmological constant. If we
also9 impose φ̈ � V ′(φ), then we obtain from (8)

3Hφ̇ � −V ′(φ) (11)
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Using (11) and (10), we have φ̇2 ∼ (V ′/H)2 ∼ V ′2/V , and so we can write the condition φ̇2 � V (φ) as
(V ′/V )2 � 1. Furthermore, since φ̇ ∼ −V ′/V

1
2 , we have φ̈ ∼ (V ′V ′′/V ) − (V ′3/(2V 2)), and thus the other

condition φ̈ � V ′(φ) gives V ′′/V � 1. Thus, it is customary to define two parameters ε ≡ 1
2 (V

′/V )2 and η ≡
V ′′/V . For the slow roll approximation to hold, we need both ε � 1 and η � 1. Note that the second condition
also amounts to saying that the variation of ε(φ) with respect to φ is small.

Notes

1. As mentioned in the preceding chapter, the interested reader should also consult specialized textbooks on
cosmology.

2. Some authors introduce two distinct terms, calling this horizon a “particle horizon” and the horizon around
black holes an “event horizon.” I think that it is easy enough to distinguish them by context.

3. And if not, replace light by messengers in ancient times.
4. We also mentioned there that the concept is slightly sloppy and involves a “cosmic conspiracy.”
5. The early history of inflation is too involved to go into here. A detailed exposition may be found in A. Guth,

M. Mukhanov, and S. Weinberg. We might mention here early work by A. Starobinsky, B. Chirikov,
M. Mukhanov, R. Brandenburger, A. Guth, H. Tye, A. Zee, K. Sato, and M. Einhorn, among others. See
in particular p. 180 of Guth.

6. It has been pointed out that there is a hidden assumption about the measure of the initial pre-evolutionary
data. Mathematically, an arbitrary present configuration of the universe could be evolved backward in time
to some initial configuration. The correct statement is that inflation can take a generic initial configuration
and iron it out.

7. For instance, Max Tegmark, writing in New Scientist in 2012, states that the inflationary scenario should be
abandoned. He puts it humorously as follows: “You know how sometimes you meet somebody and they’re
really nice, so you invite them over to your house and you keep talking with them and they keep telling you
more and more cool stuff? But then at some point you’re like, maybe we should call it a day, but they just
won’t leave and they keep talking and as more stuff comes up it becomes more and more disturbing and
you’re like, just stop already? That’s kind of what happened with inflation.”

8. For example, the bounce theory can solve all the problems that inflation can solve (R. H. Brandenberger, pri-
vate communication). See R. H. Brandenberger, “Introduction to Early Universe Cosmology,” PoS ICFI2010,
001 (2010), arXiv:1103.2271 [astro-ph.CO].

9. Some texts assert erroneously that the condition φ̈ � V ′(φ) follows upon differentiating the condition
φ̇2 � V (φ). It is known to any student of calculus that f (t)� g(t) does not imply that f ′(t)� g′(t). For
example, f (t)= sin(100t)/10, g(t)= 1.



Recap to Part VIII

The stuff contained in the universe causes the universe to expand, and the expansion of
the universe affects the density of the stuff contained in the universe. Knowing Einstein’s
field equation and the properties of the stuff allows us to work out the expansion history
of the universe.

To first approximation, the universe can be described as a struggle between dark energy
and dark matter. This cosmic contest can be mapped out in a 2-dimensional diagram.

In speculating about the history of the universe, we should keep in mind Gamow’s
principle: if we understand the physics characteristic of a certain energy scale, then we can
work out, in the grand tradition of physics, how the universe behaves when its temperature
is of that scale.





BOOK THREE

Gravity at Work and at Play





Part IX Aspects of Gravity





IX.1 Parallel Transport

Keep on pointing in the same direction

Way back in chapter I.7 (titled “Differential Geometry Made Easy, but Not Any Easier”
as you may recall), I introduced the notion of parallel transport in the context of curved
surfaces. While some uninitiates might find the notion a bit difficult to grasp, parallel
transport is in fact firmly rooted in common everyday intuition. Think of a patent clerk in
Bern walking along a closed path, carrying a spear and pointing it in the same direction
the whole time. For a vector on a surface, we simply parallel transport it in the ambient
Euclidean space, keeping its “feathered end” in the surface, and then chop off the compo-
nent sticking out of the surface. The result, as we saw back in chapter I.7, is closely related
to the concept of covariant derivative.

In this chapter, we generalize the notion of parallel transport from the surfaces of
chapter I.7 to Riemannian spacetimes. The key is the covariant derivative discussed in
chapter V.6. Consider a curve C defined by xμ(τ) and parametrized by τ . The curve C is
not necessarily a geodesic, just some curve. Let a vector Sμ be given at some point on the
curve located by τI. You may recall that in appendix 1 of chapter V.6, the notion of covariant
derivative along a curve was introduced. Here we simply set this derivative along the curve
C to zero. We then determine the vector Sμ(τ) at other points along the curve by integrating
the first order differential equation

dSμ(τ)

dτ
+ �μ

ρσ
(x(τ ))V ρ(τ )Sσ (τ )= 0 (1)

with the given vector Sμ(τI) providing the initial condition. Here V σ ≡ dxσ

dτ
denotes the

tangent vector along the curve. The vector Sμ is said to be parallel transported along the
curve C.

We should be careful not to write Sμ(τ) as Sμ(x(τ))! The erroneous notation Sμ(x(τ))

would suggest that Sμ(x) exists, that is, as a vector field having a value at any point x in
spacetime, and that Sμ(x(τ)) is equal to the vector field Sμ(x) evaluated on the curve. This
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may sound like nitpicking, but it’s not: we must keep straight what we are doing. Similarly,
V ρ(τ) is only defined on the curve.

In contrast, the metric and the Christoffel symbol are defined (with possibly more than
one coordinate patch needed) all over the manifold. Thus, in (1), �μ

ρσ
(x(τ )) denotes�μ

ρσ
(x)

evaluated at the point x(τ) on the curve.
It is useful and natural to ask what differential equationSμ = gμνS

ν would satisfy. Simply
differentiate and use (1):

dSμ(τ)

dτ
= dxρ

dτ

(
∂ρgμσ

)
Sσ + gμν

dSν(τ )

dτ
=
(
∂ρgμν − gμν�

ν
ρσ

)
V ρSσ

Inserting the definition of �ν
ρσ

, we find that the expression in parentheses simplifies to
�σ .μρ, that is, the Christoffel symbol with its upper index lowered. Thus, we obtain

dSμ(τ)

dτ
− �ν

μρ
(x(τ ))V ρ(τ )Sν(τ )= 0 (2)

Notice that (1) and (2) differ by a sign: we parallel transport Sμ and Sμ with a crucial
difference in sign. This immediately implies that if we parallel transport two different
vectors Sμ and Tμ, then

d(SμTμ)

dτ
=
(
−�μ

ρσ
SσTμ + Sμ�ν

μρ
Tν

)
V ρ =

(
−�μ

ρσ
SσTμ + �μ

σρ
SσTμ

)
V ρ = 0 (3)

since� is symmetric in its two lower indices. This result makes sense: parallel transporting
two vectorsSμ andTμ, carefully keeping them “pointing in the same direction,” so to speak,
we would have every right to expect that their scalar product SμTμ would not change.

Covariant derivative and parallel transport

At this point, bells should be ringing. You might recall that we went through an entirely
similar discussion for covariant derivatives in chapter V.6. Given two vector fields Wμ(x)

and Uμ(x), the covariant derivatives DλW
μ and DλUμ are defined in (V.6.11) and (V.6.12),

respectively, with opposite signs in precisely such a way that Dλ(W
μUμ) simplifies to

∂λ(W
μUμ).

Imagine moving through a vector field Wμ(x) along a curve C (again, not necessarily a
geodesic) defined by x(τ). Now it makes sense to defineWμ(τ) to be equal toWμ(x(τ)): it is
the value of the vector field you experience at the point parametrized by τ as you move along
C. Then dWμ(τ)

dτ
= dxρ

dτ
∂ρW

μ(x(τ)) = V ρ(τ)∂ρW
μ. In other words, dWμ

dτ
+ �μ

ρσ
V ρWσ =

V ρDρW
μ. We conclude that if vector field Wμ(x) is (covariantly) constant in the sense

that its covariant derivative DρW
μ vanishes, then the vector Wμ(x(τ)) you experience as

you glide through the vector field is precisely parallel transported.
Everything is coming together. Already, back in chapter I.7, when we were discussing

surfaces, Riemannian spaces that you can hold in your hands, or at least in your mind’s
eye, we went from the ordinary derivative (I.7.11) to the covariant derivative (I.7.12) by
dropping the component sticking out of the surface, as already alluded to in the opening
of this chapter.
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Figure 1 Parallel transport of a vector around a curve can be reduced to parallel transport
of a vector around two smaller curves.

Shortest distance and straight lines

Indeed, when you saw the parallel transport equation (1), another bell might have rung. It
should have reminded you of the geodesic equation

dV μ(τ)

dτ
+ �μ

ρσ
(x(τ ))V ρ(τ )V σ (τ )= 0 (4)

A geodesic is a curve whose tangent vector V μ(τ) is parallel transported as we move along
the curve. This is just the curved space generalization of the man-in-the-street statement
that a straight line gives the shortest distance between two points. The word “straight” can
only mean that the tangent vector keeps pointing in the same direction.

Riemann curvature and parallel transport

This discussion suggests yet another way for the mite geometers (namely us) to measure
curvature. Consider a closed curve C (in general not a geodesic) starting and ending at the
point P. Let’s parallel transport a vector Sμ along C starting at P.

We ask whether the vector Sμ comes back to itself when we go around the closed curve.
In flat space, it will. Thus, the extent to which it does not provides us with a measure of
the curvature. In other words, we want to calculate 
Sμ as we go around C.

The first remark is that we can take C to be infinitesimal. The argument is that given a
curve C, we can always decompose it into smaller pieces.∗ As shown in figure 1, we can
write C = C1 + C2 as the sum of two smaller curves C1 and C2. Pick a point P lying on both
C1 and C2. Parallel transporting Sμ around C is equivalent to parallel transporting Sμ first
around C1, starting and ending at P, and then parallel transporting Sμ around C2, again
starting and ending at P. Clearly, the curved segment shared by C1 and C2 are traversed
twice in opposite directions, producing canceling contributions to 
Sμ. Repeating the
argument, we can cut any given closed curve into smaller and smaller closed curves.

∗ You are probably familiar with this sort of argument from a variety of contexts in physics (most likely in a
course on electromagnetism) and mathematics.
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Alternatively, argue that any irregular shaped area enclosed by a closed curve can be
approximated by many small rectangles. Shades of integral calculus. Thank you, Newton
and Leibniz!

So, we take C to be infinitesimal, describing it by x(τ), so that the endpoint xF ≡ x(τF)

is equal to the starting point xI ≡ x(τI), with some initial τI and final τF. Our discussion
evidently goes through for both space and spacetime. A trivial notation alert: My use of τ
here does not suggest a connection with time; it is just a parameter along the curve, which
we are in fact taking to be closed.

Taking the limit in which the closed curve shrinks to zero, we determine the curvature
of the manifold at the location of the closed curve.

The Riemann curvature tensor emerges

So, boys and girls, let us calculate away. Around a closed curve,


Sμ ≡ Sμ(τF)− Sμ(τI)=
∫ τF

τI

dτ
dSμ

dτ
=
∫ τF

τI

dτ �ρ
μσ
(x(τ ))V σ (τ )Sρ(τ )

=
∫ xF

xI

dxσ �ρ
μσ
(x(τ ))Sρ(τ ) (5)

where we used V σ = dxσ

dτ
in the last step.

In theoretical physics, when faced with a fairly involved calculation, it is always a good
habit to anticipate the answer. Since parallel transport is linear in S, we expect 
S to be
proportional to S. Also, 
S vanishes as the closed curve shrinks to zero. Do we expect it to
be proportional to the perimeter of the closed curve or to the area enclosed by the closed
curve? By following a curve for a bit and then backtracking along the same curve to get
back to the starting point, we have traced a closed curve with a nonvanishing perimeter
but enclosing no area. But 
S = 0 for such a closed curve, since the changes in S are
reversed on the return trip. Thus, 
S must be proportional to the area enclosed, not to the
perimeter.

Since area is quadratic in length, we expect an infinitesimal area element to be given
by something vaguely like δxσδxλ. We don’t quite know what that would be, but it must
carry two indices like a 2-indexed tensor aσλ. Therefore, 
Sμ has to be proportional to
Sρa

σλ. We need a 4-indexed tensor of the form Rρ
μσλ to convert the 3-indexed right hand

side to the 1-indexed left hand side. Hence we anticipate the answer to have the form

Sμ = Rρ

μσλSρa
σλ.

Well, let’s not be coy about it. You know, and I know, that if there is any justice in this
world, Rρ

μσλ has to be none other than the Riemann curvature tensorRρ
μσλ. We now verify

our suspicion by doing the integral in (5).
Before arithmetic overwhelms us, let us pause and reflect that, for an infinitesimal closed

curve, the integrand I in (5) can be Taylor expanded from the value it has at the starting
point I (x(τ ))= I (xI)+ ∂λI (xI)(x(τ )

λ − xλI )+ . . . . The constant term contributes noth-
ing to the integral, since

∫ xF
xI
dxσ = xσF − xσI = 0 for a closed curve. This also makes sense,

since 
Sμ obviously must vanish as the closed curve shrinks to nothing.
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The contribution of the linear term is proportional to
∮
dxσ(x − xI)

λ = ∮
dxσxλ, since∮

dxσxλI = xλI

∮
dxσ = 0. The object aσλ ≡ ∮

dxσxλ carries information about the size
∼(x − xI) of the loop and has dimension of length squared. So you should not be surprised
that it gives the infinitesimal area enclosed by the closed curve. To verify this, simply
evaluate it for a small rectangle (see exercise 1). Notice that aσλ may be positive or negative
according to whether we go around the curve clockwise or counterclockwise, and it is
antisymmetric in its indices. To see this, write aσλ as an integral over τ and integrate
by parts:

aσλ ≡
∫

dτ
dxσ

dτ
xλ = −

∫
dτ

dxλ

dτ
xσ = −aλσ (6)

Now that we know that only the linear term matters, we Taylor expand the two factors
�ρ
μσ
(x(τ )) and Sρ(τ) that make up I = �ρ

μσ
(x(τ ))Sρ(τ ):

�ρ
μσ
(x(τ ))= �ρ

μσ
(xI)+ ∂λ�

ρ
μσ
(xI)(x − xI)

λ + . . . (7)

and

Sρ(τ)= Sρ(τI)+ �κ
ρω
(xI)V

ω(τI)Sκ(τI)(τ − τI)+ . . .

= Sρ(τI)+ �κ
ρλ
(xI)Sκ(τI)(x − xI)

λ + . . . (8)

where we have used V ω = dxω

dτ
(and changed the dummy index ω to λ). Thus, the linear

term in �ρ
μσ
(x(τ ))Sρ(τ ) is [∂λ�ρμσ(xI)Sρ(τI)+ �ρ

μσ
(xI)�

κ
ρλ
(xI)Sκ(τI)](x − xI)

λ.
Finally, putting things together, we see that the integral in (5) gives


Sμ = [∂λ�
ρ
μσ
(xI)+ �κ

μσ
(xI)�

ρ
κλ(xI)]Sρ(τI)a

σλ (9)

(By now you might have caught on that one of the abilities you need to learn general
relativity is to change dummy indices in your head.)

This important result can be written elegantly as


Sμ ≡ 1
2R

ρ
μσλSρa

σλ (10)

as we warmly welcome the natural emergence of our beloved Riemann curvature tensor

R
ρ
μσλ ≡

(
∂σ�

ρ
μλ + �ρ

κσ
�κ
μλ

)
−
(
∂λ�

ρ
μσ

+ �
ρ
κλ�

κ
μσ

)
(11)

This amounts to an alternative derivation of the Riemann curvature tensor, a derivation
showing clearly how the ∂� and �� terms come about: the former from the variation of
�, the latter from the variation of the vector being transported, as we move around the
infinitesimal loop. Notice that the Riemann curvature tensor is automatically defined to
be antisymmetric in its last two indices, since the area element aσλ is antisymmetric. You
might have also realized that this derivation is intimately connected with the derivation
given in chapter VI.1 based on the commutator of two covariant derivatives [Dμ, Dν]. See
also the appendix.

The amount by which a vector parallel transported around a closed loop does not come
back to itself measures the local curvature.
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Appendix: Transporting vectors via alternative routes

Here I give another derivation of the Riemann curvature tensor, a derivation closely related to the one given
in the text (in fact, essentially the same derivation repackaged). Let us parallel transport a vector Sμ from
x to x + δa, and then from there to x + δa + δb. Along the first leg, we have, according to (2), the change
δSμ(τ)= �ν

μρ
(x(τ ))δaρSν(τ ). To find the change along the second leg from x + δa to x + δa + δb, we use this

nifty formula again but evaluated at the new starting point x + δa instead of x (of course). We thus obtain the
change

�ν
μρ
(x(τ )+ δa) δbρSν(τ + δτ)�

(
�ν
μρ
(x(τ ))+ δaλ∂λ�

ν
μρ

)
δbρ

(
Sν(τ )+ �σ

νλ
δaλSσ

)
� �ν

μρ
(x(τ ))δbρSν(τ )+ δbρδaλ

(
∂λ�

ν
μρ
Sν + �ν

μρ
�σ
νλ
Sσ

)
(12)

where in the last step we used the nifty formula yet once again, namely the result just obtained for the change
along the first leg. The total change in Sμ, after being transported from x to x + δa + δb via x + δa, is thus
given by

δSμ(from x to x + δa + δb via x + δa)= �ν
μρ
δaρSν + �ν

μρ
δbρSν + δbρδaλ

(
∂λ�

ν
μρ

+ �σ
μρ
�ν
σλ

)
Sν (13)

Suppose we parallel transport Sμ from x to x + δa + δb via x + δb instead. The difference in the resulting Sμ
going by the two different routes is given by subtracting from (13) the same expression with δa ↔ δb, namely


Sμ = δbρδaλSν

((
∂λ�

ν
μρ

+ �σ
μρ
�ν
σλ

)
−
(
λ↔ ρ

))
(14)

As expected, the terms linear in δa and δb in (13) drop out. We have derived the Riemann curvature tensor yet
one more time.

Exercises

1 Evaluate aσλ for a rectangle.

2 Evaluate aσλ for a small circle.

3 In elementary discussions of curved surfaces, the reader is often invited to draw a triangle on a sphere and
to observe that the three angles add up to more than 180◦. (Indeed, we already mentioned this fact in the
prologue to this book.) Show by parallel transporting a vector around such a triangle that the angular excess
measures the curvature.



IX.2 Precession of Gyroscopes

Parallel transport in action

We now apply the notion of parallel transport to study the precession of a gyroscope in
curved spacetime. In 2004, a precision gyroscope1 was launched in a satellite moving in
an earth orbit, giving us yet another test of Einstein’s theory. For a textbook treatment, we
take the orbit to be circular and ignore the rotation of the earth, so that we can calculate
the precession in Schwarzschild spacetime

ds2 = −
(

1 − rS

r

)
dt2 +

(
1 − rS

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)

This effect, known as de Sitter precession or geodetic precession, was first calculated in
1916 by Willem de Sitter.

Parallel transport of the spin vector gives

dSμ

dτ
+ �

μ
νλV

νSλ = 0 (1)

As usual, we will work in the equatorial plane (θ = π/2), so that the 4-velocity is given
by V μ = (V t , 0, 0, V ϕ). We take Sμ = (St , Sr , 0, Sϕ). In the rest frame of the gyroscope,
the spin vector is purely spatial, Sμ = (0, �S), while V μ is purely temporal, and hence
gμνS

μV ν = 0. Since this orthogonality condition gμνSμV ν = 0 equates two scalars, it holds
in all frames.

Back in chapter VII.1, we determined the circular orbit around a massive object, ob-
taining V t ≡ dt

dτ
= ε/

(
1 − rS

r

)
and V ϕ ≡ dϕ

dτ
= l/r2, with r the (constant) radius of the

circular orbit. Furthermore, we found that the two conserved quantities ε and l are given by
ε2 = (

1 − rS
r
)2(1 − 3rS

2r

)−1 and l2 = 1
2rSr

(
1 − 3rS

2r

)−1 (see the discussion around (VII.1.7)).
We also learned, somewhat to our surprise, that the angular velocity � = V ϕ

V t = dϕ
dt

still
obeys Kepler’s third law

�2 = rS

2r3
= GM

r3
(2)
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(I remind you that �, evidently a constant, is defined in terms of coordinate time t , not
proper time.)

Having reviewed the properties of the orbit, we now impose the condition

gμνS
μV ν = 0 = V t

(
gttS

t + gϕϕ�S
ϕ
)

to obtain a relation between St and Sϕ, namely St = r2 (1 − rS
r

)−1
�Sϕ.

The gyroscope precesses

You should now be able to work out how the spin vector Sμ precesses as the particle goes
around its orbit. Simply plug into the various components of (1) and chug. Try it before
reading on.

Insert V ϕ =�V t into (1) and note that dividing through by V t converts the τ derivative
to a t derivative. Referring to the Christoffel symbols listed in the collection of formulas at
the end of the book, you see that only a few terms in (1) do not vanish. We find

dSϕ

dt
+ 1
r
�Sr = 0 and

dSr

dt
− r

(
1 − 3rS

2r

)
�Sϕ = 0 (3)

The μ= t component of (1) merely provides a consistency check that parallel transport
maintains the condition gμνS

μV ν = 0, while the μ= θ component simply shows that it is
consistent with the symmetry of the situation to set Sθ = 0. Combining the two equations
in (3), we obtain d2Sr

dt2
+�2

s
Sr = 0 with

�s =�

(
1 − 3rS

2r

) 1
2

(4)

From the elementary solution Sr ∝ sin �st , we see that after one orbital revolution,

Sr ∝ sin
(

2π�s

�

)
= sin

(
2π

(
�s

�
− 1

))

fails to return to 0. The precession angle is thus given by


ϕ = 2π
(

1 − �s

�

)
= 2π

⎛
⎝1 −

(
1 − 3rS

2r

) 1
2

⎞
⎠� 2π

(
3GM

2r

)
(5)

for rS � r .

Appendix: Lense-Thirring precession

The de Sitter precession must be distinguished from the Lense-Thirring precession (calculated in 1918) of Sμ

caused by the rotation of the massive body, the earth in this case. To calculate the latter, we invoke frame dragging
from chapter VII.5. Far from the rotating body, the frame rotates, and hence the gyroscope precesses, at an angular
velocity (for an orbit in an equatorial plane) of

ω = − gtϕ

gϕϕ
→ arS

r3
= 2GMa

r3
= 2GJ

r3
(6)
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where I used the result you obtained in exercise VII.5.2. (Plugging in the numbers for a satellite around the
earth, the Lense-Thirring precession amounts to ∼0.05 arcsec/year, while the de Sitter precession comes out to
be ∼7 arc sec/year.)

We can also determine the Lense-Thirring precession using (1), plugging in the Christoffel symbols appro-
priate for a rotating body. Note that we do not need the full Kerr metric, only the asymptotic behavior of gtϕ
for large r . We will see in chapter IX.4 that this leading term, which determines the Lense-Thirring precession,
can be fixed by general considerations. The logic actually goes full circle: as we explained in chapter VII.5, an
astronomer could determine the angular momentum of a rotating body, be it a star or a black hole, by measuring
the Lense-Thirring precession of a gyroscope orbiting that body.

Note

1. The experiment, known as Gravity Probe B, was first conceived in 1959. The technological marvels involved
in constructing a working gyroscope of the required precision are breathtaking. I urge you to search for
“Gravity Probe B” on the web and read about the experiment, including the controversy it generated. The
experiment ultimately took 50 years and cost $760 million. See Physics Today, July 2011, p. 14.



IX.3 Geodesic Deviation

Separation between geodesics

Euclid asserted that parallel straight lines will never meet in his space. Indeed, as is well
known, the failure of Euclid’s famous axiom ushered in the development of modern
geometry, and the extent of the failure measures the curvature of the space. A familiar
example is of course the globe we live on. Suppose Ms. U and Mr. P (remember them
from chapter I.3 and part III?) start out in two neighboring towns on the same latitude
and fly due south along geodesics, namely lines of constant longitude. We all know that
the separation between them will change as they move along, eventually vanishing at the
South Pole. In contrast to Euclidean geometry, two parallel straight lines could eventually
intersect.

Let xμ(τ) and yμ(τ) be two nearby geodesics on a Riemannian manifold. In the example
just given, they could be two lines of constant longitudes, with τ given by the latitude times
a constant. Write yμ(τ)= xμ(τ)+ εμ(τ) and study how εμ(τ) varies with τ . Subtract one
geodesic equation

d2xμ

dτ 2
+ �

μ
νλ(x(τ ))

dxν

dτ

dxλ

dτ
= 0 (1)

from the other

d2yμ

dτ 2
+ �

μ
νλ(y(τ ))

dyν

dτ

dyλ

dτ
= 0 (2)

and expand to first order in ε. See figure 1.
Just as we are about to plug and grind, we see Professor Flat sauntering toward us,

mumbling “Tsk tsk,” and we immediately realize why. We hurriedly say, “Yes, Professor,
we could go to locally flat coordinates and save ourselves a lot of work!”

So, let the coordinates be locally flat at the point P described by xμ(τ) for some specified
value of τ . Hence�μνλ(x(τ ))= 0 and�μνλ(y(τ ))= �

μ
νλ(x(τ )+ ε(τ ))= ερ∂ρ�

μ
νλ(x(τ )). Then
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xμ(τ) … yμ(τ)

єμ(τ)

Figure 1 Two nearby geodesics can deviate
from or approach each other.

the difference between (1) and (2) collapses in leading order in ε to

d2εμ

dτ 2
+ ερ∂ρ�

μ
νλ(x(τ ))

dxν

dτ

dxλ

dτ
= 0 (3)

But we want the covariant second derivative D2εμ

Dτ2 , not the ordinary second derivative
d2εμ

dτ2 . As mentioned in chapter V.6, the covariant derivative of ε along the geodesic is
defined by

Dεμ

Dτ
= dεμ

dτ
+ �

μ
νλ

dxν

dτ
ελ (4)

which, unlike dεμ

dτ
, is assuredly a vector. The covariant second derivative of ε along the

geodesic, D2εμ

Dτ2 , is defined by the covariant derivative of Dεμ

Dτ
along the geodesic, treating

Dεμ

Dτ
as a vector (of course). In other words,

D2εμ

Dτ 2
= d

dτ

(
dεμ

dτ
+ �

μ
νλ

dxν

dτ
ελ
)

+ �
μ
νλ

dxν

dτ

(
dελ

dτ
+ �λ

ωκ

dxω

dτ
εκ
)

= d2εμ

dτ 2
+ (

∂ρ�
μ
νλ

) dxρ
dτ

dxν

dτ
ελ

= −∂ρ�μνλ
dxν

dτ

dxλ

dτ
ερ + ∂ρ�

μ
νλ

dxρ

dτ

dxν

dτ
ελ

=
(
∂ρ�

μ
σλ − ∂λ�

μ
σρ

)
dxσ

dτ

dxρ

dτ
ελ (5)

where we have exploited local flatness in the second equality and used (3) in the third
equality. In the last equality, we merely rearranged the dummies.

Now we recognize the expression (∂ρ�
μ
σλ − ∂λ�

μ
σρ
) in (5) as just what the Riemann curva-

ture tensorRμ
σρλ = (∂ρ�

μ
λσ + �μ

ρκ
�κ

λσ
)− (∂λ�

μ
ρσ

+ �
μ
λκ�

κ
ρσ
) reduces to when evaluated

in locally flat coordinates. Thus, we have derived, quick and fast, the equation1 of geodesic
deviation:

D2εμ

Dτ 2
= R

μ
σρλ

dxσ

dτ

dxρ

dτ
ελ (6)
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Although we derived this result in locally flat coordinates, the by-now standard argument
asserts that since both sides of (6) transform in the same way, it holds in any coordinate
system.

The Riemann curvature tensor pops out, as if by magic. Of course, at least in hindsight,
we know that it must: the vector D2εμ

Dτ 2 has to be linear in ελ, and it must depend on the
tangent or velocity vector dxμ

dτ
at that point. The tangent vector must appear twice, not once,

since we don’t have a tensor with an odd number of indices that measures curvature. We
also knew from the start that ∂� must be involved. According to Euclid, the separation
between two straight lines could only grow linearly; the second derivative D2εμ

Dτ 2 , sometimes
called an “acceleration,” reveals the presence of curvature.

For most purposes in physics, we naturally deal with timelike geodesics, but clearly (6)
also applies to spacelike geodesics if we replace τ by the proper length along the geodesic.
This hardly merits a remark since, after all, we obtained the formalism for determining
geodesics with curves in space in the first place, not curves in spacetime.

Geodesic deviation, tidal force, and congruence of geodesics

We can now make contact with the Newtonian tidal force discussed way back in chapter I.4.
Remember the ring of balls falling? The separation between two nearby balls evolves
according to (I.4.9)

d2si

dt2
= −Rij sj (7)

which you now recognize as the Newtonian analog of (6).
We studied the separation between two geodesics, but more generally, we could consider

a collection of geodesics xμ(τ , σ), distinguished from each other by a label σ . For instance,
in cosmology, on distance scales such that galaxies could be treated as idealized mass
points, with each galaxy tracing out a geodesic, the entire collection of geodesics could serve
as a coordinate system for the universe. The label σ would then be 3-dimensional. Indeed,
we have already mentioned this possibility when we discussed comoving coordinates back
in chapter V.3.

In Italo Calvino’s masterpiece Cosmicomics, the narrator, a man named Qfwfq, falls
through spacetime, with his worldline tantalizingly close to that of a beautiful woman
named Ursula H’x and that of a man named Fenimore. He is desperately in love with
Ursula, but try as he may, he can’t decrease the separation between his geodesic and
her geodesic, seething in dismay and anger as he watches her geodesic and Fenimore’s
geodesic getting closer and closer to each other, or so it seems to him. The whole thing is
told in the mind of Qfwfq.

This rather short chapter is now followed by four appendices. The first three are devoted
to, respectively, a mathematically more sophisticated (not necessarily better in my opinion)
derivation of geodesic deviation, the behavior of a bundle of timelike geodesics, and what
can be proved about that behavior given various assumptions about the energy momentum
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tensor. The fourth appendix is somewhat tediously long and devoted to Fermi normal
coordinates. The reader encountering Einstein gravity for the first time could certainly
skip over this, or perhaps read only the first section, in which I explain intuitively why
what is said to be true∗ is in fact true.

Appendix 1: Lie derivative and geodesic deviation

I will use the concept of Lie derivative introduced in chapter V.6 to give another derivation of (6). Consider a
“dense” collection of timelike geodesics xμ(τ , σ), labeled by a real variable σ and defining a surface. Mathemati-
cians say that the geodesics are knitted together to form a surface. Define the tangent vectors V μ = dxμ

dτ
and the

deviation vectors εμ = dxμ

dσ
. Evaluate the Lie derivative

LV ε
μ =DV ε

μ −DεV
μ = [V , ε]μ

= V ν∂νε
μ − εν∂νV

μ = dεμ

dτ
− dV μ

dσ
= d2xμ

dσdτ
− d2xμ

dτdσ
= 0 (8)

The first two equal signs merely state two alternative expressions for LV . Now act with DV on the equation
DV ε

μ =DεV
μ we just derived:

DVDV ε
μ =DVDεV

μ =DεDVV
μ +D[V , ε]V

μ + R
μ
νσλV

νV σελ = R
μ
νσλV

νV σελ (9)

You derived the second equality in exercise VI.1.16, namely that for three vector fields U , V , W , we have
DUDVW

λ − DVDUW
λ = D[U ,V ]W

λ + Rλ
σμν

UμV νWσ . For the third equality, we used DVV
μ = V νDνV

μ = 0
(which you recognize as the geodesic equation) and [V , ε] = 0 (which we just derived in (8)). Now note that
DV ε

μ = V μDμε
μ = Dεμ

Dτ
and so DVDV ε

μ = D2εμ

Dτ 2 . Thus, (9) is precisely (6). Even quicker and faster!

Appendix 2: The Raychaudhuri equation

Mathematically, a bundle of timelike geodesics xμ(τ , σ 1, σ 2, σ 3), labeled by three real variables σ , is known as a
congruence in a certain region if, in that region, each point lies on one and only one geodesic. This implies that
the geodesics in our bundle do not intersect. As soon as they intersect, the “congruence” is over. As mentioned
in the text, a congruence of timelike geodesics could serve to coordinatize that region.

Pick a point P on one specific geodesic and denote the tangent vector by V μ = dxμ

dτ
. We have V μVμ = −1, the

definition of τ , andV μDμV
ν = 0, the geodesic equation. Notation alert! In the definition ofV μ, the differentiation

with respect to τ is clearly to be done holding the labels σ fixed; we want to follow a specific geodesic. But
throughout this book, the tangent vector to a geodesic has always been denoted by dxμ

dτ
(since we have always

considered one single geodesic at a time, or at most two geodesics, as in this chapter), and it would be odd to
suddenly start writing ∂xμ

∂τ
for the tangent vector. I think that it would be best, in this appendix and in appendix 4,

to ask you to keep in mind what you are holding fixed by following the physics, rather than to have vertical bars
all over the place indicating what is being held fixed, particularly in appendix 4 with its abundance of vertical
bars (as you will see).

The 3 vectors Wμ = dxμ

dσ
(for the 3 possible choices of σ ; again, when differentiating with respect to one of

the σ s, we hold the other two σ s and τ fixed) orthogonal to V μ span a 3-dimensional subspace. The matrix
Pμν = gμν + V μV ν clearly projects into this subspace: PμνVν = 0, PμνP λ

ν
= Pμλ, and PμνPνμ = 3. Then

DWμ

Dτ
= V νDνW

μ =WνDνV
μ ≡ Bμ

ν
Wν (10)

∗ In this connection, I quote from a review of QFT Nut for the American Mathematical Society: “It is often
deeper to know why something is true rather than to have a proof that it is true.” See http://www.kitp.ucsb.edu/
members/PM/zee/revMath.html.
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where we used (8) with a trivial change of notation. Think of Bμ
ν

as a matrix acting on W to tell us the rate of
change of W .

The idea is to derive an equation for Bμν . First, note that V μBμν = V μDνVμ = 1
2Dν(V

μVμ)= 0 and BμνV ν =
(DνVμ)V

ν = V νDνVμ = 0. In other words, Bμν lives in the 3-dimensional subspace. Recall how we decomposed
2-indexed tensors in chapter I.4. That piece of knowledge now comes in handy. Decompose Bμν as

Bμν = σμν + 1
3
θPμν + ωμν (11)

Think of the geodesics as describing the motion of particles that form a cloud or fluid. You can see that each of
the terms in (11) corresponds to a property of the flow. The trace θ = PμνBμν =DμV

μ describes expansion, the
symmetric traceless part σμν = 1

2 (Bμν + Bνμ)− 1
3θPμν shear, and the antisymmetric part ωμν = 1

2 (Bμν − Bνμ)

rotation. (If you think about the spatial components of the corresponding quantities for a vector field in flat
spacetime, for example ωij = 1

2 (∂iVj − ∂jVi), you would understand the origin of the names2 expansion, shear,
and rotation.)

We are now ready to differentiate:

DBμν

Dτ
= V λDλBμν = V λDλDνVμ = V λDνDλVμ + V λ[Dλ , Dν ]Vμ

=Dν

(
V λDλVμ

)
−
(
DνV

λ
) (
DλVμ

)− V λRσ
μλν

Vσ

= −BμλBλ
ν
− RσμλνV

σV λ (12)

In the last step we used the geodesic equation and the definition of Bμν . This equation, known as the Raychaud-
huri equation, governs how Bμν varies as we move along a geodesic. Not surprisingly, as explained in the text,
the Riemann curvature tensor appears. Spacetime curvature, aka the gravitational field, changes Bμν .

Often, we are mostly interested in knowing about whether a bundle of geodesics converges or diverges, a
question determined by the expansion parameter θ . Since Dθ

Dτ
= gμν

DBμν
Dτ

, we could extract an equation for Dθ
Dτ

by contracting (12) with gμν .
Contracting the first term on the right hand side of (12) calls for a bit of work:

gμνBμλB
λ
ν
= BμνB

νμ =
(
σμν + 1

3θPμν + ωμν)(σ
μν + 1

3θP
μν − ωμν

)
= σμνσ

μν + 1
3θ

2 − ωμνω
μν (13)

Notice, in the last step, the wisdom of decomposing tensors into pieces with different symmetry properties, as
was advocated in chapter I.4.

Contracting the second term in (12) with gμν , we watch the Ricci tensor pop out.
We thus obtain the desired result

Dθ

Dτ
= − 1

3θ
2 − σμνσ

μν + ωμνω
μν − RμνV

μV ν (14)

This equation could be used to prove various theorems. To see how, first suppose that the geodesics are not
rotational, namely that ωμν = 0. Since V μ is timelike, the conditions V μBμν = 0 and BμνV ν = 0 tell us that Bμν
is a purely spatial tensor, just like Pμν . Hence σμν is also a purely spatial tensor. (This is also easily seen by going
to a frame in which V μ = (1, �0) at the point in question: Bij and Pij are the only nonzero components of the
tensor B and P , respectively, and hence σij are the only nonzero components of the tensor σ .) Then we have
σμνσ

μν = σijσ
ij ≥ 0.

Thus, with the assumption ωμν = 0, we obtain the inequality

Dθ

Dτ
≤ − 1

3θ
2 − RμνV

μV ν (15)

To go further, we have to deal with the last term, which we can write, using Einstein’s field equation, as

RμνV
μV ν = 8πG

(
Tμν − 1

2gμνT
)
V μV ν = 8πG

(
TμνV

μV ν − 1
2T V

. V
)
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Appendix 3: Energy conditions—weak, dominant, and strong

By making various debatable assumptions about Tμν , one can prove various debatable theorems. Depending on
their inclinations, various authors regard one or more of these assumptions, known as energy conditions, as
“self-evident,” or at least “plausible.” We can most easily understand the energy conditions listed in the literature
by supposing that Tμν has the perfect fluid form T μν = (ρ + P)UμUν + Pgμν (as has been discussed repeatedly,
for example, in chapters III.6, VII.4, and VIII.1). We mention only a few here; you can make up your own.

1. The weak energy condition states that TμνV μV ν ≥ 0 for all timelike V s, which implies∗ that ρ ≥ 0 and
(ρ + P)≥ 0.

2. The dominant energy condition presupposes the weak energy condition and requires in addition that
TμνV

ν is not spacelike for all timelike V s, namely that gμρ(TμνV μ)(TρσV
σ ) ≤ 0, which amounts to

ρ2 ≥ P 2.

3. The strong energy condition states that TμνV μV ν ≥ 1
2T (V

μVμ) for all timelike V s, which implies
(ρ + P)≥ 0 and (ρ + 3P)≥ 0.

As an exercise, you could verify the stated implications for these three energy conditions.
Going back to the inequality (15)

Dθ

Dτ
≤ − 1

3θ
2 − 8πG

(
TμνV

μV ν − 1
2T V

. V
)

we see that if we have the strong energy condition, we can conclude that Dθ
Dτ

≤ 0, so that the geodesics approach
each other. The congruence of geodesics “focuses.”3

The dark energy, aka the cosmological constant, is an interesting case. It violates the strong energy condition,
since (ρ + 3P)= (ρ − 3ρ) �≥ 0. Notice, however, that a positive cosmological constant, with P = −ρ and ρ ≥ 0,
satisfies both the weak and dominant energy conditions (barely). At one time, most physicists would say that
the strong energy condition evidently holds, since both matter and radiation (recall chapter VIII.1) satisfy it. But
what is self-evident to one person may not be so obvious to another!

So what is a “reasonable” T μν? Quantum field theorists would probably say that whatever T μν is produced by
a field theory satisfying basic principles (such as unitarity and causality) is physically reasonable.

This is a good place to mention one apparently easy way to generate solutions of Einstein’s equation. Write
down a spacetime metric that you like. Calculate its Ricci tensor and plug into Einstein’s equation, which specifies
the Tμν that would produce that particular spacetime. It’s a cinch! The catch is that the Tμν you obtain this way
would most likely not satisfy the various energy conditions. You don’t necessarily have the right stuff to produce
the spacetime you like.

Appendix 4: Fermi normal coordinates

Intuitive motivation

Way way back in chapter I.6, we discussed the fairly obvious fact that at a given point P we could always choose
locally flat coordinates. In fact, we could have coordinates, known as Fermi† normal coordinates, that are locally
flat not only at a single point but also along an entire geodesic. The mathematical demonstration, that these
coordinates are always available to us, is rather long‡ and involved. So it would be best if I first describe a physical
picture that makes the result more or less obvious.

Consider an observer moving along a timelike geodesic γ with the tangent vector V μ.
Our friend the Smart Experimentalist interrupts, “It’s obvious. I work in a lab attached to some planet going

around some star, acted upon by gravity, so my lab is moving along a timelike geodesic. First, with gyroscopes I
make sure that my lab is not spinning. Then I use my watch, namely my proper time, to mark the time coordinate,

∗ One way to show this is to go to the rest frame of Uμ and write V μ = (cosh ϕ , sinh ϕ , 0, 0).
† Published in 1922.
‡ As I warned you, this appendix is longer than the main text!
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γ

ζ(na, P)
ζ(nb, P)

Q P

Figure 2 Construction of Fermi normal coordi-
nates that are locally flat, not only at a single point
but also along an entire geodesic.

and the walls of the lab to set up the space coordinates. Right there I have the locally flat coordinates of my choice.
With due respect to my great experimental colleague Fermi, isn’t that it?”

Yes, that’s more or less it. But the long discussion we are about to embark on will yield more. Not only will we
confirm SE’s intuitive picture, we will also obtain precise expressions (see (30) below) for the second derivatives
of the metric evaluated on γ .

So, to continue, we are given the coordinates xμ, and we want to find the Fermi normal coordinates yμ =
(y0, yi)≡ (T , yi). For convenience, we gave y0 the nickname T . Focus on a point P on γ and assign to point P
the time y0 ≡ T = τ , the proper time τ elapsed since proper time started ticking at some point in the past. See
figure 2.

“But that’s exactly what I said!” exclaims SE. Yes indeed, we reassure her. Now we set up a set of four
orthonormal vectors eμ

α
, with α = (0, a) = (T , a). We revel in notational “redundancy,” writing the subscript

T instead of 0 for emphasis. As SE suggested, we use eμ
T = V μ, with orthonormality

gμνe
μ
α
eν
β

= ηαβ (16)

Once this is set up at P, we parallel transport (our gyroscopes are of high quality!) the 3 eμ
a

s (that is, eμ
a;νV

ν = 0)
so that orthonormality always holds. The parallel transport of eμ

T is automatic by virtue of γ being a geodesic.

Tentacles consisting of spacelike geodesics

To coordinatize the spacetime surrounding γ , we, sitting at P, now send out tentacles4 consisting of spacelike
geodesics ζ(na , P) with na a unit vector (that is, a vector satisfying δabn

anb = 1), determining the direction in
which a particular geodesic ζ(na , P) emanates from P. See figure 2. In other words, the geodesic ζ(na , P) is
characterized by the point P and the direction na in which it sallies forth from P.

More precisely, let Wμ denote the tangent vector along this geodesic ζ(na , P); then

Wμ|γ = eμ
a
na (17)

We shall henceforth use the notation X|γ to indicate that the expression X is evaluated on the geodesic γ . SE
mumbles, “That’s a lot of mathematical mumbling for what should be obvious to a child.” I agree.

Onward to Fermi normal coordinates. Suppose that, after a proper distance σ , this particular geodesic ζ(na , P)
reaches some point Q. Then we assign to the point Q the coordinates

y0 = T , yi = σnaδi
a

(18)
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Note that all these quantities depend on P as well as on Q: for example, σ is the proper distance along the geodesic
ζ(na , P) from P to Q.

A note about notational clarity versus precision: in (18) I have chosen to suppress the dependence on P and
assume that you know that yμ denotes the coordinates of a particular point Q. I prefer to make it somewhat more
mentally challenging to the reader (who has to quickly remind himself or herself of what depends on what) than
to produce a page bristling with even more subscripts and superscripts than it already has. In any case, if you
don’t like it, grab a pen and mark the dependence on P and Q. As it is, I am already being excessively pedantic
in writing in (18) naδi

a
instead of just plain ni : what is meant is clearly y1 = σn1, y2 = σn2, y3 = σn3.

SE exclaims, “I can’t stand all this math; it’s just common sense. Something happens in my lab. I point to it,
the direction of my finger is �n, the distance to that something is σ , and the time on my watch is T .”

I said, “Yup, that’s it. Enrico Fermi is all for common sense! I am also all for common sense! The Fermi
normal coordinates of Q are given by yμ.”

To summarize, to determine the Fermi normal coordinates yμ of a point Q, we have to ascertain the point
P on γ from which a spacelike geodesic ζ would reach Q. We measure the proper length σ between P and Q
along this geodesic ζ , and the direction na in which ζ emerges from P. The spacelike geodesics might eventually
intersect, as discussed in appendix 2, but as long as they don’t, every point Q in a finite region around the geodesic
γ is uniquely characterized by (T , na , σ), the time on our friend’s watch, the direction her finger is pointing in,
and the geodesic distance from her to the point Q. Note that in the Fermi normal coordinates, the geodesic γ is
described by yμ = (T , 0), and the geodesic ζ by yμ = (T , σnaδi

a
).

The metric in Fermi normal coordinates

Now the “hard” part: determine the metric in Fermi normal coordinates

gF
λρ

= gμν
∂xμ

∂yλ

∂xν

∂yρ
(19)

First, we have to relate y to x. For an arbitrary event Q in spacetime, its y coordinates are given by (18).
What about its x coordinates xμ(T , na; σ)? (A friendly reminder: xμ are the coordinates we started with, and yμ

are the Fermi normal coordinates.) It is the solution of the spacelike geodesic equation∗ d2xμ

dσ 2 + �
μ
νλ

dxν

dσ
dxλ

dσ
= 0

with the initial position specified by T on γ and initial “velocity” in the direction na. (This is conceptually the
same as the freshman physics problem of solving Newton’s equation to determine the position of a particle after
a certain time, starting with some initial position and velocity.) To get oriented, note that xμ(T , na; 0) is just the
point P and that ∂xμ

∂y0 |γ = ∂xμ

∂T
|γ = e

μ

T is just the tangent vector V μ to the geodesic γ at P. Also, the tangent vector
of the spacelike geodesic on which the point Q sits is given by

Wμ(T , na; σ)=
(
∂xμ

∂σ

)
T ,na

(20)

with Wμ(T , na; 0)= naeμ
α

.
To relate5 xμ(T , na; σ) to yμ, namely yμ = (T , σna), we note that the geodesic equation is invariant upon

rescaling σ → f−1σ , with f an arbitrary real factor, under which Wμ → fWμ and na → f na. Thus,

xμ(T , na; σ)= xμ(T , f na; f−1σ)= xμ(T , σna; 1)= xμ(y) (21)

Going back to (17) and (20), we have

eμ
a
na =Wμ|γ =

(
∂xμ

∂σ

)σ=0

T ,na
=
(
∂xμ

∂ya

∂ya

∂σ

)σ=0

T ,na
= ∂xμ

∂ya
|γ na (22)

from which we conclude ∂xμ

∂ya
|γ = eμ

a
. Plugging this and ∂xμ

∂y0 |γ = e
μ

T into (19), we find

gF
λρ

|γ = ηλρ (23)

It’s just (16)!

∗ Here I am faced with the notational dilemma of whether to use X or to stick with x, as per a bad notation
alert way back in chapter I.1. On balance, I think sticking with x in this context is a bit clearer, as I have already
done in the text and appendix 2 of this chapter.
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To impress the Smart Experimentalist, we need to go further!

But our friend the Smart Experimentalist snickers, “You theorists, so much huffing and puffing for a result long
obvious to me.”

We agree. “Yes, but this is only zeroth order. The point is, now that the formalism is set up, we can calculate
the metric to second order.”

SE brags, “It is obvious; I already know what the metric to second order will depend on.”
How about you? Did you guess that the Riemann curvature tensor evaluated on γ will have to come in?
As a warm up, tackle the metric to first order, namely the Christoffel symbols. Intuitively, both SE and we

expect them to vanish. Normally, we use the geodesic equation to determine the geodesics. In this context, we
already know the geodesics in the Fermi normal coordinates, namely ζ described by yμ = (T , σnaδi

a
) and γ by

yμ = (T , �0), which we will now plug into the appropriate geodesic equation to get information on the Christoffel
symbols.

So, plug the geodesic ζ into d2yμ

dσ 2 + �
μ
νλ

dyν

dσ
dyλ

dσ
= 0. (See the notation alert in appendix 2; we are following a

single specific geodesic here. Later, when we want to be extra clear, we will use partial derivatives and specify

what variables are being held fixed.) Since yμ is at most linear in σ , we learn that �μνλ
dyν

dσ
dyλ

dσ
= 0, which when

evaluated on the timelike geodesic γ gives �μij |γ ninj = 0 (with∗ ni ≡ naδi
a
, clearly). Since the direction of �n is

arbitrary, we conclude (show this!) that �μij |γ = 0.

Similarly, plug the geodesic γ into d2yμ

dτ 2 + �
μ
νλ

dyν

dτ
dyλ

dτ
= 0 to obtain�μT T |γ = 0. Also, by construction we parallel

transport eμ
α

=
(
e
μ

T , eμ
a

)
along γ , so that

(
de

μ
α

dT
+ �

μ
νλe

ν
T
eλ
α

)
|γ = 0. On γ , eμ

α
= δμ

α
and so �μTj |γ = 0 and �μT T |γ = 0.

As expected, the Christoffel symbols vanish on γ .

The Riemann curvature tensor evaluated on γ

That was easy, but now let’s determine the first derivatives of the Christoffel symbols on γ . The idea is to determine
these derivatives in terms of the Riemann curvature tensor evaluated on γ .

First, the vanishing of the Christoffel symbols on γ allows us to conclude immediately that

�
μ

νλ,T |γ = 0 (24)

Furthermore, the Riemann curvature tensor simplifies toRμ
κρλ|γ =

(
�
μ
κλ,ρ − �

μ
κρ ,λ

)
|γ . In particular, using (24)

we obtain

�
μ

κT ,ρ|γ = R
μ

κρT |γ (25)

To determine the other derivatives of the Christoffel symbols, we finally have to invoke the geodesic deviation
equation (6) we derived in the text and which we rewrite in the form (which I now ask you to derive as an exercise)

d2εμ

dσ 2
+ 2�μνλW

ν dε
λ

dσ
+ (�

μ
νλ,ρ − �

μ
λκ�

κ
ρν

+ �μ
νκ
�κ
ρλ

− R
μ
νρλ)W

ρWνελ = 0 (26)

with the tangent vector Wν = dyν

dσ
for spacelike geodesics.

Consider the collection of geodesics emanating from P and described by xμ(T , na; σ). Let’s compare two

geodesics with the same �n but emanating from P and P′ slightly separated on γ and study εμ ≡
(
∂yμ

∂T

)
na ,σ

=
(1, 0) = δ

μ

T (since yμ = (T , σnaδi
a
)). Plugging this into (26), we see that the first two terms vanish. Also,

Wν = (0, naδi
a
). Evaluating what remains of (26) on γ , we obtain (�

μ
νλ,ρ − R

μ
νρλ)|γWρWνελ = 0, and thus

�
μ

iT , j |γ = R
μ

ijT |γ , something we already know from (25).
We can also compare two geodesics both emanating from P but in slightly different directions and study the

separation between them, εμ
(a)

≡
(
∂yμ

∂na

)
T ,σ

= (0, σδi
a
)= σδμ

a
. Plugging this into (26), we see that this time only

the first term vanishes. Reminding ourselves that Wν = (0, naδi
a
)= naδν

a
, we obtain

2�μνλn
bδν
b
δλ
c

+ (�
μ
νλ,ρ − �

μ
λκ�

κ
ρν

+ �μ
νκ
�κ
ρλ

− R
μ
νρλ)n

aδρ
a
nbδν

b
δλ
c
σ = 0 (27)

∗ We finally succumb to sloppy notation.
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Next, note that �μνλ = �
μ
νλ|γ + σ(naδi

a
)�

μ

νλ, i|γ +O(σ 2)= σ(naδρ
a
)�

μ
νλ,ρ|γ +O(σ 2). Setting σ to 0 in (27), we get

0 = 0, but then extracting the terms linear in σ , we find (3�μλν ,ρ − R
μ
νρλ)|γ naδρa nbδνbδλc = 0. Thus, we obtain

(
�
μ

ki , j + �
μ

kj , i

)
|γ = 1

3

(
R
μ

ijk
+ R

μ

jik

)
|γ (28)

To solve this for the Christoffel symbols, generate two other versions of (28) by cycling the indices (kij)→
(ijk), version A:

(
�
μ

ij ,k + �
μ

ik , j

)
|γ = 1

3

(
R
μ

jki
+ R

μ

kji

)
|γ

and (kij)→ (jki), version B:

(
�
μ

jk , i + �
μ

ji ,k

)
|γ = 1

3

(
R
μ

kij
+ R

μ

ikj

)
|γ

Add version A to and subtract version B from (28) to obtain,6 using various symmetry properties of the Christoffel
symbol and the Riemann curvature tensor:

�
μ

ki , j |γ = 1
3

(
R
μ

ijk + R
μ

kji

)
|γ (29)

Phew! We have finally nailed down, in (25) and (29), all the relevant quantities evaluated on γ .
Now recall from (II.2.25) that gμν ,ρ = �μ.νρ + �ν .μρ where �μ.νρ = gμκ�

κ
νρ

. Using (23), gμκ |γ = ημκ , and
�
μ
νλ|γ = 0, we have gμν ,ρω|γ = (�μ.νρ ,ω + (μ↔ ν))|γ .

Using (24), (25), and (29), we finally determine the second derivatives of the metric as follows:

gT T , ij |γ = 2�T .T i , j |γ = −2RT iTj |γ
gij ,kl|γ = (

�i .jk , l + (i ↔ j)
) |γ = − 1

3

(
Rikjl + Riljk

) |γ

gT i , jk|γ = (
�T .ij ,k + �i .Tj ,k

) |γ =
[

1
3

(
RTjki + RT ikj

)+ RT kji

]
|γ = 2

3

(
RTjki + RT kji

) |γ (30)

In the last step, we used the cyclic identity of the Riemann curvature tensor. Finally, using (25), we have easily
gμν ,T λ|γ = (�μ.νT ,λ + �ν .μT ,λ)|γ = (RμνλT + RνμλT )|γ = 0. So, in the second order expansion of gμν , terms
involving x0x0 and x0xi do not appear.

The metric in Fermi normal coordinates

By now, we have long forgotten the coordinates that we started out with and traded for Fermi normal coordinates.
So we might as well denote Fermi normal coordinates by xμ, and also drop the nickname T for the more
respectable 0. The results of this rather long analysis are then summarized by

g00 = −1 − R0i0j |γ xixj

gij = δij − 1
3Rikjl|γ xkxl

g0i = 2
3R0jki|γ xjxk (31)

(For example, g0i = 1
2g0i , jkx

jxk = 1
3

(
RTjki + RT kji

) |γ xjxk = 2
3R0jki|γ xjxk.) By construction, the Riemann

curvature tensor evaluated on γ depends only on x0, not on xi .
That sure was a load of work. So what did we get after all that? To summarize, for a given geodesic γ , we have

now determined, following the great Fermi, the metric in a small tube around γ , good to second order.
You could now work out the metric gμν in Fermi normal coordinates to your heart’s content for various freely

falling observers, for example an observer falling radially into a Schwarzschild black hole. Note that γ has to be
a geodesic. Along an arbitrary curve, it is not possible to arrange for all the Christoffel symbols to vanish.
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Exercises

1 Verify (6) for the sphere.

2 The price of not heeding Professor Flat: derive the equation of geodesic deviation the hard way, without going
to locally flat coordinates.

3 Derive

d2εμ

dτ 2
+ 2�μνλV

ν dε
λ

dτ
+
(
�
μ
νλ,ρ − �

μ
λκ�

κ
ρν

+ �μ
νκ
�κ
ρλ

− R
μ
νρλ

)
V ρV νελ = 0 (32)

with the tangent vector V ν = dxν

dτ
as usual.

4 Verify the implications of the three stated energy conditions, strong, dominant, and weak (see appendix 3),
for ρ and P .

Notes

1. I now go back to (1) and (2) to point out a slight subtlety. Each of the two geodesics has its own proper
time, given by dτx =√−gμν(x)dxμdxν and dτy =√−gμν(y)dyμdyν . We could of course trivially set τx = 0
and τy = 0 at the starting point, and define εμ(δ)≡ yμ(τy = δ)− xμ(τx = δ). In other words, we study the
separation between the two observers when each of their watches register the same time. The geodesic
deviation equation describes how εμ(δ) changes with δ.

2. Recall how the concepts of divergence and curl were explained when you first encountered them.
3. It is sometimes said that, in Einstein gravity, the common person-in-the-street statement that gravity attracts

requires the strong energy condition. This statement in itself is somewhat misleading: the geodesics here
represent the movement of point particles in a background spacetime produced by an energy momentum
tensor satisfying the strong energy condition.

4. Having been John Wheeler’s student, I am now under the impression, these many years later, that this is
the kind of phrase Wheeler would have used.

5. My discussion is based on the work of F. K. Manasse and C. W. Misner, J. Math. Physics (1963), vol. 4, p. 735.
6. Alternatively, regard �μki , j as a 3-by-3 matrix labeled by μ, k, with (28) telling us its symmetric part. Work out

its antisymmetric part. This is essentially equivalent to the procedure given in the text.



IX.4 Linearized Gravity, Gravitational Waves, and
the Angular Momentum of Rotating Bodies

Einstein’s unfinished symphony

Einstein gave life to spacetime. Previously rigid, spacetime could now curve and move.
Certainly no surprise, then, that Einstein gravity predicts the existence of ripples crisscross-
ing the fabric of spacetime, what one writer refers to as Einstein’s unfinished symphony.1

Massive detectors have been built, with more to come, in an effort to tune in to the “song
of the cosmos.”

Theoretical physicists do not doubt∗ that gravitational waves exist. Indeed, there is
already strong indirect evidence for gravitational waves with the discovery of a binary
pulsar in 1974 by Hulse and Taylor. The change in the orbital period due to emission
of gravitational waves could be accurately measured, and the data agreed extremely well
with the prediction of Einstein gravity. The only question is when they will be detected:
given our detectors, are there sufficiently powerful sources relatively nearby? An exciting
new era will dawn with gravitational wave astronomy: hopefully, much will be revealed
about the universe that we cannot see with electromagnetic wave astronomy.

Consider a small deviation from the Minkowski metric and write gμν = ημν + hμν. In
chapter VI.5, we already worked out that to leading order

Rμν = − 1
2

(
∂2hμν − ∂μ∂λh

λ
ν
− ∂ν∂λh

λ
μ

+ ∂μ∂νh
λ
λ

)
+O(h2) (1)

All we have to do is to plug this into Einstein’s field equation and watch the ripples.

∗ Easy for me to say that now! Einstein famously clashed in 1936 with the editor of Physical Review and an
anonymous referee over the existence of gravitational waves, even though he himself had introduced that notion
back in 1916. Having moved to the United States, Einstein submitted a paper, together with his new American
assistant Nathan Rosen, to Physical Review, claiming that gravitational waves did not exist. The grand old man,
not used to having his papers rejected, wrote back angrily, vowing never to submit a paper to that journal again.
The referee was later revealed to be H. P. Robertson.2
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Weak field and harmonic gauge

By making a coordinate transformation xμ → x′μ = xμ + εμ(x), we can simplify (1) con-
siderably. Let ∂μεν be small, of the same order as hμν , so that ∂xμ

∂x′ρ = δμ
ρ

− ∂ρε
μ +O(ε2).

The coordinate transformation g′
ρσ
(x′)= gμν(x)

∂xμ

∂x′ρ ∂xν

∂x′σ then reduces3 to

h′
μν

= hμν − ∂μεν − ∂νεμ (2)

Notice the structural similarity to the electromagnetic gauge transformation A′
μ

= Aμ −
∂μ�. Very nice! More on this in the next chapter. In electromagnetism, by choosing �,
we can fix a gauge, typically the Lorenz gauge4 ∂μA

μ = 0, to simplify Maxwell’s equations.
Conceptually, we have the same situation here.

Indeed, let’s exploit the freedom in (2) to impose the so-called harmonic or de Donder
gauge condition

∂μh
μ
ν

= 1
2∂νh (3)

where we define the trace h= ημνhμν = hλ
λ
.

To see that this is always possible with a judicious choice of εμ, simply use (2) to compute
(∂ ′
μ
h′μ
ν

− 1
2∂

′
ν
h′) � (∂μh

μ
ν

− 1
2∂νh) − ∂2εν (where we dropped second order terms, while

noting that ∂ ′
μ

= ∂μ − (∂με
λ)∂λ). Thus, if somebody gives you an hμ

ν
that does not satisfy

(3), you can always choose an εν, namely a solution of the equation ∂2εν = (∂μh
μ
ν

− 1
2∂νh),

so that h′μ
ν

satisfies (3) to the order considered. Then drop the prime. Note that to this
order, we raise and lower indices with the Minkowski metric η.

Degrees of polarizations in a gravitational wave

We started out with a symmetric tensor hμν with 4 . 5/2 = 10 components. After imposing
the 4 conditions in (3), we are left with 10 − 4 = 6 components. The key point here is to
realize that, even with hμν satisfying the harmonic gauge, we can still make a “residual”
transformation (2). Since ∂μh′μ

ν
= ∂μh

μ
ν

− ∂2εν − ∂ν(∂ . ε) and 1
2∂νh

′ = 1
2∂ν(h− 2∂ . ε), we

have (∂μh′μ
ν

− 1
2∂νh

′) = (∂μh
μ
ν

− 1
2∂νh) − ∂2εν, and we see that, as long as ∂2εν = 0, the

harmonic gauge (3) will continue to be satisfied. This brings the number of physical
degrees of freedom in hμν down to 10 − 4 − 4 = 2.

It is instructive to compare the familiar story in electromagnetism. By a gauge transfor-
mation, we can impose the Lorenz gauge so that Maxwell’s equations ∂μFμν = ∂μ(∂μAν −
∂νAμ)= 0 simplify to ∂2Aν = 0. We can make a “residual” gauge transformation satisfy-
ing ∂2�= 0 and stay within the Lorenz gauge. Thus, the number of physical degrees of
freedom in the electromagnetic field Aμ is 4 − 1 − 1 = 2. You know very well that electro-
magnetic waves come in two polarizations.

Inspecting (1), we see that the harmonic gauge is designed to knock off the last 3 terms,
so thatRμν = − 1

2∂
2hμν. In the weak field or linear approximation, Einstein’s field equation
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Rμν − 1
2gμνR = +8πGTμν reduces to∗

∂2hμν − 1
2ημν∂

2h= −16πGTμν (4)

or equivalently

∂2hμν = −16πG
(
Tμν − 1

2ημνT
)

(5)

with T = ημνTμν.
In vacuo, this simplifies5 further to

∂2hμν =
(

− ∂2

∂t2
+ ∇2

)
hμν = 0 (6)

which we recognize as the standard relativistic wave equation. (The reader with a long
memory may recall that we already encountered this in chapter II.3.) Since the equation
is linear, the general solution can be constructed as a linear superposition of plane waves†

hμν(x)= εμν(k) sin(k . x), with k . x = ημνk
μxν and k2 = 0 as required by (6). The polar-

ization tensor εμν = ενμ (not to be confused with εμ!) satisfies kμεμν = 1
2kνε (with ε ≡ ελ

λ
),

the Fourier transform version of (3).
We now use the 4 degrees of freedom embodied in the residual transformation as

explained above to impose 4 more conditions: ε0i = 0, for i = 1, 2, 3, and ελ
λ

= 0. (You
should check that this is indeed possible!) With the latter condition, the harmonic condition
collapses to kμεμν = 0. The gauge defined by these 3 + 1 + 4 = 8 conditions is known as
the transverse-traceless or TT gauge.

We can now check that gravitational waves do indeed come in only 2 polarizations,
just like electromagnetic waves. Let the wave propagate along the third axis so that kμ =
ω(1, 0, 0, 1) (recall that k2 = 0). The harmonic condition kμεμν = 0 implies

ε0ν = ε3ν ⇒ ε00 = ε30 and ε3i = ε0i = 0, for i = 1, 2, 3 (7)

Thus, ε33 = ε32 = ε31 = 0. By the symmetry of εμν, we have ε30 = ε03 = 0, which implies
ε00 = ε30 = 0. The traceless condition ελ

λ
= 0 then collapses to ε11 + ε22 = 0.

You should check that this collection of simple but somewhat confusing statements we
derived merely says that the zeroth and third rows and columns of the symmetric traceless
matrix εμν vanish. Thus, the polarization tensor

εμν =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 ε+ ε× 0

0 ε× −ε+ 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ (8)

is characterized by 2 real numbers ε+ and ε×, describing two independent degrees of
polarizations. When we quantize electromagnetic waves, we obtain photons.‡ Similarly,

∗ There is a hidden subtlety to this equation that will be made clear in exercise 3.
† The more sophisticated reader recognizes that more generally, we can also include a cos(k . x) wave, or even

better, write hμν(x)= εμν(k)e
ik.x .

‡ As shown in any textbook on quantum field theory.
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when we quantize gravitational waves, we obtain gravitons. The 2 polarizations, found
here for a classical gravitational wave, correspond to the 2 helicity states of the graviton in
quantum field theory.∗

Detection of gravitational waves

To understand what the “plus” and “cross” polarizations ε+ and ε× mean physically, we
allow a gravitational wave to wash over a cloud of particles.

It is instructive to consider first a single particle initially at rest, that is, with 4-velocity
V μ = (1, 0, 0, 0). A gravitational field will cause it to move according to

dV ρ

dτ
+ �ρ

μν
V μV ν = 0

Thus, at the initial instant, dV ρ

dτ
= −�ρ00. Now compute

�
ρ
00 � 1

2
ηρλ

(
∂0h0λ + ∂0h0λ − ∂λh00

)
but this vanishes in the TT gauge in which ε0λ = ελ0 = 0 (see (8)). Thus, a moment of proper
time later, V μ is still (1, 0, 0, 0). Repeating the argument, we see that a single particle
initially at rest will remain at rest, completely ignoring the passing gravitational wave.

Confusio looks worried. “If a particle does not feel the gravitational wave passing by, is
the wave real?”6

In fact, this apparently counterintuitive conclusion makes physical sense, since a Rie-
mannian spacetime is by construction locally flat at any given point.

Our friend the Smart Experimentalist remarks, “Well, you simply need to go beyond
a single point, to explore its neighborhood, to detect gravitational waves. So throw in a
bunch of particles!”

Consider two particles separated by ζμ = x
μ
1 − x

μ
2 = (0, �ζ ). Let’s see if the proper dis-

tance between them 
l =
√

�ζ 2 + hijζ
iζ j = |�ζ |(1 + 1

2hijζ
iζ j/�ζ 2 +O(h2)) changes. Obvi-

ously it does if hμν varies. For a plane wave propagating along the third axis, rocking and
rolling in the (1-2) plane, we see from (8) that in the TT gauge, we want to set �ζ in the
(1-2) plane. We read off from (8) the fractional change in physical distance between the
two particles (up to a factor of 1

2 and with the unit 3-vector ζ̂ i ≡ ζ i/|�ζ |):

hij ζ̂
i ζ̂ j =

{
ε+

[(
ζ̂ 1
)2 −

(
ζ̂ 2
)2
]

+ 2ε×ζ̂ 1ζ̂ 2
}

sin(k . x) (9)

Thus, when a plus polarization wave comes along, a pair of particles separated along the 1-
axis would move 180◦ out of phase compared to a pair of particles separated along the 2-axis,
but would not respond at all to a cross-polarization wave. In contrast, a cross polarization
wave would excite a pair of particles separated by �ζ ∝ (1, ±1, 0), something that a plus
polarization wave cannot do.

∗ The existence of 2 helicity states for massless particles of spin j , be it the photon or the graviton, follows in
general from the Lorentz group and the CPT theorem. See, for example, S. Weinberg, The Quantum Theory of
Fields, or QFT Nut, pp. 186 and 446.
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⇒ ⇒⇒

⇒ ⇒⇒

(a)

(b)

Figure 1 A ring of particles responding to a gravitational wave propagating perpendicular to the paper:
(a) a plus wave; (b) a cross wave.

A few pictures are worth a thousand words, even with some Greek symbols thrown in.
See figure 1. Panels a and b show how a ring of particles responds to a plus and cross
polarization wave, respectively, propagating perpendicular to the paper. The pattern is
characteristic of a tidal force, as was discussed way back in chapter I.4.

Gravitational wave detectors use laser interferometry to measure minute shifts in the
distance between massive objects. Given how feeble a force gravity is, you can imagine
the engineering feats involved. Several major projects7 are either under way or are being
planned. Hopefully, gravitational waves will be detected soon.

Emission of gravitational waves

Thus far, we have studied the propagation of gravitational waves in vacuo. To study their
production, we include a source. We are invited by (3) and (4) to define h̃μν ≡ hμν − 1

2ημνh,
so that

∂2h̃μν = −16πGTμν (10)

We see that the harmonic gauge condition ∂μh̃μν = 0 is consistent with ∂μTμν = 0, as it
had better be.

Comparing this with the equation ∂2Aμ = −Jμ governing the production of electro-
magnetic waves, we see that nothing much conceptually new is involved here, merely an
extra index going along for the ride. The readers who have studied electromagnetism know
what to do: define a Green’s function (for those readers who don’t know this, I give a brief
explanation in appendix 2) by

∂2G(x)= δ(4)(x) (11)
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which simply says that G(x) is the (scalar) wave due to a unit point source at the origin of
spacetime. The solution to (10) is then given by

h̃μν(x)= −16πG
∫

d4y G(x − y)Tμν(y) (12)

(plus, trivially, an arbitrary solution of the homogeneous equation, namely (10) with the
right hand side set to zero). Physically, the Green’s function approach merely says that
since (10) is linear, we can solve it for a point source, and then, as Christiaan Huygens
taught us long ago, add up the resulting waves from each point that makes up Tμν. That’s
precisely what (12) instructs us to do.

Note that G(x) is exactly the same Green’s function you would use for electromagnetism:
there are no indices in (11) after all. You may even know it off the top of your head as

G(t , �x)= − θ(t)δ(t − r)

4πr
(13)

with r = |�x| and the step function θ(t)= 1 if t > 0 and 0 otherwise. This expression makes
perfect sense: the first factor θ(t) tells us that the wave propagates only into the future
(causality!), the second factor δ(t − r) says that the wave propagates at the speed of light,
and the third factor (− 1

4πr ) satisfies∗ ∇2(− 1
4πr )= δ(3)(�x).

Plugging (13) into (12), we obtain

h̃μν(t , �x)= 4G
∫

d4y
θ(t − y0)δ(t − y0 − |�x − �y|)Tμν(y)

|�x − �y|

= 4G
∫

d3y
Tμν(t − |�x − �y|, �y)

|�x − �y| (14)

Note that Tμν is evaluated at the retarded time tR(t , �x , �y)≡ t − |�x − �y|. Just as for electro-
magnetic waves, a gravitational wave reaching �x at time t had to be emitted at �y at time tR.
You plug in whatever Tμν you want into (14) and out pops h̃μν, as simple as that.

Multipole expansion and compact source approximation

We can repeat many of the things we do in electromagnetism, as I said. For example, we
can expand 1

|�x−�y| as a Taylor series in yi and obtain the multipole expansion

h̃μν(t , �x)= 4G
{

1
r

∫
d3y Tμν

(
tR , �y)+ xi

r3

∫
d3y yiTμν

(
tR , �y)

+3xixj − r2δij

2r5

∫
d3y yiyjTμν

(
tR , �y)+ . . .

}
(15)

Note that we have not yet expanded the |�x − �y| � r
(
1 − xiyi

r2 + . . .
)

lurking inside tR. You
see how all that stuff you learned about rotational tensors back in part I could be useful. For
example, the traceless 3-tensor (3xixj − r2δij ) pops up. Recall from chapter VI.3 that the
analog of Newton’s theorem, namely the Jebsen-Birkhoff theorem, continues to be valid

∗ Recall (II.1.12) from way way back.
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in Einstein gravity. Around a spherically symmetric static (that is, time independent) mass
distribution, only the first term in (15) survives.

If r is much larger than the size of the source, as is typically the case, we need to
keep only the first term in this expansion, so that h̃μν(t , �x)= 4G

r

∫
d3y Tμν(tR , �y). For an

astrophysical source,
∫
d3y T 00(tR , �y)=M is its energy or mass, and

∫
d3y T 0i(tR , �y)= P i

its momentum. If the source is not moving relative to the observer, so that P i = 0, then
we have simply h̃00 = 4GM

r
and h̃0j = 0, as expected.

Similarly, h̃ij is given in terms of
∫
d3y Tij(tR , �y). Since our intuition about Tij is

rather weak, as was discussed in chapter III.6, it is preferable to use the conservation
law ∂νT

μν = 0 to eliminate T ij in favor of T 00. As an exercise, you can derive

h̃ij (t , �x)= 2G
r

d2Qij(t)

dt2

∣∣∣
t=tR

(16)

with Qij(t)≡ ∫
d3y yiyjT 00(t , �y) the quadrupole moment of the source.

Weak field around gravitating sources

We are now able to work out the spacetime around a gravitating source in the weak field
limit. Consider stationary sources. Recall from chapter VII.5 on rotating black holes that
a static source is not moving at all, while a stationary source could be moving, but without
changing in time, for example a mass distribution rotating at constant angular velocity.
With T μν in (14) not changing in time, we obtain immediately

h̃μν(�x)= 4G
∫

d3y
Tμν(�y)
|�x − �y| (17)

No need to mess with retardation! The expansion in (15) is then a true multipole expansion.
Furthermore, if we have a nonrelativistic stationary source so that the typical velocity v

of its components is much less than c, then recall from chapter III.6 that T 0i and T ij are
respectively a factor of v/c and v2/c2 down compared to T 00. So the leading term is h̃00,
followed by h̃0i and then h̃ij .

Again, for r = |�x| much larger than the size of the source, we obtain from (17)
h̃00 � −4�, with

�(�x)= −G

r

∫
d3y T00(�y)= −GM

r
(18)

the good old Newtonian potential. You might worry about the factor of 4 in h̃00 = −4�,
but notice that we still have to convert to hμν. Since h̃= ημνh̃μν = −ημνhμν = −h, we have
h= −h̃� h̃00 = −4�. Then hμν = h̃μν − 1

2ημνh̃, and so

h00 = h̃00 + 1
2
h̃= −4�+ 2�= −2�, h11 = h̃11 − 1

2
h̃= 0 − 2�= −2�

and so on.∗ Thus, we finally obtain, within the approximations made, the perturbed
spacetime metric

ds2 � (ημν + hμν)dx
μdxν � −(1 + 2�)dt2 + (1 − 2�)d �x2 + 2h0idtdx

i (19)

∗ Note that a common error is to suppose that h̃00 � h̃0i � h̃ij implies that the same holds for hμν .
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For a static source, T0i and hence h0i vanish, and we obtain a form which the Schwarz-
schild metric must, and does, satisfy to this order. See also exercise 3.

It is worthwhile clarifying a point some texts appear to be confused about. When
we look at the asymptotic behavior of g00 � −(1 − 2GM

r
) to determine the mass of the

Schwarzschild and of the Kerr black hole, we are not using the weak field approximation
of this chapter. Far away from the black hole, where the observer sensing the asymptotic
behavior is located, the gravitational field is indeed weak. But the field is definitely not
weak near or inside the black hole, where hμν is in fact ofO(1). Schematically, we can write
the full Einstein field equation as ∂2h∼GT + (h∂2h+ h∂h∂h+ . . .) with the expression
in the parentheses, together with the ∂2h on the left hand side, equal to the infinite
series expansion of Rμν − 1

2gμνR. In other words, the mass M in g00 � −(1 − 2GM
r
), as

deduced by the hard-working astronomer measuring orbits (as explained by the Smart
Experimentalist in chapter VII.5), is given by something like∫

d3x
{
T +

(
h∂2h+ h∂h∂h+ . . .

)
/G

}
according to the theory. The gravitational self-interaction is automatically included. (See
also the discussion in chapter VII.4.) We will explore this important conceptual point
further in appendix 3.

Slowly rotating bodies

What about h0i? As discussed in chapter VII.5 on the Kerr black hole, a term gtϕ in the
metric indicates that the source is rotating.

Let us consider a slowly rotating body whose energy momentum tensor is dominated
by T μν � ρUμUν, with ρ the mass density and with the pressure term negligible. Let the
rotation be about the z-axis, and let the angular velocity be ω, so that U0 � 1 � Ui, Ux =
−ωy,Uy = +ωx, andUz = 0. (Confusing notation alert: we mix up two different notations
�x = (x1, x2, x3)= (x , y , z) here for the sake of clarity!) The total angular momentum is
then J = ∫

d3xρ(�x)(xUy − yUx)= ω
∫
d3xρ(�x)(x2 + y2).

Next, evaluate h̃01(�x)= −4G
∫
d3x′ T 01(�x′)

|�x−�x′| by plugging in T 01(�x′)� −ρωy′ (again, no-
tation alert: �x′ = (x′1, x ′2, x′3)= (x′, y′, z′)) and expanding

1
|�x − �x′| � (1/r)

(
1 + �x . �x′/r2 + . . .

)

We obtain

h01 = h̃01 � −(4G/r)
∫

d3x′ ρωy′ (�x . �x′/r2
)

= −
(

4G/r3
)
y

∫
d3x′ ρω

(
x′2 + y′2) /2 = −

(
2GJ/r3

)
y (20)

where we have invoked rotational invariance around the third axis (you’ve probably
done similar calculations in electromagnetism). We obtain h0idx

i = (2GJ/r3)(x1dx2 −
x2dx1)= −(2GJ/r) sin2 θdϕ, in agreement with what we had in chapter VII.5.
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Indeed, we are now able to evaluate the angular momentum of the Kerr black hole in
the limit of slow rotation. Expand the Kerr metric (VII.5.15) for r � rS, a:

ds2 � −
(

1 − rS

r

)
dt2 − 2rSa sin2 θ

r
dtdϕ + 1(

1 − rS
r

)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
(21)

Comparing (20) and (21), we deduce that rSa = 2GJ . Thus, we have verified, as promised,
that the definition J =Ma given in chapter VII.5 reduces in the small a limit to our usual
understanding of angular momentum.

People often define h̃0i ≡ −4Ai, with a notation intentionally suggestive of electro-
magnetism: if we think of GT 00 and GT 0i as the charge and current density, respectively,
then � and Ai correspond to the scalar and vector potentials of electromagnetism, respec-
tively. Some physicists rightfully call the field �∇ × �A the gravitomagnetic field, produced
by a mass current, just like the magnetic field produced by a charge current.8

Quadrupole radiation

Back in chapter VI.3, I mentioned the Jebsen-Birkhoff theorem and its analogy to Newton’s
two superb theorems. You might have been slightly puzzled. Outside a pulsating spher-
ically symmetric mass distribution, the spacetime remains stubbornly Schwarzschild,
heedless of the pulsation. In Newtonian gravity, the absence of gravitational waves means
that the pulsation does not result in any radiation, but in Einstein gravity, it would
seem at first sight that the gravitational wave can communicate the pulsation to the
spacetime outside. But now we understand why it can’t. We learned from (16) that, far
away from the source, the gravitational wave is generated by the quadrupole moment
Qij(t)≡ ∫

d3y yiyjT 00(t , �y), and a spherical symmetric mass distribution simply doesn’t
have one. The classical statement that only quadrupole and higher moments can generate
gravitational waves corresponds to the quantum statement that the graviton carries spin 2.
You are probably familiar with the analogous statements in electromagnetism. A pulsating
spherically symmetric charge distribution also cannot radiate. The classical statement that
only dipole and higher moments can generate electromagnetic waves corresponds to the
quantum statement that the photon carries spin 1.

Gravity is nonlinear

I have pointed out that much of what we learned about electromagnetic waves can be
taken over for gravitational waves, but we must keep in mind that gravity is fundamentally
different from electromagnetism. While Maxwell theory is linear, Einstein gravity is highly
nonlinear, as we discussed after (19) and will emphasize in the next chapter. Within the
linear approximation used in this chapter, things are simple since we are in a Minkowskian
background. But beyond this approximation, the background will feel the energy and
momentum of the gravitational wave and will deviate from Minkowskian. We will have to
take into account the curvature of the background, and then the calculation of gravitational
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wave propagation becomes significantly more involved. A detailed treatment that does full
justice to the subject is beyond the scope of this introductory text. For more, see review
articles and more advanced texts.

Appendix 1: Determining the weak field action without Riemann

Time for another extragalactic fable. The smart young physicist that is you has been thinking about gravity along
the same line as that Einstein in a civilization far far away. You understand that gravity is mediated by a tensor
field hμν describing small deviations of the metric gμν from the Minkowski metric ημν . You also realize the
importance of coordinate transformation for a theory of gravity, and you get as far as understanding that the
action must not change when hμν changes by δhμν = ∂μεν + ∂νεμ.

Unfortunately for you, your civilization has not yet produced a Riemann, and you have no idea how to construct
an action out of gμν .

What to do? You can still construct an action in the weak field regime. First, list all possible terms quadratic
in h and quadratic in ∂ . Lorentz invariance tells us that there are 4 possible terms:

S =
∫

d4x
(
a∂λh

μν∂λhμν + b∂λh
μ
μ
∂λhν

ν
+ c∂λh

λν∂μhμν + dhλ
λ
∂μ∂νhμν

)
(22)

with 4 unknown constants a , b, c, and d . Note that we are talking about an action in Minkowski spacetime here.
(To see that these are the only terms, first write down terms with the indices on the two ∂ matching, then the
terms with the index on a ∂ matching an index on an h, and so on.)

Now impose your invariance requirement. Vary S with δhμν = −(∂μεν + ∂νεμ), integrating by parts freely. For
example, δ(∂λhμν∂λhμν)= −2(∂λ(2∂μεν))(∂λhμν) “=” 4εν∂2∂μhμν . Since there are 3 objects linear in h, linear in
ε , and cubic in ∂ (namely εν∂2∂νh and εν∂ν∂λ∂μhλμ in addition to the one already displayed), the condition δS = 0
gives 3 equations, just enough to fix the action up to an overall constant, corresponding to Newton’s constant.
You work out, by high school algebra, that the combination

I ≡ 1
2∂λh

μν∂λhμν − 1
2∂λh

μ
μ
∂λhν

ν
− ∂λh

λν∂μhμν + ∂νhλ
λ
∂μhμν (23)

is invariant.
You triumphantly publish a new theory of gravity∗ with the action

Syour name here =
∫

d4x

(
− 1

32πG
I + 1

2
hμνT

μν

)

with the coefficient of I fixed by comparing with Newtonian gravity. Indeed, the same story could have been
told in our civilization. Without a little help from his friends, Einstein might have never heard of Riemannian
geometry.

In other words, even if we had never heard of the Einstein-Hilbert action, we can still determine the action
for gravity in the weak field limit by requiring the action to be invariant under the transformation (2), hardly
surprising, since coordinate invariance determines the Einstein-Hilbert action uniquely.9 Still, it is nice to
construct gravity from scratch.

Note that invariance of Syour name here under δhμν = ∂μεν + ∂νεμ also tells us that the tensor T μν that hμν
couples to must satisfy ∂μT μν = 0.

We have already noted that the electromagnetic gauge transformation A′
μ

=Aμ − ∂μ� is structurally similar.
Using this observation in chapter IV.2, we immediately constructed the invariant field strength Fμν = ∂μAν −
∂νAμ, which we squared to obtain the action. But suppose we didn’t know about Fμν . Following the same
procedure here, we list the two possible terms quadratic in A and quadratic in ∂ allowed by Lorentz and form the
combination L = a∂μAν∂μAν + b∂μAν∂νAμ. The requirement that this is invariant under gauge transformation
fixes b = −a, so that L = a∂μAν(∂μAν − ∂νAμ)= a∂μAνFμν = 1

2aF
μνFμν . Out pop Fμν and the Maxwell action,

not just in some weak field approximation, but in their full splendor.

∗ This discussion also connects with that in the next chapter.
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Even though the following is slightly out of the scope of this text, I cannot resist remarking on how the
harmonic gauge condition ∂μhμν − 1

2∂
νhλ

λ
= 0 is imposed in quantum field theory. We add the square of the left

hand side (∂μhμν − 1
2∂

νhλ
λ
)2 to I and observe, in clever satisfaction, that this knocks off the last two terms in I ,

so that the weak field action effectively becomes

Sweak field =
∫

d4x 1
2

[
− 1

32πG

(
∂λh

μν∂λhμν − 1
2∂λh∂

λh
)

+ hμνT
μν

]
(24)

This crucial step allows us to construct the Feynman propagator for the graviton.10 If you knew just a tiny bit of
field theory, you could now derive Einstein’s famous calculation of the deflection of light directly11 from Sweak field
without having to say a word about Riemann or curvature.

Appendix 2: Green’s function

As promised, I briefly explain Green’s function for those readers who have never heard of it. Others can skip this
appendix.

First, the poor man’s approach. Recall from chapter II.1 that the solution of

∇2G(�x)= δ(3)(�x) (25)

is G(�x)= − 1
4πr . We want to solve

∂2G(x)= δ(4)(x) (26)

Away from the origin, this equation becomes, in spherical coordinates, − ∂2G
∂t2

+ 1
r2

∂
∂r
(r2 ∂G

∂r
) = 0. Writing G =

g(t , r)/r , we obtain
(
− ∂2

∂t2
+ ∂2

∂r2

)
g = 0, which, as we recall from chapter II.3, has the solution g(t , r) =

fout(t − r) + fin(t + r), with fout and fin two arbitrary functions corresponding to outgoing and incoming
spherical waves. Physically, we keep only the outgoing piece, so that G = f (t − r)/r , with some unknown
function f .

But so far, we have only solved (26) without the delta function source, you protest—of course it’s easy!
The solution G = f (t − r)/r is only valid for r > 0. Now the poor man makes a clever observation. Evaluate
∂2G = ∂2(f (t − r)/r) and take the limit r → 0. In this limit, a spatial derivative hitting 1/r makes the result
more singular but a time derivative hitting f (t − r) does not. Hence, we can drop the time derivatives in ∂2 and
write, as r → 0,

∂2G(x)=
(
−∂2

t
+ ∇2

)
G(x)→ f (t)∇2 1

r
(27)

If we choose f (t)= −δ(t)/(4π) and use the known solution of (25), then this becomes δ(t)δ(3)(x) as desired.
It follows that G = −δ(t − r)/(4πr). We can multiply this expression by θ(t) for free, since it vanishes for t < 0
anyway, as r > 0 by definition. This gives the result cited in the text.

The rich man recognizes that (25) and (26) are members of a large class of linear equations easily solved
by Fourier analysis. He or she also knows the Fourier representation of the (1-dimensional) delta function
δ(x) = ∫

dk
2π e

ikx . Thus, (25) and (26) are immediately solved by G = − ∫
d3k
(2π)3

eikx

k2 and G = − ∫
d4k
(2π)4

eikx

k2 , re-
spectively, as you can see by formally plugging the appropriate expression into (25) and (26). But there is a
huge difference between these two integrals, hidden by the highly compact notation. The expression k2 in
the denominator is evaluated with the Euclidean metric for (25) and thus is equal to δijk

ikj = �k2, but it is
evaluated with the Minkowski metric for (26) and thus is equal to ημνk

μkν = −(k0)2 + �k2. In the first case,
the integral over d3k can be done without too much difficulty and reproduces the result G(�x) = − 1

4πr . In
the second case, in integrating over k0, we have to specify what to do with the poles at k0 = ±|�k|. For a de-
tailed explanation, see any book on mathematical physics or field theory.12 It turns out that the correct pro-
cedure is to interpret k2 as −(k0)2 + �k2 + iε sign(k0), with the sign function defined as usual and with ε a
positive infinitesimal to be set to 0 after the integral has been done. This procedure reproduces the result
G = −θ(t)δ(t − r)/(4πr).

My advice for those not that familiar with the preceding is to simply go with the poor man’s approach.13
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Appendix 3: The gravitational field far from a possibly strong
stationary source

This appendix is rather involved and can be skipped upon a first reading of this book.
As I emphasized in the text, the discussion in this chapter assumes that the gravitational field is weak

everywhere. Here we want to study the gravitational field far from a strong source, say, a black hole. Near the
black hole, the gravitational field is anything but weak and hμν is of order unity, so it would seem that linearized
gravity would not have much to say. But the point is that, for an observer located sufficiently far away from the
black hole, the local gravitational field she measures is weak enough for linearized gravity to hold. Far away, we
can still exploit the field equation ∂2h̃μν = 0 and the harmonic gauge condition ∂μh̃μν = 0. We assume in addition
that the source is stationary, so that the field equation reduces to

∇2h̃μν = 0 (28)

We now show that general considerations, based on rotational invariance, time reversal, parity, and so on,
severely restrict the possible form ofhμν . The goal is now to determine h̃00, h̃0i , h̃ij using general principles. Given
that the metric does not depend on time, our manipulations will be strictly limited to everyday 3-dimensional
quantities (as you will see). Hence we can suspend temporarily, for ease of writing, the distinction between upper
and lower indices. Or, if you prefer, we raise and lower spatial indices with the Kronecker delta, without any funny
signs. You will see what I mean.

A preliminary remark. Starting with the solution 1/r of Laplace’s equation, namely ∇2(1/r) = 0, we can
generate more solutions simply by differentiating, since

∂i(1/r)= −xi/r3, ∂i∂j (1/r)= 3xixj − δij r2

r5

and so on all solve Laplace’s equation.
The subsequent discussion will be in two parts. The second part is more general than the first part.
First, we assume that our source defines an angular momentum vector �J . We now go way back to the

discussion of rotational invariance in chapter I.3 to construct h̃00, h̃0i , and h̃ij out of what we have available,
namely the vectors �x and �J .

A clarifying word or two about time reversal and parity. Under time reversal, t → −t , �x → �x, �J → − �J . To leave
ds2 invariant, we must have h̃00 → h̃00, h̃0i → −h̃0i , and h̃ij → h̃ij . That’s obvious enough. Parity is normally
defined as the operation t → t , �x → −�x, but since �x → −�x is equal to a reflection in a mirror placed in the (y-z)
plane (x , y , z)→ (−x , y , z) followed by a rotation, we can equivalently think of mirror reflection. Think of an
object rotating around the z-axis, and you can see that mirror reflection takes �J → − �J .

So, write down the most general form consistent with these symmetries and impose the gauge condition. The
result is

h̃00 = A

r
+O

(
1
r3

)

h̃0i = 2εijkxjJ k

r3
+O

(
1
r3

)

h̃ij =O

(
1
r3

)
(29)

To see how this goes, take h̃0i , for instance. Let �J point in the z-direction. Time reversal flips h0i and hence h̃0i .
Thus, h̃0i must be odd in �J . Similarly, for reflection as defined above to leave ds2 = (. . . + 2(h01dtdx + h02dtdy +
h03dtdz)+ . . .) invariant, we must flip the sign of h01 and hence h̃01, but leave h̃02 and h̃03 alone. This mandates
the appearance of the 3-dimensional antisymmetric symbol and fixes the form of h̃0i up to an overall constant.

It is worth emphasizing that assuming rotational symmetry is not the same as assuming spherical symmetry,
which is broken explicitly by the presence of the vector �J .

Second, we will be more general and not assume that the source provides a vector �J around which we have
cylindrical symmetry. The most general form that solves Laplace’s equation we can write down is then
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h̃00 = A

r
+ Aixi

r3
+O

(
1
r3

)

h̃0i = Bi

r
+ Bijxj

r3
+O

(
1
r3

)

h̃ij = Cij

r
+ Cijkxk

r3
+O

(
1
r3

)
(30)

(the one assumption, I remind you, is that ∂0gμν = 0). The various unknown rotational tensors characteristic of
the source have obvious symmetry properties, for example Cijk = Cjik.

Now that we have taken care of Einstein’s field equation, we impose the harmonic gauge condition ∂μh̃ μ
ν

= 0.

First, for ν = 0, the condition 0 = −∂μh̃ μ
0 = −∂ih̃0i = Bixi

r3 + Bij (δij r2−3xixj )
r5 + O

(
1
r4

)
implies that Bixi = 0

and Bij(δij r2 − 3xixj ) = 0. The first condition gives immediately Bi = 0. To solve the second condition, we
triumphantly use what we learned in chapter I.3 about rotational tensors. Decompose Bij into a traceless
symmetric tensor, a trace, and an antisymmetric tensor. The stated condition knocks out the traceless symmetric
tensor, so that Bij = Bδij + 2εijkJ k with some unknown scalar B and vector �J (which will turn out to be the
angular momentum vector; let’s not be coy about it).

Onward soldiers! Setting ν = i in the gauge condition, we find that 0 = ∂μh̃
μ

i = ∂j h̃ij gives Cij = 0 and
Cijk(δjkr2 − 3xjxk) = 0. Now, in this round, solving the second equation really challenges us to show off
our mastery of chapter I.3. We have a 3-indexed tensor Cijk symmetric in the first two indices. We deal with
these two indices in analogy with how we dealt with Bij in the preceding paragraph. First, take out the trace:
Cijk = Ĉijk + δijDk, where Ĉijk is symmetric and traceless in its first two indices, so that δij Ĉijk = 0. Readers
conversant with group theory would now recognize that the first two indices on Ĉijk transform like a 5 of SO(3),
and the third index like a 3, so that our problem is solved by the decomposition 5 × 3 = 3 + 5 + 7. Those who know
quantum mechanics would know furthermore that this is the problem of combining an angular momentum 2
object and an angular momentum 1 object. Those familiar with neither group theory nor quantum mechanics,
fear not! You can simply contemplate the decomposition

Ĉijk =
(
Eiδjk + F ihεjkh

)
+ (i ↔ j)+Gijk (31)

where F ih and Gijk are both totally symmetric and traceless. In other words, if we contract any two indices on
Gijk with the Kronecker delta, we get zero.

Let us count to provide one check. The first two indices on Ĉijk take on 5 different values, while the third
index takes on 3 different values, giving us 5 . 3 = 15 independent components. On the other side of the ledger,
Ei contains 3 components, and F ih 5 components. How many components does Gijk have? Readers with
an elephant’s memory would remember that we counted the number of symmetric triplets of indices back
in chapter I.6: 1

6D(D + 1)(D + 2) if each index can take on D values; for D = 3, we have 1
6 (3 . 4 . 5) = 10.

Remembering the three traceless conditions Gijkδij = 0, we conclude that Gijk has 7 components. Indeed,
15 = 3 + 5 + 7; this is “exactly the same” equation as what we had written above, except for the conceptual fact
that the earlier equation refers to representations of SO(3).

We should not forget that all this work is needed to solve Cijk(δjkr2 − 3xjxk) = 0, which now becomes
(δijDk + Eiδjk + Ejδik + F ihεjkh + Fjhεikh + Gijk)(δjkr2 − 3xjxk) = 0, from which we obtain Di = −Ei ,
F ih = 0, and Gijk = 0.

Let’s take stock and summarize what we have wrought thus far:

h̃00 = A

r
+ Aixi

r3
+O

(
1
r3

)

h̃0i = Bxi + 2εijkxjJ k

r3
+O

(
1
r3

)

h̃ij =
(
δijDkxk −Dixj −Djxi

)
r3

+O

(
1
r3

)

You might be disappointed that after all this work we are still left with quite a mess. But in Einstein gravity,
we have yet another trick up our sleeves: we can perform a coordinate transformation, otherwise known as a
gauge transformation. From (2), we are free to change h̃μν → h̃′

μν
= h̃μν − (∂μεν + ∂νεμ − ημν∂ . ε). Choose

εμ = (B/r , 0, 0, 0) and we can knock off the B term in h̃0i . Next, choose ε0 = 0 and εi = −Di/r to knock all

3 D terms from h̃ij . But oops, you might worry, because in this step h̃00 → h̃′
00 = h̃00 + ∂iεi = h̃00 + Dixi

r3 , and
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Di pops its ugly head up somewhere else. Again, fear not, it can be absorbed into the Ai term. Finally, since
1

|�x+�a| = 1
r

(
1 − aixi

r2 + . . .
)

, we can knock off the Ai term in h̃00 by suitably translating our coordinate system.

The bottom line is that, quite remarkably, the far field of any gravitating system, as long as it is stationary,
whether a black hole or a collection of rocks, can be beaten down from (30) to

h̃00 = A

r
+O

(
1
r3

)

h̃0i = 2εijkxjJ k

r3
+O

(
1
r3

)

h̃ij =O

(
1
r3

)
(32)

The far field depends on a number and a vector, just as in (29), even though we made fewer assumptions. Of
course, it also agrees with the multipole expansion (15) and (17), discussed in the text; the quadrupole and higher

moments, which depend on the shape of the mass distribution, are hidden precisely in the O
(

1
r3

)
terms in (32).

Our final task is to convert to the more physically relevant hμν = h̃μν − 1
2ημνh̃. In a calculation understood to

be accurate up to but not including O
(

1
r3

)
terms, and similar to one performed in the text, we have h̃= −A/r ;

then h00 = A/(2r) and hij = δijA/(2r), leading to the metric∗

ds2 = −
(

1 − 2M
r

)
dt2 + 2J

r3
(xdy − ydx)dt +

(
1 + 2M

r

) (
dx2 + dy2 + dz2

)
(33)

(with the z-axis defined by the direction of �J ). We have identified A= 4M . The vector �J as it appears naturally
here, in the tensor decomposition of Bij , should be regarded as the definition of angular momentum. As I
emphasized in chapter VII.5, it may be used to define the angular momentum of a rotating black hole. As shown
by (20), it reduces to what we mean by angular momentum for a slowly rotating object.

Exercises

1 Use the equation of geodesic deviation derived in chapter IX.3 to describe the behavior of a pair of particles
when a gravitational wave passes by. Recover the result derived in the text. Hint: Use the TT gauge. To leading
order, everything simplifies.

2 Derive the quadrupole formula (16). Hint: Integrate by parts to obtain∫
d3y yj∂kT

μk
(
t , �y)= −

∫
d3y T μj

(
t , �y)+

∫
d3y ∂k

[
yjT μk

(
t , �y)]

where the second integral on the right hand side can be converted by Gauss’s theorem to a surface integral. If
we integrate over a large enough region enclosing the source, then T μk = 0 over the surface and the surface
integral can be dropped. We thus obtain the identity∫

d3y T μj
(
t , �y)= −

∫
d3y yj∂kT

μk
(
t , �y)

Use this identity and energy momentum conservation ∂νT
μν = 0 (that is, ∂0T

μ0 + ∂kT
μk = 0).

3 Solve (10) far outside a static spherically symmetric mass distribution. You should be able to recover the
asymptotic (that is, large r) form of the Schwarzschild metric. By the way, you could determine the answer
by invoking some of the general results in the text, but that is not the point of the exercise. After all, we
already know the Schwarzschild metric; the point is to see how its asymptotic behavior can be obtained
directly from (10).

∗ Note that this metric for J = 0 does not reduce to the far field of the usual Schwarzschild solution, but of
the solution written in the form given in exercise VI.3.3.
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Notes

1. M. Bartusiak, “Einstein’s Unfinished Symphony,” 2000.
2. See D. Kennefick, “Einstein versus the Physical Review,” Physics Today, September 2005, p. 43.
3. Some students are rightfully concerned about the meaning of the expansion. The fastidious may want to

write gμν = ημν + λhμν and xμ → x′μ = xμ + λεμ(x), expand equations such as g′
ρσ
(x′)= gμν(x)

∂xμ

∂x′ρ ∂xν

∂x′σ as
a series in λ, and equate powers of λ.

4. See QFT Nut, chapters II.7 and III.4, particularly the footnote on p. 144 about Lorenz versus Lorentz.
5. Hence the name harmonic.
6. Historically, a confusing debate on whether gravitational waves could be removed by a coordinate transfor-

mation went on for some time. See the first footnote in this chapter. One subtlety is that if we consider a
plane wave, as in standard treatments of electromagnetism, the infinite amount of energy contained in the
wave would curl up spacetime, so localized wave packets must be used. We ignore all such subtleties in this
introductory text.

7. At the moment, we have LIGO (short for the Laser Interferometer Gravitational Wave Observatory) in the
United States, VIRGO in Italy, and GEO in Germany. Since the reader can easily find a list of projects on
the web, I refrain from giving a more complete list that may be outdated soon. For example, in an earlier
draft of this chapter, I had mentioned LISA (the Laser Interferometer Space Antenna) consisting of three
spacecraft in orbits around the sun, but currently it is not funded, and even the proof-of-concept mission,
LISA Pathfinder, is not scheduled until 2014.

8. The mathematical correspondence can be pursued further. With the correspondence h00 ∼�, h0i ∼Ai , that
is, h0μ ∼ Aμ, you can work out Einstein’s field equation in the post-Newtonian approximation and show
that it has exactly the same form as Maxwell’s equation. (Indeed, you can see that the leading Newtonian
approximation ∇2�∼ ρ is just Coulomb’s law; generations of students have probably noticed that the partial
differential equation for the gravitational potential and the electrostatic potential are identical in form.) You
could then go on and indulge in some rather far-out speculations. For example, since we can add an as-yet-
unobserved magnetic monopole to Maxwell’s equation, we could ask if there is a gravitational analog of the
magnetic monopole in Einstein gravity. See A. Zee, Phys. Rev. Lett. 55 (1985), p. 2379.

9. We see explicitly that the action contains two powers of ∂ , and so the cosmological term is excluded. For the
same reason, the higher derivative terms that we will discuss in chapter X.3 are also excluded.

10. For more, see chapter VIII.1 in QFT Nut.
11. See QFT Nut, p. 439. Indeed, this is essentially how Feynman does it.
12. For example, see QFT Nut, pp. 23–24.
13. The “poor man” I followed here is Landau. While he may not be rigorous enough for the jungle patrol on

the Amazon, he is plenty rigorous for me.



IX.5 A Road Less Traveled

“So great an absurdity”

Many roads lead to Einstein gravity. Back in chapter VI.1, I “air lifted” you over one of the
shortest ways I know of to Einstein’s celebrated field equation. Here I show you a road less
traveled.

In chapters II.1 and II.3, I reminded you that in Newtonian gravity, the gravitational
potential � is determined in terms of the mass distribution ρ by

∇2�(�x , t)= 4πGρ(�x , t) (1)

Look at this equation: any change in the mass distribution will be instantaneously com-
municated to the Newtonian potential. The gravitational potential � is slavishly yoked to
the matter distribution.

Newton himself worried about this action at a distance. How could a planet know
instantly any change in the position of its star? In the Principia, he left∗ this conundrum “to
the consideration of the reader.” But he did fret, and in a 1693 letter to his friend Richard
Bentley, he opined:

That gravity should be innate, inherent and essential to matter so that one body may act upon

another at a distance through a vacuum without the mediation of anything else by and through

which their action or force may be conveyed from one to another is to me so great an absurdity

that I believe no man who has in philosophical matters any competent faculty of thinking can

ever fall into it.1

Tell me, when you first learned about the inverse square law, did you not find it bizarre?
Would Newton have described you as lacking in “faculty of thinking”?

∗ There is perhaps a lesson here somewhere for the young theoretical physicists reading this book. Newton
was content to postulate the inverse square law and then explore its consequences. He left its dynamical origin2 to
others like Descartes, whose theory of vortices sweeping the planets along was swept into the dustbin of history.
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Bringing time to gravity

By now, with your vast knowledge of Lorentz invariance and of relativistic completion, you
know that we should bring time into the picture and thus promote ∇2 to ∂2 = −∂2

t
+ ∇2,

so that (1) is promoted to ∂2�= 4πGρ.
One important remark is that this modification immediately implies the existence of

gravitational waves: something has to propagate. In empty spacetime, far from any matter
distribution, the equation ∂2�(x) = 0 has the wave solution �(x) = a cos(ωt − �k . �x) +
b sin(ωt − �k . �x), with ω2 = �k2. Indeed, we already encountered gravitational waves in the
preceding chapter (and in chapter II.3).

Historically, Laplace did have the foresight and insight to speculate about the speed of
propagation cG of the effect of gravity. Unfortunately, he concluded erroneously that cG �
c. These days, particle theorists subscribe to something known as the naturalness dogma3

(or doctrine if you prefer), saying that fundamental constants with the same dimension
should have roughly the same order of magnitude.∗ Otherwise, we would be confronted
by a “hierarchy problem.” So perhaps nowadays the default view would be that cG ∼ c.
Of course, we now understand that the speed of propagation is a universal constant, a
property of spacetime rather than the individual interaction. But before this understanding,
it would seem strange, perhaps even bizarre, that gravitational and electromagnetic waves
would propagate at precisely the same speed c. Conceivably, some bright young guy in
another civilization far far away could have proposed the existence of gravitational waves
with cG = c long before a complete understanding of curved spacetime was established.

But once you promote the Laplacian to the d’Alembertian ∂2, you are obliged to also
promote the mass density ρ. Here, as Robert Frost4 said, we are at a fork faced with two
roads. As we saw in chapter III.6, by studying how ρ transforms under a Lorentz boost,
we would naturally promote ρ to an energy density T 00, the time-time component of an
energy momentum tensor T μν. As we will see, traveling down this road, we will arrive at
Einstein gravity.

Traveling down the wrong road

The Finnish physicist Gunnar Nordström (1881–1923) pointed out another possibility,
namely that ρ could be promoted to the Lorentz scalar T ≡ T μ

μ
= ημνT

μν. In the non-
relativistic limit, since T ij � T 00, −T reduces to T 00. So, −T and T 00 are both suitable
role models for ρ to aspire to grow up into. In either case, we will recover Newtonian
gravity. In Nordström’s theory, the field equation for gravity reads

∂2�= −4πGT (2)

and the gravitational field �(x) is a Lorentz scalar.

∗ More in chapter X.3.
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Alas for Nordström, he chose the wrong road.∗ Nature does not† make use of this
possibility. Incidentally, he did this work5 before Einstein formulated his theory of general
relativity.

After special relativity was established, which after all was to make mechanics compat-
ible with electromagnetism and its Lorentz invariance, Einstein was not the only one to
realize that Newtonian gravity (1) also had to be made compatible with Lorentz invariance.
Others in the race included Max Abraham (1875–1922) and Gustav Mie (1869–1957).

A less traveled road to Einstein gravity

Compared with understanding gravity, the special theory of
relativity was mere child’s play.

—A. Einstein writing to Arnold Sommerfeld, 1912

While ρ becomes a component of the tensor T μν, the left hand side of ∂2�= 4πGρ, for
the equation to make sense, is also compelled to be a component of a tensor. We are thus
forced to promote �(x) to a symmetric tensor field hμν(x) and write

∂2hμν = 8πGTμν (3)

where we have defined h00 = −2� to agree with our earlier discussion.
After the preceding chapter, it does not take much to guess that the field hμν will

rather naturally turn out to be the deviation of the metric gμν = ημν + hμν from the
Minkowski metric. Thus, once we decide not to wander off with Nordström, we are
practically committed to curved spacetime. Indeed, as soon as we write down (3), we are
led inexorably to Einstein gravity, as was shown by Stanley Deser, collaborating with David
Boulware and echoing various earlier and later works of Suraj Gupta, Robert Kraichnan,6

Richard Feynman,7 Steve Weinberg,8 and others.
I merely sketch how we will end up with Einstein gravity, suppressing indices for clarity.

The action that would lead to (3) has the form S1 ∼ ∫
d4x( 1

G
∂h∂h+ hT ), with the (invis-

ible) indices contracted by ημν. Indeed, δS1 ∼ ∫
d4x( 1

G
∂h∂δh+ δhT )∼ ∫

d4x(− 1
G
∂2h+

T )δh= 0, giving us 1
G
∂2h∼ T . I must confess that living the unindexed life has its charms.

Keep on iterating

But this action can’t be the end of the story. The very fact that the field hμν(x) is endowed
with dynamics—that it can wriggle in spacetime—means that it carries energy and mo-

∗ Had Nature chosen this road, you wouldn’t have to learn Riemannian geometry to master gravity.
† This is one of my favorite examples of the need to read with sophistication Einstein’s dictum about making

physics as simple as possible. Simple does not necessarily mean less math. Nature couldn’t care less about how
much or how little math you learned in school.
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mentum. In S1, we include in T μν only the contribution of the matter fields. Here the
word “matter” is used in the same sense as in chapter VI.4 and includes anything but the
gravitational field hμν. We are now forced to include the contribution of hμν to T μν as well.

In chapter VI.4, we learned, given an action, how to determine its contribution to T μν,
even if the action is given merely in flat spacetime. We pretend momentarily that ημν is
actually gμν, we vary gμν to obtain T μν, and then quickly set gμν back to ημν, doing all this
in our heads.

Apply this procedure to the term 1
G
∂h∂h inS1. Since this term carries 6 indices (which we

have suppressed), there are actually 3 “invisible” ηs lurking in this term, in the schematic
form ∼ 1

G
ηηη∂h∂h. Promoting ημν to gμν, varying gμν, and then setting gμν back to ημν,

we obtain a contribution to T μν of the schematic form 1
G
ηη∂h∂h, where two indices

are left dangling to match the μν indices on T μν. In other words, we have to shift
hT → h(T + 1

G
ηη∂h∂h). Including this contribution, we are forced to the action S2 ∼∫

d4x( 1
G
∂h∂h+ hT + 1

G
h∂h∂h). (Our notation is evidently such that after every step, the

letter T in the schematic form of the action once again includes only the contribution of
the matter fields. We also suppress the many ηs lurking in the action.)

You see how the game goes: we keep on iterating. The term 1
G
h∂h∂h in S2 will now force

us to include a term of the form 1
G
h∂h∂h in T . Hence we are led by the nose to the action

S3 ∼ ∫
d4x( 1

G
∂h∂h+ hT + 1

G
h∂h∂h+ 1

G
h2∂h∂h).

Before you can shout “Here comes S4!”, you see that the action will iterate to an
infinite series S ∼ ∫

d4x{ 1
G
(∂h∂h+ h∂h∂h+ h2∂h∂h+ . . .)+ hT }. This much is easy to

understand and makes sense physically, as I will explain presently. The hard part is to
show, as Deser and company did, that the series 1

G
(∂h∂h+ h∂h∂h+ h2∂h∂h+ . . .) sums

to the Lagrangian 1
G

√−gR in Einstein gravity.∗

In other words, the claim is that, upon substituting gμν = ημν + hμν into the Einstein-
Hilbert Lagrangian and expanding in h, we will obtain the series we found by iterating.
But in a sense this is hardly surprising, since general covariance forces us to the Einstein-
Hilbert Lagrangian uniquely (as we saw in chapter VI.1).

In chapter V.2, we extolled the far-reaching power of the equivalence principle. If we
know the action governing any interaction in flat Minkowskian spacetime, we immediately
know the action governing that interaction in curved spacetime, in the presence of gravity:
all we have to do, we learned, is to promote ημν to gμν. But there is one interaction
we cannot apply this wondrous stupendous trick to, so take back the word “any” in the
preceding sentence. That very special interaction is the gravitational interaction itself! We
knew gravity only in Newtonian, not Minkowskian, spacetime. What we have learned in
this chapter is that if we try to construct the gravitational action in Minkowskian spacetime
iteratively, we end up with the Einstein-Hilbert action in curved spacetime.

Instead of working with the action, we could also have worked with the equation of
motion (3). Our task would then be to find a combination, involving two derivatives and the
metric, with which to replace ∂2hμν on the left hand side, as we had already anticipated way
way back in part II. Gauss, Riemann, and Ricci solved this highly nontrivial problem for us.

∗ To keep things simple, we did not mention that starting with hT , we generate an infinite series that will also
sum up appropriately.
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Geometry emerges

This discussion underlines the importance of the geometrical view of special relativity that
we have emphasized in part III, in contrast to the view of special relativity as a series of
apparent paradoxes. We could certainly work through the theory of special relativity apply-
ing the Lorentz transformation to various apparent paradoxes, without once mentioning
the word “geometry.” But that would be impoverishing physics.

Imagine yourself in a galaxy far far away, where people have never heard of Einstein
gravity. But people know about the Newtonian equation (1) ∇2�(�x , t)= 4πGρ(�x , t), and
Lorentz invariance has just been discovered. Suppose you then try to make this equation
Lorentz invariant, following the road less traveled outlined here, and thus promoting � to
hμν. If you had understood special relativity in terms of the geometry of spacetime (that
is, understood ημνdx

μdxν as the generalized distance between two nearby points), then
you would naturally interpret (ημν + hμν)dx

μdxν as an even more generalized distance
between two nearby points. Geometry of curved spacetime naturally emerges. But the
poor sap who knows special relativity as a series of paradoxes may have a hard time seeing
curved spacetime.

The graviton interacts with itself

The physics behind the infinite series 1
G
(∂h∂h+ h∂h∂h+ h2∂h∂h+ . . .) is easy to under-

stand with a minimal knowledge9 of quantum field theory. You have no doubt heard, and
I have already mentioned, that when we quantize the electromagnetic field, we obtain the
photon, and when we quantize the gravitational field, we obtain the graviton. A huge differ-
ence between the photon and the graviton is that the photon couples to charged fields, such
as the electron field, but is not charged itself. In contrast, the graviton couples to anything
carrying energy and momentum, and since it certainly carries energy and momentum, it
couples to itself. In the electromagnetic action given in chapter IV.2, the photon couples to
the charged fields that comprise the electromagnetic current Jμ via the term AμJ

μ in the
action. Similarly, in the Einstein-Hilbert action, the graviton couples to matter fields that
comprise the energy momentum tensor T μν via the term hμνT

μν. But in addition, there
are an infinite10 number of terms of the form h . . . h∂h∂h describing the complicated in-
teractions of many gravitons with one another. This partly accounts for the intractability
of quantum gravity at present.

To say all this in a slightly different way, we recall from chapter VI.4 that T μν is not
locally conserved, in contrast to the electromagnetic current Jμ. The physics behind this
fact is the ability of the gravitational field to exchange energy momentum with T μν.

Appendix 1: From electrostatics to Maxwell

It is instructive to repeat for electromagnetism what we did in this chapter. Suppose we start with electrostatics,
with Poisson’s equation ∇2�(�x , t) = ρ(�x , t) determining the electrostatic potential � in terms of the charge
density ρ. Indeed, it is essentially the same equation as (1) that we started this chapter with.
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Again, we complete relativistically, except that now ρ is promoted to be the time component of a Lorentz
vector Jμ instead of the time-time component of a Lorentz tensor T μν . This forces us to promote � to be the
time component of a Lorentz vector Aμ, leading us to the equation ∂2Aμ = −Jμ. The next step is motivated by
our desire to have current conservation fall out of the equation of motion. This would happen if we change11 our
equation to ∂ν(∂

νAμ − ∂μAν)= −Jμ, from which ∂μJ
μ = 0 follows as an identity. You might realize that this

last remark in fact foreshadows energy momentum conservation falling out of the Bianchi identity, as we saw in
chapter VI.5.

Appendix 2: Gravity is feeble, and the Planck mass is huge

As we have noted since the very beginning of this text, the immensity of the Planck mass MP ≡
√

1
G

∼ 1019 GeV
directly reflects the extreme feebleness of gravity:G is teeny, soMP is humongous. This is merely a simple matter
of high school algebra, but it is rendered particularly clear by the weak field discussion of this chapter. Write the
action in the text as S ∼ ∫

d4x{M2
P(∂h∂h+ h∂h∂h+ h2∂h∂h+ . . .)+ hT }. Now scale h≡ ĥ/MP, so that

S ∼
∫

d4x
{(
∂ĥ∂ĥ+M−1

P ĥ∂ĥ∂ĥ+M−2
P ĥ2∂ĥ∂ĥ+ . . .

)
+M−1

P ĥT
}

(4)

The gravitational field ĥ is conventionally normalized in the sense that the “kinetic energy” term ∂ĥ∂ĥ has
coefficient unity. But now we see that the interaction of ĥ with the rest of the world (as represented by T ) and
with itself scales like inverse powers of MP, as expected.

