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Introduction

Intelligent Maintenance

Due to the evolution of technology, IT, and organizational approaches,

industrial equipment is becoming more and more complex and automated.

This complexity is a source of various incidents and faults that cause

considerable damage to items, the environment and people. Obviously, the

reliability of the equipment has an impact on the safety of items and people

and, when maintenance is neglected, it can lead to incidents involving

prohibitive costs, stemming from interruption of production, replacing items,

etc. A lack of maintenance and its impact on the reliability of the equipment

can lead to catastrophic consequences for the environment in cases of

contamination. This can entail evacuation operations and environmental

cleaning without, nevertheless, being able to completely remove the pollution

in the area.

In order to prevent risks, companies must use reliable equipment, which

should be well maintained by an efficient and well-organized maintenance

system. Correct maintenance extends the lifetime of the equipment while

contributing to better global performance. For this reason, maintenance has a

strategic role in industry, and today it represents an essential task within a

production system.

Sustainable process

An effective maintenance policy provides technical, economic and social

advantages. It is coherent with the idea of sustainable development and makes
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it possible, on the one hand, to increase the availability of industrial systems

and, on the other hand, to lengthen their lifecycle. From the point of view

of economics, it reduces the cost of failures and, as a result, increases

the profit of the product. The emergence of predictive maintenance, based

on fault prognostics and, more generally, on PHM (Prognostics and Health

Management) enables:

1) the anticipation of faults in systems’ critical elements;

2) the prevention of industrial risks (in nuclear plants, oil platforms, etc.);

3) and the safety of people and items to be maintained.

Predictive maintenance

Classical maintenance strategies such as corrective, preventive and

predictive maintenance are composed of business processes such as the

upkeep, repair, or monitoring of an equipment’s health state, its monitoring,

fault detection, failure diagnostics or fault prognostics. Although these

processes can be studied separately, it is wiser to integrate them into a PHM

cycle, which can be considered as an adaptation of the OSA-CBM

architecture. This cycle is described in part 1 of the book From Prognostics
and Health Systems Management to Predictive Maintenance 1: Monitoring
and Prognostics [GOU 16], starting from data acquisition, its processing by

means of different modules of the cycle (data processing, detection,

diagnostics, prognostics, decision and human machine interface (HMI)) and

finishing with the decision and its presentation via suitable HMI interfaces for

maintenance operators. This part is dedicated to the first modules of the cycle,

from data acquisition to prognostics, proposing different monitoring and

prognostic methods.

The purpose of the present book, which follows [GOU 16], is to tackle the

other phases of PHM. These include the traceability of data, information and

knowledge (first part of the book), and the ability to make decisions

accordingly (second part of the book).

Maintenance implementation requires qualifications and contributes to the

development of maintenance technicians. Our work, within a context of

quality policy advocating for the continuous improvement of practices, is in

line with a present challenge for a company, which is to provide the
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employees with the right information at the right moment, in order to allow

them to work in the best conditions, and therefore to improve their skills. To

maintain the items in a well-functioning state and to anticipate any failure, the

maintenance operators need to be able to access all kinds of support services

related to different maintenance strategies.

Companies should progress by transforming their activities through the

development of a learning culture, which is the only alternative for

maintaining a permanent state of innovation. Learning culture means sharing

knowledge and cooperative work among members of a company. As a result,

knowledge is considered to be the driving force of productivity and economic

growth. An emergence of the knowledge management problem is taking

place. Creating, capitalizing and sharing knowledge thus become a challenge

that any company faces.

In this book, we address the expert maintenance knowledge of a

maintenance company, the formalization and the manipulation of this

knowledge. The maintenance operations, combined with technical

advancements and new information and communication technology, have

entailed an evolution of maintenance systems towards systems that integrate

smart modules, which communicate and collaborate among each other. It is in

this industrial and scientific context that the works described in the first three

chapters are entirely situated. A knowledge management approach has been

implemented in order to analyze the maintenance processes used by a

maintenance company, with the goal of making an overview of support

systems to be developed, and of being able to make them available as

maintenance support services for the company’s employees.

Actually, timely access to information concerning a product or a piece of

equipment provides a better monitoring of the latter and allows us, for

example, in the case of dangerous products, a better handling of this product,

thus improving safety.

Information traceability

Information traceability is a vital element for ensuring the monitoring of

a product or equipment in time, during its whole lifecycle. Over the last few

years, Product Lifecycle Management (PLM) systems have been increasingly
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used to manage business operations and data generated by events and actions

that involve the product1.

Lifecycle refers to a set of phases that can be identified as the different

stages of life of a product, from its creation to dismantlement. It is composed

of three main phases:

– Beginning Of Life (BOL), which includes the design and the

manufacturing of the product.

– Middle Of Life (MOL), which is related to the distribution, the usage and

the maintenance operations.

– End Of Life (EOL), which concerns the moment when the product ends

its usage phase and is retrieved within the company in order to be recycled or

eliminated.

The PLM concept is much more than an issue of visualizing and

transforming data. It includes processes (the flow of data among the operators

and the flow of resources according to competency) and methods (practices

and techniques established along the process by using product data generated

during each life stage of the product). This translates into three fundamental

elements that constitute the basis of the PLM concept: ICT managing remote

information systems, the processes and the methodology, which evolve along

the lifecycle phases of a product (Figure I.1).

PLM services based on the Web, contrarily to PDM (Product Data

Management) systems, do not limit themselves to facilitating the exchange of

information regarding the product among heterogeneous product data

management systems [GUN 08], but they can be a platform of collaborative

development with the integration of data originated at scattered locations.

PLM widens the field of application of PDM systems in order to provide a

large company with more information concerning their product.

The availability of information during each phase of a product’s lifecycle

enables the sharing of information among the players of different cycle stages

1 CIMData: Product Lifecycle Management (PLM) Definition. Available online at: http://www.

cimdata.com/PLM/plm.htmls

http://www.cimdata.com/PLM/plm.htmls
http://www.cimdata.com/PLM/plm.htmls
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and the exploitation of this knowledge to improve the decisions to be made

with respect to the product.

Figure I.1. Elements of the PLM concept

During the management phase of the product’s middle of life, or MOL, a

lot of data is gathered on the field for monitoring and controlling the product’s

life state and for keeping a record. Information issued from the product’s

beginning of life, BOL, is necessary for analyzing the product’s structure and

for understanding its behavior.

Within the context of safety of items and people, standards and laws are

imposed in order to be able to trace the history of each product with the aim

of ensuring a reliable, safe and traceable supply, and enabling the recovery of

information required to understand post-mortem any anomalous event,

whichever its seriousness.

Decision and strategy of maintenance

The second part of the book focuses on the concept of decisions based on

expert knowledge of the system and on estimations provided by prognostics.

Indeed, sharing information regarding the product and its lifecycle process

is vital for ensuring its durability. Knowledge of the product’s history sheds

light on this management, and it can provide information regarding the

implemented maintenance policy, which has a non-negligible effect on the
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product’s operating state. Actually, an effective maintenance policy yields

technical, economic and social advantages:

– from a technical point of view, it allows an increase of the useful lifespan,

availability and durability performance of a product;

– from an economic point of view, it reduces the cost of failures and,

consequently, increases the profit of the product;

– finally, from a social point of view, it reduces to a minimum the number

of incidents and risky situations.

Today, technological evolution enables the equipment to communicate and

to provide information regarding the different ongoing events related to it.

Therefore, it is possible to trace its operation and malfunctioning during its

lifecycle. One of the key features of PLM systems is the availability of

information, which can be easily accessed by the operators related to the

product, and the intelligence integrated in their lifecycle. The idea is to

propose a set-up of a so-called intelligent equipment, as in McFarlane’s

definition, which facilitates access to embedded and remote information.

In this book, we address the product’s middle of life and, in particular, the

implemented maintenance policy, as well as its impact on the other lifecycle

phases. In fact, information issued from the MOL phase can be used:

– to evolve, within the BOL phase, the product’s design by improving the

product with respect to its usage, as in [STA 15];

– to define, within the MOL phase, the different kinds of decision (tactical,

operational or strategic) in the best way possible. According to the monitoring

problem, the decisions can be automatic or controlling decisions, decisions

of online scheduling of diagnostics, or those of re-configuration of tasks or

maintenance intervention planning;

– to improve the recycling procedure within the EOL phase of a component

according to its health state and to the maintenance policy implemented on

the product. Without information, decisions are made with respect to an

approximate inspection, which is insufficient if the safety of people is at

stake [PAR 04].

Chapter 1 illustrates a smart tracing system and its architecture connected

to a remote maintenance platform. An infrastructure of smart products is
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proposed, which enables the equipment to be connected and capable of

knowledge capitalization based on maintenance ontology.

Chapter 2 proposes a maintenance platform with a particular attention to

knowledge, in order to guarantee the traceability of information along its

lifecycle, and thus to be able to implement decision support systems.

An application of this intelligent traceability has been implemented on a ski

lift and its brief description is given in Chapter 3.

Chapter 4 illustrates a bibliographic overview of different decision-making

approaches in the context of PHM. The aspects of scalability of this decision

phase (temporal granularity and description degree) are illustrated as well. This

chapter is an opportunity to show the importance of decisions within the PHM

process.

A first implementation of decisions is the object of Chapter 5. It adds a

new strategic dimension to maintenance by means of the anticipation which it

enables. Therefore, we speak of predictive maintenance. This chapter

illustrates an example of optimization of predictive maintenance starting from

information that is issued from the prognostic phase of PHM. This

optimization consists of reducing the maintenance related costs via

appropriate planning.

Finally, Chapter 6 develops an original approach for involving production

resources with respect to demand. A further dimension is added to the planning

phase by varying the utilization conditions of each piece of equipment with

respect to its health state, with the aim of lengthening the production lifespan

of the whole system before maintenance.

The book concludes with a summary analysis and perspectives regarding

this emerging domain, since without traceability, knowledge and decision, any

prediction of the health state of a system cannot be exploited.
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Intelligent Traceability of Equipment

1.1. Introduction

Over the last few decades, the business awareness of companies has been

based on their intangible capital, the knowledge and expertise of their

employees. Many works have been dedicated to creating, sharing and

capitalizing on this expert knowledge.

However, just like expertise and practical skills, data also contributes to

the intangible capital of companies and it is carefully recorded. Banks

jealously guard their databases. Companies distrust the cloud due to security

issues related to data, which may fall into the wrong hands and be exploited

by competitors or harm data owners. In the age of connected objects, of easy

data harvesting and instantaneous remote access, it is evident that

well-exploited data represents a gold mine. Indeed, data is becoming a

resource which can be exploited by the economy. Data must be secured and

exploited and this is the basis of informed decision-making within a domain.

The process of knowledge capitalization corresponds to the notion of

knowledge management, which was defined by Davenport as the process of

collecting, distributing and effectively using knowledge [DAV 94], an

approach developed by [DUH 98]. Traceability is an essential element of the

capitalization of knowledge related to different stages of a product’s evolution

[BIS 08]. Several works have highlighted the notion of the growth of

products’ lifecycle management as one of knowledge management [AME 05]

and [STA 15]. In fact, the research consortium of the project FP6 IP 507 100
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PROMISE (PROduct lifecycle Management and Information tracking using

Smart Embedded systems) has remarked that traditional PLM systems lack

product knowledge and visibility in the two MOL and EOL phases, and has

recommended developing traceability and knowledge capitalization during

the lifecycle.

The aim of our work is to design and develop a solution for processing and

capitalizing knowledge related to industrial equipment throughout its lifecycle

and for making it available for operators to easily access this equipment in an

understandable way and at the required moment.

New PLM possibilities [RAN 11] are being introduced, thanks to

continuous developments in the domain of information systems regarding

radio-frequency identification (RFID), sensor network technology and, more

generally, in product embedded information devices (PEID). A new generation

of products called smart or intelligent products is being developed [KIR 11].

According to [YAN 09], it makes the information easily accessible for

designers, users or disassemblers of the product or equipment. However,

although these intelligent products are capable of gathering data during

their lifecycle, they lack the means of extracting information and acquiring

knowledge from this data. To reach this goal, we have tackled three challenges:

– Creation of a so-called intelligent product which allows users access

to reliable information capable of being read or manipulated, as well as an

available deduction related to the current health state of the product;

– Transformation of data in knowledge in a memory that stores all the

information concerning the product during its lifecycle and which can be

accessed from the product;

– Proposition for decision support services, online prognostics and

monitoring of the health state of equipment and support services for

maintenance and recycling of products. These services should be available via

an information system which can be easily accessed through the product.

We will address these challenges in three stages: (i) after having defined

what intelligent equipment is and having considered the work in this domain,

we will orient ourselves toward the data exchange infrastructure CL2M,

featuring RFID tags connected to an e-maintenance platform and equipped

with deduction tools. (ii) We have developed a knowledge capitalization
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process that stores the knowledge in an operating memory which is distributed

on the equipment and the e-maintenance platform. The knowledge is

formalized according to the maintenance ontology IMAMO_RFID and made

is available by means of an intelligent product infrastructure that ensures

knowledge sharing. (iii) We have developed web services that require the

availability of information regarding the state of (mal)functioning of the

equipment along its lifecycle. In this way, we propose different decision

support services:

– a support service for recycling components (products), in which data is

indispensable in order to provide such a service [SIM 00];

– a support service for the monitoring and prognostic processes of the

health state of the component;

– a support service for maintenance action planning.

As a result, this chapter will begin by outlining some state-of-the-art

intelligent products followed in section 1.3 by a presentation of a knowledge

capitalization process that monitors a component’s health state along its

lifecycle, and the proposition of an ontology called IMAMO_RFID, defined

for intelligent products. Section 1.4 will be dedicated to the infrastructure of

an intelligent product with the exchange of data and information and the

implementation of decision support services.

1.2. State-of-the-art intelligent products

1.2.1. Definition of intelligent products

In order to monitor a product during its MOL phase, this product has to be

intelligent in McFarlane’s sense. [MCF 03] defines the product via a physical

and informational representation stored in a database, which is associated

with an intelligence provided by a decision support agent. An intelligent

product is characterized by five main properties: possession of a unique

identify, a capability to communicate effectively with its environment, ability

to retain or store data about itself, and a potential to participating in or making

decisions relevant to its own destiny. Other definitions of intelligent products

exist [MEY 09, MCF 03] as listed [KIR 11] by Kiritsis, who synthesized

them by defining an intelligent product as a system containing sensing,

memory, data processing, reasoning and communication capabilities. He
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listed four intelligence levels ranging from a physical product without any

embedded system to products with product embedded information devices

(PIED).

1.2.2. Research on intelligent products

Research on intelligent products suggests integrating the product within an

infrastructure of processed data sharing and lifecycle management.

Ranasinghe et al. [RAN 11] have studied three Product Lifecycle Information

Management architectures (PLIM) for collecting and accessing product data,

both industrial and academic ones: (i) the EPC network architecture

(Electronic Product Code), (ii) the DIALOG system (Distributed Information

Architectures for collaborative logistics) and (iii) the WWAI network (World

Wide Article Information). These architectures show some weaknesses

regarding data synchronization when network disturbances occur. In other

words, without a network connection there is no access to databases and the

update cannot take place. Xiaoyu [YAN 09] remarks that the intelligent

product should have some kind of mechanism that could use the collected

lifecycle data to provide services. He suggests that an intelligent product

should contain at least three fundamental elements: (i) an intelligent data unit

(IDU), (ii) an access service and (iii) a communication infrastructure (CSI).

Z.Y. Wu et al. [WU 14] provide a software platform for lifecycle

knowledge management that allows systematic assistance for the

development of a product, in particular for new heating valves in nuclear

power plants. For this purpose, record data has been exploited in order to

support the design of the products (fault types, causes and recommendations

regarding the actions to be undertaken).

Kiritsis proposes a closed-loop infrastructure for product lifecycle

management, the CL2M (Closed-Loop Product Lifecycle Management),

which was developed during the European project PROMISE [KIR 11]. The

available technology (such as wireless sensors, telecommunications and

product identification technology) makes it possible to connect the intelligent

products with other information systems during an exchange request for

information regarding the lifecycle. This closed-loop architecture enables the

inclusion of the different users of the product in the information sharing,

ranging from the designer to the constructors and the maintenance operators.
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In this way, the designers are able to access real-time data of the product that

they have designed, they can observe its usage conditions during the MOL

phase and even have a look at recycling data (EOL phase). This is an

important step for improving the product design. Furthermore, it enables

collaborative tasks to be performed among the users, together with the

analysis of information gathered during the lifecycle in order to extract new

knowledge about the products. Moreover, Sylvain Kubler et al. [KUB 15]

propose associating the CL2M concept with a new kind of hardware capable

of communicating (for example, an RFID tag), which would make the

component capable of undergoing physical transformations without losing

either its ability to communicate or its stored data.

1.2.3. Infrastructure of an intelligent product and RFID

Recently, several different studies focusing on the usage of RFID

technology within the domain of lifecycle management have been undertaken

[KIR 03, MOT 11, MOT 13, WAN 10]. RFID technology uses radio waves

for the automatic collection of data and is used for storing and transmitting

information as well as identifying objects in several domains such as

healthcare, military logistics, transport, clothing, food, construction,

maintenance, and the logistics of the cold chain [ZAC 11, KAN 12].

Today, thanks to the existence of the RFID tag, intelligent products can

provide a network oriented to the creation both of databases and decision

support software services [RAN 11] 8 [MEY 09] 19 and [MCF 13].

Sylvain Kubler et al. [KUB 14] propose an information diffusion process in

order to select information that is relevant to the usage context of the product:

this information is stored directly on the product thanks to the RFID tag.

Sarac [SAR 10] underlines the fact that RFID improves both the

traceability and the visibility of the products and processes information with

accuracy. Mohamed et al. [MOT 11] use tags placed on the product to share

lifecycle information. They illustrate twelve lifecycle stages such as

production, installation and reuse/recycling/dismantlement. An information

model is proposed for interacting with the different users along the different

lifecycle phases and for providing them with access to data. The authors

highlight the limited memory of the tags. Wang et al. [WAN 10] propose a
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usage of RFID technology for supporting disassembly decisions for products

at their end of life, and they suggest a model for planning the dismantlement

and sequencing based on fuzzy logic.

Kiritsis et al. [KIR 03] propose using RFID technology to implement a

closed-loop system for PLM systems. The authors illustrate as well a concept

for the e-transformation of information into knowledge. However, a lack of

formal comprehension about the way of constructing lifecycle information still

persists.

These works inspire us to present a piece of intelligent equipment

implemented by a CL2M architecture that uses the RFID technology based on

an e-maintenance platform. Our contribution concerns the transformation of

data into knowledge and, in particular, the formalization of the knowledge

that will be capitalized by a distributed memory. This formalization will be

obtained from a knowledge capitalization process based on the maintenance

ontology adapted for the lifecycle, which we shall call IMAMO_RFID.

1.3. Knowledge management approach

1.3.1. Knowledge capitalization process

In order to ensure information traceability during the whole lifecycle of

the equipment, we have used a knowledge capitalization approach developed

by our team [RAS 08]. It is based on the four phases of the Grundstein

capitalization cycle [GRU 96, GRU 00]: the detection of strategic

information, preservation of knowledge, its capitalization and its actualization

(see Figure 1.1).

1) The detection of strategic information is done via an analysis of

maintenance strategies developed in a company by observing the maintenance

actions performed at each event. The events may be caused by failures,

diagnostic tasks or systematic maintenance planning. This may concern the

monitoring of the equipment’s operating state, detection of the fault mode and

prognostics of its state.

2) Knowledge preservation is achieved through the construction of an

operational memory, which can be done via three existing approaches:

bottom-up (collection of verbal data), top-down (model-driven) or mixed

approach. We have chosen the top-down approach to formalize knowledge via
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a maintenance ontology based on IMAMO [NEZ 06], which we have adapted

to the intelligent product IMAMO_RFID.

3) Knowledge exploitation is implemented thanks to the infrastructure

of the intelligent product and to an e-maintenance platform hosting the

IMAMO_RFID ontology which ensures the exchange and diffusion of

knowledge.

4) The actualization of knowledge is done via decision support services

provided to the equipment’s users. These web services can be of different

kinds, depending on the information and knowledge data, its traceability,

exploitation and maintenance support services.

Figure 1.1. Knowledge capitalization cycle

We dedicate section 1.3.2 to a survey of the ontologies developed in PLM

in order to propose an IMAMO_RFID in this work.

1.3.2. PLM ontologies

Ontology-based approaches are being developed to facilitate the

communication and the exchange of information among various systems.

This reasoning allows an inductive way of solving problems.
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Several works regarding PLM ontologies exist. An ontology related to

assembly (OAM - Open Assembly Model) is proposed in [FIO 07] and it is

integrated into the models of existing products. In the BOL phase, design

support ontologies have been developed in a unique environment [SUH 08]

and in a distributed design environment [ZHA 08], as well as for the purposes

of sharing product knowledge on a network [LEE 07].

An ontology dedicated to engineers working with knowledge management

in design processes and implemented in a comprehensible way is proposed

in [BRA 08]. Borsato proposes an ontology that is related to the data of the

product and its process in terms of durability through semantic links.

Matsokis and Kiritsis [MAT 10] transformed the semantic object model of

the European project Promise (PROMISE_SOM (Semantic Object Model))

into an ontology by adding temporal events. Karray proposed a first version of

a maintenance ontology [KAR 10] and Matsokitis and Karray combined their

ontologies to propose the SMAC (Semantic Maintenance and Lifecycle)

model [MAT 10], which takes into account maintenance and different PLM

phases. Karray created the IMAMO ontology by bringing together the models

of MIMOSA CRIS (reference of the maintenance domain), the SMAC model

and PROMISE-SMO. IMAMO incorporates the concepts of the SMAC

model, which are related to the equipment’s lifecycle in such a way as to take

into account: (1) the lifetime, starting from the design phase; (2) the life

environment, by monitoring all the events and the health states of the

equipment; (3) the end of life, by calculating indicators that support the

decisions of reuse and disassembly.

1.3.3. Proposition of IMAMO_RFID

In this work, we propose an ontology called IMAMO-RFID. We have

created an evolution of the IMAMO ontology [KAR 10] with the purpose of

managing the RFID tags associated with an equipment and their content. We

have integrated the concept of distributed memory and determined the

minimal necessary knowledge that has to be stored in an e-maintenance

platform in order to guarantee the monitoring of an equipment during its

whole lifecycle.
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This package of memory card management, the “LifeRecordManagement”

package, ensures the monitoring of the equipment during its whole exploitation

phase.

The memory card management model ensures the monitoring of the

equipment during its whole exploitation phase. It creates indicators that

represent the equipment’s health state. These indicators, mainly statistical

ones, are calculated from the stored record of data regarding the various

operating state modes of the equipment, the sensor measurements and of

different interventions performed on the equipment.

This ontology associates a memory card with each component or

piece of equipment by using the LifeRecord management system, “the

LifeRecordManagement package”. This package is directly linked to five other

packages:

– InterventionManagement: a package that allows the usage and storage of

data originating in maintenance interventions, both from systematic preventive

and corrective interventions and/or palliative ones;

– MaintenanceStrategy: a package that includes technical indicators

calculated via the function “Generate indicator” and the function “Validate

control” which updates the counter indicator of the control operations that are

performed or generated by prognostic functions;

– EquipmentManagement: a package that stores the equipment’s

characteristics;

– MonitoringManagement: a package that allows the acquisition of data

from sensors. It stores the collected data in a technical database created

according to the notion of measure. This information model will be

implemented in an intelligent product;

– RFIDManagement: management of the RFID tag, a new package in

IMAMO. It enables reading and writing onto the RFID memory by using an

RFID reader.

