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Foreword

Real-time embedded systems have become an integral part of our technologi-
cal and social space. But is the engineering profession equipped with the right
knowledge to develop those systems in ways dictated by the economic and
safety aspects? Likely yes. But the knowledge is fragmented and scattered
among different engineering disciplines and computing sciences. Seldom any-
one of us has the clear picture of the whole. If so, then parts of it are at an
abstract level. That poses a question whether the academic system provides
education in a way holistic enough to prepare graduates to embark on the de-
velopment of real-time embedded systems, frequently complex and imposing
safety requirements. How many electrical and computer engineering depart-
ments offer subjects focusing on the application-dependent specialized com-
munication networks used to connect embedded nodes in distributed real-time
systems. If so, then the discussion is confined to the Controller Area Network
(CAN), or sometimes FlexRay, in the context of automotive applications—
usually a small unit of an embedded systems subject. (The impression might
be that specialized communication networks are mostly used in automotive ap-
plications.) The requirement for the underlying network technology to provide
real-time guarantees for message transmissions is central to proper functioning
of real-time systems. Most of computer engineering streams teach operating
systems. But real-time aspects are scantly covered. Computer science students,
on the other hand, have very little, if any, exposure to the “physicality” of the
real systems the real-time operating systems are intended to interact with.
Does this put computer science graduates in a disadvantaged position? In
the late 1990s and early 2000s, I was involved in the Sun Microsystems lead
initiative to develop real-time extensions for the Java language. The working
group comprised professionals mostly from industry with backgrounds largely
in computing sciences. I was taken aback by the slow pace of the process.
On reflection, the lack of exposure to the actual real-time systems in different
application areas and their physicality was likely to be behind difficulties to
identify generic functional requirements to be implemented by the intended
extensions.

In the second part of 1980s, I was teaching digital control to the final year
students of the electrical engineering course. The lab experiments to illustrate
different control algorithms were designed around the, at that time, already
antiquated Data General microNOVA MP/200 minicomputer, running one of
the few real-time operating systems commercially available at that time—
QNX, if I remember correctly. Showing things work was fun. But students’ in-
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sight into working of the whole system stopped at the system level commands
of the operating systems. The mystery had to be revealed by discussing hy-
pothetical implementations of the system level calls and interaction with the
operating system kernel—of course at the expense of the digital control sub-
ject. At that time, seldom any electrical engineering curriculum had a separate
subject dedicated to operating systems. Of frustration and to avoid the “black
box” approach to illustrating control systems in action, I have written in C
a simple multitasking real-time executive for MS-DOS-based platforms, to be
run on an IBM PC (Intel 8088). Students were provided with the implementa-
tion documentation in addition to theoretical background; quite a lot of pages
to study. But the reward was substantial: they were now in full “control.”
With the support of an enterprising post-graduate student, the executive was
intended to be grown into more robust RTOS with a view for commercializa-
tion. But it was never to be. Academic life has other priorities. Around 1992,
I decided to harness the MINIX operating system, which I then taught to the
final-year graduate students, to run my real-time control lab experiments to
illustrate control algorithms in their supporting real-time operating system
environment. But soon after that came the Linux kernel.

If you are one of those professionals with the compartmented knowledge,
particularly with the electrical and computer engineering or software engi-
neering background, with not much theoretical knowledge of and practical
exposure to real-time operating systems, this book is certainly an invaluable
help to “close the loop” in your knowledge, and to develop an insight into how
things work in the realm of real-time systems. Readers with a background in
computer science will benefit from the hands-on approach, and a comprehen-
sive overview of the aspects of control theory and signal processing relevant
to the real-time systems. The book also discusses a range of advanced topics
which will allow computer science professionals to stay up-to-date with the
recent developments and emerging trends.

The book was written by two Italian researchers from the Italian National
Research Council (CNR) actively working in the area of real-time (embedded)
operating systems, with a considerable background in control and communi-
cation systems, and a history of the development of actual real-time systems.
Both authors are also involved in teaching several courses related to these
topics at Politecnico di Torino and University of Padova.

The book has been written with a remarkable clarity, which is particularly
appreciated whilst reading the section on real-time scheduling analysis. The
presentation of real-time scheduling is probably the best in terms of clarity
I have ever read in the professional literature. Easy to understand, which is
important for busy professionals keen to acquire (or refresh) new knowledge
without being bogged down in a convoluted narrative and an excessive detail
overload. The authors managed to largely avoid theoretical only presentation
of the subject, which frequently affects books on operating systems. Selected
concepts are illustrated by practical programming examples developed for the
Linux and FreeRTOS operating systems. As the authors stated: Linux has a
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potential to evolve in a fully fledged real-time operating system; FreeRTOS,
on the other hand, gives a taste of an operating system for small footprint
applications typical of most of embedded systems. Irrespective of the rationale
for this choice, the availability of the programming examples allows the reader
to develop insight in to the generic implementation issues transferrable to
other real-time (embedded) operating systems.

This book is an indispensable addition to the professional library of anyone
who wishes to gain a thorough understanding of the real-time systems from the
operating systems perspective, and to stay up to date with the recent trends
and actual developments of the open-source real-time operating systems.

Richard Zurawski
ISA Group, San Francisco, California
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1

Introduction

This book addresses three different topics: Embedded Systems, Real-Time Sys-
tems, and Open Source Operating Systems. Even if every single topic can well
represent the argument of a whole book, they are normally intermixed in prac-
tical applications. This is in particular true for the first two topics: very of-
ten industrial or automotive applications, implemented as embedded systems,
must provide timely responses in order to perform the required operation.
Further, in general, real-time requirements typically refer to applications that
are expected to react to the events of some kind of controlled process.

Often in the literature, real-time embedded systems are presented and an-
alyzed in terms of abstract concepts such as tasks, priorities, and concurrence.
However, in order to be of practical usage, such concepts must be then even-
tually implemented in real programs, interacting with real operating systems,
to be executed for the control of real applications.

Traditionally, textbooks concentrate on specific topics using different ap-
proaches. Scheduling theory is often presented using a formal approach based
on a set of assumptions for describing a computer system in a mathemati-
cal framework. This is fine, provided that the reader has enough experience
and skills to understand how well real systems fit into the presented mod-
els, and this may not be the case when the textbook is used in a course or,
more in general, when the reader is entering this area as a primer. Operating
system textbooks traditionally make a much more limited usage of mathemat-
ical formalism and take a more practical approach, but often lack practical
programming examples in the main text (some provide specific examples in
appendices), as the presented concepts apply to a variety of real world systems.

A different approach is taken here: after a general presentation of the ba-
sic concepts in the first chapters, the remaining ones make explicit reference
to two specific operating systems: Linux and FreeRTOS. Linux represents a
full-fledged operating system with a steadily growing user base and, what is
more important from the perspective of this book, is moving toward real-time
responsiveness and is becoming a feasible choice for the development of real-
time applications. FreeRTOS represents somewhat the opposite extreme in
complexity. FreeRTOS is a minimal system with a very limited footprint in
system resources and which can therefore be used in very small applications
such as microcontrollers. At the same time, FreeRTOS supports a multithread-
ing programming model with primitives for thread synchronization that are
not far from what larger systems offer. If, on the one side, the choice of two
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specific case studies may leave specific details of other widespread operat-
ing systems uncovered, on the other one it presents to the reader a complete
conceptual path from general concepts of concurrence and synchronization
down to their specific implementation, including dealing with the unavoidable
idiosyncrasies of specific application programming interfaces. Here, code ex-
amples are not collected in appendices, but presented in the book chapters to
stress the fact that concepts cannot be fully grasped unless undertaking the
“dirty job” of writing, debugging, and running programs.

The same philosophy has been adopted in the chapters dealing with
scheduling theory. It is not possible, of course, to get rid of some mathe-
matical formalism, nor to avoid mathematical proofs (which can, however, be
skipped without losing the main conceptual flow). However, thanks to the fact
that such chapters follow the presentation of concurrence-related issues in op-
erating systems, it has been possible to provide a more practical perspective
to the presented results and to better describe how the used formalism maps
onto real-world applications.

This book differs from other textbooks in two further aspects:

• The presentation of a case study at the beginning of the book, rather than
at its end. This choice may sound bizarre as case studies are normally used
to summarize presented concepts and results. However, the purpose of the
case study here is different: rather than providing a final example, it is
used to summarize prerequisite concepts on computer architectures that
are assumed to be known by the reader afterwards. Readers may in fact
have different backgrounds: less experienced ones may find the informal
description of computer architecture details useful to understand more in-
depth concepts that are presented later in the book such as task context
switch and virtual memory issues. The more experienced will likely skip
details on computer input/output or memory management, but may nev-
ertheless have some interest in the presented application, handling online
image processing over a stream of frames acquired by a digital camera.

• The presentation of the basic concepts of control theory and Digital Signal
Processing in a nutshell. Traditionally, control theory and Digital Signal
Processing are not presented in textbooks dealing with concurrency and
schedulability, as this kind of knowledge is not strictly related to operating
systems issues. However, the practical development of embedded systems
is often not restricted to the choice of the optimal operating system archi-
tecture and task organization, but requires also analyzing the system from
different perspectives, finding proper solutions, and finally implementing
them. Different engineering disciplines cover the various facets of embed-
ded systems: control engineers develop the optimal control strategies in
the case the embedded system is devoted to process control; electronic
engineers will develop the front-end electronics, such as sensor and ac-
tuator circuitry, and finally software engineers will define the computing
architecture and implement the control and supervision algorithms. Ac-
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tive involvement of different competencies in the development of a control
or monitoring system is important in order to reduce the risk of missing
major functional requirements or, on the opposite end, of an overkill, that
is ending in a system which is more expensive than what is necessary. Not
unusual is the situation in which the system proves both incomplete in
some requirements and redundant in other aspects.

Even if several competencies may be required in the development of em-
bedded systems, involving specialists for every system aspect is not always
affordable. This may be true with small companies or research groups, and
in this case different competencies may be requested by the same devel-
oper. Even when this is not the case (e.g., in large companies), a basic
knowledge of control engineering and electronics is desirable for those soft-
ware engineers involved in the development of embedded systems. Com-
munication in the team can in fact be greatly improved if there is some
overlap in competencies, and this may reduce the risk of flaws in the sys-
tem due to the lack of communication within the development team. In
large projects, different components are developed by different teams, pos-
sibly in different companies, and clear interfaces must be defined in the
system’s architecture to allow the proper component integration, but it
is always possible that some misunderstanding could occur even with the
most accurate interface definition. If there is no competence overlap among
development teams, this risk may become a reality, as it happened in the
development of the trajectory control system of the NASA Mars Climate
Orbiter, where a software component developed by an external company
was working in pounds force, while the spacecraft expected values in new-
tons. As a result, the $125 million Mars probe miserably crashed when it
reached the Mars atmosphere [69].

As a final remark, in the title an explicit reference is made to open source
systems, and two open source systems are taken as example through the
book. This choice should not mislead the reader in assuming that open source
systems are the common solution in industrial or automotive applications.
Rather, the usage of these systems is yet limited in practice, but it is the
authors’ opinion that open source solutions are going to share a larger and
larger portion of applications in the near future.

The book is divided into three parts: Concurrent Programming Concepts,
Real-Time Scheduling Analysis, and Advanced Topics. The first part presents
the basic concepts about processes and synchronization, and it is introduced
by a case study represented by a nontrivial application for vision-based con-
trol. Along the example, the basic concepts of computer architectures and in
particular of input/output management are introduced, as well as the termi-
nology used in the rest of the book.

After the case study presentation, the basic concepts of concurrent pro-
gramming are introduced. This is done in two steps: first, the main concepts
are presented in a generic context without referring to any specific platform
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and therefore without detailed code examples. Afterwards, the same concepts
are described, with the aid of several code examples, in the context of the two
reference systems: Linux and FreeRTOS.

Part I includes a chapter on network communication; even if not explicitly
addressing network communication, a topic which deserves by itself a whole
book, some basic concepts about network concepts and network programming
are very often required when developing embedded applications.

The chapters of this part are the following:

• Chapter 2: A Case Study: Vision Control. Here, an application is presented
that acquires a stream of images from a Web camera and detects online the
center of a circular shape in the acquired images. This represents a com-
plete example of an embedded application. Both theoretical and practical
concepts are introduced here, such as the input/output architecture in op-
erating systems and the video capture application programming interface
for Linux.

• Chapter 3: Real-Time Concurrent Programming Principles. From this
chapter onwards, an organic presentation of concurrent programming con-
cepts is provided. Here, the concept of parallelism and its consequences,
such as race conditions and deadlocks, are presented. Some general imple-
mentation issues of multiprocessing, such as process context and states,
are discussed.

• Chapter 4: Deadlock. This chapter focuses on deadlock, arguably one of
the most important issues that may affect a concurrent application. After
defining the problem in formal terms, several solutions of practical interest
are presented, each characterized by a different trade-off between ease of
application, execution overhead, and conceptual complexity.

• Chapter 5: Interprocess Communication Based on Shared Variables. The
chapter introduces the notions of Interprocess Communication (IPC), and
it concentrates on the shared memory approach, introducing the concepts
of lock variable, mutual exclusion, semaphore and monitors, which repre-
sent the basic mechanisms for process coordination and synchronization
in concurrent programming.

• Chapter 6: Interprocess Communication Based on Message Passing. An
alternate way for achieving interprocess communication, based on the ex-
change of messages, is discussed in this chapter. As in the previous two
chapters, the general concepts are presented and discussed without any
explicit reference to any specific operating system.

• Chapter 7: Interprocess Communication Primitives in POSIX/Linux. This
chapter introduces several examples showing how the general concurrent
programming concepts presented before are then mapped into Linux and
POSIX. The presented information lies somewhere between a user guide
and a reference for Linux/POSIX IPC primitives.
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• Chapter 8: Interprocess Communication Primitives in FreeRTOS. The
chapter presents the implementation of the above concurrent program-
ming concepts in FreeRTOS, the other reference operating system for this
book. The same examples of the previous chapter are used, showing how
the general concepts presented in Chapters 3–6 can be implemented both
on a full-fledged system and a minimal one.

• Chapter 9: Network Communication. Although not covering concepts
strictly related to concurrent programming, this chapter provides impor-
tant practical concepts for programming network communication using
the socket abstraction. Network communication also represents a possible
implementation of the message-passing synchronization method presented
in Chapter 6. Several examples are provided in the chapter: although they
refer to Linux applications, they can be easily ported to other systems
that support the socket programming layer, such as FreeRTOS.

• Chapter 10: Lock and Wait-Free Communication. The last chapter of Part
I outlines an alternative approach in the development of concurrent pro-
grams. Unlike the more classic methods discussed in Chapters 5 and 6,
lock and wait-free communication never forces any participating process
to wait for another. In this way, it implicitly addresses most of the prob-
lems lock-based process interaction causes to real-time scheduling—to be
discussed in Chapter 15—at the expense of a greater design and imple-
mentation complexity. This chapter is based on more formal grounds than
the other chapters of Part I, but it is completely self-contained. Readers
not mathematically inclined can safely skip it and go directly to Part II.

The second part, Real-Time Scheduling Analysis, presents several theoretical
results that are useful in practice for building systems which are guaranteed
to respond within a maximum, given delay. It is worth noting now that “real-
time” does not always mean “fast.” Rather, a real-time system is a system
whose timely response can be trusted, even if this may imply a reduced overall
throughput. This part introduces the terminology and the main results in
scheduling theory. They are initially presented using a simplified model which,
if on the one side it allows the formal derivation of many useful properties, on
the other it is still too far from real-world applications to use the above results
as they are. The last two chapters of this part will progressively extend the
model to include facts occurring in real applications, so that the final results
can be used in practical applications.

The chapters of this part are the following:

• Chapter 11: Real-Time Scheduling Based on Cyclic Executive. This chap-
ter introduces the basic concepts and the terminology used thorough the
second part of the book. In this part, the concepts are presented in a more
general way, assuming that the reader, after reading the first part of the
book, is now able to use the generic concepts presented here in practi-
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cal systems. A first and simple approach to real-time scheduling, cyclic
executive, is presented here and its implications discussed.

• Chapter 12: Real-Time, Task-Based Scheduling. After introducing the gen-
eral concepts and terminology, this chapter addresses real-time issues in
the concurrent multitask model, widely described in the first part. The
chapter presents two important results with immediate practical conse-
quences: Rate Monotonic (RM) and Earliest Deadline First (EDF), which
represent the optimal scheduling for fixed and variable task priority sys-
tems, respectively.

• Chapter 13: Schedulability Analysis Based on Utilization. While the pre-
vious chapter presented the optimal policies for real-time scheduling, this
chapter addresses the problem of stating whether a given set of tasks can
be schedulable under real-time constraints. The outcome of this chapter
is readily usable in practice for the development of real-time systems.

• Chapter 14: Schedulability Analysis Based on Response Time Analysis.
This chapter provides a refinement of the results presented in the previous
one. Although readily usable in practice, the results of Chapter 13 pro-
vide a conservative approach, which can be relaxed with the procedures
presented in this chapter, at the cost of a more complex schedulability
analysis. The chapter also takes into account sporadic tasks, whose be-
havior cannot be directly described in the general model used so far, but
which nevertheless describe important facts, such as the occurrence of ex-
ceptions that happen in practice.

• Chapter 15: Process Interactions and Blocking. This chapter and the next
provide the concepts that are required to map the theoretical results
on scheduling analysis presented up to now onto real-world applications,
where the tasks cannot anymore be described as independent processes,
but interact with each other. In particular, this chapter addresses the in-
terference among tasks due to the sharing of system resources, and intro-
duces the priority inheritance and priority ceiling procedures, which are of
fundamental importance in the implementation of real-world applications.

• Chapter 16: Self-Suspension and Schedulability Analysis. This chapter ad-
dresses another fact which differentiates real systems from the model used
to derive the theoretical results in schedulability analysis, that is, the sus-
pension of tasks due, for instance, to I/O operations. The implications of
this fact, and the quantification of its effects, are discussed here.

The last part will cover other aspects of embedded systems. Unlike the first two
parts, where concepts are introduced step by step to provide a comprehensive
understanding of concurrent programming and real-time systems, the chapters
of the last part cover separate, self-consistent arguments. The chapters of this
part are the following:
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• Chapter 17: Internal Structure of FreeRTOS. This chapter gives a descrip-
tion of the internals of FreeRTOS. Thanks to its simplicity, it has been
possible to provide a sufficiently detailed example showing how the con-
current programming primitives are implemented in practice. The chapter
provides also practical indications on how the system can be ported to
new architectures.

• Chapter 18: Internal Structures and Operating Principles of Linux Real-
Time Extensions. It is of course not possible to provide in a single chapter
a detailed description of the internals of a complex system, such as Linux.
Nevertheless, this chapter will illustrate the main ideas and concepts in
the evolution of a general purpose operating system, and in particular of
Linux, towards real-time responsiveness.

• Chapter 19: OS Abstraction Layer. This chapter addresses issues that
are related to software engineering, and presents an object-oriented ap-
proach in the development of multiplatform applications. Throughout the
book general concepts have been presented, and practical examples have
been provided, showing that the same concepts are valid on different sys-
tems, albeit using a different programming interface. If an application has
to be implemented for different platforms, it is convenient, therefore, to
split the code in two parts, moving the semantics of the program in the
platform-independent part, and implementing a common abstraction of
the underlying operating system in the other system-dependent one.

• Chapter 20: Basics of Control Theory and Digital Signal Processing. This
chapter provides a quick tour of the most important mathematical con-
cepts for control theory and digital signal processing, using two case stud-
ies: the control of a pump and the development of a digital low-pass filter.
The only mathematical background required of the reader corresponds to
what is taught in a base math course for engineering, and no specific pre-
vious knowledge in control theory and digital signal processing is assumed.

The short bibliography at the end of the book has been compiled with less
experienced readers in mind. For this reason, we did not provide an exhaus-
tive list of references, aimed at acknowledging each and every author who
contributed to the rather vast field of real-time systems.

Rather, the bibliography is meant to point to a limited number of addi-
tional sources of information, which readers can and should actually use as a
starting point to seek further information, without getting lost. There, readers
will also find more, and more detailed, references to continue their quest.
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This chapter describes a case study consisting of an embedded application per-
forming online image processing. Both theoretical and practical concepts are
introduced here: after an overview of basic concepts in computer input/output,
some important facts on operating systems (OS) and software complexity will
be presented here. Moreover, some techniques for software optimization and
parallelization will be presented and discussed in the framework of the pre-
sented case study. The theory and techniques that are going to be introduced
do not represent the main topic of this book. They are necessary, nevertheless,
to fully understand the remaining chapters, which will concentrate on more
specific aspects such as multithreading and process scheduling.

The presented case study consists of a Linux application that acquires a se-
quence of images (frames) from a video camera device. The data acquisition
program will then perform some elaboration on the acquired images in order
to detect the coordinates of the center of a circular shape in the acquired
images.

This chapter is divided into four main sections. In the first section general
concepts in computer input/output (I/O) are presented. The second section
will discuss how I/O is managed by operating systems, in particular Linux,

11
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while in the third one the implementation of the frame acquisition is pre-
sented. The fourth section will concentrate on the analysis of the acquired
frames to retrieve the desired information; after presenting two widespread
algorithms for image analysis, the main concepts about software complexity
will be presented, and it will be shown how the execution time for those al-
gorithms can be reduced, sometimes drastically, using a few optimization and
parallelization techniques.

Embedded systems carrying out online analysis of acquired images are be-
coming widespread in industrial control and surveillance. In order to acquire
the sequence of the frames, the video capture application programming inter-
face for Linux (V4L2) will be used. This interface supports most commercial
USB webcams, which are now ubiquitous in laptops and other PCs. There-
fore this sample application can be easily reproduced by the reader, using for
example his/her laptop with an integrated webcam.

2.1 Input Output on Computers

Every computer does input/output (I/O); a computer composed only of a
processor and the memory would do barely anything useful, even if contain-
ing all the basic components for running programs. I/O represents the way
computers interact with the outside environment. There is a great variety of
I/O devices: A personal computer will input data from the keyboard and the
mouse, and output data to the screen and the speakers while using the disk,
the network connection, and the USB ports for both input and output. An
embedded system typically uses different I/O devices for reading data from
sensors and writing data to actuators, leaving user interaction be handled by
remote clients connected through the local area network (LAN).

2.1.1 Accessing the I/O Registers

In order to communicate with I/O devices, computer designers have followed
two different approaches: dedicated I/O bus and memory-mapped I/O. Ev-
ery device defines a set of registers for I/O management. Input registers will
contain data to be read by the processor; output registers will contain data
to be outputted by the device and will be written by the processor; status
registers will contain information about the current status of the device; and
finally control registers will be written by the processor to initiate or terminate
device activities.

When a dedicated bus is defined for the communication between the pro-
cessor and the device registers, it is also necessary that specific instructions for
reading or writing device register are defined in the set of machine instructions.
In order to interact with the device, a program will read and write appropriate
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FIGURE 2.1
Bus architecture with a separate I/O bus.

values onto the I/O bus locations (i.e., at the addresses corresponding to the
device registers) via specific I/O Read and Write instructions.
In memory-mapped I/O, devices are seen by the processor as a set of reg-
isters, but no specific bus for I/O is defined. Rather, the same bus used to
exchange data between the processor and the memory is used to access I/O
devices. Clearly, the address range used for addressing device registers must
be disjoint from the set of addresses for the memory locations. Figure 2.1 and
Figure 2.2 show the bus organization for computers using a dedicated I/O
bus and memory-mapped I/O, respectively. Memory-mapped architectures
are more common nowadays, but connecting all the external I/O devices di-
rectly to the memory bus represents a somewhat simplified solution with sev-
eral potential drawbacks in reliability and performance. In fact, since speed
in memory access represents one of the major bottlenecks in computer per-
formance, the memory bus is intended to operate at a very high speed, and
therefore it has very strict constraints on the electrical characteristics of the
bus lines, such as capacity, and in their dimension. Letting external devices
be directly connected to the memory bus would increase the likelihood that
possible malfunctions of the connected devices would seriously affect the func-
tion of the whole system and, even if that were not the case, there would be
the concrete risk of lowering the data throughput over the memory bus.
In practice, one or more separate buses are present in the computer for I/O,
even with memory-mapped architectures. This is achieved by letting a bridge
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Bus architecture for Memory Mapped I/O.

component connect the memory bus with the I/O bus. The bridge presents
itself to the processor as a device, defining a set of registers for programming
the way the I/O bus is mapped onto the memory bus. Basically, a bridge
can be programmed to define one or more address mapping windows. Every
address mapping window is characterized by the following parameters:

1. Start and end address of the window in the memory bus

2. Mapping address offset

Once the bridge has been programmed, for every further memory access per-
formed by the processor whose address falls in the selected address range, the
bridge responds in the bus access protocol and translates the read or write
operation performed in the memory bus into an equivalent read or write opera-
tion in the I/O bus. The address used in the I/O bus is obtained by adding the
preprogrammed address offset for that mapping window. This simple mecha-
nism allows to decouple the addresses used by I/O devices over the I/O bus
from the addresses used by the processor.

A common I/O bus in computer architectures is the Peripheral Component
Interconnect (PCI) bus, widely used in personal computers for connecting I/O
devices. Normally, more than one PCI segment is defined in the same computer
board. The PCI protocol, in fact, poses a limit in the number of connected
devices and, therefore, in order to handle a larger number of devices, it is nec-
essary to use PCI to PCI bridges, which connect different segments of the PCI
bus. The bridge will be programmed in order to define map address windows
in the primary PCI bus (which sees the bridge as a device connected to the
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bus) that are mapped onto the corresponding address range in the secondary
PCI bus (for which the bridge is the master, i.e., leads bus operations). Follow-
ing the same approach, new I/O buses, such as the Small Computer System
Interface (SCSI) bus for high-speed disk I/O, can be integrated into the com-
puter board by means of bridges connecting the I/O bus to the memory bus
or, more commonly, to the PCI bus. Figure 2.3 shows an example of bus con-
figuration defining a memory to PCI bridge, a PCI to PCI bridge, and a PCI
to SCSI bridge.

One of the first actions performed when a computer boots is the configuration
of the bridges in the system. Firstly, the bridges directly connected to the
memory bus are configured, so that the devices over the connected buses can
be accessed, including the registers of the bridges connecting these to new I/O
buses. Then the bridges over these buses are configured, and so on. When all
the bridges have been properly configured, the registers of all the devices in
the system are directly accessible by the processor at given addresses over the
memory bus. Properly setting all the bridges in the system may be tricky, and
a wrong setting may make the system totally unusable. Suppose, for example,
what could happen if an address map window for a bridge on the memory bus
were programmed with an overlap with the address range used by the RAM
memory. At this point the processor would be unable to access portions of
memory and therefore would not anymore be able to execute programs.

Bridge setting, as well as other very low-level configurations are normally
performed before the operating system starts, and are carried out by the Basic
Input/Output System (BIOS), a code which is normally stored on ROM and
executed as soon as the computer is powered. So, when the operating system
starts, all the device registers are available at proper memory addresses. This
is, however, not the end of the story: in fact, even if device registers are seen
by the processor as if they were memory locations, there is a fundamental
difference between devices and RAM blocks. While RAM memory chips are
expected to respond in a time frame on the order of nanoseconds, the response
time of devices largely varies and in general can be much longer. It is therefore
necessary to synchronize the processor and the I/O devices.

2.1.2 Synchronization in I/O

Consider, for example, a serial port with a baud rate of 9600 bit/s, and suppose
that an incoming data stream is being received; even if ignoring the protocol
overhead, the maximum incoming byte rate is 1200 byte/s. This means that
the computer has to wait 0.83 milliseconds between two subsequent incoming
bytes. Therefore, a sort of synchronization mechanism is needed to let the
computer know when a new byte is available to be read in a data register for
readout. The simplest method is polling, that is, repeatedly reading a status
register that indicates whether new data is available in the data register. In
this way, the computer can synchronize itself with the actual data rate of the
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device. This comes, however, at a cost: no useful operation can be carried out
by the processor when synchronizing to devices in polling. If we assume that
100 ns are required on average for memory access, and assuming that access
to device registers takes the same time as a memory access (a somewhat
simplified scenario since we ignore here the effects of the memory cache),
acquiring a data stream from the serial port would require more than 8000
read operations of the status register for every incoming byte of the stream
– that is, wasting 99.99% of the processor power in useless accesses to the
status register. This situation becomes even worse for slower devices; imagine
the percentage of processor power for doing anything useful if polling were
used to acquire data from the keyboard!

Observe that the operations carried out by I/O devices, once programmed
by a proper configuration of the device registers, can normally proceed in par-
allel with the execution of programs. It is only required that the device should
notify the processor when an I/O operation has been completed, and new data
can be read or written by the processor. This is achieved using Interrupts, a
mechanism supported by most I/O buses. When a device has been started,
typically by writing an appropriate value in a command register, it proceeds
on its own. When new data is available, or the device is ready to accept new
data, the device raises an interrupt request to the processor (in most buses,
some lines are dedicated to interrupt notification) which, as soon as it finishes
executing the current machine instruction, will serve the interrupt request by
executing a specific routine, called Interrupt Service Routine (ISR), for the
management of the condition for which the interrupt has been generated.

Several facts must be taken into account when interrupts are used to syn-
chronize the processor and the I/O operations. First of all, more than one
device could issue an interrupt at the same time. For this reason, in most sys-
tems, a priority is associated with interrupts. Devices can in fact be ranked
based on their importance, where important devices require a faster response.
As an example, consider a system controlling a nuclear plant: An interrupt
generated by a device monitoring the temperature of a nuclear reactor core is
for sure more important than the interrupt generated by a printer device for
printing daily reports. When a processor receives an interrupt request with
a given associated priority level N , it will soon respond to the request only
if it is not executing any service routine for a previous interrupt of priority
M , M ≥ N . In this case, the interrupt request will be served as soon as the
previous Interrupt Service Routine has terminated and there are no pending
interrupts with priority greater or equal to the current one.

When a processor starts serving an interrupt, it is necessary that it does
not lose information about the program currently in execution. A program is
fully described by the associated memory contents (the program itself and the
associated data items), and by the content of the processor registers, including
the Program Counter (PC), which records the address of the current machine
instruction, and the Status Register (SR), which contains information on the
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current processor status. Assuming that memory locations used to store the
program and the associated data are not overwritten during the execution of
the interrupt service routine, it is only necessary to preserve the content of
the processor registers. Normally, the first actions of the routine are to save
in the stack the content of the registers that are going to be used, and such
registers will be restored just before its termination. Not all the registers can
be saved in this way; in particular, the PC and the SR are changed just before
starting the execution of the interrupt service routine. The PC will be set to
the address of the first instruction of the routine, and the SR will be updated
to reflect the fact that the process is starting to service an interrupt of a given
priority. So it is necessary that these two register are saved by the processor
itself and restored when the interrupt service routine has finished (a specific
instruction to return from ISR is defined in most computer architectures). In
most architectures the SR and PC registers are saved on the stack, but oth-
ers, such as the ARM architecture, define specific registers to hold the saved
values.

A specific interrupt service routine has to be associated with every possi-
ble source of interrupt, so that the processor can take the appropriate actions
when an I/O device generates an interrupt request. Typically, computer ar-
chitectures define a vector of addresses in memory, called a Vector Table,
containing the start addresses of the interrupt service routines for all the I/O
devices able to generate interrupt requests. The offset of a given ISR within
the vector table is called the Interrupt Vector Number. So, if the interrupt vec-
tor number were communicated by the device issuing the interrupt request,
the right service routine could then be called by the processor. This is ex-
actly what happens; when the processor starts serving a given interrupt, it
performs a cycle on the bus called the Interrupt Acknowledge Cycle (IACK)
where the processor communicates the priority of the interrupt being served,
and the device which issued the interrupt request at the specified priority
returns the interrupt vector number. In case two different devices issued an
interrupt request at the same time with the same priority, the device closest
to the processor in the bus will be served. This is achieved in many buses by
defining a bus line in Daisy Chain configuration, that is, which is propagated
from every device to the next one along the bus, only in cases where it did not
answer to an IACK cycle. Therefore, a device will answer to an IACK cycle
only if both conditions are met:

1. It has generated a request for interrupt at the specified priority

2. It has received a signal over the daisy chain line

Note that in this case it will not propagate the daisy chain signal to the next
device.

The offset returned by the device in an IACK cycle depends on the cur-
rent organization of the vector table and therefore must be a programmable
parameter in the device. Typically, all the devices which are able to issue an
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interrupt request have two registers for the definition of the interrupt prior-
ity and the interrupt vector number, respectively. The sequence of actions is
shown in Figure 2.4, highlighting the main steps of the sequence:

1. The device issues an interrupt request;

2. The processor saves the context, i.e., puts the current values of the
PC and of the SR on the stack;

3. The processor issues an interrupt acknowledge cycle (IACK) on the
bus;

4. The device responds by putting the interrupt vector number (IVN)
over the data lines of the bus;

5. The processor uses the IVN as an offset in the vector table and
loads the interrupt service routine address in the PC.

Programming a device using interrupts is not a trivial task, and it consists of
the following steps:

1. The interrupt service routine has to be written. The routine can
assume that the device is ready at the time it is called, and therefore
no synchronization (e.g., polling) needs to be implemented;

2. During system boot, that is when the computer and the connected
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I/O devices are configured, the code of the interrupt service routine
has to be loaded in memory, and its start address written in the
vector table at, say, offset N ;

3. The value N has to be communicated to the device, usually written
in the interrupt vector number register;

4. When an I/O operation is requested by the program, the device
is started, usually by writing appropriate values in one or more
command registers. At this point the processor can continue with
the program execution, while the device operates. As soon as the
device is ready, it will generate an interrupt request, which will
be eventually served by the processor by running the associated
interrupt service routine.

In this case it is necessary to handle the fact that data reception is asyn-
chronous. A commonly used techniques is to let the program continue after
issuing an I/O request until the data received by the device is required. At
this point the program has to suspend its execution waiting for data, unless
not already available, that is, waiting until the corresponding interrupt service
routine has been executed. For this purpose the interprocess communication
mechanisms described in Chapter 5 will be used.

2.1.3 Direct Memory Access (DMA)

The use of interrupts for synchronizing the processor and the connected I/O
devices is ubiquitous, and we will see in the next chapters how interrupts
represent the basic mechanism over which operating systems are built. Using
interrupts clearly spares processor cycles when compared with polling; how-
ever, there are situations in which even interrupt-driven I/O would require
too much computing resources. To better understand this fact, let’s consider
a mouse which communicates its current position by interrupting the proces-
sor 30 times per second. Let’s assume that 400 processor cycles are required
for the dispatching of the interrupt and the execution of the interrupt ser-
vice routine. Therefore, the number of processor cycles which are dedicated
to the mouse management per second is 400 ∗ 30 = 12000. For a 1 GHz clock,
the fraction of processor time dedicated to the management of the mouse
is 12000/109, that is, 0.0012% of the processor load. Managing the mouse
requires, therefore, a negligible fraction of processor power.

Consider now a hard disk that is able to read data with a transfer rate of
4 MByte/s, and assume that the device interrupts the processor every time
16 bytes of data are available. Let’s also assume that 400 clock cycles are still
required to dispatch the interrupt and execute the associated service routine.
The device will therefore interrupt the processor 250000 times per second, and
108 processor cycles will be dedicated to handle data transfer every second.
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For a 1 GHz processor this means that 10% of the processor time is dedicated
to data transfer, a percentage clearly no more acceptable.

Very often data exchanged with I/O devices are transferred from or to
memory. For example, when a disk block is read it is first transferred to mem-
ory so that it is later available to the processor. If the processor itself were in
charge of transferring the block, say, after receiving an interrupt request from
the disk device to signal the block availability, the processor would repeat-
edly read data items from the device’s data register into an internal processor
register and write it back into memory. The net effect is that a block of data
has been transferred from the disk into memory, but it has been obtained
at the expense of a number of processor cycles that could have been used to
do other jobs if the device were allowed to write the disk block into memory
by itself. This is exactly the basic concept of Direct Memory Access (DMA),
which is letting the devices read and write memory by themselves so that the
processor will handle I/O data directly in memory. In order to put this simple
concept in practice it is, however, necessary to consider a set of facts. First
of all, it is necessary that the processor can “program” the device so that it
will perform the correct actions, that is, reading/writing a number N of data
items in memory, starting from a given memory address A. For this purpose,
every device able to perform DMA provides at least the following registers:

• A Memory Address Register (MAR) initially containing the start address
in memory of the block to be transferred;

• A Word Count register (WC) containing the number of data items to be
transferred.

So, in order to program a block read or write operation, it is necessary that the
processor, after allocating a block in memory and, in case of a write operation,
filling it with the data to be output to the device, writes the start address
and the number of data items in the MAR and WC registers, respectively.
Afterwards the device will be started by writing an appropriate value in (one
of) the command register(s). When the device has been started, it will operate
in parallel with the processor, which can proceed in the execution of the
program. However, as soon as the device is ready to transfer a data item,
it will require the memory bus used by the processor to exchange data with
memory, and therefore some sort of bus arbitration is needed since it is not
possible that two devices read or write the memory at the same time on
the same bus (note however that nowadays memories often provide multiport
access, that is, allow simultaneous access to different memory addresses). At
any time one, and only one, device (including the processor) connected to the
bus is the master, i.e., can initiate a read or write operation. All the other
connected devices at that time are slaves and can only answer to a read/write
bus cycle when they are addressed. The memory will be always a slave in the
bus, as well as the DMA-enabled devices when they are not performing DMA.
At the time such a device needs to exchange data with the memory, it will
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ask the current master (normally the processor, but it may be another device
performing DMA) the ownership of the bus. For this purpose the protocol
of every bus able to support ownership transfer is to define a cycle for the
bus ownership transfer. In this cycle, the potential master raises a request line
and the current master, in response, relinquishes the mastership, signaling this
over another bus line, and possibly waiting for the termination of a read/write
operation in progress. When a device has taken the bus ownership, it can then
perform the transfer of the data item and will remain the current master until
the processor or another device asks to become the new master. It is worth
noting that the bus ownership transfers are handled by the bus controller
components and are carried out entirely in hardware. They are, therefore,
totally transparent to the programs being executed by the processor, except
for a possible (normally very small) delay in their execution.
Every time a data item has been transferred, the MAR is incremented and
the WC is decremented. When the content of the WC becomes zero, all the
data have been transferred, and it is necessary to inform the processor of
this fact by issuing an interrupt request. The associated Interrupt Service
Routine will handle the block transfer termination by notifying the system of
the availability of new data. This is normally achieved using the interprocess
communication mechanisms described in Chapter 5.

2.2 Input/Output Operations and the Operating System

After having seen the techniques for handling I/O in computers, the reader will
be convinced that it is highly desirable that the complexity of I/O should be
handled by the operating system and not by user programs. Not surprisingly,
this is the case for most operating systems, which offer a unified interface for
I/O operations despite the large number of different devices, each one defin-
ing a specific set of registers and requiring a specific I/O protocol. Of course,
it is not possible that operating systems could include the code for handling
I/O in every available device. Even if it were the case, and the developers
of the operating system succeed in the titanic effort of providing the device
specific code for every known device, the day after the system release there
will be tens of new devices not supported by such an operating system. For
this reason, operating systems implement the generic I/O functionality, but
leave the details to a device-specific code, called the Device Driver. In order to
be integrated into the system, every device requires its software driver, which
depends not only on the kind of hardware device but also on the operating
system. In fact, every operating system defines its specific set of interfaces
and rules a driver must adhere to in order to be integrated. Once installed,
the driver becomes a component of the operating system. This means that a
failure in the device driver code execution becomes a failure of the operating
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system, which may lead to the crash of the whole system. (At least in mono-
lithic operating systems such as Linux and Windows; this may be not true
for other systems, such as microkernel-based ones.) User programs will never
interact directly with the driver as the device is accessible only via the Ap-
plication Programming Interface (API) provided by the operating system. In
the following we shall refer to the Linux operating systems and shall see how
a uniform interface can be adapted to the variety of available devices. The
other operating systems adopt a similar architecture for I/O, which typically
differ only by the name and the arguments of the I/O systems routines, but
not on their functionality.

2.2.1 User and Kernel Modes

We have seen how interacting with I/O devices means reading and writing
into device registers, mapped at given memory addresses. It is easy to guess
what could happen if user programs were allowed to read and write at the
memory locations corresponding to device registers. The same consideration
holds also for the memory structures used by the operating system itself. If
user programs were allowed to freely access the whole addressing range of the
computer, an error in a program causing a memory access to a wrong address
(something every C programmer experiences often) may lead to the corrup-
tion of the operating system data structures, or to an interference with the
device operation, leading to a system crash.
For this reason most processors define at least two levels of execution: user
mode and kernel (or supervisor) mode. When operating in user mode, a pro-
gram is not allowed to execute some machine instructions (called Privileged
Instructions) or to access sets of memory addresses. Conversely, when operat-
ing in kernel mode, a program has full access to the processor instructions and
to the full addressing range. Clearly, most of the operating system code will
be executed in kernel mode, while user programs are kept away from danger-
ous operations and are intended to be executed in user mode. Imagine what
would happen if the HALT machine instruction for stopping the processor
were available in user mode, possibly on a server with tens of connected users.

A first problem arises when considering how a program can switch from
user to kernel mode. If this were carried out by a specific machine instruction,
would such an instruction be accessible in user mode? If not, it would be
useless, but if it were, the barrier between kernel mode and user mode would
be easily circumvented, and malicious programs could easily take the whole
system down.

So, how to solve the dilemma? The solution lies in a new mechanism for
the invocation of software routines. In the normal routine invocation, the call-
ing program copies the arguments of the called routine over the stack and
then puts the address of the first instruction of the routine into the Program
Counter register, after having copied on the stack the return address, that is,
the address of the next instruction in the calling program. Once the called
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routine terminates, it will pick the saved return address from the stack and
put it into the Program Counter, so that the execution of the calling program
is resumed. We have already seen, however, how the interrupt mechanism can
be used to “invoke” an interrupt service routine. In this case the sequence
is different, and is triggered not by the calling program but by an external
hardware device. It is exactly when the processor starts executing an Inter-
rupt Service routine that the current execution mode is switched to kernel
mode. When the interrupt service routine returns and the interrupted pro-
gram resumes its execution, unless not switching to a new interrupt service
routine, the execution mode is switched to user mode. It is worth noting that
the mode switch is not controlled by the software, but it is the processor which
only switches to kernel mode when servicing an interrupt.

This mechanism makes sense because interrupt service routines interact
with devices and are part of the device driver, that is, of a software compo-
nent that is integrated in the operating system. However, it may happen that
user programs have to do I/O operations, and therefore they need to execute
some code in kernel mode. We have claimed that all the code handling I/O
is part of the operating system and therefore the user program will call some
system routine for doing I/O. However, how do we switch to kernel mode in
this case where the trigger does not come from an hardware device? The so-
lution is given by Software Interrupts. Software interrupts are not triggered
by an external hardware signal, but by the execution of a specific machine
instruction. The interrupt mechanism is quite the same: The processor saves
the current context, picks the address of the associated interrupt service rou-
tine from the vector table and switches to kernel mode, but in this case the
Interrupt Vector number is not obtained by a bus IACK cycle; rather, it is
given as an argument to the machine instruction for the generation of the
software interrupt.

The net effect of software interrupts is very similar to that of a function
call, but the underlying mechanism is completely different. This is the typical
way the operating system is invoked by user programs when requesting system
services, and it represents an effective barrier protecting the integrity of the
system. In fact, in order to let any code to be executed via software interrupts,
it is necessary to write in the vector table the initial address of such code but,
not surprisingly, the vector table is not accessible in user mode, as it belongs to
the set of data structures whose integrity is essential for the correct operation
of the computer. The vector table is typically initialized during the system
boot (executed in kernel mode) when the operating system initializes all its
data structures.

To summarize the above concepts, let’s consider the execution story of one
of the most used C library function: printf(), which takes as parameter the
(possibly formatted) string to be printed on the screen. Its execution consists
of the following steps:

1. The program calls routine printf(), provided by the C run time
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library. Arguments are passed on the stack and the start address of
the printf routine is put in the program counter;

2. The printf code will carry out the required formatting of the
passed string and the other optional arguments, and then calls the
operating system specific system service for writing the formatted
string on the screen;

3. The system routine executes initially in user mode, makes some
preparatory work and then needs to switch in kernel mode. To do
this, it will issue a software interrupt, where the passed interrupt
vector number specifies the offset in the Vector Table of the corre-
sponding ISR routine to be executed in kernel mode;

4. The ISR is eventually activated by the processor in response to the
software interrupt. This routine is provided by the operating system
and it is now executing in kernel mode;

5. After some work to prepare the required data structures, the ISR
routine will interact with the output device. To do this, it will call
specific routines of the device driver;

6. The activated driver code will write appropriate values in the device
registers to start transferring the string to the video device. In the
meantime the calling process is put in wait state (see Chapter 3 for
more information on processes and process states);

7. A sequence of interrupts will be likely generated by the device to
handle the transfer of the bytes of the string to be printed on the
screen;

8. When the whole string has been printed on the screen, the calling
process will be resumed by the operating system and printf will
return.

Software interrupts provide the required barrier between user and kernel mode,
which is of paramount importance in general purpose operating systems. This
comes, however, at a cost: the activation of a kernel routine involves a sequence
of actions, such as saving the context, which is not necessary in a direct call.
Many embedded systems are then not intended to be of general usage. Rather,
they are intended to run a single program for control and supervision or, in
more complex systems involving multitasking, a well defined set of programs
developed ad hoc. For this reason several real-time operating systems do not
support different execution levels (even if the underlying hardware could), and
all the software is executed in kernel mode, with full access to the whole set of
system resources. In this case, a direct call is used to activate system routines.
Of course, the failure of a program will likely bring the whole system down,
but in this case it is assumed that the programs being executed have already
been tested and can therefore be trusted.
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2.2.2 Input/Output Abstraction in Linux

Letting the operating system manage input/output on behalf of the user is
highly desirable, hiding as far as possible the communication details and pro-
viding a simple and possibly uniform interface for I/O operations. We shall
learn how a simple Application Programming Interface for I/O can be effec-
tively used despite the great variety of devices and of techniques for handling
I/O. Here we shall refer to Linux, but the same concepts hold for the vast
majority of the other operating systems.

In Linux every I/O device is basically presented to users as a file. This
may seem at a first glance a bit surprising since the similarity between files
and devices is not so evident, but the following considerations hold:

• In order to be used, a file must be open. The open() system routine will
create a set of data structures that are required to handle further operations
on that file. A file identifier is returned to be used in the following operations
for that file in order to identify the associated data structures. In general,
every I/O device requires some sort of initialization before being used.
Initialization will consist of a set of operations performed on the device
and in the preparation of a set of support data structures to be used when
operating on that device. So an open() system routine makes sense also for
I/O devices. The returned identifier (actually an integer number in Linux)
is called a Device Descriptor and uniquely identifies the device instance in
the following operations. When a file is no more used, it is closed and the
associated data structures deallocated. Similarly, when a I/O device is no
more used, it will be closed, performing cleanup operations and freeing the
associated resources.

• A file can be read or written. In the read operation, data stored in the
file are copied in the computer memory, and the converse holds for write
operations. Regardless of the actual nature of a I/O device, there are two
main categories of interaction with the computer: read and write. In read
operation, data from the device is copied into the computer memory to be
used by the program. In write operations, data in memory will be trans-
ferred to the device. Both read() and write() system routines will require
the target file or device to be uniquely identified. This will be achieved by
passing the identifier returned by the open() routine.

However, due to the variety of hardware devices that can be connected to
a computer, it is not always possible to provide a logical mapping of the
device’s functions exclusively into read-and-write operations. Consider, as an
example, a network card: actions such as receiving data and sending data
over the network can be mapped into read-and-write operations, respectively,
but others, like the configuration of the network address, require a different
interface. In Linux this is achieved by providing an additional routine for I/O
management: ioctl(). In addition to the device descriptor, ioctl() defines
two more arguments: the first one is an integer number and is normally used
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to specify the kind of operation to be performed; the second one is a pointer
to a data structure that is specific to the device and the operation. The actual
meaning of the last argument will depend on the kind of device and on the
specified kind of operation. It is worth noting that Linux does not make any
use of the last two ioctl() arguments, passing them as they are to the device-
specific code, i.e., the device driver.

The outcome of the device abstraction described above is deceptively sim-
ple: the functionality of all the possible devices connected to the computers is
basically carried out by the following four routines:

• open() to initialize the device;

• close() to close and release the device;

• read() to get data from the device;

• write() to send data to the device;

• ioctl() for all the remaining operations of the device.

The evil, however, hides in the details, and in fact all the complexity in the
device/computer interaction has been simply moved to ioctl(). Depending
on the device’s nature, the set of operations and of the associated data struc-
tures may range from a very few and simple configurations to a fairly complex
set of operations and data structures, described by hundreds of user manual
pages. This is exactly the case of the standard driver for the camera devices
that will be used in the subsequent sections of this chapter for the presented
case study.

The abstraction carried out by the operating system in the application
programming interface for device I/O is also maintained in the interaction
between the operating system and the device-specific driver. We have already
seen that, in order to integrate a device in the systems, it is necessary to pro-
vide a device-specific code assembled into the device driver and then integrated
into the operating system. Basically, a device driver provides the implementa-
tion of the open, close, read, write, and ioctl operations. So, when a program
opens a device by invoking the open() system routine, the operating system
will first carry out some generic operations common to all devices, such as
the preparation of its own data structures for handling the device, and will
then call the device driver’s open() routine to carry out the required device
specific actions. The actions carried out by the operating system may involve
the management of the calling process. For example, in a read operation, the
operating system, after calling the device-specific read routine, may suspend
the current process (see Chapter 3 for a description of the process states) in
the case the required data are not currently available. When the data to be
read becomes available, the system will be notified of it, say, with an interrupt
from the device, and the operating system will wake the process that issued
the read() operation, which can now terminate the read() system call.
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2.3 Acquiring Images from a Camera Device

So far, we have learned how input/output operation are managed by Linux.
Here we shall see in detail how the generic routines for I/O can be used for
a real application, that is, acquiring images from a video camera device. A
wide range of camera devices is available, ranging from $10 USB Webcams
to $100K cameras for ultra-fast image recording. The number and the type
of configuration parameters varies from device to device, but it will always
include at least:

• Device capability configuration parameters, such as the ability of support-
ing data streaming and the supported pixel formats;

• Image format definition, such as the width and height of the frame, the
number of bytes per line, and the pixel format.

Due to the large number of different camera devices available on the market,
having a specific driver for every device, with its own configuration parame-
ters and ioctl() protocol (i.e., the defined operations and the associated data
structures), would complicate the life of the programmers quite a lot. Suppose,
for example, what would happen if in an embedded system for on-line quality
control based on image analysis the type of used camera is changed, say, be-
cause a new better device is available. This would imply re-writing all the code
which interacts with the device. For this reason, a unified interface to camera
devices has been developed in the Linux community. This interface, called
V4L2 (Video for Linux Two), defines a set of ioctl operations and associated
data structures that are general enough to be adapted for all the available
camera devices of common usage. If the driver of a given camera device ad-
heres to the V4L2 standards, the usability of such device is greatly improved
and it can be quickly integrated into existing systems. V4L2 improves also
interchangeability of camera devices in applications. To this purpose, an im-
portant feature of V4L2 is the availability of query operations for discovering
the supported functionality of the device. A well-written program, first query-
ing the device capabilities and then selecting the appropriate configuration,
can the be reused for a different camera device with no change in the code.

As V4L2 in principle covers the functionality of all the devices available on
the market, the standard is rather complicated because it has to foresee even
the most exotic functionality. Here we shall not provide a complete description
of V4L2 interface, which can be found in [77], but will illustrate its usage by
means of two examples. In the first example, a camera device is inquired in
order to find out the supported formats and to check whether the YUYV
format is supported. If this format is supported, camera image acquisition is
started using the read() system routine. YUYV is a format to encode pixel
information expressed by the following information:

• Luminance (Y )
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• Blue Difference Chrominance (Cb)

• Red Difference Chrominance (Cr)

Y , Cb, and Cr represent a way to encode RGB information in which red (R),
green (G), and blue (B) light are added together to reproduce a broad array
of colors for image pixels, and there is a precise mathematical relationship
between R, G, B, and Y , Cb and Cr parameters, respectively. The luminance
Y represents the brightness in an image and can be considered alone if only
a grey scale representation of the image is needed. In our case study we are
not interested in the colors of the acquired images, rather we are interested in
retrieving information from the shape of the objects in the image, so we shall
consider only the component Y .

The YUYV format represents a compressed version of the Y , Cb, and Cr. In
fact, while the luminance is encoded for every pixel in the image, the chromi-
nance values are encoded for every two pixels. This choice stems from the fact
that the human eye is more sensitive to variation of the light intensity, rather
than of the colors components. So in the YUYV format, pixels are encoded
from the topmost image line and from the left to the right, and four bytes are
used to encode two pixels with the following pattern: Yi, Cbi, Yi+1, Cri. To get
the grey scale representation of the acquired image, our program will therefore
take the first byte of every pair.

2.3.1 Synchronous Read from a Camera Device

This first example shows how to read from a camera device using synchronous
frame readout, that is, using the read() function for reading data from the
camera device. Its code is listed below;

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <linux/videodev2.h>
#include <asm/unistd.h>
#include <poll.h>

#define MAX_FORMAT 100
#define FALSE 0
#define TRUE 1
#define CHECK_IOCTL_STATUS(message ) \\
if(status == -1) \\
{ \\

perror (message ); \\
exit(EXIT_FAILURE); \\

}

main (int argc , char *argv[])
{

int fd , idx , status;
int pixelformat;
int imageSize;
int width , height;
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int yuyvFound;

struct v4l2_capability cap; //Query Capabi l i ty structure
struct v4l2_fmtdesc fmt; //Query Format Description structure
struct v4l2_format format; //Query Format structure
char *buf; //Image buffer
fd_set fds; //Select descriptors
struct timeval tv; //Timeout spec i f i cat ion structure

/∗ Step 1: Open the device ∗/
fd = open("/dev/video1", O_RDWR );

/∗ Step 2: Check read/write capab i l i ty ∗/
status = ioctl(fd, VIDIOC_QUERYCAP , &cap);
CHECK_IOCTL_STATUS("Error Querying capability")
if(!(cap.capabilities & V4L2_CAP_READWRITE))
{

printf("Read I/O NOT supported\n");
exit(EXIT_FAILURE);

}

/∗ Step 3: Check supported formats ∗/
yuyvFound = FALSE;
for(idx = 0; idx < MAX_FORMAT; idx++)
{

fmt.index = idx;
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
status = ioctl(fd, VIDIOC_ENUM_FMT , &fmt);
if(status != 0) break;
if(fmt.pixelformat == V4L2_PIX_FMT_YUYV)
{

yuyvFound = TRUE;
break;

}
}
if(! yuyvFound)
{

printf("YUYV format not supported\n");
exit(EXIT_FAILURE);

}

/∗ Step 4: Read current format def in i t ion ∗/
memset (&format , 0, sizeof(format ));
format .type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
status = ioctl(fd, VIDIOC_G_FMT , &format );
CHECK_IOCTL_STATUS("Error Querying Format")

/∗ Step 5: Set format f i e l d s to desired values : YUYV coding ,
480 lines , 640 pixe l s per l ine ∗/
format .fmt.pix.width = 640;
format .fmt.pix.height = 480;
format .fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;

/∗ Step 6: Write desired format and check actual image s i ze ∗/
status = ioctl(fd, VIDIOC_S_FMT , &format );
CHECK_IOCTL_STATUS("Error Setting Format")
width = format.fmt.pix.width; //Image Width
height = format.fmt.pix.height; //Image Height
//Total image s i ze in bytes
imageSize = (unsigned int)format.fmt.pix.sizeimage;

/∗ Step 7: Start reading from the camera ∗/
buf = malloc(imagesize);
FD_ZERO (&fds);
FD_SET (fd, &fds);
tv.tv_sec = 20;
tv.tv_usec = 0;
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for(;;)
{

status = select (1, &fds , NULL , NULL , &tv);
if(status == -1)
{

perror("Error in Select");
exit(EXIT_FAILURE);

}
status = read(fd, buf, imageSize);
if(status == -1)
{

perror("Error reading buffer");
exit(EXIT_FAILURE);

}
/∗ Step 8: Do image processing ∗/

processImage(buf, width , height , imagesize);
}

}

The first action (step 1)in the program is opening the device. System routine
open() looks exactly as an open call for a file. As for files, the first argument
is a path name, but in this case such a name specifies the device instance. In
Linux the names of the devices are all contained in the /dev directory. The
files contained in this directory do not correspond to real files (a Webcam is
obviously different from a file), rather, they represent a rule for associating a
unique name with each device in the system. In this way it is also possible to
discover the available devices using the ls command to list the files contained
in a directory. By convention, camera devices have the name /dev/video<n>,
so the command ls /dev/video* will show how many camera devices are
available in the system. The second argument given to system routine open()
specifies the protection associated with that device. In this case the constant
O RDWR specifies that the device can be read and written. The returned value
is an integer value that uniquely specifies within the system the Device De-
scriptor, that is the set of data structures held by Linux to manage this device.
This number is then passed to the following ioctl() calls to specify the target
device. Step 2 consists in checking whether the camera device supports read-
/write operation. The attentive reader may find this a bit strange—how could
the image frames be acquired otherwise?—but we shall see in the second ex-
ample that an alternative way, called streaming, is normally (and indeed most
often) provided. This query operation is carried out by the following line:

status = ioctl(fd, VIDIOC_QUERYCAP, &cap);

In the above line the ioctl operation code is given by constant
VIDIOC QUERYCAP (defined, as all the other constants used in the manage-
ment of the video device, in linux/videodev2.h), and the associated data
structure for the pointer argument is of type v4l2 capability. This struc-
ture, documented in the V4L2 API specification, defines, among others, a
capability field containing a bit mask specifying the supported capabilities for
that device.

Line

if(cap.capabilities & V4L2_CAP_READWRITE)
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will let the program know whether read/write ability is supported by the
device.

In step 3 the device is queried about the supported pixel formats. To do
this, ioctl() is repeatedly called, specifying VIDIOC ENUM FMT operation and
passing the pointer to a v4l2 fmtdesc structure whose fields of interest are:

• index: to be set before calling ioctl() in order to specify the index of the
queried format. When no more formats will be available, that is, when the
index is greater or equal the number of supported indexes, ioctl() will
return an error.

• type: specifies the type of the buffer for which the supported format is
being queried. Here, we are interested in the returned image frame, and
this is set to V4L2 BUF TYPE VIDEO CAPTURE

• pixelformat: returned by ioctl(), specifies supported format at the given
index

If the pixel format YUYV is found (this is the normal format supported by
all Webcams), the program proceeds in defining an appropriate image format.
There are many parameters for specifying such information, all defined in
structure v4l2 format passed to ioctl to get (operation VIDIOC G FMT) or to
set the format (operation VIDIOC S FMT). The program will first read (step 4)
the currently defined image format (normally most default values are already
appropriate) and then change (step 5) the formats of interest, namely, image
width, image height, and the pixel format. Here, we are going to define a
640 x 480 image using the YUYV pixel format by writing the appropriate
values in fields fmt.pix.width, fmt.pix.height and fmt.pix.pixelformat

of the format structure. Observe that, after setting the new image format,
the program checks the returned values for image width and height. In fact,
it may happen that the device does not support exactly the requested image
width and height, and in this case the format structure returned by ioctl

contains the appropriate values, that is, the supported width and height that
are closest to the desired ones. Fields pix.sizeimage will contain the total
length in bytes of the image frame, which in our case will be given by 2 times
width times height (recall that in YUYV format four bytes are used to encode
two pixels).

At this point the camera device is configured, and the program can start
acquiring image frames. In this example a frame is acquired via a read() call
whose arguments are:

• The device descriptor;

• The data buffer;

• The dimension of the buffer.
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Function read() returns the number of bytes actually read, which is not
necessarily equal to the number of bytes passed as argument. In fact, it may
happen that at the time the function is called, not all the required bytes are
available, and the program has to manage this properly. So, it is necessary to
make sure that when read() is called, a frame is available for readout. The
usual technique in Linux to synchronize read operation on device is the usage
of the select() function, which allows a program to monitor multiple device
descriptors, waiting until one or more devices become “ready” for some class
of I/O operation (e.g., input data available). A device is considered ready if
it is possible to perform the corresponding I/O operation (e.g., read) without
blocking. Observe that the usage of select is very useful when a program has to
deal with several devices. In fact, since read() is blocking, that is, it suspends
the execution of the calling program until some data are available, a program
reading on multiple devices may suspend in a read() operation regardless the
fact that some other device may have data ready to be read. The arguments
passed to select() are

• The number of involved devices;

• The read device mask;

• The write device mask

• The mask of devices to be monitored for exceptions;

• The wait timeout specification.