Appendix 3: A shorter road less traveled

Using the Palatini formalism introduced in chapter VI.5 (which you may wish to review now), we can shorten
the road less traveled described in this chapter. I am content to do it schematically, omitting the indices.
A flat spacetime version of Palatini would have started with two fields h.. and �

.

.. governed by the action
S ∼ ∫

(h∂� + hT ), where the appearance of the Minkowski metric when needed is understood. Upon varying
h, we get ∂� ∼ T . But we don’t know what � is. To remedy this, add a quadratic term �� to the action, so that
S ∼ ∫

(h∂� + hT + ��). Varying �, we obtain � ∼ ∂h, which when plugged into the previous equation, leads
us to ∂2h∼ T , namely (3). By the argument in the text, we now have to introduce the cubic term h��, which
together with ��, we then recognize as the first 2 terms in the expansion of

√−gg..
�

.

..�
.
... We thus recover the

Palatini version of the Einstein-Hilbert action SEH ∼ ∫
d4x

√−gg(∂� + ��), namely the Palatini action given in
chapter VI.5.

Notes

1. R. Bentley, Works of Richard Bentley, vol. 3, Francis Macpherson, 1838.
2. I might call the Descartes approach the “all or nothing approach,” which some theoretical physicists still

indulge in. At any stage in the development of physics, certain questions are not appropriate; for instance,
somebody could always demand of Newton, “Hey Isaac, so why inverse square?”

3. We will come back to this idea in chapter X.7.
4. Written in that famous year 1915, by the way.
5. For the controversial relationship between Nordström and Einstein, see the letters by P. Freund and E. L.

Schucking in Physics Today, August 2009, p. 8.
6. Incidentally, Kraichnan did his work as an 18-year-old undergraduate at the Massachusetts Institute of

Technology. As a postdoc at the Institute for Advanced Study, he showed his work to Einstein, who was
appalled by this so-called “particle physics” approach, in contrast with the geometrical approach. He delayed
publication for 8 years and ended up publishing after Gupta. Perhaps partly as a result of this encounter with
Einstein, Kraichnan left the field and later became an eminent authority on turbulence.

7. Feynman’s work came out of his effort to quantize gravity. In one story, when Feynman told his colleague
Murray Gell-Mann about his research, the latter told him to try quantizing Yang-Mills theory as a warm-up
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exercise. Feynman wrote his wife Gweneth a famous letter from the Warsaw conference on gravity in 1962,
in which he said, “Remind me not to come to any more gravity conferences.” Also, “Now I will show that
I too can write equations that nobody can understand.” These two remarks more or less summed up the
attitude of particle theorists to Einstein gravity until the mid-1970s.

8. In this particle physics approach, as championed by Feynman and Weinberg, curved spacetime and Rieman-
nian geometry are not put in but rather fall out. See the preface and introduction to S. Weinberg, Gravitation
and Cosmology, and R. P. Feynman et al., Feynman Lectures on Gravitation.

9. See QFT Nut, chapter VIII.1.
10. The Yang-Mills field is intermediate between the electromagnetic and the gravitational fields in complexity.

The analog of the infinite series we encounter here terminates in Yang-Mills theory. See, for example, QFT
Nut, chapter IV.5.

11. For more details, see QFT Nut, pp. 38 and 188.



IX.6 Isometry, Killing Vector Fields,
and Maximally Symmetric Spaces

Why do we love the sphere so much?

Think about the vast amount of theoretical physics you have learned and you realize the
enormous role spheres and other symmetrical situations have played in enhancing your
understanding. Even with the ubiquity of numerical computation these days, analytically
soluble examples still provide valuable, perhaps indispensable, railings for us to hold on
to. So too in Einstein gravity: the most intensely studied spacetimes, as you might expect,
are the most symmetrical. In this chapter, we explore symmetry in the context of space
and spacetime.

We love the sphere, obviously because its high degree of symmetry makes it easy to
work with. Indeed, every point on the sphere is equivalent to every other point. But
somebody could have given you the metric on the sphere in some awful and unfamiliar
coordinates, and you may not recognize that it describes the sphere. In fact, were the
metric ds2 = dθ2 + sin2 θdϕ2 unfamiliar to you, how would you go about discovering that
it possesses the maximal amount of symmetry? The two coordinates θ and ϕ are treated so
differently. Thus, we definitely need to develop some machinery to uncover any symmetry
that might be masked by a poor choice of coordinates.

The isometry condition

In Riemannian geometry, because of the freedom in choosing coordinates, symmetry is
not always glaringly advertised.

If the geometry at point P and the geometry at Q are the same, the two points P and Q are
said to be isometric. The metric for the sphere in the standard coordinates is independent
of ϕ, so obviously, two points related by ϕ′ = ϕ + c for an arbitrary constant c are isometric.
But the isometry in the θ direction is not so evident, and the isometry in an arbitrary
direction is even less so.
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As always, g′
ρσ
(x′)= gμν(x)

∂xμ

∂x′ρ ∂xν

∂x′σ . Now suppose we require that the metrics g′ and g,
as functions of their respective arguments, are the same, namely that g′

ρσ
(x′)= gρσ (x

′).
Thus, the question of whether the space enjoys any isometry amounts to asking whether
the set of equations

gρσ (x
′)= gμν(x)

∂xμ

∂x′ρ
∂xν

∂x′σ (1)

has any solutions.
Watch the primes like a hawk here! Note carefully that this condition of isometry differs

by a single prime from the far more commonly seen equation g′
ρσ
(x′)= gμν(x)

∂xμ

∂x′ρ ∂xν

∂x′σ ,
which we just cited and which you first encountered in chapter I.5 telling us how the metric
g′ is determined by the metric g. (Indeed, the right hand side in (1) is none other than
g′
ρσ
(x′).) In contrast, the isometry condition (1) compares a given metric gμν evaluated at

x and x′: it imposes a requirement on gμν that most metrics in fact fail to satisfy.
In general, the condition (1) consists of a set of formidable equations that are difficult

to solve, but mathematicians have studied them in depth. We are content, however,
to follow the German minister and mathematician Wilhelm Killing (1847–1923) and
analyze (1) when the two points are related infinitesimally x′μ = xμ + εξμ(x), in the same
spirit we adopted when studying Lie algebra. Indeed, Killing also discovered Lie algebras
independently of Sophus Lie and even anticipated some later developments by Élie Cartan.
Lie, however, bitterly disputed Killing’s claim to Lie algebras.

So, let’s expand (1) out to linear order in the small parameter ε. Setting ∂xμ

∂x′ρ = δμ
ρ

−
ε∂ρξ

μ(x)+O(ε2) and collecting terms of order ε, we find

gμσ∂ρξ
μ + gρν∂σξ

ν + ξλ∂λgρσ = 0 (2)

Indeed, if we write the isometry condition (1) as 0 = gρσ (x
′) − g′

ρσ
(x′) = (gρσ (x

′) −
gρσ (x)) + (gρσ (x) − g′

ρσ
(x′)), the expression in the first parentheses provides the ξ∂g

term in (2), while the expression in the second parentheses gives the g∂ξ terms. Note also
that we have already encountered this combination in chapter VI.5.

Using the definition of the covariant derivative, we could write (2) more compactly as

ξσ ;ρ + ξρ;σ = 0 (3)

Here we use the semicolon notation introduced in chapter V.6.
One potential source of confusion for the beginner is that the isometry condition, (2)

or (3), can be looked at in two different ways. Given a metric, we could solve the isometry
condition for the vector ξ . Alternatively, we could be given a bunch of ξs and ask how these
isometries restrict the metric.

A vector field ξ(x) satisfying (2) or (3)—the two conditions are equivalent—is called
a Killing vector field. I will often be sloppy and omit the word “field” when it is clearly
understood from the context that ξ depends on x.

Indeed, you might recall that you already encountered this term in chapter V.4. There
we learned that the metric for a general static isotropic spacetime has the two Killing
vectors ξ = (1, 0, 0, 0) and ξ = (0, 0, 0, 1). Referring to (2), which in this case reduces
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to ξλ∂λgρσ = 0, we see that speaking of Killing vectors is just an extra fancy way of saying
that the static isotropic metric in chapter V.4 does not depend on the coordinates t and ϕ.

But already back in chapter V.4, you might have seen that there is a theoretical issue.
The Killing vectors were obvious, because we chose a nice symmetric form for the metric,
but in principle, as already mentioned, the metric could have been presented to us in some
poorly chosen coordinates. The condition (2) or (3) tells you how to find the Killing vectors.
However, by now, you realize that usually we start out with the isometries we want, which
then guide us to the form of the metric, rather than the other way around of having to find
the isometries for a given metric.

For further theoretical analysis, (3) is more suitable, but in an actual search for Killing
vectors, (2) is simpler. By the way, we know that the ordinary derivatives in (2) must
metamorphose into covariant derivatives as in (3), since the existence of Killing vectors
is a coordinate independent statement, and so the existence condition must transform
properly.

Those readers with a long memory might make a connection with the concept of Lie
derivative introduced in chapter V.6. Indeed, the condition (2) had already appeared in
appendix 2 of chapter V.6, and, rather nicely, asserts that the Lie derivative of the metric in
the direction of the Killing vector ξ vanishes:

Lξgμν = 0 (4)

Killing vectors

In general, (2) may have a number of solutions; we then label the various Killing vectors
ξ
μ

(a)
by an index a. Obviously, any linear combination of Killing vectors

∑
a caξ

μ

(a)
is also a

Killing vector. That (3) is a tensor equation ensures that the number of linearly indepen-
dent Killing vector fields does not depend on the coordinates used, evidently, since isometry
reflects an intrinsic property of the space.

As explained in chapter V.4, with any vector V μ, we can associate the differential
operators V μ∂μ. Indeed, in more advanced treatments, Killing vectors are thought of as
differential operators, namely as ξ(a) = ξ

μ

(a)
∂μ. Thus, given a set of Killing vectors, we can

study the isometry algebra generated by commuting the ξ(a)s with one another. You can
see how close this is to Lie’s idea. See appendix 5. No wonder there was controversy over
priority.

Let us try out our formalism on a laughably simple case, Euclidean 3-space E3. Then
(2) simplifies to the 6 equations ∂xξx = 0, ∂xξy + ∂yξ

x = 0, and so forth. These are easily
solved. For example, acting with ∂x on the second of the preceding equations and using
the first equation, we obtain ∂2

x
ξy = 0, showing that the y-component of the Killing vector

ξy can depend on x and z linearly but not on y. We find 6 Killing vectors: ξ(1) = (1, 0, 0),
ξ(2) = (0, 1, 0), ξ(3) = (0, 0, 1), ξ(4) = (y , −x , 0), ξ(5) = (0, z, −y), and ξ(6) = (−z, 0, x). As
we would expect, the isometry algebra consists of the usual Euclidean algebra generating
translations and rotations. For example, ξμ

(4)∂μ = y ∂
∂x

− x ∂
∂y

generates rotations about the
z-axis, as discussed in detail in chapter I.3.
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A slightly more involved case is the familiar S2. Write out (2) with gθθ = 1, gϕϕ = sin2 θ :

∂θξ
θ = 0, 2 sin2 θ∂ϕξ

ϕ + ξθ∂θ sin2 θ = 0, ∂ϕξ
θ + sin2 θ∂θξ

ϕ = 0 (5)

These are easily solved to give (writing the Killing vectors conveniently as differential
operators ξμ

(a)
∂μ)

ξ(1) = sin ϕ
∂

∂θ
+ cot θ cos ϕ

∂

∂ϕ
, ξ(2) = cos ϕ ∂

∂θ
− cot θ sin ϕ ∂

∂ϕ
, ξ(3) = ∂

∂ϕ
(6)

As I said at the start of this chapter, you could have guessed ξ(3) easily, but ξ(1) and ξ(2) are
less obvious. These generators should look familiar to the reader who has taken courses
on electromagnetism and quantum mechanics. At any given point on the sphere, we can
translate in two directions and rotate around one axis, hence the 3 Killing vectors.

How many Killing vectors can we have?

From these two elementary examples, it is clear that a D-dimensional Riemannian man-
ifold can have at most 1

2D(D + 1) Killing vectors, corresponding locally to D translations
and 1

2D(D − 1) rotations. In both examples, this maximum number is attained, 6 in the
case of E3, and 3 in the case of S2.

The Smart Experimentalist exclaims: “Right! Forget about fancy proofs: D-dimensional
Euclidean space has this many Killing vectors; how could a space possibly be more
symmetric?” Go ahead, be my guest, prove it if you must.

A D-dimensional Riemannian manifold with 1
2D(D + 1) Killing vectors is said to be

maximally symmetric.
Some definitions. A space is homogeneous if there exist translational Killing vectors to

take any point to any other point in its vicinity. A space is isotropic at a given point X if
there exist rotational Killing vectors that leave the point X fixed, that is, ξμ(X)= 0, whose
derivatives ξσ ;ρ(X) span the basis of D-by-D antisymmetric matrices. This merely means
that every possible rotation about X is an isometry, as befits our intuitive definition of
isotropy. (To see this, regard the derivatives ξσ ;ρ(X) as matrices with indices σρ. Note that
(3), that is, ξσ ;ρ = −ξρ;σ , implies that these matrices are antisymmetric. The statement
that the space is isotropic means that the generator of any rotation about X can be written
as a linear combination of ξσ ;ρ evaluated at X.) A homogeneous space isotropic about
some point is obviously isotropic about all points and so is maximally symmetric. All these
statements are fairly straightforward to prove.

For definiteness, we talk about D-dimensional spaces, but clearly, everything we say
here can be applied to spacetimes.

Maximally symmetric spaces

Indeed, if we are told that the space is maximally symmetric, we have 1
2D(D + 1) con-

straints on the Riemann curvature tensor, enough to fix it uniquely. We will prove this in
appendix 4, but for now, let us take the lazy man’s way and try to wing it.
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A maximally symmetric space is utterly featureless, so to speak. Every point, every
direction, looks the same. So, what could the Riemann curvature tensor be? There is only
the metric tensor kicking around.

Confusio asks: “What about the derivative of the metric tensor?”
This is to be an equality between tensors, so, Confusio, we must have the covariant

derivative, not the ordinary derivative. But gμν;λ = 0. So, only the metric tensor is available.
To construct the curvature tensor, which carries 4 indices, we need something like

gτμgρν. Taking into account the many symmetry properties of the curvature tensor, we
see that it must be given by

Rτρμν =K(gτμgρν − gτνgρμ) (7)

with K some constant. We will prove in appendix 4 that this is correct. Later, in chap-
ters IX.7 and IX.8, we will see that, in the language of differential forms, the Riemann
curvature looks even simpler.

Summing over pairs of indices, we have
Rρν = (D − 1)Kgρν

R =D(D − 1)K (8)

Maximally symmetric spaces have constant scalar curvature. This holds for the two almost
trivial examples we know, Euclidean spaces and spheres.

Killing vectors and conservation laws

Physicists love isometries for another reason: Killing vectors are associated with conserva-
tion laws, a fact we have exploited and remarked upon several times, notably in chapter V.4.
We can now easily prove this connection between symmetry and conservation, which goes
way back to Noether’s theorem in chapter II.4. Consider a geodesic described by Xμ(τ),
with the tangent or velocity vector V μ(τ)= dXμ

dτ
. Let ξ(x) be a Killing vector field of the

spacetime. Then ξμ(X
μ)V μ is conserved along the geodesic.

To prove this, act with the covariant derivative along the geodesic (recall appendix 1 of
chapter V.6) on the alleged conserved quantity:

V νDν

(
ξμV

μ
)= V νV μξμ;ν + ξμ

(
V νDνV

μ
)= V νV μξμ;ν = 0 (9)

We used the product rule for the first equality and the geodesic equation for the second
equality. The isometry condition (3) tells us that ξμ;ν is antisymmetric in μν, hence the
last equality.

What isometry is all about: Would the view stay the same?

I conclude by giving you an intuitive account of what isometry is all about. If you find
yourself in an unfamiliar landscape, you might want to ask yourself, “If I move a bit in
that direction, would the view stay the same? If I turn around a bit, would the view stay
the same?” To find out about the landscape, you look around. If the view stays the same
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as you turn around, the space is isotropic. If the view stays the same as you move without
turning, the space is homogeneous.

Hiking in a maximally symmetric space would be kind of boring. But in fact, the spatial
part of our universe appears to be maximally symmetric, as we saw in chapters V.3 and
VIII.1. Indeed, the future of our universe might approximate a maximally symmetric
spacetime. Or perhaps maximally symmetric spaces, like the sphere (and the de Sitter and
anti de Sitter spacetimes we will study in chapters IX.10 and IX.11, respectively), represent
what we can handle analytically.

A quick summary of this chapter. You are given a metric gμν(x). The prickly issue here
is the freedom to change coordinates, so that the intrinsic qualities of the space may be
totally obscured in the metric, which may look like a mess merely because of a poor choice
of coordinates. The isometry condition (2) or (3) tells you the different ways you can move
or turn without changing the view. Each of these ways is associated with a Killing vector,
the number of which is limited by the dimension of the space. If we have the maximum
number of possible Killing vectors, then, as you might expect, the space is pretty much
featureless, so that the Riemann curvature tensor is completely fixed up to an overall
constant K , and all curvature invariants, such as the scalar curvature R or the square
of the curvature tensor RτρμνR

τρμν, are all constants given in terms of K .

Appendix 1: Coset manifolds

This might be a good place to mention the concept of coset manifolds. Start with a Lie group G and a subgroup
H of G. Let us say that two group elements g1 and g2 are equivalent if there exists an element h of H such that
g1 = g2h. Equivalence classes are then defined in the usual way: g1 and g2 belong to the same equivalence class
if they are equivalent. The next step is to define a space or manifold by associating each equivalence class with a
point. The resulting manifold is known as the coset manifold G/H .

As an example, the coset manifold SO(3)/SO(2) is the familiar sphere S2. Why? Let us go slow here. Every
point P on the sphere S2 is uniquely associated with a unit vector û pointing from the center of the sphere to P.
Denote by ẑ the unit vector pointing to the north pole, that is, the unit vector pointing in the z direction. Our first
thought might be to associate the point P with the rotation g (that is, an element of G= SO(3)) that rotates ẑ
into û. The problem is that the rotation g is not uniquely determined. Denote by H = SO(2) the subgroup of G
consisting of all rotations about the z-axis. Then two rotations g1 and g2 related by g1 = g2h, with h an arbitrary
element of H , would both rotate ẑ into û. In other words, û= g1ẑ = g2hẑ = g2ẑ. Thus, the point P is not to be
associated with the element g1, but with the entire equivalence class g1 belongs to. In other words, P does not
specify uniquely the rotation that would take ẑ into the direction vector û associated with P.

Incidentally, the notation G/H is apt; we consider the elements g of G but with h factored out, so to speak.
In our example, we need 3 parameters to specify an SO(3) rotation, and 1 parameter to specify an SO(2)

rotation. Hence, we need 3 − 1 = 2 parameters to specify the equivalence classes and hence the points P inG/H .
Indeed, S2 is 2-dimensional. In general, the dimension1 of G/H is equal to the n(G)− n(H), with n(G) and
n(H) the number of generators for the groups G and H , respectively.

This discussion can be immediately extended: for example, SO(4)/SO(3)= S3. More generally, the sphere Sd

can be identified as the coset manifold SO(d + 1)/SO(d) with dimension 1
2 (d + 1)d − 1

2d(d − 1)= d. We will
come across this coset construction again when we discuss de Sitter and anti de Sitter spacetimes in chapters IX.10
and IX.11.

Appendix 2: Hyperbolic spaces as coset manifolds

We first encountered the hyperbolic spaces Hn in chapter I.6. Given what you just learned about the spheres
Sn, perhaps it is not a huge surprise that the hyperbolic spaces are also coset manifolds: Hn = SO(n, 1)/SO(n).
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Let us verify this explicitly for n = 2. The group G = SO(2, 1) is the Lorentz group for (2 + 1)-dimensional
Minkowski spacetime. The role of the north pole is played by t̂ = (1, 0, 0) (the column vector written as a row
vector for typographical reasons), left invariant by the subgroupH = SO(2) consisting of rotations in the (2 + 1)-
dimensional Minkowski spacetime. Thus, the coset manifold is generated by acting with boosts on t̂ ; in other
words, using the notation of appendix 3 of chapter I.6, we have (W , X , Y )= (cosh ψ , sinh ψ cos θ , sinh ψ sin θ).
Then ds2 = dX2 + dY 2 − dW 2 = dψ2 + sinh2

ψdθ2 in agreement with what we had in chapter I.6.

Appendix 3: From Killing vectors to Lie algebra

In chapter V.6, we introduced the commutator between two vector fields and also the Lie derivative. Let us apply
what we learned there to the Killing vectors. Take the Killing vectors for the sphere given in (6) and calculate
their commutators. For example, [ξ(3) , ξ(1)] = [ ∂

∂ϕ
, sin ϕ ∂

∂θ
+ cot θ cos ϕ ∂

∂ϕ
] = ξ(2). You can verify that in fact,

[ξ(a) , ξ(b)] = εabcξ(c), with εabc the antisymmetric symbol defined by ε123 = 1. No wonder Lie was upset about
Killing.

On a coset manifold, the isometry group is evidently just G. Then the discussion above goes through with
εabc replaced by the structure constants fabc of the Lie algebra of the group G, not surprisingly. In other words,
on the coset manifold G/H , the Killing vectors satisfy[

ξ(a) , ξ(b)
]= fabcξ(c) (10)

The reader who did not quite follow this need not worry; we will only use this fact in passing in chapter X.1.
An important special case occurs whenH is the trivial subgroup consisting of only the identity element. Then

G/H is just the group manifold of G: g1 and g2 are equivalent only if they are the same element. Each point on
the group manifold corresponds to a distinct element of G.

Appendix 4: Constraints on the Riemann curvature tensor

We are now going to do what we postponed doing in the text, namely analyze the conditions (2) and (3) in detail.
If you are seeing this for the first time, the analysis might seem a bit involved, bristling with indices. It is okay
to skip this appendix.

For any vector V , you derived in exercise VI.1.4 that Vρ;μ;ν − Vρ;ν;μ + Vν;ρ;μ − Vν;μ;ρ + Vμ;ν;ρ − Vμ;ρ;ν = 0.
For V, we now take a Killing vector. Since the Killing vector obeys (3), ξρ;μ = −ξμ;ρ , the 6 terms in the identity
reduce to 3 terms:

ξρ;μ;ν − ξρ;ν;μ − ξν;μ;ρ = 0 (11)

Using the defining expression for the curvature tensor Vρ;μ;ν − Vρ;ν;μ = −Rσ
ρμν

Vσ , we then obtain

ξμ;ρ;ν = −Rσ
νρμ

ξσ (12)

Suppose we know the curvature tensor. Then, given a Killing vector ξρ(X) and its first derivative ξρ;μ(X)=
−ξμ;ρ(X) at some point X, we know its second derivative, thanks to (12), and, by repeatedly differentiating
(12), all of its higher derivatives. (We are of course talking about covariant derivatives.) Hence, we can construct
ξρ(x) as a Taylor series in (xμ − Xμ). The result, ξ(a)ρ(x), for some specific a, evidently depends linearly on
the D + 1

2D(D − 1)= 1
2D(D + 1) initial values ξ(a)ρ(X) and ξ(a)ρ;μ(X). It follows that the number of linearly

independent ξ(a)ρ(x) cannot exceed 1
2D(D + 1). The maximum number of Killing vectors is equal to 3, 6, 10, for

D = 2, 3, 4, respectively, as is clear intuitively.
In exercise VI.1.5, you derived Tμρ;ν;ω − Tμρ;ω;ν = −(Rσ

μνω
Tσρ + Rσ

ρνω
Tμσ ) for any tensor Tμρ . Now apply

this to ξμ;ρ :

ξμ;ρ;ν;ω − ξμ;ρ;ω;ν = −
(
Rσ

μνω
ξσ ;ρ + Rσ

ρνω
ξμ;σ

)
(13)

But we can also compute the left hand side of (13) by differentiating (12): ξμ;ρ;ν;ω = −
(
Rσ

νρμ;ωξσ + Rσ
νρμ

ξσ ;ω

)
.

Plug this into (13), and we get a longish equation

Rσ
μνω

ξσ ;ρ + Rσ
ρνω

ξμ;σ =
(
Rσ

νρμ;ωξσ + Rσ
νρμ

ξσ ;ω

)
−
(
Rσ

ωρμ;νξσ + Rσ
ωρμ

ξσ ;ν

)
(14)

involving the curvature tensor and its derivatives, and the Killing vector and its derivatives.
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Let’s step back for a moment and think how best to organize the mess. We will collect all the terms involving
ξσ on one side and all those involving ξσ ;κ on the other:(

Rσ
ωρμ;ν − Rσ

νρμ;ω

)
ξσ = Rσ

μνω
ξσ ;ρ + Rσ

ρνω
ξμ;σ − Rσ

νρμ
ξσ ;ω + Rσ

ωρμ
ξσ ;ν

=
(
Rσ

μνω
δκ
ρ

− Rσ
ρνω

δκ
μ

− Rσ
νρμ

δκ
ω

+ Rσ
ωρμ

δκ
ν

)
ξσ ;κ (15)

This way of collecting terms is possible, because ξ is not just any garden variety vector, but the very special
Killing vector. In particular, due to (3), we can convert ξμ;σ in (13) to −ξσ ;μ. Incidentally, equations of this type in
differential geometry are in fact much less forbidding than they look if we remain cognizant of various symmetry
properties of the expressions involved; for example, that (13) is antisymmetric in (ν ↔ ω).

We study (15) in the following appendix.

Appendix 5: Maximal symmetry fixes the curvature tensor

We can exploit (15) by using our knowledge of the Killing vectors to place a powerful constraint on the curvature
tensor. Note that for each Killing vector we know about, we have one constraint on the curvature tensor.

At a given point, we can take ξ to be a translation-type Killing vector, for which ξσ ;κ vanishes at that point.
Since we have D linearly independent ξs, the coefficient of ξσ in (15) must vanish for each value of σ :

Rσ
ωρμ;ν = Rσ

νρμ;ω (16)

If we take ξ to be a rotation-type Killing vector, then ξσ vanishes at that point, and thus the left hand side of (15)
vanishes. Since by definition, ξσ ;κ regarded as a matrix spans the basis of D-by-D antisymmetric matrices, the
vanishing of the right hand side of (15) forces the coefficient of ξσ ;κ to be symmetric under (σ ↔ κ):

Rσ
μνω

δκ
ρ

− Rσ
ρνω

δκ
μ

− Rσ
νρμ

δκ
ω

+ Rσ
ωρμ

δκ
ν

= Rκ
μνω

δσ
ρ

− Rκ
ρνω

δσ
μ

− Rκ
νρμ

δσ
ω

+ Rκ
ωρμ

δσ
ν

(17)

We now have all the information we need from (17). Contract κ with ρ and obtain

Rσ
μνω

D − Rσ
μνω

− Rσ
νωμ

+ Rσ
ωνμ

= Rσ
μνω

− Rνμδ
σ
ω

+ Rωμδ
σ
ν

where we used Rρ
ρνω

= 0. Invoking the cyclic identity in exercise VI.1.3, we obtain (D − 1)Rσ
μνω

= Rωμδ
σ
ν

−
Rνμδ

σ
ω

, or, after lowering indices, (D − 1)Rσμνω = Rωμgσν − Rνμgσω. Contracting with gσν , we find that Rσν =
1
D
Rgσν . Inserting back, we learn that the Riemann curvature tensor is given by Rσμνω = R

D(D−1) (gωμgσν −
gνμgσω). We are almost there: we will have (7) if we can show that R is necessarily a constant. Intuitively, that is
more or less obvious, because a maximally symmetric space is featureless (every other point is as good as every
other point), and R is a scalar independent of coordinate choice.

We have one more card up our sleeves, the Bianchi identity (Rσν − 1
2Rg

σν);ν = 0. Inserting Rσν = 1
D
Rgσν ,

we obtain ( 1
D

− 1
2 )∂νR = 0. Thus, for D �= 2, the scalar curvature R is a constant, which we write conventionally

as R =D(D − 1)K , and we are done.
The special case D = 2 is easily dispatched, since the curvature tensor then has only one component, R1212.

Indeed, according to exercise VI.1.6, regardless of whether the space is maximally symmetric, the Riemann
curvature tensor always has the form Rσμνω = R

2 (gωμgσν − gνμgσω). But for a maximally symmetric space, we
have another equation up our sleeves we haven’t used, namely (16). Plugging the form of the curvature tensor
into (16), we find that R is also constant for a D = 2 maximally symmetric space.

So, for a maximally symmetric space of any dimension, we have, as we had more or less guessed, the highly
appealing result Rτρμν =K(gτμgρν − gτνgρμ).

Appendix 6: Form invariant tensors

We can apply a condition analogous to (1) to tensors other than the metric tensor. We say that a tensor Tμν ...ω is
form invariant if

Tρσ ...τ (x
′)= Tμν ...ω(x)

∂xμ

∂x ′ρ
∂xν

∂x′σ . . . ∂x
ω

∂x′τ (18)
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The infinitesimal form reads

Tμσ ...τ ∂ρξ
μ + Tρν ...τ ∂σ ξ

ν + . . . + ξλ∂λTρσ ...τ = 0 (19)

This has the same form as (2): a sum of terms involving the derivative of ξ . is equal to a term involving the
derivative of T..... With this definition, the existence of isometry amounts to requiring that the metric be form
invariant.

The concept of a form invariant tensor makes sense regardless of whether the space itself is maximally
symmetric. If the space is maximally symmetric, a tensor that satisfies (19) for all 1

2D(D + 1) Killing vectors
is said to be maximally form invariant. This is clearly quite restrictive; see exercise 3.

Exercises

1 Solve for the Killing vectors on the sphere.

2 Evaluate the 3 Killing vectors ξ in (6) at various points on the sphere.

3 Establish the following facts for a maximally symmetric space. (a) A maximally form invariant scalar is
necessarily constant. (b) There is no maximally form invariant vector for D �= 1. (c) For D �= 2, a maximally
form invariant 2-indexed tensor Tμν must be equal to a constant times the metric tensor gμν , as you might
expect. Intuitively, a maximally symmetric space is completely featureless (think of the familiar sphere).
So what can the maximally form invariant vector possibly depend on? Answer the same question for the
maximally form invariant 2-indexed tensor.

Note

1. Coset manifolds also enter into the concept of spontaneous symmetry breaking in quantum field theory, and
the dimension of G/H has to do with the number of Nambu-Goldstone bosons. See QFT Nut, p. 229.



IX.7 Differential Forms and Vielbein

Many legs

I now teach you a fancier, but in fact easier, method of calculating curvature than the
traditional method given in chapter VI.1. Namely, I will tell you about vielbein (Ger-
man1 for “many legs”: dreibein = three legs, vierbein2 = four legs, and so on) and
differential forms, which definitely do not belong to the “fancy but useless” category
in which I file away many things at the more mathematical end of theoretical physics.
Indeed, both the vielbein and differential forms have their origins in humble physical
considerations.

At this point, Professor Flat ambles by again, mumbling, “Even though the world is
round, locally we can still erect orthonormal frames∗ of reference, Descartes’s good old x-,
y-, and z-axes, now called legs.”

You and I respond, “Yes, professor, we have learned that Riemannian manifolds are
locally flat. Everyday life is flat.”

The idea is to write the metric as

gμν(x)= ηαβe
α
μ
(x)eβ

ν
(x) (1)

As Professor Flat explained in chapter I.6 (in our demonstration that we can always choose
locally flat coordinates at a given point x), in the first step we turn gμν(x) into ηαβ by
a similarity transformation. In (1), we have merely denoted the matrix that appears in
the similarity transformation by eα

μ
(x).

The metrics we commonly encounter are so simple that we can even write down eα
μ
(x) by

inspection. I hasten to give an example: the familiar 2-sphere with ds2 = dθ2 + sin2 θdϕ2

(that is, with gθθ = 1, gϕϕ = sin2 θ ), from which we read off e1
θ
= 1 and e2

ϕ
= sin θ (all other

components are zero).3 In (1), the indices α and β, called Lorentz indices, take on d values

∗ Indeed, we have already encountered orthonormal frames when we discussed Fermi normal coordinates in
chapter IX.3.
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Figure 1 Running around erecting orthonormal frames.

in d-dimensional spacetime. The usual indicesμ, ν are called world indices to distinguish
them from the Lorentz indices. Even though the two kinds of indices are conceptually quite
different (see below), we can still think of the square array e(x) numerically as a square
matrix. Then we can write (1) as a matrix equation g = eT ηe, and, as was just mentioned,
think of e as a similarity transformation that diagonalizes gμν and scales it to the unit
matrix.

Since we are physicists, most of the manifolds we deal with will be locally Minkowskian,
and hence the Minkowski metric ηαβ appears here. If the manifold is locally Euclidean, I
should have written gij = δabe

a
i e

b
j , but I am not that fussy. For both cases, I will use Greek

rather than Latin letters for the indices, and trust you, when appropriate, to replace the
Minkowski metric by the Euclidean metric in your head. In either case, we picture a little
man running around erecting orthonormal frames (dreibein, as shown in figure 1). If the
metric gμν describes the universe, all we are doing is setting up local Lorentz frames at
each point in spacetime.

Lorentz indices versus world indices

Lorentz indices α , β , . . . are contracted with the Minkowski metric ηαβ (or the Euclidean
metric, as the case may be), which, consisting of ±1s and 0s, is much easier to deal with
than gμν. (That is the point of the formalism!) In contrast, world indices μ, ν , . . . are
contracted with the metric gμν, as usual. As gμν(x) varies from point to point, so does
the vielbein eα

μ
(x), as indicated in the figure. (Note that we use the Greek letters early

in the alphabet for Lorentz indices and the Greek letters later in the alphabet for world
indices.)

The transformation of the metric

g′
λσ
(x′)= gμν(x)

∂xμ

∂x′λ
∂xν

∂x′σ (2)

under a coordinate transformation translates into

e′α
λ
(x′)= eα

μ
(x)

∂xμ

∂x′λ (3)

Verify this by calculating g′
λσ
(x′)= ηαβe

′α
λ
(x′)e′β

σ
(x′).
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In a sense, the vielbein represents the square root∗ of the metric. Taking the determinant
of (1), we have −g = e2, where e denotes the determinant of eα

μ
regarded as a matrix, and

thus the pesky square root in the volume factor
√−g = e goes away.

In taking an ordinary square root, we are free to take either the plus or minus sign.
Similarly, we are free to Lorentz transform (rotate, in the Euclidean case) the vielbein: if
you use the vielbein eα

μ
, I am free to use some other vielbein ẽα

μ
instead, as long as mine

is related to yours by a Lorentz transformation

eα
μ
(x)=�α

β
(x)ẽβ

μ
(x) (4)

Let us check that indeed gμν(x)= eα
μ
(x)ηαβe

β
ν
(x)= ẽα

μ
(x)ηαβẽ

β
ν
(x)= gμν(x) if �Tη�= I .

Note that the transformation in (4), in contrast to that in (3), leaves x untouched. What
we are discussing here is not a coordinate transformation, but the freedom to orient our
vielbein whichever way we like. To emphasize this, I have used twiddle instead of prime.
(Also, note that � here can depend on x, unlike the discussion in special relativity; in field
theory, this is known as a local or gauge transformation.)

Again thinking of e(x) as a square matrix, we can consider its inverse, which we write
as eν

α
(x). The standard result from linear algebra states that the left and right inverses of a

nonsingular matrix are the same, and hence we have eν
α
(x)eβ

ν
(x)= δβ

α
and eν

α
(x)eα

μ
(x)= δν

μ
.

For diagonal gμν, eα
μ
(x) is also diagonal, and the inverse vielbein eν

α
(x)may be written down

by inspection. For example, for the 2-sphere, eθ1 = 1 and e
ϕ
2 = 1

sin θ
(all other components

are zero).
The transformation properties (3) and (4) of the vielbein show that it straddles the

domain of the Lorentz indices and the domain of the world indices. The vielbein can be
used to convert one type of index to the other type. For example, given a world vector
Jμ(x), we can construct Jα(x) = eα

μ
(x)Jμ(x), which is in fact a Lorentz vector, as you

are invited to verify. Under a local Lorentz transformation, Jα(x) transforms as a Lorentz
vector, but under a coordinate transformation, it transforms as a world scalar. Similarly,
given the Riemann curvature tensor Rσ

ρμν
, we can form R

γ

δαβ = Rσ
ρμν

eγ
σ
e
ρ
δ e

μ
α
eν
β

. We can
of course also consider mixed objects, such asRγ

δμν =Rσ
ρμν

eγ
σ
e
ρ
δ . Again, keep in mind the

distinction between early indices, such as γ and δ, and late indices, such as μ and ν.

Differential forms

I now introduce the language of differential forms. Fear not, we will need only a few
elementary concepts. Let xμ be d real variables (thus, the index μ takes on d values)
and Aμ(x) be d functions of the xs. (In this purely mathematical section, we do not
for the moment specify what Aμ is.) We could discuss everything in the abstract like
mathematicians, but in fact, in our applications, xμ represent coordinates, and as we will
see, forms have natural geometric interpretations.

∗ Readers of my field theory book will recognize that this is one of three ways of the warrior theorist. See “New
Closing Words” in QFT Nut, p. 522.



IX.7. Differential Forms and Vielbein | 597

We call the object A ≡ Aμdx
μ a 1-form. The differentials dxμ are treated following

Newton and Leibniz. If we change coordinates x → x′, then as usual, dxμ = ∂xμ

∂x
′ν dx

′ν. As
we said in chapter I.3, dxμ is the ur-vector. (If you confuse the d here with the d in the
preceding paragraph, you are in trouble!)

The form A does not carry any indices and so does not transform. Indeed, we insert the
transformation of dxμ just mentioned to obtain A≡ Aμdx

μ = Aμ
∂xμ

∂x
′ν dx

′ν ≡ A′
ν
dx

′ν . The
last step definesA′

ν
and thus reproduces the standard transformation law of vectors with a

lower index under coordinate transformation: A′
ν
=Aμ

∂xμ

∂x
′ν . Hence Aμ(x) is a vector field.

The important point here is that the form A does not depend on any specific coordinate
system: it is coordinate free. But you are welcome to express it as a linear combination of
dxμ in a coordinate system of your choice.

It was already explained in part I that Aμ transforms like the dual ur-vector ∂μ. As an
example, consider the 1-form A= cos θ dϕ. Regarding θ and ϕ as angular coordinates on
the 2-sphere, we have Aθ = 0 and Aϕ = cos θ . Note that the natural union of Aμ and dxμ,
a marriage made in heaven so to speak, was already foreordained in chapter I.5.

Similarly, we define a p-form as H = 1
p!Hμ1μ2...μpdx

μ1dxμ2 . . . dxμp . (Repeated indices
are summed, as always.) The degenerate example is that of a 0-form, call it �, which is
just a scalar function of the coordinates xμ. An example of a 2-form is F = 1

2!Fμνdx
μdxν .

We can add two p-forms together in the obvious way:

H +K = 1
p!

(
Hμ1μ2...μp +Kμ1μ2...μp

)
dxμ1dxμ2 . . . dxμp

In contrast, we cannot add ap-form to a q-form unlessp= q . But we can naturally multiply
any two forms together: for example,

AF =
(
Aλdx

λ
) ( 1

2!
Fμνdx

μdxν
)

= 1
2!
AλFμνdx

λdxμdxν

The product of a p-form and a q-form is evidently a (p + q)-form. In the example just
given, the product of a 1-form and a 2-form is a 3-form.

The reason for anticommuting

We now face the question of how to think about the products of differentials dxμdxν . In an
elementary course on calculus, we learned that dxdy represents the area of an infinitesimal
rectangle with length dx and width dy . At that level, we more or less automatically regard
dydx as the same as dxdy . The order of writing the differentials does not matter.

Think, however, about making a coordinate transformation (x , y)→ (x′, y′), with x ′ =
x′(x , y) and y′ = y′(x , y) two functions of the coordinates x and y . Now look at

dx′dy′ =
(
∂x′

∂x
dx + ∂x′

∂y
dy

) (
∂y ′

∂x
dx + ∂y′

∂y
dy

)
(5)

Notice that the coefficient of dxdy is ∂x′
∂x

∂y′
∂y

and that the coefficient of dydx is ∂x′
∂y

∂y′
∂x

. We see
that things work out neatly if we treat the product between differentials as anticommuting,
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so that dydx = −dxdy. Then the dxdy and dydx terms in (5) combine into(
∂x′

∂x

∂y′

∂y
− ∂x′

∂y

∂y′

∂x

)
dxdy

and we recognize the expression in parentheses as the determinant of the matrix(
∂x′
∂x

∂x′
∂y

∂y′
∂x

∂y′
∂y

)

namely, the Jacobian J (x′, y′; x , y) for the transformation (x , y)→ (x ′, y′). Furthermore,
if the product of differentials anticommutes, we would have dxdx = −dxdx = 0, and
similarly dydy = 0. Consequently, (5) simplifies nicely to

dx′dy′ =
(
∂x′

∂x

∂y′

∂y
− ∂x′

∂y

∂y′

∂x

)
dxdy = J (x′, y′; x , y)dxdy (6)

We obtain the correct Jacobian for transforming the area element dxdy to the area ele-
ment dx′dy′.

The product between differentials dxμdxν is known as the wedge product and is written
as dxμ ∧ dxν in many texts. We will omit the wedge—no need to clutter up the page,
at least for our purposes. Alternatively, we can regard the differentials dxμ formally as
anticommuting objects,4 so that by definition, dxμdxν = −dxνdxμ.

The little exercise given above motivates the natural emergence of anticommutation in
this context. Otherwise, it would appear to be totally arbitrary. Our little exercise also makes
clear the geometrical origin of the “extra” sign. The area element dxdy is directional: dxdy
and dydx span the same area but point in opposite directions. You can see that this makes
sense by recalling, for example, your first encounter with the notion of the divergence of
some vector field, for example, the divergence of a current �J (�x). You were taught to think
of an infinitesimal cube and multiply the current by the area element on each of the six
faces of the cube. To obtain �∇ . �J , you clearly have to treat the area elements on opposite
faces as pointing in opposite directions.

The anticommuting property dxμdxν = −dxνdxμ indicates that in d-dimensions, we
can have p-forms only for p ≤ d.

The exterior derivative

We now define a differential operation d (known as the exterior derivative) to act on any
form. Acting on a p-form H , it gives by definition a (p + 1)-form

dH = 1
p!
∂νHμ1μ2...μpdx

νdxμ1dxμ2 . . . dxμp

Thus, d�= ∂ν�dx
ν and dA= ∂νAμdx

νdxμ = 1
2(∂νAμ − ∂μAν)dx

νdxμ.
We see that this mathematical formalism is almost tailor made to describe∗

electromagnetism. If we call A ≡ Aμdx
μ the potential 1-form and think of Aμ as the

∗ For a simple formulation of Yang-Mills theory using differential forms, see QFT Nut.
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electromagnetic potential, then F = dA is in fact the field 2-form. If we were to write F
out in terms of its components F = 1

2!Fμνdx
μdxν , then Fμν = ∂νAμ − ∂μAν is indeed the

electromagnetic field. We see that the exterior derivative is just the sophisticate’s name for
what the common people would call the gradient or the curl.

Note that xμ is not a form, and dxμ is not d acting on a form.
If you like, you can think of differential forms as “merely” an elegantly compact notation.

The point is to think of physical objects likeA and F as entities, without having to commit
to any particular coordinate system. This is particularly convenient when you have to deal
with objects more complicated thanA andF , for example in string theory (see appendix 2).
By using differential forms, we avoid drowning in a sea of indices.

Consider the product of two 1-forms A and B. Now act with d on the 2-form
AB = AμBνdx

μdxν. We have

d(AB)= ∂λ(AμBν)dx
λdxμdxν = (

(∂λAμ)Bν + Aμ(∂λBν)
)
dxλdxμdxν

= (∂λAμ)dx
λdxμBνdx

ν − Aμdx
μ(∂λBν)dx

λdxν = (dA)B − A(dB)

The first equality comes from the definition of d; the second from the product rule in
ordinary calculus; the third from writing out the previous expression and moving dxλ past
dxμ in the second term; and finally, the fourth from grouping everything back into the
forms. The important point here is the minus sign that appeared due to our moving dxλ

past dxμ.
This result generalizes readily. Let A be a p-form and B a q-form. Then we have

d(AB)= (dA)B + (−1)pA(dB) (7)

Evidently, the sign (−1)p appears because we moved dxλ past dxμ1dxμ2 . . . dxμp. (Note
that q does not appear explicitly in (7).)

An important identity is

dd = 0 (8)

This says that acting with d on any form twice gives zero. This fundamental identity is easy
to prove by direct evaluation: ddH = 1

p!∂λ(∂νHμ1μ2...μp)dx
λdxνdxμ1dxμ2 . . . dxμp = 0,

since dxλdxν = −dxνdxλ, while Newton and Leibniz told us that ∂λ∂ν = ∂ν∂λ. In particular,
dF = ddA = 0. Writing this out in components, you will recognize this as a standard
identity (the Bianchi identity) in electromagnetism.

Note also that the square of a p-form A satisfies A2 = (−1)p
2
A2. (Write A2 = AA =

1
p!Aμ1μ2...μpdx

μ1dxμ2 . . . dxμp 1
p!Aν1ν2...νpdx

ν1dxν2 . . . dxνp and mentally move the dxμs
past all the dxνs. For each of them, we get a factor of (−1)p. Thus, the stated result follows.)
Therefore, for p odd, A2 = 0.

Relating connection 1-forms

After this excursion into differential forms, I can at long last tell you Élie Cartan’s formu-
lation of the differential geometry of Riemannian manifolds. The transformation law (3)
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immediately suggests packaging the vielbein into a 1-form eα = eα
μ
dxμ called, naturally,

the vielbein 1-form. In our simple example, e1 = dθ and e2 = sin θdϕ. Carrying no world
index, eα should transform like a scalar under coordinate transformation. We can readily
check this: e′α(x′)= e′α

λ
(x′)dx′λ = eα

μ
(x) ∂x

μ

∂x′λ
∂x′λ
∂xν

dxν = eα
μ
(x)δμ

ν
dxν = eα(x).

We studied infinitesimal rotations in chapter I.3 and found that the generators are
antisymmetric matrices. Similarly, we studied infinitesimal Lorentz transformations in
chapter III.3 and found that the generators are also antisymmetric, except that we have
to watch out for signs when raising and lowering indices. Recall that we considered (with
some suitable changes in notation) an infinitesimal transformation �α

β
� δα

β
+ ϕωα

β
. To

leading order in ϕ, the condition that � is in fact a Lorentz transformation reduces to (see
(III.3.13)) ωα

β
ηαγ + ηβαω

α
γ

= 0, that is, ωγβ + ωβγ = 0.
On a curved manifold, as we move from point x to a nearby point x + dx, we expect

that the local frame will rotate or Lorentz transform, depending on whether the manifold
is locally Euclidean or Minkowskian. In other words, an infinitesimal translation has the
effect of rotating the form eα(x) infinitesimally. Thus, the result of differentiating (that is,
applying the exterior derivative d to) eα(x) should be given by

deα = −ωα
β
eβ (9)

for some antisymmetric ωαβ . (Here the minus sign is conventional and is part of the
definition of ω.) Since e is a 1-form, it follows that de is a 2-form and hence

ωα
β

= ωα
βμ
dxμ (10)

is also a 1-form, known as the connection 1-form: it connects nearby frames. Given e, (9)
enables us to determine ω. For the 2-sphere, de1 = 0 and de2 = cos θdθdϕ, and so the
connection has only one nonvanishing component: ω12 = −ω21 = − cos θdϕ .

But you and I are free to choose whatever vielbein we like, as was already mentioned
in connection with (4). Suppose that at a given point, my vielbein eα is related to yours by
eα =�α

β
ẽβ . (It is worth emphasizing that this is merely a local Lorentz transformation,

or rotation if we are in space rather than spacetime, of our orthonormal frame, not a
coordinate transformation. Indeed, you can see from (1) that the metric is not changed.)
Our connection 1-forms ω and ω̃ better be related in such a way that (9) holds for both
of us.

Suppressing indices, we plug e =�ẽ into (9), de + ωe = 0, and plow ahead. Try doing
it yourself. The first term becomes d(�ẽ) = �dẽ + (d�)ẽ = −�ω̃ẽ + (d�)�−1e. Thus,
requiring dẽ + ω̃ẽ = 0, we relate the two connection 1-forms by

ω =�ω̃�−1 − (d�)�−1 (11)

Notice that ω does not transform as a Lorentz tensor due to the second term in (11). You
should be reminded of the similar behavior of the Christoffel symbol under a coordinate
transformation, as discussed in chapter V.6.
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Cartan’s formulation of Riemannian manifolds

The local curvature of the manifold is a measure of how the connection varies from point
to point. Thus, we expect curvature to be given by something likeRα

β
∼ dωα

β
, a 2-form. But

we would like the curvature to transform nicely, as a Lorentz tensor (since Rα
β

carries two
Lorentz indices) under the local transformation �. But you can also see, just by looking at
(11), that dωα

β
is not going to transform nicely (indeed, see (12) below).

Just about the only possibility is to add another 2-form to dω. We are severely limited in
our choices, since we have available only the 1-forms e and ω. Looking at how the different
possibilities transform, we easily arrive at the correct choice, namelyω multiplied by itself,
that is, ω2.

Confusio exclaims, “Wait! I thought that we showed that the square of a 1-form
vanishes.”

Ah, the point is that ω is a matrix 1-form: ωα
β

= ωα
βμ
dxμ. Thus,

ωα
β
ωβ

γ
= ωα

βμ
ωβ

γ ν
dxμdxν = 1

2

(
ωα

βμ
ωβ

γ ν
− (μ↔ ν)

)
dxμdxν

which has no particular reason to vanish. Another way of saying this is to think of ωα
βμ

as d matrices ω̂μ with matrix indices αβ. Then, suppressing the α and β indices, we can
write what we just wrote as ω2 = 1

2 [ω̂μ, ω̂ν] dxμdxν. There is no reason for the matrix
commutator to vanish. Note that this is consistent with what Confusio said. Were ω̂μ not
a matrix, ω would indeed vanish.

The upshot of all this is that the desired curvature 2-form can only be the sum of dω
and ω2 with some relative coefficient, which turns out to be 1 (see below). Thus, we obtain
the curvature 2-form R = dω + ω2. Restoring indices, we have Rα

β
= dωα

β
+ ωα

γ
ω
γ

β .

We now check that R =�R̃�−1 does transform nicely. This is one of the most famous
calculations in physics history; I will do it, but you should try to do it before reading on.

Well, just plug (11) into R = dω + ω2 and plow ahead. First note that 0 = d(��−1)=
(d�)�−1 +�d�−1, and so d�−1 = −�−1(d�)�−1. (You might recall that we have used
this identity on more than one occasion, in (V.6.7), for example.) We have, using (11),

dω = d(�ω̃�−1 − (d�)�−1)

= (d�)ω̃�−1 +�(dω̃)�−1 − (−)�ω̃�−1(d�)�−1 − (dd�)�−1 + (d�)�−1(d�)�−1 (12)

and

ω2 = (�ω̃�−1 − (d�)�−1)2

=�ω̃2�−1 −�ω̃�−1(d�)�−1 − (d�)ω̃�−1 + (d�)�−1(d�)�−1 (13)

The one tricky part of the calculation is the sign of the third and the fourth terms on the
right hand side of (12). There are two extra minus signs, because we have to sail d past
the 1-form ω̃ to act on �−1 in the third term, and to sail d past the 1-form d� to act on
�−1 in the fourth term, as explained in (7). Did you miss these two minus signs? Good for
you if you didn’t. Also, note that the fourth term in (12) vanishes due to (8). Now add (12)
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and (13). After much cancellation, we findR = dω+ ω2 =�R̃�−1. Indeed, the 2-formRα
β

transforms like a Lorentz tensor.
Written out in components, Rαβ = 1

2R
αβ
μν
dxμdxν . (Don’t forget the factor of 1

2 !) As
explained earlier, we can trade Lorentz indices for world indices and vice versa. I leave it to
you to verify that Rαβ

μν
eλ
α
eσ
β

is our beloved Riemann curvature tensor Rλσ
μν

. In particular,
Rαβ

μν
eμ
α
eν
β

is the scalar curvature.
For the sphere, we have

R12 = dω12 + ω1γωγ 2 = dω12 = sin θdθdϕ

= e1e2 = 1
2

(
R12

12e
1e2 + R12

21e
2e1
)

= R12
12e

1e2 (14)

(The second equality holds because ω1γωγ 2 = ω11ω12 + ω12ω22 vanishes due to the anti-
symmetry of ωαβ . The fifth equality comes from expanding the 2-form R12.) Comparing
the final expression with e1e2 gives R12

12 = 1 and thus the scalar curvature R = R
αβ

αβ =
R12

12 + R21
21 = 2. Alternatively, we can trade Lorentz indices for world indices and write

R12 = sin θdθdϕ = 1
2

(
R12

θϕ
dθdϕ + R12

ϕθ
dϕdθ

)
= R12

θϕ
dθdϕ

and so R12
θϕ

= sin θ . This is of course consistent with R12
12 = R12

θϕ
eθ1e

ϕ
2 = 1.

Thus, in Cartan’s formalism, Riemannian geometry can be elegantly summarized by
the two statements∗ (suppressing Lorentz indices)

de + ωe = 0 (15)

and

R = dω + ω2 (16)

Putting the Cartan formalism to work

In the following chapter, I will show you how to use the Cartan formalism to calculate
curvature. In most cases, there is considerable reduction of labor. Also, I will postpone
discussing the so-called Hodge star operation on differential forms until chapter X.5 for
reasons that will become clear.

Here I give an example of how easily we can derive some of the identities we already
know. Apply d to (15) and obtain dde + (dω)e − ωde = (dω)e − ωde = 0, remembering
that dd = 0 and that moving d past a p-form produces (as shown in (7)) a sign (−1)p.
Use (15) to eliminate de, so that (dω)e + ωωe = 0 = Re, where we recall Cartan’s second
equation (16) in the last step. Putting back the Lorentz indices, we learn that

Rα
β
eβ = 0 (17)

∗ Incidentally, one of the most appealing features of this discussion is that it brings out the profound
connection between curvature as given in (16) and the field strength in nonabelian gauge theories F = dA+A2,
with A a matrix 1-form. Because of this correspondence between ω and A, the latter is sometimes called the
gauge connection. See QFT Nut.
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or, more explicitly,Rα
βμν

e
β

λdx
μdxνdxλ =Rα

λμν
dxμdxνdxλ = eα

σ
Rσ

λμν
dxμdxνdxλ = 0, that

is,Rσ
λμν

dxμdxνdxλ = 0. Since dxμdxνdxλ = dxνdxλdxμ = dxλdxμdxν (since at each step
we are “moving a dx past two dxs”), we can write the preceding as Rσ

λμν
(dxμdxνdxλ +

dxνdxλdxμ + dxλdxμdxν) = 0. But by renaming the dummy indices we are summing
over, we can also write this as (Rσ

λμν
+ Rσ

μνλ
+ Rσ

νλμ
)dxμdxνdxλ = 0. We recover the

cyclic identity Rσ
λμν

+ Rσ
μνλ

+ Rσ
νλμ

= 0 found in chapter VI.1.

Appendix 1: Connecting the two connections

The vielbein eα
μ

and its inverse eμ
α

allow us to freely convert Lorentz indices to world indices and vice versa. Given
an arbitrary vector V μ, V α = eα

μ
V μ is evidently a Lorentz vector and world scalar. In general, given an arbitrary

tensor, say T μνζ
στ

, we can construct objects with various mixed tensor structures by contracting with the vielbein
and its inverse in appropriate combinations, such as T αβζ

γ τ
= eα

μ
eβ
ν
eσ
γ
T μνζ

στ
.

The covariant derivative DλV
μ = ∂λV

μ + �
μ
λνV

ν of an arbitrary vector V μ transforms, as you know well by
now, as a world tensor and a Lorentz scalar. The Christoffel connection adjusts for the fact that the coordinate
transformation varies from place to place. In contrast, the covariant derivative5 DλV

α should transform like a
world vector with a lower index and a Lorentz vector with an upper index. The ordinary derivative ∂λV α transforms
like a world vector, as it should, but not as a Lorentz vector under the location dependent Lorentz transformation
�(x). Instead, it turns out that we should write

DλV
α = ∂λV

α + ωα
βλ
V β (18)

As usual, when we transform, we have to compensate for the effect of ∂λ acting on �(x) in the first term
by introducing the spin connection ωα

βλ
. Suppressing Lorentz indices and transforming Ṽ = �V , we have

DλṼ = ∂λṼ + ω̃λṼ = ∂λ(�V )+ ω̃λ�V =�(∂λV )+ ω̃λ�V + (∂λ�)V under the transformation. Requiring that
this be equal to �DλV =�(∂λV + ωλV ) gives us the transformation ω̃ =�−1ω�+�−1(d�), familiar to you
by now from (11).

Consistency relates the Christoffel connection � and the spin connection ω. Since DλV
μ is a world tensor, we

must have DλV
α = eα

μ
DλV

μ. The left hand side is equal to Dλ

(
eα
μ
V μ

)
= ∂λ

(
eα
μ
V μ

)
+ ωα

βλ
eβ
μ
V μ. Equating this

to the right hand side eα
μ

(
∂λV

μ + �
μ
λνV

ν
)

, we obtain, after collecting terms and renaming indices, the rather

satisfying and perhaps expected result

∂μe
α
ν

+ ωα
βμ
eβ
ν

− �λ
μν
eα
λ

= 0 (19)

This relation tells us that as we move from x to x + dx, the d vectors eα
ν

“rotate” a bit in the Lorentz index α and
a bit in the world index ν, each effected by the corresponding connection, ω and �, respectively. It may also be
rewritten as

Dμe
α
ν

= −ωα
βμ
eβ
ν

(20)

telling us that covariant differentiation on the vielbein generates an infinitesimal rotation of the local frame.
Recall that the metric is just the Lorentz dot product of two vielbein gνλ = eα

ν
ηαγ e

γ

λ , and so we can immediately
conclude that the covariant derivative of the metric vanishes and thus recover (V.6.15). ApplyingDμ on the metric
and using the antisymmetry of the connection ωγβμ = −ωβγμ, we obtain, as expected, Dμgνλ = 0, or in other
words, ∂μgνλ = �λ.μν + �ν .μλ (where �λ.μν ≡ gλρ�

ρ
μν

and the dot separates the two groups of indices in keeping
with the notation of previous chapters). Recall from chapter II.2 that this equality amounts to the definition of
the Christoffel symbol.

The relation (19) also leads immediately to Cartan’s first equation (15): de + ωe = 0. We simply have to

compute: de + ωe =
(
∂μe

α
ν

+ ωα
βμ
eβ
ν

)
dxμdxν = �λ

μν
eα
λ
dxμdxν = 0, since the Christoffel symbol is symmetric

in its two lower indices.
We can also use (19) to determine one connection in terms of the other:

�λ
μν

= eλ
α

(
∂μe

α
ν

+ ωα
βμ
eβ
ν

)
(21)
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and

ωα
βμ

= −eν
β

(
∂μe

α
ν

− �λ
μν
eα
λ

)
(22)

We can write (22) more compactly as ωα
β

= �α
β

+Hα
β

by defining the Christoffel 1-form �α
β

= eα
λ
eν
β
�λ
μν
dxμ and

the 1-form Hα
β

= −eν
β
∂μe

α
ν
dxμ.

I leave to you to check that Cartan’s second equation (16) also follows immediately.
For any curved spacetime, the symmetry group of the tangent space is always the Lorentz group. In other

words, as explained earlier, the index α, by definition, responds to Lorentz transformation. The isometry group
is of course another story entirely, and in fact may well be null. The confusion some students have stems from
the fact that, for flat spacetime, the isometry group and the tangent space group are the same, namely the Lorentz
group.

Appendix 2: Exact is closed, but closed is not necessarily globally exact

Here I mention an important concept somewhat outside the narrative of this book, involving differential forms.
It is convenient to introduce some jargon. A p-form α is said to be closed if dα = 0. It is said to be exact if there
exists a (p − 1)-form β such that α = dβ .

Talking the talk, we say that (8) tells us that exact forms are closed.
Is the converse of (8) true? Kind of. The Poincaré lemma states that a closed form is locally exact.6 In other

words, if dH = 0 with H some p-form, then locally (that is, within some coordinate patch)

H = dK (23)

for some (p − 1)-form K . However, it may or may not be the case that H = dK globally, that is, everywhere.
Actually, whether you knew it or not, you are probably already familiar with the Poincaré lemma. For example,
surely you learned somewhere that if the curl of a vector field vanishes, the vector field is locally the gradient of
some scalar field.

Forms are ready made to be integrated over. For example, given the 2-form F = 1
2!Fμνdx

μdxν , we can write∫
M
F for any 2-manifold M . Note the measure is already included and there is no need to specify a coordinate

choice. Again, whether you knew it or not, you are already familiar with the important theorem∗
∫
M

dH =
∫
∂M

H (24)

with H a p-form and ∂M the boundary of a (p + 1)-dimensional manifold M .
Back in appendix 4 to chapter III.6, I mentioned that, just as a current Jμ is associated with a point particle,

a current Jμν = −J νμ is associated with a string. It then follows that the analog of the electromagnetic potential
Aμ coupling to Jμ is an antisymmetric tensor field Bμν coupling to Jμν . Thus, string theory7 contains a 2-form
potential B = 1

2Bμνdx
μdxν and the corresponding 3-form field H = dB . For some readers, this remark may

clarify further the geometric character of differential forms.

Appendix 3: Spinors in curved spacetime

This appendix is strictly for readers familiar with the Dirac spinor and should be skipped by others. In relativistic
field theory, spin 1

2 particles, such as the electron, are described by Dirac spinors. As I explained starting in part V,
Einstein’s equivalence principle renders life easy for us. Given an action in Minkowskian spacetime (for example
Maxwell’s action, in which various Lorentz indices are contracted with ημν and its inverse), we simply replace ημν
by gμν and, lo and behold, we obtain the action in curved spacetime. But this procedure works only with fields
carrying Lorentz indices, such as Aμ. The Dirac spinor, as the name indicates, does not transform as a vector
or a tensor under the Lorentz group, but instead carries a spinorial index, which we denote† by s. Let us write

∗ Namely, Stokes theorem in a more sophisticated form.
† It is commonly denoted by α , β , . . . , but those guys have already been pressed into service in this chapter.
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the Dirac spinor as ψs . In the Dirac action in Minkowskian spacetime, the spinor ψs is acted upon by matrices
known as Dirac gamma matrices (γ α)rs , which, as indicated by the notation, are labeled by a Lorentz index α
but are matrices in spinorial space, thus carrying two spinorial indices r and s. (In other words, combinations
such as (γ α)rsψs occur in the action.)

The issue is how to promote the Dirac action in Minkowskian spacetime to curved spacetime. Of course,
spacetime derivatives ∂μ also occur in the action, but we know how to promote them to curved spacetime, namely
to covariant derivatives Dμ. To make a long story short, and to keep the discussion at the most pedestrian level,
we can state the problem facing us as follows: in constructing an action for the Dirac spinor in curved spacetime,
how do we connect these three types of indices, spinorial (r , s , . . .), Lorentz (α , β , . . .), and world (μ, ν , . . .)? I
already told you that the Dirac gamma matrices connect spinorial and Lorentz indices, so half of the problem is
solved.

Well, by now, you see how the other half is to be solved. The vielbein! Indeed, the vielbein eα
μ

connects Lorentz
and world indices, and so the vielbein formalism is absolutely essential for the physics of the Dirac spinor in
curved spacetime.

If, in spite of my warning, some intrepid reader, though unfamiliar with spinors, has insisted on going through
this rather cryptic appendix, I hope that he or she will go on plumbing the mystery of the spinor.8

Appendix 4: Curvature and covariant derivative in the Cartan formalism

The discussion in the text suggests defining the covariant derivative D = d + ω. For definiteness, consider a
0-form φβ , that is, an object with a Lorentz index but without a world index. Write

Dα
β
φβ = dφα + ωα

β
φβ

We now show how curvature emerges in the Cartan formalism. Calculate

Dγ
α
Dα

β
φβ = d

(
dφγ + ω

γ

βφ
β
)

+ ωγ
α

(
dφα + ωα

β
φβ
)

The first term gives

ddφγ +
(
dω

γ

β

)
φβ − ω

γ

βdφ
β

Since dd = 0, we have

Dγ
α
Dα

β
φβ =

(
dω

γ

β + ωγ
α
ωα

β

)
φβ ≡ R

γ

βφ
β

We see the curvature 2-form R
γ

β emerging in front of our very eyes.

Exercises

1 For ds2 = f (y)2dx2 + g(x)2dy2, calculate the curvature using differential forms.

2 By writing out the components explicitly, show that dF = 0 states something you are familiar with but is
disguised in a compact notation.

3 Consider F = g
4π d cos θ dϕ . By transforming to Cartesian coordinates, show that this describes a magnetic

field pointing outward along the radial direction.

4 Calculate the curvature of the conformally flat 2-dimensional space ds2 =�2(x , y)(dx2 + dy2) using differ-
ential forms. Check your result using the 2-sphere.

5 Extend the calculation of exercise 4 to d-dimensional space, that is, calculate the curvature of the conformally
flat space ds2 = �2(x1, . . . , xd)((dx1)2 + . . . + (dxd)2) using differential forms. Check your result using



606 | IX. Aspects of Gravity

the sphere. Also, show that for �(x1, . . . , xd)= 1/x1, the scalar curvature is constant. We will discuss the
corresponding spacetime, known as anti de Sitter spacetime, in chapter IX.11.

6 Calculate the curvature of the 2-dimensional space with ds2 = dr2 + (f (r , θ))2dθ2 using differential forms.
Recall that we showed, back in appendix 5 to chapter II.2, that we can construct a metric of this form in
general for 2-dimensional spaces.

Notes

1. Some authors write “dreibeins,” “vierbeins,” and “vielbeins.” Because the plural of “Bein” in German is
“Beine,” these people are using the English plural of a German word.

2. Some authors prefer the Greek words dyad, triad, and tetrad. As my friend Cecile DeWitt once said, “Why
should German words be used for something discovered by a Frenchman?” It is odd indeed. One problem
is the absence of a good substitute for vielbein: polytrad sounds a bit odd. Another term sometimes used is
“frame field.”

3. If we think of the vielbein as vectors �eμ, namely d (d-dimensional) vectors labeled by the index μ, with the
components of the vector �eμ given by eα

μ
, then �eμ are just the d tangent vectors we encountered before in

chapter I.7 in the context of surfaces.
4. What mathematicians would call Grassmann variables.
5. Our notation, using the same Dλ in DλV

μ and DλV
α, is somewhat sloppy. But at the level of this book, it is

a small price to pay to avoid going into fiber bundles and other fancy mathematical topics.
6. For the reader who wants to work through more examples of this statement, see B. Zumino, Y. S. Wu, and

A. Zee, Nucl. Phys. B 239 (1984), p. 477, in particular, appendix A.
7. In fact, string theory typically contains numerous p-forms. See J. Polchinski, String Theory.
8. For further details, see more specialized texts. For an easy introduction, see QFT Nut, p. 445.



IX.8 Differential Forms Applied

Calculating curvature with differential forms

In this chapter, I show you that differential forms provide a more efficient method to
calculate curvature than the more traditional method of first working out the Christoffel
symbols. The human mind appears to be ill evolved to handle 3-indexed objects like the
Christoffel symbols. While the connection 1-form ω also nominally carries 3 indices,∗ the
indices are actually of two types, and so in reality, you only have to handle either a 1-
indexed object or a 2-indexed object, depending on how you look at it. Besides, the 1-form
ωαβ = ωαβ

μ
dxμ is antisymmetric in αβ, while a Christoffel symbol is symmetric in its two

lower indices. In general, an antisymmetric object (lots of vanishing components!) is much
easier to deal with than a symmetric one.

People used to argue about the relative merits of the two methods, but with the advent
of symbolic manipulation software, the issue is now moot. It is easy to write a simple
program to calculate the Riemann curvature tensor by brute force using the traditional
method. Still, Cartan’s method involving differential forms is well worth learning.

First, let’s recall from the preceding chapter Cartan’s first and second structural
equations:

de + ωe = 0 (1)

and

R = dω + ω2 (2)

As the emphasis in this chapter is learning to compute with differential forms, I will
write it with a minimum of prose connecting the equations. You might call this chapter
engineering with differential forms.

∗ If you expand it out into its components ωαβ
μ

.
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A reminder about the indices: the world index is μ= 0, i; the Lorentz index is α = 0, a.
For i, I often use its colloquial name, such as r or x. The symbol 0 does double duty. When
I need to emphasize that a particular 0 is a world, rather than a Lorentz, index, I call it
t , as for example in (22) below. Keep in mind that, with the (− + ++) signature used
in this book, the raising and lowering of an a index entails a + sign, while the raising
and lowering of a 0 index entails a − sign. If we are dealing with space (for example, the
Poincaré half plane discussed below), rather than spacetime, then of course this − sign
does not come in.

Here are some useful relations based on antisymmetry:

ω0
b
= +ω0b = −ωb0 = ωb0 (3)

ωb
c
= +ωbc = −ωcb = −ωc

b
(4)

ω0
γ
ω
γ

b
= +ωb

γ
ω
γ

0, ωa
γ
ω
γ

b
= −ωb

γ
ωγ

a
(5)

R0
a0a = −R0a0a = −Ra0a0 = −Ra

0a0 (6)

Ra
bab

= +Rabab = +Rbaba = Rb
aba

(7)

I hardly need say that if you want to learn to compute with Cartan’s approach, you will just
have to work through everything here and do the exercises.

In 2 dimensions, the curvature 2-form is justR = dω, sinceω2 = 0 (note thatω1
a
ωa2 = 0).

Poincaré half plane

For ds2 = (dr2 + dx2)/r2, we have e1 = dr/r , e2 = dx/r , or in components, e1
r
= 1

r
, e2

x
= 1

r
.

Thus, we have de1 = 0 and de2 = −drdx/r2 = e2e1. Hence, using de2 = −ω2
1e

1, we obtain
ω1

2 = e2. We also obtain

R1
2 = dω1

2 = de2 = −e1e2 (8)

so that R1
212 = −1, from which we have

R22 = −1, R11 = −1 (9)

that is, Rab = −δab. Thus, the Poincaré half plane is a maximally symmetric space with
constant negative curvature. Converting to Rμν = ea

μ
eb
ν
Rab, we obtain

Rrr = − 1
r2

, Rxx = − 1
r2

(10)

that is, Rμν = −gμν, giving R = −2.

Expanding universe

From

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2) (11)
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we have

e0 = dt , e1 = a(t)dx , e2 = a(t)dy , e3 = a(t)dz (12)

and hence

de0 = 0 = ω0
b
eb (13)

which implies ω0
b
∝ eb, and

deb = ȧ(t)dtdxb = ȧ(t)e0dxb = −ωb0e0 − ωb
c
ec (14)

We could have ωb
c
∝ ec, but then we cannot satisfy the antisymmetry of ωbc, and so we

conclude that ωbc = 0. Thus, we have

ω0
b
= ωb0 = ȧ(t)dxb (15)

R0
b
= dω0

b
+ ω0

c
ωc

b
= ädtdxb + 0 = ä

a
e0eb (16)

To guide you, I have indicated here (and in the following) that in this formalism, quite a
few terms are equal to 0:

Rb
c
= dωb

c
+ ωb

d
ωd

c
+ ωb0ω

0
c
= 0 + 0 + ȧ2dxbdxc = ȧ2

a2
ebec (17)

Note that in this problem, there is a residual SO(3) symmetry in the spatial indices. Thus,
R0

b
and Rb

c
must be proportional to e0eb and ebec, respectively:

R0
b0b = ä

a
= R0b0b = Rb0b0 = −Rb

0b0 (no sum) (18)

Rb
cbc

= ȧ2

a2
(no sum) (19)

As indicated, the repeated indices are not summed. We temporarily suspend the Einstein
summation convention. Then we have

R00 =
∑
b

Rb
0b0 = −3

ä

a
(20)

Rbb = R0
b0b +

∑
c

Rc
bcb

= ä

a
+ 2

ȧ2

a2
(21)

You should understand where the 3 and 2 come from.
Now we can work out the nonvanishing components of the Ricci tensor:

Rtt = e0
t
e0
t
R00 = −3

ä

a
(22)

Rij =
∑
b

eb
i
eb
j
Rbb = a2

(
ä

a
+ 2

ȧ2

a2

)
δij = (aä + 2ȧ2)δij (23)

Finally, the scalar curvature, which we can work out more easily from (20) and (21) than
from (22) and (23), is given by

R = −R00 +
∑
b

Rbb = 3
ä

a
+ 3

(
ä

a
+ 2

ȧ2

a2

)
= 6

(
ä

a
+ ȧ2

a2

)
(24)
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Maximally symmetric 3-spaces

Let’s foliate 3-space with a series of spheres separated by the distance F(r)dr :

ds2 = F(r)2dr2 + r2dθ2 + r2 sin2 θdφ2 (25)

so that

e1 = F(r)dr , e2 = rdθ , e3 = r sin θdϕ (26)

We obtain easily de1 = 0, de2 = drdθ , de3 = sin θdrdϕ + r cos θdθdϕ.
Solving Cartan’s first equation for the connection 1-form gets more involved as the

dimension of space (or spacetime) increases. In general, write ωab = ωabμdx
μ = ωabce

c.
Plug this into Cartan’s first structural equation (1) and match terms. We obtain

ω1
2 = − 1

rF
e2 = − 1

F
dθ , ω1

3 = − 1
rF

e3 = − 1
F

sin θdϕ , ω2
3 = − cos θ

r sin θ
e3 = − cos θdϕ (27)

Cartan’s second equation gives us

R1
2 = F ′

rF 3
e1e2, R1

3 = F ′

rF 3
e1e3, R2

3 =
(

1 − 1
F 2

)
1
r2
e2e3 (28)

Using differential forms, you have to exercise some judgment. For instance, the con-
nection 1-forms are written in two equivalent versions in (27). To calculateR, it is somewhat
easier to use the second version.

From (28), we simply read off R1
212 = F ′

rF 3 , R1
313 = F ′

rF 3 , and R2
323 = 1

r2

(
1 − 1

F 2

)
. (Con-

fused about the factors of 2, or absence thereof? See the preceding chapter.) Contracting
Riemann, we arrive at the nicely symmetric Ricci tensor

Rab = 2F ′

rF 3
δab (29)

If we require that the space be maximally symmetric and positively curved with some
length scale L, so that Rab = 2

L2 δab, we obtain the differential equation F ′
rF 3 = 1

L2 , with the
solution F 2 = 1

1− r2

L2

. As a check, plugging this back into (28), we find R1
2 = 1

L2e
1e2, R1

3 =
1
L2e

1e3, and R2
3 = 1

L2e
2e3. With the change of variable r = L sin χ , the metric becomes

ds2 = L2
(
dχ2 + sin2 χdθ2 + sin2 χ sin2 θdφ2

)
(30)

Here we have nothing other than S3, of course, as you might recall from exercise I.5.9.
We can formally go to the maximally symmetric negatively curved space by setting

L2 → −L2, so that F 2 = 1
1+ r2

L2

. With r = L sinh χ , the metric is given by

ds2 = L2
(
dχ2 + sinh2

χdθ2 + sinh2
χ sin2 θdφ2

)
(31)
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Spherically symmetric static spacetimes

Start with the metric

ds2 = −E(r)2dt2 +
(
F(r)2dr2 + r2dθ2 + r2 sin2 θdφ2

)
(32)

or e0 = Edt , e1 = Fdr , e2 = rdθ , e3 = r sin θdφ. Note that the notation used in chapter
VI.3 is related to that used here by A= E2, B = F 2.

After some slightly tedious matching of terms, we solve Cartan’s first structural equation
to obtain

ω2
3 = − cos θ

r sin θ
e3, ω1

3 = − 1
rF

e3, ω2
0 = 0

ω1
2 = − 1

rF
e2, ω1

0 = E′

EF
e0, ω3

0 = 0 (33)

Cartan’s second equations now give us

R2
3 = 1

r2

(
1 − 1

F 2

)
e2e3, R1

2 = F ′

rF 3
e1e2, R1

3 = F ′

rF 3
e1e3 (34)

and

R1
0 = 1

EF

(
E′

F

)′
e1e0, R2

0 = E′

rEF 2
e2e0, R3

0 = E′

rEF 2
e3e0 (35)

Note that spherical symmetry relates Rα
2 and Rα

3, giving us a useful check on our arith-
metic.

One nice feature of the differential form approach is that once we have the curvature
2-form, we can simply read off the Riemann curvature tensor:

R2
323 = 1

r2

(
1 − 1

F 2

)
, R1

212 = F ′

rF 3
, R1

313 = F ′

rF 3
(36)

and

R1
010 = 1

EF

(
E′

F

)′
, R2

020 = E′

rEF 2
, R3

030 = E′

rEF 2
(37)

The Ricci tensor follows immediately:

R00 = 1
EF

(
E′

F

)′
+ 2E′

rEF 2
, R11 = 2F ′

rF 3
− 1
EF

(
E′

F

)′
(38)

and

R22 = R33 = 1
r2

(
1 − 1

F 2

)
+ F ′

rF 3
− E′

rEF 2
(39)

Similar to the discussion in chapter VI.3, we see that second derivatives appear in R00 and
R11 but not in the combination R00 + R11 = 2E′

rEF 2 + 2F ′
rF 3 = 2

rF 2

(
E′
E

+ F ′
F

)
. Comparing the

two discussions, we see that the appearance of this cancellation is packaged somewhat
more clearly here. The content of the two formalisms is of course the same, as we see
immediately by the substitution A= E2, B = F 2 in (VI.3.5–7).
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Anti de Sitter spacetime

We will discuss de Sitter and anti de Sitter spacetimes in detail in chapters IX.10 and IX.11.
Here it suffices to note that the metric

ds2 = −dt2 + dx2 + dy2 + dr2

r2
(40)

generalizes the Poincaré half plane to (3 + 1)-dimensional spacetime. Here we have

e0 = dt

r
, e1 = dx

r
, e2 = dy

r
, e3 = dr

r
(41)

It is useful to decompose the index set α = 0, 1, 2, 3 into α = α̃ , 3, with α̃ = 0, 1, 2, and
to recognize that there exists a residual SO(2, 1) symmetry transforming the indices
α̃ = 0, 1, 2 among themselves. The index 3 is special in this problem. It is convenient
also to restrict the early letters a , b, and so on to denote 1, 2.

The residual SO(2, 1) tells us that ωα̃3 = keα̃ must have the form indicated. For the
purpose of dimensional analysis here, we take t , x, y, and r to have dimensions of length,
so that eα and hence ωα

β
are dimensionless. Thus, k is dimensionless and by SO(2, 1)

can only be a constant. Furthermore, SO(2, 1) and antisymmetry imply that ω0a = 0 and
ω12 = 0. These considerations render the arithmetic a snap.

Thus, for example, de0 = − drdt

r2 = −e3e0 = −ω0
α
eα = −ω0

3e
3, giving us

ω0
3 = −e0 and hence ωa3 = −ea (42)

We can easily check the symmetry conclusion here by calculating de1, for example.
The same kind of symmetry considerations tell us that Rα̃β̃ = Ceα̃eβ̃ and Rα̃

3 =Deα̃e3,
with numerical constants C and D. Direct evaluation of Cartan’s second structural equa-
tion gives C =D = −1. For example, R0

3 = dω0
3 + ω0

α
ωα3 = −de0 = −e0e3. Collect these

results:

R0
a
= −e0ea , R1

2 = −e1e2, R0
3 = −e0e3, Ra

3 = −eae3 (43)

We now read off immediately (it’s that easy!):

R0
303 = −1 = −R3

030, Ra
3a3 = −1 = R3

a3a , R0
a0a = −1 = −Ra

0a0, Ra
bab

= −1 = Rb
aba

(44)

(Here we have used (6) and (7).) Contracting Riemann, we obtain Ricci:

R33 = R0
303 +

∑
a

Ra
3a3 = −1 − 1 − 1 = −3 (45)

R00 = R3
030 +

∑
a

Ra
0a0 = +1 + 2 = +3 (46)

Raa = R0
a0a + Rb

aba
+ R3

a3a = −1 − 1 − 1 = −3 (47)

These results are summarized by

Rαβ = −3ηαβ (48)

The spacetime is maximally symmetric.
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Exercises

1 Warped polar coordinates: using forms, calculate the curvature for ds2 = dr2 + f (r)2dθ2, with θ = θ +
2π an angular coordinate. Determine the f (r) that gives constant curvature. Verify that measuring the
circumference of a small circle around the origin gives the same result.

2 Consider the class of spaces described by ds2 = y2pdx2 + x2pdy2. Use differential forms to find the curvature
as a function of p and determine the two values of p for which the space is flat. Hint: Euclidean space is a
member of this class. Recall exercise VI.1.17.

3 Using forms, calculate the curvature of the torus. Recall that the metric was worked out in exercise I.5.16.

4 For ds2 = −dt2 + A2(t)dx2 + B2(t)dy2 + C2(t)dz2, calculate the curvature using differential forms. Solve
for the Kasner universe in exercise VI.2.1. Extend your work to higher dimensions.



IX.9 Conformal Algebra

Conformal transformation

The reader learning Einstein gravity for the first time can safely skip over this chapter. I
will use conformal algebra only in the next chapter and in the chapter on twistors, and
then only peripherally.

Recall that in chapter IX.6, an isometry is defined as a transformation x → x′(x) under
which g′

ρσ
(x′) = gρσ (x

′). Suppose we feel more relaxed, and, instead, impose the more
forgiving condition that g′

ρσ
(x′)=�2(x′)gρσ (x′) for some unknown function �. To use a

terminology first introduced in chapter I.6, we do not demand that the two metrics g′
μν

and gμν are equal, but merely that they are conformally related.
In other words, we ask whether gμν(x)

∂xμ

∂x′ρ ∂xν

∂x′σ =�2(x′)gρσ (x′), an easier-going version
of (IX.6.1), has any solutions. As before, we content ourselves with an infinitesimal
transformation x′μ = xμ + εξμ(x). In the small ε limit, we expand �2(x′)� 1 + εκ(x′)=
1 + εκ(x) + O(ε2). Collecting terms of order ε, we find that this condition amounts to
what is known as the conformal Killing condition

gμσ∂ρξ
μ + gρν∂σξ

ν + ξλ∂λgρσ + κgρσ = 0 (1)

We can eliminate the unknown function κ(x) by contracting with gρσ , so that this leads
to a condition on the metric gμν and the vector field ξ , known as a conformal Killing
vector field. For κ = 0, the conformal Killing condition reduces to the Killing or isometry
condition of chapter IX.6.

As in chapter IX.6, we can write (1) more compactly as ξσ ;ρ + ξρ;σ + κgρσ = 0 using the
covariant derivative, or as (recall (IX.6.4))

Lξgμν = −κgμν (2)
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using the Lie derivative1 along the conformal Killing vector field ξ . (Also, as in chapter IX.6,
we will often drop the word “field.”)

Retreat to flat spacetime

If someone hands us a metric, we could in principle find its conformal Killing vectors by
solving (1).

The simplest metric to deal with is the Minkowski metric, of course. In this introductory
text, we are content to study this easy case, for which (1) simplifies to (with ξσ ≡ ησμξ

μ,
as usual) ∂ρξσ + ∂σξρ + κηρσ = 0. Contracting this with ηρσ , we obtain κ = −2∂ . ξ/d in
d-dimensional spacetime. Hence the condition (1) becomes

∂ρξσ + ∂σξρ = 2
d
ηρσ∂ . ξ (3)

Infinitesimal transformations x′μ = xμ + εξμ(x) that satisfy (3) are said to generate the
conformal algebra for Minkowski spacetime. (Clearly, with the substitution of δρσ for ηρσ ,
this entire discussion applies to flat space as well as flat spacetime.)

Compare this condition with the Killing equation ∂ρξσ + ∂σξρ = 0 for Minkowski space-
time, with the most general solution ξμ = aμ + bμ

ν
xν describing translations and the

Lorentz transformations, namely rotations and boosts. Here bμν = b
μ
λη

λν = −bνμ is re-
quired to be antisymmetric. (This goes way back to (I.3.7) and (III.3.13).)

In search of conformal generators

At this point, you can solve (3) for ξμ. Go ahead. Alternatively, we could wing it like a poor
man. Stare at Minkowski spacetime: ds2 = ημνdx

μdxν. What transformations on x would
change the metric conformally?

By eyeball, we see that the scale transformation, or more academically, dilation,∗ xμ →
λxμ for λ a real number, would do the job, since ds2 becomes ds2 = λ2ημνdx

μdxν. We have
stretched spacetime by a constant factor. The conformal Killing condition is satisfied with
�(x) constant. To identify the corresponding ξμ, consider an infinitesimal transformation
with λ = 1 + εc; then ξμ = cxμ with some (irrelevant) constant c. Sure enough, this
satisfies (3), of course. Now, can you find another transformation? Think for a minute
before reading on.

The clever poor man notices that inversion, xμ = e2yμ/y2, would work.† Plug in dxμ =
e2(δ

μ
λ y

2 − 2yλyμ)dyλ/(y2)2. We obtain ds2 = ημνdx
μdxν = (e4/(y2)2)ημνdy

μdyν, which
indeed is conformally flat. I introduced e to avoid confusing you, but now that its job is

∗ Or dilatation, if dilation is not academic enough for you.
† Another (irrelevant) constant e, with dimension of length, is introduced here to ensure that x and y both

have dimensions of length.
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done, we will set it to 1 and define inversion as the transformation (for x2 �= 0)

xμ → xμ

x2
(4)

You object, saying that the entire discussion has been couched in terms of infinitesimal
transformations. The inversion is a discrete transformation and is in no way no how
infinitesimal. How then can we identify the corresponding ξμ?

Now the poor man makes another clever move: invert, translate by some vector aμ, then
invert back. For aμ = 0, the two inversions knock each other out, and we end up with the
identity transformation. Thus, the net result of these three transformations would indeed
be an infinitesimal transformation as aμ → 0. Let’s work out what I just said:

xμ → xμ

x2
→ xμ

x2
+ aμ →

(
xμ

x2
+ aμ

)/
ηρσ

(
xρ

x2
+ aρ

) (
xσ

x2
+ aσ

)

=
(
xμ

x2
+ aμ

)/ (
1
x2

+ 2a . x
x2

+ a2
)

= (xμ + aμx2)/(1 + 2a . x + a2x2)� (xμ + aμx2)(1 − 2a . x)+O(a2)

= xμ + aλ(η
μλx2 − 2xμxλ)+O(a2) (5)

The transformation xμ → xμ + aλ(η
μλx2 − 2xμxλ) is known as a conformal transforma-

tion. You can verify that ξμ = aλ(η
μλx2 − 2xμxλ) satisfies (3), of course, since inversion

and translation both satisfy the condition we started out with.
As I said, you could have also simply solved (3) by brute force, and I am counting on

you to have already done so. It is also instructive to act with ∂ρ ≡ ηρσ∂σ on (3); we obtain

d∂2ξσ = (2 − d)∂σ (∂ . ξ) (6)

Applying ∂σ , we obtain further ∂2(∂ . ξ)= 0 (all for d �= 1).
We can now draw two important conclusions.

1. The case d = 2 is special. We learn from (6) that any solutions of the generalized Laplace

equation ∂2ξν = 0 yield a conformal transformation. Indeed, for d = 2, either go to light cone

coordinates for Minkowski spacetime or to complex coordinates for Euclidean space. With

complex coordinates z= x + iy, we have (∂2
x

+ ∂2
y
)ξσ = (∂x + i∂y)(∂x − i∂y)ξσ = ∂

∂z∗
∂
∂z
ξσ =

0, and hence we can exploit the full power of complex analysis. This observation turns out

to be of central importance in string theory.2 For d = 2, there exists an infinite number of

solutions of (3) for ξμ.

2. For d �= 2, these equations tell us that ξμ can depend on x at most quadratically. Thus, we

have in fact found all solutions of (3) for d �= 2, namely
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ξμ = aμ + bμ
ν
xν + cxμ + dν(η

μνx2 − 2xμxν) (7)

with bμν antisymmetric. We had noted all these terms already. Pleasingly, in (7), the constant

term corresponds to translation, the linear terms to Lorentz transformation and to dilation,

and the quadratic term to conformal transformation.

Generators of conformal algebra

Associated with each of these terms in (7), we have a generator of the Minkowskian confor-
mal algebra. As in chapter I.3, it is convenient to use a differential operator representation.
Recall that back in chapter III.3, by adding the generators∗ of translation Pμ to those of
Lorentz transformation Jμν, we extended the Lorentz algebra to the Poincaré algebra, de-
fined by commuting

Pμ = ∂μ and Jμν = (
xμ∂ν − xν∂μ

)
(8)

By adding the dilation generator D and the conformal generator Kμ,

D = xμ∂μ and Kμ =
(
ημνx2 − 2xμxν

)
∂ν (9)

we can now, in turn, extend the Poincaré algebra to the conformal algebra, defined by
commuting Pμ, Jμν, D, and Kμ.

In other words, the commutators between P , J , D, and K generate an algebra that
contains the Poincaré algebra.

The commutators involving D are easy to compute: [D , xν] = [xμ∂μ, xν] = xμ[∂μ, xν] =
xν and [D , ∂ν] = [xμ∂μ, ∂ν] = [xμ, ∂ν]∂μ = −∂μ. (To work out various commutators, keep in
mind the identity [A, BC] = [A, B]C + B[A, C].) Evidently, D, as is sensible for a dilation
generator, simply counts the length dimension, +1 for xν and −1 for ∂ν. Thus, [D , Jμν] =
0, since J ∼ x∂ has zero length dimension. Interestingly, another way of reading this
is to write it as [Jμν , D] = 0, which says that D is a Lorentz scalar. Next, we can read
off [D , Pμ] = −Pμ and [D , Kμ] = +Kμ just by counting powers of length dimension
(P ∼ ∂ , K ∼ xx∂).

The commutators involving Kμ are not much harder to work out. First, [Jμν , Kλ] =
−ημλKν + ηνλKμ just tells us thatKμ transforms like a vector, as expected. The nontrivial
commutator is [Kμ, Pλ] = −[∂λ, (ημνx2 − 2xμxν)∂ν] = −2(ημνxλ − ηλμxν − xμηλν)∂ν =
2(Jμλ + ηλμD). Finally, verify that [Kμ, Kν] = 0. Can you see why? (Recall that we con-
structed the conformal transformation as an inversion followed by a translation and then
followed by another inversion.)

∗ Here I omit the overall factors of i commonly included in quantum mechanics. As explained in chapter III.3,
you and I live in free countries and, according to what is convenient in a given context, could include or omit
overall factors at will.
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Collecting our results, we have the conformal algebra

[Pμ, P ν] = 0, [Kμ, Kν] = 0

[D , Pμ] = −Pμ, [D , Jμν] = 0, [D , Kμ] = +Kμ

[Jμν , Pλ] = −ημλP ν + ηνλPμ, [Jμν , Kλ] = −ημλKν + ηνλKμ

[Jμν , J λρ] = −ημλJ νρ − ηνρJμλ + ηνλJμρ + ημρJ νλ

[Kμ, P ν] = 2(Jμν + ημνD) (10)

We see that, in some sense, K acts like the dual of P .

Identifying the conformal algebra

Now that we have used our eyeballs and brains, let’s use our fingers. Count the number of
generators (P , K , D , J ): d + d + 1 + 1

2d(d − 1)= 1
2(d + 2)(d + 1). Do you know a group

with this many generators?
Yes, SO(d , 2). Good guess!
Remarkably, the conformal algebra of d-dimensional Minkowski spacetime with the

Lorentz groupSO(d − 1, 1) is the Lie algebra ofSO(d , 2). The two algebras are isomorphic.
The rule is that given SO(d − 1, 1), the conformal algebra is SO(d − 1 + 1, 1 + 1) =
SO(d , 2): we “go up” by (1, 1). We can prove this assertion by the “what else could it
be” argument. (The only uncertainty is the signature. Counting only tells us that it could
be the algebra for the group SO(p , q) with p + q = d + 2 and containing SO(d − 1, 1).)
We can of course verify the assertion by direct computation and thus also ascertain the
signature.

Denote the generators of SO(d , 2) by JMN , with M , N = 0, 1, 2, . . . , d − 1, d , d + 1
(and μ, ν = 0, 1, 2, . . . , d − 1) satisfying

[JMN , JPQ] = −ηMPJNQ − ηNQJMP + ηNPJMQ + ηMQJNP (11)

with ηdd = −1 and ηd+1,d+1 = +1. The isomorphism between the two algebras is almost
fixed by symmetry considerations. We already have the generators of the Lorentz group
SO(d , 1), namely Jμν. Now we want to identify the additional generators D , Pμ, and
Kμ. By eyeball, we see that D is a scalar under SO(d , 1), and so it can only be J d ,d+1.
We identify J d ,d+1 =D. Similarly, by eyeball, we see that Pμ and Kμ carry an index μ,
and hence are vectors under SO(d , 1). They can only be linear combinations of Jμ,d and
Jμ,d+1. So, let us make the educated guess Jμ,d = (Kμ + Pμ)/2 and Jμ,d+1 =
(Kμ − Pμ)/2. We will check only a few commutators to show that this assignment is
correct. For example, (11) gives
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[Jμ,d , J ν ,d ] = −ηddJμν = Jμν = 1
4

[Kμ + Pμ, Kν + P ν]

= 1
4 ([K

μ, P ν] − [Kν , Pμ])= 1
4 (4J

μν)

where in the last step, we used (10). Similarly,

[Jμ,d+1, J ν ,d+1] = −ηd+1,d+1Jμν = −Jμν = 1
4

[
Kμ − Pμ, Kν − P ν

]= − 1
4

(
4Jμν

)
As another example,[

D , 1
2

(
Kμ + Pμ

)]=
[
J d ,d+1, Jμ,d

]
= ηddJ d+1,μ = 1

2

(
Kμ − Pμ

)
The poor man now speaks up, “It is easier to see through all this if we pick a definite

d, say 6, and forget about signature, let it take care of itself. Just think about SO(6).”
Evidently, Jμν, for μ, ν = 1, 2, 3, 4, generates the rotation algebra for SO(4). In addition,
we have Jμ, 5 and J ν , 6, clearly vectors labeled by 5 and 6. For μ �= ν, they commute with
each other, while for μ= ν, they commute to produce J 56. Recall, as we learned way back
in chapter I.3, that (11) merely says that JMN and JPQ commute with each other, unless
a pair of indices, one from each of the J s, are equal, in which case the commutator is a J
carrying the remaining two indices. Thus, J 56 commuted with Jμ, 5, and Jμ, 6 just turns
one into the other.

(1+1)-dimensional Minkowski spacetime in light cone coordinates

It is instructive to work out the conformal algebra for a familiar spacetime written in not-
so-familiar coordinates, namely the (1 + 1)-dimensional Minkowski spacetime written
in light cone coordinates (as was described3 in appendix 5 to chapter VII.2). Define
x± = t ± x. Then ds2 = −dt2 + dx2 = −dx+dx− = ημνdx

μdxν, which tells us that η+− =
η−+ = − 1

2 and η+− = η−+ = −2. (For this discussion, we adopt the convention that the
components we do not display, such as η++, all vanish.) Also, define ∂± = 1

2(
∂
∂t

± ∂
∂x
), so

that ∂+x+ = 1 and ∂−x− = 1.
Then P± = ∂± = 2∂∓, D = x+∂+ + x−∂−, J ≡ 1

2J
+− = 1

2(x
+∂− − x−∂+) = x+∂+ −

x−∂−. Note that D ± J = 2x±∂± works out nicely. (It is understood that the ± signs are
correlated unless otherwise noted.) Can you guess what the conformal generators are?
Let’s find out; simply evaluate (9): K+ = x2η+−∂− − 2x+(x+∂+ + x−∂−) = −2(x+)2∂+,
and similarly, K− = −2(x−)2∂−.

Rather elegantly, the 6 generators of SO(2, 2) can be taken to be

∂±, x±∂±, and − (
x±)2

∂± (12)

Recall that in chapter VII.2, we constructed the Penrose diagram for M1, 1, introduc-
ing the compact variables X± by x± = tan X±. Note that ∂

∂X± = (1 + (x±)2)∂±. In the
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conformally equivalent spacetime described by the cylinder R × S1, the time coordinate is
given by T =X+ +X−. Time translation along the cylinder is then generated by

∂

∂T
= 1

2

(
∂

∂X+ + ∂

∂X−

)
= 1

2

(
∂+ + ∂− + (

x+)2
∂+ + (

x−)2
∂−
)

(13)

You can now check the algebra in (10). For example, (10) gives [K+, P−] = 2(J+− +
η+−D) = 4(J + D) = 8x+∂+, and indeed, we compute [K+, P−] = [−2(x+)2∂+, 2∂+] =
8x+∂+.

To the lost, angles are more important than distances

Some readers are no doubt already aware of the many motivations—historical, mathemat-
ical, and physical—for studying conformal transformations. Here I mention but a few.
The key property is of course that conformal transformations preserve angles between
line segments.

When you are lost, it matters more to you to know that you are going in the right direction
than to know how far you are from your destination. To the lost, angles are more important
than distances. Gerardus Mercator (1512–1594) (or “Jerry the merchant”) fully appreciated
this. As you worked out in exercise I.5.3, the Mercator map of the world is obtained by a
conformal transformation of the spherical coordinates (θ , ϕ) on the globe. Mathematically,
I already mentioned the connection to complex analysis and the consequent implications
for string theory. A humbler, but no less beautiful, physical motivation for studying the
conformal map is the method of images in electrostatics.

I cannot resist digressing a bit to remind you how it works. Consider the following
problem. A charge q is located at R�eq in the presence of a conducting sphere of radius
a grounded and centered at the origin. Calculate the potential φ(�r) at an arbitrary point
�r = r�e. (The unit vectors �e and �eq point toward the observer and the charge, respectively.)

We take the potential due to the charge q and subtract from it the potential due to an
image charge q̃ located at R̃�eq . (Note that we invoke implicitly a symmetry argument to
locate the image charge along the vector �eq .) Then we have

φ(�r)= q

|r�e − R�eq|
− q̃

|r�e − R̃�eq|
= q

r|�e − R
r
�eq|

− q̃

R̃|�eq − r

R̃
�e| (14)

Using the key observation that |�e − K�eq| = |�eq − K�e|, we see that we can satisfy the

boundary condition φ(r = a , θ , ϕ)= 0 if we choose q̃

R̃
= q

a
and a

R̃
= R

a
. The locations of

the charge and of its image are related by an inversion R̃ = a2

R
.

That this clever method works is due to the scale, or dilation, invariance of the Coulomb
potential. It would not work, for example, with the short-ranged Yukawa potential ∝
e−mr/r . In other words, in electrostatics, we are solving Laplace’s equation with appropriate
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boundary conditions, and Laplace’s equation does not contain any intrinsic length scale.
(Under inversion, we have to adjust the boundary condition accordingly; this is why we
have to adjust the strength of the image charge.)

Scale and conformal invariances in particle and condensed matter physics

It is one thing to discuss the conformal algebra, but it is another to ascertain whether
a given physical situation actually respects conformal invariance. In particle physics, one
longstanding hope has been that at high energies, particle masses can be neglected, so that
the physics would become scale invariant. It turns out that in a local field theory, it is true,
more or less in general, that scale invariance typically leads to conformal invariance.∗ For
example, we will check in appendix 1 that Maxwell’s action, ∼ ∫

d4xFμνF
μν, discussed in

chapter IV.2, is both scale and conformal invariant. In condensed matter physics, intrinsic
length scales are typically washed out at the critical point between two phases, so that scale
and conformal invariances come in full blast into the theory of critical phenomena.†

I included this material on conformal algebra not so much because I will refer to it in
the next chapter on de Sitter spacetime, but because the concepts involved are important.
Indeed, as I am completing this book, the N = 4 supersymmetric Yang-Mills theory is all
the rage in the theoretical community. Not only does this theory have a conformal algebra,
it also has a superconformal algebra.

Appendix 1: Maxwell’s action is both scale and conformal invariant

Since A′
μ
(x′)= Aρ(x)

∂xρ

∂x′μ , we have, under an infinitesimal transformation x′ = x − ξ with ξ arbitrary,

δAμ(x)≡ A′
μ
(x)− Aμ(x)= (A′

μ
(x)− A′

μ
(x′))+ (A′

μ
(x′)− Aμ(x))

= ξρ∂ρAμ + Aρ∂μξ
ρ (15)

(we are also suppressing ε and introducing a minus sign for convenience). The attentive reader will recall
from chapter V.6 that this is just the Lie derivative LξAμ(x) defined in (V.6.26). Similarly, δFμν = LξFμν =
ξρ∂ρFμν + Fρν∂μξ

ρ + Fμρ∂νξ
ρ .

We can now evaluate the variation of the Maxwell Lagrangian L = − 1
4F

μνFμν for an arbitrary ξ . (A trivial
heads-up: the symbols L and Lξ denote entirely different beasts.) We have

δ
(
FμνFμν

) = 2Fμν
(
ξρ∂ρFμν + Fρν∂μξ

ρ + Fμρ∂νξ
ρ
)

= ∂ρ
(
ξρFμνFμν

)− ∂ . ξ
(
FμνFμν

)+ 4FμρF ν
ρ
∂μξν

= ∂ρ
(
ξρFμνFμν

)+ 2FμρF ν
ρ

(
∂μξν + ∂νξμ − 1

2ημν∂
. ξ
)

(16)

∗ This is because the violation of scale invariance and conformal invariance are both determined4 by the trace
T μ
μ

of the energy momentum tensor. Indeed, we saw a hint of this in our discussion of the relativistic gas and of

the electromagnetic field in chapters III.6 and VI.4.
† In both these types of physical applications, subtleties due to quantum and thermal fluctuations must be

taken into account.
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Thus far, ξ is arbitrary, but if ξ is a conformal Killing vector, that is, if it satisfies (3), then we obtain

δL = ∂ρ
(
Lξρ

)+
(

4
d

− 1
)
(∂ . ξ)L (17)

For d = 4, and only for d = 4, the variation δL of the Maxwell Lagrangian under a conformal Killing transfor-
mation is a total divergence, so that the variation of the action δS = ∫

d4xδL vanishes (with the usual suitable
boundary conditions at spacetime infinity). Thus, in the spacetime we live in, the Maxwell action∗ is both scale
and conformal invariant. (In particular, it is also inversion invariant, so you can go on happily using the method
of images.) As a bonus, we also reconfirm what we have known for a long time, ever since part IV, that it is
translation and Lorentz invariant. And of course, the last property is what got us started on this amazing epic
journey toward the heart of spacetime.

Appendix 2: Conformally related spacetimes

For the sake of pedagogical clarity, we hastily retreated from the conformal Killing condition (1) in all its glory
to its humbler flat version (3). Nevertheless, it is often useful to study what happens in an arbitrary curved
spacetime. To be specific, let us look at Maxwell’s action SMaxwell(gμν , Aμ)= − 1

4e2

∫
ddx

√−ggμνgσρFμσFνρ from
this alternative point of view. We have also indicated explicitly that SMaxwell is a functional of gμν and Aμ.

Now suppose that somebody hands you another metric g̃μν(x)=�2(x)gμν(x) conformally related to the metric
we have. (Perhaps it is still worthwhile to emphasize that the two metrics are not related by a coordinate transfor-
mation.) Since g̃μν =�−2gμν and g̃ =�2dg, we have SMaxwell(g̃μν , Aμ)= − 1

4e2

∫
ddx

√−ggμνgσρ�d−4FμσFνρ .
Thus, for d = 4, and only for d = 4, we have SMaxwell(g̃μν , Aμ)= SMaxwell(gμν , Aμ).

In general, if we are given an action in curved spacetime such that S(�2gμν , . . .)= S(gμν , . . .), where the
ellipses indicate various fields we are not touching at all (such as Aμ in the specific example just given), we can
immediately take the infinitesimal limit �2(x)� 1 + ε(x), so that δgμν(x)≡ g̃μν(x)− gμν(x)= ε(x)gμν(x), and
deduce

δS = 0 =
∫

d4x
δS

δgμν(x)
ε(x)gμν(x)= − 1

2

∫
d4x

√−gε(x)gμν(x)T μν(x) (18)

Since ε(x) is arbitrary and local, we conclude that the trace T (x)≡ gμν(x)T
μν(x)= 0 vanishes, a result we have

already derived in chapters III.6 and VI.4.
Here it is important to let �(x) depend on x, so that we can deduce from (18) that the trace T (x) vanishes

locally, that is, at any x. But to demonstrate that SMaxwell(gμν , Aμ) is invariant for d = 4, as we did a bit earlier, we
could have taken a constant � independent of x. In our demonstration, we merely counted powers of �, and no
derivative ever acted on�. In other words, we could consider simply multiplying the metric by a constant:5 gμν →
�2gμν , gμν →�−2gμν , and g →�8g. At the risk of being repetitious, SMaxwell = − 1

4e2

∫
ddx

√−ggμνgσρFμσFνρ
is invariant because

√−ggμνgσρ →�4�−2�−2√−ggμνgσρ = √−ggμνgσρ .
But now we can make a connection with high school dimensional analysis. Scale x → ωx, with ω an ar-

bitrary real number. Then we have ∂ → ω−1∂ . Gauge invariance requires that Aμ scales the same way as ∂μ,
so that A → ω−1A and F → ω−2F . In fact, you see that the powers of ω just correspond to the length di-
mensions of various quantities.6 For example, x has length dimension +1 (by definition), and F has length
dimension −2. So, the invariance of SMaxwell for d = 4 is just the statement that

∫
d4x

√−ggμνgσρFμσFνρ →
ω4ω−2ω−2 ∫ d4x

√−ggμνgσρFμσFνρ is dimensionless in length. By now, you also see the connection with the
scaling in the preceding paragraph: the scaling

√−g →�4√−g corresponds to the scaling d4x → ω4d4x for
the proverbial high school student, and the scaling gμνgσρ →�−4gμνgσρ corresponds to the scaling FμσFνρ →
ω−4FμσFνρ . Note that, perhaps amusingly, in the high school approach, we do not touch the metric, while in the
conformal transformation, we touch only the metric.

We now see that what we did in chapter VI.1 amounts to saying that
∫
d4x

√−gR in Einstein gravity has length
dimension +2: four powers of length from d4x and two negative powers of length from the two ∂s contained
in R.

∗ You should convince yourself that for d �= 4, the Maxwell action is manifestly not scale invariant. In contrast,
Laplace’s equation, in any spatial dimension, contains no scale.
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Exercises

1 Show that under inversion, (x1 − x2)
2 → (x1 − x2)

2/(x2
1x

2
2) and thus the separation between spacetime points

is not preserved. However, if the two points are null separated, they remain null separated under inversion.
Null separation is a conformally invariant concept.

2 In the text, the poor man realizes that inversion xμ = e2yμ/y2 of the Minkowski metric gives a conformally
invariant metric. How about the transformation xμ = f 4yμ/(y2)2, with f a constant with dimensions of
length?

3 Sometimes the best way to learn a formalism is to apply it to a trivial problem to which we know the answer.
Determine the conformal Killing vector fields of the Euclidean plane.

Notes

1. If ξa denotes a set of conformal Killing vectors for a = 1, . . . , n for some n, you can show that the commu-
tators [Lξa , Lξb] generate an algebra known as the conformal algebra.

2. See J. Polchinski, String Theory, chapter 2.
3. The coordinates (p , q) and (P , Q) there correspond to x± and X± here, respectively.
4. For a concise statement of when scale invariance implies conformal invariance, see Y. Nakayama, “Gravity

Dual for a Model of Perception,” http://arxiv.org/pdf/1003.5729.
5. You may recall that we did this kind of scaling to check our computations back in chapter VI.2.
6. Looking ahead, we will be using this sort of reasoning in chapter X.3.



IX.10 De Sitter Spacetime

Which curved spacetime is the most lovable?

Of all the curved spaces, we love the sphere most. This is of course due to the high degree of
symmetry enjoyed by the sphere in all its manifestations, including the circle. In particular,
every point on the sphere is identical to any other point: the sphere is a homogeneous space.
Indeed, as explained in chapter IX.6 on isometry, it is maximally symmetric.

Among the curved spacetimes, which one should we love the most? Which spacetimes
are closest to the spheres? Kepler talked about the music of the spheres; we’ve become
somewhat more sophisticated 400 years later.

De Sitter spacetime

The d-dimensional sphere Sd of radius L is defined as the set of all points (X1, X2, . . . ,
Xd+1) in (d + 1)-dimensional Euclidean space Ed+1 (that is, a space with ds2 = (dX1)2 +
(dX2)2 + . . . + (dXd)2 + (dXd+1)2) satisfying

(X1)2 + (X2)2 + . . . + (Xd)2 + (Xd+1)2 = L2 (sphere Sd) (1)

In analogy, let us define the d-dimensional de Sitter spacetime1, 2 dSd with length scale L
as the set of all points (X0, X1, X2, . . . , Xd) in (d + 1)-dimensional Minkowskian space-
time Md , 1 (that is, a spacetime with ds2 = −(dX0)2 + (dX1)2 + (dX2)2 + . . . + (dXd)2)
satisfying

−(X0)2 + (X1)2 + (X2)2 + . . . + (Xd)2 = L2 (de Sitter spacetime dSd) (2)

We have renamed Xd+1 as X0 and by a feat of “imaginary magic” turned it into a time
coordinate. Thus, de Sitter spacetime is sort of a Minkowskian version of the sphere living
in Minkowski spacetime.

This flip of sign makes all the difference in the world: at a given X0, the spatial
coordinates (X1, X2, . . . , Xd) form a (d − 1)-dimensional sphere Sd−1 defined by (X1)2 +
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L

X0

Xi, i = 1, . . . , d

Figure 1 The d-dimensional de Sitter space-
time dSd embedded in (d + 1)-dimensional
Minkowskian spacetime Md , 1.

(X2)2 + . . . + (Xd)2 = L2 + (X0)2. Topologically, de Sitter spacetime is then R × Sd−1: as
the time coordinate X0 goes from −∞ to ∞, the radius

√
L2 + (X0)2 of Sd−1 starts at

infinity, contracts to a minimum value L, and then expands again to infinity. See figure 1.
Contrast the circles of constant latitude on the globe, expanding from the south pole to the
equator and then contracting again toward the north pole. In the (X0-Xd) plane, we have
a hyperbola, and so dSd can also be regarded as a hyperboloid of rotation.

A word of caution about figures of this type: We naturally tend to look at it as if
it were drawn in Euclidean space, while in fact, dSd is constructed in Minkowskian
spacetime Md , 1.

Maximal symmetry and coset manifold

The isometry group of Sd is clearly SO(d + 1), the rotation group of the embedding
space Ed+1, with the Killing generators

(
XM ∂

∂XN − XN ∂

∂XM

)
, M , N = 1, 2, . . . , Xd+1.

The sphere Sd can thus be regarded as the coset manifold SO(d + 1)/SO(d), where the
quotient group SO(d) is the subgroup of SO(d + 1) that leaves a point on Sd invariant, as
we discussed in chapter IX.6. (Think about this for d = 2.)

Evidently, the isometry group3 of de Sitter spacetime dSd is SO(d , 1), the Lorentz group
of the embedding space Md , 1. The Killing generators fall into two sets, d-dimensional
rotations and boosts:

XM ∂

∂XN
−XN ∂

∂XM
and XM ∂

∂X0
+X0 ∂

∂XM
, for M , N = 1, 2, . . . , d (3)

obtained by letting Xd+1 → iX0 formally. Note the sign flip between the two sets, just as
in the familiar Lorentz algebra of special relativity.

Hence, just like the sphere Sd , de Sitter spacetime is also a coset manifold: dSd =
SO(d , 1)/SO(d − 1, 1). Consider, for example, the point X∗ = (X0, X1, X2, . . . , Xd)∗ =
(0, 0, . . . , 1) on dSd : it is left invariant by the subgroup SO(d − 1, 1), namely the
Lorentz group acting on the d coordinates (X0, X1, X2, . . . , Xd−1). In particular, dS4 =
SO(4, 1)/SO(3, 1). As a small check, note that SO(4, 1) has 5.4

2 = 10 generators, while
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SO(3, 1) has 4.3
2 = 6 generators, so that SO(4, 1)/SO(3, 1) is indeed 10 − 6 = 4

dimensional.
The group SO(d , 1) moves points on dSd around. We thus conclude that, just like the

sphere, de Sitter spacetime is maximally symmetric. So, according to the general theory
of maximally symmetric spaces explained in chapter IX.6, the Riemann curvature tensor
Rμνλσ must be equal to (gμλgνσ − gμσgνλ) up to an overall constant. (Here the Greek
indices∗ range over μ= 0, 1, . . . , d − 1.) Now notice that we have constructed de Sitter
spacetime but have yet to specify a set of coordinates on it.

Confusio: “Isn’t (X0, X1, X2, . . . , Xd) a set of coordinates?”
No, that is a set of coordinates for the ambient Minkowski space Md , 1.
Suppose we choose our coordinates on dSd to have dimensions of length so that gμν is

normalized to be dimensionless. Then by dimensional analysis, we must have

Rμνλσ = 1
L2

(gμλgνσ − gμσgνλ) (4)

(We will show presently one way of determining the overall numerical coefficient.) The
Ricci tensor, the scalar curvature, and the Einstein tensor are fixed, upon contraction of
the indices in (4), to be

Rμν = (d − 1)
L2

gμν , R = d(d − 1)
L2

, Eμν ≡ Rμν − 1
2gμνR = − (d − 1)(d − 2)

2L2
gμν (5)

respectively. Since (4) and (5) are equalities between tensors, they hold in every coordinate
system.

Calculating the Riemann curvature tensor for de Sitter spacetime

One simple way to coordinatize de Sitter spacetime is to eliminateW =Xd (precisely as we
did in appendix 2 to chapter I.6) and use Xμ with μ= 0, 1, . . . , d − 1 as coordinates. Start
with W 2 = L2 −X .X, where for convenience, I introduce the notation A . B = ημνA

μBν.
Then WdW = −X . dX, so that dW 2 = (X . dX)2/(L2 −X . X), leading to

ds2 ≡ ημνdX
μdXν + dW 2 = ημνdX

μdXν − (X . dX)2/(X . X − L2)

=
(
ημν − ημληνρX

λXρ

X . X − L2

)
dXμdXν (6)

We can now calculate the Riemann curvature tensor for de Sitter spacetime. As I just
mentioned, we merely have to determine the overall coefficient in (4). Here is a rather
nifty4 approach. Let X → 0 in (6), so that gμν � (ημν + 1

L2ημληνρX
λXρ); in other words,

the metric is locally flat at Xμ = 0. But in chapter VI.1, we learned how to determine
the curvature tensor in locally flat coordinates. Looking at (VI.1.11), we immediately

∗ You should realize that the index sets (0, 1, . . . , d − 1) and (0, 1, . . . , d − 1, d) are conceptually distinct
and are labeled by different letters. (For example, for S2, we have coordinates (θ , ϕ) on the sphere and (X , Y , Z)
for the ambient embedding space.) But there are only so many letters and thus, a given set of letters often does
double duty.
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read off Bμν ,λρ = 1
2L2 (ημληνρ + ημρηνλ). We then plug into (VI.1.14) to obtain Rτρμν =

1
L2 (ητμηρν − ητνηρμ). As usual, we simply promote ημν to gμν to obtain Rτρμν at an
arbitrary point. We have fixed the overall coefficient in (4). Nifty, eh? To summarize, we
eliminate W and discover that the resulting coordinate system is locally flat. We look up
chapter VI.1 and fix the only feature of (4) that does not follow from general principles.

The expanding universe once again

We see from (5) that de Sitter spacetime is a solution of Einstein’s field equation Rμν =
8πG�gμν with a positive cosmological constant (see VI.5.14) given by

8πG�= 3
L2

(7)

To the extent that∗ ∼74% � 100%, we can say that our universe is observed to be almost
maximally symmetric and de Sitter. (As was explained in chapter VIII.1, this approximate
statement only applies to the future, not to the past.)