The class diagram in Figure 1.2 illustrates the objects of the various

packages that define the links with the different classes associated with the

distributed memory, which is composed of the LifeRecord and the RFID tag.

We will describe only those classes that are involved in the management of

this distributed memory.
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Figure 1.2. Class diagram of the memory concept
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The latter comprises a set of operating and exploitation modes which are

related to intervals of time defined by a start and an end date. Data regarding the

equipment’s usage has to be put in relation with the operation and exploitation

modes, in order to guarantee the monitoring of the equipment during its whole

lifecycle.

The operating mode (OperatingMode class in Figure 1.2) is related to

the location of the component. It is quite important to be able to localize

the component at any moment. We take into consideration the component’s

location, which is directly related to its operating state. For example, in the

case of a component, the exploitation mode can be in stock (the location

during a temporary suspension) or in repair in a maintenance workshop. Three

exploitation modes are defined:

– Operational: in this case, besides the production duration, it is necessary

to indicate the location of the equipment in order to localize its operating place;

– Stock: the component is in a normal state, ready to be used, although it is

temporarily unused. It is placed in a storage location. For example, ski cabins

are not used all the time. They can be parked in an appropriate place when they

are not used;

– Repair: the component can be located in a workshop during the repair.

The operating mode of the equipment can be defined as the ability to

perform a required function in particular conditions at a given moment or

during an interval of time, supposing that the required exterior results are

provided. The different possible modes are normal, degraded and failure

states.

LifeRecord is a virtual memory that records data about the equipment’s

lifecycle. This data is synthetic, being composed of maintenance indicators

calculated from the data record. These indicators, mainly statistical ones, may

include (i) a reliability coefficient such as the MTBF (Mean Time Between

Failures), which represents the average duration of correct operations between

consecutive failures, (ii) a maintainability coefficient, MTTR (Mean Time To

Repair), which is the average repair duration, (iii) the availability rate of the

equipment, which is the ratio between the actual time of availability and the

required time, and (iv) a health state indicator modeled by prognostic methods.
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The variation over time of these indicators constitutes a characterization of the

operating state of the component or equipment.

The RFID tag contains the minimal memory used for data storage

associated with the component or equipment during its whole lifecycle. The

equipment has several operating and exploitation modes during the MOL

phase of its lifecycle. An operating mode involves several components, which

are involved in the operating mode during a certain amount of time. A

malfunction is associated with each fault or degradation. For a given

malfunction, several interventions are possible.

1.4. Intelligent product: data flow and distributed memory

1.4.1. Architecture of an intelligent product

The proposed infrastructure is a closed-loop model of product lifecycle

management (CL2M), shown in Figure 1.3.

Figure 1.3. CL2M infrastructure of an intelligent product
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To each critical component of a monitored equipment, we associate:

– an RFID tag with a unique identifier containing enough memory to record

essential data and to communicate between the component and the PLM

system;

– an additional feature consisting in the identification and communication

capabilities that are now added to the product characteristics, thanks to RFID

and NFC (near-field communication) technology;

– access via a mobile agent (mobile RFID reader) to the PLM system and

to the memory, which we shall call the “vital card”;

– a PLM system that controls the knowledge capitalization.

1.4.2. Stream of data and information in the MOL phase

There exist three types of data transfer related to the various kinds of

maintenance:

1) Online data collection that allows the acquisition of maintenance data

via a remote platform and makes predictive maintenance possible. In fact,

conditional maintenance planning is done depending on the wear state, which

is controlled by the sensors, and the predictive maintenance monitors the

variation of the sensors’ indicators via experimental measurements. The

monitoring service is provided by the platform;

2) Transmission of data related to systematic maintenance, which

schedules periodic interventions as a function of time or consumed units, and

corrective maintenance, which focuses on an effective repair or replacement

of the component or equipment after the failure occurs. Different kinds of

services can be provided by the platform;

3) Information consultation and/or updates by the operator requesting

information about the component’s health. The platform offers a decision

support service regarding recycling or maintenance actions according to the

component’s health state.
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1.4.3. Distributed memory: RFID tag and LIFE RECORD

In order to gather knowledge about the health state of a component or piece

of equipment during its lifecycle and to make this knowledge available, we

propose to create a corporate memory of a company specialized in maintenance

services. This memory is constructed by means of a knowledge capitalization

process and it evolves during the lifecycle.

The corporate memory consists of two distributed memories:

– an RFID tag, which can be read with a mobile reader thanks to the NFC

technology; we can thus read locally the tag identifier and the content of its

memory, a “short term memory”. The equipment is capable of providing a

minimum of information about its health state: for example, if the information

regarding its maintenance plan is updated, then the dates of its last and next

maintenance are automatically updated. This memory is equivalent to a health

record for this equipment;

– LIFE RECORD: we can access this remote memory, located in an e-

maintenance platform, at a later step. Thus, it is possible to obtain all the

information concerning the equipment model, its failures, effective usage time,

degradation and past interventions.

1.4.4. Stream of information during the MOL phase

Data transmission during the whole lifecycle of the equipment is

implemented by means of an e-maintenance platform. Information is

collected, capitalized and stored in a memory. Figure 1.4 describes the data

flow between the equipment and the platform. It corresponds to loop number

1 in Figure 1.3, “data collection online”, whereas Figure 1.5 corresponds to

loop number 2, “transfer of systematic maintenance data”. The transmission

of the intervention data corresponds to the data flow between the tag reader

and the platform, which is related to control operations (systematic

maintenance) and corrective maintenance.

Figure 1.4 shows that the sensor data originating on the component or

equipment is collected (data acquisition, DAS) at regular intervals of time by

means of events.
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Figure 1.4. Data flow during the transfer of intervention data
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The /Event command prompts the data acquisition system, DAS, to collect

data and to send it to the platform. A web service sends a message to the

platform with one or more measurements. This message is recorded in the

technical database. The data is stored in the RFID tag that contains the most

recent data and in the LifeRecord in order to keep a record of all the

measurements. From this record, the function “Generate indicators”

calculates the indicators and updates the health state according to the lifecycle

data. As long as data is collected, the equipment is in a normal

“OperatingMode” and it is working.

This data stream is used to detect the occurrence of a fault and to generate

an event concerning the control operations to be performed during the

systematic maintenance. In the case of a failure, the platform creates a

“failure mode” in cooperation with the associated perturbation. In the case of

a control operation, the platform validates the control of the equipment via the

function “validateControl” of the “TechnicalIndicators”, then the function

“GenerateIndicator()” of the “Class TechnicalIndicators” is called.

This approach allows the creation and transmission of indicators to the

RFID tag, as represented in Figure 1.5. When an equipment failure is detected

on the site, the maintenance operator uses an RFID reader to scan the tag that

is associated with the faulty component, thus retrieving the maintenance data

stored in the component, so that this data is eventually modified and updated.

This data is used to describe the health state of the equipment, as well as its

operation and its (mal)functioning modes. After the maintenance operator has

updated the data within the tag, the mobile reader sends its content to the

platform via a web service. The characteristics of the equipment are identified

by means of the tag identifier.

The operational mode changes to “Failure” mode. This entails the creation

of a “WorkRequest”, validated by a maintenance supervisor who plans a

“WorkOrder” that contains all the tasks to be performed during an

intervention on this equipment. The timestamped data recovered via the web

service will be inserted into the “LifeRecord”. From the content of the

“LifeRecord”, the function “GenerateIndicators” of the Maintenance Strategy

package of the “TechnicalIndicator” class calculates a set of indicators that

are associated with this equipment, such as the number of failures, its MTBF,

TBF and the type of the most recent maintenance (control, systematic upkeep

or corrective) and sends them to the “RFIDTag”.
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Figure 1.5. Data stream during the transmission of intervention data
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1.5. Support service for component’s recycling

The usage of the IMAMO_RFID ontology provides us with an access to

all the information about the critical component or equipment. The indicators

of correct operation rate calculation and of the number of failures undergone

by this item are updated at each data collection interval. Thanks to these

indicators, which synthesize the component’s behavior and health state, it is

possible to make decisions regarding the possibility of recycling the

component.

We will identify these states by using specific scores, which are obtained

from the calculation of the indicators and are updated during the whole

lifecycle of the component. These indicators are stored in the memory of the

RFID tag and they can be accessed without a prior connection to the platform.

If the number of failures N is greater than a default threshold Nthreshold,

the equipment is scrapped. In the opposite case, we consider the score defined

as score = MTBF ∗ TM .

The interval of time measurement is defined by S ± ΔS, where S =
threshold of MTBF, ΔS = measurement error, and MTBF = Mean time

between failures.

If (score < S ±ΔS), then the equipment can be reused.

For the systematic maintenance, we calculate:

TM =
number of performed systematic maintenance interventions

number of planned systematic maintenance interventions
.

In this way, we take into account the maintenance performed on this

equipment. If this rate is not good enough, MTBF can be penalized by

multiplying it by the maintenance ratio. This may lead to a rejection of reuse

for this equipment.

If the obtained score value is within the interval, LifeRecord has to be

consulted.

On the other hand, if the score is slightly lower than the limit value, the

component can be connected to the platform and its complete record can be

consulted in order to access the characteristics of the component, on which

basis the expert can make decisions.
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1.5.1. Implementation of an intelligent equipment and decision
support service

In order to create an intelligent system, we have implemented a closed-loop

model architecture shown in Figure 1.4. The techniques employed, various

components and some new intelligent services are described. These services

allow knowledge capitalization during the MOL phase of the lifecycle and the

calculation of indicators for decision support regarding the possible reuse of

the component.

Component:

1) The e-maintenance platform provides some maintenance applications. It

is based on J2EE specifications. The client is a light browser enabling access

to the platform. The application server is a JBOSS server. The persistence

level uses PostgreSQL as an object-relational database management system

(ORDBMS);

2) The RFID tag has a unique identifier and contains a small memory

which allows the storage of vital information and communication between the

component and the PLM system;

3) The RFID reader: a smartphone or a tablet with applications developed

under Android. It allows, on the one hand, reading and writing in the RFID tag

by using the NFC technology and, on the other hand, communication with the

platform via web services;

4) Web service: the communication is performed by means of the web

service technology, which is a widely used technology for implementing

service-oriented architectures (SOA). These architectures simplify the

interoperability and the integration of applications on the platform;

5) NFC protocol: in order to ensure the equipment’s monitoring, the

RFID (Radio Frequency IDentification) tag technology is used and the NFC

technology facilitates the reading and writing of information in the RFID tag.

1.6. Conclusion

Sharing information about a product and its lifecycle processes is vital to

ensure its durability. The new possibilities of PLM afforded by technological

advancements enable the creation of a new generation of intelligent products,
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which is the subject of this chapter. We proposed an approach that makes a

product intelligent; in other words, we integrated the product in CL2M, a

closed-loop infrastructure for data exchange equipped with an RFID tag.

To endow this equipment with the capabilities to manage the knowledge

that concerns it, we developed a knowledge capitalization process that records

the knowledge concerning the whole product’s lifecycle in a corporate

memory. This memory is distributed in two memories, one embedded on the

product in an RFID tag (capable of identifying the product) and another that

stores remotely all the events undergone by the product.

The implemented CL2M architecture allows the connection of the product

to a remote maintenance platform that ensures the product’s health state

monitoring. This monitoring is performed using three types of data transfer:

(i) online data collection via an acquisition system, with a transfer to the

platform via a web service, (ii) local reading of the RFID tag embedded on

the product via the NFC technology (its usage facilitates reading and writing

within the RFID tag) and (iii) the acquisition of data related to user

interventions by means of a questionnaire on a mobile RFID reader, which

thus sends information to the tag and to the platform where the information is

capitalized.

The knowledge capitalization approach, which we proposed and

implemented, is based on the construction of IMAMO-RFID, an ontology

from the maintenance domain adapted for intelligent equipment. This

ontology stems from different ontologies within this domain, combining the

concepts of maintenance, lifecycle and distributed corporate memories. This

model associated with the intelligent equipment offers different services such

as (i) making the product’s lifecycle information available at any moment, (ii)

allowing the decision of whether the product can be recycled or not according

to a calculation of indicators performed on reliable information and (iii)

proposing decision support systems based on constructed indicators such as

MTBF or RUL and the information available thanks to the integration of the

detection, diagnostic and prognostic applications in the maintenance platform.

This intelligent product can provide different services by means of its

CL2M architecture, ranging from local or remote information retrieval to
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support services for traditional maintenance, such as systematic, corrective

and conditional maintenance, and for predictive maintenance, which

anticipates the failures. Some examples of these services will be described in

Chapter 3.



2

A Knowledge-oriented
Maintenance Platform

2.1. Introduction

In Chapter 1, we defined the architecture of so-called intelligent

equipment, which consists of a distributed s-maintenance platform. This

platform ensures the monitoring and maintenance of equipment in order to

guarantee its reliability and right operating state. Correct maintenance allows

the lengthening of the equipment’s lifetime while contributing to a better

global performance.

Maintenance’s role is strategic in the industrial environment, and it arouses

a lot of interest even today. Maintenance functions have been evolving

continuously within companies. Many generations of maintenance systems

have appeared, ranging from local systems to integrated computerized

maintenance management systems (CMMS) initially and current systems that

integrate intelligent modules that communicate with each other. Thanks to

new information and communication technologies (NICT), and the

emergence of web technology and the Internet network, the implementation

of maintenance and control services can be done automatically, remotely, and

with the support of different computerized systems set up within companies.

At the same time, the CMMS tools have evolved to propose potential

connections with other applications or systems, as for example, the “readers

of measured values”, mobile devices, external catalogs, computer-aided

design (CAD) tools or websites.

From Prognostics and Health Systems Management to Predictive Maintenance 2: 
Knowledge, Traceability and Decision, First Edition. 
Brigitte Chebel-Morello, Jean-Marc Nicod and Christophe Varnier. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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The new CMMS generation present on the market can be thought of as

decision support systems with the goal of controlling the maintenance and

intervention costs, optimization of human and technical resources (such as the

spare parts stock and tools), description of technical installations and related

documentation, and measurements of the efficiency of maintenance activities

(maintenance indicators).

Furthermore, several projects have addressed the concerns of integrating

all these applications into a distributed information system while ensuring the

interoperability among these applications. These maintenance systems propose

to their users (maintenance operators) a computerized management of a set of

basic activities of the maintenance process (such as intervention, planning,

diagnostics, etc.).

The variety and the nature of different existing information systems and

their evolution within the domain of industrial maintenance spurred us to

review various generations of maintenance support systems [CHE 10]. The

most sophisticated generation provides e-maintenance platforms, which have

been developed mostly in large projects.

These maintenance systems propose to their users (maintenance operators)

a computerized management of a set of basic activities of the maintenance

process, such as the diagnostics, and provide a decision support for a set of

predefined indicators about the equipment, interventions and related costs.

Hence emerges the concept of services offered via maintenance architectures,

which can vary from autonomous systems to integrated systems, where

cooperation and collaboration are essential for any operation [RAS 07]. Some

technologies, such as web services, have definitely contributed to this

approach [BAN 04]. Remote maintenance and e-maintenance form concepts

that are developed and applied in industry [MUL 08].

The e-maintenance concept, widely used in industry, has been addressed

in a large number of works and has gathered a multitude of definitions,

summarized in the CIM data Product Lifecycle Management (PLM)

definition1, starting from which we will define the concept of e-maintenance

in section 1.3. However, the services proposed by e-maintenance systems are

defined during the design phase, in compliance with the user’s needs at a

1 http://www.cimdata.com/PLM/plm.html
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given moment; therefore, they are not flexible enough to adapt to the user’s

demands and to evolve in accordance with new constraints and contexts. The

challenge we give ourselves is to evolve the e-maintenance systems into

systems that change following the users’ requirements. The foreseen path

consists of defining a knowledge-oriented system that would allow the

definition of services according to demands. In fact, most current research on

information systems is focused on knowledge [ERM 00], and this leads the

researchers from various domains (i) to solve different types of problems, in

particular those of semantic interoperability, (ii) to develop applications from

a composition of web services using knowledge models as a support and (iii)

to implement self-maintenance methods [LAB 06]. The latter applications of

self-maintenance use rule-based reasoning methods or fuzzy inductive

reasoning coupled with reasoning methods based on the situation.

Consequently, we propose a new generation of maintenance information

system by taking into account not only the current evolution in the ICT

domain regarding business-oriented information systems, but also

knowledge-oriented systems. We propose the first version of a knowledge-

oriented system that uses web services. The heart of this system is a

knowledge management system capable of inferring new knowledge and

providing maintenance services on demand.

In section 2.2, we will focus on existing maintenance platforms and their

software architecture depending on the kind of information exchanged and

on the complexity of relations that link the various systems and applications

that are integrated in these architectures. A classification of these architectures

will be presented. An extrapolation of the features of e-maintenance systems

will allow the definition of the characteristics of a new platform generation,

a knowledge-oriented platform that we shall call an s-maintenance platform,

where s stands for semantic.

In order to contextualize the s-maintenance concept with respect to that of

e-maintenance, we carried out an overview of the state-of-the-art works about

e-maintenance. As it turned out, there exists a wide range of definitions of e-

maintenance, and the concept of s-maintenance is pioneering. We set out to

give a general definition of e-maintenance basing ourselves on the works in

this domain, and to frame the concept of s-maintenance with respect to this

definition.
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2.2. Software architectures of maintenance support systems

A brief reminder is required in order to be able to classify the software

architectures with respect to the type of information exchanged and to the

relations between systems.

2.2.1. Exchanged data, information, knowledge and competence

Many definitions of knowledge management exist; they have been reviewed

by Rasovska in Chapter 2 of her thesis. The definition proposed by Jarboe

[JAR 01] explains that organizations gather and communicate “resources,

perspectives, and possibilities, implied and explicit, data, information,

knowledge, and even competence”. This definition leads us to characterize

the different kinds of “information” or “knowledge” depending on their

complexity, mutual relation, and comprehension level. Figure 2.2. illustrates

the relation between these different entities. We adopted the definitions

according to several references in this domain, such as [JAR 01, PRA 97].

– Data is a basic element that can be used to represent some information,

such as a measurement or a characteristic, in a database. Two kinds of data are

distinguished: raw data and structured data, which can be transferred remotely

via an information system. An example of data might be a temperature

= 100◦C.

– Information is interpreted data that represents a real fact. It is the data

that has been completed by a description indicating its context: what kind of

measure is this, when, where and by whom it was taken, etc. In our example,

it is the temperature of an engine’s water measured in a piece of equipment.

– Knowledge is information that has been integrated, refined and

synthesized with respect to a specific context. It is information that has been

interpreted and contextualized, that has a sense and a meaning (why and how

this measurement was taken, and the whole context of this measurement, often

organized for exploitation needs). In our example, the water temperature of

100 ◦C in an engine is too high and is a symptom of a failure.

– Competence, in this case, is organized knowledge that can be exploited

directly by the users in order to execute a certain task or action. It represents

“the knowledge within the action”, in other words, a solution to a problem
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which, following this action, is validated or actualized for an experience

feedback.

Figure 2.1. Classification of different types of information

2.2.2. Relations between information systems

The integration of applications into the same information system and

the emergence of new management policies (RCM, MCO, etc.) related to

the expansion of the Internet to companies were the precursors of so-called

“intelligent maintenance”. These information systems, initially independent

and autonomous, started to communicate, or even to cooperate by exchanging

and sharing information. More recently, ICTs have allowed the migration of

these different autonomous systems to an integrated system, where cooperation

and collaboration are essential for any operation (see Figure 2.2).

– The autonomy relation represents a framework in which a system has

the maximum management capabilities and is independent from all the other

systems and elements. There is neither data exchange nor communication

between this system and the others, and it has to be self-sufficient with regard

to the required information.

– The communication relation is a link between two or more systems that

allows data transfers or exchanges. The information transmitted during the

communication is not limited to alphanumerical characters anymore, and it

also includes images, sound and video sequences. Within a certain context, the

term communication is often used as a synonym of telecommunication.
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– The cooperation relation represents cooperative work that is carried out

by dividing tasks, in which each participant is responsible for a part of the

problem’s solution. In our context, we refer mostly to technological and

industrial cooperation; therefore, a cooperation agreement is made between

independent systems that commit to executing common projects to produce

maintenance services.

– The collaboration relation represents a strategic partnership that combines

competences, suppliers or various products. Collaboration implies a mutual

commitment of the participants to a coordinated effort of solving a problem

together, by sharing resources, information and competences in order to better

adapt the organizations to their environment.

Figure 2.2. Relations between systems

2.2.3. Characterization of maintenance systems

We classified the different architectures of existing maintenance

information systems according to two criteria: the evolution of the

employed information and the relations between the systems that are

integrated in the architecture. Four general architectures were identified:

maintenance, telemaintenance, e-maintenance and s-maintenance (Figure 2.3).

The maintenance architectures are arranged on an exponential function

curve since the collaboration between these systems is achieved sooner than

the shared competence level. The volume of information that is handled

automatically is represented by the area of each system’s block, and it increases
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with the collaboration intensity and the complexity of information shared

[RAS 07].

– A maintenance system consists of a single information system, which

is located at the production site and is used on the maintenance site. This is

an autonomous system, without any exchange of data with other systems. In

comparison with the classification of companies, it corresponds to a traditional

company; therefore, we are referring to a traditional information system

architecture.

– A telemaintenance system comprises at least two information systems:

a transmitter and a receiver of data and information which communicate

remotely. According to the AFNOR’s definition, telemaintenance is “the

maintenance of an item performed without physical access to the item by the

staff”. We talk of distributed architecture based on the notion of distance that

allows data transfer via a radio, a telephone line, or through a local network.

– Thanks to the Internet’s expansion, telemaintenance systems are

moving towards the concept of e-maintenance. An e-maintenance system is

implemented on a cooperative distributed platform that integrates various

maintenance systems and applications. This platform requires the support of

the Internet global network (hence the term e-maintenance), and the web

technology makes it possible to exchange, share and distribute data and

information, as well as to create knowledge together. In this case, the concept

of intelligent maintenance can be exploited, and proactive and cooperative

maintenance strategies are implemented.

– By means of an extrapolation along the two axes in Figure 2.3, we

propose an architecture that improves the performance of e-maintenance

in terms of communication and data exchange between the systems, and

that allows the semantics of data processed by the applications to be taken

into account: s-maintenance (where “s” means semantics). We propose a

new concept based on web semantics [RAS 06], which was formalized in

[KAR 12].

Consequently, the new generation of information systems for maintenance

has to take into account not only the current evolution in the ITC domain

regarding information systems oriented towards business and users, but also

the evolution in the field of knowledge, which will be the cornerstone of a

new generation of maintenance systems. For this purpose, we propose new

knowledge-oriented systems with an exploitation of web services, based on
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ontologic engineering and the expertise of the maintenance domain

[KAR 10, CHE 10]. These systems are able to generate new knowledge and

provide services on demand [TOG 08].