The devices masks have are of type fd set, and there is no need to know
its definition since macros FD ZERO and FD SET allow resetting the mask
and adding a device descriptor to it, respectively. When the select has not
to monitor a device class, the corresponding mask is NULL, as in the above
example for the write and exception mask. The timeout is specified using the
structure timeval, which defines two fields, tv sec and tv usec, to specify
the number of seconds and microseconds, respectively.

The above example will work fine, provided the camera device supports
direct the read() operation, as far as it is possible to guarantee that the
read() routine is called as often as the frame rate. This is, however, not
always the case because the process running the program may be preempted
by the operating system in order to assign the processor to other processes.
Even if we can guarantee that, on average, the read rate is high enough, it is in
general necessary to handle the occasional cases in which the reading process
is late and the frame may be lost. Several chapters of this book will discuss
this fact, and we shall see several techniques to ensure real-time behavior, that
is, making sure that a given action will be executed within a given amount
of time. If this were the case, and we could ensure that the read() operation
for the current frame will be always executed before a new frame is acquired,
there would be no risk of losing frames. Otherwise it is necessary to handle
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occasional delays in frame readout. The common technique for this is double
buffering, that is using two buffers for the acquired frames. As soon as the
driver is able to read a frame, normally in response to an interrupt indicating
that the DMA transfer for that frame has terminated, the frame is written
in two alternate memory buffers. The process acquiring such frames can then
copy from one buffer while the driver is filling in the other one. In this case,
if T is the frame acquisition period, a process is allowed to read a frame with
a delay up to T . Beyond this time, the process may be reading a buffer that
at the same time is being written by the driver, producing inconsistent data
or losing entire frames. The double buffering technique can be extended to
multiple buffering by using N buffers linked to form a circular chain. When
the driver has filled the nth buffer, it will use buffer (n+1)modN for the next
acquisition. Similarly, when a process has read a buffer it will proceed to the
next one, selected in the same way as above. If the process is fast enough, the
new buffer will not be yet filled, and the process will be blocked in the select
operation. When select() returns, at least one buffer contains valid frame
data. If, for any reason, the process is late, more than one buffer will contain
acquired frames not yet read by the program. With N buffers, for a frame
acquisition period of T , the maximum allowable delay for the reading process
is (N − 1)T . In the next example, we shall use this technique, and we shall
see that it is no more necessary to call function read() to get data, as one or
more frames will be already available in the buffers that have been set before
by the program. Before proceeding with the discussion of the new example, it
is, however, necessary to introduce the virtual memory concept.

2.3.2 Virtual Memory

Virtual memory, supported by most general-purpose operating systems, is a
mechanism by which the memory addresses used by the programs running
in user mode do not correspond to the addresses the CPU uses to access
the RAM memory in the same instructions. The address translation is per-
formed by a component of the processor called the Memory Management Unit
(MMU). The details of the translation may vary, depending on the computer
architecture, but the basic mechanism always relies on a data structure called
the Page Table. The memory address managed by the user program, called
Virtual Address (or Logical Address) is translated by the MMU, first dividing
its N bits into two parts, the first one composed of the K least significant
bits and the other one composed of the remaining N − K bits, as shown in
Figure 2.5. The most significant N −K bits are used as an index in the Page
Table, which is composed of an array of numbers, each L bits long. The entry
in the page table corresponding to the given index is then paired to the least
significant K bits of the virtual address, thus obtaining a number composed
of L+K bits that represents the physical address, which will be used to read
the physical memory. In this way it is also possible to use a different number
of bits in the representation of virtual and physical addresses. If we consider
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FIGURE 2.5
The Virtual Memory address translation.

the common case of 32 bit architectures, where 32 bits are used to represent
virtual addresses, the top 32−K bits of virtual addresses are used as the index
in the page table. This corresponds to providing a logical organization of the
virtual address rage in a set of memory pages, each 2K bytes long. So the most
significant 32 −K bits will provide the memory page number, and the least
significant K bits will specify the offset within the memory page. Under this
perspective, the page table provides a page number translation mechanism,
from the logical page number into the physical page number. In fact also the
physical memory can be considered divided into pages of the same size, and
the offset of the physical address within the translated page will be the same
of the original logical page.

Even if virtual memory may seem at a first glance a method merely in-
vented to complicate the engineer’s life, the following example should convince
the skeptics of its convenience. Consider two processes running the same pro-
gram: This is perfectly normal in everyday’s life, and no one is in fact surprised
by the fact that two Web browsers or editor programs can be run by differ-
ent processes in Linux (or tasks in Windows). Recalling that a program is
composed of a sequence of machine instructions handling data in processor
registers and in memory, if no virtual memory were supported, the two in-
stances of the same program run by two different processes would interfere
with each other since they would access the same memory locations (they
are running the same program). This situation is elegantly solved, using the
virtual memory mechanism, by providing two different mappings to the two
processes so that the same virtual address page is mapped onto two different
physical pages for the two processes, as shown in Figure 2.6. Recalling that
the address translation is driven by the content of the page table, this means
that the operating systems, whenever it assigns the processor to one process,
will also set accordingly the corresponding page table entries. The page table
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FIGURE 2.6
The usage of virtual address translation to avoid memory conflicts.

contents become therefore part of the set of information, called Process Con-
text, which needs to be restored by the operating system in a context switch,
that is whenever a process regains the usage of the processor. Chapter 3 will
describe process management in more detail; here it suffices to know that
virtual address translation is part of the process context.

Virtual memory support complicates quite a bit the implementation of
an operating system, but it greatly simplifies the programmer’s life, which
does not need concerns about possible interferences with other programs. At
this point, however, the reader may be falsely convinced that in an operat-
ing system not supporting virtual memory it is not possible to run the same
program in two different processes, or that, in any case, there is always the
risk of memory interferences among programs executed by different processes.
Luckily, this is not the case, but memory consistence can be obtained only by
imposing a set of rules for programs, such as the usage of the stack for keeping
local variables. Programs which are compiled by a C compiler normally use
the stack to contain local variables (i.e., variables which are declared inside a
program block without the static qualifier) and the arguments passed in rou-
tine calls. Only static variables (i.e., local variables declared with the static
qualifier or variables declared outside program blocks) are allocated outside
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FIGURE 2.7
Sharing data via static variable on systems which do not support Virtual
Addresses.

the stack. A separate stack is then associated with each process, thus allow-
ing memory insulation, even on systems supporting virtual memory. When
writing code for systems without virtual memory, it is therefore important to
pay attention in the usage of static variables, since these are shared among
different processes, as shown in Figure 2.7. This is not necessarily a negative
fact, since a proper usage of static data structures may represent an effective
way for achieving interprocess communication. Interprocess communication,
that is, exchanging data among different processes, can be achieved also with
virtual memory, but in this case it is necessary that the operating system is
involved so that it can set-up the content of the page table in order to allow
the sharing of one or more physical memory pages among different processes,
as shown in Figure 2.8.

2.3.3 Handling Data Streaming from the Camera Device

Coming back to the acquisition of camera images using double buffering, we
face the problem of properly mapping the buffers filled by the driver, running
in Kernel mode, and the process running the frame acquisition program, run-
ning in User mode. When operating in Kernel mode, Linux uses in fact direct
physical addresses (the operating system must have a direct access to every
computer resource), so the buffer addresses seen by the driver will be different
from the addresses of the same memory areas seen by the program. To cope
with such a situation, Linux provides the mmap() system call. In order to un-
derstand how mmap() works, it is necessary to recall the file model adopted
by Linux to support device I/O programming. In this conceptual model, files
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FIGURE 2.8
Using the Page Table translation to map possibly different virtual addresses
onto the same physical memory page.

are represented by a contiguous space corresponding to the bytes stored in the
file on the disk. A current address is defined for every file, representing the
index of the current byte into the file. So address 0 refers to the first byte of
the file, and address N will refer to the Nth byte of the file. Read-and-write
operations on files implicitly refer to the current address in the file. When N
bytes are read or written, they are read or written starting from the current
address, which is then incremented by N . The current address can be changed
using the lseek() system routine, taking as argument the new address within
the file. When working with files, mmap() routine allows to map a region in
the file onto a region in memory. The arguments passed to mmap() will in-
clude the relative starting address of the file region and the size in bytes of
the region, and mmap() will return the (virtual) start address in memory of
the mapped region. Afterwards, reading and writing in that memory area will
correspond to reading and writing into the corresponding region in the file.
The concept of current file address cannot be exported as it is when using the
same abstraction to describe I/O devices. For example, in a network device
the current address is meaningless: read operations will return the bytes that
have just been received, and write operations will send the passed bytes over
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the network. The same holds for a video device, and read operation will get the
acquired image frame, not read from any “address.” However, when handling
memory buffers in double buffering, it is necessary to find some way to map
region of memory used by the driver into memory buffers for the program.
mmap() can be used for this purpose, and the preparation of the shared buffers
is carried out in two steps:

1. The driver allocates the buffers in its (physical) memory space, and
returns (in a data structure passed to ioctl()) the unique address
(in the driver context) of such buffers. The returned addresses may
be the same physical address of the buffers, but in any case they
are seen outside the driver as addresses referred to the conceptual
file model.

2. The user programs calls mmap() to map such buffers in its virtual
memory onto the driver buffers, passing as arguments the file ad-
dresses returned in the previous ioctl() call. After the mmap() call
the memory buffers are shared between the driver, using physical
addresses, and the program, using virtual addresses.

The code of the program using multiple buffering for handling image frame
streaming from the camera device is listed below.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <linux/videodev2.h>
#include <asm/unistd.h>
#include <poll.h>

#define MAX_FORMAT 100
#define FALSE 0
#define TRUE 1
#define CHECK_IOCTL_STATUS(message ) \\
if(status == -1) \\
{ \\

perror (message ); \\
exit(EXIT_FAILURE); \\

}

main (int argc , char *argv[])
{

int fd , idx , status;
int pixelformat;
int imageSize;
int width , height;
int yuyvFound;

struct v4l2_capability cap; //Query Capabi l i ty structure
struct v4l2_fmtdesc fmt; //Query Format Description structure
struct v4l2_format format; //Query Format structure
struct v4l2_requestbuffers reqBuf;//Buffer request structure
struct v4l2_buffer buf; //Buffer setup structure
enum v4l2_buf_type bufType ; //Used to enqueue buffers

typedef struct { //Buffer descriptors
void *start;
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size_t length;
} bufferDsc;
int idx;
fd_set fds; //Select descriptors
struct timeval tv; //Timeout spec i f i cat ion structure

/∗ Step 1: Open the device ∗/
fd = open("/dev/video1", O_RDWR );

/∗ Step 2: Check streaming capab i l i ty ∗/
status = ioctl(fd, VIDIOC_QUERYCAP , &cap);
CHECK_IOCTL_STATUS("Error querying capability")
if(!(cap.capabilities & V4L2_CAP_STREAMING))
{

printf("Streaming NOT supported\n");
exit(EXIT_FAILURE);

}

/∗ Step 3: Check supported formats ∗/
yuyvFound = FALSE;
for(idx = 0; idx < MAX_FORMAT; idx++)
{

fmt.index = idx;
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
status = ioctl(fd, VIDIOC_ENUM_FMT , &fmt);
if(status != 0) break;
if(fmt.pixelformat == V4L2_PIX_FMT_YUYV)
{

yuyvFound = TRUE;
break;

}
}
if(! yuyvFound)
{

printf("YUYV format not supported\n");
exit(EXIT_FAILURE);

}

/∗ Step 4: Read current format def in i t ion ∗/
memset (&format , 0, sizeof(format ));
format .type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
status = ioctl(fd, VIDIOC_G_FMT , &format );
CHECK_IOCTL_STATUS("Error Querying Format")

/∗ Step 5: Set format f i e l d s to desired values : YUYV coding ,
480 lines , 640 pixe l s per l ine ∗/
format .fmt.pix.width = 640;
format .fmt.pix.height = 480;
format .fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;

/∗ Step 6: Write desired format and check actual image s i ze ∗/
status = ioctl(fd, VIDIOC_S_FMT , &format );
CHECK_IOCTL_STATUS("Error Setting Format");
width = format.fmt.pix.width; //Image Width
height = format.fmt.pix.height; //Image Height
//Total image s i ze in bytes
imageSize = (unsigned int)format.fmt.pix.sizeimage;

/∗ Step 7: request for a l locat ion of 4 frame buffers by the driver ∗/
reqBuf .count = 4;
reqBuf .type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqBuf .memory = V4L2_MEMORY_MMAP;
status = ioctl(fd, VIDIOC_REQBUFS , &reqBuf );
CHECK_IOCTL_STATUS("Error requesting buffers ")

/∗ Check the number of returned buffers . I t must be at l eas t 2 ∗/
if(reqBuf.count < 2)
{
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printf("Insufficient buffers \n");
exit(EXIT_FAILURE);

}

/∗ Step 8: Al locate a descriptor for each buffer and request i t s
address to the driver . The star t address in user space and the
s i ze of the buffers are recorded in the buffers descriptors . ∗/
buffers = calloc(reqBuf.count , sizeof(bufferDsc));
for(idx = 0; idx < reqBuf.count; idx++)
{

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = idx;

/∗ Get the star t address in the driver space of buffer idx ∗/
status = ioctl(fd, VIDIOC_QUERYBUF , &buf);
CHECK_IOCTL_STATUS("Error querying buffers ")

/∗ Prepare the buffer descriptor with the address in user space
returned by mmap() ∗/

buffers [idx].length = buf.length;
buffers [idx].start = mmap(NULL , buf.length ,

PROT_READ | PROT_WRITE ,MAP_SHARED ,
fd, buf.m.offset );

if(buffers [idx].start == MAP_FAILED)
{

perror("Error mapping memory");
exit(EXIT_FAILURE);

}
}

/∗ Step 9: request the driver to enqueue a l l the buffers
in a c i rcu lar l i s t ∗/
for(idx = 0; idx < reqBuf.count; idx++)
{

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = idx;
status = ioctl(fd, VIDIOC_QBUF , &buf);
CHECK_IOCTL_STATUS("Error enqueuing buffers ")

}

/∗ Step 10: s tar t streaming ∗/
bufType = V4L2_BUF_TYPE_VIDEO_CAPTURE;
status = ioctl(fd, VIDIOC_STREAMON , &bufType );
CHECK_IOCTL_STATUS("Error starting streaming")

/∗ Step 11: wait for a buffer ready ∗/
FD_ZERO (&fds);
FD_SET (fd, &fds);
tv.tv_sec = 20;
tv.tv_usec = 0;
for(;;)
{

status = select (1, &fds , NULL , NULL , &tv);
if(status == -1)
{

perror("Error in Select");
exit(EXIT_FAILURE);

}
/∗ Step 12: Dequeue buffer ∗/

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
status = ioctl(fd, VIDIOC_DQBUF , &buf);
CHECK_IOCTL_STATUS("Error dequeuing buffer ")

/∗ Step 13: Do image processing ∗/
processImage( buffers [buf.index].start , width , height , imagesize);
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/∗ Step 14: Enqueue used buffer ∗/
status = ioctl(fd, VIDIOC_QBUF , &buf);
CHECK_IOCTL_STATUS("Error enqueuing buffer ")

}
}

Steps 1–6 are the same of the previous program, except for step 2, where
the streaming capability of the device is now checked. In Step 7, the driver is
asked to allocate four image buffers. The actual number of allocated buffers
is returned in the count field of the v4l2 requestbuffers structure passed
to ioctl(). At least two buffers must have been allocated by the driver to
allow double buffering. In Step 8 the descriptors of the buffers are allocated
via the calloc() system routine (every descriptor contains the dimension and
a pointer to the associated buffer). The actual buffers, which have been allo-
cated by the driver, are queried in order to get their address in the driver’s
space. Such an address, returned in field m.offset of the v4l2 buffer struc-
ture passed to ioctl(), cannot be used directly in the program since it refers
to a different address space. The actual address in the user address space is
returned by the following mmap() call. When the program arrives at Step 9,
the buffers have been allocated by the driver and also mapped to the pro-
gram address space. They are now enqueued by the driver, which maintains a
linked queue of available buffers. Initially, all the buffers are available: every
time the driver has acquired a frame, the first available buffer in the queue
is filled. Streaming, that is, frame acquisition, is started at Step 10, and then
at Step 11 the program waits for the availability of a filled buffer, using the
select() system call. Whenever select() returns, at least one buffer con-
tains an acquired frame. It is dequeued in Step 12, and then enqueued in Step
13, after it has been used in image processing. The reason for dequeuing and
then enqueuing the buffer again is to make sure that the buffer will not be
used by the driver during image processing.

Finally, image processing will be carried out by routine processImage(),
which will first build a byte buffer containing only the luminance, that is,
taking the first byte of every 16 bit word of the passed buffer, coded using the
YUYV format.

2.4 Edge Detection

In the following text we shall proceed with the case study by detecting, for each
acquired frame, the center of a circular shape in the acquired image. In general,
image elaboration is not an easy task, and its results may not only depend on
the actual shapes captured in the image, but also on several other factors, such
as illumination and angle of view, which may alter the information retrieved
from the image frame. Center coordinates detection will be performed here
in two steps. Firstly, the edges in the acquired image are detected. This first
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step allows reducing the size of the problem, since for the following analysis
it suffices to take into account the pixels representing the edges in the image.
Edge detection is carried out by computing the approximation of the gradients
in the X (Lx) and Y (Ly) directions for every pixel of the image, selecting,
then, only those pixels for which the gradient magnitude, computed as |∇L| =√
L2
x + L2

y, is above a given threshold. In fact, informally stated, an edge

corresponds to a region where the brightness of the image changes sharply,
the gradient magnitude being an indication of the “sharpness” of the change.
Observe that in edge detection we are only interested in the luminance, so in
the YUYV pixel format, only the first byte of every two will be considered. The
gradient is computed using a convolution matrix filter. Image filters based on
convolution matrix filters are very common in image elaboration and, based on
the matrix used for the computation, often called kernel, can perform several
types of image processing. Such a matrix is normally a 3 x 3 or 5 x 5 square
matrix, and the computation is carried out by considering, for each pixel image
P (x, y), the pixels surrounding the considered one and multiplying them for
the corresponding coefficient of the kernel matrix K. Here we shall use a
3 x 3 kernel matrix, and therefore the computation of the filtered pixel value
P f (x, y) is

P f (x, y) =

2∑
i=0

2∑
j=0

K(i, j)P (x+ i− 1, y + j − 1) (2.1)

Here, we use the Sobel Filter for edge detection, which defines the following
two kernel matrixes: ⎡

⎣−1 0 1
−2 0 2
−1 0 1

⎤
⎦ (2.2)

for the gradient along the X direction, and⎡
⎣ 1 2 1

0 0 0
−1 −2 −1

⎤
⎦ (2.3)

for the gradient along the Y direction.
The C source code for the gradient detection is listed below:

#define THRESHOLD 100
/∗ Sobel matrixes ∗/
static int GX[3][3];
static int GY[3][3];
/∗ In i t i a l i z a t i on of the Sobel matrixes , to be ca l led before
Sobel f i l t e r computation ∗/
static void initG()
{
/∗ 3x3 GX Sobel mask . ∗/

GX [0][0] = -1; GX[0][1] = 0; GX[0][2] = 1;
GX [1][0] = -2; GX[1][1] = 0; GX[1][2] = 2;
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GX [2][0] = -1; GX[2][1] = 0; GX[2][2] = 1;

/∗ 3x3 GY Sobel mask . ∗/
GY [0][0] = 1; GY[0][1] = 2; GY[0][2] = 1;
GY [1][0] = 0; GY[1][1] = 0; GY[1][2] = 0;
GY [2][0] = -1; GY[2][1] = -2; GY[2][2] = -1;

}

/∗ Sobel F i l t e r computation for Edge detection . ∗/
static void makeBorder(char *image , char *border, int cols , int rows)
/∗ Input image i s passed in the byte array image ( cols x rows pixe l s )

Fi l tered image i s returned in byte array border ∗/
{

int x,y, i, j, sumX , sumY , sum;

for(y = 0; y <= (rows -1); y++)
{

for(x = 0; x <= (cols -1); x++)
{

sumX = 0;
sumY = 0;

/∗ handle image boundaries ∗/
if(y == 0 || y == rows -1)

sum = 0;
else if(x == 0 || x == cols -1)

sum = 0;

/∗ Convolution star ts here ∗/
else
{

/∗ X Gradient ∗/
for(i = -1; i <= 1; i++)
{

for(j =- 1; j <= 1; j++)
{

sumX = sumX + (int)( (*(image + x + i +
(y + j)*cols)) * GX[i+1][j+1]);

}
}

/∗ Y Gradient ∗/
for(i = -1; i <= 1; i++)
{

for(j = -1; j <= 1; j++)
{

sumY = sumY + (int)( (*(image + x + i +
(y + j)*cols)) * GY[i+1][j+1]);

}
}

/∗ Gradient Magnitude approximation to avoid square root operations ∗/
sum = abs(sumX) + abs(sumY);

}

if(sum > 255) sum = 255;
if(sum < THRESHOLD) sum = 0;

*(border + x + y*cols) = 255 - (unsigned char)(sum);
}

}
}

Routine makeBorder() computes a new image representing the edges of the
scene in the image. Only such pixels will then be considered in the following
computation for detecting the center of a circular shape in the image.
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2.4.1 Optimizing the Code

Before proceeding, it is worth to consider the performance of such algorithm.
In fact, if we intend to use the edge detection algorithm in an embedded
system with realtime constraints, we must ensure that its execution time will
be bound to a given value, short enough to guarantee that the system will meet
its requirements. First of all we observe that for every pixel of the image, 2*3*3
multiplications and sums are performed to compute the X and Y gradients, not
considering the operation on the matrix indices. This means that, supposing a
square image of size N is considered, the number of operation is proportional
to N*N, and we say that the algorithm has complexity O(N2). This notation
is called the big-O notation and provides an indication of the complexity for
computer algorithms. More formally, given two functions f(x) and g(x), if a
value M and a value x0 exist for which the following condition holds:

| f(x) |≤ M | g(x) | (2.4)

for every x > x0, then we say that f(x) is O(g(x)).

Informally stated, the above notation states that, for very large values of
x the two functions tend to become proportional. For example, if f(x) = 3x
and g(x) = 100x + 1000, then we can find a pair M,x0 for which 2.4 holds,
and therefore f(x) is O(g(x)). However, if we consider f(x) = 3x2 instead, it
is not possible to find such a pair M,x0. In fact, f(x) grows faster than every
multiple of g(x). Normally, when expressing the complexity of an algorithm,
the variable x used above represents the “dimension” of the problem. For
example, in a sorting algorithm, the dimension of the problem is represented
by the dimension of the vector to be sorted. Often some simplifying assumption
must be done in order to provide a measure of the dimension to be used in
the big-O notation. In our edge detection problem, we make the simplifying
assumption that the image is represented by a square pixel matrix of size N ,
and therefore we can state that the Sobel filter computation is O(N2) since
the number of operations is proportional to N2.
The big-O notation provides a very important measurement of the efficiency
for computer algorithms, which normally become unmanageable when the
dimension of the problem increases. Take as an example the algorithms for
sorting a given array of values. Elementary sorting algorithms such as Bubble
Sort or Insertion Sort require a number of operation that is proportional
to N2, where N is the dimension of the array to be sorted and therefore
are O(N2). Other sorting algorithms, such as Shell Sort and Quick Sort are
instead O(Nlog(N)). This implies that for very large arrays, only the latter
algorithms can be used in practice because the number of operations becomes
orders of magnitude lower in this case.

Even if the big-O notation is very important in the classification of al-
gorithms and in determining their applicability when the dimension of the
problem grows, it does not suffice for providing a complete estimate of the
computation time. To convince ourselves of this fact, it suffices to consider
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two algorithms for a problem of dimension N , the first one requiring f(N) op-
erations, and the second one requiring exactly 100f(N). Of course, we would
never choose the second one; however they are equivalent in the big-O nota-
tion, being both O(f(N)).

Therefore, in order to assess the complexity of a given algorithm and to op-
timize it, other techniques must be considered, in addition to the choice of the
appropriate algorithm. This the case of our application: given the algorithm,
we want to make its computation as fast as possible.

First of all, we need to perform a measurement of the time the algorithm
takes. A crude but effective method is to use the system routines for getting
the current time, and measure the difference between the time measured first
and after the computation of the algorithm. The following code snippet makes
a raw estimation of the time procedure makeBorder() takes in a Linux system.

#define ITERATIONS 1000
struct time_t beforeTime , afterTime;
int executionTime;
....
gettimeofday(&beforeTime , NULL);
for(i = 0; i < ITERATIONS; i++)

makeBorder(image , border, cols , rows);
gettimeofday(&afterTime , NULL);
/∗ Execution time is expressed in microseconds ∗/
executionTime = (afterTime.tv_sec - beforeTime.tv_sec) * 1000000

+ afterTime.tv_usec - beforeTime.tv_usec ;
executionTime /= ITERATIONS;
...

The POSIX routine gettimeofday() reads the current time from the CPU
clock and stores it in a time t structure whose fields define the number of
seconds (tv sec) and microseconds (tv usec) from the Epoch, that is, a
reference time which, for POSIX, is assumed to be 00:00:00 UTC, January 1,
1970.

The execution time measured in this way can be affected by several factors,
among which can be the current load of the computer. In fact, the process
running the program may be interrupted during execution by other processes
in the system. Even after setting the priority of the current process as the
highest one, the CPU will be interrupted many times for performing I/O and
for the operating system operation. Nevertheless, if the computer is not loaded,
and the process running the program has a high priority, the measurement is
accurate enough.

We are now ready to start the optimization of our edge detection algo-
rithm. The first action is the simplest one: let the compiler do it. Modern
compilers perform very sophisticated optimization of the machine code that
is produced when parsing the source code. It is easy to get an idea of the
degree of optimization by comparing the execution time when compiling the
program without optimization (compiler flag -O0) and with the highest degree
of optimization (compiler flag -O3), which turns out to be 5–10 times shorter
for the edge detection routine. The optimization performed by the compiler
addresses the following aspects:
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• Code Reduction: Reducing the number of machine instructions makes the
program execution faster. Very often in programs the same information
is computed many times in different parts. So the compiler can reuse the
value computed before, instead of executing again a sequence of machine
instructions leading to the same result. The compiler tries also to carry out
computation in advance, rather than producing the machine instructions
for doing it. For example, if an expression formed by constant values is
present in the source code, the compiler can produce the result at compile
time, rather than doing it during the program execution. The compiler
also moves away from loops the computation that does not depend on loop
variable, and which therefore would produce the same result at every loop
iteration.

Observe that code reduction does not mean reduction in the size of the
produced program; rather, it reduces the number of instruction actually
executed during the program. For example, whenever the number N of
loop iterations can be deduced at compile time (i.e., does not depend on
run-time information) and N is not too high, compilers often replace the
conditional jump instruction by concatenating N segments of machine in-
struction, each corresponding to the loop body. The resulting executable
program is longer, but the number of instructions actually performed is
lower since the conditional jumps instruction and the corresponding con-
dition evaluation are avoided. For the same reason, compilers can also per-
form inline expansion when a routine is called in the program. Inserting the
code of the routine again makes the size of the executable program bigger,
but avoids the overhead due to the routine invocation and the passage of
the arguments.

• Instruction Selection: Even if several operations defined in the source code,
such as multiplications, can be directly executed by machine instruction,
this choice does not represent the most efficient one. Consider, for example,
a multiplication by two: this can be performed either with a multiplication
(MUL) or with an addition (ADD) machine instruction. Clearly, the second
choice is preferable since in most computer architectures addition is per-
formed faster than multiplication. Therefore, the compiler selects the most
appropriate sequence of machine instructions for carrying out the required
computation. Observe that again this may lead to the generation of a pro-
gram with a larger number of machine instructions, where some operations
for which a direct machine instruction exists are instead implemented with
a longer sequence of faster machine instruction. In this context, a very
important optimization carried out by the compiler is the recognition of
induction variables in loops and the replacement of operations on such
variables with simpler ones. As an example, consider the following loop:

for (i = 0; i < 10; i++)

{
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a = 15 * i;

.....

}

Variable i is an induction variable, that is, a variable which gets increased
or decreased by a fixed amount on every iteration of a loop, or which is a
linear function of another induction variable. In this case, it is possible to
replace the multiplication with an addition, getting the equivalent loop:

a = 0;

for (i = 0; i < 10; i++)

{

a = a + 15;

.....

}

The compiler recognizes, then, induction variables and replaces more com-
plex operations with additions. This optimization is particularly useful for
the loop variables used as indexes in arrays; in fact, many computer ar-
chitectures define memory access operations (arrays are stored in memory
and are therefore accessed via memory access machine instructions such as
LOAD or STORE), which increment the passed memory index by a given
amount in the same memory access operation.

• Register Allocation: Every computer architecture defines a number of reg-
isters that can store temporary information during computation. Registers
are implemented within the processor, and therefore reading or writing to
a register is much faster than reading and writing from memory. For this
reason the compiler will try to use processor registers as far as possible, for
example, using registers to hold the variables defined in the program. The
number of registers is, however, finite (up to some tents), and therefore it
is not possible to store all the variables into registers. Memory locations
must be used, too. Moreover, when arrays are used in the program, they are
stored in memory, and access to array elements in the program normally
requires an access to memory in run time. The compiler uses a variety of
algorithms to optimize the use of registers, and to maximize the likelihood
that a variable access will be performed by a register access. For example,
if a variable stored in memory is accessed for the second time, and it has
not been changed since its first access (something which can be detected
under certain conditions by the compiler), then the compiler will temporar-
ily hold a copy of the variable on a register so that the second time it is
read from the register instead from memory.

• Machine-Dependent Optimization: the above optimizations hold for every
computer. In fact, reducing the number and the complexity of instruc-
tions executed in run time will always reduce execution time, as well as
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optimizing the usage of registers. There are, however, other optimizations
that depend on specific computer architecture. A first set of optimizations
addresses the pipeline. All modern processors are pipelined, that is the exe-
cution of machine instructions is implemented as a sequence of stages. Each
stage is carried out by a different processors components. For example, a
processor may define the following stages for a machine instruction:

1. Fetch: read the instruction from memory;

2. Decode: decode the machine instruction;

3. Read arguments: load the arguments of the machine instruction
(from registers or from memory);

4. Execute: do what the instruction specifies;

5. Store results: store the results of the execution (to registers or
to memory).

A separate hardware processor component, called the pipeline stage, will
carry out every stage. So, when the first stage has terminated fetching the
instruction N , it can start fetching instruction N + 1 while instruction
N is being decoded. After a startup time, under ideal conditions, the K
stages of the pipeline will all be busy, and the processor is executing K
instruction in parallel, reducing the average execution time of a factor of
K. There are, however, several conditions that may block the parallel ex-
ecution of the pipeline stages, forcing a stage to wait for some clock cycle
before resuming operation. One such condition is given by the occurrence of
two consecutive instructions, say, instructions N and N+1 in the program,
where the latter uses as input the results of the former. In this case, when
instruction N + 1 enters its third stage (Read arguments), instructions N
enters the execute phase. However, instruction N + 1 cannot proceed in
reading the arguments, since they have not yet been reported by the pre-
vious instruction. Only when instruction N finishes its execution (and its
results have been stored) execution N + 1 can resume its execution, thus
producing a delay in the execution of two clock cycles, assuming that every
pipeline stage is executed in one clock period. This condition is called Data
Hazard and depends on the existence of sequences of two or more depen-
dent consecutive instructions.
If the two instruction were separated by at least two independent instruc-
tions in the program sequence, no data hazard would occur and no time
would be spent with the pipeline execution partially blocked. The com-
piler, therefore, tries to separate dependent instruction in the program. Of
course, instructions cannot be freely moved in the code, and code anal-
ysis is required to figure out which instruction sequence rearrangement
are legal, that is, which combination maintain the program correct. This
kind of analysis is also performed by the compiler to take advantage of the
availability of multiple execution units in superscalar processors. In fact,
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instructions can be executed in parallel only when they are independent
from each other.

At this point we may be tempted to state that the all the possible optimiza-
tions in the edge detection program have been carried out by the compiler,
and there is no need to further analyze the program for reducing its execution
time. This is, however, not completely true: while compilers are very clever
in optimizing code, very often achieving a better optimization than what can
be achieved with manual optimization, there is one aspect of the program in
which compilers cannot exploit extreme optimization—that is, memory access
via pointers. We have already seen that a compiler can often maintain in a
register a copy of a variable stored in memory so that the register copy can
be used instead. However, it is not possible to store in a register a memory
location accessed via a pointer and reuse it afterwards in spite of the memory
location, because it is not possible to make sure that the memory address has
not been modified in the meantime. In fact, while in many cases the compiler
can analyze in advance how variables are used in the program, in general it
cannot do the same for memory location accessed via pointers because the
pointer values, that is, the memory addresses, are normally computed run
time, and cannot therefore be foreseen during program compilation.

As we shall see shortly, there is still room for optimization in the edge de-
tection routine, but it is necessary to introduce first some concepts of memory
caching.

In order to speed memory accesses computers use memory caches. A mem-
ory cache is basically a fast memory that is much faster that the RAM memory
used by the processor, and which holds data recently accessed by the com-
puter. The memory cache does not correspond to any fixed address in the ad-
dressing space of the processor, and therefore contains only copies for memory
locations stored in the RAM. The caching mechanism is based on a common
fact in programs: locality in memory access. Informally stated, memory ac-
cess locality expresses the fact that if a processor makes a memory access,
say, at address K, the next access in memory is likely to occur at an address
that is close to K. To convince ourselves of this fact, consider the two main
categories of memory data access in a program execution: fetching program
instructions and accessing program data. Fetching memory instructions (re-
call that a processor has to read the instruction from memory in order to
execute it) is clearly sequential in most cases. The only exception is for the
Jump instructions, which, however, represent a small fraction of the program
instructions. Data is mostly accessed in memory when the program accesses
array elements, and arrays are normally (albeit not always) accessed in loops
using some sort of sequential indexing.

Cache memory is organized in blocks (called also cache lines), which can be
up to a few hundreds bytes large. When the processor tries to access a memory
location for reading or writing a data item at a given address, the cache
controller will first check if a cache block containing that location is currently
present in the cache. If it is found in the cache memory, fast read/write access
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is performed in the cached copy of the data item. Otherwise, a free block in
the cache is found (possibly copying in memory an existing cache block if the
cache is full), and a block of data located around that memory address is first
copied from memory to the cache. The two cases are called Cache Hit and
Cache Miss, respectively. Clearly, a cache miss incurs in a penalty in execution
time (the copy of a block from memory to cache), but, due to memory access
locality, it is likely that further memory accesses will hit the cache, with a
significant reduction in data access time.

The gain in performance due to the cache memory depends on the program
itself: the more local is memory access, the faster will be program execution.
Consider the following code snippet, which computes the sum of the elements
of a MxN matrix.

double a[M][N];
double sum = 0;
for(i = 0; i < M, i++)

for(j = 0; j < N; j++)
sum += a[i][j];

In C, matrixes are stored in row first order, that is, rows are stored sequen-
tially. In this case a[i][j] will be adjacent in memory to a[i][j+1], and the
program will access matrix memory sequentially. The following code is also
correct, differing from the previous one only for the exchange of the two for

statements.

double a[M][N];
double sum = 0;
for(j = 0; j < N; j++)

for(i = 0; i < M, i++)
sum += a[i][j];

However in this case memory access is not sequential since matrix elements
a[i][j] and a[i+1][j] are stored in memory locations that are N elements
far away. In this case, the number of cache misses will be much higher than
in the former case, especially for large matrixes, affecting the execution time
of that code.

Coming back to routine makeBorder(), we observe that it is accessing
memory in the right order. In fact, what the routine basically does is to con-
sider a 3 x 3 matrix sweeping along the 480 rows of the image. The order
of access is therefore row first, corresponding to the order in which bytes
are stored in the image buffer. So, if bytes are being considered in a “cache
friendly” order, what can we do to improve performance? Recall that the
compiler is very clever in optimizing access to information stored in program
variables, but is mostly blind as regard the management of information stored
in memory (i.e., in arrays and matrixes). This fact suggests to us a possible
strategy: move the current 3 x 3 portion of the image being considered in the
Sobel filter into 9 variables. Filling this set of 9 variables the first time a line
is considered will require reading 9 values from memory, but at the follow-
ing iterations, that is, moving the 3 x 3 matrix one position left, only three
new values will be read from memory, the others already being stored in pro-
gram variables. Moreover, the nine multiplications and summations required
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to compute the value of the current output filter can be directly expressed in
the code, without defining the 3 x 3 matrixes GX and GY used in the program
listed above. The new implementation of makeBorder() is listed below, using
the new variables c11, c12, . . . , c33 to store the current portion of the image
being considered for every image pixel.

void makeBorder(char *image , char *border , int cols , int rows)
{

int x, y, sumX , sumY , sum;
/∗ Variables to hold the 3x3 portion of the image used in the computation
of the Sobel f i l t e r output ∗/

int c11 ,c12 ,c13 ,c21,c22,c23 ,c31 ,c32 ,c33;

for(y = 0; y <= (rows -1); y++)
{
/∗ First image row: the f i r s t row of c i j i s zero ∗/

if(y == 0)
{

c11 = c12 = c13 = 0;
}
else

/∗ First image column: the f i r s t column of c i j matrix i s zero ∗/
{

c11=0;
c12 = *(image + (y - 1) * cols);
c13 = *(image + 1 + (y - 1)*cols);

}
c21 = 0;
c22 = *(image + y*cols);
c23 = *(image + 1 + y*cols);
if(y == rows - 1)

/∗ Last image row: the third row of c i j matrix i s zero ∗/
{

c31 = c32 = c33 = 0;
}
else
{

c31=0;
c32 = *(image + (y + 1)*cols);
c33 = *(image + 1 + (y + 1)*cols);

}
/∗ The 3x3 matrix corresponding to the f i r s t p ixe l of the current image

row has been loaded in program variab les .
The fol lowing i terat ions w i l l only load
from memory the rightmost column of such matrix ∗/

for(x = 0; x <= (cols -1); x++)
{

sumX = sumY = 0;
/∗ Skip image boundaries ∗/

if(y == 0 || y == rows -1)
sum = 0;

else if(x == 0 || x == cols -1)
sum = 0;

/∗ Convolution star ts here .
GX and GY parameters are now ”cabled” in the code ∗/

else
{

sumX = sumX - c11;
sumY = sumY + c11;
sumY = sumY + 2*c12;
sumX = sumX + c13;
sumY = sumY + c13;
sumX = sumX - 2 * c21;
sumX = sumX + 2*c23;
sumX = sumX - c31;
sumY = sumY - c31;
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sumY = sumY - 2*c32;
sumX = sumX + c33;
sumY = sumY - c33;
if(sumX < 0) sumX = -sumX; //Abs value
if(sumY < 0) sumY = -sumY;
sum = sumX + sumY;

}
/∗ Move one pixe l on the r ight in the current row .

Update the f i r s t / l a s t row only i f not in the f i r s t / l a s t image row ∗/
if(y > 0)
{

c11 = c12;
c12 = c13;
c13 = *(image + x + 2 + (y - 1) * cols);

}
c21 = c22;
c22 = c23;
c33 = *(image + x +2 + y * cols);
if(y < cols - 1)
{

c31 = c32;
c32 = c33;
c33 = *(image + x + 2 + (y + 1) * cols);

}
if(sum > 255) sum = 255;
if(sum < THRESHOLD) sum=0;

/∗ Report the new pixe l in the output image ∗/
*(border + x + y*cols) = 255 - (unsigned char)(sum);

}
}

}

The resulting code is for sure less readable then the previous version, but, when
compiled, it produces a code that is around three times faster because the
compiler has now more chance for optimizing the management of information,
being memory access limited to the essential cases.

In general code optimization is not a trivial task and requires ingenuity and
a good knowledge of the optimization strategies carried out by the compiler.
Very often, in fact, the programmer experiences the frustration of getting no
advantage after working hard in optimizing his/her code, simply because the
foreseen optimization had already been carried out by the compiler. Since
optimized source code is often much less readable that a nonoptimized one,
implementing a given algorithm taking care also of possible code optimization,
may be an error-prone task. For this reason, implementation should be done
in two steps:

1. Provide a first implementation with no regard to efficiency, but
concentrating on a clearly readable and understandable implemen-
tation. At this level, the program should be fully debugged to make
sure that no errors are present in the code, preparing also a set of
test cases that fully covers the different aspects of the algorithm.

2. Starting from the previous implementation, and using the test cases
prepared in the first step, perform optimization, possibly in steps, in
order to address separately possible sources of inefficiency. At every
try (not all the tentatives will actually produce a faster version)
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FIGURE 2.9
r and θ representation of a line.

check the correctness of the new code and the amount of gained
performance.

2.5 Finding the Center Coordinates of a Circular Shape

After the edge detection stage, a much reduced number of pixels has to be
taken into consideration to compute the final result of image analysis in our
case study: locating the coordinates of the center of a circular shape in the
image. To this purpose, the Hough transform will be used, a technique for
feature extraction in images. In the original image, every element of the image
matrix brings information on the luminance of the corresponding pixel (we are
not considering colors here). The Hough transform procedure converts pixel
luminance information into a set of parameters, so that a voting procedure
can be defined in the parameter space to derive the desired feature, even in
the case of imperfect instances of objects in the input image.
The Hough transform was originally used to detect lines in images. In this
case, the parameter space components are r and θ, where every line in the
original image ir represented by a (r, θ) pair, as shown in Figure 2.9. Using
parameters r and θ, the equation of a line in the x, y plane is expressed as:

y = −(
cos θ

sin θ
)x+ (

r

sin θ
) (2.5)

Imagine an image containing one line. After edge detection, the pixels
associated with the detected edges may belong to the line, or to some other
element of the scene represented by the image. Every such pixel at coordinates
(x0, y0) is assumed by the algorithm as belonging to a potential line, and the
(infinite) set of lines passing for (x0, y0) is considered. For all such lines, the
associated parameters r and θ obey to the following relation:

r = x0 cos θ + y0 sin θ (2.6)
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FIGURE 2.10
(r, θ) relationship for points (x0, y0) and (x1, y1).

that is, a sinusoidal law in the plane (r, θ). Suppose now that the considered
pixel effectively belongs to the line, and consider another pixel at position
(x1, y1), belonging to the same line. Again, for the set of lines passing through
(x1, y1), their r and θ will obey the law:

r = x1 cos θ + y1 sin θ (2.7)

Plotting (2.5) and (2.7) in the (r, θ) (Figure 2.10) we observe that the two
graphs intersect in (r0, θ0), where r0 and θ0 are the parameters of the line
passing through (x0, y0) and (x1, y1). Considering every pixel on that line, all
the corresponding curves in place (r, θ) will intersect in (r0, θ0). This suggests a
voting procedure for detecting the lines in an image. We must consider, in fact,
that in an image spurious pixels are present, in addition to those representing
the line. Moreover, the (x, y) position of the line pixels may lie not exactly in
the expected coordinates for that line. So, a matrix corresponding to the (r, θ)
plane, initially set to 0, is maintained in memory. For every edge pixel, the
matrix elements corresponding to all the pairs (r, θ) defined by the associated
sinusoidal relation are incremented by one. When all the edge pixels have been
considered, supposing a single line is represented in the image, the matrix
element at coordinates (r0, θ0) will hold the highest value, and therefore it
suffices to choose the matrix element with the highest value, whose coordinates
will identify the recognized line in the image.

A similar procedure can be used to detect the center of a circular shape
in the image. Assume initially that the radius R of such circle is known.
In this case, a matrix with the same dimension of the image is maintained,
initially set to 0. For every edge pixel (x0, y0) in the image, the circle of radius
R centered in (x0, y0) is considered, and the corresponding elements in the
matrix incremented by 1. All such circles intersect in the center of the circle
in the image, as shown in Figure 2.11. Again, a voting procedure will allow
discovery of the center of the circle in edge image, even in presence of spurious
pixels, and the approximate position of the pixels representing the circle edges.
If the radius R is not known in advance, it is necessary to repeat the above
procedure for different values of R and choose the radius value that yields
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FIGURE 2.11
Circles drawn around points over the circumference intersect in the circle
center.

FIGURE 2.12
A sample image with a circular shape.

the maximum count value for the candidate center. Intuitively, this holds,
because only when the considered radius is the right one will all the circles
built around the border pixels of the original circle intersect in a single point.

Observe that even if the effective radius of the circular object to be detected
in the image is known in advance, the radius of its shape in the image may
depend on several factors, such as its distance from the camera, or even from
the illumination of the scene, which may yield slightly different edges in the
image, so in practice it is always necessary to consider a range of possible
radius values.

The overall detection procedure is summarized in Figures 2.12, 2.13, 2.14,
and 2.15. The original image and the detected edges are shown in Figures 2.12
and 2.13, respectively. Figure 2.14 is a representation of the support matrix
used in the detection procedure. It can be seen that most of the circles in the
image intersect in a single point (the others are circles drawn around the other
edges of the image), reported then in the original image in Figure 2.15.

The code of routine findCenter() is listed below. Its input arguments are
the radius of the circle, the buffer containing the edges of the original image
(created by routine makeBorder()), and the number of rows and columns. The
routine returns the position of the detected center and a quality indicator,
expressed as the normalized maximum value in the matrix used for center
detection. The buffer for such a matrix is passed in the last argument.
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FIGURE 2.13
The image of 2.12 after edge detection.

FIGURE 2.14
The content of the voting matrix generated from the edge pixels of 2.13.

FIGURE 2.15
The detected center in the original image.
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/∗ Black threshold :
a pixe l value l e s s than the threshold i s considered black . ∗/

#define BLACK_LIMIT 10
void findCenter(int radius,unsigned char *buf, int rows , int cols ,

int *retX , int *retY , int *retMax , unsigned char *map)
{

int x, y, l, m, currCol , currRow , maxCount = 0;
int maxI = 0, maxJ = 0;

/∗ Square roots needed for computation are computed only once
and maintained in array sqr ∗/
static int sqr[2 * MAX_RADIUS];
static int sqrInitialized = 0;

/∗ Hit counter , used to normalize the returned qual i ty indicator ∗/
double totCounts = 0;

/∗ The matrix i s i n i t i a l l y set to 0 ∗/
memset (map , 0, rows * cols);

/∗ I f square root values not yet i n i t i a l i z ed , compute them ∗/
if(! sqrInitialized)
{

sqrInitialized = 1;
for(l = -radius; l <= radius; l++)

/∗ integer approximation of sqrt ( radiusˆ2 − l ˆ2) ∗/
sqr[l+radius] = sqrt(radius*radius - l*l) + 0.5;

}
for(currRow = 0; currRow < rows; currRow ++)
{

for(currCol = 0; currCol < cols; currCol ++)
{

/∗ Consider only pixe ls corresponding to borders of the image
Such pixe l s are set by makeBorder as dark ones∗/

if(buf[currRow *cols + currCol ] <= BLACK_LIMIT)
{

x = currCol ;
y = currRow ;

/∗ Increment the value of the pixe l s in map buffer which corresponds to
a c i r c l e of the given radius centered in (currCol , currRow) ∗/

for(l = x - radius; l <= x+radius; l++)
{

if(l < 0 || l >= cols)
continue ; // Out of image X range

m = sqr[l-x+radius ];
if(y-m < 0 || y+m >= rows)

continue ; //Out of image Y range
map[(y-m)*cols + l]++;
map[(y+m)*cols + l]++;
totCounts += 2; //Two more pixe ls incremented

/∗ Update current maximum ∗/
if(maxCount < map[(y+m)*cols + l])
{

maxCount = map[(y+m)*cols + l];
maxI = y + m;
maxJ = l;

}
if(maxCount < map[(y-m)*cols + l])
{

maxCount = map[(y-m)*cols + l];
maxI = y - m;
maxJ = l;

}
}

}
}

}
/∗ Return the (X, y) posi tion in the map which y ie lds the larges t value ∗/

*retX = maxJ;
*retY = maxI;

/∗ The returned qual i ty indicator i s expressed as maximum pixe l
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value in map matrix ∗/
*retMax = maxCount ;

}

As stated before, due to small variations of the actual radius of the circular
shape in the image, routine findCenter() will be iterated for a set of radius
values, ranging between a given minimum and maximum value.

When considering the possible optimization of the detection procedure,
we observe that every time routine findCenter() is called, it is necessary to
compute the square root values that are required to select the map elements
which lie on a circumference centered on the current point. Since the routine is
called for a fixed range of radius values, we may think of removing the square
root calculation at the beginning of the routine, and to pass on an array of
precomputed values, which are prepared in an initialization phase for all the
considered radius values. This improvement would, however, bring very little
improvement in speed: in fact, only few tens of square root computations (i.e.,
the pixel dimension of the radius) are carried out every time findCenter() is
called, a very small number of operations if compared with the total number of
operations actually performed. A much larger improvement can be obtained by
observing that it is possible to execute findCenter() for the different radius
values in parallel instead of in a sequence. The following code uses POSIX
threads, described in detail in Chapter 7, to launch a set of thread, each
computing the center coordinates for a given value of the radius. Every thread
can be considered an independent flow of execution for the passed routine. In a
multicore processor, threads can run on different cores, thus providing a drastic
reduction of the execution time because code is executed effectively in parallel.
A new thread is created by POSIX routine pthread create(), which takes as
arguments the routine to be executed and the (single) parameter to be passed.
As findCenter() accepts multiple input and output parameters, it cannot be
passed directly as argument to pthread create(). The normal practice is to
allocate a data structure containing the routine-specific parameters and to
pass its pointer to pthread create() using a support routine (doCenter()
in the code below).

After launching the threads, it is necessary to wait for their termina-
tion before selecting the best result. This is achieved using POSIX routine
pthread join(), which suspends the execution of the calling program un-
til the specified thread terminates, called in a loop for every created thread.
When the loop exits, all the centers have been computed, and the best can-
didate can be chosen using the returned arguments stored in the support
argument structures.

#include <pthreads .h>
/∗ Definition of a structure to contain the arguments to be

exchanged with findCenter () ∗/
struct arguments{

unsigned char *edges; //Edge image
int rows , cols; //Rows and columns i f the image
int r; //Current radius
int retX , retY; //Returned center posi tion
int retMax; //Returned qual i ty factor
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unsigned char *map; //Buffer memory for the voting matrix
};
struct arguments *args;
/∗ In i t i a l i z a t i on of the support structure . initCenter ()

w i l l be ca l l ed once and w i l l a l locate the required memory ∗/
void initCenter(unsigned char *edges ,

int minR , int maxR , int rows , int cols)
{

int i;
args = (struct arguments *)

malloc ((maxR - minR + 1)*sizeof(struct arguments));
for(i = 0; in <= maxR - minR; i++)
{

args[i].edges = edges;
args[i].r = minR + i;
args[i].rows = rows;
args[i].cols = cols;
args[i].map = (unsigned char *)malloc(rows * cols);

}
}

/∗ Routine executed by the thread . I t receives the pointer to the
associated arguments structure ∗/

static void *doCenter (void *ptr)
{

struct arguments *arg = (struct arguments *)ptr;
/∗ Take arguments from the passed structure ∗/

findCenter(arg ->r, arg->borders , arg->rows , arg ->cols ,
&arg ->retX , &arg->retY , &arg ->max, arg->map);

return NULL;
}
/∗ Paral le l execution of multiple findCenter () routines for radius

values ranging from minR to maxR ∗/
static void parallelFindCenter(unsigned char *borders , int minR ,

int maxR , int rows , int cols , int *retX , int *retY ,
int *retRadius , unsigned char *map)

{
int i;
double currMax = 0;

/∗ Dummy thread return value (not used) ∗/
void *retVal;

/∗ Array of thread indent i f i ers ∗/
pthread_t trs[maxR - minR];

/∗ Create the threads . Each thread w i l l receive the pointer of the
associated argument structure ∗/
for(i = 0; i <= maxR - minR; i++)

pthread_create(&trs[i], NULL , doCenter , &args[i]);
/∗ Wait the termination of a l l threads ∗/

for(i = 0; i < maxR - minR; i++)
pthread_join(trs[i], &retVal );

/∗ All threads are now terminated : s e l e c t the best radius and return
the detected center for i t ∗/
for(i = 0; i < maxR - minR; i++)
{

if(args[i].max > currMax )
{

currMax = args[i].max;
*retX = args[i].retX;
*retY = args[i].retY;
*retRadius = args[i].r;

}
}

}
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2.6 Summary

In this chapter a case study has been used to introduce several important facts
about embedded systems. In the first part, the I/O architecture of computers
has been presented, introducing basilar techniques such as polling, interrupts
and Direct Memory Access.

The interface to I/O operations provided by operating systems, in par-
ticular Linux, has then been presented. The operating system shields all the
internal management of I/O operations, offering a very simple interface, but
nonetheless knowledge in the I/O techniques is essential to fully understand
how I/O routines can be used. The rather sophisticated interface provided by
the library V4L2 for camera devices allowed us to learn more concepts such
as virtual memory and multiple buffer techniques for streaming.

The second part of the chapter concentrates on image analysis, introducing
some basic concepts and algorithms. In particular, the important problem of
code optimization is discussed, presenting some optimization techniques car-
ried out by compilers and showing how to “help” compilers in producing more
optimized code. Finally, an example of code parallelization has been presented,
to introduce the basic concepts of threads activation and synchronization.

We are ready to enter the more specific topics of the book. As explained
in the introduction, embedded systems represent a field of application with
many aspects, only few of which can be treated in depth in a reasonably sized
text. Nevertheless, the general concepts we met so far will hopefully help us
in gaining some understanding of the facets not “officially” covered by this
book.
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This chapter lays the foundation of real-time concurrent programming theory
by introducing what is probably its most central concept, that is, the definition
of process as the abstraction of an executing program. This definition is also
useful to clearly distinguish between sequential and concurrent programming,
and to highlight the pitfalls of the latter.

3.1 The Role of Parallelism

Most contemporary computers are able to perform more than one activity at
the same time, at least apparently. This is particularly evident with personal
computers, in which users ordinarily interact with many different applications
at the same time through a graphics user interface. In addition, even if this
aspect is often overlooked by the users themselves, the same is true also at a
much finer level of detail. For example, contemporary computers are usually
able to manage user interaction while they are reading and writing data to
the hard disk, and are actively involved in network communication. In most
cases, this is accomplished by having peripheral devices interrupt the current
processor activity when they need attention. Once it has finished taking care
of the interrupting devices, the processor goes back to whatever it was doing
before.

A key concept here is that all these activities are not performed in a
fixed, predetermined sequence, but they all seemingly proceed in parallel, or
concurrently, as the need arises. This is particularly useful to enhance the user

63



64 Real-Time Embedded Systems—Open-Source Operating Systems Perspective

experience since it would be very awkward, at least by modern standards, to
be constrained to have only one application active on a personal computer at
any given time and to have to quit one application before switching to the
next. Similarly, having a computer stop doing anything else only because a
hard disk operation is in progress would seem strange, to say the least.

Even more importantly, the ability of carrying out multiple activities “at
once” helps in fulfilling any timing constraint that may be present in the sys-
tem in an efficient way. This aspect is often of concern whenever the computer
interacts with the outside world. For example, network interfaces usually have
a limited amount of space to buffer incoming data. If the system as a whole
is unable to remove them from the buffer and process them within a short
amount of time—on the order of a few milliseconds for a high-speed net-
work coupled with a low-end interface—the buffer will eventually overflow,
and some data will be lost or will have to be retransmitted. In more extreme
cases, an excessive delay will also trigger higher-level errors, such as network
communication timeouts.

In this particular situation, a sequential implementation would be tricky,
because all applications would have to voluntarily suspend whatever they were
doing, at predetermined instants, to take care of network communication. In
addition, deciding in advance when and how often to perform this activity
would be difficult because the exact arrival time of network data and their
rate are often hard to predict.

Depending on the hardware characteristics, the apparent execution paral-
lelism may correspond to a true parallelism at the hardware level. This is the
case of multiprocessor and multicore systems, in which either multiple pro-
cessors or a single processor with multiple execution cores share a common
memory, and each processor or core is able to carry out its own sequential
flow of instructions.

The same end result can be obtained when a single processor or core is
available, or when the number of parallel activities exceeds the number of avail-
able processors or cores, by means of software techniques implemented at the
operating system level, known as multiprogramming, that repeatedly switch
the processor back and forth from one activity to another. If properly im-
plemented, this context switch is completely transparent to, and independent
from, the activities themselves, and they are usually unaware of its details.
The term pseudo parallelism is often used in this case, to contrast it with the
real hardware-supported parallelism discussed before, because technically the
computer is still executing exactly one activity at any given instant of time.

The notion of sequential process (or process for short) was born, mainly
in the operating system community, to help programmers express parallel
activities in a precise way and keep them under control. It provides both an
abstraction and a conceptual model of a running program.
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Sequential process execution
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TimeA B C A C

Processor activity over time

FIGURE 3.1
Multiprogramming: abstract model of three sequential processes (left) and
their execution on a single-processor system (right).

3.2 Definition of Process

The concept of process was first introduced in the seminal work of Dijk-
stra [23]. In this model, any concurrent system, regardless of its nature or
complexity, is represented by, and organized as, a set of processes that exe-
cute in parallel. Therefore, the process model encompasses both the applica-
tion programs and the operating system itself. Each process is autonomous
and holds all the information needed to represent the evolving execution state
of a sequential program. This necessarily includes not only the program in-
structions but also the state of the processor (program counter, registers) and
memory (variables).

Informally speaking, each process can be regarded as the execution of a
sequential program by “its own” processor even if, as shown in Figure 3.1, in
a multiprogrammed system the physical processors may actually switch from
one process to another. The abstract view of the system given by the process
model is shown on the left side of the figure, where we see three independent
processes, each with its own control flow and state information. For the sake
of simplicity, both of them have been depicted with an arrow, representing in
an abstract way how the execution proceeds with time.

On the other hand, the right side of the figure shows one of the many
possible sequences of operations performed by a single-processor system to
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execute them. The solid lines represent the execution of a certain process,
whereas the dashed lines represent context switches. The multiprogramming
mechanism ensures, in the long run, that all processes will make progress even
if, as shown in the time line of processor activity over time at the bottom of
the figure, the processor indeed executes only one process at a time.

Comparing the left and right sides of Figure 3.1 explains why the adoption
of the process model simplifies the design and implementation of a concurrent
system: By using this model, the system design is carried out at the process
level, a clean and easy to understand abstraction, without worrying about the
low-level mechanisms behind its implementation. In principle, it is not even
necessary to know whether the system’s hardware is really able to execute
more than one process at a time or not, or the degree of such a parallelism,
as long as the execution platform actually provides multiprogramming.

The responsibility of choosing which processes will be executed at any
given time by the available processors, and for how long, falls on the operat-
ing system and, in particular, on an operating system component known as
scheduler. Of course, if a set of processes must cooperate to solve a certain
problem, not all possible choices will produce meaningful results. For example,
if a certain process P makes use of some values computed by another process
Q, executing P before Q is probably not a good idea.

Therefore, the main goal of concurrent programming is to define a set of
interprocess communication and synchronization primitives. When used ap-
propriately, these primitives ensure that the results of the concurrent program
will be correct by introducing and enforcing appropriate constraints on the
scheduler decisions. They will be discussed in Chapters 5 and 6.

Another aspect of paramount importance for real-time systems—that is,
systems in which there are timing constraints on system activities—is that,
even if the correct application of concurrent programming techniques guaran-
tees that the results of the concurrent program will be correct, the scheduling
decisions made by the operating system may still affect the behavior of the
system in undesirable ways, concerning timing.

This is due to the fact that, even when all constraints set forth by the
interprocess communication and synchronization primitives are met, there are
still many acceptable scheduling sequences, or process interleaving. Choosing
one or another does not affect the overall result of the computation, but may
change the timing of the processes involved.

As an example, Figure 3.2 shows three different interleavings of processes
P , Q, and R. All of them are ready for execution at t = 0, and their execution
requires 10, 30, and 20ms of processor time, respectively. Since Q produces
some data used by P , P cannot be executed before Q. For simplicity, it is also
assumed that processes are always run to completion once started and that
there is a single processor in the system.

Interleaving (a) is unsuitable from the concurrent programming point of
view because it does not satisfy the precedence constraint between P and Q
stated in the requirements, and will lead P to produce incorrect results. On
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TimeR P Q(a)

Wrong results (P executed before Q)

TimeRPQ(b)

Correct results (P completes after 40 ms, R after 60 ms)

TimeR PQ(c)

Correct results (P completes after 60 ms, R after 50 ms)

FIGURE 3.2
Unsuitable process interleavings may produce incorrect results. Process inter-
leaving, even when it is correct, also affects system timing. All processes are
ready for execution at t = 0.

the other hand, interleavings (b) and (c) are both correct in this respect—the
precedence constraint is met in both cases—but they are indeed very different
from the system timing point of view. As shown in the figure, the completion
time of P and R will be very different. If we are dealing with a real-time
system and, for example, process P must conclude within 50ms, interleaving
(b) will satisfy this requirement, but interleaving (c) will not.