Topologically, de Sitter spacetime is R × S3, with a spatial section given by S3, as just
explained. In contrast, we know from chapters VI.2 and VI.5 that Einstein’s field equation
with a positive cosmological constant leads to ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2)with the

Hubble constant given byH = ( 8πG
3 �

) 1
2 , or in terms of the de Sitter length,H = 1/L. Thus,

an interesting question poses itself: How is the 3-dimensional flat space with coordinates
(x , y , z) hidden in the (3 + 1)-dimensional “Minkowskian sphere” defined in (2)? It must
correspond to a rather nontrivial slice. Seems like quite a surprise that this “Minkowskian
sphere” contains an exponentially expanding universe! Indeed, can you figure it out before
reading on?

Angular coordinates on de Sitter spacetime and hyperbolic spaces

For ease of writing and for definiteness, I now specialize to d = 4. Our universe might very
well be described by dS4 to a good approximation, as discussed in chapter VIII.2 and in
the preceding section. (Wait! Aren’t you supposed to figure out something before reading
on?) As we go along, you should, and could easily, work out dSd for any integer d. (When
confused, the beginner should also work out what happens for d = 1, 2, 3. From (2), we
see that a spatial slice of dSd at fixed X0 is just the familiar sphere for d = 3, the circle for
d = 2, and two points for d = 1.)

For d = 4, it is convenient to relinquish indices and name the coordinates: X0 = T ,
X1 =X, X2 = Y , X3 = Z, and X4 =W , so that the defining equation (2) reads

−T 2 +X2 + Y 2 + Z2 +W 2 = L2 (8)

∗ Dark energy amounts to ∼74% of the universe; see chapter VI.2. It better not be 100%, in which case there
would be no matter to form physicists out of.
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For X, Y , and Z, we can go over to the usual spherical coordinates X = r sin θ cos ϕ,
Y = r sin θ sin ϕ, and Z = r cos θ , so the defining equation becomes

−T 2 + r2 +W 2 = L2 (9)

(As always, dX2 + dY 2 + dZ2 = dr2 + r2d�2
2, with d�2

2 = dθ2 + sin2 θdϕ2.)
Before attacking dS4, let’s warm up with S3, a somewhat less familiar sphere than S2.

As explained in chapter I.6, the metric on S3 with radius L is induced from the Euclidean
metric ds2 = dX2 + dY 2 + dZ2 + dW 2 of the embedding space E4. We eliminate dW by
differentiating the defining equation X2 + Y 2 + Z2 +W 2 = L2, so that −WdW =XdX +
YdY + ZdZ = rdr , using the usual spherical coordinates for X, Y , and Z in the last step.
Then we have dW 2 = (rdr)2

W 2 = r2

L2−r2dr
2. Thus, we obtain ds2 = dr2 + r2d�2

2 + r2

L2−r2dr
2 =

L2

L2−r2dr
2 + r2d�2

2 (as in I.6.11). This expression literally invites us to introduce spherical
coordinates for S3 by setting r = L sin ψ (note that ψ is a latitude like θ and so ranges
from 0 to π , while ϕ is a longitude ranging from 0 to 2π ), so that

ds2 = L2
(
dψ2 + sin2 ψd�2

2

)
≡ L2d�2

3 (10)

We just constructed S3 out of S2, thus rediscovering what we have known since chapter I.6:
the metric for Sd can be constructed iteratively. Indeed, a bright school child would have
realized that the sphere S2 can be built out of circles S1.

After this exercise with S3, we are now ready to induce, in exactly the same way, the
metric on the de Sitter spacetime dS4 from the metric ds2 = −dT 2 + (dX2 + dY 2 +
dZ2 + dW 2)= −dT 2 + (dr2 + r2d�2

2 + dW 2) of the embedding Minkowski space M4, 1.
Differentiating the defining equation (9), we have WdW = T dT − rdr , so that dW 2 =
(T dT − rdr)2/(L2 + T 2 − r2). Clearly, we are invited to introduce a hyperbolic angle ψ
by T = t cosh ψ and r = t sinh ψ , so that T 2 − r2 = t2, T dT − rdr = tdt , dT 2 − dr2 =
dt2 − t2dψ2, and dW 2 = t2dt2/(L2 + t2). We obtain

ds2 = − L2

L2 + t2
dt2 + t2

(
dψ2 + sinh2

ψd�2
2

)
≡ − L2

L2 + t2
dt2 + t2dH 2

3 (11)

where

dH 2
3 = dψ2 + sinh2

ψd�2
2 (12)

is the line element on the 3-dimensional hyperbolic space H 3 discussed in chapter I.6.
Compare and contrast (10) with (12)! The (3 + 1)-dimensional spacetime dS4 is here
coordinatized by (t , ψ , θ , ϕ). (Clearly, the angular coordinates are just going along for
the ride, so that, for example, for dS3, we have ds2 = − L2

L2+t2dt
2 + t2(dψ2 + sinh2

ψdθ2),

and for dS2, the surface pictured in figure 1, ds2 = − L2

L2+t2dt
2 + t2dψ2.)

Just as clearly, we can obtain various related forms by changing variables in (11). For
example, set t = L tan θ to obtain

ds2 = L2

cos2 θ

(
−dθ2 + sin2 θ dH 2

3

)
(13)
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These coordinates are defined by

T = L tan θ cosh ψ , r = L tan θ sinh ψ , W = L

cos θ
(14)

Another form,

ds2 = L2
(
−dρ2 + sinh2

ρ dH 2
3

)
(15)

is obtained by setting t = L sinh ρ, so that

T = L sinh ρ cosh ψ , r = L sinh ρ sinh ψ , W = L cosh ρ (16)

Note that for all these coordinate choices, the slice at constant t (that is, constant θ in
(13) and constant ρ in (15)) is now a hyperbolic surface (recall I.6.14) defined in (12). How
about this spacetime? Do you recognize it?

Yes, it is the open universe described in chapter V.3 for a particular cosmic expansion
factor a(t).

De Sitter spacetime wears many disguises

As we will now see, we can write de Sitter spacetime in remarkably many5 different forms,
according to various choice of coordinates. Some, such as (13) and (15), are obtained by
more or less obvious changes of variables. Others, such as the exponentially expanding
universe, are far from obvious. For convenience, I list the many faces of de Sitter spacetime
in the table near the end of this chapter.

Before we start going through these different choices, we should forewarn Confusio that
there are only so many suitable letters in the alphabet, T and t for time, R and r for the
radial coordinate. Inevitably, we are bound to use the same letter for conceptually different
entities. We will have to trust Confusio to distinguish them by context.

For our first alternative coordinate choice, instead of S2, we can go to S3, setting
r = R sin ψ and W = R cosψ in the defining equation (9), which then becomes

−T 2 + R2 = L2 (17)

In other words, we setR2 =X2 + Y 2 +Z2 +W 2 in (8). Space is now described∗ by a series
of spheres S3 with radius R ≥ L, since R2 = L2 + T 2, as shown in figure 1. Then, as per
the above discussion, ds2 = −dT 2 + (dR2 + R2d�2

3). Solving R2 = L2 + T 2 by writing
T = L sinh t , R = L cosh t , so that again, as is familiar from Minkowskian geometry, we
have dT 2 − dR2 = L2dt2. We thus obtain the metric

ds2 = L2
(
−dt2 + cosh2

t d�2
3

)
(18)

∗ The rich man would say that space is foliated by spheres with R ≥ L.
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As was just described, a fixed t slice corresponds to a fixed X0 slice of the hyperboloid in
figure 1, giving for the spatial sections a series of spheres S3 with radius varying as cosh t
as t ranges from −∞ to ∞. These coordinates, defined by

T = L sinh t , r = L cosh t sin ψ , W = L cosh t cosψ (19)

cover the entire hyperboloid and are thus known as global coordinates.
Do you recognize this spacetime? Yes, it is the closed universe described in chapter V.3

for a particular cosmic expansion factor a(t).
You could now go on to explore some other coordinate choices.
As another example, start with (9) and write ds2 = −dT 2 + (dr2 + r2d�2

2 + dW 2). De-
fine T = ρ sinh χ and r = ρ cosh χ , so that (9) becomes ρ2 +W 2 = L2 and dT 2 − dr2 =
ρ2dχ2 − dρ2. Note that χ is a time coordinate and ρ a space coordinate. As T ranges from
−∞ to +∞, the time variable χ ranges from −∞ to +∞. Then dW 2 = (ρdρ)2

W 2 = ρ2

L2−ρ2dρ
2

(analogous to what we had above for the sphere). Putting it together, we obtain

ds2 = −ρ2dχ2 +
⎛
⎝ 1

1 − ρ2

L2

dρ2 + ρ2 cosh2
χ d�2

2

⎞
⎠

= L2
(
− sin2 ψdχ2 + dψ2 + sin2 ψ cosh2

χ d�2
2

)
(20)

where we have written ρ = L sin ψ , so that

T = L sin ψ sinh χ , r = L sin ψ cosh χ , W = L cosψ (21)

Expanding flat universe as a de Sitter spacetime

I now finally come to the question raised earlier. Perhaps you have solved it already?
Recall that by maximal symmetry, we know that de Sitter spacetime describes an Einstein
universe driven by a positive cosmological constant. But the metrics we have shown thus far
do not appear to look anything like the usual exponentially expanding Friedmann-Lemâıtre
form we first met in chapter VI.2.

It turns out that the planar coordinates (t , r , θ , ϕ) (note: different t and r from before!)
of the exponentially expanding universe are defined by

X0 = L
(

sinh t + 1
2r

2et
)

, Xi = Lretωi , X4 = L
(

cosh t − 1
2r

2et
)

(22)

with i = 1, 2, 3 and ω1 ≡ sin θ cos ϕ, ω2 ≡ sin θ sin ϕ, ω3 ≡ cos θ (recall the appendix to
chapter I.7 from way back). Or, in Cartesian coordinates xi = (x , y , z), write Xi = Letxi.

So, did you figure it out? You might not have readily guessed this rather bizarre and
seemingly totally asymmetric coordinatization. In appendix 1, we will provide a group
theoretic interpretation. (Of course, you could have found it by brute force. See appendix 2.)

At this stage, you are merely invited to plug and chug. First, check that the embedding
equation (2) is satisfied. Second, show that, inserting (22) into the flat metric ds2 =
ηMNdX

MdXN in the embedding spacetime, the metric in our (3 + 1)-dimensional world
has, lo and behold, the nice form
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ds2 = L2
[
−dt2 + e2t

(
dr2 + r2d�2

2

)]
= L2

[
−dt2 + e2t

(
dx2 + dy2 + dz2

)]
(23)

Remarkably, this is precisely the expanding universe that we discussed in chapters VI.2
and VIII.1, and in which we may be living. Our universe may well be a Minkowskian
sphere endowed with a sense of time! With these coordinates, a constant t slice gives flat
Euclidean 3-space (as already noted in chapter V.3), hence the name “planar” coordinates.

For the familiar sphere, the embedding Cartesian coordinates (X , Y , Z) show the isome-
tries but are not convenient to compute with, while the metric in spherical coordinates
ds2 = dθ2 + sin2 θdϕ2 hides the isometries, but these coordinates are better for many pur-
poses. Similarly, while the embedding coordinates (2) display the isometries transparently,
for various purposes other coordinates may be more convenient. For example, for cosmol-
ogy, the planar coordinates in (23) are clearly appropriate, but they hide the underlying
isometries. Note that we do not need to know the rather complicated transformation (22)
at all to study cosmology. Indeed, we could have discovered, and did discover, (23) without
talking about isometries and maximally symmetric spaces and spacetimes. It is, of course,
illuminating to understand that the exponentially expanding universe we may be living in
is nothing other than a glorified sphere.

Isometries and light cone coordinates

We started out in the embedding space Md , 1 with a manifold endowed with plenty of
isometries. When we descend to a specific description tied to a particular coordinate
choice, these isometries are still there, though harder to see. The metric in (23) provides
a good example. It depends explicitly on time and so is definitely not invariant under
time translation; however, it is invariant under t → t + ε accompanied by xi → xi − εxi:
e2td �x2 → e2ε(1− ε)2e2td �x2 � e2td �x2 +O(ε2). In other words, we have a Killing vector ξμ =
(1, −xi). This amounts to a fancy mathematical way of saying that the universe expands
exponentially! The Killing vector tells us that the passage of time can be compensated for
by shrinking the spatial coordinates.

Note that gμνξμξν = −1 + e2t r2. The Killing vector stays timelike only in the region
etr < 1but becomes spacelike outside. Recalling our discussion of the Schwarzschild black
hole, we recognize this switch of the Killing vector from timelike to spacelike as a hallmark
of a horizon.

The reader with a good memory will recall that etr < 1 describes the region enclosed
by the de Sitter horizon we deduced in chapter V.3 by physical reasoning! In that chapter,
sitting at r = 0, we sent a message at time t to a friend located at r . The condition that she
will receive our message was precisely etr < 1. For us, sitting at the origin, our de Sitter
horizon is defined by

etr = 1 (24)

Now, stare at (22). What does it suggest to you?
Noting the form of X0 and X4, we realize that it would be wise to go to light cone

coordinatesX± =X0 ±X4. In particular,X+ =X0 +X4 =Let , an equation that describes
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a plane labeled by t in Md , 1. Thus, at a given t , our universe is the intersection of the
Minkowskian sphere (2) with this plane. As t varies from −∞ to ∞, the plane marches
upward, and the universe expands. (For instance, for θ = 0, the universe at the instant
t = 0 consists of the surface X = L

( 1
2r

2, r cos ϕ , r sin ϕ , 0, 1 − 1
2r

2).)
So, rewrite (22) as (setting L= 1 for convenience)

X+ = et , Xi = rωiet = xiet , X− = e−t (r2e2t − 1) (25)

This light cone construction suggests, at least in hindsight, one way for the poor man
to proceed. Suppose that the poor man does not know about the expanding universe but
is merely possessed by an unspeakable desire to slice the hyperboloid in figure 1 with
“lightlike” planes X+ = λ(t), for λ some unknown function of some time coordinate. By
rotational invariance, he writes Xi = σ(t)λ(t)xi, with σ another unknown function of t .
Then, he uses the defining equation −X+X− + �X2 = 1 to determine X− = σ 2λ�x2 − λ−1.

Plugging all this into ds2 = −dX+dX− + d �X2
, he finds that he can get rid of the cross

term �x . d �xdt by setting σ = 1 (and absorbing an irrelevant constant into �x). Choosing t

to be such that g00 = −1 fixes λ(t) and gives the flat expanding universe in (23).
Since in this embedding, X+ is always positive, the coordinates (22) cover only part

of de Sitter spacetime. In particular, referring back to (22), we see that (again setting L

to 1 for convenience) for t → ∞, X4 = cosh t − 1
2r

2et → 1
2(1 − r2)et , while for t → −∞,

X4 → 1
2e

−t ∼ +∞. Thus, as t ranges from −∞ to ∞, for r2 > 1, the coordinate X4 ranges
from ∞ to −∞, but for r2 < 1, it only ranges between ∞ and

√
1 − r2, reaching its

minimum value when e2t = 1/(1 − r2).

Poincaré half plane and temporal boundary

To make contact with observational cosmology, let t → t/L, x → x/L, and so forth in (23),
and write ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2). As expected, the Hubble constantH = 1/L
is just the inverse of the de Sitter length.

Introducing the conformal time u by u= −e−Ht/H , we obtain another useful form:

ds2 = 1
(Hu)2

[−du2 + (dx2 + dy2 + dz2)] (26)

Notice that as the cosmic time t runs from −∞ to +∞, the conformal time u runs from
−∞ to 0. (Often it is more convenient to work with v = −u= e−Ht/H , even though as t
runs from −∞ to +∞, the time v runs backward from ∞ to 0.)

Remembering chapter I.5, you realize that de Sitter spacetime is a Minkowskian version
of the Poincaré half plane! Or, the Poincaré half plane is de Sitter spacetime Euclideanized.
Just as the Poincaré half plane has a boundary, de Sitter spacetime has a temporal bound-
ary∗ at u= 0, corresponding to t = ∞. At a fixed u= 0−, the boundary consists of Euclidean
3-space with no time.

∗ This feature of de Sitter spacetime has attracted a great deal of attention.
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The Poincaré coordinates, just like the closely related planar coordinates, cover only part
of the Minkowski sphere in the embedding spacetime M4, 1.

Different slices give closed, flat, and open universes

We just saw that de Sitter spacetime describes an exponentially expanding flat universe
driven by a positive cosmological constant.

Earlier, I asked you whether you recognized the spacetimes described by (15) and (18).
Well, you might have if you did exercise VIII.1.2. They describe, respectively, an open and
a closed universe driven by a positive cosmological constant. To see this, we need to see
through various disguises.

For convenience, I write the two spacetimes here again (with a trivial change of notation):

ds2 = L2
(
−dt2 + sinh2

t dH 2
3

)
(open) (27)

and

ds2 = L2
(
−dt2 + cosh2

t d�2
3

)
(closed) (28)

Note, once again, that space is spherical for the closed universe and hyperbolic for the
open universe.

First, for the closed case, go back to the definition L2d�2
3 ≡ L2

L2−r2dr
2 + r2d�2

2 in the
discussion leading to (10). Putting this into (28), we obtain

ds2 = −dt2 +
(

cosh
t

L

)2
⎛
⎝ 1

1 − r2

L2

dr2 + r2d�2
2

⎞
⎠ (closed) (29)

after scaling t → t/L.
For the open case, go back to (12) and set sinh ψ = r (note to Confusio: not the same r

as in (16)) and so dψ2 = dr2/(1 + r2). We then obtain (again after suitable scaling)

ds2 = −dt2 +
(

sinh
t

L

)2
⎛
⎝ 1

1 + r2

L2

dr2 + r2d�2
2

⎞
⎠ (open) (30)

Since I am writing a textbook, I felt obliged to drag the de Sitter length around, at least
for a while, but now I am finally fed up. Henceforth, let us use L as the length unit and
set L= 1.

It is instructive to make contact with the cosmological equation determining the scale
factor a(t) (defined in chapter VIII.1, as you may recall). The functions a(t) = cosh t ,
a(t) = et , and a(t) = sinh t , in (29), (23), and (30), respectively, satisfy the elementary
identities sinh2

t + 1 = cosh2
t , e2t = e2t , and cosh2

t − 1 = sinh2
t , respectively. But these

represent just the three versions of the cosmological equation (written in appropriate units)
for universes driven by a cosmological constant, namely ȧ2 + k = a2 for k = +1, 0, and −1,
respectively. The universe boiled down to elementary identities!

As was explained in chapter VIII.1, a universe consisting purely of a cosmological
constant could evade the argument given there that a Big Bang was inevitable in the past.
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For k = +1, the equation just cited indicates that a cannot drop below 1. For k = −1, there
was a Big Bang: the right hand side becomes negligible for small t and a grows linearly
from the Bang. Interestingly, the closed, flat, and open universes driven by a positive
cosmological constant correspond to different coordinatizations of de Sitter spacetime:
different spatial curvature but the same �. As was also emphasized in chapter VIII.1,
these are mathematical, rather than physical, universes, as any amount of radiation or
matter would dominate over � in the past near the Big Bang.

Let us now track down the coordinate transformation that led to (15) and (18) and
compare it with the corresponding transformation (22) in the flat case (which I rewrite
here for convenience):

X0 =
(

sinh t + 1
2r

2et
)

, X4 =
(

cosh t − 1
2r

2et
)

Xi = ret ωi , i = 1, 2, 3 (flat) (31)

For the closed cosmological constant–dominated universe, we have (see (19))

X0 = sinh t , X4 =
√

1 − r2 cosh t

Xi = r cosh t ωi , i = 1, 2, 3 (closed) (32)

For the open cosmological constant–dominated universe, we have (see (16), with a trivial
change of notation)

X0 =
√

1 + r2 sinh t , X4 = cosh t

Xi = r sinh t ωi , i = 1, 2, 3 (open) (33)

You might ask how the 3-dimensional space we live in, at a given instant in t , is
embedded in the hyperboloid I refer to as the Minkowskian sphere. To ease visualization,
you may wish to specialize to dS2.

For the flat case, we already mentioned that space consists of the intersection of lightlike
planes with the hyperboloid.

For the closed case, a given instant in t corresponds to a slice of the hyperboloid
at a fixed X0. Space is just a circle around the hyperboloid. In particular, for t = 0,
X = (0,

√
1 − r2, r), understandably just the circle around the “waist” of the hyperboloid.

For the open case, a given instant in t corresponds to a slice of the hyperboloid at a fixed
X4. Space at t = 0 degenerates into the point X = (0, 0, 1). It’s the Big Bang!

Static coordinates

For another interesting coordinate system, solve the defining equation (9) −T 2 + r2 +
W 2 = 1 by writing

T =
√

1 − r2 sinh t , W =
√

1 − r2 cosh t (34)

and thus obtain

ds2 = −
(

1 − r2
)
dt2 + dr2

1 − r2
+ r2d�2

2 (35)
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Remarkably, the metric has the same form as the Schwarzschild metric and furthermore
is static. The time dependence has disappeared. In other words, t → t + constant is an
isometry, or in somewhat fancier language, ∂

∂t
is a Killing vector. Note that this Killing

vector is timelike only for r < 1, that is, inside the de Sitter length. We see that r = 1
defines the de Sitter horizon. Indeed, the embedding (34) holds only for r < 1. Note also
that T + W = √

1 − r2et ≥ 0 and −T + W = √
1 − r2e−t ≥ 0, so that these coordinates

cover only one quarter of the spacetime, namely the region W ≥ |T |. Another quarter is
covered by flipping the sign of W in (34), leading to the same metric.

As in the case of the Schwarzschild metric, as we formally cross the horizon into the
region r > 1, t becomes a spatial coordinate and r a temporal coordinate.

Interestingly, we can put a spherical mass or a black hole in de Sitter spacetime. Indeed,
recall from exercise VI.3.6 that

ds2 = −
(

1 − 2M
r

− r2
)
dt2 + dr2

1 − 2M
r

− r2
+ r2d�2

2 (36)

satisfies the Einstein field equationRμν = +3�gμν outside the black hole, but notRμνλσ =
1
L2 (gμλgνσ − gμσgνλ) of course, since this spacetime, known as the Schwarzschild–de Sit-
ter spacetime (SdS4 for short) is not maximally symmetric.

Kruskal-Szekeres–like coordinates for de Sitter spacetime

Starting with the de Sitter spacetime (35), we can go through steps similar to those we took
in chapter VII.2 to obtain the Kruskal-Szekeres coordinates for the Schwarzschild black
hole. Introduce x± = t ± 1

2 log( 1+r
1−r ), for 0 ≤ r < 1. We have dx± = dt ± dr

1−r2 and hence

ds2 = −(1 − r2)dx+dx− + r2d�2 (37)

where r is understood to be r(x+, x−)= e(x
+−x−)−1

e(x
+−x−)+1

. Also, 2t = x+ + x−.

Next, introduce U = ex
−

and V = −e−x+
, so that UV = −e(x−−x+) and hence

r = 1 + UV

1 − UV
(38)

Also, we have

e2t = −U

V
(39)

Plugging dU = Udx−, dV = −V dx+, and (38) into (37), we obtain

ds2 = 1
(1 − UV )2

(
−4dUdV + (1 + UV )2d�2

)
(40)

Let us focus on the spacetime described by (40). In other words, now that we are
done with x±, we forget about them. In figure 2, we show the salient features of this
spacetime. The U and V axes are drawn at 45◦ from the vertical and divide spacetime
into four regions labeled I, II, III, and IV, as in the Schwarzschild case (discussed in
chapter VII.2). According to (38), lines of constant r correspond to hyperbolas in the
(U -V ) plane. In particular, the north and south poles, both with r = 0, correspond to the
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Figure 2 Kruskal-Szekeres–like coordinates for de Sitter spacetime. (a) The de Sitter horizon at r = 1corresponds
to UV = 0, namely the U and V axes, drawn at 45◦ from the vertical. Spatial infinity r = ∞ corresponds to
UV = 1. (b) The lines of constant t are shown. In region I, time points upward, that is, the Killing vector is future
directed, but in region IV, the Killing vector is past directed. (c) The Penrose diagram for de Sitter spacetime.

hyperbolas UV = −1 located in region IV and region I, respectively. The de Sitter horizon
at r = 1 corresponds to UV = 0, namely the U - and V -axes. Finally, spatial infinity r = ∞
corresponds to UV = 1.

Notice that the metric in these (U , V ) coordinates depends only on the productUV and
not onU and V separately. Referring back to (35) and (39), we see that this is of course why
the (t , r) coordinates are called static coordinates in the first place: the metric in (35) does
not depend on t . Speaking in a fancier tongue, we would say that the spacetime admits a
Killing vector
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∂

∂t
= U

∂

∂U
− V

∂

∂V
(41)

Explicitly, scaling U → eεU and V → e−εV in (39) oppositely generates time translation
t → t + ε, leaving r unchanged. In figure 2b, we show the lines of constant t , namely
U = −e2tV . In region I, with U > 0 and V < 0, we see that with increasing t , the lines tilt
upward, eventually ending up on the U -axis (namely the line V = 0). In other words, in
region I, time points upward, or more accurately, the Killing vector is future directed.

Note also from (39) that as t → ∞, V → 0. So indeed, the U -axis corresponds to t = ∞,
in agreement with what we just said. Similarly, the V -axis corresponds to t = −∞.

Now we see an interesting phenomenon: the lines of constant t continue into region
IV, with U < 0 and V > 0. As t increases, the lines tilt downward. In region IV, the Killing
vector is past directed. Of course, this just means that −t corresponds to time, and an
observer in region IV would still move upward with the passage of proper time.

In more mundane language, the Killing vector (41) is given in component form by ξμ =
(U , −V , 0, 0). We find that ξ2 = gμνξ

μξν = 2gUV ξUξV = 8UV/(1 − UV )2. As expected,
in regions I and IV, ξ2 < 0 and ξ is timelike. But in regions II (with U > 0, V > 0) and III
(with U < 0, V < 0), ξ is spacelike. Actually, we already knew that the time coordinate t
and the space coordinate r exchange roles as we cross the horizon, which in this diagram
corresponds to the U - and V -axes.

Finally, we can compactify and knead figure 2a into a square, that is, a Penrose diagram,
as shown in figure 2c.

Thermal radiation from the de Sitter horizon

In 1976, Gibbons and Hawking showed that thermal radiation emanates from the de Sit-
ter horizon, similar to the radiation emanating from the Schwarzschild horizon and to
the radiation seen by an accelerated observer, discussed in chapter VII.3. The physics
underlying each of these three cases is quite similar: quantum fluctuation produces a
particle-antiparticle pair near the horizon (the Schwarzschild horizon, the Rindler hori-
zon, and the de Sitter horizon, as the case may be), with one of them disappearing over
the horizon, never to be seen by the observer. The other member of the pair is observed
as thermal radiation. Indeed, we have already mentioned the striking similarity in form
between de Sitter spacetime in static coordinates in (35) and the Schwarzschild metric,
with the coordinate t changing from a temporal coordinate to a spatial coordinate.

The temperature of the Gibbons-Hawking radiation can again be estimated by dimen-
sional analysis:

Tde Sitter ∼ 1
L

∼ �c

L
(42)

A detailed quantum field theoretic analysis, well beyond6 the scope of this book, is needed
only to determine the overall numerical coefficient (which happens to be (2π)−1).

A great deal of mystery lurks behind the Gibbons-Hawking radiation, however, even
beyond the mysteries behind Hawking radiation. To start with, the de Sitter horizon is
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observer dependent. For the black hole, we could invoke the possible microstates in its
formation to account for the entropy. It is far from evident7 what the corresponding
counting of microstates would be for de Sitter spacetime.

Causal structure of de Sitter spacetime

Faced with this almost bewildering variety of coordinates, we evidently should choose
wisely, using coordinates appropriate for the physics at hand. For visualizing and calculat-
ing geodesics, the embedding coordinates in figure 1 may actually be best (see appendix
3). But to understand the causal structure of de Sitter spacetime, clearly some sort of con-
formal coordinates (such as (26)) are best. Here we derive, by inserting cosh t = 1

cos τ into
(18), the metric in conformal coordinates (recall (10)):

ds2 = 1
cos2 τ

(
−dτ 2 + d�2

3

)
= 1

cos2 τ

(
−dτ 2 + dψ2 + sin2 ψd�2

2

)
(43)

Here τ ranges from −π
2 to π

2 , causing t to range from −∞ to ∞, while the latitude ψ ,
as remarked earlier in connection with (10), ranges from 0 to π . Note that space, namely
a constant τ slice of spacetime, is not flat. In terms of the coordinates of the embedding
spacetime M4, 1, we have

T = tan τ , r = sin ψ

cos τ
, W = cosψ

cos τ
(44)

Consider the Penrose diagram in figure 3a. As depicted, the τ axis is vertical, the ψ axis
horizontal. Each point in this 2-dimensional (τ , ψ) plot on a piece of paper represents a
2-sphere. The left and right hand sides correspond to the north (ψ = 0) and south (ψ = π )
poles, respectively. Note that r = 0 for both the north and south poles, with W taking
on opposite signs. The surfaces labeled I− and I+ sit in the infinite past and future,
respectively.

The attractive feature of a Penrose diagram is of course that light rays travel along lines
at 45◦. Indeed, in the d = 2 case, the trajectory a photon takes is given simply by dθ = ±dτ .

Imagine yourself sitting at the south pole (which is of course equivalent to any other
point on the sphere). Where in spacetime can you send a message to?

Clearly, you can send a message to any spacetime point in the shaded region labeled as
O+ (figure 3b). For example, you can send a light pulse to B from the point A on your
worldline, as shown in figure 3b. Of course, before you reach A, you can also send a
message traveling at less than the speed of light to B, but once you live past A, you can no
longer send anything to B.

Can the other observer, upon receipt of your message at B, send you a response? She
cannot. Any response she sends will end up at I+.

Finally, you cannot send a message to the spacetime point C even if you had thought
of it in your infinite past (namely, the lower right corner). A light pulse sent from the
south pole in the infinite past would reach the north pole in the infinite future. However,
if an observer stationed at C hurries, she could intercept your message upon crossing the
diagonal line.
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Figure 3 Penrose diagrams showing the causal structure of de Sitter spacetime. (a) Each point in this
2-dimensional (τ , ψ) plot represents a 2-sphere. The left and right hand sides correspond to the north
(ψ = 0) and south (ψ = π ) poles, respectively. (b) Suppose you are sitting at the south pole (which is in fact
anywhere). You can send a light pulse to B from the point A on your worldline, but once you live past A,
you can no longer send anything to B. An observer stationed at C can intercept your message if she hurries
across the diagonal line into O+. (c) From any point in O−, a message can be sent to you, but not from
outside O−. (d) The region in spacetime you can communicate with is known as the (southern) causal
diamond, shown as the shaded region. You can send a message to D and actually get a response back.

Similarly, we could ask “From where in spacetime can a message be sent to you?” That
region is shaded and labeled as O− in figure 3c. For example, a message sent from the
point C will end up in I+.

As many self-help books have assured us, communication is a two-way street. By this
definition, the region in spacetime you can communicate with is given by the intersection
of O+ and O−, known to the cognoscenti as the (southern) causal diamond and shown as
the shaded region in figure 3d (and referred to as region I in figure 2). For example, you
can send a message to D and actually get a response back.

In fact, we have already seen this causal structure of de Sitter spacetime by an explicit
calculation in chapter V.3. In an exponentially expanding universe, everybody is moving
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away from us and will eventually move past our horizon forever, just as distant ships move
over our everyday horizon. For example, unless the observer at D fires up her rocketship
and hurries, she will eventually cross the 45◦ line in figure 3d and leave the southern causal
diamond, headed toward the infinite future I+, as indicated by the solid curved line. If
she really hurries, she could still meet you, but not until after you live past the point A′. If
all goes well, she could then merge her worldline with yours, and you could travel to I+

together.

Iterative relationship between de Sitter spacetimes

All the way back in chapter I.5 you showed in exercise I.5.10 that the metrics on the
spheres Sd enjoy an iterative relation between them: ds2

d
= dθ2 + sin2 θds2

d−1. (See also
(10).) Not surprisingly, the metrics on de Sitter spacetimes dSd also enjoy an iterative
relation between them, since they are Minkowskian spheres.

Recall the angular coordinates you worked out (exercise I.5.9) on the sphere Sd :

X1 = cos θ1, X2 = sin θ1 cos θ2, . . .

Xd = sin θ1 . . . sin θd−1 cos θd , Xd+1 = sin θ1 . . . sin θd−1 sin θd (45)

As already alluded to earlier in this chapter, and as explained in chapter III.3, we can jump
immediately from the sphere to de Sitter spacetime by making Minkowski’s “mystical”
substitution Xd+1 = iX0, so that (1) becomes (2). Calling θd for brevity θ , we write∗ ϕ = iθ

formally (so that cos θ = cosh ϕ and sin θ = i sinh ϕ) and obtain

X1 = cos θ1, X2 = sin θ1 cos θ2, . . .

Xd = sin θ1 . . . sin θd−1 cosh ϕ , X0 = sin θ1 . . . sin θd−1 sinh ϕ (46)

Replacing dθ2
d

in the spherical metric

ds2
d

= dθ2
1 + sin2 θ1dθ

2
2 + . . . + sin2 θ1 . . . sin2 θd−1dθ

2
d

by −dϕ2, we obtain, for the de Sitter metric,

ds2
d

= dθ2
1 + sin2 θ1dθ

2
2 + . . . − sin2 θ1 . . . sin2 θd−1dϕ

2

Thus, we arrive at the iterative relationship for dSd :

ds2
d

= dθ2 + sin2 θds2
d−1 (47)

which is formally precisely the same as the iterative relationship for Sd .
As remarked earlier in chapter I.5, this iterative relation just expresses the fact, known to

many school children, that lines of constant latitude on the globe form circles. Similarly,
you can see from figure 1 that if you slice the hyperboloid representing dSd , you get a
hyperboloid of one lower dimension.

∗ More precisely, we analytically continue. In quantum field theory, this is known as a Wick rotation.
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I might mention here that, while we went, at the start of this chapter, from a sphere to
a de Sitter spacetime by a feat of imaginary magic, we can certainly go from a de Sitter
spacetime back to a sphere using the same trick. Letting X0 = iX5 while keeping Xi, X4

fixed, we can turn a set of coordinates on dS4 into a set of coordinates on S4. For example,
let t → it (so that sinh t → i sin t and cosh t → cos t), then the coordinates in (32) for the
closed cosmological constant–dominated universe become coordinates for S4. In doing
this, we have to make sure that Xi and X4 remain the same, of course. Thus, for example,
for the coordinates in (33) for the open cosmological constant–dominated universe, we
have to let r → ir as well as t → it . As another example, letting t → it and ψ → iψ in
the metric ds2 = − L2

L2+t2dt
2 + t2(dψ2 + sinh2

ψdθ2) for dS3 mentioned after (11), we

recover the metric ds2 = L2

L2−r2dr
2 + r2d�2

2 for S3 mentioned just before (10).

Stereographic projection for de Sitter spacetime

Just as we can stereographically project the sphere (surely you did exercise I.5.13), we
can stereographically project de Sitter spacetime by mapping (X0, X1, X2, X3, X4) into
(x0, x1, x2, x3) as follows (here we reinstate L):

XM = 1

1 + x2

4L2

δM
μ
xμ, M = 0, 1, 2, 3 (48)

and

X4 = L

⎛
⎝1 − x2

4L2

1 + x2

4L2

⎞
⎠ (49)

where x2 ≡ −(x0)2 + (x1)2 + (x2)2 + (x3)2. The Kronecker delta in (48) emphasizes that
while the indices M and μ might be numerically identical, they are not conceptually the
same. In other words, (48) says that, for example, X3 and x3 differ by the overall factor

1
1+ x2

4L2

, so that

−
(
X0
)2 +

(
X1
)2 +

(
X2
)2 +

(
X3
)2 = − (

x0)2 + (
x1)2 + (

x2)2 + (
x3)2

(
1 + x2

4L2

)2 = x2(
1 + x2

4L2

)2

You can now analytically continue the result from chapter I.5 on stereographic projection
of the sphere to verify that the defining relation (2) is satisfied and that

ds2 =
⎛
⎝ 1

1 + x2

4L2

⎞
⎠

2

ημνdx
μdxν (50)

(Of course, you can also check this by brute force, plugging (48) and (49) into ds2 =
ηMNdX

MdXN .) This shows explicitly that de Sitter spacetime, aka the Minkowskian
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sphere, is conformally flat in any dimension. Upon recalling that the garden variety sphere
is also conformally flat,∗ we are perhaps not surprised.

The rise of de Sitter spacetime

De Sitter and anti de Sitter spacetimes have become the darlings of theoretical physicists
for entirely different reasons. We will talk about anti de Sitter spacetime in the following
chapter. As already mentioned on several occasions, observational cosmologists tell us that
our universe is partly filled by a dark energy, presumably the cosmological constant. Thus,
as we discussed in chapter VIII.2, our universe will eventually expand into a de Sitter
spacetime. To me, it is strangely appealing that, having discovered that our world is
Euclidean round, we now realize that our universe will become Minkowskian round.

Allow me to go into a bit more detail about the history of the de Sitter metric, first
mentioned in chapter V.3 (see table for de Sitter spacetime). In 1917 de Sitter found that8

ds2 = − cos2 χdt2 +
(
dχ2 + sin2 χd�2

2

)
(51)

satisfies (4) and hence solves Einstein’s field equation with a positive cosmological con-
stant. The attentive reader recognizes that this metric is just the static metric (35) with the
simple transformation r = sin χ . In 1922, Lanczos and Weyl independently and correctly
wrote down ds2 = −dt2 + cosh2

t (dϕ2 + cos2 ϕdψ2 + cos2 ϕ cos2 ψdψ2), which again the
attentive reader recognizes as the global metric (18). Then, in 1925, Lemâıtre, while still a
student, noted that de Sitter’s coordinates were not comoving, namely that lines of constant
χ , θ , and ϕ were not geodesics unlessχ = 0 (hence the corresponding “defect” plagues (35)
also), and so de Sitter’s coordinate choice was not homogeneous. Lemâıtre then discovered
the metric (23) for the flat expanding universe that we have known and loved since chapter
V.3. Later, in 1927, he extended his work to include closed and open universes. Perhaps
with some justification, we should refer to the spacetime studied in this chapter as the
de Sitter-Lanczos-Weyl-Lemâıtre spacetime.

Appendix 1: The group theory behind the exponentially expanding universe

As promised, I now give a more satisfying motivation9 for the coordinate transformation given in (22). For this
discussion, we will be a bit more general and discuss dSd = SO(d , 1)/SO(d − 1, 1). With L= 1, (2) reads

ηMNX
MXN = −

(
X0
)2 +

d−1∑
i=1

(
Xi
)2 +

(
Xd

)2 = 1 (52)

As always, we have the Lie algebra of SO(d , 1) (see (III.3.21); M , N , P , and Q range over 0, 1, 2, . . . , d):[
JMN , JPQ

]= i
(
ηMPJNQ + ηNQJMP − ηNPJMQ − ηMQJNP

)
(53)

∗ At this stage, I need hardly remind you that conformally flat is not flat!
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We now identify the 1
2d(d + 1) generators SO(d , 1) of acting on dSd . In addition to the generators of rotation

Jij (here i and j range over 1, 2, . . . , d − 1), we have the combinations

Pi ≡ Ji0 + Jd , i , D ≡ Jd , 0 , Ki ≡ Ji0 − Jd , i (54)

which we identify as the generators of translation, dilation, and conformal transformation, respectively, as
discussed in the preceding chapter. As the context is slightly different (and because of our inclusion of factors of
i here), we again display the algebra, which you can deduce from (53):

[Pi , Pj ] = 0, [Ki , Kj ] = 0,

[D , Pi ] = −iPi , [D , Jij ] = 0, [D , Ki ] = iKi ,

[Jij , Pk] = i(δikPj − δjkPi), [Jij , Kk] = i(δikKj − δjkKi),

[Pi , Kj ] = 2iδijD − 2iJij (55)

For example, [Pi , Pj ] = [Ji0 + Jd , i , Jj0 + Jd , j ] = i(−Jij + Jij − δijD + δijD)= 0. Note that to obtain this familiar
result, we have to define translation Pi as a linear combination of a boost in the ith direction and a rotation in
the (d-i) plane. As another example, [D , Pi ] = [Jd , 0 , Ji0 + Jd , i ] = −i(Jd , i − J0i)= −iPi .

These generators act linearly on the embedding coordinates XM . As in chapter III.3, their action can be
represented by JMN = i(XM∂N −XN∂M). Thus, each of these generators is represented by a (d + 1)-by-(d + 1)
matrix. We arrange the indices in the “natural” order (0, {i}, d) = (0, 1, 2, . . . , d − 1, d) where, as indicated
above, i ranges over 1, 2, . . . , d − 1. For example, the boost D ≡ Jd , 0 in the dth direction is

D = i

⎡
⎢⎢⎣

0 0 −1

0 0 0

−1 0 0

⎤
⎥⎥⎦ (56)

The notation is such that along the diagonal, in the upper left, the 0 represents a 1-by-1 matrix with its entry equal
to 0; in the center, the 0 represents a (d − 1)-by-(d − 1) matrix with all its entries equal to 0; and finally, in the
lower right, the 0 once again represents a 1-by-1 matrix with its entry equal to 0. Exponentiating the generator D
to obtain the group element, we obtain

eiDt =

⎡
⎢⎢⎣

cosh t 0 sinh t

0 I 0

sinh t 0 cosh t

⎤
⎥⎥⎦ (57)

In other words, this is a (d + 1)-by-(d + 1) matrix with a (d − 1)-by-(d − 1) identity matrix in its center.
Similarly, we have

�P . �x = i

⎡
⎢⎢⎣

0 �xT 0

�x 0 �x
0 −�xT 0

⎤
⎥⎥⎦ (58)

In the matrix, �x is to be interpreted as a (d − 1)-dimensional column vector (so that �xT is an (d − 1)-dimensional
row vector). (Notice that as a linear combination of a boost and a rotation, �P . �x is symmetric in its upper left
corner and antisymmetric in its lower right corner, so to speak.) Exponentiating, you will find

ei
�P .�x =

⎡
⎢⎢⎣

1 + 1
2 �x2 �xT 1

2 �x2

�x I �x
− 1

2 �x2 −�xT 1 − 1
2 �x2

⎤
⎥⎥⎦ (59)

Notice that ( �P . �x)3 = 0, so that the exponential series terminates. You are invited to verify that ei �P .�xei �P .�y =
ei

�P .(�x+�y).
Just as in chapter IX.6, we map the coset manifold dSd = SO(d , 1)/SO(d − 1, 1) by acting with g(t , �x) =

exp(i �P . �x) exp(iDt) on a reference point, which we choose to be X∗ = (0, �0, 1) (in analogy to the south pole
for the familiar case of the sphere). (The logic here is that X∗ = (0, �0, 1) is left invariant by the SO(d − 1, 1)
generated by Jij , Ji0 = Pi +Ki .) We obtain

X = (gX∗)= ei
�P .�xeiDt(0, �0, 1)=

(
sinh t + 1

2e
t �x2, et �x , cosh t − 1

2e
t �x2

)
(60)
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We recognize that this is precisely what appears as the rather peculiar coordinatization (22) we encountered
before, but now derived group theoretically. From (60), we obtain

ds2 = ηMNdX
MdXN = −dt2 + e2td �x2 (61)

namely the metric for the expanding universe (23). In other words, to describe the expanding universe in the
form (61), we coordinatize an event at (t , �x) by the group element g(t , �x)= exp(i �P . �x) exp(iDt) needed to bring
the reference point X∗ to our event.

Appendix 2: Discovering the expanding universe without knowing
about Einstein’s field equation

While we are all enamored of the beauty of group theory, the truly impoverished man ignorant of this wonderful
subject can still obtain the coordinate transformation in (22) by brute force (of course). Starting with ds2 =
−dT 2 + dX2 + dY 2 + dZ2 + dW 2, we transform T = f (t , r), X = xh(t , r), Y = yh(t , r), Z = zh(t , r), W =
g(t , r) with r2 = x2 + y2 + z2 and try to get to ds2 = −dt2 + a2(t)d �x2, with a(t) some unknown function.

The embedding equation −T 2 +X2 + Y 2 +Z2 +W 2 = 1(setL= 1for convenience) gives −f 2 + g2 + r2h2 =
1. Plugging (as usual, ḟ = ∂f

∂t
, f ′ = ∂f

∂r
, and so on) dT = ḟ dt + f ′dr , dX = hdx + xḣdt + xh′dr , and so forth,

into ds2 and matching to the desired form gives us (a) −ḟ 2 + ġ2 + r2ḣ2 = −1, (b) −ḟ f ′ + ġg′ + r2ḣh′ + rḣh= 0,
(c) h2 = a2, and (d) f ′2 = g′2. This is straightforward to solve. For instance, (d) gives (with no loss of generality
by flipping either T or W ) f (t , r)= g(t , r)+ k(t), with k(t) some unknown function. Eventually, we arrive at,
as a bonus, a(t)= et after absorbing an integration constant.

The point of this little exercise is to show that mathematical types thinking about the analogs of spheres for
Minkowski spacetime could have, in principle, discovered the exponentially expanding universe long ago without
knowing about Einstein’s field equation. This suggests another extragalactic fable. We can imagine a smart guy
in a civilization infatuated with the sphere arriving at the de Sitter universe, and then, by calculating the Ricci
tensor (or knowing that the analog of the sphere is maximally symmetric), uncovering the cosmological constant
and dark energy.

Appendix 3: Geodesics in the embedding space

Let us determine the geodesics in de Sitter spacetime using the embedding coordinates XM satisfying X2 =
ηMNX

MXN = 1. Instead of extremizing the integral
∫ √−ηMNdX

MdXN , we extremize
∫
dζ( 1

2 Ẋ
2 + 1

2λ(X
2 −

1)), as explained in exercise II.2.6, imposing the constraint with the Lagrange multiplier λ. Here ζ is an
appropriate parameter and ẊM = dXM/dζ .

The reader may or may not recognize this as essentially the same problem of a particle on a sphere that we did
back in appendix 4 to chapter II.3. We can lift many of the equations, suitably reinterpreted with a Minkowski
metric, from that simple problem! The equation of motion reads ẌM = λXM , to be solved with the constraint
X2 = 1, which, when differentiated, gives X . Ẋ = 0 (where we indicate the dot in the dot product to remind us
that we are dealing with vectors). Using the equation of motion, we also have Ẍ . Ẋ = 0, thus concluding that Ẋ2

is a constant. As in chapter II.3, we verify by direct differentiation that JMN ≡XMẊN −XNẊM is conserved.
Define 2J 2 ≡ JMNJMN = 2(XMẊN −XNẊM)XMẊN = 2Ẋ2. (Note that both signs are possible for J 2.) Hence
we have Ẋ2 = J 2.

For definiteness, let us consider a timelike geodesic. Since Ẋ2 = J 2 is negative, write K2 = −J 2, with K real.
Then this last equation has the obvious solutionXM = aMeKζ + bMe−Kζ , with �a and �b two constant real vectors.
The constraint 1=X2 = a2e2Kζ + b2e−2Kζ + 2a . b implies that a2 = b2 = 0, 2a . b= 1. The motion of the particle
is completely solved:

X = aeKζ + be−Kζ , with a2 = 0 = b2, and 2a . b = 1 (62)

Geometrically, the particle travels along the hyperbolic version of great circles on the surface defined by (2). You
can verify this by following steps analogous to those given in chapter II.3. For a spacelike geodesic, J 2 is positive.
Evidently, we replace e±Kζ by cos Jζ and sin Jζ .
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For a lightlike geodesic, J = 0, and the equation of motion collapses to Ẍ = 0 with the solution X = a + bζ ,
with a and b two Minkowski vectors. In the embedding space, light travels along a straight line. The lightlike
condition (dX)2 = 0 implies that b2 = 0. The condition that the photon stays on the de Sitter hyperboloid (2)
implies X2 = a2 + 2a . b ζ = 1. Thus, lightlike geodesics are determined by

X = a + bζ , with a2 = 1, b2 = 0, and a . b = 0 (63)

Confusio looks puzzled for a moment, muttering “How can (dX)2 = 0 and X2 = 1 both be satisfied?” Yes,
they can.

It is fun to verify that these geodesics are indeed followed in any specific coordinate system we use to map out
de Sitter spacetime. Let us pick, for example, the expanding universe coordinates in (23), since the cosmologists
like them.

Consider a cosmologist at rest at r = 0 (which is in fact anywhere in the universe) tracing a perfectly respectable
timelike geodesic. Inspecting (22), we have (setting L= 1) X = (sinh t , 0, 0, 0, − cosh t)= 1

2e
t(1, 0, 0, 0, −1)−

1
2e

−t (1, 0, 0, 0, 1), in agreement with (62) with ζ = t , K = 1. Thus, a = 1
2 (1, 0, 0, 0, −1), b = − 1

2 (1, 0, 0, 0, 1).
Indeed, a2 = 0 = b2 and 2a . b = 1.

Next, consider a photon moving along the x-axis, starting at x = 0, t = tS. (Note that the expanding universe is
not invariant in t , and recall that we studied this problem in chapter V.3.) Then dx = e−tdt , so that x = e−tS − e−t ,
with the photon reaching x(t = ∞) = e−tS at t = ∞. We recover the de Sitter horizon. Now (22) gives T =
X0 = sinh t + 1

2 (e
−tS − e−t )2et = 1

2 (1 + e−2tS)et − e−tS, W =X4 = 1
2 (1 − e−2tS)et + e−tS, and X =X1 = (e−tS −

e−t )et = et−tS − 1. Indeed, (63) is satisfied with a = (−e−tS, −1, 0, 0, e−tS), b = ( 1
2 (1 + e−2tS), e−tS, 0, 0, 1

2 (1 −
e−2tS)), and ζ = et .

Confusio is amazed, but you know that we are merely checking that the defining equation (2) is satisfied and
that, if ds2 = 0 in one set of coordinates, ds2 = 0 in any other set of coordinates.

As yet another example, follow a photon starting at r = 0 and t = 0 in static coordinates (35). Integrating with
dt = dr/(1 − r2) with these initial conditions, we obtain r = tanh t . As expected, it reaches the horizon r = 1 at
t = ∞. We check readily that (63) holds with a = (0, 0, 1) and b = (1, 1, 0) (with a minor abuse of notation).

Appendix 4: Space of spheres and de Sitter spacetime

In this appendix, we present an amusing tidbit regarding the space of spheres and de Sitter spacetime.10

Consider the space of spheres living in ordinary 3-dimensional Euclidean space. We need 3 numbers �x =
(x , y , z) to specify the location of the sphere and a number R to specify its radius. Thus, the space of spheres is
4-dimensional. Any guesses on what this 4-dimensional space is? Of course, the way I have set you up, and the
mere fact that this appendix is in a chapter on de Sitter spacetime. you might suspect that it is dS4. But as you
will see, it is quite remarkable how the connection works.

Picture two spheres, one with radiusR located at �x, the other with radiusR′ located at �x′. See figure 4. Suppose
the two spheres intersect. The intersection is a circle perpendicular to �x − �x′. Pick any point V on this circle. (By
rotational invariance, it will be clear that for our purposes, it does not matter which point we pick.) Consider the
triangle formed by the centers C and C′ of the two spheres and V. Denote the angle CVC′ by �. (If you prefer,
you can talk about the 3-dimensional space of circles, which is slightly easier to visualize. The intersection of two
circles consists of two points, and we could pick either as V.) Then (�x − �x ′)2 = R2 + R′2 − 2RR′ cos�.

Let us associate the two spheres with two points X and X′ on the hyperboloid that defines dS4. We will work
out the association as we go along. In the embedding 5-dimensional Minkowski spacetime, the distance between
the two points is given by (X −X′)2 = 2(1 −X .X′), whereX .X′ = − 1

2 (X
+X′− +X−X′+)+ �X . �X′ in light cone

coordinates, with the dot product defined by the 5-dimensional Minkowski metric, of course. We can evaluate
X . X′ in any of the coordinate systems listed in this chapter, but with malice of hindsight, let us use the flat
expanding universe coordinates given in (25):

2X . X′ = −
(
et

′
e−t (r2e2t − 1)

)
− ( ↔ ′)+ 2etet

′ �x . �x′

= −et+t ′ (�x − �x′)2 + et−t ′ + et
′−t (64)

But in the space of spheres, we have 2 cos�= R
R′ + R′

R
− (�x−�x′)2

RR′ , as mentioned above. Thus, if we make the
association R = e−t and R′ = e−t ′, we see that cos�=X . X′.

For example, the condition that two spheres barely touch, namely cos�= −1, translates into the antipodal
condition X . X′ = −1. We can now translate between the two mathematical constructs. As another example,
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Ω

C′

R′

C

R

V

Figure 4 Two spheres intersecting, with the
relation between various lengths and the angle
� fixed by elementary trigonometry.

the invariant volume of spacetime d4x
√−g = d3xdte3t = d3xdR/R4 gets translated into a measure that severely

suppresses large spheres.
I find it quite surprising that the 19th century space of spheres somehow “knows” about the 20th century

flat expanding universe, not to mention the Minkowski metric. Sitting in a flat expanding universe, we are each
associated with a sphere whose radius shrinks with the inexorable passage of time.

Exercises

1 Using the “slicing” in (22), derive the standard form (23) of the exponentially expanding universe.

2 Verify for the various metrics of de Sitter spacetime the maximal symmetry relations (for d = 4) Rμνλσ =
+ 1

L2 (gμλgνσ − gμσgνλ), Rμν = + 3
L2 gμν , and R = + 12

L2 .

3 Starting from the static coordinates (35), you can obtain the de Sitter analog of the coordinates we used for
spherical black holes in chapter VII.2 by defining dp = dt + dr

1−r2 and dq = −dt + dr

1−r2 . Show that

ds2 =
(

1 − r2
)
dpdq + r2d�2

2 (65)

4 Show that the metric (36), with 2M
r

replaced by 2M
rd−3 , also solves the vacuum Einstein equation in d

dimensions.

5 Show that in conformal coordinates, the event horizons of an observer at the south pole and of an observer
at the north pole are given in terms of the embedding coordinates by T ±W = 0, respectively, and r = 1.

6 Complete the brute force calculation in appendix 2.

7 Show that lines of constant χ , θ , and ϕ in de Sitter’s original metric (51) are not geodesics unless χ = 0.

Notes

1. A useful reference on de Sitter and anti de Sitter spacetimes is M. Spradlin, A. Strominger, and A. Volovich,
Proceedings of the LXXVI Les Houches School, 2001.

2. Our treatment is resolutely from the physicist’s point of view. For an entry to the mathematical literature, a
starting point might be “A Geometrical Background for De Sitter’s World” by H. S. M. Coxeter Am. Math.
Monthly 50 (1943), pp. 217–228.
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3. The isometry groups should be, strictly speaking,O(d + 1) andO(d , 1), respectively, but we won’t be talking
much about reflections.

4. I like this partly because I learned it from A. Einstein’s The Meaning of Relativity—directly from the master,
so to speak.

5. I was motivated to display this many forms of the de Sitter metric when I participated in various workshops
and schools and realized that many in the audience were unaware of the variety of ways in which de Sitter
and anti de Sitter spacetimes could be written.

6. Actually, it requires only a minimal amount of quantum field theory; I am almost tempted to devote an
appendix to it. The clearest derivation I know of is in section III.2 of the article by M. Spradlin et al. Let
me mention one key feature: for the observer sitting at r = 0, the passage of proper time between two
events is measured by X . X′ = − sinh t sinh t ′ + cosh t cosh t ′ = cosh(t − t ′), but the function cosh(
t)=
cosh(
t + 2πi) is periodic in imaginary time. Thus, we can again invoke the “mystical argument” of time
as an angle mentioned in appendix 1 of chapter VII.3.

7. People have argued that our lack of knowledge of what happens beyond the horizon amounts to a kind of
entropy.

8. W. de Sitter, Proc. Royal Acad. Amsterdam, XIX (1917), p. 1217. De Sitter’s motivation seems somewhat
muddled to modern eyes. He began by saying that Einstein had proposed the boundary condition (g00 =
−1, gij = 0) at infinity (which is clearly not invariant under coordinate transformation) and proposed instead
that gμν = 0 at infinity. Interestingly, he stated in a footnote, “The idea to make the 4-dimensional world
spherical in order to avoid the necessity of assigning boundary-conditions, was suggested several months
ago by Prof. Ehrenfest, in a conversation with the writer. It was, however, at that time not further developed.”
Also, in a postscript, de Sitter said that he communicated his result to Einstein, who wrote back objecting to
a universe without matter. I am grateful to Gary Gibbons for showing me this paper.

9. I learned this from a paper by S. Deser and A. Waldron.
10. I am grateful to Gary Gibbons for telling me about this interesting connection between the space of spheres,

which was developed in 19th century mathematics, and de Sitter spacetime.



IX.11 Anti de Sitter Spacetime

A container for gravity

Now that you have mastered de Sitter spacetime, you are ready to tackle anti de Sitter
spacetime. Incidentally, this antiterminology appears to be modern, as all these spacetimes
were referred to as de Sitter in the older literature.1

As you well know, in theoretical physics, it is often useful to enclose in a box the sys-
tem we want to study, be it the electromagnetic field or a quantum particle. Unfortunately,
there is no known material out of which we can construct a box to contain the gravitational
field. However, as you will learn in this chapter, anti de Sitter spacetime possesses a spatial
boundary consisting of a Minkowskian spacetime of one lower dimension. For example,
the 5-dimensional anti de Sitter spacetime has as boundary the 4-dimensionalM3, 1 space-
time.2 This striking feature prompts us to use anti de Sitter spacetime as a container3 (the
term tin can is sometimes used) for quantum gravity, the only way we know to confine the
gravitational field and study its properties.

Interest in anti de Sitter spacetime has exploded4 in recent years due to the amazing
discovery by string theorists, notably Maldacena and others, that the physics of various
theories of gravity in AdS5 can be mapped onto the physics of certain gauge theories on
the M3, 1 spacetime that forms the boundary of the AdS5 spacetime. That this is even con-
ceivable is intimately connected to the holographic principle mentioned in chapter VII.3.
This surprising correspondence, known as∗ AdS/CFT correspondence, or more accurately,
as the gauge/gravity duality, promises to shed light5 on both quantum gravity and strongly
coupled gauge theories. More recently, a great deal of excitement has also been generated
by the possible relevance of this correspondence to condensed matter physics.

∗ AdS stands for anti de Sitter and CFT for conformal field theories: some special gauge theories are conformal
invariant, hence the term.



650 | IX. Aspects of Gravity

X0 X4

X1

Figure 1 The d-dimensional anti de Sitter space-
time AdSd embedded in (d + 1)-dimensional
Minkowski-type spacetime Md−1, 2.

Anti de Sitter spacetime

The d-dimensional anti de Sitter spacetimeAdSd with length scaleL is defined as the set of
all points (X0, X1, X2, . . . , Xd) in (d + 1)-dimensional Minkowski-type spacetimeMd−1, 2

(that is, a spacetime with ds2 = −(dX0)2 + (dX1)2 + (dX2)2 + . . . + (dXd−1)2 − (dXd)2

satisfying −(X0)2 + (X1)2 + (X2)2 + . . . + (Xd−1)2 − (Xd)2 = −L2, which we write as

(
X0
)2 −

d−1∑
i=1

(
Xi
)2 +

(
Xd

)2 = L2 (anti de Sitter spacetime) (1)

as shown in figure 1.
Compare and contrast this embedding equation with the one for de Sitter spacetime

given in (IX.10.2), which I display here again for convenience:

−
(
X0
)2 +

d−1∑
i=1

(
Xi
)2 +

(
Xd

)2 = L2 (de Sitter spacetime dSd) (2)

In parallel with the discussion for de Sitter spacetime, we know that anti de Sitter
spacetime is also maximally symmetric.

Note that the isometry group for anti de Sitter spacetime is SO(d − 1, 2) rather than
SO(d , 1). Aside from this, much of the discussion for de Sitter spacetime could now be
repeated. In particular, like de Sitter spacetime, anti de Sitter spacetime is also maximally
symmetric. A point on anti de Sitter spacetime, (0, . . . , 0, 1) for example, is left invariant
by SO(d − 2, 2). In other words, AdSd is the coset manifold SO(d − 1, 2)/SO(d − 2, 2).
For example, AdS5 = SO(4, 2)/SO(4, 1).

The isometry groups of de Sitter and anti de Sitter spacetimes are contrasted in this
table:

AdSd SO(d − 1, 2)

dSd SO(d , 1)
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The signs in (1), in contrast to those in (2), make all the difference in the world! Some
authors treat de Sitter and anti de Sitter together by introducing the sign σ = +1 for dS
and σ = −1 for AdS, so that the embedding equations (1) and (IX.10.2) are unified into
ημνX

μXν + σ(Xd)2 = σL2, with μ, ν = 0, 1, . . . , d − 1. In general, I won’t. I find the
practice confusing, not worth saving some space in the exposition, but occasionally, it
is instructive to compare the two spacetimes side by side, as I will do presently.

In the preceding chapter, we coordinatized de Sitter spacetime by eliminating W =Xd .
We can do the same for anti de Sitter spacetime; indeed, it is illuminating to do them
side by side, as I just outlined. With W 2 = L2 − σX . X (the notation is self-evident:
X . X = ημνX

μXν), we have WdW = −σX . dX and dW 2 = (X . dX)2/(L2 − σX . X).
Hence, we obtain

ds2 = ημνdX
μdXν + σdW 2 =

(
ημν − ημληνρX

λXρ

X . X − σL2

)
dXμdXν (3)

as in the preceding chapter, but now with σ = ±. Thus, with the metric ofAdSd written in
terms of d-dimensional coordinates, we can go back and forth between de Sitter and anti
de Sitter spacetimes by formally letting L2 → −L2.

In coordinates for which gμν is dimensionless, we thus have immediately

Rμνλσ = − 1
L2

(
gμλgνσ − gμσgνλ

)
(4)

and

Rμν = − (d − 1)
L2

gμν , R = −d(d − 1)
L2

, Eμν = (d − 1)(d − 2)
2L2

gμν (5)

These expressions differ from the corresponding expressions (IX.10.4 and IX.10.5) for
de Sitter spacetime by an overall sign, and so anti de Sitter spacetime solves Einstein’s field
equationRμν = 8πG�gμν with a negative cosmological constant given by 8πG�= − 3

L2 . I
remind you that, as explained in the preceding chapter, the observed cosmological constant
is positive, leading to a de Sitter spacetime.

Again, we can calculate the Riemann curvature tensor, as in the preceding chapter, by
letting X → 0 in (3), so that gμν � (ημν + σ

L2ημληνρX
λXρ). The metric is locally flat at

Xμ = 0. Referring to (VI.1.14), we obtain Rτρμν = σ

L2 (ητμηρν − ητνηρμ). Promoting ημν to
gμν, we obtain Rτρμν at an arbitrary point. Setting σ = +1 for dS and σ = −1 for AdS, we
obtain (IX.10.1) and (4), respectively.

For pedagogical clarity, instead of writing everything in terms of an arbitrary d, I will
often specialize to whatever value of d suits my purpose best. I often call X0 = T , and
Xd =W . Here is a table comparing and contrasting AdS4 and dS4:

AdS4 −T 2 +X2 + Y 2 + Z2 −W 2 = −L2 ds2 = −dT 2 + dX2 + dY 2 + dZ2 − dW 2

dS4 −T 2 +X2 + Y 2 + Z2 +W 2 = L2 ds2 = −dT 2 + dX2 + dY 2 + dZ2 + dW 2

That the isometry group is SO(3, 2) for AdS4 but is SO(4, 1) for dS4 should now be as
clear as day.
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Two “times”?

Note that in (1), the embedding is not into the familiar Minkowski spacetime Md , 1, but
into Md−1, 2 with two time coordinates. What do we do with two “times”? Very strange6

indeed!
Physics as we know it does not admit two times.7 Set d = 3 for definiteness. Let us

understand how AdS3 ends up having only one time coordinate, even though it started
with two. According to (1), AdS3 is defined by
(
T 2 +W 2

)
−
(
X2 + Y 2

)
= L2 (6)

with a metric induced from the two-time Minkowski metric η = diag(−1, +1, +1, −1) of
the embedding space M2, 2, namely

ds2 = −
(
dT 2 + dW 2

)
+
(
dX2 + dY 2

)
(7)

As shown in figure 1, we may picture AdS3 as embedded in M2, 2, somewhat crudely,
as a cylindrical tube with a radius that increases with increasing X and Y . In the (T , X)
plane with W = 0 = Y , the defining equation traces out two hyperbolas T = ±√

L2 +X2.
Compared to the tube shown in figure IX.10.1, the tube here is lying on its side, so to
speak.

I have grouped the coordinates in (6) and (7) to render the isometry group SO(2, 2)
manifest. Replace the two time coordinates (T , W) by polar coordinates (R , t) by setting
T = R cos t and W = R sin t . Similarly, replace the two space coordinates (X , Y ) by polar
coordinates (r , θ) by setting X = r cos θ and Y = r sin θ . Then ds2 = −(dR2 + R2dt2)+
(dr2 + r2dθ2). The apparent difficulty is that we have two time coordinates (R , t).

I have dragged L around long enough. Just as in the preceding chapter, for ease of
writing, I am now going to unceremoniously set L= 1. The resolution of the puzzle of
two times is that the apparent temporal coordinate R is not independent of the spatial
coordinate r , since the defining equationR2 − r2 = 1 constrains them. Differentiating, we
obtain RdR = rdr and hence dR2 − dr2 = ( r

2

R2 − 1)dr2 = − 1
1+r2dr

2. Thus, we obtain

ds2 = −
(

1 + r2
)
dt2 + dr2

1 + r2
+ r2dθ2 (8)

We end up with only one time coordinate!
The metric (8) describes a manifestly respectable spacetime. Note also that the metric

does not depend on time and hence these coordinates are known as static. They are
defined by

T =
√

1 + r2 cos t , W =
√

1 + r2 sin t , X = r cos θ , Y = r sin θ (9)

Did you watch the magician carefully? How did one of the two time coordinates dis-
appear, leaving us with only one time coordinate t? Even better, you should have done
the calculation. Okay, the secret, so to speak, behind the two-timing M2, 2 becoming a
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respectable spacetime is that the spatial coordinate r is more spatial than the temporal
coordinate R is temporal, in the sense that R2 > r2, so that dR2 < dr2.

Incidentally, something similar occurred back in chapter I.6. in the construction of
hyperbolic spaces. They were embedded into what at that stage of the book we called
“pseudo-Euclidean” spaces, but in fact, the hyperbolic spaces turned out to be perfectly
Euclidean.

We can of course immediately jump to AdSd by replacing in the preceding discussion
X2 + Y 2 by

∑d−1
i=1 (X

i)2, and so on and so forth, to obtain ds2 = −(1 + r2)dt2 + dr2

1+r2 +
r2d�2

d−2. Just as in the de Sitter case (see (IX.10.35)), the metric has the same form ds2 =
−f (r)dt2 + f (r)−1dr2 + r2d�2

d−2 as the Schwarzschild metric. But instead of f (r) =
1− r2 in the de Sitter case, we now havef (r)= 1+ r2 > 0, and thus anti de Sitter spacetime
does not have a horizon.

Time to unwind time!

I offered a word of caution about figure IX.10.1; so two words of double caution about
figure 1. It is hard enough to have spatial intuition about M3, 1, let alone M2, 2.

Indeed, figure 1 indicates that there are closed timelike curves, which would also
threaten physics as we know it.8 We changed variables by T =R cos t andW =R sin t , and
so t started out as a periodic variable. However, in the spacetime defined by the resulting
metric (8), the time coordinate t flows majestically from −∞ to +∞. For us physicists,
then, we simply define anti de Sitter spacetimes by the metric in (8). Mathematicians would
say that physicists have gone to the universal cover. Colloquially, just between you and me,
we could say that we have unwrapped the circular time coordinates. Picture a roll of paper
towels being unrolled into a long rectangular strip. Since the roll is not cylindrical, as
shown in figure 1, the resulting strip of paper cannot be laid down flat, which is precisely
what those factors of (1 + r2) in (8) are telling us.

The isometry group for AdSd , SO(d − 1, 2), contains SO(d − 1)× SO(2) as its max-
imal compact subgroup. Referring to (1), we see that, evidently, SO(d − 1) rotates
(X1, X2, . . . , Xd−1), while SO(2) rotates (X0, Xd). In other words, SO(2) rotates T =
R cos t and W = R sin t into each other, thus translating t → t + constant.

A hyperbolic radial coordinate

Those readers adept at doing integrals will recognize that the appearance of 1 + r2 in (8)
is begging us to change variable to r = sinh ρ. Doing so gives

ds2 = − cosh2
ρ dt2 + dρ2 + sinh2

ρd�2
d−2 (10)

Recall that dH 2
d−1 = dρ2 + sinh2

ρd�2
d−2. With these coordinates, space is hyperbolic.

The original embedding coordinates are given by

T = cosh ρ cos t , W = cosh ρ sin t , X = sinh ρ cos θ , Y = sinh ρ sin θ (11)
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(for d = 3). Note that since r ranges from 0 to +∞, ρ also ranges from 0 to +∞. As usual,
the angular coordinates just go along for the ride.

Conformal coordinates for anti de Sitter spacetime

Like de Sitter spacetime, anti de Sitter spacetime wears many disguises, as already indi-
cated by (8) and (10).

In parallel with the preceding chapter, I list the many faces of anti de Sitter spacetime
in a table near the end of this chapter. Let us now find the conformal coordinates for anti
de Sitter spacetime, namely the analog of (IX.10.43). Start with (8), set r = tan ψ , and
behold:

ds2 = 1
cos2 ψ

(
−dt2 + dψ2 + sin2 ψ d�2

d−2

)
= 1

cos2 ψ

(
−dt2 + d�2

d−1

)
(12)

Of course, we could also have started with (10) and set sinh ρ = tan ψ and cosh ρ =
(cosψ)−1. Compare and contrast with the de Sitter spacetime in (IX.10.43).

The time coordinate t runs from −∞ to +∞ (as it did in (10)). Thus, the conformal
diagram, as shown in figure 2, is a strip extending to infinity in the time direction. As
usual, light travels at ±45◦ to the vertical. Note that each point in this 2-dimensional plot
describes a sphere Sd−2 of radius sin ψ , which varies from 0 to 1 (also see below).

We see that AdSd is conformally equivalent to a spacetime with ds2 = −dt2 + d�2
d−1.

Recall from chapter VII.2 that the Minkowski spacetime Md−1, 1 is conformally equivalent
to the same spacetime, topologically a cylinder for d > 2. We will see in appendix 3 that
AdS2 is special.

πψ = –
2

ψ = 0

t = 0

t = π

t

Figure 2 Anti de Sitter spacetimeAdSd represented by a conformal diagram
consisting of a strip extending from −∞ to +∞ in the time coordinate t .
Light travels at ±45◦ to the vertical. Each point in this 2-dimensional plot
describes a sphere Sd−2 of radius sin ψ , which varies from 0 to 1.
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Note that ψ , which plays the role of a latitude, is a spatial coordinate, in contrast to its
analog τ in (IX.10.43). As r (or sinh ρ) goes from 0 to ∞, ψ goes from 0 to π/2.

Pay attention! What, π/2, not π?

Anti de Sitter spacetime has a boundary

Perhaps the existence of a boundary is the most striking feature of anti de Sitter spacetime,
a feature that has been much exploited to contain gravity, as was mentioned at the start of
this chapter. We will first show the boundary mathematically, and then more physically.

In getting to the form ds2 = 1
cos2 ψ

(−dt2 + dψ2 + sin2 ψ d�2
d−2) in (12), we changed

variables by setting r = tan ψ . The radial coordinate r started out nice and easy, ranging
from 0 to +∞. But now comes something interesting, as just noted: with a seemingly
innocuous change of variable, we have a latitude ψ that starts from 0 but gets up to only
π/2, not π ! Starting at the north pole, it reaches only the equator, not the south pole. What
kind of a weakling latitude is that!

Thus, while it is locally correct to write d�2
d−1 for dψ2 + sin2 ψ d�2

d−2 in (12), it is
misleading. Space covers only the northern hemisphere of Sd−1, with a boundary at
the equator. In other words, we don’t have the full sphere Sd−1. Rather, we have only a
hemisphere, which is topologically the same as a (d − 1)-dimensional generalized disk or
ballBd−1. It may be helpful to think of a familiar example: the northern hemisphere of the
ordinary sphere S2 is topologically the 2-dimensional disk, otherwise known as the ballB2,
with the equator as a boundary. (The layperson, in his or her infinite wisdom, understands
by the word “ball” the 3-dimensional object B3, which has S2 as its boundary. Similarly,
the 2-dimensional ball B2 is the disk, with the circle S1 as its boundary.)

Thus, the spatial sections of AdSd are bounded by Sd−2, which may be thought of as
Euclidean space Ed−2 with spatial infinity identified as a single point. Adding back the
time coordinate, we extend Ed−2 to Md−2, 1. We finally conclude that the anti de Sitter
spacetime AdSd is bounded by Md−2, 1. (In appendix 1, I give you a slightly more intuitive
demonstration of this statement. In appendix 3, you will see that AdS2 has 2 boundaries.
Can you figure it out now?)

Hence the slang expression “tin can” for anti de Sitter spacetime and the explosive
development of the AdS/CFT correspondence. In particular, in this picture, we are to regard
the good old M3, 1 spacetime we live and play in as the boundary of a (4 + 1)-dimensional
AdS5 spacetime. Wouldn’t that be quite a laugh, if all this time we were actually living on
the boundary of AdS5 without knowing it? Sort of like the time when we realized that we
were not living on E2, but actually on the boundary of B3.

For a more physical argument that a spatial boundary exists, picture the strip of paper
we got from unrolling a roll of paper towels a short while ago, as shown in figure 1. The
strip of paper, meant to represent AdS2 and described by ds2 = −(1 + r2)dt2 + dr2

1+r2 (in
other words, the line element in (8) with the angular component dropped), appears to be
infinitely wide. It is important to note that instead of the embedding for AdS3 in (9), we
now have T = √

1 + r2 cos t , W = √
1 + r2 sin t , and X = r , and so the coordinate r , no
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longer a radial variable, actually ranges from −∞ to ∞. (This is why AdS2 is special, as
we have alluded to; see appendix 3.)

But who is to say that the strip of paper is infinitely wide? As usual in relativity, we are to
bounce light rays around to measure distances. Sitting at some fixed r∗, let us send a light
beam to r = ∞ and wait for it to bounce back. Light follows the path dt = ±dr/(1 + r2)

and so comes back after the amount of proper time 2
√

1 + r2∗
∫∞
r∗ dr/(1 + r2) for us. The

important point is that the integral converges at the upper limit, and so the paper is actually
finite in width, with two edges or boundaries. ForAdSd with d > 2, the angular coordinates
connect the “different” boundaries, and so AdSd has only one boundary. In other words,
in the discussion above, we concluded that the spatial sections of AdSd are bounded by
Sd−2, but S0 consists of two points.

The conformal group of the bulk equals the isometry group of the boundary

With what little we know, we can already see a key group-theoretic feature that underlies
the AdS/CFT correspondence. In chapter IX.9, we learned that the conformal group for
M3, 1 is SO(4, 2). But earlier in this chapter, we learned that the isometry group for AdS5

is also SO(4, 2). The conformal group is the manifestation of the isometry group on the
boundary.

Poincaré coordinates

As we have already seen, anti de Sitter spacetime can be described using a variety of
coordinates. We now turn to the Poincaré coordinates, which in recent years have enjoyed
a resurgence of popularity, particularly in the context of AdS/CFT.

Slightly rewrite the defining equation (6) forAdS3 as (T 2 −X2)+ (W 2 − Y 2)= 1, which
we solve by writing9 T 2 −X2 = t2−x2

w2 and W 2 − Y 2 = 1 + x2−t2
w2 , and

T = t

w
, X = x

w

Y = 1
2

(
x2 − t2

w
+ w − 1

w

)
= 1

2w

(
x2 − t2 + w2 − 1

)

W = 1
2

(
x2 − t2

w
+ w + 1

w

)
= 1

2w

(
x2 − t2 + w2 + 1

)
(13)

Note also that we start with four coordinates (T , X , Y , W) and end with three (t , x , w),
since we are embedding a 3-dimensional spacetime into the 4-dimensional M2, 2.

Direct substitution of the seemingly awkward coordinate transformation (13) into ds2 =
−dT 2 + dX2 − dW 2 + dY 2 leads to the amazingly simple form (do check it!)

ds2 = 1
w2

(
−dt2 + dx2 + dw2

)
(14)

You may recognize that this is just the Minkowskian version of the Poincaré half plane
(introduced back in chapter I.5) in one higher dimension.
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Incidentally, we could have avoided some labor by noting that (13) is invariant under
the scaling (t , x , w)→ λ(t , x , w) and under a Lorentz transformation on (t , x), and thus
(14) must be invariant under these same transformations.

Again, as in the corresponding discussion for de Sitter spacetime, it is a good idea to go
to light cone coordinates for the pseudo-time coordinateW and the last spatial embedding
coordinate Y :

W+ ≡W + Y = 1
w

(
x2 − t2

)
+ w , W− ≡W − Y = 1

w
(15)

You can now see relatively simply that the defining equation T 2 −X2 +W+W− = 1 and
(14) are satisfied.

It is now easy to generalize, going up in dimension. For AdS4, write T = t
w

, X = x
w

,
Y = y

w
, and W+ ≡W + Z = 1

w
(x2 + y2 − t2)+w, W− ≡W − Z = 1

w
. By now, it is almost

immediate that AdS5 is described by∗

ds2 = L2

w2

(
−dt2 + dx2 + dy2 + dz2 + dw2

)
(16)

Basically, given (14), the preceding follows almost trivially: y and z are just going along
for the ride. We have restored L by dimensional analysis. Just like the Poincaré half plane,
AdS5 has a spatial boundary at w = 0. (In contrast, dS4 as coordinatized in (IX.10.26) has
a temporal boundary at u= 0.)

From the very simple form of the metric, you can see that the Christoffel symbol �.
.. and

the Riemann curvature tensorR.
... ∼ ∂.�.

.. + �
.
..�

.

.. go like ∼ 1/w and ∼ 1/w2, respectively,
and thus vanish† as w → ∞.

A slice of this 5-dimensional spacetime at some specific value of w, say w∗, with the
metric ds2 = 1

w2∗
(−dt2 + dx2 + dy2 + dz2), is just the familiar 4-dimensional Minkowskian

spacetime! See figure 3. (Contrast and compare with the exponentially expanding universe
in (IX.10.23).)

Consider an object, for example a human, of physical size 
l measured from head to
toes, lined up along the x-axis, say. Then his head is separated from his toes by
x =w∗
l.
Asw∗ decreases toward the boundary atw= 0, the coordinate size
x of the object shrinks.

Transforming coordinates w = L2/r , we obtain the alternative form

ds2 = r2

L2

(
−dt2 + dx2 + dy2 + dz2

)
+ L2

r2
dr2

=
(

−r2dt2 + 1
r2
dr2

)
+ r2d �x2 (setting L= 1) (17)

The boundary is at r = ∞, as indicated in figure 4. Note also that the metric is invariant
under the scaling‡ t → λt , �x → λ�x, and r → λ−1r .

∗ In the literature, the notation ds2 = L2

z2 (−dt2 + d �x2 + dz2) is often used, with z, a letter we already used for
something else, denoting the coordinate “perpendicular” to the boundary.

† The scalar curvature is of course constant.
‡ In recent applications to condensed matter physics (in an area of research known as AdS/CMP), which is in

general not Lorentz invariant, the metric ds2 = (−r2zdt2 + 1
r2 dr

2)+ r2d �x2 is used. The real number z is known
as a dynamical exponent. The time coordinate now scales as t → λzt .
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Md–2,1

AdSd

w

Figure 3 A slice of AdSd at some specific value of w is the
(d − 1)-dimensional Minkowskian spacetime Md−2, 1.

w = 0

r = ∞
w

r

w = ∞

r = 0

UVIR

Figure 4 The head and toes of a human of physical size
l located
at w∗ and lined up along the x-axis are separated by 
x = w∗
l.
IR = infrared; UV = ultraviolet.

You might have noticed that combinations such asw + 1
w

in (13) are practically begging
us to writew as an exponential and introduce cosh and sinh. Indeed, setw = Leu/L in (16)
and write

ds2 = e− 2u
L

(
−dt2 + dx2 + dy2 + dz2

)
+ du2 (18)

Note that the coordinate u ranges from −∞ to +∞. We will use this form in chapter X.2
in our discussion of brane worlds.

By now it is clear how the Poincaré coordinates are to be defined for AdSd . (Compare
and contrast with what we had for dSd .) Let
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w = 0
w

t

wturn

Figure 5 A massive particle moving in the (t -w) plane toward
the boundary cannot reach the boundary, but turns back at some
wturn determined by its initial position and speed.

Xμ = e−uxμ

X+ ≡Xd +Xd−1 = e−uηρσxρxσ + eu

X− ≡Xd +Xd−1 = e−u (19)

Here the indices μ, ρ, and σ run over 0, 1, . . . , d − 2. The defining equation ημνX
μXν −

X+X− = −1 is satisfied. Indeed, we do not even have to compute ds2 = ημνdX
μdXν −

dX+dX−. Various symmetries essentially fix it to be ds2 = e−2uημνdx
μdxν + du2, as was

already mentioned. For example, as noted, the metric must be invariant under scaling xμ

and translatingu, and under Lorentz transformations of xμ. The splitting of the embedding
coordinates into the two sets Xμ and (Xd , Xd−1) reflects the two subgroups SO(d − 2, 1)
and SO(1, 1) contained in the isometry group SO(d − 1, 2).

Motion of light and massive particle in anti de Sitter spacetime

The Poincaré coordinates in (16) are particularly suitable for studying the motion of light
and particles in anti de Sitter spacetime. That it is conformally equivalent to the Minkowski
metric ds̃2 = (−dt2 + dx2 + dy2 + dz2 + dw2)means that light follows a path determined
by ds2 = 0 = ds̃2. A light beam sent by an observer located at w =w0 toward the boundary
at w = 0 will come back, if a mirror were placed appropriately, to her after coordinate
time treturn = 2w0. In contrast, consider a massive particle moving∗ in the (t -w) plane
toward the boundary, as shown in figure 5. The definition of proper time gμν

dxμ

dτ
dxν

dτ
= −1

gives us ( dt
dτ
)2 − ( dw

dτ
)2 = w2. The isometry under t → t+ constant gives as usual the

conservation law d
dτ
(w−2 dt

dτ
)= 0, and hence dt

dτ
= w2

b
, for some constant b. We thus obtain

( dw
dt
)2 + b2

w2 = 1. The potential in the analog Newtonian problem is thus V (w)= + b2

w2 , and

∗ You might realize that this is basically the same problem as one we worked out in chapter II.2.
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we see that the particle cannot reach the boundary but turns back at wturn = b, with b

determined by its initial position and speed.
This simple exercise in classical general relativity already hints at a key feature that

makes possible AdS/CFT. At first sight, it seems impossible that the physics of a (3 + 1)-
dimensional theory could be mapped onto the physics of a (4 + 1)-dimensional theory. It
turns out that particles carrying different energies in the boundary theory correspond to
particles located at different positions along the w-axis in the bulk. The boundary theory
is able to “grow” a spatial coordinate orthogonal to it.

By this point, you might be wondering if there is an analogous story for de Sitter
spacetime. The answer is that some theoretical physicists are working intensively on
establishing a dS/CFT correspondence. Intriguingly, de Sitter spacetime has a temporal
boundary, as you may recall from the preceding chapter, rather than a spatial boundary,
and so, if some kind of dS/CFT correspondence does in fact hold, the boundary theory
would have to grow a temporal coordinate. Might this shed some light on the origin of
time? Note that the boundary theory does not contain time, and thus represents some
kind of statistical mechanics rather than a dynamical field theory.

Other forms of anti de Sitter spacetime

Just like de Sitter spacetime, anti de Sitter spacetime can be written in a bewildering variety
of forms, as we have already mentioned.

We obtain an interesting form by changing the variable r = 2ζ/(1 − ζ 2) in (8). Then
1 + r2 = [(1 + ζ 2)/(1 − ζ 2)]2 and dr = 2((1 + ζ 2)/(1 − ζ 2)2dζ . We thus obtain the alterna-
tive form

ds2 =
− (

1 + ζ 2)2
dt2 + 4

(
dζ 2 + ζ 2d�2

d−2

)
(
1 − ζ 2

)2 = − (
1 + ζ 2)2

dt2 + 4δijdxidxj(
1 − ζ 2

)2 (20)

where ζ 2 = δijx
ixj . We have a ball defined by ζ < 1, with its boundary at ζ = 1.

To derive the next form, set d = 3 for definiteness and write r2 =X2 + Y 2. The defining
equation T 2 − r2 + W 2 = 1 invites us to define T = ρ sinh χ and r = ρ cosh χ , so that
dT 2 − dr2 = ρ2dχ2 − dρ2. (You may recognize this as the Rindler coordinates that you
worked on way back in exercise III.3.2 and that we discussed in chapter VII.3.) The
defining equation then becomes W 2 = 1 + ρ2. Differentiating, we have WdW = ρdρ, so
that dW 2 = ρ2

1+ρ2dρ
2. We end up with

ds2 = −ρ2dχ2 +
(

1
1 + ρ2

dρ2 + ρ2 cosh2
χ dθ2

)

= − sinh2
ψdχ2 + dψ2 + sinh2

ψ cosh2
χ dθ2 (21)

where ρ = sinh ψ , so that we now have

T = sinh ψ sinh χ , r = sinh ψ cosh χ , W = cosh ψ (22)

For another form, let

T = sin t cosh χ , X = r cos θ , Y = r sin θ , W = cos t (23)
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with r = sin t sinh χ . Then we obtain

ds2 = −dt2 + sin2 t
(
dχ2 + sinh χ2dθ2

)
= −dt2 + sin2 t dH 2

2 (24)

More generally, ds2 = −dt2 + sin2 t dH 2
d−1 for AdSd .

Anti de Sitter spacetime in hyperbolic coordinates

Again for definiteness, let us considerAdS3. The trick is to rewrite the defining equation (6)
and the metric (7) as (T 2 − X2)+ (W 2 − Y 2)= 1 and ds2 = (−dT 2 + dX2)+ (−dW 2 +
dY 2), respectively. Let T = R cosh t , X = R sinh t , W = r cosh ψ , and Y = r sinh ψ . We
have ds2 = dR2 − R2dt2 + dr2 − r2dψ2. Also, R2 = 1 − r2, RdR = −rdr , dR2 = r2

1−r2dr
2,

and dR2 + dr2 = 1
1−r2dr

2. Hence we obtain

ds2 = −
(
r2 − 1

)
dt2 + dr2

r2 − 1
+ r2dψ2 (25)

Note that this requires an analytic continuation: the metric (25) only makes sense for
r > 1, which requires R2 to be negative. This construction is readily generalized to AdSd :
ds2 = −(r2 − 1)dt2 + dr2

r2−1 + r2 dH 2
d−2. (As in the preceding chapter, dH 2 denotes the

hyperbolic line element defined in chapter I.6 that has already appeared in de Sitter
spacetime.) Compare with (8) and (IX.10.35). In particular, for AdS4, we have

ds2 = −
(
r2 − 1

)
dt2 + dr2

r2 − 1
+ r2

(
dψ2 + sinh2

ψdϕ2
)

(26)

Stereographic projection for anti de Sitter spacetime

As for de Sitter spacetime, we can stereographically project anti de Sitter spacetime by
mapping (X0, X1, X2, X3, X4) into (x0, x1, x2, x3) as follows (reinstating L):

XM = 1

1 − x2

4L2

δM
μ
xμ, M = 0, 1, 2, 3 (27)

and

X4 = L

⎛
⎝1 + x2

4L2

1 − x2

4L2

⎞
⎠ (28)

where as before, x2 ≡ −(x0)2 + (x1)2 + (x2)2 + (x3)2. Now (27) says that −(X0)2 + (X1)2 +
(X2)2 + (X3)2 = x2

1− x2

4L2

. Verify that the defining relation (1) is satisfied and that

ds2 =
⎛
⎝ 1

1 − x2

4L2

⎞
⎠

2

ημνdx
μdxν (29)

Anti de Sitter spacetime is conformally flat, just like de Sitter spacetime (see the table). No
surprise there.
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One of my students speaks up at this point. “You shouldn’t say that,” he says. “Everybody
knows that the sphere is not flat; that it is conformally flat is kind of a surprise.” But then,
since de Sitter spacetime is sort of a Minkowskian sphere, it is arguably less surprising
that it is also conformally flat. But that anti de Sitter spacetime is also conformally flat, now
that, to him, is surprising. I suppose that it is fair to conclude that everybody has different
thresholds for being surprised.10

Appendix 1: Euclidean anti de Sitter space and its boundary

At first sight, the appearance of a boundary in anti de Sitter spacetime is rather puzzling (but perhaps not so
much to readers of this text, since we have already discussed the Poincaré half plane in part I). As far as I know,
it is easiest to visualize this boundary if, using the stereographic coordinates in (29), we go to Euclidean anti
de Sitter space.

Replace ημν in (29) by δμν , thus going from Minkowski back to Pythagoras, which we can do by formally
writing X0 = iXT and x0 = ixT . Set

XM = 1

1 − x2

4L2

δM
μ
xμ , M = T , 1, 2, . . . , d − 1 and Xd =

L
(

1 + x2

4L2

)
(

1 − x2

4L2

)
Here x2 ≡ (xT )2 + (x1)2 + (x2)2 + . . . + (xd−1)2 denotes the Euclidean square of the d-dimensional vector
(xT , x1, x2, . . . , xd−1). (A word about notation: Perhaps it would have been more natural to denote xT by xd ,
but this would have led to a potential confusion, since Xd and xd are not directly related.)

Then (XT )2 + (X1)2 + (X2)2 + . . . + (Xd−1)2 = x2/(1 − x2

4L2 )
2, so that the defining relation

(
XT

)2 +
d−1∑
i=1

(
Xi
)2 −

(
Xd

)2 = −L2

for Euclidean anti de Sitter space is satisfied. We obtain

ds2 =
(

1

1 − x2

4L2

)2

((dxT )2 + (dx1)2 + (dx2)2 + . . . + (dxd−1)2) (30)

which we can also see by analytically continuing (29). Again, it is not a surprise that the Euclidean anti de Sitter
space AdSdE is conformally related to Euclidean space. More importantly in this context, we note that it is
topologically the Euclidean ball Bd defined by

x2 ≤ 4L2 (31)

which, as every child knows, has a boundary described by Sd−1. (The sphere Sd−1 is just (d − 1)-dimensional
Euclidean space Ed−1 with infinity identified as a single point.) This is of course the Euclidean version of the
statement that AdSd has Md−2, 1 for its boundary. The metric tensor, and hence, by the basic theorem about
maximally symmetric space, the curvature and the Ricci tensor (but not the scalar curvature) all diverge as we
approach the boundary.

Appendix 2: Isomorphism between AdS3 and SL(2, R)

The most general 2-by-2 matrix with real entries may be written as

U =
(
T +X Y +W

Y −W T −X

)

The condition det U = 1 implies T 2 − X2 − Y 2 + W 2 = 1. Under multiplication, the set of all 2-by-2 matrices
with real entries and unit determinant clearly generates a group, known as SL(2, R).
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What we have just discovered is that AdS3 is isomorphic to the universal cover of SL(2, R): there is 1-to-1
correspondence between points on AdS3 and elements of SL(2, R).

Evidently, for V and Z any two elements of SL(2, R), then U ′ = VUZ also has unit determinant, and thus,
as an element of SL(2, R), corresponds to another point on AdS3. In other words, the isometry group of AdS3

is SL(2, R) × SL(2, R). But we know from the text that the isometry group∗ of AdS3 is SO(2, 2), yet this is
consistent, since SO(2, 2) is in fact (see below) isomorphic to SL(2, R)× SL(2, R). Incidentally, this beautiful
piece of group theory is relevant to the recent use of twistors11 to calculate scattering amplitudes in quantum
field theory.

We now exhibit the isomorphism SO(2, 2)= SL(2, R)× SL(2, R) explicitly. In chapter IX.9, we saw that the 6
generators of SO(2, 2), ∂±, x±∂± , −(x±)2∂±, break into two mutually commuting sets, evidently corresponding
to 2 copies of SL(2, R). Consider an element I + A of SL(2, R) close to the identity. Using an identity we
have encountered repeatedly, we evaluate its determinant to be det(I + A)= eT r log(I+A) � 1 + T rA. Thus, the
generators of SL(2, R) consist of 2-by-2 traceless matrices, among which we choose the linearly independent set

T3 =
(

1 0

0 −1

)
, T+ =

(
0 1

0 0

)
, T− =

(
0 0

1 0

)
(32)

You can verify that the desired identification is

∂ ∼ T− , x∂ ∼ 1
2T3, −x2∂ ∼ T+ (33)

Note the minus sign, as determined in the preceding chapter.

Appendix 3: AdS2 and its two boundaries

Readers into group theory know that “smaller” groups often exhibit special features that the “larger” groups
do not have. Similarly, AdS2 differs from its higher dimensional counterparts by having two boundaries. This
apparently puzzling assertion actually follows from an extremely elementary geometric fact. Consider the unit
Euclidean ball BD defined by

∑D
j=1(X

j)2 ≤ 1. The boundary of the disk B2 is the circle S1, of the everyday ball
B3 is the sphere S2, and so on. But the boundary of B1, namely S0, consists of two disconnected points. (Indeed,
we already encountered this phenomenon in chapter VII.2.)

The boundary of AdSd is more visible with some coordinate choices than with others. In particular, with the
coordinates used in (12), we have for AdS2

ds2 = 1
cos2 ψ

(
−dt2 + dψ2

)
(34)

The crucial difference with (12) is that now ψ runs from −π/2 to π/2. The rectangular strip that describes AdS2

in the (t -ψ) plane obviously has two boundaries at ψ = ±π/2. (For the coordinates used in (10), with sinh ρ =
tan ψ , the two boundaries are at ρ = ±∞. In terms of the original embedding coordinates T = cosh ρ cos t ,
W = cosh ρ sin t , and X = sinh ρ, the boundaries correspond to the two end caps of the tube in figure 1
at X = ±∞.)

The presence of the two boundaries is less transparent in Poincaré coordinates:

ds2 = 1
w2

(
−dt2 + dw2

)
(35)

However, inspection of the coordinate transformation T = t
w

, W = 1
2w (−t2 +w2 + 1), and X = 1

2w (−t2 +w2 −
1) reveals that it is actually at w = 0±. Or, with r =w−1, as in the text, we have ds2 = −r2dt2 + r−2dr2. Note that
−∞< r <∞.

It is also instructive to relate the Poincaré coordinates to those used in (34) (but before we do that, we have to
rename the time coordinate in the latter as τ ). We find

w = sin ψ + sin τ

cos2 ψ − cos2 τ
cosψ , t = sin ψ + sin τ

cos2 ψ − cos2 τ
cos τ (36)

From (36), we also see that w = ±∞ corresponds to the two lines ψ = τ and ψ = π − τ .

∗ In comparison, the isometry group of dS3 is SO(3, 1)= SL(2, C)/Z2.12
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Referring to the table contrasting isometry groups for de Sitter and anti de Sitter spacetimes given earlier in
this chapter, we also observe the amusing fact that the isometry group SO(1, 2) forAdS2 and the isometry group
SO(2, 1) for dS2 are actually the same, a fact that we can see geometrically from figures IX.10.1 and 1.

Appendix 4: Continuing from de Sitter to anti de Sitter spacetimes

From the defining equations (1) and (2), we see that formally we can go from de Sitter to anti de Sitter spacetime
by analytically continuingL→ iL andXd → iXd . (By now,Xd is perhaps better known to us asW .) Alternatively,
instead of thinking about the embedding spacetimes, we can consider a specific set of coordinates xμ and solve
Einstein’s field equation. Evidently, a solution ofRμν = − (d−1)

L2 gμν , which after all is a bunch of coupled partial (or

ordinary) differential equations, becomes a solution ofRμν = + (d−1)
L2 gμν when we formally setL→ iL. However,

this procedure may or may not result in a spacetime (see below), and further continuations in the coordinates
xμ will in general be needed.

Let us see how this works in a few cases. For example, taking the first entry ds2 = − L2

L2+t2 dt
2 + t2dH 2

3 in
the table for de Sitter spacetime in the preceding chapter, we plug in L→ iL and encounter no trouble, thus
reproducing an entry in the table for anti de Sitter spacetime given in this chapter. In contrast, taking the second
entry ds2 = L2

cos2 θ
(−dθ2 + sin2 θ dH 2

3 ) and flipping the sign of L2, we would encounter something with 3 time
coordinates and 1 space coordinate. Thus, we obviously have to analytically continue θ also, θ → iρ, thus obtaining
ds2 = L2

cosh2 ρ
(−dρ2 + sinh2

ρ dH 2
3 ). (Useful identities in this context: cosh ix = cos x, sinh ix = i sin x.) Another

approach is to use coordinates with dimension of length. So, first write θ = ρ
L

and the de Sitter metric as
ds2 = 1

cos2 ρ
L

(−dρ2 + L2 sin2 ρ
L
dH 2

3 ). Then continue L→ iL.

Another way of saying this is that if we use dimensionless coordinates, such as angles cyclic and hyperbolic,
then by dimensional analysis, ds2 has to be proportional to L2, and so are the metric components gμν . If we flip
the sign of the metric, the Christoffel symbol �.

.. ∼ g
..
∂g.., the Riemann curvature tensor (with one upper and

three lower indices) R.
..., and the Ricci tensor R.. do not flip, but the scalar curvature R does. Einstein’s field

equation R.. ∼ L−2g.. flips between de Sitter and anti de Sitter spacetime, as it must.

Appendix 5: Geodesics in the embedding space

As in appendix 3 in chapter IX.10, we can discuss geodesics as visualized with the embedding coordinates
XM satisfying X2 = ηMNX

MXN = −1. Go through the same steps as in that appendix, introducing a Lagrange
multiplier and so forth but keeping in mind that in the present case, η = (− + + . . . + −). In particular, in
the embedding space∗ a photon zips merrily along a straight line in the sense that it follows Ẍ = 0. As in the
preceding chapter, we can verify that the geodesics in the embedding space do describe geodesics in whatever
coordinates are used to map anti de Sitter spacetime.

Confusio mumbles that, since he now understands how this went in the preceding chapter, there is no sense
in checking it again. We respond that since we used a rather unnatural looking transformation (13) to define the
Poincaré coordinates, we think that it is still fun to see how the laws of arithmetic work. A photon, for instance,
traces out

X = a + bζ (37)

with a2 = −1, b2 = 0, a . b = 0 (to ensure that X2 = −1).
Consider a photon moving along the x-axis. From ds2 = 1

w2 (−dt2 + dx2 + dw2), we have dx = dt , x = t ,
and w = w∗ (with w∗ arbitrary). Note that anti de Sitter spacetime is translation invariant in t and x but not in
w. Referring to (13), we translate x = t into X = (2t , 2t , w2

∗ − 1, w2
∗ + 1)/(2w∗), so that a = (0, 0, w2

∗ − 1, w2
∗ +

1)/(2w∗) and b = (1, 1, 0, 0). Note that the normalization of b can be absorbed into the definition of ζ . We see
that indeed, a2 = −1, b2 = 0, and a . b = 0.

Confusio: “You seem to use ‘translate’ in two senses.”
Yes, literally and metaphorically.

∗ You might have noticed that I avoid using the term “embedding spacetime” in this chapter, since I wouldn’t
know what to call a space with two time coordinates.
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Work out another case for fun. Let the photon move along the w-axis, so that w = t , which translates into
X = (1, 0, (2t)−1, −(2t)−1). Remarkably, T = X0 stays constant. But the other “time” W is not standing still!
Thus, a = (1, 0, 0, 0) and b = (0, 0, 1, −1). Indeed, a2 = −1, b2 = 0, and a . b = 0. No surprise that the laws of
arithmetic work, even in general relativity!

Appendix 6: Scalar field in AdS/CFT

While the AdS/CFT correspondence is beyond the scope of this text, we can mention that one important
step involves solving the equation of motion for a scalar field (of mass m) in AdSd+1, namely ( − m2)φ =

1√−g ∂μ(
√−ggμν∂νφ)−m2φ = 0. And this the devoted reader who has gotten this far is able to do.

Referring to the metric ds2 = (−r2dt2 + 1
r2 dr

2) + r2d �x2 given in (17), we have −g = r2(d−1) and gtt =
1/r2, gxx = 1/r2, . . . , but grr = r2. Thus, contains terms like (−∂2

t
+ ∂2

x
+ . . .)/r2, terms which may be

neglected near the boundary at r = ∞. In contrast, grr grows near the boundary. Hence, the equation of motion
near the boundary reduces to

r−d+1∂r

(
rd+1∂rφ

)
−m2φ = 0 (38)

This equation, homogeneous in powers of r , can be solved by plugging in φ ∼ rK . We obtain a quadratic equation
with the roots 
− d and −
, where


≡ d

2
+
√(

d

2

)2

+m2 (39)

Thus, we obtain

φ(r ∼ ∞, t , �x)= α(t , �x)r
−d + β(t , �x)r−
 (40)

Since 
− d > 0, we have to impose the boundary condition α(t , �x)= 0. The AdS/CFT correspondence states
that the expectation value of a certain quantum field theoretic operator living on the boundary of AdSd+1 is then
given by β(t , �x). As for the question why oh why, the answer is not contained in this textbook.

Appendix 7: Coset manifolds and the classification of space and spacetime

By the end of the 19th century, it was understood13 that space could be Euclidean, spherical, or hyperbolic. In the
language of coset manifolds, we can start with two empirical observations and arrive at these three possibilities.
The isotropy of space implies that space is of the form G/SO(3). The 3-dimensionality of space implies that
G must have 3 + 3 generators. There are 3 groups with 6 generators, namely G= E(3) (the Euclidean group
consisting of rotations and translations), G= SO(4), and G= SO(3, 1), corresponding to Euclidean, spherical,
and hyperbolic, respectively. Note the appearance in this context of the Lorentz group long before special relativity!

Now let us generalize this discussion to spacetime. We know that spacetime is Lorentz invariant and
4-dimensional. Thus, if spacetime is homogeneous, it should be of the form G/SO(3, 1), with G having
6 + 4 = 10 generators. Again, there are 3 possibilities, namely G = E(3, 1) (the Poincaré group consisting
of Lorentz transformations and translations), G= SO(4, 1), and G= SO(3, 2), corresponding to Minkowski,
de Sitter, and anti de Sitter spacetime, respectively.

Notes

1. For example, P. A. M. Dirac, “The Electron Wave Equation in de-Sitter Space,” Annals Math. (1935), p. 657,
and “A Remarkable Representation of the 3+2 de Sitter Group,” J. Math. Phys. (1963), p. 901.

2. Strictly speaking, M3, 1 constitutes a patch of the boundary, which globally has the topology of R × S3. Recall
the discussion in appendix 5 of chapter VII.2.

3. This aspect of anti de Sitter spacetime was emphasized by S. Hawking and D. Page, Comm. Math. Phys. 87
(1983), p. 577.
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4. The reader is referred to many excellent reviews, in particular, O. Aharony, S. Gubser, J. Maldacena,
H. Ooguri, and Y. Oz, Phys. Reports 323 (2000), p. 183. For applications to condensed matter physics, see
various reviews by S. Hartnoll, by J. McGreavy, and by C. Herzog.

5. For general overviews, see J. Maldacena, “The Illusion of Gravity,” Scientific American, November 2005, p. 57;
and C. V. Johnson and P. Steinberg, Physics Today, May 2010, p. 29.

6. Have you ever wondered what a world with two time coordinates would be like? Science fiction writers have
long played with time travel. You could be the first to toy with two times!

7. There have been speculations, of course, about more than one time. See papers by I. Bars, and by G. R. Dvali,
G. Gabadadze, and G. Senjanovic.

8. Again, nothing prevents people from speculating about time travel and the like. Look up on the web the
discussions surrounding the chronology protection conjecture.

9. See appendix 1 in the preceding chapter.
10. This reminds me of a story about a famous dictionary maker.
11. For an elementary introduction to this fascinating subject, see, for example, QFT Nutshell, chapter N.3 and

appendix B.
12. QFT Nutshell, p. 532.
13. H. Helmholtz, “The Origin and Meaning of Geometrical Axioms,” Mind 1 (1876), pp. 301–321,

http://www.jstor.org/stable/2246591.



Recap to Part IX

Part IX consists of a collection of topics that hopefully amuses and amazes.
Transporting a vector by keeping it parallel to itself and eventually returning to its

starting point tells us about curvature. A precessing gyroscope realizes parallel transport.
How parallel straight lines approach or move away from each other also tells us about
curvature.

Linearizing Einstein’s field equation, we find that ripples in spacetime propagate as
gravitational waves. Since a gravitational wave carries energy momentum, it inevitably acts
upon itself. Starting with the linear theory, we soon discover that this inherent nonlinearity
of gravity leads us to Einstein’s theory.

The language for describing the symmetries of spacetime, often obscured by the co-
ordinate choice, is developed through the notions of Killing vectors and isometry.

Just as the Lorentz algebra can be extended to the Poincaré algebra, the Poincaré algebra
can be extended to the conformal algebra.

Differential forms provide us with a powerful method of calculating curvature.
For the same reasons that theoretical physicists like the circle and the sphere, we like

de Sitter and anti de Sitter spacetimes.



Part X Gravity Past, Present, and Future





X.1 Kałuza, Klein, and the Flowering
of Higher Dimensions

More than a new continent

Yet I exist in the hope that these memoirs, in some manner, I
know not how, may find their way to the minds of humanity in
Some Dimension, and may stir up a race of rebels who shall
refuse to be confined to limited Dimensionality.

—narrator in E. A. Abbott’s Flatland

Minkowski’s innovative geometric view of special relativity as a 4-dimensional spacetime
bringing together space and time was so obviously true that it was quickly accepted. In
1919, the German-Polish physicist Theodor Kałuza wrote to Einstein to say that he had
added another dimension and moved up into a more spacious spacetime. Einstein was
quite taken by this brilliant idea, but it did not prevent him from sitting on Kałuza’s paper
for a year1 before sending it to the Prussian Academy for publication in 1921. Einstein
confessed, perhaps somewhat ruefully, that dimensions higher than 4 = 3 + 1 had never
occurred to him.

Kałuza certainly recognized the far-reaching implication of his suggestion: the paper
was titled “On the Problem of Unity in Physics.” He managed to unify the two established
interactions known at the time: gravity and electromagnetism. The Swedish physicist
Oskar Klein, known for his many contributions2 to physics, rediscovered3 the Kałuza
theory4 in 1926 and later developed the theory further. Since then, the subject has been
vastly extended and generalized. My strategy is to give, for the sake of pedagogical clarity,
an overview of the essential concepts involved. To keep things as simple as possible, I focus
mostly on the 5-dimensional case and relegate assorted technical details to appendices.
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The profound idea of transformation

Of the several ways to motivate Kałuza’s idea, I choose to start with the profound idea of
transformation (instead of a brute force approach I will describe later). Theoretical physi-
cists stand in awe of the fact that, insisting on invariance under gauge transformation, we
are led to electromagnetism and, insisting on invariance under general coordinate transfor-
mation, we are led to Einstein gravity. Furthermore, generalizing∗ gauge transformation,
particle physicists were led to the strong interaction and unification of the electromagnetic
and weak interactions into a single electroweak interaction, which in turn opens the door
to unifying all three nongravitational interactions—strong, weak, and electromagnetic—
into a grand unified theory, as already mentioned in chapter VIII.3. Amazingly, insisting
on invariance under these transformations has almost magically led to an understanding
of the physical world.

For now, we go back to Kałuza’s attempt to unify gravity and electromagnetism. Under
an electromagnetic gauge transformation, the electromagnetic potential transforms by

Aμ → A′
μ

= Aμ − ∂μ� (1)

In contrast, under a coordinate transformation xμ → x′μ, the metric transforms by
g′
ρσ
(x′) = gμν(x)

∂xμ

∂x′ρ ∂xν

∂x′σ . At first sight, these two transformations look totally different.
But, as we saw in chapter IX.4, in the weak field limit, under the infinitesimal coordinate
transformation xμ → x′μ = xμ + εμ(x), the field hμν ≡ gμν − ημν transforms by

hμν → h′
μν

= hμν − ∂μεν − ∂νεμ (2)

The intriguing resemblance between (1) and (2) is striking to say the least, and almost
begs for some kind of unification. But how to do it if hμν andAμ don’t even carry the same
number of indices?

An invisible dimension

You rack your brain for a while, and if you’re as smart as Kałuza, you might suddenly
realize how to do it. Make one of the indices invisible! The desired relation (1) could have
originated from an equation like (2) involving objects carrying two indices, if somehow
one index is inert or invisible.

Kałuza’s idea is to add to the existing coordinates x0, x1, x2, and x3 an extra coordi-
nate† x5. Denote the coordinates by XM = (xμ, x5), with the index M running over 0, 1,
2, 3, and 5.

∗ Maxwell theory is thus generalized into Yang-Mills theory. While this fascinating development is largely
beyond the scope of this text (see, for example, QFT Nut, part VII), I touch upon some aspects of this important
subject, particularly in the appendices.

† You can see that the peculiar notation makes historical sense, since the time coordinate was once known as
x4 = ict before getting renamed as x0 = ct .
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In 5-dimensional spacetime, Einstein gravity is invariant under XM → X′M = XM +
εM(X). Denote the metric by GMN = ηMN + hMN , where ηMN denotes the extension of
the Minkowski metric to 5-dimensional spacetime, with η55 = +1 and ημ5 = η5μ = 0. (Note
that the sign of η55 indicates that the extra dimension added is spatial, not temporal.) For
now, we consider the weak field limit, in which (with ε the same order as h)

hMN → h′
MN

= hMN − ∂MεN − ∂NεM (3)

under a coordinate transformation, where ∂M ≡ ∂

∂XM .
With M , N restricted to μ, ν, (3) reduces to (2). But with M restricted to μ and N set to

5, (3) becomes

hμ5 → h′
μ5 = hμ5 − ∂με5 − ∂5εμ (4)

Compare this with (1).
First, under the usual Lorentz transformation in 4-dimensional spacetime, hμ5 trans-

forms as a vector, just like Aμ. So, let us identify hμ5 as lAμ, with l some length. Since
GMN is dimensionless and Aμ has dimensions of an inverse length, dimensional analysis
mandates the introduction of l, which sets the normalization of Aμ.

Now look at (4). Do you see what Kałuza saw?
Identify ε5 as l�. Then, up to an overall factor of l, (4) would become (1) were it not for

the last term ∂5εμ in (4). But we can get rid of this unwanted guy by simply supposing that
εμ does not depend on x5. In that case, we recover (1)!

In particular, we can take εμ = 0. In other words, the familiar electromagnetic gauge
transformation we know and love is just the 5-dimensional coordinate transformation

x′μ = xμ, x′5 = x5 + l�
(
xμ
)

(5)

Kałuza has managed to subsume electromagnetic gauge transformation into a gen-
eral coordinate transformation! This elegant idea constitutes the essence of Kałuza-Klein
theory.

The visibility problem and the escape problem

We are immediately confronted by two closely related problems, the visibility problem
and the escape problem. How come we don’t see the extra dimensions, in contrast to the
glaringly obvious three that we deal with all the time? How come we can’t escape, and we
don’t see any particle escaping, into the extra dimensions?

A crucial feature of Einstein’s theory, that space can be curled up, almost makes it natural
to contemplate higher dimensions. Let the fifth coordinate be curled up as a circle of radius
a, so that x5 ranges between 0 and 2πa. Each spacetime point around us is actually∗ a tiny
circle!

∗ At one time, the idea that solid rock may consist of largely empty space with tiny point particles whizzing
around would have seemed equally fantastic.
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Figure 1 Ever since our ancestors first thought of space, we have
been mistaking tiny circles for points. An electromagnetic gauge
transformation amounts to twisting the circle at each spacetime point
through a different angle.

If a is much smaller than any length scales our experimental friends have explored, then
we could all have been fooled ever since our ancestors first thought of space. We have been
mistaking tiny circles for points!

This reveals what an electromagnetic gauge transformation actually amounts to: we go
around twisting the circle at each spacetime point through a different angle (see (5) and
figure 1).

This solves the visibility problem, and now Heisenberg with his uncertainty principle
solves the escape problem for us. For a photon to escape into the fifth dimension and be
confined there, its momentum would have to be of order p ∼ 1/a, which would be huge
for a small enough. Classically, the frequency of the corresponding electromagnetic wave
would be enormous. To squeeze∗ into such a tight space, the photon (or any of our favorite
particles) would need to be terribly energetic.

The visibility problem and the escape problem are thus solved in one fell swoop. Indeed,
if we assume that matter fields, such as the electromagnetic field, do not depend on the
extra coordinates of the higher dimensions, then in some sense these fields do not “see”
these hidden dimensions, and physics as we know it could go on happily as before.

Unifying gravity and electromagnetism

You might be wondering about h55, which we have yet to talk about. In the weak field limit
in which we have been working thus far, we obtain from (3) that h55 → h′

55 = h55 − 2∂5ε5.
But to get the electromagnetic gauge transformation to come out, we had taken ε5 in (5) to
be independent of x5, and so h55 = 0 implies h′

55 = 0. Thus, it is consistent to set h55 = 0.

∗ Note that in 1921, Heisenberg’s uncertainty principle and Schrödinger’s equation were both in the future,
but this argument can rest only on de Broglie waves.
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Kałuza-Klein theory can be implemented in any spacetime dimension d > 4, but for
pedagogical clarity, it is best to stick with Kałuza’s original d = 5. It is convenient to give
the internal coordinate x5 another name, say y ≡ x5.

One remarkable feature of Einstein gravity is that the Einstein-Hilbert action SEH =
+ ∫

d4x
√−g M2

PR(g) can be written, without further ado, in any spacetime dimension.
So, go ahead, write it for d = 5:

SKK = +
∫

d4xdy
√−GM3

5R(G) (6)

We denote the scalar curvature constructed out of the 5-dimensional metric GMN

by R(G),∗ to distinguish it from the scalar curvature R(g) constructed out of the
4-dimensional metric gμν. Here the mass M5 is the analog of the Planck mass MP. To
fix its power in (6), we invoke dimensional analysis as follows.

The scalar curvature R (in any spacetime dimension) contains two derivatives acting on
the metric and hence has dimensions of an inverse length squared. Thus, as explained at
length in chapter VI.1, we have to multiply

∫
d4x

√−gR(g) by something with dimension
of inverse length squared to make the Einstein-Hilbert action dimensionless, and we define
that something as the square of the Planck massMP. (In natural units with � = 1 and c= 1,
mass has dimensions of an inverse length, as was explained way back in the introduction.)
In 5-dimensional spacetime, we have to multiply

∫
d4xdy

√−GR(G) by something with
dimensions of inverse length cubed, that is, by some mass cubed. Hence M3

5 in (6). To
summarize, the mass M5 sets the scale of 5-dimensional gravity, just as MP sets the scale
of 4-dimensional gravity.

Let us see how we recover the familiar 4-dimensional gravity and electromagnetism by
evaluating the action SKK for various choices of GMN .

First, for GMN(x , y) of the form Gμν(x , y)= gμν(x), Gμ5(x , y)= 0, and G55(x , y)= 1,
we have R(G)= R(g) and so the action SKK reduces to 2πaM3

5

∫
d4x

√−g R(g), with the
factor of 2πa coming from the integration over y. Identifying

M2
P = 2πaM3

5 (7)

we obtain the good old Einstein-Hilbert action. That SKK must reduce correctly follows
from general invariance considerations: the form of GMN just given is maintained under
the 4-dimensional general coordinate transformation xμ = xμ(x′ν), x5 = x′5.

Next, consider the weak field configuration Gμν(x , y)= ημν, Gμ5(x , y)= lAμ(x) (with
l the length introduced earlier), and G55(x , y)= 1. The 4-dimensional action that results
from plugging this into SKK contains two derivatives acting on Aμ and does not change
under the gauge transformation (1). This can only be Maxwell’s action (recall (V.6.18)).
Without doing any computation, we are guaranteed by invariance considerations that
Maxwell’s action must pop out!