Figure 2.3. Intensity of relation

2.3. Projects and works on e-maintenance

Numerous works and large projects have focused on e-maintenance

systems. Several e-maintenance platforms have been developed over the past

few years, and many are still operational today; they can be divided into two

large categories: the platforms from international or European projects led by

industrial and university partners, and academic platforms created by

academia and groups of researchers in [KAR 12]. We briefly review the main

projects that produced e-maintenance platforms. According to the four criteria

that are specific to s-maintenance, we will evaluate the operational platforms

together with the platforms defined by the six most famous academic projects

in the context of a university or a research center. Most of the platforms

proposed remain at a theoretical proposition stage without a concrete

implementation, with the exception of IMS-WATCHDOG in D2BTM. We

analyzed the six most well-known platforms according to four features

specific to s-maintenance with respect to existing e-maintenance platforms.
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2.3.1. Projects and works on e-maintenance

Seven important projects on e-maintenance are reviewed: the international

project MIMOSA, the European projects ESPRIT-REMAFEX, PROTEUS,

PROMISE, SAMMART and DYNAMITE, and finally, a Swedish

e-maintenance project 247_NFFP4.

For the MIMOSA project, a functional architecture OSA/CBM (Open

System Architecture for Condition-Based Maintenance) was developed

[THU 01a]. It is dedicated to the development of conditional or predictive

maintenance strategies [THU 01a].

Within the project ESPRIT-REMAFEX, Yu et al. propose an

e-maintenance system called the “Problem-Oriented Multi-Agent based

E-Service System (POMAESS)”. This multi-agent system offers a decision

support system by means of case-based reasoning [YU 03]. Each expert agent

is a problem-solving agent dedicated to the diagnostics with specific local,

non-shared knowledge, localized at various sites. Within the European project

PROTEUS, the first e-maintenance was developed that provides web services

[BAN 04]. One of the purposes of PROTEUS is to integrate all the tools and

applications on the subject of maintenance, and it is one of the rare projects

that covers the entire maintenance process.

The goal of the European project PROMISE (PROduct lifecycle

Management and Information tracking using Smart Embedded systems) is the

management of the product lifecycle (PLC) with the integration of new

technologies, such as RFID and computer networks. The PROMISE’s

architecture was designed to fulfill the specific requirements of PLM (product

lifecycle management), to allow the recovery and updating of information

about the products during their whole lifecycle, and to transform it into

exploitable knowledge [KIR 04].

The European project SMMART (System for Mobile Maintenance and

Accessible in Real Time) aims to provide tags with new intelligent technology.

This system monitors the usage and maintenance data during the lifecycle of

the critical parts. The architecture proposed in this project is based on the RFID

technology, used for the traceability of logistic units and for the management

of the configuration engine, which serves to recover the configuration data

of critical components. Following the continuity of European projects, the
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DYNAMITE (Dynamic Decisions in Maintenance) project had the objective

of creating an infrastructure for mobile monitoring technologies and creating

new intelligent devices or instruments. In this context, the maintenance

platform DynaWeb was developed [ARN 07], and it designates an architecture

based on web services and communication software that exploit the advanced

maintenance functions related to the diagnostics, prognostics and CBM.

Within the framework of a research program (NFFP4) supported by “Saab

Aerotech” and the Swedish National Air Force Agency, “Wing F21”, the

project eMM (eMaintenance Management Framework) proposed a software

work environment for e-maintenance management based on a service-oriented

architecture [CAN 09]. This software environment comprises:

1) an e-Maintenance Management Model (eMMM);

2) an e-Maintenance Platform (eMP).

2.3.2. Overview of state-of-the-art e-maintenance systems and
platforms

An e-maintenance platform is characterized mainly by the cooperation and

the integration of intelligent software support components, whereas an

s-maintenance platform is based on the collaboration and integration of

autonomous functions (self-learning and self-management of the maintenance

process).

In order to implement an s-maintenance platform, we desire to review

the e-maintenance platforms with features that may be sought after in an s-

maintenance platform. The common key points in these two kinds of platforms

are the integration, the synchronization and the consideration of the entire

maintenance process. The state-of-the-art overview that we present about

existing e-maintenance platforms, whether these be theoretical or industrial

systems, is performed according to four characteristics directly related to the

definition of the s-maintenance concept, which are:

1) the type of maintenance addressed (CBM, diagnostics, entire process,

etc.);

2) the interoperability among the platform’s applications;
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3) the dynamic services and knowledge engineering at the heart of the

platform;

4) the degree of integration (mono-system, synchronous system,

cooperation, collaboration).

2.3.3. Project platforms

We observed that PROTEUS is one of the rare projects that presents a

complete vision of the maintenance process. However, with regard to

knowledge exploitation, despite the integration of knowledge engineering into

the diagnostic application, knowledge is not exploited at the heart of the

platform (i.e. this platform is not a knowledge-oriented system), and this does

not allow the platform to offer dynamic services.

The PROMISE platform is based on a so-called semantic data model. In

fact, the purpose of this model is to provide generic comprehension to the

final users of this platform. Nevertheless, this model is not exploited by the

applications and services that are integrated in the platform, and

consequently, it does not provide any reasoning (a fundamental aspect

required in an s-maintenance platform).

2.3.4. Academic platforms

WSDF: Hung et al. proposed in [HUN 03] an e-diagnostics framework

based on web services (WSDF: Web-Services-based e-Diagnostics

framework) aiming to improve diagnostic systems remotely by providing the

function of diagnostic information’s integration automatically by means of

the Internet.

IIEMD: Cao et al. [CAO 08] developed a cooperative and distributed

intelligent maintenance platform IIEMD (Integrated Intelligent Equipment

Maintenance Decision) which offers a set of decision support tools for various

maintenance activities. IIEMD is a hybrid system, supported by an ontology

in which two types of reasoning coexist, RBR (rule-based reasoning) and

CBR (case-based reasoning). The IIEMD platform is one of the closest to an

s-maintenance platform. It is based on knowledge engineering (ontology and

inference engine) and emphasizes the cooperative aspect. However, it does

not focus on dynamic and autonomous services. Furthermore, IIEMD handles

only decision support services for repair, which is an approach oriented
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towards the final user (the technician), and which does not develop the notion

of services generated at request for the various kinds of platform users (all the

maintenance operators). EMAST (E-Maintenance Architecture to Support

onsite Teams): Ribiero et al. propose an e-maintenance architecture to

support maintenance teams on the production site [RIB 08]. Each module of

this architecture performs self-monitoring and self-diagnostics, hence its

capability of using the related information for generating alarms of predictive

maintenance in addition to the time-based alarms of preventive maintenance.

The whole documentation (technical manuals, plans, repair or maintenance

procedures, etc.) is stored locally, at the site. The EMAST platform is based

on an ontology of the domain and exploits knowledge engineering. However,

this platform’s architecture does not provide any details about the usage of

this ontology nor about its exploitation with respect to semantic

interoperability and to the services offered to the users.

The D2BTM platform implements intelligent services of self-learning

dedicated to prognostics, which affects the robustness of predictive

maintenance and not the self-learning of the platform and the experience

feedback of all the maintenance applications. The user will not benefit from

this feedback in the platform’s on-demand services.

The agent-oriented platform (AOP) has some aspects in common with

s-maintenance in terms of semantic interoperability and knowledge

engineering exploitation. However, this exploitation of knowledge is

performed locally via an agent, and it is not shared or reused by all the

maintenance support applications that are integrated in the platform.

Furthermore, the agents do not provide any dynamic service.

Overall, our study allows us to observe that there are only three platforms

(PROMISE, AOP and IIEMD) among all those analyzed that deal with the

problem of semantic interoperability, whereas the others are limited to a

syntactic level of interoperability. Concerning the complete maintenance

process, only the PROTEUS platform and the web platform address it in its

entirety. The eMM and IIEMD platforms address a set of activities of this

process to a certain extent, without focusing on a single activity or a single

maintenance strategy as most other platforms do (for example, MIMOSA,

DYNAMITE, WSDF). Regarding knowledge exploitation, we observe that

various platforms take an advantage of knowledge and ontological

engineering as in the case of EMAST, PROTEUS and IIEMD. However, in
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most cases, this exploitation is restricted to a part of maintenance: prognostics

in the case of DEBTM, repair support in IIEMD, or an exploitation limited to

a small number of applications as in the case of PROTEUS, in which the

knowledge database is a module external to the platform’s kernel. We also

observe that the majority of these platforms are split between cooperation and

collaboration. The MIMOSA, PROTEUS, D2BTM, POMAESS and AOPs

are classified as cooperative platforms. On the other hand, platforms

described as collaborative are PROMISE, DYNAMITE, WEB platform,

EMAST and IIEMD.

2.3.5. Summary

In light of the above-mentioned platforms, we see that a difference exists

in terms of features and goals of each platform. Furthermore, the majority of

these platforms have some characteristics that are not consistent with the

s-maintenance criteria. Nonetheless, we note that some of these

characteristics are taken into consideration in a partial way. Our analysis leads

us to identify the platforms that are the closest to an s-maintenance platform,

such as the IIEMD platform and AOP, which focus on sharing and

exploitation of knowledge. In IIEMD, knowledge is managed within the

framework of a knowledge-based system that contains an ontological basis

and an inference engine used by decision support services in the platform.

Concerning AOP, knowledge is shared by agents, and each agent contains its

own decision module that handles this knowledge. These two platforms are

conceptual and have not been implemented in practice. Their outlines are

given, although the details of their operation are omitted. Therefore, it should

be noted that no operational s-maintenance architecture exists.

2.4. Maintenance, e-maintenance, s-maintenance

2.4.1. General

Before delving into the definitions of maintenance, e-maintenance and

s-maintenance, we would like to clarify an important point. We reckon that

the concept of e-maintenance is an abstract concept that should have a more

general conceptual definition than the definition of a platform representing a

model that implements this abstract concept. Furthermore, the platform’s

definition should also be independent from the specific technology used in a
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platform, since there might be different platforms that implement the

e-maintenance platform model by means of different technologies.

The standards NF X 60–010 and 60 011 define maintenance as a set of

actions that allow an asset to retain or recover its functions in a particular state

or to be capable of providing a specific service. Thus, the AFNOR standard

defines maintenance as “a set of all technical, administrative and management

actions during the lifecycle of an asset aimed to retain or recover it into a state

in which it can execute a required function”.

2.4.2. E-maintenance

The term e-maintenance emerged at the beginning of the 2000s; it is

described by a multitude of definitions that depend on the authors’ point of

view, expertise and on the targeted goal. In [MUL 08], Muller et al. identify

various points of view such as maintenance strategies, maintenance plans,

maintenance type and maintenance support.

Some consider e-maintenance as a maintenance strategy in which the tasks

are managed electronically by means of real-time data obtained by means of

digital and Internet technologies [TSA 02]. Others consider that

e-maintenance is a maintenance plan that exploits CBM approaches

[TSA 95], proactive maintenance, collaborative maintenance, remote

maintenance (telemaintenance) and support services, real-time access to

information, and integration of the production with maintenance [UCA 05].

Another point of view presented by Koc and Lee [KOC 01] identifies an

e-maintenance system as a predictive maintenance system that predicts only

the monitoring and anticipating functions such as the prognostics. However,

Zhang et al. [ZHA 03] consider e-maintenance as a combination of web

services technology and agents technology providing a means of executing

intelligent and cooperative functions for an industrial automation system.

Crespo Marquez and Gupta [MAR 06] define e-maintenance as an

environment of distributed artificial intelligence that comprises the

capabilities of information processing, decision support, communication

tools, and collaboration between the maintenance process and expert systems.

From a corporate point of view, and in particular from an

intervention-oriented point of view, e-maintenance is defined by Karim

[KAR 08] as the part of a maintenance support system that enables the
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synchronization between the maintenance process and the operation and

modification processes in order to reach corporate objectives required by the

stakeholders, thanks to optimized information management over time

[WIL 08], while providing information services. From a broader point of

view, Moore and Starr [MOO 06] define e-maintenance as an information

network of asset management, which integrates and synchronizes various

maintenance and reliability applications in a single system, and provides

information about the assets where and when it is necessary.

Consequently, we can note that each definition offers a partial view of

maintenance (for example, predictive maintenance) and does not make any

distinction regarding the concept of platform. A lot of confusion arises when

a concept is linked to a set of rather specific technologies such as web

services or intelligent agents.

2.4.3. Definitions of the e-maintenance concept

Faced with such a variety of definitions and points of view, a general

definition is strongly recommended. A definition that includes the global

process of maintenance would be a wise choice. For this purpose, in

[MUL 08], Muller et al. take into account the different points of view and

define e-maintenance as a component of the e-manufacturing concept. The

latter is described as a maintenance support that comprises the resources,

services and necessary management allowing a proactive execution of the

decision process. This support includes not only e-technologies (ICT, web,

wireless networks, Infotronic technologies), but also e-maintenance activities

(operations or processes) such as e-monitoring, e-diagnostics, e-prognostics,

etc.

For a more conceptual definition, we prefer the presentation of

e-maintenance by Lee et al., a major cornerstone in modern industries that

takes into account the success of integrating e-manufacturing and e-business

[KOC 05].

As long as e-maintenance draws inspiration from the e-business, it can be

considered as one of its derived concepts. Indeed, we agree with the fact that

the definition of e-maintenance should draw from the definition of electronic

trade while respecting the definition of maintenance. For this purpose, we refer

to the definitions both of maintenance and e-business.
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Figure 2.4. Inclusion of e-maintenance within
e-manufacturing and e-business

Several definitions of e-business are illustrated in the literature; we will

adopt the one presented by Jones et al., who define e-business as the

realization of activities that lead to an exchange of value, in which the parts

interact electronically using network or telecommunication technologies

[JON 00]. On the basis of this definition and that of maintenance, we define

e-maintenance as follows:

Definition of the e-maintenance concept:

“E-maintenance is the realization of maintenance, in which all the actions

or technical, administrative and management activities interact and cooperate

via electronic means, using network or telecommunication technologies.”

This definition takes into account the global process of maintenance by

including the different points of view of maintenance and the different domains

of expertise (i.e. technical, administrative and management). We underline the

electronic interaction and the cooperation between the actions and the activities

performed by different actors (human or software) involved in this process.



A Knowledge-oriented Maintenance Platform 41

Definition of the e-maintenance platform:

We define the e-maintenance platform starting from the concept of

maintenance. Since the latter focuses on the cooperative aspect, we thus have

to take in consideration the definition of a cooperation platform.

Cooperation platforms are defined as a software work environment

consisting of different software components, thanks to which these platforms

act together to achieve global properties. Saint-Voirin affirms that a

cooperative platform can be seen as a set of groupware with specific

functions, all gathered into an integrated platform [SAI 06].

As a result, we define an e-maintenance platform as:

“An e-maintenance platform is a cooperation platform that offers a set of
intelligent maintenance support software components (integrated and / or
remote applications) which will allow the maintenance actors to communicate
and work together to perform a complete maintenance process.”

Within this definition, we have highlighted the aspects of integration and

distribution that characterize the majority of existing platforms and are

imposed by the physical word and in industry. We have focused on the

software components that present the different applications of diagnostics,

prognostics, monitoring, etc., on the communication and interoperability

between these elements.

2.4.4. S-maintenance

2.4.4.1. General

In order to improve the performance of maintenance processes provided

by e-maintenance in terms of communication, exchange of knowledge and

data among the systems, and knowledge exploitation, we propose the concept

of s-maintenance. This concept defines a semantically compatible information

environment. In this context, it provides a solution for the implementation of

semantic interoperability at the level of a maintenance platform. Therefore,

the main goal of this concept is to meet the needs of evolution and the

demands of maintenance actors, which are the actual users of these systems.

The main necessity can be summarized as “Having the right information in

the right format for the right people in order to do the right things at the right
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time” [LEE 08]. This new generation of maintenance system will be based on

knowledge engineering systems.

Definition of the s-maintenance concept:

S-maintenance is the realization of maintenance based on an expert

knowledge of the domain, in which the systems manage this knowledge and

share the semantics in a network, bringing out new generations of services

and offering services on demand by means of adaptive and autonomous

functions.

When we talk about knowledge management, this includes the

formalization, acquisition, reasoning, maintenance, exploitation, reuse of

knowledge and re-supply [MEN 00]. By on-demand service, we mean the

result generated by interactions between the components with a system and a

user, or by activities that are internal to the system, in order to respond to an

unforeseen demand expressed by a user, which cannot be solved by the

services that already exist in this system. The service provides a support to the

user in order to execute the actions that need to be carried out.

2.4.5. S-maintenance platform

Collaboration is one of the fundamental features of s-maintenance since

all the systems in a network act together towards the same goal by using and

sharing common resources such as the expert knowledge of the domain, in this

case. As a result, to define an s-maintenance platform, we need to consider the

definition of a collaborative platform.

In fact, collaborative platforms are unified electronic platforms that

facilitate synchronous and asynchronous communication by means of a

variety of devices. The collaborative platforms offer a set of software

components and services allowing the users to find each other, together with

the information that they need, and to be capable of communicating and

working together to reach common business goals. Hence our definition of an

s-maintenance system actualizing the concept of s-maintenance:

Definition of an s-maintenance platform:

“An s-maintenance platform is a collaborative and distributed system

based on knowledge engineering that provides dynamic and on-demand
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services according to the necessities of its users by means of functions of

self-learning and self-management of the maintenance process.”

Figure 2.5. S-maintenance platform

Therefore, this system, based on knowledge engineering, exploits the

semantics of the expert knowledge of the maintenance domain, and as a

result, it has the possibility of evolving its degree of intelligence. To achieve

this, we will use a knowledge-based system as the platform’s kernel, which

allows the inference of new knowledge and its exploitation starting from the

maintenance domain ontology.

It should be noted as well that by dynamic services, we mean those

upgradeable services that are capable of adapting their behavior to the

different contexts of usage.

As a result, this concept does not stop at the provision of services that are

integrated in the platform, as in the case of e-maintenance, but it goes further

by offering services that adapt dynamically to the demands of the users and

by ensuring self-X services without human intervention in the first phase,

although they require an expert validation.

Relation between e-maintenance and s-maintenance platforms: The

s-maintenance concept is based on the definition of e-maintenance, which is

more general and depends, in turn, on the definition of maintenance.

However, we impose some constraints that allow us to direct the realization of

this concept towards the knowledge. Figure 2.4 illustrates this concept.
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Figure 2.6. Functionality inclusion in maintenance,
e-maintenance and s-maintenance platforms

Figure 2.6 shows the inclusive relation between maintenance,

e-maintenance and s-maintenance platforms, and it characterizes each system

starting from the definition of the related concept. It can be noted that the

s-maintenance platform includes specific functions that may not be present in

an e-maintenance platform. Moreover, the services provided by a

maintenance or e-maintenance system are always included in an

s-maintenance platform, as shown in Figure 2.6. These maintenance

information systems offer functionality with an added value for the

maintenance operators (end users). We address the problem of knowledge

reuse and new indicators consultation within the context of a system of

traditional maintenance, e-maintenance and s-maintenance.

2.5. Conclusion

In this chapter, we broached the characterization of new intelligent

systems for maintenance. After quick research on the evolution of

maintenance support systems, we ranked the different architectures of the

information systems according to two criteria: the evolution of the exploited

information and the relation among the systems that are integrated in these

architectures. We defined the architecture of the s-maintenance domain,
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which is an extrapolation of existing e-maintenance architectures. We

characterized these architectures and gave an overview of the state-of-the-art

works regarding the existing e-maintenance architectures with respect to the

specific features of s-maintenance, namely the type of maintenance

considered, semantic interoperability, collaboration among the modules, type

of offered services (dynamic or static) and knowledge engineering.

Generally, despite the difference in terms of services that are provided by

e-maintenance systems, the weaknesses that we found are related to the

intelligent reuse and exploitation of expert knowledge from this domain, to

the standardization of this knowledge, and to the low degree of

synchronization, which in most cases is limited to communication and seldom

includes cooperation.

Furthermore, this overview on the latest e-maintenance architectures leads

to the observation that the majority of the works in this domain do not make a

distinction between the concept, the platform and the usage of e-maintenance

technologies. Therefore, we proposed two definitions, one regarding the

concept of e-maintenance, characterized by the cooperative and electronic

interaction among the different actions of the global maintenance process, and

the other concerning the platform model, characterized by the integration of

intelligent computerized modules that perform the activities of the

maintenance process.

We defined the concept of s-maintenance as the realization of maintenance

based on the sharing of expert knowledge from this domain, which provides

adaptive and autonomous services. This concept is implemented through an

s-maintenance platform, which formalizes this knowledge and shares it

among the various applications that are integrated in the system, which

ensures technical and semantic interoperability. Being based on a knowledge

management system with an inference engine that supports different kinds of

reasoning, the platform has to provide on-demand services dynamically (for

the indicators defined by the user) and ensure different kinds of self-X

functionality. Among the latter, we can find the self-management of the

platform’s processes and self-learning related to the interactions of the users

with the platform in order to ensure the dynamic feature of its knowledge

database. After having answered the question about the characterization of

new intelligent systems for maintenance, we developed, in our work, a first

e-maintenance platform, called GamaFrame (Global Asset MAintenance
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FRAMEwork), which then evolved into the knowledge-oriented

SMAC-Platform (an s-maintenance platform), developed within the

cross-border project SMAC supported by the program Interreg IV

France-Suisse between the University of Franche-Comté and the Ecole

Polytechnique Fédérale de Lausanne, and two SMEs: one, TORNOS, located

in Jura, Switzerland, and the other, EM@SYSTEC, in Besançon.



3

Intelligent Traceability Application

3.1. Introduction

One of the challenges of the present study is making a product or equipment

intelligent by combining it with a memory that traces its health state during its

lifecycle by means of a product lifecycle management (PLM) system.

Thanks to NICTs, it is quite easy to implement intelligent products (smart

components) that include a technical memory relative to their history, which

can be easily consulted by various operators who are in charge of using,

maintaining, repairing and making this product evolve. It should be noted that

the usage of this information and/or knowledge arouses new challenges

regarding decision support applications. These applications in the context of

PLM lead to an improvement of the efficiency of the asset’s maintenance

operations, to an upgrade of its functions during a new design phase, and to

the reuse of the item with a more precise knowledge of its behavior during its

utilization phase. The prognostics of its state and/or the possible prediction of

a malfunction may be integrated with a related proactive maintenance and an

update or a downgrade, in other words, by performing predictive

maintenance.

The purpose of our study is to monitor a subsystem and the health state of

some of its components as well as their maintenance. In order to ensure the

information’s traceability, the most important part of information, which will

be capitalized during the whole lifecycle of the component, will be assessed

by means of indicators of proper functioning, a statistical calculation or a

prognostic application. When we talk about prognostics, we refer to the
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modeling of the failures of the monitored component and to the algorithm that

evaluates the remaining useful life (RUL). These indicators will be the basis

of decision support services, in particular for detecting undesirable events,

capitalizing knowledge, returning information, for the prognostics of the

RUL, and for recycling support systems. In this chapter, we will develop

some decision support services.