In order to address this issue, real-time systems use specially devised
scheduling algorithms, to be discussed in Chapters 11 and 12. Those algo-
rithms, complemented by appropriate analysis techniques, guarantee that a
concurrent program will not only produce correct results but it will also satisfy
its timing constraints for all permitted interleavings. This will be the main
subject of Chapters 13 through 16.

3.3 Process State

In the previous section, we discussed how the concept of process plays a central
role in concurrent programming. Hence, it is very important to clearly define
and understand what the “contents” of a process are, that is, what the process
state components are. Interestingly enough, a correct definition of the process
state is very important from the practical viewpoint, too, because it also
represents the information that the operating system must save and restore
in order to perform a transparent context switch from one process to another.

There are four main process state components, depicted in Figure 3.3:
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FIGURE 3.3
Graphical representation of the process state components.

1. Program code, sometimes called the text of the program;

2. Processor state: program counter, general purpose registers, status
words, etc.

3. Data memory, comprising the program’s global variables, as well
as the procedure call stack that, for many programming languages,
also holds local variables;

4. The state of all operating system resources currently assigned to,
and being used by the process: open files, input–output devices, etc.

Collectively, all memory locations a process can have access to are often called
address space. The address space therefore includes both the program code and
the data memory. See Chapter 2 for more general information about this and
other related terms from the application programmer’s point of view.

The need of including the program code in the process state is rather
obvious because, by intuition, the execution of different programs will certainly
give rise to different activities in the computer system. On the other hand, the
program code is certainly not enough to characterize a process. For example,
even if the program code is the same, different execution activities still come
out if we observe the system behavior at different phases of program execution,
that is, for different values of the program counter. This observation can be
generalized and leads to the inclusion of the whole processor state into the
process state.
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However, this is still not enough because the same program code, with
the same processor state, can still give origin to distinct execution activities
depending on the memory state. The same instruction, for example, a division,
can in fact correspond to very different activities, depending on the contents of
the memory word that holds the divisor. If the divisor is not zero, the division
will be carried out normally; if it is zero, most processors will instead take a
trap.

The last elements the process state must be concerned with are the operat-
ing system resources currently assigned to the process itself. They undoubtedly
have an influence on program execution—that is, in the final analysis, on the
process—because, for example, the length and contents of an input file may
affect the behavior of the program that is reading it.

It should be noted that none of the process state components discussed
so far have anything to do with time. As a consequence, by design, a context
switch operation will be transparent with respect to the results computed
by the process, but may not be transparent for what concerns its timeliness.
This is another way to justify why different scheduling decisions—that is,
performing a context switch at a certain instant instead of another—will not
affect process results, but may lead to either an acceptable or an unacceptable
timing behavior. It also explains why other techniques are needed to deal with,
and satisfy, timing constraints in real-time systems.

The fact that program code is one of the process components but not
the only one, also implies that there are some decisive differences be-
tween programs and processes, and that those two terms must not be used
interchangeably. Similarly, processes and processors are indeed not synonyms.
In particular:

• A program is a static entity. It basically describes an algorithm, in a for-
mal way, by means of a programming language. The machine is able to
understand this description, and execute the instructions it contains, after
a suitable translation.

• A process is a dynamic concept and captures the notion of program exe-
cution. It is the activity carried out by a processor when it is executing
a certain program and, therefore, requires some state information, besides
the program code itself, to be characterized correctly.

• A processor is a physical or virtual entity that supports program execution
and, therefore, makes processes progress. There is not necessarily a one-
to-one correspondence between processors and processes, because a single
processor can be time-shared among multiple processes through multipro-
gramming.
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3.4 Process Life Cycle and Process State Diagram

In the previous section, we saw that a process is characterized by a certain
amount of state information. For a process to exist, it is therefore necessary
to reserve space for this information within the operating system in a data
structure often called Process Control Block (PCB), and initialize it appro-
priately.

This initialization, often called process creation, ensures that the new pro-
cess starts its life in a well-known situation and that the system will actually
be able to keep track of it during its entire lifetime. At the same time, most
operating systems also give to each process a process identifier (PID), which
is guaranteed to be unique for the whole lifetime of the process in a given
system and must be used whenever it is necessary to make a reference to the
process.

Depending on the purpose and complexity of the system, it may be possible
to precisely determine how many and which processes will be needed right
when the system itself is turned on. Process creation becomes simpler because
all processes can be statically created while the system as a whole is being
initialized, and it will not be possible to create new processes afterwards.

This is often the case with simple, real-time control systems, but it becomes
more and more impractical as the complexity of the system and the variety
of functions it must fulfill from time to time grow up. The most extreme
case happens in general purpose systems: it would be extremely impractical
for users to have to decide which applications they will need during their
workday when they turn on their personal computer in the morning and, even
worse, being constrained to reconfigure and restart it whenever they want to
start an application they did not think about before.

In addition, this approach may be quite inefficient from the point of view
of resource usage, too, because all the processes may start consuming system
resources a long time before they are actively used. For all these reasons,
virtually all general purpose operating systems, as well as many real-time
operating systems, also contemplate dynamic process creation. The details of
this approach vary from one system to another but, in general terms:

• During initialization, the operating system crafts a small number, or even
one single process. For historical reasons, this process is often called init,
from the terminology used by most Unix and Unix-like systems [64].

• All other processes are created (directly or indirectly) by init, through the
invocation of an appropriate operating system service. All newly created
processes can, in turn, create new processes of their own.

This kind of approach also induces a hierarchical relationship among processes,
in which the creation of a new process sets up a relation between the existing
process, also called the parent, and the new one, the child. All processes, except
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FIGURE 3.4
An example of process state diagram.

init, have exactly one parent, and zero or more children. This relationship can
be conveniently represented by arranging all processes into a tree, in which

• Each process corresponds to a node

• Each parent–child relation corresponds to an arc going from the parent to
the child.

Some operating systems keep track and make use of this relationship in order
to define the scope of some service requests related to the processes themselves.
For example, in most Unix and Unix-like systems only the parent of a process
can wait for its termination and get its final termination status. Moreover,
the parent–child relation also controls resource inheritance, for example, open
files, upon process creation.

During their life, processes can be in one of several different states. They go
from one state to another depending on their own behavior, operating system
decision, or external events. At any instant, the operating systems has the
responsibility of keeping track of the current state of all processes under its
control.

A useful and common way to describe in a formal way all the possible
process states and the transition rules is to define a directed graph, called
Process State Diagram (PSD), in which nodes represent states and arcs rep-
resent transitions.

A somewhat simplified process state diagram is shown in Figure 3.4. It
should be remarked that real-world operating systems tend to have more
states and transitions, but in most cases they are related to internal details of
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that specific operating systems and are therefore not important for a general
discussion.

Looking at the diagram, at any instant, a process can be in one of the
following states:

1. A process is in the Created state immediately after creation. It has
a valid PCB associated with it, but it does not yet compete for
execution with the other processes present in the system.

2. A process is Ready when it is willing to execute, and competes with
the other processes to do so, but at the moment there is not any pro-
cessor available in the system to actually execute it. This happens,
for example, when all processors are busy with other processes. As
a consequence, processes do not make any progress while they are
ready.

3. A process being actively executed by a processor is in the Running
state. The upper limit to the number of running processes, at any
given time, is given by the total number of processors available in
the system.

4. Sometimes, a process will have to wait for an external event to
occur, for example, the completion of an input–output (I/O) op-
eration. In other cases, discussed in Chapters 5 and 6, it may be
necessary to block a process, that is, temporarily stop its execu-
tion, in order to correctly synchronize it with other processes and
let them communicate in a meaningful way. All those processes are
put in the Blocked state. A process does not compete for execution
as long as it is blocked.

5. Most operating systems do not destroy a process immediately when
it terminates, but put it in the Terminated state instead. In this
state, the process can no longer be executed, but its PCB is still
available to other processes, giving them the ability to retrieve and
examine the summary information it contains. In this way, it is
possible, for example, to determine whether the process terminated
spontaneously or due to an error.

The origin of a state transition may be either a voluntary action performed
by the process that undergoes it, or the consequence of an operating system
decision, or the occurrence of an event triggered by a hardware component or
another process. In particular:

a. The initial transition of a newly created process into the Created
state occurs when an existing process creates it and after the oper-
ating system has correctly initialized its PCB.

In most cases, during process creation, the operating system also
checks that the bare minimum amount of system resources needed
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by the new process, for example, an adequate amount of memory
to hold the program text, are indeed available.

b. The transition from the Created to the Ready state is under the
control of an operating system function usually known as admission
control. For general-purpose operating systems, this transition is
usually immediate, and they may even lack the distinction between
the Created and Ready states.

On the contrary, real-time operating systems must be much more
careful because, as outlined in Section 3.2, the addition of a new
process actively competing for execution can adversely affect the
timings of the whole system.

In this case, a new process is admitted into the Ready state only
after one of the schedulability and mode transition analysis tech-
niques, to be described in Chapters 13 through 16, reaffirmed that
the system will still meet all its timing requirements.

c. The transition from the Ready to the Running state is controlled
by the operating system scheduler, according to its scheduling algo-
rithm, and is transparent to the process that experiences it. Schedul-
ing algorithms play a central role in determining the performance
of a real-time system, and will be the main topic of Chapters 11
and 12.

d. The opposite transition, from Running to Ready, can be due to two
distinct reasons:

• Preemption, decided by the operating system scheduler, in
which a process is forced to relinquish the processor even if
it is still willing to execute.

• Yield, requested by the process itself to ask the system to
reconsider its scheduling decision and possibly hand over the
processor to another process.

The high-level result is the same in both cases, that is, the process
goes back to the Ready state both after a preemption and after
a successful yield. The most important difference depends on the
fact that, from the point of view of the process experiencing it,
the transition is involuntary in the first case, and voluntary in the
second.

Hence, a preemption may occur anywhere and at any time dur-
ing process execution, whereas a yield may occur only at specific
locations in the code, and at the time the process requests it.

e. A process transitions from the Running to the Blocked state when
it voluntarily hands over the processor, because it is about to start
a passive wait. This transition is typically a consequence of a syn-
chronous input–output request or interprocess communication, to
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be discussed in Chapters 5 and 6. In all cases, the goal of the pro-
cess is to wait for an external event to occur—for instance, it may be
either the completion of the input–output operation or the availabil-
ity of data from another process—without wasting processor cycles
in the meantime.

f. When the event the process is waiting for eventually occurs, the
process is awakened and goes back to the Ready state, and hence,
it starts competing with the other processes for execution again.
The process is not brought back directly to the Running state, be-
cause the fact that it has just been awakened does not guarantee
that it actually is the most important process in the system at the
moment. This decision pertains to the scheduler, and not to the
passive wait mechanism. The source of the awakening event may be
either another process, for interprocess communication, or a hard-
ware component for synchronous I/O operations. In the latter case,
the I/O device usually signals the occurrence of the event to the pro-
cessor by means of an interrupt request, and the process is awakened
as part of the consequent interrupt handling activity.

g. A process may go from the Running to the Terminated state for
two distinct reasons:

• When it voluntarily ends its execution because, for example,
it is no longer needed in the system.

• When an unrecoverable error occurs, unlike in the previous
case, this transition is involuntary.

h. After termination, a process and its PCB are ultimately removed
from the system with a final transition out of the Terminated state.
After this transition, the operating system can reuse the same pro-
cess identifier formerly assigned to the process for a new one.

This is crucial for what concerns process identification because, af-
ter this transition occurs, all uses of that PID become invalid or,
even worse, may refer to the wrong process. It is therefore the re-
sponsibility of the programmer to avoid any use of a PID after the
corresponding process went out of the Terminated state.

In some operating systems, the removal of the process and its PCB
from the system is performed automatically, immediately after the
summary information of the terminated process has been retrieved
successfully by another process. In other cases, an explicit request is
necessary to collect and reuse PCBs related to terminated processes.

From this discussion, it becomes evident that the PCB must contain not only
the concrete representation of the main process state components discussed
in Section 3.3, but also other information pertaining to the operating system
and its process management activities.
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This includes the current position of the process within the Process State
Diagram and other process attributes that drive scheduling decisions and de-
pend on the scheduling algorithm being used. A relatively simple scheduling
algorithm may only support, for example, a numeric attribute that represents
the relative process priority, whereas more sophisticated scheduling techniques
may require more attributes.

3.5 Multithreading

According to the definition given in Section 3.3, each process can be regarded
as the execution of a sequential program on “its own” processor. That is, the
process state holds enough state information to fully characterize its address
space, the state of the resources associated with it, and one single flow of
control, the latter being represented by the processor state.

In many applications, there are several distinct activities that are nonethe-
less related to each other, for example, because they have a common goal. For
example, in an interactive media player, it is usually necessary to take care
of the user interface while decoding and playing an audio stream, possibly
retrieved from the Internet. Other background activities may be needed as
well, such as retrieving the album artwork and other information from a re-
mote database.

It may therefore be useful to manage all these activities as a group and
share system resources, such as files, devices, and network connections, among
them. This can be done conveniently by envisagingmultiple flows of control, or
threads, within a single process. As an added bonus, all of them will implicitly
refer to the same address space and thus share memory. This is a useful feature
because many interprocess communication mechanisms, for instance, those
discussed in Chapter 5, are indeed based on shared variables.

Accordingly, many modern operating systems supportmultithreading, that
is, they support multiple threads within the same process by splitting the pro-
cess state into per-process and per-thread components as shown in Figure 3.5.
In particular,

• The program code is the same for all threads, so that all of them execute
from the same code base.

• Each thread has its own processor state and procedure call stack, in order
to make the flows of control independent from each other.

• All threads evolve autonomously for what concerns execution, and hence,
each of them has its own position in the PSD and its own scheduling at-
tributes.

• All threads reside in the same address space and implicitly share memory.
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FIGURE 3.5
Graphical representation of the process state components in a multithreading
system.

• All resources pertaining to the process are shared among its threads.

Another important reason for being aware of multithreading is that a full-
fledged implementation of multiple processes must be assisted by hardware,
particularly to enforce address space separation and protection. For exam-
ple, on contemporary Intel processors, this is accomplished by means of a
Memory Management Unit (MMU) integral to the processor architecture and
other related hardware components, such as the Translation Lookaside Buffer
(TLB) [45].

The main disadvantage of MMUs is that they consume a significant amount
of silicon area and power. Moreover, since they contribute to chip complexity,
they are also likely to increase the cost of the processor. For this reason some
processor architectures such as, for example, the ARM architectures v6 [5]
and v7-M [6] offer a choice between a full MMU and a simpler hardware
component called Memory Protection Unit (MPU), which does not provide
address translation but is still able to ensure that the address space of each
process is protected from unauthorized access by other processes.

Nonetheless, many processors of common use in embedded systems have
neither an MMU nor an MPU. Any operating systems running on those pro-
cessors are therefore forced to support only one process because they are
unable to provide address space protection. This is the case for many small
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real-time operating systems, too. In all these situations, the only way to still
support multiprogramming despite the hardware limitations is through mul-
tithreading.

For example, the ARM Cortex-M3 [7] port of the FreeRTOS operating
system [13], to be discussed in Chapter 17, can make use of the MPU if it
is available. If it is not, the operating system still supports multiple threads,
which share the same address space and can freely read and write each other’s
data.

3.6 Summary

In this chapter, the concept of process has been introduced. A process is an
abstraction of an executing program and encompasses not only the program
itself, which is a static entity, but also the state information that fully char-
acterizes execution.

The notion of process as well as the distinction between programs and
processes become more and more important when going from sequential to
concurrent programming because it is essential to describe, in a sound and
formal way, all the activities going on in parallel within a concurrent system.
This is especially important for real-time applications since the vast majority
of them are indeed concurrent.

The second main concept presented in this chapter is the PSD. Its main
purpose is to define and represent the different states a process may be in dur-
ing its lifetime. Moreover, it also formalizes the rules that govern the transition
of a process from one state to another.

As it will be better explained in the next chapters, the correct definition
of process states and transitions plays a central role in understanding how
processes are scheduled for execution, when they outnumber the processors
available in the systems, how they exchange information among themselves,
and how they interact with the outside world in a meaningful way.

Last, the idea of having more than one execution flow within the same
process, called multithreading, has been discussed. Besides being popular in
modern, general-purpose systems, multithreading is of interest for real-time
systems, too. This is because hardware limitations may sometimes prevent
real-time operating systems from supporting multiple processes in an effective
way. In that case, typical of small embedded systems, multithreading is the
only option left to support concurrency anyway.
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In any concurrent system, process execution relies on the availability of a
number of resources such as, for example, disk blocks, memory areas, and
input–output (I/O) devices. Resources are often in scarce supply, hence they
must be shared among all processes in the system, and processes compete
with each other to acquire and use them.

In this chapter we will see that uncontrolled resource sharing may be very
dangerous and, in particular, may prevent whole groups of processes from
performing their job. Even if the probability of occurrence of this unfortunate
phenomenon, known as deadlock, may be very low, it must still be dealt with
adequately, especially in a real-time system.

4.1 A Simple Example

In any multiprogrammed system, many processes usually share a certain num-
ber of resources and compete for their use. The concept of resource is very
broad and includes both physical resources, for example, printers, disk blocks,
and memory areas, as well as logical ones, like entries in the operating system’s
data structures or filesystem tables.

Some kinds of resource, such as a read-only data structure, pose no prob-
lems in this respect because many processes can access them concurrently
with correct results. However, many other resources can intrinsically be used
by only one process at a time. For instance, having multiple processes simul-
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taneously using the same disk block for storage must be avoided because this
would lead to incorrect results and loss of data.

To deal with this problem, most operating systems compel the processes
under their control to request resources before using them and wait if those
resources are currently assigned to another process, so that they are not im-
mediately available for use. Processes must also release their resources when
they no longer need them, in order to make them available to others. In this
way, the operating system acts as an arbiter for what concerns resource allo-
cation and can ensure that processes will have exclusive access to them when
required.

Unless otherwise specified, in this chapter we will only be concerned with
reusable resources, a term taken from historical IBM literature [33]. A reusable
resource is a resource that, once a process has finished with it, is returned to
the system and can be used by the same or another process again and again.
In other words, the value of the resource or its functionality do not degrade
with use. This is in contrast with the concept of consumable resource, for
example, a message stored in a FIFO queue, that is created at a certain point
and ceases to exist as soon as it is assigned to a process.

In most cases, processes need more than one resource during their lifetime
in order to complete their job, and request them in succession. A process A
wanting to print a file may first request a memory buffer in order to read the
file contents into it and have a workspace to convert them into the printer-
specific page description language. Then, it may request exclusive use of the
printer and send the converted data to it. We leave out, for clarity, the possibly
complex set of operations A must perform to get access to the file.

If the required amount of memory is not immediately available, it is reason-
able for the process to wait until it is, instead of failing immediately because
it is likely that some other process will release part of its memory in the im-
mediate future. Likewise, the printer may be assigned to another process at
the time of the request and, also in this case, it is reasonable to wait until it
is released.

Sadly, this very common situation can easily lead to an anomalous condi-
tion, known as deadlock, in which a whole set of processes is blocked forever
and will no longer make any progress. Not surprisingly, this problem has re-
ceived a considerable amount of attention in computer science; in fact, one of
the first formal definitions of deadlock was given by in 1965 by Dijkstra [23],
who called it “deadly embrace.”

To illustrate how a deadlock may occur in our running example, let us
consider a second process B that runs concurrently with A. It has the same
goal as process A, that is, to print a file, but is has been coded in a different
way. In particular, process B request the printer first, and then it tries to
get the memory buffer it needs. The nature of this difference is not at all
important (it may be due, for example, to the fact that A and B have been
written by two different programmers unaware of each other’s work), but it
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FIGURE 4.1
A simple example of deadlock involving two processes and two resources.

is nonetheless important to realize that both approaches are meaningful and
there is nothing wrong with either of them.

In this situation, the sequence of events depicted in Figure 4.1 may occur:

1. Process B request the printer, P . Since the printer has not been
assigned to any process yet, the request is granted immediately and
B continues.

2. Process A requests a certain amount MA of memory. If we assume
that the amount of free memory at the time of the request is greater
than MA, this request is granted immediately, too, and A proceeds.

3. Now, it is the turn of process B to request a certain amount of
memory MB. If the request is sensible, but there is not enough
free memory in the system at the moment, the request is not de-
clined immediately. Instead, B is blocked until a sufficient amount
of memory becomes available.

This may happen, for example, when the total amount of memory
M in the system is greater than both MA and MB, but less than
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MA +MB, so that both requests can be satisfied on their own, but
not together.

4. When process A requests the printer P , it finds that it has been as-
signed to B and that it has not been released yet. As a consequence,
A is blocked, too.

At this point, both A and B will stay blocked forever because they own a
resource, and are waiting for another resource that will never become available
since it has been assigned to the other process involved in the deadlock.

Even in this very simple example, it is evident that a deadlock is a complex
phenomenon with a few noteworthy characteristics:

• It is a time-dependent issue. More precisely, the occurrence of a deadlock
in a system depends on the relationship among process timings. The chain
of events leading to a deadlock may be very complex, hence the probability
of actually observing a deadlock during bench testing may be very low. In
our example, it can easily be observed that no deadlock occurs if process
A is run to completion before starting B or vice versa.

Unfortunately, this means that the code will be hard to debug, and even the
insertion of a debugger or code instrumentation to better understand what
is happening may perturb system timings enough to make the deadlock
disappear. This is a compelling reason to address deadlock problems from
a theoretical perspective, during system design, rather than while testing
or debugging it.

• It also depends on a few specific properties of the resources involved and on
how the operating system manages them. For example, albeit this technique
is not widespread in real-time operating systems, some general-purpose
operating systems are indeed able to swap process images in and out of
main memory with the assistance of a mass storage device. Doing this,
they are able to accommodate processes whose total memory requirements
exceed the available memory.

In this case, the memory request performed by B in our running example
does not necessarily lead to an endless wait because the operating system
can temporarily take away—or preempt—some memory from A in order to
satisfy B’s request, so that both process will be eventually able to complete
their execution. As a consequence, the same processes may or may not be
at risk for what concerns deadlock, when they are executed by operat-
ing systems employing dissimilar memory management or, more generally,
resource management techniques.
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4.2 Formal Definition of Deadlock

In the most general way, a deadlock can be defined formally as a situation
in which a set of processes passively waits for an event that can be triggered
only by another process in the same set. More specifically, when dealing with
resources, there is a deadlock when all processes in a set are waiting for some
resources previously allocated to other processes in the same set. As discussed
in the example of Section 4.1, a deadlock has therefore two kinds of adverse
consequences:

• The processes involved in the deadlock will no longer make any progress in
their execution, that is, they will wait forever.

• Any resource allocated to them will never be available to other processes
in the system again.

Havender [33] and Coffman et al. [20] were able to formulate four conditions
that are individually necessary and collectively sufficient for a deadlock to
occur. These conditions are useful, first of all because they define deadlock in a
way that abstracts away as much as possible from any irrelevant characteristics
of the processes and resources involved.

Second, they can and have been used as the basis for a whole family of
deadlock prevention algorithms because, if an appropriate policy is able to
prevent (at least) one of them from ever being fulfilled in the system, then no
deadlock can possibly occur by definition. The four conditions are

1. Mutual exclusion: Each resource can be assigned to, and used by, at
most one process at a time. As a consequence, a resource can only
be either free or assigned to one particular process. If any process
requests a resource currently assigned to another process, it must
wait.

2. Hold and Wait : For a deadlock to occur, the processes involved in
the deadlock must have successfully obtained at least one resource
in the past and have not released it yet, so that they hold those
resources and then wait for additional resources.

3. Nonpreemption: Any resource involved in a deadlock cannot be
taken away from the process it has been assigned to without its
consent, that is, unless the process voluntarily releases it.

4. Circular wait : The processes and resources involved in a deadlock
can be arranged in a circular chain, so that the first process waits
for a resource assigned to the second one, the second process waits
for a resource assigned to the third one, and so on up to the last
process, which is waiting for a resource assigned to the first one.
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FIGURE 4.2
A simple resource allocation graph, indicating a deadlock.

4.3 Reasoning about Deadlock: The Resource Allocation
Graph

The resource allocation graph is a tool introduced by Holt [39] with the twofold
goal of describing in a precise, rigorous way the resource allocation state in
a system at a given instant, as well as being able to reason about and detect
deadlock conditions. Figure 4.2 shows an example.

In its simplest form, a resource allocation graph is a directed graph with
two kinds of nodes and two kinds of arcs. The two kinds of nodes represent the
processes and resources of interest, respectively. In the most common notation,
used, for example, by Tanenbaum andWoodhull [85] and Silbershatz et al. [83]:

1. Processes are shown as circles.

2. Resources are shown as squares.

For instance, in Figure 4.2, P2 represents a process and R1 represents a re-
source. Of course, the exact geometric shape used to represent processes and
resources is not at all important. As a matter of fact, in the Holt’s paper [39]
the notation was exactly the opposite.

On the other hand, the two kinds of arcs express the request and ownership
relations between processes and resources. In particular,

1. An arc directed from a process to a resource (similar to the arc
labeled A in Figure 4.2, going from process P1 to resource R1) indi-
cates that the process is waiting for the resource.

2. An arc directed from a resource to a process (for example, arc B in
Figure 4.2, going from resource R3 to process P1) denotes that the
resource is currently assigned to, or owned by, the process.
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Hence, the resource allocation graph shown in Figure 4.2 represents the fol-
lowing situation:

• Process P1 owns resources R2 and R3, and is waiting for R1.

• Process P2 owns resource R1 and is waiting for resource R4.

• Process P3 owns resource R4 and is waiting for two resources to become
available: R2 and R3.

• Process P4 owns resource R5 and is not waiting for any other resource.

It should also be noted that arcs connecting either two processes, or two
resources, have got no meaning and are therefore not allowed in a resource al-
location graph. More formally, the resource allocation graph must be bipartite
with respect to process and resource nodes.

The same kind of data structure can also be used in an operating system
to keep track of the evolving resource request and allocation state. In this
case,

• When a process P requests a certain resourceR, the corresponding “request
arc,” going from P to R, is added to the resource allocation graph.

• As soon as the request is granted, the request arc is replaced by an “own-
ership arc,” going from R to P . This may either take place immediately or
after a wait. The latter happens, for example, if R is busy at the moment.
Deadlock avoidance algorithms, discussed in Section 4.6, may compel a
process to wait, even if the resource it is requesting is free.

• When a process P releases a resource R it has previously acquired, the
ownership arc going from R to P is deleted. This arc must necessarily be
present in the graph, because it must have been created when R has been
granted to P .

For this kind of resource allocation graph, it has been proved that the presence
of a cycle in the graph is a necessary and sufficient condition for a deadlock.
It can therefore be used as a tool to check whether a certain sequence of
resource requests, allocations, and releases leads to a deadlock. It is enough
to keep track of them, by managing the arcs of the resource allocation graph
as described earlier, and check whether or not there is a cycle in the graph
after each step.

If a cycle is found, then there is a deadlock in the system, and the
deadlock involves precisely the set of processes and resources belonging to
the cycle. Otherwise the sequence is “safe” from this point of view. The
resource allocation graph shown in Figure 4.2 models a deadlock because
P1 → R1 → P2 → R4 → P3 → R2 → P1 is a cycle. Processes P1, P2, and
P3, as well as resources R1, R2, and R4 are involved in the deadlock. Likewise,
P1 → R1 → P2 → R4 → P3 → R3 → P1 is a cycle, too, involving the same
processes as before and resources R1, R3, and R4.
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As for any directed graph, also in this case arc orientation must be taken
into account when assessing the presence of a cycle. Hence, referring again to
Figure 4.2, P1 ← R2 ← P3 → R3 → P1 is not a cycle and does not imply the
presence of any deadlock in the system.

The deadlock problem becomes more complex when there are different
kinds (or classes) of resources in a system and there is, in general, more than
one resource of each kind. All resources of the same kind are fungible, that is,
they are interchangeable so that any of them can be used to satisfy a resource
request for the class they belong to.

This is a common situation in many cases of practical interest: if we do
not consider data access time optimization, disk blocks are fungible resources
because, when any process requests a disk block to store some data, any
free block will do. Other examples of fungible resources include memory page
frames and entries in most operating system tables.

The definition of resource allocation graph can be extended to handle
multiple resource instances belonging to the same class, by using one rectangle
for each resource class, and representing each instance by means of a dot
drawn in the corresponding rectangle. In Reference [39], this is called a general
resource graph.

However, in this case, the theorem that relates cycles to deadlocks becomes
weaker. It can be proved [39] that the presence of a cycle is still a necessary
condition for a deadlock to take place, but it is no longer sufficient. The
theorem can hence be used only to deny the presence of a deadlock, that is, to
state that if there is not any cycle in an extended resource allocation graph,
then there is not any deadlock in the system.

4.4 Living with Deadlock

Deadlock is a time-dependent problem, and the probability of actually encoun-
tering a deadlock during operation is often quite small with respect to other
issues such as, for example, power interruptions or other software bugs. On
the other hand, deadlock may also be a very complex problem to deal with,
and its handling may consume a considerable amount of system resources.

It is therefore not a surprise if some operating system designers deliberately
decided to completely neglect the problem, at least in some cases, and adopt
a strategy sometimes called “the Ostrich algorithm” [85]. In this sense, they
are trading off a small probability of being left with a (partially) deadlocked
system for a general improvement of system performance.

This reasoning usually makes sense for general-purpose operating systems.
For example, Bach [10] highlights the various situations in which the Unix
operating system is, or (more commonly) is not, protected against deadlock.
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Most other operating systems derived from Unix, for example, Linux, suffer
from the same problems.

On the contrary, in many cases, real-time applications cannot tolerate any
latent deadlock, regardless of its probability of occurrence, for instance, due
to safety concerns. Once it has been decided to actually “do something” about
deadlock, the algorithms being used can be divided into three main families:

1. Try to prevent deadlock, by imposing some constraints during sys-
tem design and implementation.

2. Check all resource requests made by processes as they come by and
avoid deadlock by delaying resource allocation when appropriate.

3. Let the system possibly go into a deadlock, but then detect this
situation and put into effect a recovery action.

The main trade-offs between these techniques have to do with several differ-
ent areas of application development and execution, and all of them should
be considered to choose the most fruitful technique for any given case. In
particular, the various families differ regarding

• When deadlock handling takes place. Some techniques must be applied
early in system design, other ones take action at run time.

• How much influence they have in the way designers and programmers de-
velop the application.

• How much and what kind of information about processes behavior they
need, in order to work correctly.

• The amount of run time overhead they inflict on the system.

4.5 Deadlock Prevention

The general idea behind all deadlock prevention techniques is to prevent dead-
locks from occurring by making sure that (at least) one of the individually
necessary conditions presented in Section 4.2 can never be satisfied in the
system. In turn, this property is ensured by putting into effect and enforcing
appropriate design or implementation rules, or constraints.

Since there are four necessary conditions, four different deadlock preven-
tion strategies are possible, at least in principle. Most of the techniques to be
presented in this section have been proposed by Havender [33].

1. The mutual exclusion condition can be attacked by allowing multi-
ple processes to use the same resource concurrently, without waiting
when the resource has been assigned to another process.
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This goal cannot usually be achieved by working directly on the re-
source involved because the need for mutual exclusion often stems
from some inescapable hardware characteristics of the resource it-
self. For example, there is no way to modify a CD burner and allow
two processes to write on a CD concurrently.

On the contrary, an equivalent result can sometimes be obtained by
interposing an additional software layer between the resource and
the processes competing for it: for printers, it is common to have
spoolers devoted to this purpose. In its simplest form, a spooler is a
system process that has permanent ownership of a certain printer.
Its role is to collect print requests from all the other processes in
the system, and carry them out one at a time.

Even if the documents to be printed are still sent to the printer
sequentially, in order to satisfy the printer’s mutual exclusion re-
quirements, the spooler will indeed accept multiple, concurrent print
requests because it will use another kind of media, for example, a
magnetic disk, to collect and temporarily store the documents to
be printed.

Hence, from the point of view of the requesting processes, resource
access works “as if” the mutual exclusion constraint had been lifted,
and deadlock cannot occur, at least as long as the disk space avail-
able for spooling is not so scarce to force processes to wait for
disk space while they are producing their output. The latter con-
dition may intuitively lead to other kinds of deadlock, because we
are merely “shifting” the deadlock problem from one resource (the
printer) to another (the spooling disk space).

Nevertheless, the main problem of spooling techniques is their lim-
ited applicability: many kinds of resource are simply not amenable
to be spooled. To make a very simple example, it is totally un-
clear how it would be possible to spool an operating system data
structure.

2. The hold and wait condition is actually made of two parts that
can be considered separately. The wait part can be invalidated by
making sure that no processes will ever wait for a resource. One
particularly simple way of achieving this is to force processes to
request all the resources they may possibly need during execution
all together and right at the beginning of their execution.

Alternatively, processes can be constrained to release all the re-
sources they own before requesting new ones, thus invalidating the
hold part of the condition. The new set of resources being requested
can include, of course, some of the old ones if they are still needed,
but the process must accept a temporary loss of resource ownership
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anyway. If a stateful resource, like for instance a printer, is lost and
then reacquired, the resource state will be lost, too.

In a general purpose system, it may be difficult, or even impossible,
to know in advance what resources any given application will need
during its execution. For example, the amount of memory or disk
space needed by a word processor is highly dependent on what the
user is doing with it and is hard to predict in advance.

Even when it is possible to agree upon a reasonable set of resources
to be requested at startup, the efficiency of resource utilization will
usually be low with this method, because resources are requested
on the basis of potential, rather than actual necessity. As a result,
resources will usually be requested a long time before they are really
used. When following this approach, the word processor would im-
mediately request a printer right when it starts—this is reasonable
because it may likely need it in the future—and retain exclusive
access rights to it, even if the user does not actually print anything
for hours.

When considering simple real-time systems, however, the disadvan-
tages of this method, namely, early resource allocation and low
resource utilization, are no longer a limiting factor, for two rea-
sons. First of all, low resource utilization is often not a concern
in those systems. For example, allocating an analog-to-digital con-
verter (ADC) to the process that will handle the data it produces
well before it is actively used may be perfectly acceptable. This is
due to the fact that the resource is somewhat hardwired to the pro-
cess, and no other processes in the system would be capable of using
the same device anyway even if it were available.

Second, performing on-demand resource allocation to avoid allo-
cating resources too early entails accepting the wait part of this
condition. As a consequence, processes must be prepared to wait
for resources during their execution. In order to have a provably
working hard real-time system, it must be possible to derive an up-
per bound of the waiting time, and this may be a difficult task in
the case of on-demand resource allocation.

3. The nonpreemption condition can be attacked by making provision
for a resource preemption mechanism, that is, a way of forcibly take
away a resource from a process against its will. Like for the mutual
exclusion condition, the difficulty of doing this heavily depends on
the kind of resource to be handled. One the one hand, preempting
a resource such as a processor is quite easy, and is usually done (by
means of a context switch) by most operating systems.

On the other hand, preempting a print operation already in progress
in favor of another one entails losing a certain amount of work (the
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pages printed so far) even if the print operation is later resumed
at the right place, unless a patient operator is willing to put the
pieces together. As awkward as it may seem today, this technique
was actually used in the past: in fact, the THE operating system
might preempt the printer on a page-by-page basis [26, 24].

4. The circular wait condition can be invalidated by imposing a total
ordering on all resource classes and imposing that, by design, all
processes follow that order when they request resources. In other
words, an integer-valued function f(Ri) is defined on all resource
classes Ri and it has a unique value for each class. Then, if a process
already owns a certain resource Rj , it can request an additional
resource belonging to class Rk if, and only if, f(Rk) > f(Rj).

It can easily be proved that, if all processes obey this rule, no cir-
cular wait may occur in the system [83]. The proof proceeds by
reductio ad absurdum.

Assume that, although all processes followed the rule, there is in-
deed a circular wait in the system. Without loss of generality, let us
assume that the circular wait involves processes P1, . . . , Pm and
resource classes R1, . . . , Rm, so that process P1 owns a resource
of class R1 and is waiting for a resource of class R2, process P2

owns a resource of class R2 and is waiting for a resource of class
R3, . . . process Pm owns a resource of class Rm and is waiting for a
resource of class R1, thus closing the circular wait.

If process P1 followed the resource request rule, then it must be

f(R2) > f(R1) (4.1)

because P1 is requesting a resource of class R2 after it already ob-
tained a resource of class R1.

The same reasoning can be repeated for all processes, to derive the
following set of inequalities:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f(R2) > f(R1) for P1

f(R3) > f(R2) for P2

. . .
f(Rm) > f(Rm−1) for Pm−1

f(R1) > f(Rm) for Pm

(4.2)

Due to the transitive property of inequalities, we come to the ab-
surd:

f(R1) > f(R1) (4.3)

and are able to disprove the presence of a circular wait.

In large systems, the main issue of this method is the difficulty of ac-
tually enforcing the design rules and check whether they have been
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followed or not. For example, the multithreaded FreeBSD operating
system kernel uses this approach and orders its internal locks to pre-
vent deadlocks. However, even after many years of improvements,
a fairly big number of “lock order reversals”—that is, situations
in which locks are actually requested in the wrong order—are still
present in the kernel code. In fact, a special tool called witness was
even specifically designed to help programmers detect them [12].

4.6 Deadlock Avoidance

Unlike deadlock prevention algorithms, discussed in Section 4.5, deadlock
avoidance algorithms take action later, while the system is running, rather
than during system design. As in many other cases, this choice involves a
trade-off: on the one hand, it makes programmers happier and more pro-
ductive because they are no longer constrained to obey any deadlock-related
design rule. On the other hand, it entails a certain amount of overhead.

The general idea of any deadlock avoidance algorithm is to check resource
allocation requests, as they come from processes, and determine whether they
are safe or unsafe for what concerns deadlock. If a request is deemed to be
unsafe, it is postponed, even if the resources being requested are free. The
postponed request will be reconsidered in the future, and eventually granted
if and when its safety can indeed be proved. Usually, deadlock avoidance algo-
rithms also need a certain amount of preliminary information about process
behavior to work properly.

Among all the deadlock avoidance methods, we will discuss in detail the
banker’s algorithm. The original version of the algorithm, designed for a single
resource class, is due to Dijkstra [23]. It was later extended to multiple resource
classes by Habermann [32].

In the following, we will sometimes refer to the j-th column of a certain
matrix M as mj and treat it as a (column) vector. To simplify the notation,
we also introduce a weak ordering relation between vectors. In particular, we
will state that

v ≤ w if and only if vi ≤ wi ∀i (4.4)

Informally speaking, a vector v is less than or equal to another vector w, if
and only if all its elements are less than or equal to the corresponding elements
of the other one. Analogously, the strict inequality is defined as

v < w if and only if v ≤ w ∧ v 
= w (4.5)

If we use n to denote the total number of processes in the system and m to
denote the total number of resource classes, the banker’s algorithm needs and
manages the following data structures:
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• A (column) vector t, representing the total number of resources of each
class initially available in the system:

t =

⎛
⎜⎝

t1
...
tm

⎞
⎟⎠ (4.6)

Accordingly, ti indicates the number of resources belonging to the i-th class
initially available in the system. It is assumed that t does not change with
time, that is, resources never break up or become unavailable for use, either
temporarily or permanently, for any other reason.

• A matrix C, with m rows and n columns, that is, a column for each pro-
cess and a row for each resource class, which holds the current resource
allocation state:

C =

⎛
⎜⎜⎝

c11 c12 . . . c1n
c21 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
cm1 . . . . . . . . cmn

⎞
⎟⎟⎠ (4.7)

The value of each individual element of this matrix, cij , represents how
many resources of class i have been allocated to the j-th process, and cj
is a vector that specifies how many resources of each class are currently
allocated to the j-th process.

Therefore, unlike t, the value of C varies as the system evolves. Initially,
cij = 0 ∀i, j, because no resources have been allocated yet.

• A matrixX , also withm rows and n columns, containing information about
the maximum number of resources that each process may possibly require,
for each resource class, during its whole life:

X =

⎛
⎜⎜⎝

x11 x12 . . . x1n

x21 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
xm1 . . . . . . . . xmn

⎞
⎟⎟⎠ (4.8)

This matrix indeed represents an example of the auxiliary information
about process behavior needed by this kind of algorithm, as it has just
been mentioned earlier. That is, it is assumed that each process Pj will
be able to declare in advance its worst-case resource needs by means of a
vector xj:

xj =

⎛
⎜⎝

x1j

...
xmj

⎞
⎟⎠ (4.9)

so that, informally speaking, the matrix X can be composed by placing all
the vectors xj, ∀j = 1, . . . , n side by side.



Deadlock 93

It must clearly be xj ≤ t ∀j; otherwise, the j-th process could never be
able to conclude its work due to lack of resources even if it is executed
alone. It should also be noted that processes cannot “change their mind”
and ask for matrix X to be updated at a later time unless they have no
resources allocated to them.

• An auxiliary matrix N , representing the worst-case future resource needs
of the processes. It can readily be calculated as

N = X − C (4.10)

and has the same shape as C and X . Since C changes with time, N also
does.

• A vector r, representing the resources remaining in the system at any given
time:

r =

⎛
⎜⎝

r1
...
rm

⎞
⎟⎠ . (4.11)

The individual elements of r are easy to calculate for a given C, as follows:

ri = ti −
n∑

j=1

Cij ∀i = 1, . . . , n . (4.12)

In informal language, this equation means that ri, representing the number
of remaining resources in class i, is given by the total number of resources
belonging to that class ti, minus the resources of that class currently allo-
cated to any process, which is exactly the information held in the i-th row
of matrix C. Hence the summation of the elements belonging to that row
must be subtracted from ti to get the value we are interested in.

Finally, a resource request coming from the j-th process will be denoted by
the vector qj:

qj =

⎛
⎜⎝

q1j
...

qmj

⎞
⎟⎠ , (4.13)

where the i-th element of the vector, qij , indicates how many resources of the
i-th class the j-th process is requesting. Of course, if the process does not want
to request any resource of a certain class, it is free to set the corresponding
qij to 0.

Whenever it receives a new request qj from the j-th process, the banker
executes the following algorithm:
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1. It checks whether the request is legitimate or not. In other words, it
checks if, by submitting the request being analyzed, the j-th process
is trying to exceed the maximum number of resources it declared to
need beforehand, xj.

Since the j-th column ofN represents the worst-case future resource
needs of the j-th process, given the current allocation state C, this
test can be written as

qj ≤ nj (4.14)

If the test is satisfied, the banker proceeds with the next step of
the algorithm. Otherwise, the request is refused immediately and
an error is reported back to the requesting process. It should be
noted that this error indication is not related to deadlock but to
the detection of an illegitimate behavior of the process.

2. It checks whether the request could, in principle, be granted imme-
diately or not, depending on current resource availability.

Since r represents the resources that currently remain available in
the system, the test can be written as

qj ≤ r (4.15)

If the test is satisfied, there are enough available resources in the
system to grant the request and the banker proceeds with the next
step of the algorithm. Otherwise, regardless of any deadlock-related
reasoning, the request cannot be granted immediately, due to lack
of resources, and the requesting process has to wait.

3. If the request passed both the preliminary checks described earlier,
the banker simulates the allocation and generates a new state that
reflects the effect of granting the request on resource allocation (cj

′),
future needs (nj

′), and availability (r′), as follows:⎧⎨
⎩

cj
′ = cj + qj

nj
′ = nj − qj

r′ = r− qj

(4.16)

Then, the new state is analyzed to determine whether it is safe or
not for what concerns deadlock. If the new state is safe, then the
request is granted and the simulated state becomes the new, actual
state of the system: ⎧⎨

⎩
cj := cj

′

nj := nj
′

r := r′
(4.17)

Otherwise, the simulated state is discarded, the request is not
granted immediately even if enough resources are available, and
the requesting process has to wait.
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To assess the safety of a resource allocation state, during step 3 of the preced-
ing algorithm, the banker uses a conservative approach. It tries to compute at
least one sequence of processes—called a safe sequence—comprising all the n
processes in the system and that, when followed, allows each process in turn to
attain the worst-case resource need it declared, and thus successfully conclude
its work. The safety assessment algorithm uses two auxiliary data structures:

• A (column) vectorw that is initially set to the currently available resources
(i.e., w = r′ initially) and tracks the evolution of the available resources as
the safe sequence is being constructed.

• A (row) vector f , of n elements. The j-th element of the vector, fj , cor-
responds to the j-th process: fj = 0 if the j-th process has not yet been
inserted into the safe sequence, fj = 1 otherwise. The initial value of f is
zero, because the safe sequence is initially empty.

The algorithm can be described as follows:

1. Try to find a new, suitable candidate to be appended to the safe
sequence being constructed. In order to be a suitable candidate, a
certain process Pj must not already be part of the sequence and it
must be able to reach its worst-case resource need, given the current
resource availability state. In formulas, it must be

fj = 0 (Pj is not in the safe sequence yet)
∧
nj

′ ≤ w (there are enough resources to satisfy nj
′)

(4.18)

If no suitable candidates can be found, the algorithm ends.

2. After discovering a candidate, it must be appended to the safe se-
quence. At this point, we can be sure that it will eventually conclude
its work (because we are able to grant it all the resources it needs)
and will release all the resources it holds. Hence, we shall update
our notion of available resources accordingly:

fj := 1 (Pj belongs to the safe sequence now)
w := w + cj

′ (it releases its resources upon termination)
(4.19)

Then, the algorithm goes back to step 1, to extend the sequence
with additional processes as much as possible.

At end, if fj = 1 ∀j, then all processes belong to the safe sequence and the
simulated state is certainly safe for what concerns deadlock. On the contrary,
being unable to find a safe sequence of length n does not necessarily imply that
a deadlock will definitely occur because the banker’s algorithm is considering
the worst-case resource requirements of each process, and it is therefore being
conservative.



96 Real-Time Embedded Systems—Open-Source Operating Systems Perspective

Even if a state is unsafe, all processes could still be able to conclude their
work without deadlock if, for example, they never actually request the maxi-
mum number of resources they declared.

It should also be remarked that the preceding algorithm does not need
to backtrack when it picks up a sequence that does not ensure the successful
termination of all processes. A theorem proved in Reference [32] guarantees
that, in this case, no safe sequences exist at all. As a side effect, this property
greatly reduces the computational complexity of the algorithm.

Going back to the overall banker’s algorithm, we still have to discuss the
fate of the processes which had their requests postponed and were forced to
wait. This can happen for two distinct reasons:

• Not enough resources are available to satisfy the request

• Granting the request would bring the system into an unsafe state

In both cases, if the banker later grants other resource allocation requests
made by other processes, by intuition the state of affairs gets even worse from
the point of view of the waiting processes. Given that their requests were
postponed when more resources were available, it seems even more reasonable
to further postpone them without reconsideration when further resources have
been allocated to others.

On the other hand, when a process Pj releases some of the resources it
owns, it presents to the banker a release vector, lj. Similar to the request
vector qj, it contains one element for each resource class but, in this case, the
i-th element of the vector, lij , indicates how many resources of the i-th class
the j-th process is releasing. As for resource requests, if a process does not
want to release any resource of a given kind, it can leave the corresponding
element of lj at zero. Upon receiving such a request, the banker updates its
state variables as follows: ⎧⎨

⎩
cj := cj − lj
nj := nj + lj
r := r+ lj

(4.20)

As expected, the state update performed on release (4.20) is almost exactly
the opposite of the update performed upon resource request (4.16), except for
the fact that, in this case, it is not necessary to check the new state for safety
and the update can therefore be made directly, without simulating it first.

Since the resource allocation situation does improve in this case, this is the
right time to reconsider the requests submitted by the waiting processes be-
cause some of them might now be granted safely. In order to do this, the banker
follows the same algorithm already described for newly arrived requests.

The complexity of the banker’s algorithm is O(mn2), where m is the num-
ber of resource classes in the system, and n is the number of processes. This
overhead is incurred on every resource allocation and release due to the fact
that, in the latter case, any waiting requests shall be reconsidered.
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The overall complexity is dominated by the safety assessment algorithm
because all the other steps of the banker’s algorithm (4.14)–(4.17) are com-
posed of a constant number of vector operations on vectors of length m, each
having a complexity of O(m).

In the safety assessment algorithm, we build the safe sequence one step at
a time. In order to do this, we must inspect at most n candidate processes in
the first step, then n − 1 in the second step, and so on. When the algorithm
is able to build a safe sequence of length n, the worst case for what concerns
complexity, the total number of inspections is therefore

n+ (n− 1) + . . .+ 1 =
n(n+ 1)

2
(4.21)

Each individual inspection (4.18) is made of a scalar comparison, and then of
a vector comparison between vectors of length m, leading to a complexity of
O(m) for each inspection and to a total complexity of O(mn2) for the whole
inspection process.

The insertion of each candidate into the safe sequence (4.19), an operation
performed at most n times, does not make the complexity any larger because
the complexity of each insertion is O(m), giving a complexity of O(mn) for
them all.

As discussed in Chapter 3, Section 3.4, many operating systems support
dynamic process creation and termination. The creation of a new process Pn+1

entails the extension of matrices C, X , and N with an additional column, let
it be the rightmost one. The additional column of C must be initialized to
zero because, at the very beginning of its execution, the new process does not
own any resource.

On the other hand, as for all other processes, the additional column of X
must hold the maximum number of resources the new process will need during
its lifetime for each resource class, represented by xn+1. The initial value of
the column being added to N must be xn+1, according to how this matrix
has been defined in Equation (4.10).

Similarly, when process Pj terminates, the corresponding j-th column of
matrices C, X , and N must be suppressed, perhaps after checking that the
current value of cj is zero. Finding any non-zero value in this vector means
that the process concluded its execution without releasing all the resources
that have been allocated to it. In this case, the residual resources shall be
released forcibly, to allow them to be used again by other processes in the
future.
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4.7 Deadlock Detection and Recovery

The deadlock prevention approach described in Section 4.5 poses significant
restrictions on system design, whereas the banker’s algorithm presented in
Section 4.6 requires information that could not be readily available and has a
significant run-time overhead. These qualities are typical of any other deadlock
avoidance algorithm.

To address these issues, a third family of methods acts even later than
deadlock avoidance algorithms. That is, these methods allow the system to
enter a deadlock condition but are able to detect this fact and react accordingly
with an appropriate recovery action. For this reason, they are collectively
known as deadlock detection and recovery algorithms.

If there is only one resource for each resource class in the system, a straight-
forward way to detect a deadlock condition is to maintain a resource allocation
graph, updating it whenever a resource is requested, allocated, and eventually
released. Since this maintenance only involves adding and removing arcs from
the graph, it is not computationally expensive and, with a good supporting
data structure, can be performed in constant time.

Then, the resource allocation graph is examined at regular intervals, look-
ing for cycles. Due to the theorem discussed in Section 4.3, the presence of a
cycle is a necessary and sufficient indication that there is a deadlock in the
system. Actually, it gives even more information, because the processes and
resources belonging to the cycle are exactly those suffering from the deadlock.
We will see that this insight turns out to be useful in the subsequent deadlock
recovery phase.

If there are multiple resource instances belonging to the same resource
class, this method cannot be applied. On its place we can, for instance, use
another algorithm, due to Shoshani and Coffman [82], and reprinted in Ref-
erence [20]. Similar to the banker’s algorithm, it maintains the following data
structures:

• A matrix C that represents the current resource allocation state

• A vector r, indicating how many resources are currently available in the
system

Furthermore, for each process Pj in the system, the vector

sj =

⎛
⎜⎝

s1j
...

smj

⎞
⎟⎠

indicates how many resources of each kind process Pj is currently requesting
and waiting for, in addition to the resources cj it already owns. If process Pj
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is not requesting any additional resources at a given time, the elements of its
sj vector will all be zero at that time.

As for the graph-based method, all these data structures evolve with time
and must be updated whenever a process requests, receives, and relinquishes
resources. However, again, all of them can be maintained in constant time.
Deadlock detection is then based on the following algorithm:

1. Start with the auxiliary (column) vector w set to the currently
available resources (i.e., w = r initially) and the (row) vector f set
to zero. Vector w has one element for each resource class, whereas
f has one element for each process.

2. Try to find a process Pj that has not already been marked and
whose resource request can be satisfied, that is,

fj = 0 (Pj has not been marked yet)
∧
sj ≤ w (there are enough resources to satisfy its request)

(4.22)

If no suitable process exists, the algorithm ends.

3. Mark Pj and return the resources it holds to the pool of available
resources:

fj := 1 (mark Pj)
w := w + cj (releases its resources)

(4.23)

Then, the algorithm goes back to step 2 to look for additional pro-
cesses.

It can be proved that a deadlock exists if, and only if, there are unmarked
processes—in other word, at least one element of f is still zero—at the end
of the algorithm. Rather obviously, this algorithm bears a strong resemblance
to the state safety assessment part of the banker’s algorithm. Unsurprisingly,
they also have the same computational complexity.

From the conceptual point of view, the main difference is that the latter
algorithm works on the actual resource requests performed by processes as
they execute (and represented by the vectors sj), whereas the banker’s algo-
rithm is based on the worst-case resource needs forecast (or guessed) by each
process (represented by xj).

As a consequence, the banker’s algorithm results are conservative, and a
state can pessimistically be marked as unsafe, even if a deadlock will not nec-
essarily ensue. On the contrary, the last algorithm provides exact indications.

It can be argued that, in general, since deadlock detection algorithms have
a computational complexity comparable to the banker’s algorithms, there is
apparently nothing to be gained from them, at least from this point of view.
However, the crucial difference is that the banker’s algorithm must necessar-
ily be invoked on every resource request and release, whereas the frequency
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of execution of the deadlock detection algorithm is a parameter and can be
chosen freely.

Therefore, it can be adjusted to obtain the best trade-off between con-
trasting system properties such as, for example, the maximum computational
overhead that can tolerably be imposed on the system and the “reactivity”
to deadlocks of the system itself, that is, the maximum time that may elapse
between a deadlock and the subsequent recovery.

The last point to be discussed, that is, deciding how to recover from a
deadlock, is a major problem indeed. A crude recovery principle, suggested in
Reference [20], consists of aborting each of the deadlocked processes or, more
conservatively, abort them one at a time, until the additional resources made
available by the aborted processes remove the deadlock from the remaining
ones.

More sophisticated algorithms, one example of which is also given in Ref-
erences [20, 82], involve the forced removal, or preemption, of one or more
resources from deadlocked processes on the basis of a cost function. Unfortu-
nately, as in the case of choosing which processes must be aborted, assigning
a cost to the removal of a certain resource from a given process may be a
difficult job because it depends on several factors such as, for example:

• the importance, or priority of the victim process

• the possibility for the process to recover from the preemption

Symmetrically, other recovery techniques act on resource requests, rather than
allocation. In order to recover from a deadlock, they deny one or more pending
resource requests and give an error indication to the corresponding processes.
In this way, they force some of the sj vectors to become zero and bring the
system in a more favorable state with respect to deadlock. The choice of the
“right” requests to deny is still subject to cost considerations similar to those
already discussed.

The last, but not the less important, aspect is that any deadlock recovery
technique—which involves either aborting a process, preempting some of the
resources it needs to perform its job, or denying some of its resource requests—
will certainly have adverse effects on the timeliness of the affected processes
and may force them to violate their timing requirements.

In any case, if one wants to use this technique, processes must be pre-
pared beforehand to the deadlock recovery action and be able to react in a
meaningful way. This is not always easy to do in a real-time system where, for
example, the idea of aborting a process at an arbitrary point of its execution,
is per se totally unacceptable in most cases.
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4.8 Summary

Starting with a very simple example involving only two processes, this chapter
introduced the concept of deadlock, an issue that may arise whenever processes
compete with each other to acquire and use some resources. Deadlock is espe-
cially threatening in a real-time system because its occurrence blocks one or
more processes forever and therefore jeopardizes their timing.

Fortunately, it is possible to define formally what a deadlock is, and when it
takes place, by introducing four conditions that are individually necessary and
collectively sufficient for a deadlock to occur. Starting from these conditions,
it is possible to define a whole family of deadlock avoidance algorithms. Their
underlying idea is to ensure, by design, that at least one of the four conditions
cannot be satisfied in the system being considered so that a deadlock cannot
occur. This is done by imposing various rules and constraints to be followed
during system design and implementation.

When design-time constraints are unacceptable, other algorithms can be
used as well, at the expense of a certain amount of run-time overhead. They
operate during system execution, rather than design, and are able to prevent
deadlock by checking all resource allocation requests. They make sure that the
system never enters a risky state for what concerns deadlock by postponing
some requests on purpose, even if the requested resources are free.

To reduce the overhead, it is also possible to deal with deadlock even later
by using a deadlock detection and recovery algorithm. Algorithms of this kind
let the system enter a deadlock state but are able to detect deadlock and
recover from it by aborting some processes or denying resource requests and
grants forcibly.

For the sake of completeness, it should also be noted that deadlock is only
one aspect of a more general group of phenomenons, known as indefinite wait,
indefinite postponement, or starvation. A full treatise of indefinite wait is very
complex and well beyond the scope of this book, but an example taken from
the material presented in this chapter may still be useful to grasp the full
extent of this issue. A good starting point for readers interested in a more
thorough discussion is, for instance, the work of Owicki and Lamport [70].

In the banker’s algorithm discussed in Section 4.6, when more than one
request can be granted safely but not all of them, a crucial point is how to
pick the “right” request, so that no process is forced to wait indefinitely in
favor of others.

Even if, strictly speaking, there is not any deadlock under these circum-
stances, if the choice is not right, there may still be some processes that are
blocked for an indefinite amount of time because their resource requests are
always postponed. Similarly, Reference [38] pointed out that, even granting
safe requests as soon as they arrive, without reconsidering postponed requests
first, may lead to other forms of indefinite wait.
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More often than not, in both general-purpose and real-time systems, processes
do not live by themselves and are not independent of each other. Rather,
several processes are brought together to form the application software, and
they must therefore cooperate to solve the problem at hand.

Processes must therefore be able to communicate, that is, exchange infor-
mation, in a meaningful way. As discussed in Chapter 2, it is quite possible
to share some memory among processes in a controlled way by making part
of their address space refer to the same physical memory region.

However, this is only part of the story. In order to implement a correct
and meaningful data exchange, processes must also synchronize their actions
in some ways. For instance, they must not try to use a certain data item
if it has not been set up properly yet. Another purpose of synchronization,
presented in Chapter 4, is to regulate process access to shared resources.

This chapter addresses the topic, explaining how shared variables can
be used for communication and introducing various kinds of hardware- and
software-based synchronization approaches.

5.1 Race Conditions and Critical Regions

At first sight, using a set of shared variables for interprocess communication
may seem a rather straightforward extension of what is usually done in sequen-
tial programming. In a sequential program written in a high-level language, it
is quite common to have a set of functions, or procedures, that together form
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the application and exchange data exactly in the same way: there is a set
of global variables defined in the program, all functions have access to them
(within the limits set forth by the scoping rules of the programming language),
and they can get and set their value as required by the specific algorithm they
implement.

A similar thing also happens at the function call level, in which the caller
prepares the function arguments and stores them in a well-known area of mem-
ory, often allocated on the stack. The called function then reads its arguments
from there and uses them as needed. The value returned by the function is
handled in a similar way. When possible, for instance, when the function argu-
ments and return value are small enough, the whole process may be optimized
by the language compiler to use some processor registers instead of memory,
but the general idea is still the same.

Unfortunately, when trying to apply this idea to a concurrent system, one
immediately runs into several, deep problems, even in trivial cases. If we want,
for instance, to count how many events of a certain kind happened in a sequen-
tial programming framework, it is quite intuitive to define a memory-resident,
global variable (the definition will be somewhat like int k if we use the C
programming language) and then a very simple function void inck(void)

that only contains the statement k = k+1.
It should be pointed out that, as depicted in Figure 5.1, no real-world

CPU is actually able to increment k in a single, indivisible step, at least
when the code is compiled into ordinary assembly instructions. Indeed, even a
strongly simplified computer based on the von Neumann architecture [31, 86]
will perform a sequence of three distinct steps:

1. Load the value of k from memory into an internal processor register; on a
simple processor, this register would be the accumulator. From the proces-
sor’s point of view, this is an external operation because it involves both the
processor itself and memory, two distinct units that communicate through
the memory bus. The load operation is not destructive, that is, k retains
its current value after it has been performed.

2. Increment the value loaded from memory by one. Unlike the previous one,
this operation is internal to the processor. It cannot be observed from
the outside, also because it does not require any memory bus cycle to
be performed. On a simple processor, the result is stored back into the
accumulator.

3. Store the new value of k into memory with an external operation involving
a memory bus transaction like the first one. It is important to notice that
the new value of k can be observed from outside the processor only at
this point, not before. In other words, if we look at memory, k retains its
original value until this final step has been completed.