∗ If you confused this G with Newton’s constant, go back to square one.
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In other words, with Fμν ≡ ∂μAν − ∂νAμ as always, SKK must reduce to

2πaM3
5l

2ζ

∫
d4xFμνF

μν = (
MPl

)2
ζ

∫
d4xFμνF

μν

with some unknown numerical coefficient ζ. A detailed calculation (we will do it in
appendix 1) is required only if we want to determine ζ , which turns out to be − 1

4 . Thus, to
obtain Maxwell’s action S = ∫

d4x(− 1
4 )FμνF

μν as commonly normalized, we setMPl = 1,
that is, l = lP. (In other words, from the way Aμ was introduced, we are free to let A→ λA

and l → l/λ. We have now picked a particular normalization for A, thus fixing l.)

The Kałuza-Klein metric

Thus far, our discussion has been in the weak field expansion discussed in chapter IX.4,
with GMN given in two special cases. To construct the Kałuza-Klein metric GMN in its
full glory, we go back to (1) and note that under a gauge transformation, Aμdx

μ →
(Aμ − ∂μ�)dx

μ = Aμdx
μ − d�. (In a sense, we are going back to chapter IV.1, where

you allegedly discovered electromagnetism.) Thus, the combination (dy + lAμdx
μ) is

gauge invariant if we also transform y → y + l� (as in (5)). You of course realize that we
are just rewriting the M = 5 component of the coordinate transformation XM →X′M =
XM + εM(x) and rediscovering (4).

Having made the acquaintance of this invariant combination (dy + lAμdx
μ), we are

now ready to write down the 5-dimensional line element instantly. By invariance, it can
only be

ds2 = gμνdx
μdxν + (

dy + lAμdx
μ
)2 (8)

Comparing this with ds2 = GMNdX
MdXN = Gμνdx

μdxν + 2Gμ5dx
μdy + G55dy

2, we
can read off

GMN =
(
gμν + l2AμAν lAμ

lAν 1

)
(9)

In other words, we have constructed the Kałuza-Klein metric. Notice that Gμν is equal
to gμν only in the weak field expansion implicit in (3). In appendix 7, we give a more
geometrical derivation of (8) for arbitrary dimensions. See (66).

Motion in the fifth dimension

We have yet to fix the radius a of the tiny circles all around us. Here is a clue: our fixing
the normalization of Aμ by setting l = lP is an empty gesture unless Aμ actually couples
to some charged particle or field. Thus far, this is absent from Kałuza-Klein theory. It
behooves us now to work out the motion of a point particle in this theory. Intuitively, since
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Gμ5 = Aμ, we expect that a particle moving along the fifth coordinate y would sense the
electromagnetic potential. This turns out to be the case.

To keep life simple, let the (3 + 1)-dimensional spacetime be flat; after all, we now
know how point particles move under gravity. The focus here is on the coupling to the
electromagnetic field. So, set gμν in (8) to ημν and write down the action

Sparticle = −m
∫ [

−ημνdxμdxν + (
dy + lAμdx

μ
)2
] 1

2 (10)

Apply what you learned in part II of this book: vary Sparticle with respect to y and xμ to
obtain the equations of motion for the particle. First, since the metric does not depend on
y explicitly, we have the conservation law d

dτ

( dy
dτ

+ lAμ
dxμ

dτ

)= 0, so that

p ≡m

(
dy

dτ
+ lAμ

dxμ

dτ

)
(11)

is a constant. Indeed, you recognize p as the conserved momentum in the y direction.
Next, varying with respect to xν, we obtain, after using (11),

d

dτ

(
−ημνmdxμ

dτ
+ (pl)Aν

)
= (pl)∂νAλ

dxλ

dτ
(12)

As in chapter IV.1, this equation of motion reduces to md2xμ

dτ 2 = (pl)Fμ
ν
dxν

dτ
. Comparing

with (IV.1.23), we see that pl ≡ q is the charge of the particle. Our intuition is vindicated:
the momentum p along the y direction determines how strongly the particle senses Aμ.

But what isp? Classically, the momentump can take on any value, and hence the charge
q also. In quantum mechanics, however, the momentum of a particle moving around a
circle is quantized. Earlier, we already noted that the uncertainty principle implies that
p is of order 1/a. But we can be more precise. Here I have to assume that the reader is
sufficiently familiar with quantum mechanics to know that the wave function of a particle
around a circle of radius a is given by eipy/�. The reader who does not know this can
simply skip this and the next section. (Note that we have momentarily restored �.) Since y
and y + 2πa represent the same point, ei2πap/� = 1, and so p must take on the quantized
value p = n�/a, with n any integer between −∞ and +∞. Since q = pl, we find that the
charge of the particle is also quantized to have the allowed values qn = n�l/a = ne, with
the fundamental unit of charge given by

e = l

a
(13)

(we set � = 1 once again). In natural units, e � √
4π/137 ∼ 0.3. Since l = lP, we find

that a = lP/e ∼ 3lP is also of the order of the Planck length. Nicely, this accords with the
undeniable fact that experimentalists have not seen the Kałuza-Klein circles to this very day.



678 | X. Gravity Past, Present, and Future

With the internal space a circle, we are invited to introduce an angular variable θ defined
by y ≡ aθ . You are of course free to think of θ , rather than y, as the internal coordinate
and rewrite (8) as∗ ds2 = gμνdx

μdxν + a2(dθ + eAμdx
μ)2.

Charge conjugation and direction of motion

That charge quantization pops out of the Kałuza-Klein framework is quite striking. Another
nice feature of the theory is that the concept of charge conjugation, and hence of antimatter,
also emerges naturally. This remark is directed to those readers who know about the three
fundamental discrete symmetries of physics, namely parity (that is, reflection in space),
time reversal (that is, reflection in time), and charge conjugation (that is, turning particles
into antiparticles, thus flipping the sign of various conserved charges). Of these three
discrete symmetries, charge conjugation stands apart from parity and time reversal in
that it does not appear to have anything to do with spacetime. But in the Kałuza-Klein
framework, it does. Charge conjugation just corresponds to reversing the motion of the
particle along the y direction. The existence of antimatter follows from the possibility of
going the other way around the circle!

Unfortunately, there is also a serious difficulty with this basic version of Kałuza-Klein
theory: the charged particles found here all have y momentum of the order of the Planck
mass MP. This implies that these particles are all very massive (as we will make precise
in the next section) and do not correspond to the observed charged particles. Incidentally,
Kałuza already noted this difficulty in his paper, with a note thanking Einstein for pointing
this out to him.

Extragalactic fable revisited

Time to revisit the extragalactic fable in chapter IV.1! Recall that the extragalactic version
of you tried to include a potential in the Lorentz action for a free particle. You managed
to come up with two, and only two, options: SE = − ∫ {m√−ημνdxμdxν + V (x)dt} and

SG = −m ∫ √
(1 + 2V (x)

m
)dt2 − d �x2. You can put the potential V either outside or inside

the square root. How could there possibly be another option?
After staring at this for years, you might, if you are as clever as Kałuza, realize one day that

there is a third option unifying these two options. You extend the indices μ, ν = 0, 1, 2, 3
toM , N = 0, 1, 2, 3, 5; write S = −m ∫ √−GMNdx

MdxN ; and setGμν = ημν andG55 = 1.
Then

S = −m
∫ √

−ημνdxμdxν − 2G5μdx
5dxμ − (dx5)2 = −m

∫ √
dτ 2 − 2G5μdx

5dxμ − (dx5)2

� −m
∫

dτ

(
1 −G5μ

dx5

dτ

dxμ

dτ
+ . . .

)
=
∫

{−mdτ + eAμdx
μ + . . . }

∗ Readers familiar with quantum mechanics will be pleased to see the phase angle of the wave function for a
charged particle emerging. We have eipy/� = eipaθ/� = einθ (see, for example, QFT Nut, p. 79).
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where in the last step you set dx5

dτ
= e/m and G5μ = Aμ. This is the Kałuza idea in

essence.

Kałuza-Klein towers

A striking prediction of Kałuza-Klein theory is the existence of entire towers of particles.
In this section, we set not only gμν = ημν but also Aμ = 0. Consider the wave equation

∂2� = (− ∂2

∂t2
+ �∇2 + ∂2

∂y2

)
� = 0 satisfied by some field � whose identity we need not

specify for this schematic discussion. The solution is �(t , �x , y) = e−iωt+i�k.�x+iκy, with
ω2 = (�k2 + κ2).

Here we essentially repeat the argument given in the previous section. Since y is curled
up in a circle with radius a, the periodic boundary condition5 specifies that κ = n/a,
with n an integer. In quantum mechanics, de Broglie tells us that frequency and wave
number become energy E = �ω and momentum �p = ��k, respectively. (Here �p is the
3-momentum observed in the (3 + 1)-dimensional Minkowskian spacetime, while the
momentum along the y direction that appeared in the preceding section is p = �κ .) Thus,
in Kałuza-Klein theory, each one of the particles we know—the electron, the photon, and so
on—is associated with a tower of particles with masses given by m2

n
=E2 − �p2 = (n�/a)2.

(In appendix 4, we repeat the calculations in these two sections more carefully.)
For n �= 0, these masses are enormous, of order MP, since as we saw in the preceding

section, a is of order lP. The Kałuza-Klein towers are conveniently hidden away from the
prying eyes of our experimental friends.

On the Planck scale, the known fundamental particles, quarks, leptons, and such, are
essentially massless; in particle theory, their observed masses∗ are accounted for by the so-
called Higgs mechanism. In this interpretation of Kałuza-Klein theory, the known particles
correspond to n= 0, in which case the corresponding field �(�x , y) does not depend on y

and thus in some sense does not know about the extra dimension.
We will not address further this difficulty of the theory not containing charged particles

that are also massless (that is, with masses much less than MP).
Note also that we have not inquired about the “mechanism” that breaks the 5-dimen-

sional spacetime into 4 cosmologically large coordinates and one small coordinate.

Breathing circles

We have shown that it is consistent to set h55 = 0 and hence G55 = 1, but actually, we have
the option of giving life to G55 and turning it into a field. Promote the fixed radius a to a
field φ(x) (which evidently has dimension of a length) so that

ds2 = gμνdx
μdxν + φ(x)2

(
dθ + eAμdx

μ
)2 (14)

∗ As was emphasized in chapter III.5, one triumph of special relativity is that it allows us to talk about massless
particles.
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(Henceforth, we will absorb e into Aμ.) The Kałuza-Klein metric is correspondingly
modified to

GMN =
(
gμν + φ2AμAν φ2Aμ

φ2Aν φ2

)
(15)

(In comparing (15) with (9), note that one is written in the basis (dxμ, dθ), the other
in (dxμ, dy).) Throughout, gμν, Aμ, and φ are all functions of x; we often suppress the
x dependence to avoid clutter. For the record, the inverse metric is given by

GNP =
(

gνρ −Aν

−Aρ φ−2 + A2

)
(16)

where A2 = AμA
μ.

The scalar field φ(x) is sometimes called the dilaton or radion.6 We suppose that in the
ground state, φ(x)= a.

Note that G, the determinant of GMN , is given by G= φ2g (with g the determinant of
gμν, as usual), so thatφ controls the volume of 5-dimensional spacetime. We could perhaps
visualize this collection of Kałuza-Klein circles as an immense colony of minute marine
organisms breathing, pulsating, and changing in size.

Note that we have now accounted for all (5 . 6)/2 = 15 = 10 + 4 + 1components ofGMN :
10 in gμν, 4 in Aμ, and 1 in φ.

At the time of Kałuza and Klein, experimentalists had never heard of a scalar field, and
φ(x) was seen as a fly in the ointment gluing gravity and electromagnetism together. In
modern times, however, string theory contains a multitude of scalar fields, in particular
the dilaton field, and the natural appearance of scalar fields was celebrated with much
exuberance and joy. Nevertheless, experimentalists have not yet seen the Kałuza-Klein
scalar field.

For some reason, while it is easy to excite gμν andAμ, which we do endlessly each day, φ
is very hard to excite. The Kałuza-Klein radius is extraordinarily rigid! Why? Nobody knows
for sure.

I alluded earlier to a brute force plug-in approach. You can now see how this alternative
presentation starts by plugging the GMN displayed in (15), given without any motivation,
into the action (6). After some tedious calculations, the action would be found to reduce to
Einstein-Hilbert plus Maxwell plus an action for φ. I personally find this sort of approach
not particularly illuminating. As to the inevitable question of why we should contemplate
the form given in (15), the answer could be that we can always start with a general GMN ,
demand that the action reduce to a nice form, and by trial and error arrive at (15). In
appendix 7, I give a geometrical picture that leads to (15) and its higher dimensional
generalization, to which we now turn.

Higher dimensional Kałuza-Klein and Yang-Mills theories

Back in 1921, only the gravitational and the electromagnetic interactions were known. It
took decades before the strong and weak interactions were clearly recognized as such. Still
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later, in the 1970s, the strong, electromagnetic, and weak interactions were all discovered to
be described by the nonabelian gauge theory∗ written down by Yang and Mills in 1954, as I
have already mentioned in chapter VIII.3 and at the start of this chapter. I also mentioned in
chapter VIII.3 that, furthermore, these three nongravitational interactions can be unified
into a single gauge theory. Although experimentalists have yet to verify this grand unified
theory,7 many theorists have professed faith in its general structure.

Some readers may not be familiar with Yang-Mills theory.8 For you to follow the rest of
this chapter, all I ask of you is to know that the familiar electromagnetic gauge potentialAμ

is generalized to a bunch of potentials Aa
μ

, where the index† a is a group index associated
with the nonabelian gauge group and labels the generators of the group. For example, for
the group SO(3), the index a ranges over 1, 2, and 3. Maxwell’s theory corresponds to the
simplest possible case, in which the gauge group is U(1) and the index a can take on only
one possible value (namely 1) and hence can be suppressed.

As already remarked, Kałuza’s idea can be extended to any dimension. We simply start
with a higher dimensional Einstein-Hilbert action

SKK = +
∫

ddx
√−GMd−2

TG R(G)=
∫

d4xdd−4y
√−GMd−2

TG R(G) (17)

with MTG the “true” mass scale of gravity. As explained earlier, the power of MTG in
(17) is fixed by dimensional analysis. The internal space (with coordinates x5, x6, . . . , xd ,
which we also refer to as ys) is compactified into a sphere rather than a circle, or more
generally, a closed curved space characterized by some length a. As before, evaluating SKK

with a GMN(x , y) of the form Gμν(x , y)= gμν(x), Gμj(x , y)= 0, and Gij(x , y)= 1 (with
i , j = 5, 6, . . . , d), we recover the familiar Planck mass

M2
P =Md−2

TG Vd−4 =Mn+2
TG Vn (18)

with Vn the volume of the n-dimensional internal space, thus generalizing the earlier
relation M2

P = 2πaM3
5.

Perhaps not surprisingly, just as the Maxwell action pops out of Kałuza-Klein theory,
the Yang-Mills action also pops out.9 (Thus, in this context, you don’t even have to know
what the Yang-Mills action is. You could derive it from the Kałuza-Klein action.) To me,
that is the truly beautiful feature of Kałuza-Klein10 theory. In appendix 8, I show how the
Yang-Mills field strength emerges algebraically and geometrically.

Our experience with the 5-dimensional example, in which Gμ5 is identified with Aμ,
suggests that 4(d − 4) components Gμj(x , y), j = 5, 6, . . . , d, must end up being born
in (3 + 1)-dimensional spacetime as the Yang-Mills gauge potential Aa

μ
.

The issue here is how to relate Gμj(x , y) to Aa
μ
(x). Both objects carry the index μ. But

the indices j and a, carried by one but not the other, are manifestly different beasts. We
have to find a way to connect them, using some mathematical entity that carries both j

and a.

∗ In this terminology, Maxwell’s theory is known as an abelian gauge theory.
† Not to be confused with the radius of the Kałuza-Klein circles of course!
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Now your hard work learning about isometry and Killing vectors in chapter IX.6 pays
off. Consider, for example, the sphere S2. The isometry group, the group that leaves S2

invariant, is SO(3), the group of rotations in 3-dimensional space. On S2, we have 3 Killing
vectors �ξa, with a = 1, 2, 3, associated with the 3 generators. Indeed, they were explicitly
displayed in chapter IX.6. Write the Killing vectors out in components ξaj ≡ gjkξ

k
a

(with
gjk the metric on the sphere). Since the vectors �ξa live on S2, the index j takes on two
values j = 1, 2, corresponding to the two coordinates on S2.

We see that, in general, the Killing vectors ξaj are precisely what we need: they carry
both the j index and the a index. Given these 3 entities, the off-diagonal components of
the higher dimensional metric Gμj(x , y), the Yang-Mills gauge potential Aa

μ
(x), and the

Killing vectors ξaj(y), the only relation we can write down is

Gμj(x , y)= ξaj(y)A
a
μ
(x)= gjk(y)ξ

k
a
(y)Aa

μ
(x) (19)

The indices have to hang together right, and this places a powerful constraint on what is
possible. Another example of symmetry considerations saving us a lot of work! We will see
in appendix 8 that this relation is indeed correct.

Road signs to higher dimensions

Two major concepts lie at the foundation of modern physics: local coordinate invariance
and local internal or gauge symmetry. The former leads to the theory of gravity; the latter
leads to the gauge theory of strong, weak, and electromagnetic interactions.

The remarkable discovery∗ of Kałuza is that if we suppose that spacetime is embedded in
a space with dimension higher than four, these two concepts may not be independent—the
latter may be derived from the former. The physics is so astonishing and the mathematics
so elegant that many theoretical physicists might be disappointed if Nature does not use
the Kałuza mechanism at some level. Nature, please do not disappoint us!

Furthermore, string theory, the leading candidate theory for unifying all four fundamen-
tal interactions, can be consistently formulated only in higher dimensional spacetime and
thus requires the Kałuza mechanism. A priori, this need not be; if somebody had writ-
ten down a consistent theory of quantum gravity incorporating the known interactions in
4-dimensional spacetime, Kałuza-Klein theory would have disappeared into the dustbin
of physics history. Also, if Kałuza-Klein theory could not incorporate Yang-Mills theory
naturally, it also would have been kissed bye-bye. (See below, however.)

I mention in passing a historical curiosity. In chapter IX.5, we saw that we could follow
either Nordström or Einstein to a relativistic theory of gravity. Interestingly, both roads
lead to higher dimensions.

∗ In textbooks, theoretical physics is laid out, all polished and beautiful, as if it were almost logically inevitable.
To counter this, I might mention that in his paper, Kałuza mentioned the possibility of his theory explaining
terrestrial magnetism.
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Idea for cartoon: Theoretical physicist driving down a highway and seeing an exit sign
for “Higher Dimensions.”

Recall that Nordström described the gravitational field by a scalar field�. In a brilliant in-
sight, he noticed11 in 1914 that gravity and electromagnetism can be unified in the (4 + 1)-
dimensional Maxwell action S = ∫

d5x(− 1
4FMNF

MN), M , N = 0, 1, 2, 3, 5. Let y = x5

describe a circle with radius a, and letAμ(x , y)=Aμ(x) andA5(x , y)=�(x) depend only
on the (3 + 1)-dimensional coordinates x, so that Fμν = ∂μAν − ∂νAμ is the usual electro-
magnetic field and Fμ5 = ∂μA5 = ∂μ�. The action becomes S = a

∫
d4x 1

4

(−FMNF
MN +

1
2∂μ�∂

μ�
)
. Gravity and electromagnetism are unified under false pretense.

The moral of the story is that in theoretical physics, simplicity may not be all that it’s
cracked up to be.

Some negative notes

Considering how fundamental invariances12 under (1) and (2) are to theoretical physics, it
would be disappointing indeed if Nature does not make use of this beautifully simple way
of unifying these two equations. Unhappily, higher dimensional theories currently being
worked on typically come with their own sets of Yang-Mills gauge fields. For example, string
theory already contains gauge fields among the vibrational modes of the string. Thus, the
gauge fields produced by the Kałuza-Klein mechanism are not needed. If this should turn
out to be correct, it would appear that Nature is “unreasonably” wasteful.

On this somewhat negative note, let me mention that we have avoided talking about
the mechanism for compactifying the extra dimensions. What would have been the sim-
plest (and cleanest) possibility, namely that gravity supplemented by a cosmological con-
stant could do the job, turns out not to work. Indeed, look at the field equation RMN =
1
2gMN(R −�) and demand a flat spacetime, that is, Rμν = 0. But this implies R =� and
by the field equation, Rij = 0. The internal space is Ricci flat and cannot curl up into a
sphere. Numerous mechanisms13 have been proposed, none compelling, involving the
introduction of additional fields and using the energy momentum tensor of these fields to
curl up the internal space. Some of these additional fields are in fact gauge fields or their
generalizations.

I might as well mention another difficulty that diminishes interest in Kałuza-Klein
theory, at least as traditionally formulated. (The following remarks are well beyond the
scope of this book and are intended only for readers with at least a nodding acquaintance
with particle physics.) In the so-called standard model of particle physics, fundamental
fermions (namely the quarks and leptons) appear as left handed and right handed fields
in unequal numbers. This fundamental lack of symmetry between left and right goes back
to parity violation in the weak interaction. As should be intuitively14 clear, however, if the
internal manifolds are simple spheres, then the resulting Kałuza-Klein theory can hardly
distinguish between left and right.15

This chapter contains a large number of appendices, many of which can be skipped upon
first reading. Here is a list of the topics addressed: (1) a calculation of the 5-dimensional
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action using differential forms, verifying that it contains the Einstein-Hilbert and Maxwell
actions; (2) symmetry arguments and the role of the dilaton φ in the action; (3) the Jordan
frame versus the Einstein frame; (4) the charged scalar field; (5) the natural emergence
of the Yang-Mills gauge potential; (6) the Kałuza-Klein metric viewed as foliation; (7) the
Kałuza-Klein metric in the vielbein formalism; (8) a more geometrical view of Kałuza-Klein
theory; (9) a glimpse of the Arnowitt-Deser-Misner formalism; and (10) some historical
tidbits.

Appendix 1: Einstein-Hilbert contains Maxwell

As promised, we now calculate the 5-dimensional scalar curvature R(G) in (17) for the metric

ds2 = gμνdx
μdxν + (

dy + lAμdx
μ
)2 (20)

In this appendix, we absorb l into Aμ for ease of writing.
From general considerations, we have already argued in the text that R(G) = R(g) + ζFμνFμν for some

numerical constant ζ . You are invited to proceed by brute force, evaluating the Christoffel symbols, the
Ricci tensor, and the scalar curvature, so as to determine ζ . In fact, as already mentioned in the text, to
determine this numerical coefficient, you can ease your labor by calculating R(G) for the special case of
gμν = ημν .

Here, differential forms are presented with an opportunity to rise and shine. So instead of Christoffel symbols
and the rest, here I will use differential forms. For the sake of pedagogy, and in a departure from my usual
philosophy, I will actually calculate R(G) for the metric (20) in its full glory, with a general 4-dimensional metric,
even though we could simply set it to the Minkowskian metric. As we will soon see, though, the hard part is not
getting R(g), but getting FμνFμν .

For convenience, write R̃ ≡R(g) and indicate quantities associated with the 4-dimensional metric with a tilde.
Start with the 5-dimensional 1-forms eA = (eα , e5) given by eα = eα

μ
dxμ = ẽα and e5 = dy +Aμdx

μ = dy +Aαe
α,

where the last step defines Aα. For convenience we also define ∂α by dxμ∂μ = eα∂α. The 5-dimensional metric
is then given as usual by

GMN = ηABe
A
M
eB
N

= ηαβe
α
M
e
β

N + e5
M
e5
N

(21)

(Note in passing that we have eα
μ

= ẽα
μ

, eα5 = 0, e5
μ

= Aμ = Aαe
α
μ

, and e5
5 = 1.)

Now that we have set things up, let’s use Cartan’s first structural equation

deA + ωA
B
eB = 0 (22)

to determine the connection 1-forms ωA
B

.
First, we have

de5 = d
(
dy + Aβe

β
)

= 0 + ∂αAβe
αeβ = 1

2

(
∂αAβ − ∂βAα

)
eαeβ = 1

2Fαβe
αeβ (23)

From −de5 = ω5
α
eα, we obtain ω5

α
= 1

2Fαβe
β .

Next, ẽα = eα and so we obtain

−dẽα = ω̃α
β
ẽβ = ω̃α

β
eβ = −deα = ωα

A
eA = ωα

β
eβ + ωα5e

5 =
(
ωα

β
+ 1

2F
α
β
e5
)
eβ (24)

Hence ωα
β

= ω̃α
β

− 1
2F

α
β
e5. Note that because we absorbed l, A is dimensionless and F has dimensions of 1/L,

consistent with ω being dimensionless.
Now plug in Cartan’s second structural equation

RA
B

= dωA
B

+ ωA
C
ωC

B
(25)
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So we have

Rα
β

= dωα
β

+ ωα
γ
ω
γ

β + ωα5ω
5
β

= dω̃α
β

− 1
2

(
∂γF

α
β

)
eγ e5 − 1

2F
α
β
de5

+
(
ω̃α

γ
− 1

2F
α
γ
e5
) (

ω̃
γ

β − 1
2F

γ

βe
5
)

+
(
− 1

2F
α
γ
eγ
) (

1
2Fβδe

δ
)

(26)

The tilde terms collect themselves nicely into R̃α
β

. Also rather nicely, we note that to calculate the scalar

curvature, we can ignore terms involving eγ e5. After cleaning up a bit, we obtain

Rα
β

= R̃α
β

− 1
4F

α
β
Fγ δe

γ eδ − 1
8

(
Fα

γ
Fβδ − Fα

δ
Fβγ

)
eγ eδ + (eγ e5 terms) (27)

Equating this to

Rα
β

= 1
2R

α
βγ δ

eγ eδ + 1
2R

α
βγ 5e

γ e5 + 1
2R

α
β5γ e

5eγ (28)

we obtain

Rα
βγ δ

= R̃α
βγ δ

− 1
2F

α
β
Fγ δ − 1

4

(
Fα

γ
Fβδ − Fα

δ
Fβγ

)
(29)

Next, using (25) again, we evaluate

R5
α

= dω5
α

+ ω5
β
ωβ

α

= d
(

1
2F αβe

β
)

+
(

1
2Fβγ e

γ
) (

ω̃β
α

− 1
2F

β
α
e5
)

= 1
2

(
∂γF αβ

)
eγ eβ − 1

2F αβω̃
α
β
eγ − 1

2Fβγ ω̃
β
α
eγ − 1

4FβγF
β
α
eγ e5 (30)

Equating this to

R5
α

= 1
2R

5
αCD

eCeD = 1
2R

5
αγ δ

eγ eδ + 1
2

. 2R5
α5γ e

5eγ (31)

we can determine R5
αγ δ

and R5
α5γ . Note that to calculate the scalar curvature, we don’t give two hoots about

R5
αγ δ

. Rather, we need to extract R5
α5γ from (30). But since ω̃ does not involve e5, we deduce that only the last

term in (30) contributes. We thus obtain

R5
α5γ = 1

4FβγF
β
α

(32)

We are now ready to calculate the Ricci tensors needed to obtain the scalar curvature. Using (29) and (32), we
find

Rβδ = Rα
βαδ

+ R5
β5δ = R̃βδ − 1

2F
α
β
Fαδ (33)

Next, using (32), we find

R55 = Rα
5α5 = ηαβRβ5α5 = ηαβR5β5α = ηαβR5

β5α = 1
4 η

αβFγαF
γ

β = 1
4FγαF

γα (34)

Finally, putting (33) and (34) together, we obtain the scalar curvature

R = ηβδRβδ + R55 = R̃ − 1
2
FαβFαβ + 1

4
FαβFαβ = R̃ − 1

4
FαβFαβ = R̃ − 1

4
FμνFμν (35)

Or, using various other notations, we have R(G)= R(g)− 1
4F

μνFμν or R(5) = R(4) − 1
4F

μνFμν , as promised.
All this for the − 1

4 !
Note that, in spite of what we said in the beginning of this appendix, we would have gained only marginally

in the computation if we had set ω̃ = 0 to start with.
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Appendix 2: The dilaton or radion in the action

We have left out the scalar field φ(x) thus far, but now let us consider ds2 = gμνdx
μdxν + φ(x)2(dy +Aμdx

μ)2.
(We absorb a into φ, just as we had absorbed l intoA.) As I have mentioned on more than one occasion, we could
always proceed by brute force, simply calculating the scalar curvature R(G) with this metric. But since we prefer
not to sweat, let us see how far we can get with symmetry considerations and the knowledge that two powers of
spacetime derivatives must appear.

The scalar curvature is invariant under

GMN(X)=G′
PQ

(X′) ∂X
′P

∂XM

∂X′Q

∂XN
(36)

Consider the coordinate transformation x ′μ = xμ and x′5 = f (x5), that is, we do not touch the usual spacetime
coordinates. Then G55(X) = φ(x)2 = G′

55(X
′) ∂y

′
∂y

∂y′
∂y

= φ′(x′)2 ∂y
′

∂y
∂y′
∂y

. Since we require φ(x) and φ′(x′) to be

independent of y, for the transformation to be allowed, ∂y′
∂y

can only be equal to a constant K . Hence φ(x)=
Kφ′(x′) = Kφ′(x). Next, setting (M , N) = (μ, 5) in (36) and recalling that Gμ5 = φ2Aμ, we see that Aμ(x) =
K−1A′

μ
(x). This coordinate transformation corresponds to multiplying φ and dividing Aμ by a constant K .

Furthermore, Gμν and hence gμν remain unchanged. Thus, coordinate invariance requires that the Maxwell
term must now appear in the combination φ2FμνF

μν .
Let us now find those terms in the scalar curvature R(G) containing φ and two spacetime derivatives. For

now, set gμν = ημν andAμ = 0. Invariance under φ(x)=Kφ′(x) indicates that there are only two possible terms:
ημν∂μ∂νφ/φ and ημν∂μφ∂νφ/φ2. To determine the numerical coefficients of these two terms, we simply have to
calculate the scalar curvature for ds2 = ημνdx

μdxν + φ2dy2. What an easy calculation! You could have done it
way back when you first saw the Riemann curvature tensor. At this point, the diligent reader with a good memory
jumps up and exclaims, “I did do it as an exercise back in chapter VI.1! The answer was R = −2ημν∂μ∂νφ/φ.”

For curved spacetime, we simply promote ημν∂μ∂νφ (the flat space d’Alembertian of φ) to

φ = 1√−g ∂μ(
√−ggμν∂νφ)

(the curved space d’Alembertian of φ). We thus obtain

R(G)= R(g)− 1
4φ

2FμνF
μν − 2

φ

φ
(37)

where all contraction on the right hand side is done with gμν .

Appendix 3: Who frames the action?

Recalling that
√−G= √−gφ, we can now use (37) to write the Kałuza-Klein action SKK = ∫

d4xdy
√−GM3

5R(G)

as

SJordan =M2
P

∫
d4x

√−gφ
(
R − 1

4φ
2FμνF

μν − 2
φ

φ

)
(38)

This is known as the action in the Jordan frame after Pascual Jordan, one of the founders of quantum mechanics
and quantum field theory. We could perfectly well work with this action, expanding the field φ around 1 and
treating the deviation from 1 as a small fluctuation.

But we can also elect to get rid of the φ in front of the scalar curvature if we like. How can we do that? That
question is actually a memory test for you. Do you remember?

Way way back in exercise I.6.10, you learned that two spaces described by the metric g̃μν and gμν are said
to be conformally related if g̃μν(x)=�2(x)gμν(x). Furthermore, you worked out (please don’t tell me that you
didn’t!) in exercise VI.1.13 that the scalar curvatures in the two spaces (with dimension d = 4) are related by
R̃ =�−2R − 6�−3 �, with the curved space d’Alembertian constructed using gμν . Surely you remember that
now? This shows that with a judicious choice of �, we can recover the Einstein-Hilbert action without a φ in
front.
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So, for notational convenience, let us now put a tilde on the metric in the Jordan frame. In other words, Kałuza-
Klein theory with the dilaton field φ has given us the action SJordan =M2

P

∫
d4x

√−g̃φ(R̃ + φ2FμνFρσ g̃
μρg̃νσ −

2 ˜ φ/φ), with ˜ evidently the d’Alembertian constructed with g̃μν .
Now set g̃μν =�2gμν , so that

√−g̃ = √−g�4 and g̃μν =�−2gμν . Thus, we have

√−g̃φR̃ = √−g�4φ
(
�−2R − 6gμν�−3∂μ∂ν�

)
If we set �2 = 1/φ, we recover the Einstein-Hilbert action at the cost of generating some more scalar terms. In
fact, we obtain√−g̃φR̃ = √−g

(
R + φ−1 φ − 5

2φ
−2gμν∂μφ∂νφ

)
(39)

For future reference, we now have
√−g̃ = √−g/φ2 and g̃μν = φgμν .

We turn next to the Maxwell term:√−g̃φ
(
φ2FμνFρσ g̃

μρg̃νσ
)

= √−gφ−2φ
(
φ2FμνFρσg

μρgνσφ2
)

= √−gφ3FμνF
μν

(Note that the raising of indices in Fμν is now done with the metric gμν .)
Recall that in the two preceding appendices, we absorbed the two Kałuza-Klein lengths a and l. Now put them

back by scaling φ → φ/a and Aμ → lAμ. Putting all this together, we obtain (using MPl = 1) the action in the
so-called Einstein frame:

SEinstein =
∫

d4x
√−g

(
M2

PR − 1
4 a

−3φ3FμνF
μν +M2

P

(
φ−1 φ − 5

2φ
−2gμν∂μφ∂νφ

))
(40)

The multiplicative invariance φ → Kφ in the preceding appendix clearly suggests a change of variable
φ = ζeλϕ, with ζ and λ some real numbers. We now have an additive invariance under ϕ → ϕ + constant. By
invariance (or simple differentiation) we deduce that the two purely scalar terms in (40) can only become a linear
combination of ϕ and gμν∂μϕ∂νϕ. The first term goes away upon integration by parts. Thus, we finally obtain

SEinstein =
∫

d4x
√−g

(
M2

PR − 1
4 e

√
3lPϕFμνF

μν − 1
2g

μν∂μϕ∂νϕ
)

(41)

(We have chosen ζ = a and λ= lP/
√

3, so that the kinetic energy term for ϕ and the Maxwell term for ϕ = 0 have
their standard forms.)

Appendix 4: Charged scalar field

As promised in the text, here we study a charged scalar field�with massm in (4 + 1) dimensions more carefully.
Its action is given by

S =
∫

d4x

∫
dy

√−G
(
−∂M�†GMN∂N�−m2�†�

)
(42)

For simplicity, we will let the (3 + 1)-dimensional spacetime be flat and set gμν = ημν . To evaluate this action, we
first have to invert the matrix (9) to obtain

GMN =
(

ημν −lAμ

−lAν 1 + l2A2

)
(43)

where A2 = AμA
μ = ημνAμAν . (Compare with (16).) Let us now specialize to the particular mode �(x , y) =

ϕn(x)e
iny/a and insert this into (42). Integrating trivially over y, using the relation l = ea (and suppressing the

subscript n on the complex scalar field ϕ, which evidently should not be confused with the real scalar field ϕ in
the preceding appendix), we obtain

S = 2πa
∫

d4x
(
− (

∂μ + ineAμ

)
ϕ†ημν

(
∂ν − ineAν

)
ϕ −m2

n
ϕ†ϕ

)
(44)

Those readers familiar with the action of a complex scalar field in the presence of an electromagnetic field will
see that ϕ describes a particle with charge ne and mass mn given by m2

n
=m2 + (n/a)2. This makes precise the

discussion in the text.
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Appendix 5: Emergence of Yang-Mills structure

After Kałuza proposed the hidden internal space to be a circle, it seems glaringly obvious, at least in hindsight,
that we should consider the sphere next, and that was exactly what Klein did. As mentioned in the text, Yang-
Mills structure naturally emerges from Kałuza-Klein theory. Indeed, we could already have guessed from the
index structure alone how the construction would go.

The discussion here can be couched in fairly general terms, but for pedagogical clarity and definiteness, the
reader seeing this for the first time should imagine the internal space as the sphere S2. Other readers might want
to think of an arbitrary coset manifold G/H , as explained in appendix 1 to chapter IX.6. As in the text, divide the
coordinates: XM = (xμ , yi). The letter x when unspecified will refer to xμ only.

Generalize ds2 = gμνdx
μdxν + (dy + lAμdx

μ)2 in (8) to

ds2 = gμν(x)dx
μdxν + gij (y)

(
dyi + Aa

μ
(x)ξ i

a
(y)dxμ

) (
dyj + Ab

ν
(x)ξ

j

b (y)dx
ν
)

(45)

(with l = 1 for maximal clarity). The internal space is coordinatized by yk and has Killing vectors ξk
a
(y) indexed

by a.
Start by remembering how isometry works in the absence of the gauge potentials. So set Aa

μ
to 0. The

transformation yi → yi +�aξ i
a
(y) (with �a infinitesimal constants) is supposed to leave gijdyidyj invariant.

Let us now verify this. We have dyi → dyi +�a∂kξ
i
a
dyk, or in other words, δ(dyi)=�a∂kξ

i
a
dyk. Then we obtain

δ
(
gijdy

idyj
)

=�a
(
ξk
a
∂kgijdy

idyj + gij∂kξ
i
a
dykdyj + gij∂kξ

j
a
dyidyk

)
(46)

This vanishes if the Killing equation (IX.6.2) ξk
a
∂kgij + gkj∂iξ

k
a

+ gki∂jξ
k
a

= 0 holds. Indeed, this provides an
alternative (but essentially the same, of course) derivation of the Killing equation.

Now turn on the gauge potentials, so that dyi is replaced by Dyi = dyi + Aa
μ
ξ i
a
dxμ. Consider the transfor-

mation yi → yi +�a(x)ξ i
a
(y), with the infinitesimals �a(x) allowed to depend on x. We want to know how the

gauge potentials Aa
μ

should transform for gijDyiDyj to remain unchanged.
Let us split the calculation of the change δ(Dyi) into two pieces:

δ
(
dyi

)
= d

(
�aξ i

a

)
=�a∂kξ

i
a
dyk + ξ i

a
∂μ�

adxμ (47)

and

δ
(
Aa
μ
ξ i
a
dxμ

)
=
(
δAa

μ

)
ξ i
a
dxμ + Aa

μ
�bξk

b
∂kξ

i
a
dxμ (48)

Evidently, it is important to keep in mind that �a and Aa
μ

depend only on x, while ξ i
a

depends only on y. Our job
is to determine δAa

μ
by requiring δ(gijDyiDyj)= 0.

One clue is that we must use our knowledge that the isometries form a group, namely Lie’s equation, as
discussed in chapter IX.6. There we worked out the Killing vectors for the sphere S2 = SO(3)/SO(2) and showed
that they satisfy [ξa , ξb] = ε c

ab ξc. When written out in components, this means, in the notation used here,

ξk
a

∂ξ ib

∂yk
− ξk

b

∂ξ i
a

∂yk
= ε c

ab
ξ i
c

(49)

The preceding exercise gives us another clue: thanks to the Killing equation, the requirement δ(gijDyiDyj)=
0 will be satisfied if δ(Dyi)=�b∂kξ

i
bDy

k. Staring at (47) and (48), we see that we want δAa
μ

to contain two pieces.
First, we need a piece −∂μ�a to cancel off the second term in (47). This is more or less expected, since the
electromagnetic gauge potential transforms similarly: δAμ = −∂μ�. Second, we need another piece to convert
the combination ξkb ∂kξ

i
a

in the second term in (48) to ξk
a
∂kξ

i
b, that is, to interchange the indices a and b. How can

you do that? Think for a moment before reading on. You are about to discover Yang-Mills theory.
Of course, I have set it all up for you. Come on, use (49)! Write it in the form ξkb ∂kξ

i
a
+ ε c

ab ξ
i
c
= ξk

a
∂kξ

i
b. We see

that we need

δAc
μ

= ε c
ab
Aa
μ
�b − ∂μ�

c (50)
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y

xμ

Figure 2 Construct our spacetime by piling sheets
on top of one another, with each sheet labeled by
xμ. Within each sheet, points are located by the
internal coordinates yi .

Plug this in and watch the right hand side of (48) become −ξ i
c
∂μ�

cdxμ + Aa
μ
�bξk

a
∂kξ

i
bdx

μ. Hence δ(Dyi) =
�b∂kξ

i
bDy

k, as desired.
Just as the transformation (1) fixes the electromagnetic field strength Fμν , as was discussed back in chap-

ter IV.2, we expect the transformation (50) to fix the Yang-Mills field strength Fa
μν

(which in fact carries, as you
could have guessed, an extra group index a compared to the electromagnetic field strength). Given Fa

μν
(see

appendix 8), the action follows almost immediately.16

For the record, from (45), we can read off

Gij = gij , Gμj = Aa
μ
gijξ

i
a
, Gμν = gμν +

(
gijξ

i
a
ξ
j

b

)
Aa
μ
Ab
ν

(51)

Appendix 6: Kałuza-Klein as foliation

I now give17 a geometrical and pictorial derivation of the Kałuza-Klein metric. In general, we have

GMN(x , y)=
(
Gμν Gμj

Giν Gij

)
(52)

Our goal here is to identify the components of GMN in terms of the metric gμν of the space we live in and the
metric gij of the internal space.

Think of a patch of the internal space as a sheet. Picture our spacetime constructed by piling sheets on top of
one another (see figure 2). The sheets are labeled and distinguished by xμ. Within each sheet, points are located
by the coordinates yi .

Infinitesimal displacements characterized by δyi lie completely within a given sheet (that is, δxμ = 0: no
translating in the space we live in). The distance squared is then ds2 =GMNδX

MδXN =Gijδy
iδyj . This means,

somewhat trivially, that the metric for the internal space is given by

gij =Gij (53)

Less trivially, suppose we want to translate purely in spacetime. By “purely,” we mean that the translation is to
be perpendicular to the internal space. But we need to be careful about what we mean by “perpendicular.” In fact,
as we will see presently, a displacement perpendicular to the internal space will involve displacing in y as well.
Roughly speaking, the y coordinate markings in the sheet labeled by x + δx will not in general be lined up with
the y coordinate markings in the sheet labeled by x. In other words, the desired displacement δXM = (δxμ , δyi)
must be perpendicular to any infinitesimal internal displacement∗ δ′XM = (0, δ′yi). With the invariant definition
of “perpendicular,” this means that δXMGMN(0, δ′y)N = δXMGMjδ

′yj = 0. Since δ′y is arbitrary, it follows that

0 = δxμGμj + δyiGij (54)

∗ Here δ′ is to be thought of as another Greek letter. The prime is not an operation on δ. In other words, δ′y
is just some arbitrary infinitesimal change in y different from δy (like δ1x and δ2x in chapter VI.1). We want to
find the restriction perpendicularity imposes on δXM .
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We can solve for

δyi = −gijGjμδx
μ (55)

where, importantly, gij is the inverse of gij =Gij , not the ij component of GMN , the inverse of GMN . (Got that?)
Now that we have determined a displacement in spacetime δXM = (δxμ , −gijGjμδx

μ), we can calculate its
length squared:

GMNδX
MδXN =GMνδX

Mδxν =
(
Gμνδx

μ +Giνδy
i
)
δxν =

(
Gμν −Giμg

ijGjν

)
δxμδxν (56)

(The first equality holds since by construction, GMjδX
Mδyj = 0 for any δy. In the third expression, δyi is

the specific infinitesimal change determined in (55).) In other words, we can identify the spacetime metric as
gμν ≡Gμν −Giμg

ijGjν . Note that it is not just Gμν (as poor Confusio might have thought).
Collecting, we can finally write

GMN =
(
gμν +Giμg

ijGjν Gμj

Giν gij

)
(57)

We now understand the geometrical origin of the Kałuza-Klein form in (9) and (15)! Needless to say, this is also
entirely consistent with (51).

At this point, our friend the Jargon Guy interjects and tells us that we have been describing foliation. Thanks,
Jargon Guy!

Appendix 7: The Kałuza-Klein metric in the vielbein formalism

Here we derive the Kałuza-Klein metric (9) and (57) for arbitrary dimension using the vielbein formalism of
chapter IX.7. Denote the vielbein for the extended spacetime by eA

M
. HereM = (μ, i), andA= (α , a). The indices

μ and α run over 0, 1, 2, 3, and the indices i and a run over 5, . . . , d. The metric is given by GMN = ηABe
A
M
eB
N

.
The world index M is contracted with GMN , and the Lorentz index A with the extended Minkowski metric ηAB ,
containing the usual Minkowski metric ηαβ and ηab = δab . (This means that the indices A= (α , a) can be raised
and lowered at will (up to a sign).) For example, eM

A
= ηABe

BM = ηABG
MNeB

N
, with GMN the inverse of GMN .

The discussion in this appendix complements that in the preceding appendix to some extent.
For some arbitrary δλA, we displace XM in the Ath direction by

δXM = δλAe
AM (58)

We say that δλa generates a displacement in the internal space, with δxμ = 0 by definition, thus implying

eaμ = 0 ⇒ eμ
a

= 0 (59)

We then have

eM
A

=
(
eμ
α

ei
α

0 ei
a

)
(60)

Note that this introduces an asymmetry between external and internal spaces.
The orthonormality of the vielbein eAMeB

M
= ηAB implies 0 = ηaβ = eaμeβ

μ
+ eaie

β

i = eaie
β

i = 0, where we have
used (59). Thus we have

e
β

i = 0 ⇒ eβi = 0 (61)

This gives

eA
M

=
(
eα
μ

0

ea
μ

eai

)
(62)

In what follows, we evaluate the metric GMN = ηABe
A
M
eB
N

, using (59) and (61) repeatedly.
First, we obtain

Gij = ηαβe
α
i
e
β

j + ηabe
a
i
eb
j
= ηabe

a
i
eb
j
≡ gij (63)

The last step amounts to the definition of the internal metric gij ≡ ηabe
a
i e

b
j .
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Next, introducing the notation Niν ≡Giν and Nνi ≡Gνi , we have

Nνi =Niν =Giν = ηαβe
α
i
eβ
ν

+ ηabe
a
i
eb
ν
= ηabe

a
i
eb
ν
= ea

i
eaν (64)

Since (59) implies ei
be

a
i = eM

b
eaM = δab , we can write eaν = ei

a
Niν .

Finally, we have

Gμν = ηαβe
α
μ
eβ
ν

+ ηabe
a
μ
eb
ν
= gμν + ηabeaμebν

= gμν + ηabei
a
e
j

bNiμNjν = gμν +Niμg
ijNjν (65)

In the second equality, we defined gμν ≡ ηαβe
α
μ
eβ
ν

; in the third equality, we used the result of the previous step;

and in the fourth equality, we defined gij ≡ ηabei
a
e
j

b . It is worth emphasizing that gij is the inverse of gij , not the
ij component of GMN , namely Gij . (If this does not sound familiar, read the preceding appendix again.) Let’s
check this: gijgjk = ηabei

a
e
j

bηcde
c
je

d
k = ηabei

a
ηcde

d
k δ

c
b = δik.

So in summary, we have

GMN =Gμi ,νj =
(
gμν +Niμg

ihNhν Nμj

Niν gij

)
(66)

We have obtained once again the Kałuza-Klein metric (57) (and (9)), with gμν ≡ ηαβe
α
μ
eβ
ν

.
The form of the metric in (66) generalizes an expression18 found in the celebrated textbook by Misner, Thorne,

and Wheeler, described there as “pushing forward the many fingers of Time.” I don’t know about you, but as an
undergraduate studying with Wheeler, I had considerable difficulty in picturing the many fingers of Time. Here
we derived (66) by following our nose. At this point, our friend the Jargon Guy kindly informs us that various
quantities in (66) have names like “lapse” and “shift.”

Again, for the record, the inverse of GMN is given by

GNP =Gνj ,ρk =
(

gνρ −gνσNlσg
lk

−gjlNlσg
σρ gjk + gjmNmνg

νσNlσg
lk

)
(67)

where gνρ is the inverse of gμν .

Appendix 8: A more geometrical view of Kałuza-Klein theory
and emergence of Yang-Mills structure

As is made clear by the discussion in the text, we could simply insert Gμj(x , y)= gjk(y)ξ
k
a
(y)Aa

μ
(x) into the

higher dimensional Einstein-Hilbert action and watch the Yang-Mills action emerge. Just plug and chug. (The
calculation is similar to, but more involved than, the calculation we trudged through in appendix 1. At some
point, you clearly have to use the properties of the Killing vectors.) Since this is readily worked out (and also
available in a number of places), I elect to follow a rather different, and more geometrical, approach.

Let us contemplate the following question. Given GMN in (66), what must it satisfy for us to be able to bring
it to the block diagonal form

G′
MN

=
(× 0

0 ×
)

(68)

by a coordinate transformation? In other words, under what condition do the internal and external geometries
decouple?

Here we are inspired by the electromagnetic case. Back in (15), the internal and external geometries decouple
if Aμ = 0. But this is not a gauge invariant statement; the correct condition∗ is that Fμν = 0. Thus, we expect that
the condition for the internal and external geometries to decouple is the vanishing of the analog of Fμν , and we
can identify that object as the Yang-Mills field strength.

∗ If you are ever asked the question, “What is the electromagnetic field?” you can answer that within Kałuza-
Klein theory, it is that which links the internal and external geometries.
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We want to preserve (61) stating that eα
i

= 0 under the desired coordinate transformation. As before, we use
the notationXM = (xμ , yj), that is, with the internal coordinates denoted by y. Recall from chapter IX.7 how the
vielbein transforms:

e′A
N
(X′)= ∂XM

∂X′N e
A
M
(X) (69)

Hence we require 0 = e′α
i
(X′)= ∂XN

∂X′i e
α
N
(X)= ∂xμ

∂y′i e
α
μ
(X). From (59), we have eA

μ
eν
A

= eα
μ
eν
α

= δν
μ

. Thus, multiplying
by eν

α
, we see that the preceding requirement implies that we should restrict ourselves to those coordinate

transformations in which xμ does not depend on y′i .
See if you can work out the condition for decoupling before reading further.
From G′

MN
(X′)= ∂XP

∂X′M
∂XQ

∂X′N GPQ(X), we have

G′
μj
(X′)= ∂XP

∂x′μ
∂XQ

∂y′j GPQ(X)= ∂yk

∂y′j

(
∂xν

∂x ′μGνk + ∂yl

∂x′μGlk

)
(70)

since xμ does not depend on y′j .
In what follows, we must keep an eagle eye out for what variables are held fixed in the various partial derivatives

(as when doing thermodynamics). Clearly, the quantity ∂yl

∂x′μ in (70) is evaluated with y′k held fixed. Instead of
thinking of it as a function of x ′μ and y′k, it is more convenient for our purposes to think of it as a function of xν

and y′k: xl = xl(xν , y ′k). So in (70), write ∂yl

∂x′μ as ∂yl

∂xν
|y′k ∂x

ν

∂x′μ . Then we obtain

G′
μj
(x′ , y′)= ∂yk

∂y′j
∂xν

∂x′μ

(
Gνk + ∂yl

∂xν

∣∣∣∣
y′k
Glk

)
(71)

Now we impose the stated form (68) and demand that G′
μj
(x′ , y′)= 0. Assuming that the matrices ∂yk

∂y′j and
∂xν

∂x′μ are nonsingular, we peel them off in (70) to obtain Gνk + ∂yl

∂xν
|y′kGlk = 0. Using this, and recognizing that

Gνk =Nνk and Glk = glk, we obtain

− ∂yl

∂xν

∣∣∣∣
y′k

=Nνkg
kl ≡Nl

ν
(72)

(where, as before, gkl is the inverse of gln). Differentiating (72), we have

− ∂2yl

∂xμ∂xν

∣∣∣∣
y′k

= ∂

∂xμ

∣∣∣∣
y′k
Nl
ν
= ∂Nl

ν

∂xμ

∣∣∣∣
yj

+ ∂yj

∂xμ

∣∣∣∣
y′k

∂Nl
ν

∂yj

∣∣∣∣
xμ

= ∂Nl
ν

∂xμ
−Nj

μ

∂Nl
ν

∂yj
(73)

In this final form, we regard Nl
ν

as a function of xμ and yj , as indeed it is. So let’s give this expression a name:

F l
μν

≡ ∂Nl
ν

∂xμ
−Nj

μ

∂Nl
ν

∂yj
− (μ↔ ν) (74)

The condition for the geometries to decouple is then simply F l
μν

= 0.
As I explained, we should identify the expression for F l

μν
in (74) as the analog of the electromagnetic field

strength. The reader who has studied nonabelian gauge theory will recognize that this almost looks like the Yang-
Mills field strength. It is certainly pleasing to see something like that emerging from considerations of geometries
decoupling. Nevertheless, it is clear that we should not yet identify F l

μν
as the desired field strength. After all,

F l
μν

carries only geometrical indices. We have to connect geometry to algebra.
As explained in the text, the Killing vectors do precisely that. So write19

Nj
μ

= Aa
μ
ξj
a

(75)

and then (74) becomes

F l
μν

= ∂Aa
ν

∂xμ
ξ l
a
− Aa

μ
ξj
a
Ab
ν

∂ξ lb

∂yj
− (μ↔ ν) (76)

Using Lie’s equation (49), we obtain

F l
μν

=
(
∂μA

c
ν
− εc

ab
Aa
μ
Ab
ν
− (μ↔ ν)

)
ξ l
c
≡ Fc

μν
ξ l
c

(77)

The Yang-Mills field strength Fc
μν

emerges naturally in the Kałuza-Klein framework.
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y
xz t

Figure 3 The dynamics of geometry: an instant in time is represented by
a spacelike 3-dimensional hypersurface in curved spacetime.

Appendix 9: The dynamics of geometry and the ADM formulation

This may be a good place to mention an important subject, namely the Arnowitt-Deser-Misner (known as ADM)
formulation of gravitational dynamics, even though it is not directly related to Kałuza-Klein theory. In physics,
you are used to specifying a dynamical system at some initial time and then asking how it evolves in time.
In general relativity, time t is one of the coordinates, and an instant in time is represented by a spacelike 3-
dimensional hypersurface in spacetime, in general curved. Thus, we are to specify the 3-dimensional geometry
on an initial spacelike hypersurface specified by t equal to some constant and then to follow the dynamics of the
geometry—what Wheeler called geometrodynamics∗—as we move from one hypersurface to another.

Well, you might have noticed that the sheets in figure 2 can represent these hypersurfaces. We flip a switch in
our brains and rename (see figure 3) the “internal coordinates” yi as the spatial coordinates xi and the spacetime
coordinates xμ as the single time coordinate t . We can immediately take over the metric in (66) and write

gμν =
(−N2 +Nig

ijNj Ni

Nj gij

)
(78)

where N2 = −g00 and Ni = g0i , with N known as lapse and Ni as shift. Pictorially, the shift measures how one
hypersurface is not lined up with the next. (Now the phrase “pushing forward the many fingers of Time” probably
makes sense to you.) We now plug gμν into the Einstein-Hilbert action, identify the conjugate momentum
variables, and then pass from the action to a Hamiltonian formulation† of Einstein gravity

This initial value formulation is important in the burgeoning field of numerical relativity. Another reason for
its importance is that once we have the Hamiltonian, we can apply Heisenberg’s formalism to quantize gravity.
The ADM Hamiltonian also gives us one way of defining energy. Thus, the positive energy theorem states that the
ADM energy20 of an asymptotically flat (nonsingular) spacetime satisfying the field equation with a Tμν obeying
the dominant energy condition is not negative (recall chapter IX.3). This all important but vast subject of the
ADM formulation lies way beyond the scope of an introductory text; I refer21 the reader to more specialized
monographs.

Appendix 10: Letters from Einstein to Kałuza 1919–1925

Theodor Kałuza’s son made public22 the letters his father received from Einstein. I find it quite interesting to
see how Einstein’s thinking evolved, particularly in comparing Kałuza’s idea with Weyl’s idea. I give here a few
excerpts with the corresponding dates.

April 21, 1919: “The idea [of unifying electromagnetism with gravity] has also frequently and persistently
haunted me. The idea, however, that this can be achieved through a five dimensional cylinder-world has never
occurred to me and would seem to be altogether new. I like your idea at first sight very much. From a physical
point of view it appears to me more promising than the mathematically so penetrating Ansatz of Weyl, because

∗ Which, in my humble opinion, is a better name than Einstein gravity, and certainly far superior to the
historical general relativity.

† Conceptually, this procedure is the same as, but far more sophisticated than, the passage from the Lagrangian
L(q̇ , q) to the Hamiltonian H(p , q) you learned in classical mechanics.
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it concerns itself with the electric field and not with the, in my opinion, physically meaningless four-potential.”
(The underlining is Einstein’s.) Einstein turned out to be wrong in that last sentence! He offered to present
Kałuza’s paper to the Berlin academy if it could be shortened to less than 8 printed pages (the limit imposed on
nonmembers).

April 28, 1919: Einstein started with “I have read through your paper and find it really interesting” but went
on to state “the arguments . . . do not appear convincing enough.” He then suggested a further calculation to
clear up a “question of the geodesic lines,” saying that “You must not be offended by this because if I present
your work [to the academy] I am backing it up with my name.” He also mentioned that he knew the editor of the
“newly founded Mathematische Zeitschrift” quite well and could get Kałuza’s paper published there instead.

May 29, 1919: “It is true that I made a blunder with [some remark Einstein made in a previous letter]. . . . I
see that you thought the matter over quite carefully. I have great respect for the beauty and boldness of your idea.
But you will understand that I cannot take side with it as originally planned given the present factual doubts.”
Again, he offered to “put in a word” for Kałuza with the editor of the Mathematische Zeitschrift.

October 14, 1921: Notice that this letter was written more than 2 years after the first one. Interestingly, this
letter carries the salutation “Most revered Dr. Kałuza” instead of the “Dear colleague” used in the previous letters.
The letter was direct and to the point. “I am having second thoughts about having restrained you from publishing
your idea on a unification of gravitation and electricity two years ago. Your approach seems in any case to have
more to it than the one by H. Weyl. If you wish I shall present your paper to the academy after all, provided you
sent it to me.”

February 27, 1925: More than 3 years later, Einstein wrote: “I am still of the opinion that your idea . . . is
of great originality and merits the serious interest of academic colleagues. . . . I myself have so far struggled
with this problem in vain. It often appears to me that the magnetic field of the earth is based upon an as yet
unknown connection between gravitation and electromagnetism, but I cannot come out of the inconsistencies.”
To a present-day theoretical physicist such as myself, that last sentence sounds rather astonishing, to say the least.

Notes

1. Perhaps Einstein’s reluctance was explained in a 1922 letter he wrote to Hermann Weyl, saying that “Kałuza
seems to me to have come closest to reality, even though he too fails to provide the singularity free electron”
(quoted in J. van Dungen, Einstein’s Unification, Cambridge University Press, 2010, p. 134). Einstein’s dream
of seeing the electron emerge as a solution of his field equation has not been realized and seems more remote
than ever. The lesson here is not to demand too much of a promising theory.

2. The scalar field φ introduced in chapter II.3 and more recently in chapter IX.5 satisfies the Klein-Gordon
equation. Klein also anticipated something like the Yang-Mills field strength (which we will discuss briefly
in appendix 5) in 1938. O. Klein, New Theories in Physics, International Institute of Intellectual Cooperation,
League of Nations, 1938, pp. 77–93.

3. Independently, the Russian physicist H. Mandel did the same in 1926. For this and some other historical
tidbits, see the introduction in T. Appelquist, A. Chodos, and P. G. O. Freund, Modern Kaluza-Klein Theory,
Addison-Wesley, 1987.

4. Klein later said that it was Pauli who told him that Kałuza had anticipated his work.
5. The physics here is essentially the same as that in a wave guide.
6. P. Jordan was the first to introduce this scalar field, but before he could return the proofs of his paper, the

building housing the journal, Physikalische Zeitschrift, was bombed. Fortunately, a copy of the proofs was sent
to Pauli, who showed them to Einstein and Bergmann.

7. See QFT Nut, chapter VII.5–7.
8. See, for example, QFT Nut, chapter IV.5.
9. As far as I know, this was first published in 1968 by R. Kerner from the University of Warsaw (Ann. Inst. H.

Poincaré 9 (1968), p. 143). A complete and general derivation was first given in 1975 by Y. M. Cho and P. G. O.
Freund, Phys. Rev. D 12 (1975), p. 1711. Earlier, it was given as homework problem number 77 in B. DeWitt’s
1963 Les Houches lectures “Dynamical Theory of Groups and Fields.” A personal note: The volume of the
proceedings of the 1963 Les Houches school (Relativity, Groups, and Topology, ed. C. DeWitt and B. DeWitt,
Gordon and Breach, 1964) is in fact one of the first physics books I owned as a sophomore in college. (J. A.
Wheeler probably gave me a copy; I couldn’t possibly have had the wits or the means to buy this huge book
with almost 1,000 pages.) I remember poring over Wheeler’s lectures “Geometrodynamics and the Issue of
the Final State,” trying to make sense of the whole thing.

10. One reason that Klein did not obtain the Yang-Mills structure earlier than he did was that he considered a 5,
rather than a 6, dimensional theory.
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11. G. Nordström, Physikalische Zeitschrift 15 (1914), pp. 504–506.
12. As you have probably also heard, string theory can only be formulated in 10 or 11 dimensions, thus sparking

a tidal wave of contemporary interest in higher dimensions.
13. See, for example, the reprint volume by T. Appelquist et al., Modern Kaluza-Klein Theory, cited in note 3.
14. E. Witten has rendered this conclusion mathematically precise with index theorems.
15. This is one of the reasons string theorists abandoned the spheres for the mathematically more sophisticated

but physically less friendly Calabi-Yau manifolds.
16. See the first footnote in this chapter.
17. Adapted from A. Zee, “Grand Unification and Gravity,” in Grand Unified Theories and Related Topics,

ed. M. Konuma and T. Maskawa, World Scientific, 1981, p. 143.
18. For example, C. W. Misner et al., Gravitation, p. 506.
19. It is important to note that, as was shown clearly in the step-by-step calculation, it is not Nμj but Nj

μ
that

appears here. Recall especially (72). Some authors even mistakenly writeGj
μ

, which is of course identically 0.

The original Kałuza 5 = 4 + 1 example emphasizes this point: Nμ5 =Gμ5 = φ2Aμ, but N5
μ

=Gμ5g
55 = Aμ,

since G55 = φ2 = g55 and hence g55 = 1/φ2.
20. In particular, this defines the ADM mass of an object. For a discussion of the different definitions of mass

in general relativity, see N. O. Murchadha et al., arXiv: 0912.4001.
21. See particularly Deserfest: A Celebration of the life and works of Stanley Deser, ed. J. T. Liu, M. J. Duff, and K. S.

Stelle.
22. Facsimiles and translations of the letters may be found in Unified Field Theories of More Than 4 Dimensions,

ed. V. De Sabbata and E. Schmutzer, World Scientific, 1983.



X.2 Brane Worlds and Large Extra Dimensions

Escape and visibility

The escape and visibility problems confront all those who want to have more than (3 + 1)
dimensions. In Kałuza-Klein theory, they are solved by supposing that the size of the higher
dimensions is characterized by the Planck length. How else can you solve these problems?

Another possibility is that all the particles we know and love are somehow nailed down
to the (3 + 1)-dimensional spacetime we call home, which amounts merely to a slice1 in
a higher dimensional spacetime. The graviton, in contrast, roams over all of spacetime,
since it has to do with fluctuations of the entire metric, not just the metric on the particular
slice humans live on.

You might think that somebody would have raised this possibility at some point after,
say, 1920, but as far as I know, nobody did until recent times, at least not in print.
This solution to the escape and visibility problems probably would have struck most
theoretical physicists, until now, as rather contrived and ad hoc, with all but one of the
particles forbidden to roam over all of spacetime. But, within string theory, this scenario
occurs rather naturally, as was pointed out by Polchinski. In one realization, quarks,
leptons, gauge bosons (such as the photon and the gluons), and so on are all described by
open strings, while the graviton is described by a closed string. The (3 + 1)-dimensional
spacetime we live in is known2 as a 3-brane, to which the ends of the open string must be
attached. A closed string, in contrast, has no ends to attach to anything. Consequently, the
graviton is free to roam. Needless to say, this sketch hardly does justice to the glory and
splendor of string theory.

This scenario is known variously as large extra dimensions3 or brane worlds. Let me say
right off that the term “large extra dimensions” merely means that the extra dimensions
are large compared to the Planck length. The extra dimensions are still tiny on the scale of
everyday life (see below). So, no, you could not wander off into the extra dimensions as in
some science fiction story. I might also mention that you do not need to know string theory
to read this chapter; indeed, one could readily make up purely field theoretic mechanisms
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for confining all particles except for the graviton to the (3 + 1)-dimensional slice of the
larger spacetime. The brane world scenario is inspired by string theory but does not depend
on it.

We will start with some general considerations of gravity in a higher dimensional world
rather than a specific brane world model.

Newton’s inverse square law

Way back in chapter II.1, we discussed the answer to the question physics students often
ask (or fail to ask): why an inverse square law, and not inverse cube, say? The deep answer
is that the power 2 follows from rotational invariance and the dimensions of space.

The physical origin of the inverse square law goes back to Faraday and his flux picture.
He was talking about electric flux, but it could just as well be gravitational flux. Consider
a sphere of radius r surrounding a charge. There is a fixed amount of electric flux coming
out of the charge. Since the area of the sphere is given by 4πr2, the flux going through the
sphere per unit area varies like (4πr2)−1 ∝ 1/r2. That’s it, the inverse square law! We see
that it comes from a geometrical fact about area and clearly depends on the dimensions
of space.

More formally, recall the discussion given in chapter II.1. Newton’s gravitational poten-
tial V around a point mass M satisfies

∇2V (x , y , z)= 4πGMδ(3)(x , y , z) (1)

The poor man solves this dimensionally (as we did in chapter II.1) by setting ∇2 ∼ 1/r2

and δ(3)(x , y , z)∼ 1/r3, so that the equation becomes V/r2 ∝ 1/r3, thus giving V ∼ 1/r
and hence the inverse square force. A richer man, but not necessarily a rich man, would
solve (1) by Fourier analysis, using the integral representation4 of the delta function
δ(3)(x , y , z)= ∫

d3k
(2π)3 e

i�k.�x to obtain

V ∝
∫

d3k ei
�k.�x 1

�k2
∝ 1
r

(2)

By dimensional analysis, the integral has dimension of k3/k2 ∼ k ∼ 1/r . The inverse
square law then follows.

Note, once again, rotational invariance and the 3 dimensions of space, as reflected in
the factor d3k in (2). This is of course just a more sophisticated formulation of Faraday’s
flux picture.

A bit of digression for the benefit of some readers. I might mention that in quantum field
theory, the potential V is given by5 the Fourier transform of the Feynman amplitude for
the exchange of a graviton between 2 external masses. Again, rotational invariance and the
3 dimensions of space imply the inverse square law. The attractive,6 rather than repulsive,
character of gravity is due to the 2 units of spin carried by the graviton. Whether a force is
repulsive or attractive can be traced back, in some sense, to the difference between space
and time.7
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Brane world

Given this discussion, you might worry that the brane world is untenable. Won’t the
inverse square law get unacceptably modified? As we just saw, the inverse square depends
on the dimensions of space. Indeed, the reader might remember working this out in
exercise II.1.2.

So suppose there are n extra dimensions, with coordinates x4, x5, . . . , x3+n. Since (1)
follows from rotational invariance, it continues to hold, except that the delta function δ(3)

on the right hand side is to be replaced by δ(3+n), appropriate for the (3 + n)-dimensional
space we are now in.

No sweat, the poor man says, I can solve this equation in an instant too: now δ(3+n) ∼
1/r3+n, so that V/r2 ∝ 1/r3+n, thus giving V ∼ 1/rn+1. The richer man, who has learned
Fourier analysis, also obtains this result with scarcely more labor. He writes

V (r)∝
∫

d3+nk ei�k.�x 1
�k2

∝ 1
rn+1

(3)

and obtains a force decreasing like 1
rn+2 . This sure is not your grandparents’ gravitational

force law!
Doesn’t (3) contradict observation immediately? Well, no, because Newton’s law con-

tinues to hold for r � R, where R denotes the characteristic length scales associated with
the extra coordinates. In this regime, the extra dimensions are so small, compared with
the length scale r of the phenomenon we are interested in, that the gravitational flux can-
not spread far in the direction of the n extra coordinates. Think of the flux being forced to
spread in only the 3 spatial directions we know, just like the electromagnetic field in a wave
guide is forced to propagate down the tube. Effectively, we are back in (3 + 1)-dimensional
spacetime, and V (r) reverts back to a 1/r dependence. Another way of seeing this is that
in the limit R → 0, effectively there aren’t any extra dimensions.

You can put it somewhat paradoxically by saying that, in all actual situations involving
gravity, not only is the large extra dimension not large, but it is effectively zero.

The new law of gravity (3) holds only in the opposite regime r �R , when the two masses
are very close to each other. Heuristically, when R is much larger than the separation
between the two particles, the flux does not know that the extra coordinates are finite
in extent and thinks that it lives in a (3 + n+ 1)-dimensional universe. Thus, we should
look for deviation from the inverse square law at short distances. At present, the force law
has only been checked8 down to r ∼ 1 millimeter or so, which is huge compared to the
Planck length. Because of the weakness of gravity, Newton’s force law has not been tested
to much accuracy at laboratory distance scales, and so there is plenty of room for theorists
to speculate.

The true scale of gravity

I already mentioned, way back in the introduction to this book, that the immensity of the
Planck mass MP, numerically ∼1019 times larger than the proton mass Mp, is responsible
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for the Mother of All Headaches plaguing fundamental physics today. Why is the intrinsic
mass scale of gravity so large compared to anything else∗ we know?

An attractive feature of the large extra dimension scenario is that the true mass scale of
gravityMTG may be lowered considerably pastMP and thus alleviate this so-called hierarchy
problem.

The preceding discussion and (3) tell us that the gravitational potential between two
objects of masses m1 and m2 separated by a distance r � R is given by

V (r)= − m1m2(
MTG

)2+n
1

r1+n for r � R (4)

Note that the dependence onMTG follows from dimensional analysis: two powers to cancel
m1m2 and n powers to match the n extra powers of 1/r .

In contrast, for r � R , as we have argued, the geometric spread of the gravitational flux
is cut off by R, and the potential reverts to the familiar 1/r dependence. Thus motivated,
we replace n powers of r in (4) by n powers of R to obtain†

V (r)= − m1m2(
MTG

)2+n
1
Rn

1
r

for r � R (5)

Comparing this with the observed law V (r) = −m1m2
M2

P

1
r
, we manage to determine the

true scale of gravity: M2
P = (MTG)

2+nRn = M2+n
P lP

n. In the last step, we rewrote the left
hand side using lP = 1/MP. In other words,

MTG = (
lP/R

) n
2+n MP (6)

so that, if R/lP could be made large enough, we would have the intriguing possibility that
the fundamental scale of gravity MTG might be much lower than what our grandparents
thought. Equivalently, the size of the large extra dimensions is given in terms of the Planck
length by

R =
(
MP

MTG

) 2+n
n

lP (7)

Suppose the true scale of gravity is as low as MTG ∼ 10 TeV = 104 GeV, this being
the energy regime that the Large Hadron Collider can explore‡ then R ∼ (1015)

2+n
n 10−33

centimeter. We see that the n = 1 case is already ruled out, but n ≥ 2 is still allowed.
Evidently, as n→ ∞, R−1 →MTG. Thus, R is bounded on one side by our desire to lower
the fundamental scale of gravity and on the other by experiments.

You might have noticed that R large implies the appearance of a small mass μ =
(
MTG
MP

)
2+n
n MP = R−1. In particular, for MTG ∼ 10 TeV and n= 2, we have

μ= (10−15)21019 GeV = 10−2 ev

∗ In particular, the electroweak scale at ∼ 103Mp.
† We are not interested in numerical factors of 0(1) here.
‡ Outside the theoretical physics community, this is known as wishful thinking.



700 | X. Gravity Past, Present, and Future

much smaller∗ than the typical scale of particle physics. In this sense, this scenario is not
an entirely satisfactory solution of the hierarchy problem.

The beginning student might wish to skip the rest of this chapter. Unlike the material
in the bulk of this book, the ultimate value of any specific brane world model to physics is
far from certain.

A 2-brane model

As an interesting alternative to the picture outlined in the introduction, Randall and
Sundrum proposed a 2-brane model.9 Consider a 5-dimensional spacetime with the fifth
coordinate y ≡ x5 restricted to πR ≥ y ≥ −πR, with the points y and −y identified. A
circle with pairs of points thus identified, namely S1/Z2, is known as an orbifold.10 The
action is taken to be

S =
∫

d4x dy
√−G

(
1
2M

3
5R(G)+�5

)
+ Sbranes (8)

As in chapter X.1, we denote the scalar curvature constructed out of the (4 + 1)-dimen-
sional metric GMN by† R(G) to distinguish it from the scalar curvature R(g) constructed
out of the (3 + 1)-dimensional metric gμν. (We denote the 5-dimensional coordinates by
xM = (xμ, y), with M = 0, 1, 2, 3, 5 and μ= 0, 1, 2, 3.) Here the mass M5 is the analog of
the Planck massMP for 5-dimensional spacetime. (As in chapter X.1, dimensional analysis
dictates that this mass, which sets the scale of 5-dimensional gravity, be cubed, since the
scalar curvature R (in any spacetime dimension) contains two derivatives acting on the
metric and hence has mass dimension 2.) Also, we denote the determinant of gμν and
GMN by g and G, respectively. Note that �5, the 5-dimensional analog of the cosmological
constant, has dimensions of mass to the fifth power.

Our brane, namely the brane we live on, is placed at one end of this spacetime at y = πR,
and another brane, known as the Planck brane, is located at the other end at y = 0. In other
words, we write

Pbranes =
∫

d4x dy
√−G (

δ(y)
(
�P − LP

)+ δ(y − πR)
(
�O − LO

))
(9)

Here �P, LP, �O, and LO denote the cosmological constant and the Lagrangian of the
matter fields on the Planck brane and on our brane, respectively. In what follows, we
mostly set all the matter fields on the two branes to 0, that is, we simply ignore LP and LO.

The 5-dimensional Einstein field equations are obtained, as usual, by varying S. Follow-
ing Randall and Sundrum, let us look for a solution of the form

ds2 = −e−2w(y)ημνdx
μdxν + dy2 (10)

∗ Notice in passing that this happens to be roughly of order of the cosmological constant mass scale and also
the “typical” neutrino mass. Is there something here?

† Not to be confused with the radius R of the orbifold!
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with a function w(y) known picturesquely as the warp function. In other words, Gμν =
−e−2w(y)ημν, Gμ5 = 0, G55 = 1. In contrast to the simple picture presented earlier, Gμν

depends on y.
A straightforward computation shows that the only nonvanishing Christoffel symbols

are �5
μν

= ημνe
−2ww′ and �

μ

ν5 = −w′, with w′ ≡ dw/dy. Since the Riemann curvature
tensor involves the sum of ∂� and ��, we are not surprised that the nonvanishing
components of the Ricci tensor work out to be

Rμν = −
(

4w′2 − w′′) e−2wημν

R55 = 4
(
w′2 − w′′) (11)

Away from the branes, that is, for y �= 0 and y �= πR, Sbranes do not contribute, and the
field equations read simply

RMN =GMN�5/M
3
5 (12)

To solve this, we first note that we can rewrite the result in (11) as Rμν = (4w′2 −w′′)Gμν

andR55 = 4(w′2 −w′′)G55. ForRμν andR55 to be proportional toGμν andG55, respectively,
with the same proportionality constant as required by (12), we see that w′′ must vanish, so
that w(y) is a linear function of y. Furthermore, 4w′2 = −�5/M

3
5, so that w(y)= ±y/L,

with L a length scale defined by

L=
(
−4M3

5/�5

) 1
2 (13)

thus indicating that this whole setup works only if�5< 0. Imposing the orbifold symmetry
w(y)= w(−y), we obtain w(y)∝ |y|, for y �= 0 and y �= πR.

Next, the 5-dimensional spacetime has to notice the presence of the branes at y = 0
and y = πR. In other words, we have to solve Einstein’s field equation (12) amended by
�5 →�5 + δ(y)�P + δ(y − πR)�O. Observe that with the solution w(y)∝ |y|, the slope
w′(y) flips sign as we cross y = 0, so that indeed, w′′(y) behaves like a delta function
at y = 0 and similarly at y = πR. (Some readers might be reminded of solving the delta
function potential problem in quantum mechanics.) Integrating the MN = 55 equation
in (12)

4M3
5(w

′2 − w′′)= − (
�5 + δ(y)�P + δ(y − πR)�O

)
(14)

across y = 0 from y = 0− to y = 0+, we obtain∫ 0+

0−
dyw′′(y)= w′|0+

0− =�P/
(

4M3
5

)

Similarly, integrating across y = πR from y = πR− to y = πR+, we obtain
∫ πR+

πR−
dyw′′(y)= w′|πR+

πR− =�O/
(

4M3
5

)
Recalling the condition w(y) = w(−y) and sketching the function w(y), you see that
the jumps w′|0+

0− and w′|πR+
πR−, and hence the cosmological constants �P and �O on the

two branes, must have opposite signs. There is also a sign choice at this point; for the
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considerations below to work, we choose w(y)= +|y|/L, and thus obtain11

�P = −�O = 8M3
5/L= 4

(
−M3

5�5

) 1
2 (15)

In this brane world scenario, a fine tuning between the parameters �P, �O, and M5 is
required.

Some readers may have already noticed that the metric (10) with w(y) linear is just the
anti de Sitter spacetime studied in chapter IX.11; see in particular (IX.11.18). This also
explains why the Ansatz (10) leads to a solution of Einstein’s field equation so readily.

We are now ready to extract some physics from this model. First, allow the metric on
our (3 + 1)-dimensional world to fluctuate,∗ replacing (10) by ds2 = −e−2|y|/Lgμν(x)+ dy2.
How much action do we have to “pay” for this fluctuation?

Simply plug Gμν(x , y)= e−2|y|/Lgμν(x), Gμ5(x , y)= 0, and G55(x , y)= 1 into (16) and
evaluate the gravitational action

S ∼M3
5

∫
d4x

(∫ πR

−πR
dye−2|y|/L

)
√−gR(g) (16)

We thus identify the Planck mass by

M2
P = 2M3

5

∫ πR

0
dye−2y/L =M3

5L
(

1 − e−2πR/L
)

(17)

In the largeR/L limit,M2
P �M3

5L and, once again, the true scale of gravityM5 can be made
to be much lower than the Planck scale. Note that, in contrast to the discussion earlier, due
to the presence of �5, we have 2 length scales available, R and L. In the large R/L limit,
L plays the role of R in (6).

Next, consider a scalar field with massm on our brane, that is, set LO = −{(∂ϕ)2 +m2ϕ2}
in (9). Since Gμν(x , y = πR)= e−2πR/Lgμν(x), the effective action we see in our world is
given by

S ∼
∫

d4x
√−ge−4πR/L

(
e+2πR/Lgμν∂μϕ∂νϕ +m2ϕ2

)

=
∫

d4x
√−g

(
gμν∂μϕ̃∂νϕ̃ +m2e−2πR/Lϕ̃2

)
(18)

where ϕ̃ = e−πR/Lϕ is normalized to have the correct kinetic energy term. Supposing
the “true mass” m of the scalar field to be of order MP, we can lower the physical mass
mp = e−πR/Lm to the electroweak scale by choosing R/L∼ 10.

Speculations on brane worlds

Subsequently, Randall and Sundrum realized that the separation between the 2 branes
could be taken to infinity, thus effectively leaving us with a 1-brane model,12 which

∗ Note that we are keeping frozen other degrees of freedom in GMN .
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brane

bulk bulk

Figure 1 You are sitting on the
brane minding your own business,
and some wave could come in from
the bulk and hit you.

has become more “fashionable” than their 2-brane model. This work stimulated a vast
literature, amounting to literally thousands of papers. I obviously cannot provide a survey
of the literature here. I merely mention that one interesting application is to cosmology. At
this point, it ought to be clear to you that any specific brane world model should be taken
as merely suggestive. You, the astute reader, probably realize that, with the vast expertise
on classical general relativity you now have, you too could join in the fun. So, a word of
encouragement: The full story of higher dimensional spacetime is yet to be written, and it
could well be written by you!

Apparent violation of causality

The brane world model discussion given here is entirely static. Obviously, it would be
interesting to introduce time dependence. In the appendix, I discuss one early attempt.
Here I point out what I regard as a serious difficulty with all such attempts.

Dynamical discussions of our universe as a brane generically suffer from the awkward
feature that evolution requires not just initial data on the brane, but also initial data for
the bulk fields as well. In other words, if you are sitting on the brane minding your own
business, some wave could come in from the bulk and hit you (figure 1). I like to call this
the “finger of God” problem. Observers living on the brane would see apparent violation of
causality, not to mention violation of energy conservation. Various happenings that have
never been seen! In other words, there are a large number of degrees of freedom living
in the bulk that we do not have direct access to. To me, this is one of the least attractive
features∗ of the brane world.

∗ Of course, this has not prevented any number of persons from authoring any number of papers discussing
the apparent violation of any number of “sacred” concepts. When and if experimentalists see these violations,
you and I could always revisit the discussion here.
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Appendix: Outgoing brane wave model

As promised, from the vast literature on brane worlds, here I briefly describe the outgoing brane wave model13

to give you a flavor of the sort of calculations one can indulge in. Also, the following discussion involves solving
Einstein’s equations in light cone coordinates, something that might be of methodological interest. Let me first
set up the model and then describe its physical properties.

Consider a (4 + 1)-dimensional world (with coordinates t , xi , and y) containing a (3 + 1)-dimensional brane
at y = 0 and described by the low energy effective action∗

S =
∫

d5x
√−G

[
R(G)− 4

3 (∂ϕ)
2
]

+
∫

d4x
√−g ebϕL3+1 (19)

The metric gμν = δM
μ
δN
ν
GMN is the (3 + 1)-dimensional metric induced on the brane, and L3+1 denotes the

Lagrangian of the (3 + 1)-dimensional world. (Here we set M5 to 1.) Note that we do not include a bulk
cosmological constant. In contrast, a dilaton field ϕ, as suggested by string theory, is included, with b taken
here as a free phenomenological parameter that ultimately may be determined by string theory.

Einstein’s equations read

RMN − 1
2GMNR = 4

3

[
∂Mϕ∂Nϕ − 1

2GMN(∂ϕ)
2
]

+ 1
2

√
g

G
Tμν δ

μ

M δν
N
δ(y) (20)

(Evidently, ∂M = ∂

∂xM
and so on.)

Assume the geometry on the brane to be homogeneous and isotropic, so that the stress energy tensor is
required to take the form

T μ
ν
= −ebϕ�δμ

ν
+ ebϕdiag(−ρ , P , P , P) (21)

describing a (3 + 1)-dimensional world containing a cosmological constant or vacuum energy � and a perfect
fluid with energy density ρ and pressure P , with �, ρ , and P in general functions of t .

Upon varying the action with respect to the dilaton field ϕ, we obtain its equation of motion

8
3 ϕ = −

√
g

G
b ebϕL3+1 δ(y) (22)

The original paper on this model includes a perfect fluid. But if I include the perfect fluid, at this point, I would
have to digress and explain to you what L3+1 is for a perfect fluid.14 Without the perfect fluid, we have, in (22),
simply L3+1 = −�. But since this only affects the dilaton equation of motion, much of the following discussion
goes through even if the perfect fluid included. Thus, I will proceed to discuss the more general situation, with a
perfect fluid included. For those readers who like to see everything derived rather than simply stated (and I am a
member of this class), I will simply alert you when the explicit form of L3+1 for a perfect fluid is actually needed.

Consider solutions depending on both t and y that are homogeneous and isotropic in the three transverse
directions, and write the metric in the form

ds2 = e2A(t ,y)
(
−dt2 + dy2

)
+ e2B(t ,y)

(
dx2

1 + dx2
2 + dx2

3

)
= −e2A(u,v) du dv + e2B(u,v)

(
dx2

1 + dx2
2 + dx2

3

)
(23)

with the light cone coordinates u ≡ t − y and v ≡ t + y . The metric for the (3 + 1)-dimensional universe on
the brane can be written in the standard form of a Friedmann-Lemâıtre-Robertson-Walker universe ds2 =
−dτ 2 + a(τ)2(dx2

1 + dx2
2 + dx2

3), with τ = ∫
dt eA(t , 0) and a(τ)= eB(t (τ ), 0).

Now solve Einstein’s equation (20) and the dilaton equation (22) in the bulk, that is, away from the brane, to
obtainA(t , y), B(t , y), and ϕ(t , y) for y > 0 and y < 0 separately, and then match the solutions across the brane.
It is convenient to use the (u, v) light cone coordinates to solve the equations in the bulk, and the (t , y) coordinates
to do the matching across the brane. Before reading on, you are cordially invited to solve these equations.

∗ The 4
3 is conventional and can be absorbed in b.
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The bulk equations of motion are (with the notation B,u = ∂B
∂u

, B,uv = ∂2B
∂u∂v

, and so forth)

B,uv + 3B,u B,v = 0 (24)

2 ϕ,uv + 3
(
B,u ϕ,v + B,v ϕ,u

) = 0 (25)

A,uB,u − 1
2

(
B,u

2 + B,uu

)
− 2

9ϕ,u
2 = 0 (26)

A,vB,v − 1
2

(
B,v

2 + B,vv

)
− 2

9ϕ,v
2 = 0 (27)

2 ϕ,u ϕ,v + 3
(
A,uv + 2B,uv + 3B,u B,v

) = 0 (28)

These equations are, respectively, the uv component of Einstein’s equation; the dilaton equation of motion; and
the uu component, the vv component, and the ii component of the Einstein equation. (The last equation is not
independent of the first four by virtue of the Bianchi identity.)

As mentioned above, we have to match the solutions for y < 0 and y > 0. The matching conditions for the
metric and for the dilaton at the brane can be obtained by writing out (20) and (22) in the (t , y) coordinates and
integrating across y = 0 at fixed t :

6
∂A

∂y

]
= − eA+bϕ

∣∣∣ (�− 2ρ − 3P) (29)

6
∂B

∂y

]
= − eA+bϕ

∣∣∣ (�+ ρ) (30)

8
3
∂ϕ

∂y

]
= beA+bϕ

∣∣∣ (�+ ρ) (31)

Alert! To write down the right hand side of (31), you integrate (22), and hence you have to know what L3+1 for
a perfect fluid is. (Note that, in contrast, to write down (29) and (30), you merely have to know what the stress
energy tensor of a perfect fluid is, which you have known since part III.) So, if you insist on not taking anybody’s
word for what this is, you could simply set ρ = 0 and P = 0 in (29)–(31).

Note that these matching conditions have to be satisfied at any instant in t , with the two sides in (29)–(31)
functions of t . Thus, we have the rather strong constraint that

ϕ,y
]= − 9

4 bB,y
]

(32)

In many solutions, this condition forces ϕ to be proportional to B .
Without the perfect fluid, we see from (29) and (30) that A equals B up to a possible additive constant.
We now have to deal with the “finger of God” problem mentioned in the text. The simplest and most natural

assumption is that the bulk degrees of freedom simply respond to motion on the brane, but they do not act on
the brane. In this spirit, the authors of the outgoing brane wave model simply decree by fiat that there are no
incoming bulk waves, only outgoing waves.

A simple class of solutions to the bulk equations (24)–(28) consists of taking A, B , and ϕ to depend only on
u. Of the five bulk equations, only one, namely (26), survives:

A,uB,u − 1
2

(
B,u

2 + B,uu

)
− 2

9ϕ,u
2 = 0 (33)

This corresponds to a plane wave propagating to the right. Similarly, solutions depending only on v exist,
representing plane waves moving to the left.

But if A depends only on u, we see by inspecting (23) that it can be absorbed by reparametrizing u. Then (33)
determines B in terms of ϕ, or vice versa. Physically, it makes sense that there are no independent gravitational
degrees of freedom, since we have assumed isotropy in the transverse xi space. (Gravitational plane waves, as
discussed in chapter IX.4, expand some directions while contracting others.)

We now construct a solution of (20) and (22) by matching a solution depending only on u (for y > 0) to a
solution depending only on v (for y < 0). The result is a solution in which the bulk spacetime consists of plane
waves moving away from the brane on both sides.

Write B(u, v)= log h(u) on the y > 0 side. The continuity of B implies that B(u, v)= log h(v) on the y < 0
side. Since, according to (32), the jump in ϕ,y must be proportional to the jump in B,y for all t , ϕ itself must be
proportional to B:

ϕ(u, v)= − 9
4 b log h(u) (34)
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for y > 0, and ϕ(u, v)= − 9
4 b log h(v) for y < 0. Note that an additive constant in ϕ(u, v) can be absorbed by

scaling h, and the consequent additive constant in B can be absorbed by scaling xi . We can now immediately
integrate (33) to obtain∗

A(u, v)= 1
2

(
1 + 9

4 b
2
)
B(u, v)+ 1

2 log B,u(u, v)

= 9
8 b

2 log h(u)+ 1
2 log h′(u) (35)

for y > 0, and A(u, v)= 9
8b

2 log h(v)+ 1
2 log h′(v) for y < 0. An additive constant can be absorbed by scaling u

and v.
The function h is determined once we pick an equation of state for the matter on the brane. In other words,

the equation of state fixes both the amplitude of the bulk waves and the dynamics of the brane geometry.
A simple example is to let the total pressure and total energy density be linearly related: P −�= γ (ρ +�),

with γ a constant. Then the matching conditions (30) and (29) imply that the jump in A,y is proportional to the
jump in B,y . Since this must hold for all time, we obtain

A= −(2 + 3γ )B + k (36)

for some constant k. This yields a first order equation for h that can be integrated explicitly.
Without a perfect fluid, P and ρ vanish and so γ = −1, leading to A= B + k as anticipated.
To illustrate some of the features of this model, we start with a particularly simple special case. Inspection of

(33) shows that we can choose ϕ, A, and B to be linear functions of u on the y > 0 side and linear functions of
v on the y < 0 side, respectively. This corresponds to setting

h(t)= eλt (37)

where we assume that the constant λ is positive. Thus, on the y > 0 side, B = λ u, ϕ = − 9
4 b λ u, and

A= 1
2

(
1 + 9

4 b
2
)
λ u+ 1

2 log λ (38)

and similarly on the y < 0 side. We now set b = ± 2
3 . (The case of general b will be considered below.) Then

A= B + const, and it follows from (36) that γ = −1, so the stress energy on the brane is a pure cosmological
constant. From (30), the vacuum energy is

�= 12 λ
1
2 (39)

The bulk metric is

ds2 = e2λ(t−y) [−λdt2 + λdy2 + dxidx
i
]

(40)

for y > 0 and

ds2 = e2λ(t+y) [−λdt2 + λdy2 + dxidx
i
]

(41)

for y < 0. Changing to cosmological time τ = eλt/
√
λ, we see that the metric on the brane at y = 0 has the

Friedmann-Lemâıtre-Robertson-Walker form ds2 = −dτ 2 + λτ 2dxidx
i , which after scaling xi , gives

ds2 = −dτ 2 + τ 2dxidx
i (42)

Surprise! Even with a cosmological constant �, we have a universe with the scale factor growing linearly
a(τ)= τ rather than the usual exponential growth. Remarkably, the expansion rate is independent of the value
of the vacuum energy � (as long as it is nonzero). In the literature, this is known as self-tuning.

The solution here does not have naked timelike singularities in the bulk, which appear to be a generic feature
of the static solutions discussed in the literature. Rather, the factor e2λ(t−y) = e2λu in (40) shows that the spacetime
has a null singularity at u= −∞ on the right of the brane. Similarly, it also has a null singularity at v = −∞
on the left. Null geodesics from these singularities reach the brane by finite affine parameters, so they are not
really at infinity. This is most easily seen by introducing a new coordinateU = e2λu/2, so that the metric for y > 0
becomes

ds2 = −dUdv + 2Udxidx
i (43)

∗ Throughout, it is understood that all functions inside the logarithm have absolute value signs.
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The singularity is now at U = 0. The brane is located at u= v or U = e2λv/2, so the brane never actually hits the
singularity, but instead becomes asymptotically null as v → −∞. The geometry on the left of the brane is similar,
with the roles of u and v interchanged.

Next, let us determine the Newton’s constant G seen by observers on the (3 + 1)-dimensional brane. We go
through the same discussion as in the text, considering a fluctuation of the metric gμν on the brane and evaluating
the corresponding action. As in (17), we end up with an integral over y. Since the null singularity cuts off space in
the fifth direction, we obtain a nonzero effective G. But since the distance of the singularity to the brane changes
with time, G will be time dependent, posing a serious problem for this model.

Remarkably, we can find solutions of the bulk equations (24)–(28) that are much more general than the plane
waves discussed so far. The key is to observe that (24) involves only B and can be solved to give

B(u, v)= 1
3 log(f (u)+ g(v)) (44)

where f and g are two arbitrary functions. (A possible additive integration constant can always be absorbed by
an overall scaling of f and g.) Given B(u, v), we can solve the dilaton equation of motion (25). Using separation
of variables, the general solution can be written as

ϕ(u, v)=
∫

dk
c(k)√

(f (u)− k)(g(v)+ k)
(45)

with some smooth function c(k). These solutions can be used to study a phase transition in which the vacuum
energy changes on an initially static, Poincaré invariant brane. In one solution, the brane becomes time dependent
after the transition.

I refrain from giving more details here and simply refer the interested reader to the original paper on the
outgoing brane wave model. It is at least mathematically interesting that the coupled Einstein and dilaton
equations appear to have many solutions. As I said earlier, you now know enough to contribute, if you wish,
to the brane world literature.

Notes

1. At the level of a popular book, I offer the following analogy. A biologist puts a few drops of water from a
pond between 2 thin glass plates. To the life forms in the 2-dimensional world between the plates, the world
outside the glass plates is beyond comprehension. Yet streams of photons can pass back and forth between
the 2-dimensional world and the world beyond. See Toy/Universe, p. 250.

2. See the original papers by J. Polchinski. For a textbook on brane physics, see C. Johnson, D-Branes, Cambridge
University Press, 2006.

3. The notion of large extra dimensions goes back to V. Rubakov and M. Shaposnikov in 1983 and to M. Visser.
More recently, the subject was developed in 1990 by I. Antoniadis, and then in 1998 by N. Arkani-Hamed,
S. Dimopoulos, and Dvali, and by G. Shiu and S.-H. Tye.

4. Let me remind you how this works. The 1-dimensional integralf (x)≡ 1
2π

∫ K
−K dkeikx = 1

2π

∫ K
−K dk cos(kx)=

sin(Kx)/(πx). In the limit K → ∞, this function f (x) approaches the delta function δ(x), since f (0) =
K/π → ∞, and for x �= 0, it oscillates rapidly with an amplitude that quickly tends to 0. The identity used
in the text is the trivial 3-dimensional generalization of this.

5. QFT Nut, chapter I.4.
6. QFT Nut, chapter I.5.
7. More precisely, the repulsion between like electric charges is due to this sign flip between η00 and ηii .
8. At this distance scale, the gravitational force is easily overwhelmed by the electromagnetic force, and on the

nanoscale, even by Casimir forces.
9. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999), p. 3370.

10. D. Tymoczko, A Geometry of Music, Oxford University Press, 2011. See p. 410. Note that Pythagoras, whose
influence pervades this entire textbook, was also into geometry and music.

11. This relation has emerged from some papers by P. Horava and E. Witten.
12. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999), p. 4690.
13. G. Horowitz, I. Low, and A. Zee, Phys. Rev. D62 (2000), p086005.
14. It is L = −ρ. See, for example, S. Endlich, A. Nicolis, R. Rattazzi, and J. Wang, JHEP 4 (2011), p. 102.



X.3 Effective Field Theory Approach to Einstein Gravity

Powers of derivatives and the long distance expansion

Back when I airlifted you to the Einstein-Hilbert action, you might have asked, “The scalar
curvature R is not the only coordinate scalar we could have formed out of the metric.
What about other possibilities?” When I teach Einstein gravity, someone usually asks this
question. I would respond that R is the only coordinate scalar involving two powers of
derivatives ∂ . True, we also have the scalars R2, RμνR

μν, and RμνρσR
μνρσ , but they all in-

volve four powers of derivatives. To understand better what to do with these possible terms
in the action, let us step back and examine the much simpler case of Newtonian gravity.

Way way back, in chapters II.1 and II.3, I reminded you that in Newtonian gravity, the
gravitational potential � satisfies Poisson’s equation �∇2�(�x)= 4πGρ(�x). Let’s see how a
really poor man, an impoverished man who doesn’t know how to solve partial differential
equations, would determine � around an object of mass M and radius R. The density is
easy, he says, ρ ∼M/R3. Mired in poverty but nevertheless smart, he next approximates
the derivative ∇� by � divided by the relevant distance scale ∼R, so that ∇�∼�/R and
∇2�∼�/R2. Then he writes∗

∇2�∼�/R2 ∼Gρ ∼GM/R3 (1)

which requires only algebra to solve, giving �∼GM/R, the right answer. No need to take
a fancy† course in partial differential equations!

Now the same guy who wants to know why we didn’t add terms involving four powers
of derivatives, such as R2, to the Einstein-Hilbert action might also ask why Newton (or

∗ You will recall that we used a similar argument in the preceding chapter.
† Beginning students often snicker at this sort of getting an answer by “winging it,” compared to solving a

partial differential equation in all its glory, complete with factors of 2π and what not. But in fact, in cutting edge
research, the ability to do the former is often much more prized than the ability to do the latter. On the cutting
edge, the analog of the partial differential equation is typically not known, but the truly great theorists are often
able to grope for what they want in the dark “by the seat of their pants.”
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Poisson) did not add terms involving four powers of derivatives to the equation determin-
ing �. Indeed, we could invite ourselves to write

�∇2�(�x)+ l2 �∇2 �∇2�= 4πGρ(�x) (2)

By dimensional analysis, we have to introduce an unknown length scale l characterizing
the deviation from Newtonian gravity. The impoverished man kindly solves this equation
for us:

∇2�+ l2∇2∇2�∼ �

R2
+ l2

�

R4
∼ GM

R3
(3)

Hence

�∼ GM

R
(

1 + l2

R2

) ∼ GM

R

(
1 − l2

R2
+ . . .

)

and we see that the effect of the added term is negligible for l � R. Indeed, we can reach
the same conclusion by looking directly at the postulated equation (2).

We can also turn the argument around. The fact that deviation from Newtonian gravity
has not been observed down to a certain length scale allows us to set an upper bound∗ on
the unknown length l.

Einstein-Hilbert action as merely effective

This simple but elegant argument forms the basis of the so-called effective field theory
approach1 emphasized by Ken Wilson and others and is much used in contemporary
theoretical physics.

In the context of gravity, yes, we are certainly more than welcome to add higher derivative
terms to the Einstein-Hilbert action, so that

S =M2
P

∫
d4x

√−gR

→M2
P

∫
d4x

√−g
(
R + l2

(
αR2 + βRμνR

μν + γRμνρσR
μνρσ

)
+ . . .

)
(4)

Again, high school dimensional analysis forces us to introduce a length l, and 3 numbers2

α , β , and γ of order unity. The ellipsis indicates terms involving cubes and ever higher
powers of the curvature tensor, objects such as RμνρσR

μρRνσ . Since the only length scale
we know associated with gravity is the Planck length lP, we naturally assume that l = lP.
However, in theoretical physics, we should of course always keep an open mind. The verity
of this commonly made assumption has to be checked by experimentalists. Indeed, this
is one of the issues concerning gravity, an issue we will come back to in chapters X.7
and X.8.

∗ The length l characterizes the distance scale at which deviations from our present knowledge of gravity
might show up. As of this writing, l <∼ 1 mm, as I have already mentioned in chapter X.2.
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Let us go ahead and assume l = lP. We now use the same argument as before. In working
out the gravitational field in some given physical situation, we effectively convert the
derivative ∂ acting on the metric in the action, and hence in the equations of motion, into
∼1/L, withL some characteristic length scale over which the metric varies. Thus, we expect
the effects of the higher order terms R2, RμνR

μν, and RμνρσR
μνρσ (known as the Weyl-

Eddington terms3) to be suppressed by ∼(l/L)2, which normally is almost infinitesimal if
l = lP. The effects of the terms represented by the ellipsis in (4) are suppressed even more
severely. This explains why it sufficed to keep only the Einstein-Hilbert term in the action
back in chapter VI.1.

Effective field theory

The example of gravity suffices to show how the effective field theory approach, which
pervades contemporary particle and condensed matter physics, works. We classify all
possible terms in an action by powers of derivatives. The relative coefficients of these
terms are then fixed by dimensional analysis to be some inherent length l (possibly lP
in the case of gravity) raised to the appropriate powers. The effects of various terms are
then controlled by various powers of (l/L), with L some characteristic length scale of the
physical phenomenon∗ we are studying.

Condensed matter physicists like to think in terms of distance, but particle physicists
tend to think about an energy or mass scale.4 Thanks to Planck’s �, classification in terms of
an energy scale is equivalent to classification in terms of a distance scale, but conceptually
they should be kept distinct. For example, the scalar curvature R has mass dimension 2,
while R2, RμνR

μν, and RμνρσR
μνρσ have mass dimension 4, and so on.

Our discussion above indicates that a term of mass dimension5 p in the action must
have a coefficient that, according to high school dimensional analysis, goes like 1/Mp−4.
Here M denotes some (usually unknown) mass scale at which the physics associated with
that term kicks in. Thus, in a process characterized by energy E, the effects of that term
would be of order (E/M)p−4. This is one reason particle physicists are always clamoring
for higher energy accelerators. We will come back to this point in chapter X.8.

Our friend the Smart Experimentalist speaks up, “Indeed, it would be the height of
hubris, almost inimical to the spirit of physics, for you theorists to suppose that your
action6 du jour is actually the ultimate. The established actions in physics describe Nature
only at the length or energy scales we have explored experimentally.”

We totally agree. In quantum field theory, all possible terms not explicitly forbidden by
the symmetries of the theory are mandated, as was already mentioned in chapter VI.2. The
eternal hope of theoretical physics is that, for a given set of phenomena, keeping only a
few dominant terms in the action suffices. All the actions studied in this book should be
regarded in this light.

∗ We will return to this point when we talk about the quantum Hall fluid in chapter X.5.
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Appendix 1: The cosmological constant paradox once again

In the text, we added terms with higher mass dimensions than the scalar curvature R. What about terms with
lower mass dimensions? In fact, the term 1, with mass dimension 0, is also allowed. We are free to write

S =M2
P

∫
d4x

√−g
(

1
l2C

+ R + l2(αR2 + βRμνR
μν + γRμνρσR

μνρσ )+ . . .

)
(5)

where, again, by high school dimensional analysis we were forced to introduce a length scale lC which a priori
may or may not be the same as l. Compare with (4).

Recall from chapter VI.2 that the “1” term is, once again, the dreaded cosmological constant, with the
identification of the energy density � as

�∼ M2
P

l2C
(6)

Without bothering to plug in numbers, we can see that lC is enormous. From chapters VI.2 and VIII.1, we
know that to a first approximation, our universe is dominated by the cosmological constant, aka dark energy, with
the scale factor determined by Einstein’s field equation (ȧ/a)2 ∼Gρ, so that∗H 2 ∼G�∼�/M2

P. Comparing this
with (6), we see that lC is the Hubble size of the universe, and so is almost inconceivably larger than l, even if, in
a departure from conventional wisdom, we take l to be much larger than the Planck length lP. This humongous
discrepancy amounts to another statement of the cosmological constant paradox.7 Nature flagrantly violates the
theorist’s cherished naturalness doctrine.

Since � is an energy density with dimensions M/L3 ∼M4 ∼ 1/L4, we can define a length scale l� associated
with the cosmological energy density by �≡ l−4

� . A possibly illuminating way of writing (6) is

l� ∼√
lPlU (7)

where we renamed lC as lU, the length scale or size of the universe. Einstein tells us that the length scale associated
with the dark energy or the cosmological constant is the geometric mean8 of the smallest and the largest lengths
known in physics. Rather mysterious!

The cosmological constant paradox unmasks theoretical physicists as double-talking snake oil salesmen:† in
the effective action for gravity, they want l to be tiny on the one hand and lC to be enormous on the other.

We will come back to the cosmological constant paradox in chapter X.7.

Appendix 2: Reversal of fortune

This appendix is for those readers with some knowledge of quantum field theory. Other readers should skip this
upon first reading of the book.

The view of quantum field theory as a low energy effective theory sketched here represents a remarkable
shift in attitude toward quantum field theory over the past 30 years. Traditionally, a term in the action for a
quantum field theory is classified according to whether its mass dimension is< 4, = 4, or> 4, known respectively
as superrenormalizable, renormalizable, and nonrenormalizable. Textbooks taught that superrenormalizable
interactions were nice, renormalizable interactions were what we want, while nonrenormalizable interactions
should fill us with fear and loathing.

The reason is simple. As already explained in the text, terms with mass dimension p lead to contributions
going like (E/M)p−4, and so nonrenormalizable terms with p > 4 diverge badly at high energies.

In an astonishing reversal of fortune, the nonrenormalizable terms are now welcomed and well liked as terms
that are inevitably here with us. They are regarded as innocuous, since they are suppressed by powers of some

∗ Which of course in this context is just the statement that the first two terms in (5) battle each other to a
standstill.

† Well, not quite. I exaggerate totally. Forget that I said that.
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higher mass scale 1
Mp−4 . In contrast, our former friends the superrenormalizable terms are now regarded as

nasty guys.
Since these nasty guys have nominal mass dimension< 4, there are fortunately only a finite number of them.

They represent the challenges confronting fundamental physics today, and are in turn known as the Higgs mass
term, the Einstein-Hilbert term, and the cosmological constant term. The Higgs mass term has dimension 2. The
Einstein-Hilbert term has nominal dimension 2, which after rescaling9 by the Planck mass, becomes dimension
4 + 5 + 6 + . . . . The cosmological constant term has nominal dimension 0, which after rescaling, becomes
dimension 0 + 1 + 2 + . . . . Perhaps there is something seriously wrong with this picture.

Our present understanding of physics is based on this notion of effective field theory, to which all we know can
be reduced. Yet there are many questions, many doubts, but no clear answers. Field theory itself, and Einstein
gravity as an effective field theory, could fail at truly long distances. More in chapter X.7.

Appendix 3: Nonlocal cosmology

With a universe dominated by a cosmological constant � or dark energy, adding local terms to Einstein gravity
as in (4) will not significantly change large scale Lemâıtre–de Sitter cosmology. The field equation is modified by
additional local terms of the form RμλνρR

λρ , for example. But with the maximally symmetric de Sitter form of
the Riemann curvature tensor, all these terms reduce to some combinations of the Hubble parameter H times
gμν , and so only the relation between H and � is modified.

One way around this situation is to introduce nonlocal terms, for example replacing the Einstein-Hilbert term
R by Rf ( 1

D2R), with D2 = (1/
√−g)∂μ(√−ggμν∂ν) the covariant version of ∂2. With a suitable choice10 of the

function f (x), but without having to introduce a cosmological constant � or dark energy, this type of nonlocal
action can reproduce current observations, including the accelerating expansion. To me, an attractive feature of
this approach is that quantum field theory with known physics naturally generates this type of nonlocal term via
loop corrections involving the massless graviton. One may regard these nonlocal terms as due to the cumulative
effect of the fluctuating graviton, an effect that manifests itself only on cosmological distance scales. A drawback
is of course that this comes with the freedom of adjusting an entire function11 to fit data.

Appendix 4: More on the scalar field

Starting in part V, I have extolled the power of Einstein’s equivalence principle: given a Lagrangian in
Minkowskian spacetime, in which various Lorentz indices are contracted with ημν and its inverse, we sim-
ply replace ημν by gμν and immediately obtain the corresponding Lagrangian in curved spacetime. For a scalar
field ϕ(x), we go immediately from L = − 1

2η
μν∂μϕ∂νϕ − V (ϕ) to L = − 1

2g
μν∂μϕ∂νϕ − V (ϕ).

But in the spirit of effective field theory, we are also free to add to L the term ξRϕ2, with ξ some numerical
constant. Note that this term also has mass dimension 4, just like the term gμν∂μϕ∂νϕ. Let the characteristic
length scale over which ϕ and the scalar curvatureR vary be lϕ andLR, respectively. Then the relative importance
of this additional nonminimal term versus the standard kinetic term gμν∂μϕ∂νϕ is given by ∼ξ(lϕ/LR)2. This
is another example underlining why the equivalence principle is always formulated with the caveat “in a small
enough region of spacetime,” as first discussed in the prologue to book 2. Here, the region of spacetime over
which ϕ varies has to be small compared with the region over which the curvature varies for the equivalence
principle to hold.

Note that the energy momentum tensor T μν of the scalar field is corrected by this additional term, resulting
in what became known as the “new and improved”12 energy momentum tensor, much discussed in the field
theory literature in the 1970s.

Exercise

1 Describe how higher derivative terms can be added to Maxwell’s theory of electromagnetism and discuss
their physical manifestations.
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Notes

1. QFT Nut, chapter VIII.3, pp. 452 ff.
2. Evidently, one of them can be absorbed into l.
3. As you can imagine, there has been a vast literature regarding these terms going back to our forebears in

theoretical physics. For an example I know particularly well, see A. Zee, “A Theory of Gravity Based on the
Weyl-Eddington Action,” Phys. Lett. B 109 (1982), p. 183.

4. Phil Anderson once remarked to me that particle physicists renaming themselves high energy physicists
was a stroke of genius in terms of getting more funding (in the United States, that is). The name “long
distance physicists” hardly sounds thrilling, and there may be people so ignorant in Congress as to think
that condensed matter physics has something to do with condensed milk or the gunk one finds underneath
kitchen sinks.

5. The scaling dimensions of various possible terms in the action play a central role in quantum field theory.
See, for example, QFT Nut, chapters III.2 and VI.8.

6. Indeed, instead of the venerable R, some authors have proposed f (R), for some arbitrary function f that
had been revealed to them in the middle of the night.

7. See QFT Nut, chapter VIII.2.
8. This fact has been noted by a number of authors. See, for example, S. Hsu and A. Zee, arXiv:hep-th/0406142

(Mod. Phys. Lett. A 20 (2005), pp. 2699–2704).
9. As explained in chapter IX.5, h≡ ĥ/MP.

10. See S. Deser and R. P. Woodard, arXiv:0706.215v2, and related literature for details.
11. It is important to distinguish this proposal from proposals to replace the Einstein-Hilbert term R by f (R).
12. It turns out that for some special choice of ξ , the resulting T μν possesses properties much desired by particle

theorists.



X.4 Finite Sized Objects and Tidal Forces
in Einstein Gravity

Motion of extended objects

Most texts on Einstein gravity treat the motion of point particles exclusively. So, good,
watch the particles move happily along geodesics in curved spacetime.

But in some physical situations, we may have to take into account the finite size of the
“particles.” One example is the emission of gravitational waves from binary systems. As
we saw in chapter IX.4, one astounding prediction of Einstein gravity is the existence∗ of
gravitational waves. Various sources of gravitational waves have been studied intensively.
One possible source consists of a black hole of size rS (its Schwarzschild radius) moving
with velocity v a distance rO from another object, possibly another black hole of similar
size. As the black holes spiral into each other, they emit gravitational waves with a char-
acteristic wavelength λ determined by the orbital period according to λ= 2πrO/v. Thus,
the physics contains three distance scales: rS, rO, and λ. We will stay within the simple
“post-Newtonian” regime rS � rO � λ. To leading approximation, the black hole may be
regarded as pointlike, but we might want to include corrections governed by the small
parameter rS/rO.

Blue sky and finite sized objects in electromagnetism

For pedagogical clarity, let us start by retreating to the corresponding problem in electro-
magnetism. Also, take spacetime to be flat. For a point particle with charge e moving in
an electromagnetic field, the relevant term in the action, as we discussed in chapter IV.1,
is given by Spp = ∫

dτeAμẊ
μ, with Ẋμ ≡ dXμ

dτ
.

Instead, consider an extended object, such as an atom or a molecule, that is, an elec-
trically neutral assembly of charged particles. Let us construct an action for the motion

∗ Recall also Newton’s snide remark about “competent faculty of thinking” in chapter IX.5.
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of this object, say an atom for definiteness, in an electromagnetic field. Since the over-
all charge vanishes, the point particle term Spp is absent from the action. The individual
charged particles in the assembly are of course sensitive to Aμ, but the atom as an overall
neutral collection of charged particles cannot be. Rather, as the worldlines of the individual
charged particles in the atom traverse different locations in spacetime, the atom can only
be sensitive to the spacetime variations of Aμ, not to Aμ itself. By gauge invariance, these
spacetime variations must package themselves into Fμν. In fact, let us define Eμ ≡ FμνẊ

ν

andBμ ≡ F̃μνẊ
ν, where F̃μν(x)≡ 1

2εμνσηF
ση. Going to the rest frame of the particle, where

Ẋ0 = 1 and Ẋi = 0, we see that E0 = 0, Ei = Fi0, B0 = 0, and Bi = F̃i0 = − 1
2εijkF

jk. Thus,
as the notation suggests, this is just the familiar decomposition of the electromagnetic
field into electric and magnetic fields.

Given these considerations, we see that, since Lorentz indices must be contracted, the
action can only be

S =
∫

dτ
(−m+ cEEμE

μ + cBBμB
μ + . . .

)
(1)

given as an expansion in terms of the size of the atom. We will not be concerned with the
higher order corrections (as indicated by the dots in (1)) due to the size of the atom, only
with the leading order. (Note that a possible term like

∫
dτFμνF

μν can be absorbed into
the two terms quadratic in Fμν already displayed.) The fields E and B are to be evaluated
on the worldline Xλ(τ) of the particle, of course. Physically, from the discussion above,
we know that, in the limit where we can neglect the size of the atom, the coefficients cE
and cB must vanish. Thus, you will be hardly surprised to learn that they are related to
elementary concepts, such as the electric dipole moment and the magnetic moment of
the atom.

Using this action, we can derive a result familiar to everybody, including the proverbial
guy and gal in the street, namely that the sky is blue. Consider an electromagnetic wave
of frequency ω scattering on the atom. The quantities EμE

μ and BμBμ each contain two
powers of derivatives, which, acting on the electromagnetic wave, translate into two powers
of ω in the scattering amplitude. Upon squaring the scattering amplitude to obtain the
cross section, we conclude that the cross section for an electromagnetic wave or a photon
of frequency ω to scatter on an atom or a molecule goes like ω4. Thus, as the light from the
sun traverses the atmosphere, blue light (higher frequency) scatters more than red light
(lower frequency). As is well known, this explains why the sky is blue.

The “electric” and “magnetic” components of a gravitational field

Now that we have derived the action governing the motion of a finite sized object moving in
an electromagnetic field to leading order in the object’s size, we are ready to move on to the
gravitational case, keeping in mind the essential differences between electromagnetism
and gravitation. As mentioned at the beginning of this chapter, one application would be
to study the finite sized corrections to the motion of a black hole.
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One key difference is of course that there is no analog of positive and negative charges
for gravity: masses are acted upon equally by the gravitational field without regard to race
or creed. Thus, the action necessarily starts out with the point particle action, which is
Spp = −m ∫

dτ in this context. We don’t have objects that are neutral under gravity!
As in the electromagnetic case, a finite sized object would also be sensitive to the varia-

tions of the metric in spacetime, and by general coordinate invariance these variations, to
leading order, must get packaged into the Riemann curvature tensor. Would the Riemann
curvature appear already contracted into the Ricci tensor and the scalar curvature? Time
for you to pause and think!

Well, these two quantities both vanish, according to Einstein’s field equation, in the
empty spacetime the black hole is moving through. In other words, the black hole can
only sample the Riemann curvature tensor Rμλνρ itself, not the Ricci tensor and the scalar
curvature. Thus, any terms we add to Spp must involve the Riemann curvature tensor
Rμλνρ, with the indices not allowed to be contracted with each other. What can they be
contracted with, then?