3.2. Description of the equipment to be maintained

Our application domain is a ski lift, which is composed of two stations,

one uphill and the other downhill, a transport cable for the transport of the

cabins, and a tensioning system. In two out of three cases, the gearbox system

is located at the driving station. The length of the ski lift’s cable tends to vary

with time, depending on the load and temperature. In order to maintain the

cable at a more or less stable tension at the driving pulley, it is necessary to

be able to stretch and retract the cable. In our case, the whole engine system,

including the driving pulley, is mounted on a carriage that can move along

the air line’s direction, i.e. forward or backward. The tension is maintained by

means of one or two hydraulic jacks.

Figure 3.1. Transport cable of a ski lift

Our goal is to follow the health state of the hydraulic jacks during their

whole lifecycle and to be able to access, at any moment, all the reliable

information gathered about the component, its health state, and the

maintenance performed on the component.
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Another aim is to estimate the remaining useful life before the component’s

failure (RUL). In this application, we show the capability of our system to

follow and capitalize knowledge about the lifecycle of the hydraulic jacks and

a carrier. After describing the system, we will study the entire lifecycle of the

hydraulic jacks. By means of data simulation regarding the jacks’ operation,

we will be able to estimate the health state of the component and its RUL. This

estimation will be the basis of a service capable of assessing the possibility of

recycling the component.

3.3. Infrastructure of intelligent equipment

Figure 3.2. Intelligent equipment

Data, information and knowledge concerning the component are gathered

in a distributed memory. As in a human body, three types of memory are

integrated in the equipment with different read and write mechanisms:

– an instantaneous memory, an RFID tag (RFID: radio-frequency infrared

detection), that stores the most recent information about the current health state
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of the equipment, its treatment, and the next maintenance intervention. This

memory can be read locally through a mobile RFID reader (Samsung Galaxy

Nexus III, which uses NFC (near-field communication)) available to the

users.

– a buffer memory, MOBILE memory, included in the mobile reader,

allowing the temporary storage of information when the connection with the

maintenance platform is unavailable. It enables the synchronization between

the two RFID memories and the technical memory.

– a long-term memory (lifecycle memory or technical memory) that lists

all the problems and treatments undergone by the equipment and allows the

tracing of the record of the component/system. This memory can be accessed

only via the platform, which requires a means of remote communication with

the mobile RFID reader.

3.4. The s-maintenance platform

The platform includes various functionalities that ensure the monitoring of

a piece of equipment during its whole lifecycle, notably the equipment

management, interventions management, monitoring management, RFID tag

management, resources management, and memory card management.

In order to deliver these functionalities, the GamaFrame (Global Asset

Maintenance Framework) platform uses a database that records the models,

equipment and tags, and another technical database for monitoring

management and storage of sensors’ measurements. Each critical item of

equipment and/or subset is combined with an RFID tag, which identifies the

equipment in a unique way and provides a minimal memory. An RFID reader

allows the consultation of information about this equipment, being connected

to the remote e-maintenance platform by means of web services. Thanks to an

RFID reader (fixed or mobile), the information contained within the tag can

be read and eventually integrated with more complete information about this

equipment, which can be accessed from the platform. Furthermore, this

reader can send maintenance information so that a user may fill in a form

available in the reader (mobile phone).
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Figure 3.3. Example of GamaFrame usage

Figure 3.4. Communication with GamaFrame platform
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The platform has a close relation with two distinct databases: the first one,

included in the GamaFrame platform, is used for the storage of maintenance

data and knowledge capitalization regarding a given piece of equipment,

while the second one, a technical database, is dedicated to the storage of the

sensors’ measurements over a limited period of time. These measurements are

recovered by fixed RFID tag readers during the vehicle’s transition in the

station, and they are sent via web services to the platform according to the

transmitting frequency of the reader.

3.5. Web services

3.5.1. Communication between the platform and the mobile reader

The mobile reader, equipped with applications developed under the

Android operating system, allows, on the one hand, the reading and writing of

the RFID tag by means of NFC technology, and, on the other hand, the

communication with the web services of GamaFrame platform.

Figure 3.5. Communication between platform and mobile reader

The mobile reader includes a specifically developed application called

GamaMobile, which implements the functions illustrated in the following

sequence diagram; the functions are the platform connection control, the

control of a user’s access rights for accessing GamaMobile, the read and/or

write within the tag, and finally, the usage of the web service for

communicating between GamaMobile and GamaFrame.

For each component, an RFID tag is associated with an identifier and a

memory. The identifiers are stored and processed in the e-maintenance

platform. The RFID tag is read by means of NFS technology. Thus, a user can
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read the content of its memory and update it once the maintenance operations

concerning this component have been performed. When the RFID reader is

synchronized with the e-maintenance platform, the LifeRecord is updated via

a web service.

Figure 3.6. Diagram of a general sequence of the mobile reader

Figure 3.7. Communication between RFID reader and platform

3.5.2. Web service: fixed RFID antenna-platform

The read and write operations on RFID tags are performed via a fixed

antenna. This antenna has the role of concentrating the data retrieved by the

sensors. The interface between this fixed RFID antenna and the platform is

implemented by means of the web services developed by us. Figure 3.8

illustrates this communication.
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Figure 3.8. Communication between the platform
and the RFID antenna

A web service is implemented within the GamaFrame server, accessible via

the fixed RFID reader by means of a URL with configurable parameters, which

is required for transferring data between the fixed simulator of RFID tags and

the platform. Sensor data sent by the fixed simulator to the platform are stored

in a technical database at the frequency of the vehicles passing at the station.

3.6. Service for monitoring diagnostic and prognostic

We monitored the cabins’ temperature and weight, which vary on ski lifts

and affect the load on the cable, and the number of trips carried out by the

cabins, which allows the calculation of the exact operating time of the

hydraulic jacks. Sensor data is gathered in real time at each cycle of ski

cabins by using a data acquisition system. A technical database stores the data

measured by the sensors at the facility. The sensor data represents the

measurements obtained during an equipment’s exploitation phase.

The various indicators relative to these cabins can be listed (the cabin’s

weight, the cumulative weight of the cabins on the traction cable, the load of

this cable over a week, over a season, etc.) and followed over time to obtain the

station’s evolution, for instance by identifying the periods of intense, medium

circulation, or off-peak periods).

By setting minimum and maximum thresholds that limit, for example, the

weight of the cabins, it is possible to generate alarms that could warn when

the situation is abnormal, and there is a need to launch fault diagnostics

[CHE 13] or fault prognostics applications. We developed a prognostic
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method based on the failure experience in different systems of transport via

cable, which we formalized in the form of a health indicator. This indicator

provides an evolution trend of the degradation, treated with reasoning based

on each case. When new sensor data relative to a cable transport system had

arrived, we identified a similar health indicator and the present health state of

the monitored jack by means of a similarity measure over sliding windows.

This current health state thus allowed us to estimate the RUL of these

systems [KHE 16].

Figure 3.9. Diagram of the sequences of technical
measurements’ insertion

3.7. Knowledge capitalization service

We seek to capitalize the knowledge about this intelligent equipment over a

given period of time within the components’ lifecycle. The online monitoring

implemented for the equipment is not sufficient alone to provide a general view

of the proper functioning of a component. In fact, we should take into account

the maintenance performed on the equipment and its actual operating time,

without considering the idle operation due to line stops, failures, interventions,

etc.
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Figure 3.10. Sensor data monitoring

Therefore, we will simulate the behavior of this equipment by simulating

the maintenance data, in order to then exploit the gathered data to calculate or

estimate indicators which are the basis of our decision-making. For example,

in the case of a possible recycling, an RUL estimation for this component, or

a decision regarding the maintenance strategy to be developed. We will base

ourselves on this mode (reference Figure 1.2) and on the platform ontology

(reference in Figure 3.11) to ensure the knowledge capitalization in the

platform and its effect on the LifeRecord and RFID tag memories.
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Figure 3.11. LifeRecord memory model

3.7.1. Data model

The data model that will be simulated will be based on the model described

in Figure 3.11, with the following content of TagRFID:

– nb failure: number of failures;

– nbperiodBF: number of periods of proper functioning;

– TBF: time of proper functioning, which represents the number of

days during which the equipment has been working normally (knowing that

an equipment can function in a degraded state, although this will not be

considered by this application);

– nbdaytrouble: number of days during which the equipment is out of order;

– MTBF: average time of proper functioning.

The long-term memory that capitalizes all the information about the

maintenance and the health state of the component is located in the LifeRecord,

which is a summary of the equipment’s behavior. It is composed of:

– the starting date (first run);

– the current functioning mode;

– the date of the last maintenance;



58 From Prognostics and Health Systems Management to Predictive Maintenance 2

– the type of the last maintenance;

– the failures and the relative period of time;

– the periods of proper functioning;

– the operational modes;

– the exploitation modes.

In this simulation of knowledge capitalization in the LifeRecord, special

attention will be paid to the content of the various memories.

3.7.2. Simulation of the life record

The simulation of life record data is performed by a MySql application,

MyAdmin. First of all, it is necessary to define the items to be monitored.

Then, each of them has to be associated with an RFID tag. The RFID tag is

a table containing a set of indicators that characterize the health state of the

equipment, as illustrated in Figure 3.12.

Figure 3.12. Content of the RFID tag

These indicators are initialized to zero and are updated during the

equipment’s monitoring. They define the equipment’s failure rate (1/MTBF),

starting from which it is possible to decide whether the equipment should be

kept or scrapped. We will focus on the record of operating and failure

intervals of time.

The exploitation’s start date is chosen, as well as the hydraulic jack’s

identifier, by associating an identifier in operational mode (normal mode); the

application is then executed.
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Figure 3.13. First simulation scenario

Following this operation, a new line within the LifeRecord describing the

equipment’s current state is created. The equipment starts functioning in the

normal mode on 01/03/2013.

Figure 3.14. Summary of data within the LifeRecord

Within the RFID tag, the increase in the number of proper functioning

intervals can be observed.

Figure 3.15. Update of data within the RFID tag

Knowing that the equipment underwent a failure on 03/10/2013, the normal

period is ended to start the failure period.

The stopping of the equipment occurred following a failure. The list of

failures is illustrated in Figure 3.17.
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Figure 3.16. Simulation window

Figure 3.17. Failure list

A new equipment trouble store is inserted by initializing the date of the

failure period. A new line is added to the LifeRecord that shows the end of the

normal functioning and its duration of nine days in this case. The simulation

continues so forth.

Figure 3.18. LifeRecord of hydraulic jacks

At the end of these simulations, we obtain a set of indicators related to the

monitored components during their whole lifecycle. Figure 3.19. illustrates the

results obtained after a simulation for six hydraulic jacks.

3.8. Decision support service for the recycling of hydraulic jacks

We have thus capitalized the knowledge about the entire lifecycle of these

hydraulic jacks. By means of the indicators’ calculation performed on this

reliable information gathered during the whole lifecycle of the equipment, it

is possible to make a decision that reflects the actual reality. We base

ourselves on thresholds in order to make a distinction between the
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components in good working conditions and those to be scrapped. Knowing

that the thresholds are, respectively:

Nthreshold = 3 and S = 50 days and(S = 5 days),we obtain: 45 < score < 55.

Figure 3.19. RFID tags relative to the hydraulic jacks

It is known that the jacks’ operation has a cycle of 10s, and their lifecycle

is five years. The TM coefficient relative to the performed maintenance with

respect to the planned systematic maintenance has a non-negligible impact on

the component’s recycling.

– Here, we note that the jacks 2 and 6 have a disastrous score due to the

TM coefficient, and therefore they will not be recycled;

– the hydraulic jack 1 has undergone three failures. Therefore, it will be

scrapped. In its LifeRecord, it can be seen that the third failure started on

15/04/2013;

– the hydraulic jacks 3 and 4 satisfy the condition of a score between 45

and 55, so they will be recycled;

– although the hydraulic jack 5 has an acceptable coefficient TM and it has

undergone only one fault, it will be scrapped because its proper functioning

period does not allow it to obtain a high enough score, and therefore it will not

be recycled.

3.9. Conclusion

In this chapter, the approach proposed in the first two chapters for making

a component and/or system intelligent is implemented on a ski lift. In other

words, this system is capable of monitoring its health state during the whole
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lifecycle, and it can easily access its information at any moment. This

information is reliable, since it is saved gradually during its processing, and it

has to be available in order to decide whether the component can be recycled

once more by means of an RFID reader. We proposed and implemented a

closed-loop PLM of the models that are related to the RFID technology by

using two memories, the first integrated locally in the system and the second

implemented remotely in an s-maintenance platform.

We set up some decision support services that base themselves on the

information observed, gathered and processed during the whole lifecycle of

the monitored equipment. The fundamental service consists of a knowledge

capitalization service, which can return knowledge relative to the

component’s health state in the form of synthetic indicators of the proper

functioning periods, the number of faults, their seriousness, or simply of the

events that intersperse the life of this equipment. A range of indicators, from

the simplest to the more sophisticated, are available thanks to the modeling of

health indicators via trends, which allow the determination of the remaining

useful life (RUL) of the equipment. This RUL can be used to implement

predictive maintenance strategies, as discussed in the second part of this

book. Other indicators were exploited to define a service for equipments’

recycling based on the information obtained from its monitoring.

We developed our approach for a ski lift in the context of an FUI project

involving various companies and partially financed by European funds

(FEDER). An architecture of intelligent components on a ski station was

implemented. This architecture allows a monitoring of data regarding the

station’s functioning, consultation and updating of the RFID tag memory, the

knowledge capitalization in the LifeRecord memory, and the access to any

stored information via web services combined with the architecture. As a

result, any information regarding the equipment is available, which enables a

more accurate and reliable calculation of certain indicators and a more

informed decision-making concerning the possibility of recycling the

component.

We simulated the behavior of a critical component, a hydraulic jack

installed on a carriage that provides the right tension to the cable that

transports the ski cabins. This simulation consisted of examining the different

condition scenarios to obtain the information defined by the ontology of the

maintenance domain and to calculate the indicators during the whole lifecycle
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of the component. This enabled the implementation of a recycling support

system, which depends upon the reliable calculation of the indicators. The

calculated score is based on the expertise domain, and it takes into account

the interventions and the actual functioning of the components. The

e-maintenance platform allows the monitoring of the exploitation and the

calculation of indicators in real time. The indicators’ calculation is performed

from the information specified in the knowledge model in the IMAMO

ontology. This concept of intelligent equipment is indeed operational on a ski

station. In this study, we developed the recycling service.
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Post-prognostic Decision
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Position of Decision within
the PHM Context

4.1. Introduction

As mentioned previously, the PHM process is a whole. In fact, it is useless

to produce relevant indicators and to predict the useful life of an equipment as

precisely as possible if no decision is made afterwards. Likewise, there is no

point in making decisions if the information enabling these decisions is not

relevant, reliable or accurate. Therefore, the added value of the PHM

includes, by its very nature, a decision phase after the collection and

interpretation of prognostic data [IYE 06]. In this context, a decision can be

made in any situation in order to maintain the observed system in the best

operating conditions.

The notion of decision within the PHM domain deserves to be clarified. In

this chapter, we present a typology of decisions with a state-of-the-art overview

on this subject. Then, we return to this topology while illustrating the presented

decision types in relation with temporal constraints, which are mainly due to

the interval of time within which the decision is applied or is supposed to

remain valid. For example, the duration taken into account may be a week, in

order to consider the equipment during its usage over this period, whereas the

expected validity corresponds to the following day, knowing that input data

might evolve over time. It is thus possible to take into account the availability

of the equipment whose usage is planned for beyond one day. On the other

hand, the considered duration may be a millisecond if, given a detected and
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analyzed event, a decision has to be taken within a very short delay in order to

preserve the operational conditions.

4.2. Definition of post-prognostic decision

In the literature, two terms designating the decisions in the PHM context

are mainly encountered. Iyer et al. [IYE 06] introduced the term

“post-prognostic decision”, a decision that receives as an input the data

calculated by the prognostic and analysis phases. A decision then consists of

defining the maintenance operations, order of tasks and allocation of

resources, and in managing the logistics chain related to maintenance from

the perspective of optimizing the costs associated with the system’s lifecycle,

delay penalties, number of successful tasks, extension of production or safety.

On the other hand, Balaban et al. [BAL 12] later proposed the term

“Prognostic Decision Making (PDM)” to designate the way in which,

autonomously or semi-autonomously, a system defines the actions to be

performed by the system, or the configurations to be modified, in order to take

into account the prognostic information.

We talk about “post-prognostic decision” to designate a decision that takes

into account the data obtained from the prognostic phase, representing the

remaining usage duration before maintenance for all monitored equipment.

As defined in the literature, these decisions are oriented towards the

optimization of the system in order to keep it in an operational state, in

relation to its missions and its health state.

4.3. Which objectives?

Any kind of system involves maintenance phases along its lifecycle.

Maintenance operations target different parts of those devices that jeopardize

the system’s mission if they break down. In many applications, corrective

maintenance is not acceptable in view of the criticality of a mission or

equipment with respect to the system. Notably, this is the case of applications

that involve people, such as lifts or airplanes, although obviously it is easier to

stop a lift in case of a breakdown than perform an emergency landing without

damage. The risk is minimized by deciding preventive maintenances, thanks

to the knowledge of degradation processes. Thus, important test campaigns

provide knowledge about the duration of the equipment’s utilization in
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nominal conditions. By adding a certain safety coefficient and by doubling or

tripling the number of critical items, the probability of failure is reduced

considerably, as is shown by the very low number of aircraft accidents.

However, this reasonable approach is not completely satisfactory, because

there is no certainty that the equipment always operates in nominal

conditions. Furthermore, it is possible that some parameters, little known or

unknown in advance, intervene in the aging of an equipment with the

consequence of an accelerated aging of the system or item. Besides,

systematic and preventive maintenance interventions do not cover all

contingencies, since the usage conditions are not nominal over the entire

period of utilization. The PHM bases itself upon this very idea to propose

another way of maintaining systems by observing them, by trying to

characterize their health state and by suggesting a value of remaining duration

before maintenance execution.

Maintenance thus becomes predictive, since it consists of performing

appropriate operations neither too soon nor too late with respect to the past

and future usage conditions and to the current health state. The decisions on

this matter consist of proposing maintenance operations in relation to the

schedule of maintenance teams, even if it entails an arrest of the system until

maintenance is performed, proposing utilization capacities for the systems or

equipment such that the end of the ongoing mission is ensured, or proposing a

modification of the mission in compliance with the availability of the system

so that the latter can be maintained before a breakdown occurs.

Clearly, the purpose of a decision is to preserve the system against the

occurrence of a breakdown that could not be foreseen without prognostic

data. Therefore, the post-prognostic decision aims to increase the (i)

availability, allowing the systems to always be exploitable, (ii) reliability and

(iii) safety, by taking the necessary steps to perform the missions safely while

reducing the costs, in particular by preventing direct and indirect costs

ascribable to a breakdown occurrence.

4.4. Types of decisions

In the literature, numerous studies focus on PHM for applications or

devices from a variety of domains for which either maintenance is a key

challenge or the ongoing mission’s completion is crucial. The decision’s

validity duration is also considered as a factor in different ways by the works
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illustrated in the following section. We will return to this point to provide

another level of assessment of these approaches; here, we focus on the various

domains and applications.

The different domains that we present in this overview of approaches with

the inclusion of the decision phase in the PHM process are the aerospace

domain [BAL 12, CAM 07, PRE 08], the energy domain with some

applications relative to wind turbines [BES 10, HAD 11, KOV 11, VIE 12,

LEI 15] or batteries [SAH 11, BEN 01a, RAO 03], the studies on electronic

systems [SAN 05, WAN 00, BAR 03] or machining systems [CAM 10]. We

divided these various considered contributions in three main categories. Each

one addresses a certain type of decision, whose implementation involves the

control system, optimization of maintenance or mission management.

In the remainder of this chapter, we cite a certain number of works relative

to decision-making in PHM in different types of applications with different

kind of actions to be undertaken in accordance either with the period of time

before the decision takes effect, or with the type of action to be performed at

the maintenance level, or with the definition or redefinition of future or ongoing

missions by the monitored system.

4.4.1. Automatic control improved by prognostics

In the context of controlled applications for which prognostics implies a

modification of the command very quickly, in order to ensure the system’s

integrity, several works propose to define some automatic actions.

Pereira et al. [PER 10] proposed a predictive model for managing

actuators that distribute control tasks over several redundant units. This

allocation of tasks depends on the information provided by the prognostics

about the degradation of control units. Another approach for task distribution

based on the output data of a prognostic process was described by Bole et al.
[BOL 11] for the control of an autonomous vehicle with a monitoring of the

engine’s degradation. Along the same lines, we can also mention the article

by Bogdanov et al. [BOG 06] on servomotors or that by Brown et al.
[BRO 09, BRO 11] addressing fault-tolerant electromechanical controllers.

An automatic control capable of taking into account the prognostics to

improve this control at the high decision-making frequency has a limited
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effect due to the required speed of decision-making and performing necessary

actions. This kind of decision will not be developed further in the remainder

of this book. However, the maintenance operations that need to be proposed

in accordance with the lifetime have been studied beforehand.

4.4.2. Optimization of maintenance

The optimization of maintenance by means of its planning is a domain

addressed by a large body of work regarding post-prognostic decision.

Observation and analysis of data provided by this observation enable the

estimation of the health state value of some components liable to break down

with a trend expressed by the remaining useful life (RUL) with a certain level

of uncertainty. This value depends on the values observed not only with

respect to past utilization but also with respect to future usage. It enables the

proposition of a global health state of the entire system under observation

[CAM 07]. Similarly, an intelligent prognostic tool for maintenance using a

data-based approach was proposed by Asmai et al. [ASM 10] with the goal of

preventing a breakdown risk early enough so that a planning of maintenance

operations may be possible before the fault occurs. Other existing

contributions propose a set of maintenance rules for very different

applications such as electronics, aerospace or energy production.

4.4.2.1. Electronic systems

Several contributions in the domain of maintenance planning were

proposed in the 2000s. For example, Sandborn et al. [SAN 05] determined the

most appropriate moment for the maintenance of an electronic system.

However, few studies about this aspect are based on the PHM domain, since

the lifetime of electronic components is expected to be much longer than the

lifetime of the system that uses them [SAN 05]. Moreover, the electronic

components’ health state and lifetime are studied in view of their usage in

harsh conditions, for which gathered data is hardly exploitable, often

imperfect and incomplete [SAN 05]. Some works address this issue by taking

into account monitoring limitations [WAN 00, BAR 03], whereas other

results for this kind of application base their studies on the hypothesis of a

perfect knowledge of the equipment’s health state and on the absence of

uncertainty in the system’s monitoring [VAL 89, CHO 91].
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4.4.2.2. Aerospace domain

For aerospace applications, Balaban et al. [BAL 12] proposed an

algorithm based on probabilistic methods and prognostic information in order

to produce maintenance rules. Camci et al. [CAM 07] developed a tool for

integrating maintenance data into the PHM process in order to use diagnostic

and prognostic methods in a real-life environment on military airplanes.

4.4.2.3. Wind farms

Given the importance of maintenance and the difficulty of intervention in

wind farms, wind turbines have been widely studied from the point of view of

the PHM, i.e. at the level of their observation and analysis of their health state

with the purpose of optimizing their maintenance [BES 10, HAD 11,

KOV 11, VIE 12, LEI 15] Wind farms involve specific features which

introduce particular constraints such as the usage of heavy maintenance tools,

cumbersome spare parts that are expensive and lengthy to produce and skilled

manpower [KOV 11]. It is also necessary to take into account the constraints

related to meteorological conditions [BES 10]. Moreover, if we consider that

the monitored wind turbines are installed offshore at sea, the maintenance

problem becomes even more complex and costly.