Even if real-world architectures are actually much more sophisticated than
what is shown in Figure 5.1—and a much more intimate knowledge of their
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CPU #1 RAM Memory

k

Memory Bus

Register

1. Load current value

3. Store new value

2. Increment value by one

int k;
void inck(void) 
{
  k = k+1;
}

FIGURE 5.1
Simplified representation of how the CPU increments a memory-resident
variable k.

intricacies is necessary to precisely analyze their behavior—the basic reasoning
is still the same: most operations that are believed to be indivisible at the
programming language level (even simple, short statements like k = k+1),
eventually correspond to a sequence of steps when examined at the instruction
execution level.

However, this conceptual detail is often overlooked by many programmers
because it has no practical consequences as long as the code being considered
is executed in a strictly sequential fashion. It becomes, instead, of paramount
importance as soon as we add concurrency to the recipe.

Let us imagine, for example, a situation in which not one but two different
processes want to concurrently update the variable k because they are both
counting events belonging to the same class but coming from different sources.
Both of them use the same code, that is, function inck(), to perform the
update.

For simplicity, we will assume that each of those two processes resides
on its own physical CPU, and the two CPUs share a single-port memory by
means of a common memory bus, as is shown in Figure 5.2. However, the same
argument still holds, even if the processes share the same physical processor,
by using the multiprogramming techniques discussed in Chapter 3.

Under those conditions, if we let the initial value of k be 0, the following
sequence of events may occur:

1.1. CPU #1 loads the value of k from memory and stores it into one of its
registers, R1. Since k currently contains 0, R1 will also contain 0.

1.2. CPU #1 increments its register R1. The new value of R1 is therefore 1.
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CPU #1 RAM Memory

k

Memory Bus

Register R1

1.1. Load current value

1.3. Store new value

1.2. Increment value

CPU #2

Register R2

2.1. Load

2.3. Store

2.2. Increment

FIGURE 5.2
Concurrently incrementing a shared variable in a careless way leads to a race
condition.

2.1. Now CPU #2 takes over, loads the value of k from memory, and stores
it into one of its registers, R2. Since CPU #1 has not stored the updated
value of R1 back to memory yet, CPU #2 still gets the value 0 from k, and
R2 will also contain 0.

2.2. CPU #2 increments its register R2. The new value of R2 is therefore 1.

2.3. CPU #2 stores the contents of R2 back to memory in order to update
k, that is, it stores 1 into k.

1.3. CPU #1 does the same: it stores the contents of R1 back to memory,
that is, it stores 1 into k.

Looking closely at the sequence of events just described, it is easy to notice
that taking an (obviously correct) piece of sequential code and using it for
concurrent programming in a careless way did not work as expected. That is,
two distinct kinds of problems arose:

1. In the particular example just made, the final value of k is clearly
incorrect: the initial value of k was 0, two distinct processes incre-
mented it by one, but its final value is 1 instead of 2, as it should
have been.

2. The second problem is perhaps even worse: the result of the concur-
rent update is not only incorrect but it is incorrect only sometimes.
For example, the sequence 1.1, 1.2, 1.3, 2.1, 2.2, 2.3 leads to a
correct result.

In other words, the value and correctness of the result depend on how the
elemental steps of the update performed by one processor interleave with the
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steps performed by the other. In turn, this depends on the precise timing
relationship between the processors, down to the instruction execution level.
This is not only hard to determine but will likely change from one execution
to another, or if the same code is executed on a different machine.

Informally speaking, this kind of time-dependent errors may be hard to find
and fix. Typically, they take place with very low probability and may therefore
be very difficult to reproduce and analyze. Moreover, they may occur when a
certain piece of machinery is working in the field and no longer occur during
bench testing because the small, but unavoidable, differences between actual
operation and testing slightly disturbed system timings.

Even the addition of software-based instrumentation or debugging code to
a concurrent application may subtly change process interleaving and make a
time-dependent error disappear. This is also the reason why software devel-
opment techniques based on concepts like “write a piece of code and check
whether it works or not; tweak it until it works,” which are anyway ques-
tionable even for sequential programming, easily turn into a nightmare when
concurrent programming is involved.

These observations also lead to the general definition of a pathological con-
dition, known as race condition, that may affect a concurrent system: whenever
a set of processes reads and/or writes some shared data to carry out a com-
putation, and the results of this computation depend on the exact way the
processes interleaved, there is a race condition.

In this statement, the term “shared data” must be construed in a broad
sense: in the simplest case, it refers to a shared variable residing in memory, as
in the previous examples, but the definition actually applies to any other kind
of shared object, such as files and devices. Since race conditions undermine
the correctness of any concurrent system, one of the main goals of concurrent
programming will be to eliminate them altogether.

Fortunately, the following consideration is of great help to better focus this
effort and concentrate only on a (hopefully small) part of the processes’ code.
The original concept is due to Hoare [36] and Brinch Hansen [15]:

1. A process spends part of its execution doing internal operations,
that is, executing pieces of code that do not require or make access
to any shared data. By definition, all these operations cannot lead
to any race condition, and the corresponding pieces of code can be
safely disregarded when the code is analyzed from the concurrent
programming point of view.

2. Sometimes a process executes a region of code that makes access to
shared data. Those regions of code must be looked at more carefully
because they can indeed lead to a race condition. For this reason,
they are called critical regions or critical sections.

With this definition in mind, and going back to the race condition depicted
in Figure 5.2, we notice that both processes have a critical region, and it is
the body of function inck(). In fact, that fragment of code increments the
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shared variable k. Even if the critical region code is correct when executed by
one single process, the race condition stems from the fact that we allowed two
distinct processes to be in their critical region simultaneously.

We may therefore imagine solving the problem by allowing only one process
to be in a critical region at any given time, that is, forcing themutual exclusion
between critical regions pertaining to the same set of shared data. For the
sake of simplicity, in this book, mutual exclusion will be discussed in rather
informal and intuitive terms. See, for example, the works of Lamport [57, 58]
for a more formal and general treatment of this topic.

In simple cases, mutual exclusion can be ensured by resorting to special
machine instructions that many contemporary processor architectures sup-
port. For example, on the Intel R© 64 and IA-32 architecture [45], the INC

instruction increments a memory-resident integer variable by one.
When executed, the instruction loads the operand from memory, incre-

ments it internally to the CPU, and finally stores back the result; it is therefore
subject to exactly the same race condition depicted in Figure 5.2. However, it
can be accompanied by the LOCK prefix so that the whole sequence is executed
atomically, even in a multiprocessor or multicore environment.

Unfortunately, these ad-hoc solutions, which coerce a single instruction to
be executed atomically, cannot readily be applied to more general cases, as
it will be shown in the following example. Figure 5.3 shows a classic way of
solving the so-called producers–consumers problem. In this problem, a group
of processes P1, . . . , Pn, called producers, generate data items and make
them available to the consumers by means of the prod() function. On the
other hand, another group of processes C1, . . . , Cm, the consumers, use the
cons() function to get hold of data items.

To keep the code as simple as possible, data items are assumed to be integer
values, held in int-typed variables. For the same reason, the error-handling
code (which should detect and handle any attempt of putting a data item into
a full buffer or, symmetrically, getting an item from an empty buffer) is not
shown.

With this approach, producers and consumers exchange data items
through a circular buffer with N elements, implemented as a shared, stati-
cally allocated array int buf[N]. A couple of shared indices, int in and int

out, keep track of the first free element of the buffer and the oldest full ele-
ment, respectively. Both of them start at zero and are incremented modulus
N to circularize the buffer. In particular,

• Assuming that the buffer is not completely full, the function prod() first
stores d, the data item provided by the calling producer, into buf[in], and
then increments in. In this way, in now points to the next free element of
the buffer.

• Assuming that the buffer is not completely empty, the function cons()

takes the oldest data item residing in the buffer from buf[out], stores it
into the local variable c, and then increments out so that the next consumer
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void prod(int d) {
  if((in+1) % N == out)
    ...the buffer is full...
  else
  {
    buf[in] = d;
    in = (in+1) % N;
  }
}

int cons(void) {
  int c;
  if(in == out)
    ...the buffer is empty...
  else
  {
    c = buf[out];
    out = (out+1) % N;
  }
  return c;
}

in = 4

out = 2
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34
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buf
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prod( )

C1

C2

...

Cm

prod( )

P1
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34
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7

in = 6

out = 2

buf

1

2

2

?

...
Pn

Macros/Shared 
variables

#define N 8
int buf[N];
int in=0, out=0;

FIGURE 5.3
Not all race conditions can be avoided by forcing a single instruction to be
executed atomically.

will get a fresh data item. Last, it returns the value of c to the calling
consumer.

If should be noted that, since the condition in == out would be true not only
for a buffer that is completely empty but also for a buffer containing N full
elements, the buffer is never filled completely in order to avoid this ambiguity.
In other words, we must consider the buffer to be full even if one free element—
often called the guard element—is still available. The corresponding predicate
is therefore (in+1) % N == out. As a side effect of this choice, of the N buffer
elements, only up to N − 1 can be filled with data.

Taking for granted the following two, quite realistic, hypotheses:
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1. any integer variable can be loaded from, or stored to, memory with
a single, atomic operation;

2. neither the processor nor the memory access subsystem reorders
memory accesses;

it is easy to show that the code shown in Figure 5.3 works correctly for up to
one producer and one consumer running concurrently.

For processors that reorder memory accesses—as most modern, high-
performance processors do—the intended sequence can be enforced by using
dedicated machine instructions, often called fences or barriers. For example,
the SFENCE, LFENCE, and MFENCE instructions of the Intel R© 64 and IA-32 ar-
chitecture [45] provide different degrees of memory ordering.

The SFENCE instruction is a store barrier; it guarantees that all store op-
erations that come before it in the instruction stream have been committed
to memory and are visible to all other processors in the system before any
of the following store operations becomes visible as well. The LFENCE instruc-
tion does the same for memory load operations, and MFENCE does it for both
memory load and store operations.

On the contrary, and quite surprisingly, the code no longer works as it
should as soon as we add a second producer to the set of processes being
considered. One obvious issue is with the increment of in (modulus N), but
this is the same issue already considered in Figure 5.2 and, as discussed before,
it can be addresses with some hardware assistance. However, there is another,
subtler issue besides this one.

Let us consider two producers, P1 and P2: they both concurrently invoke
the function prod() to store an element into the shared buffer. For this ex-
ample, let us assume, as shown in Figure 5.3, that P1 and P2 want to put
the values 1 and 2 into the buffer, respectively, although the issue does not
depend on these values at all.

It is also assumed that the shared buffer has a total of 8 elements and
initially contains two data items, represented as black dots, whereas white
dots represent empty elements. Moreover, we assume that the initial values of
in and out are 4 and 2, respectively. This is the situation shown in the middle
of the figure. The following interleaving could take place:

1. Process P1 begins executing prod(1) first. Since in is 4, it stores 1
into buf[4].

2. Before P1 makes further progress, P2 starts executing prod(2). The
value of in is still 4, hence P2 stores 2 into buf[4] and overwrites
the data item just written there by P1.

3. At this point, both P1 and P2 increment in. Assuming that the race
condition issue affecting these operations has been addressed, the
final value of in will be 6, as it should.

It can easily be seen that the final state of the shared variables after these op-
erations, shown in the lower part of Figure 5.3, is severely corrupted because:
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• the data item produced by P1 is nowhere to be found in the shared buffer:
it should have been in buf[4], but it has been overwritten by P2;

• the data item buf[5] is marked as full because in is 6, but it contains an
undefined value (denoted as “?” in the figure) since no data items have
actually been written into it.

From the consumer’s point of view, this means that, on the one hand, the
data item produced by P1 has been lost and the consumer will never get it.
On the other hand, the consumer will get and try to use a data item with an
undefined value, with dramatic consequences.

With the same reasoning, it is also possible to conclude that a very similar
issue also occurs if there is more than one consumer in the system. In this
case, multiple consumers could get the same data item, whereas other data
items are never retrieved from the buffer. From this example, two important
conclusions can be drawn:

1. The correctness of a concurrent program does not merely depend on
the presence or absence of concurrency, as it happens in very simple
cases, such as that shown in Figure 5.2, but it may also depend on
how many processes there are, the so-called degree of concurrency.
In the last example, the program works as long as there are only
two concurrent processes in the system, namely, one producer and
one consumer. It no longer works as soon as additional producers
(or consumers) are introduced.

2. Not all race conditions can be avoided by forcing a single instruction
to be executed atomically. Instead, we need a way to force mutual
exclusion at the critical region level, and critical regions may com-
prise a sequence of many instructions. Going back to the example of
Figure 5.3 and considering how critical regions have been defined,
it is possible to conclude that the producers’ critical region consists
of the whole body of prod(), while the consumers’ critical region is
the whole body of cons(), except for the return statement, which
only operates on local variables.

The traditional way of ensuring the mutual exclusion among critical region
entails the adoption of a lock-based synchronization protocol. A process that
wants to access a shared object, by means of a certain critical region, must
perform the following sequence of steps:

1. Acquire some sort of lock associated with the shared object and
wait if it is not immediately available.

2. Use the shared object.

3. Release the lock, so that other processes can acquire it and be able
to access the same object in the future.
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In the above sequence, step 2 is performed by the code within the critical
region, whereas steps 1 and 3 are a duty of two fragments of code known as
the critical region entry and exit code. In this approach, these fragments of
code must compulsorily surround the critical region itself. If they are relatively
short, they can be incorporated directly by copying them immediately before
and after the critical region code, respectively.

If they are longer, it may be more convenient to execute them indirectly
by means of appropriate function calls in order to reduce the code size, with
the same effect. In the examples presented in this book, we will always follow
the latter approach. This also highlights the fact that the concept of critical
region is related to code execution, and not to the mere presence of some
code between the critical region entry and exit code. Hence, for example, if a
function call is performed between the critical region entry and exit code, the
body of the called function must be considered as part of the critical region
itself.

In any case, four conditions must be satisfied in order to have an acceptable
solution [85]:

1. It must really work, that is, it must prevent any two processes from
simultaneously executing code within critical regions pertaining to
the same shared object.

2. Any process that is busy doing internal operations, that is, is not
currently executing within a critical region, must not prevent other
processes from entering their critical regions, if they so decide.

3. If a process wants to enter a critical region, it must not have to
wait forever to do so. This condition guarantees that the process
will eventually make progress in its execution.

4. It must work regardless of any low-level details about the hardware
or software architecture. For example, the correctness of the solution
must not depend on the number of processes in the system, the
number of physical processors, or their relative speed.

In the following sections, a set of different lock-based methods will be discussed
and confronted with the correctness conditions just presented. It should, how-
ever, be noted that lock-based synchronization is by far the most common,
but it is not the only way to solve the race condition problem. In Chapter 10,
the disadvantages of the lock-based approach will be highlighted, and several
other methods that function without using any kind of lock will be briefly
presented.
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Lock variable

lock

void entry(void) {
  while(lock == 1);
  lock = 1;
}

void exit(void) {
  lock = 0;
}

P1

entry();
  ... critical region ...
exit();

P2

Shared variables

int lock = 0;
... set of shared variables ...

read/write

entry();
  ... critical region ...
exit();

read/write

Pn...
FIGURE 5.4
Lock variables do not necessarily work unless they are handled correctly.

5.2 Hardware-Assisted Lock Variables

A very simple way of ensuring the mutual exclusion among multiple processes
wanting to access a set of shared variables is to uniquely associate a lock
variable with them, as shown in Figure 5.4. If there are multiple, independent
sets of shared variables, there will be one lock variable for each set.

The underlying idea is to use the lock variable as a flag that will assume
two distinct values, depending on how many processes are within their critical
regions. In our example, the lock variable is implemented as an integer variable
(unsurprisingly) called lock, which can assume either the value 0 or 1:

• 0 means that no processes are currently accessing the set of shared variables
associated with the lock;

• 1 means that one process is currently accessing the set of shared variables
associated with the lock.

Since it is assumed that no processes are within a critical region when the



114 Real-Time Embedded Systems—Open-Source Operating Systems Perspective

system is initialized, the initial value of lock is 0. As explained in Section 5.1,
each process must surround its critical regions with the critical region entry
and exit code. In Figure 5.4, this is accomplished by calling the entry() and
exit() functions, respectively.

Given how the lock variable has been defined, the contents of these func-
tions are rather intuitive. That is, before entering a critical section, a process
P must

1. Check whether the lock variable is 1. If this is the case, another
process is currently accessing the set of shared variables protected
by the lock. Therefore, P must wait and perform the check again
later. This is done by the while loop shown in the figure.

2. When P eventually finds that the lock variable is 0, it breaks the
while loop and is allowed to enter its critical region. Before doing
this, it must set the lock variable to 1 to prevent other processes
from entering, too.

The exit code is even simpler: whenever P is abandoning a critical region, it
must reset the lock variable to 0. This may have two possible effects:

1. If one or more processes are already waiting to enter, one of them
will find the lock variable at 0, will set it to 1 again, and will be
allowed to enter its critical region.

2. If no processes are waiting to enter, the lock variable will stay at
0 for the time being until the critical region entry code is executed
again.

Unfortunately, this naive approach to the problem does not work even if we
consider only two processes P1 and P2. This is due to the fact that, as described
above, the critical region entry code is composed of a sequence of two steps that
are not executed atomically. The following interleaving is therefore possible:

1.1. P1 executes the entry code and checks the value of lock, finds that lock
is 0, and immediately escapes from the while loop.

2.1. Before P1 had the possibility of setting lock to 1, P2 executes the entry
code, too. Since the value of lock is still 0, it exits from the while loop as
well.

2.2. P2 sets lock to 1.

1.2. P1 sets lock to 1.

At this point, both P1 and P2 execute their critical code and violate the
mutual exclusion constraint. An attentive reader would have certainly noticed
that, using lock variables in this way, the mutual exclusion problem has merely
been shifted from one “place” to another. Previously the problem was how
to ensure mutual exclusion when accessing the set of shared variables, but



Interprocess Communication Based on Shared Variables 115

Set of shared 
variables

Lock variable

lock

void entry(void) {
  while(
    test_and_set(&lock) == 1);
}

void exit(void) {
  lock = 0;
}
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entry();
  ... critical region ...
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int lock = 0;
... set of shared variables ...
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  ... critical region ...
exit();

read/write

Pn...
FIGURE 5.5
Hardware-assisted lock variables work correctly.

now the problem is how to ensure mutual exclusion when accessing the lock
variable itself.

Given the clear similarities between the scenarios depicted in Figures 5.2
and 5.4, it is not surprising that the problem has not been solved at all.
However, this is one of the cases in which hardware assistance is very effective.
In the simplest case, we can assume that the processor provides a test and set
instruction. This instruction has the address p of a memory word as argument
and atomically performs the following three steps:

1. It reads the value v of the memory word pointed by p.

2. It stores 1 into the memory word pointed by p.

3. It puts v into a register.

As shown in Figure 5.5, this instruction can be used in the critical region
entry code to avoid the race condition discussed before because it forces the
test of lock to be atomic with respect to its update. The rest of the code stays
the same. For convenience, the test and set instruction has been denoted as
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a C function int test and set(int *p), assuming that the int type indeed
represents a memory word.

For what concerns the practical implementation of this technique, on the
Intel R© 64 and IA-32 architecture [45], the BTS instruction tests and sets a
single bit in either a register or a memory location. It also accepts the LOCK

prefix so that the whole instruction is executed atomically.
Another, even simpler, instruction is XCHG, which exchanges the contents

of a register with the contents of a memory word. In this case, the bus-locking
protocol is activated automatically regardless of the presence of the LOCK

prefix. The result is the same as the test and set instruction if the value
of the register before executing the instruction is 1. Many other processor
architectures provide similar instructions.

It can be shown that, considering the correctness conditions stated at the
end of Section 5.1, the approach just described is correct with respect to
conditions 1 and 2 but does not fully satisfy conditions 3 and 4:

• By intuition, if one of the processes is noticeably slower that the others—
because, for example, it is executed on a slower processor in a multipro-
cessor system—it is placed at a disadvantage when it executes the critical
region entry code. In fact, it checks the lock variable less frequently than
the others, and this lowers its probability of finding lock at 0. This partially
violates condition 4.

• In extreme cases, the execution of the while loop may be so slow that other
processes may succeed in taking turns entering and exiting their critical
regions, so that the “slow” process never finds lock at 0 and is never
allowed to enter its own critical region. This is in contrast with condition
3.

From the practical standpoint, this may or may not be a real issue depending
on the kind of hardware being used. For example, using this method for mutual
exclusion among cores in a multicore system, assuming that all cores execute
at the same speed (or with negligible speed differences), is quite safe.

5.3 Software-Based Mutual Exclusion

The first correct solution to the mutual exclusion problem between two pro-
cesses, which does not use any form of hardware assistance, was designed
by Dekker [23]. A more compact and elegant solution was then proposed by
Peterson [71].

Even if Peterson’s algorithm can be generalized to work with an arbitrary
(but fixed) number of processes, for simplicity we will only consider the sim-
plest scenario, involving only two processes P0 and P1 as shown in Figure 5.6.
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void entry(int pid) {
  int other = 1-pid;
  flag[pid] = 1;
  turn = pid;
  while(
    flag[other] == 1
    && turn == pid);
}

void exit(int pid) {
  flag[pid] = 0;
}

P0

entry(0);
  ... critical region ...
exit(0);

P1

Shared variables

int flag[2] = {0, 0};
int turn=0;
... set of shared variables ...

read/write

entry(1);
  ... critical region ...
exit(1);

read/write

flag[]

FIGURE 5.6
Peterson’s software-based mutual exclusion for two processes.

It is also assumed that the memory access atomicity and ordering constraints
set forth in Section 5.1 are either satisfied or can be enforced.

Unlike the other methods discussed so far, the critical region entry and exit
functions take a parameter pid that uniquely identifies the invoking process
and will be either 0 (for P0) or 1 (for P1). The set of shared, access-control
variables becomes slightly more complicated, too. In particular,

• There is now one flag for each process, implemented as an array flag[2]

of two flags. Each flag will be 1 if the corresponding process wants to,
or succeeded in entering its critical section, and 0 otherwise. Since it is
assumed that processes neither want to enter, nor already are within their
critical region at the beginning of their execution, the initial value of both
flags is 0.

• The variable turn is used to enforce the two processes to take turns if
both want to enter their critical region concurrently. Its value is a process
identifier and can therefore be either 0 or 1. It is initially set to 0 to make
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sure it has a legitimate value even if, as we will see, this initial value is
irrelevant to the algorithm.

A formal proof of the correctness of the algorithm is beyond the scope of this
book, but it is anyway useful to gain an informal understanding of how it
works and why it behaves correctly. As a side note, the same technique is also
useful in gaining a better understanding of how other concurrent programming
algorithms are designed and built.

The simplest and easiest-to-understand case for the algorithm happens
when the two processes do not execute the critical region entry code con-
currently but sequentially. Without loss of generality, let us assume that P0

executes this code first. It will perform the following operations:

1. It sets its own flag, flag[0], to 1. It should be noted that P0 works
on flag[0] because pid is 0 in the instance of enter() it invokes.

2. It sets turn to its own process identifier pid, that is, 0.

3. It evaluates the predicate of the while loop. In this case, the right-
hand part of the predicate is true (because turn has just been set
to pid), but the left-hand part is false because the other process is
not currently trying to enter its critical section.

As a consequence, P0 immediately abandons the while loop and is granted
access to its critical section. The final state of the shared variables after the
execution of enter(0) is

• flag[0] == 1 (it has just been set by P0);

• flag[1] == 0 (P1 is not trying to enter its critical region);

• turn == 0 (P0 has been the last process to start executing enter()).

If, at this point, P1 tries to enter its critical region by executing enter(1),
the following sequence of events takes place:

1. It sets its own flag, flag[1], to 1.

2. It sets turn to its own process identifier, 1.

3. It evaluates the predicate of the while loop. Both parts of the pred-
icate are true because:

• The assignment other = 1-pid implies that the value of
other represents the process identifier of the “other” process.
Therefore, flag[other] refers to flag[0], the flag of P0, and
this flag is currently set to 1.

• The right-hand part of the predicate, turn == pid, is also true
because turn has just been set this way by P1, and P0 does
not modify it in any way.
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flag[0] = 1;
turn = 0;
while(flag[1] == 1 && turn == 0);

P0 P1

Shared variables

int flag[2] = {0, 0};
int turn=0;
... set of shared variables ...

flag[1] = 1;
turn = 1;
while(flag[0] == 1 && turn == 1);

FIGURE 5.7
Code being executed concurrently by the two processes involved in Peterson’s
critical region enter code.

P1 is therefore trapped in the while loop and will stay there until P0 exits
its critical region and invokes exit(0), setting flag[0] back to 0. In turn,
this will make the left-hand part of the predicate being evaluated by P1 false,
break its busy waiting loop, and allow P1 to execute its critical region. After
that, P0 cannot enter its critical region again because it will be trapped in
enter(0).

When thinking about the actions performed by P0 and P1 when they
execute enter(), just discussed above, it should be remarked that, even if
the first program statement in the body of enter(), that is, flag[pid] = 1,
is the same for both of them, the two processes are actually performing very
different actions when they execute it.

That is, they are operating on different flags because they have got different
values for the variable pid, which belongs to the process state. This further
highlights the crucial importance of distinguishing programs from processes
when dealing with concurrent programming because, as it happens in this
case, the same program fragment produces very different results depending
on the executing process state.

It has just been shown that the mutual exclusion algorithm works satis-
factorily when P0 and P1 execute enter() sequentially, but this, of course,
does not cover all possible cases. Now, we must convince ourselves that, for
every possible interleaving of the two, concurrent executions of enter(), the
algorithm still works as intended. To facilitate the discussion, the code exe-
cuted by the two processes has been listed again in Figure 5.7, replacing the
local variables pid and other by their value. As already recalled, the value of
these variables depends on the process being considered.
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For what concerns the first two statements executed by P0 and P1, that
is, flag[0] = 1 and flag[1] = 1, it is easy to see that the result does not
depend on the execution order because they operate on two distinct variables.
In any case, after both statements have been executed, both flags will be set
to 1.

On the contrary, the second pair of statements, turn = 0 and turn = 1,
respectively, work on the same variable turn. The result will therefore depend
on the execution order but, thanks to the memory access atomicity taken for
granted at the single-variable level, the final value of turn will be either 0 or
1, and not anything else, even if both processes are modifying it concurrently.
More precisely, the final value of turn only depends on which process executed
its assignment last, and represents the identifier of that process.

Let us now consider what happens when both processes evaluate the pred-
icate of their while loop:

• The left-hand part of the predicate has no effect on the overall outcome of
the algorithm because both flag[0] and flag[1] have been set to one.

• The right-hand part of the predicate will be true for one and only one
process. It will be true for at least one process because turn will be either
0 or 1. In addition, it cannot be true for both processes because turn cannot
assume two different values at once and no processes can further modify it.

In summary, either P0 or P1 (but not both) will be trapped in the while loop,
whereas the other process will be allowed to enter into its critical region. Due
to our considerations about the value of turn, we can also conclude that the
process that set turn last will be trapped, whereas the other will proceed. As
before, the while loop executed by the trapped process will be broken when
the other process resets its flag to 0 by invoking its critical region exit code.

Going back to the correctness conditions outlined in Section 5.1, this algo-
rithm is clearly correct with respect to conditions 1 and 2. For what concerns
conditions 3 and 4, it also works better than the hardware-assisted lock vari-
ables discussed in Section 5.2. In particular,

• The slower process is no longer systematically put at a disadvantage. As-
suming that P0 is slower than P1, it is still true that P1 may initially
overcome P0 if both processes execute the critical region entry code con-
currently. However, when P1 exits from its critical region and then tries to
immediately reenter it, it can no longer overcome P0.

When P1 is about to evaluate its while loop predicate for the second time,
the value of turn will in fact be 1 (because P1 set it last), and both flags
will be set. Under these conditions, the predicate will be true, and P1 will
be trapped in the loop. At the same time, as soon as turn has been set to
1 by P1, P0 will be allowed to proceed regardless of its speed because its
while loop predicate becomes false and stays this way.

• For the same reason, and due to the symmetry of the code, if both processes
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FIGURE 5.8
Busy wait and fixed-priority assignment may interfere with each other, leading
to an unbounded priority inversion.

repeatedly contend against each other for access to their critical region,
they will take turns at entering them, so that no process can systematically
overcome the other. This property also implies that, if a process wants to
enter its critical region, it will succeed within a finite amount of time, that
is, at the most the time the other process spends in its critical region.

For the sake of completeness, it should be noted that the algorithm just de-
scribed, albeit quite important from the historical point of view, is definitely
not the only one of this kind. For instance, interested readers may want to
look at the famous Lamport’s bakery algorithm [55]. One of the most inter-
esting properties of this algorithm is that it still works even if memory read
and writes are not performed in an atomic way by the underlying processor.
In this way, it completely solves the mutual exclusion problem without any
kind of hardware assistance.

5.4 From Active to Passive Wait

All the methods presented in Sections 5.2 and 5.3 are based on active or busy
wait loops: a process that cannot immediately enter into its critical region is
delayed by trapping it into a loop. Within the loop, it repeatedly evaluates
a Boolean predicate that indicates whether it must keep waiting or can now
proceed.

One unfortunate side effect of busy loops is quite obvious: whenever a pro-
cess is engaged in one of those loops, it does not do anything useful from the
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application point of view—as a matter of fact, the intent of the loop is to pre-
vent it from proceeding further at the moment—but it wastes processor cycles
anyway. Since in many embedded systems processor power is at a premium,
due to cost and power consumption factors, it would be a good idea to put
these wasted cycles to better use.

Another side effect is subtler but not less dangerous, at least when dealing
with real-time systems, and concerns an adverse interaction of busy wait with
the concept of process priority and the way this concept is often put into
practice by a real-time scheduler.

In the previous chapters it has already been highlighted that not all pro-
cesses in a real-time system have the same “importance” (even if the concept
of importance has not been formally defined yet) so that some of them must
be somewhat preferred for execution with respect to the others. It is there-
fore intuitively sound to associate a fixed priority value to each process in
the system according to its importance and design the scheduler so that it
systematically prefers higher-priority processes when it is looking for a ready
process to run.

The intuition is not at all far from reality because several popular real-time
scheduling algorithms, to be discussed in Chapter 12, are designed exactly in
this way. Moreover, Chapters 13–16 will also make clearer that assigning the
right priority to all the processes, and strictly obeying them at run-time, also
plays a central role to ensure that the system meets its timing requirements
and constraints.

A very simple example of the kind of problems that may occur is given in
Figure 5.8. The figure shows two processes, P0 and P1, being executed on a
single physical processor under the control of a scheduler that systematically
prefers P0 to P1 because P0’s priority is higher. It is also assumed that these
two processes share some data and—being written by a proficient programmer
who just read this chapter—therefore contain one critical region each. The
critical regions are protected by means of one of the mutual exclusion methods
discussed so far. As before, the critical region entry code is represented by the
function enter(). The following sequence of events may take place:

1. Process P0 becomes ready for execution at t0, while P1 is blocked
for some other reason. Supposing that P0 is the only ready process
in the system at the moment, the scheduler makes it run.

2. At t1, P0 wants to access the shared data; hence, it invokes the
critical region entry function enter(). This function is nonblocking
because P1 is currently outside its critical region and allows P0 to
proceed immediately.

3. According to the fixed-priority relationship between P0 and P1, as
soon as P1 becomes ready, the scheduler grabs the processor from
P0 and immediately brings P1 into the running state with an action
often called preemption. In Figure 5.8, this happens at t2.

4. If, at t3, P1 tries to enter its critical section, it will get stuck in
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enter() because P0 was preempted before it abandoned its own
critical section.

It should be noted that the last event just discussed actually hides two distinct
facts. One of them is normal, the other is not:

• Process P1, the higher-priority process, cannot enter its critical section be-
cause it is currently blocked by P0, a lower-priority process. This condition
is called priority inversion because a synchronization constraint due to an
interaction between processes—through a set of shared data in this case—
is going against the priority assignment scheme obeyed by the scheduler.
In Figure 5.8, the priority inversion region is shown in dark gray.

Even if this situation may seem disturbing, it is not a problem by itself.
Our lock-based synchronization scheme is indeed working as designed and,
in general, a certain amount of priority inversion is unavoidable when one
of those schemes is being used to synchronize processes with different pri-
orities. Even in this very simple example, allowing P1 to proceed would
necessarily lead to a race condition.

• Unfortunately, as long as P1 is trapped in enter(), it will actively use
the processor—because it is performing a busy wait—and will stay in the
running state so that our fixed-priority scheduler will never switch the
processor back to P0. As a consequence, P0 will not further proceed with
execution, it will never abandon its critical region, and P1 will stay trapped
forever. More generally, we can say that the priority inversion region is
unbounded in this case because we are unable to calculate a finite upper
bound for the maximum time P1 will be blocked by P0.

It is also useful to remark that some priority relationships between concur-
rent system activities can also be “hidden” and difficult to ascertain because,
for instance, they are enforced by hardware rather than software. In several
operating system architectures, interrupt handling implicitly has a priority
greater than any other kind of activity as long as interrupts are enabled. In
those architectures, the unbounded priority situation shown in Figure 5.8 can
also occur when P0 is a regular process, whereas P1 is an interrupt handler
that, for some reason, must exchange data with P0. Moreover, it happens
regardless of the software priority assigned to P0.

From Section 3.4 in Chapter 3, we know that the process state diagram
already comprises a state, the Blocked state, reserved for processes that cannot
proceed for some reason, for instance, because they are waiting for an I/O
operation to complete. Any process belonging to this state does not proceed
with execution but does so without wasting processor cycles and without
preventing other processes from executing in its place. This kind of wait is
often called passive wait just for this reason.

It is therefore natural to foresee a clever interaction between interprocess
synchronization and the operating system scheduler so that the synchroniza-
tion mechanism makes use of the Blocked state to prevent processes from
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Using passive wait instead of busy wait solves the unbounded priority inversion
problem in simple cases.

running when appropriate. This certainly saves processor power and, at least
in our simple example, also addresses the unbounded priority inversion issue.
As shown in Figure 5.9, if enter() and exit() are somewhat modified to use
passive wait,

1. At t3, P1 goes into the Blocked state, thus performing a passive
instead of a busy wait. The scheduler gives the processor to P0

because P1 is no longer ready for execution.

2. Process P0 resumes execution in its critical section and exits from
it at t4 by calling exit(). As soon as P0 exits from the critical
section, P1 is brought back into the Ready state because it is ready
for execution again.

3. As soon as P1 is ready again, the scheduler reevaluates the situation
and gives the processor back to P1 itself so that P1 is now running
in its critical section.

It is easy to see that there still is a priority inversion region, shown in dark
gray in Figure 5.9, but it is no longer unbounded. The maximum amount of
time P1 can be blocked by P0 is in fact bounded by the maximum amount of
time P0 can possibly spend executing in its critical section. For well-behaved
processes, this time will certainly be finite.

Even if settling on passive wait is still not enough to completely solve the
unbounded priority inversion problem in more complex cases, as will be shown
in Chapter 15, the underlying idea is certainly a step in the right direction and
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led to a number of popular synchronization methods that will be discussed in
the following sections.

The price to be paid is a loss of efficiency because any passive wait requires
a few transition in the process state diagram, the execution of the scheduling
algorithm, and a context switch. All these operations are certainly slower with
respect to a tight, busy loop, which does not necessarily require any context
switch when multiple physical processors are available. For this reason, busy
wait is still preferred when the waiting time is expected to be small, as it
happens for short critical regions, and efficiency is of paramount importance
to the point that wasting several processor cycles in busy waiting is no longer
significant.

This is the case, for example, when busy wait is used as a “building block”
for other, more sophisticated methods based on passive wait, which must work
with multiple, physical processors. Another field of application of busy wait
is to ensure mutual exclusion between physical processors for performance-
critical operating system objects, such as the data structures used by the
scheduler itself.

Moreover, in the latter case, using passive wait would clearly be impossible
anyway.

5.5 Semaphores

Semaphores were first proposed as a general interprocess synchronization
framework by Dijkstra [23]. Even if the original formulation was based on busy
wait, most contemporary implementations use passive wait instead. Even if
semaphores are not powerful enough to solve, strictly speaking, any arbitrary
concurrent programming problem, as pointed out for example in [53], they
have successfully been used to address many problems of practical significance.
They still are the most popular and widespread interprocess synchronization
method, also because they are easy and efficient to implement.

A semaphore is an object that comprises two abstract items of information:

1. a nonnegative, integer value;

2. a queue of processes passively waiting on the semaphore.

Upon initialization, a semaphore acquires an initial value specified by the
programmer, and its queue is initially empty. Neither the value nor the queue
associated with a semaphore can be read or written directly after initialization.
On the contrary, the only way to interact with a semaphore is through the
following two primitives that are assumed to be executed atomically:

1. P(s), when invoked on semaphore s, checks whether the value of
the semaphore is (strictly) greater than zero.
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• If this is the case, it decrements the value by one and returns
to the caller without blocking.

• Otherwise, it puts the calling process into the queue associated
with the semaphore and blocks it by moving it into the Blocked
state of the process state diagram.

2. V(s), when invoked on semaphore s, checks whether the queue as-
sociated with that semaphore is empty or not.

• If the queue is empty, it increments the value of the semaphore
by one.

• Otherwise, it picks one of the blocked processes found in the
queue and makes it ready for execution again by moving it into
the Ready state of the process state diagram.

In both cases, V(s) never blocks the caller. It should also be re-
marked that, when V(s) unblocks a process, it does not necessarily
make it running immediately. In fact, determining which processes
must be run, among the Ready ones, is a duty of the scheduling al-
gorithm, not of the interprocess communication mechanism. More-
over, this decision is often based on information—for instance, the
relative priority of the Ready processes—that does not pertain to
the semaphore and that the semaphore implementation may not
even have at its disposal.

The process state diagram transitions triggered by the semaphore primitives
are highlighted in Figure 5.10. As in the general process state diagram shown in
Figure 3.4 in Chapter 3, the transition of a certain process A from the Running
to the Blocked state caused by P() is voluntary because it depends on, and is
caused by, a specific action performed by the process that is subjected to the
transition, in this case A itself.

On the other hand, the transition of a process A from the Blocked back
into the Ready state is involuntary because it depends on an action performed
by another process. In this case, the transition is triggered by another process
B that executes a V() involving the semaphore on which A is blocked. After
all, by definition, as long as A is blocked, it does not proceed with execution
and cannot perform any action by itself.

Semaphores provide a simple and convenient way of enforcing mutual ex-
clusion among an arbitrary number of processes that want to have access to
a certain set of shared variables. As shown in Figure 5.11, it is enough to
associate a mutual exclusion semaphore mutex to each set of global variables
to be protected. The initial value of this kind of semaphore is always 1.

Then, all critical regions pertaining to that set of global variables must
be surrounded by the statements P(mutex) and V(mutex), using them as a
pair of “brackets” around the code, so that they constitute the critical region
entry and exit code, respectively.
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Process State Diagram transitions induced by the semaphore primitives P()
and V().

In this chapter, we focus on the high-level aspects of using semaphores.
For this reason, in Figure 5.11, we assume that a semaphore has the abstract
data type sem t and it can be defined as any other variable. In practice, this
is not the case, and some additional initialization steps are usually required.
See Chapters 7 and 8 for more information on how semaphores are defined in
an actual operating system.

This method certainly fulfills the first correctness conditions of Section 5.1.
When one process P1 wants to enter into its critical region, it first executes
the critical region entry code, that is, P(mutex). This statement can have two
different effects, depending on the value of mutex:

1. If the value of mutex is 1—implying that no other processes are cur-
rently within a critical region controlled by the same semaphore—
the effect of P(mutex) is to decrement the semaphore value and
allow the invoking process to proceed into the critical region.

2. If the value of mutex is 0—meaning that another process is already
within a critical region controlled by the same semaphore—the in-
voking process is blocked at the critical region boundary.

Therefore, if the initial value of mutex is 1, and many concurrent processes
P1, . . . , Pn want to enter into a critical region controlled by that semaphore,
only one of them—for example P1—will be allowed to proceed immediately
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A semaphore can be used to enforce mutual exclusion.

because it will find mutex at 1. All the other processes will find mutex at 0
and will be blocked on it until P1 reaches the critical region exit code and
invokes V(mutex).

When this happens, one of the processes formerly blocked on mutex will be
resumed—for example P2—and will be allowed to execute the critical region
code. Upon exit from the critical region, P2 will also execute V(mutex) to
wake up another process, and so on, until the last process Pn exits from the
critical region while no other processes are currently blocked on P(mutex).

In this case, the effect of V(mutex) is to increment the value of mutex and
bring it back to 1 so that exactly one process will be allowed to enter into the
critical region immediately, without being blocked, in the future.

It should also be remarked that no race conditions during semaphore ma-
nipulation are possible because the semaphore implementation must guarantee
that P() and V() are executed atomically.

For what concerns the second correctness condition, it can easily be ob-
served that the only case in which the mutual exclusion semaphore prevents
a process from entering a critical region takes place when another process is
already within a critical region controlled by the same semaphore. Hence, pro-
cesses doing internal operations cannot prevent other processes from entering
their critical regions in any way.

The behavior of semaphores with respect to the third and fourth correct-
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ness conditions depend on their implementation. In particular, both conditions
can easily be fulfilled if the semaphore queuing policy is first-in first-out, so
that V() always wakes up the process that has been waiting on the semaphore
for the longest time. When a different queuing policy must be adopted for
other reasons, for instance, to solve the unbounded priority inversion, as dis-
cussed in Chapter 15, then some processes may be subject to an indefinite
wait, and this possibility must usually be excluded by other means.

Besides mutual exclusion, semaphores are also useful for condition syn-
chronization, that is, when we want to block a process until a certain event
occurs or a certain condition is fulfilled. For example, considering again the
producers–consumers problem, it may be desirable to block any consumer that
wants to get a data item from the shared buffer when the buffer is completely
empty, instead of raising an error indication. Of course, a blocked consumer
must be unblocked as soon as a producer puts a new data item into the buffer.
Symmetrically, we might also want to block a consumer when it tries to put
more data into a buffer that is already completely full.

In order to do this, we need one semaphore for each synchronization con-
dition that the concurrent program must respect. In this case, we have two
conditions, and hence we need two semaphores:

1. The semaphore empty counts how many empty elements there are
in the buffer. Its initial value is N because the buffer is completely
empty at the beginning. Producers perform a P(empty) before
putting more data into the buffer to update the count and pos-
sibly block themselves, if there is no empty space in the buffer.
After removing one data item from the buffer, consumers perform a
V(empty) to either unblock one waiting producer or increment the
count of empty elements.

2. Symmetrically, the semaphore full counts how many full elements
there are in the buffer. Its initial value is 0 because there is no data
in the buffer at the beginning. Consumers perform P(full) before
removing a data item from the buffer, and producers perform a
V(full) after storing an additional data item into the buffer.

The full solution to the producers–consumers problem is shown in Figure 5.12.
In summary, even if semaphores are all the same, they can be used in two very
different ways, which should not be confused:

1. A mutual exclusion semaphore, like mutex in the example, is used
to prevent more than one process from executing within a set of
critical regions pertaining to the same set of shared data. The use
of a mutual exclusion semaphore is quite stereotyped: its initial
value is always 1, and P() and V() are placed, like brackets, around
the critical regions code.

2. A condition synchronization semaphore, such as empty and full in
the example, is used to ensure that certain sequences of events do or
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void prod(int d) {
  P(empty);
  P(mutex);
    buf[in] = d;
    in = (in+1) % N;
  V(mutex);
  V(full);
}

int cons(void) {
  int c;
  P(full);
  P(mutex);
    c = buf[out];
    out = (out+1) % N;
  V(mutex);
  V(empty);
  return c;
}

Macros/Shared 
variables

#define N 8
int buf[N];
int in=0, out=0;
sem_t mutex=1;
sem_t empty=N;
sem_t full=0;

FIGURE 5.12
Producers–consumers problem solved with mutual exclusion and condition
synchronization semaphores.

do not occur. In this particular case, we are using them to prevent
a producer from storing data into a full buffer, or a consumer from
getting data from an empty buffer. They are usually more difficult
to use correctly because there is no stereotype to follow.

5.6 Monitors

As discussed in the previous section, semaphores can be defined quite easily;
as we have seen, their behavior can be fully described in about one page. Their
practical implementation is also very simple and efficient so that virtually all
modern operating systems support them. However, semaphores are also a very
low-level interprocess communication mechanism. For this reason, they are
difficult to use, and even the slightest mistake in the placement of a semaphore
primitive, especially P(), may completely disrupt a concurrent program.

For example, the program shown in Figure 5.13 may seem another legit-
imate way to solve the producers–consumers problem. Actually, it has been
derived from the solution shown in Figure 5.12 by swapping the two semaphore
primitives shown in boldface. After all, the program code still “makes sense”
after the swap because, as programmers, we could reason in the following way:

• In order to store a new data item into the shared buffer, a producer must,
first of all, make sure that it is the only process allowed to access the shared
buffer itself. Hence, a P(mutex) is needed.

• In addition, there must be room in the buffer, that is, at least one element
must be free. As discussed previously, P(empty) updates the count of free
buffer elements held in the semaphore empty and blocks the caller until
there is at least one free element.

Unfortunately, this kind of reasoning is incorrect because the concurrent ex-
ecution of the code shown in Figure 5.13 can lead to a deadlock. When a
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void prod(int d) {
  P(mutex);
  P(empty);
    buf[in] = d;
    in = (in+1) % N;
  V(mutex);
  V(full);
}

int cons(void) {
  int c;
  P(full);
  P(mutex);
    c = buf[out];
    out = (out+1) % N;
  V(mutex);
  V(empty);
  return c;
}

Macros/Shared 
variables

#define N 8
int buf[N];
int in=0, out=0;
sem_t mutex=1;
sem_t empty=N;
sem_t full=0;

FIGURE 5.13
Semaphores may be difficult to use: even the incorrect placement of one single
semaphore primitive may lead to a deadlock.

producer tries to store an element into the buffer, the following sequence of
events may occur:

• The producer succeeds in gaining exclusive access to the shared buffer by
executing a P(mutex). From this point on, the value of the semaphore
mutex is zero.

• If the buffer is full, the value of the semaphore empty will be zero because
its value represents the number of empty elements in the buffer. As a con-
sequence, the execution of P(empty) blocks the producer. It should also be
noted that the producer is blocked within its critical region, that is, without
releasing the mutual exclusion semaphore mutex.

After this sequence of events takes place, the only way to wake up the blocked
producer is by means of a V(empty). However, by inspecting the code, it can
easily be seen that the only V(empty) is at the very end of the consumer’s
code. No consumer will ever be able to reach that statement because it is
preceded by a critical region controlled by mutex, and the current value of
mutex is zero.

In other words, the consumer will be blocked by the P(mutex) located at
the beginning of the critical region itself as soon as it tries to get data item
from the buffer. All the other producers will be blocked, too, as soon as they
try to store data into the buffer, for the same reason.

As a side effect, the first N consumers trying to get data from the buffer
will also bring the value of the semaphore full back to zero so that the
following consumers will not even reach the P(mutex) because they will be
blocked on P(full).

The presence of a deadlock can also be deducted in a more abstract way,
for instance, by referring to the Havender/Coffman conditions presented in
Chapter 4. In particular,

• As soon as a producer is blocked on P(empty) and a consumer is blocked
on P(mutex), there is a circular wait in the system. In fact, the consumer
waits for the producer to release the resource “empty space in the buffer,”
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an event represented by V(empty) in the code. Symmetrically, the con-
sumer waits for the producer to release the resource “mutual exclusion
semaphore,” an event represented by V(mutex).

• Both resources are subject to a mutual exclusion. The mutual exclusion
semaphore, by definition, can be held by only one process at a time. Sim-
ilarly, the buffer space is either empty or full, and hence may belong to
either the producers or the consumers, but not to both of them at the
same time.

• The hold and wait condition is satisfied because both processes hold a
resource—either the mutual exclusion semaphore or the ability to provide
more empty buffer space—and wait for the other.

• Neither resource can be preempted. Due to the way the code has been
designed, the producer cannot be forced to relinquish the mutual exclusion
semaphore before it gets some empty buffer space. On the other hand, the
consumer cannot be forced to free some buffer space without first passing
through its critical region controlled by the mutual exclusion semaphore.

To address these issues, a higher-level and more structured interprocess com-
munication mechanism, called monitor, was proposed by Brinch Hansen [16]
and Hoare [37]. It is interesting to note that, even if these proposals date
back to the early ’70s, they were already based on concepts that are common
nowadays and known as object-oriented programming. In its most basic form,
a monitor is a composite object and contains

• a set of shared data;

• a set of methods that operate on them.

With respect to its components, a monitor guarantees the following two main
properties:

• Information hiding, because the set of shared data defined in the monitor is
accessible only through the monitor methods and cannot be manipulated
directly from the outside. At the same time, monitor methods are not
allowed to access any other shared data. Monitor methods are not hidden
and can be freely invoked from outside the monitor.

• Mutual exclusion among monitor methods, that is, the monitor implemen-
tation, must guarantee that only one process will be actively executing
within any monitor method at any given instant.

Both properties are relatively easy to implement in practice because
monitors—unlike semaphores—are a programming language construct that
must be known to, and supported by, the language compiler. For instance,
mutual exclusion can be implemented by forcing a process to wait when it
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tries to execute a monitor method while another process is already executing
within the same monitor.

This is possible because the language compiler knows that a call to a
monitor method is not the same as a regular function call and can therefore
handle it appropriately. In a similar way, most language compilers already
have got all the information they need to enforce the information-hiding rules
just discussed while they are processing the source code.

The two properties just discussed are clearly powerful enough to avoid
any race condition in accessing the shared data enclosed in a monitor and
are a valid substitute for mutual exclusion semaphores. However, an attentive
reader would certainly remember that synchronization semaphores have an
equally important role in concurrent programming and, so far, no counterpart
for them has been discussed within the monitor framework.

Unsurprisingly, that counterpart does exist and takes the form of a third
kind of component belonging to a monitor: the condition variables. Condition
variables can be used only by the methods of the monitor they belong to, and
cannot be referenced in any way from outside the monitor boundary. They
are therefore hidden exactly like the monitor’s shared data. The following two
primitives are defined on a condition variable c:

• wait(c) blocks the invoking process and releases the monitor in a single,
atomic action.

• signal(c) wakes up one of the processes blocked on c; it has no effect if
no processes are blocked on c.

The informal reasoning behind the primitives is that, if a process starts ex-
ecuting a monitor method and then discovers that it cannot finish its work
immediately, it invokes wait on a certain condition variable. In this way, it
blocks and allows other processes to enter the monitor and perform their job.

When one of those processes, usually by inspecting the monitor’s shared
data, detects that the first process can eventually continue, it calls signal

on the same condition variable. The provision for multiple condition variables
stems from the fact that, in a single monitor, there may be many, distinct
reasons for blocking. Processes can easily be divided into groups and then
awakened selectively by making them block on distinct condition variables,
one for each group.

However, even if the definition of wait and signal just given may seem
quite good by intuition, it is nonetheless crucial to make sure that the syn-
chronization mechanism does not “run against” the mutual exclusion property
that monitors must guarantee in any case, leading to a race condition. It turns
out that, as shown in Figure 5.14, the following sequence of events involving
two processes A and B may happen:

1. Taking for granted that the monitor is initially free—that is, no
processes are executing any of its methods—process A enters the
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FIGURE 5.14
After a wait/signal sequence on a condition variable, there is a race condition
that must be adequately addressed.

monitor by calling one of its methods, and then blocks by means of
a wait(c).

2. At this point, the monitor is free again, and hence, another pro-
cess B is allowed to execute within the monitor by invoking one of
its methods. There is no race condition because process A is still
blocked.

3. During its execution within the monitor, B may invoke signal(c)
to wake up process A.

After this sequence of events, both A and B are actively executing within the
monitor. Hence, they are allowed to manipulate its shared data concurrently
in an uncontrolled way. In other words, the mutual exclusion property of
monitors has just been violated. The issue can be addressed in three different
ways:

1. As proposed by Brinch Hansen [16], it is possible to work around
the issue by constraining the placement of signal within the moni-
tor methods: in particular, if a signal is ever invoked by a monitor
method, it must be its last action, and implicitly makes the exe-
cuting process exit from the monitor. As already discussed before,
a simple scan of the source code is enough to detect any violation
of the constraint.

In this way, only process A will be executing within the monitor
after a wait/signal sequence, as shown in Figure 5.15, because the
signal must necessarily be placed right at the monitor boundary.
As a consequence, process B will indeed keep running concurrently
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FIGURE 5.15
An appropriate constraint on the placement of signal in the monitor methods
solves the race condition issue after a wait/signal sequence.

with A, but outside the monitor, so that no race condition occurs.
Of course, it can also be shown that the constraint just described
solves the problem in general, and not only in this specific case.

The main advantage of this solution is that it is quite simple and
efficient to implement. On the other hand, it leaves to the program-
mer the duty of designing the monitor methods so that signal only
appears in the right places.

2. Hoare’s approach [37] imposes no constraints at all on the placement
of signal, which can therefore appear and be invoked anywhere
in monitor methods. However, the price to be paid for this added
flexibility is that the semantics of signal become somewhat less
intuitive because it may now block the caller.

In particular, as shown in Figure 5.16, the signaling process B is
blocked when it successfully wakes up the waiting process A in step
3. In this way, A is the only process actively executing in the mon-
itor after a wait/signal sequence and there is no race condition.
Process B will be resumed when process A either exits from the
monitor or waits again, as happens in step 4 of the figure.

In any case, processes like B—that entered the monitor and then
blocked as a consequence of a signal—take precedence on processes
that want to enter the monitor from the outside, like process C
in the figure. These processes will therefore be admitted into the
monitor, one at a time, only when the process actively executing in
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Any other process cannot enter 
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FIGURE 5.16
Another way to eliminate the race condition after a wait/signal sequence is
to block the signaling process until the signaled one ceases execution within
the monitor.

the monitor leaves or waits, and no processes are blocked due to a
signal.

3. The approach adopted by the POSIX standard [48] differs from
the previous two in a rather significant way. Application develop-
ers must keep these differences in mind because writing code for a
certain “flavor” of monitors and then executing it on another will
certainly lead to unexpected results.

The reasoning behind the POSIX approach is that the process just
awakened after a wait, like process A in Figure 5.17, must acquire
the monitor’s mutual exclusion lock before proceeding, whereas the
signaling process (B in the figure) continues immediately. In a sense,
the POSIX approach is like Hoare’s, but it solves the race condition
by postponing the signaled process, instead of the signaling one.

When the signaling process B eventually leaves the monitor or
blocks in a wait, one of the processes waiting to start or resume
executing in the monitor is chosen for execution. This may be
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FIGURE 5.17
The POSIX approach to eliminate the race condition after a wait/signal
sequence is to force the process just awakened from a wait to reacquire the
monitor mutual exclusion lock before proceeding.

• one process waiting to reacquire the mutual exclusion lock after
being awakened from a wait (process A and step 4a in the
figure); or,

• one process waiting to enter the monitor from the outside (pro-
cess C and step 4b in the figure).

The most important side effect of this approach from the practical
standpoint is that, when process A waits for a condition and then
process B signals that the condition has been fulfilled, process A
cannot be 100% sure that the condition it has been waiting for will
still be true when it will eventually resume executing in the monitor.
It is quite possible, in fact, that another process C was able to enter
the monitor in the meantime and, by altering the monitor’s shared
data, make the condition false again.

To conclude the description, Figure 5.18 shows how the producers–consumers
problem can be solved by means of a Brinch Hansen monitor, that is, the
simplest kind of monitor presented so far. Unlike the previous examples, this
one is written in “pseudo C” because the C programming language, by itself,
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#define N 8
monitor ProducersConsumers
{

int buf[N];
int in = 0, out = 0;
condition full , empty;
int count = 0;

void produce (int v)
{

if(count == N) wait(empty);
buf[in] = v;
in = (in + 1) % N;
count = count + 1;
if(count == 1) signal (full);

}

int consume (void)
{

int v;
if(count == 0) wait(full);
v = buf[out];
out = (out + 1) % N;
count = count - 1;
if(count == N-1) signal(empty);
return v;

}
}

FIGURE 5.18
Producers–consumers problem solved by means of a Brinch Hansen monitor.

does not support monitors. The fake keyword monitor introduces a monitor.
The monitor’s shared data and methods are syntactically grouped together
by means of a pair of braces. Within the monitor, the keyword condition

defines a condition variable.
The main differences with respect to the semaphore-based solution of

Figure 5.12 are

• The mutual exclusion semaphore mutex is no longer needed because the
monitor construct already guarantees mutual exclusion among monitor
methods.

• The two synchronization semaphores empty and full have been replaced
by two condition variables with the same name. Indeed, their role is still
the same: to make producers wait when the buffer is completely full, and
make consumers wait when the buffer is completely empty.

• In the semaphore-based solution, the value of the synchronization
semaphores represented the number of empty and full elements in the
buffer. Since condition variables have no memory, and thus have no value
at all, the monitor-based solution keeps that count in the shared variable
count.

• Unlike in the previous solution, all wait primitives are executed condi-
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tionally, that is, only when the invoking process must certainly wait. For
example, the producer’s wait is preceded by an if statement checking
whether count is equal to N or not, so that wait is executed only when the
buffer is completely full. The same is also true for signal, and is due to
the semantics differences between the semaphore and the condition variable
primitives.

5.7 Summary

In order to work together toward a common goal, processes must be able
to communicate, that is, exchange information in a meaningful way. A set
of shared variables is undoubtedly a very effective way to pass data from one
process to another. However, if multiple processes make use of shared variables
in a careless way, they will likely incur a race condition, that is, a harmful
situation in which the shared variables are brought into an inconsistent state,
with unpredictable results.

Given a set of shared variables, one way of solving this problem is to locate
all the regions of code that make use of them and force processes to execute
these critical regions one at a time, that is, in mutual exclusion. This is done
by associating a sort of lock to each set of shared variables. Before entering a
critical region, each process tries to acquire the lock. If the lock is unavailable,
because another process holds it at the moment, the process waits until it is
released. The lock is released at the end of each critical region.

The lock itself can be implemented in several different ways and at differ-
ent levels of the system architecture. That is, a lock can be either hardware- or
software-based. Moreover, it can be based on active or passive wait. Hardware-
based locks, as the name says, rely on special CPU instructions to realize lock
acquisition and release, whereas software-based locks are completely imple-
mented with ordinary instructions.

When processes perform an active wait, they repeatedly evaluate a pred-
icate to check whether the lock has been released or not, and consume CPU
cycles doing so. On the contrary, a passive wait is implemented with the help
of the operating system scheduler by moving the waiting processes into the
Blocked state. This is a dedicated state of the Process State Diagram, in which
processes do not compete for CPU usage and therefore do not proceed with
execution.

From a practical perspective, the two most widespread ways of supporting
mutual exclusion for shared data access in a real-time operating system are
semaphores and, at a higher level of abstraction, monitors. Both of them are
based on passive wait and are available in most modern operating systems.

Moreover, besides mutual exclusion, they can both be used for condi-
tion synchronization, that is, to establish timing constraints among processes,
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which are not necessarily related to mutual exclusion. For instance, a synchro-
nization semaphore can be used to block a process until an external event of
interest occurs, or until another process has concluded an activity.

Last, it should be noted that adopting a lock to govern shared data access
is not the only way to proceed. Indeed, it is possible to realize shared objects
that can be concurrently manipulated by multiple processes without using any
lock. This will be the topic of Chapter 10.
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All interprocess communication methods presented in Chapter 5 are essen-
tially able to pass synchronization signals from one process to another. They
rely on shared memory to transfer data. Informally speaking, we know that
it is possible to meaningfully transfer data among a group of producers and
consumers by making them read from, and write into, a shared memory buffer
“at the right time.” We use one ore more semaphores to make sure that the
time is indeed right, but they are not directly involved in the data transfer.

It may therefore be of interest to look for a different interprocess com-
munication approach in which one single supporting mechanism accomplishes
both data transfer and synchronization, instead of having two distinct mecha-
nisms for that. In this way, we would not only have a higher-level interprocess
communication mechanism at our disposal but we will be able to use it even
if there is no shared memory available. This happens, for example, when the
communicating processes are executed by distinct computers.

Besides being interesting from a theoretical perspective, this approach,
known as message passing, is very important from the practical standpoint,
too. In Chapters 7 and 8, it will be shown that most operating systems, even
very simple ones, provide a message-passing facility that can easily be used
by threads and processes residing on the same machine. Then, in Chapter 9,
we will see that a message-passing interface is also available among processes
hosted on different computers linked by a communication network.

141
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6.1 Basics of Message Passing

In its simplest, and most abstract, form a message-passing mechanism involves
two basic primitives:

• a send primitive, which sends a certain amount of information, called a
message, to another process;

• a receive primitive, which allows a process to block waiting for a message
to be sent by another process, and then retrieve its contents.