The only thing around is the 4-velocity of the object Ẋμ. Due to the antisymmetry of
Rμλνρ, we are not able to contract all 4 indices of Rμλνρ with Ẋμ. We can contract at most
2 indices with Ẋμ to form the two objects

Eμν(X)≡ Rμλνρ(X)Ẋ
λẊρ and Bμν(X)≡ R̃μλνρ(X)Ẋ

λẊρ (2)

where R̃μλνρ(x) ≡ εμλσηR
ση
νρ
(x)/(2

√−g) denotes the dual∗ of the curvature tensor. In-

deed, these correspond to Eμ ≡ FμνẊ
ν and Bμ ≡ F̃μνẊ

ν, respectively, in the electro-
magnetic case. By analogy, the fieldsEμν andBμν represent the decomposition of curvature
into its “electric” and “magnetic” components, as suggested by the notation. Perhaps the
reader is not surprised that these fields now carry two indices instead of one. We now need
to square them to form scalars to put into the action.

Finite sized objects and tidal forces

Hence, to leading order in the size of the object, the action governing its motion in a
gravitational field is given by

Sp =
∫

dτ
(−m+ cEEμνE

μν + cBBμνB
μν + . . .

)
(3)

with two unknown constants cE and cB . Compare with (1). Note that, since E.. or B.. ∼
R....Ẋ2 has dimensions L−2 =M2 in natural units, cE and cB must have dimensions of
M−3 = L3 to match the dimensions of the first term in (3). As expected, they vanish as the
size of the object goes to zero.

∗ The appearance of
√−g will be explained in chapter X.5.
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In chapter V.3, we varied the first term in (3) to obtain the standard geodesic equation
that is at the heart of Einstein’s theory. Here we obtain

d2Xρ

dτ 2
+ �ρ

μν
(X(τ))

dXμ

dτ

dXν

dτ
= f μ(X(τ)) (4)

where f μ(X(τ)) comes from varying the E and B terms in (3). A finite sized body
experiences a tidal force f μ due to the varying gravitational force acting on it. It no longer
follows a geodesic. Everything makes sense.

The blue sky effect gets squared in gravity

The fact that we had to square the “electric” and “magnetic” components of the curvature
to form the effective action (3) means that the effects of these correction terms are highly
suppressed. Since the Riemann curvature contains 2 derivatives, the correction terms
involve four derivatives. The blue sky effect gets squared in gravity: for the scattering of
a gravitational wave or a graviton of frequency ω on a finite sized object, that part of the
amplitude due∗ to the finite size goes like ω4! You are not surprised, are you?

Appendix

To estimate the magnitude of cE and cB for a black hole, we exploit a rather cute argument1 as follows (cute in
the sense that it does not involve any tedious computation at all).

Consider the scattering of a graviton with frequency ω off a finite sized object (which, remember, is a black
hole in the problem we are studying). The interaction between the particle and the gravitational wave indicated
in (3) contributes a term to the scattering amplitude M as indicated by

M ∼ . . . + cE ,Bω
4/M2

P + . . . (5)

The ellipses in M represent effects of the interactions we have not included explicitly, for example, the one
originating from the first term in (3) (namely the term responsible for keeping us down to earth!). A nice feature
of the argument I am about to give is that we don’t even need to know what the (. . .) are. Here cE ,B denotes the
two unknown couplings cE ∼ cB generically. We have derived the ω4 dependence just a moment ago. So the only
unexplained feature here is the power of MP, which I will derive presently.

Imagine calculating the total scattering cross section for a graviton on a finite sized object. Squaring the
amplitude M and so forth, we end up with σ(ω)∼ . . . + c2

E ,Bω
8/M4

P + . . . . We can use dimensional analysis
to determine the power of MP here (and hence the power of MP in M) as follows. The cross section σ has
dimension of an area and hence the dimension M−2. We had determined earlier that cE ,B has dimension M−3,
so that c2

E ,Bω
8 has dimension M−6M8 =M2. Thus, to get the dimension to match, we need to divide by M4

P.
Note that the mass m of the object is not available to make up the dimension.

We are now able to estimate cE ,B for a black hole. The preceding treatment of the black hole as almost a
point particle is only valid for ωrS � 1 of course, that is, with the Schwarzschild radius much less than the
wavelength of the gravitational wave. But we argue that by dimensional analysis, the cross section must have the
form σ(ω)= r2

Sf (ωrS), since the only length scale in the Schwarzschild metric is rS. Expanding the unknown
functionf (ωrS) in powers of its argument, we haveσ(ω)= . . . + γω8r10

S + . . . , with γ some numerical constant.

∗ This sentence is more awkward to write than the corresponding sentence in the electromagnetic case for a
very physical reason: Even if the size of the object goes to zero, it still cannot hide from the gravitational field.
There is no escape from gravity. In contrast, a zero sized atom is invisible to the electromagnetic field.
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(A technical aside: the massless graviton could produce infrared factors like log ωrS, which we ignore for our
purposes.)

Requiring that the two expressions agree, we obtain cE ,B ∼M2
Pr

5
S. Indeed, as expected, the couplings cE ,B are

highly suppressed as rS → 0.

Exercise

1 Work out the “electric” and “magnetic” components of the gravitational field we feel every day.

Note

1. This treatment is based on P. Goldberger and I. Rothstein, arXiv: 0409156. I neglect various technicalities,
such as field redefinition. See QFT Nut for more details.



X.5 Topological Field Theory

Not having clocks and rulers means that you are topological

To do physics, we need clocks and rulers.
By specifying the separation between events in spacetime, the metric in effect provides

us with clocks and rulers. Indeed, in the action, we have to use the metric to contract
spacetime indices, and even if there were no indices∗ to contract, the spacetime volume
ddx

√−g knows about the metric. It would appear that the metric is indispensable for
writing down the action.

But is that necessarily so? Dear reader, please pause and think.
Recall the antisymmetric or Levi-Civita symbol εμνλ...ζ first introduced in chapter I.4,

which we have since met repeatedly, for example in chapter IV.2. Recall also that in
d-dimensional spacetime, εμνλ...ζ carries d indices with ε012...,d−1 = 1, and the rest deter-
mined by antisymmetry. For example, for d = 4, ε2031 = −ε2013 = +ε0213 = −ε0123 = −1.
So, besides the metric, we can also use the antisymmetric symbol to contract indices.

Offered the antisymmetric symbol, we could contract it with a bunch of vectors or tensors
to form an object with no free uncontracted indices, for instance T ≡ εμνλ

...ζAμBνCλ . . .

Zζ . To see clearly what is going on, we specialize to d = 2 and study T = εμνAμBν =
A0B1 − A1B0.

How does T transform? Our friend Confusio might have naively thought that since this
object does not carry any indices, it transforms like a scalar. But that’s not so: while it looks
like a duck, it does not quack like a duck. Here we need the definition of the determinant: for
a matrix M , ερσMμ

ρ
Mν

σ
= (det M)εμν. You can easily verify that this definition coincides

with the high school definition. Set μ= 0, ν = 1, for example: ερσM0
ρ
M1

σ
=M0

0M
1
1 −

M0
1M

1
0 = det M , so that det M is indeed the determinant of the matrix Mσ

ρ
.

∗ Such as in the cosmological constant term in chapter VI.2.
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Now we can work out how T transforms. Regarding ∂xμ

∂x′ρ as the matrix Mμ
ρ
, we

obtain

T ′(x′)= ερσAρ(x
′)Bσ(x′)= ερσ

∂xμ

∂x′ρ
∂xν

∂x′σ Aμ(x)Bν(x)= det
(
∂x

∂x′

)
εμνAμ(x)Bν(x)

= det
(
∂x

∂x′

)
T (x) (1)

We learned that, in spite of T carrying no indices, it does not transform as a scalar.
How to deal with that pesky determinant in (1)? As we had already noted when we

discussed area and volume in chapter I.5, taking the determinant of both sides of the
equation g′

ρσ
(x′)= gμν(x)

∂xμ

∂x′ρ ∂xν

∂x′σ telling us how the metric transforms, we obtain g′(x′)=
g(x)

(
det

(
∂x
∂x′
))2, where, as always, g(x) ≡ det gμν(x) is also somebody who fails to be a

scalar.
In a manner reminiscent of our discussion in chapter V.6, we can now form the

combination∗ T (x)/
√
g(x), which does transform like a scalar, since T ′(x′)/

√
g′(x′) =

T (x)/
√
g(x).

Convince yourself that while this discussion was carried out for d = 2 for the sake of
pedagogical clarity, our conclusion holds for any d. (You can write down more Greek letters,
can’t you?) Specifically, if we have available in a d-dimensional theory an antisymmetric
tensor Tμνλ...ζ (x), then we can form a scalar† εμνλ

...ζTμνλ...ζ (x)/
√
g(x). We are thus free

to add to our action the term

Stopological ≡
∫

ddx
√
g(x)εμνλ

...ζTμνλ...ζ (x)/
√
g(x)=

∫
ddxεμνλ

...ζTμνλ...ζ (x) (2)

which is invariant under general coordinate transformations.
The point of this discussion is that, remarkably, the volume factor of

√
g associated with

ddx has disappeared. Indeed, Stopological does not know anything about the metric gμν, and
for that matter, it does not even know about the flat Minkowski metric ημν. In other words,
it does not know about clocks and rulers!

We can stretch and deform spacetime withoutStopological noticing anything different: that
guy is topological! The physics it describes is sensitive only to the topology of spacetime,
not to the metric and the curvature.

Topological terms in gauge theories

Let us illustrate how this works with a theory we know and love, namely 4-dimensional
electromagnetism. Indeed, when the professor in a course on electromagnetism showed
you the Maxwell action (V.6.18) SMaxwell = − 1

4

∫
d4x

√−ggλμgρνFλρFμν (perhaps written

∗ In this chapter, I find it convenient to write, on occasion,
√
g instead of

√−g to minimize clutter.
† Another way of stating this result is that while εμνλ

...ζ does not transform as a tensor, ε̂μνλ...ζ (x) ≡
εμνλ

...ζ /
√
g(x) does.
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only for the Minkowskian case gμν = ημν), you could have raised your hand and asked
about adding the term

1
4

∫
d4x ελρμνFλρFμν =

∫
d4x ελρμν

(
∂λAρ

) (
∂μAν

)=
∫

d4x ∂λ

(
ελρμνAρ∂μAν

)
a term mentioned only in some of the better texts on electromagnetism. Over the past
few decades, particle and condensed matter theorists have come to appreciate the role
played by this term (an example of the term described in general in (2)) and its various
generalizations.

Well, a better professor of electromagnetism might have pointed out that the integrand
in this extra term is equal to ∂λ(ελρμνAρ∂μAν) and is therefore a total divergence. The extra
term you clamored for only depends onAμ at spacetime infinity. Since the action principle
involves local variations, this extra term does not contribute to Maxwell’s equations of mo-
tion, and for this reason is normally not mentioned in standard texts on electromagnetism.
(This action has a number of other interesting features, but I do not wish to pursue them
here. I might mention only that it is not invariant under time reversal∗ t → −t and space
reflection† �x → −�x.)

The Chern-Simons term in (2+1)-dimensional spacetime

As I emphasized, the discussion so far applies for any d. Suppose we are in (2 + 1)-
dimensional, rather than (3 + 1)-dimensional, spacetime, and suppose that physics is
governed by the analog of the Maxwell action SMaxwell = − 1

4

∫
d3x

√−ggλμgρνfλρfμν,
where fμν = ∂μaν − ∂νaμ. I write aμ rather than Aμ here to emphasize that I am not
talking about the electromagnetic potential but rather some gauge potential that describes
the degree of freedom in some (2 + 1)-dimensional physical situation. In appendix 1, I will
tell you that there are (2 + 1)-dimensional condensed matter systems that can be described
by a gauge potential aμ, but for the moment, our discussion is purely theoretical.

As explained, we can now add the topological term (known as the Chern-Simons term1)

SCS ≡ k

4π

∫
d3x ελμνaλfμν = k

2π

∫
d3x ελμνaλ∂μaν (3)

to the Maxwell action. By the way, using the differential forms introduced in chapter IX.7,
we can write this compactly as

SCS = k

2π

∫
ada (4)

using the identity dxμdxνdxλ = εμνλd3x.

∗ I have already mentioned time reversal on several occasions, including chapters III.1 and VIII.1.
† In odd-dimensional space, space reflection (also known as parity) is equivalent to reflection along a particular

axis (say, x1 → −x1, xi → +xi , i = 2, . . . , D − 1, D odd) followed by a rotation. To see this, note that the
determinants of the transformations involved are variously ±1.
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Long distance dominance

Before we investigate this truly amazing state of affairs further, I need to bring up another
important point, namely how various terms behave at long distances. As explained in
chapter X.3, at long distances, terms with higher length dimensions (that is, terms with
lower mass dimensions, to use the language favored in particle physics) dominate terms
with lower length dimensions (that is, terms with higher mass dimensions). Indeed, let’s
review the argument placed in the present context. Consider a system whose effective field
theoretic description2 of the system is given by

S = k

2π

∫
d3x

(
ελμνaλ∂μaν − l

√−ggλμgρνfλρfμν + . . .
)

(5)

namely the sum of a Chern-Simons term, a Maxwell term, and so on.
Since the Maxwell term has two powers of derivatives while the Chern-Simons term

has only one (and they both have two powers of the gauge potential aμ), high school
dimensional analysis demands the introduction of a length l characteristic of the system
we are studying. When we study physical phenomena on a distance scale of L, the effect
of the Maxwell term is thus suppressed by a factor of l/L relative to the Chern-Simons
term for L� l. The ellipsis in (5) indicates terms of even lower length dimensions. They
are thus multiplied by even higher powers3 of l and are even more strongly suppressed at
long distances.

Suppose we have some 2-dimensional solid state structure with complicated micro-
scopic physics but such that its long distance degree of freedom is described by a gauge
potential aμ(x) whose dynamics is gauge invariant (that is, invariant under the transfor-
mation aμ → aμ + ∂μ�). Actual solid state structures are of course not Lorentz invariant.
Thus, the Maxwell term in (5) should be replaced by something like (f0i)

2 − β(fij)
2, with

β a coefficient determined by the microscopic dynamics. You might expect that the Chern-
Simons term would similarly break up into εijai∂0aj + γ a0∂iaj). But remarkably, as you
can readily verify, gauge invariance fixes the coefficient γ to have precisely the value that
allows the 2 terms to combine into ετμνaτ∂μaν. For the Chern-Simons term—but not for
the Maxwell term—gauge invariance implies Lorentz invariance.

We conclude that, amazingly, the long distance physics of such a system, if it exists, is
topological and does not depend on the nasty microscopic physics (such as band structure
and the effect of impurities) that our solid state colleagues revel in. The physics is universal
and determined completely by the parameter k. More on this in appendix 1.

Note that in (3 + 1)-dimensional spacetime, the added topological term, as described in
the preceding section, has the same mass dimensions as the Maxwell term f 2, and hence
it does not dominate at long distances. In (4 + 1)-dimensional space, the topological term
ερμνλσaρfμνfλσ is less important at long distances than the Maxwell term ∼f 2.

It is also worth remarking that with differential forms, we can write the topological
term compactly as (da)n in d = 2n-dimensional spacetime, and as a(da)n in d = (2n+ 1)-
dimensional spacetime.



X.5. Topological Field Theory | 723

Appendix 1: Quantum Hall fluid and ground state degeneracy

Is topological field theory merely a theoretical possibility, a curiosity for theorists, or can it be realized physically?
In fact, the long distance effective theory of the quantum Hall fluid is topological. Unquestionably, a detailed
discussion of the theory of the quantum Hall fluid lies beyond the scope4 of a textbook on Einstein gravity.
Here I limit myself to saying that the long distance physics for a system of electrons confined to 2-dimensional
structures in the presence of a strong magnetic field turns out to be given by the Chern-Simons action SCS (3).

A topological field theory must feel peculiarly out of place in a book on gravity and curved spacetime! It
doesn’t know about the metric, a concept central to Riemannian geometry and Einstein gravity. We learned early
on that the energy momentum tensor is defined by varying the action with respect to gμν . What if the action
does not depend on gμν? Inescapably, in a topological field theory, the energy momentum tensor and hence the
Hamiltonian is identically zero! As I already said, to determine the Hamiltonian we need clocks and rulers.

What does it mean for a quantum system to have a Hamiltonian H = 0? Well, when we took a course on
quantum mechanics, if the professor assigned an exam problem to find the spectrum of the Hamiltonian 0, we
could do it easily! All states have energy E = 0. We are ready to hand in the solution.

But the nontrivial problem is to determine how many states there are. This number, known as the ground
state degeneracy, depends only on the topology of the manifold, not on whatever metric we might put on the
manifold. It is beyond the scope of a book on gravity to calculate this quantum degeneracy, but it turns out5 to
be equal to kg, where g here denotes the genus of the manifold. (Recall that g = 0 for the sphere, g = 1 for the
torus,∗ and so on.)

Note that this result implies that k has to be an integer. Otherwise, it would be senseless to say that there are
kg states with E = 0. This fascinating phenomenon is known as topological quantization.6

Appendix 2: The Hodge star operation on differential forms

Here I discuss the Hodge star operation ∗ on differential forms. While this topic properly belongs in chapter IX.7,
I had to postpone it until we have discussed the antisymmetric symbol in curved spacetime. Again, for ease of
writing and clarity of presentation, I will specialize temporarily to d = 2. The diligent reader can readily generalize
the discussion to arbitrary d as we go along.

As in the text, we adopt the convention that ε01 = 1. You might have noticed that we did not ever have to
introduce the totally antisymmetric symbol εμν with lower indices, but here it comes finally. We define it by
specifying ε01 = −1. (That ε01 and ε01 have opposite signs is to avoid an overall minus sign in the definition of
the star operation given below.) With this convention, we have

εμνελρ = −δμλ δνρ + δμ
ρ
δν
λ

and εμνενλ = +δμλ (6)

Another identity comes from the definition of the determinant

gμλgνρε
λρ = −gεμν and gμλgνρεμν = − 1

g
ελρ (7)

as was already mentioned in the text. You can verify (6) and (7) by evaluating them for various values of μ
and ν. In particular, in flat spacetime, εμν = ημληνρε

λρ . Multiplying the first identity in (7) by gνσ , we obtain
gμλε

λσ = −gεμνgνσ . Multiplying this by εσρ then yields

εμνg
νσ εσρ = − 1

g
gμρ (8)

(Some readers may recognize this as Cramer’s rule for finding the inverse of a matrix in this context.)
I use the convention in which εμν and εμν are numerical, that is, with components given variously by ±1, 0.

The price we pay is that when we raise and lower indices, factors of g will appear as in (6) and (7). We can

∗ Incidentally, it is not as far-fetched as it might seem that theoretical physicists would consider systems living
on a torus. If you study a quantum system in a rectangular domain and impose periodic boundary conditions
ψ(x , y)= ψ(x + L, y)= ψ(x , y + L) on the wave function, you are effectively putting the system on a torus,
namely a square with opposite sides identified.
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define, alternatively, ε̂μν ≡ εμν/
√−g and ε̂μν ≡ εμν

√−g, which behave like tensors, as was already mentioned
in a footnote. As you can easily imagine, there are advantages and disadvantages to both conventions.

Given a 1-form V = Vμdx
μ, define

∗V = (∗V )μdxμ ≡
(√−gεμλV λ

)
dxμ (9)

with V λ = gλρVρ as usual.
Let us compute

d ∗ V = ∂μ

(√−gενλV λ
)
dxμdxν = ∂μ

(√−gV μ
)
d2x =

(
1√−g ∂μ

(√−ggμλVλ
))√−gd2x (10)

where in the second equality, we used

dxμdxμ = εμνd2x (11)

and (6). We see that the operation d∗ acting on a 1-form gives us a 0-form proportional to the covariant divergence
DμV

μ = 1√−g ∂μ(
√−ggμλVλ), and so it is clearly going to be useful for physics.

Proceed now to d-dimensional spacetime. Given a p-form V (with p ≤ d), define the (d − p)-form ∗V by
generalizing (9)

∗V ≡
(√−gεμ1...μd−pμd−p+1...μdV

μd−p+1...μd
)
dxμ1 . . . dxμd−p (12)

Here we use εμ1...μd instead of εμλ (of course!). (Some authors define the ∗ operation with an overall factor
(p!(d − p)!)−1 in (12). We will not get all uptight about these factors. You can fill them in if you so desire.)

For V a d-form, we obtain the 0-form ∗V = (
√−gεμ1...μdV

μ1...μd). Consider the 0-form denoted by 1. Note
the d-form ∗1 = √−gεμ1...μddx

μ1 . . . dxμd . We readily check that, up to a factor, ∗∗ takes 1 back to itself: ∗ ∗ 1 =
(
√−g)2εμ1...μdg

μ1ν1 . . . gμdνdεν1...νd = ((−g)/(−g))εμ1...μdε
μ1...μd = d!. Indeed, you can check that ∗∗ takes any

p-form back to itself. I will verify a simple case: act with ∗ on (9) to obtain ∗ ∗ V = √−gενρgρμ(√−gεμλV λ)dxν =
Vνdx

ν = V , as claimed (we used (8) in the next to last equality).
Back in chapter IX.7, you learned that the Bianchi identity dF = ddA= 0 corresponds to half of Maxwell’s

equations. You might wonder, in the language of forms, where the other half is, the half sourced by the current
Jμ in contrast to the half corresponding to the Bianchi identity. Here is the answer:

d ∗ F = ∗J (13)

whereF = dA denotes the electromagnetic field strength 2-form, and J = Jμdx
μ the current 1-form. First, check

that the two sides match. The right hand side is a (d − 1)-form. As for the left hand side, ∗F is a (d − 2)-form,
and so d ∗ F is also a (d − 2)+ 1 = (d − 1)-form.

The left hand side of our proposed equation contains one power of derivative ∂ν and one power of Fμν , so it
has got to be the divergence of the field strength, with possibly some factors of

√−g (coming from the definition
of ∗) thrown in. Between us friends, it is hardly necessary to verify this claim, but let’s do it anyway, for arbitrary
d . However, do be a mature adult and not worry about the factorials and signs that are irrelevant for our purposes
here. We have

d ∗ F = d
(√−gεμ1...μd−2λρ

Fλρdxμ1 . . . dxμd−2
)

= ∂σ

(√−gεμ1...μd−2λρ
Fλρ

)
dxσdxμ1 . . . dxμd−2 (14)

while

∗J =
(√−gεμ1...μd−2μd−1κ

J κ
)
dxμ1 . . . dxμd−2dxμd−1 (15)

Multiplying (14) and (15) by dxν and using the generalization of (11) and (6) to d dimensions, we obtain (without
worrying about signs and such) ∂μ(

√−gFμν)= √−gJ ν , as expected. Note that Maxwell’s equations work in any
spacetime dimension.

At this point, you might wonder how to write Maxwell’s action using forms. The answer is S = ∫
F ∗ F .

(Check this!) Note that since ∗F is a (d − 2)-form, F ∗ F is a d-form, just ripe for integrating over d-dimensional
spacetime. It is easy to add a current: S = ∫

F ∗ F +A ∗ J . The equation of motion we laboriously derived in (13)
follows by writing F = dA and varying S with respect to A formally. Again, without worrying about irrelevant
factors, we obtain immediately δS = ∫

(d ∗ F + ∗J )δA= 0 and hence Maxwell’s equations.
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(a) (b)

Figure 1 (a) Gluing 2 tetrahedra together. (b) A spherical
blob grows a trunk.

What about the Einstein-Hilbert action? Let’s try S = ∫
Rαβ ∗ (eαeβ). Again, the answer is easy to guess. We

need a d-form to integrate over, involving 1 power of the curvature 2-form and no power of derivative. To obtain
a d-form, we multiply the curvature 2-form by a (d − 2)-form: the only possibility in this context is the star of the
2-form eαeβ . Again, between us friends, do you doubt this? Okay, let’s check (but, to save writing and to spare
you the stream of indices, only for 4-dimensional spacetime):

Rαβ ∗
(
eαeβ

)
=
(
Rαβωψdx

ωdxψ
) (

ε μν
ρσ

√−geα
μ
eβ
ν
dxρdxσ

)
= Rμνωψε

μν
ρσ

√−gdxωdxψdxρdxσ = Rμνωψε
μν

ρσ

√−gεωψρσd4x

= Rμνωψg
μωgνψ

√−gd4x = √−gd4xR (16)

(using the generalization of (6) and again ignoring overall numerical factors), as expected.

Appendix 3: Topological invariants: Euler characteristic,
Gauss-Bonnet theorem, and all that

We are now ready to look at some celebrated invariants in topology. Our discussion will be heuristic rather than
rigorous, hitting some highlights rather than being exhaustive. I keep the discussion as elementary as possible.

I suspect that many readers probably first encountered the Euler characteristic, like me, in a popular book of
mathematics. For me, it was a real eye opener. First, let us look at the empirical data. The cube has 8 vertices or
corners, 12 edges (4 on the top, 4 on the bottom, and 4 on the side), and 6 faces. Hence, V = 8, E = 12, F = 6.
Next, the tetrahedron has 4 vertices, 6 edges (3 on the bottom and 3 on the side), and 4 faces, that is, V = 4,
E = 6, F = 4. We see that the combination, χ = V − E + F , known as the Euler characteristic, is equal to 2 in
both cases. (Note that in the sum, we add the number of geometrical entities, vertices, edges, and faces, with
an alternating sign according to whether the dimension of the entity is even or odd.) The joke is that theoretical
physicists would proclaim this to be a theorem at this point, but in fact it is easy to prove. Let me give a proof
that would satisfy most physicists (but not mathematicians) and is suitable for elementary school children.

Glue another tetrahedron to the tetrahedron we have, producing a 6 faced “diamond-shaped” object. See
figure 1a. We gain 4 faces (the four of the second tetrahedron) but lose 2 faces (the two that are glued together).
Thus, 
F = +4 − 2 = 2. Similarly, we can see that 
V = +4 − 3 = 1 and 
E = +6 − 3 = 3. Hence, we have

χ =
V −
E +
F = 1 − 3 + 2 = 0. Now we can glue zillions of these tetrahedra together to approximate
any object we like. At every gluing, the Euler characteristic does not change. Hence χ = 2 for any spherical-
looking blob. The discussion makes clear that we are counting the V , E , and F on the surface. (The interior of
the object, consisting of the faces we have glued together and their edges and vertices, has been “lost forever,”
so to speak.) Throughout, we will be studying a surface or a 2-manifold, not the 3-dimensional blob enclosed by
the surface.

The Euler characteristic is evidently a topological quantity. We can lengthen and shorten the edges of the
tetrahedra we are gluing together without changing V , E , and F .
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Suppose we now go beyond deforming the spherical blob to changing its topology. We show presently that χ
“measures” the topology of the object.

By gluing more tetradehedra on, we can make the spherical blob grow a trunk like that of an elephant. Let us
slowly extend the trunk back toward another part of the blob, sort of like an elephant about to scratch its back
with its trunk. The Euler characteristic χ remains equal to 2, until we glue the tetrahedron at the tip of the trunk
to a tetrahedron on the back of the elephant. See figure 1b. Now we lose 2 faces, 3 vertices, and 3 edges, and
thus 
χ = 
V − 
E + 
F = −3 + 3 − 2 = −2. The resulting surface has the topology of a torus and Euler
characteristic χ = 2 − 2 = 0.

Growing another trunk and attaching it somewhere else causes the Euler characteristic χ to decrease further,
with 
χ = −2 every time we do it. We have thus derived the general result χ = V − E + F = 2(1 − g), where g
denotes the genus (g = 0 for the sphere, g = 1 for the torus, and so on). Some people call the genus the number
of “holes.” (The torus is said to have 1 hole, but as we will soon see, in this context, the word “genus” or “handle”
is preferable to the word “hole.”) The Euler characteristic χ is manifestly a topological invariant, independent of
the size or “shape” of the surface, and only dependent on its genus.

A trivial generalization is to punctured surfaces. (In everyday parlance, a punctured sphere is a sphere with a
hole in its surface, like a rapidly shrinking balloon with a hole in it. This is one reason why the use of the word
“hole” for genus or handle, as indulged in by some, is ill advised.) Since we can puncture a surface by removing
a triangular face from the surface (so that 
V = 0, 
E = 0, and 
F = −1 and hence 
χ = −1), we have, more
generally,

χ = 2 − 2g − h (17)

with h the number of holes or punctures in the surface.7

Another way of proving (17) is to start with χ = 2 for a spherical surface, and to punch any number of holes
in it, thus obtaining χ = 2 − h. Deforming the surface to bring 2 holes near each other and then to glue them
together, we decrease h by 2 and increase the genus by 1. Hence we have (17). This derivation also makes clear
the relative factor of 2 in the coefficients of g and h in χ .

We obtain what is known as a triangulation of the surface. (Indeed, that is what surveyors do: they triangulate
the surface of the earth.) At the level of rigor of physics, any surface can be approximated to arbitrary accuracy
by making the triangles small enough. In other words, we physicists would take the continuum limit without
further ado.

At the same level of rigor, we can also approximate spacetime by a large number of discrete elements. This
represents the first step in a program to discretize Einstein gravity and to put it on the computer for numerical
analysis.∗

That we used tetrahedra is not essential. Take the tetrahedron we started with. Call the vertices on the triangle
on its “base” A, B, and C. Pick a point X on the edge joining A and B, and draw a line connecting X to the other
vertex C. Then 
V = 1, 
E = 2, and 
F = 1, and so 
χ = 0. By “pulling” on the point X, we can deform the
tetrahedron, if we feel like it, to a pyramid with a square base. As another example, we can pick a triangle on
the surface we are studying and draw a line from one side of the triangle to another side, so that we divide the
triangle into a smaller triangle and a quadrilateral. In the process, 
V = 2, 
E = 3, and 
F = 1, and so again

χ = 0. You can make up your own “moves” and show that instead of triangles, the surface could be composed
of polygons with any number of sides you like.

Indeed, Descartes had already published, in his progymnasmata to the study of solids, a theorem on angular
deficits that foreshadowed the Euler characteristic. Here is what Descartes said. At each vertex of a cube, 3 squares
meet. The 3 angles at the vertex add up to 3( 1

2π)= 3
2π . The amount by which this is less than 2π is known as

the angular deficit, in this case equal to (2 − 3
2 )π = 1

2π . The total angular deficit, namely the sum of the angular
deficits at each of the 8 vertices, is then equal to 8( 1

2π)= 4π . Descartes stated that the total angular deficit of any
polyhedron topologically equivalent to the sphere is equal to 4π .

Let’s try it for a tetrahedron. At each vertex, 3 equilateral triangles meet, with angles adding up to 3( π3 )= π ,
so that the deficit equals (2 − 1)π = π . There are 4 vertices, and so the total deficit is indeed 4π . We have verified
2 cases, so it is surely a theorem. We are proud physicists, but still, perhaps a third example would be good.

So consider the dodecahedron with 12 pentagonal faces. Since there areE = (12 × 5)/2 = 30 edges, according
to Euler’s theorem, the number of vertices equals V = 2 + E − F = 2 + 30 − 12 = 20. The 12 pentagons have
12 × 5 = 60 vertices, and hence 60/20 = 3 pentagons meet at each vertex. For a regular polygon with n sides,
the angle α at each vertex is given by nα + 2π = nπ (to see this, divide the polygon into n triangles), that

∗ Lattice gravity is a thriving subject of research. Historically, this first step is known as the Regge calculus.
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is, α = (n − 2)π/n. In particular, for a pentagon, we have α = 3
5π . The angular deficit at each vertex is then(

2 − 3
(

3
5

))
π = 1

5π . Thus, the total angular deficit equals to 20 × 1
5π = 4π . Descartes was right!

Let’s now show that the total angular deficit is topologically invariant. Consider some triangulated surface
as described earlier, and visualize it as a wire framework. (For ease of presentation, let the faces be triangles.
Thus, for the cube mentioned above, simply divide the squares by their diagonals.) Pick an edge AB, shared by
two triangles ABC1 and ABC2. Call the 6 angles contained in these 2 triangles αj , βj , γj , with j = 1, 2, using
an almost self-evident notation (for example, α1 is the angle of ABC1 at the vertex A, γ1 is the angle of ABC1 at
the vertex C1, and so on). Now imagine lengthening the edge AB slightly, thus increasing γj and decreasing αj
and βj . Thus, the change in the angular deficit at the vertex A is −(δα1 + δα2). But since the angles in a triangle
have to add up to π , δ(αj + βj + γj)= 0. The angular deficit at the vertices A, B, C1, and C2 all vary, but the total
angular deficit stays the same: it is a topological invariant, as Descartes taught us.

Here is the previous proof dressed up to make it look more sophisticated. Label the vertices by p. At vertex
p, a set s(p) of triangles meet. The sum of the angles meeting at vertex p is then

∑
i∈s(p) αi , with αi the angle

extended by the ith triangle at that vertex. The total angular deficit is then
∑

p

(
2π −∑

i∈s(p) αi
)

. Let us now

deform the surface infinitesimally by lengthening or shortening each of the zillions of edges. The variation in
the total angular deficit is equal to −∑

p

∑
i∈s(p) δαi . Rearranging to sum over 1 triangle at a time, we see that

this vanishes, since the sum of the angles in each triangle is constrained to add up to π .
With this background explanation of what the Euler characteristic χ is, we now return to the subject of this

appendix and of this chapter. Can we write χ as an integral? In other words, how do we calculate χ , originally
defined to be V − E + F , in the continuum limit where V , E , and F are not defined?

We are given a closed surface, that is, a 2-manifold M without boundary (in other words, we are setting h= 0
for simplicity). What is a 2-form that we could integrate over M? The curvature 2-form Rαβ comes to mind; so
let’s try

∫
M
εαβR

αβ . (It is also instructive to try the other possibility: eαeβ . It turns out that
∫
M
εαβe

αeβ is the area
of the surface, as you might have guessed from the fact that it does not contain any derivative.) We first work out
the integrand in terms of a more elementary notation:

εαβR
αβ = εαβR

αβ
μν
dxμdxν = εαβe

α
ρ
eβ
σ
Rρσ

μν
dxμdxν

= (det e)ερσR
ρσ
μν
εμνd2x = 2d2x

√
gδμ

ρ
δν
σ
Rρσ

μν
= d2x

√
gR (18)

(In the next to last step, we used (6).)
We have known, for quite a while now, that for a sphere of radius a, the scalar curvature R = 2/a2. The area

is
∫
M
d2x

√
g = 4πa2. Thus, the radius cancels out in the integral

∫
M
εαβR

αβ = 2
∫
M
d2x

√
gR, and this integral

is indeed, as we might suspect, topological in character, equal to some constant like 16π .
The scalar curvature of a torus was calculated back in exercise I.6.2 and again in exercise I.5.16; it assumes

both positive and negative values. I will let you check that the integral gives 0 for a torus. We claim that, up to
some overall factor, this integral gives the Euler characteristic χ .

In fact, Descartes’ theorem is just the statement, up to some overall constant, that the Euler characteristic χ
equals 2 for a surface with the topology of the sphere. Go back to the spherical-looking blob. Under the microscope,
we see that the surface is formed out of zillions of triangles. Inside any triangle, we have a flat surface; the surface
curvature is concentrated on the edges and at the vertices. Indeed, the angular deficit measures our intuitive
understanding of curvature: that which we cannot iron flat is curvature. The smaller the angular deficit is at a
vertex, the less that vertex sticks out. When the angular deficit vanishes, the surface around that vertex is flat.
The angular deficit “measures” the curvature.

The generalization to a 4-manifoldM almost immediately suggests itself. Let’s parallel the discussion embod-
ied in (18) and integrate the 4-form εαβγ δR

αβRγ δ over M . As in the discussion above, the characteristic length a

of M will cancel out in the integral
∫
M
εαβγ δR

αβRγ δ. I will let you have the fun of working this out in an exercise.
That this integral is a topological invariant8 is known as the Gauss-Bonnet theorem in the physics literature.

In the interest of keeping this appendix to a manageable size, I have not proven why the 2 integrals mentioned
here are topological invariant,9 but instead, have “merely” shown you why they must be so (in the spirit of what
the American Mathematical Society said about my field theory textbook, as quoted in a footnote in chapter V.6).

Exercises

1 Check Descartes’ theorem for the icosahedron, constructed out of 20 equilateral triangular faces. Hint: Use
Euler’s theorem.
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2 Show that the integral
∫
M
d2x

√
gR vanishes for a torus.

3 Just as in (18), evaluate the 4-form εαβγ δR
αβRγ δ in a more elementary notation.

Notes

1. The first appearance of this term in the physics literature, as far as I know, is in S. Deser, R. Jackiw, and
S. Templeton, Phys. Rev. Lett. 48 (1982), pp. 975–978.

2. It is implicitly assumed here that such a description is in fact appropriate.
3. Here we implicitly assume that the microscopic physics produces only one length scale l.
4. For a glimpse of this fascinating subject, the interested reader is referred to QFT Nut, chapter VI.2. He or

she could then move on to more specialized monographs.
5. See, for example, A. Zee, “Quantum Hall Fluids,” in Field Theory, Topology and Condensed Matter Physics,

ed. H. B. Geyer, Springer, 1994, with references to the original literature.
6. For further discussion of topological effects in quantum Hall fluids, see the reference in endnote 5. In

particular, a topological quantity called the shift was introduced in X. G. Wen and A. Zee, Phys. Rev. Lett. 69
(1992), p. 953, 3600(E).

7. It turns out that this theorem about punctured surfaces is useful in studying RNA folding. See M. Bon,
G. Vernizzi, H. Orland, and A. Zee, J. Mol. Biol. 379 (2008), p. 900.

8. Thus, this integral can be added to the Hilbert-Einstein action and the resulting action studied. See, for
example, I. Low and A. Zee, Nucl. Phys. B585 (2000), p. 395; P. Binétruy, C. Charmousis, S. Davis, J. F.
Dufaux, Phys. Lett. B 544 (2002), p. 185.

9. For the reader eager for a proof, I give a few hints on how to produce a proof, sketched in the briefest possible
way. The essential physics (and mathematics) goes back to Faraday’s entirely intuitive picture of magnetic
flux lines and their conservation. Consider the magnetic flux (or electric flux for that matter) going through a
surface A with boundary C, namely

∫
A d�a . �B, with d�a an infinitesimal area element. Now distort the surface

A to a surface A′ with the same boundary C. Then Faraday tells us that
∫
A d�a . �B = ∫

A′ d�a . �B. Equivalently,
write 0 = (

∫
A − ∫

A′)d�a . �B = ∫
S
d�a . �B, where in the last expression S = A − A′ denotes the closed surface

enclosed by A and −A′. For example, S could be the 2-sphere S2, with A and −A′ its northern or southern
hemisphere, respectively, and C the equator. What we just said is simply the elementary fact that the magnetic
flux enclosed by S2 vanishes. Now imagine a magnetic monopole sitting inside S2. Then the magnetic flux
enclosed by S2 would be equal to 1 in some suitable units. But the conservation of magnetic flux lines now
tells us that we could distort S2 to any surface S with the topology of the sphere, and as long as S encloses
the magnetic monopole, the total flux

∫
S
d�a . �B will continue to be equal to 1 regardless of the shape of S.

In a sense, this is the first hint that topology is relevant to physics. We can deform the surface S, up to some
limit, without changing the total flux S encloses, be it equal to 0, 1, or some other value.

In the language of forms, the preceding discussion is intimately related to what we touched upon in
appendix 2 to chapter IX.7. The electromagnetic 2-form F is closed, that is, dF = 0 (corresponding to
magnetic flux conservation), but F is only locally—but not globally—exact, that is, F = dA only locally,
not globally. Otherwise, according to (IX.7.24),

∫
S
F would vanish for any surface without a boundary, such

as the sphere S2. The integral
∫
S
F can be nonzero precisely because, under some circumstances, we cannot

define an electromagnetic 1-form A over the entire S, but have to divide S into overlapping “patches.” These
considerations led Dirac to conclude that

∫
S
F must be quantized to take on only integer values, just like the

Euler characteristic. For details of this argument, which I do not have room to go into here, see, for example,
QFT Nut, p. 248. To show that the 2 integrals discussed in this appendix are also quantized to take on integer
values, we follow essentially the same steps (with d replaced by the covariant D).



X.6 A Brief Introduction to Twistors

Twistors

Here I introduce you to twistors. After lying dormant for decades, twistors have recently
returned to fundamental physics amid tremendous excitement.1 Introductory texts on
Einstein gravity do not normally cover twistors, but I cannot resist giving readers who
have gotten this far at least a flavor of what the recent excitement is about. Actually, you
are well equipped, as you will see, by the discussion in, for example, chapters III.3 and
VII.2, to embark on a journey into twistor space. We won’t get very far, but my hope is that
this brief introduction will inspire you to venture deeper into this beautiful subject.

In the following, we will need a few concepts that some readers may be unfamiliar with.
For the benefit of these readers, I will collect these topics in appendix 1, which you might
want to read first before going on. And of course, if you find these concepts too alien, you
could simply skip this chapter.

Also, while I find the mathematical foundation of twistors fascinating and beautiful,
here I adopt a down-to-earth and pedestrian approach, dealing with twistors entirely at the
“arithmetical level” that most theoretical physicists favor, without inessential mathematical
embellishments. I provide the motivation for studying twistors as we move along. (I prefer
to avoid the common practice of some writers telling the reader what something is good
for before the reader has any idea what that something is.)

The discussion here is restricted to flat spacetime.

Covering the Lorentz group

Given four real numbers pμ = (p0, p1, p2, p3) (which we can regard as the momentum
of a particle), consider the matrix

pαα̇ =
(

p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)
αα̇

(1)
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Here the two indices α and α̇ run over 1, 2. Notice that the matrix p is hermitean and
thus can be written as a linear combination of the matrices σμ: pαα̇ = −pμ(σμ)αα̇ =
(p0I − piσ i)αα̇ (see appendix 1). Clearly, there is an unavoidable notational overload: the
single letter p denotes both the vector and the matrix, but you should be able to tell from
the context which object is being referred to.

By inspection, we see that the determinant of (1), det p = (p0)2 − (p1)2 − (p2)2 −
(p3)2 = −ημνpμpν = −p . p, is just the Minkowskian square of the 4-momentum p.

Let us now indulge in a few steps of elementary linear algebra. Let L denote an arbi-
trary 2-by-2 complex matrix with determinant equal to 1. Assuming that L1 and L2 are
two such matrices, the product L1L2 is also a 2-by-2 complex matrix with det(L1L2) =
(det L1)(det L2)= 1. Thus, the set of all such matrices form a group known2 as SL(2, C)
to the cognoscenti, with the letters indicating that this is the special linear group of 2-by-2
matrices over the complex numbers.

Given the matrix p, let us consider

p′ = L†pL (2)

for some elementL of SL(2, C). Manifestly, p′ is also hermitean, since (p′)† = (L†pL)† =
L†p†L = L†pL = p′ and thus can be written as p′ = (p′0I − p′iσ i). In this way, an
element L defines a transformation on 4-vectors, taking p into p′. Now observe that
det p′ = (det L†)(det p)(det L)= det p, or in other words, the transformation preserves
the Minkowskian square of the 4-momentum: p′2 = p2. As you might have expected, it is
a Lorentz transformation.

This shows that an element L of SL(2, C) corresponds to an element �(L) of the
Lorentz group SO(3, 1). However, it is not a 1-to-1 map, since L and −L give the same
transformation p → p′. Mathematicians say that SL(2, C) double covers SO(3, 1). Fur-
thermore, if L is also unitary, that is, L† = L−1, then from (2) we have p′0 = p0, and the
transformation is a rotation. In other words, the SU(2) subgroup of SL(2, C) double cov-
ers the rotation subgroup SO(3) of the Lorentz group SO(3, 1). (Readers familiar with
quantum mechanics will recognize that here we are extending and generalizing the stan-
dard discussion of how spin 1

2 particles transform under rotation.) If L is not unitary, we
have p′0 �= p0, and the transformation involves a Lorentz boost. (For more details, see
appendix 1.)

Penrose and the twistor

Penrose, in inventing twistors, was motivated by the thought that, in a general spacetime,
lightlike or null lines traced by light might be more fundamental than points. Given your
familiarity with Penrose diagrams by now, you will not be surprised that this is one and the
same Roger Penrose, who incidentally has also authored a number of well-known popular
books. After all, Penrose diagrams emphasize the causal web constructed out of null lines
between various events in spacetime. In this chapter, we restrict ourselves to Minkowski
spacetime (as I’ve already mentioned).
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So let’s consider a lightlike vector pμ. The preceding discussion simplifies enormously!
We have det p = −p2 = 0, and hence the matrix p generically has one zero eigenvalue. (In
fancy talk, the matrix has rank 1 rather than 2.) From elementary linear algebra, we recall
that a 2-by-2 matrix m of rank 1 can always be written as mij = viwj , with v and w two 2-
component vectors (since the vector orthogonal to w provides the zero eigenvector). Thus,
for a lightlike vector pμ, we can write

pαα̇ = λαλ̃α̇ (3)

The two 2-component objects λ and λ̃ are sometimes called helicity spinors. (Our friend
the Jargon Guy is beside himself with joy in this chapter.)

Upon first exposure, the formalism appears quite opaque, but actually, like a lot of
formalisms, it is fairly simple or perhaps even trivial. If you are confused at any point in
the following exposition, just work things out explicitly. For example, consider a physical
momentum withp0 =E > 0. With no loss of generality, call the direction of �p the third axis,

so that (with a trivial abuse of notation) p =
(
E−p 0

0 E+p
)

, which for p lightlike collapses

to the rank 1 matrix p = 2E
(

0 0
0 1

)
= 2E

(
0
1

)
(0 1). Thus, in this case, λ and λ̃ are both

equal to
√

2E
(

0
1

)
numerically. (To make sure you get it, work this out for �p pointing in

some other direction.)
You can think of the Pauli spinors λ and λ̃ as the∗ “square root” of the Lorentz vector pμ.
Another motivation for studying twistors (note that I haven’t told you what they are

yet!) comes from particle physics, specifically, quantum field theory. Fear not, the only
knowledge of quantum field theory I ask of you is minimal. First, just as in quantum
mechanics, one of the tasks of quantum field theory is to calculate the scattering amplitude
M(p1, p2, p3, . . . , pn) involving particles with momentum pa. (Here we have written the
amplitude for a process of the formp1 + p2 → p3 + . . . + pn.) The second thing I need you
to know is that when we quantize the electromagnetic field, we obtain photons,† and when
we quantize the gravitational field, we obtain gravitons, something I already mentioned
back in chapter IX.4.

In our titanic struggle to tame quantum gravity (see chapter X.8), one (fairly down-to-
earth) approach is to study the scattering of gravitons off each other and see what happens.
Gravitons are of course, just like photons, massless, and they carry null momentum, so that
in the scattering amplitude M(p1, p2, p3, . . . , pn), the momenta pa, for a = 1, . . . , n, are
all null. Henceforth, we simply write the amplitude as M(pa), and in fact, even as M(p).
This standard abuse of notation is not as distasteful as you might think, as we will be
focusing on one specific momentum at a time. The preceding discussion indicates that
we can also write the amplitude as M(λa , λ̃a), or more compactly, M(λ, λ̃).

∗ Some sophisticated readers might realize that this rather nontrivial possibility of taking a square root of a
vector is foreordained by the structure of the Lorentz group. In a sense, this represents Dirac’s great discovery.
See QFT Nut, chapter II.3, for example.

† Einstein’s Nobel Prize for the photoelectric effect!



732 | X. Gravity Past, Present, and Future

Complexification, or two times

Since momentum is characterized by 4 real numbers pμ, the matrix pαα̇ = −pμ(σμ)αα̇
is hermitean (indeed, that was how we started this chapter), which implies that λ̃= λ∗ is
the complex conjugate of λ. The spinor λ̃ is not independent of λ. As students of physics,
we know that constraints are, generically, bad news. Theorists (and mathematicians) need
more freedom! We prefer to keep the variables λ and λ̃ in M(λa , λ̃a) independent of each
other.

Our esteemed experimentalist friends insist that the momentum components pμ must
be real, and they are absolutely right, of course. Theorists, on the other hand, are free∗

to analytically continue the variables in the scattering amplitude M(p1, p2, p3, . . . , pn) to
complex values. As you learned in a course on complex analysis, to evaluate an integral
over a real variable, it is often useful to analytically continue the integrand into the complex
plane and use Cauchy’s theorem. We are proceeding in the same spirit here. It is known in
quantum field theory (and in quantum mechanics) that scattering amplitudes are analytic
functions of their kinematic variables.3 Thus, quantum field theorists often continue
analytically without a moment’s thought. Theoretical physicists love that guy Cauchy! Of
course, all momenta in the scattering amplitude are to be set back to reality at the end of
the calculation.

I invite you to verify that the discussion in this chapter thus far goes through even if pμ

are complex, so that λ and λ̃ are no longer yoked to each other.
An alternative approach is to change the signature of spacetime, from (− + ++) to

(− − ++), so that, instead of the Lorentz group SO(3, 1), we consider the group SO(2, 2).
(I mentioned the groups SO(m, n) as far back as chapter III.3.) As Minkowski already
noted in his famous paper referred to in chapter III.3, it is a simple matter of removing
(or adding) an i here and there. Let us strip the Pauli matrix σ 2 (kind of a troublemaker or

at least an odd man out) of its i and define (for our purposes here) σ 2 ≡
(

0 −1
1 0

)
. Any real

2-by-2 matrix p (this matrix is of course to be distinguished from the matrix p in (1)) can
be decomposed as

p = p4I + �p . �σ =
(
p4 + p3 p1 − p2

p1 + p2 p4 − p3

)

with (p1, p2, p3, p4) four real numbers. Now we have det p = (p4)2 + (p2)2 − (p3)2 −
(p1)2. Instead of SL(2, C), consider SL(2, R), consisting of all 2-by-2 real matrices with
unit determinant. For any two elements Ll and Lr of this group, transform p → p′ =
Llp(Lr)

T . Evidently, det p′ = (det Ll)(det p)(det Lr) = det p. Thus, the transformation
preserves the quadratic invariant (p4)2 + (p2)2 − (p3)2 − (p1)2. This shows explicitly that

∗ What we are doing in this chapter is following the three ways of the warrior theorist; see QFT Nut, p. 522.
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the group SO(2, 2) is locally isomorphic to SL(2, R)⊗ SL(2, R), where the two factors of
SL(2, R) reflect the fact that Ll and Lr can be chosen independently of each other.

For a null SO(2, 2) vector p, that is, a real 4-vector such that (p4)2 + (p2)2 − (p3)2 −
(p1)2 = 0, we can write pαα̇ = λαλ̃α̇, with λ and λ̃ two independent real spinors. Indeed, λ
and λ̃ transform independently, according to

λα → (
Ll
) β
α
λβ and λ̃α̇ → (

Lr
) β̇
α̇
λ̃β̇ (4)

Incidentally, we are changing the signature of spacetime in the same spirit as complexify-
ing a manifestly real variable. At the end of the calculation, the signature is to be switched
back to the physical signature. Nobody is suggesting that we live in a spacetime with two
time dimensions and two space dimensions.

Both approaches, complexifying momentum and changing signature, are used in the
literature. We will jump back and forth between the two approaches.

Freedom to rescale

You learned in school that the ordinary square root has a sign ambiguity. Analogously, in
(3), p does not determine λ and λ̃ uniquely. We can always rescale

λ→ t−1λ and λ̃→ t λ̃ (5)

for any complex number t . (You might have wondered what fixed the overall constant in λ

and λ̃ in the simple explicit example above; I made an arbitrary choice.) This freedom to
rescale will play an important role.

By the way, for real momentum, λ= λ̃∗, and so the rescaling parameter t is restricted to
be a phase factor eiγ . In this case, the condition that p has rank 1 allows for two solutions:
pαα̇ = ±λαλ̃α̇, with the two possible signs corresponding to whether p0 is positive or
negative. With the SO(2, 2) signature, the rescaling parameter t is restricted to be a real
number.

It is instructive to count the number of real degrees of freedom for these two different
approaches.

A complex lightlike momentum depends on 4 × 2 − 2 = 6 real numbers, since the
conditionp2 = 0 now amounts to two real conditions, whileλ and λ̃ each contain 2 complex
numbers. But with rescaling, we are left with 2 × 2 − 1 = 3 complex numbers, that is, 6 real
numbers.

A real lightlike momentum depends on 4 − 1 = 3 real numbers, while λ̃ and λ each
contain 2 complex numbers. But now they are tied to each other, so altogether, they contain
2 complex numbers, which get reduced to 3 real numbers after rescaling by a phase factor.

On the other hand, for a (real) lightlike vector transforming under SO(2, 2), we have 2
real spinors, which after rescaling contain 2 × 2 − 1 = 3 real numbers. So it all works out,
of course.
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Lorentz invariance

In terms of helicity spinors, Lorentz invariance takes on a particularly simple form.
Under a Lorentz transformation, λ → Lλ, with L an arbitrary 2-by-2 complex matrix
with determinant equal to 1, that is, an element of SL(2, C). Back in chapter III.3, given
2 vectors p and q, we constructed the Lorentz invariant quantity p . q = ημνp

μqν. Given
2 helicity spinors λ and μ, what is the Lorentz invariant quantity we can construct out
of them?

Once we realize that the only property of L that we have to work with is its unit
determinant, the answer becomes clear. Define

〈λ, μ〉 ≡ εαβλαμβ = −〈μ, λ〉 (6)

with the antisymmetric symbol ε12 = −ε21 = −1, ε11 = ε22 = 0. Under a Lorentz transfor-
mation, we have εαβλαμβ → εαβL α′

α
L

β ′
β λα′μβ ′ = (det L)εα

′β ′
λα′μβ ′ = εα

′β ′
λα′μβ ′, where

we have used the definition of the determinant (as mentioned in chapter X.5). The quantity
〈λ, μ〉 is manifestly Lorentz invariant.

Similarly, given λ̃ and μ̃, we have the Lorentz invariant

[λ, μ] ≡ εα̇β̇λ̃α̇μ̃β̇ = −[μ, λ] (7)

(A trivial notational remark: You might be inclined to write [λ̃, μ̃], but then the twiddles
are redundant. The square bracket is defined only for twiddled spinors.)

In contracting helicity spinors, the antisymmetric symbol plays the role as the metric
ημν in contracting vectors and tensors. In parallel with the discussion in chapter III.3, we
are clearly invited to define helicity spinors with an upper index according to μα = εαβμβ .
Then the invariant 〈λ, μ〉 can be written as λαμα.

Polarization and helicity

You know that an electromagnetic wave has two polarizations. After quantization, the
resulting photon has two helicity states labeled by +1 or −1: it can spin either clockwise or
counterclockwise around the direction of its 3-momentum. As discussed in chapter IX.4,
the situation in gravity is entirely analogous. A gravitational wave has two polarizations,
and the graviton has two helicity states labeled by +2 or −2. (The photon has spin 1, while
the graviton has spin 2, a fact that can be traced back to Aμ and gμν carrying one and two
indices, respectively.) Thus, in talking about the graviton scattering amplitude, I have to
specify the helicity of each graviton and write M(p1, h1, p2, h2, p3, h3, . . . , pn, hn) with
ha = ±2 for a = 1, . . . , n.

Now I have to tell you something about the scattering amplitude M(λa , λ̃a , ha) when
expressed in terms of helicity spinors. At this point, I appeal to your knowledge of quantum
mechanics. Take a quantum state with angular momentum h around some axis. Rotate it
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around that axis through an angle ξ . Then the quantum state acquires a phase eihξ = t2h,
where t ≡ e

1
2 iξ .

Let’s focus on a specific particle and omit the subscript a, writing simply M(λ, λ̃, h).
Imagine rotating the quantum state of that specific particle around the direction of its
momentum �p through an angle ξ . Referring to appendix 1, we see that under this rotation,
λ→ t−1λ and λ̃→ t λ̃. (This is a particular case of the rescaling expressed in (5).) Note that
the momentum p = λλ̃ is left unchanged, as it better be, since we are rotating using �p as
the rotation axis. What I just told you about quantum mechanics states that the scattering
amplitude must satisfy

M
(
t−1λ, t λ̃, h

)
= t2hM

(
λ, λ̃, h

)
(8)

Keep in mind the suppressed subscript a. By analytic continuation, we argue that this
scaling property should hold for arbitrary t and will serve to severely restrict the scattering
amplitude. Under rotation, λ and λ̃ transform oppositely, and so what we are doing is
simply counting the powers of λ minus the powers of λ̃ in the scattering amplitude.∗

Power of helicity spinors

After talking about scattering amplitudes for all this time, I regret to inform you that
we can’t actually calculate one. That’s kind of a bummer, but to calculate a scattering
amplitude, you would have to learn field theoretic methods, such as Feynman diagrams
(just as, in nonrelativistic quantum mechanics, to calculate a scattering amplitude you
would have to master stuff like perturbation theory), which are way beyond the scope of
this book. However, I can impress upon you the power of the helicity spinor formalism.

Instead of graviton scattering, let’s talk about the far simpler case of gluon scattering.
I already mentioned, in chapter X.1 for example, that the strong interaction is described
by a Yang-Mills theory, with the gluon playing the role of the photon. Consider two gluons
scattering, ending up with 3 gluons (in the notation used earlier, this is described by
p1 + p2 → p3 + p4 + p5). We refer to this as 5-gluon scattering. Suppose you want to
calculate this to lowest order in perturbation, in the simplest possible case (for example,
without any quarks around). If you used the traditional Feynman diagram method, the
result contains something on the order of 7,000 terms.† When the result is expressed in
terms of helicity spinors, the scattering amplitude, for a particular choice of helicities,
simplifies dramatically to

M(1−, 2−, 3+, 4+, 5+)= 〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉 δ
(4)

( 5∑
a=1

λaλ̃a

)
(9)

∗ This sounds more mysterious than it actually is. The reason for that is because, for fear of confusing some
readers, I have not digressed into a discussion of how to write polarization vectors in terms of helicity spinors.
See QFT Nut, pp. 489 and 493.

† Part of the result is shown as a black smudge on p. 484 of QFT Nut.



736 | X. Gravity Past, Present, and Future

Here I use the compact notation favored in the research literature of writing M(. . . ,
pa , ha , . . .) as M(. . . , aha , . . .) and 〈λa , λb〉 as 〈ab〉. The delta function specifies that∑5

a=1 pa = 0 and hence momentum conservation.∗

Behold, several thousand terms have collapsed into one single term! I trust that you
are impressed. The point here is not how this amplitude is derived, but how it simplifies
drastically when expressed in terms of “correct” variables.

While I cannot derive4 (9) for you, I can point out that this remarkable expression
satisfies all our invariance requirements. Lorentz invariance is satisfied, since 〈ab〉, as de-
fined in (6), is a Lorentz scalar. Let’s check the scaling requirement (8). Letting λ3 →
t−1λ3, we have M(1−, 2−, 3+, 4+, 5+) → t2M(1−, 2−, 3+, 4+, 5+). In contrast, letting
λ1 → t−1λ1, we have M → t−4t2M = t−2M . You could see that scaling severely restricts
M . Scaling and Lorentz invariance almost fix M uniquely.

The ambitwistor representation

After these many pages, I still haven’t told you what a twistor is. I needed to set up helicity
spinors first. Finally, we are ready to build twistors out of helicity spinors.

Consider a scattering amplitude M and again focus on the particle a. Write M(λa , λ̃a),
suppressing the dependence on the other particles. Let us Fourier transform M in two
possible ways (and overuse the letter M somewhat):

M
(
Wa

)=
∫

d2λa exp
(
iμ̃α

a
λaα

)
M
(
λa , λ̃a

)
(10)

and

M
(
Za
)=

∫
d2λ̃a exp

(
iμα̇

a
λ̃aα̇

)
M
(
λa , λ̃a

)
(11)

We have defined two 4-component objects (suppressing the subscript a):

W ≡
(
μ̃α

λ̃α̇

)
and Z ≡

(
λα

μα̇

)
(12)

The intent here is to transform M sequentially for a = 1, 2, . . . , n, using either (10) or
(11). Consider SO(2, 2) here instead of SO(3, 1), so that the spinors λ and λ̃ are real, and
hence we can take μ and μ̃ to be real as well. Thus, these integral transforms are no more
and no less than the Fourier transforms you have long been familiar with, and the variable
μ is conjugate to the variable λ̃ in the same sense that p is conjugate to q in quantum
mechanics. The objects W and Z are known as a dual twistor and a twistor, respectively.5

What is the point of Fourier transforming and packaging 2-component objects into 4-
component objects? One advantage is that the scaling requirement (8) comes out nicer.
Instead of λ and λ̃ scaling oppositely, we now have, thanks to Mr. Fourier, λ and μ scaling
the same way. Similarly for the pair (μ̃, λ̃).

∗ To write momentum conservation in this form, I have reversed the signs of p1 and p2. I have also omitted
mentioning various quantum field theoretic notions and technicalities, such as crossing and color stripping.
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We find easily that

M(tZ , h)=
∫

d2λ̃ exp
(
itμλ̃

)
M
(
tλ, λ̃, h

)
= t−2

∫
d2λ̃′ exp

(
iμλ̃′)M (

tλ, t−1λ̃′, h
)

= t−2(h+1)M(Z , h) (13)

(displaying the helicity h of particle i while suppressing the index a). We used elementary
calculus in the second equality and (8) in the third equality. Similarly,

M(tW , h)=
∫

d2λ exp
(
itμ̃λ

)
M
(
λ, t λ̃, h

)
= t−2

∫
d2λ′ exp

(
iμ̃λ′)M (

t−1λ′, t λ̃, h
)

= t2(h−1)M(W , h) (14)

This scaling result indicates that we should favor a mixed or ambitwistor representation
for the scattering amplitude, using W when the particle carries + helicity and Z when the
particle carries − helicity. (In particular, for gluons, h= ±1, and so we have M(tW , +)=
M(W , +) and M(tZ , −)=M(Z , −). We return to this remarkable result in a minute.)

SL(4, R) suddenly appears

Another advantage of the twistor formalism is that these objects (12) with 4 real com-
ponents (we are still sticking to SO(2, 2) for the moment) naturally invite us to consider
transformation under the special linear group SL(4, R) over real numbers. In other words,
transform Z → LZ with L a real 4-by-4 matrix with real entries and det L = 1.

But wait! The physics we started out with is supposed to be invariant under SO(2, 2)=
SL(2, R)⊗ SL(2, R), evidently a subgroup of SL(4, R). Indeed, from (4), we have

Z =
(
λα

μα̇

)
→

(
(Ll)

β
α

0

0 (εLrε
−1)α̇

β̇

) (
λβ

μβ̇

)
(15)

where (εLrε
−1)α̇

β̇
= ((L−1

r
)T )α̇

β̇
= (L−1

r
) α̇
β̇

(see appendix 1). (The reader struggling with

this material should not be overly concerned with the ε and ε−1; we merely have to raise
and lower some spinor indices.) What is important here is that the 4-by-4 matrices in the
subgroup SO(2, 2) are constructed by placing 2-by-2 blocks along the diagonal.

Similarly, W transforms under SL(4, R). Indeed, as indicated by the indices matching
up, the product W . Z = μ̃αλα + λ̃α̇μ

α̇ is invariant under SL(4, R).
Given more than one W and Z, we also have the Lorentz invariants Z1IZ2 ≡< λ1, λ2 >

andW1IW2 ≡ [λ1, λ2]. (Here I , in a slightly abused notation used in the literature, evidently

denotes either the 4-by-4 matrix
(
I 0
0 0

)
or
(

0 0
0 I

)
, depending on whether it acts on W or

Z.) Note that these two quantities Z1IZ2 and W1IW2 are not SL(4, R) invariant.
What is this mysterious group SL(4, R) that contains the “Lorentz” group SL(2, R)⊗

SL(2, R)? I will let you figure it out. Here is a hint: Count the number of generators. The
group SL(4, R) has 42 − 1 = 15 generators, while SL(2, R)⊗ SL(2, R) has 2(22 − 1)= 6
generators. What could the remaining 15 − 6 = 9 generators possibly be? Do think for a
while.
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Power of the ambitwistor

I now show you the power of the ambitwistor. Consider the 4-gluon scattering amplitude
M(1+, 2−, 3+, 4−) to lowest order, the calculation of which using the traditional Feynman
diagram method can be done by hand but still involves about 100 terms. As explained
above, we should use the variable W for particles 1 and 3, and Z for 2 and 4.

Now apply the remarkable result M(tW , +)=M(W , +) and M(tZ , −)=M(Z , −) we
derived following (13) and (14). We have

M
(
tW+

1 , Z−
2 , W+

3 , Z−
4

) =M
(
W+

1 , tZ−
2 , W+

3 , Z−
4

)=M
(
W+

1 , Z−
2 , tW+

3 , Z−
4

)
=M

(
W+

1 , Z−
2 , W+

3 , tZ−
4

)=M
(
W+

1 , Z−
2 , W+

3 , Z−
4

)
Naively, it would appear that M(W+

1 , Z−
2 , W+

3 , Z−
4 ) does not depend on W1, Z2, W3,

and Z4 at all. We are tempted to conclude that, in the ambitwistor representation, this
scattering amplitude is, up to an irrelevant overall constant, just 1! Not so fast, though. It
could also be −1. The sign depends on which kinematic regime we are in. More carefully,
we conclude that

M
(
W+

1 , Z−
2 , W+

3 , Z−
4

)= sign
(
W1 . Z2

)
sign

(
Z2 . W3

)
sign

(
W3 . Z4

)
sign

(
Z4 . W1

)
(16)

As an exercise, you can Fourier transform back to the λ and λ̃ representation.
The result (16) is truly amazing: it tells us that the 4-gluon scattering amplitude, when

written in appropriate variables, is just equal to +1 or −1, depending on the kinematic
regime. The 100 or so terms in the Feynman approach, alluded to above, are struggling
to tell us that they will sum up to ±1 when we translate everything into the language of
twistors.

Interaction among gravitons

I hope that by these examples, I have convinced you plenty that the traditional Feynman
diagram approach is almost hopeless when it comes to gluon scattering. The situation with
gravity is far worse.

Back in chapter IX.5, I mentioned that if we plug gμν = ημν + hμν into the Einstein-
Hilbert action and expand to O(h3), we obtain cubic terms of the form h∂h∂h, with
indices suppressed. Since there are 8 indices contracted every which way, the schematic
form h∂h∂h actually contains many terms. I also explained that the infinite number
of terms of the form h . . . h∂h∂h describe the complicated interaction of many gravi-
tons with one another. In the traditional Feynman approach in quantum field theory,
one Fourier transforms h∂h∂h to momentum space to obtain the interaction amplitude
M(p1, h1, p2, h2, p3, h3) with (pa , ha) the momentum and helicity of the 3 interacting
gravitons. Take my word for it, the whole thing is a horrible mess.

What does the basic cubic vertex for gravity come out to be in the ambitwistor rep-
resentation? Well, the scaling relations (13) and (14) tell us that, for h = ±2, we have
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M(tW , ++)= t2M(W , ++) and M(tZ , −−)= t2M(Z , −−). Thus M(Z−−
1 , Z−−

2 , W++
3 )

must be quadratic in Z1, in Z2, and in W3. The only possibility6 is

M
(
Z−−

1 , Z−−
2 , W++

3

)=
∣∣∣ (Z1 . W3

) (
Z2 . W3

) (
Z1IZ2

) ∣∣∣ (17)

This amplitude describes the basic interaction of gravitons with one another. (If you are
not that impressed, it is because you have never dealt with the mess referred to in the
preceding paragraph.) In other words, this cubic vertex, as expressed in the language of
twistors in (17), embodies the Einstein-Hilbert action, and thus, in some sense, provides
a compact summary of this entire book.

Another extragalactic fable suggests itself. In some other civilization, after the discovery
of special relativity, some mathematically inclined physicist could have written Lorentz
vectors in terms of helicity spinors and then constructed twistors out of them. Another
theorist showed that a massless spin 2 particle generates the inverse square law of gravity.
The cubic vertex for 3 interacting gravitons (17) could then be written down, and then
Fourier transformed back to an expression involving helicity spinors. Expressing this in
terms of momentum and then Fourier transforming to spacetime, some bright young guy
could have discovered Einstein gravity (and then Riemannian geometry while he or she
was at it) via this route!

By the way, did you figure out what the group SL(4, R) is? If you didn’t, you should have
remembered chapter IX.9. Its 9 extra generators not in the Lorentz algebra of SL(2, R)⊗
SL(2, R) describe 4 translations, 4 conformal transformations, and 1 dilation, correspond-
ing to(

0 0

X 0

)
,

(
0 X

0 0

)
, and

(
I 0

0 −I

)
(18)

respectively. (Here X denotes the 4 linearly 2-by-2 matrices, including the identity.)

Where is spacetime?

In our discussion, we approached twistors by a purely utilitarian approach. We express the
physics in terms of ever shinier and better variables, from pμ to pαα̇, to λ and λ̃, and then
to W and Z.∗ In this pedestrian approach, the beautiful geometric essence† of twistors is
completely obscured.

We have been acting mostly like particle physicists, talking about scattering amplitudes
and living happily in momentum space. But where is the spacetime we know and love
hiding in these scattering amplitudes?

∗ In the literature, people have gone one step further to supertwistors W and Z by adjoining Grassmannian
variables. This subject naturally invites the inclusion of supersymmetry, upon which it becomes, perhaps not
surprisingly, even more elegant and compact.

† The geometric origin of twistors has been illuminated by R. Penrose, A. Hodges, and others.
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Well, Emmy Noether gives us a hint. All scattering amplitudes contain the momentum
conservation delta function, but we learned way way back in chapter I.2 that momen-
tum conservation, according to Noether’s theorem, encodes the translation invariance of
spacetime. Hence, one starting point might be to plug the scattering amplitude (9) into the
Fourier transform (11) and watch what happens. Replace the 4-dimensional delta function
δ(4)(p) in (9) by its integral representation7 ∫ d4Xe−ip.X = (2π)4δ(4)(p) to obtain

M(Za)= f (λ)

∫ ∏
a

d2λ̃a e
iμα̇a λ̃aα̇δ(4)

(∑
a

λaαλ̃aα̇

)

= f (λ)(2π)−4
∫ ∏

a

d2λ̃a e
iμα̇a λ̃aα̇

∫
d4X e

−iXαα̇
(∑

a
λaαλ̃aα̇

)

= f (λ)

∫
d4X

∏
a

δ(2)
(
μα̇
a

−Xαα̇λaα

)
(19)

In this context, we could care less8 about the factor f (λ)= 〈12〉4/(〈12〉〈23〉〈34〉〈45〉〈51〉)
from (9), which describes gluon scattering in detail and which the ∼7,000 terms in the
Feynman approach were desperately trying to sum up to. If we want to compare with
experimental data on gluon scattering, we need f (λ), but that’s not what we want to do.
Instead, we want to find spacetime!

What we have learned from (19) is that the two spinors λ and μ, contained in each
of the twistors Za = (λa , μa), are constrained by the equality μα̇

a
=Xαα̇λaα. The variable

X appears as the Fourier dual of the momentum p and so quite plausibly should be
interpreted as a spacetime coordinate.

We have found our beloved spacetime: X is the thing that connects λ and μ.
Let’s give a simpler example to bolster our case. Consider the wave equation ∂2φ = 0.

The solution is given by the integral representation φ(X)= ∫
d4pδ(p2)f (p)eipX, where

f (p) is some smooth function we don’t particularly care about in this context. That
φ(X) satisfies the wave equation is because of the delta function δ(p2): namely ∂2φ(X)=
− ∫

d4pp2δ(p2)f (p)eipX = 0.
The presence of the delta function allows us to express p in terms of λ and λ̃, as in (3),

and to write

φ(X)=
∫
P

d2λd2λ̃f (λ, λ̃)eiXλλ̃ =
∫
P

d2λd2λ̃eiXλλ̃
∫

d2μf̂ (λ, μ)e−iμλ̃

=
∫
P

d2λ

∫
d2μf̂ (λ, μ)

∫
d2λ̃ei(Xλ−μ)λ̃ = (2π)2

∫
P

d2λ

∫
d2μf̂ (λ, μ)δ2(μ−Xλ)

= (2π)2
∫
P

d2λf̂ (λ, Xλ) (20)

(We have to mention a technical detail that doesn’t much matter for the main point we are
trying to make: the subscript P on the integral sign indicates that we are really integrating
over projective space due to the rescaling freedom in (5). Concretely, this simply means
that we can set one of the components in λ to 1 by scaling. This makes sense, since the
integral over p we started with was over 3 real variables due to δ(p2).)
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Z

ZA

ZB

XAB

TS ST
(a)

TS ST
(b)

X

Y

Figure 1 (a) Points in twistor space (TS) represent null
lines in spacetime (ST). (b) A line in twistor space
corresponds to a point in spacetime.

These two examples indicate that, given a twistor Z = (λ, μ), we can define a point or
an event in spacetime by

μα̇ =Xαα̇λα (21)

The geometry of twistor space

Spacetime has appeared, but is the solution to (21) unique? Physicists often neglect to ask
such refined questions, but here it is crucial to bow to the mathematicians. Suppose that
there also exists aY satisfyingμα̇ = Yαα̇λα. Subtracting, we obtain (X− Y )αα̇λα = 0, which
tells us that the 2-by-2 matrix (X − Y ) has a zero eigenvalue, and hence det(X − Y )= 0.
This in turn tells us that the vector (Xμ − Yμ) is lightlike or null. In other words, given a
solution X, any point Y in spacetime null separated from X is also a solution. A point in
twistor space (TS in figure 1) corresponds to a null line in spacetime (ST in figure 1) going
through points X defined by (21). See figure 1a.

Points in twistor space thus represent null lines in spacetime. This fact realizes Penrose’s
vision of a representation in which light rays are somehow more fundamental than
spacetime events. Notice that if we scale the twistor Z = (λ, μ) by any complex number t ,
that is, let Z → tZ, then the solution X of (21) remains unchanged.

At this point, it is also convenient to follow the mathematicians and complexify Z, that
is, think of Z = (λ, μ) as 4 complex, rather than 4 real, numbers. Then the matrix X

will in general not be hermitean, and the corresponding Xμ are complex, describing a
complexified Minkowski spacetime. (Because of the scaling freedom, Z does not actually
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live in the 8-dimensional space C4, but in the 6-dimensional complex projective space
denoted by CP 3.) Note that since a line is characterized by two points that lie on it (call
them X and Y ), we can think of the point-to-line map from twistor space to spacetime as
a 1-to-2 map Z → (X , Y ).

If a point in twistor space corresponds to a null line in spacetime, what does a line
in twistor space correspond to in spacetime? You might want to think about this before
reading on.

Consider the straight line in twistor space going through two points ZA and ZB . The
two points describe two null lines in spacetime. Do they intersect? In other words, do the
two equations μA =XλA and μB =XλB share an X as a common solution?

They do, and the common solution is given by

Xαα̇
AB

= λα
A
μα̇
B

− λα
B
μα̇
A

〈λAλB〉 (22)

which you can verify by direct substitution. (Recall that the “metric” for spinor indices
is antisymmetric.) Actually, this solution is essentially fixed by symmetry and scaling
considerations. For example, from μA = XλA and μB = XλB , we see that if we scale
μA → tμA and μB → tμB , then clearly we have X → tX. On the other hand, under
λA → tλA and λB → tλB , we should have X → t−1X. Also, X should be symmetric under
A↔ B.

Thus, we have a map (ZA, ZB)→XAB . Indeed, take any point ZC = uZA + (1 − u)ZB ,
for u an arbitrary complex number, and you can easily show thatXαα̇

AC
=Xαα̇

AB
. Thus, rather

pleasingly, a line in twistor space corresponds to a point in spacetime. See figure 1b.
To summarize, a point in twistor space corresponds to a null line in spacetime, and a

line in twistor space corresponds to a point in spacetime. Cool, eh?
Incidentally, (22) indicates that two complex null lines in complex Minkowski spacetime

generically intersect. Note that this is not true of two arbitrary null lines in real Minkowski
spacetime.

Now that we have defined points and straight lines joining two points in twistor space,
we can go on to study planes, triangles, polygons, tetrahedrons, polyhedrons, and more
generally, polytopes, in direct analogy to the familiar objects in Euclidean space. In a truly
amazing discovery, Hodges9 realized that the scattering amplitudes we have been talking
about can be interpreted as the volumes of polytopes in momentum-twistor space.∗

Appendix 1: A quick review of matrix algebra

As promised, here I go over some concepts that you may be unfamiliar with. I hate to lose anybody who has
gotten this far.

The hermitean conjugate of a complex matrix M , written as M†, is defined to be the complex conjugate of
its transpose, thus M† = (MT )∗. The matrix M is said to be hermitean if it is equal to its hermitean conjugate:

∗ Explaining what momentum-twistor space is would take us too far beyond the scope of an introductory
textbook on gravity.
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M =M†. Apply this to an arbitrary 2-by-2 complex matrix:(
u v

w z

)
=
(
u w

v z

)∗
=
(
u∗ w∗

v∗ z∗

)
(23)

The matrix is hermitean if u and z are real, and v = w∗. Thus, given four real numbers pμ = (p0, p1, p2, p3),
the matrix in (1) is indeed the most general 2-by-2 hermitean matrix. Define the three Pauli matrices

σ 1 =
(

0 1

1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0

0 −1

)
(24)

These three matrices, together with the 2-by-2 identity matrix I (for convenience, define σ 0 ≡ I ), form a complete
basis in the sense that any 2-by-2 hermitean matrix can be written as (p0I − piσ i)= −pμσμ, with 4 real numbers
pμ = ημνp

ν . Our convention is such that the index on a Pauli matrix can be freely raised and lowered, for example
σ2 = σ 2. The product of two Pauli matrices is given by

σ iσ j = δij + iεijkσ k (25)

which you can verify by direct computation. Here ε123 = +1 denotes the antisymmetric symbol.
Write �σ = (σ 1, σ 2, σ 3), and let �z= (z1, z2, z3) be 3 complex numbers. Verify that (�z . �σ)2 =∑3

i , j=0 z
izjσ iσ j =∑3

i , j=0 z
izj (δij + iεijkσ k)= �z2. Define |�z| = (�z2)

1
2 and ẑ= �z/|�z|. (Note that |�z| defined here is in general a complex

number.) Expand in the usual Taylor series the exponentialL= ei�z.�σ =∑∞
n=0(i�z . �σ)n/n! = cos |�z| + iẑ . �σ sin |�z|,

where we arrived at the last step by separating the sum into two sums, one over even n, the other over odd n.
Using this result, you can check that det L= 1. I suspect that many readers have seen this for �z a real vector.
If you have never seen Pauli matrices before, you might wish to skip this chapter entirely at a first reading and
come back to it later.

Fine. Now let us go back to the transformation (2):p′ =L†pL. As explained in the text, this produces a Lorentz
transformation of pμ into p′μ, provided that det L= 1. Using the representationL= ei�z.�σ , we see that if �z is real,
the transformation is a rotation, while if �z is imaginary, the transformation is a boost. Work this out!

We can also count. The statement det L= 1 imposes 2 real conditions on a matrix with 4 complex numbers,
so thatL is characterized by 8 − 2 = 6 real numbers. In other words, the Lie algebra of SL(2, C) has 6 generators.
On the other hand, we know that the Lorentz transformations consist of 3 rotations and 3 boosts. Indeed, the
discussion just given already indicates what the precise correspondence is.

In the text, we raise spinor indices with the antisymmetric symbol∗ εαβ according to μα = εαβμβ . We wish to
lower spinor indices with εαβ according toμγ = εγαμ

α. This requires εγαεαβ = δβ
γ

and thus ε12ε
21 = 1 = −ε12ε

12.
Thus, we have to define ε12 and ε12 with opposite signs, which leads to all kinds of pesky signs when dealing
with spinors. I would advise you not to worry too much about signs when reading this chapter.10 Typically, in
this subject in particular, and in theoretical physics in general, the relative signs matter, but not the overall signs
(unless you are building a bridge or something like that).

A useful identity is σ2σ
T
i
σ2 = −σi , which you can verify by evaluating this expression for the three different

values of i. In parallel with σμ = (I , �σ), define σ̄ μ = (I , −�σ), then tr σμσ̄ ν = −2ημν . Using this identity, we can
show that the scalar product of two vectors p and q is given by

−2p . q = εαβεα̇β̇pαα̇qββ̇ = −pαα̇εα̇β̇qTβ̇βεβα = tr(pσ2q
T σ2)= pμqν tr(σμσ̄ ν) (26)

For q = p, we see, upon recognizing the definition of the determinant, that this reduces to p . p = εαβεα̇β̇pαα̇pββ̇
= det p.

Appendix 2: Inversion

In chapter IX.9, we discussed the inversion of spacetime. Perhaps it would not surprise you that inversion comes
out quite elegantly in the language of twistors. From (19), we learned that the spacetime coordinates X are

∗ Do not confuse the two different antisymmetric symbols εijk and εαβ ! The former carries vector indices
i , j , k = 1, 2, 3, while the latter carries spinor indices α , β = 1, 2.



744 | X. Gravity Past, Present, and Future

determined by the relation (with the irrelevant index a suppressed)

μα̇ =Xαα̇λ
α (27)

It follows∗ that Xβα̇μα̇ =Xβα̇Xαα̇λ
α =X2λβ . We obtain

λβ = Xβα̇

X2
μα̇ (28)

Thus, inversion corresponds to the interchange λ↔ μ.

Exercises

1 For two lightlike vectors p and q, write pαα̇ = λαλ̃α̇ and qαα̇ = μαμ̃α̇. Calculate the Lorentz scalar product
p . q in terms of λ, μ, λ̃, and μ̃.

2 Fourier transforming (16), show that the 4-gluon scattering is

M(1+ , 2− , 3+ , 4−)= 〈24〉4

〈12〉〈23〉〈34〉〈41〉
to lowest order. Comparing with (9), do you see a pattern?

3 Fourier transform the cubic vertex for gravity (17) to show that

M
(
1−− , 2−− , 3++)=

( 〈12〉4

〈12〉〈23〉〈31〉
)2

(29)

Notes

1. See, for example, http://online.kitp.ucsb.edu/online/qcdscat11/. For a pedagogical introduction, see chap-
ters N.2–4 in QFT Nut.

2. Names are not so important; I give them just so that you can chat at a cocktail party.
3. See, for example, QFT Nut, chapter III.8.
4. It is derived using a recursion technique explained in, for example, QFT Nut, chapters N.2 and N.3.
5. Or vice versa, as you like.
6. The need for the absolute value involves an argument that we cannot go into here. Here is a cryptic explanation

almost designed to add to your puzzlement: starting with the representation δ(x)= (2π)−1 ∫ dpeipx , we can
write formally sign(x)= 2(2π)−1 ∫ dpeipxp−1 and |x| = 2(2π)−1 ∫ dpeipxp−2, facts that you can verify by
differentiating these two integrals with respect to x. The statement is that the second integral in this sequence
appears in Yang-Mills theory, while the third appears in Einstein gravity. I refer you to N. Arkani-Hamed,
F. Cachazo, C. Cheung, and J. Kaplan, arXiv:0903.2110v2, for more details.

7. As explained in endnote 4 in chapter X.2, we have δ(x) = 1
2π

∫∞
−∞ dke−ikx = limK→∞ 1

2π

∫ K
−K dke−ikx =

limK→∞ 1
2π

∫ K
−K dk cos(kx)= limK→∞ sin(Kx)/(πx). The representation used in the text is the 4-dimen-

sional generalization of this representation: δ(4)(x) = δ(t)δ(x)δ(y)δ(z) = ∫
d4k
(2π)4 e

−ikx with kx = ημνk
μxν

and a slight abuse of notation (making x represent more than one thing).
8. And even less about the (2π)4.
9. A. Hodges, arXiv:0905.1473; N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Hodges, and J. Trnka, arXiv:

1012.6030.
10. Readers worried about signs are referred to appendix E in QFT Nut, second edition, in which the signs are

allegedly correct. It contains additional material related to the discussion in this appendix.

∗ Remember to raise and lower spinor indices with the antisymmetric symbol! (Here it is X2 = ημνX
μXν

as usual.)



X.7 The Cosmological Constant Paradox

The graviton knows about everything

Gravity knows about everything, whatever its origin, luminous or dark, even the energy
contained in fluctuating quantum fields.

This omniscience of gravity lies at the root of the gravest, or if you prefer, one of
the gravest, puzzles of theoretical physics, namely the cosmological constant paradox.1

According to quantum field theory, spacetime is a boiling sea of quantum fluctuations,
and according to Einstein, gravity should know all about this.

Allegedly, quantum field theorists can reliably estimate the energy density of this boiling
sea, but somehow the theoretical value they are led to disagrees enormously with observa-
tion, and by enormously, we are not talking about a mere few orders of magnitude. In this
chapter, we discuss how this dismal and embarrassing situation for theoretical physics
comes about.

The vacuum as a boiling sea of quantum fluctuations

In chapter VI.2, I already mentioned quantum fluctuations contributing to the cosmolog-
ical constant. Another way of expressing this is that in quantum field theory, good old
Minkowskian spacetime is unstable. It gets driven to de Sitter spacetime.

A full understanding of quantum fluctuations requires some acquaintance with quan-
tum field theory, but you can readily grasp the origin of the cosmological constant paradox
with a rudimentary knowledge of quantum mechanics. Consider the harmonic oscillator.
Classically, a mass attached to a spring attains its lowest energy, namely 0 by definition,
when it sits quietly at the bottom of the potential well. In quantum mechanics, however,
due to the Heisenberg uncertainty principle, there is constant and unavoidable fluctua-
tion in the particle’s position, and the lowest energy the particle can attain is not 0 but
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1
2�ω, where ω denotes the (circular) frequency of the oscillator.2 This irreducible amount
of energy is known as the zero point energy.

You probably know that the electromagnetic field can be treated as a superposition of
waves known as modes, each with some wave vector �k (defined by the inverse of the wave-
length λ times 2π ) and vibrating with frequency ω(�k) = c|�k|. (Recall also chapters II.3
and IX.4.) Each of these modes corresponds to a harmonic oscillator.∗ When the electro-
magnetic field is quantized, each mode contributes 1

2�ω(�k) to the zero point energy. This
represents the minimum amount of energy in any given mode, present even when the
electromagnetic field is not excited, in the same way that 1

2�ω represents the energy of
the harmonic oscillator even when it is not excited. In other words, in quantum electro-
dynamics, the electromagnetic field contributes an energy to spacetime even when there
is no electromagnetic field present! This energy verily deserves the name vacuum energy.

To determine the total vacuum energy, we simply sum over all modes, one for each
value of �k: thus, Evacuum ∼∑

�k �ω(�k)∼∑
�k |�k| in natural units. (To do the sum, we follow

a standard procedure in quantum mechanics: put the system in a box of volume V and
impose periodic boundary conditions on the electromagnetic wave. Then �k becomes a
discrete, rather than continuous, variable, so that the sum makes sense. In the limit
V → ∞, the sum

∑
�k tends to the integral† V

∫
d3k.)

The end result3 is that quantum fluctuations of a field contribute to the vacuum energy
per unit volume by an amount � ∼ (V

∫
d3k ω(�k))/V ∼ ∫Mc dk k2k ∼ M4

c . Here Mc

(traditionally known as a cutoff 4 in quantum field theory) expresses our threshold of
ignorance. We are saying that we understand5 the electromagnetic field up to an energy or
momentum scaleMc, corresponding to some maximum value of k, beyond which we dare
not go, so that we integrate only up to Mc. Thus, M4

c represents a conservative estimate.
In summary, each quantum field‡ contributesM4

c to the vacuum energy density, possibly
with different values of Mc for different fields.

A humongous discrepancy between expectation and observation

We do not know precisely the mass scale Mc at which our current understanding of
quantum field theory starts to break down. Traditionally, people take for Mc the Planck
mass MP ∼ 1019 GeV, at which quantum gravity kicks in (see the following chapter). But
this gives a vacuum energy density of M4

P =MP/l
3
P, and we don’t have to bother to put in

any numbers to see that this is way way off.
Indeed, go ahead, take your best guess of what Mc might be. If you are inclined to be

conservative, you might think that MP, all the way up in the clouds, is way too high. OK,
how about ∼1 GeV, about equal to the proton mass? Or perhaps ∼ 1

2 MeV, close to the

∗ As was mentioned in appendix 2 of chapter VII.3. In chapter VI.4, we also alluded to the fact that the
electromagnetic field may be regarded as an infinite number of harmonic oscillators.

† Note that this is dimensionally correct, since �k has dimensions of inverse length.
‡ Another way of expressing the difficulty is to say that a quantum field, such as the electromagnetic field,

contains a very large number of oscillators, one for each �k, or equivalently, one at each point in space.
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electron mass me? Surely, the basic principles that go into quantum field theory have been
verified experimentally up to that kind of energy scale. You then predict a vacuum energy
density of m4

e
=me/(1/me)

3.
You don’t even have to bother looking up the observational data. Just look around you.

Even with Mc as low as ∼me, you are still way way off. Do you see the vacuum filled with
onemec

2 worth of energy in a volume the size of the Compton wavelength of the electron?
By any measure, this is the Mother of all Discrepancies between what the theorists think

and what the experimentalists observe. Our theoretical expectation is not the result of some
crummy calculations based on somebody’s pennyworth model. In fact, forget field theory,
all we need is good old dimensional analysis. In natural units, energy density has dimen-
sion of mass to the fourth power. The only natural mass associated with gravity is the Planck
mass, but whatever smaller mass we put in, even me, we still get an unacceptably large
energy density. This nasty discrepancy is known as the cosmological constant paradox.

Rightly or wrongly, I presumed in chapter VI.2 that the observed dark energy is the
fabled cosmological constant. The evidence seems increasingly to favor this simplest
of hypotheses. Even if this were not the case, the paradox still remains. Why is the
contribution of quantum fields to the vacuum energy so small?

Instead of giving you the observational value of the dark energy density� in some units
such as pounds per parsec cubed, I find it more convenient to define the mass scale M�

according to � ≡ M�
4. Observationally, the mass scale associated with the dark energy

density comes out to be M� ∼ 10−3 eV. Expressing the observational data in this way
shows clearly how humongous the discrepancy is. Even if we take Mc to be as small as the
electron mass, the ratio between theoretical expectations and experimental reality would
be ∼( 1

2106/10−3)4 ∼ 1035.
Another way of expressing the cosmological constant paradox is thatM� is much smaller

than anything that is considered reasonable in particle physics. The observation of dark
energy appears to suggest that there is a hitherto unknown mass scale of ∼10−3 eV in
physics. Here is a curious fact. In the late 1990s (strangely, around the same time dark
energy was discovered), neutrinos, which up until that time were thought to be massless,
were experimentally found to oscillate, which implies, according to standard particle
theory, that they are massive. Since there are 3 kinds of neutrinos, their masses, which
have not yet been completely nailed down experimentally, can span quite a range. But they
appear to have generic values, very roughly, of order 10−3 eV. Is this pure coincidence?6

In any case, there might be some physics we have yet to understand at a mass scale of
∼10−3 eV.

The largest and the smallest masses

I also find it convenient to express M� by repackaging a remark from appendix 1 of
chapter X.3. Define MU ≡ 1/Luniverse, with Luniverse the size of the universe, say the
Hubble radius, as some sort of Compton mass of the universe. Then (X.3.7) becomes
M� ∼√

MPMU. WithMP ∼ 1019 GeV andMU ∼ 2 × 10−33 eV, we findM� ∼ 4 × 10−3 eV,
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which is of course just the statement that the dark energy almost singlehandedly closes the
universe. Well, MP is the largest mass considered in fundamental physics, and surely, MU

is the smallest, and so interestingly, M� is the geometric mean between the largest and
the smallest, as already remarked on in chapter X.3 but in terms of length scales. (By the
way, between us friends, when I say “largest” and “smallest,” you know what I am talking
about. To the nitpickers: yes, I know about ∞ and 0.)

I define� as an energy density by writing the Einstein-Hilbert action as
∫
d4x

√−g(�+
1
G
R). Trivially, we can also regard it as a sort of curvature by writing the action as∫
d4x

√−g 1
G
(λ + R). Then λ is given by the inverse square of some length, call it Lλ.

Again, observationally, we know that the two terms in the action have comparable weight,
and hence the length scale associated with the cosmological constant is on the order
of the size of the universe. In other words, the radius of curvature associated with the
cosmological constant is given by Lλ =MP/M

2
�

∼ 1/MU ∼ Luniverse.
For the record, let us also restore the 3 fundamental constants. Then we have � ∼

c5M4
�
/� = (M�c

2)/(�/M�c)
3 and the curvature of the universe L−2

universe ∼Gc5M4
�
/�. We

note in passing that although all three fundamental constants appear here, it is not clear, in
spite of the cube of physics mentioned in the introduction to this book, whether quantum
gravity is essential in unraveling the cosmological constant paradox. At least naively, gravity
appears to be merely acting as a probe. (Recall that analogous remarks were made in
connection with Hawking radiation in chapter VII.3.) We would of course prefer to think
that the cosmological constant paradox and Hawking radiation will eventually prove to be
indispensable keys for unlocking the mystery of quantum gravity.

Dead as a door nail

The cosmological constant paradox has been with us for a long time. To the best of my
knowledge, Pauli was the first to worry about the gravitational effect of the zero point energy
filling space. He used forMc the inverse of the classical radius of the electron and concluded
that the resulting universe could not even reach to the moon!∗ Many of the greats of
quantum physics were also skeptical of the zero point energy. At the 1913 Solvay Congress,
Einstein declared that he did not believe in the zero point energy, writing to Ehrenfest that
the concept was dead as a door nail. However, the experiment γ +H2 →H +H convinced
Pauli and others. For energy to be conserved, 1

2�ω has to be included in the energy of the
H2 nucleus.

At present, one could hardly doubt the reality of the zero point energy. Theoretically,
it comes directly from the Heisenberg uncertainty principle. Experimentally, the liquidity
of helium at zero temperature provides direct evidence, according to standard textbooks.
People also often cite the Casimir effect,7 namely the force between two conducting plates
generated by quantum fluctuations, as showing that the vacuum energy is perfectly real.

∗ Surely, for Pauli, the zero point energy 1
2 �ω was in the category of beautifully and intriguingly wrong, way

beyond the infamous category of “not even wrong.”
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One word of caution, however. Experiments on the Casimir effect measure the force, that
is, the variation of the vacuum energy contained between the two plates as we vary the
separation between them.8

With the passage of time, people found better things to worry about, and the issue was
forgotten until Y. B. Zel’dovich raised it again in the late 1960s. I would say that general
awareness that a paradox was indeed lurking did not occur till the 1970s, particularly in
the West. (One reason was that particle theorists in the United States by and large did not
worry9 about gravity and cosmology until the publication of Weinberg’s influential books.)
Until the observation of dark energy in the late 1990s, there was only an upper bound to the
vacuum energy density. Since in natural units, this upper bound is on the order∗ of 10−123

in natural units, particle theorists generally declared that, for some unknown reason, the
cosmological constant is mathematically zero. (An ultimate example of proof by authority!)
For decades, many pinned their hopes first on supersymmetry, then on supergravity, and
finally on superstrings. Unfortunately, nobody was able to produce a compelling argument
for �= 0.

The cosmological constant paradox may thus be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼10123. This is
so huge that it was decreed to be zero identically, while the measured value (here the
presumption that the dark energy is the cosmological constant comes in) turned out to
be ∼1.

Incidentally, while�was decreed to be identically zero by particle theorists, it was never
banished by observational cosmologists, who needed it to reconcile various discrepancies
in the data (for example, a universe younger than the earth due to an erroneous value
of the Hubble constant in the 1930s and the clustering of the redshift data of quasars in
the 1960s). This contrarian, but data based, point of view was particularly championed by
P. J. E. Peebles.

Naturalness

In discussing the cosmological constant paradox, I should mention briefly the naturalness
dogma or doctrine in high energy theory, as was alluded to in passing in chapter X.3. It is
sometimes said jokingly that there are only two dimensionless numbers in fundamental
physics: 1 and 0 (∞ being of course the inverse of 0). Again, between friends, the symbol
1 is understood to encompass numbers like 2π . In other words, if you choose units
appropriately, physical quantities should have the magnitude you would reasonably expect.
If a dimensionless number is exceptionally small, you should have an explanation for it.
(One of my favorite examples is the ratio of the speed of sound in metals to the speed
of light cs/c. Solid state theory explains why this number is small: it is composed of the
electromagnetic coupling α ∼ 1/137 and the ratio of the electron mass to the proton mass
me/mp ∼ 10−3. See also appendix 3.) Indeed, this naturalness doctrine is what makes the

∗ Since the discrepancy is so large, it hardly matters what nominal number I put here.
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art of dimensional analysis possible. Stated thus, the naturalness doctrine sounds rather
plausible, and, duh, perhaps even natural.

In high energy theory, the naturalness doctrine was sharpened and forcefully articulated
by ’t Hooft. The statement is that if a dimensionless number ε is unexpectedly small, then
a new symmetry ought to emerge when ε = 0. (An example is the electron mass: ifme = 0,
then a continuous chiral symmetry appears.) In the case of the cosmological constant, the
natural candidate symmetry is scale invariance. Unfortunately, scale invariance excludes
not only the cosmological constant, but also the Einstein-Hilbert action by the very fact that
MP sets a mass scale. Furthermore, quarks and leptons are not massless (but acquire mass
through the Higgs field). Incidentally, this is intimately connected with the remark in chap-
ter X.3 about terms with mass dimensions less than 4. Over the decades, theorists have
searched in vain, as I said, for a symmetry principle that would guarantee �= 0. The dis-
covery that � is small but not zero complicates the situation further, as mentioned earlier.

The extreme ultra infrared

Particle physicists, who also call themselves high energy physicists, readily profess igno-
rance about physics at high energies and short distances, namely the ultraviolet regime,
and so ask for ever more energetic accelerators. But they generally claim that they un-
derstand physics at low energies and long distances, namely the infrared regime, at least
in principle and in broad outline. The cosmological constant paradox indicates that there
may be a serious flaw in this view. Truth be told, we know almost nothing about physics
in what we may call the extreme ultra infrared, namely physics on cosmological distance
scales. One plausible approach to the cosmological constant paradox is that somehow in
the extreme ultra infrared, which we may define as corresponding to distances beyond the
galactic scale, gravity responds to vacuum energy differently.

The most naive approach is to soften the contribution of the vacuum energy to the right
hand side of Einstein’s equationRμν − 1

2g
μνR = 8πGT μν by acting with some differential

operator f (L2D2) on T μν, where D denotes the covariant derivative and L some cosmo-
logical length scale. The right hand side is effectively multiplied by f

(
L2/L2

phenomenon

)
,

where Lphenomenon denotes the length scale of the phenomenon under study. The strategy
is then to require f to have the properties f (∼∞) = 1 (to retain the success of the so-
lar system tests and so forth, for Lphenomenon � L) and f (∼0)= 0 (to switch off gravity’s
awareness of the vacuum energy, for Lphenomenon � L).

Needless to say, the various proposals that have been discussed in the literature are all
rather ad hoc, arbitrary, and unattractive to varying degrees, particularly given the elegant
structure of Einstein gravity. A differential operator of the form f (L2D2) would almost
invariably imply that the resulting equation is highly nonlocal. Furthermore, equations
of this type tend not to be derivable from any reasonable action principle and are to be
regarded as phenomenological rather than fundamental.

Another approach is to add nonlocal terms directly to the action. We already briefly
discussed one such proposal for nonlocal cosmology in chapter X.3. If the goal is to merely
fit observation, then we can certainly craft an action that would do the job.
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The discussion of effective field theory in chapter X.3 also makes clear the need for
nonlocal terms. Local terms with mass dimensions higher than the Einstein-Hilbert term
are important only at short spacetime distances. As for local terms with mass dimensions
lower than the Einstein-Hilbert term, there is only the cosmological constant term. If we
insist on locality, then to have any cosmological impact, we are squeezed, so to speak,
between the Einstein-Hilbert term and the cosmological constant term.

Another possibility is to violate some cherished principles, such as Lorentz invariance.
We should keep an open mind, as we are dealing with almost unfathomably large distances
in space and time here. In the appendices, we mention this and other possibilities.

The coincidence problem and inflation

The cosmological constant paradox is made even more mysterious by the cosmic coinci-
dence problem. As explained in chapters VIII.1 and VIII.2, the energy density ρ in matter
varies with the scale factor a of the expanding universe like 1/a3, while the energy density
in the cosmological constant varies like 1/a0. It is remarkable that they are comparable
now. Why now?

Inflation adds to the mystery. As explained in chapter VIII.4, inflation is essentially
driven by a vacuum energy, which amounts to an effective cosmological constant. How
is it that after the universe exits from inflation, the vacuum energy manages, not to turn
itself off, but to shrink to an infinitesimal shadow of its former self? Theorists speaking
of both inflation and of the cosmological constant may be exhibiting a severe case of the
“wanting the cake and eating it too” syndrome.

The only plausible “explanation” is the anthropic principle, or if you prefer, “anthropic
lack of principle,” as some physicists call it. The anthropic principle states that physics
must be consistent with the existence of physicists (which you can define in whatever way
you like).

A strong version states that there are certain physical phenomena that physicists will
not be able to explain using (what most physicists would agree as) the traditional approach
of physics. The bold claim is that the cosmological constant paradox is one of them. Of
course, one could legalistically take apart every word in the statement of the principle just
given. For instance, what do you mean by “will not”? Is the implied time scale forever and
forever, or is it merely until the advocate of the strong anthropic principle ceases to exist? A
priori, how do we know which phenomena fall into the category of inexplicable by physics
as we know it?

A weak version of the anthropic principle states that the goal of physics is to correlate
observed phenomena (such as cannonballs falling from the Tower of Pisa and the preces-
sion of the perihelion of Mercury) and that to the list of observed phenomena, we should
add the existence of humans. Certainly, most people would not object to this version. For
instance, we could use it to calculate the distance of our planet from its sun, given various
inputs about the properties of the sun, the temperature range in which biochemical pro-
cesses can operate, and so on. The calculation yields only an upper and a lower bound on
the distance, but it is a calculation nonetheless.
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I will discuss the anthropic principle further in appendix 9, but for now, I mention that,
in some sense, the smallness of � was predicted by Weinberg using a very weak version
of the anthropic principle. This very weak version of the anthropic principle should be
acceptable to most theoretical physicists (certainly to me, for what it’s worth!): it merely
correlates two observations, namely that galaxies formed and � is very small. If � were
larger than a certain critical value, which turns out to be not much larger than the observed
value, galaxies would not have formed. You are then free to extend Weinberg’s reasoning
to say that had galaxies not formed, then humans would not exist.

Linkage between the infrared and the ultraviolet

Quantum field theorists speak of ultraviolet (that is, high energy) physics versus infrared
(that is, low energy) physics. Typically, in calculating a Feynman diagram, one encounters
an integral of the form

∫
d4kf (k), and if the dominant contribution comes from the large

k (that is, high momentum or high frequency) region, we say that the relevant physics is
ultraviolet, or UV for short. Contrariwise, if the dominant contribution comes from the
small k (low momentum or low frequency) region, we say that the relevant physics is in-
frared, or IR for short. The quantum field theoretic prediction we had for the cosmological
constant, � ∼ ∫

d4k ∼ ∫Mc dkk3 ∼ M4
c , is manifestly a UV effect: the dominant region

comes from the region k ∼Mc, from quantum fluctuations with momentum comparable
to the cutoff. (Although we obtain our prediction using a handwaving argument about os-
cillators, a calculation using Feynman diagrams gives essentially the same result, which,
after all, is basically fixed by dimensional analysis.) If we follow tradition and take Mc to
be MP, the physics underlying the cosmological constant is about as UV as it can be.

One fundamental feature of quantum field theory is that the physics at different energy
scales naturally segregate themselves,10 speaking very roughly. The general belief is that
if we are studying the UV, we don’t have to worry about the IR. And vice versa: if we are
studying the IR, we don’t have to worry about the UV.

The cosmological constant paradox appears to be the first exception to this general
picture. Although the cosmological constant is generated by UV physics, it controls the
expansion of the universe, which is definitely an IR phenomenon, indeed, what we called
the extreme ultra infrared regime.

What is vacuum energy?

I prefer to banish speculations to the appendices. (My list of speculations on the cosmo-
logical constant paradox is far from complete and heavily biased toward what I know. The
appendices are meant to give you a flavor of the sort of things that have been considered.)
Instead, I end this chapter with a few general remarks. We think that we know how to
calculate the vacuum energy using quantum field theory, following established rules. The
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cosmological constant paradox, however, indicates that we will ultimately have to face up
to the question, “What is vacuum energy?”

The question reminds me of an earlier question: “What is heat?” (Or perhaps also, “What
is the ether?”) Everybody but physicists knew what heat was, but it proved to be extremely
elusive to define. It was not a substance or a fluid (the caloric), as was once thought. The true
answer had to wait until the nature of matter was understood. As you and I know, physics
progresses through asking first the what, then the how, and finally the why questions,
for example, “What is matter made of?” “How do these atoms behave?” “Why are there
atoms?” Now we know the answers to all three questions, but the why question had to wait
until the advent of baryogenesis and leptogenesis (as was discussed in chapter VIII.3), and
skeptics certainly still abound. At the least, we don’t know the detailed answer.

It would be a bit disappointing if dark energy or the cosmological constant proves
to be merely due to some mundane mechanism, such as the presence of dime-a-dozen
scalar fields (see chapter VIII.4), which ultimately have to be fine-tuned. I think that most
theoretical physicists would hope that the cosmological constant paradox, like the great
paradoxes of the late 19th century, will lead us to a deeper understanding of physics.

The universe says to the quantum field theorist, “I am doing just fine, thank you, but
something is wrong with your understanding of the vacuum energy, or your understanding
of how the gravitational field responds to the vacuum energy.”

A distinguished colleague said to me recently, “The cosmological constant paradox is
more than a paradox; it’s a profound public humiliation of theoretical physicists.”

Appendix 1: Scaling at cosmological distances

The history of physics is full of examples of reasoning by analogy that turn out to be fruitful. As explained in the
text, the cosmological constant paradox can be summarized as follows:

expected value enormous

decreed value mathematically 0

observed value tiny but not 0

(1)

Have we ever encountered something similar? I proposed long ago that the story of proton decay may provide
such an analogy.11

I will not go into the particle physics behind proton decay here. Suffice it to say that, at one time, the expected
value of the proton decay rate was enormous, then it was decreed to be mathematically 0, while the observed
value∗ turns out to be extremely tiny but nonzero. The important question is how theorists managed to reduce
the enormous expected value down to the extremely tiny observed value.

∗ I am fudging slightly here: at the moment, we only have an upper bound for the observed value. Experi-
mentalists have yet to observe proton decay, but that unfortunate fact might merely be due to the fact that the
detectors constructed thus far are too small. As I explained in chapter VIII.3, theorists have compelling reason
to believe that the proton does decay, so we can easily imagine that experimentalists in some other civilization
were not as unlucky and had observed proton decay soon after grand unified theory was proposed. In any case,
the particular details of how particle physics evolved in our civilization do not concern us here.
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The secret is scaling (as embodied in the renormalization group ideas in quantum field theory developed by
M. Gell-Mann and F. Low, K. Wilson, and others). As was explained in chapter VIII.3, the physics responsible for
proton decay originates at some grand unified distance scale, while the actual decay occurs on a distance scale
on the order of the proton size. In going from one distance scale to the other, we traverse more than 16 orders
of magnitude, which suffices to reduce the expected value enormously to the appropriate level.

Might we try the same trick12 and scale13 the cosmological constant term to make it less relevant at large
distances compared with the Einstein-Hilbert curvature term?

In one particular scheme, we have to require Einstein gravity to start to deviate from Lorentz invariance
beyond a length scale LIR ∼ 1–103 kpc, on the order of the galactic or cluster scale. It is then possible to scale
the cosmological constant by a factor ∼( LIR

LEuIR
)z−1 ∼ (104–107)z−1, where we take the extreme ultra infrared

length scale LEuIR ∼ 104 Mpc to be the size of the visible universe. Here z measures the deviation from Lorentz
invariance and corresponds to what is called the dynamical exponent in condensed matter physics.14 To screen
the cosmological constant to the desired value, we need z∼ 20–30, which is at least not outrageously large.

There are many serious difficulties with this picture; the interested reader is referred to the literature for
details.15 For one thing, the resulting action is nonlocal in time at cosmological distances. Perhaps an optimist
would think that this could provide a hint about the nature of time. For another, while we may be able to scale
the vacuum energy away at cosmological distances, the vacuum energy can still make its effects felt over smaller
regions. As one possible speculation, we can imagine each local region of the universe trying to expand and
pressing against other regions in “rebellious symphony,” perhaps something like a cluster of soap bubbles.

Einstein curved spacetime. Here we are suggesting that the logical next step might be to endow spacetime
with some “substance,” such as would be the case in some kind of foamy picture of emergent spacetime.

Appendix 2: The universe is secretly acausal, but only the universe
knows about it

Arkani-Hamed et al.16 have proposed modifying Einstein’s equation to

M2
P

(
Rμν − 1

2gμνR
)

− 1
4 M̄

2gμνR̄ = Tμν (2)

where R̄ denotes the spacetime averaged scalar curvature R̄ ≡ ∫
d4x

√−gR/∫ d4x
√−g. This equation is man-

ifestly nonlocal and acausal: physics now depends not only on what happened in the past but also on what will
happen in the far future. But by construction, the modification to Einstein’s equation takes effect only if the future
is de Sitter with constant scalar curvature determined by the cosmological constant R̄ = −4�/(M2

P + M̄2). To ac-
count for observation, the new mass scale M̄ has to be huge, taking values ranging from ∼1048 GeV to ∼1080 GeV,
depending on the assumed value of the cosmological constant one wishes to “neutralize.” Unhappily, another
enormous mass scale has to be introduced into physics.

In this approach, the modification is clearly designed not to matter for any situation other than cosmological.
For the solar system, for example, R̄ would come out to be practically zero. The universe is secretly acausal but
only the universe knows about it! I must say that in recent years, theoretical physicists have become increasingly
adept at hiding new physics from experimentalists.

Arkani-Hamed et al. argue that any mechanism to neutralize the cosmological constant must be acausal:
when a vacuum energy density turns on, the alleged mechanism must wait for a cosmological time period to
find out whether the energy density is indeed a cosmological constant. I am very much troubled by the thought
that physics may be ultimately nonlocal, even if it is only on the cosmological scale.

Appendix 3: Possibility of an algebraic solution

Another possibly relevant historical analogy involves the inverse light speed ζ ≡ c−1. Consider the expected value
of ζ , before it was measured, say, in some civilization in a galaxy far far away. The expected value is enormous
in natural units, if propagation in the ether is assumed to be similar to sound waves in ordinary materials, let
alone ocean waves. By the naturalness dogma, we might have expected ζ to be comparable to ζsound. Just as in the
cosmological constant paradox, we can see that this is way off merely by looking around us. Evidently, ζ � ζsound.
Given this, physicists would have been tempted to decree (proof by authority) that ζ is mathematically 0. But
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eventually, it was observed by the extragalactic version of Ole Rømer17 that the observed value turned out to be
tiny but not 0 (as both Galileo and Newton had thought). In this case, the naturalness dogma would have been
off by a measly 6 orders of magnitude or so.

How was this ζ paradox resolved? It was resolved by making c part of the kinematics. We went from the
Galilean to the Lorentz group, and c became a conversion factor between space and time. The unification of
space and time into spacetime allows us to chose units in which c = 1, a value protected by Lorentz invariance.
In other words, it does not get renormalized! (In contrast, in nonrelativistic theories, c would get renormalized.)
Quantum fluctuations do not affect ζ ≡ c−1, thanks to its being part of an algebra.

Does this analogy tell us anything? To solve the ζ paradox, we had to go from the Galilean group to the
Lorentz group. Perhaps we need to go one step further and extend the Lorentz group to the de Sitter group! The
cosmological constant �, like c before it, would then become a fundamental constant of nature. Just as c is a
fixed constant in the Lorentz algebra, � then becomes a fixed constant in the de Sitter algebra. In this sense, the
question of why the cosmological constant is so small compared to what the naturalness dogma would lead us
to expect might eventually turn out to be the wrong question to ask, or at least the wrong way of phrasing the
question.

Another analogy might be illuminating. Imagine a civilization on a very large planet, much larger than
our own. Physicists in this civilization could have developed physics to a high level of sophistication without
realizing that their world was actually round. The symmetry group of physics was found to be the Euclidean
group, consisting of two translations and a rotation about the vertical axis, generated by Px = ∂x , Py = ∂y ,
and J = x∂y − y∂x . But technology kept advancing, and with the development of powerful binoculars, a new
phenomenon was discovered: ships going out to sea did not simply become smaller and smaller, but vanished
over the horizon. The rate was eventually measured to be tiny but definitely not zero, as leading theorists had
decreed. But all the efforts theorists put in trying to calculate this rate from known physics was in vain.

Later (who knows how much later), it was realized that the invariance group of physics was not the Euclidean
group, but the rotation group SO(3), generated by Jx = y∂z − z∂y , Jy = z∂x − x∂z, and Jz = x∂y − y∂x . The
Euclidean group, previously held to be “sacred,” turned out to be generated by Px � (z∂x − x∂z)/R, Py �
−(y∂z − z∂y)/R, and J = Jz = x∂y − y∂x in the limit z � R � ∞, where the very large length R was revealed
to be the radius of the planet. Furthermore, R was not renormalized by quantum fluctuations.

If this analogy contains some elements of truth, then it also suggests, like the previous analogy, that the
cosmological constant should be built into the invariance group of physics. It is then perfectly understandable
that our continuing struggle to calculate the cosmological constant would fail. I have in mind a formulation of
gravity based on the de Sitter group, not the study of Einstein gravity in a de Sitter spacetime, much as Einstein
gravity is a formulation of gravity based on the Lorentz group, not the study of Newtonian gravity in some
Minkowskian setting.

Appendix 4: Unimodular gravity

In chapter VI.2, I mentioned that we can always sneak an additive constant into the Lagrangian, but only when
gravity is not around. Since gravity knows about this additive constant through

√−g, perhaps we can solve
the cosmological constant paradox by nailing g down, not allowing it to vary. The result is known as unimodular
gravity.18 The ugly part of the proposal is that we are then no longer allowed to make any coordinate transformation
x → x′(x) that we please, but only those that preserve g.

Fixing g to be equal to −1would seem to render the cosmological constant term impotent and hence irrelevant.
But in fact, it comes back!

To obtain Einstein’s field equation, we varied the action in chapter VI.5 and used the identity δ
∫
d4x

√−gR =
− ∫

d4x
√−g(Rμν − 1

2g
μνR)δgμν . Now we are told that we cannot vary arbitrarily, but consider only those

variations δgμν that do not change the determinant and hence satisfy the constraint δg = 0, which (with the
use of an identity derived back in chapter V.6) works out to be gμνδgμν = 0; in other words, δgμν is traceless.
Let us split the Einstein tensor Rμν − 1

2g
μνR into a traceless part and a traceful part: (Rμν − 1

4 g
μνR)− 1

4 g
μνR.

When multiplied by δgμν in the variation of the action, the traceful part drops out. Thus, we only get the traceless
part of Einstein’s equation

Rμν − 1
4 gμνR = Tμν − 1

4 gμνT (3)

To see that the cosmological constant comes back, write the − 1
4 on the left hand side of (3) as − 1

2 + 1
4 and

covariantly differentiate. Using the fact that the covariant derivative of the Einstein tensor and of the energy
momentum tensor both vanish, we obtain ∂μR = −∂μT , which can be solved to give R = −T + C. Insert this
back into (3) and watch the integration constant C reappear as the cosmological constant.
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Thus, unimodular gravity does not solve the problem but makes some people “feel more comfortable,” because
in theoretical physics, we have the license, supposedly, to set integration constants to whatever we want.

Instead of nailing g down, we might consider a softer constraint by including in the action a term like∫
d4xV (g), where the function V (g) has a deep minimum at g = −1 (for example, V (g)= A(g + 1)2, with A

large). This would serve to encourage g to stay close to −1. Again, we would no longer be allowed to make just
any coordinate transformation we feel like.

Appendix 5: Decaying cosmological constant

Over the years, many physicists have had many (“crazy”) thoughts about gravity. One possibility, once considered
highly speculative, was to entertain a decaying cosmological constant19 d�

dt
�= 0. But these days, with a multitude

of scalar fields20 around, rolling down this hill or that, this possibility would be considered commonplace rather
than outrageous.

A dynamical realization of this might be to have the vacuum energy in de Sitter spacetime dissipate by
producing particle antiparticle pairs. The mechanism would be similar to that involved in Hawking radiation.
However, an order of magnitude estimate would seem to suggest that the effect is far too small.