Lei et al. [LEI 15] showed that the decisions related to the implementation

of a predictive maintenance operation are not the same from the economical

point of view if we consider a wind farm or a single wind turbine, in

particular due to the fact that the system’s environment, which is different in

the two cases, has to be taken into account, even if they have the same

remaining useful life (RUL). In the case when a wind farm is considered not

as a whole but as a set of wind turbines, Vieira et al. [VIE 12] propose to

change the value of the health state at which a wind turbine should not be

used anymore, with the purpose of planning a maintenance intervention on

the whole wind farm in order to maximize the lifecycle of the components. In

this case, the authors demonstrate that the utilization of wind turbines is

improved individually. Other optimization approaches based on conditional

maintenance of components of the wind turbines with different damage

degrees were developed by Besnard et al. [BES 10]. They compared three

types of state monitoring of the wind turbines’ blades, via a visual inspection,

a monitoring by means of ultrasounds and thermography, and a continuous

monitoring through fiber optics. Besnard et al. determined the optimal
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maintenance strategy according to wear conditions using a Monte Carlo

method.

Haddad et al. [HAD 11] sought to optimize the maintenance of a wind

farm as well, by defining subsets of offshore wind turbines to be maintained

and taking into account the components, monitoring (degradation), future

utilization and cost constraints. An approach to this maintenance planning

problem in the same context was tackled by Kovacs et al. [KOV 11] from

the viewpoint of an exact optimization by means of a problem’s model

in the form of a mixed integer linear programming. Herr et al.
[HER 14a, HER 14b, NIC 13] proposed an approach that modifies the

equipment’s exploitation conditions with the purpose of lengthening the

global utilization period of a distributed platform while including similar

constraints as in the wind farms. In such conditions, maintenance is foreseen

at the end of the planning horizon.

4.4.3. Adjustment of missions with respect to the equipment’s
health state

As mentioned in the introduction, another kind of decision is possible by

means of an estimation of the remaining utilization period of a component.

This does not involve an optimization of the maintenance, but rather an

optimization of the missions that have to be achieved collectively by several

components, or eventually by a single one. The decisions to be made with

regard to this can be of different kinds, depending on whether they are made

by each component individually in an independent way, or collectively, in

consultation. The consequence of such decisions has an effect on the

reconfiguration of the system, on the reordering or redefinition of the missions

that the system has to fulfill [BAL 12]. Although this path laid out by Balaban

et al. is only at its beginning, other works have already been proposed in the

field of production planning [ASM 10, HAD 11], in the domain of the

management of autonomous vehicles [PRE 09a, TAN 11, BAL 11], batteries

[SAH 11, BEN 01a, RAO 03] and sensor networks [ELG 15, YON 13].

Here again, Iyer et al. [IYE 06] pioneered the proposition of a general

platform for user’s decision support in the domain of fleets of systems. It is

composed of a first simulation module for testing scenarios with the

evaluation of decisions for each of them with respect to a prefixed objective,
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and a second module that searches for optimal solutions. A collaboration with

the user can take place in the case when no solution was found, in order to

search for other possible scenarios that can lead to optimal strategies.

With the aim of adjusting a mission to the values provided by the

prognostics, Balaban et al. [BAL 12] formalized an approach that consists of

finding an appropriate compromise with respect to the initial mission’s plan.

This method is situated between the extension of the system’s utilization

period before maintenance and the maximization of the mission’s efficiency,

i.e. the maximization of production rate. Similarly, Skima et al. [SKI 16]

studied a reconfiguration of a system based on the health state of its

components in order to ensure a conveying mission. This idea is encountered

in the approaches described in the following section.

4.4.3.1. Production planning

The knowledge of the RUL can be used in production planning [ASM 10]

by providing useful information about the health state of production

equipment. Therefore, decisions can be made regarding tasks to be launched

or not with full knowledge of the facts, in order to avoid production losses

with all the consequences that a breakdown may entail. The decisions to be

made can be different, such as continuing the production, arresting a machine

to avoid its degradation beforehand, foreseeing a preventive maintenance or

modifying the production parameters in order to adjust them to a machine’s

state and thus reduce its workload [HAD 11]. In the case of a modification to

be foreseen, the production plan is disturbed and either it is retained with

marginal modifications or the whole production planning has to be reviewed

in order to be adjusted to the new situation and to optimize one of the

meaningful characteristics of the production device. The prognostic results

thus have a direct influence on the operating conditions of the machines

involved in production tasks. This analysis remains valid if the tasks to be

performed are part of a more general mission [LEB 01, KAR 13]. If this is the

case, the modification of machine parameters has a direct impact on the

success of the mission’s objectives, whether they will be reassessed or not

depending on the conditions.

4.4.3.2. Management of autonomous vehicles

The emergence of autonomous systems suggests numerous new

applications in which the mission’s success is a crucial issue. It appears that it
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is essential for an autonomous system to be able to make decisions at a speed

compatible with the variation of the mission’s conditions, which can be

considered as a sequence of tasks to be carried out. Therefore, the mission

will be considered completed once the whole sequence of tasks has been

processed [PRE 09a, PRE 09b]. The factors that may challenge the success of

the mission are possible failures of the items composing the system or a

change of environmental conditions, such as the meteorological conditions.

We can mention, as an example of an autonomous application, a fleet of

autonomous unmanned vehicles (AUVs), which are increasingly used for

exploration missions on land, at the sea surface, for underwater and air

missions (drones) or space missions (mobile rovers) [TAN 11].

The missions carried out today by autonomous vehicles concern

surveillance, exploration, search and rescue missions, as well as interventions

in contaminated or limited-access areas. Prescott et al. [PRE 09a] proposed a

strategy for analyzing the reliability of such systems and making a

prognostics of their health state in real-time, with everything integrated in a

decision module such as the one for military drones described by the same

authors in [PRE 08]. Tang et al. [TAN 11] developed a prototype of

autonomous vehicle in order to assess and validate methods that

include diagnostics and prognostics for the management of unforeseen events.

Various techniques were developed and automated in order to

function in real-time for this management of unforeseen events

[TAN 08, TAN 10, EDW 10, ORC 10, DEC 11] and [ZHA 11]. The prototype

illustrated by Tang et al. [TAN 11] was subjected to several types of failures,

including leaks and punctures of vehicle’s tires, low levels of charge and

degradation in the battery, retrieval of incorrect data about the state of the

vehicle or short circuits in the engine. RUL estimations were used in two

different ways, either by taking them into account as constraints or directly

integrating them in the cost function used to define the vehicle’s trajectories.

The optimization of the mission planning was tested experimentally by

cross-referencing the parameters while taking into account the health state of

the vehicles and the period of utilization of the batteries [TAN 11]. This study

revealed that by optimizing the batteries’ lifetime, the vehicles traveled a

greater distance in a longer time, whereas by trying to minimize the duration

of the missions, the distance traveled was lower with a higher energy

consumption.
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Balaban et al. [BAL 11] performed the same analysis with autonomous

mobile robots. The authors used a platform to put to the test their decision

algorithms for different cases of failure (mechanical, electronic and battery

charging process failures). Rather than searching for the RUL of a

component, these algorithms find the actions that optimize the lifetime of a

robot globally with respect to the success of the ongoing and future missions.

4.4.3.3. Battery management

As mentioned previously, the battery’s lifetime is crucial for the

performance of autonomous vehicles. Several contributions were presented

with the aim of suggesting the remaining useful life of the batteries

[SAH 08, GOE 08, SAH 09]. At the same time, models of discharge of the

batteries on drones showed that the discharge rate of a battery depends not

only on its initial level of charge [SAH 11], but also on its health state and its

usage profile. This study was extended by a modeling of the battery’s

behavior that includes a toleration of a high amount of uncertainty regarding

the demand [SAH 12] by means of optimizing the available energy.

When the battery is composed of several blocks, its lifetime is shorter than

in the case of a mono-block battery with an equivalent charge. As a result, new

needs with regard to the batteries require a planning of the utilization order of

these blocks [BEN 01a, BEN 01b] if it is necessary both to meet the demand

and to lengthen the battery’s lifetime as much as possible. The problem that

arises consists of knowing which block should be used and at which moment.

The best strategies are capable of ensuring an equivalent lifetime of multi-

block batteries with respect to monolithic batteries with the same capacity.

Similar results were obtained by Rao et al. [RAO 03] for portable electronic

systems.

In a similar context, with the purpose of optimizing the usage of

autonomous energetic sources, such as fuel cells, Herr et al.
[HER 15, HER 17, CHR 15] propose a new approach of convex optimization.

They include a model of aging in which the accessible power depends on the

health state.

4.4.3.4. Management of sensor networks

In environments that are difficult to access, hostile or very extended, the

utilization of wireless networks of sensors equipped with several stations for
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data gathering and a large number of sensors (several hundreds) seems to be

necessary in order to collect useful information [ELG 14, ELG 15, SIN 13].

Certain production equipment of which it is important to know a certain

amount of physical quantities have to be equipped with wireless sensors due

to their required location [ELG 14]. Thus, a problem arises regarding the

autonomous lifetime of the sensors, which most often use small

non-rechargeable batteries [CAR 00]. A challenge consists of maintaining a

connected network of sensors with a reconfiguration, if required, of the paths

traveled by the information of a station’s sensors, in order to limit the energy

consumed for transmitting the gathered information [ELG 15].

Within the scope of monitoring composite structures in carbon fiber, Yontay

et al. [YON 13] proposed an optimization of a wireless network of sensors with

the goal of maximizing its lifetime by adjusting the frequency of inspections

with respect to the amount of degradation of the observed structure. For this

purpose, a dynamic planning of the sensors’ observation was proposed by the

authors.

4.5. The subject of a decision

An overview of the literature shows that there exists a number of works

whose aim is to exploit the information obtained from the observation of

physical quantities to improve the usage of the observed equipment or

systems. Taking into account the assessments and analyses of gathered

information, an issue consists of knowing which decision should be made and

what can be subject to an action in order to maintain the system in operational

conditions as long as possible, or to conclude the whole ongoing mission or a

part of it.

The first factor that comes to mind consists of deciding to stop the

equipment before it reaches its expiration date, which would inevitably entail

a corrective maintenance. The related decision is then to foresee, as quickly as

possible, a replacement or a maintenance intervention for the equipment

reaching its end of life and, if possible, exploit the provided value of RUL to

anticipate this operation of replacement or maintenance and to take into

account all the consequences entailed by an equipment’s arrest. If the

equipment is not the only item in a system but it belongs to an equipment

fleet, planning the maintenance/replacement phases will be crucial in order to

limit the provoked interference. By taking into account the remaining useful
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life of the different items that constitute the system, this planning should seek

for the best sequence of maintenance interventions in each scenario in order

to limit the impact of these operations. However, the interference caused by

the phases of anticipated maintenance should not be considered as a waste of

time, because the monitored systems wear inevitably and maintenance phases

are unavoidable during the equipment’s lifetime. In this sense, planning

maintenance or replacement of equipment before the occurrence of a

breakdown contributes to protecting the system from degradation accelerated

by the appearance of failures. Besides, we should not forget the cost related to

the corrective maintenance interventions, which are always more expensive

than an anticipated maintenance due to the fact that the latter is restricted to

one piece of equipment and is performed in controlled conditions. A typical

counter example is the occurrence of a breakdown on a train that has to be

stopped in the middle of the countryside.

Another possible action consists of intervening on the lifetime of the

component, and thus on the lifetime of the system, by modifying the

operational conditions of its utilization. The component’s mission is thus

modified in order to postpone the maintenance as far as possible by operating

in a degraded mode. In such case, either the mission is ensured collectively by

many components or the mission is modified by lowering its objectives;

however, the mission is terminated, even if this involves a longer time or an

incomplete goal. In this case, the maintenance intervention that will restore

the system to its nominal operational conditions is carried out either at the

appropriate moment or at the end of the mission, involving in the latter case a

maintenance of the whole system.

In the following sections of this chapter, we illustrate the various types of

decisions to be made depending on the available time to make this decision and

on the amount that this decision or these decisions involve. Then, we present

different optimization techniques which can be used to seek the right decisions.

4.6. Typology of decisions in PHM (temporal, granularity and
objective types)

4.6.1. Typology of decisions within PHM

The various contributions involving decision-making in the PHM process

can be classified according to different axes. In Figure 4.1, we propose a
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representation of the various types of decision along a time axis and an axis

representing the dimension of the considered system. Different types of

decision can be highlighted at the intersection of the values of these two axes,

varying from control (in the sense of a command in the automation domain)

to logistics actions that are more spread out over time.

Figure 4.1. Typology of post-prognostic decision. For a color version of
this figure, see www.iste.co.uk/chebel-morello/maintenance.zip

The classification along the proposed time scale follows the temporal

segmentation of decisions introduced by Bonissone et al. [BON 07] and based

on decision horizons. Three classes are identified by these authors:

i) unique decisions, made once;

ii) multiple and repeated decisions;

iii) large-scale decisions affecting the lifecycle of the considered system.

At a tactical level, we thus initially encounter an immediate level (between a

nanosecond and a millisecond), which includes the automatic control decisions

such as the ones in the electronic, electromechanical or automatic domains.

Auto-diagnostics and real-time control are part of this decision level.

Then, there is a second, fast level for frequencies of the order of a second,

which includes semi-autonomous decisions that are applied, for example, in
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the domain of automation for tasks of control using prognostics, supervision or

detection of anomalies. At a short-term level, ranging from a minute to several

hours, we find the decisions with a greater impact such as online scheduling

and rescheduling. Diagnostics and prognostics also enter into this category.

On the other hand, the tactical level brings together the medium-term

decisions which refer to longer decision periods (days or weeks), for example,

for planning, offline planning or mission reconfiguration. The works

presented in this book are related to the two latter types of decision process,

i.e. the short- and medium-term categories.

4.7. Decision methods

The decisions to be made concern equipment that is likely to break down

if no decision is made. The decisions are the result of an algorithm that

receives as an input the system’s state and all the data relative to the past and

future usage of this system. In this way, these decisions aim to define how the

equipment or the entire system should be used. A decision may consist of not

using a certain piece of equipment before maintenance, of choosing a

degraded operating mode for a piece of equipment to increase its lifetime and

thus enable the conclusion of a mission, of changing the goal to be reached by

the system, etc.

In general, the decision processes are the result of the solution of an

optimization problem with the aim of reducing the maintenance-related cost,

maximizing the utilization time of a system before maintenance or

maximizing a mission’s goal. Depending on the problem, it is possible that its

optimal solution is simple and a greedy algorithm may be sufficient. In more

general cases, involving a certain amount of heterogeneity, the decision

problems that concern us here are most often NP-complete; in other words,

there is no polynomial algorithm capable of yielding an optimal solution. In

the best case, the problem can be modeled in the form of a linear program,

although with integer variables. If this program has a limited number of

variables, the most efficient optimizers, such as Gurobi [GUR 14] or Cplex

[CPL 17], are capable of revealing an optimal solution. Unfortunately, the

problems related to real-life situations involve a large number of variables,

and it is necessary to go through the conception of sub-optimal algorithms

based on greedy heuristics or meta-heuristics. These sub-optimal algorithms

have a polynomial complexity and provide a solution within a reasonable
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time, compatible with the time constraints within which the decisions have to

be made. It is not always possible to propose a limit or an approximation of

the algorithm in the worst case and thus to know the distance between the

proposed solution and the optimal one. Studying the problem in a

configuration in which an optimal solution exists helps to compare the

optimal solutions with sub-optimal solutions and to analyze the behavior in

the case of an heuristic or meta-heuristic approach.

New approaches are being studied, in order to solve this kind of

operational research problems by means of mathematical problems, linear or

not. The solutions are not always optimal, but some recent results guarantee

the convergence of the research solution with solutions that are not too far

from the optimal ones. The properties to be shown in order to solve the

problem via this approach are mainly convex properties of the constraints and

of the goal function. Most of the times this requires the mathematical

programs to be rewritten by setting the required hypotheses.

4.8. Summary

As we have mentioned here, the decision phase is an inevitable part of the

PHM process in the same way as the decision and analysis phases. The

decisions can be of different kinds according to whether the time available to

make it is long or short, whether the system includes more or less critical

elements, whether it is a distributed system with homogeneous or

heterogeneous equipment. Most works in the literature are based on the health

state of the equipment for the optimization of maintenance. Some works

focus on taking into account the data provided by prognostics in the

decision-making phase before maintenance. When the studied system has to

fulfill a mission during which an arrest or a maintenance operation is not

possible, the existing research rarely considers the case of distributed

systems, in which the mission is the result of collaboration between several

machines. In that case, it is a matter of optimizing the usage not of a specific

machine, but of a group, which changes the paradigm and lays out the path to

new approaches. If we consider again the application cases described

previously, this type of decision concerns the management of batteries or

sensor networks.

The common denominator of the work mentioned herein is the possibility

offered by the knowledge of the remaining useful life, which enables, for
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example, the modification of the operational conditions of the equipment

involved in the production or in the fulfillment of a mission. In this way, it is

possible to optimize the usage of a production system. This reveals an

important number of complex optimization problems; we provide some

examples of how to tackle them in the following chapter.
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Towards a Policy of
Predictive Maintenance

Over the last few decades, maintenance policies implemented in industry

have evolved significantly. Indeed, while initially the maintenance activities

were limited to a reparation of equipment after a breakdown, today,

technological transformations enable the implementation of predictive

activities. The task of choosing the right maintenance policy for each

equipment, component or subset becomes somewhat more complex. It

appears then that this strategic choice has to be optimized in order to

minimize the maintenance cost of the entire industrial system in operational

conditions.

In the industrial world, the two main maintenance policies that are actually

implemented are the corrective policy (also called failure-driven maintenance
or run-to-failure maintenance) and the systematic preventive policy (also

called time-based maintenance). They correspond to strategies that can be

easily implemented:

– corrective maintenance responds to the principle of waiting until the

system does not perform its function anymore. It is a purely reactive approach,

in which unforeseen events (functional failure, production rejection, or

breakdown of equipment) appear, and equipment’s restoration operations are

triggered after the occurrence of the event. Very often, they cause production

to be paused, which may be very costly. This type of policy can be suitable

only in the case of secondary equipment, whose failure does not jeopardize the

production system in its entirety;
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– systematic preventive maintenance, on the other hand, as revealed by its

name, aims to prevent the malfunctioning of equipment by planning some

operations (replacement of a component or subsystem, lubrication, etc.) at

regular intervals of time, which preserves the equipment in nominal operating

conditions. In this case, in order to minimize the total intervention cost, a

difficulty consists of choosing the appropriate frequency of the operations

representing a compromise between too frequent stopping of the equipment,

which correspond to production losses, and too late interventions, which

lead to a high risk of failure. The choice of the periodicity depends on the

statistical knowledge of the average MTBF (mean time between failures) for

an equipment used in nominal operating conditions.

In most situations, decisions related to maintenance strategies are based on

the experience of managers, respecting the recommendations provided by the

equipment’s manufacturers, and the analysis of the record of failures. However,

they do not avoid unexpected situations since, even in the case of preventive

maintenance, there always exists a risk of failure for a component or a related

subsystem.

The growth of automation and the integration of mechatronics1 in

industrial equipment both now enable the maintainers to gather a great

amount of useful information for the identification of an equipment’s current

health state. In fact, by multiplying the number of sensors in modern

equipment, the maintainer can access very rich information, which is capable

of revealing premature or delayed wear of the components or subsystems by

means of suitable processing. In this way, the maintainer can plan the

maintenance interventions to be as close as possible to the end-of-life limit.

This approach or maintenance policy is known by the name of

condition-based maintenance (CBM) [JAR 06], [SHI 15].

In the case of a condition-based maintenance, operations are triggered

only when certain measurable parameters reach a threshold value. The

implementation of maintenance operation depends on a certain kind of

predetermined event (information provided by a sensor, measurement of a

1 Definition from the Oxford English Dictionary: Technology combining electronics and

mechanical engineering.
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parameter, analysis of information, etc.) which reveal the equipment’s

degradation state.

More recently, methods capable of estimating the remaining useful life of

a component or subsystem have appeared. They are based on available

health-state data in order to predict the future evolution of the system’s health

parameters. These approaches are called prognostics, and they form a set of

processes known as prognostics and health management (PHM) [THU 01b],

[KAL 06]. By means of prognostics, it is possible to plan the maintenance

interventions in accordance with the evolution of the equipment’s parameters;

this is the principle of predictive maintenance.

Note that there is no universally accepted definition of the concepts of

conditional and predictive maintenance. Here, we highlight the differences

that can be discerned in many scientific articles on these topics. Some authors

reckon that the two definitions are exactly the same [SHI 15], [LEE 06].

Others add some nuances [IUN 12]. The Afnor2 standard NF 13306 X60-319

proposes the following definitions:

– Conditional maintenance: preventive maintenance based on the

monitoring3 of an asset’s functioning and/or of meaningful parameters of its

functioning with the integration of ensuing actions.

– Predictive maintenance: conditional maintenance executed in accordance

with predictions extrapolated from analysis and assessment of meaningful

parameters regarding an asset’s degradation.

From the Afnor standard’s definition, it can be seen that a difference is

retained. From our point of view, the main gap lies in the notion of

extrapolating meaningful degradation parameters. When conditional

maintenance is limited to a short-term future vision, the prognostics allows it

to take into account forthcoming equipment’s usage conditions, and

eventually, it may even lead to a modification of operational conditions, in

terms of decision, in order to modify the remaining duration of utilization

before maintenance.

2 French standardization association.

3 The monitoring of the functioning and of the parameters can be performed according to a

schedule, to the demand, or continuously.



86 From Prognostics and Health Systems Management to Predictive Maintenance 2

The maintenance manager thus has at his/her disposition a panel of

available maintenance policies for guiding the global maintenance strategy.

Of course, it is not a matter of choosing a unique policy for all the equipment

to be maintained, but rather to determine which is the appropriate policy for

each piece of equipment or even for a single component or subsystem.

Beyond that, it is also convenient to choose a suitable periodicity either of

component replacements or of inspections. This kind of decision problem can

take different shapes depending on the objective that needs to be optimized,

the hypotheses and data considered, or on production constraints that have to

be complied with. Recent works have tackled this optimization problem; in

the following section, we develop some of these approaches.

First, we will define the considered hypotheses and data; afterward, we

will highlight the possible decisions that constitute a lever for choosing the

best combination of strategies. The optimization objectives are then detailed,

before concluding with the implemented methods.

5.1. Decision problem

The general form of a decision problem can be described in the following

way: let’s consider a set of machines that produce items or services, and a

maintenance service composed of a group of operators that ensure the

maintenance of the machinery. The problem that arises thus consists of

knowing when each component or subsystem of the machines should be

maintained in order to allow the production system to perform its mission in

nominal conditions. A constraint of this problem is the capacity of the

maintenance service in terms of resources (human and material). The

planning of maintenance operations depends on the implemented policies.

Therefore, it is convenient to define a global policy that maximizes the

equipment’s production availability and minimizes the underlying

maintenance costs.