Even if this definition still lacks many important details that will be discussed
later, it is already clear that the most apparent effect of message passing
primitives is to transfer a certain amount of information from the sending
process to the receiving one. At the same time, the arrival of a message to a
process also represents a synchronization signal because it allows the process
to proceed after a blocking receive.

The last important requirement of a satisfactory interprocess communica-
tion mechanism, mutual exclusion, is not a concern here because messages are
never shared among processes, and their ownership is passed from the sender
to the receiver when the message is transferred. In other words, the mecha-
nism works as if the message were instantaneously copied from the sender to
the receiver even if real-world message passing systems do their best to avoid
actually copying a message for performance reasons.

In this way, even if the sender alters a message after sending it, it will
merely modify its local copy, and this will therefore not influence the message
sent before. Symmetrically, the receiver is allowed to modify a message it
received, and this action will not affect the sender in any way.

Existing message-passing schemes comprise a number of variations around
this basic theme, which will be the subject of the following sections. The main
design choices left open by our summary description are

1. For a sender, how to identify the intended recipient of a message.
Symmetrically, for a receiver, how to specify from which other pro-
cesses it is interested in receiving messages. In more abstract terms,
a process naming scheme must be defined.

2. The synchronization model, that is, under what circumstances com-
municating processes shall be blocked, and for how long, when they
are engaged in message passing.

3. How many message buffers, that is, how much space to hold mes-
sages already sent but not received yet, is provided by the system.
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FIGURE 6.1
Direct versus indirect naming scheme; the direct scheme is simpler, the other
one makes software integration easier.

6.2 Naming Scheme

The most widespread naming schemes differ for two important aspects:

1. how the send and receive primitives are associated to each other;

2. their symmetry (or asymmetry).

About the first aspect, the most straightforward approach is for the send-
ing process to name the receiver directly, for instance, by passing its process
identifier to send as an argument. On the other hand, when the software gets
more complex, it may be more convenient to adopt an indirect naming scheme
in which the send and receive primitives are associated because they both
name the same intermediate entity. In the following, we will use the word
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mailbox for this entity, but in the operating system jargon, it is also known
under several other names, such as channel or message queue.

As shown in Figure 6.1, an indirect naming scheme is advantageous to
software modularity and integration. If, for example, a software module A
wants to send a message to another module B, the process P (of module A)
responsible for the communication must know the identity of the intended
recipient process Q within module B. If the internal architecture of module
B is later changed, so that the intended recipient becomes Q′ instead of Q,
module A must be updated accordingly, or otherwise communication will no
longer be possible.

In other words, module A becomes dependent not only upon the interface
of module B—that would be perfectly acceptable—but also upon its internal
design and implementation. In addition, if process identifiers are used to name
processes, as it often happens, even more care is needed because there is
usually no guarantee that the identifier of a certain process will still be the
same across reboots even if the process itself was not changed at all.

On the contrary, if the communication is carried out with an indirect
naming scheme, depicted in the lower part of the figure, module A and process
P must only know the name of themailbox that moduleB is using for incoming
messages. The name of the mailbox is part of the external interface of module
B and will likely stay the same even if B’s implementation and internal design
change with time, unless the external interface of the module is radically
redesigned, too.

Another side effect of indirect naming is that the relationship among com-
municating processes becomes more complex. For both kinds of naming, we
can already have

• a one-to-one structure, in which one process sends messages to another;

• a many-to-one structure, in which many processes send messages to a single
recipient.

With indirect naming, since multiple processes can receive messages from the
same mailbox, there may also be a one-to-many or a many-to-many structure,
or in which one or more processes send messages to a group of recipients,
without caring about which of them will actually get the message.

This may be useful to conveniently handle concurrent processing in a
server. For example, a web server may comprise a number of “worker” pro-
cesses (or threads), all equal and able to handle a single HTTP request at a
time. All of them will be waiting for requests through the same intermediate
entity (which will most likely be a network communication endpoint in this
case).

When a request eventually arrives, one of the workers will get it, process it,
and provide an appropriate reply to the client. Meanwhile, the other workers
will still be waiting for additional requests and may start working on them
concurrently.
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This example also brings us to discussing the second aspect of naming
schemes, that is, their symmetry or asymmetry. If the naming scheme is sym-
metric, the sender process names either the receiving process or the destina-
tion mailbox, depending on whether the naming scheme is direct or indirect.
Symmetrically, the receiver names either the sending process or the source
mailbox.

If the naming scheme is asymmetric, the receiver does not name the source
of the message in any way; it will accept messages from any source, and it
will usually be informed about which process or mailbox the received message
comes from. This scheme fits the client–server paradigm better because, in
this case, the server is usually willing to accept requests from any of its clients
and may not ever know their name in advance.

Regardless of the naming scheme being adopted, another very important
issue is to guarantee that the named processes actually are what they say
they are. In other words, when a process sends a message to another, it must
be reasonably sure that the data will actually reach the intended destination
instead of a malicious process. Similarly, no malicious processes should be able
to look at or, even worse, alter the data while they are in transit.

In the past, this design aspect was generally neglected in most real-time,
embedded systems because the real-time communication network was com-
pletely closed to the outside world and it was very difficult for a mischievous
agent to physically connect to that network and do some damage. Nowadays
this is no longer the case because many embedded systems are connected to
the public Internet on purpose, for example, for remote management, main-
tenance, and software updates.

Besides its obvious advantages, this approach has the side effect of open-
ing the real-time network and its nodes to a whole new lot of security threats,
which are already well known to most Internet users. Therefore, even if net-
work security as a topic is well beyond the scope of this book and will not be
further discussed, it is nonetheless important for embedded system designers
to be warned about the issue.

6.3 Synchronization Model

As said in the introduction to this chapter, message passing incorporates both
data transfer and synchronization within the same communication primitives.
In all cases, data transfer is accomplished by moving a message from the
source to the destination process. However, the synchronization aspects are
more complex and subject to variations from one implementation to another.

The most basic synchronization constraint that is always supported is that
the receive primitive must be able to wait for a message if it is not already
available. In most cases, there is also a nonblocking variant of receive, which
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FIGURE 6.2
Asynchronous message transfer. The sender is never blocked by send even if
the receiver is not ready for reception.

basically checks whether a message is available and, in that case, retrieves it,
but never waits if it is not. On the sending side, the establishment of additional
synchronization constraints proceeds, in most cases, along three basic schemes:

1. As shown in Figure 6.2, a message transfer is asynchronous if the
sending process is never blocked by send even if the receiving pro-
cess has not yet executed a matching receive. This kind of message
transfer gives rise to two possible scenarios:

• If, as shown in the upper part of the figure, the receiving pro-
cess B executes receive before the sending process A has sent
the message, it will be blocked and it will wait for the mes-
sage to arrive. The message transfer will take place when A
eventually sends the message.

• If the sending process A sends the message before the receiv-
ing process B performs a matching receive, the system will
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FIGURE 6.3
Synchronous message transfer, or rendezvous. The sender is blocked by send

when the receiver is not ready for reception.

buffer the message (typically up to a certain maximum capac-
ity as detailed in Section 6.4), and A will continue right away.
As shown in the lower part of the figure, the receive later
performed by B will be satisfied immediately in this case.

The most important characteristic to keep in mind about an asyn-
chronous message transfer is that, when B eventually gets a mes-
sages from A, it does not get any information about what A is
currently doing because A may be executing well beyond its send
primitive. In other words, an asynchronous message transfer always
conveys “out of date” information to the receiver.

2. In a synchronous message transfer, also called rendezvous and
shown in Figure 6.3, there is an additional synchronization con-
straint, highlighted by a grey oval in the lower part of the figure: if
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FIGURE 6.4
Remote invocation message transfer, or extended rendezvous. The sender is
blocked until it gets a reply from the receiver. Symmetrically, the receiver is
blocked until the reply has successfully reached the original sender.

the sending process A invokes the send primitive when the receiving
process B has not called receive yet, A is blocked until B does so.

When B is eventually ready to receive the message, the message
transfer takes place, and A is allowed to continue. As shown in
the upper part of the figure, nothing changes with respect to the
asynchronous model if the receiver is ready for reception when the
sender invokes send. In any case, with this kind of message transfer,
the receiver B can rest assured that the sending process A will not
proceed beyond its send before B has actually received the message.

This difference about the synchronization model has an important
impact for what concerns message buffering, too: since in a ren-
dezvous the message sender is forced to wait until the receiver is
ready, the system must not necessarily provide any form of inter-
mediate buffering to handle this case. The message can simply be
kept by the sender until the receiver is ready and then transferred
directly from the sender to the receiver address space.

3. A remote invocation message transfer, also known as extended ren-
vezvous, is even stricter for what concerns synchronization. As de-
picted in Figure 6.4, when process A sends a request message to
process B, it is blocked until a reply message is sent back from B
to A.
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As the name suggests, this synchronization model is often used to
imitate a function call, or invocation, using message passing. As
in a regular function call, the requesting process A prepares the
arguments of the function it wants process B to execute. Then, it
puts them into a request message and sends the message to process
B, often called the server, which will be responsible to execute it.

At the same time, and often with the same message passing prim-
itive entailing a combination of both send and receive, A also
blocks, waiting for a reply from B. The reply will contain any re-
turn values resulting from the function execution.

Meanwhile, B has received the request and performs a local com-
putation in order to execute the request, compute its results, and
eventually generate the reply message. When the reply is ready, B
sends it to A and unblocks it.

It should also be noted that the last message is not sent asyn-
chronously, but B blocks until the message has been received by A.
In this way, B can make sure that the reply has reached its intended
destination, or at least be notified if there was an error.

The synchronization models discussed so far are clearly related to each other.
In particular, it is easy to see that all synchronization models can be imple-
mented starting from the first one, that is

• A synchronous message transfer from a process A to another process B can
be realized by means of two asynchronous message transfers going in oppo-
site directions. The first transfer (from A to B) carries the actual message
to be transferred, and the second one (from B to A) holds an acknowledg-
ment. It should be noted that the second message transfer is not used to
actually transfer data between processes but only for synchronization. Its
purpose is to block A until B has successfully received the data message.

• A remote invocation from A to B can be based on two synchronous message
transfer going in opposite directions as before. The first transfer (from A to
B) carries the request, and the second one (from B to A) the corresponding
reply. Both being synchronous, the message transfers ensure that neither
A nor B is allowed to continue before both the request and the reply have
successfully reached their intended destination.

At first sight it may seem that, since an asynchronous message transfer can be
used as the “basic building block” to construct all the others, it is the most
useful one. For this reason, as will be discussed in Chapters 7 and 8, most
operating systems provide just this synchronization model. However, it has
been remarked [18] that it has a few drawbacks, too:

• The most important concern is perhaps that asynchronous message trans-
fers give “too much freedom” to the programmer, somewhat like the “goto”
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statement of unstructured sequential programming. The resulting programs
are therefore more complex to understand and check for correctness, also
due to the proliferation of explicit message passing primitives in the code.

• Moreover, the system is also compelled to offer a certain amount of buffer
for messages that have already been sent but have not been received yet; the
amount of buffering is potentially infinite because, in principle, messages
can be sent and never received. Most systems only offer a limited amount of
buffer, as described in Section 6.4, and hence the kind of message transfer
they implement is not truly asynchronous.

6.4 Message Buffers

In most cases, even if message passing occurs among processes being executed
on the same computer, the operating system must provide a certain amount
of buffer space to hold messages that have already been sent but have not
been received yet. As seen in Section 6.3, the only exception occurs when the
message transfer is completely synchronous so that the message can be moved
directly from the sender to the recipient address space.

The role of buffers becomes even more important when message passing
occurs on a communication network. Most network equipment, for example,
switches and routers, works according to the store and forward principle in
which a message is first received completely from a certain link, stored into
a buffer, and then forwarded to its destination through another link. In this
case, dealing with one or more buffers is simply unavoidable.

It also turns out that it is not always possible to decide whether a buffer
will be useful or not, and how large it should be, because it depends on the
application at hand. The following is just a list of the main aspects to be
considered for a real-time application.

• Having a large buffer between the sender and the receiver decouples the
two processes and, on average, makes them less sensitive to any variation
in execution and message passing speed. Thus, it increases the likelihood of
executing them concurrently without unnecessarily waiting for one another.

• The interposition of a buffer increases the message transfer delay and makes
it less predictable. As an example, consider the simple case in which we
assume that the message transfer time is negligible, the receiver consumes
messages at a fixed rate of k messages per second, and there are already
m messages in the buffer when the m+1 message is sent. In this case, the
receiver will start processing the m+1 message after m/k seconds. Clearly,
if m becomes too large for any reason, the receiver will work on “stale”
data.
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• For some synchronization models, the amount of buffer space required at
any given time to fulfill the model may depend on the processes’ behavior
and be very difficult to predict. For the purely asynchronous model, the
maximum amount of buffer space to be provided by the system may even
be unbounded in some extreme cases. This happens, for instance, when the
sender is faster than the receiver so that it systematically produces more
messages than the receiver is able to consume.

For these and other reasons, the approach to buffering differs widely from
one message passing implementation to another. Two extreme examples are
provided by

1. The local message-passing primitives, discussed in Chapters 7 and 8.
Those are intended for use by real-time processes all executing on
the same computer.

2. The network communication primitives, discussed in Chapter 9 and
intended for processes with weaker real-time requirements, but pos-
sibly residing on distinct computers.

In the first case, the focus is on the predictability of the mechanism from the
point of view of its worst-case communication delay and amount of buffer space
it needs. Accordingly, those systems require the user to declare in advance the
maximum number of messages a certain mailbox can hold and their maximum
size right when the mailbox itself is created.

Then, they implement a variant of the asynchronous communication
model, in which the send primitive blocks the caller when invoked on a mail-
box that is completely full at the moment, waiting for some buffer space to
be available in the future. Since this additional synchronization constraint is
not always desirable, they also provide a nonblocking variant of send that
immediately returns an error indication instead of waiting.

In the second case, the goal is instead to hide any anomaly in network
communication and provide a smooth average behavior of the message-passing
mechanism. Therefore, each network equipment makes its “best effort” to pro-
vide an appropriate buffering, but without giving any absolute guarantee. The
most important consequence is that, at least for long-distance connections, it
may be very difficult to know for sure how much buffer is being provided, and
the amount of buffer may change with time.

6.5 Message Structure and Contents

Regardless of the naming scheme, synchronization model, and kind of buffering
being used, understanding what kind of data can actually be transmitted
within a message with meaningful results is of paramount importance. In an
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ideal world it would be possible to directly send and receive any kind of data,
even of a user-defined type, but this is rarely the case in practice.

The first issue is related to data representation: the same data type, for
instance the int type of the C language, may be represented in very different
ways by the sender and the receiver, especially if they reside on different hosts.
For instance, the number of bits may be different, as well as the endianness,
depending on the processor architecture. When this happens, simply moving
the bits that made up an int data item from one host to another is clearly
not enough to ensure a meaningful communication.

A similar issue also occurs if the data item to be exchanged contains point-
ers. Even if we take for granted that pointers have the same representation
in both the sending and receiving hosts, a pointer has a well-defined meaning
only within its own address space, as discussed in Chapter 2. Hence, a pointer
may or may not make sense after message passing, depending on how the
sending and receiving agents are related to each other:

1. If they are two threads belonging to the same process (and, there-
fore, they necessarily reside on the same host), they also live within
the same address space, and the pointer will still reference the same
underlying memory object.

2. If they are two processes residing on the same host, the pointer will
still be meaningful after message passing only under certain very
specific conditions, that is, only if their programmers were careful
enough to share a memory segment between the two processes, make
sure that it is mapped at the same virtual address in both processes,
and allocate the referenced object there.

3. If the processes reside on different hosts, there is usually no way to
share a portion of address spaces between them, and the pointer
will definitely lose its meaning after the transfer.

Even worse, it may happen that the pointer will still be formally
valid in the receiver’s context—that is, it will not be flagged as in-
valid by the memory management subsystem because it falls within
the legal boundaries of the address space—but will actually point
to a different, and unrelated, object.

In any case, it should also be noted that, even if passing a pointer makes sense
(as in cases 1 and 2 above), it implies further memory management issues,
especially if memory is dynamically allocated. For instance, programmers must
make sure that, when a pointer to a certain object is passed from the sender
to the receiver, the object is not freed (and its memory reused) before the
receiver is finished with it.

This fact may not be trivial to detect for the sender, which in a sense
can be seen as the “owner” of the object when asynchronous or synchronous
transfers are in use. This is because, as discussed in Section 6.3, the sender is
allowed to continue after the execution of a send primitive even if the receiver
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P C

void prod(int d) {
  uint32_t m;
  m = host_to_neutral(d);
  send(C, &m, sizeof(m));
}

int cons(void) {
  uint32_t m;
  int d;
  recv(P, &m, sizeof(m));
  d = neutral_to_host(m);
  return d;
}

...

FIGURE 6.5
A straightforward solution to the producer–consumer problem with syn-
chronous message passing. The same approach also works with asynchronous
message passing with a known, fixed amount of buffering.

either did not get the message (asynchronous transfer) or did not actually
work on the message (synchronous transfer) yet.

Since the problem is very difficult to solve in general terms, most operating
systems and programming languages leave this burden to the programmer. In
other words, in many cases, the message-passing primitives exported by the
operating system and available to the programmer are merely able to move a
sequence of bytes from one place to another.

The programmer is then entirely responsible for making sure that the
sequence of bytes can be interpreted by the receiver. This is the case for
both POSIX/Linux and FreeRTOS operating systems (discussed in Chapters 7
and 8), as well as the socket programming interface for network communication
(outlined in Chapter 9).

6.6 Producer–Consumer Problem with Message Passing

The most straightforward solution to the producer–consumer problem using
message passing is shown in Figure 6.5. For simplicity, the example only deals
with one producer P and one consumer C, exchanging integer data items no
larger than 32 bits. For the same reason, the operations performed to set up
the communication path and error checks have been omitted, too.

Despite of the simplifications, the example still contains all the typical
elements of message passing. In particular, when the producer P wants to
send a certain data item d, it calls the function prod with d as argument to
perform the following operations:
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• Convert the data item to be sent, d, from the host representation to a
neutral representation that both the sender and the receiver understand.
This operation is represented in the code as a call to the abstract function
host to neutral(). For a single, 32-bit integer variable, one sensible choice
for a C-language program conforming to the POSIX standard would be,
for instance, the function htonl().

• Send the message to the consumer C. A direct, symmetric naming scheme
has been adopted in the example, and hence the send primitive names the
intended receiver directly with its first argument. The next two arguments
are the memory address of the message to be sent and its size.

On the other side, the consumer C invokes the function cons() whenever it
is ready to retrieve a message:

• The function waits until a message arrives, by invoking the recv message-
passing primitive. Since the naming scheme is direct and symmetric, the
first argument of recv identifies the intended sender of the message, that
is, P . The next two arguments locate a memory buffer in which recv is
expected to store the received message and its size.

• Then, the data item found in the message just received is converted to the
host representation by means of the function neutral to host(). For a
single, 32-bit integer variable, a suitable POSIX function would be ntohl().
The result d is returned to the caller.

Upon closer examination of Figure 6.5, it can be seen that the code just
described gives rise to a unidirectional flow of messages, depicted as light grey
boxes, from P to C, each carrying one data item. The absence of messages
represents a synchronization condition because the consumer C is forced to
wait within cons() until a message from P is available.

However, if we compare this solution with, for instance, the semaphore-
based solution shown in Figure 5.12 in Chapter 5, it can easily be noticed that
another synchronization condition is amiss. In fact, in the original formulation
of the producer–consumer problem, the producer P must wait if there are “too
many” messages already enqueued for the consumer. In Figure 5.12, the exact
definition of “too many” is given by N, the size of the buffer interposed between
producers and consumers.

Therefore, the solution just proposed is completely satisfactory—and
matches the previous solutions, based on other interprocess synchronization
mechanisms—only if the second synchronization condition is somewhat pro-
vided implicitly by the message-passing mechanism itself. This happens when
the message transfer is synchronous, implying that there is no buffer at all
between P and C.

An asynchronous message transfer can also be adequate if the maximum
amount of buffer provided by the message-passing mechanism is known and
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P C

void prod(int d) {
  uint32_t m;
  empty_t s;
  recv(C, &s, sizeof(s));
  m = host_to_neutral(d);
  send(C, &m, sizeof(m));
}

...

...

#define N 8
void cons_init(void) {
  int i;
  empty_t s = empty;
  for(i=0; i<N; i++)
    send(P, &s, sizeof(s));
}

int cons(void) {
  uint32_t m;
  empty_t s = empty;
  int d;
  recv(P, &m, sizeof(m));
  d = neutral_to_host(m);
  send(P, &s, sizeof(s));
  return d;
}

Full messages from P to C

Empty messages from C to P

2

1

FIGURE 6.6
A more involved solution to the producer–consumer problem based on asyn-
chronous message passing. In this case, the synchronization condition for the
producer P is provided explicitly rather than implicitly.

fixed, and the send primitive blocks the sender when there is no buffer space
available.

If only asynchronous message passing is available, the second synchroniza-
tion condition must be implemented explicitly. Assuming that the message-
passing mechanism can successfully buffer at least N messages, a second flow
of empty messages that goes from C to P and only carries synchronization
information is adequate for this, as shown in Figure 6.6. In the figure, the ad-
ditional code with respect to Figure 6.5 is highlighted in bold. The data type
empty t represents an empty message. With respect to the previous example,

• The consumer C sends an empty message to P after retrieving a message
from P itself.

• The producer P waits for an empty message from the consumer C before
sending its own message to it.

• By means of the initialization function cons init(), the consumer injects
N empty messages into the system at startup.

At startup, there are therefore N empty messages. As the system evolves, the
total number of empty plus full messages is constant and equal to N because
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one empty (full) message is sent whenever a full (empty) message is retrieved.
The only transient exception happens when the producer or the consumer are
executing at locations 1 and 2 of Figure 6.6, respectively. In that case, the
total number of messages can be N− 1 or N− 2 because one or two messages
may have been received by P and/or C and have not been sent back yet.

In this way, C still waits if there is no full message from P at the moment,
as before. In addition, P also waits if there is no empty message from C. The
total number of messages being constant, this also means that P already sent
N full messages that have not yet been handled by C.

6.7 Summary

In this chapter we learnt that message passing is a valid alternative to inter-
process communication based on shared variables and synchronization devices
because it encompasses both data transfer and synchronization in the same
set of primitives.

Although the basics of message passing rely on two intuitive and sim-
ple primitives, send and receive, there are several design and implementation
variations worthy of attention. They fall into three main areas:

1. How to identify, or name, message senders and recipients;

2. What kind of synchronization constraints the send and receive prim-
itives enforce;

3. How much buffer space, if any, is provided by the message-passing
mechanism.

Moreover, to use message passing in a correct way, it is of paramount impor-
tance to ensure that messages retain their meaning after they are transferred
from one process or thread to another. Especially when working with a dis-
tributed system in which the application code is executed by many agents
spread across multiple hosts, issues such as data representation discrepancies
among computer architectures as well as loss of pointer validity across distinct
address spaces cannot be neglected.

Then, message passing has been applied to the well-known producer–
consumer problem to show that its use leads to a quite simple and intuitive
solution. The example also highlighted that, in some cases, it may be ap-
propriate to introduce a message stream between processes, even if no data
transfer is required, as a way to guarantee that they synchronize in the right
way.

For the sake of completeness, it should also be remarked that the message-
addressing scheme presented in this chapter, based on explicitly naming the
source and recipient of a message, is not the only possible one. A popular
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alternative—quite common in real-time networks based on an underlying com-
munication medium that supports broadcast transmission—is to adopt the
so-called Publish/Subscribe scheme.

With this approach, the sending processes do not explicitly name any
intended receiver. Rather, they attach a tag to each message that specifies
the message class or contents rather than recipients. The message is then
published, often by broadcasting it on the network, so that any interested party
can get it. In turn, each receiving process subscribes to the message classes it
is interested in so that it only receives and acts upon messages belonging to
those specific classes.

A full discussion of the Publish/Subscribe scheme is beyond the scope of
this book. Interested readers can refer, for example, to Reference [28] for a
thorough discussion of this addressing scheme in the context of the Controller
Area Network [49, 50].
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Chapters 5 and 6 have introduced the basic concepts of interprocess communi-
cation, called IPC in the following text. These mechanisms are implemented
by operating systems to allow the correct execution of processes. Different
operating systems define different IPC interfaces, often making the porting
of applications to different platforms a hard task (Chapter 19 will address
this issue). In this chapter, the interprocess communication primitives are
presented for the Linux operating system, for which the Application Pro-
gramming Interface (API)has been standardized in POSIX. POSIX, which
stands for “Portable Operating System Interface [for Unix],” is a family of
standards specified by the IEEE to define common APIs along variants of the
Unix operating system, including Linux. Until recently, the POSIX API was
regulated by IEEE Standard 1003.1 [42]. It was later replaced by the joint
ISO/IEC/IEEE Standard 9945 [48].

In the following sections we shall see how semaphores, message queues, and
other interprocess communication mechanisms are presented in Linux under
two different contexts: process and thread. This is a fundamental distinction
that has many implications in the way IPC is programmed and that may
heavily affect performance. The first section of this chapter will describe in
detail what the differences are between the two configurations, as well as the
pros and cons of each solution. The following two sections will present the
interprocess mechanisms for Linux threads and processes and the last section

159
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will then introduce some Linux primitives for the management of clocks and
timers, an important aspect when developing programs that interact with the
outside world in embedded applications.

7.1 Threads and Processes

Chapter 3 introduced the concept of process, which can be considered an
independent flow of execution for a program. The operating system is able
to manage multiple processes, that is, the concurrent execution of multiple
programs, even if the underlying computer has a single processor. The man-
agement of multiple processes on a single processor computer relies on two
main facts:

1. A program does not always require the processor: we have seen in
Chapter 2 that, when performing an I/O operation, the processor
must await the termination of the data transfer between the device
and memory. In the meantime, the operating system can assign the
processor to another process that is ready for computation.

2. Even in the case where a program does not make I/O operations, not
releasing the processor, the operating system can decide to reclaim
the processor and assign it to another ready program in order to
guarantee the fair execution of the active processes.

The Scheduler is the component of the operating system that supervises the
assignment of the processor to processes. Chapter 12 will describe in detail
the various scheduling algorithms that represent a very important aspect of
the system behavior since it determines how the computer reacts to external
events. The transfer of processor ownership is called Context Switch, and we
have already seen in Chapter 3 that there exists a set of information that needs
to be saved/restored every time the processor is moved from one process to
another, among which,

1. The saved value of the processor registers, including

• the Program Counter, that is, the address of the next machine
instruction to be executed by the program;

• the Stack Pointer, that is, the address of the stack in memory
containing the local program variables and the arguments of all
the active procedures of the program at the time the scheduler
reclaimes the processor.

2. The descriptors of the files and devices currently opened by the
program.
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3. The page table content for that program. We have seen in Chapter 2
that, when virtual memory is supported by the system, the memory
usage of the program is described by a set of page table entries that
specify how virtual addresses are translated into physical addresses.
In this case, the context switch changes the memory mapping and
avoids the new process overwriting sections of memory used by the
previous one.

4. Process-specific data structures maintained by the operating system
to manage the process.

The amount of information to be saved for the process losing the processor and
to be restored for the new process can be large, and therefore many processor
cycles may be spent at every context switch. Very often, most of the time
spent at the context switch is due to saving and restoring the page table since
the page table entries describe the possibly large number of memory pages
used by the process. For the same reason, creating new processes involves the
creation of a large set of data structures.

The above facts are the main reason for a new model of computation rep-
resented by threads. Conceptually, threads are not different from processes
because both entities provide an independent flow of execution for programs.
This means that all the problems, strategies, and solutions for managing con-
current programming apply to processes as well as to threads. There are,
however, several important differences due to the amount of information that
is saved by the operating system in context switches. Threads, in fact, live
in the context of a process and share most process-specific information, in
particular memory mapping. This means that the threads that are activated
within a given process share the same memory space and the same files and
devices. For this reason, threads are sometimes called “lightweight processes.”
Figure 7.1 shows on the left the information forming the process context. The
memory assigned to the process is divided into

• Stack, containing the private (sometimes called also automatic) variables
and the arguments of the currently active routines. Normally, a processor
register is designated to hold the address of the top of the stack;

• Text, containing the machine code of the program being executed. This
area is normally only read;

• Data, containing the data section of the program. Static C variables and
variables declared outside the routine body are maintained in the data
section;

• Heap, containing the dynamically allocated data structures. Memory al-
located by C malloc() routine or by the new operator in C++ belong to
the heap section.

In addition to the memory used by the program, the process context is formed
by the content of the registers, the descriptors for the open files and devices,
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Process and Thread contexts.

and the other operating system structures maintained for that process. On
the right of Figure 7.1 the set of information for a process hosting two threads
is shown. Note that the Text, Data, and Heap sections are the same for both
threads. Only the Stack memory is replicated for each thread, and the thread-
specific context is only formed by the register contents. The current content
of the processor registers in fact represents a snapshot of the program activity
at the time the processor is removed by the scheduler from one thread to
be assigned to another one. In particular, the stack pointer register contains
the address of the thread-specific stack, and the program counter contains
the address of the next instruction to be executed by the program. As the
memory-mapping information is shared among the threads belonging to the
same process as well as the open files and devices, the set of registers basically
represents the only information to be saved in a context switch. Therefore,
unless a thread from a different process is activated, the time required for a
context switch between threads is much shorter compared to the time required
for a context switch among processes.

7.1.1 Creating Threads

Historically, hardware vendors have implemented proprietary versions of
threads, making it difficult for programmers to develop threaded applications
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that could be portable across different systems. For this reason, a standardized
interface has been specified by the IEEE POSIX 1003.c standard in 1995, and
an API for POSIX threads, called Pthreads, is now available on every UNIX
system including Linux. The C types and routine prototypes for threads are
defined in the pthread.h header file.
The most important routine is:

int pthread_create(thread_t *thread, pthread_attr_t *attr,

void *(*start_routine)(void*), void *arg)

which creates and starts a new thread. Its arguments are the following:

• thread: the returned identifier of the created thread to be used for sub-
sequent operations. This is of type thread t which is opaque, that is, the
programmer has no knowledge of its internal structure, this being only
meaningful to the pthread routines that receive it as argument.

• attr: the attributes of the thread. Attributes are represented by the opaque
type pthread attr t.

• start routine: the routine to be executed by the thread.

• arg: the pointer argument passed to the routine.

All the pthread routines return a status that indicates whether the required
action was successful: all functions return 0 on success and a nonzero error
code on error. Since the data type for the attribute argument is opaque, it is
not possible to define directly its attribute fields, and it is necessary to use
specific routines for this purpose. For example, one important attribute of the
thread is the size of its stack: if the stack is not large enough, there is the risk
that a stack overflow occurs especially when the program is using recursion.
To prepare the attribute argument specifying a given stack size, it is necessary
first to initialize a pthread attr t parameter with default setting and then
use specific routines to set the specific attributes. After having been used,
the argument should be disposed. For example, the following code snippet
initializes a pthread attr parameter and then sets the stack size to 4 MByte
(the default stack size on Linux is normally 1 MByte for 32 bit architectures,
and 2 MByte for 64 bit architectures).

pthread_attr_t atrr;

//Attribute initialization

pthread_attr_init (&attr);

//Set stack size to 4 MBytes

pthread_attr_setstacksize(&attr, 0x00400000);

...

//Use attr in thread creation

...

//Dispose attribute parameter

pthread_attr_destroy(&attr);
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When NULL is passed as the second argument of pthread create(), the
default setting for thread arguments is used: this is the most common case in
practice unless specific settings are required.

Only one pointer parameter can be passed to the thread routine. When
more than one argument have to be passed, the common practice is to allocate
in memory a structure containing all the information to be passed to the
routine thread and then to pass the pointer to such structure.

As soon as a thread has been created, it starts execution in parallel with
the process, or thread, that called pthread create(). It is often necessary
to synchronize the program with the other threads, making sure that all the
created threads have finished their execution before a given point in the code
is reached. For example, it is necessary to know when the threads have ter-
minated before starting using the results computed by them. The following
routine allows one to wait for the termination of a given thread specified by
its thread identifier:

int pthread_join(pthread_t thread, void **value_ptr);

The second argument, when non-NULL, is the pointer to the returned value
of the thread. A thread may return a value either when the code terminates
with a return statement or when pthread exit(void *value)is called. The
latter is preferable especially when many threads are created and terminated
because pthread exit() frees the internal resources allocated for the thread.

Threads can either terminate spontaneously or be canceled. Extreme care
is required when canceling threads because an abrupt termination may lead
to inconsistent data, especially when the thread is sharing data structures.
Even worse, a thread may be canceled in a critical section: If this happens,
no other thread will ever be allowed to enter that section. For this reason,
POSIX defines the following routines to handle thread cancelation:

int pthread_setcancelstate(int state, int *oldstate)

void pthread_cleanup_push(void (*routine)(void*), void *arg)

pthread setcancelstate() enables or disables run time the possibil-
ity of canceling the calling thread, depending on the value of the
passed state argument which can be either PTHREAD CANCEL ENABLE or
PTHREAD CANCEL DISABLE. The previous cancelability state is returned in
oldstate. For example, when entering a critical section, a thread may disable
cancelation in order to avoid preventing that critical section to other threads.
pthread cleanup push() allows registering a routine that is then automati-
cally invoked upon thread cancelation. This represents another way to handle
the proper release of the allocated resources in case a thread is canceled.
Finally, a thread is canceled by routine:

int pthread_cancel(pthread_t thread)
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By means of a proper organization of the code, it is possible to avoid using the
above routines for terminating threads. For example, it is possible to let the
thread routine periodically check the value of some shared flag indicating the
request to kill the thread: whenever the flag becomes true, the thread routine
exits, after the proper cleanup actions.
The following code example creates a number of threads to carry out the
computation of the sum of all the elements of a very large square matrix. This
is achieved by assigning each thread a different portion of the input matrix.
After creating all the threads, the main program waits the termination of all
of them and makes the final summation of all the partial results reported by
the different threads. The code is listed below:

#include <pthread .h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

#define MAX_THREADS 256
#define ROWS 10000
#define COLS 10000

/∗ Arguments exchanged with threads ∗/
struct argument {

int startRow ;
int nRows;
long partialSum;

} threadArgs[MAX_THREADS];

/∗ Matrix pointer : i t w i l l be dynamically a l located ∗/
long *bigMatrix;

/∗ Thread routine : make the summation of a l l the elements of the
assigned matrix rows ∗/

static void *threadRoutine(void *arg)
{

int i, j;
/∗ Type−cast passed pointer to expected structure

containing the star t row, the number of rows to be summed
and the return sum argument ∗/

struct argument *currArg = (struct argument *)arg;
long sum = 0;
for(i = 0; i < currArg ->nRows; i++)

for(j = 0; j < COLS; j++)
sum += bigMatrix[(currArg ->startRow + i) * COLS + j];

currArg ->partialSum = sum;
return NULL;

}
int main(int argc , char *args[])
{
/∗ Array of thread i den t i f i e r s ∗/

pthread_t threads [MAX_THREADS];
long totalSum ;
int i, j, nThreads , rowsPerThread , lastThreadRows;

/∗ Get the number of threads from command parameter ∗/
if(argc != 2)
{

printf ("Usage: threads <numThreads >\n");
exit(0);

}
sscanf(args[1], "%d", &nThreads );

/∗ Allocate the matrix M ∗/
bigMatrix = malloc(ROWS*COLS*sizeof(long));

/∗ F i l l the matrix with some values ∗/
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...

/∗ I f the number of rows cannot be divided exactly by the number of
threads , l e t the l a s t thread handle also the remaining rows ∗/

rowsPerThread = ROWS / nThreads ;
if(ROWS % nThreads == 0)

lastThreadRows = rowsPerThread;
else

lastThreadRows = rowsPerThread + ROWS % nThreads ;

/∗ Prepare arguments for threads ∗/
for(i = 0; i < nThreads ; i++)
{

/∗ Prepare Thread arguments ∗/
threadArgs[i].startRow = i*rowsPerThread;
if(i == nThreads - 1)

threadArgs[i].nRows = lastThreadRows;
else

threadArgs[i].nRows = rowsPerThread;
}

/∗ Start the threads using defau l t thread at tr i butes ∗/
for(i = 0; i < nThreads ; i++)

pthread_create(&threads [i], NULL , threadRoutine , &threadArgs[i]);

/∗ Wait thread termination and use the corresponding
sum value for the f i na l summation ∗/
totalSum = 0;
for(i = 0; i < nThreads ; i++)
{

pthread_join(threads [i], NULL);
totalSum += threadArgs[i]. partialSum;

}
}

In the foregoing code there are several points worth examining in detail. First
of all, the matrix is declared outside the body of any routine in the code. This
means that the memory for it is not allocated in the Stack segment but in
the Heap segment, being dynamically allocated in the main program. This
segment is shared by every thread (only the stack segment is private for each
thread). Since the matrix is accessed only in read mode, there is no need to
consider synchronization. The examples in the next section will present ap-
plications where the shared memory is accessed for both reading and writing,
and, in this case, additional mechanisms for ensuring data coherence will be
required. Every thread needs two parameters: the row number of the first
element of the set of rows assigned to the thread, and the number of rows
to be considered. Since only one pointer argument can be passed to threads,
the program creates an array of data structures in shared memory, each con-
taining the two arguments for each thread, plus a third return argument that
will contain the partial sum, and then passes the pointer of the corresponding
structure to each thread . Finally, the program awaits the termination of the
threads by calling in pthread join() in a loop with as many iterations as the
number of activated threads. Note that this works also when the threads ter-
minate in an order that is different from the order pthread join() is called.
In fact, if pthread join() is called for a thread that has already terminated,
the routine will return soon with the result value passed by the thread to
pthread exit() and maintained temporarily by the system. In the program,
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FIGURE 7.2
Execution time of the marge matrix summation for an increasing number of
executor threads on an 8-core processor.

the partial sum computed by each thread is stored in the data structure used
to exchange the thread routine argument, and therefore the second parame-
ter of pthread join() is null, and pthread exit() is not used in the thread
routine.

In the above example, the actions carried out by each thread are purely
computational. So, with a single processor, there is no performance gain in
carrying out computation either serially or in parallel because every thread
requires the processor 100% of its time and therefore cannot proceed when the
processor is assigned to another thread. Modern processors, however, adopt
a multicore architecture, that is, host more than one computing unit in the
processor, and therefore, there is a true performance gain in carrying out
computation concurrently. Figure 7.2 shows the execution time for the above
example at an increasing number of threads on an 8-core processor. The ex-
ecution time halves passing from one to two threads, and the performance
improves introducing additional threads. When more than 8 threads are used,
the performance does not improve any further; rather it worsens slightly. In
fact, when more threads than available cores are used in the program, there
cannot be any gain in performance because the thread routine does not make
any I/O operation and requires the processor (core) during all its execution.
The slight degradation in performance is caused by the added overhead in the
context switch due to the larger number of active threads.

The improvement in execution speed due to multithreading becomes more
evident when the program being executed by threads makes I/O operations.
In this case, the operating system is free to assign the processor to another
thread when the current thread starts an I/O operation and needs to await
its termination. For this reason, if the routines executed by threads are I/O
intensive, adding new threads still improves performance because this reduces
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the chance that the processor idles awaiting the termination of some I/O
operation. Observe that even if no I/O operation is executed by the thread
code, there is a chance that the program blocks itself awaiting the completion
of an I/O operation in systems supporting memory paging. When paging in
memory, pages of the active memory for processes can be held in secondary
memory (i.e., on disk), and are transferred (swapped in) to RAM memory
whenever they are accessed by the program, possibly copying back (swapping
out) other pages in memory to make room for them. Paging allows handling
a memory that is larger than the RAM memory installed in the computer,
at the expense of additional I/O operations for transferring memory pages
from/to the disk.

Threads represent entities that are handled by the scheduler and, from
this point of view, do not differ from processes. In fact, the difference between
processes and threads lies only in the actions required for the context switch,
which is only a subset of the process-specific information if the processing
unit is exchanged among threads of the same process. The following chapters
will describe in detail how a scheduler works, but here we anticipate a few
concepts that will allow us to understand the pthread API for controlling
thread scheduling.

We have already seen in Chapter 3 that, at any time, the set of active
processes (and threads) can be partitioned in two main categories:

• Ready processes, that is, processes that could use the processor as soon as
it is assigned to them;

• Waiting processes, that is, processes that are waiting for the completion
of some I/O operation, and that could not make any useful work in the
meantime.

Processes are assigned a priority: higher-priority processes are considered
“more important,” and are therefore eligible for the possession of the proces-
sor even if other ready processes with lower priority are present. The scheduler
organizes ready processes in queues, one for every defined priority, and assigns
the processor to a process taken from the nonempty queue with the highest
priority. Two main scheduling policies are defined:

1. First In/First Out (FIFO): The ready queue is organized as a
FIFO queue, and when a process is selected to run it will execute
until it terminates or enters in wait state due to a I/O operation,
or a higher priority process becomes ready.

2. Round Robin (RR): The ready queue is still organized as a FIFO
queue, but after some amount of time (often called time slice), the
running process is preempted by the scheduler even if no I/O op-
eration is performed and no higher priority process is ready, and
inserted at the tail of the corresponding queue. With regard to the
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FIFO policy, this policy ensures that all the processes with the high-
est priority have a chance of being assigned processor time, at the
expense, however, of more overhead due to the larger number of
context switches.

Scheduling policy represents one of the elements that compose the thread’s
attributes, passed to routine pthread create(). We have already seen that
the thread’s attributes are represented by an opaque type and that a set of
routines are defined to set individual attributes. The following routine allows
for defining the scheduling policy:

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

where policy is either SCHED FIFO, SCHED RR, or SCHED OTHER. SCHED OTHER

can only be used at static priority 0 and represents the standard Linux time-
sharing scheduler that is intended for all processes that do not require special
static priority real-time mechanisms. The above scheduling policies do not rep-
resent the only possible choices and the second part of this book will introduce
different techniques for scheduling processes in real-time systems.

Thread priority is finally defined for a given thread by routine:

int pthread_setschedprio(pthread_t thread, int prio);

7.1.2 Creating Processes

The API for creating Linux processes is deceptively simple, formed by one
system routine with no arguments:

pid_t fork()

If we compare this with the much richer pthreads API, we might be surprised
from the fact that there is no way to define a specific program to be executed
and to pass any arguments to it. What fork() actually does is just to create
an exact clone of the calling process by replicating the memory content of the
process and the associated structures, including the current value of the pro-
cessor registers. When forks() returns, two identical processes at the same
point of execution are present in the system (one of the duplicated processor
registers is in fact the Program Counter that holds the address of the next
instruction in the program to be executed). There is only one difference be-
tween the two: the return value of routine fork() is set to 0 in the created
process, and to the identifier of the new process in the original process. This
allows discriminating in the code between the calling and the created process,
as shown by the following code snippet:

#include <sys/types.h>

#include <unstd.h>

//Required include files

...
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pid_t pid;

...

pid = fork();

if(pid == 0)

{

//Actions for the created process

}

else

{

//Actions for the calling process

}

The created process is a child process of the creating one and will proceed
in parallel with the latter. As for threads, if processes are created to carry
out a collaborative work, it is necessary that, at a certain point, the creator
process synchronizes with its child processes. The following system routine
will suspend the execution of the process until the child process, identified by
the process identifier returned by fork(), has terminated.

pid_t wait(pid_t pid, int *status, int options)

Its argument status, when non-NULL, is a pointer to an integer variable
that will hold the status of the child process (e.g., if the child process termi-
nated normally or was interrupted). Argument options, when different from
0, specifies more specialized wait options.

If processes are created to carry out collaborative work, it is necessary that
they share memory segments in order to exchange information. While with
threads every memory segment different from the stack was shared among
threads, and therefore it suffices to use static variables to exchange informa-
tion, the memory allocated for the child process is by default separate from the
memory used by the calling process. We have in fact seen in Chapter 2 that in
operating systems supporting virtual memory (e.g., Linux), different processes
access different memory pages even if using the same virtual addresses, and
that this is achieved by setting the appropriate values in the Page Table at
every context switch. The same mechanism can, however, be used to provide
controlled access to segments of shared memory by setting appropriate values
in the page table entries corresponding to the shared memory pages, as shown
in Figure 2.8 in Chapter 2. The definition of a segment of shared memory is
done in Linux in two steps:

1. A segment of shared memory of a given size is created via system
routine shmget();

2. A region of the virtual address space of the process is “attached”
to the shared memory segment via system routine shmat().

The prototype of shmget() routine is

int shmget(key_t key, size_t size, int shmflg)



Interprocess Communication Primitives in POSIX/Linux 171

where key is the unique identifier of the shared memory segment, size is the
dimension of the segment, and shmflags defines the way the segment is cre-
ated or accessed. When creating a shared memory segment, it is necessary to
provide an unique identifier to it so that the same segment can be referenced
by different processes. Moreover, the shared memory segment has to be cre-
ated only the first time shmget() is called, and the following times it is called
by different processes with the same identifier, the memory segment is simply
referenced. It is, however, not always possible to know in advance if the spec-
ified segment of shared memory has already been created by another process.
The following code snippet shows how to handle such a situation. It shows
also the use of system routine ftok() to create an identifier for shmget()

starting from a numeric value, and the use of shmat() to associate a range of
virtual addresses with the shared memory segment.

#include <sys/ipc.h>
#include <sys/shm.h>
# include <sys/types.h>

/∗ The numeric i den t i f i e r of the shared memory segment
the same value must be used by a l l processes sharing the segment ∗/

#define MY_SHARED_ID 1
...
key_t key; // Ident i f i er to be passed to shmget ()
int memId; //The id returned by shmget () to be passed to shmat()
void *startAddr; //The star t address of the shared memory segment
...
/∗ Creation of the key . Routine ftok () function uses the ident i ty

of the f i l e path passed as f i r s t argument ( here /tmp is used , but i t
may refer to any ex i s t ing f i l e in the system) and the l eas t
s i gn i f i cant 8 b i t s of the second argument ∗/

key_t key = ftok("/tmp", MY_SHARED_ID);

/∗ First try to create a new memory segment . Flags define exclusive
creation , i . e . i f the shared memory segment already exists , shmget ()
returns with an error ∗/

memId = shmget(key, size , IPC_CREAT | IPC_EXCL );
if(memId == -1)

/∗ Exclusive creation fai led , the segment was already create by
another process ∗/

{
/∗ shmget () i s ca l l ed again without the CREATE option ∗/

memId = shmget(key, size , 0);
}

/∗ I f memId == −1 here , an error occurred in the creation of
the shared memory segment ∗/

if(memId != -1)
{
/∗ Routine shmat() maps the shared memory segment to a range

of v i r tua l addresses ∗/
startAddr = (char *)shmat(memId , NULL , 0666);

/∗ From now, memory region pointed by startAddr
i s the shared segment ∗/

...

In the case where the memory region is shared by a process and its children
processes, it is not necessary to explicitly define shared memory identifiers.
In fact, when a child process is created by fork(), it inherits the memory
segments defined by the parent process. So, in order to share memory with
children processes, it suffices, before calling fork(), to create and map a new
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TABLE 7.1
Protection bitmask

Operation and permissions Octal value
Read by user 00400
Write by user 00200
Read by group 00040
Write by group 00020
Read by others 00004
Write by others 00002

shared memory segment passing constant ICP PRIVATE as the first argument of
shmget(). The memory Identifier returned by shmget()will then be passed to
shmat(), which will in turn return the starting address of the shared memory.
When the second argument of shmat() is NULL (the common case), the
operating system is free to choose the virtual address range for the shared
memory. The third argument passed to shmat() specifies in a bitmask the level
of protection of the shared memory segment, and is normally expressed in octal
value as shown in Table 7.1. Octal value 0666 will specify read-and-write access
for all processes. The following example, performing the same computation of
the example based on threads in the previous section, illustrates the use of
shared memory among children processes.

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/wait.h>
#define MAX_PROCESSES 256
#define ROWS 10000L
#define COLS 10000L

/∗ Arguments exchanged with chi ld processes ∗/
struct argument {

int startRow ;
int nRows;
long partialSum;

};
/∗ The shared memory contains the arguments exchanged between parent

and chi ld processes and i s pointer by processArgs ∗/
struct argument *processArgs;

/∗ Matrix pointer : i t w i l l be dynamically a l located ∗/
long *bigMatrix;

/∗ The current process index , incremented by the parent process before
every fork () c a l l . ∗/

int currProcessIdx;

/∗ Child process routine : make the summation of a l l the elements of the
assigned matrix rows . ∗/

static void processRoutine()
{

int i, j;
long sum = 0;
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/∗ processArgs i s the pointer to the shared memory inheri ted by the
parent process . processArg [ currProcessIdx ] i s the argument
structure spec i f i c to the chi ld process ∗/

for(i = 0; i < processArgs[currProcessIdx].nRows; i++)
for(j = 0; j < COLS; j++)

sum += bigMatrix[( processArgs[currProcessIdx].startRow + i) * COLS
+ j];

/∗ Report the computed sum into the argument structure ∗/
processArgs[currProcessIdx]. partialSum = sum;

}

int main(int argc , char *args[])
{

int memId;
long totalSum ;
int i, j, nProcesses , rowsPerProcess , lastProcessRows;

/∗ Array of process i den t i f i e r s used by parent process in the wait cycle ∗/
pid_t pids[MAX_PROCESSES];

/∗ Get the number of processes from command parameter ∗/
if(argc != 2)
{

printf ("Usage: processs <numProcesses >\n");
exit(0);

}
sscanf(args[1], "%d", &nProcesses);

/∗ Create a shared memory segment to contain the argument structures
for a l l ch i ld processes . Set Read/Write permission in f l ag s argument . ∗/

memId = shmget(IPC_PRIVATE , nProcesses * sizeof(struct argument ), 0666);
if(memId == -1)
{

perror ("Error in shmget");
exit(0);

}
/∗ Attach the shared memory segment . Child processes w i l l inher i t the

shared segment already attached ∗/
processArgs = shmat(memId , NULL , 0);
if(processArgs == (void *)-1)
{

perror ("Error in shmat");
exit(0);

}

/∗ Allocate the matrix M ∗/
bigMatrix = malloc(ROWS*COLS*sizeof(long));

/∗ F i l l the matrix with some values ∗/
...

/∗ I f the number of rows cannot be divided exactly by the number of
processs , l e t the l a s t thread handle also the remaining rows ∗/

rowsPerProcess = ROWS / nProcesses;
if(ROWS % nProcesses == 0)

lastProcessRows = rowsPerProcess;
else

lastProcessRows = rowsPerProcess + ROWS % nProcesses;

/∗ Prepare arguments for processes ∗/
for(i = 0; i < nProcesses; i++)
{

processArgs[i].startRow = i*rowsPerProcess;
if(i == nProcesses - 1)

processArgs[i].nRows = lastProcessRows;
else

processArgs[i].nRows = rowsPerProcess;
}

/∗ Spawn chi ld processes ∗/
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for(currProcessIdx = 0; currProcessIdx < nProcesses; currProcessIdx++)
{

pids[currProcessIdx] = fork();
if(pids[currProcessIdx] == 0)
{

/∗ This i s the chi ld process which inher i ts a private copy of a l l
the parent process memory except for the region pointed by
processArgs which i s shared with the parent process ∗/

processRoutine();
/∗ After computing part ia l sum the chi ld process ex i ts ∗/

exit(0);
}

}
/∗ Wait termination of chi ld processes and perform f ina l summation ∗/

totalSum = 0;
for(currProcessIdx = 0; currProcessIdx < nProcesses; currProcessIdx++)
{

/∗ Wait chi ld process termination ∗/
waitpid (pids[currProcessIdx], NULL , 0);
totalSum += processArgs[currProcessIdx]. partialSum;

}
}

From a programming point of view, the major conceptual difference with the
thread-based example is that parameters are not explicitly passed to child
processes. Rather, a variable within the program (currProcessIdx) is set to
the index of the child process just before calling fork() so that it can be used
in the child process to select the argument structure specific to it.

The attentive reader may be concerned about the fact that, since fork()

creates a clone of the calling process including the associated memory, the
amount of processing at every child process creation in the above example may
be very high due to the fact that the main process has allocated in memory a
very large matrix. Fortunately this is not the case because the memory pages
in the child process are not physically duplicated. Rather, the corresponding
page table entries in the child process refer to the same physical pages of the
parent process and are marked as Copy On Write. This means that, whenever
the page is accessed in read mode, both the parent and the child process refer
to the same physical page, and only upon a write operation is a new page
in memory created and mapped to the child process. So, pages that are only
read by the parent and child processes, such as the memory pages containing
the program code, are not duplicated at all. In our example, the big matrix is
written only before creating child processes, and therefore, the memory pages
for it are never duplicated, even if they are conceptually replicated for every
process. Nevertheless, process creation and context switches require more time
in respect of threads because more information, including the page table, has
to be saved and restored at every context switch.

Routines shmget() and shmat(), now incorporated into POSIX, derive
from the System V interface, one of the two major “flavors” of UNIX, the
other being Berkeley Unix (BSD). POSIX defines also a different interface
for creating named shared memory objects, that is, the routine sem open().
The arguments passed to sem open() specify the systemwide name of the
shared memory object and the associated access mode and protection. In this
case, routine mmap(), which has been encountered in Chapter 2 for mapping
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I/O into memory, is used to map the shared memory object onto a range of
process-specific virtual addresses.

7.2 Interprocess Communication among Threads

In the previous example, the threads and processes were either reading the
shared memory or writing it at disjoint addresses (the shared arguments con-
taining the partial sums computed by threads/processes). For this reason,
there was no need to ensure synchronization because the shared information
was correctly managed regardless of the possible interleaving in read actions
by means of threads/processes. We have seen in Chapter 5 that, in the more
general case in which shared data are also written by threads/processes, using
shared memory alone does not guarantee against possible errors due to the
interleaved access to the shared data structures. Therefore, it is necessary to
provide some sort of mutual exclusion in order to protect critical data struc-
tures against concurrent access. The POSIX pthread interface provides two
mechanisms to manage synchronization among threads: Mutexes and Condi-
tion Variables.

7.2.1 Mutexes and Condition Variables

Mutex is an abbreviation for “mutual exclusion,” and mutex variables are
used for protecting shared data when multiple writes occur by letting at the
most one thread at a time execute critical sections of code in which shared
data structures are modified. A mutex variable acts like a “lock” protecting
access to a shared data resource. Only one thread can lock (or own) a mutex
variable at any given time. Thus, even if several threads try to lock a mutex
concurrently, only one thread will succeed, and no other thread can own that
mutex until the owning thread unlocks it. The operating system will put any
thread trying to lock an already locked mutex in wait state, and such threads
will be made ready as soon as the mutex is unlocked. If more than one thread
is waiting for the same mutex, they will compete for it, and only one will
acquire the lock this turn.

Mutex variables are declared to be of type pthread mutex t and must be
initialized before being used, using the following function:

pthread_mutex_init(pthread_mutex_t *mutex,

pthread_mutex_attr_t *attr)

where the first argument is the pointer of the mutex variable, and the second
one, when different from 0, is a pointer of a variable holding the attributes
for the mutex. Such attributes will be explained later in this book, so, for the
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moment, we will use the default attributes. Once initialized, a thread can lock
and unlock the mutex via routines

pthread_mutex_lock(pthread_mutex_t *mutex)

pthread_mutex_unlock(pthread_mutex_t *mutex)

Routine pthread mutex lock() is blocking, that is, the calling thread is pos-
sibly put in wait state. Sometimes it is more convenient just to check the
status of the mutex and, if the mutex is already locked, return immediately
with an error rather than returning only when the thread has acquired the
lock. The following routine does exactly this:

int pthread_mutex_trylock(pthread_mutex_t *mutex)

Finally, a mutex should be destroyed, that is, the associated resources released,
when it is no more used:

pthread_mutex_destroy(pthread_mutex_t *mutex)

Recalling the producer/consumer example of Chapter 5, we can see that mu-
texes are well fit to ensure mutual exclusion for the segments of code that
update the circular buffer and change the index accordingly. In addition to
using critical sections when retrieving an element from the circular buffer and
when inserting a new one, consumers need also to wait until at least one el-
ement is available in the buffer, and producers have to wait until the buffer
is not full. This kind of synchronization is different from mutual exclusion
because it requires waiting for a given condition to occur. This is achieved
by pthread condition variables acting as monitors. Once a condition variable
has been declared and initialized, the following operations can be performed:
wait and signal. The former will suspend the calling thread until some other
thread executes a signal operation for that condition variable. The signal op-
eration will have no effect if no thread is waiting for that condition variable;
otherwise, it will wake only one waiting thread. In the producer/consumer
program, two condition variables will be defined: one to signal the fact that
the circular buffer is not full, and the other to signal that the circular buffer
is not empty. The producer performs a wait operation over the first condition
variable whenever it finds the buffer full, and the consumer will execute a sig-
nal operation over that condition variable after consuming one element of the
buffer. A similar sequence occurs when the consumer finds the buffer empty.

The prototypes of the pthread routines for initializing, waiting, signaling,
and destroying condition variables are respectively:

int pthread_cond_init(pthread_cond_t *condVar,

pthread_condattr_t *attr)

int pthread_cond_wait(pthread_cond_t *cond ,

pthread_mutex_t *mutex)

int pthread_cond_signal(pthread_cond_t *cond)

int pthread_cond_destroy(pthread_cond_t *cond)
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The attr argument passed to pthread cond init() will specify whether the
condition variable can be shared also among threads belonging to different
processes. When NULL is passed as second argument, the condition variable
is shared only by threads belonging to the same process. The first argument of
pthread cond wait() and pthread cond signal() is the condition variable,
and the second argument of pthread cond wait() is a mutex variable that
must be locked at the time pthread cond wait() is called. This argument
may seem somewhat confusing, but it reflects the normal way condition vari-
ables are used. Consider the producer/consumer example, and in particular,
the moment in which the consumer waits, in a critical section, for the condi-
tion variable indicating that the circular buffer is not empty. If the mutex used
for the critical section were not released prior to issuing a wait operation, the
program would deadlock since no other thread could enter that critical sec-
tion. If it were released prior to calling pthread cond wait(), it may happen
that, just after finding the circular buffer empty and before issuing the wait
operation, another producer adds an element to the buffer and issues a signal
operation on that condition variable, which does nothing since no thread is
still waiting for it. Soon after, the consumer issues a wait request, suspending
itself even if the buffer is not empty. It is therefore necessary to issue the wait
at the same time the mutex is unlocked, and this is the reason for the second
argument of pthread cond wait(), which will atomically unlock the mutex
and suspend the thread, and will lock again the mutex just before returning
to the caller program when the thread is awakened.

The following program shows the usage of mutexes and condition variables
when a producer thread puts integer data in a shared circular buffer, which
are then read by a set of consumer threads. The number of consumer threads
is passed as an argument to the program. A mutex is defined to protect inser-
tion and removal of elements into/from the circular buffer, and two condition
variables are used to signal the availability of data and room in the circular
buffer.

#include <pthread .h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

/∗ The mutex used to protect shared data ∗/
pthread_mutex_t mutex;
/∗ Condition var iab les to s i gna l a va i l a b i l i t y

of room and data in the buffer ∗/
pthread_cond_t roomAvailable , dataAvailable;

#define BUFFER_SIZE 128
/∗ Shared data ∗/
int buffer [BUFFER_SIZE];
/∗ readIdx i s the index in the buffer of the next item to be retrieved ∗/
int readIdx = 0;
/∗ writeIdx i s the index in the buffer of the next item to be inserted ∗/
int writeIdx = 0;
/∗ Buffer empty condition corresponds to readIdx == writeIdx . Buffer f u l l

condition corresponds to (writeIdx + 1)%BUFFER SIZE == readIdx ∗/
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/∗ Consumer Code : the passed argument i s not used ∗/
static void *consumer (void *arg)
{

int item;
while (1)
{

/∗ Enter c r i t i c a l section ∗/
pthread_mutex_lock(&mutex );

/∗ I f the buffer i s empty , wait for new data ∗/
while(readIdx == writeIdx )
{

pthread_cond_wait(& dataAvailable , &mutex);
}

/∗ At th i s point data are avai lab le
Get the item from the buffer ∗/
item = buffer[readIdx ];
readIdx = (readIdx + 1)%BUFFER_SIZE;

/∗ Signal a va i l a b i l i t y of room in the buffer ∗/
pthread_cond_signal(& roomAvailable);

/∗ Exit c r i t i c a l section ∗/
pthread_mutex_unlock(&mutex );

/∗ Consume the item and take actions (e . g . return )∗/
...

}
return NULL;

}
/∗ Producer code . Passed argument i s not used ∗/
static void *producer (void *arg)
{

int item = 0;
while (1)
{

/∗ Produce a new item and take actions (e . g . return ) ∗/
...