Appendix 6: Breaking free of local field theory

The cosmological constant paradox suggests to some people that we might have to break free of local field
theory entirely. One possibility is to add terms not of the form

∫
d4x(. . .) to the action, in a vaguely Landau-

Ginzburg sort of approach to the action.21 Interestingly, without too much contortion, we could obtain the relation
M� ∼√

MPMU already mentioned in the text.

Appendix 7: Lagrange multiplier for the volume of spacetime

Here is a remark I find intriguing. What is the cosmological constant �? It is the Lagrange multiplier for the
volume

∫
d4x

√−g of spacetime, whatever that means: Scosmological = −∫ d4x
√−g�= −� ∫

d4x
√−g.

In statistical or thermal physics, the Lagrange multiplier for the volume
∫
d3x of the system—picture a balloon

filled with gas—has a name: the pressureP . We certainly understand the concept of pressure well. It is also under
the experimentalist’s control. But here the universe is not some container pushing into some external space, at
least not in the standard view.22

Appendix 8: Deleting Feynman diagrams and the equivalence principle

This appendix is for those readers with some familiarity with Feynman diagrams. Let us consider the diagram
responsible for the cosmological constant. Start with a matter field (for example, an electron field) loop. This
diagram describes the vacuum fluctuation of the electron field. An electron and a positron pop out of the vacuum,
propagate, and then the two annihilate each other. As explained in chapter VII.3, this goes on all the time.
Now a graviton wanders by and couples to the electron line: the graviton is sampling the energy generated by
this particular vacuum fluctuation. Ultimately, it is this diagram that causes all our hand-wringing over the
cosmological constant. Suppose you were to work long and hard and come up with a rule or theory that cleverly
deletes this diagram, thus solving the cosmological constant paradox. As emphasized by J. Polchinski, any such
rule or theory would always be doomed to fail because of the equivalence principle.

The argument is as follows. Connect the diagram by, say, two photon lines to the propagator of some atomic
nucleus, say, aluminum or iron. This diagram thus contributes to the gravitational mass of the nucleus. On the
other hand, consider the same diagram with the atomic nucleus but with the graviton removed, a diagram that
presumably has nothing to do with gravity. But this diagram contributes to the inertial mass of the nucleus.
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Thus, with the enormous accuracy to which the equivalence principle has been tested, we already know that
the diagram with the graviton attached cannot be deleted. But we are claiming that, to resolve the cosmological
constant paradox, we have some rule to delete this diagram. Basically, Einstein gravity is so tightly constructed
that we cannot easily bend the rules without upsetting something else.

The trouble is once again that physics, as we understand it, should be local: at the point where the graviton
couples to the electron, how can the graviton “know” what the electron loop is going to do? It cannot know
whether the electron is just going to loop back upon itself, or that before looping back, the electron is “planning”
to emit two photons, which subsequently will be absorbed by a nucleus.

The local nature of Feynman diagrams, plus the constraint from the experimental verification of the equiva-
lence principle, make it difficult to imagine how any rule could be invented to delete one Feynman diagram and
not another. Perhaps one loophole is offered by the phrase “nothing to do with gravity”; perhaps even a diagram
without the graviton is subject to the requirements of some ultimate theory of gravity.

Appendix 9: Argument using the anthropic principle

Here I repeat, and elaborate on, some of the remarks made in the text regarding the anthropic principle. The
anthropic principle states that the laws of physics must be consistent with the fact that there are physicists around
to discuss them. Opinions on this principle differ enormously, and I do not wish to go into this raging controversy
here. Suffice it to say that many find it vaguely distasteful, perhaps even unprincipled. At one level, the statement
is almost trivially true, something of a tautology.

The goal of physics is to relate apparently disjoint phenomena, for example the moon orbiting the earth and
the apple falling. One of the great triumphs of physics is to relate these two particular observations. In the text, I
mentioned that Weinberg showed that the very fact that galaxies formed allowed him to put an upper bound on
�: if�were too large, the universe would have expanded too fast for galaxies to have formed. (See chapter VIII.3.)
In fact, the observed value is not too far from this upper bound.

Put this way, I don’t see how the statement can be objectionable: physics relates two different phenomena.
(But notice that a theoretical framework is needed, namely the expansion of the universe and a scenario for how
galaxies came to be.) Similarly, if we take the earlier statement and replace in it the phrase “galaxies formed”
by “humans exist,” the resulting statement, namely that the very fact that humans exist allowed an anthropic
theorist to put an upper bound on �, is hardly more objectionable. This is no different from using the fact that
humans exist on this particular planet to set bounds on how far we live from our sun.

One important aspect of the anthropic principle is that to even entertain this principle, one has to be able
to conceive of different universes with different laws of physics. This is why, although the principle originated
during the mid-20th century in the study of nucleosynthesis in stars, it did not come into bloom until the advent
of gauge theories of the strong, weak, and electromagnetic interactions. With gauge theories, one can conceive
of changing the gauge group and the parameters contained in the theories. In this sense, string theory appears
to support, or at least to permit, the anthropic principle.

In the early days, string theory faithfuls hoped that they would be led to a unique ground state, so that all
fundamental constants of physics, including the gauge coupling strengths, the quark and lepton masses, the
cosmological constant, and so on and so forth (of course what I mean here are the dimensionless ratios formed
out of these quantities) would be uniquely fixed. This hope has not been realized, to say the least. In fact, almost
the exact opposite has occurred. At last count, string theory is said to have 10500 (the precise number hardly
matters to the innocent bystander) possible ground states, each corresponding to a universe with a different
set of laws of physics. The only way we know to choose between this plethora of ground states is, allegedly, the
anthropic principle. Indeed, string theorists have turned this apparent defect of the theory, its inability to predict
a unique ground state, into a virtue: it is only with this vast wealth of ground states that we can “understand”
anthropically why the cosmological constant is so tiny.

My distaste of the anthropic principle—or, at least, discomfort with it—is that it provides a disincentive to
theoretical physicists to search for explanations in the traditional sense of the word. At one time, some people
invoked the anthropic principle to explain why the neutron is more massive than the proton, even though naive
reasoning23 involving the energy contained in the electromagnetic field surrounding the proton would have
predicted the precise opposite. The argument was that, if the neutron were less massive, the proton would have
decayed into the neutron, rather than the other way around (through the process n→ p + e− + ν̄e mentioned in
chapter VIII.3). The hydrogen atom would disintegrate, and there would be no physicists around. (This argument
is hardly watertight, since other nuclei could still be stable, and who is to say that we could not build physicists
without hydrogen.) While we still do not understand exactly why the neutron is more massive than the proton, we
have at least pushed physics to a deeper level and reduced the question to why the down quark is more massive
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than the up quark. Similarly, the use of the anthropic principle in the context of stellar nucleosynthesis (roughly,
if an excited level in some nucleus did not exist, nucleosynthesis could not have proceeded at the rate that it in
fact does) might have discouraged the development of nuclear theory. I trust that nuclear theory can be developed
to the point that the existence of this level could be understood, at least in principle. It is fair to say that most
physicists, if presented with an anthropic and a traditional explanation for a given phenomenon, would probably
choose the latter. In an ideal world, in a galaxy far far away, perhaps universities could afford to have separate
departments of physics and of anthropic studies.

Notes

1. This chapter is adapted from A. Zee, “Gravity and Its Mysteries: Some Thoughts & Speculations,” in
Proceedings of the Conference in Honor of C. N. Yang’s 85th Birthday, ed. M. L. Ge, C. H. Oh, and K. K. Phua,
World Scientific, 2008. The gist of the story outlined here was told over three birthday parties: Dirac’s 80th
(see endnote 11), Yang’s 85th, and Gell-Mann’s 80th (see endnote 15).

2. For the reader who knows some quantum mechanics, this result can be derived immediately from the

uncertainty principle δp ∼ 1/δx. The energy of the oscillator is then E = p2
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Minimizing this as a function of x gives the desired result.
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4. See, for example, QFT Nut, p. 163.
5. For this argument, we need to invoke merely free field theory: we are just adding up zero point energies of

harmonic oscillators. We don’t even have to learn how the electromagnetic field is coupled to the electron
field and all the other charged fields. Or do we?

6. There is another possible coincidence if one is willing to play fast and loose with numbers: MP/MEW ∼
MEW/M� whereMEW ∼ 103 GeV is the scale of the electroweak interaction. The left hand side is ∼1019/103 =
1016, while the right hand side is ∼103 GeV/10−3 eV = 1015. Of course, we would be off by 3 orders of
magnitude if we tookMEW ∼ 102 GeV. The actual scale, which is a somewhat loosely defined concept anyway,
is perhaps about 300 GeV.

7. For a simple explanation, see QFT Nut, p. 70. The discussion also provides a beautiful realization of the
concept of cutoff in quantum field theory.

8. In quantum mechanics, experiments typically measure only energy differences 
E and not the energies
themselves. The Casimir effect is a case in point: it does not measure the vacuum energy itself (as is
sometimes erroneously stated).

9. One well-known saying by a leading theorist of the time went, “I am uninterested in gravity and I am
superuninterested in supergravity.”

10. This is the basic notion behind the renormalization group. See, for example, QFT Nut.
11. A. Zee, “Remarks on the Cosmological Constant Paradox,” in High Energy Physics in Honor of P. A. M. Dirac

in His Eightieth Year, ed. S. L. Mintz and A. Perlmutter, Plenum Press, 1983.
12. In the proton decay story, the recognition that hadrons and leptons are distinct provided the first step. One

difficulty in the cosmological constant story is that the two terms involved,
∫
d4x

√−gR and
∫
d4x

√−g, are
made of the same kind of stuff. The only difference (within our present understanding of gravity) is that
curvature involves derivatives, while volume doesn’t. This suggests that perhaps a foamlike structure could
distinguish between the two.

13. See A. Zee, Int. J. Mod. Phys. A 23 (2008), p. 1295. Also see endnote 14.
14. Condensed matter physicists are used to systems scaling differently in space and time: t → bzt and x → bx,

with a dynamical critical exponent z, or in Fourier space ω → b−zω and k → b−1k. Lorentz invariance
would tell us that z = 1. The speculation is that in the extreme ultra infrared, gravity breaks Lorentz
invariance and scales with z not equal to 1. In the discussion of linearized gravity in chapter IX.4, the
response of the gravitational field is governed by ω2 − �k2 in Fourier space; the proposal is to replace this
by ω2 + . . . + ω2/z − �k2. Note that the usual nonrelativistic physics corresponds to the choice z= 2.

15. R. Porto and A. Zee, Class. Quant. Grav. 27 (2010) 065006 arXiv:0910.3716 [hep-th]. See also the talk given by
A. Zee at Murray Gell-Mann’s 80th birthday celebration held in Singapore, February 2010. See Proceedings
of the Conference in Honor of Murray Gell-Mann’s 80th Birthday: Quantum Mechanics, Elementary Particles,
Quantum Cosmology and Complexity, ed. H. Fritzsch and K. K. Phua, World Scientific, 2011.

16. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and G. Gabadadze, arXiv:hep-th/0209227.
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17. Once, when I was lecturing in Copenhagen and talking about this analogy, I looked up and saw a picture of
Rømer looking down at me.

18. The notion goes back to Einstein in some sense, and was developed later by H. van der Bij, H. van Dam, Y. J.
Ng, F. Wilczek, A. Zee, A. Dolgov, S. Weinberg, and many others.

19. I was inspired by Dirac’s large number hypothesis. See endnote 11.
20. I have always been bothered by the liberal and indiscriminate use of scalar fields in particle theory and

cosmology. Quantum field theory textbooks start with scalar fields precisely because they are “without
quality.” If Nature wanted to show us an elementary scalar field, wouldn’t she have shown us one long
ago? We have encountered elementary spin 1 fields, an elementary spin 2 field, and in a mysterious twist,
even elementary spin 1/2 fields. We know about meson fields, but they are clearly composite. An interesting
question might be whether the Higgs field can be regarded as composite. I have speculated elsewhere that
perhaps quantum field theory somehow forbids elementary scalar fields. In an improved formulation of
quantum field theory, might elementary scalar fields not be allowed?

21. S. Hsu and A. Zee, Mod. Phys. Lett. A20 (2005), pp. 2699–2703, arXiv:hep-th/0406142.
22. Invoking an analogy between quantum hydrodynamics and quantum gravity, G. Volovik has argued that the

cosmological constant paradox could be resolved. Some would maintain, however, that the paradox does not
depend directly on the quantum nature of gravity, and that gravity merely provides a probe of the fluctuating
energy in the vacuum. Exploring problems analogous to the cosmological constant in condensed matter
systems may nevertheless provide a fruitful avenue for further understanding. See G. E. Volovik, arXiv:gr-
qc/0505104; F. R. Klinkhamer and G. E. Volovik, arXiv:0711.3170.

23. See for example A. Zee, Phys. Reports 3C (1972), p. 127.



X.8 Heuristic Thoughts about Quantum Gravity

In search of quantum gravity

Almost the entirety of this book is devoted to the classical theory of gravity. The quantum
appeared on only a few occasions, namely in our discussion of Planck’s natural units way
back in the introduction to the book, of Hawking radiation in chapter VII.3, (somewhat
peripherally) of Kałuza-Klein theory, and of the cosmological constant paradox in chap-
ter X.7. I have kept the knowledge required of quantum mechanics and quantum field
theory to an absolute minimum. However, if I am going to talk about quantum gravity,
obviously1 I will have to mention quantum mechanics and quantum field theory. Given
that at various points in this chapter I am assuming that you know quantum field theory,
many readers will have to take my word for it in connection with various statements, but
I try to minimize the number of these assertions. The reader who has had no exposure to
quantum mechanics should skip this chapter.

Of Einstein’s two offsprings, special relativity has been joined with the quantum since
the late 1940s, leading to relativistic quantum field theory. Meanwhile, general relativity
has stubbornly resisted being quantized. Even with the intensive development in recent
decades of two candidate theories, string theory and loop gravity, a theory of quantum
gravity2 remains elusive. Certainly, I do not have room3 here to discuss these candidate
theories. I also do not discuss various other approaches4 to quantum gravity, notably lattice
gravity5 and the notion of asymptotic6 safety.7 Instead, we will chat heuristically about the
root cause (or causes) of the difficulty in constructing a theory of quantum gravity.

The appearance of fundamental scales

The seed of discord between gravity and the quantum had already been sown in the
introduction to this book. In a world without gravity, that is, a world with � and c, but
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without gravity (a world in which Newton’s constant G vanishes), we could happily do
physics using relativistic quantum field theory (and its many limits thereof, such as
nonrelativistic quantum mechanics or classical mechanics).

But as soon as gravity enters into the discussion, the Planck massMP =
√

�c
G

, the Planck

length lP = �

MPc
=
√

�G

c3 , and the Planck time tP = lP
c

=
√

�G

c5 burst upon the scene. By
the way, since by now even mass circulation magazines can mention lightyears without
explanation,8 we can set c = 1 without risk of conceptual confusion. Thus, we henceforth

work with only the Planck mass MP =
√

�

G
and the Planck length lP = �

MP
= √

�G. As
G→ 0, we note that MP → ∞ and lP → 0, and we lose our units. Note also that MPlP = �.
(As � → 0, MP → 0 and lP → 0, as we would expect in the classical world.)

The Planck mass spells trouble

To see that the appearance of the Planck mass spells trouble, consider the following
traditional, and fairly well-known, gedanken experiment. Scatter two gravitons elastically
off each other. Let us now use high school dimensional analysis to determine the scattering
amplitude M (a notion you encountered in the preceding chapter), but to do this, you
would have to know that M is dimensionless,9 something I dare say the typical high school
student would not know. You have to take my word for it—M is dimensionless. If you don’t
want to, I will give in appendix 2 a more elaborate version of this argument not dependent
on this particular piece of knowledge.

To leading order, M is proportional to G. After all, G measures the strength of the
gravitational interaction. In the center-of-mass frame, M depends on the center-of-mass
energy E and the scattering angles. Since the graviton is massless, G and � are the only
other quantities M can depend on. So go ahead, see if you can write down a dimensionless
function of E and of the scattering angles that is linear in G.

You are forced to

M = α(θ)GE2/� +O(G2)= α(θ)
(
E/MP

)2 +O(G2) (1)

with α(θ) a dimensionless function of the scattering angles θ .
The important point is that out of G and �, we can form the combination G/� with

dimensions of inverse mass or energy squared, which in turn requires the amplitude M
to go likeE2. As we crank up the energyE past the Planck energyMP =

√
�

G
, the amplitude

increases past unity. But in quantum mechanics, the absolute square of the amplitude gives
the probability for the process to occur, and probability cannot exceed unity. Hence, the
leading order expression (1) for Meventually violates the unitarity bound basic to quantum
physics.

Perhaps the most concise way of describing this problem is as follows: in a quantum
world with gravity, the Planck mass sets an intrinsic energy scale, at which something we
don’t understand is bound to happen. As I have remarked elsewhere,10 I find it sobering
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that theories in physics have the ability to announce their own eventual failure and hence
their domains of validity, in contrast to theories in some other areas of human thought.
So Einstein’s theory is literally crying out, telling us that it will fail around the Planck
energy.

Minimum length

Ever since Louis de Broglie astonished the physics world (and won a Nobel Prize in the
process11) with his assertion that a particle with momentum p behaves like a wave with
wavelength of the order �/p, particle physicists have been pestering heads of governments
(and taxpayers) that they need to build larger and larger accelerators to probe shorter and
shorter distances. Given a beam of particles with energyE, they can probe distances of the
order ldB ∼ �/p ∼ �/E. Allowed enough resources in a world without gravity, they could
keep on increasing the energy and happily probe smaller and smaller distances.

But in a world with gravity, we have black holes!
A concentration of mass or energy E in a region smaller than the corresponding

Schwarzschild radius rS ∼ GE is expected to collapse into a black hole. Thus, the col-
liding beams we use would collapse when GE >∼ ldB ∼ �/E, precisely when E >∼MP. This
suggests that the Planck length lP represents a minimum length below which we cannot
probe.12

In the quantum world, physical quantities are constantly fluctuating. The appearance
of a fundamental length as soon as gravity is turned on suggests that in quantum gravity,
spacetime itself is fluctuating on the scale of lP, thus leading to the picturesque notion of
spacetime foam. Does this mean, as was just suggested, that lP represents the minimum
length that we can probe? It seems plausible, but let’s try to make this assertion somewhat
more precise.

Historically, the de Broglie relation grew into the uncertainty principle, which I have
already mentioned on a couple of occasions (particularly in chapters VII.3 and X.7).
Starting from the fundamental commutation relation [x̂ , p̂] = i� between the position
operator x̂ and the momentum operator p̂, Heisenberg showed that the uncertainty in
the position 
x and the uncertainty in the momentum 
p satisfy the inequality


x
p >∼ � (2)

Since the uncertainty principle is so fundamental to quantum physics, it would be
good to recall how it is derived13 and to have a precise statement of it. Given a quantum
(hermitean) operator A, we define 
A ≡ A − 〈A〉, a quantity specific to the state in
which we take the expectation value 〈A〉. Then the mean square deviation is given by
〈(
A)2〉 = 〈A2〉 − 〈A〉2. The relevant mathematical theorem, which you could look up or
challenge yourself to prove, states that

〈(
A)2〉〈(
B)2〉 ≥ 1
4 |〈[A, B]〉|2 (3)
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Measuring device collapsing into a black hole

When we are faced with a notion that is typically mumbled fast and loose, a good move is
to call upon our friend the Smart Experimentalist.14

We ask SE, “How would you determine if there is a minimum length?”
SE: “I would take two distance measurements, and try to push the difference between

them down to arbitrarily small values.”
So, consider15 a measuring device of size L and mass M . To determine the position of

something, you have to know the position of the measuring device. We can also think of
the object whose position we want to measure as part of the device. SE proceeds to measure
the position of the device at time 0 and at time t , take the difference s ≡ x(t)− x(0), and
see if that can be made arbitrarily small.

For simplicity of analysis, assume that the device can move freely, so that the relevant
Heisenberg operators are related by

x̂(t)− x̂(0)= p̂

M
t (4)

(If the device is not free, but tied to another mass by a heavy spring, we can always
regard the mass and the spring as part of the device.) Commuting (4) with x̂(0), we obtain
[x̂(0), x̂(t)] = i� t

M
. (Note that by assumption, p̂ does not depend on time.) It follows from

(3) that

〈(
x(0))2〉〈(
x(t))2〉 ≥
(

�t

2M

)2

(5)

In other words, x(0) and x(t) form a complementary pair and obey the uncertainty relation

x(0)
x(t) >∼ �t

2M .
If SE tries to get the uncertainty in her measurement of x(0) down, the uncertainty in

her measurement of x(t) necessarily goes up. Thus, try as she may, the uncertainty in her
measurement of s ≡ x(t) − x(0) is limited by the larger of the two uncertainties 
x(0)

and 
x(t). The best she can do is bring the uncertainty 
s down to
√

�t
2M , that is,


s >∼
√

�t

M
(6)

Now comes the key point. In a world without gravity, SE could make 
s as small as we
like. Just take the two measurements quickly in succession and build the most massive
measuring device (so it does not quantum jiggle too much) the funding agency would
allow. In other words, make t as small as possible and M as large as possible.

But now we feel the wrath of Einstein’s two intellectual offsprings!
Special relativity tells us that t cannot be smaller than the time it takes light to traverse

the device (otherwise only a part of the device can be regarded as “the device”); so t > L,
the size of the device.
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General relativity tells us that if we crank up M too much, the device will collapse into a
black hole, and we will not be able to receive the result of the measurement. For the device
not to be a black hole, we require L >GM .

Thus, we conclude that


s >∼
√

�t

M
>

√
�L

M
>

√
�G= lP (7)

The Planck length is indeed the smallest distance experimentalists can measure. Note that
the first inequality comes from special relativity, the second from general relativity. In a
world with gravity, we cannot measure distances less than the Planck length. Note the
power of this argument: it does not depend on details of how the device was constructed.

In appendix 1, I give an alternative argument.

Black holes are strange

He who does not believe it owes one dollar.
—M. Bronstein

The reader might recognize that all these arguments, including those to be given in
appendix 1, amount to essentially different versions of the same argument. Ultimately,
they all come around to the fundamental fact that gravity introduces a natural energy or
mass scale and a corresponding length scale. This type of argument goes way back, to a
little-known paper16 published in 1935 by the brilliant Russian physicist Matvei Bronstein,
who was purged and executed at the age of 31 in 1938.

Historically, Heisenberg and Pauli quantized the electromagnetic field in 1929, conclud-
ing rather optimistically that “the quantization of the gravitational field . . . may be carried
out without any new difficulties by means of a formalism fully analogous to that applied
here.”17 Ha! Even quantum electrodynamics was not so easy, let alone quantum gravity. As
you probably know, this early attempt at quantum electrodynamics was afflicted by infini-
ties and various inconsistencies, difficulties that were not cleared up until the late 1940s
by the generation consisting of Schwinger, Feynman, Tomonaga, and others.

But the general belief 18 throughout the 1930s was that, once quantum electrodynam-
ics came under control, quantum gravity would follow readily, with perhaps some trivial
modifications. With deep insight, Bronstein pointed out emphatically19 that the electro-
magnetic and the gravitational fields are intrinsically different, because of what was then
known as the “gravitational radius” of massive objects.

Black holes are strange, in more ways than one. The founders of quantum physics taught
us that the quantum size of a particle of mass m is of order �/m: the more massive the
particle, the smaller it is in the quantum world. But a black hole of mass M has size
GM = (M/MP)lP. The more massive the black hole, the larger it is, a behavior that is
precisely the opposite that of all other particles, including the graviton. This peculiar fact
underlies the arguments given here.
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The presence of the Planck length lP indicates that the theory of quantum gravity,
whatever it turns out to be, cannot possibly be a quantum field theory. For one thing,
quantum field theory is based on the notion of local observables, described by fields
defined at points in spacetime. But with spacetime itself fluctuating wildly according
to the “dance of the quantum,” we cannot even locate precisely where we are. In other
words, to formulate quantum field theory, we need slices of spacelike surfaces to succeed
one another in an orderly progression along a timelike coordinate axis. Bronstein in his
1935 paper advocated “a radical reconstruction of the theory . . . and the rejection of [a]
Riemannian geometry, . . . and perhaps also the rejection of our ordinary concepts of
space and time, replacing them by some much deeper and nonevident concepts.”20 In
the early 21st century, string theorists are saying pretty much the same thing. Indeed, you
can readily understand that with a fluctuating metric, fundamental concepts that we take
for granted in doing physics, such as the arrow of time, the signature of the metric, and
the topology of spacetime all become problematic.

Unitarization and ultraviolet completion

Interestingly, Fermi’s theory of the weak interaction is also characterized by a coupling
strength GF, which has dimensions, in natural units, of inverse squared mass, just like
Newton’s constant G. The same dimensional reasoning that led to (1) can be applied to
the scattering of two neutrinos, say. Again, we expect something dramatic to happen at the

energy scale
√

�

GF
∼ 102 GeV. (Compare this with the Planck mass

√
�

G
∼ 1019 GeV.)

But in contrast to the case of quantum gravity, we have known what that something is
since the 1970s, not only theoretically but also experimentally. At that energy scale, the weak
interaction becomes unified with the electromagnetic interaction into the electroweak
interaction,21 and unitarity is restored. In this deeper and more complete theory, Fermi’s
coupling turns out to be GF ∼ e2/M2

W, where e denotes the electromagnetic coupling
constant and MW the mass of the intermediate vector boson responsible for the weak
interaction. A fashionable terminology is that the electroweak interaction “ultraviolet
completes” the weak interaction.

Unfortunately, the lesson we learned in dealing with the weak interaction does not
appear to carry over to quantum gravity. At the moment, we do not know what the ultraviolet
completion of quantum gravity might be. If it turns out to be string theory, the mechanism
is to replace the graviton by a closed loop of vibrating string.22

An interesting possibility is that the scattering of gravitons at high energies is unitarized
by the formation of a black hole. Our understanding of black holes certainly leads us to
expect that when an amount of energy E is dumped into a region of size GE ∼ (E/MP)lP

(namely the Schwarzschild radius corresponding to E), a black hole will form. Explicit
calculation23 shows that this indeed occurs. Indeed, we have already used this “fact” a
number of times in this chapter.
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Historically, when physics ventured into atomic distance scales, classical physics gave
way to quantum physics. Various classical theories were quantized. Intriguingly, it may
be that when quantum gravity enters into Planck distance scales, quantum physics will in
turn be replaced by classical physics somehow. G. Dvali and his collaborators have referred
to this possibility as the classicalization of gravity.24 Quantum gravity may be classicalized.
All these are just words, of course, at this point.

Effective field theory of gravity

As mentioned, historically, people were upset by the divergent behavior of quantum gravity
treated perturbatively inG. One practical attitude is: “Who cares if the scattering amplitude
goes bad at energy of the order of MP? As long as we deal only with low energies, the
theory works perfectly well.” More formally, this attitude is embodied in the more modern
outlook of effective field theory, as described in chapter X.3 (and also to be mentioned in
appendix 2). Recall that in this view, the Einstein-Hilbert term is the first in an infinite
series of terms R + M−2

P (αR2 + βRμνR
μν + γRμνρσR

μνρσ ) + . . . in the action. As the
energy E in the scattering process approaches MP, the higher derivative terms kick in.
But since they appear with coefficients of order M−2

P , their effects are suppressed by
(E/MP)

2 and so are entirely negligible until E ∼ MP. This is of course just another
way of saying that we can pretty much forget about quantum gravity in our low energy
world.

I think that a rough analogy might be the following. Suppose that some other civilization
had a rudimentary understanding of quantum physics, say at the level attained circa 1910
in our civilization, not long after Maxwell wrote down his theory of electromagnetism. The
perturbative correction to the electromagnetic scattering between point charges (call them
electrons) also grows with energy, although only logarithmically (like α log(E/me), where
α � 1/137 measures the electromagnetic interaction strength). So at some point, we also
lose control over our scattering amplitude when the correction becomes of order unity,
namely when the energy approachesE ∼ e137me. People might wring their hands over the
“inconsistency” of quantum electrodynamics until their hands got all swollen, but as we
know in our civilization, this difficulty was eventually resolved and revealed to be totally
harmless.

Thus, more recently, the focus has been less on the divergent behavior of quantum
gravity, but rather on the strange behavior of black holes. Yes, black holes are strange, as
we have seen again and again. As a reminder, consider once again the bizarre behavior of
black hole entropy S. We already noted way back in the introduction to this volume that, by
dimensional analysis, S ∼GM2 = (GM)2/G∼A/l2P. Again, the puzzling fact that it goes
like the area follows almost immediately25 from the fact that G defines a natural length
scale. As discussed in chapter VII.3, there has been some progress on the question of
where black hole entropy, which certainly does not leap out at you from the Schwarzschild
solution, comes from.
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Quantum gravitational corrections to the Newtonian potential

It is important not to get the impression that the bad high energy behavior of gravity pre-
vents us from calculating anything. In fact, for measurable physical processes, it should be
possible to segregate the high energy contribution from the low energy contribution, using
an effective field theory type of approach. For instance, in quantum field theory, the New-
tonian potential V = −Gm1m2/r between two particles of mass m1 and m2 results from
the exchange of a single graviton between the two particles.26 If you know what Feynman
diagrams are, you can easily draw diagrams in which two gravitons are exchanged. These
have been calculated to give the result27

V (r)= −Gm1m2

r

(
1 + 3

G(m1 +m2)

c2r
+ 41

10π
G�

c3r2
+ . . .

)
(8)

I have restored c and �, so as to indicate which corrections go away in the limits � → 0
and c → ∞. Note that the quantum correction is of the form (lP/r)

2. If experimentalists
could measure these miniscule corrections, this would represent an eminently falsifiable
prediction of our understanding of the low energy effects of quantum gravity.

Unification with the other three interactions

I already mentioned in passing the so-called fine structure constant α = e2

�c
� 1/137 intro-

duced by Sommerfeld28 in 1916. This quantity characterizes the coupling strength of the
electromagnetic interaction and is known as the electromagnetic coupling constant, except
that we have now understood for a long time that it is not constant.∗ Our friend SE would
measure electromagnetic coupling strength by scattering, say, two electrons off each other.
So clearly α(E) is a function of the energy involved.29 (This fact was not apparent before
high energy accelerators were built, because physicists had explored only a tiny range of
energies over which α(E) was approximately equal to α(E = 0)� 1/137.)

The coupling strengths of the strong and the weak interactions are characterized sim-
ilarly. Hence, we have three coupling functions† α1(E), α2(E), and α3(E) all varying
logarithmically30 with energy E. I had mentioned (in chapter VIII.3, chapter X.1, and
elsewhere) that the three nongravitational interactions have been unified. One indication
of the unification is that these three coupling functions meet at grand unified theory energy
scale EGUT ∼ 1016 GeV (as already alluded to in chapter VIII.3). In other words, although
α1(E), α2(E), and α3(E) are quite different in our low energy world, they become equal in
the grand unified world. (I am necessarily painting the picture with broad brush strokes
here, omitting all the ifs and buts.)

∗ Hence the term “coupling constant” belongs with “recombination” (see chapter VIII.3) on the list of top ten
worst physics terms.

† They are not called αstrong(E), αweak(E), and αelectromagnetic(E) for reasons I do not go into here.
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So, how does gravity fit into this picture? The standard answer is that it does not. For
one thing, gravity is exceedingly feeble compared to the other three interactions.

But as you can see, in the context of this discussion, the bad behavior in (1) tells us
that the coupling strength of gravity should be, in some sense, αG(E)≡GE2 rather than
just G. If so, then, as we go up the energy scale, the gravitational coupling will shoot up
compared to the three couplings ambling along logarithmically. Thus, all four coupling
functions could become equal, so that the four interactions we know, love, and fear could
become unified into one happy theory at the Planck energy MP. Indeed, people have also
speculated about the effect of the opening up of higher dimensions on αG(E).

People often confound the taming of the bad high energy behavior of gravity and its
possible unification with the other three interactions. The two issues are logically distinct.
While it would be nice indeed to achieve both of these objectives within one elegant theory,
we should keep in mind that it is possible to have the first without the second.

Discord between Einstein gravity and the quantum

In the discord between Einstein gravity and quantum physics, somehow it is gravity that
gets blamed. Most attempts to reconcile the two have involved modifying or extending
Einstein gravity. For example, string theory is formulated by assuming that quantum
physics as we know it will continue to hold all the way up to the Planck energy. It is of course
entirely possible that it is quantum physics that has to be changed. People have suggested
the breakdown of quantum mechanics at high energies, but it is entirely possible that it
fails in some hitherto unexplored regime.

One thought that appeals to me is that quantum mechanics as we know it breaks down
when the splitting between energy levels
E is less than the inverse of some cosmological
time scale, such as the age of the universe.

Certainly people have tried for a long time to change the rules of quantum physics as laid
down around 1926, but it turns out to be extraordinarily difficult to produce a consistent
and compelling extension that does not run into some kind of contradictions or difficulties.
You are of course free to speculate.

A dissenting attitude, perhaps articulated most forcefully by Freeman Dyson, is that
gravity should not be quantized at all. I will let Dyson speak for himself.

The essence of any theory of quantum gravity is that there exists a particle called the graviton

which is a quantum of gravity, just like the photon which is a quantum of light. It is easy to detect

individual photons, as Einstein showed, by observing the behavior of electrons kicked out of

metal surfaces by light incident on the metal. The difference between photons and gravitons is

that gravitational interactions are enormously weaker than electromagnetic interactions. If you

try to detect individual gravitons by observing electrons kicked out of a metal surface by incident

gravitational waves, you find that you have to wait longer than the age of the universe before

you are likely to see a graviton. If individual gravitons cannot be observed in any conceivable
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experiment, then they have no physical reality and we might as well consider them non-existent.

They are like the ether, the elastic solid medium which nineteenth-century physicists imagined

filling space. Einstein built his theory of relativity without the ether, and showed that the ether

would be unobservable if it existed. He was happy to get rid of the ether, and I feel the same

way about gravitons. According to my hypothesis, the gravitational field described by Einstein’s

theory of general relativity is a purely classical field without any quantum behavior.31

Note that Dyson is dismissing quantum gravity because of its weakness, but gravity
is weak precisely because MP is so huge, as we have seen since the introduction to this
volume. So it is basically the same attitude mentioned above: “Thanks but no thanks, we
are already quite happy with our low energy calculation of, say, the perihelion shift of
Mercury.”

You, I, and everybody else—we are all free to form our own opinions. I would take
issue with the statement “If individual gravitons cannot be observed . . . we might as
well consider them nonexistent.” Imagine uttering this sentence in the 19th century
with the word “atoms” substituted for “gravitons.” As it turned out, the concept of atoms
eventually did lead to a much deeper understanding of nature. Perhaps Dyson is advocating
a utilitarian philosophy here. What does it buy us? Would quantizing gravity lead to a
deeper understanding of nature? We will have to see, evidently.

I discuss a bit more in appendix 3 whether gravity must be quantized.

Appendix 1: More handwaving arguments

Here I recount briefly an argument given by Mead.32 According to the textbook argument leading to the
uncertainty principle, to localize a particle to within 
x, we need to use a short wavelength, high frequency
photon with energy E satisfying 
x ∼ �/E. This is all fine in a world without gravity, but in a world with gravity,
the photon will exert a gravitational force on the particle, causing it to accelerate with acceleration a ∼GE/r2.
Here r denotes a vaguely defined characteristic distance describing the interaction between the photon and the
particle. (Fortunately, r will drop out.) The photon traverses this interaction region in time r , during which the
particle acquires a velocity v ∼ ar and travels a distance d ∼ vr ∼ ar2 ∼GE. Combining this with Heisenberg’s
uncertainty principle, we conclude that our knowledge of the position of the particle is limited by what might be
called the generalized uncertainty principle


x ∼ �

E
+GE (9)

In other words, in addition to the uncertainty imposed by the wavelength of the photon, the particle we are trying
to observe has also moved due to its gravitational interaction with the photon. Minimizing this, we see that the
best we can do is 
x ∼ √

�G= lP. Again, notice that we have implicitly used special relativity here, equating the
gravitational mass with energy.

To me, this kind of handwaving argument is rather fast and loose, and should (and could) be refined. Indeed,
Mead did refine his argument, first taking into account momentum conservation and then replacing Newtonian
gravity by Einsteinian gravity.

Another argument given by Mead (and already mentioned in the text) involves an attempt to confine a particle
to a small region of size s. By the uncertainty principle, the energy of particle E >∼ p ∼ �/s. For this region not
to become a black hole, we require s > GE ∼G�/s, giving s >∼

√
�G= lP.

Interestingly, string theory also naturally leads to (9). Imagine using a graviton, allegedly a closed loop of
string. As we pump energy into it, it expands to have size GE, thus accounting for the term in (9) that is added
to Heisenberg’s term.
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Appendix 2: Failure of the perturbative expansion and effective field theory

Suppose you refuse to let me simply assert, as in the text, that the amplitude M for the elastic scattering of
two gravitons is dimensionless. In that case, I will start with the weaker statement that M ∝G, but now let us
calculate the order G2 correction to this amplitude:

M ∝G
{

1 + βGE2/� +O
(
G2
)}

=G
{

1 + β
(
E/MP

)2 +O
(
G2
)}

(10)

with β some dimensionless function of the scattering angles. By definition, the correction to the 1 in the curly
brackets is linear in G, and so the correction term has to go like E2.

As we crank up the energy E past the Planck energy MP =
√

�

G
, the second order term becomes larger than

the first order term. We lose control over the perturbative expansion. Again, you recognize this as essentially the
same argument given in the text: gravity introduces an energy scale MP.

Here are a few comments on this argument:

1. Historically, this argument is confusingly phrased in terms of infinities. In more modern treatments of
quantum field theory, there are no infinities in physics, only cutoffs.33 The more sensible way to regard
the difficulty we face is the violation of unitarity, as was explained in the text.

2. We can readily extend this argument to cover the higher order terms. Thus, the O(G2) terms in (10)
must have, again by dimensional analysis, the form γ (E/MP)

4, with γ some other dimensionless
function of the scattering angles.

3. One possible reaction to this unitarity argument could be “So what? The perturbation expansion fails.”
It is certainly possible that one day, but a day that theoretical physicists can only dream of at this point,
we will know how to treat quantum gravity nonperturbatively. The series in the curly brackets in (10)
might turn out to be the expansion of a function f ((E/MP)

2), which behaves with decency even for
E >∼MP. It is also possible that the function is nonanalytic and does not admit a perturbative expansion.
But these are merely words.

4. As mentioned in the text, the modern view is to regard the series in (10) as due to some effective theory
of the type described in chapter X.3. In quantum field theory, powers of derivatives in the action get
converted into powers of momentum or energy in the scattering amplitude.

Appendix 3: Induced gravity

The perennial question of whether gravity must be quantized has a long history. Here we give an extremely
schematic overview. First, you may know that there are three equivalent formulations for quantum physics,
known as the Heisenberg, the Schrödinger, and the Dirac-Feynman pictures.

In the Dirac-Feynman or path integral formulation, one integrates over eiS(q)/�, where S denotes the classical
action as defined in part II of this book, over all possible paths or histories that the dynamical variable q(t) can
follow. In other words, one has to evaluate an integral of the form

∫
DqeiS(q)/�. In the limit � → 0, classical

physics is recovered by evaluating the integral in the stationary phase approximation.34

The problem of quantum gravity can thus be stated as follows. Let the world be described by a set of
“matter fields” ψ and the metric gμν . We envisage doing a giant integral of the form (we have set � to 1)∫
Dg

∫
Dψei(SEH(g)+S(g ,ψ)), where SEH(g) denotes the Einstein-Hilbert action and S(g , ψ) the action for the

fields in a spacetime described by the metric g. The general strategy is to do the integral in two stages, that is, to
write it as

∫
DgeiSEH(g)

∫
DψeiS(g ,ψ).

At this point, quantum field theorists and people of that ilk claim that they more or less know how to do the
integral over ψ , including the electron field, the quark fields, the gauge fields, and so forth. The difficulty of
quantum gravity amounts to doing, or even defining, the integral over g.

The proposal of induced gravity is simply this: what if we don’t integrate over g?
Since S(g , ψ) is invariant under general coordinate transformation, we are guaranteed that

∫
DψeiS(g ,ψ) is

also invariant under general coordinate transformation, and hence must have the form∫
DψeiS(g ,ψ) = e

i
∫
d4x

√−g(�+M2
PR+...) (11)
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with some mass scale MP as mandated by dimensional analysis. In other words, the integration over ψ produces
the effective field theory of gravity as described in chapter X.3.

There is no question that integration over the matter fields ψ will generate the Einstein-Hilbert term, that is,
the scalar curvature R: this is merely a consequence of general symmetry considerations. The difficulty is that it
is accompanied by �, which comes out naturally large, of order M4

P, but this is of course just the cosmological
constant problem biting us again. Another difficulty is that the classical equation of motion of the gravitational
field no longer emerges automatically as Planck’s constant approaches zero, but has to be introduced by hand.
Perhaps there is nothing wrong with this, but it sure is unattractive.

A more extreme version of induced gravity is that we don’t even have to include SEH: Einstein gravity is
induced by the dynamics of the matter field. An analogy would be an elastic medium, such as the vibrating
string or membrane we talked about in part II. We can certainly write down an action for an elastic medium,
but we know perfectly well that this action is not fundamental. It is produced or induced by microscopic physics.
Similarly (almost blasphemous to say), perhaps gravity is not a fundamental interaction but is induced by the
other three interactions. The fact that gravity stands apart from the other three can be regarded as supportive of
this view.

At one time, induced gravity appeared to offer a way out of our problems with gravity and thus enjoyed a
following. But not quantizing gravity leads to other problems, as we will see in the next appendix.

Appendix 4: Gravity as a classical probe

In the Heisenberg picture, classical observables are replaced by quantum operators. In particular, the quantities
appearing in Einstein’s field equation are to be treated as quantum operators. Thus, not quantizing gravity means
that we continue to regard gμν as classical, but we treat Tμν (which is constructed out of other fields, such as the
electromagnetic field) as a quantum operator. C. Møller in 1962 and A. Rosenfeld in 1963 proposed the equation

Rμν − 1
2gμνR = 8π〈state|Tμν|state〉 (12)

In other words, instead of a quantum operator, the right hand side is to be replaced by the expectation value of
the quantum operator in some state.

Once again, if we invoke the naturalness dogma, this produces a huge cosmological constant on the right
hand side: 〈state|Tμν|state〉 = �gμν + . . . . But let us leave that aside. The objection to this equation is that it
violates the uncertainty principle.

If gravity is not quantized, then it acts as a classical probe, and we could use a massive ball attached to a torsion
balance to measure the position and momentum of a passing electron. In other words, the uncertainty principle,
if strictly interpreted, does not allow the world to be part quantum and part classical. Conceptually, there may
be nothing wrong with this. Let the uncertainty principle hold only in the quantum world. In his reasoning,
Heisenberg used only quantum probes.

However, in 1981 Page and Geilker35 experimentally demonstrated the difficulty one runs into. Consider a
Cavendish experiment in which the heavy ball is moved from one position “here” to another position “there,”
as determined by some radioactive decay. This amounts to a Schrödinger’s cat experiment with the quantum
state in (12) given by |state〉 = 1√

2
(|here〉 + |there〉). The torsion pendulum would then point to a phantom ball

situated halfway between here and there.36

Appendix 5: Quantum particles in a classical gravitational field

This may not be the best place, but it will have to do, to mention that a series of elegant and fascinating
experiments37 were performed, starting in the 1960s, to study the behavior of quantum particles in a classical
gravitational field, such as that of the earth. Typically, a beam of neutrons is split into two, with one sub-beam
made to travel at a higher altitude than the other. The two sub-beams are then allowed to come together and

interfere. Thus, theoretically, we are to study the Schrödinger equation
(
− �

2

2m∇2 + mgz
)
ψ = Eψ , with z the

vertical axis. In another type of experiment, neutrons are literally bounced off the floor like basketballs.
While these experiments confirm quantum mechanics resoundingly, they do not shed any light on quantum

gravity.
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Appendix 6: Absence of local observables in quantum gravity

Another difficulty with quantum gravity is the absence of local observables. Heuristically, due to the possibility
of making general coordinate transformations, we can move spacetime points around. People sometimes say,
rather sloppily, that in an observable O(x), the x cannot be specified. I will try to be more specific.

To read this appendix, you need to know that in quantum physics, observables are represented by operators
Ô(x) in the Heisenberg picture mentioned in appendix 3. Our task is to calculate the functions38 G(x1, . . . , xn)≡
〈Ô(x1) . . . Ô(xn)〉 defined as the expectation value of a product of operators in the vacuum state. In the Dirac-
Feynman or path integral formalism, we do not speak of operators, but instead of functional integrals, as was
also mentioned in appendix 3. The expectation value 〈Ô(x1) . . . Ô(xn)〉 is then represented by an integral, so that
G(x1, . . . , xn) = ∫

DgDφ . . . eiS(g ,φ , ...)O(x1) . . . O(xn). Physically measurable quantities, such as scattering
cross sections, are determined by the functions G(x1, . . . , xn). Dear reader, if you have had no exposure to
quantum physics, and if this paragraph is complete gibberish to you, then you should certainly skip this appendix.

After this brief preliminary, let O(x) be a scalar observable; in other words, if we make a general coordinate
transformation, then we haveO ′(x′)=O(x). Specifically, ifO(x) is constructed out of gμν(x), a scalar field φ(x),
and so forth, then O ′(x′) is constructed out of g′

μν
(x′), φ′(x′)= φ(x), and the like. Then we have

G
(
x1, . . . , xn

) ≡ 〈Ô (
x1
)

. . . Ô
(
xn
)〉

≡
∫

DgDφ . . . eiS(g ,φ , ...)O
(
x1
)

. . . O
(
xn
)

=
∫

DgDφ . . . eiS(g ,φ , ...)O ′ (x′
1

)
. . . O ′ (x′

n

)

=
∫

Dg′Dφ′ . . . eiS(g
′ ,φ′ , ...)O ′ (x′

1

)
. . . O ′ (x′

n

)

=
∫

DgDφ . . . eiS(g ,φ , ...)O
(
x′

1

)
. . . O

(
x′
n

)
≡ 〈Ô (

x′
1

)
. . . Ô

(
x′
n

)〉
≡G

(
x′

1, . . . , x′
n

)
(13)

Note that the first equality (not counting the definitions) is just O ′(x′)=O(x). The second equality follows from
the invariance of the action S(g′ , φ′ , . . .)= S(g , φ , . . .) and of the integration measure Dg′Dφ′ =DgDφ under
general coordinate transformation. The third, and crucial, equality is due to the elementary calculus theorem
stating that under integrals, we can rename the dummy integration variables at will. Note, however, that we do
not erase∗ the primes on x′

1, . . . , x ′
n
. The equality G(x1, . . . , xn)=G(x′

1, . . . , x ′
n
) implies39 that G(x1, . . . , xn)

does not depend on its arguments and thus can only be a constant. Thus, quantum gravity cannot be based on
local observables, but instead has to be built out of nonlocal observables. This statement provides one of the
starting points of the approach to quantum gravity known as loop quantum gravity.40

The argument depends essentially on the fact that quantum physics involves an integration over all configu-
rations.

Notes

1. I try hard to avoid the use of words like “obviously” in my textbooks, but surely the reader would agree that
my usage of the dreaded word here is justified.

2. For those readers who want to get into the subject, a recommended starting point is A. Strominger, “Five
Problems in Quantum Gravity,” arXiv:0906.1313 (2009). See also Approaches to Quantum Gravity: Toward a

∗ Compare and contrast with the discussion in appendix 1 to chapter VI.4.
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New Understanding of Space, Time and Matter, ed. D. Oriti (Cambridge University Press, 2009) for a wide
variety of viewpoints.

3. Not to mention my assumption that the typical reader of this book has only a limited knowledge of quantum
physics.

4. For a list, see, for example, p. 5 in C. Rovelli, Quantum Gravity, Cambridge University Press, 2007.
5. In one sentence: spacetime is discretized and the distances between lattice points are dynamical. To get into

the literature, look at review articles by R. Loll and others.
6. The word is appropriate for a book on gravity: from a-sym-ptotos = falling together. See the lament of Qfwfq

in chapter IX.3. The reference to falling persists in the medical term ptosis, a drooping of the upper eyelid.
7. In one sentence: as advocated by S. Weinberg (http://arXiv.org/abs/arXiv:0908.1964), quantum gravity may

be governed by an attractive ultraviolet fixed point at some finite value of the coupling. To me, it is an
attractive idea, but unfortunately, to explain it properly, I would have to assume a great deal of knowledge
about quantum field theory, particularly the notion of the renormalization group. To get into the literature,
look at review articles by M. Reuter and others.

8. But Lightfoot, as in Gordon Lightfoot, is not a unit of time, since foot is not necessarily a unit of length.
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Recap to Part X

As I warned you in the preface, part X contains more speculative topics, including some
that may not be of lasting value.

I like the Kałuza-Klein idea so much that I will be disappointed if Nature does not make
use of it somehow. I feel the same way about twistors, but less strongly. The treatment
of finite sized objects, the effective field theory approach to physics, and topological field
theory are all topics that in all likelihood will last.

In contrast, the chapters on the cosmological constant paradox and on quantum gravity
are wildly speculative and, some might say, do not belong in a textbook. But I disagree:
textbooks should not consist exclusively of material that has been carved in stone, or even
worse, embalmed.





Closing Words

I admire Einstein’s theory of gravity as a work of art.
—Max Born

In his last years, as I knew him, Einstein was a twentieth
century Ecclesiastes, saying with unrelenting and indomitable
cheerfulness, “Vanity of vanities, all is vanity.”

—Freeman Dyson1

Here I collect some closing words,2 a few random thoughts that constitute neither a
conclusion nor a summary, just a bit of purple prose.

Theoretical physicists have been bowled over, not only by the aesthetic appeal and
observational successes of Einstein gravity, but also by its profound impact. As we have
seen, Einstein’s theory is characterized by four fabulous features:

1. its mathematics is strikingly elegant;

2. its input consists of one single long-established fact that would otherwise be deeply puzzling;

3. its predictions were immediately verified; and

4. it has profound things to say about our understanding of the world, the very nature of

spacetime.

As mentioned in chapter V.2, my enthusiasm is based not merely on the impact of
Einstein gravity on physics, but also on the impact of Einstein gravity on how we do
theoretical physics. With its great success, Einstein gravity has in time become a model
for theoretical physics. It remains to be seen how fruitful this approach will prove to be,
but there is no denying its appeal for theoretical physicists. Latch onto a well-established
but not understood physical fact, start with an attractive mathematical framework, get the
whole enchilada in one fell swoop, and enjoy a dramatic, almost immediate, confirmation.
When this approach works, as it did for Einstein, it’s fabulous, no question.
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We may call this the Einstein mode of theoretical physics, exemplified later by Dirac,
for example, albeit at a somewhat lower level. Theoretical physicists have strived for this
ideal3 ever since, but thus far, always stumbling on one or the other of these four features.

———

The most beautiful experience we can have is the mysterious. It
is the fundamental emotion that stands at the cradle of true art
and true science. Whoever does not know it and can no longer
wonder, no longer marvel, is as good as dead.

—A. Einstein

Einstein revealed to us two mysteries, the mystery of gravity and the mystery of the cosmos.
The two are logically separate, but we feel vaguely that they are somehow intimately linked.
At our present level of understanding, while the universe certainly needs gravity, gravity
appears to be indifferent to the universe: gravity operates within the universe, growing
structures and making it expand. All essential tasks as far as the universe is concerned, but
even if the universe consists of only the sun and the earth and nothing else, the Einstein-
Hilbert action could still work its magic. We don’t even know what a linkage between the
two mysteries might look like, if there is one. The Dirac large number hypothesis—that
fundamental constants could conceivably age with the universe—may offer a primitive
example of this. To me, a decaying cosmological constant might be an attractive resolution
of the cosmological constant paradox.

The cosmological constant paradox may or may not be the key to a deeper understanding
of gravity, but let us hope that the dark energy is not due to a random bunch of scalar fields.4

Einstein said, “Physics should be as simple as possible, but not any simpler.” To this, we
say, “The solution to the cosmological constant paradox should be as crazy as possible, but
not any crazier.”

Is our present understanding of cosmology too simple? With a first order ordinary dif-
ferential equation and the liberal use of the Gamow principle, we have conquered the
universe! It certainly cannot be denied that we have achieved an astonishingly quanti-
tative understanding of cosmological data.5 In a way, it is cause for celebration. Physics
triumphs. But if there is no more cosmic mystery, might that not cause a sense of bitter
disappointment, even among the most rationalist physicists? Is that all there is to it?

Perhaps our present cosmology has already been made too simple for what Einstein
would have liked: is it simpler than “as simple as possible”?

So I am glad, and I suppose many others are also, to feel that, in spite of the fabulous
success of the standard model of cosmology,6 a sense of unease remains. I suspect that
many, deep down, are elated by the coincidence problem.7 In the unfathomable and
unceasing parade of the eons, why8 now?

There is something seriously incomplete in our understanding. Both dark matter and
dark energy were largely unexpected and are an embarrassment for particle physics, but it
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is by and large the particle physicists who think that almost everything is understood, not
the astronomers and the cosmologists.

Einstein spoke of the asylum more than once. We have grown to be far more self-
confident and conceited than he.

Wigner once wrote about the unreasonable effectiveness of mathematics in physics (see
also chapter VII.3). Here we could speak about the unreasonable effectiveness of physics
in understanding the universe. A first order ordinary differential equation suffices! Of
course, we understand this as a consequence of the perfect cosmological principle,9 but
still.

Is the universe we understand not the whole universe, but the universe filtered through
the human mind? The distinguished cosmologist E. R. Harrison, in his final book Masks
of the Universe, suggests that our current cosmology, with its dark and light sectors, was
yet another mask obscuring the true universe. My impression is that most in the physics
community are inclined to dismiss Harrison, but I sympathize with his mystical views to
some extent.

The universe may have its own mysteries that gravity knows not.

———

Wheeler once argued that the universe could only be closed. Open and flat universes
troubled him, Wheeler said, because the infinite space implied that everything that could
have happened would have happened. Another version of you would have read not only
this book, but also this book in all its many drafts. The same argument could have been
invoked to rule out the flat earth with its edge infinitely far away. As we go on an endless
quest to the edge, we would have encountered every imaginable goblin and monstrosity.
Just as some films are not suitable for young minds, infinity is not suitable for the human
mind. In theoretical physics, we must have cutoffs.

With an accelerating expansion, however, the universe separates into isolated regions
that cannot communicate with each other. So, Wheeler’s concern might be mollified.

We are often awed by the power of aesthetic or “philosophic” arguments, but on the
other hand, we should not succumb to selective bias and fail to remember the ones that
failed. But has Wheeler’s argument really failed? No. The universe has not been proven to
be flat.10

The underlying algebra of physics was extended from the Galilean algebra to the Lorentz
algebra. As the flat earth once gave way to the round world, will the Lorentz algebra be
replaced by the de Sitter algebra?11

———

As for the mystery of gravity, let us not forget that we actually have a pretty good under-
standing of gravity; in particular, the connection with spacetime curvature is nothing short
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of astonishing. We have merely gotten used to it. But by its very nature as a quest, theo-
retical physics always wants more. Mainly, theorists would like gravity (1) to be quantized,
and (2) to be unified with the other interactions.

The internal consistency of physics appears to demand the quantization of gravity. Some
simply cannot tolerate to see the world split up into two pieces, a quantum world and a
classical world. The best argument I have heard is that the uncertainty principle would be
violated if gravity is not quantized: gravity could then be used as a classical probe.12 But
dissenters abound.13 One line of thought is that gravity may not be fundamental; another,
similar, line of thought is that gravity may be induced. Then there is the Dysonian view
that the quantization of gravity is inconsequential14 for physics.

We talked about quantum gravity in chapter X.8—a mishmash of thoughts about quan-
tum gravity. An intriguing possibility is that when we get into the Planckian domain, we
will have to classicalize physics, in contrast to that previous occasion when we got into the
atomic domain and had to quantize physics.

———

While the quantization of gravity may be required, the unification with the other three
interactions does not appear to be.15 Gravity stands apart from the other three interactions.
As Einstein said, the gravitational field is first among equals. While the other three
interactions operate within spacetime, Einstein gravity is spacetime. For me (and of course
also for many other theoretical physicists), the most puzzling aspect of Einstein gravity is
its ability to alter the causal structure of spacetime completely. When we focus on gravity as
a small perturbation on Minkowski spacetime, as in chapter IX.4, then it behaves just like
the other three interactions. When quantized, gravitational waves give rise to the graviton,
which conceptually does not differ vastly from the photon. But when gravity is allowed to
curve spacetime globally, all manner of strange goings-on torment theoretical physicists.

Is unification a prerequisite for understanding gravity? We don’t know. Historically,
neither electricity nor magnetism could be fully understood until they were unified.

———

Perhaps a greater mystery than either the mystery of gravity or the mystery of the universe
is the mystery of the quantum. We know how to calculate but not how to interpret.
We teach and learn the Copenhagen interpretation, but many prefer the many worlds
interpretation. Yet, to many, the concept of the many many, very many, worlds somehow
exudes a sleaziness that cannot be expressed in words.16

Quantum field theory in curved spacetime is a well-developed subject and leads to
Hawking radiation, for example, but again I have lingering doubts. In calculating a loop
diagram for some quantity, say the electron’s magnetic moment at the horizon, are there
subtleties involving virtual particles propagating inside the horizon and then out again?
Presumably it is okay over a distance scale on the order of the Compton wavelength of the
particles involved.

In the path integral formalism, to calculate the propagator of a particle from point A to
point B, we are instructed to sum over all classical paths going from A to B. Suppose A
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and B are both near but outside the horizon of a black hole. Do we sum over the paths in
which the particle goes inside the horizon and then out again? These paths are forbidden
by classical physics.

Here is a toy problem. Consider the quantum mechanics problem of a particle near a
sharp cliff, that is, a potential of the form V (x)= 0 if x > 0 and V (x)= −w if x ≤ 0. We all
know how to do this using the Schrödinger formalism, but in the path integral formalism,
do we sum over the classical paths in which the particle falls off and can’t come back (or,
depending on the initial and final condition, paths in which the particle stays down and
doesn’t know about life in the upper crust)? One approach would be to regularize, that is,
to round off the sharp edge of the cliff. Admittedly, this problem does not have the causal
richness of black hole physics.

More generally, in doing a quantum gravity path integral sum over all gravitational field
configurations, are we to include configurations containing black holes or not? The glib
response is of course, in the same way that when we do the path integral sum for a quantum
field theory, we are to include the solitons, if any, in the spectrum. But the internal world
of a black hole is outside “knowable” physics.17

Many frontier questions involve quantum field theory. Is quantum field theory solid?
We should think so, at least in the infrared. But yet, as explained in chapter X.8, quantum
field theory as we understand it does not appear to accord with observation, even if we trust
it up to merely the electron mass scale, let alone the Planck or string scale. Students often
think that quantum field theory is a closed subject, on which (too?) many textbooks have
been written. But if history is a guide, there ought to be a wealth of phenomena in quantum
field theory yet to be dreamed of, just as there is a wealth of phenomena in quantum field
theory we now know of that were quite unknown in the 1950s and 1960s. There is the
additional mystery in the general belief that quantum gravity cannot be a local quantum
field theory, since quantum gravity does not have any local observables.18

Is it possible for Planck’s constant �(M) to depend on the relevant mass or energy
scale M? Does it make sense to raise this possibility? Why not? After all, � is the param-
eter that controls the proximity of classical and quantum physics. At one time, anybody
suggesting that the fine structure “constant” α(M) was not constant might also have been
accused of being crazy (but not crazier).

It is tempting to blame the woes of quantum gravity on quantum mechanics, as al-
ready said in chapter X.8. The blame game is certainly inappropriate in many human
situations; it may also be inappropriate in theoretical physics. Consider the ultraviolet
catastrophe as an example. Around the start of the 20th century, would you have blamed
electromagnetism or statistical mechanics?19 Place your bet! As it turned out, neither was
to be blamed. A novel kind of physics had to arrive on the scene. Similarly, perhaps the cos-
mological constant paradox and the difficulties of quantum gravity are to be blamed neither
on quantum mechanics nor on gravity, but are crying out for a novel kind of physics.

———

The existence of spin 1
2 fermions is no doubt another deep mystery of physics.20 The

existence of the representation ( 1
2 , 0)+ (0, 1

2) of the Lorentz group allows the existence of
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something that becomes the negative of itself upon a 2π rotation, but only in a quantum
world! Suppose we didn’t know about the electron. Could we have imagined that Nature
would fill this representation? This suggests another one of our extragalactic fables: in
some alternative history of physics, the existence of a spin 1

2 particle could have been
another famous prediction of special relativity, like E =mc2.

If we didn’t know about the electron, would we have known that there is another
formulation of Einstein gravity using the vielbein instead of the metric? (The answer is
yes, because Cartan did invent the vielbein without invoking the electron.)

The fermion puzzles me. Sometimes I feel that the world ought to contain only bose
fields. Perhaps half integral spins are emergent.21

———

Traditionally, particle physicists have focused on the bad high energy behavior of grav-
ity, but that may not be the real issue, as mentioned in chapter X.8. Furthermore, work
using the twistor formalism sketched in chapter X.6 indicates that superficially more com-
plicated theories, like Einstein gravity and Yang-Mills theory, may have better ultraviolet
behavior than a simple scalar field theory. People have discovered amazing cancellations
and tantalizing simplifications22 in calculating amplitudes for the scattering of gravitons.
One particularly intriguing hint is that amplitudes in Einstein gravity can be regarded as
the square, or sum of squares, of amplitudes23 in Yang-Mills theory. Not only is Einstein
gravity deeply geometrical, but also the gauge theories that underlie high energy physics
may be geometrical, at least much more so than we have appreciated thus far.

This book adores the action. But, as was made quite stark in the twistor chapter,
dramatic simplification occurs when, and only when, we restrict the 4-momenta in the
scattering amplitude to be lightlike, that is, to be on-shell. The action carries a lot of off-
shell information; in other words, using the action, we can calculate quantum amplitudes
A(p1, p2, . . . , pn), with p2

a
taking on arbitrary values that are not necessarily 0. The

Einstein-Hilbert action certainly does not look like the square of anything. A lot of relevant
physics might be hidden inside the action.24

———

As a low energy effective theory, Einstein gravity is rather rigid, which is both good and bad.
In the effective field theory approach, there is little room on either side of the Einstein-
Hilbert action: the higher dimensional terms are relevant only at short distances, while
the only lower dimensional term is the mysterious cosmological constant. No room to fool
around in. To deal with the cosmological constant paradox, we may be compelled to add
nonlocal terms, and they can readily be designed to account for observations. Alternatively,
we could abandon Lorentz invariance, thus opening up the gap25 between the Einstein-
Hilbert and the cosmological constant terms.



Closing Words | 783

Theoretical physics as we now know it rests on many pillars: the quantum principle,
the action principle, locality, causality, Lorentz invariance, general coordinate invariance,
the gauge principle, and perhaps a few other odds and ends. When people make a list
like this, it is hard to see why certain things are included and others not. These concepts
or principles intertwine and are mutually dependent, to some extent. For example, the
action as usually formulated involves a local Lagrangian and has locality and causality built
in, and if by the quantum principle, we mean the path integral formalism, the quantum
principle is dependent on the action. And of course general coordinate invariance and the
gauge principle are not principles at all but merely a statement that gμν and Aμ contain
“nonphysical” degrees of freedom. So, in the future, if one of these pillars were to crack and
fall, which one would it be? Perhaps there are already some tantalizing hints that locality
might fail. (Some might even argue that string theory is not a local theory but predicts
locality at low energies.) Indeed, it is causality that we want to preserve, not locality.

I am particularly respectful of, perhaps even awed by, the action principle. It is truly
amazing that, while many phenomenological theories cannot be derived from an action,
all the fundamental interactions we know—gravity, strong, weak, and electromagnetic—
can be. A priori, there is no transparent reason why all the foundational equations we know
can be written as the extrema of something.

Our friends the observational cosmologists have given us much comfort regarding
whether physics operates the same way throughout the universe. Nevertheless, many
theoretical physicists might not be bent too much out of shape if some of their cherished
concepts fail on the cosmological scale, as mentioned in chapters X.7 and X.8. The universe
may be secretly acausal, but only the universe knows about it.

———

In special relativity, young Einstein was able to accomplish what Lorentz and Poincaré
were not able to do, even though the two established giants had most of it worked out, at
least mathematically. After all, Lorentz had the Lorentz transformation in all its glory. The
two older physicists were not able to abandon the perfectly sensible notion that if there
is a wave, something must be waving. (Incidentally, Maxwell believed in the ether, even
though his equations did not need it.26) So they had the ether as a dynamical variable.
Einstein simply trashed the ether and asserted that nothing could also wave.27

Nowadays, any student is able to accept, without blinking twice, that an electromagnetic
wave consists ofAμ waving—yes, just a mathematical symbolAμ known as a field waving.
Of course, there are energy and momentum densities associated with the wave, and so it
is real in that sense.

But what is a field? After spending years writing a textbook on quantum field theory, I
understand a field as something that does what a field does. No more, no less. A recent
textbook28 on electromagnetism asserts that the electromagnetic field is as real as a rhino.
My response is that a quantum field is as real as a quantum rhino.
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To move forward, physics had to abandon an apparently ironclad piece of common sense:
where there is a wave, something must be waving. I would not be at all surprised if it turns
out that to move forward, we have to abandon an equally ironclad piece of common sense.

Another reason that the old guards such as Lorentz and Poincaré failed while Einstein
succeeded was that they tried to derive special relativity from some dynamical theory of
the electron now mercifully forgotten. The establishment’s first reaction to Einstein’s work
was that the young fellow merely imposed the answer, which he had not derived in any way.

Einstein curved spacetime. Perhaps the next step is to endow spacetime with substance,
so that spacetime in neighboring regions can push against one another.29

———

Many have made careers out of worrying about quantum gravity. But classical gravity is
already plenty puzzling. When we first studied physics, we were told that physics should be
local, that something happening here can only affect something happening nearby, and for
a physical effect to propagate across spacetime, a field is needed.30 But the horizon around
a black hole is a strikingly nonlocal concept. Nothing happens locally. Observers falling in
do not notice anything. The puzzle is that the Riemann curvature is nice and smooth at
the horizon and can be made arbitrarily small for massive black holes. But somehow the
other fields in the world know about the metric gμν directly, not about Riemann curvature.

The horizon is an inherently nonlocal concept.31 By drawing a Penrose diagram, we can
see that we could be sitting peacefully while an incoming shell of matter far away threatens
to form a black hole soon, and we could be inside the horizon even before the black hole
forms.

Can we possibly modify general relativity so as to avoid having a horizon? Once again,
apparently not, because a black hole is a low energy phenomenon. Naively, we might also
think that the addition of local terms would not remove a nonlocal phenomenon like a
horizon. But perhaps one should still try—it is certainly conceivable, at least to me, that
the naive view is wrong.

———

The founders of quantum field theory wrote profound equations such as Aμ = 0 + Aμ

and ϕ = 0 + ϕ. Fields execute quantum fluctuation around vanishing classical values.
But then physicists became more sophisticated in the 1960s and wrote fancier equations
like ϕ = v + h, with v = 〈ϕ〉. The basic equation for the graviton field has the same
form: gμν = ημν + hμν. This naturally suggests that ημν = 〈gμν〉 and perhaps some sort
of spontaneous symmetry breaking. But gravity exhibits a fundamentally new feature:
gμν is a matrix and hence has a signature. Large fluctuations of hμν can change the
signature of gμν, and there could be regions with two times. An obvious thing to write
down would be a potential for gμν (which breaks general coordinate invariance) of the
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form V (g)= λ(gμν − ημν)
2, or more generally, a potential with a deep well pinning gμν to

values close to ημν. This induces a graviton mass of order m2
g
∼ λ/M2

P, so that λ
1
2 is given

by the product of the largest mass and possibly the smallest mass known to physics.
This line of thought raises the possibility that the potential V (g) might have minima

elsewhere. Perhaps there is a phase with gμν = 0. That could be the ultimate terrorist plot:
to unleash a gμν = 0 bomb that would annihilate spacetime in the victimized country.
Compared to this catastrophic transition, heading back into the Big Bang merely causes
gij to vanish; the Bang created space but not time. Could the universe have begun at a
singularity “where” g00 = 0 as well as gij = 0? Not only no space, but also no time. This
is not as wild as it may sound; indeed, as mentioned in an endnote in chapter IX.10,
both Einstein and de Sitter contemplated different versions of this for use as boundary
conditions.

———

In the beginning, the strong interaction was written in terms of nucleons and pions.
Decades passed before the correct dynamical variables were discovered. Writing the action
in terms of quarks and gluons rather than nucleons and pions turned out to be the crucial
step in understanding the strong interaction. It is conceivable that a similar step has to be
taken for gravity. At the simplest level, we have already seen that the action can be written
in terms of either the metric or the vielbein. But a more drastic step may be needed,
and the discovery that the scattering amplitudes for gravitons are equal to the square
of the scattering amplitudes for gluons may offer a hint. Perhaps the correct dynamical
variables32 have yet to be found.

———

Could Einstein gravity be replaced by something more fundamental, which could lead to
1
G

√−gR effectively at low energy, much as quantum chromodynamics leads to the Yukawa
pion-nucleon theory? Suppose particle physics experiments had stopped in the mid-1950s.
Could we have leapt from Yukawa theory to quantum chromodynamics? It is conceivable
that, by thinking about the proton decay paradox, we could have. This may turn out to shed
some light on the cosmological constant paradox.33

The question, stated in the format of an IQ test question, is then “What is to gravity as
quantum chromodynamics is to pion-nucleon theory?”

I am not necessarily suggesting here that the graviton is composite. Indeed, a theorem
by Weinberg and Witten states, with rather general assumptions, that the graviton cannot
be a bound state. By the way, the AdS/CFT correspondence exemplifies a way around this
theorem. The gauge theory at the boundary of anti de Sitter spacetime could produce a
graviton, but only by growing a spatial direction at the same time.34
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Even if this theorem could be somehow evaded, the possible compositeness of the
graviton appears to be irrelevant to the cosmological constant paradox. Let the graviton’s
compositeness be characterized by a∗. In quantum field theory, this would be revealed in
the graviton’s propagator at a characteristic momentum of q∗ ∼ 1/a∗. But in the cosmolog-
ical constant paradox, the relevant momentum carried by the graviton is in what I called
the extreme ultra infrared, with qcosmological ∼ 1/Lcosmological ∼ 0, where Lcosmological is a
cosmological distance scale. Presumably, we have Lcosmological >>>> a∗. In other words,
the universe could care less if the graviton is composite at an energy scale of, say, 1 Tev.

It is not compositeness that we are after. For example, in the proposal mentioned in
appendix 1 of chapter X.7, the graviton propagator is modified at qcosmological by abandoning
Lorentz invariance rather than by appealing to compositeness.

———

Could gravity be part of a larger structure?
Note that this is a different question from the one asked in the preceding section. We now

understand the electromagnetic field as part of a larger structure.35 Gravity could be part of
a larger structure in a mathematical sense, as electromagnetism, based on the gauge group
U(1), is in fact part of a larger structure based on the gauge group SU(5) or SO(10). The
larger structure reveals itself only at higher energies. But even if the structure is not seen
at low energies, it imposes physical consequences. Thus, electric charge is quantized if
the larger structure is a grand unified theory based on a simple group, and we understand
why Qelectron = −Qproton exactly, a fact of cosmological significance. There is no way of
understanding this fact within electromagnetism itself.

This is an example of an unintended consequence in theoretical physics, in this case
a consequence of unifying electromagnetism with the strong and the weak interactions.
Perhaps the answers to some of the questions we are asking also have unintended con-
sequences. It is conceivable, for example, that unifying gravity with the other three inter-
actions is possible only if there are three families of quarks and leptons, the existence of
which poses one of the most puzzling questions in particle physics.36

The question, again stated in the format of an IQ test question, is then “What is to gravity
as grand unified theory is to electromagnetism?”

In chapter X.7, I mentioned two analogies to the cosmological constant paradox. Here
is yet another. The history of physics contains a number of logical impasses. One of my
favorite examples is radiant heat. The leading theory of heat at one time held that matter
contained a mysterious fluid known as the caloric, but the boring of cannons (see endnote
1 in chapter VI.4) showed that the amount of caloric in iron appeared to be unlimited.
The alternative theory held that heat was due to the motion of molecules, which we now
know is the correct explanation, but this theory suffered from a fatal logical impasse: the
phenomenon of radiant heat. How could molecular motion be transmitted across empty37

space? The logical contradiction seemed insupportable.
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The paradox was solved by the discovery that radiant heat was a form of electromagnetic
energy. Perhaps the cosmological constant paradox will be solved in an analogous way: a
piece of physics is missing from our present understanding.

———

Then there is the mystery of time. In our current description, space is created at the Big
Bang, but not time. In spacetime, space and time are unified, but time, to paraphrase
what Einstein said about gravity, appears to be first among equals. Various authors38 have
suggested that time may be discrete, but discrete time appears to be conceptually more
difficult than discrete space, although numerical workers use it routinely.39

In the AdS/CFT correspondence mentioned in chapter IX.11, from the point of view of
the physicists living on the boundary, a spatial coordinate appears to emerge (as mentioned
earlier). A subject of current research is a possible dS/CFT correspondence. If this were
to be realized, then we would have the intriguing scenario of time emerging.

———

In Einstein gravity, the origin of spacetime is intimately linked to the origin of gravity.
Emergent spacetime has been discussed in a variety of contexts. It has long been known
in condensed matter physics that various lattice Hamiltonians lead to emergent gauge
fields40 in the low energy effective theory. And it was speculated that the gauge fields
responsible for the three nongravitational interactions could all be emergent from an
underlying lattice system containing only quantum spins.41 Given this background, it is
natural to speculate that the graviton also emerges from some underlying lattice system.42

But while it is surprisingly easy43 for a gauge field to emerge from a condensed matter
system, it is very difficult, because of the Weinberg-Witten theorem, for a gravitational
field to emerge.

———

A year before Einstein’s death, John Wheeler asked the old man to speak to a select group
of students. Besides repeating his opposition to quantum mechanics, Einstein also made
a cryptic comment: “There is much reason to be attracted to a theory with no space, no
time. But nobody has any idea how to build it up.”44

Perhaps we have to go beyond space and time. But these are just words. As the old man
said, nobody knows how.45
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———

Over time, many speculative thoughts about gravity have been thought, some from the
great, some from the not-so-great, and more than plenty from the cracked. To paraphrase
the grand old man, future speculations should be as wild as possible—in the way that
quantum physics would have seemed utterly wild to prequantum physicists (such as
Maxwell) and that curved spacetime would have seemed utterly wild to prerelativistic
physicists (such as Newton)—but not any wilder. That is the difference between theoretical
physics and cracked pottery: the “not any wilder” part.

This has been a long trek, in spite of what I said at the beginning of chapter VI.1. And
now I end, with an exhortation to the reader, quoting Henry David Thoreau: “What old
people say you cannot do, you try and find that you can. Old deeds for old people, and new
deeds for new.”46

Notes

1. F. Dyson, UNESCO lecture, 1965.
2. In the same sense as the closing words in my textbook on quantum field theory.
3. String theory satisfies feature 2, inputting the existence of gravity, but fails at feature 3.
4. Scalar fields are fields without qualities, colorless individuals with no character or personality who could

blend in anywhere. Quantum field theory textbooks start with scalar fields for pedagogical clarity, precisely
because they are without qualities.

We could use scalar fields to do practically anything we want. They fit in anywhere. In cosmology, scalar
fields are used all the time and all over the place. They could drive inflation. They could account for dark
energy and perhaps even dark matter. Almost anything could be explained with scalar fields. Attempted long
distance modifications of gravity essentially all amount to adding scalar fields. Scalar fields are way too cheap
and so so painless. Just throw them in. People get them for free.

Perhaps we should feel a bit uneasy? I have no objection to composite scalar fields, of course, but then a
deeper dynamical understanding is called for.

5. Such as the location of the acoustic peaks in the microwave background discussed in chapter VIII.3.
6. Sometimes compared to and contrasted with the standard model of particle physics.
7. I touched upon the coincidence problem in chapter VIII.1.
8. But recall from chapter VIII.3 that there is another coincidence problem that we apparently don’t need to

worry about: photon decoupling and matter dominance also occurred at roughly the same time.
9. Sounds a bit like the perfect celestial dome that our predecessors talked about. See chapter VIII.1.

10. As explained in chapter V.3, observations can only set a lower bound on the universe’s characteristic length
scale.

11. As mentioned in appendix 3 of chapter X.7.
12. See appendix 4 of chapter X.8.
13. As mentioned in chapter VII.3, for example, and in chapter X.8.
14. I don’t subscribe to this idea. Even if the measurable effect of quantization is far too small for actual

measurement, a consistent quantization might require something else, for example, that the dimension
of spacetime be 4. See endnote 15.

15. As mentioned in chapter X.8, the two are logically distinct issues.
16. The Dao that can be expressed in words is not the true Dao.
17. And, indeed, this assertion is supposed to account for the entropy of black holes. See the discussion of

entanglement entropy in the literature.
18. As explained in chapter X.8.
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19. Apparently, Planck did not believe in the equipartition theorem, so that for physicists like him, the ultraviolet
catastrophe was not a catastrophe at all.

20. Jordan’s anticommutation manuscript languished in Born’s pocket for a whole year. As if noncommutation
were not shocking enough!

21. See, for example, A. Zee in Quantum Coherence: 30 Years of Aharonov-Bohm Effect, ed. J. Anandan, Consider
the effect discovered by ’t Hooft et al. that binding a boson to a magnetic monopole produces a fermion. The
group theory of SO(10) is also highly suggestive. See QFT Nut, p. 428.

22. As alluded to in chapter X.6.
23. Appropriately color stripped.
24. Fermat’s least time principle does not know that light is a wave. But here the Einstein-Hilbert action certainly

knows about the graviton and its interaction with other gravitons. Could it be that, analogous to Fermat’s
principle, there are things that the Einstein-Hilbert action does not know about?

25. As described in appendix 1 of chapter X.7.
26. So what is the lesson? If your equations do not need it, does it exist?
27. This reminds me of an old puzzle. What is greater than God, and if you eat it, you will die? (Sometimes I

use this to puzzle young children.)
28. A. Garg, Electromagnetism in a Nutshell, Princeton University Press, 2012.
29. As in the rebellious symphony alluded to in appendix 1 of chapter X.7.
30. However, the mysteries of quantum mechanics have also led to entanglement and the Aharonov-Bohm effect.
31. But confusingly, while we cannot directly perform local measurements to detect the presence of a horizon, we

can do so indirectly. By measuring whether light rays tend to converge or diverge, we can detect the presence of
a trapped surface (or apparent horizon). A sequence of highly plausible theorems (each of which nevertheless
involves some technical assumptions) by Penrose, Ellis, and others, combined with the unproven cosmic
censorship conjecture, states that the presence of a trapped surface implies the presence of a horizon.

32. Imagine a civilization in some other galaxy that developed a theory of light based on the intensity and
polarization of light beams. Color could be expressed as a 2-dimensional vector based on something like
our color wheel. The theory could account for most observations but would eventually be found to be lacking
when confronted with wave phenomena. Is our theory of gravity an analog of this kind of theory?

33. As explained in appendix 1 to chapter X.7.
34. See, for example, G. Horowitz and J. Polchinski, in D. Oriti (as cited in chapter X.8, note 2).
35. Gerard ’t Hooft has given an elegant expression for the Maxwell field Fμν in terms of the Yang-Mills field

Fa
μν . Is there an analog for gravity? Can gμν be written in terms of some more elaborate object Ga

μν
?

36. In the dream of the ultimate theory, everything will be fixed, not just the fact that there are three families.
That would be the final response to the anthropic alternative to physics.

37. I am not enough of a historian to know whether attempts were made to measure the transfer of radiant heat
across a chamber with its air pumped out.

38. Including T. D. Lee and G. ’t Hooft.
39. As explained in our discussion of the initial value problem in chapter VI.6.
40. There is an extensive literature starting from the late 1980s with the discovery of fractional quantum Hall

fluids and of high temperature superconductivity.
41. For one particular example, see A. Zee, “Emergence of Spinor from Flux and Lattice Hopping,” in M. A. B.

Bég Memorial Volume, ed. A. Ali and P. Hoodbhoy, World Scientific, 1990.
42. See especially the work of X. G. Wen and his collaborators.
43. For example, write the spin field (a unit vector �n) as �n(x)= z†(x)�σz(x) in terms of a spinor field z(x) and

the Pauli matrices �σ (as introduced in chapter X.6). The local symmetry z(x)→ eiθ(x)z(x) leads naturally
to a gauge potential. See, for example, X. G. Wen and A. Zee, “Possible T and P Breaking Vacua of O(3)
Non-Linear σ -Model and Spin Charge Separation,” Phys. Rev. Lett. 63 (1989), p. 461.

44. T. Damour, O. Darrigol, B. Duplantier, and V. Rivasseau, eds., Einstein, 1905–2005, Poincaré Seminar 2005,
Birkhäuser, 2006, p. 174.

45. The proposal mentioned in appendix 1 of chapter X.7 might conceivably be a first tentative step in this
direction.

46. H. D. Thoreau, Walden.
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Élie Cartan (1869–1951)

Gustav Mie (1869–1957)

Willem de Sitter (1872–1934)

Karl Schwarzschild (1873–1916)

Max Abraham (1875–1922)

Albert Einstein (1879–1955)

Gunnar Nordström (1881–1923)

Amalie Emmy Noether (1882–1935)

Arthur Eddington (1882–1944)

Hermann Weyl (1885–1955)

Theodor Kałuza (1885–1954)

Johannes Droste (1886–1963)

Alexander Alexandrovich Friedman (1888–1925)

Attilio Palatini (1889–1949)

Kornel Lanczos (1893–1974)
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Solutions to Selected Exercises

In the book of life, the answers aren’t in the back.
—Charles M. Schulz, speaking through

Charlie Brown

Prologue

1 With x and L as labeled in figure 1 (with sand replaced by air), the time getting from F to G is given
by T = c−1

a

√
x2 + A2 + c−1

w

√
(L− x)2 + B2. (Since the math involved is high school level, I won’t even

bother to define A and B.) Setting the derivative of T with respect to x to 0, we obtain cwx/
√
x2 + A2 =

ca(L− x)/
√
(L− x)2 + B2, which we recognize as cw sin θa = ca sin θw.

I.1 Newton’s Laws

1 The first part is obvious since δ(x) is sharply spiked at x = 0, so that in the integrand we can replace f (x)
by f (0) and then do the integral. In the second part, change variable to y = ax and note that the limits of
integration depend on the sign of a.

2 Write r ′ ≡ dr
dθ

= − 1
u2 u

′, so that the equation ( dr
dθ
)2 = 2r4

l2
(ε − v(r)) becomes

u′2 + u2 − 2κ
l2
u= 2ε

l2

You recognize this as just the shifted harmonic oscillator, which you solve instantly as

1
r

= u= κ

l2
(1 + e cos θ)

with the eccentricity e given by e2 = 1 + 2εl2
κ2 . That the orbit closes is now obvious.

3 We could still use (19) except that the root rmin is now negative, which is not physical since u= 1/r >
0. A moment’s thought indicates that the lower limit for the u integral in (19) should be set to 0.

Changing integration variable as before, we obtain 
θ = 4
∫ π

2
ζmin

dζ , with ζmin determined by sin2 ζmin =
− umin

umax−umin
= 1

2 − κ

2
√

2εl2+κ2
. First, let’s check that we are on the right track by turning off gravity: set κ = 0,

then ζmin = π/4 and 
θ = π , the correct answer for light moving in a straight line. Next, expanding to
leading order in κ , we obtain
θ = π + 2κ

l
√

2ε
. We now express the deflection angle (as usually understood,
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that is, straight line corresponds to no deflection) 
θ = 2κ
l
√

2ε
in terms of the impact parameter b defined

by saying that as x → ∞, the light ray moves along a path specified by y = b. Translating into polar
coordinates, we have, as r → ∞, from (9) b� rθ , from (18) ṙ2 � 2ε and ṙ � −√

2ε. Using (15) and dr
dθ

= ṙ

θ̇
,

we determine l = b
√

2ε. Thus, 
θ = κ
εb

.
Newton of course did not know what the speed of light was, but if we set ṙ2 = c2 so that ε = c2/2, we

find the Newtonian result for the deflection of starlight by the sun


θ = 2GM
c2b

4–5 Any spherical mass distribution can be built up by stacking up spherical shells. The potential at
(x = 0, y = 0, z = R) due to a single Newtonian shell of radius a, thickness δ, and mass density ρ is
then given by

V (R)=
∫

Gρa2dadθ sin θdϕ√
R2 + a2 − 2Ra cos θ

= 2πGρa2δ

∫ 1

−1

du√
R2 + a2 − 2Rau

= 2π(Gρa/R)δ
[
(R2 + a2 + 2Ra)1/2 − (R2 + a2 − 2Ra)1/2

]
Outside the shell, R > a and the square bracket evaluates to (R + a)− (R − a)= 2a and so V (R)outside =
Gρ(4πa2δ)/R = GMshell/R, the first superb theorem. Inside the shell, R < a and the square bracket
evaluates to (R + a) − (a − R) = 2R and so V (R)inside = Gρ(4πaδ), which means the shell exerts no
force on an observer inside—he is tugged in all directions—the second superb theorem.

I.3 Rotation: Invariance and Infinitesimal Transformation

2 Intuitively, it should be obvious, since
∫
dxdyδ(x)δ(y)f (x , y)= f (0, 0) just picks out the value of the

function f at the origin. More formally, we have

δ(x′)δ(y′)= δ(cos θ x + sin θ y)δ(− sin θ x + cos θ y)

= δ(cos θ x + sin θ y)δ

(
− sin θ x − cos2 θ

sin θ
x

)

= δ(cos θ x + sin θ y)δ

(
1

sin θ
x

)
= δ(sin θ y)δ

(
1

sin θ
x

)
= δ(x)δ(y)

where the second equality follows since the first delta function forces y = − cos θ
sin θ

x. This result can be
generalized to any dimension. For example, in 3-dimensional space, δ(x′)δ(y′)δ(z′) = δ(x)δ(y)δ(z), a
result we will use in chapter II.1.

5 We could either perform the integral after writing down the components of �p explicitly, or argue by
rotational invariance that the integral must be proportional to δij . The proportionality constant could be
then determined by contracting with δij (using the repeated index summation convention).

I.4 Who Is Afraid of Tensors?

4 Write �L ≡ �l × �̇r + C(r)�r with C(r) ≡ κ
r

and differentiate: �̇L = �l × �̈r + C(r)�̇r + C′(r)ṙ�r . Use �̈r = − κ

r3 �r ,

r2 = �r2, so that rṙ = �r . �̇r , and the identity derived in the text, so that �l × �r = r2�̇r − (�r . �̇r)�r . From here a

few lines of arithmetic lead to �̇L = 0. I am dealing with the Laplace-Runge-Lenz vector per unit mass here.
Of course, if you like, you can multiply everything by m and write �p =m�̇r .

5 SijAij = −SjiAji = −SijAij = 0, since something equal to its own negative has to vanish. Note that the
second equality follows from relabeling the dummy summation indices.
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8 Cyclically permute the definition of H :

Hk.ij =Gki .j +Gkj .i

H i .jk =Gij .k +Gik.j

Hj .ki =Gjk.i +Gji .k

Add the first two lines and subtract the third. Then Gki .j = 1
2 (H

k.ij +Hi .jk −Hj .ki).

9 For example, for D = 2, let us evaluate εijRipRjq for p = 1, q = 2. We have εijRi1Rj2 = ε12R11R22 +
ε21R21R12 = ε12(R11R22 − R21R12)= ε12 det R.

I.5 From Change of Coordinates to Curved Spaces

1 We have ds2 = gμν(x + dx)(−dxμ)(−dxν)= gμν(x)dx
μdxν + . . . , with the dots indicating higher order

terms.

3 �= 2π
W cosh 2πy

W

4 As explained in appendix 2, this space is just E3. Transform coordinates by x = √
r2 + a2 sin θ cos ϕ,

y = √
r2 + a2 sin θ sin ϕ , z= r cos θ . Note that r = 0 represents a disk of radius a in the (x-y) plane. The

surfaces of constant r are ellipsoids, and the lines of fixed θ and ϕ are hyperbolas.

5 +1 and −1, respectively.

10 This follows immediately from the result of exercise 9 with θ1 renamed θ . We can also see this more
geometrically by noting that the defining equation for Sd , namely (X1)2 + (X2)2 + . . . + (Xd+1)2 = 1,
may be written as (X1)2 + (X2)2 + . . . + (Xd)2 = 1 − (Xd+1)2, that is, as made of a collection of Sd−1 with
radius

√
1 − (Xd+1)2 as Xd+1 ranges from −1 to +1.

16 Let the torus be formed out of a flexible cylindrical tube of radius a and length 2πL. It is embedded in E3

according to X = (L+ a sin θ) cos ϕ, Y = (L+ a sin θ) sin ϕ, Z = a cos θ . Note that the two coordinates
θ and ϕ on the torus run from 0 to 2π , with θ winding around the tube and ϕ running around the “hole”
of the torus. Then ds2 = dX2 + dY 2 + dZ2 = a2dθ2 + (L+ a sin θ)2dϕ2.

17 Given ds2 = Adu2 + Bdv2 + 2Cdudv, with A, B , C functions of u, v. Let u= f (x , y), v = g(x , y), with
two unknown functions f and g, so that

du= fxdx + fydy , dv = gxdx + gydy

Plugging in, we have

ds2 = A(fxdx + fydy)
2 + B(gxdx + gydy)

2 + 2C(fxdx + fydy)(gxdx + gydy)

Collecting terms and setting the coefficient of dxdy to 0 and the coefficients of dx2 and of dy2 equal to
each other, we obtain two equations that we can solve for fy and gy . In other words, we have two equations
giving ∂yf and ∂yf in terms of fx , gx and A, B , C. Now think of this as an initial value problem with
y playing the role of time. Let us specify the two functions f (x , y0) and g(x , y0) at some initial time
y0. Our two equations tell us what ∂yf and ∂yf are, which allows us to determine the two functions
f (x , y0 + δy) and g(x , y0 + δy) at some infinitesimally later time y0 + δy. In other words, we can integrate
to obtain the unknown functions f (x , y) and g(x , y), at least within some local region. (Of course, in the
integration, the functions A, B , C are to be treated as functions of x , y, that is, A= A(f (x , y), g(x , y))
and so forth.) Thus, within some coordinate patch, the metric can be written in the conformally flat form
ds2 =�2(x , y)(dx2 + dy2).
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18 Change coordinates by u= log r , v = θ , and we obtain ds2 = (dr2 + r2dθ2). The space is just the plane
in disguise.

I.6 Curved Spaces: Gauss and Riemann

4 With no loss of generality, we can pick the point P to be (x , y)= (0, y∗). A particular set of locally flat
coordinates (u, v) is given by x = y∗(u+ uv + . . .), y = y∗(v + 1

2 (v
2 − u2)+ . . .), where the dots represent

terms cubic and higher in u, v. We could of course trivially rotate (u, v) (and also translate) to obtain
another set of locally flat coordinates.

5 Fromg11 = (1+μ2u2), we haveB11, 22 = 0. Similarly,B22, 11 = 0. FromB12, 12 = 1
2μν. So 2B12, 12 −B11, 22 −

B22, 11 = μν, which is indeed the intrinsic curvature.

8 We have ds2 = dx2 + dz2/
(
pz

p−1
p

)2
. For example, for z= y2, gzz = 1/(4z) blows up at z= 0.

10 Let one line segment go from the point x to x + (
x)1, and the other to x + (
x)2. The angle between
the two line segments is given by

cos θ = (
x)1 . (
x)2/
√
((
x)1 . (
x)1)((
x)2 . (
x)2)

(defining (
x)1 . (
x)2 ≡ gμν(
x)
μ
1 (
x)

ν
2 and generalizing the standard high school formula for the

scalar dot product). Suppose we now calculate the angle with the metric g̃: the factors of � evidently
cancel between the numerator and the denominator.

11 Solution by counting. We can choose D functions, but we have to satisfy 1
2D(D + 1)− 1 conditions. We

have enough freedom for D = 2, but not for D > 2.

13 R = x+y
2x2y2

I.7 Differential Geometry Made Easy, But Not Any Easier!

2 We calculate the components of �V along the two basis vectors, namely �V . �eμ(y), and then use these
two components to form a linear combination of the two basis vectors. These words translate into an
expression for �V projected into the tangent plane: �VP(y)≡ ( �V . �eμ(y))gμν(y)�eν(y), where gμν(y) is the

inverse of the 2-by-2 matrix gμν(y) defined by gμν(y)gνλ(y)= δ
μ
λ . (For the sphere, gμν =

(
1 0
0 sin2 θ

)
and

gμν =
(

1 0
0 1/ sin2 θ

)
.) To see that the inverse is needed here, take the dot product of �VP(y) and a basic vector

�eλ(y):
�VP(y) . �eλ(y)= ( �V . �eμ(y))gμν(y)�eν(y) . �eλ(y)= ( �V . �eμ(y))gμν(y)gνλ(y)= ( �V . �eμ(y))δμλ = ( �V . �eλ(y))

In other words, ( �VP(y)− �V ) . �eλ(y)= 0, which is just another way of saying that �VP(y) and �V differ by a
vector normal to the surface. In other words, we subtracted out the component of �V normal to the surface
from �V to obtain �VP(y).

3 Multiply the two eigenvalue equations (for i = 1, 2)

(Kμν − kigμν)t
ν
i

= 0

by tμ
j (with j �= i) and subtract one from the other. We obtain (k1 − k2)gμνt

μ
1 t

ν
2 = 0. For those readers who

have studied quantum mechanics, does this remind you of the proof of wave function orthogonality?
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6 Take the dot product: �eρ . �eμ,ν = gρλ�
λ
μν

= �ρ .μν . Interchange ρ ↔ μ: �eμ . �eρ ,ν = �μ.ρν . Add to obtain
∂ν(�eρ . �eμ)= ∂νgρμ = �ρ .μν + �μ.ρν , which we can solve for � using I.4.15.

II.1 The Hanging String and Variational Calculus

2 Once again, we can solve ∇2�=GMδ(3)(�x) by dimensional analysis. It is also easy to verify the solution
explicitly. By rotational invariance, � can only depend on r2 ≡∑D

i=1 x
ixi . Differentiate this to obtain

rdr =∑D
i=1 x

idxi , so that ∂r

∂xi
= xi

r
. Then we have

D∑
i=1

∂

∂xi

∂

∂xi

1
rp

=
D∑
i=1

∂

∂xi

(
− pxi

rp+2

)
= p(p + 2 −D)

rp+2

We see that �∝ 1/rp with p =D − 2 solves the equation for �x away from the origin. The potential goes
like 1/rD−2, and so the force law is an inverse (D − 1) law.

3 Varying S with respect to b gives a′ = 0, and varying it with respect to a gives (r(1 − b))′ = 0. Fitting to
the boundary conditions at spatial infinity gives a = 1 and b = 1 − 2M

r
.

5 Describe the desired curve by y(x), with y the vertical axis. Released at rest at y = 0, the bead attains a
speed of v(y)= √

2gy after falling a distance of y (with the coordinate y chosen to point downward). We
see that the transit time (in suitable units) is given by

T =
∫ √

dx2 + dy2

y
=
∫

dx

[
1
y

(
1 +

(
dy

dx

)2
)] 1

2

You could proceed from here, derive the Euler-Lagrange equation, solve for y(x), and “rival” Newton more
than 300 years later. Note that in spite of my remark in the text, in this context, the notation y(x) seems
quite natural.

Here is the instructive part of the problem. We could just as well have chosen y as the variable and
solved for x(y). Then

T =
∫

dy

[
1
y

(
1 +

(
dx

dy

)2
)] 1

2

You can verify that, in contrast to the case with the previous choice, the second order differential equation
can now be integrated trivially to yield the first order differential equation

(
dx

dy

)2

= y

y∗ − y

with y∗ an integration constant. You could solve this easily with the change of variable y = y∗ sin2 θ .
Moral of the story: in solving variational problems, it pays to choose the independent variable wisely.

II.2 The Shortest Distance between Two Points

6 Varying the stated quantity, we obtain d
dλ

(
2gσν

dXν

dλ

)
= (∂σgμν)

dXμ

dλ
dXν

dλ
almost instantly, but this is just

(16).

8 Simply plug gμσ = e2�δμσ into (24) to obtain d
dl

(
e2�δμσV

μ
)= ∂σ� (since gμνV μV ν = 1). Noting that

d
dl
e2� = 2V ν∂ν�e

2�, we find, after cleaning up a bit,



798 | Solutions to Selected Exercises

dV λ

dl
+ 2

(
V ν∂ν�

)
V λ = ∂λ�

where ∂λ = gλσ∂σ�.

II.3 Physics Is Where the Action Is

4 δS = 2
∫
dx+dx−

(
∂δφ

∂x+
∂φ

∂x− + ∂φ

∂x+
∂δφ

∂x−
)

= 4
∫
dx+dx− ∂2φ

∂x+∂x− δφ

III.1 Galileo versus Maxwell

1 For convenience, write the velocity of the incoming ball as 2�v. In the center of mass frame, one ball has
velocity �v, the other −�v. After the collision, one ball has velocity �u, the other −�u. Energy conservation
gives �u2 = �v2. In the lab frame, after the collision, one ball has velocity �v + �u, the other �v − �u. Since
(�v + �u) . (�v − �u)= �v2 − �u2 = 0, the angle between the velocities of the two balls is 90◦.

Of course, the problem is so elementary that we can also easily do it in the lab frame. Momentum and
energy conservation give �v = �u1 + �u2, �v2 = �u2

1 + �u2
2. Squaring the first equation and comparing with the

second yields �u1 . �u2 = 0 immediately.

III.3 Minkowski and the Geometry of Spacetime

1 This is given in the preceding chapter.

3 Differentiate ημνV
μV ν = −1: d

dτ
ημνV

μV ν = 0 = 2ημνaμV ν = aνV
ν . In the rest frame of the particle

V μ = (1, �0) and hence a0 = 0.

4 We can choose �V to point in the 1-direction and x2 = x3 = 0. Solving the three equations VμV
μ =

−1, aμV μ = 0, and aμa
μ = g2, we obtain a0 = dV 0

dτ
= gV 1 and a1 = dV 1

dτ
= gV 0, giving the solution

t (τ ) = x0(τ ) = g−1 sinh gτ , x(τ) = x1(τ ) = g−1 cosh gτ . Thus, xμ(τ) traces out a hyperbola x(τ)2 =
t (τ )2 + g−2. We have V μ = (cosh gτ , sinh gτ , 0, 0) and aμ = g(sinh gτ , cosh gτ , 0, 0), which satisfy all
the stated equations. Note that with some suitable adjustments, this shows that for fixed ρ, this coordinate
transformation amounts to a transformation to the frame of an accelerating observer, with T = gτ and
ρ = g−1.

6 As explained in the text, we have Fμν → F ′μν = �μ
σ
�ν

ω
Fσω. Hence, F ′0i = �0

σ
�i

ω
Fσω and F ′ij =

�i
σ
�j

ω
Fσω. For example, for a boost along the 1-axis, � is given explicitly in the text, and you merely

have to write out the repeated index sums.

8 Denote by �(x , ϕ) a boost in the x direction by the rapidity parameter ϕ, and so on and so forth. Then,
with the abbreviation c = cosh ϕ , s = sinh ϕ , c′ = cosh ϕ′ , s′ = sinh ϕ′, we have

�(x , ϕ)�(y , ϕ′)=
⎛
⎜⎝
c s 0

s c 0

0 0 1

⎞
⎟⎠
⎛
⎜⎝
c′ 0 s′

0 1 0

s′ 0 c′

⎞
⎟⎠=

⎛
⎜⎝
cc′ s cs′

sc′ c ss′

s′ 0 c′

⎞
⎟⎠ (29)

Next we follow what we did in appendix 2 to chapter I.3. Compare �(y , ϕ′)�(x , ϕ) with �(x , ϕ)�(y , ϕ′)
by calculating
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(�(y , ϕ′)�(x , ϕ))−1�(x , ϕ)�(y , ϕ′)� I + ϕϕ′

⎛
⎜⎝

0 0 0

0 0 1

0 −1 0

⎞
⎟⎠

= I + ϕϕ′[Kx , Ky ] + . . .

= I − iϕϕ′Jz (30)

Here we used the symmetry of �, so that �(y , ϕ′)�(x , ϕ)= (�(x , ϕ)�(y , ϕ′))T , and thus in computing
the left hand side of (30) to the order indicated, we need only keep the ss′ term in (29). We have thus
verified (24).

III.5 The Worldline Action and the Unification of Material
Particles with Light

1 As in (15), we vary with respect to the auxiliary variable γαβ , which we then eliminate. We would like to vary
S with respect to γαβ . Using a matrix identity we have used again and again, we have δγ αβ = −γ αεδγεηγ ηβ
and δγ = γ γ βαδγαβ . For ease of writing, define hαβ ≡ ∂αX

μ∂βXμ. The variation of the integrand in (21)

thus gives δ[γ
1
2 γ αβhαβ ] = γ

1
2 [ 1

2γ
ηεδγεη(γ

αβhαβ)− γ αεδγεηγ
ηβhαβ ]. Setting the coefficient of δγεη to 0, we

obtain

hεη = 1
2γεη(γ

αβhαβ)

where the indices on h are raised and lowered by the metric γ . Multiplying this equation by hηε (and
summing over repeated indices), we find γ αβhαβ = 2 and thus γεη = hεη . Plugging this into (21), we find

that S = 1
2T

∫
dτdσ(det h)

1
2 2. Thus, S and SNambu-Goto are indeed equivalent in the sense that they lead

to the same equation of motion.

III.6 Completion, Promotion, and the Nature of the Gravitational Field

1 Consider a head-on collision p + k → p′ + k′ with p = (E , 0, 0, p) (note the trivial abuse of notation
here), k = ω(1, 0, 0, −1), and k′ = ω′(1, 0, sin θ , cos θ). Minkowski squaring p′ = p + k − k′ gives us,
for ω � p, ω′ = ω(E+p)

E+ω−(p−ω) cos θ , which is maximized when cos θ = 1. For a highly relativistic particle,

p = √
E2 −m2 � E − m2

2E , and we obtain the stated result.

2 The identity is s + t + u=∑
a m

2
a
.

3 In calculating ∂μT μν , we see that the first few steps are the same as in calculating ∂μnμ as given in the

text. The reason is that, during these steps, the quantity
dqνa
dτa

in (7) is just going along for the ride. We
arrive at

∂μT
μν = −

∑
a

∫
dτama

dqν
a

dτa

d

dτa
δ(4)(x − qa(τa))=

∑
a

∫
dτama

d2qν
a

dτ 2
a

δ(4)(x − qa(τa))= 0

upon using the equation of motion
d2qνa
dτ 2

a

= 0.

4 T 0i(x)= (ρ + P) vi

1−�v2 , T ij (x)= (ρ + P) v
ivj

1−�v2 + Pδij

5 The number of components is given by 1
2d(d − 1), which for d = 4 is equal to 6. First, F 0i is a 3-vector.

We are then left with the 3 components F ij = −Fji . Form the 3-vector εijkF jk.
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IV.2 Electromagnetism Goes Live

4 We have

∂0T
00 = 1

2
∂

∂t
( �E2 + �B2)= �E . ∂

�E
∂t

+ �B . ∂
�B
∂t

= − �E . �J + �E . �∇ × �B − �B . �∇ × �E
= − �E . �J − �∇ . ( �E × �B)

As you may know from a course on electromagnetism, the vector �E × �B is known as the Poynting vector
and measures the momentum flow in an electromagnetic field. Note that the equation we just derived is
the ν = 0 component of the equation ∂μT

μν

electromagnetic = −JλF νλ we derived in exercise 2b. The relativistic
notation is far more compact!

5 Using the antisymmetry of the ε symbol and ε0123 = −1, we have F̃01 = −ε0123F
23 = B1, after referring

to (IV.1.17). Next, F̃12 = −ε1203F
03 = E3. Comparing with (IV.1.17), we see that going from Fμν to the

dual tensor F̃μν , we exchange the roles of the electric and the magnetic fields up to a sign: �E → − �B and
�B → �E.

7 Simply plug the identity in the preceding exercise into the expression for the energy momentum tensor
of the electromagnetic field.

8 The two invariants under Lorentz transformation with the stated property are FμνFμν and FμνF̃
μν . We

have already encountered the first one in exercise 1. Up to an overall constant, the second invariant is
equal to �E . �B.

10 As in the derivation of the virial theorem in classical mechanics, we want to take the time average of various
quantities. Define 〈A〉 ≡ 1

T

∫ T
0 dtA for T large. Note that, provided that a time dependent quantity B(T )

remains bounded, 〈 dB
dt

〉 = 1
T
(B(T )−B(0))→ 0 for T large. This is where the assumption that the motion

of the particles is confined to a finite region comes in.
Let T μν = T

μν

particles + T
μν

electromagnetic, as in exercise 2b. Time averaging the conservation law ∂μT
μj =

∂0T
0j + ∂iT

ij = 0, we obtain ∂i〈T ij 〉 = 0. Therefore,
∫
d3xxj∂i〈T ij 〉 = 0 = − ∫

d3x〈T ii〉. In the last step,
we integrated by parts. Here repeated indices are summed.

Next, using the result of exercise 9 and the expression for T μν

particles in (III.6.7), we have

T ≡ ημνT
μν = ημνT

μν

particles = −
∑
a

∫
dτamaδ

(4)(x − qa(τa))

= −
∑
a

ma

√
1 − �v2

N ,aδ
(3)(�x − �qa(τa))

where τa is understood as the solution of q0
a
(τa)= x0 = t . For the last equality, we used (III.6.11) and the

discussion that follows it to integrate over τa.
Finally, putting things together, we obtain

−
∫

d3x〈T 〉 =
∑
a

ma

〈√
1 − �v2

N ,a

〉
=
∫

d3x〈(T 00 − T ii)〉 =
∫

d3x〈T 00〉 = E

where E denotes the total energy of the system. Thus, we obtain the relativistic virial theorem

E =
∑
a

ma

〈√
1 − �v2

N ,a

〉

In the nonrelativistic limit, we recover the usual virial theoremE −∑
a ma = − 1

2
∑

a ma〈�v2
N ,a〉. While

the right hand side is equal to minus the time averaged kinetic energy 〈K〉, the left hand side is the total
nonrelativistic energy, which we can write as the time averaged kinetic plus potential energy 〈K + V 〉,
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since K + V is conserved. We thus recognize the more familiar nonrelativistic form of the virial theorem

〈V 〉 = −2〈K〉
As the total energy decreases, the kinetic energy, that is, the temperature, increases.

Prologue to Book Two: The Happiest Thought

1 First of all, we have to understand how a burning candle works normally. The hot gas produced by the
burning candle, being less dense than air, rushes upward. The upward rush of the glowing gas is what we
see as the flame. The candle is thus assured of a steady supply of oxygen from the ambient air as the gas
rushes out of the way. The second point is that the upward rush of the gas can be better interpreted as due
to gravity pulling the denser air down. By moving downward, the ambient air is actually displacing the
gas upward. The falling candle feels no gravity, and neither does the air around it. The hot gas expands
outward rather than rushing upward out of the way. For a moment, the candle is deprived of air supply
and goes out. Watch this on the web! (http://www.youtube.com/watch?v=NlBp21fqguU)

V.1 Spacetime Becomes Curved

1 The helium in the balloon does not know, momentarily, that the car has stopped and tries to continue
its forward motion. But the air in the car is trying to do the same. When the air reaches the front part
of the interior of the car, it flows back. Since the density of air is higher than the density of helium, it
pushes the helium balloon back. Unlike other massive objects in the car, such as the driver and the
passengers, the helium balloon jerks backward rather than forward.

V.2 The Power of the Equivalence Principle

1 Let R = earth radius, ω = earth’s angular velocity, and h= altitude of plane. With dr = 0 and dθ = 0, the
proper time interval is given by

dτ 2 =
(

1 − 2GM
r

)
dt2 − r2dφ2 =

(
1 − 2GM

r
− r2

(
dφ

dt

)2
)
dt2

Since dφ
dt

� (R+h)ω+v
R+h , we have

dτ =
(

1 − GM

R + h
− 1

2
(Rω + v + hω)2

)
dt

with the proper time interval dτg of the clock on the ground given by this expression with v and h set to
0. The fractional shift is thus equal to


= dτ − dτg

dτg
� GMh

R2
− Rω − 1

2
v2

We find that the fractional shift between the eastward flying clock and the westward clock is 
ew =
dτe−dτw
dτg

� −v2.

V.3 The Universe as a Curved Spacetime

5 With r = L sin ψ , for example, we have Ldψ = dr√
1− r2

L2

.
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6 Do I have to teach you how to integrate?

7 The trajectory of the light ray is determined by dt
a(t)

= dr√
1−k r2

L2

, and thus the proper time interval 
tR

between the two pulses is now given by∫ R

0

dr√
1 − k r2

L2

=
∫ T

tS

dt

a(t)
=
∫ T+
tR

tS+
tS
dt

a(t)

The derivation then proceeds as in the text. We don’t care about the r integral, only the equality between
the two t integrals.

V.4 Motion in Curved Spacetime

2 We obtain �ν
rν

= A′
2A + B ′

2B + 2
r

and �ν
θν

cot θ , and we verify that �ν
μν

= 1√
g
∂μ

√
g is satisfied, since

g = r4AB sin2 θ .

4 With A= 1 and θ , ϕ constant, ε = 1, r constant solves the radial equations of motion.

5 A plot of v(r) shows that for r > 2GM , particles “fall” toward larger r .

6 Plugging g̃μν(x)=�2(x)gμν(x) into the expression for the Christoffel symbol, we obtain

�̃
μ
νλ = �

μ
νλ + (

δμ
ν
∂λ + δ

μ
λ ∂ν − gνλg

μρ∂ρ
)

log �

Thus, in the “twiddle” spacetime, the geodesic equation d2Xμ

dτ 2 + �̃
μ
νλ

dXν

dτ
dXλ

dτ
= 0 is manifestly not the

same as the geodesic equation d2Xμ

dτ 2 + �
μ
νλ

dXν

dτ
dXλ

dτ
= 0 in the “nontwiddle” spacetime.

However, for a massless particle, if Xμ describes a trajectory so that gμν(X)dXμdXν = 0 according to
(19), then clearly g̃μν(X)dXμdXν =�2(X)gμν(X)dX

μdXν = 0.
It is also instructive to show that the geodesic equation (20) holds in both spacetimes. Suppose that it

holds in the “twiddle” spacetime. Then we have

d2Xμ

dζ 2
+ �̃

μ
νλ

dXν

dζ

dXλ

dζ
= d2Xμ

dζ 2
+ �

μ
νλ

dXν

dζ

dXλ

dζ
+ 2

dXμ

dζ

dXλ

dζ
∂λ log �= 0

where we used dX . dX = 0 for a massless particle. This does not look like the geodesic equation in the
“nontwiddle” spacetime.

But suppose we write ζ(η). Then we have

dXμ

dζ
= dη

dζ

dXμ

dη
and

d2Xμ

dζ 2
= dη

dζ

d

dη

(
dη

dζ

dXμ

dη

)
=
(
dη

dζ

)2
d2Xμ

dη2
+ d2η

dζ 2

dXμ

dη

Now note that the last term on the left hand side is equal to

2
dXμ

dζ

d

dζ
log �= 2

(
dη

dζ

)2
dXμ

dη

(
d�

dη
/�

)

(Here � is evaluated on the trajectory of the particle and hence may be regarded as either a function of
ζ or η.) Thus, by choosing η(ζ ) to satisfy dη

dζ
= 1

�2 , we can knock off this unwanted last term and obtain
d2Xμ

dη2 + �
μ
νλ

dXν

dη
dXλ

dη
= 0.

V.6 Covariant Differentiation

4 Varying the action
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S =
∫

d4x
√−g

(
− 1

2
gλμgρνFλρ∂μAν + J νAν

)

we obtain

∂μ

(√−ggλμgρνFλρ
)

= −√−gJ ν

that is,

DμF
μν = 1√−g ∂μ

(√−gFμν
)= −J ν

Compare with (IV.2.13).

5 Note that in curved spacetime, F01 and F12, are no longer equal to −F 01 and F 12, respectively. Our
convention is to define �E = (E1, E2, E3) and �B = (B1, B2, B3) by E1 = −F01 and B3 = F12 and their
cyclic analogs. For ds2 = dt2 − a(t)2d �x2, −g = a6, g00 = 1, g11 = 1/a2, and so S = − 1

2

∫
dtd3x(a(t) �E2 −

1
a(t)

�B2).

VI.1 To Einstein’s Field Equation, as Quickly as Possible

1 Simply plug in the Christoffel symbols for the sphere �θ
ϕϕ

= − sin θ cos θ and �
ϕ
θϕ = cos θ

sin θ
into the

expressions DλWμ = ∂λWμ − �σ
λμ
Wσ and DλU

μ ≡ ∂λU
μ + �

μ
λνU

ν to obtain

DθWθ = ∂θWθ , DθWϕ = ∂θWϕ − cos θ
sin θ

Wϕ ,

DϕWθ = ∂ϕWθ − cos θ
sin θ

Wϕ , DϕWϕ = ∂ϕWϕ + sin θ cos θWθ

and

DθU
θ = ∂θU

θ , DθU
ϕ = ∂θU

ϕ + cos θ
sin θ

Uϕ ,

DϕU
θ = ∂ϕU

θ − sin θ cos θUϕ , DϕU
ϕ = ∂ϕU

ϕ + cos θ
sin θ

Uθ

The suggested check is then easily done.

2 In calculating the left hand side of (5), [Dμ , Dν ]Sρ , we could choose ρ to be either θ or ϕ. I will do one
case and let you do the other. We have

DϕDθSθ = ∂ϕ(DθSθ)− cos θ
sin θ

DϕSθ − cos θ
sin θ

DθSϕ

= ∂ϕ∂θSθ − cos θ
sin θ

∂ϕSθ +
(

cos θ
sin θ

)2

Sϕ − cos θ
sin θ

∂θSϕ +
(

cos θ
sin θ

)2

Sϕ

and

DθDϕSθ = ∂θ(DϕSθ)− cos θ
sin θ

DϕSθ

= ∂θ(∂ϕSθ)− ∂θ

(
cos θ
sin θ

Sϕ

)
− cos θ

sin θ
∂ϕSθ +

(
cos θ
sin θ

)2

Sϕ

Subtracting, we find [Dθ , Dϕ]Sθ = −Sϕ. Equating this to −Rσ
θϕθ

Sσ , and invoking the symmetry property
of the curvature tensor and the diagonality of the metric, we obtain R

ϕ
θϕθ = 1. From this Rθθ = 1 follows.

We also have Rϕ
θϕθ = gϕϕRϕθϕθ = gϕϕgθθR

θ
ϕθϕ

, and so Rθ
ϕθϕ

= sin2 θ . Hence we have Rϕϕ = sin2 θ .
Finally, we obtain R = gθθRθθ + gϕϕRϕϕ = 2, as expected.
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6–7 In 2 dimensions, (14) simplifies to the expression stated. If we are so fortunate that we are already in locally
flat coordinates, we can read off the single component of the Riemann curvature tensor. Let us check the
example in (I.6.2): we read off B11, 22 = c2, B12, 12 = 1

2 (ab + c2), B22, 11 = c2, and so R1212 = ab − c2, in
complete agreement with (I.6.3).

8 The first one is flat (the transformation from Cartesian coordinates is x = u + v2, y = v − u2/2). The
second has a scalar curvature given by −4v/(1 + 4uv − 2v2 + 2u2v2)2.

10 The antisymmetry in (10) and (15) implies that the indices A and B in the Petrov notation can each
take on 1

2d(d − 1) values. Next, (16) implies that the matrix RAB is symmetric, and thus contains
1
2 { 1

2d(d − 1)}{ 1
2d(d − 1)+ 1} = d(d − 1)(d2 − d + 2)/8 independent components. Finally, after imposing

the constraints from exercise 3, we are left with d(d − 1)(d2 − d + 2)/8 − d(d − 1)(d − 2)(d − 3)/24 =
d2(d2 − 1)/12, in agreement with chapter I.6.