5.2. Hypotheses and data

A system producing items or services is composed of a set of subsystems

or components. The problem that we tackle here consists of choosing the best

maintenance strategy for each component or subsystem.
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Several works focus on the optimization of maintenance strategy for a

single piece of equipment. The proposed approaches do not take into account

the interaction that may exist in production systems characterized by an

increasing complexity. Some researchers have addressed this kind of problem

by considering predictive maintenance as one of the possible action levers.

We can cite in particular the works by Z. Yang et al. [YAN 08], P. Tamilselvan

et al. [TAM 12], A. Kovacs et al. [KOV 11], or by F. Camci [CAM 09].

The majority of the works proposed focus on a quantitative assessment of

different maintenance scenarios on the basis of resulting costs of maintenance

and production operations. These costs involve the present and future

degradation level of the equipment, maintenance actions, profits of the

manufactured goods or provided services, etc. They constitute fundamental

information for any maintenance decision.

The data considered in these decision problems are detailed in the following

sections.

5.2.1. Equipment

The considered system producing items or services is composed of a set of

equipment, which together ensure a global production mission. Each piece of

equipment is composed of subsystems or components subject to wear related

to their utilization. The equipment then undergo some maintenance operations,

which ensure their restoration to a nominal functioning state. The maintenance

operations consist of replacements of components or subsystems, lubricative

operations, regenerative operations, etc.

According to the application, the equipment to be maintained may be

organized in different topologies:

– parallel equipment;

– series equipment;

– parallel-series equipment.

5.2.1.1. Parallel equipment

In this case, the production machines are all independent. Each of them

provides a service that does not affect and is not affected by the other machines.
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This kind of organization can be found for example in a wind farm [KOV 11],

in which each wind turbine functions independently from its neighbors, or a

fleet of vehicles [CAN 14], where each vehicle has an independent route.

In the context of parallel machines, the performance of the production

system corresponds to the sum of the individual outputs of each machine

composing the system.

5.2.1.2. Series equipment

The series type of organization can be found mostly in systems producing

items. In order to be produced, an item may undergo several manufacturing

steps that are performed one after another, always in the same order. The

system is then composed of several machines, each one performing a

manufacturing step. This type of organization can be found in assembly lines

for vehicles, semiconductor manufacturing [YAN 08], automated machining

centers [DIE 06], etc.

A decrease in performance of a piece of equipment can have an impact on

the other equipment in the production line. Therefore, the global availability

of the system is not always guaranteed, even if some equipment are capable of

fulfilling their mission.

5.2.1.3. Parallel-series equipment

Finally, the organization in the parallel-series equipment generalize the two

types above. In this case, the system is composed of many production phases,

in which each manufacturing phase can be performed by several machines.

In this way, some equipment are independent (in parallel), but they supply a

global production line. Therefore, the performance of a production step may

affect the following phases.

In the last two types of organization, the maintenance of certain equipment

may lead to a necessary arrest of other equipment of the system and cause

indirect production losses.

5.2.2. Maintenance operations

The decision problem consists of defining a planning of maintenance

operations. These operations vary depending on the strategy. The most
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common operations are the replacements of faulty parts (before the

breakdown in the case of preventive maintenance and after the breakdown in

corrective strategies). The main goal of the decision is to provide a plan of

operations for each machine to be maintained by taking into account the

constraints such as the availability of material and human resources or spare

parts.

In decision problems, the maintenance operations are often classified

according to four categories:

– Corrective operations: operations that are not planned; they appear in

the planning as soon as an equipment breaks down and cannot fulfill its

mission anymore. The equipment is stopped until its restoration at the end

of the maintenance operation. The duration of the interventions is not always

continuous, since a diagnostic phase is often required. A palliative operation

may be performed beforehand. This leads to a restart of the equipment in

conditions that can be degraded in terms of performance. If a palliative

operation is performed, then a second reparation operation has to be planned

in order to restore the nominal functioning of the equipment;

– Systematic preventive operations: operations that are entirely identified

and programmed at regular intervals of time. For example, an air conditioner

filter has to be replaced every X hours of utilization. For these operations,

the duration is known and fixed, since a known maintenance procedure is

performed;

– Conditional maintenance operations: these operations are also entirely

identified. Unlike preventive operations, they are triggered when the evolution

of a meaningful parameter of health state of a component or subsystem reaches

a previously set threshold. For example, the tires of a vehicle have to be

replaced when the tread wear indicator is reached. The maintenance operation

is planned only when the threshold is exceeded. Therefore, these operations

can be easily planned, and they take into account the current health state of the

equipment;

– Predictive maintenance operations: in this case, the operation is subject to

the existence of a module capable of providing a future evolution prognostics

of meaningful parameters of the health state of a component, or more generally,

a system. The prognostic module provides information that specifies the

remaining useful life (RUL) before maintenance. This information enables the

planning of a known maintenance operation.
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A hypothesis that is very often considered in this kind of decision problem

is that the maintenance is said to be “perfect”. This means that the health state

of the equipment is perfect immediately after the maintenance operations, and

therefore, the machine is considered as new.

5.2.3. Maintenance resources

In order to be performed, maintenance operations need a mobilization of

resources. These operations are carried out by operators, sometimes by means

of specific tools, and require spare parts. Thus, several kinds of resources

should be taken into account in optimization problems regarding maintenance

strategies:

– Operators: human resources, which may be subject to availability

constraints, in particular related to work shifts. Sometimes, a single operation

may require several operators at the same time. The equipment to be

maintained are not always situated in a single place, and the operators may

have to move in order to intervene. The traveling time required may not

always be negligible, and it may affect the performance of the maintenance

service. Finally, very often the operators have characteristic competencies, and

therefore they are capable or authorized to perform only certain interventions;

– Spare parts: for the restoration of a system’s state, the maintenance

operations consist of replacing components or upkeeping (greasing, draining,

etc.). Such a task can be carried out only in accordance with the availability

of spare parts or of the consumable material which it employs. Some parts

or consumable items are available from a stock, but the most expensive ones

require supply delays that have to be foreseen within maintenance planning.

The operations are triggered only if the related spare parts and consumable

items are available;

– Specific tools: the operators use tools to perform maintenance operations.

Besides classic tools, which can be considered to be available without

limitations, it can happen that some operations can be carried out only by

means of heavy equipment, which are shared between the operators or even

rented from external companies. For example, the maintenance of a wind

turbine may require a specific crane. This entails that the operations have to be

planned in accordance with the availability of the specific tool, so that several

operations on different equipment can be planned at the same time in order to

distribute the related costs.
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All the elements described above are constraints that have to be taken into

account within the decision problem.

5.2.4. Costs of maintenance and production

In any decision problem seeking a solution, the goal is to find a response in

which the economical aspects are optimized. Maintenance does not contravene

this rule. In fact, the maintenance service has been considered for a long time

in business as a cost center. Only recently has it been perceived as a tool at the

service of industrial performance. To achieve this objective, it is quite useful

to identify the different costs incurred by maintenance activities:

– costs of the reparation operations: these are direct costs that include

the cost of replacement parts or consumable materials required to restore the

functioning of an equipment. They also include the cost of labor and eventually

the cost related to the utilization of specific tools;

– costs of breakdowns: these costs are the ones that should be avoided.

A breakdown occurs unexpectedly and causes high costs related to the

production’s arrest (see below), the restoration of the functioning state (with a

replacement of components which is generally more expensive than in the case

of preventive maintenance);

– costs of production losses: the arrest of a machine may lead to production

losses. The cost of these losses depends on the duration of the arrest. The loss

of income is not the only component of losses; the costs may be also related

to a lack of quality, commercial penalties, or company’s brand image, which

is far less quantifiable;

– costs of operators’ travels: when the equipment are not located in the

same place, operators need to travel. The costs related to these movements are

direct and indirect. When an operator does not move, the commute time is a

non-productive period, which entails extra costs;

– costs of storage of replacement parts: in order to ensure rapid availability

of spare parts, the latter are often stocked so that the maintenance operations

using them can be planned without constraints. The cost of this storage is often

considerable, and thus it should be taken into account.

Furthermore, it is important to consider the investment required for the

implementation of a predictive or conditional maintenance policy. In fact,
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such strategies need the equipment to be equipped with sensors in order to

measure the quantities representing the system’s health state. The cost of the

monitoring systems should thus be included in the decisions.

There is no unique cost model. The costs depend considerably on several

environmental parameters of the production system such as the type of

production (small, medium or large series), architecture of the production

system, localization of machines, expertise of maintenance operators, type of

production equipment, etc.

5.3. Implementation: an approach of maintenance planning
supported by prognostic information

Here, we intend to present a decision approach which aims to plan

maintenance operations for a predictive maintenance policy. The presentation

that follows is adapted from the works by F. Camci [CAM 15].

In this approach, a set of geographically distributed machines is

considered, such as a set of offshore wind farms or a set of railroad switches.

A maintenance operator or a maintenance team has to ensure the upkeep of

this set. The equipment are subject to degradation caused by their operation,

and they have to be maintained when their state requires it. The problem

therefore consists of defining the appropriate planning of maintenance

operations for the set of machines.

The equipment to be maintained are assumed to be monitored by a system

that delivers relevant information about their current health state and failure

risks. The latter may be expressed in the form of a breakdown probability. As

long as the system is not maintained, the breakdown risk persists, and it is

necessary to plan a maintenance operation, which consists of replacing the

degraded component. The equipment’s health state is assumed to be

completely renewed after each intervention of a maintenance operator or

team.

In the considered model, the data taken into account to make planning

decisions are the breakdown probabilities of the machines (or components)

that have to be maintained. They are issued from predictions, for the time

preceding the first maintenance operation on a machine, and from a reliability

analysis, for the time after a maintenance operation.
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The tackled problem aims to find an optimal planning strategy of the

maintenance operations. The notion of optimality is related in this case to the

total cost of production and maintenance of the set of equipment.

The problem that is tackled can be expressed as follows:

– resources: the system is composed of a set of machines πi, 0 ≤ i ≤ n,

geographically remote one from another at a distance dπi,π0 . π0 represents

the maintenance center, which is the departure and final destination of the

maintenance operator. A single operator is available for all the operations, with

the constraint of work shifts. Any exceeding of the foreseen schedule leads to

an extra financial cost;

– prognostic and reliability model: for each machine, the remaining

life before maintenance is expressed in terms of a predicted probability of

breakdown. Thus, at an instant t, the breakdown probability is denoted by

PP,t, for any t preceding the maintenance. After a maintenance operation, the

breakdown probability at an instant t is denoted by PR,t−LM , with LM the

time passed since the last maintenance. The degradation within a unit of time

(e.g. a day) is considered to be negligible;

– maintenance operation: the machines undergo only one maintenance

operation within the decision horizon. The maintenance operations are known

for all the machines, and their duration is denoted by tri .

5.3.1. Cost modeling

On the basis of these hypotheses, the decision problem consists of finding

an allocation that determines the periods in which the maintenance operations

for each machine should be performed, and planning in order to set the order

of the machines’ visits. The decision’s goal is to minimize the total cost of the

calculated solution. This cost combines the failure costs (CF ), maintenance

costs (CM ), the costs of travel between the machines and to/from the

maintenance center (CT ), and the costs of extra work hours (CW ). Thus, the

objective function to be minimized is:

Min(CF + CM + CT + CW ) [5.1]

The different costs are detailed in the following sections.
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5.3.1.1. Cost of failures

The failures cause direct costs due to the equipment’s repair (Fi) and

indirect costs ascribable to the unavailability of equipment, which induces

production losses or the inability to fulfill a required mission. The latter costs

depend on the duration of the unavailability periods (denoted by δi for each

time unit). The failure-related cost for each time t is calculated as:

CF
i,t = Pi,t × (Fi + δi ×DTi) [5.2]

where Pi,t is the probability of failure of machine i at an instant t, and DTi is

the time of unavailability of machine i.

Therefore, the cost over the planning horizon can be calculated as:

CF =

n∑
i=1

(
T∑
t=1

CF
i,t

)
[5.3]

Note that the failure probability is a piece of information obtained either

from a prediction by a prognostic system or from a reliability analysis,

depending on the considered instant t. Before a maintenance operation,

Pi,t = PP,t, whereas after the maintenance operation Pi,t = PR,t−LMi (where

LMi is the time passed since the last maintenance operation). F. Camci

[CAM 15] proposes that this duality is taken into account by using a binary

variable in his model. Let xi,t be a variable with a value equal to 1 if the

machine i has already been maintained at an instant t and is equal to 0
otherwise. This enables the definition of the failure probability by means of

equation 5.4:

Pi,t = PP,t×
(
1− min

(
T∑

k=1

xi,k, 1

))
+PR,t×min

(
T∑

k=1

xi,k, 1

)
[5.4]

5.3.1.2. Cost of maintenance

The cost of maintenance (CM ) is the sum of the costs of all the planned

maintenance operations for all the machines. Thus, if xi,t = 1 then the

maintenance cost CM
i,t = γi. Of course, this cost should be considered only if

the maintenance can take place; in other words, only if a failure occurs.
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Therefore, this cost depends on the failure probability and can be expressed

by equation [5.5].

CM =
T∑
t=1

(
n∑

i=1

(1− Pi,t)× (xi,t × γi)

)
[5.5]

5.3.1.3. Cost of travels

The cost of travels depends on the order of visits of the equipment within

the same period of time t. We denote by πt
i the ith visited equipment at a time

t. If the visiting order is fixed, then the cost of travels is the sum of costs of

travel between the equipment. It is expressed by the equation 5.6:

CT = cd ×
T∑
t=1

(
nt∑
i=1

dπt
i−1,π

t
i
+ dπt

nt
,πt

0

)
[5.6]

where cd is the travel cost per unit of distance and nt is the number of

equipment visited at instant t.

5.3.1.4. Cost of extra work hours

The normal work duration (Dw) and the upper limit of this duration (Dup
w )

are fixed. If the normal duration is exceeded during a period of time, then the

extra hours will have to be paid for. The cost of these hours is expressed by

equation 5.7.

CW = γi×Cγ×max

((
Mr∑
i=1

(
TT (dπt

i−1,π
t
i
) + tri

)
+ TT (dπn,π0)−Dw

)
, 0

)

[5.7]

where TT (x) is the time of traveling x, and tri is the maintenance duration on

the equipment i.

5.3.2. Constraints to be satisfied

The only constraint that should be taken into account in this problem is

that of the limited work hours of the maintenance operator. This duration is



96 From Prognostics and Health Systems Management to Predictive Maintenance 2

limited by Dup
w . The set of constraints to be satisfied is therefore given by the

relation 5.8:

∀t,
Mr∑
i=1

(
TT (dπt

i−1,π
t
i
) + tri

)
+ TT (dπn,π0) ≤ Dup

w [5.8]

5.3.3. Objective function

In this problem, the goal is to minimize the total cost of the entire

maintenance of all the equipment. Therefore, the objective function consists

of minimizing CF + CM + CT + CW .

The decision problem is thus modeled by a mathematical program, with

the set of variables (xi,t, i = 1 . . . n, t = 1 . . . T ) as decision variables, which

specifies which equipment should be maintained for each period t, including

the order of visits within each period, which affects the costs of travel and

hours exceeding the normal work hours.

5.3.4. Problem’s solution

In order to solve certain mathematical programming problems, such as

integer linear programs, methods exist, traditionally based on branch and

bound procedures. Solvers for the implementation of this kind of approach

are available on the market. In particular, we can mention Cplex [CPL 17],

Gurobi [GUR 14] or Lindo [LIN 17]. However, although they are capable of

providing an optimal solution for this type of decision problem, these solvers

are very often limited by the size of the considered problems. In fact, the

implemented solving approaches have an exponential mathematical

complexity and do not guarantee a reasonable time required to find the

solution.

Alternative solutions consist of seeking not for an optimal solution, but for

an approximate one, if possible, close to the optimal solution. Many

techniques may be contemplated; for example, we can cite all the

metaheuristic approaches: stochastic descent, genetic algorithm, ant colony

algorithm, etc.

By implementing an approach based on a genetic algorithm, F. Camci

represents the solutions of a decision problem via a sequence of binary
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values. The chosen coding should enable the modeling of both the allocation

of maintenance operations in periods and the order of equipment visits within

the same period.

This method was proposed for the maintenance of railway infrastructure

equipment. In fact, the maintenance of railway points in a given sector is a

problem that requires the movement of maintenance operators. The

implementation of the developed approach has shown that it is possible to

optimize the total cost of maintenance in operational conditions for this kind

of equipment.

5.4. Summary

The results presented in this chapter illustrate a post-prognostic decision

approach. An important point is that the introduction of the prognostic

concept leads to a change in the way in which maintenance planning is

comprehended. In fact, by means of preventive maintenance policies, in

particular with the systematic one, planning can be done in a recurring way.

Predictive maintenance proposes a new paradigm in which it is necessary to

question the planning of interventions regularly, in accordance with the

evolution of the health state of the equipment. This entails that the

management of maintenance resources becomes more complex, since

predictive maintenance may create periods of under- and overload in the

maintenance service.

The approaches proposed in this chapter constitute the first step in response

to this issue. The currently considered hypotheses are still very restrictive. In

order to make these methods feasible in industry, it is necessary to make them

evolve by integrating all the constraints. For example, the management of spare

parts’ stocks should include the dynamic aspect of the predictions. Beyond the

planning that incorporates predictive aspects, the acceptability of the solutions

by maintenance actors should also be assessed. Indeed, the implementation of

this new maintenance paradigm requires a greater degree of flexibility.
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Maintenance in Operational Conditions

6.1. Statement of the problem

The problem presented here is an illustration of post-prognostic decision.

The goal of the application considered is to yield a certain amount of

production, an amount that can be assimilated to a flow of materials, of

energy, etc. This production is ensured by a platform consisting of a set M of

m machines Mj , such that Mj ∈ M with 1 � j � m. Each operating

machine performs the same kind of task in parallel with other operating

machines, knowing that the machines do not all operate at the same time. The

produced quantity is the sum of quantities produced by each one of the

machines, which potentially all have different throughputs. The performance

of each machine can be controlled, within the limits of its capabilities, with

respect to a certain number of discrete running profiles; in other words, only a

finite number of configurations are possible. Finally, all the machines are

subjected to wear and, as a result, have a limited lifetime. A PHM process

implemented in the platform makes it possible to know this lifetime, called

remaining useful life (RUL). We suppose that the RUL is related to the

running profile, as we will illustrate below in a more formal way. This work

was the subject of several publications, in particular [HER 14a, NIC 13].

6.1.1. Objective

The goal of the application is to meet a certain production demand σ(t) for

as long as possible before a maintenance of the fleet of machines becomes

necessary. This length of time is called the production horizon H. The

From Prognostics and Health Systems Management to Predictive Maintenance 2: 
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Brigitte Chebel-Morello, Jean-Marc Nicod and Christophe Varnier. 
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optimization problem can be tackled by considering a discrete subdivision of

the production horizon in K intervals of time with a size ΔT such that

H = KΔT . The decision regarding the machines’ exploitation is then made

according to this periodicity, which, for example, can be a periodicity of an

hour, a half-day, or a day.

6.1.2. Hypotheses

For the sake of simplification, and without loss of generality, we consider

that the demand is constant over time, i.e. σ(t) = σ. Therefore, the

production of running machines ρtot(t) at the instant t is greater than or equal

to the demand (ρtot(t) ≥ σ(t), ∀t ≤ H). We accept that any overproduction

is lost. Furthermore, a machine cannot be used if its RUL is strictly lower than

the length of an interval ΔT , and it degrades only when it is used. Moreover,

supply and storage problems related to production are not considered here.

6.1.3. Modeling of running profiles

Each machine Mj (1 � j � m) has a finite number of different

performance levels. We set n as the number of running profiles Ni,j defined

for each machine in the following way: Ni,j = (ρi,j ,RULi,j), with

0 � i � n − 1 and 1 � j � m. Let N0,j be the nominal profile of machine

Mj ; N0,j provides the maximum throughput and is associated with the

minimum RUL. In comparison, a sub-nominal profile yields a lower

throughput, but for a longer time (see Figure 6.1). According to this principle,

we have the following relations: ρ0,j > ρ1,j > . . . > ρn−1,j and

RUL0,j(k) < RUL1,j(k) < . . . < RULn−1,j(k) for any interval k
(1 � k � K).

Furthermore, we set Qi,j = ρi,j × RULi,j to be the quantity that can be

produced by the machine Mj with the running profile i during an interval of

time RULi,j with the related production throughput ρi,j . The values of

throughput in the various profiles are such that we reasonably have

Q0,j > Q1,j > . . . > Qi,j > . . . > Qn−1,j . In this way, we are tempted to

operate the machines in their nominal state, the most efficient one, yet we will

demonstrate in the following that this is not always a solution that leads to the

best result, given the fact that all overproduction is lost.
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Figure 6.1. Running profiles with discrete throughput
variation for a machine Mj . For a color version of this figure,

see www.iste.co.uk/chebel-morello/maintenance.zip

Besides, in the proposed model, the order in which the running profiles are

selected during the utilization of a machine does not have any impact on the

evolution of its health state, and thus on the evolution of the RULs related to

each profile. Without taking into account the performance levels reached,

examples of scenarios proposed in Figure 6.2 show that it is possible to

exceed the RUL of the nominal profile, RUL0,j , by using a machine with three

different subsequent running profiles, N0,j , N1,j and N2,j . The second

scenario illustrated in this figure shows that an appropriate selection of

profiles Ni,j over time can extend the period of utilization of a machine, not

only beyond the RUL of a nominal profile RUL0,j , but also beyond the RUL of

a sub-nominal profile (RUL1,j in the considered example).

1
0
0
%

utilization

time

ρ

RUL0,j RUL1,j

Scenario 1

1
0
0
%

utilization

time

ρ

RUL0,j RUL1,j

Scenario 2

Figure 6.2. Utilization of a machine Mj with several running profiles
while considering a discrete variation of the provided throughput.

For a color version of this figure, see
www.iste.co.uk/chebel-morello/maintenance.zip
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This extension of the utilization length of time enabled by the usage of

several running profiles can be exploited on several machines that operate in

parallel and contribute together to the same demand, on the condition that this

demand can be met even if the machines operate in sub-nominal modes. In this

way, considering several running profiles introduces the possibility of varying

the exploitation (or scheduling) of a set of machines if the maximization of the

production horizon is an objective. In section 6.1.5, an example illustrates the

motivating reason behind this work.

6.1.4. Optimization problem MAXK

The problems that arise in the context introduced above with a demand to

be met are expressed by the following notation:

MAXK(σk |σ, ρi,j | ρj | ρ, RULi,j |RULj).

This general notation represents an optimization problem that consists of

defining a planning of machines that maximizes the production horizon

H = KΔT . The level of required throughputs, or demand, is denoted by σk if

this demand varies over time. The demand is denoted by σ if it remains

constant within the whole production horizon. The last two parameters

characterize the properties related to the set of machines M . Each machine

Mj ∈ M (1 � j � m) has, in fact, n running profiles Ni,j (0 � i � n − 1),

which impose the values of ρi,j and the relative utilization intervals RULi,j . In

the case when a single running profile is considered for each machine

(n = 1), the set of machines may be either homogeneous or heterogeneous in

terms of throughput. In the first case, we have ρi,j = ρ, and in the second one,

ρi,j = ρj (0 � i � n − 1 and 1 � j � m). Since the machines may have

different health states at the beginning of planning, RUL values may be

different, whichever the variant of considered optimization problem. If only

one running profile is considered, RUL values are always denoted by RULj(k)
with k the interval of time comprising the instants t between the dates

(k − 1)ΔT and kΔT , and with 1 � k � K. This also enables a

representation of different states taking place in the machines during the

planning process, knowing that the schedule is not chosen systematically for

each interval.