/∗ Enter c r i t i c a l section ∗/
pthread_mutex_lock(&mutex );

/∗ Wait for room ava i l a b i l i t y ∗/
while ((writeIdx + 1)%BUFFER_SIZE == readIdx )
{

pthread_cond_wait(& roomAvailable , &mutex)
}

/∗ At th i s point room is avai lab le
Put the item in the buffer ∗/
buffer [writeIdx ] = item;
writeIdx = (writeIdx + 1)%BUFFER_SIZE;

/∗ Signal data a v i l a b i l i t y ∗/
pthread_cond_signal(& dataAvailable)

/∗ Exit c r i t i c a l section ∗/
pthread_mutex_unlock(&mutex );

}
return NULL;

}

int main(int argc , char *args[])
{

pthread_t threads [MAX_THREADS];
int nConsumers;
int i;

/∗ The number of consumer i s passed as argument ∗/
if(argc != 2)
{

printf ("Usage: prod_cons <numConsumers >\n");
exit(0);

}
sscanf(args[1], "%d", &nConsumers);
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/∗ I n i t i a l i z e mutex and condition var iab les ∗/
pthread_mutex_init(&mutex , NULL)
pthread_cond_init(&dataAvailable , NULL)
pthread_cond_init(&roomAvailable , NULL)

/∗ Create producer thread ∗/
pthread_create(&threads [0], NULL , producer , NULL);

/∗ Create consumer threads ∗/
for(i = 0; i < nConsumers; i++)

pthread_create(&threads [i+1], NULL , consumer , NULL);

/∗ Wait termination of a l l threads ∗/
for(i = 0; i < nConsumers + 1; i++)
{

pthread_join(threads [i], NULL);
}
return 0;

}

No check on the returned status of pthread routines is carried out in the
above program to reduce the length of the listed code. Be conscious, however,
that a good programming practice is to check every time the status of the
called functions, and this is true in particular for the system routines used to
synchronize threads and processes. A trivial error, such as passing a wrong
argument making the routine fail synchronization, may not produce an evident
symptom in program execution, but potentially raises race conditions that are
very difficult to diagnose.

In the above program, both the consumers and the producer, once entered
in the critical section, check the availability of data and room, respectively,
possibly issuing a wait operation on the corresponding condition variable.
Observe that, in the code, the check is repeated once pthread cond wait()

returns, being the check within a while loop. This is the correct way of using
pthread cond wait() because pthread library does not guarantee that the
waiting process cannot be awakened by spurious events, requiring therefore
the repeat of the check for the condition before proceeding. Even if spurious
events were not generated, using an if statement in place of the while state-
ment, that is, not checking the condition after exiting the wait operation, leads
to a race condition in the above program when the following sequence occurs:
(1) a consumer finds the buffer empty and waits; (2) a producer puts a new
data item and signals the condition variable; (3) another consumer thread en-
ters the critical section and consumes the data item before the first consumer
gains processor ownership; (4) the first consumer awakes and reads the data
item when the buffer is empty.
Mutexes and condition variables are provided by pthread library for thread
synchronization and cover, in principle, all the required synchronization mech-
anisms in practice. We shall see in the next section that there are several
other synchronization primitives to be used for processes that can be used for
threads as well. Nevertheless, it is good programming practice to use pthread
primitives when programming with threads. Library pthreads is in fact imple-
mented not only in Linux but also in other operating systems, so a program
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using only pthreads primitive is more easily portable across different platforms
than a program using Linux-specific synchronization primitives.

7.3 Interprocess Communication among Processes

7.3.1 Semaphores

Linux semaphores are counting semaphores and are widely used to synchronize
processes. When a semaphore has been created and an initial value assigned,
two operations can be performed on it: sem wait() and sem post(). Opera-
tion sem wait() will decrement the value of the semaphore: if the semaphore’s
value is greater than zero, then the decrement proceeds and the function
returns immediately. If the semaphore currently has the value zero, then
the call blocks until it becomes possible to perform the decrement, that is,
the semaphore value rises above zero. Operation sem post() increments the
semaphore. If the semaphore’s value consequently becomes greater than zero,
then another process or thread may be blocked in a sem wait() call. In this
case, it will be woken up and will proceed in decrementing the semaphore’s
value. Semaphores can be used to achieve the same functionality of pthread
mutexes and condition variables. To protect a critical section, it suffices to
initialize a semaphore with an initial value equal to one: sem wait() and
sem post() will be called by each process just before entering and exiting
the critical section, respectively. To achieve the signaling mechanism carried
out by condition variables, the semaphore will be created with a value equal
to zero. When sem wait() is called the the first time prior to sem post(),
the calling process will suspend until another process will call sem post().
There is, however, a subtle difference between posting a semaphore and sig-
naling a condition variable: when the latter is signaled, if no thread is waiting
for it, nothing happens, and if a thread calls pthread cond wait() for that
condition variable soon after, it will suspend anyway. Conversely, posting a
semaphore will permanently increase its value until one process will perform a
wait operation on it. So, if no process is waiting for the semaphore at the time
it is posted, the first process that waits on it afterward will not be stopped.

There are two kinds of semaphores in Linux: named semaphores and un-
named semaphores. Named semaphores, as the name suggests, are associated
with a name (character string) and are created by the following routine:

sem_t *sem_open(const char *name, int oflag, mode_t mode,

unsigned int value)

where the first argument specifies the semaphore’s name. The second argu-
ment defines associated flags that specify, among other information, if the
semaphore has to be created if not yet existing. The third argument specifies
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the associated access protection (as seen for shared memory), and the last
argument specifies the initial value of the semaphore in the case where this
has been created. sem open() will return the address of a sem t structure
to be passed to sem wait() and sem post(). Named semaphores are used
when they are shared by different processes, using then their associated name
to identify the right semaphores. When the communicating processes are all
children of the same process, unnamed semaphores are preferable because it is
not necessary to define names that may collide with other semaphores used by
different processes. Unnamed semaphores are created by the following routine:

int sem_init(sem_t *sem, int pshared, unsigned int value)

sem init() will always create a new semaphore whose data structure will be
allocated in the sem t variable passed as first argument. The second argument
specifies whether the semaphore will be shared by different processes and will
be set to 0 only if the semaphore is to be accessed by threads belonging to the
same process. If the semaphore is shared among processes, the sem t variable
to host the semaphore data structures must be allocated in shared memory.
Lastly, the third argument specifies the initial value of the semaphore.

The following example is an implementation of our well-known produc-
er/consumer application where the producer and the consumers execute on
different processes and use unnamed semaphores to manage the critical section
and to handle producer/consumer synchronization. In particular, the initial
value of the semaphore (mutexSem) used to manage the critical section is set to
one, thus ensuring that only one process at a time can enter the critical section
by issuing first a P() (sem wait()) and then a V() (sem post()) operation.
The other two semaphores (dataAvailableSem and roomAvailableSem)will
contain the current number of available data slots and free ones, respectively.
Initially there will be no data slots and BUFFER SIZE free slots and therefore
the initial values of dataAvailableSem and roomAvailableSem will be 0 and
BUFFER SIZE, respectively.

#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/wait.h>
#include <semaphore.h>

#define MAX_PROCESSES 256
#define BUFFER_SIZE 128
/∗ Shared Buffer , indexes and semaphores are held in shared memory

readIdx i s the index in the buffer of the next item to be retrieved
writeIdx i s the index in the buffer of the next item to be inserted
Buffer empty condition corresponds to readIdx == writeIdx
Buffer f u l l condition corresponds to
(writeIdx + 1)%BUFFER SIZE == readIdx)
Semaphores used for synchronization :
mutexSem is used to protect the c r i t i ca l section
dataAvailableSem is used to wait for data a v i l a b i l i t y
roomAvailableSem is used to wait for room abai lab le in the buffer ∗/

struct BufferData {
int readIdx ;
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int writeIdx ;
int buffer[BUFFER_SIZE];
sem_t mutexSem ;
sem_t dataAvailableSem;
sem_t roomAvailableSem;

};

struct BufferData *sharedBuf;

/∗ Consumer routine ∗/
static void consumer ()
{

int item;
while (1)
{

/∗ Wait for a va i l a b i l i t y of at l e as t one data s l o t ∗/
sem_wait (&sharedBuf ->dataAvailableSem);

/∗ Enter c r i t i c a l section ∗/
sem_wait (&sharedBuf ->mutexSem );

/∗ Get data item ∗/
item = sharedBuf ->buffer[sharedBuf ->readIdx ];

/∗ Update read index ∗/
sharedBuf ->readIdx = (sharedBuf ->readIdx + 1)%BUFFER_SIZE;

/∗ Signal that a new empty s l o t i s avai lab le ∗/
sem_post (&sharedBuf ->roomAvailableSem);

/∗ Exit c r i t i c a l section ∗/
sem_post (&sharedBuf ->mutexSem );

/∗ Consume data item and take actions (e . g return )∗/
...

}
}
/∗ producer routine ∗/
static void producer ()
{

int item = 0;
while (1)
{

/∗ Produce data item and take actions (e . g . return )∗/
...

/∗ Wait for a va i l a b i l i t y of at l e as t one empty s l o t ∗/
sem_wait (&sharedBuf ->roomAvailableSem);

/∗ Enter c r i t i c a l section ∗/
sem_wait (&sharedBuf ->mutexSem );

/∗ Write data item ∗/
sharedBuf ->buffer[sharedBuf ->writeIdx ] = item;

/∗ Update write index ∗/
sharedBuf ->writeIdx = (sharedBuf ->writeIdx + 1)%BUFFER_SIZE;

/∗ Signal that a new data s l o t i s avai lab le ∗/
sem_post (&sharedBuf ->dataAvailableSem);

/∗ Exit c r i t i c a l section ∗/
sem_post (&sharedBuf ->mutexSem );

}
}
/∗ Main program: the passed argument spec i f i e s the number

of consumers ∗/
int main(int argc , char *args[])
{

int memId;
int i, nConsumers;
pid_t pids[MAX_PROCESSES];
if(argc != 2)
{

printf ("Usage: prodcons <numProcesses >\n");
exit(0);

}
sscanf(args[1], "%d", &nConsumers);

/∗ Set−up shared memory ∗/
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memId = shmget(IPC_PRIVATE , sizeof(struct BufferData), SHM_R | SHM_W );
if(memId == -1)
{

perror ("Error in shmget");
exit(0);

}
sharedBuf = shmat(memId , NULL , 0);
if(sharedBuf == (void *)-1)
{

perror ("Error in shmat");
exit(0);

}
/∗ I n i t i a l i z e buffer indexes ∗/

sharedBuf ->readIdx = 0;
sharedBuf ->writeIdx = 0;

/∗ I n i t i a l i z e semaphores . I n i t i a l value i s 1 for mutexSem,
0 for dataAvailableSem (no f i l l e d s l o t s i n i t i a l l y avai lab le )
and BUFFER SIZE for roomAvailableSem ( a l l s l o t s are
i n i t i a l l y free ) . The second argument spec i f i e s
that the semaphore i s shared among processes ∗/

sem_init (&sharedBuf ->mutexSem , 1, 1);
sem_init (&sharedBuf ->dataAvailableSem , 1, 0);
sem_init (&sharedBuf ->roomAvailableSem , 1, BUFFER_SIZE);

/∗ Launch producer process ∗/
pids[0] = fork();
if(pids[0] == 0)
{

/∗ Child process ∗/
producer ();
exit(0);

}
/∗ Launch consumer processes ∗/

for(i = 0; i < nConsumers; i++)
{

pids[i+1] = fork();
if(pids[i+1] == 0)
{

consumer ();
exit(0);

}
}

/∗ Wait process termination ∗/
for(i = 0; i <= nConsumers; i++)
{

waitpid (pids[i], NULL , 0);
}
return 0;

}

Observe that, in the above example, there is no check performed on read and
write indexes to state whether data or free room are available. This check is
in fact implicit in the P (semWait()) and V (semPost()) operations carried
out on dataAvailableSem and roomAvailableSem semaphores.

7.3.2 Message Queues

In the previous section, the exchange of information between the producer
and consumers has been managed using shared memory and semaphores. In
POSIX it is possible to use another IPC mechanism: message queues. Message
queues allow different processes to exchange information by inserting and
extracting data elements into and from FIFO queues that are managed by the
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operating system. A message queue is created in a very similar way as shared
memory segments are created by shmget(), that is, either passing a unique
identifier so that different processes can connect to the same message queue,
or by defining the IPC PRIVATE option in the case where the message queue is
to be shared among the parent and children processes. In fact, when a child
process is created by fork(), it inherits the message queue references of the
parent process. A new message queue is created by routine:

int msgget(key_t key, int msgflg)

whose first argument, if not IPC PRIVATE, is the message queue unique iden-
tifier, and the second argument specifies, among others, the access protection
to the message queue, specified as a bitmask as for the shared memory. The
returned value is the message queue identifier to be used in the following
routines. New data items are inserted in the message queue by the following
routine:

int msgsnd(int msqid,

const void *msgp, size_t msgsz, int msgflg)

where the first argument is the message queue identifier. The second argument
is a pointer to the data structure to be passed, whose length is specified in
the third argument. Such a structure defines, as its first long element, a user-
provided message type that can be used to select the messages to be received.
The last argument may define several options, such as specifying whether the
process is put in wait state in the case the message queue is full, or if the
routine returns immediately with an error in this case.
Message reception is performed by the following routine:

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,

int msgflg);

whose arguments are the same for of the previous routine, except for msgtyp,
which, if different from 0, specifies the type of message to be received. Unless
differently specified, msgrcv() will put the process in wait state if a message
of the specified type is not present in the queue.
The following example uses message queues to exchange data items between
a producer and a set of consumers processes.

#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/wait.h>
#include <sys/msg.h>
#define MAX_PROCESSES 256
/∗ The type of message ∗/
#define PRODCONS_TYPE 1
/∗ Message structure de f in i t ion ∗/
struct msgbuf {

long mtype;
int item;

};
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/∗ Message queue id ∗/
int msgId;

/∗ Consumer routine ∗/
static void consumer ()
{

int retSize ;
struct msgbuf msg;
int item;
while (1)
{

/∗ Receive the message . msgrcv returns the s i ze of the received message ∗/
retSize = msgrcv(msgId , &msg , sizeof(int), PRODCONS_TYPE , 0);
if(retSize == -1) // If Message reception fa i l ed
{

perror("error msgrcv");
exit(0);

}
item = msg.item;

/∗ Consume data item ∗/
...

}
}
/∗ Consumer routine ∗/
static void producer ()
{

int item = 0;
struct msgbuf msg;
msg.mtype = PRODCONS_TYPE;
while (1)
{

/∗ produce data item ∗/
...
msg.item = item;
msgsnd (msgId , &msg, sizeof (int), 0);

}
}
/∗ Main program. The number of consumer

i s passed as argument ∗/
int main(int argc , char *args[])
{

int i, nConsumers;
pid_t pids[MAX_PROCESSES];
if(argc != 2)
{

printf ("Usage: prodcons <nConsumers >\n");
exit(0);

}
sscanf(args[1], "%d", &nConsumers);

/∗ I n i t i a l i z e message queue ∗/
msgId = msgget(IPC_PRIVATE , 0666);
if(msgId == -1)
{

perror ("msgget");
exit(0);

}
/∗ Launch producer process ∗/

pids[0] = fork();
if(pids[0] == 0)
{

/∗ Child process ∗/
producer ();
exit(0);

}
/∗ Launch consumer processes ∗/

for(i = 0; i < nConsumers; i++)
{
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pids[i+1] = fork();
if(pids[i+1] == 0)
{

consumer ();
exit(0);

}
}

/∗ Wait process termination ∗/
for(i = 0; i <= nConsumers; i++)
{

waitpid (pids[i], NULL , 0);
}
return 0;

}

The above program is much simpler than the previous ones because there is no
need to worry about synchronization: everything is managed by the operating
system! Several factors however limit in practice the applicability of message
queues, among which is the fact that they consume more system resources
than simpler mechanisms such as semaphores.

Routines msgget(), msgsnd(), and msgrcv(), now in the POSIX stan-
dard, originally belonged to the System V interface. POSIX defines also a
different interface for named message queues, that is, routines mq open() to
create a message queue, and mq send() and mq receive() to send and re-
ceive messages over a message queue, respectively. As for the shared memory
object creation, the definition of the message queue name is more immediate:
the name is directly passed to mq open(), without the need for using ftok()

to create the identifier to be passed to the message queue creation routine.
On the other side, msgget() (as well as shmget()) allows creating unnamed
message queues, that are shared by the process and its children with no risk
of conflicts with other similar resources with the same name.

7.3.3 Signals

The synchronization mechanisms we have seen so far provide the neces-
sary components, which, if correctly used, allow building concurrent and dis-
tributed systems. However sometime it is necessary to handle the occurrence
of signals, that is, asynchronous event requiring some kind of action in re-
sponse. In POSIX and ANSI, a set of signals is defined, summarized by table
7.2, and the corresponding action can be specified using the following routine:

signal(int signum, void (*handler)(int))

where the first argument is the event number, and the second one is the address
of the event handler routine, which will be executed asynchronously when an
event of the specified type is sent to the process.

A typical use of routine signal() is for “trapping” the SIG INT event that
is generated by the <ctrl> C key. In this case, instead of an abrupt program
termination, it is possible to let a cleanup routine be executed, for example
closing the files which have been opened by the process and making sure that
their content is not corrupted. Another possible utilization of event handlers is
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TABLE 7.2
Some signal events defined in Linux

Signal Name
and Number Description
SIGHUP 1 Hangup (POSIX)
SIGINT 2 Terminal interrupt (ANSI)
SIGQUIT 3 Terminal quit (POSIX)
SIGILL 4 Illegal instruction (ANSI)
SIGTRAP 5 Trace trap (POSIX)
SIGFPE 8 Floating point exception (ANSI)
SIGKILL 9 Kill (can’t be caught or ignored) (POSIX)
SIGUSR1 10 User-defined signal 1 (POSIX)
SIGSEGV 11 Invalid memory segment access (ANSI)
SIGUSR2 12 User-defined signal 2 (POSIX)
SIGPIPE 13 Write on a pipe with no reader, Broken pipe (POSIX)
SIGALRM 14 Alarm clock (POSIX)
SIGTERM 15 Termination (ANSI)
SIGSTKFLT 16 Stack fault
SIGCHLD 17 Child process has stopped or exited, changed (POSIX)
SIGCONT 18 Continue executing, if stopped (POSIX)
SIGSTOP 19 Stop executing (can’t be caught or ignored) (POSIX)
SIGTSTP 20 Terminal stop signal (POSIX)
SIGTTIN 21 Background process trying to read, from TTY (POSIX)
SIGTTOU 22 Background process trying to write, to TTY (POSIX)

in association with timers, as explained in the next section. Care is necessary
in programming event handlers since they are executed asynchronously. Since
events may occur at any time during the execution of the process, no assump-
tion can be made on the current status of the data structures managed by
programs at the time a signal is received. For the same reason, it is necessary
that event handlers call only “safe” system routines, that is, system routines
that are guaranteed to execute correctly regardless of the current system state
(luckily, most pthread and Linux system routines are safe).

7.4 Clocks and Timers

Sometimes it is necessary to manage time in program. For example, a control
cycle in an embedded system may be repeated every time period, or an action
has to finish within a given timeout. Two classes of routines are available for
handling time: wait routines and timers. Wait routines, when called, force the
suspension of the calling thread or process for the specified time. Traditionally,
programmers have used routine sleep()whose argument specifies the number
of seconds the caller has to wait before resuming execution. More accurate wait
time definition is achieved by routine
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int nanosleep(const struct timespec *req, struct timespec *rem);

The first argument defines the wait time, and its type is specified as follows:

struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

The second argument, if not NULL, is a pointer to a struct timespec argu-
ment that will report the remaining time in the case nanosleep() returned
(with an error) before the specified time. This happens in the case where a
signal has been delivered to the process that issued nanosleep(). Observe
that, even if it is possible to specify the wait time with nanosecond preci-
sion, the actual wait time will be rounded to a much larger period, normally
ranging from 10 to 20 ms. The reason lies in the mechanism used by the op-
erating system to manage wait operations: when a process or a thread calls
nanosleep(), it is put in wait state, thus losing control of the processor,
and a new descriptor will be added to a linked list of descriptors of process-
es/threads, recording, among other information, the wake time. At every tick,
that is, every time the processor is interrupted by the system clock, such list
is checked, and the processes/threads for which the wait period has expired
are awakened. So, the granularity in the wait period is dictated by the clock
interrupt rate, which is normally around 50–60 Hz. Observe that, even if it
is not possible to let processes/threads wait with microsecond precision, it is
possible to get the current time with much more precision because every com-
puter has internal counters that are updated at very high frequencies, often
at the processor clock frequency. For this reason, the time returned by routine
gettimeofday(), used in chapter 2, is a very accurate measurement of the
current time.

The other class of time-related routines creates timers, which allows
an action to be executed after a given amount of time. Linux routine
timer create() will set up an internal timer, and upon the expiration of
the timer, a signal will be sent to the calling process. An event handler will
then be associated with the event via routine signal() in order to execute
the required actions upon the timer expiration.

7.5 Threads or Processes?

We have seen that in Linux there are two classes of entities able to execute
programs. Processes have been implemented first in the history of UNIX and
Linux. Threads have been introduced later as a lightweight version of pro-
cesses, and are preferable to processes for two main reasons



Interprocess Communication Primitives in POSIX/Linux 189

1. Efficiency: context switch in threads belonging to the same pro-
cess is fast when compared with context switch between processes,
mainly because the page table information needs not to be updated
because all threads in a process share the same memory space;

2. Simplified programming model : sharing memory among threads is
trivial, it suffices to use static variables. Mutexes and Condition
Variables then provide all the required synchronization mechanisms.

At this point the reader may wonder why any more processes need to be used
when developing a concurrent application. After all, a single big process, host-
ing all the threads that cooperate in carrying out the required functionality,
may definitely appear as the best choice. Indeed, very often this is the case,
but threads have a weak aspect that sometimes cannot be acceptable, that is,
the lack of protection. As threads share the same memory, except for stacks,
a wrong memory access performed by one thread may corrupt the data struc-
ture of other threads. We have already seen that this fact would be impossible
among processes since their memories are guaranteed to be insulated by the
operating system, which builds a “fence” around them by properly setting the
processes’ page tables. Therefore, if some code to be executed is not trusted,
that is, there is any likelihood that errors could arise during execution, the pro-
tection provided by the process model is mandatory. An example is given by
Web Servers, which are typically concurrent programs because they must be
able to serve multiple clients at the same time. Serving an HTTP connection
may, however, also imply the execution of external code (i.e., not belonging
to the Web Server application), for example, when CGI scripts are activated.
If the Web Server were implemented using threads, the failure of a CGI script
potentially crashes the whole server. Conversely, if the Web Server is imple-
mented as a multiprocess application, failure of a CGI script will abort the
client connection, but the other connections remain unaffected.

7.6 Summary

This chapter has presented the Linux implementation of the concepts intro-
duced in Chapters 3 and 5. Firstly, the difference between Linux processes
and threads has been described, leading to a different memory model and
two different sets of interprocess communication primitives. The main differ-
ence between threads and processes lies in the way memory is managed; since
threads live in the context of a process, they share the same address space of
the hosting process, duplicating only the stack segment containing local vari-
ables and the call frames. This means in practice that static variables, that
are not located in the stack, are shared by all the threads cerated by a given
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process (or thread). Conversely, shared memory segments must be created in
order to exchange memory data among different processes.

Threads can be programmed using library pthread, and they represent a
complete model for concurrency, defining mutexes and condition variables for
synchronization. Inteprocess communication is carried out by semaphores and
message queues, which can be used for threads, too.
Several implementations of the producer-consumer example, introduced in
Chapter 3, have been presented using different synchronization primitives.
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The previous chapter discussed the interprocess communication primitives
available to the user of a “full-fledged” operating system that supports the
POSIX standard at the Application Programming Interface (API) level. Since
those operating systems were initially intended for general-purpose computers,
one of their main goals is to put at the user’s disposal a rich set of high-level
primitives, meant to be powerful and convenient to use.

At the same time, they must also deal with multiple applications, maybe
pertaining to different users, being executed at the same time. Protecting
those applications from each other and preventing, for example, an error in
one application from corrupting the memory space of another, is a daunting
task that requires the adoption of complex process and memory models, and
must be suitably supported by sophisticated hardware components, such as a
Memory Management Unit (MMU).

Unfortunately, all these features come at a cost, in terms of operating sys-
tem code size, memory requirements, execution overhead, and complexity of
the underlying hardware. When designing a small-scale embedded system, it
may be impossible to afford such a cost, and therefore, the developer is com-
pelled to settle on a cheaper architecture in which both the operating system
and its interface are much simpler. Besides the obvious disadvantages, making
the operating system simpler and smaller has several advantages as well. For
instance, it becomes easier to ensure that the operating system behavior is
correct for what concerns real-time execution. A smaller code base usually
leads to a more efficient and reliable system, too.

Up to a certain extent, it is possible to reach this goal within the POSIX
framework: the IEEE Standard 1003.13 [41], also recognized as an ANSI stan-
dard, defines several POSIX subsets, or profiles, oriented to real-time and
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TABLE 8.1
Summary of the task-related primitives of FreeRTOS

Function Purpose Optional
vTaskStartScheduler Start the scheduler -
vTaskEndScheduler Stop the scheduler -
xTaskCreate Create a new task -
vTaskDelete Delete a task given its handle ∗
uxTaskPriorityGet Get the priority of a task ∗
vTaskPrioritySet Set the priority of a task ∗
vTaskSuspend Suspend a specific task ∗
vTaskResume Resume a specific task ∗
xTaskResumeFromISR Resume a specific task from an ISR ∗
xTaskIsTaskSuspended Check whether a task is suspended ∗
vTaskSuspendAll Suspend all tasks but the running one -
xTaskResumeAll Resume all tasks -
uxTaskGetNumberOfTasks Return current number of tasks -

embedded application environments. Each profile represents a different trade-
off between complexity and features.

However, in some cases, it may still be convenient to resort to an even
simpler set of features with a streamlined, custom programming interface. This
is the case with FreeRTOS [13], a small open-source operating system focusing
on high portability, very limited footprint and, of course, real-time capabilities.
It is licensed under a variant of the GNU General Public License (GPL). The
most important difference is an exception to the GPL that allows application
developers to distribute a combined work that includes FreeRTOS without
being obliged to provide the source code for any proprietary components.

This chapter is meant as an overview of the FreeRTOS API, to high-
light the differences that are usually found when comparing a small real-time
operating system with a POSIX system and to introduce the reader to small-
scale, embedded software development. The FreeRTOS manual [14] provides
in-depth information on this topic, along with a number of real-world code
examples. Chapter 17 will instead give more information about the internal
structure of FreeRTOS.

8.1 FreeRTOS Threads and Processes

FreeRTOS supports only a single process, and multiprogramming is achieved
by means of multiple threads of execution, all sharing the same address space.
They are called tasks by FreeRTOS, as it happens in most other real-time op-
erating systems. The main FreeRTOS primitives related to task management
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and scheduling are summarized in Table 8.1. To invoke them, it is necessary
to include the main FreeRTOS header file, FreeRTOS.h, followed by task.h.

With the FreeRTOS approach, quite common also in many other small
real-time operating systems, the address space used by tasks is also shared
with the operating system itself. The operating system is in fact a library
of object modules, and the application program is linked against it when
the application’s executable image is built, exactly as any other library. The
application and the operating system modules are therefore bundled together
in the resulting executable image.

This approach keeps the operating system as simple as possible and makes
any shared memory-based interprocess communication mechanism extremely
easy and efficient to use because all tasks can share memory with no effort.
On the other hand, tasks cannot be protected from each other with respect
to illegal memory accesses, but it should be noted that many microcontrollers
intended for embedded application lack any hardware support for this pro-
tection anyway. For some processor architectures, FreeRTOS is able to use a
Memory Protection Unit (MPU), when available, to implement a limited form
of data access protection among tasks.

Usually, the executable image is stored in a nonvolatile memory within the
target system and is invoked either directly or through a minimal boot loader
when the system is turned on. Therefore, unlike for Linux, the image must
also include an appropriate startup code, which takes care of initializing the
target hardware and is invoked before calling the main() entry point of the
application. Another important difference with respect to Linux is that, when
main() gets executed, the operating system scheduler is not yet active and
must be explicitly started by means of the following function call:

void vTaskStartScheduler(void);

It should be noted that this function reports errors back in an unusual
way. When successful, it does not return to the caller. Instead, the exe-
cution proceeds with the FreeRTOS tasks that have been created before
starting the scheduler, according to their priorities. On the other hand,
vTaskStartScheduler may return to the caller for two distinct reasons:

1. An error occurred during scheduler initialization, and so it was im-
possible to start it successfully.

2. The scheduler was successfully started, but one of the tasks executed
afterwards stopped the operating system by invoking

void vTaskEndScheduler(void);

The two scenarios are clearly very different because, in the first case, the return
is immediate and the application tasks are never actually executed, whereas
in the second the return is delayed and usually occurs when the application is
shut down in an orderly manner, for instance, at the user’s request. However,
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since vTaskStartScheduler has no return value, there is no immediate way
to distinguish between them.

If the distinction is important for the application being developed, then
the programmer must make the necessary information available on his or
her own, for example, by setting a shared flag after a full and success-
ful application startup so that it can be checked by the code that follows
vTaskStartScheduler.

It is possible to create a new FreeRTOS task either before or after starting
the scheduler, by calling the xTaskCreate function:

portBASE_TYPE xTaskCreate(

pdTASK_CODE pvTaskCode,

const char * const pcName,

unsigned short usStackDepth,

void *pvParameters,

unsigned portBASE_TYPE uxPriority,

xTaskHandle *pvCreatedTask);

where:

• pvTaskCode is a pointer to a function returning void and with one void

* argument. It represents the entry point of the new task, that is, the
function that the task will start executing from. This function must be
designed to never return to the caller because this operation has undefined
results in FreeRTOS. It is very important to remember this because, in a
POSIX-compliant operating system, a thread is indeed allowed to return
from its starting function; when it does so, it is implicitly terminated with
no adverse consequences. On the contrary, returning from the start function
of a FreeRTOS task may be quite unfortunate because, on most platforms,
it leads to the execution of code residing at an unpredictable address.

• pcName, a constant string of characters, represents the human-readable
name of the task being created. The operating system simply stores this
name along with the other task information it keeps track of, without
interpretation, but it is useful when inspecting the operating system data
structures, for example, during debugging. The maximum length of the
name actually stored by the operating system is limited by a configuration
parameter; longer names are silently truncated.

• usStackDepth indicates how many stack words must be reserved for the
task stack. The stack word size depends on the underlying hardware archi-
tecture and is configured when the operating system is being ported onto
it. If necessary, the actual size of a stack word can be calculated by look-
ing at the portSTACK TYPE data type, defined in an architecture-dependent
header file that is automatically included by the main FreeRTOS header
file.
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• pvParameters is a void * pointer that will be passed to the task entry
point upon execution without any interpretation by the operating system.
It is most commonly used to point at a shared memory structure that holds
the task parameters and, possibly, return values.

• uxPriority represents the initial, or baseline, priority of the new task,
expressed as a positive integer. The symbolic constant tskIDLE PRIORITY,
defined in the operating system’s header files, gives the priority of the
idle task, that is, the lowest priority in the system, and higher prior-
ity values correspond to higher priorities. The total number of prior-
ity levels available is set in the operating system configuration depend-
ing on the application requirements because the size of several operat-
ing system data structures depend on it. The currently configured value
is available in the symbolic constant configMAX PRIORITIES. Hence, the
legal range of priorities in the system goes from tskIDLE PRIORITY to
tskIDLE PRIORITY+configMAX PRIORITIES−1, extremes included.

• pvCreatedTask points to the task handle, which will be filled upon suc-
cessful completion of this function. The handle must be used to refer to the
new task in the future and is taken as a parameter by all operating system
functions that operate on, or refer to, a task.

The return value of xTaskCreate is a status code. If its value is
pdPASS, the function was successful in creating the new task, whereas
any other value means that an error occurred. For example, the value
errCOULD NOT ALLOCATE REQUIRED MEMORY denotes that it was impossible to
create the new task because not enough memory was available. The FreeRTOS
header projdefs.h, automatically included by the main FreeRTOS header
file, contains the full list of error codes that may be returned by the operating
system functions.

After creation, a task can be deleted by means of the function

void vTaskDelete(xTaskHandle pxTaskToDelete);

Its only argument, pxTaskToDelete, is the handle of the task to be deleted.
It is possible to delete the currently running task, and the effect in that case
is that vTaskDelete will never return to the caller.

For technical reasons, the memory dynamically allocated to the task by the
operating system (for instance, to store its stack) cannot be freed immediately
during the execution of vTaskDelete itself; this duty is instead delegated to
the idle task. If the application makes use of vTaskDelete, it is important
to ensure that a portion of the processor time is available to the idle task, as
otherwise the system may run out of memory not because there is not enough
but because the idle task was unable to free it fast enough before reuse.

As many other operating system functions, the availability of vTaskDelete
depends on the operating system configuration so that it can be excluded from
systems in which it is not used in order to save code and data memory. In
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Table 8.1, as well as in all the ensuing ones, those functions are marked as
optional.

Another important difference with respect to a POSIX-compliant oper-
ating system is that FreeRTOS—like most other small, real-time operating
systems—does not provide anything comparable to the POSIX thread can-
cellation mechanism. This mechanism is rather complex and allows POSIX
threads to decline or postpone deletion requests, or cancellation requests as
they are called in POSIX, directed to them. This is useful in ensuring that
these requests are honored only when it is safe to do so.

In addition, POSIX threads can also register a set of functions, called
cleanup handlers, which will be invoked automatically by the system while
a cancellation request is being honored, before the target thread is actually
deleted. Cleanup handlers, as their name says, provide therefore a good op-
portunity for POSIX threads to execute any last-second cleanup action they
may need to make sure that they leave the application in a safe and consistent
state upon termination.

On the contrary, task deletion is immediate in FreeRTOS, that is, it can
neither be refused nor delayed by the target task. As a consequence, the target
task may be deleted and cease execution at any time and location in the code,
and it will not have the possibility of executing any cleanup handler before
terminating. From the point of view of concurrent programming, it means that,
for example, if a task is deleted when it is within a critical region controlled
by a mutual exclusion semaphore, the semaphore will never be unlocked.

The high-level effect of the deletion is therefore the same as the termi-
nated task never having exited from the critical region: no other tasks will
ever be allowed to enter a critical region controlled by the same semaphore
in the future. Since this usually corresponds to a complete breakdown of any
concurrent program, the direct invocation of vTaskDelete should usually be
avoided, and it should be replaced by a more sophisticated deletion mecha-
nism.

One simple solution, mimicking the POSIX approach, is to send a deletion
request to the target task by some other means—for instance, one of the
interprocess communication mechanisms described in Sections 8.2 and 8.3,
and design the target task so that it responds to the request by terminating
itself at a well-known location in the target task’s code and after any required
cleanup operation has been carried out.

After creation, it is possible to retrieve the priority of a task and change
it by means of the functions

unsigned portBASE_TYPE uxTaskPriorityGet(xTaskHandle pxTask);

void vTaskPrioritySet(xTaskHandle pxTask,

unsigned portBASE_TYPE uxNewPriority);

Both functions are optional, that is, they can be excluded from the oper-
ating system to reduce its code and data space requirements. They both take
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a task handle, pxTask, as their first argument. The special value NULL can be
used as a shortcut to refer to the calling task.

The function vTaskPrioritySet modifies the priority of a task after it
has been created, and uxTaskPriorityGet returns the current priority of the
task. It should, however, be noted that both the priority given at task creation
and the priority set by vTaskPrioritySet represent the baseline priority of
the task.

Instead, uxTaskPriorityGet returns its active priority, which may differ
from the baseline priority when one of the mechanisms to prevent unbounded
priority inversion, to be discussed in Chapter 15, is in effect. More specifically,
FreeRTOS implements the priority inheritance protocol for mutual exclusion
semaphores. See also Section 8.3 for more information.

The pair of optional functions vTaskSuspend and vTaskResume take an
argument of type xTaskHandle according to the following prototypes:

void vTaskSuspend(xTaskHandle pxTaskToSuspend);

void vTaskResume(xTaskHandle pxTaskToResume);

They are used to suspend and resume the execution of the task identified
by the argument. For vTaskSuspend, the special value NULL can be used to
suspend the invoking task, whereas, obviously, it is impossible for a task to
resume executing of its own initiative.

Like vTaskDelete, vTaskSuspend also may suspend the execution of a task
at an arbitrary point. Therefore, it must be used with care when the task to
be suspended contains critical sections—or, more generally, can get mutually
exclusive access to one or more shared resources—because those resources are
not implicitly released while the task is suspended.

FreeRTOS, like most other monolithic operating systems, does not hold a
full task context for interrupt handlers, and hence, they are not full-fledged
tasks. One of the consequences of this design choice is that interrupt handlers
cannot block or suspend themselves (informally speaking, there is no dedicated
space within the operating system to save their context into), and hence,
calling vTaskSuspend(NULL) from an interrupt handler makes no sense. For
related reasons, interrupt handlers are also not allowed to suspend regular
tasks by invoking vTaskSuspend with a valid xTaskHandle as argument.

The function

portBASE_TYPE xTaskResumeFromISR(xTaskHandle pxTaskToResume);

is a variant of vTaskResume that must be used to resume a task from an inter-
rupt handler, also known as Interrupt Service Routine (ISR) in the FreeRTOS
jargon.

Since, as said above, interrupt handlers do not have a full-fledged, dedi-
cated task context in FreeRTOS, xTaskResumeFromISR cannot perform a full
context switch between tasks when needed as its regular counterpart would
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do. A context switch would be necessary, for example, when a low-priority
task is interrupted and the interrupt handler wakes up a different task, with
a higher priority.

On the contrary, xTaskResumeFromISR merely returns a nonzero value in
this case in order to make the invoking interrupt handler aware of the situation.
In response to this indication, the interrupt handler will eventually invoke the
FreeRTOS scheduling algorithm so that the higher-priority task just resumed
will get executed upon its exit instead of the interrupted one. This is accom-
plished by invoking a primitive such as, for example, vPortYieldFromISR()
for the ARM Cortex-M3 port of FreeRTOS. Although the implementation of
the primitive is port-dependent, its name is the same across most recent ports
of FreeRTOS.

This course of action has the additional advantage that the scheduling
algorithm—a quite expensive algorithm to be run in an interrupt context—
will be triggered only when strictly necessary to avoid priority inversion.

The optional function

portBASE_TYPE xTaskIsTaskSuspended(xTaskHandle xTask)

can be used to tell whether a certain task, identified by xTask, is currently
suspended or not. Its return value will be nonzero if the task is suspended,
and zero otherwise.

The function

void vTaskSuspendAll(void);

suspends all tasks but the calling one. Interrupt handling is not suspended
and is still performed as usual.

Symmetrically, the function

portBASE_TYPE xTaskResumeAll(void);

resumes all tasks suspended by vTaskSuspendAll. In turn, for example, when
the priority of one of the resumed tasks is higher than the priority of the
invoking task, this may require a context switch. In this case, the context
switch is performed immediately within xTaskResumeAll itself, and therefore,
this function cannot be called from an interrupt handler. The invoking task
is later notified that it lost the processor for this reason because it will get a
nonzero return value from xTaskResumeAll.

Contrary to what could be expected, both vTaskSuspendAll and
xTaskResumeAll are extremely efficient on single-processor systems, such
those targeted by FreeRTOS. In fact, these functions are not implemented
by suspending and resuming all tasks one by one but by temporarily dis-
abling the operating system scheduler, and the latter operation requires little
more work than updating a shared counter.

Hence, they can be used to implement critical regions without using any
semaphore and without fear of unbounded priority inversion simply by using
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them as a pair of brackets around the critical code. In fact, in a single-processor
system, vTaskSuspendAll opens a mutual exclusion region because the first
task to successfully execute it will effectively prevent all other tasks from being
executed until it invokes xTaskResumeAll.

Moreover, they also realize an extremely aggressive form of immediate
priority ceiling, as will be discussed in Chapter 15, because any task executing
between vTaskSuspendAll and xTaskResumeAll implicitly gets the highest
possible priority in the system, too, except interrupt handlers. That said, the
method just described has two main shortcomings:

1. Any FreeRTOS primitive that might block the caller for any reason
and even temporarily, or might require a context switch, must not
be used within this kind of critical region. This is because blocking
the only task allowed to run would completely lock up the system,
and it is impossible to perform a context switch with the scheduler
disabled.

2. Protecting critical regions with a sizable execution time in this way
would probably be unacceptable in many applications because it
leads to a large amount of unnecessary blocking. This is especially
true for high-priority tasks, because if one of them becomes ready
for execution while a low-priority task is engaged in a critical region
of this kind, it will not run immediately, but only at the end of the
critical region itself. See Chapter 15 for additional information on
how to compute the worst-case blocking time a task will suffer,
depending on the method used to address the unbounded priority
inversion problem.

The last function related to task management simply returns the number of
tasks currently present in the system, regardless of their state:

unsigned portBASE_TYPE uxTaskGetNumberOfTasks(void);

Therefore, the count also includes the calling task and blocked tasks. More-
over, it may also include some tasks that have been deleted by vTaskDelete.
This is a side effect of the delayed dismissal of the operating system’s data
structures associated with a task upon deletion previously mentioned.

8.2 Message Queues

Message queues are the main Interprocess Communication (IPC) mechanism
provided by FreeRTOS. They are also the basic block on which the additional
IPC mechanisms discussed in the next sections are built. For this reason, none
of the primitives that operate on message queues, summarized in Table 8.2,
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TABLE 8.2
Summary of the main message-queue related primitives of FreeRTOS
Function Purpose Optional
xQueueCreate Create a message queue -
vQueueDelete Delete a message queue -
xQueueSendToBack Send a message -
xQueueSendToFront Send a high-priority message -
xQueueSendToBackFromISR . . . from an interrupt handler -
xQueueSendToFrontFromISR . . . from an interrupt handler -
xQueueReceive Receive a message -
xQueueReceiveFromISR . . . from an interrupt handler -
xQueuePeek Nondestructive receive -
uxQueueMessagesWaiting Query current queue length -
uxQueueMessagesWaitingFromISR . . . from an interrupt handler -
xQueueIsQueueEmptyFromISR Check if a queue is empty -
xQueueIsQueueFullFromISR Check if a queue is full -

can be excluded from the operating system configuration. To use them, it
is necessary to include the main FreeRTOS header FreeRTOS.h, followed by
queue.h. There are also some additional primitives, intended either for inter-
nal operating system’s use or to facilitate debugging, that will not be discussed
here.

With respect to the nomenclature presented in Chapter 6, FreeRTOS
adopts a symmetric, indirect naming scheme for message queues because the
sender task does not name the intended receiver task directly. Rather, both
the sender and the receiver make reference to an intermediate entity, that is,
the message queue itself.

The synchronization model is asynchronous with finite buffering because
the sender always proceeds as soon as the message has been stored into the
message queue without waiting for the message to be received at destination.
The amount of buffering is fixed and known in advance for each message queue.
It is set when the queue is created and cannot be modified afterwards.

No functions are provided for data serialization, but this does not have
serious consequences because FreeRTOS message passing is restricted anyway
to take place between tasks belonging to a single process. All these tasks
are therefore necessarily executed on the same machine and share the same
address space.

The function

xQueueHandle xQueueCreate(

unsigned portBASE_TYPE uxQueueLength,

unsigned portBASE_TYPE uxItemSize);

creates a new message queue, given the maximum number of elements it can
contain, uxQueueLength, and the size of each element, uxItemSize, expressed
in bytes. Upon successful completion, the function returns a valid message



Interprocess Communication Primitives in FreeRTOS 201

queue handle to the caller, which must be used for any subsequent operation
on the queue just created. When an error occurs, the function returns a NULL

pointer instead.
When a message queue is no longer needed, it is advisable to delete it, in

order to reclaim its memory for future use, by means of the function

void vQueueDelete(xQueueHandle xQueue);

It should be noted that the deletion of a FreeRTOS message queue takes place
immediately and is never delayed even if some tasks are waiting on it. The
fate of the waiting tasks then depends on whether they specified a time limit
for the wait or not:

• if they did specify a time limit for the message queue operation, they will
receive an error indication when the operation times out;

• otherwise, they will be blocked forever.

After a message queue has been successfully created and its xQueue handle
is available for use, it is possible to send a message to it by means of the
functions

portBASE_TYPE xQueueSendToBack(

xQueueHandle xQueue,

const void *pvItemToQueue,

portTickType xTicksToWait);

portBASE_TYPE xQueueSendToFront(

xQueueHandle xQueue,

const void *pvItemToQueue,

portTickType xTicksToWait);

portBASE_TYPE xQueueSendToBackFromISR(

xQueueHandle xQueue,

const void *pvItemToQueue,

portBASE_TYPE *pxHigherPriorityTaskWoken);

portBASE_TYPE xQueueSendToFrontFromISR(

xQueueHandle xQueue,

const void *pvItemToQueue,

portBASE_TYPE *pxHigherPriorityTaskWoken);

The first function, xQueueSendToBack, sends a message to the back of
a message queue. The message to be sent is pointed by the pvItemToQueue

argument, whereas its size is implicitly assumed to be equal to the size of a
message queue item, as declared when the queue was created.

The last argument, xTicksToWait, specifies the maximum amount of time
allotted to the operation. In particular,
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• If the value is 0 (zero), the function returns an error indication to the caller
when the operation cannot be performed immediately because the message
queue is completely full at the moment.

• If the value is portMAX DELAY (a symbolic constant defined in a port-
dependent header file that is automatically included by the main FreeRTOS
header file), when the message queue is completely full, the function blocks
indefinitely until the space it needs becomes available. For this option to be
available, the operating system must be configured to support task suspend
and resume, as described in Section 8.1.

• Any other value is interpreted as the maximum amount of time the function
will wait, expressed as an integral number of clock ticks. See Section 8.4
for more information about ticks.

The return value of xQueueSendToBackwill be pdPASS if the function was suc-
cessful; any other value means than an error occurred. In particular, the error
code errQUEUE FULL means that the function was unable to send the message
within the maximum amount of time specified by xTicksToWait because the
queue was full.

Unlike in POSIX, FreeRTOS messages do not have a full-fledged priority
associated with them, and hence, they are normally sent and received in First-
In, First-Out (FIFO) order. However, a high-priority message can be sent
using the xQueueSendToFront function instead of xQueueSendToBack. The
only difference between those two functions is that xQueueSendToFront sends
the message to the front of the message queue so that it passes over the other
messages stored in the queue and will be received before them.

Neither xQueueSendToBack nor xQueueSendToFront can be called
from an interrupt handler. Instead, either xQueueSendToBackFromISR or
xQueueSendToFrontFromISRmust be used. The only differences with respect
to their regular counterparts are

• They cannot block the caller, and hence, they do not have a xTicksToWait
argument and always behave as if the timeout were 0, that is, they re-
turn an error indication to the caller if the operation cannot be concluded
immediately.

• The argument pxHigherPriorityTaskWoken points to a portBASE TYPE

variable. The function will set the referenced variable to either pdTRUE or
pdFALSE, depending on whether or not it awakened a task with a priority
higher than the task which was running when the interrupt handler started.

The interrupt handler should use this information, as discussed in Sec-
tion 8.1, to determine if it should invoke the FreeRTOS scheduling algo-
rithm before exiting.

The functions xQueueSend and xQueueSendFromISR are just synonyms of
xQueueSendToBack and xQueueSendToBackFromISR, respectively, They have
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been retained for backward compatibility with previous versions of FreeRTOS,
which did not have the ability to send a message to the front of a message
queue.

Messages are always received from the front of a message queue by means
of the following functions:

portBASE_TYPE xQueueReceive(

xQueueHandle xQueue,

void *pvBuffer,

portTickType xTicksToWait);

portBASE_TYPE xQueueReceiveFromISR(

xQueueHandle xQueue,

void *pvBuffer,

portBASE_TYPE *pxHigherPriorityTaskWoken);

portBASE_TYPE xQueuePeek(

xQueueHandle xQueue,

void *pvBuffer,

portTickType xTicksToWait);

All these functions take a message queue handle, xQueue, as their first ar-
gument; this is the message queue they will work upon. The second argument,
pvBuffer, is a pointer to a memory buffer into which the function will store
the message just received. It must be large enough to hold the message, that
is, at least as large as a message queue item as declared when the queue was
created.

In the case of xQueueReceive, the last argument, xTicksToWait, speci-
fies how much time the function should wait for a message to become avail-
able if the message queue was completely empty when it was invoked. The
valid values of xTicksToWait are the same already mentioned when discussing
xQueueSendToBack.

The return value of xQueueReceive will be pdPASS if the function was
successful; any other value means than an error occurred. In particular, the
error code errQUEUE EMPTY means that the function was unable to receive
a message within the maximum amount of time specified by xTicksToWait

because the queue was empty. In this case, the buffer pointed by pvBuffer

will not contain any valid message after xQueueReceive returns.

The function xQueueReceive, when successful, removes the message it just
received from the message queue so that each message sent to the queue is
received exactly once. On the contrary, the function xQueuePeek simply copies
the message into the memory buffer indicated by the caller without removing
it for the queue. It takes the same arguments as xQueueReceive.

The function xQueueReceiveFromISR is the variant of xQueueReceive

that must be used within an interrupt handler. It never blocks, but it re-
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turns to the caller in the variable pointed by pxHigherPriorityTaskWoken,
an indication on whether it awakened a higher priority task or not.

The last group of functions,

unsigned portBASE_TYPE

uxQueueMessagesWaiting(const xQueueHandle xQueue);

unsigned portBASE_TYPE

uxQueueMessagesWaitingFromISR(const xQueueHandle xQueue);

portBASE_TYPE

xQueueIsQueueEmptyFromISR(const xQueueHandle xQueue);

portBASE_TYPE

xQueueIsQueueFullFromISR(const xQueueHandle xQueue);

queries various aspects of a message queue status. In particular,

• uxQueueMessagesWaiting and uxQueueMessagesWaitingFromISR return
the number of items currently stored in the message queue xQueue. The
latter variant must be used when the invoker is an interrupt handler.

• xQueueIsQueueEmptyFromISR and xQueueIsQueueFullFromISR return a
Boolean value that will be pdTRUE if the message queue xQueue is empty
(or full, respectively) and pdFALSE otherwise. Both can be invoked safely
from an interrupt handler.

These functions should be used with caution because, although the informa-
tion they return is certainly correct and valid at the time of the call, the scope
of its validity is somewhat limited. It is worth mentioning, for example, that
the information may no longer be valid and should not be relied upon when
any subsequent message queue operation is attempted because other tasks
may have changed the queue status in the meantime.

For example, the preventive execution of uxQueueMessageWaiting by a
task, with a result less than the total length of the message queue, is not
enough to guarantee that the same task will be able to immediately conclude
a xQueueSendToBack in the near future: other tasks, or interrupt handlers,
may have sent additional items into the queue and filled it completely in the
meantime.

The following program shows how the producers/consumers problem can
be solved using a FreeRTOS message queue.

/∗ Producers/Consumers problem solved with a FreeRTOS message queue ∗/

#include <stdio.h> /∗ For pr in t f () ∗/
#include <stdlib.h>
#include <FreeRTOS .h> /∗ Main RTOS header ∗/
#include <task.h> /∗ Task and time functions ∗/
#include <queue.h> /∗ Message queue functions ∗/
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#define N 10 /∗ Buffer s i ze (# of items) ∗/

#define NP 3 /∗ Number of producer tasks ∗/
#define NC 2 /∗ Number of consumer tasks ∗/

/∗ The minimal task stack s i ze spec i f i ed in the FreeRTOS configuration
does not support pr in t f ( ) . Make i t larger .

∗/
#define STACK_SIZE (configMINIMAL_STACK_SIZE+512)

#define PRODUCER_DELAY 500 /∗ Delays in producer/consumer tasks ∗/
#define CONSUMER_DELAY 300

/∗ Data type for task arguments , for both producers and consumers ∗/
struct task_args_s {

int n; /∗ Task number ∗/
xQueueHandle q; /∗ Message queue to use ∗/

};

void producer_code(void *argv)
{

/∗ Cast the argument pointer , argv , to the r ight data type ∗/
struct task_args_s *args = (struct task_args_s *)argv;
int c = 0;
int item;

while (1)
{

/∗ A real producer would put together an actual data item .
Here , we block for a while and then make up a fake item .

∗/
vTaskDelay(PRODUCER_DELAY);
item = args ->n*1000 + c;
c++;

printf ("Producer #%d - sending item %6d\n", args ->n, item);

/∗ Send the data item to the back of the queue , waiting i f the
queue i s f u l l . portMAX DELAY means that there i s no upper
bound on the amount of wait .

∗/
if(xQueueSendToBack(args ->q, &item , portMAX_DELAY) != pdPASS)

printf("* Producer %d unable to send\n", args ->n);
}

}

void consumer_code(void *argv)
{

struct task_args_s *args = (struct task_args_s *)argv;
int item;

while (1)
{

/∗ Receive a data item from the front of the queue , waiting i f
the queue i s empty . portMAX DELAY means that there i s no
upper bound on the amount of wait .

∗/
if(xQueueReceive(args ->q, &item , portMAX_DELAY) != pdPASS)

printf("* Consumer #%d unable to receive \n", args ->n);
else

printf("Consumer #%d - received item %6d\n", args ->n, item);

/∗ A real consumer would do something meaningful with the data item .
Here , we simply block for a while

∗/
vTaskDelay(CONSUMER_DELAY);

}
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}

int main(int argc , char *argv[])
{

xQueueHandle q; /∗ Message queue handle ∗/
struct task_args_s prod_args[NP]; /∗ Task arguments for producers ∗/
struct task_args_s cons_args[NC]; /∗ Task arguments for consumers ∗/
xTaskHandle dummy;
int i;

/∗ Create the message queue ∗/
if((q = xQueueCreate(N, sizeof(int))) == NULL)

printf ("* Cannot create message queue of %d elements \n", N);

else
{

/∗ Create NP producer tasks ∗/
for(i=0; i<NP; i++)
{

prod_args[i].n = i; /∗ Prepare the arguments ∗/
prod_args[i].q = q;

/∗ The task handles are not used in the fol lowing ,
so a dummy variab le i s used for them

∗/
if(xTaskCreate(producer_code , "PROD", STACK_SIZE ,

&( prod_args[i]), tskIDLE_PRIORITY , &dummy) != pdPASS)
printf("* Cannot create producer #%d\n", i);

}

/∗ Create NC consumer tasks ∗/
for(i=0; i<NC; i++)
{

cons_args[i].n = i;
cons_args[i].q = q;

if(xTaskCreate(consumer_code , "CONS", STACK_SIZE ,
&( cons_args[i]), tskIDLE_PRIORITY , &dummy) != pdPASS)

printf("* Cannot create consumer #%d\n", i);
}

vTaskStartScheduler();
printf ("* vTaskStartScheduler() failed\n");

}

/∗ Since th i s i s jus t an example , always return a success
indication , even th i s might not be true .

∗/
return EXIT_SUCCESS;

}

The main program first creates the message queue that will be used for
interprocess communication, and then a few producer and consumer tasks.
For the sake of the example, the number of tasks to be created is controlled
by the macros NP and NC, respectively.

The producers will all execute the same code, that is, the function
producer code. Each of them receives as argument a pointer to a struct

task args s that holds two fields:

1. a task number (n field) used to distinguish one task from another
in the debugging printouts, and

2. the message queue (q field) that the task will use to send data.
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In this way, all tasks can work together by only looking at their arguments and
without sharing any variable, as foreseen by the message-passing paradigm.
Symmetrically, the consumers all execute the function consumer code, which
has a very similar structure.

8.3 Counting, Binary, and Mutual Exclusion Semaphores

FreeRTOS provides four different kinds of semaphores, representing different
trade-offs between features and efficiency:

1. Counting semaphores are the most general kind of semaphore
provided by FreeRTOS. They are also the only kind of semaphore
actually able to hold a count, as do the abstract semaphores dis-
cussed in Chapter 5. The main difference is that, in the FreeRTOS
case, the maximum value the counter may assume must be declared
when the semaphore is first created.

2. Binary semaphores have a maximum value as well as an initial
value of one. As a consequence, their value can only be either one
or zero, but they can still be used for either mutual exclusion or
task synchronization.

3. Mutex semaphores are similar to binary semaphores, with the
additional restriction that they must only be used as mutual ex-
clusion semaphores, that is, P() and V() must always appear in
pairs and must be placed as brackets around critical regions. Hence,
mutex semaphores cannot be used for task synchronization. In ex-
change for this, mutex semaphores implement priority inheritance,
which as discussed in Chapter 15, is especially useful to address the
unbounded priority inversion problem.

4. Recursive mutex semaphores have all the features ordinary mu-
tex semaphores have, and also optionally support the so-called “re-
cursive” locks and unlocks in which a process is allowed to contain
more than one nested critical region, all controlled by the same
semaphore and delimited by their own P()/V() brackets, without
deadlocking. In this case, the semaphore is automatically locked and
unlocked only at the outermost region boundary, as it should.

The four different kinds of semaphores are created by means of distinct func-
tions, all listed in Table 8.3. In order to call any semaphore-related function,
it is necessary to include the main FreeRTOS header FreeRTOS.h, followed by
semphr.h.

The function

xSemaphoreHandle xSemaphoreCreateCounting(
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TABLE 8.3
Summary of the semaphore creation/deletion primitives of FreeRTOS

Function Purpose Optional
xSemaphoreCreateCounting Create a counting semaphore ∗
vSemaphoreCreateBinary Create a binary semaphore -
xSemaphoreCreateMutex Create a mutex semaphore ∗
xSemaphoreCreateRecursiveMutex Create a recursive mutex ∗
vQueueDelete Delete a semaphore of any kind -

unsigned portBASE_TYPE uxMaxCount,

unsigned portBASE_TYPE uxInitialCount);

creates a counting semaphore with a given maximum (uxMaxCount) and initial
(uxInitialCount) value. When successful, it returns to the caller a valid
semaphore handle; otherwise, it returns a NULL pointer. To create a binary
semaphore, use the macro xSemaphoreCreateBinary instead:

void vSemaphoreCreateBinary(xSemaphoreHandle xSemaphore);

It should be noted that

• Unlike xSemaphoreCreateCounting, xSemaphoreCreateBinary has no re-
turn value. Being a macro rather than a function, it directly manipu-
lates xSemaphore instead. Upon success, xSemaphore will be set to the
semaphore handle just created; otherwise, it will be set to NULL.

• Both the maximum and initial value of a binary semaphore are constrained
to be 1, and hence, they are not explicitly indicated.

• Binary semaphores are the only kind of semaphore that is always available
for use in FreeRTOS, regardless of its configuration. All the others are
optional.

Mutual exclusion semaphores are created by means of two different functions,
depending on whether the recursive lock and unlock feature is desired or not:

xSemaphoreHandle xSemaphoreCreateMutex(void);

xSemaphoreHandle xSemaphoreCreateRecursiveMutex(void);

In both cases, the creation function returns either a semaphore handle upon
successful completion, or NULL. All mutual exclusion semaphores are unlocked
when they are first created, and priority inheritance is always enabled for
them.

Since FreeRTOS semaphores of all kinds are built on top of a message
queue, they can be deleted by means of the function vQueueDelete, already
discussed in Section 8.2. Also in this case, the semaphore is destroyed imme-
diately even if there are some tasks waiting on it.
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After being created, all kinds of semaphores except recursive, mutual ex-
clusion semaphores are acted upon by means of the functions xSemaphoreTake
and xSemaphoreGive, the FreeRTOS counterpart of P() and V(), respectively.
Both take a semaphore handle xSemaphore as their first argument:

portBASE_TYPE xSemaphoreTake(xSemaphoreHandle xSemaphore,

portTickType xBlockTime);

portBASE_TYPE xSemaphoreGive(xSemaphoreHandle xSemaphore);

In addition, xSemaphoreTake also takes a second argument, xBlockTime,
that specifies the maximum amount of time allotted to the operation. The
interpretation and valid values that this argument can assume are the same
as for message queues.

The function xSemaphoreTake returns pdTRUE if it was successful, that is,
it was able to conclude the semaphore operation before the specified amount
of time elapsed. Otherwise, it returns pdFALSE. Similarly, xSemaphoreGive
returns pdTRUE when successful, and pdFALSE if an error occurred.

The function xSemaphoreGiveFromISR is the variant of xSemaphoreGive
that must be used within an interrupt handler:

portBASE_TYPE xSemaphoreGiveFromISR(xSemaphoreHandle xSemaphore,

portBASE_TYPE *pxHigherPriorityTaskWoken);

Like many other FreeRTOS primitives that can be invoked from an in-
terrupt handler, this function returns to the caller, in the variable pointed
by pxHigherPriorityTaskWoken, an indication on whether or not it awak-
ened a task with a priority higher than the task which was running when the
interrupt handler started.