11 Equating the number of independent components in the Riemann curvature tensor d2(d2 − 1)/12 to
the number of independent components in the Ricci curvature tensor d(d + 1)/2, we obtain the cubic
d3 − 7d − 6 = (d − 3)(d + 1)(d + 2) = 0. Thus, for d = 3, the two tensors have the same number of
components.

13 Plugging g̃μν =�2gμν into the definition of the Christoffel symbol, we obtain the first equality in (26)
immediately as a result of the product rule of differentiation. Writing it schematically as �̃ ∼ � +�−1∂�

and plugging it into the definition R̃
.
... ∼ ∂�̃ + �̃�̃, we have R̃.

... ∼ ∂� + �� +�−1∂∂�+ ��−1∂�+
�−1∂��−1∂�. Convincing ourselves that the third and fourth terms combine into �−1D∂� (as they
must and as we can readily verify by keeping track of the indices for one specific combination), we obtain
schematically R̃.

... ∼ R
.
... +�−1D∂�+�−2∂�∂�. Once we realize this, we can simplify the rest of the

calculation drastically by letting gμν be the flat metric (that is, ημν for spacetime or δμν for space), so
that the problem reduces to that of calculating the Riemann curvature tensor for the metric gμν =�2ημν ,
collecting the two sets of terms of the forms ∂∂� and ∂�∂�. Once we have that result, we can then
promote ημν to gμν , and so on, to obtain R̃μ

νλσ .

VI.2 To Cosmology as Quickly as Possible

1 Calculate the Christoffel symbol, then the Ricci tensor. For example,

�x
tx

= p/t , Rtt = (−p2 + p − q2 + q − r2 + r)/t2 and Rxx = p(p + q + r − 1)t2(p−1)

(By the way, we will calculate the curvature for the Kasner universe using differential forms in chap-
ter IX.8.) Einstein’s equations Rμν = 0 are solved for p + q + r = p2 + q2 + r2 = 1. These 2 equations
could of course be immediately solved by eliminating q and r in terms of p, giving a 1-parameter family
of universes.

There exists, however, a more elegant and symmetrical solution based on the identity eiπ/3 + e−iπ/3 +
eiπ = 0. Write p = a + 2b cos(θ + (π/3))= a + b(eiθeiπ/3 + e−iθe−iπ/3), q = a + 2b cos(θ − (π/3)), r =
a + 2b cos(θ − π). Then p + q + r = 1 if a = 1/3. Next, using the identity e2iπ/3 + e−2iπ/3 + e2iπ = 0, we
have p2 + q2 + r2 = 3a2 + 2ab(0)+ 3(2b2)= 1 if b = 1/3.

Interestingly, the solution has the following geometrical interpretation. Draw a circle of radius 2/3
centered at (x , y)= (1/3, 0). Inscribe an equilateral triangle inside the circle and oriented at some suitable
angle. The projections of the 3 vertices on the x-axis give p , q , r .

A more obvious geometrical construction would be to go to 3-dimensional Euclidean space and label
the axes as p , q , r . Then p + q + r = p2 + q2 + r2 = 1 describes the circle formed by intersecting a unit
sphere centered by the plane passing through (1, 0, 0), (0, 1, 0), and (0, 0, 1).
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VI.3 The Schwarzschild-Droste Metric and Solar System Tests
of Einstein Gravity

2 For example, Rt
rtr

= −A′′(r)
2A(r) + A′(r)B ′(r)

4A(r)B(r) + A′(r)2
4A(r)2 .

3 Use the transformation r = ρ(1 + GM
2ρ )2. The horizon occurs at ρ = 1

2GM , where g00 vanishes, and which
translates into r = 2GM as expected.

4 Use the transformation R = r − GM with �x related to (R , θ , ϕ) by the usual Cartesian to spherical
coordinate transformation.

5 Repeat the calculation in the text using the metric used in the post-Newtonian parametrization. All the
steps are conceptually the same, but arithmetically, such parameters as β and γ appear here and there.

VI.4 Energy Momentum Distribution Tells Spacetime How to Curve

4 Using (2), we obtain

δSscalar = 1
2

∫
d4x

√−g
{
gλμδgμνg

νρ∂λϕ∂ρϕ − gμνδgμν

(
1
2 (∂ϕ)

2 + V (ϕ)
)}

and hence the stated result. We have in flat spacetime T 00 = ∂0ϕ∂0ϕ + η00( 1
2 (∂ϕ)

2 + V (ϕ))= 1
2 {(∂0ϕ)2 +

( �∇ϕ)2} + V (ϕ).

5 We have∫
d4x

√−g(x)gσζ (x)gλρ(x)=
∫

d4x′√−g′(x′)g′σζ (x′)g′λρ(x′)

=
∫

d4x
√−g′(x)g′σζ (x)g′λρ(x)

where the first equality follows from invariance under coordinate transformation and the second from
renaming the dummy integration variable. Using the leading order expression g′

ρσ
(x) − gρσ (x) =

−(gμσ (x)∂ρεμ(x)+ gρν(x)∂σε
ν(x)+ ελ∂λgρσ (x))+O(ε2) in (18), we arrive at (20), with T ρσ the energy

momentum tensor associated with the cosmological constant term.

7 Recall that

DμT
μν = ∂μT

μν + �
μ
μλT

λν + �ν
μλ
T μλ = 1√−g ∂μ

(√−gT μν
)+ �ν

μλ
T μλ

Plugging in the given form of T μν and suppressing an overall factor of m√−g(x) for the moment, we obtain

for the first term on the right hand side∫
dτ

dXμ

dτ

dXν

dτ
∂μδ

4(x −X(τ))= −
∫

dτ
dXν

dτ

dXμ

dτ

∂

∂Xμ
δ4(x −X(τ))

= −
∫

dτ
dXν

dτ

d

dτ
δ4(x −X(τ))=

∫
dτ

d2Xν

dτ 2
δ4(x −X(τ))

where we integrated by parts in the last step. Putting it together, we find that DμT
μν = 0 gives d2Xν

dτ 2 +
�ν
μλ

dXμ

dτ
dXλ

dτ
= 0, which is just the geodesic equation of motion. The result is hardly surprising: the energy

momentum tensor we were given did not drop from the sky but was derived from the action for the
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particle, while the equation of motion follows from the very same action. Physically, we expect the energy
momentum tensor to be conserved only if the particle does what it is supposed to do, rather than moving
around capriciously.

8 Start with 0 =DμT
μν =Dμ(ρU

μ)Uν + ρUμDμU
ν . Contract withUν and useUνDμU

ν = 0 (sinceUνU
ν =

−1). We obtain Dμ(ρU
μ)= 0. Plugging this back into the above, we find the stated result UμDμU

ν = 0,
which tells us that the dust particles follow geodesics, as might be expected. See also exercise 7.

VI.5 Gravity Goes Live

2 According to exercise VI.1.6, in 2-dimensional spacetime Rτρμν = 1
2R(gτμgρν − gτνgρμ) (this follows

immediately since the Riemann curvature tensor has only one component). Contracting, we find that
Rτμ = gτμR/2 and thus Eμν = 0.

VI.6 Initial Value Problems and Numerical Relativity

1 To obtain E0μ, we have to calculate the Riemann curvature tensor. From R
.
... ∼ ∂� + ��, we obtain

R.... ∼ g∂� + g��. Since � ∼ g
..
∂g.., we encounter in ∂� terms involving ∂∂g.. and terms involving

∂g
.. ∼ g

..
∂g..g.. (which, if you want, you could express in terms of � and g using the definition of �, but

you don’t even have to bother for the purposes at hand). Thus, R.... ∼ ∂∂g.. + ��.
Since we are hunting for ∂2

0, we could care less about the �� terms. So far so good, but it would appear
that we still have to slave away to obtain the ∂∂g.. terms. Now we appeal to Professor Flat for help. Go to
a locally flat coordinate system. Back in chapter VI.1, we obtained R.... locally in terms of the ∂∂g... The
general expression for R.... must reduce to the expression in chapter VI.1; hence we conclude that

Rτρμν = 1
2 (gτν ,μρ − gρν ,μτ − gτμ,νρ + gρμ,ντ )+ �� terms

where we have switched to the comma notation for partial derivatives: gτν ,μρ ≡ ∂μ∂ρgτν . Keeping in mind
the antisymmetric properties of Rτρμν , we see that we won’t encounter g00, 00 and gi0, 00. We are down
to Ri0j0 = 1

2 (gi0, j0 − g00, ji − gij , 00 + g0j , 0i)+ �� terms, leading to Ri0j0 “=” − 1
2gij , 00. To save writing,

we introduce the symbol “=” to mean equal up to terms not containing ∂2
0.

Contracting indices, we find

R00 “=” − 1
2g

ijgij , 00 R0i “=” + 1
2g

0jgij , 00 Rij “=” − 1
2g

00gij , 00

and R “=” (g0ig0j − g00gij )gij , 00.
Confusio is busily calculating in the corner. That guy does every exercise in the book to set a good

example for the students. Now he cries out, “But I get E00 = R00 − 1
2g00R “=” − 1

2 (g
ij + g00g

0ig0j −
g00g

00gij )gij , 00 and this contains ∂2
0!”

Perhaps you could help Confusio out. You chide him, “By now, you should know the importance of
distinguishing upper and lower indices! In the text, the statement is that E0μ does not contain ∂2

0.”
We will raise the indices in two steps. First,

R0
0 = g00R00 + g0iR0i “=”

1
2
(g0ig0j − g00gij )gij , 00

Indeed,

E0
0 = R0

0 − 1
2
R “=” 0

Similarly,

E0
i

= R0
i

= g00R0i + g0jRji “=” 0

Now we are almost done:

E00 = g00E0
0 + g0iE0

i
“=” 0 and E0i = gi0E0

0 + gijE0
j

“=” 0

Phew! It’s nice to have the Bianchi identity proof!
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2 Using the contracted Bianchi identity as in the text, we have ∂0(E
0ν − T 0ν)= −∂iEiν + terms involving

the Christoffel symbols, � times (various Es minus ∂0T
0ν). Next, use the field equation Eμν = T μν to

write this as −∂iT iν + �T − ∂0T
0ν . If there is any justice in the world, the �s should convert the ∂s into

covariant derivatives and turn this into −DμT
μν = 0.

VII.1 Particles and Light around a Black Hole

3 Following the by now familiar steps, we obtain for the radially plunging observer the equations of motion

(
dT

dτ

)2

−
(
dr

dτ
+ v

dT

dτ

)2

= 1 and
dT

dτ
− v

(
dr

dτ
+ v

dT

dτ

)
= 1

Solving, we obtain dr
dτ

= −v = −√rS/r and dT
dτ

= 1. We also see that if we set dr = −vdT in (13), we
obtain dτ = dT .

4 The path of a radially infalling photon is determined by ds = 0, which implies dT = ±(dr + vdT ), with
v =√

rS/r . We thus obtain dr
dT

= −(1 + v) for an infalling photon (and dr
dT

= (1 − v) for an outgoing
photon). This proves that a photon falls faster than the plunging observer. Note that in these coordinates,
we have, for an outgoing photon, dr

dT
= 0 at the horizon, as expected.

VII.3 Hawking Radiation

1 From chapters V.4 and VI.3, we have

(
dr

dτ

)2

= −
(

1 − rS

r

)
+ ε2, with ε = 1 − rS

rS + a

Integrating, we obtain


τ =
∫ rS+a

rS

dr(
rS

r
− rS

rS + a
)−

1
2 = 2(rSa)

1
2

The time it takes to reach the horizon scales like a
1
2 . So Heisenberg tells us that the characteristic energy

is ∼ �/2(rSa)
1
2 . Multiplying by the gravitational redshift factor

(
g00(rS + a)

) 1
2 =

(
1 − rS

rS + a

) 1
2 �√

a/rS

derived in chapter V.4, we obtain that the characteristic energy measured at spatial infinity is given by
TH ∼ �/rS ∼ �/GM . Nicely, the dependence on a cancels out.

VII.5 Rotating Black Holes

1 We have dr = fr̃dr̃ + fθdθ , where fr̃ = ∂f/∂r̃ , and so forth. Getting rid of the cross term dr̃dθ requires
fθ = −c/a, which fixes f up to an arbitrary additive function of r̃ . We then drop the tilde sign.

2 We obtain

gtt → −1 + rS

r
− a2rS cos2 θ

r3
+O

(
1
r5

)

gtϕ → − arS sin2 θ

r
+ a3rS sin2 θ cos2 θ

r3
+O

(
1
r5

)
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gϕϕ → r2 sin2 θ

(
1 + a2

r2
+ a2rS sin2 θ

r3
+O

(
1
r5

))

grr →
(

1 + rS

r
+ a2 cos2 θ − a2 + r2

S

r2
+ a2rS cos2 θ − 2a2rS + r3

S

r3
+O

(
1
r4

))

gθθ → r2
(

1 + a2 cos2 θ

r2
+O

(
1
r4

))

VIII.1 The Dynamic Universe

1 Use the fact that ρ = ρ0(R0/R)
4 to write Ṙ2 = T 2

4R2 − 1, where we define the time scale T by T 2 =
(4/3)(8πGρ0R

4
0). Then the solution is R(t)= √

t (T − t). For small t , R(t)∝ t
1
2 , in agreement with what

we had in the text. The universe ends at time T .

3 In this case, ρ = ρ0(R0/R)
3. Define T = 4πGρ0R

3
0/3, so that the cosmological equation becomes Ṙ2 =

2T
R

− 1. The solution is given parametrically by R(η)= T (1 − cos η) and t (η)= T (η − sin η). For small

η, R � T η2/2 and t (η)� T η3/6, so that in the early universe, R(t)∝ t
2
3 .

Amusingly, the resulting curve R(t) is a cycloid, namely the curve traced by a point on the rim of a
rolling wheel, with R(η) corresponding to the height of the point and t (η) to the distance traveled by the
wheel.

VIII.2 Cosmic Struggle between Dark Matter and Dark Energy

1 Set �m, 0 = 1 and �r, 0 =��, 0 = 0 in (32) to find tage = 1
H0

∫ 1
0 da a

1/2. From a ∝ 1/t
2
3 , we have H = − 2

3t .

Plugging into (7), we have ρ = ( 3
8πG )(

4
9t2 ) and thus the stated result.

2 Set �r, 0 = 1 and �m, 0 =��, 0 = 0 in (32) to find tage = 1
H0

∫ 1
0 da a. From a ∝ 1/t

1
2 we have H = − 1

2t .

Plugging into (7), we have ρ = ( 3
8πG )(

1
4t2 ) and thus the stated result.

3 Setting R̈ = 0 in (VIII.1.16), we obtain the condition ρ + 3P = 0 = ρm − 2ρ� and thus ρ = ρm + ρ� =
3ρ� = 3�. Setting Ṙ = 0 in (VIII.1.18), we obtain k = 1 necessarily and the radius R = ( 3

8πGρ )
1
3 =

( 1
8πG� )

1
3 .

4 From �k = − k

H 2R2 , we have �k(z)=�k , 0(1 + z)2(H0/H(z))2. Using (15) and a = (1 + z)−1, we obtain
the stated result.

5 According to (32), we have
∫
dt = (H0)

−1 ∫ da(�m, 0a
−1 − |��, 0|a2)−

1
2 , and thus the expansion of the

universe stops when the denominator in the integrand, which is in fact proportional to H , vanishes. For
a larger than amax = (�m, 0/(−��, 0))

1/3, the denominator goes negative. The time necessary to go from
amax to the Big Crunch is thus given by

(H0)
−1
∫ 0

amax

(−da)
(
�m, 0a

−1 − |��, 0|a2
)− 1

2 = 2

3H0|��, 0| 1
2

∫ a

2
3

max

0
du

(
amax − u2

)− 1
2 = π

3H0|��, 0| 1
2

The total life of the universe, as measured from the Big Bang to the Big Crunch, is thus Tuniverse =
2π

3H0|�� , 0|
1
2

.
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IX.1 Parallel Transport

1 Let the rectangle be of width a and b with its “lower left” corner at (x∗ , y∗) and its “upper right”
corner at (x∗ + a , y∗ + b). We arbitrarily pick the counterclockwise direction to integrate in. Then axy =∫ x∗+a
x∗ dx(y∗ − (y∗ + b))= −ab. As a check, ayx = ∫ y∗+b

y∗ dy(x∗ + a − x∗)= ab.

3 Denote the vertices of the triangle by (A, B, C) and the corresponding interior angles by (a , b, c). The
sides of the triangle are straight lines, of course, namely geodesics. Along a geodesic, the tangent vector
is parallel transported, and so, along each side of the triangle, the angle between the vector we are parallel
transporting, call it �S, and the tangent vector remains constant. Let’s say we are moving along the side
CA. When the tangent vector reaches the vertex A, it turns through an angle of (π − a) to point along the
side AB. Thus, when we get back to where we started, what we call the tangent vector has turned through
an angle of (π − a)+ (π − b)+ (π − c)= 3π − (a + b + c)= π − (a + b + c). Since the angle between
�S remains the same, �S has also turned through π − (a + b+ c). Thus, the angular excess (a + b+ c)− π

measures the curvature.

IX.3 Geodesic Deviation

2 Plug yμ(τ)= xμ(τ)+ εμ(τ) into (IX.3.2), expand in ε, and subtract (IX.3.1) to obtain

d2εμ

dτ 2
+ ερ∂ρ�

μ
νλ

dxν

dτ

dxλ

dτ
+ 2�μνλ

dxν

dτ

dελ

dτ
= 0 (33)

Note that d2εμ

dτ 2 is not a vector; indeed, none of the terms in (33) is a vector.
We would like to rewrite this as an equation between vectors, and so let’s evaluate

D2εμ

Dτ 2
= d

dτ

(
dεμ

dτ
+ �

μ
νλ

dxν

dτ
ελ
)

+ �
μ
νλ

dxν

dτ

(
dελ

dτ
+ �λ

ωκ

dxω

dτ
εκ
)

(34)

After the differentiation is carried out, the first two terms in (34) become

d2εμ

dτ 2
+ (

∂ρ�
μ
νλ

) dxρ
dτ

dxν

dτ
ελ + �

μ
νλ

d2xν

dτ 2
ελ + �

μ
νλ

dxν

dτ

dελ

dτ
(35)

Using (33), we can write the first term in (35) as

−
(
ερ∂ρ�

μ
νλ

dxν

dτ

dxλ

dτ
+ 2�μνλ

dxν

dτ

dελ

dτ

)

The second term in this expression knocks off the third term in (34) and the fourth term in (35). Next,
using the geodesic equation in (IX.3.1), we can write the third term in (35) as

−�μνλ�νσρ
dxσ

dτ

dxρ

dτ
ελ

Collecting terms, we find that (34) becomes

D2εμ

Dτ 2
= −ερ∂ρ�μνλ

dxν

dτ

dxλ

dτ
+ (

∂ρ�
μ
νλ

) dxρ
dτ

dxν

dτ
ελ − �

μ
νλ�

ν
σρ

dxσ

dτ

dxρ

dτ
ελ + �

μ
νλ

dxν

dτ
�λ
ρσ

dxρ

dτ
εσ (36)

Renaming indices and recalling the definition of the Riemann curvature tensor, we watch with satisfaction
the terms on the right hand side gathering themselves into a particularly nice form: indeed, what else
but (IX.3.6)?

This calculation, while slightly tedious, shows quite clearly where the ∂� and the �� terms in the
definition of the Riemann curvature tensor R.

... ∼ ∂.�.
.. + �

.

..�
.
.. come from.
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4 The stated energy conditions are invariant under V μ → aV μ, and so we could normalize the arbitrary
timelike vector V μ by V μVμ = −1. Then, with

Tμν = (ρ + P)UμUν + Pgμν we have TμνV
μV ν = (ρ + P)(U . V )2 − P

Go to the frame in which

Uμ = (1, 0, 0, 0)/
√−g00 so that (U . V )2 = −g00(V

0)2

which ranges from 1 to ∞ for an arbitrary timelike vector V μ. Thus, for the weak energy condition, we
obtain ρ ≥ 0 and (ρ + P)≥ 0 as claimed.

Next,

TμνV
ν = (ρ + P)Uμ(U . V )+ PVμ

Thus, for the dominant energy condition,

−gμρ(TμνV μ)(TρσV
σ )= (ρ + P)2(U . V )2 − 2P(ρ + P)(U . V )2 + P 2 ≥ 0

For (U . V )2 equal to ∞ and 1, we obtain ρ2 ≥ P 2 and ρ ≥ 0, respectively.
Since T = −(ρ − 3P), the strong energy condition says that (ρ + P)(U . V )2 − P ≥ 1

2 (ρ − 3P). For
(U . V )2 equal to ∞ and 1, we obtain (ρ + P)≥ 0 and (ρ + 3P)≥ 0, respectively.

IX.4 Linearized Gravity, Gravitational Waves, and the Angular Momentum
of Rotating Bodies

1 Start with the equation of geodesic deviation

D2sμ

Dτ 2
= R

μ
σρλ

dxσ

dτ

dxρ

dτ
sλ

(where I have changed the separation between the two particles from ε to s to avoid possible confusion
with the polarization vector of the gravitational wave). To leading order, dxσ

dτ
= (1, �0) and so

D2sμ

Dτ 2
� R

μ
00λs

λ

Now � ∼O(h) and so we have

R
μ
σρλ = ∂ρ�

μ
σλ − ∂λ�

μ
σρ

+O(h2) giving R
μ
00λ � ∂0�

μ
0λ

since �μ00 vanishes to this order in the TT gauge. Furthermore, since in TT gauge, h0κ vanishes, we have

�
μ
0λ � 1

2η
μκ∂0hλκ = 1

2∂0h
μ
λ

Thus,

R
μ
00λ � 1

2
∂2

∂t2
h
μ
λ

and we obtain to leading order

d2sμ

dt2
� 1

2

(
∂2

∂t2
h
μ
λ

)
sλ

For a plane wave hμν = εμν(k) sin(ωt − kx) moving along the x-axis,

d2sμ

dt2
� − 1

2ω
2ε
μ
λ s

λ sin(ωt − kx)
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For example, for the plus polarization,

d2sx

dt2
� − 1

2ω
2ε+sx sin(ωt − kx) and

d2sy

dt2
� + 1

2ω
2ε+sy sin(ωt − kx)

with the relative minus sign between the two equations characteristic of a tidal force.

3 Under the stated conditions, (10) reduces to ∇2h̃μν = 0, which has the immediate solution h̃μν = kμν/r ,
with kμν some constant tensor, as is familiar to students of elementary physics. Now impose the harmonic
gauge condition ∂μh̃μν = 0.

If you started to write krν∂r(1/r)= 0, stop! You are making an error. This is the subtlety I alluded to
in a footnote in connection with (4). Think about how (1) was derived in chapter VI.5: we used ∂λημν = 0
repeatedly. Thus, we must take for ημν the diagonal matrix with diagonal elements (−1, 1, 1, 1) rather than
(−1, 1, r2, r2 sin2 θ). But since the problem has spherical symmetry and since r has already appeared, it
is easy to fall in the trap of deducing that krν = 0.

Instead, we have kμν∂μ(1/r)= 0 = −kiνxi/r3 and hence kij = 0 and ki0 = 0. (In other words, ∂μ in
this context refers to Cartesian coordinates, not spherical coordinates.) Since kμν is symmetric, only k00

is nonvanishing, and hence the only nonvanishing component of h̃μν is h̃00 = 2rS/r , where, with the
malice of afterthought, we have renamed k00 = 2rS. Note that h̃= −2rS/r . We next have to go from h̃μν

to hμν = h̃μν − 1
2ημνh̃. We obtain

h00 = h̃00 + 1
2 h̃= rS/r , hij = −ηij rS/r

Thus,

ds2 = −
(

1 − rS

r

)
dt2 +

(
1 + rS

r

) (
dx2 + dy2 + dz2

)
= −

(
1 − rS

r

)
dt2 +

(
1 + rS

r

) (
dr2 + r2d�2

)

What? You exclaim that this is not the Schwarzschild metric—the coefficient of dr2 and r2d�2 are the
same. After all this work?

But this agrees with (19) with h0i = 0, so our result is in fact correct. The resolution is that we
can perform a coordinate transformation. Call the coefficient of d�2 in the ds2 given above R2. So,
R2 = (1 + rS

r
)r2; that is, R � r + 1

2 rS. Then dR � dr to this order and we have

rS

R
� rS

r + 1
2 rS

� rS

r
+O

((
rS

r

)2
)

We obtain the Schwarzschild metric

ds2 � −
(

1 − rS

R

)
dt2 +

(
1 + rS

R

)
dR2 + R2d�2

to leading order, as expected.

IX.6 Isometry, Killing Vector Fields, and Maximally Symmetric Spaces

3a For a scalar, (19) collapses to ξλ∂λS = 0. Since this holds for all Killing vectors, we have ∂λS = 0.

3b–c At some arbitrary point X, consider the D(D − 1)/2 rotational Killing vectors, for which ξμ(X) = 0.
All subsequent statements are meant to hold at the arbitrary point X (and thus hold everywhere). The
covariant derivative of these Killing vectors simplifies to ξμ;ρ = ∂ρξ

μ (since ξμ = 0 at that point). Write this
as ∂ρξμ = gμωξω;ρ . Thus, we can write the first term in (19) as

Tμσ ...τg
μωξω;ρ = T ω

σ ...τ ξω;ρ = T ω
σ ...τ δ

ζ
ρ
ξω;ζ

(The insertion of the Kronecker delta in the last step is merely for later convenience.) Similarly, we can
write the second term as T ω

ρ ...τ δ
ζ
σ
ξω;ζ , and so on, until we get to the last term, which vanishes, since
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ξμ(X)= 0. Thus, at the point X, we have(
T ω
σ ...τ δ

ζ
ρ

+ T ω
ρ ...τ δ

ζ
σ

+ . . .
)
ξω;ζ = 0

Since ξω;ζ span the basis of all D-by-D antisymmetric matrices, we conclude that the parenthetical
expression in this equation must be symmetric under ω ↔ ζ . We now apply this result to various specific
cases.

For a maximally form invariant vector, we have V ωδζ
ρ

= V ζδω
ρ

. Contracting ζ and ρ, we have (D −
1)V ω = 0, thus proving the stated assertion.

For a maximally form invariant 2-indexed tensor Tμν , the expression in parentheses above simplifies
to (

T ω
σ
δζ
ρ

+ T ω
ρ
δζ
σ

)
=
(
T ζ
σ
δω
ρ

+ T ζ
ρ
δω
σ

)
Contracting ζ and ρ and loweringω, we obtain (D − 1)Tωσ + Tσω = gωσT

ρ
ρ

. Decompose Tωσ = Sωσ +Aωσ

into its symmetric and antisymmetric parts. The preceding equation then becomes

DSωσ + (D − 2)Aωσ = gωσS
ρ
ρ

giving us

(D − 2)Aωσ = 0 and DSωσ = sgωσ

with s ≡ Sρ
ρ

. For D �= 2, Aωσ = 0.
It remains to show that s is a constant. Plug the result Tωσ = Sωσ = sgωσ (absorbing a trivial factor)

back into (19). The last term begets two terms:

ξλ∂λTρσ = ξλ∂λ(sgρσ )=
(
ξλ∂λgρσ

)
s + gρσ

(
ξλ∂λs

)
The term (ξλ∂λgωσ )s combines with the other two terms in (19) to yield zero, thanks to the Killing
condition (2). We are thus left with ξλ∂λs = 0, which implies that s is constant.

Finally, we have to deal with the special case ofD = 2, for whichAωσ needs not vanish. Indeed, besides
the metric tensor, we have the form invariant 2-indexed tensor εμν/

√
g, namely the Levi-Civita tensor. See

chapter X.5 for further discussion.

IX.7 Differential Forms and Vielbein

1 We have e1 = f (y)dx and e2 = g(x)dy, so that

ω1
2 = f ′(y)

g(x)
dx − g′(x)

f (y)
dy and so R1

2 = −
(
g′′(x)
f (y)

+ f ′′(y)
g(x)

)
dxdy

Converting to world indices, we find Rxyxy = −(g(x)g′′(x)+ f (y)f ′′(y)).

2 We have dF = 1
2∂λFμνdx

λdxμdxν = 0. Since dxλ, dxμ, and dxν anticommute, this is equivalent to
εσλμν∂λFμν = 0, which you should recognize as an identity (since Fμν = ∂μAν − ∂νAμ) and as the “other
half” of Maxwell’s equations.

4 We have e1 = �dx and e2 = �dy. Since we are dealing with a space rather than a spacetime, we have
Euclidean indices a , b, . . . rather than Minkowski indices, and we can freely move indices up and down.
Thus we write, for example,

de1 = −ω12e2 =�ydydx = −
(
�y/�

2
)
e1e2

where we use the notation Oy = ∂yO (and similarly Ox). Thus we have ω12 = (�y/�)e
1 + (e2 term). By

symmetry, ω21 = −ω12 = (�x/�
2)e2 + (e2 term), and hence we obtain

ω12 = (�ye
1 −�xe

2)/�2 = (�ydx −�xdy)/�
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Thus we have

R12 = −((�x/�)x + (�y/�)y)dxdy = −(∇2 log �)e1e2/�2

The curvature is therefore given by 1
2R = R11 = R22 = R1

212 = −(∇2 log �)/�2.
As a check, we learned from exercise I.5.13 that the metric for the sphere can be written as ds2 =

(dρ2 + ρ2dθ2)/(1 + ρ2

4 )
2. Plugging in �= (1 + x2+y2

4 )−1, we obtain R = 2, as expected.

5 To be concise, we will abuse notation as noted below. Also, as noted in exercise 3, since we are dealing
with a space, we have Euclidean indices a , b, . . . , which we will freely move up and down. World indices,
of course, have to be moved using the metric. From ea =�dxa (this is already notational abuse: strictly
speaking, we should write ea =�δai dx

i to distinguish between the world index i and the Euclidean index
a), we have dea = ∂i�dx

idxa = −ωabeb = −ωab�dxb. We will write �i ≡ ∂i�. Using the fact that ωab is
antisymmetric, we obtain

ωab =�−1
(
�bdx

a −�adx
b
)

and hence we have

dωab =�−1
(
�bcdx

cdxa −�acdx
cdxb

)
−�−2

(
�b�cdx

cdxa −�a�cdx
cdxb

)
Also, we have

ωacωcb =�−2 (�cdx
a −�adx

c
) (
�bdx

c −�cdx
b
)

=�−2
(
�a�cdx

cdxb −�b�cdx
cdxa −�c�cdx

adxb
)

Putting this together, we obtain the curvature 2-form

Rab = dωab + ωacωcb

=�−1
(
�bcdx

cdxa −�acdx
cdxb

)
− 2�−2

(
�b�cdx

cdxa −�a�cdx
cdxb

)
−�−2�c�cdx

adxb

It is instructive to compare our work here with that in exercise 3. Note in particular that the nonabelian
term ωacωcb is absent there.

Next, we have to extract the Riemann curvature tensor Rab
cd defined by Rab = 1

2R
ab
cde

ced . So, replace
dxc by �−1ec in the expression for Rab above and read off

Rabcd =
(
�−3 (�bcδad −�acδbd

)− 2�−4 (�b�cδad −�a�cδbd
)−�−4�f�f δacδbd

)
− (c ↔ d)

From this we obtain Rac = Rabcdδbd and R = Racδ
ac. To obtain the “usual” Riemann and Ricci tensors,

remember to convert Euclidean indices to world indices with the vielbein, thus for example, Rμν =
ea
μ
eb
ν
Rab =�2Rabδ

a
μ
δb
ν
. Keep in mind that with our abuse of notation, we have �12 = ∂

∂x1
∂

∂x2�; that is,
the indices on �ac in the expression above are world indices to begin with.

Following this procedure, we obtain the Riemann tensor (which we won’t display, since it can be read
off from what is given above), the Ricci tensor

Rμν = 2(d − 2)�−2∂μ�∂ν�−
(
δμν

(
�−1∂2�+ (d − 3)�−2∂λ∂

λ�
)

+ (d − 2)�−1∂μ∂ν�
)

and the scalar curvature

R = −2(d − 1)�−3∂2�− (d − 1)(d − 4)�−4∂μ�∂
μ�

(Note that the world indices are raised and lowered with the Euclidean metric δμν .)
This exercise suggests a relatively easy way to obtain the results of exercise VI.1.13. We simply promote,

in the expressions given here, δμν to gμν and the partial derivatives to covariant derivatives. Finally, the
leading term in the expressions given in exercise VI.1.13 can be determined by setting � to a constant.
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For example, there we had R̃ =�−2R + . . . . The factor �−2 is determined by noting that for � constant,
we are simply scaling the coordinates by �.

Finally, we can check the results given above. For the d-dimensional sphere, �= (1 + r2

4 )
−1, and we

obtain R = d(d − 1), as we have long known. For anti de Sitter spacetime, write x1 for convenience as x,
then �= 1/x. The only derivatives we have to calculate are then ∂x�= −1/x2 and ∂2�= ∂x∂x�= 2/x3,
and the messy expressions above collapse nicely to Rμν = −(d − 1)δμν and R = −d(d − 1), in agreement
with what we will learn in chapter IX.11.

6 With e1 = dr and e2 = f (r , θ)dθ , we obtain de1 = 0 = −ω12e2, which implies ω12 ∝ e2, and

de2 = (∂rf )drdθ = (∂rf/f )e
1e2 = −ω21e1

We obtain

ω12 = −(∂rf/f )e2 = −(∂rf )dθ
Thus we have

R12 = dω12 = −
(
∂2
r
f
)
drdθ = −

(
∂2
r
f/f

)
e1e2

from which we find the scalar curvature R = 2R1
212 = −∂2

r
f/f .

Let us check this against the two examples given in chapter II.2. For polar coordinates on the plane,
we find f (r , θ)= r and indeed R = 0. For spherical coordinates on the sphere, with suitable renaming
of the coordinates, we have f (r , θ)= sin r , and indeed R = 1.

IX.8 Differential Forms Applied

1 We have e1 = dr and e2 = f (r)dθ , so that de1 = 0 = −ω1
2e

2, which tells us thatω1
2 is proportional to e2, and

de2 = f ′(r)drdθ = −ω2
1e

1, which tells that ω2
1 = f ′(r)dθ . Use the antisymmetry to see that ω2

1 = −ω1
2,

and so ω2
1 cannot contain a piece proportional to e1. We then obtain

R2
1 = dω2

1 = f ′′(r)drdθ = f ′′(r)
f (r)

e1e2

Rα
βγ δ

:R2
121 = −f ′′(r)

f (r)

Rαβ :R11 = −f ′′(r)
f (r)

, R22 = −f ′′(r)
f (r)

,

R = − 2f ′′(r)
f (r)

Setting R = 2C gives us the differential equation f ′′ = −Cf , whose solutions are given by either trigono-
metric or hyperbolic sine and cosine, depending on whether C is positive or negative.

But now the global condition θ = θ + 2π tells us that for the space to be locally flat as discussed in
chapter I.6, we must have f (r)→ r as r → 0. This not only fixes f (r) but also requires C to be either 1
or −1. (Around the tip of a cone, we could have f (r)→ kr as r → 0 for k < 1, but then the coordinates
and the curvature would be singular at the tip and our formalism breaks down.) For positive constant
curvature, f (r)= sin r , and so the space here, as you have already seen in chapter I.5, is just the sphere
in disguise (with the usual coordinates θ → r and ϕ → θ ). For negative constant curvature, f (r)= sinh r .
Satisfyingly, this agrees with the result you got for exercise I.5.5.

It is also instructive, noting that a circle of radius a centered at the origin has circumference 2πf (a),
to use the mites’ formula introduced in the prologue:

R = lim
radius→0

6
(radius)2

(
1 − circumference

2π radius

)
= lim

r→0

6
r2

(
1 − sin r

r

)
= 6
r2

(
r3

3!r

)
= 1

(We now see that the mite professor of geometry included the overall factor of 6 so that the unit sphere
would have unit curvature.)
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2 We have e1 = ypdx and e2 = xpdx. Then

de1 = pyp−1dydx = −pe1e2/(yxp)= −ω1
2e

2

and thus

ω1
2 = pe1/(yxp)+ (e2 term)

By symmetry,

ω2
1 = pe2/(xyp)+ (e1 term)

and so

ω1
2 = −ω2

1 = p
(
e1/

(
yxp

)− e2/
(
xyp

))= p
((
yp−1dx/xp

)
−
(
xp−1dy/yp

))
the last form being easier to differentiate. Differentiating, we have

R1
2 = dω1

2 = −ω2
1 = −p(p − 1)

((
xp−2/yp

)
+
(
yp−2/xp

))
dxdy

= −p(p − 1)
((

1/
(
x2y2p

))
+
(

1/
(
y2x2p

)))
e1e2

Since Ra
b = 1

2R
a
bcde

ced , we find R1
212 = −p(p − 1)((1/(x2y2p)) + (1/(y2x2p))) = R22. Thus, we finally

obtain

R = − 2p(p − 1)
x2y2

(
1

x2(p−1)
+ 1
y2(p−1)

)

The space is flat for p = 0 (Pythagoras) and for p = 1 (see exercise VI.1.17). For p = 1/2, R = 1
2xy (

1
x

+ 1
y
).

3 We have e1 = adθ , e2 = (L + a sin θ)dϕ, and so de1 = 0, telling us that ω12 ∝ dϕ, de2 = a cos θdϕ =
−ω21e1 = −ω21adθ , so that ω21 = cos θdϕ. Thus we have R21 = dω21 = − sin θdϕ = sin θ

a(L+a sin θ)
e2e1,

giving R21
21 = sin θ

a(L+a sin θ)
= R11 = R22. Hence we obtain R = δabRab = 2 sin θ

a(L+a sin θ)
. Note that, as might be

expected, at θ = 0 or π , R = 0; at θ = π/2, R = 2
a(L+a) ; and at θ = 3π/2, R = − 2

a(L−a) . The “outer half”
of the torus has positive curvature, while the “inner half” has negative curvature.

4 With e0 = dt , e1 =A(t)dx , e2 = B(t)dy , e3 = C(t)dz, we have de0 = 0 = −ω0
a
ea , so that ω0

a
= (ea term,

no e0 term). Next we have de1 = Ȧdtdx = (Ȧ/A)e0e1 = −ω1
0e

0 − ω1
b
eb, which implies ω1

0 = (Ȧ/A)e1 =
ω0

1. Here a possible e0 term in ω1
0 is disallowed by our earlier conclusion. Note that while it is possible

here for ω1
2 to be proportional to e2, this would imply that ω2

1 is proportional to e1, but this is ruled out by
the antisymmetry of ω12. (Note that we have used repeatedly the fact that the metric is diagonal, so that
we can raise and lower indices easily.) We thus conclude that the only nonvanishing components of ωα

β

are ω0
1 = ω1

0 = (Ȧ/A)e1 = Ȧdx and the components obtained from it by permuting 1, 2, 3 and A, B , C.
We next obtain

R0
1 = dω0

1 + ω0
a
ωa1 = Ädtdx + 0 = (Ä/A)e0e1 = 1

2
R0

1αβe
αeβ

and hence we have R0
101 = Ä/A= −R1

010. Since ω1
2 = 0, we might be tempted to conclude that R1

2 = 0
also, but we would be wrong. In fact,

R1
2 = dω1

2 + ω1
0ω

0
2 + ω1

a
ωa2 = 0 + (Ȧ/A)(Ḃ/B)e1e2 + 0

and hence we have

R1
212 = (Ȧ/A)(Ḃ/B)= R2

121

All other nonvanishing components ofRα
β

are obtained fromR0
1 andR1

2 by permuting 1, 2, 3andA, B , C.
Finally, Rαβ (note that this is not a form and is not to be confused with the curvature 2-forms we had

before) is given by

−R00 = −Ra
0a0 = (Ä/A)+ (B̈/B)+ (C̈/C)
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and

R11 = R0
101 + R2

121 + R3
131 = (Ä/A)+ (Ȧ/A)((Ḃ/B)+ (Ċ/C))

(Again, the other nonvanishing components of Rαβ are obtained from R0
1 and R1

2 by permuting 1, 2, 3
and A, B , C.)

So the Einstein field equationRαβ = 0 consists of 4 equations for 3 unknown functionsA, B , C, but we
know that 1 linear combination of the 4 equations corresponds to the Bianchi identity. By inspection, we
see that power laws A= tp, B = tq , C = t r solve these equations: R00 = 0 gives p + q + r = p2 + q2 + r2,
and R11 = 0 gives p2 + p(−1 + q + r)= 0 implying that either p = 0 or p + q + r = 1.

We can easily extend this to higher dimensions. For ds2 = −dt2 + f1(t)dx
2 + . . . , we obtain

R00 = −
∑
a

f̈a/fa and Raa = (f̈a/fa)+ (ḟa/fa)
∑
b �=a

(ḟb/fb)

Einstein’s field equation is solved by fa = tpa , with pa satisfying
∑

a p
2
a
=∑

a pa = 1.
Let us also ask what happens when d = 2. Then Rα

β
contains only 1 component, namely R0

1. Hence

Ä= 0 and after shifting the origin of t and so forth, we have ds2 = −dt2 + t2dx2. Analytically continuing
and giving the coordinates more familiar names, we see that we have found the plane in polar coordinates.

IX.9 Conformal Algebra

1 Simply calculate ημν
(
x
μ
1 /x

2
1 − x

μ
2 /x

2
2

)(
xν1/x

2
1 − xν2/x

2
2

)
. If the two points are null separated, (x1 − x2)

2 →
0 and hence remains 0 under inversion.

3 For the Euclidean plane, (1) simplifies to ξμ,ν + ξν ,μ = 2cδμν , with c some constant. Then ξ1, 1 = c,
with the solution ξ1 = cx + f1(y). Similarly, ξ2, 2 = c gives ξ2 = cy + f2(x). Plugging into ξ1, 2 + ξ2, 1 = 0
gives f

′
1(y) + f

′
2(x) = 0, and hence f1 = a1y + b1 and f2 = a2x + b2, with a1 + a2 = 0. Therefore, ξ1 =

cx + ay + b1 and ξ2 = cy − ax + b2. The three conformal Killing vectors are ξ = (b1, b2) (translation),
ξ = (y , −x) (rotation), and ξ = (x , y) (dilation).

IX.10 De Sitter Spacetime

5 The event horizon of the observer at the south pole is given by the diagonal τ =ψ − π
2 . Plugging this into

(44), we obtain T = tan τ , r = 1, and W = − tan τ , and thus the intersection of T +W = 0 and r = 1. The
event horizon of the observer at the north pole is given by the other diagonal τ = π

2 − ψ .

X.3 Effective Field Theory Approach to Einstein Gravity

1 Lorentz and gauge invariance allow us to construct, in addition to the mass dimension 4 Maxwell scalar
FμνF

μν, also the mass dimension 6 scalar ∂λFμν∂λFμν. Moving further up in mass scale, we also have
the mass dimension 8 scalars (FμνFμν)2 and (F̃μνFμν)2 (where F̃μν ≡ − 1

2εμνρσF
ρσ , as you might recall

from chapter IV.2). If we add them to the action to form

S =
∫

d4x

(
− 1

4FμνF
μν + αl2∂λFμν∂

λFμν + . . . + l′4
(
β
(
FμνF

μν
)2 + γ

(
F̃μνF

μν
)2
)

+ . . . + eAμJ
μ

)

we have to introduce, by high school dimensional analysis, two lengths l and l′, which a priori may not
be the same. Here α, β, and γ are dimensionless numbers. Since we understand quantum electrody-
namics (but not quantum gravity), we can in fact determine all these unknown quantities (see QFT Nut,
chapters III.7 and VIII.3 and p. 460). The lengths l and l′ are set by the electron mass.
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X.5 Topological Field Theory

3 Let us evaluate

εαβγ δR
αβRγ δ = εαβγ δR

αβ
μν
R
γ δ

ψωdx
μdxνdxψdxω

= εαβγ δe
α
ρ
eβ
σ
eγ
τ
eδ
ζ
Rρσ

μν
R
τζ
ψωε

μνψωd4x

= (det e)ερστζR
ρσ
μν
R
τζ
ψωε

μνψωd4x

∝ d4x
√
g
(
δμ
ρ
δν
σ
δψ
τ
δω
ζ

± permutations
)
Rρσ

μν
R
τζ
ψω

=
(
d4x

√
g
)

4
(
R2 − 4RμνRμν + RμνρσRμνρσ

)
In the next-to-last step, we used the fact that ερστζ εμνψω is equal to ±1 or 0 according to whether the two
sets of indices (ρστζ ) and (μνψω) match or not, up to some permutation. In the last step, we add up
the various possibilities. The combination (R2 − 4RμνRμν +RμνρσRμνρσ ) is known as the Gauss-Bonnet
term. Incidentally, this computation shows eloquently the advantage of using differential forms.

X.6 A Brief Introduction to Twistors

2 This is worked out on p. 493 in QFT Nut, 2nd edition.

3 This is worked out on p. 509 in QFT Nut, 2nd edition.
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Page numbers followed by letters e, f, and n refer to exercises, figures, and notes, respec-
tively.

1
2 -factor, Einstein’s field equation, and metric tensor

formalism, 76
“1–2” test, 326
1-forms, 599–600; Hodge star operation on, 724
(2+1)-dimensional spacetime, Chern-Simons term

in, 721
2-D metric, 77
2-dimensional solid state structures, gauge potential

of, 721
2-forms, 601
2–indexed tensors, definition of, 53
2-manifold, without boundary, 727
3-D metric, and black holes, 77
3-dimensional spaces, embedding into Minkowskian

spacetime, 634
3-spaces, maximally symmetric, 610
3-spheres: cosmological principle, 491; metric tensor

of, 296
3–vectors, transformation into 4–vectors, 218
4-current, 251
4-dimensional electromagnetism, 720–721
4-dimensional spacetime, 386; divergence theorem

generalized to, 386
4-gluon scattering, 738, 744e
4-momenta: in electromagnetism, from special

relativity, 245; lightlike, 782; of particles in box,
227

4–vectors: from 3–vectors, 218; length of, 182;
relativistic curl of, 252; spacetime metrics, 181

4–velocity: around black holes, 414; of finite sized
object, 716

5-dimensional Einstein field equations, for 2-brane
model, 700

5-dimensional scalar curvature, 684–685
5-dimensional spacetime. See Kałuza-Klein theory

Abbott, E. A., 671
abelian gauge theory, 681n
Abraham, Max, on Newton gravity and Lorentz

invariance, 580
acausality, of universe, 754, 783
“accelerated” thought experiment, 280–283, 286
acceleration: and curvature, 554; Galilean

transformation, 276–277; Galileo’s law of, 140;
and general relativity, 189; and gravity, 269, 271; in
Minkowski spacetime, 190; relativistic particles,
277

accretion disks, 414–415; around Kerr black holes,
474

acoustic peak, microwave background, 523–525,
788n

action: for 2-brane model, 700; constraints in
varying, 755–756; containing two powers of time
derivative, search for, 338–339; different sectors
of matter action, 382–383; dimensions of, 346;
at a distance, of Newton’s gravity, 145; Einstein-
Hilbert (see Einstein-Hilbert action); for elastic
medium, 771; electromagnetic, 244, 250–251, 333;
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action (continued)
for everything else, 347; for fields in spacetime
described by a metric, 770; in flat spacetime, 379;
formulation by metric or vielbein, 785; of free
particle, 162; gravitational time dilation, 284; for
gravity, 339, 344, 346; as infinite series of terms,
766; Kałuza-Klein, in Jordan frame, 686; length
or energy scale dependence of, 710; local, 246;
Lorentz, in Kałuza-Klein theory, 678; of matter
(see matter action); Maxwell, 325, 332, 675–676;
for motion of finite sized objects, 714–715, 716;
Newton-Einstein-Hilbert, quantum gravity limit
of, 444; Newton’s law of action and reaction, 470;
nondependence on metric, 723; nonlocality in
time, 754; nonrelativistic, 241–242, 356; offshell
information carried by, 782; reasons for emphasis
on, 396; relativistic, 284–285, 308; relativistic
string, 210n; scalar field, 332; specification of
dynamical variables, 395; terms of, behavior at
long distances, 722; topological, 720–721; total,
Newtonian world, 145; of universe, 346, 356; as
usually formulated, 783; of world, and energy
momentum tensor, 378; Yang-Mills, 681

action functional, 138
action principle, 155; basics of physics, 136–149;

different notions of, 138; as fundamental principle
of theoretical physics, 783; globality of, compared
to equation of motion, 141; kinetic term in, 140;
and least time principle, 139, 144; metaphor for
life, 140; mystery of, 141, 155; of particles and
fields, 145; theories based on, 383; variational
calculus, 113

action variation, holding dynamical variables fixed,
380

active diffeomorphism, 397
actual biological time, elapsed between event A and

B, 179
addition of velocities. See velocities
ADM (Arnowitt-Deser-Misner) formulation, of

gravitational dynamics, 693
AdS. See anti de Sitter spacetime
affine parameter, 308
Aharonov-Bohm effect, 789n
air resistance, and free fall, 268
airline example, for proving curvature of earth, 66
al-jabr, calculation method, 208n
Al-Khwarizmi, calculation of square roots, 207n
algebra: conformal, 614–623; de Sitter, and

cosmological constant, 755; extensions of, 667;
Lie (see Lie algebra); Lorentz (see Lorentz algebra);
matrix, quick review of, 742–743; Poincaré (see
Poincaré algebra)

algorithm, etymology of the word, 207n
ambitwistors: power of, 738; representation of, 736
American football, relativity of, 171, 172f
“analog Newtonian” equation, 367
analytic continuation: de Sitter to anti de Sitter

spacetime, 664; hyperbolic coordinates, 661; of
stereographic projection, 641

analytic geometry, role of coordinates, 48
Anderson, Phil, on particle physicists, 713n
angles: defined by physicists, 170; hyperbolic, 628;

importance of, 620
angular coordinates: on de Sitter spacetime, 627;

suppressed, 422, 426
angular correlation, cosmic microwave background

fluctuations, 523f
angular deficits: as “measure” of curvature, 727; of

polyhedra, 726–727
angular momentum: around black holes, 412–413,

459; conservation of, 30, 36–37, 48n, 126, 152,
310; Kerr black hole, slow rotation limit, 571; loss,
Penrose process, 471–472; of particle on sphere,
148; of rotating black holes, 442, 465, 576; of
rotating bodies, 563–577; symmetry of, 150

angular velocity: around black holes, 414, 460;
defined by time coordinate, 550; for Kerr black
hole, 462f; slowly rotating gravitational sources,
570; inside stationary limit surface, 471

annihilated spacetime, 785
annihilation operator, 447–448
annus mirabilis, Albert Einstein’s, 265
ant and honey analogy, 5–6, 5f
ant movement, as example of variational calculus,

128
anthropic principle: and cosmological constant

paradox, 751–752, 757; and ultimative theory,
789n

anti de Sitter / conformal field theories (AdS/CFT):
AdS/CFT correspondence, 649, 787; conformal
coordinates of, 654, 654f; and Poincaré half plane,
68

anti de Sitter spacetime (AdS), 606e, 612, 649–
666; for 2-brane model, 702; AdS2 boundaries,
664; boundary of, 655; d-dimensional, 650, 650f;
different forms of, 660; in hyperbolic coordinates,
661; isometry group of, 650; motion of light, 659;
motion of massive particles, 659–660; Poincaré
coordinates, 656; slice of, 658f; stereographic
projection for, 661; table for, 662

anti-gravity, discussion of, 392
anticommutation: of differential forms, 597; Jordan’s

manuscript on, 789n
antimatter: and charge conjugation in Kałuza-

Klein theory, 678; creation of, 205, 206; in early
universe, 528; Feynman diagram of, 206f; in
higher dimensional theories, 683; in quantum
field theory, 476

antiparticles, 26, 437–438
antipodal condition, space of spheres, 646
antisymmetric matrices, introduction of, 40
antisymmetric symbol: in curved spacetime, 723–

725; as invariant tensor, 60; role as metric, 734;
used to contract indices, 719
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antisymmetric tensors: character of, 55;
decomposition of, 236e

antisymmetry: useful relations based on, 608. See
also symmetry

apparent singularities, at Schwarzschild radius, 409
apparent violation of causality, in brane models, 703,

705
apple: falling, 36, 137f, 268; floor rushing up to meet,

270f
area: approximation by small rectangles, 546;

infinitesimal, enclosed by closed curves, 547;
Planck, and entropy of black holes, 442

area and volume, concept of, and coordinate
transformations, 75–76

area theorem, Penrose process, 472
area transformations, in differential forms, 598
Aristotle, comparison to Newton, 140–141
arithmetic, difference from mathematics, in terms of

rotations, 56
arithmetic laws, of working in general relativity, 665
Arkani-Hamed, modified Einstein’s field equation,

754
Arnowitt-Deser-Misner (ADM) formulation, of

gravitational dynamics, 693
arrays, and vectors, 51n
astronomy, with gravitational waves, 563
astrophysical objects: mass and energy for

gravitational waves, 569; Schwarzschild radius to
actual radius relation, 366

asymptotic safety, as approach to quantum gravity,
760

atomic clock, 287
atomic physics, in early universe, 518
atoms, action of, 714–715
attractor, stable, in cosmic diagram, 511f
auxiliary fields, 217n
auxiliary quantities, calculus, 129
averaging, for many particles, 231

baby string theory, 215; and Lorentz transformation,
147

Babylonian tablet, 214, 214f
background radiation. See cosmic microwave

background
bad notation alert: confusion in time dilation, 198;

confusion in relativistic action, 211; geodesic
equation, 555

balls: circularly arranged, falling toward spherical
planet, 58–59; separation between falling, 554; in
train, 160–161, 161f

baryogenesis, 526–528
baryonic matter, 502–503, 506
basic vector: spacetime metrics, 181; (ur-), definition

of, 43
basis vectors: change by moving on surface, 99–100;

for surface, in Euclidean space, 98; variation of,
100

Beer, Gillian, on Lewis Carroll, 173n
Bekenstein-Hawking entropy, 441–442, 444; second

law of black hole thermodynamics, 472
Beltrami, Eugenio, and discovery of Poincaré’s half

plane, 67n
bending of light: “accelerated/dropped” gedanken

experiments, 281–282. See also deflection of light
Bentley, Richard, on existence of God, 520
Bering Strait, “attractive force” of, 275
Berlin Wall, construction of, 476
Bernoulli, Jacob and Johann, brachistochrone

problem, 120
Bessel, Friedrich, Bessel functions, 376n
Besso, Michele, letter of Einstein to son of, 177
Bethe, Hans, and Peierls’ comments on thinking and

calculating, 133
Bianchi identity, 452; constraints on curvature

tensor, 592; contracted, 393, 394; derivation of,
392, 393; and Maxwell’s equations, 724; similarity
to differential forms, 599

Big Bang, 785; analyzed with cosmic potential, 508–
509; in cosmic diagram, 502–503; and cosmic
microwave background, 517; in cosmic potential
diagram, 508f; as creation of space, 498–499, 708;
as point of infinite temperature, 496

Big Crunch, 508–509, 508f, 514
billiard balls, elastic collision of, 165e
binary pulsar, emission of gravitational waves, 563
binary systems, gravitational waves from, 714
binding energy, gravitational, 455–456
biological time, actual, elapsed between event A and

B, 179
Birkhoff, George: Newton-Jebsen-Birkhoff theorem,

453; time dependent spherically symmetric mass
distribution, 373

black body radiation, of black holes, 436
black hole hypothesis, historical, 13
black holes: and 3-D metrics, 77; binary systems of,

714; charged, 477–484; “dangers of extremes,”
484; in de Sitter spacetime, 635; definition of,
410; distance around extremal, 469; dust ball
collapsing into, 422f; entropy of, 15, 436, 441,
448, 766, 788n; estimation of “electric” and
“magnetic” components for, 717; eternal, 421–
422, 426–427, 479; extremal, 467–468, 478, 481;
first and second law of thermodynamics, 472–473;
formation of, 373, 421–423, 422f, 423f, 429–431;
gravitational potential around, 410–411, 411f; and
Hawking radiation, 14–15; horizon of, 416–417,
784; information paradox, 439; internal world
of, 781; just sitting there, 482–483; Kerr black
hole, 462, 464–468; Kruskal-Szekeres diagram,
426; as limit for measuring device, 763–764; local
gravitational field in great distance of, 574; mass
determination, 570; mass of, given by Michell
and Laplace, 366; mystery of, 410, 441; orbits for
light moving around, 416f; orbits with substantial
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black holes (continued)
angular momentum, 412–413; particles and light
around, 409–418; perihelion shift around, 413;
Reissner-Nordström black hole, 479, 483; rotating,
576; Schwarzschild black hole, 429f, 436; stellar
collapse into, 455–456; strangeness of, 764–765;
sub-/transextremal, 478, 483; tilting light cones,
421; and unitarization of graviton scattering, 765.
See also finite sized objects; rotating black holes

blue shift, relativistic, of frequency, 186
blue sky effect: reason for, 715; squared in gravity,

717
bodies, rotating: angular momentum of, 563–577;

slowly, 570; spacetime deformation by, 460
Bogoliubov transformation, 448
boiling vacuum, 437–438
Boltzmann constant, and temperature concept, 16n
boosts: invariance of, 188; Lorentz transformation

for, 169, 187; and rotations, commutation relations
of, 191–192

Born, Max, on Einstein’s gravity, 777
Bose-Einstein condensate, 332
bosons: bound to magnetic monopoles, 789; as open

strings, 696
Boulware, David, curved spacetime, 580
bounce theory, 536n
boundaries: of AdS2, 664; of anti de Sitter spacetime,

655; divergence of metric tensor, 663; numbers of,
664

boundary: of Euclidean anti de Sitter space, 662;
incoming light beam, with Poincaré coordinates,
659; spatial, in anti de Sitter spacetime, 649

boundary conditions, of energy functional, 116
bowl: curvature at bottom of, 85; potential energy of

moving marble, 113–115
box: accelerating, laser light, 281f, 283f; Lorentz

contraction of, 23; particles in, 223f, 227; for
studying physical systems, 649

Boyer-Lindquist coordinates, 476; description of flat
space, 78

brachistochrone problem, 121f; formulated by
Bernoulli, 120

Brahe and Kepler, work of, importance for Newton,
369n

brane worlds, 696–707
branes: 1-brane model, 702; 2-brane model, 700–702;

initially static, 707; Poincaré invariant, 707; waves
from bulk, 703f. See also membranes

breathing circles, 679–680
Bright, Ms. (limerick character), 294
Broglie, Louis de, 773n; particle-wave dualism, 762
Broglie wavelength, particles at Schwarzschild

radius, 442
Bronstein, Matvei, reconstruction of theory of gravity,

764–765
Buchdahl’s theorem, 454
bulk waves, to brane, 703f

Calabi-Yau manifolds, 695
calculus: simplification of, auxiliary quantities, 129;

of variation (see variational calculus)
caloric, historical concept of, 786
Calvino, Italo, Cosmicomics, 554
candles: falling, 268, 271; standard, 359
Carl Friedrich Gauss, and differential geometry,

90–91
Carroll, Lewis: constant notion of time, 173n; on

times, 166
Cartan, Élie, and Lie algebra, 586
Cartan’s equations: anti de Sitter spacetime, 612;

first, index transformations, 603; for maximally
symmetric 3-spaces, 610; in spherically symmetric
static spacetimes, 611; structural, 607, 684

Cartan formalism: calculation of curvature, 602;
curvature and covariant derivative, 605

Carter-Penrose diagrams, 435. See also Penrose
diagram

Cartesian coordinates: change to polar coordinates,
29, 62, 71; change to spherical coordinates, 63

Casimir effect, 748–749, 758n
Cauchy horizon, 404
Cauchy problem, in Einstein gravity, 400
Cauchy surface, initial data on, 402
Cauchy’s theorem, for analytically continuing

integrands into complex plane, 732
causal structure, of de Sitter spacetime, 638, 639f
causal structure of spacetime: domains, 530, 531f;

Hawking radiation, 438; Penrose diagrams, 427,
431

causality, 178; apparent violation of, in brane models,
703, 705; as fundamental principle of theoretical
physics, 783; at Schwarzschild radius, 421; in
special relativity, 204

Cavendish, Henry, measurement of Newton’s
constant, 32

Cavendish experiment, and non-quantized gravity,
771

celestial mechanics, Newton’s solution of, 28–30
censorship, cosmic, 479–480
center-of-mass energy, graviton scattering, 761
central forces, in celestial mechanics, 28
central potential, and invariance, 47
centrifugal force, 278; around black holes, 411; and

curvature of curve, 97
“centrifugal” potential, 126
CFT (conformal field theories), 649n
chain rule, transformation of Christoffel symbols in,

132
Chandrasekhar, Subrahmanyan, Kerr solutions, 481
Chandrasekhar limit, 455
Chang Heng, and concept of coordinates, 62n
charge: conjugation, 678; conservation of,

during antimatter creation, 205; coupling to
electromagnetic field, 250; density of, in Maxwell’s
equations, 252; Lorentz force law, 404; and
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momentum in fifth dimension, 677; notion of,
246–247; quantization in Kałuza-Klein theory, 677

charged black holes, 477–484; Penrose diagram, 480f
charged particles, individual, worldlines of, 715
charged scalar fields, in 5-dimensional theories, 687
Chern-Simons term: in (2+1)-dimensional spacetime,

721; powers of derivatives, 722
Chinese, and concept of coordinates, 62n
Christoffel 1-form, definition of, 604
Christoffel symbol, 129; brute force transformation

of, 329; and comoving coordinates, 290; and
covariant differentiation, 321; and curved
spacetime, 278; definition range in parallel
transport, 544; in Fermi normal coordinates,
560; indices, number of, 131; introduction
of, 99; schematic form of, 342; around
spherically symmetric mass distribution, 310–
311; transformation of, 132, 389; use of symmetry
properties in Fermi normal coordinates, 561;
variation of, 347

circles: breathing, 679–680; of constant
latitude/longitude, on sphere, 105; mistaken for
points, 674f

circular orbit: around black holes, 413–414, 413f;
innermost stable, 414, 474; around massive object,
549

“classical” differential geometry, 96–109
classical field theory, 119; harmonic oscillator in,

361
classical gravity, puzzling, 784
classical mechanics, without Newton’s equation, 145
classical physics, profound difference from quantum

physics, 360–361
classical relativity, not consistent with quantum field

theory, 773n
classicalization of gravity, 766
clock paradox, 194n
clocks: cosmic, 504; invented by Einstein, 166;

observed in different frames, 196f; and rulers,
role in physics, 719–720; slow running, in special
relativity, 197

closed curved space, 681
closed forms, 604
closed orbits, verification of, 30
closed strings, 696
closed timelike curves, 484
closed universe, 296–297, 491; critical density, 497–

498; as de Sitter spacetime, 630; Einstein’s field
equations, 493–494; with positive cosmological
constant, 633

clothed singularities, 479
Cohen, I. Bernard, visit to Einstein, 267
coincidence problem, 499, 778
collapse: dissipative, 520–521; stellar, 455–456
collisions: elastic, of billiard balls, 165e; of particles,

219–220, 438; of photons and electrons, 222f
column vectors, notation of, 45

common sense, to be abandoned for development of
physics, 784

“common to all the things contained in it,” 18n
communication, in expanding universe, 293–294
commutation: and group theory, 49; of matrices, 41
commutation relations, between boosts and

rotations, 191–192
commutators: between A and B, definition, 49;

computation of, cyclic substitution, 50; index-free
representation of vector fields, 319; introduction
of, 340; and Lie derivative, 328; of two covariant
derivatives, 325, 341

comoving coordinates, 290, 298; preferred flow
direction in, 230

comoving observers: and perfect fluids, 229;
spacetime distance of, 174; in universe filled with
perfect fluid, 492–493

compact source approximation, 568
compactification, of extra dimensions, 683
completion: and promotion, of gravitational fields,

218; relativistic, 242–243
complex matrices, and twistors, 730
complex parameters, rescaling of, 733
complexification, of variables, 732
Compton mass, of universe, 747–748
Compton scattering, 222f; inverse, 235e
computational effort, by using action principle, 141
condensed matter physics: dynamical critical

exponent, 657n, 754, 758n; gauge potential of
solid state structures, 721; scale and conformal
invariances, 621

conformal algebra, 614–623; flat spacetime, 615;
generators of, 617; identification of, 618

conformal coordinates: for anti de Sitter spacetime,
654, 654f; for de Sitter spacetime, 638

conformal equivalence, of anti de Sitter spacetime,
654

conformal field theories (CFT), 649n
conformal flatness: of anti de Sitter spacetime, 662;

of de sitter spacetime, 641–642
conformal generators, 615
conformal groups, equality with isometry groups,

656
conformal Killing condition, 614
conformal time, and cosmic time, 632
conformal transformations, 614; generators of, 644;

preservation of angles, 620; as solutions of Laplace
equation, 616

conformally equivalent spacetime, 311
conformally flat metrics, 352e–353e; definition of, 94
conformally flat space, 80–81e; as bad terminology,

94
conformally related spacetimes, 622e
conjugation, charge, 678
connection 1-form, 599–600; indices of, 607
conservation: angular momentum (see angular

momentum); charge, 205; covariant, of energy
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conservation (continued)
momentum tensor, 384; current, 226, 253; energy
(see energy conservation); energy momentum (see
energy momentum conservation); momentum
(see momentum conservation); and relativistic
fluid dynamics, 233; and symmetry, 150–155

conservation laws, 155; from action principle, 141;
and Killing vectors, 589; for motion in curved
spacetime, 310; in Newtonian mechanics, 35–37

conserved quantities: in Newtonian mechanics, 30;
Noether’s theorem, 152

consistency condition, and determination of
potential, 36

constant latitude/longitude, circles of, on sphere, 105
constant vector fields, covariant derivative of, 331
constants, fundamental, 12
constraints on metric, 403
container: of anti de Sitter spacetime, 649; rectilinear,

infinitesimal volume of, 80e
continuity equation, for current conservation, 225
continuum mechanics, notations of coordinates, 117
contracted Bianchi identity, 393; derived from

Einstein-Hilbert action, 394
contraction: of indices, 46n, 345; of repeated indices,

58n; of spacetime indices, metric for, 719; tensors,
316

contravariant indices, 72, 315
contravariant vectors, 183
coordinate differentials, 312
coordinate invariance: general, 305–306, 672; local,

in higher dimensional theories, 682
coordinate patches, to cover entire space, 76
coordinate scalars, to form a metric, 708–709
coordinate singularities: compared to physical

singularities, 91–92; and Einstein-Rosen bridge,
92f; Kerr black holes, 467; Schwarzschild metric,
365–366

coordinate systems: failure of, 76–77; natural, 134
coordinate transformations: 5-dimensional, gauge

transformations as, 673; accelerated frames,
285; change of metric under, 70–71; Christoffel
symbols, by brute force, 329; in curved space
and curved spacetime, 317; in differential forms,
597; freedom of, 62; Galilean, of acceleration,
276–277; general, 68–71, 312, 314, 318, 384; for
gravitational waves, similarity to electromagnetic
gauge transformations, 564; and indices (upper
and lower), 73–74; and Jacobian, 75; and
Mercator map, 79e; nonlinear, 69; as passive
diffeomorphism, 398

coordinates: angular, 422, 426, 627; Boyer-Lindquist,
476; change of, 64–65, 641; choose of appropriate,
631; comoving, 290, 298; concept of, by Descartes,
48; dimensionless, 665; Eddington-Finkelstein,
431; effect of motion on, 160; geometric
significance of, 68; hyperbolic, 661; hyperbolic
radial, 653–654; internal, 675; Kruskal-Szekeres,

424–425, 432–433; Kruskal-Szekeres-like, 635;
light cone, 146–147, 170–171, 427–429, 704;
locally flat, 130, 132, 278, 288, 552, 557; notation,
62n, 117; Painlevé-Gullstrand, 417; poor choice
of, 590; primed and unprimed, 18, 38, 39f, 71–
73; pseudo-time, 657; relations between different,
159; Rindler, 446; role exchange of, at horizon,
419; of specific point, Fermi normal coordinates,
559; static, 634, 636, 652; time, 652; traditional
“names” of, 25; warped polar, 613e

coordinates, “crazy,” 94e
coordinatization, of de Sitter spacetime, 634
Copernican principle, 491
corotation/counterrotation: light rays, 461, 469;

particles, 474
correlation: angular, cosmic microwave background

fluctuations, 474; of quantum fluctuations, 447
coset manifolds, 590; and classification of space and

spacetime, 666; group theory of universe, 644;
and maximal symmetry, 625; and spontaneous
symmetry breaking, 593

cosmic censorship, 479–480
cosmic clock, universe’s ambient temperature as,

504
cosmic coincidence problem, and cosmological

constant paradox, 751
“cosmic conspiracy,” 297
cosmic diagram, 496, 502, 503f; flow in, 510–512;

phase boundaries in, 513–514; stable attractor and
fixed points, 511f

cosmic expansion. See expanding universe
cosmic microwave background, 236e, 517; angular

correlation of fluctuations of, 523f; density
fluctuations in early universe, 521–522; first
acoustic peak, 523–525; fluctuations, effect of
curvature on, 525–526; temperature, 515

cosmic potential, 508f; Big Bang analyzed with,
508–509

cosmic ray particle, lifetime of, 198
cosmic time, 295; and conformal time, 632; and

horizon problem, 530
Cosmicomics (Calvino), 554
cosmological action: derivation of energy momentum

conservation, 387e; variation of, 391
cosmological constant: for 2-brane model, 701; added

by Einstein, 360; in cosmic diagram, 502–503, 513;
in de Sitter spacetime, 456; decaying, 756; and
deceleration of cosmic expansion, 507; deletion
of, Feynman diagrams for, 756–757; dependence
of equation of state parameter on, 359; different
spatial curvature, 634; Einstein’s field equation in
presence of, 357; and Einstein-Hilbert curvature
term, 754; and energy conditions, 557; essential
role played by, 512; and expanding universe, 392;
in inflationary cosmology, 534; introduction of,
356, 393; as Lagrange multiplier for volume of
spacetime, 756; mass scale of, 700; mystery of,
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356, 711, 751, 782; positive, 633; in quantum
world, forbidding removal of, 361; and scale factor
of universe, 496f; scaling of, 753–754; universe’s
equation of state, 497

cosmological constant paradox, 745–759; algebraic
solution of, 754–755; analogies of, 786; anthropic
principle, 751–752, 757; breaking free of local field
theory, 756; as challenge for physics, 712; cosmic
coincidence problem, 751; deeper understanding
of physics, 753; deletion of Feynman diagrams,
756–757; effective action for gravity, 711; and
effective field theory, 782; extreme ultra infrared
regime, 750–751; inflation, 751; largest and
smallest masses, 747–748; linkage between
infrared and ultraviolet regime, 752; naturalness
doctrine, 749–750; omniscience of gravity, 745;
Planck mass, 746–747; potential solution of,
778; quantum fluctuations, 745–746; question
for explanation of vacuum energy, 752–753;
unimodular gravity, 755–756; vacuum energy
density, 749

cosmological distances, 750; scaling at, 753–754
cosmological equation, 501; appropriate units, 633;

and history of universe, 503–504
cosmological principle, 289, 491–492; Einstein’s field

equations, 494; Newtonian mechanical analogies
from, 507, 513

cosmological redshift, 295
cosmological time, in outgoing brane wave model,

706
cosmology: curvature of universe, 490; gases for,

230; golden age of, 491; inflationary, 530–536;
nonlocal, 712; observational, 505; physical history
of early universe, 515–529; proper distances, 296–
297; trans-Planckian, 518; use of scalar fields in,
759n

couch potato problem: action principle, 143; particles
at rest, 142

Coulomb potential, dilation invariance, 620
counting: for characterizing intrinsic curvature, 110;

and group theory, 56–57; of matrix elements,
87–90

coupled Einstein and Maxwell equations, static
solutions, 482–483

coupled ordinary differential equations, relativistic
stellar interiors, 452

coupled partial differential equations, transfer of
spacetimes, 664

covariance: difference from invariance, 47; general,
285

covariant curl, 325; derivation of energy momentum
tensor, 381

covariant curvature, 339
covariant derivatives: along geodesic, 553; in Cartan

formalism, 605; concept of, and differential
geometry, 100–101; constructed by parallel
transport of vectors, 103; Newton-Leibniz rule,

failure for, 342; and objects carrying vectorial
arrow, 109; in parallel transport, 543–544; of
vectors, 340

covariant differentiation, 320–333; and Christoffel
symbol, 321; along curves, 327

covariant divergence, 326; of tensors, 332
covariant indices, 72, 315
covariant vectors, 183
CP (charge conjugation followed by parity) violation,

528; in higher dimensional theories, 683
“crazy” coordinates, 94
creation of space, 498
creation operator, 447–448
critical density, 497–498; and Hubble length, 514;

ratio of energy density to, 505
critical phenomena, theory of, 621
Crommelin, Andrew, and Royal Society expedition,

367
cross-product notation, angular momentum

conservation, 48n
cross section scattering, 715
cube, topology of, 725
cube of physics, 12–13
cubic vertex, 739
curl: covariant, 325; exterior derivative, 599;

relativistic, 252
curled up space, 673–674
current: conservation of, 225, 253; in relativistic

physics, 223; in string theory, 235
curvature, 667; 5-dimensional scalar, 684–685; and

acceleration, 554; angular deficits as “measure”
of, 727; calculated on basis of given metric,
66; calculated with Cartan formalism, 602,
605; calculated with differential forms, 607;
connection with field strength by differential
forms, 602n; constant of scalars, 589; of curve,
89, 97; from curves to surfaces, 106; of cylinders
and spheres, 6; of earth, airline example for
proving, 66; expressing failure of Newton-Leibniz
rule covariant derivatives, 342; extrinsic (see
extrinsic curvature); of “fixed latitude” circle,
80e; intrinsic (see intrinsic curvature); invariant
or covariant description of, 339; and least path
principle, 5–6; measurement of, 89, 547, 548e;
negative, definition of, 85; Riemann (see Riemann
curvature); scalar (see scalar curvature); of space,
65–66; of spacetime (see curved spacetime); spatial,
effect on CMB fluctuations, 525–526; of surface
and curves, 104–105; of universe, 490–491, 495,
748; vanishing, 85

curvature 2-form, 600
curvature density, 504, 512; and flatness problem,

531
curvature tensor: alternative derivation of, 547–548;

anti de Sitter spacetime, 651; computation of, with
symbolic manipulation software, 607; constraints
on, 591; for de Sitter spacetime, 626; directly
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curvature tensor (continued)
from 2-form, 611; Fermi normal coordinates, 560;
fixed by maximal symmetry, 592; and Hawking
radiation, 438; and Kerr metric, 476; in locally flat
coordinates, 553; in maximally symmetric spaces,
589; use of symmetry properties, 561. See also
Riemann curvature tensor

curved rectangle, displacement of vector, 341f
curved space: and change of coordinates, 64–65;

closed, 681; compared to curved spacetime,
91; and coordinate transformations, 68, 317;
determination of curvature, 65–66; embedded in
higher dimensional flat spaces, 85–86; sphere as
example for, 83

curved spacetime: antisymmetric symbol in,
723–725; and change of coordinates, 64–65;
compared to curved space, 91; coordinate
transformations in, 317; determination of
Lagrangian in, based on Einstein’s equivalence
principle, 712; electromagnetism in, 325–326;
energy momentum tensor in, 380; Euclid’s
axiom, 552; general, spatial distance in, 290–
292; geodesic equation for, 277–278; governed
by energy distribution, 390; governed by
gravity, 344–346; and gravity, mystery of, 276;
independence of mass, 258–259; in lab, 332;
Maxwell’s equations, 333; most appreciated,
624; motion in, 289–290, 301–311, 307–309;
Newtonian limit, 302–303; quantum field theory
in, 780; Raychaudhuri equation, 449; spacelike 3-
dimensional hypersurface, 693f; around spherical
mass distribution, metric for, 364; spinors in,
604–605; universality of gravity, 275–276; universe
as, 288–300; visualizations, 296

curved surface: parallel transport of vectors on, 102;
and tangent plane, 83f

curves: of constant latitude, 92, 93; curvature of,
compared to surface, 89n; decomposition of, 545;
in Euclidean space, 96–97; fear of, 82; in geodesic
problem, definition of, 123; length in spherical
coordinates, 127; minimal length of, 128; in
Minkowskian spacetime, 175; parametrized,
and parallel transport, 543; reparametrization
invariance of, 124; on surface, determination of
curvature, 104–105

cutoff: concept of, in quantum field theory, 758n;
instead of infinities in physics, 770

cyclic substitution, computation of commutators, 50
cyclic symmetry, of Riemann curvature tensor, 351e
cylinder: curvature of, 6, 84–85, 107; tangent plane

of, 98; topological, 654

D-branes, Bekenstein-Hawking entropy, 444
d-dimensional Euclidean space, rotations in, 49–51
d-dimensional sphere, definition of, 624
d-dimensional anti de Sitter spacetime, definition of,

650

Damour, Thibault, on Einstein’s application of
Lorentz transformation to physics, 190

“dangers of extremes,” 484
Dao, of many-worlds interpretation of quantum,

788n
dark energy, 359, 627n, 642; coincidence problem

in dark energy–dominated universe, 499; and
cosmological constant paradox, 711, 747, 778; in
de Sitter spacetime, 456; and energy conditions,
557; and Hubble parameter, 391; mystery of,
356; and Nobel Prize in Physics (2011), 361n;
observational evidence for, 503; phase boundaries
in cosmic diagram, 514; and scalar fields, 788n;
struggle with dark matter, 502–503

dark energy density: negative pressure as
consequence of, 360; in spacetime, 356, 359

dark matter: gravitational lensing, 370–371;
observational evidence, 503, 503f, 506; structure
formation in early universe, 522–523; struggle
with dark energy, 502–503

de Broglie, Louis, 773n; particle-wave dualism, 762
de Donder gauge condition, gravitational waves, 564
de Sitter algebra, and cosmological constant, 755
de Sitter horizon, 293, 636f; thermal radiation from,

637
de Sitter-Lanczos-Weyl-Lemâıtre spacetime, 642
de Sitter length, inverse of, Hubble constant, 632
de Sitter metric, history of, 642
de Sitter precession, 549
de Sitter spacetime, 456, 624–648, 625f; angular

coordinates, 627; to anti de Sitter spacetimes, 664;
causal structure of, 638, 639f; containing black
holes, 635; d-dimensional, 625f; different forms of,
629; isometry group of, 625; iterative relationships
of, 640; Kruskal-Szekeres-like coordinates for,
636f; Lemâıtre–de Sitter metric, generalized, 489;
maximal symmetry of, 626; preview of calculation
of, 148; Riemann curvature tensor of, 626; and
space of spheres, 646; stereographic projection
for, 641; table for, 643

decomposition, of groups, 56f; definition of, 56–57
decoupling: of internal and external geometries,

691–692; of matter and radiation in early universe,
516–517

defining representation, of rotation group, 54
deflection of light, 368f; by astrophysical objects,

Soldner’s calculation of, 366–367
degree, subdivision of, proposal by Ptolemy, 368n
degrees of freedom, gravitational waves, 564
degrees of polarizations, gravitational waves, 564
delay, and radar echo experiments, 372
delta function. See Dirac delta function
Denken, before Integration, 133
density fluctuations: in early universe, 521, 523–525;

in inflationary cosmology, 533
density waves, in static relativistic fluid, 234
derivatives: covariant (see covariant derivatives;
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covariant differentiation); exterior, differential
forms, 598; as fractions, 207; of functional,
definition of, 116–117; Lie, 327–328, 331–332,
555; order of taking, 340; taken with respect to
functions, 113; two, in Newton’s force law, 110

Descartes, René: approach to questions in physics,
583n; concept of analytical geometry, 18; and
concept of coordinates, 62n; versus Euclid, 48; and
Euler characteristics, 726; theory of vortices, 578n;
watching a fly, and concept of coordinates, 51n

Deser, Stanley: ADM formulation, 693; curved
spacetime, 580

determinants: antisymmetric, 236; definition of, 60,
719; and intrinsic curvature, 84; introduction of,
39–40; of metric, 215–216; variation of, 381

DeWitt, Cecile, on “vielbein,” 606n
Dialogue Concerning the Two Chief World Systems

(Galileo), 17–18
diffeomorphism, 398
differences, infinitesimal, and Galileo

transformations, 160
differential equations: coupled ordinary, relativistic

stellar interiors, 452; solving problems of motion,
26–27; in variational calculus, 126

differential forms: applications of, 607–613;
calculation of 5-dimensional scalar curvature,
684–685; Cartan’s structural equations, 607;
Hodge star operation on, 723–725; jargon of, 604;
in Kasner universe, 613e; language of, 596; and
magnetic flux, 728; and vielbein, 594–606. See also
topological entries

differential geometry: classical, 96–109, 130; and
concept of covariant derivatives, 100–101; logic
of, 66; pioneering work of Gauss and Riemann,
90–91; of Riemannian manifolds, Cartan’s
formulation of, 599–600

differential operation, definition of, 598
differential operators, 48; Killing vectors as, 587;

shorthand notation for, 72; vector fields as, 319
differentials: coordinate, 312; manipulations of,

161
differentiation: along curves, 327; covariant, 320–

333; dot notation, 96; of functionals, 114; of scalars
and vectors, 318

dilation: conformal generators, 615; generators of,
644

dilation invariance, Coulomb potential, 620
dilaton field, 680; and calculation of 5-dimensional

scalar curvature, 686; in outgoing brane wave
model, 704

dimensional analysis, 120; of action, 346; to
determine power of scattering amplitude, 717;
for effective action of gravity, 711; of graviton
scattering amplitude, 770; Hawking temperature,
14–15; scattering amplitude, 761

dimensions: higher, Poincaré half plane in, 656;
invisible, 672–673; large extra, 696–707

Dirac, P.A.M., and quantization of magnetic flux,
728

Dirac action, in Minkowskian spacetime, 605
Dirac delta function: 3-dimensional generalization,

119; continuous variables in functional variations,
122; in electromagnetism, 251; in higher
dimensions, 698, 701; introduction of, 26–27;
and Kronecker delta, 36; as limit of a sequence of
functions, 27f; momentum conservation, 740; and
smooth functions, 33e; time, 229

Dirac equation, commutation relations, 192
Dirac-Feynman formulation. See path integral

(Dirac-Feynman) formulation
Dirac large number hypothesis, 778
Dirac spinors, 604–605
directional derivative, covariant differentiation and, 331
discretization, of functional variation, 121
disks. See accretion disks
dissipative collapse, 520–521
distance: of cities, and non-flatness of world, 66f; in

Euclidean space, 174; in generally curved spaces,
181; Hubble units, 293; less important than
angles, 620; luminosity, 298; measurement of, in
spacetime, 180; minimal between points, 123–
135; in Minkowskian geometry, 175; operational
definition of, 291, 291f; of points, 174–175; proper,
296–297; shortest, 175, 176f, 545; spatial, in
general curved spacetime, 290–292; of spheres
in 3-spaces, 610; traversed, during lifetime of
particles, 198. See also length; path

distribution, compared to functions, 33
divergence: covariant, 326, 332; notation in

various coordinate systems, 78–79; in spherical
coordinates, 81e; transformation, 321

divergence theorem, generalized to 4-dimensional
spacetime, 386

dome, curvature at top of, 85
dominant energy condition, 557
Donder, Théophile Ernest de, application of action

principle to gravity, 397
Donoghue, J. F., treating general relativity as effective

field theory, 773n
Doppler effect: in accelerated frames, 282; relativistic,

185–186, 222
dot notation, Newton’s, 29, 96
dot product: of four vectors, 182; of vectors, definition

of, 39
dots, as symmetry symbol, 129
“dropped” thought experiment, 280–283, 286
Droste effect (for pictures), 375
Droste’s solution, of Einstein’s field equation, 375
dS/CFT (de Sitter / conformal field theories)

correspondence, 787
duality, electromagnetic, 255, 483
dueling thinkers experiment, 7–9
dust: cosmological, 387e, 495, 514; technical term,

421
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dust ball, collapsing, forming black hole, 422f, 423f
dynamic universes, 489–501
dynamical critical exponent, in condensed matter

physics, 657n, 754, 758n
dynamical variables, 249; in continuum mechanics,

117; holding fixed in variation of action, 380;
independence of, 133; specification of, 395

Dyson, Freeman: on Einstein’s ideas of a field theory
of gravity, 119; on Einstein’s saying about vanity,
777; on loneliness of Einstein, 388; on non-
quantization of gravity, 768–769; on quantization
of gravity, 780, 788n

early universe, 496–497; curvature term, 495; density
fluctuations in, 521; history of, 515–529; structure
formation in, 520, 522–523

earth: center of, and falling apple, 36; density of, 32;
surface of, shortest path on, 275; theory of hollow
sphere, 32

earth-moon distance, accurate measurements of as
test of Einstein gravity, 366n

Eddington, Sir Arthur: and Chandrasekhar limit, 455;
on costs of light, 369; and geometry of universe, 6;
making Einstein a worldwide celebrity, 369–370;
Royal Society expedition, 367

Eddington-Finkelstein coordinates, 431
edges, in topology, 725–727
“effect of inertia,” 276
effective action: for gravity, 711; Weyl’s ansatz, 374
effective field theory, 782; and concept of action,

710; Einstein-Hilbert action, 709; general
relativity treated as, 773n; and graviton scattering
amplitude, 770; of gravity, 766; low energy,
711–712

Ehrenfest, Paul, letters from Einstein: on fears
of going insane, 355; on perihelion motion of
Mercury, 368

eigentime, 179f
eigenvalues, of matrix, usual determination of, 106
eigenzeit, 179f
Einstein, Albert, 150; and action for gravity, 339;

anger at nostrification of his theory of general
relativity, 396; annus mirabilis, explanation of
light, 213; as classical physicist, 360; confusion
concerning the metric, 404; E =mc2, 209, 220–
221, 232; 233f; early work, lack of vector notation,
46n; equivalence principle, 271; ether detection,
experimental set-up for, 163; factor-of-2 error, 367,
370; field equation, 348f; gedanken experiments,
on simultaneity, 7–9; on going beyond space and
time, 787; greatest blunder, 393; and Grossmann,
paper on variational principle for gravity, 396;
happiest thought of life, 265, 278, 302; “hole
argument,” 404; on influence of philosophers,
159; invention of Palatini formalism, 397; legacy
to physics, 253–255; letter from Schwarzschild,
362; letters to Ehrenfest, 355, 368; letters to

Kałuza, 693–694; letters to Sommerfeld, 344, 366,
580; longing, 337; and Lorentz, 168; on magic of
relativity theory, 195; mathematical elegance of
his theory, 777; on mysteries, 778; old man’s toy,
267; penance, 500; on pure thought, 172; repeated
index summation (see summation convention);
“second greatest blunder,” 509–510; separation
from his wife, 399; and Soldner’s calculation,
366–367; stars made of nothing, 456; static
universe, 509–510, 514; summation convention
(see summation convention); understanding of
gravity, equality of inertial and gravitational mass,
28; unfinished symphony, ripples in spacetime,
563

Einstein’s clock, 166–173; in different frames,
167f

Einstein convention, in general relativity, 314
Einstein’s equivalence principle, determination of

Lagrangian in curved spacetime, 712
Einstein’s field equation: 1

2 -factor, and metric
tensor formalism, 76; 5-dimensional, for 2-
brane model, 700; acceleration or deceleration
of cosmic expansion, 506–507; anti de Sitter
spacetime, 651; for charged black holes, 477; for
closed/open/flat universes, 493–494; coupled
to Maxwell’s equations, static solutions, 482–
483; de Sitter spacetime, 627; derived by Palatini
formalism, 395; determination of, 347–349;
Droste’s solution of, 375; easy solutions to,
557; Einstein’s search for, 341–342; for empty
spacetime, 347–348; flipping between spacetimes,
664–665; Kerr solutions on, 464; in Minkowski
metrics, 563; modified by Arkani-Hamed, 754;
non-determinism of, 403; nonlinearity of, 400; in
post-Newtonian approximation, 577; in presence
of cosmological constant, 357; for relativistic
stellar interiors, 451; result of derivation of, 390;
role of two powers of spacetime derivative, 402;
solving, 358; and spacetime thermodynamics,
448–449; time-time component of, 498; traceless
part of, 755; vacuum, 647e; variation of, 350

Einstein gravity: from ambitwistor representation,
739; connection to Yang-Mills theory, 782; cube of
physics, 13f; discord with quantum physics, 768–
769; features of, 777; replaced by something more
fundamental, 785; roads leading to, 578–584

Einstein-Hilbert action: alternative form of,
397; cosmological action added to, 356; and
cosmological constant, 712, 754; derivation of
contracted Bianchi identity, 394; and differential
forms, 725; and effective field theory, 782; effective
field theory approach, 709; finding of, 344–346;
general invariance of, compared to Maxwell action,
394; graviton coupling, 582; higher dimensional,
681; in Kałuza-Klein theory, 675; low dimensional
terms, 782; quantum gravity limit, 444; things
unknown to, 789n; and twistors, 739; variation of,
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388; weak field action without, 572; and Weyl’s
ansatz to Schwarzschild solution, 374

Einstein-Hilbert Lagrangian, determination of
Einstein’s gravity, 581

Einstein potential, compared to Newtonian potential,
planetary orbits, 371

Einstein-Rosen bridge, 433; and coordinate
singularities, 91–92, 92f

Einstein tensor, 388; as result of variation of
Einstein-Hilbert action with respect to metric,
394

Einsteinian mechanics, and cube of physics, 13f
elastic string: as example of variational calculus, 113;

hanging under force of gravity, 114f
electric charge: role for photon, 383. See also charge
electric dipole moment, of atom, and action, 715
electric field, 245; relativistic unification, 247
electrodynamics: initial value problem in, 404. See

also Maxwellian electromagnetism
electromagnetic action, 244, 250–251; in expanding

universe, 333; local, 246. See also Maxwell action
electromagnetic coupling constant, 767
electromagnetic current: conservation of, 225; as flat

space analogous to energy momentum tensor,
379; relativistic form of, 226

electromagnetic duality, 255, 483
electromagnetic field: as collection of infinite

number of harmonic oscillators, 382; coupling to
charged particles, 250; derivation of equation of
motion, 385; determination of, 338, 342n; energy
density of, 255; energy momentum tensor in, 381;
in Kałuza-Klein theory, 691; and Lorentz vector
potential, 244; Maxwell action in Minkowskian
spacetime, 381; and Maxwell’s equations, 252;
motion in curved spacetime, 301; and mystery
of light, 162; at particle position, 246; treated as
superposition of modes, 746

electromagnetic field tensor, 244; dual, 255; gauge
invariance, 249; relativistic curl of a 4–vector,
252

electromagnetic gauge transformations, similarity to
coordinate transformations, 564

electromagnetic interaction, compared to
gravitational interaction, 768

electromagnetic potential, in fifth dimension, 677
electromagnetic waves: cross section for scattering on

atom or molecule, 715; momentum of, derivation
of Einstein’s formula, 232

electromagnetism: 4-dimensional, 720–721; in
curved spacetime, 325–326; described by
differential forms, 598; finite sized objects in,
714–715; fixed gauges, 564; in flat spacetime, 382;
gauge invariant derivative in, 342, 353n; Maxwell’s
laws of, and Galilean transformation, 20;
restrictions imposed on by Lorentz symmetry, 339;
role of signs in, 382; similarities to gravitational
waves, 568; from special relativity, 244–246; theory

of, development of, 253; unification with gravity,
674–676

electromagnetism analogy, Einstein’s search for the
metric, 404

electrons: collisions with photons, 222f; degenerate,
455; delayed recombination in early universe,
516–517

electrostatics, mathematical treatment leading to
Maxwell, 582

electroweak interaction, 527, 765; in M versus R plot,
14f

elementary particles, masses of, 16n
elementary physics, definition of mass, 213
elementary scalar fields, 759n
embedding: of curved spaces in higher dimensional

flat spaces, 85–86; of surface, determination of
curvature, 90

embedding space, geodesics in, 645
Emerson, Ralph Waldo, dictum of, 235n
empty spacetime: Einstein’s field equation for,

347–348; gravity in, 362
energy: dark (see dark energy); elastic, of hanging

string, 113–114; exact meaning of, 383; extraction
from Kerr black holes, 470; of membrane,
rotational invariance, 118; not conserved, 27;
search for minimization function, 114; spatial
density of, 228. See also gravitational energy

energy conditions, 557
energy conservation, 26, 153; historical

considerations, 387n; around rotating black
holes, 459; in static isotropic spacetime, 310

energy density: constant, filling universe, 356;
electromagnetic field, 255; in flat spacetime,
382; ratio to critical density, 505; replacing mass
density, in Newtonian gravitational potential,
379n; as rotational scalar, 226–227; and scale
factor of universe, 496f; of universe, 359, 504;
vacuum, 749. See also dark energy density

energy distribution, governing curvature of
spacetime, 390

energy functional: boundary conditions, 116; of a
membrane, 118; minimization for Newtonian
gravity, 119

energy level splitting, inverse of, at cosmological
time scale, 768

energy momentum, role for graviton, 383
energy momentum conservation, 227; and Bianchi

identity, 393; derivation by using cosmological
action, 387e; and general invariance of matter
action, 383–384; in gravitational field, 386

energy momentum pseudotensor, 386
energy momentum tensor: assumptions about,

557; called stress energy tensor, 228; covariant
conservation of, 384; curved spacetime
generalization of, 380; in electromagnetic field,
381; of electromagnetic field, tracelessness, 381;
under Lorentz transformation, 226–227; “new
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energy momentum tensor (continued)
and improved,” 712; of perfect fluids, 230, 492;
for scalar action, 387e; sign considerations,
380; slowly rotating bodies, 570; as source for
gravitational field, 379; total, disappearance of,
394; and variation of Maxwell action with respect
to metric, 394. See also stress energy tensor

energy per unit mass, as conserved quantity, 30
energy scale: grand unified theory, 767; introduced

by gravity, 770
energy variations, calculated, 115
entanglement: and mysteries of quantum mechanics,

789n; and quantum gravity, 771
entropy: Bekenstein-Hawking, 441–442, 444; of

black holes, 15, 436, 441, 448, 788n; lack of
knowledge behind horizon, 648n; Penrose process
area theorem, 472; per particle, relativistic fluid
dynamics, 234; in spacetime, mystery of, 234; of
universe, 527

Eöt-Wash group, 260
equation of motion, 155; by action principle, 146;

near boundary, 665; electromagnetism, 245–246,
385; energy conservation of, 153; generalized
for particles under external force, 190; particles
in potential of, 135; for universe, 357; from
variational principle, 137

equation of motion approach, to Einstein gravity, 396
equation of state: of ideal gas, 231; of universe, 359,

494, 496–497
equations: E =mc2 (see Einstein); as expression of

physics, 47; versus identities, 403. See also specific
equations

equator, length of, squashed sphere, 80e
equilibrium, hydrostatic, relativistic stellar interiors,

453–454
equilibrium macrostates, Bekenstein-Hawking

entropy, 441, 444
equipartition theorem, Planck and, 789n
equivalence principle, 271; and definition of

energy momentum, 386; falling living room as
example, 265–266; and general covariance, 286;
motion in curved spacetime described by, 302;
nonimpossibilty of deleting Feynman diagrams,
756–757; old man’s toy, 267; predictions of,
280; and relativistic stellar interiors, 451; and
symmetry, 317–318

ergoregion, 467, 469–471
escape: from black hole, 427, 483; from gravity,

nonimpossibility of, 717n
escape problem: in Kałuza-Klein theory, 673–674;

with large extra dimensions, 696–697
eternal black holes, 421–422; Kruskal-Szekeres

diagram, 426–427; Reissner-Nordström, 479
ether: detection experiments, 163; as dynamical

variable, 783
Euclid: and curves, 189; versus Descartes, 48; famous

axiom, and curvature of spacetime, 552; on the

non-existence of royal road to geometry, 42;
shortest path between two points, 4

Euclidean anti de Sitter space, boundary of, 662
Euclidean ball, 663; boundary of, 664
Euclidean geometry: flat, 6; rotation invariance of,

190; specification of, 175
Euclidean group, as symmetry group of physics, 755
Euclidean metric: in hyperbolic spaces, 93; inducing

curved space metric, 86; locally flat, second order
corrections to, 88; for spaces of any dimension, 87

Euclidean plane, conformal Killing vector fields,
623e

Euclidean space: 2-dimensional, definition of, 41;
curves in, 96–97; d-dimensional, 42, 49–51;
described with different coordinates, 62–63;
distance in, 174; as example for Killing vector
fields, 587; object analogs in twistor space, 742;
paths lengths in, 190; surfaces in, 98–109

Euclidean thinking, trap of, 180
Euler, Leonhard, variational calculus, 120
Euler characteristic, 725–726
Euler equation: in fluid dynamics, 164; relativistic

and fluid dynamics, 234
Euler-Lagrange action, for material particles, 207
Euler-Lagrange equation, 116; action principle, 138;

fields, 119; multiple unknown functions, 123;
simplification of, Poincaré half-plane, 133

events: coordinates of, in discussion of simultaneity,
200; definition of in spacetime, 177; horizon
of, 293, 536; of pole in the barn problem, 203;
separation of, 160, 166; spacetime locations, 195;
and worldlines, in special relativity, 195

expanding universe: acceleration or deceleration of
expansion, 499–500, 506–507; closed/open/flat,
494, 497–498; communication in, 293–294;
curved, 489; de Sitter spacetime, 456–457, 627,
630; with differential forms, 608; distances
in, 292–293; earth-moon distance not growing
because of, 289; electromagnetic action in, 333;
expansion rate, discovery of, 359; exponentially
expanding, 293–294, 357–358, 631, 642–643; and
Hubble, 500; light cones in, 294, 294f; metric
tensor of, off-diagonal components, 292; and
positive cosmological constant, 392; without
Einstein’s field equation, 645. See also universe

expansion parameter, determination of, 556
exponential, of matrix, 41
exponential function, and rotations, 41
extended objects, motion of, 714
extensive quantities, 441
exterior derivative, 599; differential forms, 598
external forces, influencing motion in curved

spacetime, 301–302
external potential, translation invariance of, 242
extra dimensions, large, 696–707
extraction of energy, from Kerr black holes, 470
extremal black holes, 467–468; charged, 478, 481;
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“dangers of extremes,” 484; distance around, 469;
first and second law of thermodynamics, 473; just
sitting there, 482–483

extreme ultra infrared regime, 786; and cosmological
constant paradox, 750–751

extremizing a function, with constraint, 109
extremum, determination of type, 117
extrinsic curvature, 5–6; defined by Gauss, 107;

and matrix eigenvalues, 84–85. See also intrinsic
curvature

faces, in topology, 725–727
fall: through event horizon, 412; into rotating black

holes, 463–464, 470, 472
falling apple: from hanging string to, 137f; and Isaac

Newton, 268
falling living room analogy, 265–266
families, of quarks and leptons, 786
family problem, mystery of, 7
far field, of gravitating system, 576
Faraday, Michael: conception of scientists, 9n; flux

picture, 697; and magnetic flux lines, 728
fate of universe, 507–509
Fermat, Pierre, controversy over birth year, 136n
Fermat’s least time principle, 4; as analog to

Einstein-Hilbert action, 789n; teleological flavor
of, 136

Fermi, Enrico, theory of weak interaction, 765
Fermi normal coordinates: locally flat, 558f; metric

in, 559, 561; motivation of, 557
Fermi pressure, and Chandrasekhar limit, 455
Fermi-Walker transport, 193e
fermions: fundamental, 683; as mystery of physics,

781–782; as open strings, 696
Feynman, Richard P., 145; curved spacetime, 580;

“shut up and calculate,” 445
Feynman diagrams: of antimatter, 206f; for

cosmological constant, deletion of, 756–757;
for gluon scattering, 735–736, 738; for graviton
scattering, 738; and worldlines, 237n

Feynman’s path integral formalism. See path integral
(Dirac-Feynman) formulation

Feynman’s path to rescue a drowning girl, 3–4, 4f
Feynman propagator, for graviton, 573
fictitious forces, 278–279
field equations: in Minkowski metrics, 563;

Nordström’s theory, 579. See also Einstein’s field
equation

field strength: connection with curvature, 602n;
relation to electric and magnetic fields, 382

field theory: classical, 119, 361; quantum (see
quantum field theory); topological, 719–728

fields: conceptual jump from many particle case,
400; to describe universe, 384; notion of, 119; and
particles, 145–146; understanding of, 783

fine structure constant, 767
“finger of God” problem, 703, 705

finite sized objects: in electromagnetism, 714–
715; in gravitational field, 716–715; scattering
amplitude for gravitational wave, 717; sensitivity
to variations, 716; and tidal forces, 716–717. See
also black holes

Finkelstein, David, Eddington-Finkelstein
coordinates, 431

first acoustic peak, 523–525; effect of curvature on,
525f

first law of thermodynamics: black holes, 472–473;
and pressure of universe, 360n

first order formalism for gravity, Palatini formalism,
395

first stars, 519
“fixed latitude” circle, curvature of, 80e
fixed points, in cosmic diagram, 511f
flame, of falling candle, 268, 271
flat coordinates, locally, 130, 132; as trick in variation,

389
flat plane, curvature of, 105
flat space, 65; conformally, 80–81e; description by

Boyer-Lindquist coordinates, 78; and everyday life,
82–83; metric, 77

flat spacetime: with conformal algebra, 615;
electromagnetism in, 382; Minkowskian,
governing action of, 581; twistors in, 729–745

flat universes, 296–297, 491; age of, 513; critical
density of, 497–498; curvature effect on CMB
fluctuations, 526; Einstein’s field equations, 493–
494; observational evidence for, 505; stability of,
512

flat world, 88
Flatland (Abbott), 671
flatness, local. See local flatness
flatness problem, 531
floor, rushing up to meet apple, 270f
flow: in cosmic diagram, 510–512; described by

geodesics, 556; going with the, 328
fluctuations: of density in early universe, 521, 523–

525; in inflationary cosmology, 533; quantum,
436, 446–447, 533

fluid dynamics: Euler equation, 164; Galilean
invariance of, 164; symmetry approach to, 164

fluids: incompressible, 454; motion of, 230,
556; perfect, 229, 451, 492–493; 704–705; as
visualizations of vector fields, 327

flux picture, Faraday’s, 697
fly in car, velocity of, 162–163
foamlike structure, of universe, 754, 758n
foliation: Kałuza-Klein theory as, 689–690; spherically

symmetric mass distribution, 305–306
force: central, 28, 36; external, influencing motion in

curved spacetime, 301–302; fictitious, 278–279; as
function of space, 26; as function of time, 26–27;
per unit area, stress as, 228

forms, closed, 604
Fourier analysis, and inverse square law, 697–698
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Fourier space, gravitational field in, 758n
Fourier transformation, of scattering amplitude, 736,

740
fractional quantum Hall effect, fluids, 789n
frame dragging, 460–461, 465–466; deformed

by rotating body, 460f; etymology, 476n; with
Lense-Thirring precession, 550

frame field, 606n
frames. See reference frames
free fall, into rotating black holes, and first and

second law of thermodynamics, 472. See also fall
free Maxwell’s equations, 251
free particles, 302; action of, 143, 162; motion of,

180; noninteracting, 221
“free” variables, in variational calculus, 116
freely falling observers, metric for, 561
Frenet-Serret equations, 97
frequency, seen by different observers, 185
frequency dependence, of scattering of gravitational

wave (or graviton), 717
frequency shift: relativistic, 186; in relativistic

Doppler effect, 222
Freundlich, Erwin, solar eclipse expedition to

Crimea, 370
Friedmann, Aleksandr, 501
Friedmann-Robertson-Walker universes, 296, 491; in

outgoing brane wave model, 704
Frost, Robert, and mass density transformation, 579
functional derivative, definition of, 116–117
functional variation, 114–115; alternative approach,

121–122
functionals: energy, of a membrane, 118; general, of

multiple functions, 123; notation of, 114
functions: and distributions, 33; variational calculus,

115. See also specific functions
fundamental constants, three needed, 12
fundamental equations, on glass windows, 138
fundamental fermions, 683
fundamental interactions: action principle

description of, 141; unification of (see grand
unified theory)

fundamental principles, 12
fundamental representation, of rotation group, 54
funnel analogy, misleading for black holes, 432
fusion, nuclear, compared to accretion disk radiation,

415
future light cone, 177–178; particle movement in,

178f

galaxies: formation in early universe, 519–520;
forming of, and anthropic principle, 757; as
masspoints on geodesics, 554. See also universe

“galaxy far far away,” 241–246
Galilean invariance, and fluid dynamics, 164
Galilean limit, of past light cone, 179f
Galilean transformation, 18–20, 19f, 159–160;

accelerated frames, 276–277; modifications of,

independence from observer, 168; necessary
modification of, 166; observed velocities, 161

Galileo: brachistochrone problem, 120; and free fall,
268; law of acceleration, 140; versus Maxwell, 159;
relativity principle, 17–19, 159; vision on flying of
butterflies, 19f

Galison, Peter, and special relativity theory, 18n
Gamow, George, 177; and Einstein’s great blunder,

393n; stars made of nothing, 456
Gamow principle, 515–529; understanding of

cosmology, 778
gases: for cosmology, 230; nonrelativistic, 231, 454;

relativistic, derivation of speed of sound, 235
gauge: harmonic, 564; transverse-traceless, 565
gauge condition, harmonic, 573
gauge connection, 602
gauge fields, emerging from lattice Hamiltonians,

787
gauge freedom, and initial value: in Einstein gravity,

402; in Maxwell electromagnetism, 401–402
gauge/gravity duality, 649
gauge invariance, 248–250; in Kałuza-Klein theory,

672
gauge invariant derivative, in electromagnetism, 342,

353n
gauge potential: of 2-dimensional solid state

structures, 721; as dynamical variable, and energy
momentum tensor, 381; and spinor fields, 789n;
Yang-Mills, 682, 688

gauge symmetry, local, in higher dimensional
theories, 682

gauge theories: and anthropic principle, 757;
nonabelian, decoupling of geometries, 692;
(non)abelian, 681; topological terms in, 720–721

gauge transformations: as 5-dimensional coordinate
transformation, 673; similarity to coordinate
transformations, 564; strong gravitational sources,
575

Gauss, Carl Friedrich: determination of curvature of
space, 65, 104–105; Theorema Egregium, 90–91

Gauss-Bonnet theorem, 727
Gauss’s equation, definition of, 99
Gauss’s law: and evolving time, 402; and gauge

theory, 401
Gaussian normal coordinates, 298
gears, function of, 109n
gedanken experiments: “accelerated”/“dropped,”

280–283; by Einstein, 166; by Galileo Galilei,
269

Gell-Mann, Murray: on quantization of gravity, 583n;
what is not taboo is a commandment, 361n

general coordinate invariance, 305–306;
determination of action for gravity, 344,
346; in Kałuza-Klein theory, 672

general coordinate transformations, 312, 318;
invariance of physics under, 403

general covariance, 285
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general curved spacetime, spatial distance in,
290–292

general invariance: of Einstein-Hilbert action,
compared to Maxwell action, 394; of matter action,
and conservation of energy momentum, 383–384

general relativity: abstract of, 20; as effective field
theory, 773n; and Hamilton’s principle, Lorentz’s
paper on, 397; modifications with respect to
horizons, 784; solar system tests, 309; tensors in,
312–319. See also gravity

generalized uncertainty principle, 769
generators: breakup into subgroups, 663; of

conformal algebra, 615, 617; of Lie algebra, 49, 51;
of rotation, 192; of rotation group, 40; of SL(4, R)
group, 737, 739; of SO(3) group, 44

genus, in Euler characteristics, 726
GEO600, gravitational wave detector, 577n
geodesic deviation, 552–561, 554; and Lie derivative,

555
geodesic equation, 128; alternative derivation of, 130;

Christoffel symbols of, 129; comoving coordinates,
298; curved spacetime, 277–278; invariance on
rescaling, 559; motion in curved spacetime,
289; and parallel transport, 545; presence of
external forces, 301; rotating black holes, 459;
transformation of Christoffel symbol, 330–331

geodesic problem: free parameters, 124f; variational
calculus, 123

geodesics: at black holes, 426–427; collections of,
554; congruence of, 554; covariant derivative,
553; determination on Poincaré half plane, 133;
distance of two nearby, 552, 553f; in embedding
space, 645, 665; family of, 134; geometric
construction of, 133n; intersection of, 134;
lightlike, 292, 646; on Poincaré half plane, 134f;
separation of, 552; on spheres, 127; timelike, 645

geodetic precession, 549
geometrical entities, in topology, 725–727
geometrical view: of Kałuza-Klein theory, 691–693; of

special relativity, 582
geometrodynamics, in higher dimensional theories,

693
geometry: analytic, role of coordinates, 48;

conversion factor between physics and, 211;
covariant derivative from, 323; dynamics of,
in higher dimensional theories, 693, 693f; and
invariance, 42–43, 48; of Minkowski spacetime,
174–193, 238; non-existence of royal road to,
Euclid’s remarks, 42; of points, isometry, 585; of
relativistic point particle action, 210; of rotation
groups, 191; and significance of coordinates,
68; of a world, 6. See also differential geometry;
Riemannian geometry

Ghostwriter, The (Roth), 254
Gibbons, Gary, discovery of Hawking radiation, 449n
Gibbons-Hawking radiation, 638; mystery of, 637
Gibbons-Hawking-York boundary term, 399n

global character of space, versus local, 76–77
global positioning system (GPS), 287, 291
globe, curves of constant latitude on, 92
gluon scattering: amplitudes for, 785; Feynman

diagrams for, 735–736; in terms of abitwistors,
738; in terms of helicity spinors, 735–736

gluons: in brane models, 696; in early universe, 526
GMT (Greenwich Mean Time), 133n
God: existence of, 520; “What is greater than God?”

puzzle, 789n
Goldberger, Murph, on his aunt, 321n
golden age of cosmology, 491
“golden” guiding principle, in theoretical physics,

338
Gordon, Walter, Klein-Gordon equation, 694
Grace, Louis, constructor of old man’s toy and of war

chariot, 267
graceful exit problem, 534
gradient: definition of, 61; notation of, 54;

transformation of, 320
grand unification, mystery of, 527n
grand unified theory, 527; and charge, 786; in early

universe, 518; energy scale, 767; and higher
dimensional theories, 681; and Kałuza-Klein
theory, 672; in M versus R plot, 14f; magnetic
(anti)monopoles, 532

Grassmann variables, 606n; and supertwistors, 739n
gravitating system, far field of, 576
gravitation, field equation for, Einstein’s search for,

341–342
gravitation law, Einstein’s belief of inconsistency

with principle of causation, 404
gravitational collapse, of spherically symmetric dust

cloud, 373
gravitational constant, 11; time dependent in brane

models, 707
gravitational coupling, 768
gravitational energy, 580–581; binding, 455–456; of

hanging string, 114
gravitational field: classical, quantum particles

in, 771; completion and promotion of, 218;
conservation of energy momentum in, 386;
determination of, 338; dynamics of, 146; and
equivalence principle, 271; finite sized objects in,
716–715; in Fourier space, 758n; in great distance
of black hole, 574; momentum of, 580–581; nature
of, 218–237, 231; quantization of, 582; strong
stationary source, 574; as tensor field, 231

gravitational field limit, Newtonian gravity as, 391
gravitational interaction, 581; compared to

electromagnetic interaction, 768
gravitational Lagrangian, 339
gravitational lensing, 370–371
gravitational mass, equality to inertial mass, 28, 257,

268–269
gravitational potential: action principle, 145; around

black holes, 410–411, 411f; connection to mass
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gravitational potential (continued)
distribution of, 578; Newton’s, 119; satisfying
Poisson’s equation, 708

“gravitational radius,” of massive objects, 764
gravitational redshift, 259; “accelerated”/“dropped”

gedanken experiments, 282–283; at black hole
horizon, 412; measurement of, 284, 287; motion
in curved spacetime, 303–304; and time dilation,
284

gravitational sources: approximations for, 570;
strong: gauge transformations, 574, 575; weak
field approximation, 569–570

gravitational waves, 563–577; astronomy with,
563; from binary systems, 714; degrees of
polarizations, 564; detection of, 566, 577n;
deviating Minkowskian spacetime, 571–572;
emission of, 567; frequency dependence
of scattering of, 717; localized packets of,
577n; propagation of, 566, 568; removal by
coordinate transformation, 577; similarities to
electromagnetism, 568; speed of, 579; time and
gravity, 579. See also gravitons

gravitomagnetic field, 571
graviton coupling: Einstein-Hilbert action of, 582; to

electron line, 756
graviton mass, 785
graviton scattering, 782; frequency dependence, 717;

off each other, 731; scattering amplitude of, 739,
761, 770; unitarization by formation of black hole,
765

graviton spin, quadrupole radiation, 571
gravitons, 566; Feynman propagator for, 573;

fluctuating, 712; from gravitational waves, 780;
Hawking radiation of, 439, 450; interaction
among, 738–739; in large extra dimensions,
696; from lattice system, 787; massless, 718;
as non-bound states, 785; versus photons, 768;
propagator, momentum of, 786; role of energy
momentum for, 383; self interaction, 582; and
spatial direction, 785; of spin 2, 697. See also
gravitational waves

gravity: action for (see Einstein-Hilbert action);
as classical probe, 771; classicalization of, 766;
completely altering causal structure of spacetime,
780; connection with time, 579; container for,
649; cubic vertex for, 744; Dysonian view on
quantization of, 780, 788n; effective action for,
711; effective field theory of, 766; without Einstein-
Hilbert action, 771; in empty spacetime, 362;
as fictitious force, 279; first order formalism
for, 395; high energy behavior of, 767–768, 782;
indifferent to the universe, 778; induced, 770;
inherent instability of, 520; introducing an energy
scale, 770; introducing natural quantities, 764;
linearized, 563–577, 758n; mystery of, 778–779;
“naked” singularities, 480; nonlinearity of, 571;
non-quantization of, 768–769; omniscience of,

and cosmological constant paradox, 745; as part
of larger structure, 786; quantization of, 780;
quantum, 439, 443–444; and spacetime, origins
of, 787; and spacetime curvature, mystery of, 276;
speculative thoughts about, 788; surface, 473;
symmetry imposed on, 254; theory of, as analog
to theory of light, 789n; time and, 257–258; time
dilation caused by, 258–259, 284, 304, 412; true
scale of, 698–700, 702; unification, 674–676, 767–
768, 780; unimodular, 755–756; universality of,
258, 269–270, 275–276. See also general relativity;
Newtonian gravity

gravity attraction, and strong energy condition,
562n

gravity express, 33
gravity potential, particles moving in, tensor notation

of, 57–59
Gravity Probe B, launch of, 551n
great circles, 127; on earth’s surface, 275;

movement of, particle on sphere, 148; on sphere,
determination of curvature, 105

Greek symbols, in tensor notation, 63
Green’s function: different determinations of, 573;

for gravitational waves, 567–568; for quantum
fluctuations, 447

Greenwich Mean Time (GMT), 133n
Grimm stories, and quantum gravity, 773n
Grossmann, Marcel, and Einstein: paper on

variational principle for gravity, 396; search for
field equation for gravitation, 353

ground states: degeneracy of, 723; in string theory,
757

group theory: and commutation, 49; and counting,
56–57; of exponentially expanding universe,
642–643; metric for expanding universe, 645; of
universe, coset manifold, 644

groups: 2-by-2 matrix as generator of, 663;
decomposition of, 56–57, 56f; Eöt-Wash, 260;
Euclidean, as symmetry group of physics, 755;
isometry (see isometry group); Lie, characteristic
of, 50; Lorentz (see Lorentz group); Poincaré,
transformations and translations of, 666;
renormalization, and scaling, 754; representation
of, 225; requirements of, 193; rotation (see rotation
groups); subgroups, 57, 663. See also specific groups

Gullstrand, Allvar, and Painlevé-Gullstrand
coordinates, 417

Gupta, Suraj, and curved spacetime, 580
gyroscopes: gravitational precession of, 465;

launched with satellite, 549; precession of,
549–551

�, explanation of symbol, 773n
Hale, George, proposition of solar eclipse observation

to test Einstein’s theory, 367n
half plane, Poincaré: with differential forms, 608;

and metric, 67–68
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Hamilton’s principle, and general theory of relativity,
Lorentz’s paper on, 397