For the sake of simplification, in what follows, we denote by RULi,j the

RUL value corresponding to the profile Ni,j of the machine Mj at the
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schedule’s start (k = 1) and RULj the RUL value corresponding to the profile

N0,j of the machine Mj for the same interval when this machine has only one

profile.

6.1.5. Application example

To illustrate the relevance of this approach, a naive application example is

proposed in order to show that using a machine with its most efficient profile

is not always the best solution when it is necessary to extend the production

horizon while respecting a required level of service; this may happen even if

the efficiency of the machines decreases with their running profiles, in which

lifetime is longer but the throughput becomes lower, as was pointed out above.

Consider a set M of four machines (M = {M1,M2,M3,M4}) with which

a certain throughput has to be produced. At each instant t, this total throughput

has to reach at least the level of a constant demand of σ = 450 throughput

units. The objective is to maximize the time during which this level of service

is being reached. At time t = 0, M1 is supposed to be capable of providing

two different throughputs, which correspond to two running profiles: ρ0,1 =
450 during one interval of time (RUL0,1(1) = 1) or ρ1,1 = 125 during three

intervals (RUL1,1(1) = 3). At t = 0, the other machines Mj (j = 2, 3, 4)

can produce either ρ0,j = 350 during one interval of time (RUL0,j(1) = 1) or

ρ1,j = 75 during three intervals (RUL1,j(1) = 3) - see Table 6.1. The features

of these running profiles decrease exponentially with decreasing throughput.

For any instant t > 0, the features of each profile Ni,j (0 � i � n − 1 and

1 � j � m) depend on the past usage of the machine Mj . In accordance

with these hypotheses, the considered optimization problem is the following:

MAXK(σ, ρi,j , RULi,j).

Three different scenarios of machines’ utilization are proposed. In the first

scenario (S1), the machines are used with their most efficient profile, N0,j , and

no overproduction is authorized. It can be seen in Figure 6.3(a) that in this

case, the platform can operate for four intervals of time. However, the demand

is met only during the first interval ΔT , during which the machine M1 alone

reaches the required throughput. For the three following intervals (t > ΔT ),

the throughput delivered by the machines does not meet the demand σ. In fact,

ρ0,2, ρ0,3, ρ0,4 < σ. Therefore, in the scenario S1 with K = 1, the production

horizon is equal to one interval of time (H = ΔT ).
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t = 0 t = ΔT t = 2ΔT t = 3ΔT

S
ce

n
ar

io
S1

(H
=

Δ
T
)

M1
(450,1) (450,0) (450,0) (450,0)

(125,3) (125,0) (125,0) (125,0)

M2
(350,1) (350,1) (350,0) (350,0)

(75,3) (75,3) (75,0) (75,0)

M3
(350,1) (350,1) (350,1) (350,0)

(75,3) (75,3) (75,3) (75,0)

M4
(350,1) (350,1) (350,1) (350,1)

(75,3) (75,3) (75,3) (75,3)

S
ce

n
ar

io
S2

(H
=

2
Δ
T
)

M1
(450,1) (450,0) (450,0) (450,0)

(125,3) (125,0) (125,0) (125,0)

M2
(350,1) (350,1) (350,0) (350,0)

(75,3) (75,3) (75,0) (75,0)

M3
(350,1) (350,1) (350,0) (350,0)

(75,3) (75,3) (75,0) (75,0)

M4
(350,1) (350,1) (350,1) (350,0)

(75,3) (75,3) (75,3) (75,0)

S
ce

n
ar

io
S3

(H
=

3
Δ
T
)

M1
(450,1) (450,0) (450,0) (450,0)

(125,3) (125,2) (125,1) (125,0)

M2
(350,1) (350,0) (350,0) (350,0)

(75,3) (75,0) (75,0) (75,0)

M3
(350,1) (350,1) (350,0) (350,0)

(75,3) (75,3) (75,0) (75,0)

M4
(350,1) (350,1) (350,1) (350,0)

(75,3) (75,3) (75,3) (75,0)

Table 6.1. Evolution of features over time for the running profiles
(Ni,j = (ρi,j ,RULi,j)) of each machine Mj for each of the three

scenarios in Figure 6.3

When overproduction is authorized (scenario S2), two machines can be

used in parallel. This enables an increase in the horizon to two intervals (see

Figure 6.3(b), with H = 2ΔT ). The machine M1 is still used during the first

interval, for 0 � t � ΔT . The machines M2 and M3 are then used in parallel

during the second interval, for ΔT � t � 2ΔT . For t � 2ΔT ,

RUL0,1 = RUL0,2 = RUL0,3 = 0 and ρ0,4 < σ. If the production stops at the

end of the two intervals, the platform has a residual potential. Since the

machine M4 has not been used, it does not require any maintenance. If the

machines can be used only with their nominal running profile N0,j , the

planning proposed in Figure 6.3(b) is the optimal one. In fact, no other

combination of machines’ contributions meets the demand beyond two

intervals.
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Figure 6.3. Example of machines’ utilization with a discrete number of
running profiles. For a color version of this figure, see

www.iste.co.uk/chebel-morello/maintenance.zip

In order to further extend the production horizon, it is thus necessary to

use the machines in a different way. The third scenario (S3) illustrated in

Figure 6.3(c) consists of using the machine M1 with a lower throughput,

which enables its utilization for a longer time than with its nominal profile,

and consequently enables the demand to be met over three intervals of time.

In fact, by using this machine with a throughput of ρ1,1 = 125, its

contribution can be added to that of one of the other three machines (ρ0,j ,
with j = 2, 3, 4) at each interval. After having been used during an interval,

the machines M2, M3 and M4 reach their end of life

(RUL0,2 = RUL0,3 = RUL0,4 = 0 for t � ΔT ). The same happens for the

machine M1 at the end of the third interval (RUL1,1 = RUL0,1 = 0 for

t � 3ΔT ). Since there is a limited number of combinations for the choice of

machines and of their running profile for each interval, it can be easily seen

that no other choice reaches the demand σ for a greater number of intervals.

K = 3 for H = 3ΔT is therefore an optimal solution to the optimization

problem MAXK(σ, ρi,j , RULi,j) considering the set M of machines

described previously. The last scenario S3 shows that decreasing the

efficiency of a machine enables an extension of the platform’s utilization

duration while respecting the required service level.

6.2. Properties and study of complexity

For the problem considered here, it is possible to define an upper bound

(UB) for the number of intervals K that can be completed. As a result, the
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optimal value of K is lower than this bound UB. As we will see later, since this

problem is NP-complete in the strong sense in the general case, this bound will

help measure the performance of sub-optimal approaches that are proposed for

the problem when an optimal approach is impossible. Furthermore, we carried

out a study of the problem’s complexity in order to analyze the cases in which

an optimal solution can be found via a polynomial algorithm and the cases in

which only a sub-optimal approach is possible. However, in all the cases, we

propose an optimal modeling of the solution by formulating a mathematical

program, which we linearize in the form of an integer linear program (ILP).

This linear program can then be solved when the size of the problem, i.e. the

number of variables, is not too large, by resorting to a commercial solver such

as Gurobi [GUR 14] or Cplex [CPL 17].

The most general problem that considers a constant demand over time,

MAXK(σ, ρi,j , RULi,j), is first defined. Complexity results are then

demonstrated for different configurations of the optimization problem with a

constant demand. In certain conditions, it is shown that an optimal solution

can be found in a polynomial time. The proof of NP-completeness of the most

generic problem by taking into account heterogeneous machines with several

running profiles is then provided.

6.2.1. Upper bound for MAXK(σ, ρi,j ,RULi,j)

An upper bound, denoted by UB(σ, ρi,j ,RULi,j), can be defined for a

generic problem MAXK(σ, ρi,j ,RULi,j) that considers a demand σ constant

over time and a set of machines that are heterogeneous in terms of throughput

and RUL. If all the machines are used with the running profile related to their

greatest efficiency, max0�i<n(ρi,j · RULi,j), this UB, defined by equation

[6.1], corresponds to the maximum theoretical number of intervals K during

which the demand σ can be met:

UB(σ, ρi,j , RULi,j) =

⎢⎢⎢⎢⎢⎢⎣

m∑
j=1

max0�i<n(ρi,j · RULi,j)

σΔT

⎥⎥⎥⎥⎥⎥⎦ [6.1]

This bound can be reached, although in very restrictive conditions. The

only such case is when no overproduction occurs during the whole production
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horizon and when all the machines have reached their end of utilization before

the maintenance at the end of the planning, i.e. when the platform’s machines

have provided all their best capabilities, in other words, with their nominal

profile and without losses. In practice, this situation very seldom occurs. The

construction of UB(σ, ρi,j ,RULi,j) can be seen from the geometrical point

of view as a filling of a rectangular surface, whose height corresponds to the

value of demand σ. Since this height is fixed, the potential of all the machines

is used to fill the surface in such a way that most parts of the rectangles with

width equal to KΔT are filled.

6.2.2. Complexity of the problem MAXK(σ, ρ,RULj)

First of all, let’s consider the problem MAXK(σ, ρ,RULj), in which all the

machines are homogeneous, i.e. all of them can provide the same throughput

ρ. However, different RULs, denoted by RULj , may be associated with them.

The total required throughput, σ, is constant over time. By hypothesis, this

demand can be met by q machines such that (q−1)ρ � σ � q ·ρ, with q ∈ N
∗

the minimum number of machines necessary to reach σ for each interval of

time ΔT such that q � m. The problem can be expressed in the following

way: how do we use q machines from a set M of m machines, in order to

maximize the production horizon? The number of completed intervals relative

to the optimal solution of this optimization problem is denoted by K (M , q).

Consider a relaxation of this problem, in which time is continuous. In this

case, a machine can be replaced by another at any instant t, and the maximum

production horizon is denoted by Kcont(M , q) ·ΔT (see equation [6.2]):

Kcont(M , q) =

∑
1≤j≤m RULj

q
[6.2]

Kcont(M , q) is a UB for K (M , q), which can be reached only in very

restrictive conditions. As in the case of the UB defined previously, the

construction of Kcont(M , q) can be seen as a geometrical problem, whose

solution does not always respect the features of the machines’ running

profiles.

6.2.2.1. Optimal greedy algorithm for MAXK(σ, ρ,RULj)

The problem MAXK(σ, ρ,RULj) is very similar to a classical parallel

machines’ scheduling problem Pq|prmp|Cmax studied by Pinedo
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in [PIN 95], in which m tasks have to be scheduled on q machines in parallel,

with an objective of minimizing the total tasks’ execution time (makespan).

First of all, two identical hypotheses are encountered in each of these

scheduling problems, notably the discretization of time in intervals and the

authorization of a discrete preemption. In the problem Pq|prmp|Cmax, the

latter hypothesis means that the tasks can be interrupted before the end of

their execution and restarted later, without any consequence on their

execution time. In the problem MAXK(σ, ρ,RULj), preemption would

eventually take place between two consecutive intervals of time, and its

authorization means that an arrest can be defined during a machine’s

utilization, without modifying its RUL.

Then, a parallel can be drawn between the different elements of each

problem. The q machines that have to operate in parallel in order to meet the

demand σ in the problem MAXK(σ, ρ,RULj) are equivalent to the q
resources in parallel considered in Pq|prmp|Cmax. Instead of m tasks to be

executed in Pq|prmp|Cmax, the problem MAXK(σ, ρ,RULj) considers m
machines to be used. The execution time of m tasks can be assimilated to the

RULs of the m machines. Performing a task in its entirety then corresponds to

using the whole potential of a machine.

The LRPT (Longest Remaining Processing Time first) algorithm was

proposed by Pinedo [PIN 95] to find an optimal scheduling for the problem

Pq|prmp|Cmax with discretized time. For each interval of time, this

algorithm consists of scheduling the tasks with the longest remaining

execution time as a priority. This is possible thanks to the hypothesis of

authorized preemption. The obtained schedule is active, without delays and

time-outs. These features are compatible with the scheduling problem

considered in this section, MAXK(σ, ρ,RULj). The latter can thus be solved

in an optimal way by using the greedy algorithm LRUL (Longest Remaining

Useful Life first), based on the principle of the LRPT algorithm. In the same

way as LRPT, the LRUL algorithm consists of using the machines with the

longest RUL as a priority. Arrests and restarts of machines are authorized at

the beginning of each interval of time. At the beginning of each interval k
(1 � k � K), the q machines with the longest RUL at the time kΔT are then

exploited for an interval of time.
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6.2.2.2. Complexity of the problem MAXK(σ, ρ,RULj)

Several lemmas come in useful to define the complexity of the considered

optimization problem MAXK(σ, ρ,RULj).

LEMMA 6.1.– If q < m and max1�j�m(RULj) � Kcont(M , q), then

K (M , q) = K (M ′, q − 1), with M ′ = M \ {Mj′ such that

RULj′ = max1�j�m(RULj)}.

According to lemma 6.1, solving a problem that satisfies these properties

is equivalent to solving the same problem for a demand σ′ = σ − ρ, without

taking into account the machine with the longest RUL that exceeds the UB

Kcont(M , q).

PROOF.– If max1�j�m(RULj) � Kcont(M , q), the machine with the longest

RUL is used during the whole planning horizon. Then, the maximum number

of intervals in which the demand can be met, K (M , q), is not limited by this

machine. The value K (M , q) can thus be determined by solving the problem

without considering the machine with the longest RUL. The contribution ρ of

this machine to the total service is however retained. The demand associated

with the new optimization problem is then σ′ = σ − ρ, and the number of

machines required to meet this demand is q′ = q − 1. �

LEMMA 6.2.– If q � m, RULj(1) � 1 ∀1 � j � m and

max1�j�m(RULj(1)) � Kcont(M , q), then an optimal schedule for the

problem MAXK(σ, ρ,RULj) can be determined by using the greedy

algorithm LRUL (Largest Remaining Useful Life first). In such a case, the

production horizon of this planning is K (M , q)ΔT = �Kcont(M , q)�ΔT .

PROOF.– By construction, using the LRUL algorithm and due to the fact that

RULj(0) ≥ 1 for any j such that 1 ≤ j ≤ m, there always exist q machines

such that RULj(k) ≥ 1 for all k, such that 0 ≤ k ≤ k1 = �∑1≤j≤m(RULj

(0) − 1)/q�. When k = k1 + 1, then RULj(k1 + 1) ≤ 1 for all j such that

1 ≤ j ≤ m and
∑

1≤j≤m RULj(k1) = m+r with r =
∑

1≤j≤m(RULj(0)−1)
mod q. At a time k1ΔT , k1 intervals are completed and the demand can be

met for �(m + r)/q� other intervals. It is then possible to find a schedule

that uses the LRUL algorithm and completes k1 + �(m+ r)/q� intervals with

k1 + �(m + r)/q� =
∑

1≤j≤m(RULj(0) − 1)/q − r/q + (m + r)/q − r′/q
with r′ = (m+r) mod q. After simplification, the previous formula becomes∑

1≤j≤m RULj(0)/q − r′/q = �∑1≤j≤m RULj(0)/q� = �Kcont(M , q)�. �
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THEOREM 6.1.– An optimal solution can be found in a polynomial time for

the problem MAXK(σ, ρ,RULj), in O(Kcont(M , q) ·m · log(m)).

PROOF.– The complexity of the algorithm that provides an optimal

scheduling for the problem MAXK(σ, ρ,RULj) was proved in the following

research report [HER 14c] for any case. At first, simple cases were

considered, when q > m, q = 1, and q = m. For these three cases, the

solution can be found respectively with an algorithmic complexity of O(1),
O(m) and O(m). In the other cases, the problem is solved by using the LRUL
algorithm, whose complexity is O(Kcont(M , q)×m× log(m)). �

6.2.3. NP-completeness of the generic case

In the most generic case, the problem MAXK(σ, ρi,j ,RULi,j), which takes

into account heterogeneous machines with several running profiles, appears to

be NP-complete in the strong sense.

THEOREM 6.2.– The research of an optimal solution to the problem

MAXK(σ, ρi,j ,RULi,j) is an NP-complete problem in the strong sense.

PROOF.– The NP-completeness of the problem in the general case was proven

in the following research report [HER 14c], by means of a simplification, in

order to obtain a problem of 3-partition [GAR 79], which is known to be NP-

complete in the strong sense. �

6.3. Optimal approach

An approach based on an exact solution method is proposed to tackle the

general optimization problem MAXK(σ, ρi,j ,RULi,j). In the previous section,

it was shown that this problem is NP-complete in the strong sense. However, a

characterization of the optimization problem can be proposed by means of an

optimal formulation. Here, we propose expressing the problem in the form of

an ILP.

6.3.1. Linear programming

A variant of the optimization problem MAXK(σ, ρi,j , RULi,j) can be

defined in the following way: considering the health state of the available
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machines, i.e. the values of RULi,j (0 � i � n− 1 and 1 � j � m), is there a

schedule that allows these machines to meet the demand σk during a given

number of intervals K? For a given horizon KΔT , this solution research can

be modeled in the form of a mathematical program.

Let xi,j,k (0 � i � n−1, 1 � j � m and 1 � k � K) be a binary variable

such that xi,j,k = 1 if the machine Mj is used with its running profile Ni,j

during the interval k, and xi,j,k = 0 otherwise. The definition of a variable for

each interval of time ensures that the arrests/restarts of the machines as well

as the modifications of the running profiles during the utilization are admitted

only at the beginning of an interval.

The constraints of the mathematical program express both the

requirements in terms of service and the limits of machines’ usage. The first

set of constraints, defined by equation [6.3], limits the utilization of a

machine during an interval k. In fact, each machine can be used only once per

interval, with a single running profile Ni,j :

n−1∑
i=0

xi,j,k � 1 ∀1 � j � m, ∀1 � k � K [6.3]

The second set of constraints, defined by equation [6.4], ensures that the

machines are not used for a longer time than their RUL. We consider that, if a

machine Mj is used with a running profile Ni,j during an interval k,

ΔT/RULi,j units of time have to be subtracted from the initial value of RUL
associated with the profile Ni,j . The sum of all the portions subtracted in

succession from the initial lifetime during the utilization of a machine must

not exceed 100%:

n−1∑
i=0

K∑
k=1

xi,j,k ·ΔT

RULi,j
� 1 ∀1 � j � m [6.4]

The last set of constraints (equation [6.5]) ensures that the demand σ is met

during the whole production horizon, i.e. for all intervals k such that 1 � k �
K:

m∑
j=1

n−1∑
i=0

(xi,j,k · ρi,j) � σ ∀1 � k � K [6.5]
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The mathematical program defined by the equations [6.3], [6.4] and [6.5]

allows for a verification of the existence of a solution for the decision problem

without any objective function. However, the addition of an objective function

enables, according to certain criteria, the selection of the best configuration of

machines among all the solutions of the mathematical program. Coherently

with the hypotheses detailed in the statement of the problem in section 6.1,

the objective function proposed in equation [6.6] aims to minimize total

overproduction over the entire production horizon. The minimization of

potential that remains at the end of the schedule could also be considered.

This objective function would potentially lead to some overproduction, but it

would maximize the number of machines that reach the end of life at the

production horizon’s end. This would enable a maximal grouping of

maintenance operations and thus a minimization of the related costs:

min
K∑
k=1

( m∑
j=1

n−1∑
i=0

xi,j,k · ρi,j,k − σ

)
[6.6]

Since all the constraints are linear, the mathematical program can be solved

by means of linear programming. The corresponding ILP is defined by the

system of equations [6.7]. The only variables are the binary variables xi,j,k.

The quantities ρi,j,k, RULi,j and σ are input data of the problem.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
K∑

k=1

( m∑
j=1

n−1∑
i=0

xi,j,k · ρi,j,k − σ

)
[6.7a]

n−1∑
i=0

xi,j,k � 1 ∀1 � j � m, ∀1 � k � K [6.7b]

such that

n−1∑
i=0

K∑
k=1

xi,j,k ·ΔT

RULi,j
� 1 ∀1 � j � m [6.7c]

m∑
j=1

n−1∑
i=0

(xi,j,k · ρi,j) � σ ∀1 � k � K [6.7d]

with xi,j,k ∈ {0, 1} ∀1 � i � n− 1, ∀1 � j � m, ∀1 � k � K [6.7e]
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6.3.2. Optimal solution

The linear program presented above allows us to find the best solution to

the considered decision problem for a fixed number of intervals K. This

approach is not adequate for solving the optimization problem

MAXK(σ, ρi,j ,RULi,j), which consists of determining the maximum number

of intervals K for which a solution exists. For example, a binary search may

be used to find the greatest value of K in a logarithmic number of steps over

the space [1, UB(σ, ρi,j ,RULi,j)], with UB the UB for K (see section 6.2.1).

It is possible to further reduce this interval by considering a lower bound

equal to any solution provided by a heuristic approach which will necessarily

be lower than the optimal value.

6.4. Sub-optimal solution

The optimal approach using the linear program illustrated in the previous

section can be used only for small instances of the problem, i.e. with few

machines, few different running profiles for each machine and a short

horizon. For example, five machines, with two possible profiles each, and a

horizon of 20ΔT lead to a problem involving more than 200 variables. For

realistic problem sizes, it is necessary to tackle the solution with a

sub-optimal approach based on heuristics that are capable of proposing valid

solutions in a polynomial time.

The heuristics that we propose solve the generic problem with a constant

demand MAXK(σ, ρi,j , RULi,j). Each of them allocates enough machines to

meet the demand for each interval k, while doing this for the greatest possible

value of k. The heuristics that we defined propose solutions that are very close

to the optimal values in the case of the best ones, as we will show later.

However, in any case, there remain some machines that can be used again;

in other words, the potential is not exhausted completely. The horizon cannot

be extended, since, in this case, there are not enough machines to complete

another interval of time. Therefore, we propose reconsidering the proposed

schedule by means of a reparation phase, whose goal is to swap the utilization

order of the machines in order to increase the number of machines with a non-

null potential. In this way, together, these machines will be able to complete

another interval. This is a post-processing applied to heuristics, and we will
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show later that the lowest value of the obtained solutions is even closer to the

UB, the latter being greater than the optimal solution.

In the following sections, we present some of the heuristics analyzed in this

study. These heuristics are illustrated via figures by using the configurations of

machines described in Figure 6.4.

Figure 6.4. Platform of machines considered in order to illustrate the
solutions obtained via different heuristics. For a color version of this

figure, see www.iste.co.uk/chebel-morello/maintenance.zip

6.4.1. Heuristics

6.4.1.1. H–LRF: heuristic that favors the longest RULs

The heuristic H–LRF (Largest RUL First Heuristic) operates on groups of

intervals and favors the machines’ usage with their running profile Nn−1,j ,

which provides the lowest throughput and has the longest RUL. The idea

consists of maximizing the utilization time of each machine in order to

maximize the utilization of the whole set. A subset of machines with the

greatest values of RULn−1,j is selected in such a way that the total
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throughput, ρtot, reaches at least the level of the demand σ. If the throughputs

of profiles Nn−1,j of the available machines are such that it is impossible to

reach σ (ρtot < σ), the total throughput is then increased by using, if possible,

the machine Mj with the greatest RULn−1,j with its profile Ni−1,j instead of

Ni,j . This process is reiterated until at least the total throughput provided

reaches the demand (ρtot � σ). The solution is applied to the maximum

number of intervals, corresponding to the minimum RUL of the selected

machines. The process of selecting the machines and the related running

profiles is illustrated in Figure 6.5. It terminates as soon as the remaining

potential can no longer meet the demand.