The interrupt handler should use this information, as discussed in Sec-
tion 8.1, to determine if it should invoke the FreeRTOS scheduling algorithm
before exiting. The function also returns either pdTRUE or pdFALSE, depending
on whether it was successful or not.

The last pair of functions to be discussed here are the counterpart of
xSemaphoreTake and xSemaphoreGive, to be used with recursive mutual ex-
clusion semaphores:

portBASE_TYPE xSemaphoreTakeRecursive(xSemaphoreHandle xMutex,

portTickType xBlockTime);

portBASE_TYPE xSemaphoreGiveRecursive(xSemaphoreHandle xMutex);

Both their arguments and return values are the same as xSemaphoreTake
and xSemaphoreGive, respectively. Table 8.4 summarizes the FreeRTOS func-
tions that work on semaphores.

The following program shows how the producers–consumers problem can
be solved using a shared buffer and FreeRTOS semaphores.
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TABLE 8.4
Summary of the semaphore manipulation primitives of FreeRTOS

Function Purpose Optional
xSemaphoreTake Perform a P() on a semaphore -
xSemaphoreGive Perform a V() on a semaphore -
xSemaphoreGiveFromISR . . . from an interrupt handler -
xSemaphoreTakeRecursive P() on a recursive mutex ∗
xSemaphoreGiveRecursive V() on a recursive mutex ∗

/∗ Producers/Consumers problem solved with FreeRTOS semaphores ∗/

#include <stdio.h> /∗ For pr in t f () ∗/
#include <stdlib.h>
#include <FreeRTOS .h> /∗ Main RTOS header ∗/
#include <task.h> /∗ Task and time functions ∗/
#include <semphr.h> /∗ Semaphore functions ∗/

#define N 10 /∗ Buffer s i ze (# of items) ∗/

#define NP 3 /∗ Number of producer tasks ∗/
#define NC 2 /∗ Number of consumer tasks ∗/

/∗ The minimal task stack s i ze spec i f i ed in the FreeRTOS configuration
does not support pr in t f ( ) . Make i t larger .

∗/
#define STACK_SIZE (configMINIMAL_STACK_SIZE+512)

#define PRODUCER_DELAY 500 /∗ Delays in producer/consumer tasks ∗/
#define CONSUMER_DELAY 300

/∗ Data type for task arguments , for both producers and consumers ∗/
struct task_args_s {

int n; /∗ Task number ∗/
};

/∗ Shared var iab les and semaphores . They implement the shared
buffer , as we l l as mutual exclusion and task synchronization

∗/

int buf[N];
int in = 0, out = 0;
xSemaphoreHandle empty , full;
xSemaphoreHandle mutex;

void producer_code(void *argv)
{

/∗ Cast the argument pointer , argv , to the r ight data type ∗/
struct task_args_s *args = (struct task_args_s *)argv;
int c = 0;
int item;

while (1)
{

/∗ A real producer would put together an actual data item .
Here , we block for a while and then make up a fake item .

∗/
vTaskDelay(PRODUCER_DELAY);
item = args ->n*1000 + c;
c++;
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printf ("Producer #%d - sending item %6d\n", args ->n, item);

/∗ Synchronize with consumers ∗/
if(xSemaphoreTake(empty , portMAX_DELAY) != pdTRUE)

printf("* Producer %d unable to take ’empty ’\n", args ->n);

/∗ Mutual exclusion for buffer access ∗/
else if(xSemaphoreTake(mutex , portMAX_DELAY) != pdTRUE)

printf("* Producer %d unable to take ’mutex ’\n", args ->n);

else
{

/∗ Store data item into ’ buf ’ , update ’ in ’ index ∗/
buf[in] = item;
in = (in + 1) % N;

/∗ Release mutex ∗/
if(xSemaphoreGive(mutex) != pdTRUE)

printf("* Producer %d unable to give ’mutex ’\n", args ->n);

/∗ Synchronize with consumers ∗/
if(xSemaphoreGive(full) != pdTRUE)

printf("* Producer %d unable to give ’full ’\n", args ->n);
}

}
}

void consumer_code(void *argv)
{

struct task_args_s *args = (struct task_args_s *)argv;
int item;

while (1)
{

/∗ Synchronize with producers ∗/
if(xSemaphoreTake(full , portMAX_DELAY) != pdTRUE)

printf("* Consumer %d unable to take ’full ’\n", args ->n);

/∗ Mutual exclusion for buffer access ∗/
else if(xSemaphoreTake(mutex , portMAX_DELAY) != pdTRUE)

printf("* Consumer %d unable to take ’mutex ’\n", args ->n);

else
{

/∗ Get data item from ’ buf ’ , update ’ out ’ index ∗/
item = buf[out];
out = (out + 1) % N;

/∗ Release mutex ∗/
if(xSemaphoreGive(mutex) != pdTRUE)

printf("* Consumer %d unable to give ’mutex ’\n", args ->n);

/∗ Synchronize with producers ∗/
if(xSemaphoreGive(empty) != pdTRUE)

printf("* Consumer %d unable to give ’full ’\n", args ->n);

/∗ A real consumer would do something meaningful with the data item .
Here , we simply print i t out and block for a while

∗/
printf("Consumer #%d - received item %6d\n", args ->n, item);
vTaskDelay(CONSUMER_DELAY);

}
}

}

int main(int argc , char *argv[])
{
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struct task_args_s prod_args[NP]; /∗ Task arguments for producers ∗/
struct task_args_s cons_args[NC]; /∗ Task arguments for consumers ∗/
xTaskHandle dummy;
int i;

/∗ Create the two synchronization semaphores , empty and f u l l .
They both have a maximum value of N ( f i r s t argument ) , and
an i n i t i a l value of N and 0 , respec t ive ly

∗/
if((empty = xSemaphoreCreateCounting(N, N)) == NULL

|| (full = xSemaphoreCreateCounting(N, 0)) == NULL)
printf ("* Cannot create counting semaphores\n");

/∗ Create the mutual exclusion semaphore ∗/
else if((mutex = xSemaphoreCreateMutex()) == NULL)

printf ("* Cannot create mutex\n");

else
{

/∗ Create NP producer tasks ∗/
for(i=0; i<NP; i++)
{

prod_args[i].n = i; /∗ Prepare the argument ∗/

/∗ The task handles are not used in the fol lowing ,
so a dummy variab le i s used for them

∗/
if(xTaskCreate(producer_code , "PROD", STACK_SIZE ,

&( prod_args[i]), tskIDLE_PRIORITY , &dummy) != pdPASS)
printf("* Cannot create producer #%d\n", i);

}

/∗ Create NC consumer tasks ∗/
for(i=0; i<NC; i++)
{

cons_args[i].n = i;

if(xTaskCreate(consumer_code , "CONS", STACK_SIZE ,
&( cons_args[i]), tskIDLE_PRIORITY , &dummy) != pdPASS)

printf("* Cannot create consumer #%d\n", i);
}

vTaskStartScheduler();
printf ("* vTaskStartScheduler() failed\n");

}

/∗ Since th i s i s jus t an example , always return a success
indication , even th i s might not be true .

∗/
return EXIT_SUCCESS;

}

As before, the main program takes care of initializing the shared synchro-
nization and mutual exclusion semaphores needed by the application, creates
several producers and consumers, and then starts the scheduler. Even if the
general parameter passing strategy adopted in the previous example has been
maintained, the only argument passed to the tasks is their identification num-
ber because the semaphores, as well as the data buffer itself, are shared and
globally accessible.

With respect to the solution based on message queues, the most important
difference to be remarked is that, in this case, the data buffer shared between
the producers and consumers must be allocated and handled explicitly by
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TABLE 8.5
Summary of the time-related primitives of FreeRTOS

Function Purpose Optional
xTaskGetTickCount Get current time, in ticks -
vTaskDelay Relative time delay ∗
vTaskDelayUntil Absolute time delay ∗

the application code, instead of being hidden behind the operating system’s
implementation of message queues. In the example, it has been implemented
by means of the (circular) buffer buf[], assisted by the input and output
indexes in and out.

8.4 Clocks and Timers

Many of the activities performed in a real-time system ought to be correlated,
quite intuitively, with time. Accordingly, all FreeRTOS primitives that may
potentially block the caller, such as those discussed in Sections 8.2 and 8.3,
allow the caller to specify an upper bound to the blocking time.

Moreover, FreeRTOS provides a small set of primitives, listed in Table 8.5,
to keep track of the elapsed time and synchronize a task with it by delaying
its execution. Since they do not have their own dedicated header file, it is
necessary to include the main FreeRTOS header file, FreeRTOS.h, followed by
task.h, in order to use them.

In FreeRTOS, the same data type, portTickType, is used to represent
both the current time and a time interval. The current time is simply repre-
sented by the number of clock ticks elapsed from when the operating system
scheduler was first started. The length of a tick depends on the operating
system configuration and, to some extent, on hardware capabilities.

The configuration macro configTICK RATE HZ represents the tick fre-
quency in Hertz. In addition, most porting layers define the macro
portTICK RATE MS as the fraction 1000/configTICK RATE HZ so that is repre-
sents the tick period, expressed in milliseconds. Both of them can be useful to
convert back and forth between the usual time measurement units and clock
ticks.

The function

portTickType xTaskGetTickCount(void);

returns the current time, expressed in ticks. It is quite important to keep in
mind that the returned value comes from a tick counter of type portTickType
maintained by FreeRTOS. Barring some details, the operating system re-
sets the counter to zero when the scheduler is first started, and increments
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it with the help of a periodic interrupt source, running at a frequency of
configTICK RATE HZ.

In most microcontrollers, the tick counter data type is either a 16- or 32-bit
unsigned integer, depending on the configuration. Therefore, it will sooner or
later wrap around and resume counting from zero. For instance, an unsigned,
32-bit counter incremented at 1000Hz—a common configuration choice for
FreeRTOS—will wrap around after about 1193 hours, that is, a bit more than
49 days.

It is therefore crucial that any application planning to “stay alive” for a
longer time, as many real-time applications must do, is aware of the wrap-
around and handles it appropriately if it manipulates time values directly. If
this is not the case, the application will be confronted with time values that
suddenly “jump into the past” when a wraparound occurs, with imaginable
consequences. The delay functions, to be discussed next, already handle time
wraparound automatically, and hence, no special care is needed to use them.

Two distinct delay functions are available, depending on whether the delay
should be relative, that is, measured with respect to the instant in which the
delay function is invoked, or absolute, that is, until a certain instant in the
future, measured as a number of ticks, from when the scheduler has been
started:

void vTaskDelay(portTickType xTicksToDelay);

void vTaskDelayUntil(portTickType *pxPreviousWakeTime,

portTickType xTimeIncrement);

The function vTaskDelay implements a relative time delay: it blocks the
calling task for xTicksToDelay ticks, then returns. As shown in Figure 8.1,
the time interval is relative to the time of the call and the amount of delay is
fixed, that is, xTicksToDelay.

Instead, the function vTaskDelayUntil implements an absolute time de-
lay: referring again to Figure 8.1, the next wake-up time is calculated as the
previous one, *pxPreviousWakeTime, plus the time interval xTimeIncrement.
Hence, the amount of delay varies from call to call, and the function might
not block at all if the prescribed wake-up time is already in the past.
Just before returning, the function also increments *pxPreviousWakeTime by
xTimeIncrement so that it is ready for the next call.

The right kind of delay to be used depends on its purpose. A relative
delay may be useful, for instance, if an I/O device must be allowed (at least)
a certain amount of time to react to a command. In this case, the delay must
be measured from when the command has actually been sent to the device,
and a relative delay makes sense.

On the other hand, an absolute delay is better when a task has to carry
out an operation periodically because it guarantees that the period will stay
constant even if the response time of the task—the grey rectangles in Fig-
ure 8.1—varies from one instance to another.

The last example program, listed below, shows how absolute and relative
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Ready/
running

Ready/
running

Ready/
runningBlocked Blocked

Evolution of *pxPreviousWakeTime on successive calls to vTaskDelayUntil

xTimeIncrement xTimeIncrement

vTaskDelayUntil

Ready/
running Blocked Ready/

running
Ready/
running

vTaskDelay

xTicksToDelay

Blocked

xTicksToDelay

FIGURE 8.1
Comparison between relative and absolute time delays, as implemented by
vTaskDelay and vTaskDelayUntil.

delays can be used in an actual piece of code. When run for a long time, the
example is also useful in better highlighting the difference between those two
kinds of delay. In fact, it can be seen that the wake-up time of task rel delay

(that uses a relative delay) not only drifts forward but is also irregular because
the variations in its response time are not accounted for when determining
the delay before its next activation. On the contrary, the wake-up time of
task abs delay (that uses an absolute delay) does not drift, and it strictly
periodic.

/∗ FreeRTOS vTaskDelay versus vTaskDelayUntil ∗/

#include <stdio.h> /∗ For pr in t f () ∗/
#include <stdlib.h>
#include <FreeRTOS .h> /∗ Main RTOS header ∗/
#include <task.h> /∗ Task and time functions ∗/

/∗ The minimal task stack s i ze spec i f i ed in the FreeRTOS configuration
does not support pr in t f ( ) . Make i t larger .

Period i s the nominal period of the tasks to be created
∗/
#define STACK_SIZE (configMINIMAL_STACK_SIZE+512)
#define PERIOD (( portTickType)100)

/∗ Periodic task with re l a t i v e delay (vTaskDelay ) ∗/
void rel_delay(void *dummy)
{

while (1)
{

/∗ Block for PERIOD ticks , measured from ’now’ ∗/
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vTaskDelay(PERIOD );

printf ("rel_delay active at --------- %9u ticks\n",
(unsigned int)xTaskGetTickCount());

}
}

/∗ Periodi task with absolute delay (vTaskDelayUntil ) ∗/
void abs_delay(void *dummy)
{

portTickType last_wakeup = xTaskGetTickCount();

while (1)
{

/∗ Block un t i l the instant last wakeup + PERIOD,
then update last wakeup and return

∗/
vTaskDelayUntil(&last_wakeup , PERIOD );

printf ("abs_delay active at %9u --------- ticks\n",
(unsigned int)xTaskGetTickCount());

}
}

int main(int argc , char *argv[])
{

xTaskHandle dummy;

/∗ Create the two tasks to be compared , with no arguments .
The task handles are not used , hence they are discarded

∗/
if(xTaskCreate(rel_delay , "REL", STACK_SIZE , NULL ,

tskIDLE_PRIORITY , &dummy) != pdPASS)
printf ("* Cannot create task rel_delay\n");

else if(xTaskCreate(abs_delay , "ABS", STACK_SIZE , NULL ,
tskIDLE_PRIORITY , &dummy) != pdPASS)

printf ("* Cannot create task abs_delay\n");

else
{

vTaskStartScheduler();
printf ("* vTaskStartScheduler() failed\n");

}

/∗ Since th i s i s jus t an example , always return a success
indication , even th i s might not be true .

∗/
return EXIT_SUCCESS;

}

8.5 Summary

In this chapter, we filled the gap between the abstract concepts of multipro-
gramming and IPC, presented in Chapters 3 through 6, and what real-time
operating systems actually offer programmers when the resources at their dis-
posal are severely constrained.

FreeRTOS, an open-source, real-time operating system targeted to small
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embedded systems has been considered as a case study. This is in sharp con-
trast to what was shown in Chapter 7, which deals instead with a full-fledged,
POSIX-compliant operating system like Linux. This also gives the readers the
opportunity of comparing several real-world code examples, written in C for
these two very dissimilar execution environments.

The first important difference is about how FreeRTOS implements multi-
processing. In fact, to cope with hardware limitations and to simplify the
implementation, FreeRTOS does not support multiple processes but only
threads, or tasks, all living within the same address space. With respect to a
POSIX system, task creation and deletion are much simpler and less sophis-
ticated, too.

For what concerns IPC, the primitives provided by FreeRTOS are rather
established, and do not depart significantly from any of the abstract concepts
discussed earlier in the book. The most important aspect that is worth not-
ing is that FreeRTOS sometimes maps a single abstract concept into several
distinct, concrete objects.

For example, the abstract semaphore corresponds to four different “flavors”
of semaphore in FreeRTOS, each representing a different trade-off between the
flexibility and power of the object and the efficiency of its implementation.
This is exactly the reason why this approach is rather common and is also
taken by most other, real-world operating systems.

Another noteworthy difference is that, quite unsurprisingly, time plays
a central role in a real-time operating system. For this reason, all abstract
primitives that may block a process (such as a P() on a semaphore) have
been extended to support a timeout mechanism. In this way, the caller can
specify a maximum amount of time it is willing to block for any given primitive
and do not run the risk of being blocked forever if something goes wrong.

Last but not least, FreeRTOS also provides a couple of primitives to syn-
chronize a task with the elapsed time. Even if those primitives were not dis-
cussed in abstract terms, they are especially important anyway in a real-time
system because they lay out the foundation for executing any kind of periodic
activity in the system. Moreover, they also provide a convenient way to insert
a controlled delay in a task without wasting processing power for it.
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We have seen in chapters 7 and 8 how processes and threads can communicate
within the same computer. This chapter will introduce the concepts and inter-
faces for achieving communication among different computers to implement
distributed applications. Distributed applications involving network commu-
nication are used in embedded systems for a variety of reasons, among which
are

• Computing Power : Whenever the computing power needed by the applica-
tion cannot be provided by a single computer, it is necessary to distribute
the application among different machines, each carrying out a part of the
required computation and coordinating with the others via the network.

• Distributed Data: Often, an embedded system is required to acquire and
elaborate data coming from different locations in the controlled plant. In
this case, one or more computers will be dedicated to data acquisition
and first-data processing. They will then send preprocessed data to other
computers that will complete the computation required for the control loop.

• Single Point of failure: For some safety-critical applications, such as aircraft
control, it is important that the system does not exhibit a single point of
failure, that is, the failure of a single computer cannot bring the system
down. In this case, it is necessary to distribute the computing load among
separate machines so that, in case of failure of one of them, another one
can resume the activity of the failed component.

Here we shall concentrate on the most widespread programming interface for
network communication based on the concept of socket. Before describing the
programming interface, we shall briefly review some basic concepts in network
communication with an eye on Ethernet, a network protocol widely used in
local area networks (LANs).
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9.1 The Ethernet Protocol

Every time different computers are connected for exchanging information, it
is necessary that they strictly adhere to a communication protocol. A commu-
nication protocol defines a set of rules that allow different computers, possi-
bly from different vendors, to communicate over a network link. Such rules
are specified in several layers, usually according to the Open Systems Inter-
connection (OSI) ISO/IEC standard [47]. At the lowest abstraction level is
the Physical Layer, which specifies how bits are transferred over the physical
communication media. The Data Link Layer specifies how data is transferred
between network entities. The Network Layer specifies the functional and
procedural means to route data among different networks, and the Trans-
port Layer provides transparent transfer of data between end users, providing
reliable data transfer services.

The definition of the Ethernet protocol is restricted to the physical layer
and the data link layer. The physical layer defines the electrical characteristics
of the communication media, including:

• Number of communication lines;

• Impedance for input and output electronics;

• Electrical levels and timing characteristics for high and low levels;

• The coding schema used to transmit ones and zeroes;

• Rules for ensuring that the communication links are not contended.

The physical layer specification often reflects the state of the art of electronic
technology and therefore rapidly evolves over time. As an example, the phys-
ical layer of Ethernet evolved in the past years through several main stages,
all discussed in IEEE Standard 802.3 [43]:

• 10Mbit/s connection over a coaxial cable. In this, a single coaxial cable
was shared by all the partners in communication using Manchester Coding
for the transmission of the logical ones and zeroes. Carrier sense multi-
ple access with collision detection (CSMA/CD) was defined to avoid the
communication line being driven by more than one transmitter.

• 100BASE-T (Fast Ethernet), which runs over two wire-pairs, normally one
pair of twisted wires in each direction, using 4B5B coding and providing
100 Mbit/s of throughput in each direction (full-duplex). Each network
segment can have a maximum distance of 100 metres and can be shared
only by two communication partners. Ethernet hubs and switches provide
the required connectivity among multiple partners.

• 1000BASE-T and 1000BASE-X (Gigabit Ethernet), ensuring a communica-
tion speed of 1 GBit/s over twisted pair cable or optical fiber, respectively.
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The physical layer is continuously evolving, and 10 Gigabit Ethernet is cur-
rently entering the mainstream market. Conversely, the data link layer of
Ethernet is more stable. This layer defines how information is coded by using
the transmitted logical zeroes and ones (how logical zeroes and ones are trans-
mitted is defined by the physical layer). Due to its complexity, the data link
layer is often split into two or more sublayers to make it more manageable.
For Ethernet, the lower sublayer is called Media Access Control (MAC) and is
discussed in Reference [43], along with the physical layer. The upper sub-layer
is the Logical Link Control (LLC) and is specified in Reference [46]. Data ex-
changed over Ethernet is grouped in Frames, and every frame is a packet of
binary data that contains the following fields:

• Preamble and Start Frame Identifier (8 octets): Formed by a sequence
of identical octets with a predefined value (an octet in network communi-
cation terminology corresponds to a byte), followed by a single octet whose
value differs only for the least significant bit. The preamble and the start
frame identifier are used to detect the beginning of the frame in the received
bit stream.

• MAC Destination (6 octets): the Media Access Control (MAC) address
of the designated receiver for the frame.

• MAC Source (6 octets): The MAC address of the sender of the frame.

• Packet Length (2 octets): Coding either the length of the data frame or
other special information about the packet type.

• Payload (46–1500 octets): Frame data.

• CRC (4 octets): Cyclic Redundancy Check (CRC) used to detect possible
communication errors. This field is obtained from the frame content at
the time the frame is sent, and the same algorithm is performed when the
packet is received. If the new CRC value is different form the CRC field,
the packet is discarded because there has indeed been a transmission error.

• Interframe Gap (12 octets): Minimum number of bytes between different
frames.

An Ethernet frame can therefore be seen as an envelope containing some data
(the payload). The additional fields are only required for the proper manage-
ment of the packet, such as the definition of the sender and receiver addresses
and checksum fields. The envelope is normally processed by the network board
firmware, and the payload is returned to the upper software layers when a
packet is received.
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9.2 TCP/IP and UDP

It would be possible to develop distributed application directly interfacing to
the data link layer of Ethernet, but in this way, in order to ensure proper and
reliable communication, the program should also handle the following facts:

• Address resolution: The Ethernet addresses are unique for every Hard-
ware Board, and they must be known to the program. Changing a com-
puter, or even a single Ethernet board, would require a change in the pro-
gram.

• Frame Splitting: The maximum payload in Ethernet is 1500 bytes, and
therefore, if a larger amount of data must be transmitted, it has to be split
in two or more packets. The original data must then be reassembled upon
the reception of the packets.

• Transmission Error Management: The network board firmware dis-
cards those packets for which a communication error has been detected
using the CRC field. So the program must take into account the possibility
that packets could be lost in the transmission and therefore must be able
to detect this fact and take corrective actions, such as request for a new
data packet.

It is clear that programming network communication at this level would be a
nightmare: the programmer would be requested to handle a variety of problems
that would overwhelm the application requirements. For this reason, further
communication layers are defined and can be used to achieve effective and re-
liable network communication. Many different network communication layers
are defined for different network protocols, and every layer, normally built on
top of one or more other layers, provides some added functionality in respect
of that provided by the layers below. Here we shall consider the Internet Pro-
tocol (IP), which addresses the Network Layer, and the Transmission Control
Protocol (TCP), addressing the Transport Layer. IP and TCP together im-
plement the well-known TCP/IP protocol. Both protocols are specified and
discussed in detail in a number of Request for Comments (RFC), a series of
informational and standardization documents about Internet. In their most
basic form, IP version 4 and TCP are presented in References [74], and [75],
respectively.
The IP defines the functionality needed for handling the transmission of pack-
ets along one or more networks and performs two basic functions:

• Addressing: It defines an hierarchical addressing system using IP ad-
dresses represented by a 4-byte integer.

• Routing: It defines the rules for achieving communication among differ-
ent networks, that is, getting packets of data from source to destination
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by sending them from network to network. Based on the destination IP
address, the data packet will be sent over the local networks from router
to router up to the final destination.

The Internet Protocol can be built on top of other data link layers for differ-
ent communication protocols. For LANs, the IP is typically built over Eth-
ernet. Observe that, in both layers, data are sent over packets, and the IP
packet defines, among other information, the source and destination IP ad-
dresses. However, when sent over an Ethernet segment, these fields cannot be
recognized by the Ethernet board, which is only able to recognize Ethernet
addresses. This apparent contradiction is explained by the fact the Internet
layer data packet is represented by the payload of the Ethernet packet, as
shown in Figure 9.1. So, when an Ethernet packet is received, the lowest com-
munication layers (normally carried out by the board firmware) will use the
Ethernet header, to acquire the payload and pass it to the upper layer. The
upper Internet layer will interpret this chunk of bytes as an Internet Packet
and will retrieve its content. For sending an Internet Packet over an Ethernet
network, the packet will be encapsulated into an Ethernet packet and then
sent over the Ethernet link. Observe that the system must know how to map
IP addresses with Ethernet addresses: such information will be maintained in
routing tables, as specified by the routing rules of the IP. If the resolution for
a given IP address is not currently known by the system, it is necessary to
discover it. The Address Resolution Protocol (ARP) [72] is intended for this
purpose and defines how the association between IP addresses and Ethernet
MAC addresses is exchanged over Ethernet. Basically, the machine needing
this information sends a broadcast message (i.e., a message that is received
by all the receivers for that network segment), bringing the MAC address of
the requester and the IP address for which the translation is required. The
receiver that recognizes the IP address sends a reply with its MAC address so
that the client can update its routing tables with the new information.

Even if the IP solves the important problem of routing the network pack-
ets so that the world network can be seen as a whole, communication is still
packet based, and reliability is not ensured because packets can be lost when
transmission errors occur. These limits are removed by TCP, built over IP.
This layer provides a connection-oriented view of the network transmissions:
the partners in the communication first establish a connection and then ex-
change data. When the connection has been established, a stream of data can
be exchanged between the connected entities. This layer removes the data
packet view and ensures that data arrive with no errors, no duplications, and
in order. In addition, this layer introduces the concept of port, that is, a unique
integer identifier of the communicating entity within a single computer (as-
sociated with a given IP address). So, in TCP/IP, the address of the sender
and the receiver will be identified by the pair (IP address, port), allowing
communication among different entities even if sharing the same IP address.
The operations defined by the TCP layer are complex and include manage-
ment of the detection and retransmission of lost packets, proper sequencing of
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FIGURE 9.1
Network frames: Ethernet, IP, and TCP/IP.

the packets, check for duplicated data assembling and de-assembling of data
packets, and traffic congestion control. TCP defines its own data packet for-
mat, which brings, in addition to data themselves, all the required information
for reliable and stream-oriented communication, including Source/Destination
port definitions and Packet Sequence and Acknowledge numbers used to de-
tect lost packets and handle retransmission.
Being the TCP layer built on top of the Internet layer, the latter cannot know
anything about the structure of the TCP data packet, which is contained in
the data part of the Internet packet, as shown in Figure 9.1. So, when a data
packet is received by the Internet layer (possibly contained in the payload of
a Ethernet data packet), the specific header fields will be used by the Internet
layer, which will pass the data content of the packet to the above TCP layer,
which in turn will interpret this as a TCP packet.

The abstraction provided by the TCP layer represents an effective way
to achieve network communication and, for this reason, TCP/IP communica-
tion is widely used in applications. In the next section we shall present the
programming model of TCP/IP and illustrate it in a sample client/server ap-
plication. This is, however, not the end of the story: many other protocols are
built over TCP/IP, such as File Transfer Protocol (FTP), and the ubiquitous
Hypertext Transfer Protocol (HTTP) used in web communication.

Even if the connection-oriented communication provided by TCP/IP is
widely used in practice, there are situations in which a connectionless model
is required instead. Consider, for example, a program that must communicate
asynchronous events to a set of listener entities over the network, possibly
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without knowing which are the recipients. This would not be possible using
TCP/IP because a connection should be established with every listener, and
therefore, its address must be known in advance. The User Datagram Protocol
(UDP) [73], which is built over the Internet layer, lets computer applications
send messages, in this case referred to as datagrams, to other hosts on an
Internet network without the need of establishing point-to-point connections.
In addition, UDP provides multicast capability, that is, it allows sending of
datagrams to sets of recipients without even knowing their IP addresses. On
the other side, the communication model offered by UDP is less sophisticated
than that of TCP/IP, and data reliability is not provided. Later in this chapter,
the programming interface of UDP will be presented, together with a sample
application using UDP multicast communication.

9.3 Sockets

The programming interface for TCP/IP and UDP is centered around the con-
cept of socket, which represents the endpoint of a bidirectional interprocess
communication flow. The creation of a socket is therefore the first step in the
procedure for setting up and managing network communication. The proto-
type of the socket creation routine is

int socket(int domain, int type, int protocol)

where domain selects the protocol family that will be used for communi-
cation. In the case of the Internet, the communication domain is AF INET.
type specifies the communication semantics, which can be SOCK STREAM or
SOCK DGRAM for TCP/IP or UDP communication, respectively. The last ar-
gument, protocol, specifies a particular protocol within the communication
domain to be used with the socket. Normally, only a single protocol exists
and, therefore, the argument is usually specified as 0.

The creation of a socket represents the only common step when man-
aging TCP/IP and UDP communication. In the following we shall first de-
scribe TCP/IP programming using a simple client–server application. Then
UDP communication will be described by presenting a program for multicast
notification.

9.3.1 TCP/IP Sockets

We have seen that TCP/IP communication requires the establishment of a
connection before transmission. This implies a client–server organization: the
client will request a connection to the server. The server may be accepting
multiple clients’ connections in order to carry out a given service. In the pro-
gram shown below, the server accepts character strings, representing some sort
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of command, from clients and returns other character strings representing the
answer to the commands. It is worth noting that a high-level protocol for
information exchange must be handled by the program: TCP/IP sockets in
facts provide full duplex point-to-point communication where the communi-
cation partners can send and transmit bytes, but it is up to the application to
handle transmission and reception to avoid, for example, situations in which
the two communication partners both hang waiting to receive some data from
the other. The protocol defined in the program below is a simple one and can
be summarized as follows:

• The client initiates the transaction by sending a command to be executed.
To do this, it first sends the length (4 bytes) of the command string, followed
by the command characters. Sending the string length first allows the server
to receive the correct number of bytes afterwards.

• The server, after receiving the command string, executes the command
getting and answer string, which is sent back to the client. Again, first the
length of the string is sent, followed by the answer string characters. The
transaction is then terminated and a new one can be initiated by the client.

Observe that, in the protocol used in the example, numbers and single-byte
characters are exchanged between the client and the server. When exchanging
numbers that are represented by two, four, or more bytes, the programmer
must take into account the possible difference in byte ordering between the
client and the server machine. Getting weird numbers from a network con-
nection is one of the main source of headache to novel network programmers.
Luckily, there is no need to find out exotic ways of discovering whether the
client and the server use a different byte order and to shuffle bytes manually,
but it suffices to use a few routines available in the network API that convert
short and integer numbers to and from the network byte order, which is, by
convention, big endian.

Another possible source of frustration for network programmers is due to
the fact that the recv() routine for receiving a given number of bytes from
the socket does not necessarily return after the specified number of bytes has
been read, but it may end when a lower number of bytes has been received,
returning the actual number of bytes read. This occurs very seldom in practice
and typically not when the program is tested, since it is related to the level of
congestion of the network. Consequently, when not properly managed, this fact
generates random communication errors that are very hard to reproduce. In
order to receive a given number of bytes, it is therefore necessary to check the
number of bytes returned by recv(), possibly issuing again the read operation
until all the expected bytes are read, as done by routine receive() in this
program.

The client program is listed below:

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
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#include <netinet /in.h>
#include <netdb.h>
#include <string.h>
#include <stdlib.h>
#define FALSE 0
#define TRUE 1

/∗ Receive routine : use recv to receive from socket and manage
the fact that recv may return af ter having read l e s s bytes than
the passed buffer s i ze
In most cases recv w i l l read ALL requested bytes , and the loop body
w i l l be executed once . This i s not however guaranteed and must
be handled by the user program. The routine returns 0 upon
successful completion , −1 otherwise ∗/

static int receive (int sd, char *retBuf , int size)
{

int totSize , currSize ;
totSize = 0;
while(totSize < size)
{

currSize = recv(sd, &retBuf [totSize ], size - totSize , 0);
if(currSize <= 0)

/∗ An error occurred ∗/
return -1;

totSize += currSize ;
}
return 0;

}

/∗ Main c l i en t program. The IP address and the port number of
the server are passed in the command l ine . After es tab l i sh ing
a connection , the program wi l l read commands from the terminal
and send them to the server . The returned answer str ing i s
then printed . ∗/

main(int argc , char **argv)
{

char hostname [100];
char command [256];
char *answer;
int sd;
int port;
int stopped = FALSE;
int len;
unsigned int netLen;
struct sockaddr_in sin;
struct hostent *hp;

/∗ Check number of arguments and get IP address and port ∗/
if (argc < 3)
{

printf ("Usage: client <hostname > <port >\n");
exit(0);

}
sscanf(argv[1], "%s", hostname );
sscanf(argv[2], "%d", &port);

/∗ Resolve the passed name and store the resu l t ing long representation
in the struc t hostent var iab le ∗/

if ((hp = gethostbyname(hostname )) == 0)
{

perror ("gethostbyname");
exit(0);

}
/∗ f i l l in the socket structure with host information ∗/

memset (&sin , 0, sizeof(sin));
sin.sin_family = AF_INET ;
sin.sin_addr .s_addr = (( struct in_addr *)(hp->h_addr))->s_addr;
sin.sin_port = htons(port);
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/∗ create a new socket ∗/
if ((sd = socket(AF_INET , SOCK_STREAM , 0)) == -1)
{

perror ("socket");
exit(0);

}
/∗ connect the socket to the port and host

spec i f i ed in struc t sockaddr in ∗/
if (connect (sd ,(struct sockaddr *)&sin, sizeof(sin)) == -1)
{

perror ("connect ");
exit(0);

}
while(! stopped )
{

/∗ Get a str ing command from terminal ∗/
printf ("Enter command : ");
scanf("%s", command );
if(! strcmp(command , "quit"))

break;
/∗ Send f i r s t the number of characters in the command and then

the command i t s e l f ∗/
len = strlen(command );

/∗ Convert the integer number into network byte order ∗/
netLen = htonl(len);

/∗ Send number of characters ∗/
if(send(sd, &netLen , sizeof (netLen), 0) == -1)
{

perror("send");
exit(0);

}
/∗ Send the command ∗/

if (send(sd, command , len, 0) == -1)
{

perror("send");
exit(0);

}
/∗ Receive the answer : f i r s t the number of characters

and then the answer i t s e l f ∗/
if(receive (sd, (char *)&netLen , sizeof(netLen )))
{

perror("recv");
exit(0);

}
/∗ Convert from Network byte order ∗/

len = ntohl(netLen );
/∗ Allocate and receive the answer ∗/

answer = malloc(len + 1);
if(receive (sd, answer, len))
{

perror("send");
exit(1);

}
answer [len] = 0;
printf ("%s\n", answer );
free(answer );

}
/∗ Close the socket ∗/

close(sd);
}

The above program first creates a socket and connects it to the server whose
IP Address and port are passed in the command string. Socket connection
is performed by routine connect(), and the server address is specified in a
variable of type struct sockaddr in, which is defined as follows
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struct sockaddr_in {

short sin_family; // Address family e.g. AF_INET

unsigned short sin_port; // Port number in Network Byte order

struct in_addr sin_addr; // see struct in_addr, below

char sin_zero[8]; //Padding zeroes

};

struct in_addr {

unsigned long s_addr; //4 byte IP address

};

The Internet Address is internally specified as a 4-byte integer but is presented
to users in the usual dot notation. The conversion from human readable no-
tation and the integer address is carried out by routine gethostbyname(),
which fills a struct hostent variable with several address-related informa-
tion. We are interested here (and in almost all the applications in practice)
in field h addr, which contains the resolved IP address and which is copied
in the corresponding field of variable sin. When connect() returns success-
fully, the connection with the server is established, and data can be exchanged.
Here, the exchanged information is represented by character strings: command
string are sent to the server and, for every command, an answer string is re-
ceived. The length of the string is sent first, converted in network byte order
by routine htonl(), followed by the string characters. Afterwards, the answer
is obtained by reading first its length and converting from network byte order
via routine ntohl(), and then reading the expected number of characters.

The server code is listed below, and differs in several points from the
client one. First of all, the server does not have to know the address of the
clients: after creating a socket and binding it to the port number (i.e., the
port number clients will specify to connect to the server), and specifying the
maximum length of pending clients via listen() routine, the server suspends
itself in a call to routine accept(). This routine will return a new socket to
be used to communicate with the client that just established the connection.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet /in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <string.h>
#include <stdlib.h>

/∗ Handle an estab l i shed connection
routine receive i s l i s t ed in the previous example ∗/

static void handleConnection(int currSd)
{

unsigned int netLen;
int len;
char *command , *answer;
for(;;)
{

/∗ Get the command str ing length
If receive fa i l s , the c l i en t most l i k e l y exi ted ∗/
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if(receive (currSd , (char *)&netLen , sizeof(netLen )))
break;

/∗ Convert from network byte order ∗/
len = ntohl(netLen );
command = malloc(len+1);

/∗ Get the command and write terminator ∗/
receive (currSd , command , len);
command [len] = 0;

/∗ Execute the command and get the answer character s tr ing ∗/
...

/∗ Send the answer back ∗/
len = strlen(answer );

/∗ Convert to network byte order ∗/
netLen = htonl(len);

/∗ Send answer character length ∗/
if (send(currSd , &netLen, sizeof(netLen), 0) == -1)

break;
/∗ Send answer characters ∗/

if (send(currSd , answer, len , 0) == -1)
break;

}
/∗ The loop i s most l i k e l y exi ted when the connection i s terminated ∗/

printf("Connection terminated\n");
close(currSd );

}

/∗ Main Program ∗/
main(int argc , char *argv[])
{

int sd , currSd;
int sAddrLen ;
int port;
int len;
unsigned int netLen;
char *command , *answer;
struct sockaddr_in sin, retSin;

/∗ The port number i s passed as command argument ∗/
if(argc < 2)
{

printf ("Usage: server <port >\n");
exit(0);

}
sscanf(argv[1], "%d", &port);

/∗ Create a new socket ∗/
if ((sd = socket(AF_INET , SOCK_STREAM , 0)) == -1)
{

perror ("socket");
exit(1);

}
/∗ I n i t i a l i z e the address ( s truc t sokaddr in ) f i e l d s ∗/

memset (&sin , 0, sizeof(sin));
sin.sin_family = AF_INET ;
sin.sin_addr .s_addr = INADDR_ANY;
sin.sin_port = htons(port);

/∗ Bind the socket to the spec i f i ed port number ∗/
if (bind(sd, (struct sockaddr *) &sin , sizeof(sin)) == -1)
{

perror ("bind");
exit(1);

}
/∗ Set the maximum queue length for c l i en t s requesting connection to 5 ∗/

if (listen(sd, 5) == -1)
{

perror ("listen");
exit(1);

}
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sAddrLen = sizeof(retSin );
/∗ Accept and serve a l l incoming connections in a loop ∗/

for(;;)
{

if (( currSd =
accept(sd, (struct sockaddr *) &retSin, &sAddrLen )) == -1)

{
perror("accept");
exit(1);

}
/∗ When execution reaches th i s point a c l i en t es tab l i shed the connection .

The returned socket (currSd) i s used to communicate with the c l i en t ∗/
printf ("Connection received from %s\n", inet_ntoa(retSin.sin_addr ));
handleConnection(currSd );

}
}

In the above example, the server program has two nested loops: the external
loop waits for incoming connections, and the internal one, defined in routine
handleConnection(), handles the connection just established until the client
exits. Observe that the way the connection is terminated in the example is
rather harsh: the inner loop breaks whenever an error is issued when either
reading or writing the socket, under the assumption that the error is because
the client exited. A more polite management of the termination of the con-
nection would have been to foresee in the client–server protocol an explicit
command for closing the communication. This would also allow discriminat-
ing between possible errors in the communication and the natural termination
of the connection.

Another consequence of the nested loop approach in the above program is
that the server, while serving one connection, is not able to accept any other
connection request. This fact may pose severe limitations to the functional-
ity of a network server: imagine a web server that is able to serve only one
connection at a time! Fortunately, there is a ready solution to this problem:
let a separate thread (or process) handle the connection established, allowing
the main process accepting other connection requests. This is also the reason
for the apparently strange fact why routine accept() returns a new socket to
be used in the following communication with the client. The returned socket,
in fact, is specific to the communication with that client, while the original
socket can still be used to issue accept() again.

The above program can be turned into a multithreaded server just replac-
ing the external loop accepting incoming connections as follows:

/∗ Thread routine . I t c a l l s routine handleConnection ()
defined in the previous program. ∗/

static void *connectionHandler(void *arg)
{

int currSock = *(int *)arg;
handleConnection(currSock );
free(arg);
pthread_exit(0);
return NULL;

}
...
/∗ Replacement of the external ( accept ) loop of the previous program ∗/

for(;;)
{
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/∗ Allocate the current socket .
I t w i l l be freed just before thread termination . ∗/
currSd = malloc(sizeof(int));
if ((*currSd =

accept(sd, (struct sockaddr *) &retSin, &sAddrLen )) == -1)
{

perror("accept");
exit(1);

}
printf ("Connection received from %s\n", inet_ntoa(retSin.sin_addr ));

/∗ Connection received , s tar t a new thread serving the connection ∗/
pthread_create(&handler , NULL , connectionHandler, currSd );

}

In the new version of the program, routine handleConnection() for the com-
munication with the client is wrapped into a thread. The only small change
in the program is due to the address of the socket being passed because the
thread routine accepts a pointer argument. The new server can now accept
and serve any incoming connection in parallel.

9.4 UDP Sockets

We have seen in the previous section how the communication model provided
by TCP/IP ensures reliable connection between a client and a server applica-
tion. TCP is built over IP and provides the functionality necessary to achieve
communication reliability over unreliable packet-based communication layer,
such as IP is. This is obtained using several techniques for timestamping mes-
sages in order to detect missing, duplicate, or out-of-order message reception
and to handle retransmission in case of lost packets. As a consequence, al-
though TCP/IP is ubiquitous and is the base protocol for a variety of other
protocols, it may be not optimal for real-time communication. In real-time
communication, in fact, it is often preferable not to receive a data packet at
all rather than receive it out of time. Consider, for example, a feedback system
where a controller receives from the network data from sensors and computes
the actual reference values for actuators. Control computation must be per-
formed on the most recent samples. Suppose that a reliable protocol such
as TCP/IP is used to transfer sensor data, and that a data packet bringing
current sensor values is lost: in this case, the protocol would handle the re-
transmission of the packet, which is eventually received correctly. However, at
the time this packet has been received, it brings out-of-date sensor values, and
the following sensor samples will likely arrive delayed as well, at least until the
transmission stabilizes. From the control point of view, this situation is often
worse than not receiving the input sample at all, and it is preferable that the
input values are not changed in the next control cycle, corresponding to the
assumption that sensor data did not change during that period. For this rea-
son a faster protocol is often preferred for real-time application, relaxing the
reliability requirement, and the UDP is normally adopted. UDP is a protocol
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built above IP that allows that applications send and receive messages, called
datagrams, over an IP network. Unlike TCP/IP, the communication does not
require prior communication to set up client–server connection, and for this
reason, it is called connectionless. UDP provides an unreliable service, and
datagrams may arrive out of order, duplicated, or lost, and these conditions
must be handled in the user application. Conversely, faster communication
can be achieved in respect of other reliable protocols because UDP introduces
less overhead. As for TCP/IP, message senders and receivers are uniquely
identified by the pair (IP Address, port). No connection is established prior to
communication, and datagrams sent and received by routines sendto() and
revfrom(), respectively, can be sent and received to/from any other partner
in communication. In addition to specifying a datagram recipient in the form
(IP Address, port), UDP allows broadcast, that is, sending the datagram to
all the recipients in the network, and multicast, that is, sending the data-
gram to a set of recipients. In particular, multicast communication is useful
in distributed embedded applications because it is often required that data
are exchanged among groups of communicating actors. The approach taken in
UDP multicast is called publish–subscribe, and the set of IP addresses ranging
from 224.0.0.0 to 239.255.255.255 is reserved for multicast communication.
When an address is chosen for multicast communication, it is used by the
sender, and receivers must register themselves for receiving datagrams sent to
such address. So, the sender is not aware of the actual receivers, which may
change over time.

The use of UDP multicast communication is explained by the following
sender and receiver programs: the sender sends a string message to the mul-
ticast address 225.0.0.37, and the message is received by every receiver that
subscribed to that multicast address.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet /in.h>
#include <arpa/inet.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
/∗ Port number used in the application ∗/
#define PORT 4444
/∗ Multicast address ∗/
#define GROUP "225.0.0.37"
/∗ Sender main program: get the str ing from the command argument ∗/
main(int argc , char *argv[])
{

struct sockaddr_in addr;
int sd;
char *message ;

/∗ Get message str ing ∗/
if(argc < 2)
{

printf ("Usage: sendUdp <message >\n");
exit(0);

}
message = argv [1];

/∗ Create the socket . The second argument spec i f i e s that
th i s i s an UDP socket ∗/

if ((sd = socket(AF_INET ,SOCK_DGRAM ,0)) < 0)
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{
perror ("socket");
exit(0);

}
/∗ Set up destination address : same as TCP/IP example ∗/

memset (&addr ,0,sizeof(addr));
addr.sin_family = AF_INET ;
addr.sin_addr .s_addr = inet_addr(GROUP);
addr.sin_port =htons(PORT);

/∗ Send the message ∗/
if (sendto(sd,message ,strlen (message ),0,

(struct sockaddr *) &addr , sizeof(addr)) < 0)
{

perror ("sendto");
exit(0);

}
/∗ Close the socket ∗/

close(sd);
}

In the above program, the translation of the multicast address 225.0.0.37
from the dot notation into its internal integer representation is carried out by
routine inet addr(). This routine is a simplified version of gethostbyname()
used in the TCP/IP socket example. The latter, in fact, provides the resolution
of names based on the current information maintained by the IP, possibly
communicating with other computers using a specific protocol to retrieve the
appropriate mapping. On the Internet, this is usually attained by means of the
Domain Name System (DNS) infrastructure and protocol. The general ideas
behind DNS are discussed in Reference [66], while Reference [65] contains the
full specification.

The UDP sender program is simpler than in the TCP/IP connection be-
cause there is no need to call connect() first, and the recipient address is
passed directly to the send routine. Even simpler is the receiver program be-
cause it is no more necessary to handle the establishment of the connection.
In this case, however, the routine for receiving datagrams must also return
the address of the sender since different clients can send datagrams to the
receiver. The receiver program is listed below:
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet /in.h>
#include <arpa/inet.h>
#include <time.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#define PORT 4444
#define GROUP "225.0.0.37"
/∗ Maximum dimension of the receiver buffer ∗/
#define BUFSIZE 256
/∗ Receiver main program. No arguments are passed in the command l ine . ∗/
main(int argc , char *argv[])
{

struct sockaddr_in addr;
int sd, nbytes ,addrLen ;
struct ip_mreq mreq;
char msgBuf[BUFSIZE ];

/∗ Create a UDP socket ∗/
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if ((sd=socket(AF_INET ,SOCK_DGRAM ,0)) < 0)
{

perror ("socket");
exit(0);

}
/∗ Set up receiver address . Same as in the TCP/IP example . ∗/

memset (&addr ,0,sizeof(addr));
addr.sin_family = AF_INET ;
addr.sin_addr .s_addr = INADDR_ANY;
addr.sin_port = htons(PORT);

/∗ Bind to receiver address ∗/
if (bind(sd ,(struct sockaddr *) &addr ,sizeof(addr)) < 0)
{

perror ("bind");
exit(0);

}
/∗ Use setsockopt () to request that the receiver join a multicast group ∗/

mreq.imr_multiaddr.s_addr = inet_addr(GROUP);
mreq.imr_interface.s_addr = INADDR_ANY;
if (setsockopt(sd,IPPROTO_IP ,IP_ADD_MEMBERSHIP,&mreq ,sizeof(mreq)) < 0)
{

perror ("setsockopt");
exit(0);

}
/∗ Now the receiver belongs to the multicast group :

s tar t accepting datagrams in a loop ∗/
for(;;)
{

addrLen = sizeof(addr);
/∗ Receive the datagram . The sender address i s returned in addr ∗/

if (( nbytes = recvfrom (sd, msgBuf , BUFSIZE , 0,
(struct sockaddr *) &addr ,&addrLen )) < 0)

{
perror("recvfrom ");
exit(0);

}
/∗ Insert terminator ∗/

msgBuf [nBytes] = 0;
printf ("%s\n", msgBuf );

}
}

After creating the UDP socket, the required steps for the receiver are

1. Bind to the receiver port, as for TCP/IP.

2. Join the multicast group. This is achieved via the generic
setsockopt() routine for defining the socket properties (similar
in concept to ioctl()) where the IP ADD MEMBERSHIP operation is
specified and the multicast address is specified in a variable of type
struct ip mreq.

3. Collect incoming datagrams using routine recvfrom(). In addition
to the received buffer containing datagram data, the address of the
sender is returned.

Observe that, in this example, there is no need to send the size of the character
strings. In fact, sender and receivers agree on communicating the characters
(terminator excluded) in the exchanged datagram whose size will depend on
the number of characters in the transferred string: it will be set by the sender
and detected by the receiver.
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9.5 Summary

This chapter has presented the programming interface of TCP/IP and UDP,
which are widely used in computer systems and embedded applications. Even
if the examples presented here refer to Linux, the same interface is exported
in other operating systems, either natively as in Windows and VxWorks or by
separate modules, and so it can be considered a multiplatform communication
standard. For example, lwIP [27] is a lightweight, open-source protocol stack
that can easily be layered on top of FreeRTOS [13] and other small operating
systems. It exports a subset of the socket interface to the users.
TCP/IP provides reliable communication and represents the base protocol for
a variety of other protocols such as HTTP, FTP and Secure Shell (SSH).
UDP is a lighter protocol and is often used in embedded systems, especially
for real-time applications, because it introduces less overhead. Using UDP,
user programs need to handle the possible loss, duplication and out-of-order
reception of datagrams. Such a management is not as complicated as it might
appear, provided the detected loss of data packets is acceptable. In this case,
it suffices to add a timestamp to each message: the sender increases the times-
tamp for every sent message, and the timestamp is checked by the receiver.
If the timestamp of the received message is the previous received timestamp
plus one, the message has been correctly received, and no datagram has been
lost since the last reception. If the timestamp is greater than the previous one
plus one, at least another datagram has been lost or will arrive out of order.
Finally, if the timestamp is less or equal the previous one, the message is a
duplicated one or arrived out of order, and will be discarded.

The choice between TCP/IP and UDP in an embedded system depends
on the requirements: whenever fast communication is required, and the occa-
sional loss of some data packet is tolerable, UDP is a good candidate. There
are, however, other applications in which the loss of information is not tolera-
ble: imagine what would happen if UDP were used for communicating alarms
in a nuclear plant! So, in practice, both protocols are used, often in the same
application, where TCP/IP is used for offline communication (no realtime re-
quirements) and whenever reliability is an issue. The combined use of TCP/IP
and UDP is common in many applications. For example, the H.323 proto-
col [51], used to provide audiovisual communication sessions on any packet
network, prescribes the use of UDP for voice and image transmission, and
TCP/IP for communication control and management. In fact, the loss of dat-
apacket introduces degradation in the quality of communication, which can be
acceptable to a certain extent. Conversely, failure in management information
exchange may definitely abort a videoconference session.

Even if this chapter concentrated on Ethernet, TCP/IP, and UDP, which
represent the most widespread communication protocols in many fields of ap-
plication, it is worth noting that several other protocols exist, especially in
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industrial applications. For example, EtherCAT [44] is an Ethernet-based pro-
tocol oriented towards high-performance communication. This is achieved by
minimizing the number of exchanged data packets, and the protocol is used in
industrial machine controls such as assembly systems, printing machines, and
robotics. Other widespread communication protocols in industrial application
are not based on Ethernet and define their own physical and data link layers.
For example, the Controller Area Network (CAN) [49, 50] bus represents a
message-based protocol designed specifically for automotive applications, and
Process Field Bus (PROFIBUS) [40] is a standard for field bus communication
in automation technology.

As a final remark, recall that one of the main reasons for distributed com-
puting is the need for a quantity of computing power that cannot be provided
by a single machine. Farms of cheap personal computers have been widely
used for applications that would have otherwise required very expensive so-
lutions based on supercomputers. The current trend in computer technology,
however, reduces the need of distributed systems for achieving more comput-
ing power because modern multicore servers allow distribution of computing
power among the processor cores hosted in the same machine, with the ad-
vantages that communication among computing units is much faster since it
is carried out in memory and not over a network link.
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From the previous chapters, Chapter 5 in particular, we know that a shared
object, or concurrent object, is a data structure that can be accessed and modi-
fied by means of a fixed, predefined set of operations by a number of concurrent
processes. Uncontrolled, concurrent access to a shared object may lead to the
unrecoverable corruption of the object contents, a dangerous situation known
as race condition.

For this reason, object access is traditionally implemented by means of
critical sections or regions. A mutual exclusion mechanism, for example, a
semaphore, governs the access to critical regions and makes processes wait if
necessary. In this way, it ensures than only one process at a time is allowed
to access and/or modify the object. With this approach, usually called lock-
based object sharing, a process wishing to access a shared object must obey
the following protocol:

1. Acquire a lock of some sort before entering the critical region;

2. Access the shared object within the critical region;

3. Release the lock when exiting the critical region.

As long as a process holds a lock, any other process contending for the same
lock is enforced to wait—in other words it is blocked—until the first one ex-
its from its critical region. As a side effect, if the process holding the lock
is delayed (or halted due to an error), the other processes will be unable
to progress, possibly forever. Even without working out all the details, it is
easy to imagine that lock-based object sharing among processes with different
priorities is an important issue in a real-time system.

In fact, when objects are shared in this way, a higher-priority process may
be forced to wait for a lower-priority one and, in a sense, this scenario goes
against the very concept of priority. Even if adequate methods to deal with
the problem exist, and will be discussed in Chapter 15, it is also true that
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some hardware and software components introduce execution delays that are
inherently hard to predict precisely, for example,

• Page faults (on demand-paging systems)

• Cache and TLB misses

• Branch mispredictions

• Failures

This implies a certain degree of uncertainty on how much time a given task will
actually spend within a critical region in the worst case, and the uncertainty
is reflected back into worst-case blocking time computation, as we will see in
Chapter 15.

Even if a full discussion of the topic is beyond the scope of this book,
this chapter contains a short introduction to a different method of object
sharing, known as lock and wait-free communication. The main difference with
respect to lock-based object sharing is that the former is able to guarantee the
consistency of an object shared by many concurrent processes without ever
forcing any process to wait for another.

In particular, we will first look at a very specific method, namely, a lock-free
algorithm for sharing data among multiple, concurrent readers and one single
writer. Then, another method will be presented, which solves the problem in
more general terms and allows objects of any kind to be shared in a lock-
free way. The two methods are related because some aspects of the former—
namely, the properties of multidigit counters—are used as a base for the latter.

The inner workings of this kind of algorithms are considerably more com-
plex than, for instance, semaphores. Hence, this chapter is, by necessity, based
on more formal grounds than the previous ones and includes many theorems.
However, the proof of most theorems can safely be skipped without losing the
general idea behind them.

See, for example, References [4, 3] for a more thorough discussion about
how lock-free objects can be profitably adopted in a real-time system, as well
as a framework for their implementation.

10.1 Basic Principles and Definitions

Definition 10.1. Given a system of processes J = {J1, . . . , Jn} wishing
to access a shared object S, the implementation of S is lock-free (sometimes
called nonblocking) if

some process Ji ∈ J must complete an operation on S after the system
J takes a finite number of steps.
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In this definition, a step is meant to be an elementary execution step of a
process such as, for example, the execution of one machine instruction. The
concept of execution step is not tightly related to time, but it is assumed that
each execution step requires a finite amount of time to be accomplished. In
other words, the definition guarantees that, in a finite amount of time, some
process Ji—not necessarily all of them—will always make progress regardless
of arbitrary delays or halting failures of other processes in J .

It is easy to show, by means of a counterexample, that sharing an object
by introducing critical regions leads to an implementation that is necessarily
not lock-free. That is, let us consider a shared object accessed by a set of
processes J = {J1, . . . , Jn} and let us assume that each process contains a
critical section, all protected by the same lock.

If any process Ji acquires the lock, enters the critical section, and halts
without releasing the lock, regardless of what steps the system J takes and
the number of such steps, none of the processes will complete its operation.
On the contrary, all processes will wait forever to acquire the lock, without
making progress, as soon as they try to enter the critical section.

Definition 10.2. Similarly, given a set of processes J = {J1, . . . , Jn} wish-
ing to access a shared object S, the implementation of S is wait-free if

each process Ji ∈ J must complete an operation after taking a finite
number of steps, provided it is not halted.

The definition guarantees that all nonhalted processes—not just some of
them as stated in the definition of lock-free—will make progress, regardless of
the execution speed of other processes. For this reason, the wait-free condition
is strictly stronger than the lock-free condition.

Both lock-free and wait-free objects have a lot of interesting and useful
properties. First of all, lock-free and wait-free objects are not (and cannot
be) based on critical sections and locks. Lock-free objects are typically imple-
mented using retry loops in which a process repeatedly tries to operate on the
shared object until it succeeds. Those retry loops are potentially unbounded
and may give rise to starvation for some processes.

On the other hand, wait-freedom precludes all waiting dependencies among
processes, including potentially unbounded loops. Individual wait-free opera-
tions are therefore necessarily starvation-free, another important property in
a real-time system.

10.2 Multidigit Registers

One of the first widely known, lock-free algorithm was a concurrent read/write
buffer for multiple readers and one single writer, proposed by Lamport in
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1977 [56]. Its basic principle is that, if a multidigit register is read in one
direction while it is being written in the opposite direction, the value obtained
by the read has a few useful properties.

Even if it is not so commonly used in practice, this algorithm has the
advantage of being relatively simple to describe. Nevertheless, it has a great
teaching value because it still contains all the typical elements to be found in
more complex lock-free algorithms. This is the main reason it will be presented
here. It should also be noted that simple nonblocking buffers for real-time
systems were investigated even earlier by Sorenson and Hemacher in 1975 [84].

The main underlying hypothesis of the Lamport’s method is that there are
basic units of data, called digits, which can be read and written by means of in-
divisible, atomic operations. In other words, it is assumed that the underlying
hardware automatically sequences concurrent operations at the level of a sin-
gle digit. This hypothesis is not overly restrictive because digits can be made
as small as needed, even as small as a single bit. For example, making them
the size of a machine word is enough to accommodate most existing hardware
architectures, including many shared-memory multiprocessor systems.

Let v denote a data item composed of one or more digits. It is assumed
that two distinct processes cannot concurrently modify v because there is only
one writer. Since the value of v may, and usually will, change over time, let
v[0] denote the initial value of v. This value is assumed to be already there
even before the first read operation starts. In other words, it is assumed that
the initial value of v is implicitly written by an operation that precedes all
subsequent read operations. In the same way, let v[1], v[2], . . . , denote the
successive values of v over time.

Due to the definition just given, each write operation to v begins with v
equal to v[i], for some i ≥ 0, and ends with v equal to v[i+1]. Since v is in
general composed of more than one digit, the transition from the old to the
new value cannot be accomplished in one single, atomic step.

The notation v = v1, . . . , vm indicates that the data item v is composed
of the subordinate data items vj, 1 ≤ j ≤ m. Each subordinate data item vj

is only written as part of a write to v, that is, subordinate data items do not
change value “on their own.” For simplicity, it is also assumed that a read (or
write) operation of v involves reading (or writing) each vj. If this is not the
case, we pretend that a number of dummy read (or write) operations occur
anyway. For write operations, if a write to v does not involve writing vj, we
pretend that a write to vj was performed, with a value that happens to be
the same as that subordinate data item had before. Under these hypotheses,
we can write

v[i] = v
[i]
1 , . . . , v[i]

m ∀i ≥ 0 . (10.1)

In particular, we can say that the i-th value v assumes over time, v[i], is

composed by the i-th value of all its subordinate data items v
[i]
j , 1 ≤ j ≤ m.