Hamiltonian: derived from Lagrangian, 144; leading
to gauge fields, 787; of zero value, in quantum
systems, 723

handle, in Euler characteristics, 726
hanging membrane, 118f; as generalization of

hanging string, 118
hanging string: transition to falling apple, 137f; and

variational calculus, 113–123
harmonic gauge condition: in quantum field theory,

573; strong gravitational sources, 575; weak field,
564

harmonic oscillator: actual path of, 148e; annihilation
and creation operators, 447; energy of, 758n;
in field theory (classical and quantum), 361;
in quantum mechanics, 746; symmetry and
invariance, 242

Harrison, E. R., on masks of the universe, 779
Hawking, Stephen, 14
Hawking radiation, 436–450; derived from quantum

field theory, 780; fundamental paper on, 14–15;
of gravitons, 450; history of discovery, 449; as one
key for understanding quantum gravity, 748. See
also Gibbons entries

Hawking temperature: determination of, 444–445;
dimensional analysis, 14–15; and entropy, 441; of
Schwarzschild black hole, 436

heat, understanding of, 786
Heaviside, Oliver, and Maxwell’s equations, 405n
Heisenberg picture, of quantum physics,

consequences for gravity, 771
Heisenberg’s uncertainty principle. See uncertainty

principle
helicity, of gravitational waves, 734
helicity spinors, 731; Lorentz invariance, 734; power

of, 735; scattering amplitude expressed in terms
of, 734–735

helicity states, of graviton in QFT, 566
helium: liquidity at zero temperature, 748; primeval

nucleosynthesis of, 518
hell, and hollow earth theory, 32
Heron of Alexandria, 149n
hierarchy problem, 699
Higgs mass term, 712
Higgs mechanism, 679
high energy behavior, of gravity, 767–768, 782
high-energy physicists, particle physicists renaming

themselves, 713n
high energy physics: linkage to low energy physics,

752; naturalness doctrine in, 749–750
high temperature superconductivity, 789n
higher dimensional Einstein-Hilbert action, 681, 782
higher dimensional metric, 682
higher dimensional spaces: definition of, 43–44;

embedding curved spaces, 85–86; rotation as
freedom left, 88; rotations in, 44–45, 49–51

higher dimensional spheres, metric of, 80e
higher dimensional theories: dynamics of geometry,

693f; Kałuza-Klein / Yang-Mills, 680–682; string
theory, 695

higher energies, larger structure of energy, 786
Hilbert, David, and Einstein-Hilbert action. See

Einstein-Hilbert action
Hilbert-Einstein priority dispute, on field equations,

396
historical digressions, Newton’s constant, 31–32
Hodge star operation, 602; on differential forms,

723–725
hole argument, Einstein’s, 404
“holes,” number of, 726
hollow earth theory, 32
holographic principle, 441; black hole entropy, 15;

mapping of spacetime, 649
homogeneity problem, 531
homogeneous space, 289, 292, 491; definition of

with Killing vectors, 588; in outgoing brane wave
model, 704

horizon: crossing in static coordinates, 635; de
Sitter, 293, 636f; detection by indirect local
measurements, 789n; event vs. particle, 536;
inner, Kerr black holes, 469; outer, Kerr black
holes, 468–469; at Schwarzschild radius, 412, 419,
431–432; sound, 524; as source of confusion, in
Schwarzschild solution, 376n; as switch of Killing
vector, 631

horizon problem, 530–533
“How do you do?” 333
Hoyle, Fred, and Big Bang, 498
Hubble constant, 504, 632; and communication

in expanding universe, 293; determination of,
391; discovered by Lemâıtre, 501; in inflationary
cosmology, 535

Hubble length, and critical density, 514
Hubble parameter. See Hubble constant
Hubble radius, of universe, 711; and photon mean

free path, 517
Hulse, Russell A., detection of binary pulsar, 563
humans: distance between head and toe in spacetime,

658f; existence of, and anthropic principle, 757
hydrogen atom, and SO(4) group, 49n
hydrostatic equilibrium, relativistic stellar interiors,

453–454
hyperbolic coordinates: angle, 628; anti de Sitter

spacetime in, 661
hyperbolic radial coordinate, 653–654
hyperbolic shell, momentum restricted to, 220
hyperbolic spaces, 92–93, 296, 627; as coset

manifolds, 590; cosmological principle, 491; line
element of, 628

hyperboloid, of rotation, de Sitter spacetime, 625
hypersurface, spacelike 3-dimensional, 693f

ideal gas, equation of state of, 231
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identities, versus equations, 403
identity matrix, definition of, 39, 63
illusion, of time, 177
images, method of, 620; conformal algebra for, 620
imaginary time, in derivation of Hawking

temperature, 445–446
impact parameter, light deflection: around black hole,

416; and gravitational lensing, 371; in spacetime,
309, 309f

incompressible fluids, 454
index-free representation of vector fields, 319
index notation: under coordinate transformations,

71–73; fear of, 32, 53; of quantities (in general),
32; and rotations, 44–45; SO(D) group, 49; use of,
43–44

index summation. See summation convention
indexed objects, handling by human mind, 607
indices: changes in general relativity, 547; contraction

of, 46n, 345; conversion with vielbein, 596, 603;
different, 595; explosion of, Einstein’s gravity,
131; of four-vectors, 182; magic of, 140; naming
conventions, 608; object without indices not
transforming as scalar, 719–720; order of,
memorization, 132; repeated, contraction of,
58n; in Riemann curvature tensor, 351; sea of,
and differential forms, 599; summation over (see
summation convention); upper and lower, 64,
314–316; and vectors, scalars and tensors, 73–74.
See also index notation

induced gravity, 770
inertia: “effect” of, 276; law of, action principle, 143;

Sylvester’s law of, 193e
inertial force, 278
inertial frames, and locally flat coordinates, 278
inertial mass: equality to gravitational mass, 28,

34, 257, 268–269; Galilean transformation of
accelerated frames, 276

infinitesimal area, enclosed by closed curves, 547
infinitesimal boosts, of Lorentz transformation, 187
infinitesimal differences, 160
infinitesimal rotations, 40
infinitesimal segments, space and time experience

of, 180
infinitesimal transformations: as generators of

conformal algebra for Minkowski spacetime, 615;
in Lorentz algebra, 187

infinitesimal volume element, and metric tensor
formalism, 75–76

infinity, and human mind, 779
inflation of universe, 534–535; and cosmological

constant paradox, 751; and scalar fields, 788n
inflationary cosmology, 530–536; cosmological

constant in, 534; Hubble parameter in, 535
inflaton field, 534
inflaton potential, 535f
information paradox, of black holes, 439
infrared regime: extreme ultra, and cosmological

constant paradox, 750–751; linkage to ultraviolet
regime, 752

inherent instability in dynamics with higher powers
of time derivative, discovery of, 338

initial value formulation, in numerical relativity, 693
initial value problems: in electrodynamics, 404; and

numerical relativity, 400–405
initial values: on Cauchy surface, 402; evolving

in time, basic scheme of, 400–401; and gauge
freedom, 401–402

initially static branes, 707
inner horizon, of Kerr black holes, 469
innermost stable circular orbit (ISCO), 414, 474
instability, inherent, of gravity, 520
integrability condition, and determination of

potential, 36
integrands, analytically continued into complex

plane, 732
integration: by parts, 115, 326; variational calculus,

116; over volume, at specific time, 226
integration measure, covariant differentiation, 326
interaction: with classical fields, 221n; contained

in matter action, 384; contribution to energy
momentum tensor, 383; as part of matter action,
383

interaction potential, particle movement in, 162
interferometry, detection of gravitational waves, 567
internal coordinates, 675; for points in spacetime,

689f
internal space: emergence of Yang-Mills theory, 688;

spacetime perpendicular to, 689
intersection, of geodesics, 134
intrinsic curvature, 5–6; counting for characterizing

of, 110; as defined by Gauss, 107; determination
without knowledge of embedding of surface, 90;
versus extrinsic, 107–108; and matrix eigenvalues,
84–85; metric as prerequisite to calculate, 90–91;
of spacetime, compared to extrinsic, 85

intrinsic lifetime, of particles, 198
Introduction to the Theory of Relativity (Bergmann),

376n
invariance: coordinate, general, 305–306, 672,

682; CP, violation of, 528, 683; difference from
covariance, 47; Galilean, of Newtonian mechanics,
161; gauge, 248–250, 672; and geometry, 42–
43, 48; local coordinate, in higher dimensional
theories, 682; Lorentz, 242, 253; Noether’s
theorem, 310; of physical laws, 46–48; of physics
under general coordinate transformation, 403;
Poincaré invariant brane, 707; rotational, 118, 697;
scale and conformal, 621; of separation, 623e; of
string action, 216e; and symmetry, 242–243; time
reversal, 416–417, 500; under transformations,
of Poincaré coordinates, 657; translation, 242,
303–304

invariance group of physics, rotation group as, 755
invariant curvature, 339
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invariant scalar products, in parallel transport, 544
invariant tensors, definition of, 59–60
invariants, topological, 725–727
inverse Compton scattering, 235e
inverse length, dimension of, 120
inverse light speed, analogy to cosmological constant

paradox, 754
inverse metric, 315
inverse square law, 120; spatial dimensions, 122
inverse temperature, 445
inversion, of spacetime, 743–744
invisible dimensions, 672–673
irreducible representations, 54–57
ISCO (innermost stable circular orbit), 414, 474
isometric conditions, for metric, 586
isometric spacetime, around rotating black holes,

459
isometry, 585–593; conformal transformations, 614;

hidden underlying, 631; intuitive account of, 589;
light cone coordinates, 631

isometry group: of AdS3, 663; for anti de Sitter
spacetime, 650; of de Sitter spacetime, 625;
equality with conformal groups, 656; and higher
dimensional theories, 682; identical, for de Sitter
spacetimes, 664

isomorphism: between AdS3 and SL(2, R), 663; of
Lie algebra, and conformal algebra, 618

isoperimetrical problem, 149e; Lagrange, solution of,
144

isotropic fluids, seen by comoving observer, 229
isotropic space, 289, 292, 491; definition of with

Killing vectors, 588; in outgoing brane wave model,
704; spherically symmetric mass distribution, 305

isotropic spacetime, static, motion in, 306–307
isotropy problem, 531

Jacobi identity, Bianchi identity derived as special
case of, 393

Jacobian, 216; changes of, 235; and coordinate
transformations, 75; differential forms of, 598

Jacobian determinant, for Lorentz transformations,
188

Jeans, James, structure formation in early universe,
520

Jebsen-Birkhoff theorem: with gravitational waves,
568; Newton-Jebsen-Birkhoff theorem, 453; and
time dependent spherically symmetric mass
distribution, 373–374

Jordan, Pascual: anticommutation manuscript, 789n;
stars made of nothing, 456

Jordan frame, 686

Kałuza, Theodor: letter to Einstein, 671; letters from
Einstein, 693–694

Kałuza-Klein action, 686; in Jordan frame, 686
Kałuza-Klein metric, 676, 680; in vielbein formalism,

690–691

Kałuza-Klein theory, 671–695; charge conjugation
and antimatter in, 678; charge quantization in,
677; coordinate invariance in, 672; Einstein-
Hilbert action in, 675; electromagnetic field in,
691; escape problem in, 673–674; as foliation,
689–690; gauge invariance in, 672; geometrical
view of, 691–693; and grand unified theory, 672;
higher dimensional, 680–682; linking of internal
and external geometries, 691; Lorentz action in,
678; Maxwell action in, 675–676; motion of point
particles, 676; phase angle of wave function in,
678; Planck length and charge quantization in,
677; Planck mass in, 675; transformations in, 672;
and uncertainty principle, 674; visibility problem
in, 673–674; and Weyl, 693–694. See also quantum
gravity; string theory

Kałuza-Klein towers, 679
Kasner universe: as solution of Einstein’s field

equation, 361e; with differential forms, 613e
Kepler’s third law: orbits around black holes,

413–414, 417; precession of gyroscopes, 549
Kerr, Roy, and rotating black hole solution of

Einstein’s field equation, 458, 461
Kerr black holes, 462, 464–467; angular momentum,

465, 571; angular velocity for, 462f; mass
determination, 570; no-hair theorems, 481–
482; and Schwarzschild black holes, 468; Weyl
approach, 473. See also rotating black holes

Kerr metric, 465–466, 475
Kerr-Newman solution, 477
Kerr-Schild form, 476
Kerr spacetime: Killing vectors, 470–471; radiation

from rotating black holes, 473
Killing, Wilhelm, and Lie algebra, 586
Killing condition, conformal, 614
Killing vector fields, 332, 585–593; conformal, 614,

623e; definition of, 586
Killing vectors: admitted by spacetime, 636;

derivation of curvature tensor, 591; emergence
of Yang-Mills theory, 688; great circles, 127n;
and higher dimensional theories, 682; for Kerr
spacetime, 470–471; and Lie algebra, 591; linear
combinations of, 587; in Riemannian manifold,
588; for spacetime around rotating black holes,
459; for spherically symmetric mass distribution,
305; for static isotropic spacetime, 310; timelike
and spacelike, 637; from timelike to spacelike,
631

kinematics, relativistic, 221
Klein, Oskar: Klein-Gordon equation, 694. See also

Kałuza-Klein entries
Kraichnan, Robert: curved spacetime, 580; “particle

physics” approach, 583n
Kretschmann scalar, 365n
Kronecker delta: definition of, 36, 70; discrete

variables in functional variations, 121; indices of,
183; as invariant tensor, 60; use of, 45
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Krupp (munitions manufacturer), financing of solar
eclipse expedition to the Crimea, 370

Kruskal, Joseph B., paper on spherical singularity,
376n

Kruskal coordinates, for elimination of singularity of
Schwarzschild solution, 365

Kruskal-Szekeres coordinates, 424–425; wormholes
in, 432–433

Kruskal-Szekeres diagram, 425–427; of
Schwarzschild black hole, 426f; Unruh
effect, 447

Kruskal-Szekeres-like coordinates, for de Sitter
spacetime, 635, 636f

kung fu stories, 470n

Lagrange, Joseph-Louis: tautochrone problem, 144;
variational calculus, 120

Lagrange multiplier, 148; introduction of, 106; notion
of, 109; for volume of spacetime, cosmological
constant as, 756

Lagrangian: for 2-brane model, 700; in action
principle, 138; in curved spacetime, determination
of, 712; gravitational, 339; infinitesimal
transformation, 151; Maxwellian, 249, 255; of
motion in static isotropic spacetime, 306; in
nonrelativistic mechanics, 138–139; of relativistic
point particle action, 211; Schwarzschild
spacetime, time reversal invariance, 417; terms
added for determination of gravitational with
respect to electromagnetic field, 338; without time
dependence, energy conservation, 153

Lanczos, Kornel, corrections to de Sitter metric, 289,
642

Landau, L. D., Green’s function approach, 577n
Laplace, Pierre-Simon: black hole hypothesis, 13;

Michell-Laplace argument, 409
Laplace’s equation: for strong gravitational sources,

574; and tensor notation, 58
Laplace-Runge-Lenz vector, definition of, 60
Laplacian: definition of, 61; in membrane shape

determination, 118; notation in various coordinate
systems, 78–79

“lapse,” 691, 693
large extra dimensions, 696–707
Large Hadron Collider, 699
Larmor, J., Lorentz transformation, 169n
Laser Interferometer Gravitational Wave Observatory

(LIGO), 577n
Laser Interferometer Space Antenna (LISA), 577n
laser interferometry, detection of gravitational waves,

567
laser light, box hit by, 281f, 283f
Latin symbols, change to Greek symbols, in tensor

notation, 63
lattice gravity, 726n; as approach to quantum gravity,

760
lattice Hamiltonians, leading to gauge fields, 787

laws. See specific laws
Le Verrier, Urbain, prediction of Neptune, 368
Leaning Tower of Pisa, 270
least path principle: and curvature, 5–6. See also path
least time principle, 4, 136; connection with action

principle, 139, 144; Feynman’s path, 3–4. See also
time

Legendre polynomials, 523
legs. See reference frames
Leibniz, Gottfried: brachistochrone problem, 120;

discovery of calculus, 113; notation of action
principle, 138

Lemâıtre, Georges: closed and open universes,
296–297; Hubble constant, 501; as triple winner,
500

Lemâıtre–de Sitter cosmology, 712
Lemâıtre–de Sitter metric, 357; generalized, 489
Lemâıtre–de Sitter spacetime, 642
length: inverse, dimension of, 120; minimization

of, 125; parametrization in general metric, 128;
parametrization independence of, 130; of rulers,
in special relativity, 199; units for, 10, 633

length contraction, 199–200
length element, on unit circle, 80e
length scales: cosmological, physics on, 750; and

cosmological constant, 748; and deviation from
Newtonian gravity, 709; leading to cosmological
constant paradox, 711

Lense-Thirring precession, 550; alternative
derivation, 551

leptogenesis, 526–528
leptons, families of, 786
Levi-Civita symbol, 252; used to contract indices, 719
l’Hospital, Marquis de, brachistochrone problem,

120
Lie, Marius Sophus: infinitesimal rotations, 40;

infinitesimal transformations, 154; method for
derivation of Lorentz transformation, 187–188

Lie algebra: definition of, 50–51; discovered by
Killing, 586; generators of, 49; isomorphism of,
618; and Killing vectors, 591; of rotation groups,
191

Lie derivative, 327–328, 331–332; and geodesic
deviation, 555

Lie’s equation, and emergence of Yang-Mills theory,
688

Lie groups, characteristic of, 50
Lifschitz, E., structure formation in early universe,

520
light: “accelerated”/“dropped” gedanken

experiments, 281–282; least time principle,
4; Maxwell’s explanation, 162; motion around
black holes, 409–418; motion of, 307–309, 416f,
659; propagation of, in medium, 163; theory of,
as analog to theory of gravity, 789n; unification
with material particles, 207–217, 212–213. See also
deflection of light; photons
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light cones: closing up, 420f; coordinates of, 146–147,
170–171, 427–429, 619, 631, 704; in expanding
universe, 294, 294f; past, 177–178, 179f; spanned
in Minkowski space, 177; tilting, at Schwarzschild
radius, 420–421, 421f

light deflection. See deflection of light
light flashes, in trains, 166
light paths: anti de Sitter spacetime, 656; depending

on geodesics, 665
light pulses, dueling thinkers experiment, 7
light rays: corotating/counterrotating, 461, 469; more

fundamental than spacetime events, 741; moving
at 45°, 423; surfaces generated of, 185

light signal trajectories, in static spacetime, 304f
light speed, 162; constancy of, effect on notion of

simultaneity, 8; determined by Maxwell’s theory,
162–163; in expanding universe, 294; inverse, 754;
in metals, ratio to sound speed, 749; as velocity of
massless particles, 213

lightfoot, not a unit of time, 773n
lightlike 4-momenta, 782
lightlike distance, 175
lightlike geodesics, 292, 646
lightlike lines, in general spacetime, 730
lightlike momentum, complex, 733
lightlike vectors, 731
lightsecond, natural unit of distance, 168
lightyear, as length unit, 10
LIGO (Laser Interferometer Gravitational Wave

Observatory), 577n
limit surface, stationary, angular velocity inside,

471
line: of constant time, de Sitter spacetime, 637; in

twistor space, 742. See also straight line; worldlines
line element: 5-dimensional, 676; of hyperbolic

space, 628; square of, and metric, 64
linear combinations, and tensors, 53
linear transformations, rotations as, 68
linearity of transformation matrix, 313
linearity requirement, Galilean transformation, 18
linearized gravity, 563–577, 758n
LISA (Laser Interferometer Space Antenna),

577n
lithium, primeval nucleosynthesis, 519
local action, electromagnetic, 246
local coordinate invariance, in higher dimensional

theories, 682
local curvature, measurement of, 547
local field theory: and cosmological constant paradox,

756; invariance of physics, 621
local flatness: of curved surface, 83; for spaces of any

dimension, 86–87
local gauge symmetry, in higher dimensional

theories, 682
local Lagrangian, in action, 783
local measurements, indirect, detecting horizons,

789n

local observables, 765; absence of, in quantum
gravity, 772

locality: as fundamental principle of theoretical
physics, 783; of physics, 757

locally exact forms, 604
locally flat coordinates, 557; determination of, 132;

and inertial frames, 278; for investigations of
symmetry relations, 343–344; Minkowskian, 288;
nearby geodesics, 552; transformation of polar
coordinates into, 89

locally flat Euclidean metric, second order corrections
to, 88

locations: of events in spacetime, 195; and spatial
coordinates of particles, difference between, 31

long distance behavior, of action terms, 722
long distance expansion, deviation from Newtonian

gravity, 708–709
“long distance physicists,” 713n
loop quantum gravity, 772
Lorentz, Hendrik: and Droste’s solution of Einstein’s

field equation, 375; paper on Hamilton’s principle
and general theory of relativity, 397; paper on
variation of Lagrangian, 396; understanding of
waves, 783–784

Lorentz action, in Kałuza-Klein theory, 678
Lorentz algebra, 187; extension to Poincaré algebra,

192, 617
Lorentz boost: of 4–vector, 230; of mass density, 579;
SL(2, C) group, 730

Lorentz contraction: of box with particles, 23; and
number density, 223f

Lorentz-Fitzgerald length contraction, 199–200; pole
in the barn problem, 202

Lorentz force law, 245, 247; movement of charges,
404

Lorentz group, 188, 218; connection to rotation
group, 192; covered, 729–730; SO(3, 1), 730

Lorentz indices, 594, 608; conversion with vielbein,
603; versus world indices, 595

Lorentz invariance: beyond cosmological length
scale, 754; helicity spinors, 734; Maxwell’s
equations, 253; Newtonian action, 242; of physics,
218; of spacetime, 666

Lorentz scalar: definition of, 218; and density
distribution, 579

Lorentz symmetry, restrictions imposed on
electromagnetism, 339

Lorentz tensors, 188, 243
Lorentz transformation, 166–173; alternative route,

172; within cars, 205; and curved spacetime, 317;
definition in Minkowski spacetime, 181–182;
invariance of, 186; low velocity limit of, 169; sneak
preview of, 147; tensors under, 193e

Lorentz vector, Pauli spinors as “square root” of, 731
Lorentz vector potential, 243, 248
Lorentzian Lagrangian, 249
Lorenz gauge, in electromagnetism, 564
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low energy effects, of quantum gravity, 767
low energy physics: linkage to high energy physics,

752; understanding of, 750
low energy world, neglect of quantum gravity, 766
lower indices, 314–316; introduction of, 64;

transformations in change of coordinates, 71–73
luminosity distance, 297

macrostates, Bekenstein-Hawking entropy, 441, 444
magnetic field, 245; relativistic unification, 247;

Schrödinger equation for (nonrelativistic) charged
particle in, 354n

magnetic flux lines, Faraday’s picture of, 728
magnetic moment, of atom, and action, 715
magnetic monopoles, 81; bosons bound to, 789;

Newtonian approximation of Einstein’s field
equation, 577; relic problem, 532; topological field
theory, 728

Maldacena, Juan, and quantum gravity, 649
manifolds: Calabi-Yau, 695; coset (see coset

manifolds); Riemannian, 599–600; rotations
determined in, 590; topology of, and ground
states, 723; without boundary, 727

many particle case, and fields, 400
many particle systems. See fluids
many worlds interpretation, of quantum, 780
map. See Mercator map
mapping: of heaven and earth, subdivision of degree

(proposal by Ptolemy), 368n; of twistor space to
spacetime, 742

marble, positional variations in bowl, 114
marine recruit in boot camp, following rotation

commands, 50f
mass: changes of, 221; as conversion factor between

geometry and physics, 211; definition of, in
elementary physics, 213; of elementary particles,
16n; gravitational and inertial, 257, 268–269;
Planck (see Planck mass); role of, in action
principle, 142; spherically symmetric distribution,
304–307, 310–311, 409; of universe, 747–748

mass density transformation, under Lorentz boost,
579

mass dimensions: and dimensions of scalar
curvature, 711; role in quantum field theory,
711–712

mass distribution: and gravitational potential, 578;
from point masses, 119; rotating, gravitational
sources, 569; spherically symmetric, 373–374,
569, 571

mass loss, of radiating atoms, 232
mass scale: of cosmological constant, 700; as limit of

understanding of quantum field theory, 746
mass shell condition, 220, 464
massive objects: “gravitational radius” of, 764;

motion of, 659–660, 659f; worldlines of, 175
massless particles, 307–309; accelerated relativistic,

277; gravitons, 718; motion around black holes,

415–416; mystery of, 213; natural parametrization,
308; preferred parameter choice for, 215;
relativistic action principle for, 213; worldlines of,
175

material particles: Euler-Lagrange action of, 207;
unification with light, 207–217, 212–213

mathematical entities, as tensors, 52
mathematical universes, 634
mathematics: difference from arithmetic, in terms of

rotations, 56; as poetry of logical ideas, 150
matrices: antisymmetric, introduction of, 40;

commutation of, 41; exponential of, 41; as group
generator, 663; introduction of, 39–40; and
operators, 48; rotation matrix, definition of, 38; of
spacetime metrics, 183; transpose of, 45

matrix algebra, quick review of, 742–743
matrix differentiation, 322
matrix elements, counting of, 87–90
matrix theory, for relativistic action, 210
matter: baryonic, 502–503, 506; dark (see dark

matter); observational evidence, 503f; spherical
shell of, 423f

matter action: contribution of Maxwell action to, 378;
fields contained in, 384; general invariance of,
and conservation of energy momentum, 383–384;
generic, 386; interaction as part of, 382–383; as
part of action of world, 378; variation of, 378–379

matter-antimatter asymmetry, 528; in higher
dimensional theories, 683

matter density, and scale factor of universe, 496f
matter dominance: and coincidence problem, 499;

and photon decoupling, 788n
matter equation of motion, and matter action,

386
Matthew principle, 520; Birkhoff theorem as example

for, 376n; Lorentz transformation as example for,
169n; the rich inheriting from the wimps, 523

maximal symmetry: anti de Sitter spacetime, 650;
and coset manifold, 625

maximally symmetric spaces, 585–593; negatively
curved, 610

Maxwell, James C., versus Galileo, 159
Maxwell action, 325, 332; Chern-Simons term

added to, 721; contribution to matter action,
378; and differential forms, 724–725; general
invariance, 384, 394; in Kałuza-Klein theory, 675–
676; long-distance behavior, 722; in Minkowskian
spacetime, 381; scale and conformal invariance,
621; vanishing by variation, 384; from weak field
action, 572. See also electromagnetic action

Maxwell’s equations, 252–253; and Bianchi identity,
724; for charged black holes, 477; coupled to
Einstein’s field equations, static solutions, 482–
483; in curved spacetime, 333; free, 251; and
initial value problem, 404

Maxwell field, in terms of Yang-Mills field, 789n
Maxwell Lagrangian, 249, 255, 382
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Maxwell’s laws of electromagnetism, and Galilean
transformation, 20

Maxwellian electromagnetism: differences to
Newtonian gravity, 338; gauge freedom and initial
value, 401–402; speed of light, determined by, 163

Mead, C. Alden, generalized uncertainty principle
and quantum gravity, 769

mean free path of photons, 517
measuring device, collapsing into black hole,

763–764
mechanics: immediate formulation of, 142; least

action formulation of, 139
medium, for propagation of light, 163
membranes: hanging, as generalization of hanging

string, 118; from null surfaces, 185
Mercator, Gerardus, importance of angles, 620
Mercator map: and coordinate transformations, 79e,

94; singularity at poles, 365; of the world, 620
Mercury, perihelion shift, 368–369, 369f
messages, paths through spacetime, 638
metals, ratio of sound speed to light speed, 749
metric: in case of isometry, 586; change under

coordinate transformations, 70–71, 110; chosen
in Riemannian manifold, 88; conformally
flat, 80–81e, 94, 352e–353e; constraints on,
403; for contracting spacetime indices, 719; in
cosmological action, 357; definition range in
parallel transport, 544; determinant of, 215–216;
and different indices, 595; differentiation of, 131;
as dot product of vielbein, 603; for expanding
universe, group theory, 645; in Fermi normal
coordinates, 559, 561; flat space, 77; formed by
coordinate scalars, 708–709; induced by ambient
Euclidean metric, 86; integral over, 770; intrinsic
curvature calculation, 90–91; invariance under
scaling, Poincaré coordinates, 657; Lemaitre–de
Sitter, 357; and line element, 64; for lowering
or raising indices, 74; not related by coordinate,
81e; restriction by isometric condition, 586;
role in differential geometry, 66; Schwarzschild,
discovery of, 364; second order deviation of, 343;
of space, 128; in spacetime, 181, 716; on sphere,
determination of, 65; in spherical coordinates, 108;
for spinor indices, 742; on surface, in Euclidean
space, 99; of surface of sphere, 83–84; time-
independence of, 636; transformation in terms
of matrices, 72–73; two powers of derivatives
acting on, 349; unfamiliar of spheres, 585; on unit
spheres, 80e; variations in spacetime, 716

metric formalism, derivation of divergence and
Laplacian, 78–79

metric tensor: of 3-sphere, 296; covariant derivative,
325; divergence near boundary, 663; and general
coordinate transformations, 314; general static
and isotropic, 306; generalized Lemâıtre–de
Sitter, 489; higher dimensional, 682; inverse, 315;
Kałuza-Klein, 676, 680, 690–691; Kerr, 465–466,

475; Minkowskian (see Minkowski metric); near-
horizon Schwarzschild, 445–446; off-diagonal
components, 292, 459, 466, 474; Rindler, 445–
446; for space measurements, 63–64; spatial,
cosmic expansion, 491; time dependent, 455; time
translation invariance of, 304

Michell, John, black hole hypothesis, 13
Michell and Laplace, mass of black hole, 366,

409
Michelson-Morley experiment, 163; explained by

length contraction, 200
microscopic physics, and topological action, 721
microstates: Bekenstein-Hawking entropy, 441, 444;

in de Sitter spacetime, 638
microwave background, cosmic. See cosmic

microwave background
Mie, Gustav, Newton gravity and Lorentz invariance,

580
Mills, Robert L. See Yang-Mills theory
minimum, as solution of variational calculus, 117
minimum length measurement, limited by special

and general relativity, 763–764
Minkowski, Hermann: “mystical” substitution, 640;

on physical laws between worldlines, 176; on
space, time, and spacetime, 174

Minkowski metric, 317, 391; and Einstein’s field
equations, 563; folded into indices, 182; Rindler
coordinates, 446

Minkowski spacetime: (1+1)-dimensional in light
cone coordinates, 619; accelerated relativistic
particles, 277; acceleration in, 190; coordinate
changes, 192e; curves, in, 175; deviations due to
gravitational waves, 571–572; Dirac action in, 605;
distance in relativistic action, 210; flat, governing
action of, 581; generators of conformal algebra for,
615; geometry of, 175, 191; locally flat coordinates,
288; maximal extension of, 434; Maxwell action for
electromagnetic field in, 381; Penrose diagram,
428f, 434; spherical shell of photons in, 430f;
surfaces in, 184

Minkowskian sphere, including time, 631
Minkowskian time, compared to Newtonian time,

372
minus sign, role of, in energy functional, 139
Misner, Charles W., ADM formulation of gravitational

dynamics, 693
mites: flat space analogy, 6; geometer measuring

curvature, 545
MLT system, reduction to nothing, 11
modes, electromagnetic field treated as superposition

of, 746
molecules, appearance in early universe, 519
momentum: angular (see angular momentum);

energy (see energy momentum entries); exact
meaning of, 383; of gravitational field, 580–581;
of graviton’s propagator, 786; Hamiltonian, 144;
not conserved, 26, 27; physical, and twistors, 731;
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momentum (continued)
restricted to hyperbolic shell, 220; spatial density
of, 228; total, conservation of, 37

momentum conservation, 219; delta function, 740;
derivation of Einstein’s formula, 232; in terms of
helicity spinors, 736

momentum-twistor space, scattering amplitudes as
volumes of polytopes in, 742

monopoles, magnetic. See magnetic monopoles
Morley, Edward. See Michelson-Morley experiment
Mössbauer effect, measurement of gravitational

redshift, 284
mother: of all headaches, plaguing fundamental

physics, 699; of all vectors, 312–313
motion: around black holes, 412–416; in curved

spacetime, 289–290, 301–311; effect on
coordinates of, 160; in fifth dimension, 676; of free
particles, 180; law of, 25; relative, of observers,
168, 181; in static isotropic spacetime, 306–307

movement: at constant speed, of objects under
special relativity, 189; along curve, through vector
field, 544; fuel-economizing, 127

moving observer, fluids, 230
moving trihedron, of smooth curve, 97f
multipole expansion approximations, 568–569
“Must it be? It must be.”: discovery of action for

gravity, 346, 346f
My World Line (Gamow), 177
mysteries: action principle, 141, 155; Bekenstein-

Hawking entropy, 444; Bering Strait, 275; black
holes, 410, 441; caloric, 786; closing orbits,
30, 60; correspondence between quantum
statistical mechanics and quantum field theory,
445; cosmological constant, 356, 711, 751, 782;
cosmos, 778; “crazy” coordinates, 94; dark
energy, 356, 711; Einstein’s field equation, 358;
entropy in spacetime, 234; equality of inertial
and gravitational mass, 28; family problem, 7;
fermions, 781–782; Gibbons-Hawking radiation,
637; grand unification, 527n; gravity, 276,
778–779; holographic principle, 15; light and
electromagnetic field, 162; massless particle,
213; neutrino mass, 359; quantum, 780, 789n;
quantum gravity, 748, 781; as source of beautiful
experience, 778; temperature, 15; three copies of
world, 7; time, 787; universe, 779

“naked” charged black holes, 478
Nambu-Goto action, 216e
naming conventions, for indices, 608
Nash, John, and embedded spaces, 95
Nasty and Vicious, dueling thinkers experiment, 7–9
“natural” coordinate systems, 134
natural parametrization, 308
natural quantities: introduced by gravity, 764; and

unnatural quantities, 218
natural system of units, 10–12

naturalness doctrine, 579; in high energy physics,
749–750; and inverse light speed, 754–755

Navier-Stokes equation, 234; in fluid dynamics, 164
near-horizon Schwarzschild metric, 445–446
negative curvature, definition of, 85
negative pressure, as consequence of constant dark

energy density, 360
negatively curved space, maximally symmetric, 610
neutral objects, impossibility of under gravity, 716
neutrino masses, as mystery, 359n
neutrino oscillations, and cosmological constant

paradox, 747
neutrinos: (non)relativistic, 501; scattering of, 765;

“typical” mass scale of, 700
neutron interferometry, and equality of inertial and

gravitational mass, 34
neutrons: mass of, and anthropic principle, 757;

primeval nucleosynthesis of, 517–518
“new and improved” energy momentum tensor, 712
Newman, Ezra T., Kerr-Newman solution, 477
Newton, Isaac: action principle, 144; apple falling on,

268; comparison to Aristotle, 140–141; discovery
of calculus, 113; existence of God, 520; on his
youth, 25; inherent instability of gravity, 520;
miraculous year, 194n; role of second derivative
in time, 401; shown with orbits on one pound
note, 31; unification of celestial and terrestrial
mechanics, 28

Newton’s constant: Cavendish’s first measurement
of, 32; dimension of, 346; historical digression on,
31–32; and quantum gravity, 761

Newton’s dot notation, 29, 96
Newton-Einstein-Hilbert action, quantum gravity

limit, 444
Newton-Jebsen-Birkhoff theorem, 453
Newton’s laws, 25–34; law of action and reaction,

470; law of gravity, 11, 28; as result of variation
principle, 137; second law, 46–48, 110, 140

Newton-Leibniz rule: breaking of, 340–341; failure
for covariant derivatives, 342

Newton’s superb theorems, 32–33
Newtonian action, 241–242
Newtonian approximation, Einstein’s field equation

in, 577
Newtonian equation, “analog,” 367
Newtonian gravitational potential: around black

holes, 410–411, 411f; compared to Einstein
potential, planetary orbits, 371; dynamical origin
of, 578n; fields, 119; quantum gravity corrections
to, 767; replacement of mass density by energy
density, 379n

Newtonian gravity: cube of physics, 13f; deviation
from, and powers of derivatives, 708–709;
differences from Maxwellian electrodynamics,
338; restriction imposed by symmetry, 339; as
weak gravitational field limit, 391

Newtonian Lagrangian, 249
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Newtonian limit, 302–303
Newtonian mechanical analogies, from cosmological

principle, 507, 513
Newtonian mechanics: and black holes, 13;

conservation laws in, 35–37; cube of physics, 13f;
Galilean invariance of, 161; initial value problem
in, 400; invariance of, 161; invariance under
Galilean transformation, 19; reproduction by
relativistic particle action, 209; role of differential
equations, 26–27; role of signs in, 382; standard
notation of coordinates, 25; tensors in, 57–59

Newtonian orbits: closing of, and tensor notation, 60;
determination of, 31

Newtonian time, compared to Minkowskian time,
372

Newtonian universe, role of time in, 7
no-hair theorems, and Kerr black holes, 481–482
Nobel prize in physics (2011), and dark energy, 361n
Noether, Emmy, 150; spacetime hidden in scattering

amplitude, 739–740
Noether’s theorem: application of, 152; generality

of, 153; motion in static isotropic spacetime, 310;
promotion of physical laws, 221; proof of, 151

non-determinism, of Einstein’s field equations, 403
non-quantization, of gravity, 768–769
nonabelian gauge theory, 681; decoupling of

geometries, 692
noninteracting free particles, 221
nonlinear coordinate transformations, 69
nonlinear gravity, 571
nonlocal cosmology, 712
nonlocal phenomena, removal, 784
nonlocal terms: in action, 751; and cosmological

constant paradox, 751
“nonphysical” degrees of freedom, 783
nonrelativistic action, 241–242
nonrelativistic gases, 454
nonrelativistic matter. See dust
nonrelativistic mechanics, Lagrangian in, 138–139
nonrelativistic particles, in potential, action of, 356
nonrelativistic physics, completion and promotion of

quantities in, 218
nonrelativistic quantum mechanics, 438; in presence

of gravitational field, 12–13
nonrenormalizable interactions, 711–712
Nordström, Gunnar: derivation of Einstein’s gravity,

579. See also Reissner-Nordström entries
Nordström’s theory, road to higher dimensional

theories, 682–683
normal, to surface: at certain point, 99f; as timelike

vector, 184
normal coordinates, Fermi, 557
normal vector, tangent plane rotating around, 100
north pole, and its longitude, 76
notation: of action principle (Leibniz), 138; of column

vectors, 45; confusion in variational calculus, 117;
convenient for vectors, 182; of coordinates, 25,

62n; cross-product, angular momentum, 48n;
for differential operator, 72; dot: as symbol for
symmetry, 29, 96, 129; erroneous, in parallel
transport, 543; of functionals, 114; of gradient,
54; group theory of universe, 644; index (see index
notation); Laplacian, 78–79; of quantities (in
general), 32; spacetime metric, 183; tensor (see
tensor notation)

notation alert, bad: confusion in time dilation, 198;
confusion in relativistic action, 211; geodesic
equation, 555

nothing, waving of, 783
nuclear force, generated by pions, 205
nuclear fusion, compared to accretion disk radiation,

415
nuclear physics, in early universe, 518
nucleons, formulation of strong interaction, 785
nucleosynthesis: primeval, 517–518; stellar, 518–519,

758
null infinities, in Penrose diagrams, 428, 428f
null lines: in general spacetime, 730; in spacetime,

741f
null surfaces, 184; acting as membrane, 185; black

hole horizons as, 422, 468
number current: inside 3–volume, 226f; as 4–vector,

225f
number density: as component of Lorentz-vector, 224;

of particles in box, 223f; relativistic completion of,
223; in relativistic form, 224

numerical relativity: initial value formulation, 693;
and initial value problems, 400–405; setting up, 403

obesity index of universe, Schwarzschild radius and,
443

observables: appearance of antimatter, 205;
Heisenberg picture, 771; local, 765, 772, 781;
quantum mechanics, 48

observational cosmology, 491, 505
observers: accelerated, 193, 446–447; different, 185;

freely falling, metric for, 561; moving and resting,
166–168; relative motion of in spacetime, 181;
role in physics, 46–48; studying vector field, 47f;
uniform relative motion of, 168. See also reference
frames

odd-dimensional space, space reflection in, 721n
offshell information, carried by action, 782
old man’s toy, 267f
Once and Future King, The (White), 361n
one pound note, showing Newton with orbits, 31
open strings, 696
open universes, 296–297, 491, 629; critical density,

497–498; Einstein’s field equations, 493–494; with
positive cosmological constant, 633

operational definition of distance, 291, 291f
operators: annihilation and creation, 447–448;

differential, 48, 72, 319, 588; quantum, 771, 772
orbifolds, 700
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orbits: circular, 413–414, 413f, 549; closed,
verification of, 30; for light moving around black
hole, 416f; properties of, precession of gyroscopes,
550

ordinary differential equations, coupled, relativistic
stellar interiors, 452

orthogonal matrices, definition of, 39
orthonormal frames, 594; erecting, 595f
oscillator, harmonic, 447; symmetry and invariance,

242
osculating plane, of smooth curve, 97f
Ostrogradsky, M. V., discoverer of inherent instability,

338
outer horizon, of Kerr black holes, 468–469
outgoing brane wave model, 704–707

p-form, definition of, 597
Page, Don, Hawking radiation, 449
Painlevé, Paul, 417
Painlevé-Gullstrand coordinates, 417
pair production, 438
Palatini formalism: action for Einstein gravity, 395;

derivation of Einstein’s gravity, 583; invention by
Einstein, 397

Palatini identity, 389–390; mixing up with Palatini
formalism, 397

parabolas, bending in opposite directions, and
negative curvature, 85

paradoxes: pedagogical aspects of special relativity,
203–204. See also cosmological constant paradox

parallel transport, 543–548; precession of gyroscopes,
549; of vectors, 101–102, 102f, 545f

parameter choice for massless particles, 215
parametrization: invariance of: current, 133, 235;

natural, 125, 308; of surface, 98; ultrarelativistic
particle motion, 308

parametrized post-Newtonian (PPN) approximation,
309–310, 311

parity: strong gravitational sources, 574; and space
reflections, 721n

partial differential equations, solving, 708
particle-antiparticle pairs, thermal radiation from

horizon, 637
particle cloud, motion of, described by geodesic, 556
particle collisions, 438; momentum, 219–220
particle decay, conservation, 237n
particle horizon, 536
particle location, versus spacetime, 224
particle mass, as proportionality factor in relativistic

action, 211
particle motion, 198; free, 180; in future light cone,

178f; in interaction potential, 162; law of inertia of,
143; multiple coordinates, generalization of, 140;
in potential, 57–59, 135, 137; simplest case of, 142

particle physicists, renaming themselves high-energy
physicists, 713n

particle physics: approach to gravity, 583n;

baryogenesis and leptogenesis, 526–528; in
early universe, 518; evolving of, 753n; scale and
conformal invariances, 621; standard model of,
683

particle theory, use of scalar fields in, 759n
particles: accelerated: and general relativity, 189,

193e; anti- (see antimatter); birth and death of,
198; around black holes, 409–418; in box, number
density of, 223f; corotating/counterrotating, 474;
de Broglie wavelength at Schwarzschild radius,
442; electromagnetic field acting on, 246, 250;
under external force, 190; and fields, 145–146,
384; of finite size, motion of, 714; free, 302; and
gravitational waves, 566; intrinsic lifetime of, 198;
massive, 659–660, 659f; massless (see massless
particles); near barrier, path integral formalism
for, 781; noninteracting (see dust); notation of
position, 117; point (see point particles); relativistic
action, 208–209; at rest, Newton’s laws, 142;
ring of, responding to gravitational wave, 567f;
scattering of, Lorentz invariance, 236e; separation
of, for different polarizations in gravitational
waves, 566; on a sphere, 148, 645; spin 1, 256;
teleological behavior of, 139; test, 302, 309; wimps,
522; worldlines of, 177f, 211f, 380

partition function of quantum systems, 445
passive diffeomorphism, coordinate transformation

as, 398
path: in 2-dimensional Cartesian space, 123;

actual, extreme value of action, 141; choosing,
as metaphor for life, 139–140; of falling apple,
determination of, 137; Feynman’s, to rescue a
drowning girl, 3–4, 4f; harmonic oscillator, 148e;
least path principle, 3, 5–6; length of, 189, 190; of
light, 175, 656, 665; mean free path of photons,
517; shortest (see shortest path); straight and
narrow, deviation from, 143; through spacetime,
638. See also distance; length

path integral (Dirac-Feynman) formulation:
determining Hawking radiation, 445; and local
observables, 772; quantum gravity, 781, 783;
quantum physics, 770; understanding of quantum
mechanics via, 141

Pauli matrices, in Lorentz algebra, 187
Pauli spinors, as “square root” of Lorentz vector, 731
Peierls, Rudolf, on thinking and calculating, 133
Penrose, Roger, and twistors, 730–731
Penrose diagram, 427–429; black hole formation,

430; for causal structure of de Sitter spacetime,
639f; charged black holes, 480f; de Sitter
spacetime, 638; of Minkowskian spacetime, 428f;
Schwarzschild black hole, 429f; time translation,
620

Penrose process, 449, 469–471; angular momentum
loss, 471–472; area theorem, 472

Penrose’s vision, on role of light rays, 741
Penzias, Arno, cosmic microwave background, 517
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perfect fluids: assumptions during discussion, 237n;
and comoving observers, 229; definition of, 230; in
outgoing brane wave model, 704–705; relativistic
stellar interiors, 451; universe filled with, 492–493

perihelion shift: around black holes, 413; around
Mercury, 368–369, 369f; in Schwarzschild metric,
371–372

perturbation, relevant, in cosmic diagrams, 512
perturbative correction, to electromagnetic scattering

of point charges, 766
perturbative expansion, failure of, 770
perturbed spacetime metric, gravitational sources of,

569
Petrov notation, of Riemann curvature tensor, 352e
phase angle, of wave function, in Kałuza-Klein

theory, 678
phase boundaries, in cosmic diagrams, 513–514
philosophic arguments, power of, 779
photons: collisions with electrons, 222f; compared

to gravitons, 768; decoupling of, and matter
dominance, 788n; depending on geodesics, 665;
frequency shift, in scattering, 222; momentum of,
232; movement along time axis, 665; movement
in dueling thinkers experiment, 7–9; parameter
choice for propagating, 215; in primeval universe,
516f; relativistic action, 212; role of electric charge
for, 383; spherical shell of, 429, 430f; temperature
of gas of, 495. See also light; massless particles

physical momentum, and twistors, 731
physical reasonability, 557
physical singularities: compared to coordinate

singularities, 91–92; and coordinate singularities,
365–366; Kerr black holes, 467, 467f;
Schwarzschild black holes, 418, 425; timelike,
479

physicists: good versus great ones, 167; particle,
renaming themselves high-energy physicists,
713n; physics being independent of, 219

physics: on cosmological distance, 750; cube of, 12–
13; Descartes approach to questions in, 583n;
effectiveness in understanding the universe, 779;
and expression of physics in terms of equations,
difference of, 47; fundamental, Mother of All
Headaches, 699; goal of, 757–758; independence
of physicists, 219; internal consistency of, 780;
linkage between high energy and low energy
physics, 752; most famous equation of, 220–221;
need to be local, 757; present understanding of,
712; quantum (see quantum physics); relevance of
topology to, 728; role of clocks and rulers, 719–
720; role of observer, 46–48; sensitive to topology
of spacetime, 720; start of, 143n; teleological
discussions in, 136; theoretical (see theoretical
physics); translation invariance of, in static
spacetime, 304f; ultimate equation of, 47–48

physics terms, least appropriate, 516
Pioneer anomaly, 311

pions: formulation of strong interaction, 785; mass
prediction of, 205; negatively charged, 206

Pisa, Leaning Tower of, 270
planar coordinates, of expanding universe, 630
Planck, Max: Einstein’s appraisal of his

understanding of general theory of relativity, 370;
personal life, 10; and ultraviolet catastrophe,
789n

Planck area, and entropy of black holes, 442
Planck brane, 700
Planck constant, 11; dependence on mass-energy

scale, 781
Planck length, 11–12; charge quantization in

Kałuza-Klein theory, 677; in effective field theory
approach, 709; and large extra dimensions, 699;
as minimum length to probe quantum effects,
762; as smallest distance experimentalists can
measure, 764

Planck mass, 11–12; amount of, 583; and
cosmological constant paradox, 746–747; in higher
dimensional theories, 681; in Kałuza-Klein theory,
675; as largest mass fundamental physics, 748;
quantum gravity limit, 444

Planck scale, in early universe, 518
Planck time, 11–12
Planck units: and entropy of black holes, 441; and

quantum gravity, 761
plane: flat, curvature of, 105; osculating, of smooth

curve, 97f
planetary orbits, in Schwarzschild metric, 371–372
planets, celestial mechanics, 28
Poincaré, Henri: and Lorentz transformation, 169n;

and special relativity, 190; understanding of waves,
783–784

Poincaré algebra: extension to conformal algebra,
617; generators of, 192

Poincaré coordinates: in anti de Sitter spacetime,
656; numbers of boundaries, 664

Poincaré group, transformations and translations of,
666

Poincaré half plane, 67f; and anti de Sitter / conformal
field theories (AdS/CFT), 68; determination of
geodesics, 127; with differential forms, 608;
finding geodesics of, 133; geodesics on, 134f; in
higher dimensions, 656; and metric, 67–68; and
temporal boundary, 632

Poincaré invariant brane, 707
point charges, electromagnetic scattering of, 766
point of view, local versus global, 141
point particles: action for, relativistic, 208–209, 210;

associated current of, 235; energy and momentum
of, 379–380; motion of, 714, 676; nonrelativistic
action, 241

point-to-line map, from twistor space to spacetime,
742

pointlike particles, worldline length of, 215
points: circles mistaken for, 674f; distance of in space
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points (continued)
and time, 174–175; isometric geometry of, 585; in
spacetime, 177, 689f, 742; in twistor space, 741f

Poisson’s equation: gravitational potential satisfying,
708; membrane shape, 118; for Newton’s gravity,
231

polar coordinates: change from Cartesian
coordinates, 29, 62,71; Christoffel symbols of, 129;
on flat plane, 125; to solve celestial mechanics, 29;
transformation into locally flat coordinates, 89;
warped, 613e

polar-like coordinates, comoving, 298
polarization tensor, of gravitational waves, 565
polarization vectors, written in terms of helicity

spinors, 735n
polarizations: degrees of, in gravitational waves,

564; different, in gravitational waves, 566; of
gravitational waves, 734; as helicity states of
graviton, 566

Polchinski, J., deletion of Feynman diagrams, 756
pole in the barn problem: spacetime view of, 202f; of

special relativity, 201, 201f
poles, and their longitudes, 76
polyhedra, angular deficits of, 726–727
polytopes in momentum-twistor space, and

scattering amplitudes, 742
position, of particles: as general space coordinate, 26;

notation, 117
position determination, and position of measuring

device, 763–764
positive cosmological constant, and expanding

universe, 392
post-Newtonian approximation: Einstein’s field

equation in, 577; parametrized, 309–310, 311
potential: central, 36; and consistency or integrability

condition, 36; cosmic, 508–509, 508f; definition
of, 35; electromagnetic, in fifth dimension, 677;
external, translation invariance, 242; gauge,
emergence of Yang-Mills theory, 688; gravitational,
578; inflaton, 535f; introduced into relativistic
action, 209; linear, 139; Newtonian, around
black holes, 410–411; particles moving in, tensor
notation of, 57–59; rotationally invariant, 150;
translation invariant, particle movement in, 151;
vector, 243, 248; Yang-Mills gauge, 682

potential energy, of a marble in a bowl, 113
potential energy functional, action principle, 146
power series: expansion of functional, 115–116;

introduction of, 41
powers of derivatives, deviation from Newtonian

gravity, 708–709
Poynting vector, emergence of, 382
PPN (parametrized post-Newtonian) approximation,

309–310, 311
precession: of gyroscopes, 465, 549–551; Lense-

Thirring, 550; in Schwarzschild spacetime,
549

precession angle, 550
predictions, verified for Einstein’s theory, 777
pressure: Fermi, Chandrasekhar limit, 455;

relativistic energy contribution of, 230; of
universe, relation to energy density, 359

pressure gradient: of relativistic stellar interiors, 453;
in universe filled with perfect fluid, 493

primed coordinates, 18, 38; metric with, 71–73
primed frames, in algebra, 196
primeval nucleosynthesis, 517–518
primeval universe, 516f
“primeval” vectors, and coordinate transformations,

73
Princeton University, fundamental physical

equations on glass windows, 138
principles: action (see action principle); anthropic (see

anthropic principle); of causation, and gravitation
law, 404; Copernican, 491; cosmological
(see cosmological principle); equivalence (see
equivalence principle); fundamental, 12; Galileo’s
relativity principle, 17–19, 159; “golden” guiding,
338; holographic (see holographic principle); least
path (see least path principle); least time (see least
time principle); locality (see locality); of presumed
innocence, 299; uncertainty (see uncertainty
principle)

problem: of not enough time, 521–522, 531;
prototype of solutions, 222

Professor Flat: discusses Christoffel symbols,
132–133; on local flat coordinates, 130

projection: stereographic, 80–81e, 81f, 641; of vectors
on tangent plane, 102

projective space, integrating over, 740
promotion, law of, 219
propagator, for graviton, 573
proper distances, 296–297
proper time, 181; definition of and motion of light,

659; for different observers, twin paradox, 189; in
electromagnetism, from special relativity, 244; in
Minkowskian spacetime, 179; parameter choice
for massless particles, 215

proper time duration, of particle, 210
proper time interval, invariance of, 199
proton decay, 527; analogy to cosmological constant

paradox, 753–754; and anthropic principle, 757
protons: delayed recombination of, 516–517;

primeval nucleosynthesis of, 517–518
Proust, Marcel, on time, 205
pseudo-Euclidean spaces, 653
pseudo-time coordinate, 657
pseudospheres. See hyperbolic spaces
pseudotensor, energy momentum, 386
psychological time, 175n
Ptolemy: and concept of coordinates, 62n; and the

term “second” used in measuring angles, 368n
pulsars, emission of gravitational waves, 563
pulsating mass distribution, 571
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pulsating stars, 304
punctured surfaces, 726
puzzle, “What is greater than God?” 789n
Pythagoras: calculation of length of hanging string,

113; motion in static isotropic spacetime, 305, 309
Pythagoras theorem, for space and time, 167
Pythagorean time, and radar echo delay, 372

QFT. See quantum field theory
quadratic derivatives, added to Lagrangian, 338
quadrupole formula, derivation of, 576e
quadrupole radiation, gravitational, 571
quantities: auxiliary, calculus, 129; conserved:

and Noether’s theorem, 30, 152; definition of
conceptually natural, 219; extensive, 441; index
notation of, 32; natural, introducing to gravity,
764; transformation of, 218; without qualities,
scalar fields as, 788n

quantization: of electromagnetic field, 764; of
gravitational field, 582; of gravity, 780, 788n

quantum: dependence of action, 783; mystery of, 780
quantum chromodynamics, 526, 785
quantum electrodynamics, difficulties in, 764
quantum field theory (QFT), 247; antimatter in,

476; calculating vacuum energy by, 752–753;
commutation relations, 192; correspondence
with quantum statistical mechanics, mystery of,
445; cube of physics, 13f; in curved spacetime,
780; cutoff in, 758n; in de Sitter spacetime, 648;
harmonic oscillator in, 361; as low energy effective
theory, 711–712; motivation for development
of, 384; motivation for studying twistors, 731;
not consistent with classical relativity, 773n;
questions on, 781; restless vacuum in, 436–438;
understanding of, 746; use of scalar fields in, 759n

quantum fields, appearance in action, 213n
quantum fluctuations: contributing to vacuum

energy density, 746; of fields, 784; Hawking
radiation originating from, 436; in inflationary
cosmology, 533; thermal radiation from horizon,
637; Unruh effect, 446; vacuum as boiling sea of,
745–746

quantum gravity: anti de Sitter spacetime, container
for, 649; cube of physics, 13f; divergent behavior
of, 766; fundamental scales, appearance of, 760–
761; governed by attractive ultraviolet fixed point,
773n; handwaving arguments for, 769; Hawking
radiation, 439, 443–444; heuristic thoughts about,
760–774; as Holy Grail of physics, 12; impossibility
as a quantum field theory, 765; as local field theory,
781; local observables, absence of, 772, 781; loop,
772; mystery of, 748, 781; “naked” singularities,
480; Newtonian potential, corrections to, 767;
nonperturbative treatment of, 770; path integrals,
781; Planck length as minimum length to probe,
762; and problem of knowing the position of
measuring device, 763–764; and Schrödinger’s cat

experiment, 771; and “strangeness” of black holes,
764–765; taming of, 731; thought to follow from
quantum electrodynamics, 764; trouble by Planck
mass, 761; and ultraviolet completion, 765; from
world described by “matter fields” and a metric,
770. See also Kałuza-Klein theory; string theory

quantum Hall effect, fractional, 789n
quantum Hall fluid, and ground state degeneracy,

723
quantum hydrodynamics, analogy to quantum

gravity, 759n
quantum mechanics: cube of physics, 13f; derivation

of Hawking temperature, 445; special relativity
and, 437; spin 1 particles, 256; use of operators in,
48

quantum of gravity. See gravitons
quantum of light. See photons
quantum operators, 771, 772
quantum particles, in classical gravitational field, 771
quantum physics: difference from classical physics,

360–361; discord with Einstein gravity, 768–769;
equivalent formulations for, 770; observables in,
772. See also physics

quantum statistical mechanics, correspondence with
quantum field theory, mystery of, 445

quantum systems: on torus, 723n; with zero
Hamiltonian, 723

quantum tunneling, and Hawking radiation, 449
quarks: baryogenesis, 526; families of, 786; masses

of, and anthropic principle, 757–758
quotient theorem, 316–317

r , use of letter in different situations, 95
radar echo delay experiments, 373f; as test of Einstein

gravity, 372–373
radar ranging, 291
radial coordinates, hyperbolic, 653–654
radiation: accretion disk, compared to nuclear

fusion, 415; background (see cosmic microwave
background); black body, of black holes, 436;
Gibbons-Hawking, 449, 638; Hawking (see
Hawking radiation); quadrupole, graviton spin,
571; role in dissipative collapse, 521; from rotating
black holes, 473–475; thermal, from de Sitter
horizon, 637; universe dominated by, 495–497

radiation density, and scale factor of universe, 496f
radion field, 680; calculation of 5-dimensional scalar

curvature, 686
radius, role of, in Schwarzschild metric, 364–365
rapidity, of boosts, 188
Raychaudhuri equation, 449, 555–556
A la recherche du temps perdu (Proust), 205
recombination, delayed, 516–517
rectilinear container, infinitesimal, 80e
redshift: cosmological, 295; gravitational, 259, 282–

283, 303–304, 412; infinite, outside Kerr black
holes, 462, 466, 469; relativistic, of frequency, 186
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redshift factor, 295
redshift formula, 299, 490; as cosmic clock, 504
reducible representations, 54–57
Reed, Ishmael, stellar nucleosynthesis, 518
reference frames: change of, and covariant derivative,

103; comoving, preferred flow direction, 230;
different, for Einstein’s clocks, 167f; dueling
thinkers experiment, 7–8; and falling ring of
balls, 59f; nearby, connected by 1-forms, 600;
orthonormal, 594, 595f. See also observers

reflections, space, 721n. See also rotations
refraction, as principle phenomenon, 4
Regge calculus, 726n
Reissner-Nordström black holes, subextremal, 483
Reissner-Nordström spacetime, 477–478
relativistic action: accelerated frames, 285;

gravitational time dilation, 284; matrix theory, 210
relativistic completion, 218, 242–243; of current, 223
relativistic curl, 4–vector, 252
relativistic Doppler shift, 185–186, 222
relativistic fluid dynamics, 233
relativistic kinematics, 221
relativistic matter. See also radiation
relativistic particles. See massless particles
relativistic stellar interiors, 451–457
relativistic strings, generalization of action for, 210n,

215
relativistic unification, 247
relativistic wave equation, standard, 565
relativity: in American football, 172f; concept of, 17–

20; definition of, 17; Galileo’s principle of, 17–19,
159; general (see general relativity); numerical,
400–405, 693; special (see special relativity)

relativity principle, Galilean, 159
relevant events, time dilation, 197
relevant perturbation, in cosmic diagrams, 512
relic photons, 517
relic problem, 532
renormalizable interactions, 711–712
renormalization group flow, 511
renormalization group ideas, and scaling, 754
reparametrization invariance, variational calculus,

123
repeated index summation. See summation

convention
representation: ambitwistor, 736, 739; defining, of

rotation group, 54; fundamental, of rotation group,
54; of groups with subgroups, 225; index-free, of
vector fields, 319; reducible versus irreducible,
54–57

representation theory, 54
repulsion, between like electric charges, 707
rescaling: of complex parameters, 733; invariance

on, 559
rest frame: of gyroscope in parallel transport, 549;

length contraction, 199; with proper time, 179
restless vacuum, in quantum field theory, 436–438

restrictions: of groups to subgroups, 57; by Lorentz
symmetry, 339; of metric, by isometric condition,
586; of momentum, to hyperbolic shell, 220

Ricci-Curbastro, Gregorio, 345
Ricci tensor, 449; for 2-brane model, 701; in anti de

Sitter spacetime, 612; calculation of 5-dimensional
scalar curvature, 685; for charged black holes, 478;
combined with scalar tensors, 388; computation
of, 357–358, 362; cosmic expansion, 490–491;
derivation of Raychaudhuri equation, 556;
introduction of, 345; proportional to metric,
492; for relativistic stellar interiors, 451–452; in
Schwarzschild solution, 363–364; for spherically
symmetric static spacetimes, 611; vanishing of,
348; variation of, 390, 395

Riemann, Bernhard: determination of curvature
of space, 65; pioneering work in extending
differential geometry, 91; quest for curvature, 339

Riemann curvature: components of, in Einstein
gravity, 89; as found by Riemann, 90–91; and
parallel transport, 545. See also curved spacetime

Riemann curvature tensor, 546; alternative
derivation of, 547–548; anti de Sitter spacetime,
651; computation of, 349–350, 362, 607;
constraints on, 591; cyclic symmetry of, 351e; for
de Sitter spacetime, 626; derivation of variation
of, 389; determination of, 341–343; directly
from 2-form, 611; form of, 90; formation of
scalar curvature from, 345–346; on geodesic,
in Fermi normal coordinates, 560; Hawking
Radiation, 438; indices, number of, 131; of Kerr
metric, 476; in locally flat coordinates, 553; in
maximally symmetric spaces, 589; structure of,
351; symmetry properties of, 343, 561; vanishing
of, 348; variation of, 347; and variations of metric
in spacetime, 716

Riemann normal coordinates. See locally flat
coordinates

Riemannian, manifolds, 599–600
Riemannian geometry, 280; determination of weak

field action, 572; fear of, 82
Riemannian manifolds: Cartan formulation of,

601; choice of metric, 88; definition of, 95;
Killing vectors of, 588; nearby geodesics on, 552;
specification of curvature of, 89

Riemannian spacetime: fundamental scalars in, 365;
generalization of parallel transport to, 543

Rindler coordinates, 193f, 660
Rindler metric, 446
Rindler transformation, in Minkowski spacetime,

192e
ripples in spacetime, 563; propagation of, 667
RNA folding, and punctured surfaces, 728
Robertson, Howard P.: rejecting Einstein’s article,

564. See also Friedmann-Robertson-Walker
universes

Rogers, Eric, neighbor of Einstein, 267
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Rosen, Nathan: Einstein-Rosen bridge, 433;
gravitational waves, 563n

Rosenfeld, L., nonconsistency of quantum field
theory and classical relativity, 773n

rotating black holes, 414, 458–476; angular
momentum of, 576; and Boyer-Lindquist
coordinates, 78; frame dragging, 460f; offdiagonal
metric component, 459; Penrose process, 449; as
sources of radiation, 473–475; ’t Hooft’s bound,
442. See also Kerr black holes

rotating bodies: angular momentum of, 563–577;
slow velocity of, 570; spacetime deformation by,
460

rotating mass distributions, 569
rotation groups, 317; generalized, 191; generators of,

40, 192; as invariance group of physics, 755; Lie
algebra of, 191; representation of, 54; subgroup of
Lorentz group, 192. See also specific groups

rotation matrix: and covariant differentiation, 321;
definition of, 38

rotational invariance, 118; inverse square law, 120,
697; in Newton’s second law, 140

rotations: approach generalizing to higher
dimensional spaces, 42; under coordinate
transformations, 72–73; definition of, in matrix
form, 40; determination in manifolds, 590; and
exponential function, 41; as freedom left in higher
dimensional space, 88; in higher dimensional
spaces, 44–45, 49–51; hyperboloid of, 625; and
index notation, 44–45; as invariant transformation,
186; as linear transformations, 68; order of, 50f;
in plane, 38–40; similarity to metrics, 181; in
spacetime, 174

Roth, Philip, The Ghostwriter , 254
Royal Society, expeditions to test Einstein’s theory,

367
rubber sheet analogy, misleading for black holes, 432
rulers, observed in different frames, 199f
Rumford, Count (Benjamin Thomson), energy

conservation, 387n

saddle point, determination of surface curvature,
105f

Sakharov, Andrei D., grand unified theory, 529
Sandage, Allan, closed and open universes, 296–297
satellites: onboard gyroscope measurements, 549;

radar echo delay experiments, 373
scalar action, energy momentum tensor for, 387e
scalar check, of Schwarzschild metric, 365
scalar curvature: for 2-brane model, 700; 5-

dimensional, 684–686; constant, of maximally
symmetric spaces, 589; of expanding universe,
609; formation from Riemann curvature tensor,
345–346; and mass dimensions, 711; and other
coordinate scalars to form a metric, 708–709

scalar fields: action, 332; in AdS/CFT correspondence,
665; charged, in 5-dimensional theories, 687;

Lagrangian in, 712; as quantities without qualities,
788n

scalar product: of four vectors under Lorentz
transformation, 182; invariant in parallel
transport, 544; of vectors, definition of, 39

scalar tensors, combined with Ricci tensor, 388
scalars: and coordinate transformations, 73;

differentiation, 318; in general relativity, 315;
and invariance, 47; objects without indices not
transforming as, 719–720; rotational, 225

scale and conformal invariances: and naturalness
doctrine, 750; in particle physics, 621

scale factor of universe, 289, 293, 489; and Big
Bang, 499f; cosmological equation, 633; and
energy density, 496f; in inflationary cosmology,
534; primeval density fluctuations, 524; redshift
formula, 299

scales, 750; physics on different length, 750
scaling: at cosmological distances, 753–754; metric

invariant under, 657
scaling dimensions, of terms in action, 713n
scattering: 4-gluon, 744e; Compton, 222f, 235e;

electromagnetic, of point charges, 766; of
electromagnetic wave on atom or molecule,
715; gluons, Feynman diagrams for, 735–736;
of gravitons (see graviton scattering); impact
parameter for, 309, 309f, 416; of neutrinos,
765; particle, Lorentz invariance, 236e; photons,
frequency shift in, 222

scattering amplitudes: 4-gluons, 738; ambitwistor
representation for, 737; dimensional analysis,
717, 761, 770; and effective field theory, 770;
expressed in terms of helicity spinors, 734–
735; Fourier transformation of, 736; gluons,
785; for gravitational wave on finite sized
object, 717; gravitons (see graviton scattering);
spacetime hidden in, 739–740; in terms of helicity
spinors, 735–736; as volume of polytopes in
momentum-twistor space, 742

scattering cross section, electromagnetic wave on
atom or molecule, 715

Schild (Kerr-Schild form), 476
Schrödinger’s cat experiment, quantum gravity,

771
Schrödinger equation, for (nonrelativistic) charged

particle in magnetic field, 354n
Schwarzschild, Karl: letter to Einstein, 362; meaning

of name, 363
Schwarzschild black holes: escape from, 427;

Hawking temperature of, 436; and Kerr black
holes, 468; Kruskal-Szekeres coordinates,
635; Kruskal-Szekeres diagram of, 426f; mass
determination, 570; Penrose diagrams, 429f

Schwarzschild–de Sitter spacetime, 375e, 635
Schwarzschild-Droste metric, and solar system tests

of Einstein gravity, 362–371
Schwarzschild metric: derivation of, 347; discovery
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Schwarzschild metric (continued)
of, 364; Kruskal-Szekeres diagram for, 425–
427; near-horizon, 445–446; Painlevé-Gullstrand
coordinates, 417; perihelion shift in, 371–372;
planetary orbits in, 371–372

Schwarzschild radius, 409; in Kerr solutions, 461,
465; relation to actual radius, 366; role in metric,
364–365; of universe, 514; and universe’s obesity
index, 443

Schwarzschild singularity: coordinate, 365–366;
impossibility of, in toy model of spherical cluster
of noninteracting particles, 376n

Schwarzschild solution: as limit of Kerr solution,
466; with charged central mass (see charged black
holes); Kruskal coordinates as extension to, 433;
time-dependent mass distribution, 374; Weyl’s
way to, 374

Schwarzschild spacetime, 292; precession in, 549;
spherical shell of photons in, 430f

“second,” meaning of term used in measuring
angles, 368n

second derivative in time, role for dynamics,
Newton’s insight, 401

second law of black hole thermodynamics, 472
second order corrections, to locally flat Euclidean

metric, 88
segments, infinitesimal, space and time experience

of, 180
self-interacting scalar field, 387e
self-tuning, 706
semi-circles, as geodesics, 133
Shapiro, Irwin I., radar echo delay experiments,

372–373
sheets, swept out by strings, 216f
“shift,” 691, 693
shortest path: in curved spacetime, 276;

determination of, 155; on earth’s surface,
275; and parallel transport, 545; in spacetime,
176f. See also geodesics; path

“shut up and calculate,” 445
sign: most significant in physics, 176; role in

electromagnetism, 382
sign error, in action variation, 380
sign function, in Green’s function, 573
signature, of spacetime, changing of, 732–733
Silberstein, Ludwik, understanding of Einstein’s

theory, 369–370
similarity transformations, definition of, 56
simultaneity: dependence on observer, 8; Einstein’s

gedanken experiments, 7–9; failing of, 166; fall of,
200

single particles, ignoring gravitational waves, 566
singularities: at Big Bang, 498; clothed, 479;

coordinate, 91–92, 365–366, 467, 467f; physical,
418, 425, 467, 479; at poles of Mercator map,
365; Schwarzschild, impossibility of, 376n; at
Schwarzschild radius, 409; of Schwarzschild
solution, 365; spacetime, at Big Bang, 498;

spherical, paper by Kruskal, 376n; with trapped
surfaces, 484

sink, in cosmic diagram, 511
sky, reason for being blue, 715
SL(2, C) group, 730
SL(4, R) group: explanation of, 739; and twistors,

737
slow roll scenario, 535–536
slow rotation limit, Kerr black hole, 571
smooth functions, and delta function, 33e
Snell’s law, 9e
SO(3, 1) group, 730
SO(3) group, generators of, 44
SO(3) transformations, 57f
SO(6) group, 619
SO(D) group: index notation of, 49; Lie algebra for,

51; Minkowski spacetime, 191
soft photon theorems, 217n
solar eclipse expeditions, 367; praise by J. J.

Thomson, 369
solar system, tests of Einstein gravity, and

Schwarzschild-Droste metric, 309, 362–371
Soldner, Johann, calculation of deflection of light by

astrophysical objects, 366–367
solid state structures: gauge potential of, 721. See also

condensed matter physics
solitons, included in quantum field theory, 781
SO(m, n) groups, and complexification, 732
Sommerfeld, Arnold: introduction of fine structure

constant, 767; letters from Einstein, 344, 366, 580
sound horizon, 524
sound speed: in metals, ratio to light speed, 749; in

static relativistic fluid, 234
south-pointing carriage: function of, 109; modern

version of, 104f
south pole, and its longitude, 76
space: closed curved, 681; conformally flat, 80–81e;

creation of, 498, 787; curled up, 673–674, 674f;
determination of curvature, 65–66; dimensionality
and inverse square law, 697; homogeneous, 289,
292, 491, 588, 704; hyperbolic, 296, 491, 590, 627,
633; internal, 688, 689; isotropic, 289, 292, 305,
491, 588, 704; local versus global character of, 76–
77; maximally symmetric, 585–593, 588; metric
in geodesic equation, 128; negatively curved,
maximally symmetric, 610; replacing time, 137;
and spacetime, classification of, 666; of spheres,
and de Sitter spacetime, 646; spherical, of closed
universe, 633; and time, lyrical confounding of,
174n

space coordinates: as dynamical variable, and energy
momentum tensor, 381; notation, 25

space measurements, metric tensor for, 63–64
space reflections, in odd-dimensional space, 721n
spacelike 3-dimensional hypersurface, 693f
spacelike curves, 175
spacelike distance, 175
spacelike events, temporal ordering of, 204
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spacelike geodesics, tentacles of, 558
spacelike hypersurfaces. See Cauchy surface
spacelike infinity, 428, 428f
spacelike Killing vector, 637
spacelike surfaces, 184
spaceship: ball of whiskey in, 270; in orbit around

earth, 266
spacetime(s): 4-dimensional, divergence theorem

generalized to, 386; 5-dimensional (see Kałuza-
Klein theory); annihilated, 785; anti de Sitter,
612, 702; boundary of, 399n; causal structure of,
427, 431, 438, 530, 531f, 780; changing signature
of, 732–733; circles mistaken for points, 674f;
conformally equivalent, 311; conformally related,
622e; constancy of dark energy density in, 359;
constructed by piling sheets, 689f; curved (see
curved spacetime); dark energy density in, 356;
de Sitter, 456, 624–648; deformation by rotating
bodies, 460; discretization of, 773n; disguises of
anti de Sitter, 654; distance measurements in,
180; distance of comoving observers, 174; divided
into regions, 635; Einstein’s equivalence principle,
271; empty, 347–348, 362; event, definition
of, 177; flat, with conformal algebra, 615; four
dimensional, 174; geometry of, 174–193; and
gravity, origins of, 787; how to generate, 338;
human in, 658f; inside stars, 453; inversion of,
743–744; isometric, around rotating black holes,
459; Kerr, 470–471, 473; Lagrange multiplier
for volume of, 756; and large extra dimensions,
697; mapping of, holographic principle, 649;
Minkowskian, 277, 434; Minkowskian metric for,
181; next steps of understanding of, 784; null
lines in, 741f; number current as 4–vector in,
225f; paths lengths, 189; perpendicular to internal
space, 689; propagation of ripples, 667; pulsation
communicated to outside, 571; Pythagoras
theorem of, 167; regions of, 635; ripples in,
563; Schwarzschild, 292; Schwarzschild–de
Sitter, 375e; separation of events in, 160; “sewing
together” of two distinct, 429–431; shortest path in,
176f; singularity at Big Bang, 498; small enough
region of, and Einstein’s equivalence principle,
712; spherically symmetric, time dependent, 311;
around spherically symmetric mass distribution,
304–307, 310–311, 409; spinors in curved, 604–
605; static, 61, 303–304; static isotropic, motion
in, 306–307; stretching of, 615; thermodynamics
of, 448–449; topology of, physics sensitive to, 720;
as a triangle, 428, 434; twistor space point-to-
line mapped to, 742; and twistors, 739–740; and
variations of metric in, 716

spacetime curvature. See curved spacetime
spacetime derivative, two powers of, role in Einstein

field equation, 402
spacetime dimensions, four, 174
spacetime events, light rays being more fundamental

than, 741

spacetime fluctuations, 762
spacetime metric: around spherical mass

distribution, Schwarzschild solution, 363–364;
around stars, 62; formal similarity to rotation, 181;
notation of, 183; perturbed, gravitational sources
of, 569. See also metric

spacetime picture, thinking in terms of, 28
spatial boundaries, 655; in anti de Sitter spacetime,

649
spatial coordinates: in continuum mechanics, 117;

emerging in AdS/CFT correspondence, 787;
growing from boundary, 660; and location of
particles, difference between, 31

spatial curvature: for closed, flat, and open universes,
634; effect on CMB fluctuations, 525–526

spatial distance, in general curved spacetime,
290–292

spatial metric, and cosmic expansion, 491
special matrices, 40
special relativity: abstract of, 20; accelerated particles,

193e; applied, 195–206; counterintuitivity, 204;
electromagnetism from, 244–246; in everyday
life, 205; geometrical view of, 582; pedagogically
correct presentation, 203; performance of young
Einstein, 783; problems in, foolproof method for
solving, 195; and quantum mechanics, 437; time,
different rates of, 196

speed limit, existence of, 172
speed of light. See light speed
spheres: in 3-spaces, distances of, 610; curvature of

surface of, by Gauss’s strategy, 105; d-dimensional,
definition of, 624; in de Sitter spacetime, 624;
determination of metric on, 65; as example
for curved space, 83; generalized, 92; higher
dimensional, metric of, 80e; and hyperbolic
spaces, 93; “at infinity,” 428; intersecting, 647f;
intrinsic and extrinsic curvature of, 6, 85; metric
of surface of, 83–84; squashed, 469; stereographic
projection of, 80–81e, 81f; tangent plane of, 98;
topology of, 727; unfamiliar metrics of, 585

spherical blobs, 725f; growing a trunk, 726
spherical coordinates: change from Cartesian

coordinates, Euclidean spaces, 63; introduction of,
108

spherical shell of photons, 429; in Minkowski
spacetime and Schwarzschild spacetime, 430f

spherical symmetry, comoving coordinates, 298
spherically symmetric mass distribution, 304–307;

around black holes, 409; Christoffel symbols,
310–311; foliation, 305–306; Killing vectors
for, 305; Schwarzschild solution for spacetime
metric around, 363–364; time dependent, and
Jebsen-Birkhoff theorem, 373–374. See also stars

spherically symmetric spacetime: static, 61; time
dependent, 311

spin 1 particles, 256
spin connection, for index transformation, 603
spin fields, in terms of spinor field, 789n
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spin vector: parallel transport of, 549; precession of
for particle in orbit, 550

spinor fields, and gauge potential, 789n
spinor indices, “metric” for, 742
spinors: complexified, 732; in curved spacetime,

604–605
splitting of energy levels. See energy level splitting
spooky action, Newton’s, 146
spring oscillations, equation of motion, 26
square root: calculation of, 207; of Lorentz vector, 731
squashed sphere, length of equator, 80e
stacked entities, 56
standard candles, 359
standard model of particle physics, 683
standard notation, of coordinates, 25
standard relativistic wave equation, 565
Stark, Johannes, on Einstein, 216n
stars: collapse into black holes, 455–456; first, 519;

made of nothing, 456; pulsating, 304; relativistic
interiors, 451–457; Riemann curvature tensor
around, 362; Schwarzschild radius of sun, 409;
stellar nucleosynthesis, 518–519

static coordinates, 634; definition of, 652;
time-independence of metric, 636

static fields, classical theory, 119
static isotropic spacetime, motion in, 306–307
static solutions, for coupled Einstein and Maxwell

equations, 482–483
static spacetime, 303–304; spherically symmetric, 61;

translation invariant physics in, 304f
static universe, Einstein’s, 509–510, 514
stationary limit surface, 461–463; angular velocity

inside, 471; Kerr black hole, 462f; outer, 469
stationary phase approximation, 770
“stationed” observer, around black hole, 412
stellar nucleosynthesis, and anthropic principle, 758
stereographic projection: for anti de Sitter spacetime,

661; for de Sitter spacetime, 641; of sphere,
80–81e, 81f

straight line: appearance of, curved coordinates,
130–131; distance of, in Minkowskian spacetime,
175; form dependence of coordinate systems,
127; geodesic problem, solutions of, 124; most
complicated description of, 125; and parallel
transport, 545; as shortest path between two
points, 4; in twistor space, 742; between two
points, 66, 90

stress energy tensor, 386e; in outgoing brane wave
model, 704–705. See also energy momentum
tensor

string: action of, 146; boundary conditions for energy
of, 115; elastic, hanging under force of gravity, 113;
hanging, and variational calculus, 113–123; with
nonuniform force distribution, 117; relativistic,
action for, 210n

string action, invariance of, 147, 216e
string theory: and anthropic principle, 757;

Bekenstein-Hawking entropy and, 444; current of,

235; dilaton field in, 680; in early universe, 518;
and extremal black holes, 467; and generalized
uncertainty principle, 769; as higher dimensional
theory, 695; and Kałuza-Klein / Yang-Mills
theories, 682–683; large extra dimensions in, 696;
minimal, 147; sheets created from strings, 216f

string vibrations, speed of propagation of, 147
strong energy condition, 557; and gravity attraction,

562n
strong force, generated by pions, 205
strong interaction, 526; understanding of, 785
structural equations, Cartan’s, 684
structure formation, in early universe, 520, 522–523
subextremal black holes: charged, 478–479;

Reissner-Nordström, 483
subgroups, restriction of groups to, 57
subscript, index notation, 32
subtraction, of vectors, in Euclidean space, 101, 101f
summation convention, 46, 184, 316; and general

coordinate transformations, 71; in general
relativity, 314; and Greek symbol notation, 63–
64; Lorentz transformation of, 186; Minkowski
metric, 182; and tensors, 52; and upper and lower
indices, 64

summation variables, dummy, 184n
sums, notation of, Kronecker delta, 45
sun: ratio of Schwarzschild radius to actual radius,

367; Schwarzschild radius, 266, 409
superb theorems, Newton’s, 33
superconductivity, high temperature, 789n
superrenormalizable interactions, 711–712
superscript, index notation, 32
supersymmetry: Bekenstein-Hawking entropy and,

444; Yang-Mills theory, 621
supertwistors, 739n
suppressed angular coordinates, 422, 426
surface curvature: compared to curved line, 89n;

determination of, Gauss’s strategy, 104–105
surface parametrization, 98
surface vectors: basis for, in Euclidean space, 98;

normal, 184; parallel transport of, 543
surfaces: in 3-dimensional Euclidean space, 98–

109; generated of light rays, 185; gravity at,
473; “inside” and “outside” of, 85; metric on,
in Euclidean space, 99; normal to, at certain
point, 99f; “one way” in spacetime metrics, 185;
punctured, 726; spacelike, 184; stationary limit,
461–463, 469; tangent plane of, in Euclidean
space, 98–99; trapped, 484, 789n; triangulation of,
726

Sylvester, James Joseph, 210; law of inertia, 193e
symbolic manipulation software, computation of

curvature tensor, 607
symmetric mass distribution. See spherically

symmetric mass distribution
symmetric spaces, maximally, 585–593, 588;

curvature tensor in, 589; negatively curved,
610
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symmetric spacetimes, spherically, 611
symmetric tensors, character of, 55
symmetry: of angular momentum, 150; approach

to fluid dynamics, 164; and conservation, 150–
155; and curvature tensor, 561; cyclic, of Riemann
curvature tensor, 351e; deduction of physics
from, 254; dot notation, 129; and equivalence
principle, 317–318; Fermi normal coordinates,
561; and Fermi normal coordinates, 561; gauge,
in higher dimensional theories, 682; and gauge
invariance, 249; hidden, of nature, 210; imposed
on gravity, 254; and invariance, 242–243; local
gauge, in higher dimensional theories, 682;
Lorentz, restrictions on electromagnetism,
339; matter-antimatter, violation of, 528, 683;
maximal, 592, 625, 626, 650; physical, definition
of, 47; as property of tensors, 61; restrictions on
Newtonian gravity, 339; of Riemann curvature
tensor, 343, 561; in spatial indices, 609; of spheres
in spacetime, 585; spherical, 298, 304–307, 310–
311, 373, 409; supersymmetry, 444, 621. See also
antisymmetry; rotations

symmetry breaking, spontaneous, 593, 784
symmetry group, Euclidean group as, 755
symmetry relations, investigations of, in locally flat

coordinate system, 343–344
system of units, natural, 10–12
Szekeres, George. See Kruskal-Szekeres entries

’t Hooft, Gerard: bound on entropy of black
holes, 442–443; naturalness doctrine, 750; and
Yang-Mills field, 789n

tangent plane: and curved surface of sphere, 83–84,
83f; and normal to surface, 99f; rotating around
normal vector, 100; of surface in Euclidean space,
98–99

tangent vectors: of curves, 96, 327; to geodesic,
555; spacetime surfaces, 185; to straight lines,
130

tautochrone problem, Lagrange, 144
Taylor, Joseph H., detection of binary pulsar, 563
Taylor coefficients, and Riemann curvature, 91
Tegmark, Max, inflationary cosmology, 536
teleological discussions, in physics, 136
temperature: ambient, of universe, 504; concept of,

15; of cosmic microwave background, 515, 521–
522; Hawking, 436, 441; inverse, 445; mystery of,
15; for nonrelativistic gas, 231; of photon gases,
495

temporal boundary, and Poincaré half plane, 632
temporal coordinate: in boundary theory, 660;

dependence of spatial coordinate, 652
temporal ordering: in antimatter creation, 206; in

different frames, 204
tennis ball trajectories, in space and spacetime, 33
tensor, notation, Greek symbols in, 63
tensor decomposition, 236e
tensor density, definition of, 75n

tensor fields, 243; electromagnetic, 244; gravity, 257;
introduction of, 53–54

tensor notation: gravity potential, 57–59; Greek
symbols in, 63; and Laplace’s equation, 58;
Newtonian orbits, 60; particle motion, 57–59

tensors: antisymmetric and symmetric character
of, 55; construction of, 313; contraction, 316;
covariant derivative as, 322; covariant derivative of,
324; covariant divergence of, 332; definition of, 52;
differentiation, 318; fear of, 52–53; form invariant,
592–593; in general relativity, 312–319; and indices
(upper and lower), 74; invariant, definition of, 59–
60; Lie derivative, 328, 331; Lorentz, 188, 243;
under Lorentz transformation, 193e; in Newtonian
mechanics, 57–59; of polarization, gravitational
waves, 565; and representation theory, 54; Ricci
(see Ricci tensor); of slowly rotating bodies, 570;
stress energy (see energy momentum tensor);
symmetry properties of, 61, 343; trace of, 55;
transformation of, 132; and vectors, interplay of,
53–54

tentacles, consisting of spacelike geodesics, 558
terrestrial and celestial mechanics, Newton’s

unification of, 28
test, “1–2,” 326
test particle, 302; PPN approximation, 309
tetrahedra: glued together, 725f; topology of, 725
Theorema Egregium, 90–91
theorems. See specific theorems
theoretical physics: and cosmological constant

paradox, 753; Einstein mode of, 778; fundamentals
of, 783; “golden” guiding principle in, 338; impact
of Einstein gravity, 777; unified perspective on,
170. See also physics; quantum physics

theories. See specific theories
thermal radiation, from de Sitter horizon, 637
thermocouples, Einstein’s ether detection,

experimental set-up, 163
thermodynamics: first and second law of, for black

holes, 472–473; first law of, and pressure of
universe, 360n; of spacetime, 448–449

Thomson, J. J., praise for solar eclipse expeditions,
369

Thomson, Benjamin (Count Rumford), energy
conservation, 387n

Thoreau, Henry David, deeds for old and young
people, 788

thought experiments. See gedanken experiments
tidal forces, 554; and finite sized objects, 716–717;

gravitational waves, 567, 567f; introduction of, 59
tilting light cones, at Schwarzschild radius, 420–421,

421f
time: in 4-dimensional matrix, 210; connection with

gravity, 579; cosmic, 295, 530, 632; cosmological,
in outgoing brane wave model, 706; cosmological
problem of not enough, 521–522, 531; creation of,
787; different rates of, in special relativity, 196;
and gravity, 257–258; imaginary, in derivation of
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time (continued)
Hawking temperature, 445–446; lines of constant,
637; in Minkowskian sphere, 631; mystery of,
787; in Newtonian universe, 7; psychological,
175n; and space, unifying, 174–175; specific, in
integrals, 228–229; transit time, minimization,
139; translation invariance in, 303–304; units for,
10; unwound, 653

time coordinates: multiple, 666n; notation, 25; two,
652

time delta function, 229
time dependence: disappearing in static coordinates,

635; Lagrangian without explicit, 153; of metric,
455; in physics, 137–138; of spherically symmetric
mass distributions, 373–374; of spherically
symmetric spacetime, 311

time dilation, 197; gravitational, 258–259, 284, 412,
304; lifetime of particles, 198

time evolution, of universe, 511f
time evolution equations, importance in Newtonian

mechanics, 400–401
time reversal, strong gravitational sources, 574
time reversal invariance, 416–417; accelerated

expansion, 500
time translation, in Penrose diagram, 620
timelike curves, closed, 484; violating physics, 653
timelike distances, 175
timelike geodesics, 645; behavior of, 554–555;

congruence of, 555; dense collection of, 555
timelike infinities, 428, 428f
timelike Killing vectors, 631, 637
timelike physical singularity, 479
Tinseau, D’Amondans Charles de, introduction of

osculating plane, 97
Tolman-Oppenheimer-Volkoff equation, 453, 457
top ten worst physics terms, 767
topological action, 720–721
topological cylinder, anti de Sitter spacetime, 654
topological field theory, 719–728
topological invariants, 725–727
topological quantization, 723
topological terms, in gauge theories, 720–721
topology. See differential forms
torsion, of curves, 97
torsion pendulum, and non-quantized gravity, 771
torus, systems on, 723n
total action, Newtonian world, 145
total energy: conservation of, 35; Hamiltonian, 144
total energy momentum tensor, disappearance of,

394
total momentum, conservation of, 37
totally antisymmetric symbol, definition of, 50
toy model, of spherical cluster of noninteracting

particles, 376n
trace: of matrix, and intrinsic curvature, 84; of tensor,

55
trans-Planckian cosmology, 518
transextremal charged black holes, 478

transformation invariance: of action principle, 147;
of Poincaré coordinates, 657

transformation matrix, 312; linearity, 313
transformations, 80–81e; compared to variations,

389; conformal, 614, 616; coordinate, 62, 68–70,
564; Galilean, 18–20; gauge, as 5-dimensional
coordinate transformation, 673; importance of,
in theoretical physics, 75; infinitesimal, 187, 615;
in Kałuza-Klein theory, 672; as pervasive theme
of theoretical physics, 68; under SO(3), 57f; and
vectors, 42

transit time, minimization of, 139
translation, generators of, 644
translation invariance, 242; of physics, in static

spacetime, 304f; in time, 303–304
translation operator, introduction of, 340
transport, Lie, 328
transpose: of matrix, 45; of vector or matrix,

definition of, 39
transverse-traceless (TT) gauge, 565
trapped surface, 484; presence of, 789n
triangulation, of a surface, 726
trihedron, moving, of smooth curve, 97f
trunk, grown from spherical blob, 726
Tsai, Ming-liang, What Time Is It over There? 514
TT (transverse-traceless) gauge, 565
tunneling, quantum, and Hawking radiation, 449
Twain, Mark, on truth of knowledge, 410n
twin paradox, 189, 194e
twistor space: analogs of Euclidean space objects in,

742; geometry of, 741–742; point-to-line mapped
to spacetime, 742; points in, 741f

twistors: ambitwistor representation, 736;
complexification of variables, 732; covered Lorentz
group, 729–730; and Einstein-Hilbert action, 739;
freedom to rescale, 733; geometric essence of,
739–740; and interaction among gravitons, 738–
739; introduction to, 730–745; Lorentz invariance,
734; motivation for studying, from quantum field
theory, 731; polarization and helicity, 734; and
power of helicity spinors, 735; and Roger Penrose,
730–731; and SL(4, R) group, 737; and spacetime,
739–740

“Tycho Brahe day,” 369n

ultimate theory, dream of, 789n
ultrarelativistic particles. See massless particles
ultraviolet catastrophe, 781; Planck and, 789n
ultraviolet completion, of quantum gravity, 765
ultraviolet regime, linkage to infrared regime, 752
umveg test, 9n
uncertainty principle, 206n; antimatter creation,

205; generalized, 769; and Kałuza-Klein theory,
674; and minimum length, 763; quantum field
theory, 437; and quantum gravity, 762; and the
three natural units, 11–12; and zero point energy,
745–746

unification: fundamental interactions (see grand
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unified theory, string theory); of gravity and other
interactions, 767–768, 780; relativistic, 247; weak
interaction and electromagnetic interaction, 765

unified language, for different physical phenomena,
186

unified notation, of Lorentz transformation,
186

unimodular gravity, and cosmological constant
paradox, 755–756

unit circle, length element on, 80e
unit determinants, 40
unit matrix, definition of, 39
unit spheres, metric on, 80e
unit tangent vector, of a curve, 96
unitarization, and ultraviolet completion, 765
units: change of using, 16n; of distance, 168; Hubble,

293; for length and time, 10; natural system of,
10–12; royal and “revolutionary,” 163n. See also
Planck units

universal clock: in Newtonian physics, 25; set-up of,
172

universality of gravity, 258, 269–270; curved
spacetime, 275–276

universe: 2-dimensional map of, 506–507; acausality
of, 754; acceleration or deceleration of expansion,
506–507; action of, 346, 356; age of, 512–513;
ambient temperature as cosmic clock, 504; critical
density, 497–498; curvature of, 490–491, 526, 748;
dominated by (nonrelativistic) matter, 495–496,
514; dominated by radiation, 495–496; dynamic,
489–501; early (see early universe); energy density
of, 504; entropy of, 527; equation of motion for,
357; equation of state of, 359; expanding (see
expanding universe); fate of, 507–509; filled with
constant energy density, 356; filled with perfect
fluids, 492–493; filtered through human mind,
779; foamlike structure of, 754, 758n; and gravity,
778; hidden acausality of, 783; history of, 496,
502, 503f, 515–529; homogeneity and isotropy
problem, 531; Hubble radius of, and photon mean
free path, 517; inflationary, 534–535; intrinsic
curvature, 6; length scale of, characteristic, 788n;
mass of, 747–748; obesity index of, 13; open, 629;
open or flat, troubling Wheeler, 779; as perfect
fluid, 231; with positive cosmological constant,
633; scale factor of (see scale factor of universe);
Schwarzschild radius of, 514; time evolution of,
511f

universes: closed/open/flat, 296–297, 491, 493–494,
497–498; as curved spacetime, 288–300; different
from de Sitter spacetime, 633; with different laws
of physics, 757; Friedmann-Robertson-Walker,
296, 491, 704; mathematical, 634; static, 509–510,
514

unprimed coordinates, 18, 38; metric with, 71–73
Unreasonable Effectiveness of Mathematics in Physics,

The (Wigner), 446
Unruh effect, 446–447

upper indices, 314–316; and introduction of
lower indices, 64; transformations in change of
coordinates, 71–73

ur-vector, 312; definition of, 43; with lower index,
318; spacetime metrics, 181

vacuum: as boiling sea of quantum fluctuations,
745–746; restless, 436–438

vacuum Einstein equation, solution of, 647e
vacuum energy, 746; driving inflation, 751;

explanation of, 752–753; in outgoing brane wave
model, 706; proofs of, 748

vacuum energy density, upper bound to, 749
vacuum state, 447
variables: dynamical, 249; “free,” in variational

calculus, 116; in functional variations, 121–122
variation: of action: for electromagnetism, 244,

250–251, 380; of basis vectors, 100; compared to
transformation, 389

variational calculus, 155; of brachistochrone
problem, 120; compromises in finding extreme
values, 115; functional, 114–115; and hanging
string, 113–123; integration by parts, 116; of
several unknown functions, 123; solution of
geodesic problem, 125

variational principle: equation of motion from, 137;
for gravity, Einstein and Grossmann, 396

vector fields: constant, covariant derivative of,
331; differentiation of, 100–101; index-free
representation of, 319; introduction of, 46;
movement through, 544; studied by observers,
47f; visualized as fluids, 327f

vector potential, Lorentz, 243, 248
vector subtraction, in Euclidean space, 101, 101f
vectors: and arrays, 51n; basic or ur-, definition of,

43; column, notation of, 45; and construction of
tensors, 313; contravariant, 183; covariant, 183,
340; definition of, 39; definition of, representation
theory, 54; differentiation, 318; displacement of,
in curved rectangle, 341f; and indices (upper
and lower), 73–74; lightlike, 731; Mother of All,
312–313; notation for, 182; parallel transport of,
101–102, 545f; projected on tangent plane, 102;
solution of isometric condition, 586; of spacetime
metrics, 181; on surface, parallel transport
of, 543; and tensors, interplay of, 53–54; and
transformations, 42; transporting via alternative
routes, 548

velocities: addition of, 160–161, 163, 171, 173e;
angular: around rotating black holes, 460, 471;
completion and promotion of, 218–219; Fermi-
Walker transported, 193e; Galilean law for addition
of, 19; low limit of Lorentz transformation, 169;
measurements in trains, 166; of objects in cars,
162–163; observed in Galileo transformation, 161;
rotating bodies, 570

velocity vector: of curves, 327; along geodesic, 330
vertices, in topology, 725–727
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Vicious and Nasty, dueling thinkers experiment, 7–9,
8f

vielbein: 1-form, 600; and differential forms, 594–
606; Kałuza-Klein metric, 690–691; as square roots
of metric, 596

VIRGO, gravitational wave detector, 577n
virial theorem, relativistic generalization, 255
visibility problem: in Kałuza-Klein theory, 673–674;

with large extra dimensions, 696–697
Voigt, W., Lorentz transformation, 169n
Volovik, G., solution of cosmological constant

paradox, 759n
volume element, generalized, determination for any

curved space, 75–76
Vulcan (predicted planet), 368

Walker, Arthur G. See Friedmann-Robertson-Walker
universes

“wanting the cake and eating it too” syndrome, 751
war, ancient art of, 103–104
warp function, 701
warped polar coordinates, 613e
wave equation: derivation of speed of sound, 235;

standard relativistic, 565
wave function, phase angle of, in Kałuza-Klein

theory, 678
wave guide, 694
wave vectors, by different observers, 185
wavelength, de Broglie, particles at Schwarzschild

radius, 442
waves: bulk, to brane, 703f; gravitational (see

gravitational waves); understanding of, 783–784
weak energy condition, 57
weak field, 564
weak field action, determination of, without

Riemannian geometry, 572
weak field approximation, for gravitational sources,

569–570
weak interaction, 526; CP violation in, 528, 683;

Fermi’s theory of, 765; of massive particles, 522;
ultraviolet completion of, 765

Weinberg, Steven: primeval nucleosynthesis, 528;
quantum gravity governed by attractive ultraviolet
fixed point, 773n; upper bound for cosmological
constant, 757; very weak version of anthropic
principle, 752; from weak field to Einstein gravity,
580

Weinberg-Witten theorem, 787
Weingarten, Julius, equation of, 106
wet dog, effect of inertia, 276
Weyl, Hermann: corrections to de Sitter metric, 289,

642; and Kałuza-Klein theory, 693–694; “Raum
und Zeit,” 175n; way to Schwarzschild solution,
374

Weyl approach, to Kerr black holes, 473
Weyl-Eddington terms, in effective field theory

approach, 710

Weyl equation, commutation relations, 192
Weyl tensor, properties of, 352e
Weyl transformation, introduction of, 94
“What is greater than God?” puzzle, 789n
What Time Is It over There? (film, Tsai), 514
Wheeler, John A.: Einstein’s late comments on space

and time, 787; geometrodynamics, 693; Hawking
radiation, 440; Kruskal-Szekeres coordinates,
434; mentorship of, 435; no-hair theorems, 482;
“Pushing forward the many fingers of Time,” 691;
spacetime picture, thinking in terms of, 28; tossed
ball test, 501; troubled by open or flat universe,
779; wormholes, 433

whiskey, ball of, in spaceship, 269–270
White, T. H. (Terence Hanbury), The Once and Future

King , 361n
Wick rotation, 192, 640n
Wigner, Eugene, The Unreasonable Effectiveness of

Mathematics in Physics, 446
Williams, George C., on Newton’s gravity, 31
Wilson, Ken, effective field theory approach, 709
Wilson, Robert, cosmic microwave background,

517
wimps, 522
world: mysteries of three copies of, 7; non-flatness

of, 66f
world indices, 608; conversion with vielbein, 603;

definition of, 594; versus Lorentz indices, 595
world sheets, created from strings, 216f
worldline action, 207–217
worldline length, for pointlike particle in baby string

theory, 215
worldlines: and causality in de Sitter spacetime,

639–640; and events, in special relativity, 196; of
individual charged particles, 715; of particles, 175,
177f, 211f; for problems in special relativity, 201

wormholes: and coordinate singularities, 91–92; in
Kruskal-Szekeres coordinates, 432–433

worst physics terms, top ten, 767
Wright, Edward, and Mercator map coordinate

transformation, 79e

Yang-Mills action, 681
Yang-Mills field: complexity of, 584n; strength of,

342n, 691–692, 694
Yang-Mills gauge potential, 682
Yang-Mills theory, 672; connection to Einstein

gravity, 782; emergence of, 688–689, 691–693; and
graviton interaction, 744n; higher dimensional,
680–682; supersymmetric, 621

Yau, Shing-Tung, Calabi-Yau manifolds, 695
Yukawa, Hideki, mass prediction of pion, 205

Zel’dovich, Y. B., vacuum energy, 749
zero-g environment, 266
zero point energy, 745–746; proofs of, 748
zero-sized objects, 717n



Collection of Formulas and Conventions

The following is a loosely organized list of formulas used in this text.

φ′(x′)= φ(x) (1)

dx′μ =
(
∂x′μ

∂xν

)
dxν ≡ Sμ

ν
(x)dxν (2)

∂ ′
μ

= ∂xν

∂x′μ ∂ν ≡ (S−1)
ν

μ
∂ν (3)

Sμ
ν
≡ ∂x′μ

∂xν
(4)

(S−1)
μ

ρ
≡ ∂xμ

∂x′ρ (5)

W ′μ(x′)= Sμ
ν
(x)Wν(x)= ∂x′μ

∂xν
Wν(x) (6)

W ′
ρ
(x′)=Wμ(x)(S

−1)μ
ρ
(x)=Wμ(x)

∂xμ

∂x′ρ (7)

ds2 = g′
ρσ
(x′)dx ′ρdx′σ = gμν(x)dx

μdxν = gμν(x)
∂xμ

∂x′ρ
∂xν

∂x′σ dx
′ρdx′σ (8)

g′
ρσ
(x′)= gμν(x)

∂xμ

∂x′ρ
∂xν

∂x′σ = gμν(x)(S
−1)

μ

ρ
(S−1)

ν

σ
(9)

g′μν(x′)= Sμ
ρ
Sν
σ
gρσ (x) (10)

Infinitesimal transformation x′μ = xμ + ξμ(x)

g′
ρσ
(x′)= gρσ (x)− gμσ∂ρξ

μ − gρν∂σξ
ν (11)
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Example of tensor transformation

T
′μ
λσ (x

′)= Sμ
ρ
T ρ
ην
(x)(S−1)

η

λ
(S−1)

ν

σ
(12)

Geodesic

d2Xρ

dl2
+ �ρ

μν
(X(l))

dXμ

dl

dXν

dl
= 0 (13)

Christoffel symbol

�ρ
μν

≡ 1
2g

ρλ(∂μgνλ + ∂νgμλ − ∂λgμν) (14)

�λ.μν ≡ 1
2 (∂μgνλ + ∂νgμλ − ∂λgμν) (15)

�ρ
μρ

= 1√
g
∂μ

√
g (16)

Christoffel symbols for polar coordinates

�r
θθ

= −r , �θ
rθ

= 1
r

(17)

Christoffel symbols for the sphere

�θ
ϕϕ

= − sin θ cos θ , �
ϕ
θϕ = cos θ

sin θ
(18)

�
′μ
λκ = Sμ

η
(S−1)

ω

λ
(S−1)

σ

κ
�η
ωσ

+ Sμ
η
(S−1)

ρ

λ
∂ρ(S

−1)
η

κ
(19)

Covariant derivatives

DλW
μ ≡ ∂λW

μ + �
μ
λνW

ν (20)

DλWμ = ∂λWμ − �σ
λμ
Wσ (21)

Covariant divergence of a tensor

DμT
μν = ∂μT

μν + �
μ
μλT

λν + �ν
μλ
T μλ = 1√−g ∂μ(

√−gT μν)+ �ν
μλ
T μλ (22)

Sphere S2

ds2 = dθ2 + sin2 θdϕ2 = dr2

1 − r2
+ r2dϕ2 (23)

Stereographic projection for S2

r = ρ

1 + ρ2

4

(24)

ds2 = 1(
1 + ρ2

4

)2 (dρ
2 + ρ2dϕ2) (25)

Iterative relation for sphere

ds2
d

= dθ2 + sin2 θds2
d−1 (26)
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Locally flat coordinate system

gτμ(x)= ητμ + Bτμ,λσx
λxσ + . . . , Bτμ,λσ = 1

2
∂λ∂σgτμ (27)

Rτρμν = Bτν ,μρ − Bρν ,μτ − Bτμ,νρ + Bρμ,ντ (28)

Riemann curvature tensor

Rσ
ρμν

= (∂μ�
σ
νρ

+ �σ
μκ
�κ

νρ
)− (∂ν�

σ
μρ

+ �σ
νκ
�κ

μρ
) (29)

Ricci tensor

Rμν = Rσ
μσν

= (∂σ�
σ
μν

+ �σ
κσ
�κ
μν
)− (∂ν�

σ
μσ

+ �σ
κν
�κ
μσ
) (30)

Bianchi identity

DνRρμσλ +DσRρμλν +DλRρμνσ = 0 (31)

Dμ(Rμν − 1
2gμνR)=DμEμν = 0 (32)

Einstein’s field equation and action

SEH = + 1
16πG

∫
d4x

√−gR (33)

δgσρ = −gσμδgμνgνρ (34)

δ
√−g = 1

2
√−ggμνδgμν (35)

Rμν − 1
2g

μνR = +8πGT μν (36)

Rμν = +8πG(T μν − 1
2g

μνT ) (37)

δSmatter = + 1
2

∫
d4x

√−g T μνδgμν (38)

Newton’s field equation

∇2�= 4πGρ (39)

g00 = −(1 + 2�), �= −GM

r
(40)

Static symmetric spacetime

ds2 = −A(r)dt2 + B(r)dr2 + r2dθ2 + r2 sin2 θdϕ2 (41)

�t
tr

= A′

2A
, �r

tt
= A′

2B
, �r

rr
= B ′

2B
, �r

θθ
= − r

B
, �r

ϕϕ
= − r sin2 θ

B
,

�θ
rθ

= 1
r

, �ϕ
rϕ

= 1
r

,

�θ
ϕϕ

= − sin θ cos θ , �
ϕ
θϕ = cot θ (42)
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Rtt = A′′

2B
+ A′

rB
− A′

4B

(
A′

A
+ B ′

B

)

Rrr = −A′′

2A
+ B ′

rB
+ A′

4A

(
A′

A
+ B ′

B

)

Rθθ = 1 − 1
B

− r

2B

(
A′

A
− B ′

B

)
(43)

Schwarzschild solution (rS = 2GM)

ds2 = −
(

1 − rS

r

)
dt2 + 1

1 − rS
r

dr2 + r2dθ2 + r2 sin2 θdϕ2

= −
(
r − rS

r

)
(dt̄ + dr)

(
dt̄ − r + rS

r − rS
dr

)
+ r2d�2 (44)

�t
tr

= rS

2r(r − rS)
, �r

tt
= rS

2r3
(r − rS), �r

rr
= − rS

2r(r − rS)
,

�r
θθ

= −(r − rS), �r
ϕϕ

= −(r − rS)sin2 θ ,

�θ
rθ

= 1
r

, �ϕ
rϕ

= 1
r

, �θ
ϕϕ

= − sin θ cos θ , �
ϕ
θϕ = cot θ (45)

Kruskal-Szekeres coordinates

ds2 = −4r3
S

r
e−r/rS(dV 2 − dU2)+ r2d�2 (46)

For r > rS,

V =
(
r

rS
− 1

)1/2

er/2rS sinh
(

t

2rS

)
, U =

(
r

rS
− 1

)1/2

er/2rS cosh
(

t

2rS

)
(47)

For r < rS,

V =
(

1 − r

rS

)1/2

er/2rS cosh
(

t

2rS

)
, U =

(
1 − r

rS

)1/2

er/2rS sinh
(

t

2rS

)
(48)

V 2 − U2 =
(

1 − r

rS

)
er/rS (49)

Tolman-Oppenheimer-Volkoff equation of relativistic stellar structure

dP

dr
= −GM(r)ρ(r)

r2

(
1 + P(r)

ρ(r)

) (
1 + 4πr3P(r)

M(r)

) (
1 − 2GM(r)

r

)−1

(50)

dM(r)

dr
= 4πr2ρ(r) (51)

Kerr black hole

ds2 = −
(

1 − rrS

ρ2

)
dt2 − 2rSar sin2 θ

ρ2
dtdϕ + ρ2



dr2 + ρ2dθ2

+
(
r2 + a2 + rSra

2 sin2 θ

ρ2

)
sin2 θdϕ2

(52)



Collection of Formulas and Conventions | 863

where

rS = 2M , a = J

M
= 2J

rS
, ρ2 = r2 + a2 cos2 θ , 
= r2 + a2 − rrS (53)

Reissner-Nordström black hole

ds2 = −
(

1 − 2M
r

+ Q2

r2

)
dt2 +

⎛
⎝ 1

1 − 2M
r

+ Q2

r2

⎞
⎠ dr2 + r2d�2 (54)

Perfect fluid

T μν = (ρ + P)UμUν + Pgμν (55)

Cosmology

ds2 = −dt2 + a(t)2

⎛
⎝ 1

1 − k r2

L2

dr2 + r2d�2

⎞
⎠ (56)

Ṙ2 + k = 8πG
3

ρR2 (57)

R̈

R
= −4πG

3
(ρ + 3P) (58)

ρ̇ + 3(ρ + P)
Ṙ

R
= 0 (59)

ρ ∝ 1
a3(1+w) (60)

H 2 =H 2
0

∑
n

�n, 0

aγn
=H 2

0

(
�m, 0

a3
+ �r , 0

a4
+��, 0 + �k , 0

a2

)
(61)

q = − R̈/R

Ṙ2/R2
= + 1

2

∑
j

(1 + 3wj)�j = 1
2 (2�r +�m − 2��) (62)

�̇j = +H�j

(
−3wj − 1 +

∑
i

(1 + 3wi)�i

)
(63)

For �r � 0,

�̇m =H�m(�m − 2�� − 1), �̇� =H��(�m − 2�� + 2) (64)

Weak field

gμν = ημν + hμν , Rμν = − 1
2
∂2hμν harmonic gauge (65)

Killing condition

ξσ ;ρ + ξρ;σ = 0 (66)

gμσ∂ρξ
μ + gρν∂σξ

ν + ξλ∂λgρσ = 0 (67)

Lξgρσ = 0 (68)
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Maximal symmetry

Rτρμν =K(gτμgρν − gτνgρμ)

Rρν = (D − 1)Kgρν

R =D(D − 1)K (69)

Differential forms and vielbein

gμν(x)= ηαβe
α
μ
(x)eβ

ν
(x) (70)

eα = eα
μ
dxμ (71)

Cartan’s first and second structural relations

de + ωe = 0 (72)

R = dω + ω2 (73)

Antisymmetry

ω0
b
= +ω0b = −ωb0 = ωb0 (74)

ωb
c
= +ωbc = −ωcb = −ωc

b
(75)

Conformally related metrics

g̃μν(x)=�2(x)gμν (76)

�̃
μ
νλ = �

μ
νλ + 1

�
(δμ
ν
∂λ�+ δ

μ
λ ∂ν�− gνλg

μρ∂ρ�) (77)

R̃μ
νλσ = Rμ

νλσ − (
δ
μ
λ δ

ρ
σ
δω
ν

− δμ
σ
δ
ρ
λδ

ω
ν
+gνσgμωδρλ − gνλg

μωδρ
σ

) Dρ∂ω�

�

+ (
2δμλ δ

ρ
σ
δω
ν

− 2gνλg
μωδρ

σ
+ 2gνσg

μωδ
ρ
λ − 2δμ

σ
δω
ν
δ
ρ
λ + gνλg

ρωδμ
σ

− gνσg
ρωδ

μ
λ

) (∂ρ�)(∂ω�)
�2

(78)

R̃νλ = Rνλ−
[
(d − 2)δρ

ν
δω
λ

+ gνλg
ρω
] Dρ∂ω�

�
+ [

2(d − 2)δρ
ν
δω
λ

− (d − 3)gνλg
ρω
] (∂ρ�)(∂ω�)

�2
(79)

R̃ = R

�2
−2(d − 1)gρω

Dρ∂ω�

�3
−(d − 1)(d − 4)gρω

(∂ρ�)(∂ω�)

�4
(80)

with Dρ∂ω�=DρDω�

Weyl tensor

Cμνρσ ≡ Rμνρσ + (d − 2)−1(gμσRρν + gνρRσμ − gμρRσν − gνσRρμ)

+ ((d − 1)(d − 2))−1(gμρgσν − gμσgρν)R (81)

Lie derivative

LVW
μ = [V , W ]μ ≡ V ν∂νW

μ −Wν∂νV
μ = V νDνW

μ −WνDνV
μ (82)

LVWμλ = V ν∂νWμλ +Wνλ∂μV
ν +Wμν∂λV

ν (83)
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Geodesic deviation

D2εμ

Dτ 2
= R

μ
σρλ

dxσ

dτ

dxρ

dτ
ελ (84)

−(X0)2 +
d−1∑
i=1

(Xi)2 + (Xd)2 = L2, de Sitter spacetime dSd (85)

(X0)2 −
d−1∑
i=1

(Xi)2 + (Xd)2 = L2, anti de Sitter spacetime AdSd (86)

Conventions and pesky signs

Physicists constantly trouble themselves with conventions and pesky ± signs. Of course
it is trivial, but somebody at some point had to decide that clocks go clockwise. Relativity
is particularly notorious for the different signs used by different authors. Evidently, each
convention has advantages and disadvantages, otherwise authors wouldn’t continue to
keep various conventions alive. So it is futile and useless to argue about the superiority of
one convention over another.

In this text, we use the space dominant Minkowski metric ημν = (− + ++), for which
p2 = −m2 for a particle of mass m. In contrast, for the time dominant Minkowski met-
ric ημν = (+ − −−), we would have p2 = m2. The space dominant convention is more
common in the literature on gravity and string theory, while the time dominant is more
common in particle theory and quantum field theory. The convention then extends to gμν.
To go from one convention to the other, simply flip the sign of gμν. When we flip the sign
of gμν, �λ

ρν
does not flip sign, hence Rλ

ρμν
and Rμν do not flip, but R does.

In flipping signatures, note that we flip both gμν and ηαβ in gμν = ηαβe
α
μ
eβ
ν

. Hence eα
μ

and eα do not flip, and so ωα
β

and Rα
β

do not flip signs, in agreement with the text. The
scalar curvature R, however, does flip.

Another key sign (called s2 below) is that in R
ρ
μσλ = +∂σ�ρμλ . . . . Beware that some

authors have a minus sign here. The convention used here is such that the sphere has
positive scalar curvature.

As another example, consider the weak field expansion gμν = ημν + hμν. In flipping
signatures, we flip gμν, ημν, and hence also hμν, but not hμ

ν
. Since g00 = −(1 + 2�),

the Newtonian potential is unchanged, as it should be. The relation Rμν = − 1
2∂

2hμν in
harmonic gauge is also unchanged.

We define some relevant signs here:

ημν = s1(− + ++)

R
ρ
μσλ = s2∂σ�

ρ
μλ + . . .

Rμλ = s3R
σ
μσλ

= s2s3∂σ�
σ
μλ

+ . . .

Rμν − 1
2g

μνR = +s2s38πGT μν
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For your convenience, the signs used in some textbooks are summarized and com-
pared in the table. For example, Weinberg has s1 = + and s2 = −, so his Rμν and R

are minus the Rμν and R used in this text. Thus, his Einstein-Hilbert action reads S =
− 1

16πG

∫
d4x

√−gR. In this text, S = + 1
16πG

∫
d4x

√−gR.

Sign conventions used in various textbooks

s1 s2 s3 s4 = s2s3

This text + + + +
Weinberg + − + −
MTW + + + +
Hartle + + + +
Cheng + + + +
Schutz + + + +
Carroll + + + +
HEL − + − −
d’Inverno − + + +
Note: MTW = Misner, Thorne, and Wheeler, HEL = Hobson,
Efstathiou, and Lasenby.
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