Figure 6.5. Illustration of the operating principle of the H–LRF
heuristic. For a color version of this figure, see
www.iste.co.uk/chebel-morello/maintenance.zip

The Figure 6.6 illustrates a solution obtained by means of H–LRF heuristic

by considering the set of machines described in Figure 6.4.

6.4.1.2. H–HTF: heuristic that favors the greatest throughput

The heuristic H–HTF (Highest Throughput First Heuristic) is based on the

same operating principle as the H–LRF. The difference lies in the fact that,

this time, the running profiles that provide the greatest throughputs,

N0,j = (ρ0,j ,RUL0,j), are favored. Let’s recall that ρ0,j = ρmaxj =
max0�i<n ρi,j and RUL0,j = RULminj = min0�i<n RULi,j for every
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machine Mj . Two variants of H–HTF can be considered. The first, H–HTFlt

(Highest Throughput First, low throughput), selects in first place the machines

with the smallest nominal throughput ρ0,j , while the second, H–HTFht

(Highest Throughput First, high throughput), selects the machines with the

greatest nominal throughput. In both variants, the smallest subset of machines

that allows the demand σ to be met is selected. If the provided throughput is

greater than the demand (ρtot > σ), the contribution of the machine Ml with

the smallest RUL associated with the selected profile (denoted by Ni,l) is

decreased, but only if the total throughput remains greater than or equal to the

demand. If possible, the machine Ml is then used with the profile Ni+1,l

instead of profile Ni,l that was selected previously. This enables an extension

of the lifetime of machine Ml, and therefore of the solution’s horizon. In the

same way as in H–LRF heuristic, the number of intervals during which the

solution can be applied is limited by the selected machine with the smallest

RUL. This process is repeated as long as the remaining machines are capable

of meeting the demand σ. The different steps are described in Figure 6.7 for

the two variants of the heuristic, H–HTFlt and H–HTFht.

Figure 6.6. Schedule obtained from the H–LRF heuristic.
For a color version of this figure, see

www.iste.co.uk/chebel-morello/maintenance.zip

The solutions obtained from each of the two variants of the H–HTF

heuristic are detailed in Figure 6.8. For the considered set of machines (see

Figure 6.4), the horizon reached is the same (H = 5ΔT ), although the

machines’ utilization is different.
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Figure 6.7. Illustration of the operating principle of the two variants of
the H–HTF heuristic. For a color version of this figure, see

www.iste.co.uk/chebel-morello/maintenance.zip

6.4.1.3. H–DP: heuristic based on dynamic programming

The heuristic H–DP (Dynamic Programming Heuristic) is more elaborate

than the previous ones. For each interval of time k, by taking into account the

machines that are available at the beginning of the interval, the goal is to find

the best scheduling of the machines that makes it possible to reach at least

the level of the demand σ, while minimizing the overproduction. It is then

necessary to determine the best subset of machines to be used and to select, for

each among them, the most appropriate running profile. The algorithm capable

of making this choice is based on the solving principle of a knapsack problem.

The main difference with this classical problem of combinatorial optimization

lies in the fact that the sum of the values (ρi,j) of the selected objects (Mj)

has to be greater than or equal to the knapsack’s capacity (σ). Furthermore,

each object Mj can be associated with different values ρi,j (0 � i < n), and

only one of them can be selected for the solution. The considered goal is the



118 From Prognostics and Health Systems Management to Predictive Maintenance 2

minimization of the sum of values related to the machines, in the case when

this sum exceeds the total maximum weight of the knapsack σ.

Figure 6.8. Schedules obtained from the two variants of the H–HTF
heuristic. For a color version of this figure, see
www.iste.co.uk/chebel-morello/maintenance.zip

The algorithm developed for H–DP uses the approach of dynamic

programming in two dimensions. The research of a solution can be illustrated

as a filling of a 2D matrix (see Figure 6.9). Each available machine is

considered one after another, in increasing order of nominal throughput ρ0,j
of the available machines. This sorting limits the number of intermediate

solutions stored and minimizes both the required memory and the execution

time. The machines with equal nominal throughput are sorted according to

the decreasing order of their RULn−1,j . The running profile of each machine

is then considered in succession, from the most sub-nominal profile (Nn−1,j)

to the nominal one (N0,j). Respecting this order for each research of solution
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enables a homogeneous wear of the set of machines. In fact, a certain turnover

is followed, which preserves the maximum number of different available

machines until the end of the planning. This enables an extension of the

production horizon.

σ′
1 5 10 σ

M1

M2

M3

M4

OV (σ, 4) = min
(
OV (σ, 3), OV0(σ, 4), OV1(σ, 4)

)
ov1(σ, 4) = OV (σ − ρ1,4, 3) + ρ1,4

Figure 6.9. Illustration of the operating principle of the dynamic
programming in two dimensions. For a color version of this figure, see

www.iste.co.uk/chebel-morello/maintenance.zip

For each machine Mj , the total throughput targeted σ′ is increased from 1
to σ. For each successive value of σ′, each running profile of Mj is

considered to determine whether the machine has to be selected or not.

Testing all the possibilities yields the definition of the best configuration with

respect to the objective. A recursive mathematical formulation of optimal

solution’s construction is given in equations [6.8], [6.9] and [6.10].

Let ovi(σ
′, j) be the total throughput obtained with the first j machines,

by using together the jth machine in its ith running profile and the optimal

configuration obtained with the first j − 1 machines for the demand σ′ − ρi,j
(see equation [6.8]). Let OVi(σ

′, j) be the variable that contains the value of

ovi(σ
′, j) if it reaches at least the demand’s level σ. Otherwise, OVi(σ

′, j) =
+∞ (see equation [6.9]). Thus, it is possible to consider only those solutions

that reach at least σ′ at each step and therefore reach σ for the global solution.

Finally, let OV (σ′, j) be equal to the optimal total throughput, i.e. a throughput

greater than or equal to the demand σ′, obtained with the first j machines (see

equation [6.10]). The optimal total throughput for the current interval is located
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at the position OV (σ,m) of the 2D matrix OV used by the algorithm. Each

choice performed for each couple (σ′, j) is stored during the process of the

solution’s research. Thanks to this, it is possible to reconstruct the solution for

the demand σ′ = σ. In the case of equivalent solutions, the algorithm chooses

the solution that involves the least number of different machines:

ovi(σ
′, j) = OV (σ′ − ρi,j , j − 1) + ρi,j with 1 � i � n− 1 [6.8]

OVi(σ
′, j) =

{
ovi(σ

′, j) if ovi(σ
′, j) � σ′

+∞ otherwise
[6.9]

OV (σ′, j) = min
(
OV (σ′, j − 1), min

0�i�n−1
OVi(σ

′, j)
)

[6.10]

An example of the solution is given in Figure 6.10. It can be seen that the

selection process performed by the H–DP heuristic minimizes the

overproduction for the longest time possible. The solution applied to each

interval of time is optimal given the health state of the whole set of machines

at the beginning of the interval. However, the global schedule is not

necessarily optimal.

Figure 6.10. Scheduling obtained with the H–DP heuristic.
For a color version of this figure, see

www.iste.co.uk/chebel-morello/maintenance.zip

6.4.2. Improvement of the heuristics

The results developed below show that the heuristics proposed above do not

provide optimal solutions, while all the machines have a non-null potential; in
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other words, all the machines are not completely used until their end of life. All

these machines cannot complete an extra interval collectively. If by chance one

of these machines has a potential that exceeds several intervals, this machine

could take the place of another machine that has no potential at the end, for the

duration of an interval of time. In this way, there would be one more machine

among those with remaining potential at the end of the schedule, and another

interval could then be completed. If this is not sufficient, then it would be

necessary to restart and recover the process for another interval, until this is

not possible anymore. This reparation principle is justified by means of a very

simple example in the following section.

6.4.2.1. Illustration of the reparation principle

The reparation principle can be explained with an example involving three

machines that can be used with only one running profile. The schedule

obtained with the heuristic based on dynamic programming H–DP is

illustrated in Figure 11.1(a). It can be seen that the machine M3 is never used

during this planning. Therefore, some potential remains, although no interval

can be added in this situation. In fact, the machine M3 is not powerful enough

to meet the demand σ alone. It would be necessary to use this machine in

parallel with itself, which is impossible.

Despite everything, there is another possibility of using the machine M3.

Since it has not been used during the first scheduled interval (0 � t � ΔT ), it

can be swapped with the machine M2 for one interval. This entails an

overproduction during this first interval, but it yields two different machines

available at the end of the schedule. Thus, the demand can be met for an extra

interval by using the machines M2 and M3 in parallel (see Figure 11.1(b)).

The same swap can be done for the second interval in the schedule. In this

way, it is possible to recover the machine M2 for one interval and again to

increase the number of completed intervals by 1 (see Figure 11.1(c)). In this

example, applying the reparation principle enables thus a complete utilization

of the potential provided by the set of machines and an extension of the

production horizon from H = 4ΔT to H = 6ΔT .

6.4.2.2. Reparation strategy

The strategy that we propose is greedy and it operates in the following way,

whichever the heuristic used to prepare an initial solution with at least one

completed interval (K ≥ 1). As it has been said in the introduction of this

section, the idea consists in swapping the machines whose RUL is non-null at
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the end of the schedule with some machines used in the planning until their

potential becomes null after an interval k such that k ≤ K.

Figure 6.11. Reparation strategy. For a color version of this figure, see
www.iste.co.uk/chebel-morello/maintenance.zip

Let MRUL �=0 and MRUL=0 be two subsets of machines whose values of

RUL are respectively greater than zero and equal to zero for k > K. The

reparation consists in constructing the subset of machines MRUL �=0 sorted in

decreasing order of RUL (for k > K) with the smallest size and to search

the first interval kswap such that each machine of MRUL �=0 does not appear
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in the interval kswap anymore, and such that there exists a subset of machines

Mkswap ⊂ MRUL=0 which are used during this very interval kswap. In addition,

the following relation has to be true in order for the swaps to be valid, in virtue

of the fact that the demand should always be satisfied:∑
Mj∈Mkswap

ρ∗,j ≤
∑

Mj∈MRUL �=0

ρmax,j

Then, the two subsets Mkswap and MRUL �=0 are swapped. This process is

iterated until an extra interval can be added to the initial schedule. The greedy

reparation algorithm stops when no other swap is possible.

By associating the heuristics described previously with the reparation

process, we propose three new heuristics: H–LRF-R, H–HOF-R and

H–DP-R, where “R” stands for “reparation”.

6.5. Simulation results

Simulations are required to evaluate and compare the efficacy of the

proposed sub-optimal approaches. For this purpose, we built a simulator

capable of generating problems and platforms relative to the problem

MAXK(σ, ρi,j , RULi,j).

For each optimization problem, several configurations were generated,

which serve as a basis for the application of strategies implemented by the

different heuristics. Each configuration corresponds to a platform of machines

in accordance with the model described at the beginning of this chapter. The

parameters are the following:

– m defines the number of the platform’s machines. We chose m such that

m ∈ {10, 25, 50};

– n defines the number of different running profiles per machine. We chose

n such that n ∈ {1, 2, 5, 10};

– σk = σ is the constant demand over the whole production horizon. Only

one demand is associated with a particular problem; however, several demands

corresponding to different configurations were tested;

– α defines the workload applied to the platform such that σ = α × ρmax
with ρmax =

∑m
j=1 ρ0,j the maximum throughput that can be provided by



124 From Prognostics and Health Systems Management to Predictive Maintenance 2

the platform with the machines that it contains in its initial configuration. We

consider values of α such that 30% ≤ α ≤ 90%.

For each configuration, 20 different problems were generated randomly,

and the results that are illustrated represent the average of the results obtained

from the set of 20 problems depending on the platform’s workload α.

6.5.1. Comparison with the upper bound UB

The results obtained from the three other heuristics, H–LRF, H–HTF and

H–DP, are compared in Figure 6.12, in which the UB UB, defined by the

formula [6.1], is represented as well. This bound decreases when the

workload α increases. A high workload corresponds to a high demand σ.

Thus, the higher the load, the greater the number of machines required to

meet the demand and the lower the number of intervals that can be completed.

Figure 6.12. Average number of completed intervals as a
function of the workload χ−m = 25 machines, n = 5 running

profiles. For a color version of this figure, see
www.iste.co.uk/chebel-morello/maintenance.zip
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The variation of the number of machines m, as well as that of the number of

running profiles n do not have a significant impact on the results obtained with

the heuristic H–HTF. In fact, this heuristic favors the nominal running profiles.

For each machineMj , the nominal profile N0,j is always associated with the

same throughput ρ0,j and with the same value of RUL, RUL0,j , whichever

the number of considered running profiles. However, using the machines with

different running profiles during their lifetime can be of interest.

The heuristic H–LRF remains the least efficient with respect to the other

heuristics for low loads, but its efficiency is close to that of H–HTF starting

from α = 50% (see Figure 6.12). For high workloads, the throughputs

provided by sub-nominal profiles are potentially not sufficient enough to meet

the demand. H–LRF aims then to select certain machines with their nominal

profile, especially as the workload increases. The difference between the

strategies of H–LRF and H–HTF lies mainly in the selection of the machines

to be used for each scheduled interval: H–HTF favors the machines that

provide the greatest nominal throughput, whereas H–LRF selects the

machines with the lowest throughput in order to minimize overproduction.

With the latter strategy, it is possible to preserve more potential for the end of

the planning and therefore to complete more intervals. For α greater than or

equal to 70%, H–LRF thus outperforms H–HTF. H–LRF is also capable of

reaching greater production horizons than H–DP for these high workloads.

However, H–DP can obtain the best results for medium loads ranging from

50% to 60%.

Although the H–DP heuristic, based on dynamic programming, does not

provide the best results for all the workloads, its performance is never far from

the heuristics that outdo it. Furthermore, H–DP has the advantage of being

efficient and reliable in all the considered cases, whichever the workload, the

number of machines or the number of running profiles.

In the previous figures, it can be seen that the results obtained with all the

heuristics tend to get closer one to another as the workload increases. In fact,

whichever the implemented strategy, the number of possibilities of selecting

the machines and the related running profiles decreases when the demand σ is

close to the maximum throughput that can be provided by the platform.
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6.5.2. Improvement by means of reparation

The reparation is capable of improving the results obtained with the

heuristics H–HTF and H–DP in a significant way. The number of completed

periods with H–HTF-C (respectively, with H–DP-R) reaches, on average,

94% (respectively, 93%) of the UB UB(σ, ρi,j , RULi,j) for all the workloads

(see Figure 6.13). When swaps of machines are possible, the reparation thus

improves the results, yielding values that are very close to the optimal ones,

and achieves this for whichever efficiency of the initial heuristic (without

reparation).

Figure 6.13. Improvement by means of reparation - m = 25 machines,
n = 5 running profiles. For a color version of this figure, see

www.iste.co.uk/chebel-morello/maintenance.zip

6.6. Summary

Several solution methods were presented in this chapter for the problem of

maximizing the lifetime of a set of machines when each of them can provide a

discrete number of throughput levels. It was demonstrated that the

optimization problem is NP-complete in the strong sense in the general case.

An optimal formulation using an ILP is capable of finding the optimal
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solutions in a reasonable time for small-sized problems. For problems with a

greater size, and thus more realistic, several heuristics provide schedules that

define which machines have to be used at each instant and with which

running profile. A post-processing of the obtained results significantly

improves the solutions’ performance, getting closer to the optimal solution.

This theoretical study on this problem shows the relevance of this approach

and the confidence in the obtained results.

This chapter illustrates what a post-prognostic decision approach can be.

This kind of decision is capable of maintaining a certain service level given a

heterogeneous platform and the knowledge of the health state of each of its

components. We made the hypothesis that the predictions of the lifetime of

this equipment (RUL) are not questioned during the implementation of the

planning. However, it is quite possible to imagine an application of the

proposed heuristic methods in an iterative way when significant variations of

the health state of the components and of the platform appear. A new planning

then proposes as long a production horizon as possible in accordance with the

most up-to-date health state of the equipment. This process falls within a

predictive maintenance context.
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Conclusion

Summary

Making increasingly complex equipment reliable and maintaining it in

operational conditions whilst ensuring its durability requires an increased

monitoring of critical elements and of associated maintenance strategies,

notably of the predictive maintenance, which is capable of anticipating any

failure. A piece of equipment’s health state monitoring draws on the

acquisition of relative information, be it technical data or expert knowledge,

during processing and capitalization in order to ensure the traceability of the

operating state and to provide the knowledge required by decision algorithms

to propose an informed decision. In our studies, this equipment’s monitoring

is performed by means of a remote distributed platform that integrates a set of

decision support systems for maintenance. Such a platform offers services in

connection with all the strategies of maintenance, in particular with the

predictive maintenance strategy, which is capable of preventing any evolution

of the health state towards failure by means of actions appropriate for the

situation.

The goal targeted in this book is to make equipment intelligent and

reliable by bestowing it with the ability to make decisions about the actions to

be undertaken regarding its health state and its aptitude to fulfill its missions.

The first chapter developed an approach that makes a product intelligent,

knowing that, in this case, the product is a complex piece of equipment. In

order to make a product or piece of equipment intelligent in McFarlane’s

sense – to ensure the traceability of experienced events, to reason about this
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information, and to decide the actions to be undertaken – this equipment is

integrated into a closed-loop data sharing infrastructure “CL2M” capable of

managing the knowledge that concerns it and stored in a corporate memory

beforehand. This memory is distributed into two memories, one embedded in

the product in an RFID tag and another located remotely which lists all the

events undergone by the product.

The implemented CL2M architecture is capable of connecting the product

to a platform: an e-maintenance platform at first, it later becomes an

s-maintenance platform (s for semantics), which ensures real-time monitoring

of the product’s health state while offering maintenance management

strategies.

A knowledge capitalization approach based on this knowledge-oriented

platform, consisting of s-maintenance, was proposed and used. It is based on

the construction of an ontology called IMAMO-RFID, which is adapted to

so-called “intelligent” equipment. This ontology stems from different

ontologies that combine the concepts of maintenance, lifecycle and

distributed corporate memories. The integration of this ontology into a

knowledge-based system, which includes an inference engine that supports

different kinds of reasoning, constitutes the heart of the s-maintenance

platform and allows the equipment (1) to be intelligent, (2) to exploit at any

moment the knowledge capitalized during the product’s lifecycle and (3) to

propose decision support systems according to the available information. This

equipment can offer several services ranging from predictive maintenance

with RUL calculation and decision-making to many other maintenance

strategies such as systematic, corrective or conditional maintenance.

The feasibility of this approach was tested by implementing it on a ski lift.

Some critical elements of this ski lift were equipped with sensors in order to

be able to monitor their health state during the whole lifecycle, easily access

information concerning them at any moment, and provide this information to

the actors (both software components of the platform and human operators) in

order to inform them about the equipment’s condition.

Within the context of Industry 4.0, predictive maintenance is designed for

completing the policies of systematic preventive maintenance. For this

purpose, acquiring expert knowledge derived from both a capitalization

procedure and a monitoring method, is essential. As it was shown in
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[GOU 16], processing gathered data makes it possible to extract useful

information such as the health state and the remaining useful life of the

critical equipment in a system. By associating this information with the

knowledge of past and future usage, it is possible to implement a decision

strategy suitable to the context.

Numerous works in this domain have focused on the prognostic phase.

However, this information is not an end in itself but must be integrated by a

decision phase, which is a realization of the operational implementation of the

whole PHM process.

In this context, this book highlights different kinds of decisions in

connection with industrial issues. These decisions concern (1) adjustment of a

system’s command, (2) implementation of a predictive maintenance strategy,

(3) modification of equipments’ operational conditions and (4) re-definition

of missions. All these decisions have a common goal of optimizing the

system’s service quality, reliability, availability and safety with a reduction of

costs as a result.

Outlook and prospects

The intelligence degree of a piece of smart equipment, which is none other

than a piece of equipment connected to an s-maintenance platform, depends

on the functions offered by the s-maintenance platform and the decision

support services. S-maintenance is a promising new concept, which we

defined as the realization of maintenance based on the sharing of expert

knowledge of the domain and the provision of adaptive and autonomous

services. This concept is implemented by means of an s-maintenance

platform: a collaborative platform that formalizes this knowledge and sharing

between different applications integrated in the system, which ensures a

technical and semantic interoperability. The first version of this new

generation of platforms, providing on-demand services for indicators defined

by a user, has been implemented. One of the prospects consists in offering

dynamic services more advanced than those of this first version. In our work,

we proved the feasibility of developing a self-learning and self-management

maintenance system by means of a dynamic experience feedback method.

Such a method exploits the behavior of the process during the actual

execution of the maintenance platform. Feedback regarding activities will
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help to make the existing knowledge explicit on the platform, thus

formalizing and sharing collective knowledge.

In fact, trace engineering provides a new form of experience reuse and

appears to be the most suited means for providing this feedback through the

dynamic aspect of knowledge included in the s-maintenance platform. For

this purpose, we developed a trace-based system for tracing and analyzing

activities carried out via a maintenance platform. This trace-based system

exploits the events of a log file that lists all the interactions between the users

and the processes of the s-maintenance platform.

One of the paths to be explored is the development of mechanisms of

collaboration between the different applications within the s-maintenance

platform. The latter would thus ensure the capitalization of knowledge

regarding several connected pieces of equipment and would allow them to

collaborate with each other.

The concept of intelligent objects enables a decentralized management of

decisions regarding the equipment. This decentralized management allows

each piece of equipment to capitalize its expert knowledge extracted from the

sensor data, which ensures the monitoring of the health state of its constituent

elements and allows it to make decisions regarding itself. For a collaboration

between autonomous equipment, the collaborative mechanisms of an

s-maintenance platform may be exploited in order to extend the autonomous

and individual decision-making to a collective one, for example in the

management of air traffic, where each airplane is capable of re-defining its

trajectory depending on that of the other airplanes passing nearby.

Most research highlights the fact that the utilization duration of a system

before maintenance is reduced to the lifetime of its critical components.

Therefore, the date of the next maintenance is defined by the shortest lifetime

among those of the critical components. This simplification may conceal the

critical aspects of some secondary components for which a systematic

preventive strategy is sufficient from the economic point of view. Thus, there

may be a conflict between maintenance strategies and it appears it is

necessary to ponder how maintenance is taken into account from the global

point of view of a whole system.

Furthermore, organizing maintenance services does not yet take into

account the amount of changes entailed by the implementation of predictive
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maintenance in its operations. It is important to be able to demonstrate the

possible benefits of PHM as well. Obviously, the prognostic is not profitable

in all the cases and those systems should be identified in which the gain would

be the most tangible, at least in terms of people’s safety and the availability of

systems. Several businesses focused on land and air transport are actively

interested in this PHM issue, from the observation to the decision.
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