When one ore more processes read a data item that cannot be accessed in
an atomic way, while another process is updating it, the results they get may be
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FIGURE 10.1
When one ore more processes read a data item that cannot be accessed in an
atomic way while another process is updating it, the results they get may be
difficult to predict.

difficult to predict. As shown in Figure 10.1, the most favorable case happens
when a read operation is completely performed while no write operation is in
progress. In this case, it will return a well-defined value, that is, one of the
values v[i] the data item v assumes over time. For example, the leftmost read
operation shown in the figure will obtain v[2].

However, a read of v that is performed concurrently and that overlaps with
one or more writes to v may obtain a value different from any v[i]. In fact, if
v is not composed of a single digit, reading and writing it involves a sequence
of separate operations that take a certain amount of time to be performed.
All those individual operations, invoked by different processes, are executed
concurrently and may therefore overlap with each other.

By intuition, a read operation performed concurrently with one or more
write operations will obtain a value that may contain “traces” of different val-
ues v[i]. If a read obtains traces of m different values, that is, v[i1], . . . , v[im],
we say that it obtained a value of v[k,l], where k = min(i1, . . . , im) and
l = max(i1, . . . , im). According to how k and l are defined, it must be
0 ≤ k ≤ l.

Going back to Figure 10.1, we may be convinced that the rightmost read
operation may return traces of v[2], v[3], v[4], and v[5] because the time frame
occupied by the read operation spans across all those successive values of
v. More specifically, the read operation started before v[2] was completely
overwritten by the new value, made progress while values v[3], v[4], and v[5]

were being written into v, but ended before the write operation pertaining to
v[6] started.

It should also be remarked that lock-based techniques must not be con-
cerned with this problem because they enforce mutual exclusion between read
and write operations. For instance, when using a mutual exclusion semaphore
to access v, the scenario shown in the rightmost part of Figure 10.1 simply
cannot happen because, assuming that the semaphore has a First Come First
Served (FCFS) waiting queue,
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1. the read operation will start only after the write operation of v[3]

has been fully completed; and

2. the next write operation of v[4] will be postponed until the read
operation has read all digits of v.

More formally, let v be a sequence of m digits: v = d1, . . . , dm. Since
reading and writing a single digit are atomic operations, a read obtains a

value d
[i1]
1 , . . . , d

[im]
m . But since d

[ij ]
j is a digit of value v[ij ], we can also say

that the read obtained a trace of that particular value of v. In summary, the
read obtains a value v[k,l], where k = min(i1, . . . , im) and l = max(i1, . . . , im).
Hence, the consistency of this value depends on how k and l are related:

1. If k = l, then the read definitely obtained a consistent value of v,

and the value is v[k] = d
[k]
1 , . . . , d

[k]
m .

2. If k 
= l, then the consistency of the value obtained by the read
cannot be guaranteed.

The last statement does not mean that if k 
= l the read will never get a
consistent value. A consistent value can still be obtained if some digits of v
were not changed when going from one value to another. For instance, a read
of a 3-digit data item v may obtain the value

d
[6]
1 d

[7]
2 d

[6]
3 , (10.2)

because it has been performed while a write operation was bringing the value
of v from v[6] to v[7]. However, if the second digit of v is the same in both
v[6] and v[7], this still is a consistent value, namely, v[6].

In general, a data item v can be much more complicated than a fixed
sequence of m digits. The data item size may change with time so that suc-
cessive values of v may consist of different sets of digits. This happens, for
instance, when v is a list linked with pointers in which a certain set of digits
may or may no longer be part of the data item’s value, depending on how the
pointers are manipulated over time.

In this case, a read operation carried out while v is being updated may
return digits that were never part of v. Moreover, it may even be hard to define
what it means for a read to obtain traces of a certain value v[i]. Fortunately,
to solve the readers/writer problem for v, it turns out that the important
thing to ensure is that a read does not return traces of certain versions of v.

More formally, we only need a necessary (not sufficient) condition for a
read to obtain traces of a certain value v[i]. Clearly, if this condition does not
hold, the read cannot obtain traces of v[i]. By generalizing what was shown in
the example of Figure 10.1, the necessary conditions can be stated as follows:

Lemma 10.1. If a read of v obtains traces of value v[i], then

1. the beginning of the read preceded the end of the write of v[i+1];
and
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2. the end of the read followed the beginning of the write of v[i].

It is easy to prove that this theorem is true in the special case of a multidigit
data item. It is also a reasonable assumption in general, for other types of data,
although it will be harder to prove it.

Proof. For a multidigit number, the theorem can be proven by showing that
if either necessary condition is false, then a read of v cannot obtain a trace of
v[i]. In particular:

• Immediately after the write of v[i+1] concludes, it is v = d
[i+1]
1 , . . . , d

[i+1]
m ,

because all digits of v have been updated with the new value they have in
v[i+1].

• If the beginning of the read follows the end of this write, the read obtains

a value d
[i1]
1 , . . . , d

[im]
m with ij ≥ i + 1, that is, ij > i for 1 ≤ j ≤ m.

Informally, speaking, it may be either ij = i + 1 if the read got the k-
th digit before any further update was performed on it by the writer, or
ij > i + 1 if the digit was updated with an even newer value before the
read.

• In any case, it cannot be ij < i + 1 for any j because, as stated before,
all digits pertaining to v[i], as well as any earlier value, were overwritten
before the read started. Hence, the read cannot obtain traces of v[i].

• Immediately before the beginning of the write of v[i], it is v =

d
[i−1]
1 , . . . , d

[i−1]
m , because none of its digits have been updated yet.

• If the end of the read precedes the beginning of this write, the read obtains

a value d
[i1]
1 , . . . , d

[im]
m with ij ≤ i − 1, that is, ij < i for 1 ≤ j ≤ m.

Informally speaking, for any j, it will either be ij = i − 1, meaning that
the read received the latest value of the j-th digit, or ij < i− 1, signifying
it received some past value.

• As in the previous case, since the read operation cannot “look into the
future,” the read cannot obtain traces of v[i] because it cannot be ij ≥ i
for any j.

The necessary condition just stated can be combined with the definition
of v[k,l], given previously, to extend it and make it more general. As before,
the following statement can be proven for multidigit data items, whereas it is
a reasonable assumption, for other types of data:

Lemma 10.2. If a read of v obtains traces of version v[k,l], then

1. the beginning of the read preceded the end of the write of v[k+1];
and
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2. the end of the read followed the beginning of the write of v[l].

It is now time to discuss a few useful properties of the value a read oper-
ation can obtain when it is performed on a multidigit data item concurrently
with other read operations and one single write operation. In order to this, it
is necessary to formally define the order in which the groups of digit forming
a multidigit data item are read and written.

Let v = v1, . . . , vm, where the vj are not necessarily single digits but
may be groups of several adjacent digits. A read (or write) of v is performed
from left to right if, for each 1 ≤ j < m, the read (or write) of vj is completed
before the read (or write) of vj+1 is started. Symmetrically, a read (or write)
of v is performed from right to left if, for each 1 < j ≤ m, the read (or write)
of vj is completed before the read (or write) of vj−1 is started.

Before continuing, it should be noted that there is no particular reason to
state that lower-numbered digit groups are “on the left” of the data item, and
that higher-numbered digit groups are “on the right.” This definition is needed
only to give an intuitive name to those two read/write orders and be able to
tell them apart. An alternative statement that would place higher-numbered
digit groups on the left would clearly be equally acceptable.

It is also important to remark that the order in which the individual digits,
within a certain digit group vj are read (or written) is left unspecified by the
definitions.

Theorem 10.1. Let v = v1, . . . , vm and assume that v is always writ-
ten from right to left. A read performed from left to right obtains a value

v
[k1,l1]
1 , . . . , v

[km,lm]
m in which the kj and lj satisfy the following inequality:

k1 ≤ l1 ≤ k2 ≤ . . . ≤ km ≤ lm . (10.3)

Proof. By the definition of kj and lj , we already know that kj ≤ lj for each
1 ≤ j ≤ m. It is only necessary to prove that lj ≤ kj+1 for each 1 ≤ j < m.

To do this, we will prove that the actions performed by the read operation
being considered and a concurrent write operation must happen in a certain
order. In turn, all those actions can overlap with other read operations, but
there is no need to consider them because any action one reader performs
cannot modify the value of the data item being accessed, and therefore cannot
influence the value that another reader obtains in the meantime.

Namely, we will consider the following sequence of 5 actions, and prove
that they must necessarily occur in the given order, as follows:

1. End writing v
[lj ]
j+1

2. Begin writing v
[lj ]
j
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3. End reading v
[kj ,lj ]
j

4. Begin reading v
[kj+1,lj+1]
j+1

5. End writing v
[kj+1+1]
j+1

• Proving that action 1 precedes 2 is easy because the write operation is
performed from right to left and sequentially. Hence, the write operation
begins writing the next group of digits (the j-th group) only after finishing
with the previous one (the j + 1-th).

• Since the read of v
[kj ,lj ]
j returned a trace of v

[lj ]
j , the end of the read followed

the beginning of the write of v
[lj ]
j , from the second part of Lemma 10.2.

Therefore, action 2 precedes 3.

• As with the write operation, the read operation is also performed sequen-
tially, but from left to right. Hence, the read operation involving the j+1-th
group of digits begins after the j-th group has been read completely. As a
consequence, action 3 precedes 4.

• Since the read of v
[kj+1,lj+1]
j+1 returned a trace of v

[kj+1 ]
j+1 , the beginning of

the read preceded the end of the write of v
[kj+1+1]
j+1 , from the first part of

Lemma 10.2. Hence, action 4 precedes 5.

In summary, we have just proved that writing of v
[lj ]
j+1 (action 1) ends before

the writing of v
[kj+1+1]
j+1 (action 5) starts. Since both actions are performed by

a single writer, because there is only one writer in the system and version
numbers are monotonically increasing integer values, it must be lj < kj+1+1,
that is, lj ≤ kj+1. The proof does not make any assumption of j, and hence,
it is valid for any 1 ≤ j < m.

It should be noted that a “mirror image” of this theorem, as it is called
in Reference [56], also holds, in which the read/write order, as well as the
inequalities, are reversed. It can be proven in exactly the same way.

So far, digits have been defined as basic units of data, but no hypotheses
have been made about what individual digits contain or mean. More inter-
esting properties can be derived if it is assumed that digits actually hold an
integer value—as in ordinary digits and numbers—but a few more definitions
are needed to proceed.

Let, as usual, v = d1, . . . , dm, where dj are digits. If all the digits happen
to be integers, we say that v is an m-digit number. The operator μ(v) gives
the m− 1 leftmost digits of v, that is,

μ(v) = d1, . . . , dm−1. (10.4)

In the special case m = 1, μ(v) is defined to be zero. The definition of μ(·)
is useful for giving an inductive definition of the usual “less than” relation <
on m-digit numbers, as follows:
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Definition 10.3. Let v = d1, . . . , dm and w = e1, . . . , em be two m-digit
numbers. It is v < w if and only if

1. μ(v) < μ(w), or

2. μ(v) = μ(w) and dm < em.

According to this definition, the leftmost digit (d1) is considered to be the
most significant one. As for the definition of read and write orders, there is
nothing special about this choice.

From now on, the symbol < will be overloaded to denote two distinct “less
than” relations on different domains:

1. On integers, possibly held in a digit, as in dm < em

2. On m-digit numbers, as in v < w

In order to reason about the numeric value obtained by read operations on an
m-digit number, we start by proving this preliminary Lemma:

Lemma 10.3. Let v = d1, . . . , dm be an m-digit number, and assume that
i ≤ j implies v[i] ≤ v[j], that is, successive write operations never decrease its
numeric value. The following propositions hold:

1. If k1 ≤ . . . ≤ km ≤ k, then d
[k1]
1 , . . . , d

[km]
m ≤ v[k].

2. If k1 ≥ . . . ≥ km ≥ k, then d
[k1]
1 , . . . , d

[km]
m ≥ v[k].

Proof. The proof is carried out by induction on m—the number of digits
of v—starting from the base case m = 1. When m = 1, v is a single-digit
number, that is, v = d1. From the hypothesis,

i ≤ j ⇒ v[i] ≤ v[j] ⇒ d
[i]
1 ≤ d

[j]
1 . (10.5)

Then,

k1 ≤ k ⇒ d
[k1]
1 ≤ d

[k]
1 . (10.6)

But v[k] = d
[k]
1 , by definition, and hence,

k1 ≤ k ⇒ d
[k1]
1 ≤ v[k]. (10.7)

But (10.7) is equivalent to the first proposition of the Lemma. The second
proposition can be derived in a similar way by observing that

k1 ≥ k ⇒ d
[k1]
1 ≥ d

[k]
1 . (10.8)

Hence, it must be

k1 ≥ k ⇒ d
[k1]
1 ≥ v[k]. (10.9)
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For the induction step, we assume that m > 1 and that the Lemma is
true for m − 1; this will be our induction hypothesis. By definition of μ(·),
according to Definition 10.3, v[i] ≤ v[j] implies that μ(v[i]) ≤ μ(v[j]). We can
therefore apply the induction hypothesis because its premises are satisfied.
From the induction hypothesis,

k1 ≤ . . . ≤ km−1 ≤ km ⇒ d
[k1]
1 , . . . , d

[km−1]
m−1 ≤ μ(v[km]). (10.10)

The inequality on the right of (10.10) still holds if we append the same

digit d
[km]
m to both its sides:

d
[k1]
1 , . . . , d

[km−1]
m−1 ≤ μ(v[km ]) ⇒ d

[k1]
1 , . . . , d[km]

m ≤ v[km]. (10.11)

From the hypotheses, it is also known that km ≤ k, and this implies
v[km] ≤ v[k]. In summary, we have

k1 ≤ . . . ≤ km ≤ k ⇒ d
[k1]
1 , . . . , d[km]

m ≤ v[k] (10.12)

but this is exactly what the first proposition of the Lemma states. The sec-
ond proposition can be proven in the same way, basically by reversing all
inequalities in the proof.

Theorem 10.2. Let v = d1, . . . , dm be an m-digit number, and assume
that i ≤ j implies v[i] ≤ v[j] as in Lemma 10.3. The following propositions
hold:

1. If v is always written from right to left, then a read from left to
right obtains a value v[k,l] ≤ v[l].

2. If v is always written from left to right, then a read from right to
left obtains a value v[k,l] ≥ v[k].

Proof. Since the dj are single digits and read/write operations on them are

assumed to be atomic, reading a digit always returns a value d
[kj ,lj ]
j in which

kj = lj for all 1 ≤ j ≤ m. Let d
[kj ]
j be that value.

From Theorem 10.1, we know that if v is written from right to left and
read from left to right, the value obtained by the read is

d
[k1]
1 , . . . , d[km]

m with k1 ≤ . . . ≤ km. (10.13)

Since l = max(k1, . . . , km) by definition, it certainly is

k1 ≤ . . . ≤ km−1 ≤ l, (10.14)

and we can apply the first proposition of Lemma 10.3 to state that

d
[k1]
1 , . . . , d[km]

m ≤ v[l]. (10.15)
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FIGURE 10.2
An example of how concurrent read and write operations, performed in oppo-
site orders, relate to each other.

The last equation proves the first proposition of the Theorem. The sec-
ond proposition can be proved in a similar way using the “mirror image” of
Theorem 10.1 and the second proposition of Lemma 10.3.

An informal but perhaps more intuitive way of phrasing Theorem 10.2 is
as follows. If there is a writer that repeatedly updates an m-digit number,
bringing it from v[k] to v[l] without ever decreasing its value, any read op-
eration performed concurrently may return an inconsistent value v[k,l], with
k < l.

However, if the write operation proceeds from right to left (that is, from
the least significant digit to the most significant one) and the read operation
is performed from left to right, the value obtained by the read operation will
not be completely unpredictable. Rather, it will be less than or equal to v[l],
the most recent value the read operation got a trace of.

Symmetrically, if the write operation proceeds from left to right and the
read operation is performed from right to left, the value will be greater than
or equal to v[k], the oldest value the read operation got a trace of.

Figure 10.2 illustrates, with an example, how concurrent read and write
operations, performed in opposite orders, relate to each other. The figure
shows a shared, 4-digit number with an initial value of 1997. Two sequential
write operations, shown on the right part of the figure, increment it to 2003
at first and then to 2112, from right to left. The central part of the figure lists
all the values assumed by the 4-digit number during the updates. Digit values
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pertaining to distinct write operations are shown with distinct shades of grey
in the background, whereas the initial values have a white background.

With this depiction, a read operation performed concurrently with the
write operations mentioned above is represented by a path going from left to
right along the figure and picking one value for each digit. Figure 10.2 shows
one of those paths in which the read operation obtains the value 1012. It is
easy to see that, even if there are many possible paths, each corresponding to
a different value, all paths lead the read operation to obtain a value that does
not exceed the value eventually written by the last write operation, that is,
2112.

10.3 Application to the Readers/Writer Problem

The underlying idea of a lock-free algorithm is to let processes read from and
write into the shared data at any time without synchronizing them in any way.
A reader can therefore access the shared data while they are being written
and obtain an inconsistent value.

Instead of preventing this unfortunate outcome, the algorithm checks—
after reading—if it might have obtained an inconsistent value. If this is the
case, it retries the read operation. Intuitively, it may happen that a reader
loops for a long time if write operations are “frequent enough,” so that the
reader likely obtains an inconsistent value on each try.

The algorithm maintains two shared, multidigit version numbers associ-
ated with the shared data: v1 and v2. It is assumed that, initially, v1 = v2.
It works as follows:

• The writer increments version number v1 from left to right before starting
to write into the shared data.

• The writer increments version number v2 from right to left after finishing
the write operation.

• The reader reads version number v2 from left to right before starting to
read the shared data.

• The reader reads version number v1 from right to left after finishing reading
of the shared data.

• If the version numbers obtained before and after reading the shared data
do not match, the reader retries the operation.

The corresponding C-like code, derived from the Algol code of Reference [56],
is shown in Figure 10.3. In the figure,
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Initialization
multi digit number v1 = 0, v2 = 0;

Writer

→
v1 = v1 + 1;

...write shared data...
←
v2 = v1;

Reader

do {

temp =
→
v2;

...read shared data...

}

while(
←
v1 != temp);

FIGURE 10.3
C-like code of a lock-free solution to the readers/writer problem, using two
multidigit version numbers, adapted from [56].

•
→
v means that the read or write access to the digits of v are performed
from left to right.

•
←
v means that the read or write access to the digits of v are performed
from right to left.

• The listing shows that v1 is incremented by one; actually, the algorithm
presented in Reference [56] is more general and works as long as v1 is set
to any value greater than its current value.

• Similarly, both v1 and v2 are initialized to zero, although the algorithm
works as long as both those variables are initialized to the same, arbitrary
value.

Due to the read/write order, Theorem 10.2 states that the reader always
obtains a value of v2 less than or equal to the value just written (or being
written) into v2 when the read concluded. For the same reason, the value
obtained by reading v1 is always greater than or equal to the value v1 had
when the read began, even if that value was already being overwritten by the
writer.

Since the writer increments v1 before starting to update the shared data,
and increments v2 to the same value as v1 after the update is done, if the
reader obtains the same value from reading v2 and v1, it also read a single,
consistent version of the shared data. Otherwise, it might have obtained an
inconsistent value, and it must therefore retry the operation.

Formally, the correctness of the algorithm relies on the following theorem.
It states that, if the reader does not repeat the operation, then it obtained a
consistent value for the shared data.

Theorem 10.3. Let D denote the shared data item. Let v2[k1,l1],D[k2,l2],
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and v1[k3,l3] be the values of v2,D, and v1 obtained by a reader in one single
iteration of its loop.

If v2[k1,l1] = v1[k3,l3] (the reader exits from the loop and does not retry the
read), then k2 = l2 (the value it obtained for D is consistent).

Proof. Theorem 10.2, applied to v2 and v1, states that

v2[k1,l1] ≤ v2[l1] (10.16)

v1[k3,l3] ≥ v1[k3] . (10.17)

By applying Theorem 10.1 to the composite data item v = v2Dv1, we
obtain

k1 ≤ l1 ≤ k2 ≤ l2 ≤ k3 ≤ l3, (10.18)

because, due to the structure of the code shown in Figure 10.3, the writer
writes v from right to left, whereas readers read v from left to right. The
order in which the individual digits within digit groups v2, D, and v1 are
read or written is left unspecified in the code but, as stated before, none of
the properties proved so far rely on this.

However, v1[0] = v2[0], and the writer starts writing v2 after writing v1.
Therefore, l1 ≤ k3 from (10.18) implies that

v2[l1] ≤ v1[k3], (10.19)

and the equality v2[l1] = v1[k3] only holds if l1 = k3. Informally speaking, a
reader gets the same numeric value for v2 and v1 if and only if it reads them
after they have been incremented the same number of times by the writer.
Otherwise, if it gets an older “version” of v2 than of v1, the numeric value of
v2 will be lower than the value of v1.

By combining all the inequalities derived so far, namely, (10.16), (10.19),
and (10.17), we obtain

v2[k1,l1] ≤ v2[l1] ≤ v1[k3] ≤ v1[k3,l3] (10.20)

Hence, v2[k1,l1] = v1[k3,l3] (the reader exits from the loop and does not
retry the read) implies v2[l1] = v1[k3], but this in turn entails l1 = k3. From
(10.18) we can conclude that it must also be k2 = l2, but this result implies
that the reader obtained a consistent version ofD, that is,D[k2,l2] with k2 = l2,
and this proves the theorem.

It is interesting to point out that Theorem 10.3 is rather conservative. It
states a sufficient condition for the reader to obtain a consistent version of D,
but the condition is not necessary. In other words, the reader may obtain a
consistent version ofD although the values it got for v2 and v1 were different.
More formally, it may be k2 = l2 even if v2[k1,l1] 
= v1[k3,l3]. From a practical
perspective, a reader may retry a read, even if it already obtained a consistent
version of D in the previous iteration.
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The comparison of the properties of the readers/writer algorithm just dis-
cussed with the general definitions given in Section 10.1 shows that the writer
is wait-free. In fact, it always completes an operation after taking a finite num-
ber of steps, regardless of what the readers do or don’t, and thus it satisfies
Definition 10.2.

However, the writer can interfere with concurrent read operations, forcing
them to be retried. The number of tries required to successfully complete a
read is unbounded. The extreme case happens when the writer halts partway
along the update: any subsequent read operation will then be retried forever

because the readers will always find that
←
v1 
=

→
v2.

In any case, if we consider a set of readers plus one writer that does not fail,
it is still true that some of them will complete an operation after the system
takes a finite number of steps: the writer will definitely update the shared data
and some readers may be able to read it, too. The same property also holds if
we consider a set of readers without any writer, and hence, Definition 10.1 is
still met. For this reason, the algorithm presented in this section is lock-free,
but not wait-free.

10.4 Universal Constructions

Ad-hoc techniques, such as the algorithms described in Sections 10.2 and 10.3,
have successfully been used as building blocks to construct more complex lock-
free objects. However, they do not solve the problem in general terms and may
be difficult to understand and prove correct. Even more importantly, the proof
of correctness must be carried out again, possibly from scratch, whenever some
aspects of the algorithm change.

Both aspects may hinder the adoption of those methods for real-world ap-
plications, and stimulated other authors to look for a more practical method-
ology. As stated by Herlihy [34],

“A practical methodology should permit a programmer to design, say,
a correct lock-free priority queue without ending up with a publishable
result.”

According to Herlihy’s proposal [34], an arbitrary lock-free object is de-
signed in two steps:

1. The programmer implements the object as a stylized, sequential
program with no explicit synchronization, following certain simple
conventions.

2. The sequential implementation is transformed into a lock-free or
wait-free implementation by surrounding its code with a general
synchronization and memory management layer.
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It can be proved that, if the sequential implementation is correct, the trans-
formed implementation is correct as well.

Besides the usual atomic read and write operations on shared variables
already introduced for digit access in the previous sections, Herlihy’s approach
requires hardware support for

• A load linked operation, which copies a shared variable into a local
variable.

• A subsequent store conditional operation, which stores back a new value
into the shared variable only if no other process has modified the same
variable in the meantime.

• Otherwise, store conditional does not do anything and, in particular, it
does not modify the shared variable.

• In both cases, store conditional returns a success/failure indication.

• To provide room for an easier and more efficient implementation,
store conditional is permitted to fail, with a low probability, even if
the variable has not been modified at all.

Even if this kind of requirement may seem exotic at first sight, it should be
noted that most modern processors, and even some relatively low-end micro-
controllers, do provide such instructions. For example, starting from version
V6 of the ARM processor architecture [5], the following two instructions are
available:

1. LDREX loads a register from memory; in addition, if the address
belongs to a shared memory region, it marks the physical address
as exclusive access for the executing processor.

2. STREX performs a conditional store to memory. The store only oc-
curs if the executing processor has exclusive access to the memory
addressed. The instruction also puts into a destination register a
status value that represents its outcome. The value returned is

• 0 if the operation updated memory, or

• 1 if the operation failed to update memory.

Within this section, a concurrent system is a collection of n sequential pro-
cesses. As usual, processes communicate through shared objects and are se-
quential, that is, any operations they invoke on the shared objects are per-
formed in a sequence. Moreover, processes can halt at arbitrary points of their
execution and exhibit arbitrary variations in speed.

Objects are typed. The type of an object defines the set of its possible
values, as well as the operations that can be carried out on it. Objects are
assumed to have a sequential specification that defines the object behavior
when its operations are invoked sequentially by a single process.
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Process

Old version of 
the shared 

object

Shared pointer to current 
object version

New version of 
the shared 

object

1: load_linked

2: copy into new block

3: update the copy

4: store_conditional

FIGURE 10.4
Basic technique to transform a sequential object implementation into a lock-
free implementation of the same object.

As was done in Chapter 5, when dealing with a concurrent system, it is
necessary to give a meaning to interleaved operation executions. According to
the definition given in Reference [35], an object is linearizable if each opera-
tion appears to have taken place instantaneously at some point between the
invocation of the operation and its conclusion.

This property implies that processes operating on a linearizable object
appear to be interleaved at the granularity of complete operations. Moreover,
the order of nonoverlapping operations is preserved. Linearizability is the basic
correctness condition of Herlihy’s concurrent objects.

Shared objects are also assumed to be “small,” that is, they are small
enough to be copied efficiently. Moreover, it is understood that a sequential
object occupies a fixed-size, contiguous area of memory called a block.

Any sequential operation invoked on an object cannot have any side effect
other than modifying the block occupied by the object itself. All sequential
operations must also be total, that is, they must have a well-defined behavior
for any legal or consistent state of the object they are invoked on. For example,
a dequeue operation invoked on an empty queue is allowed to return an error
indication but is not allowed to trigger a trap because it tried to execute an
illegal instruction.

The basic technique to transform a sequential implementation into a lock-
free implementation of a given object is shown in Figure 10.4. It is assumed
that all processes share a variable that holds a pointer to the current version of
the shared object and can be manipulated by means of the load linked and
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store conditional instructions. Each process acts on the object by means
of the following four steps:

1. It reads the pointer using load linked.

2. It copies the indicated version into another block.

3. It performs the sequential operation on the copy.

4. It tries to move the pointer from the old version to the new by
means of store conditional.

If step 4 fails, it means that another process succeeded in updating the shared
pointer between steps 1 and 2. In this case, the process retries the operation
by restarting from step 1. Each iteration of these steps is sometimes called an
attempt.

The linearizability of the concurrent implementation is straightforward
to prove: from the point of view of the other processes, a certain oper-
ation appears to happen instantaneously, exactly when the corresponding
store conditional succeeds. Moreover, the order in which operations appear
to happen is the same as the (total) order of their final, successful execution
of store conditional.

If store conditional cannot fail “spontaneously,” the concurrent imple-
mentation is lock-free because, even if all the n processes in the system try
to perform an operation on the shared object, at least one out of every n at-
tempts to execute store conditionalmust succeed. Hence, the system works
according to Definition 10.1.

The last thing to be discussed is how the memory blocks used to hold
distinct object versions should be managed keeping in mind that, in practice,
only a finite number of such blocks are available, and they must therefore
necessarily be reused over and over.

At first sight, it seems that n+1 blocks of memory should suffice, provided
they are used according to the following simple rules:

• At each instant, each of the n processes owns a single block of unused
memory.

• The n+1-th block holds the current version of the object and is not owned
by any process.

• In step 2, the process copies the object’s current version into its own block.

• When the store conditional is performed successfully in step 4, the pro-
cess becomes the owner of the block that held the object’s old version. It
also relinquishes the block it owned previously because it now contains the
current version of the object.

However, this approach is not correct because it may lead to a race condition
in object access. Let us assume, as shown in Figure 10.5, that there are two
processes in the system, P and Q, and three blocks of memory, #1 to #3. The
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Shared pointer to current 
object version

Block #1

Process 
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Process 
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1: load_linked

1: load_linked

Block #3

Block #2

Block #1

Process 
P

Process 
Q

4: store_conditional

Block #3

Block #2

Stale pointer

After Q's update...

FIGURE 10.5
A careless memory management approach may lead to a race condition in
object access.

owner of each block is indicated by the block’s background. In this scenario,
the following unfortunate interleaving may take place:

1. At the beginning, memory block #1 holds the current object ver-
sion, while P and Q own blocks #2 and #3, respectively, as shown
in the upper part of Figure 10.5.

2. Both P and Q retrieve a pointer to the current object version, held
in block #1.

3. Q’s update succeeds. The new version of the object is now stored
in block #3, and Q has become the owner of block #1.

However, P still holds a “stale” pointer to block #1, which contains
what is now an obsolete version of the object, as shown in the
bottom part of the figure.



Lock and Wait-Free Communication 259

Block #1

Process 
P

Process 
Q

Block #3

Block #2

2: Q's copy

2: P's copy

FIGURE 10.6
Making a copy of an object while it is being overwritten by another process
is usually not a good idea.

If Q begins a new operation at this point, it will retrieve a pointer to the
new object version in block #3 and will start copying its contents into its
own block, that is, block #1. Since P is still engaged in its operation, the two
copies performed by P and Q may overlap.

That is, as shown in Figure 10.6, P may read from block #1 while Q is
overwriting it with the contents of block #3. As a result, with this memory
management scheme, P ’s copy of the shared object in block #2 may not
represent a consistent state of the object itself.

It should be noted that this race condition is not harmful to the
consistency of the shared object itself. In fact, when P eventually per-
forms its store conditional, this operation will certainly fail because Q’s
store conditional preceded it. As a consequence, P will carry out a new
update attempt.

However, it poses significant issues from the software engineering point of
view. Although it is (relatively) easy to ensure that any operation invoked on a
consistent object will not do anything nasty (execution of illegal instructions,
division by zero, etc.), this property may be extremely difficult to establish
when the operation is invoked on an arbitrary bit pattern.

The issue can be addressed by inserting a consistency check between steps
2 and 3 of the algorithm, that is, between the copy and the execution of the
sequential operation. If the consistency check fails, then the source object was
modified during the copy. In this case, the process might have an inconsistent
copy of the shared object and must retry the operation from step 1 without
acting on the copy in any way.

On some architectures, the consistency check is assisted by hardware and
is built upon a so-called validate instruction. Like store conditional, this
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1. old = load linked(Q)

2. N->C0 = N->C1+1

3. O1 = old->C1

4. copy Q->obj into N->obj

5. O0 = old->C0

6. if O0 
= O1 then retry from step 1
7. perform sequential operation on N->obj

8. N->C1++

9. if store conditional(Q, N) fails then retry from step 1
10. N = old

FIGURE 10.7
Pseudocode of the universal construction of a lock-free object proposed in
Reference [34].

instruction checks whether a variable previously read with load linked has
been modified or not, but does not store any new value into it. If the under-
lying architecture does not provide this kind of support, like the ARM V6
processor architecture [5], a software-based consistency check can be used as
a replacement.

In this case, two counters, C0 and C1, complement each object version.
Both counters are unbounded, that is, it is assumed that they never over-
flow, and start from the same value. The counters are used according to the
following rules:

• Before starting to modify an object, a process increments C0. After finish-
ing, it also increments C1.

• On the other hand, C1 and C0 are read before starting and after finishing
to copy an object, respectively.

• The consistency check consists of comparing these values: if they match, the
copied object is definitely consistent; otherwise, it might be inconsistent.

An attentive reader would certainly have noticed the strong resemblance of
this technique with the readers/writer algorithm discussed in Section 10.3. As
in that case, if the counters cannot be read and incremented in an atomic
way, incrementing the counters in one order and reading them in the opposite
order is crucial to the correctness of the algorithm.

This is frequently important in practice because real-world counters can-
not be unbounded in a strict sense since they have a finite size. On the other
hand, if we let the counters be bounded, the consistency check may succeed
incorrectly when a counter cycles all the way around during a single update at-
tempt. The probability of this error can be made arbitrarily small by enlarging
the counters, but, in this case, their size will probably exceed the maximum
data size on which the architecture can perform atomic operations.
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We are now ready to put all pieces together and discuss the full algorithm
to build a lock-free object from a sequential one in a universal way. It is shown
in Figure 10.7 as pseudocode, and its formal correctness proof was given in
Reference [34]; however, we will only discuss it informally here. In the listing, Q
is a shared variable that points to the current version of the shared object, and
N is a local variable that points to the object version owned by the executing
process.

Shared objects are assumed to be structures containing three fields: the
obj field holds the object contents, while C0 and C1 are the two counters used
for consistency check. The obj field does not comprise the counters; hence,
when the obj field is copied from one structure to another, the counters of
the destination structure are not overwritten and retain their previous value.

• The algorithm starts by getting a local pointer, called old, to the current
object version, using load linked (step 1 of Figure 10.7).

• Then, the object version owned by the executing process, pointed by N, is
marked as invalid. This is done by incrementing its C0 counter using C1 as
a reference. This step is very important because, as discussed before, other
processes may still hold stale pointers to it (step 2).

• In steps 3 and 5, the counters associated to the object version pointed by
old are copied into local variables before and after copying its contents
into the object version pointed by N (step 4).

• After the copy, the values obtained for the two counters are compared:
if they do not match, another process has worked on the object in the
meantime and the whole operation must be retried (step 6).

• If the consistency check was successful, then N points to a consistent copy
of the shared object, and the executing process can perform the intended
operation on it (step 7).

• After the copy, the object version pointed by N is marked as consistent by
incrementing its C1 counter (step 8). The increment brings C1 to the same
value as C0, which was incremented in step 2.

• It is now time to publish the updated object by performing a
store conditional of the local object pointer N into the shared object
pointer Q (step 9). The conditional store will fail if Q was modified by some
other process since it was loaded by the executing process in step 1. In this
case, the whole operation must be retried.

• If the conditional store was successful, the executing process can acquire
ownership of the old object version (step 10).

It should be noted that the basic scheme just described is quite inefficient in
some cases. For example, it is not suited for “large” objects because it relies
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on copying the whole object before working on it. However, other universal
constructions have been proposed just for that case, for instance Reference [2].
It can also be made wait-free by means of a general technique known as
operation combining and discussed in Reference [34].

10.5 Summary

In this chapter, it has been shown that it is not strictly necessary for processes
to wait for each other if they must share information in an orderly and mean-
ingful way. Rather, the lock and wait-free communication approach allows
processes to perform concurrent accesses to a shared object without blocking
and without introducing any kind of synchronization constraint among them.

Since, due to lack of space, it would have been impossible to fully discuss
the topic, only a couple of algorithms have been considered in this chapter.
They represent an example of two distinct ways of approaching the problem:
the first one is a simple, ad-hoc algorithm that addresses a very specific con-
current programming problem, whereas the second one is more general and
serves as a foundation to build many different classes of lock-free objects.

As a final remark, it is worth noting that, even if lock and wait-free algo-
rithms are already in use for real-world applications, they are still an active
research topic, above all for what concerns their actual implementation. The
development and widespread availability of open-source libraries containing
a collection of lock-free data structures such as, for example, the Concurrent
Data Structures library (libcds) [52] is encouraging. More and more program-
mers will be exposed to them in the near future, and they will likely bring
what is today considered an advanced topic in concurrent programming into
the mainstream.
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In any concurrent program, the exact order in which processes execute is
not completely specified. According to the concurrent programming theory
discussed in Chapter 3, the interprocess communication and synchronization
primitives described in Chapters 5 and 6 are used to enforce as many ordering
constraints as necessary to ensure that the result of a concurrent program is
correct in all cases.

For example, a mutual exclusion semaphore can be used to ensure that only
one process at a time is allowed to operate on shared data. Similarly, a message
can be used to make one process wait for the result of a computation carried
out by another process and pass the result along. Nevertheless, the program
will still exhibit a significant amount of nondeterminism because its processes
may interleave in different ways without violating any of those constraints.
The concurrent program output will of course be the same in all cases, but its
timings may still vary considerably from one execution to another.

Going back to our reference example, the producers–consumers problem,
if many processes are concurrently producing data items, the final result does
not depend on the exact order in which they are allowed to update the shared
buffer because all data items will eventually be in the buffer. However, the
amount of time spent by the processes to carry out their operations does
depend on that order.

If one of the processes in a concurrent program has a tight deadline on its
completion time, only some of the interleavings that are acceptable from the
concurrent programming perspective will also be adequate from the real-time
execution point of view. As a consequence, a real-time system must further
restrict the nondeterminism found in a concurrent system because some in-
terleavings that are acceptable with respect to the results of the computation
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may be unacceptable for what concerns timings. This is the main goal of
scheduling models, the main topic of the second part of this book.

11.1 Scheduling and Process Models

The main goal of a scheduling model is to ensure that a concurrent program
does not only produce the expected output in all cases but is also correct with
respect to timings. In order to do this, a scheduling model must comprise two
main elements:

1. A scheduling algorithm, consisting of a set of rules for ordering the
use of system resources, in particular the processors.

2. An analytical means of analyzing the system and predicting its
worst-case behavior with respect to timings when that scheduling
algorithm is applied.

In a hard real-time scenario, the worst-case behavior is compared against the
timing constraints the system must fulfill, to check whether it is acceptable or
not. Those constraints are specified at system design time and are typically
dictated by the physical equipment to be connected to, or controlled by, the
system.

When choosing a scheduling algorithm, it is often necessary to look for a
compromise between optimizing the mean performance of the system and its
determinism and ability to certainly meet timing constraints. For this reason,
general-purpose scheduling algorithms, such as the Linux scheduler discussed
in Chapter 18, are very different from their real-time counterparts.

Since they are less concerned with determinism, most general-purpose
scheduling algorithms emphasize aspects such as, for instance,

Fairness In a general-purpose system, it is important to grant to each process
a fair share of the available processor time and not to systematically put
any process at a disadvantage with respect to the others. Dynamic priority
assignments are often used for this purpose.

Efficiency The scheduling algorithm is invoked very often in an operating
system, and applications perceive this as an overhead. After all, the system
is not doing anything useful from the application’s point of view while it
is deciding what to execute next. For this reason, the complexity of most
general-purpose scheduling algorithms is forced to be O(1). In particular,
it must not depend on how many processes there are in the system.

Throughput Especially for batch systems, this is another important param-
eter to optimize because it represents the average number of jobs completed
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in a given time interval. As in the previous cases, the focus of the schedul-
ing algorithm is on carrying out as much useful work as possible given a
certain set of processes, rather than satisfying any time-related property of
a specific process.

On the other hand, real-time scheduling algorithms must put the emphasis
on the timing requirements of each individual process being executed, even
if this entails a greater overhead and the mean performance of the system
becomes worse. In order to do this, the scheduling algorithms can take advan-
tage of the greater amount of information that, on most real-time systems, is
available on the processes to be executed.

This is in sharp contrast with the scenario that general-purpose scheduling
algorithms usually face: nothing is known in advance about the processes being
executed, and their future characteristics must be inferred from their past
behavior. Moreover, those characteristics, such as processor time demand,
may vary widely with time. For instance, think about a web browser: the
interval between execution bursts and the amount of processor time each of
them requires both depend on what its human user is doing at the moment
and on the contents of the web pages he or she it looking at.

Even in the context of real-time scheduling, it turns out that the analysis
of an arbitrarily complex concurrent program, in order to predict its worst-
case timing behavior, is very difficult. It is necessary to introduce a simplified
process model that imposes some restrictions on the structure of real-time
concurrent programs to be considered for analysis.

The simplest model, also known as the basic process model, has the fol-
lowing characteristics:

1. The concurrent program consists of a fixed number of processes,
and that number is known in advance.

2. Processes are periodic, with known periods. Moreover, process pe-
riods do not change with time. For this reason, processes can be
seen as an infinite sequence of instances. Process instances becomes
ready for execution at regular time intervals at the beginning of
each period.

3. Processes are completely independent of each other.

4. Timing constrains are expressed by means of deadlines. For a given
process, a deadline represents the upper bound on the completion
time of a process instance. All processes have hard deadlines, that
is, they must obey their temporal constraints all the time, and the
deadline of each process is equal to its period.

5. All processes have a fixed worst-case execution time that can be
computed offline.

6. All system’s overheads, for example, context switch times, are
negligible.
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TABLE 11.1
Notation for real-time scheduling algorithms and analysis methods

Symbol Meaning
τi The i-th task
τi,j The j-th instance of the i-th task
Ti The period of task τi
Di The relative deadline of task τi
Ci The worst-case execution time of task τi
Ri The worst-case response time of task τi
ri,j The release time of τi,j
fi,j The response time of τi,j
di,j The absolute deadline of τi,j

The basic model just introduced has a number of shortcomings, and will be
generalized to make it more suitable to describe real-world systems. In par-
ticular,

• Process independence must be understood in a very broad sense. It means
that there are no synchronization constraints among processes at all, so no
process must even wait for another. This rules out, for instance, mutual
exclusion and synchronization semaphores and is somewhat contrary to
the way concurrent systems are usually designed, in which processes must
interact with one another.

• The deadline of a process is not always related to its period, and is often
shorter than it.

• Some processes are sporadic rather than periodic. In other words, they
are executed “on demand” when an external event, for example an alarm,
occurs.

• For some applications and hardware architectures, scheduling and context
switch times may not be negligible.

• The behavior of some nondeterministic hardware components, for example,
caches, must sometimes be taken into account, and this makes it difficult to
determine a reasonably tight upper bound on the process execution time.

• Real-time systems may sometimes be overloaded, a critical situation in
which the computational demand exceeds the system capacity during a
certain time interval. Clearly, not all processes will meet their deadline in
this case, but some residual system properties may still be useful. For in-
stance, it may be interesting to know what processes will miss their deadline
first.

The basic notation and nomenclature most commonly adopted to define
scheduling algorithms and the related analysis methods are summarized in
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Time
ri,1 ri,2

ri,3
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Ci

fi,1 fi,2
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di,1 di,2

Ti

Ri ≥ fi,j ∀j

Interference

FIGURE 11.1
Notation for real-time scheduling algorithms and analysis methods.

Table 11.1. It will be used throughout the second part of this book. Figure 11.1
contains a graphical depiction of the same terms and shows the execution of
two instances, τi,1 and τi,2, of task τi.

As shown in the figure, it is important to distinguish among the worst-case
execution time of task τi, denoted by Ci, the response time of its j-th instance
fi,j , and its worst-case response time, denoted by Ri. The worst-case execution
time is the time required to complete the task without any interference from
other activities, that is, if the task being considered were alone in the system.

The response time may (and usually will) be longer due to the effect of
other tasks. As shown in the figure, a higher-priority task becoming ready
during the execution of τi will lead to a preemption for most scheduling algo-
rithms, so the execution of τi will be postponed and its completion delayed.
Moreover, the execution of any tasks does not necessarily start as soon as they
are released, that is, as soon an they become ready for execution.

It is also important to clearly distinguish between relative and absolute
deadlines. The relative deadline Di is defined for task τi as a whole and is the
same for all instances. It indicates, for each instance, the distance between
its release time and the deadline expiration. On the other hand, there is one
distinct absolute deadline di,j for each task instance τi,j . Each of them denotes
the instant in which the deadline expires for that particular instance.

11.2 The Cyclic Executive

The cyclic executive, also known as timeline scheduling or cyclic scheduling,
is one of the most ancient, but still widely used, real-time scheduling methods
or algorithms. A full description of this scheduling model can be found in
Reference [11].
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TABLE 11.2
A simple task set to be executed by a cyclic executive

Task τi Period Ti (ms) Execution time Ci (ms)
τ1 20 9
τ2 40 8
τ3 40 8
τ4 80 2

In its most basic form, it is assumed that the basic model just introduced
holds, that is, there is a fixed set of periodic tasks. The basic idea is to lay out
offline a completely static schedule such that its repeated execution causes all
tasks to run at their correct rate and finish within their deadline. The existence
of such a schedule is also a proof “by construction” that all tasks will actually
and always meet their deadline at runtime. Moreover, the sequence of tasks
in the schedule is always the same so that it can be easily understood and
visualized.

For what concerns its implementation, the schedule can essentially be
thought of as a table of procedure calls, where each call represents (part of)
the code of a task. During execution, a very simple software component, the
cyclic executive, loops through the table and invokes the procedures it con-
tains in sequence. To keep the executive in sync with the real elapsed time,
the table also contains synchronization points in which the cyclic executive
aligns the execution with a time reference usually generated by a hardware
component.

In principle, a static schedule can be entirely crafted by hand but, in prac-
tice, it is desirable for it to adhere to a certain well-understood and agreed-
upon structure, and most cyclic executives are designed according to the fol-
lowing principles. The complete table is also known as the major cycle and is
typically split into a number of slices called minor cycles, of equal and fixed
duration.

Minor cycle boundaries are also synchronization points: during execution,
the cyclic executive switches from one minor cycle to the next after waiting
for a periodic clock interrupt. As a consequence, the activation of the tasks at
the beginning of each minor cycle is synchronized with the real elapsed time,
whereas all the tasks belonging to the same minor cycle are simply activated
in sequence. The minor cycle interrupt is also useful in detecting a critical
error known as minor cycle overrun, in which the total execution time of the
tasks belonging to a certain minor cycle exceeds the length of the cycle itself.

As an example, the set of tasks listed in Table 11.2 can be scheduled on
a single-processor system as shown in the time diagram of Figure 11.2. If
deadlines are assumed to be the same as periods for all tasks, from the figure
it can easily be seen that all tasks are executed periodically, with the right
period, and they all meet their deadlines.

More in general, this kind of time diagram illustrates the job that each
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τ1,1 τ1,2 τ1,4τ2,1 τ1,3 τ2,2τ3,1 τ3,2

τ4,1

time
20 ms

(minor cycle)

80 ms
(major cycle)

FIGURE 11.2
An example of how a cyclic executive can successfully schedule the task set of
Table 11.2.

processor in the system is executing at any particular time. It is therefore
useful to visualize and understand how a scheduling algorithm works in a
certain scenario. For this reason, it is a useful tool not only for cyclic executives
but for any scheduling algorithm.

To present a sample implementation, we will start from a couple of quite
realistic assumptions:

• The underlying hardware has a programmable timer, and it can be
used as an interrupt source. In particular, the abstract function void

timer setup(int p) can be used to set the timer up, start it, and ask
for a periodic interrupt with period p milliseconds.

• The function void wait for interrupt(void) waits for the next timer
interrupt and reports an error, for instance, by raising an exception, if the
interrupt arrived before the function was invoked, denoting an overrun.

• The functions void task 1(void), . . . , void task 4() contain the code
of tasks τ1, . . . , τ4, respectively.

The cyclic executive can then be implemented with the following program.

int main(int argc , void *argv[])
{

...
timer_setup(20);

while (1)
{

wait_for_interrupt();
task_1 ();
task_2 ();
task_4 ();

wait_for_interrupt();
task_1 ();
task_3 ();

wait_for_interrupt();
task_1 ();
task_2 ();
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wait_for_interrupt();
task_1 ();
task_3 ();

}
}

In the sample program, the scheduling table is actually embedded into the
main loop. The main program first sets up the timer with the right minor
cycle period and then enters an endless loop. Within the loop, the function
wait for interrupt() sets the boundary between one minor cycle and the
next. In between, the functions corresponding to the task instances to be
executed within the minor cycle are called in sequence.

Hence, for example, the first minor cycle contains a call to task 1(),
task 2(), and task 4() because, as it can be seen on the left part of Fig-
ure 11.2, the first minor cycle must contain one instance of τ1, τ2, and τ4.

With this implementation, no actual processes exist at run-time because
the minor cycles are just a sequence of procedure calls. These procedures share
a common address space, and hence, they implicitly share their global data.
Moreover, on a single processor system, task bodies are always invoked se-
quentially one after another. Thus, shared data do not need to be protected
in any way against concurrent access because concurrent access is simply not
possible.

Once a suitable cyclic executive has been constructed, its implementa-
tion is straightforward and very efficient because no scheduling activity takes
place at run-time and overheads are very low, without precluding the use of
a very sophisticated (and computationally expensive) algorithm to construct
the schedule. This is because scheduler construction is done completely offline.

On the downside, the cyclic executive “processes” cannot be protected from
each other, as regular processes are, during execution. It is also difficult to
incorporate nonperiodic activities efficiently into the system without changing
the task sequence.

11.3 Choice of Major and Minor Cycle Length

The minor cycle is the smallest timing reference of the cyclic executive because
task execution is synchronized with the real elapsed time only at minor cycle
boundaries. As a consequence, all task periods must be an integer multiple of
the minor cycle period. Otherwise, it would be impossible to execute them at
their proper rate.

On the other hand, it is also desirable to keep the minor cycle length as
large as possible. This is useful not only to reduce synchronization overheads
but also to make it easier to accommodate tasks with a large execution time,
as discussed in Section 11.4. It is easy to show that one simple way to satisfy
both constraints is to set the minor cycle length to be equal to the Greatest
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TABLE 11.3
A task set in which a since task, τ4, leads to a large major cycle because its
period is large

Task τi Period Ti (ms) Execution time Ci (ms)
τ1 20 9
τ2 40 8
τ3 40 8
τ4 400 2

Common Divisor (GCD) of the periods of the tasks to be scheduled. A more
flexible and sophisticated way of selecting the minor cycle length is discussed
in Reference [11].

If we call Tm the minor cycle length, for the example presented in the
previous section we must choose

Tm = gcd(T1, . . . , T4) = gcd(20, 40, 40, 80) = 20ms (11.1)

The cyclic executive repeats the same schedule over and over at each major
cycle. Therefore, the major cycle must be big enough to be an integer multiple
of all task periods, but no larger than that to avoid making the scheduling table
larger than necessary for no reason. A sensible choice is to let the major cycle
length be the Least Common Multiple (LCM) of the task periods. Sometimes
this is also called the hyperperiod of the task set. For example, if we call TM

the major cycle length, we have

TM = lcm(T1, . . . , T4) = lcm(20, 40, 40, 80) = 80ms (11.2)

11.4 Tasks with Large Period or Execution Time

In the previous section, some general rules to choose the minor and major
cycle length for a given task set were given. Although they are fine in theory,
there may be some issues when trying to put them into practice. For instance,
when the task periods are mutually prime, the major cycle length calculated
according to (11.2) has its worst possible value, that is, the product of all
periods. The cyclic executive scheduling table will be large as a consequence.

Although this issue clearly cannot be solved in general—except by adjust-
ing task periods to make them more favorable—it turns out that, in many
cases, the root cause of the problem is that only one or a few tasks have a pe-
riod that is disproportionately large with respect to the others. For instance,
in the task set shown in Table 11.3, the major cycle length is

TM = lcm(T1, . . . , T4) = lcm(20, 40, 40, 400) = 400ms (11.3)
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τ1,1 τ2,1 τ1,2 τ3,1

Secondary schedule of τ4:

static int q=0;

q++;

if(q==10) {

  q=0; task_4();

}

time
20 ms

(minor cycle)

40 ms
(major cycle)

Worst-case exec. time: C4 = 2 ms

FIGURE 11.3
An example of how a simple secondary schedule can schedule the task set of
Table 11.3 with a small major cycle.

However, if we neglected τ4 for a moment, the major cycle length would
shrink by an order of magnitude

T ′
M = lcm(T1, . . . , T3) = lcm(20, 40, 40) = 40ms (11.4)

If τ4’s period T4 is a multiple of the new major cycle length T ′
M , that is, if

T4/T
′
M = k, k ∈ N (11.5)

the issue can be circumvented by designing the schedule as if τ4 were not part
of the system, and then using a so-called secondary schedule.

In its simplest form, a secondary schedule is simply a wrapper placed
around the body of a task, task 4() in our case. The secondary schedule is
invoked on every major cycle and, with the help of a private counter q that
is incremented by one at every invocation, it checks if it has been invoked for
the k-th time, with k = 10 in our example. If this is not the case, it does
nothing; otherwise, it resets the counter and invokes task 4(). The code of
the secondary schedule and the corresponding time diagram are depicted in
Figure 11.3.

As shown in the figure, even if the time required to execute the wrapper
itself is negligible, as is often the case, the worst-case execution time that
must be considered during the cyclic executive design to accommodate the
secondary schedule is still equal to the worst-case execution time of τ4, that is,
C4. This is an extremely conservative approach because task 4() is actually
invoked only on every k iterations of the schedule, and hence, the worst-case
execution time of the wrapper is very different from its mean execution time.

A different issue may occur when one or more tasks have a large execu-
tion time. The most obvious case happens when the execution time of a task
is greater than the minor cycle length so that it simply cannot fit into the
schedule. However, there may be subtler problems as well. For instance, for
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TABLE 11.4
Large execution times, of τ3 in this case, may lead to problems when designing
a cyclic executive

Task τi Period Ti (ms) Execution time Ci (ms)
τ1 25 10
τ2 50 8
τ3 100 20

the task set shown in Table 11.4, the minor and major cycle length, chosen
according to the rules given in Section 11.3, are

Tm = 25ms (11.6)

TM = 100ms (11.7)

In this case, as shown in the upper portion of Figure 11.4, task instance
τ3,1 could be executed entirely within a single minor cycle because C3 ≤ Tm,
but this choice would hamper the proper schedule of other tasks, especially τ1.
In fact, the first instance of τ1 would not fit in the first minor cycle because
C1 + C3 > Tm. Shifting τ3,1 into another minor cycle does not solve the
problem either.

Hence, the only option is to split τ3,1 into two pieces: τ3,1a and τ3,1b,
and put them into two distinct minor cycles. For example, as shown in the
lower part of Figure 11.4, we could split τ3,1 into two equal pieces with an
execution time of 10ms each and put them into the first and third minor
cycle, respectively.

Although it is possible to work out a correct cyclic executive in this way, it
should be remarked that splitting tasks into pieces may cut across the tasks in
a way that has nothing to do with the structure of the code itself. In fact, the
split is not made on the basis of some characteristics of the code but merely
on the constraints the execution time of each piece must satisfy to fit into the
schedule.

Moreover, task splits make shared data management much more com-
plicated. As shown in the example of Figure 11.4—but this is also true in
general—whenever a task instance is split into pieces, other task instances
are executed between those pieces. In our case, two instances of task τ1 and
one instance of τ2 are executed between τ3,1a and τ3,1b. This fact has two
important consequences:

1. If τ1 and/or τ2 share some data structures with τ3, the code of
τ3,1a must be designed so that those data structures are left in a
consistent state at the end of τ3,1a itself. This requirement may
increase the complexity of the code.

2. It is no longer completely true that shared data does not need to
be protected against concurrent access. In this example, it is “as if”



276 Real-Time Embedded Systems—Open-Source Operating Systems Perspective

τ3,1

time
25 ms

(minor cycle)

100 ms
(major cycle)

τ2,1 τ2,2τ1,2 τ1,3 τ1,4

τ1,1

time
25 ms

(minor cycle)

100 ms
(major cycle)

τ1,2 τ1,3 τ1,4τ1,1 τ2,1 τ2,2

τ3,1

τ3,1a τ3,1b

τ1,1 does not fit in the 

remaining free space of the 
first minor cycle

FIGURE 11.4
In some cases, such as for the task set of Table 11.4, it is necessary to split
one or more tasks with a large execution time into pieces to fit them into a
cyclic executive.

τ3 were preempted by τ1 and τ2 during execution. If τ1 and/or τ2
share some data structures with τ3, this is equivalent to a concurrent
access to the shared data. The only difference is that the preemption
point is always the same (at the boundary between τ3,1a and τ3,1b)
and is known in advance.

Last but not least, building a cyclic executive is mathematically hard in itself.
Moreover, the schedule is sensitive to any change in the task characteristics,
above all their periods, which requires the entire scheduling sequence to be
reconstructed from scratch when those characteristics change.

Even if the cyclic executive approach is a simple and effective tool in many
cases, it may not be general enough to solve all kinds of real-time scheduling
problems that can be found in practice. This reasoning led to the introduction
of other, more sophisticated scheduling models, to be discussed in the following
chapters. The relative advantages and disadvantages of cyclic executives with
respect to other scheduling models have been subject to considerable debate.
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For example, Reference [62] contains an in-depth comparison between cyclic
executives versus fixed-priority, task-based schedulers.

11.5 Summary

To start discussing about real-time scheduling, it is first of all necessary to
abstract away, at least at the beginning, frommost of the complex and involved
details of real concurrent systems and introduce a simple process model, more
suitable for reasoning and analysis. In a similar way, an abstract scheduling
model specifies a scheduling algorithm and its associated analysis methods
without going into the fine details of its implementation.

In this chapter, one of the simplest process models, called the basic process
model, has been introduced, along with the nomenclature associated with it. It
is used throughout the book as a foundation to talk about the most widespread
real-time scheduling algorithms and gain an insight into their properties. Since
some of its underlying assumptions are quite unrealistic, it will also be pro-
gressively refined and extended to make it adhere better to what real-world
processes look like.

Then we have gone on to specify how one of the simplest and most intuitive
real-time scheduling methods, the cyclic executive, works. Its basic idea is to
lay out a time diagram and place task instances into it so that all tasks
are executed periodically at their proper time and they meet their timing
constraints or deadlines.

The time diagram is completely built offline before the system is ever
executed, and hence, it is possible to put into action sophisticated layout
algorithms without incurring any significant overhead at runtime. The time
diagram itself also provides intuitive and convincing evidence that the system
really works as intended.

That said, the cyclic executive also has a number of disadvantages: it may
be hard to build, especially for unfortunate combinations of task execution
times and periods, it is quite inflexible, and may be difficult to properly main-
tain it when task characteristics are subject to change with time or the system
complexity grows up. For this reason, we should go further ahead and examine
other, more sophisticated, scheduling methods in the next chapters.
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The previous chapter has introduced the basic model and terminology for
real-time scheduling. The same notation will be used in this chapter as well
as in the following ones, and therefore, it is briefly recalled here. A periodic
real-time process is called a task and denoted by τi. A task models a periodic
activity: at the j-th occurrence of the period Ti a job τi,j for a given task τi is
released. The job is also called an instance of the task τi. The relative deadline
Di for a task τi represents the maximum time allowed between the release of
any job τi,j and its termination, and, therefore, the absolute deadline di,j for
the job τi,j is equal to its release time plus the relative deadline. The worst-
case execution time of task Ti represents the upper limit of the processor
time required for the computation of any job for that task, while Ri indicates
the worst-case response time of task Ti, that is, the maximum elapsed time
between the release of any job for this task and its termination. The worst-
case execution time (WCET) Ci is the time required to complete any job of
the task τi without any interference from other activities. Finally, fi,j is the
actual absolute response time (i.e., the time of its termination) for job τi,j of
task τi.

While in the cyclic executive scheduling policy all jobs were executed in a
predefined order, in this chapter we shall analyze a different situation where
tasks correspond to processes or threads and are therefore scheduled by the
operating system based on their current priority. Observe that, in the cyclic
executive model, there is no need for a scheduler at all: the jobs are represented
by routines that are invoked in a predefined order by a single program. Here
we shall refer to a situation, which is more familiar to those who have read
the first part of this book, where the operating system handles the concurrent
execution of different units of execution. In the following, we shall indicate
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such units as tasks, being the distinction between processes and threads not
relevant in this context. Depending on the practical requirements, tasks will be
implemented either by processes or threads, and the results of the scheduling
analysis are valid in both cases.

Many of the results presented in this chapter and in the following ones
are due to the seminal work of Liu and Layland [60], published in 1973. Sev-
eral proofs given in the original paper have later been refined and put in a
more intuitive form by Buttazzo [19]. Interested readers are also referred to
Reference [78] for more information about the evolution of real-time schedul-
ing theory from a historical perspective. Moreover, References [19, 61] discuss
real-time scheduling in much more formal terms than can be afforded here,
and they will surely be of interest to readers with a stronger mathematical
background.

12.1 Fixed and Variable Task Priority

We have seen in Chapter 3 that the priority associated with tasks is an indi-
cation of their “importance.” Important tasks need to be executed first, and
therefore, the scheduler, that is, the component of the operating system that
supervises the assignment of the processors to tasks, selects the task with
the highest priority among those that are currently ready (i.e., which are not
in wait state, due, for example, to a pending I/O operation). Therefore, the
policy that is adopted to assign priorities to tasks determines the behavior
of the scheduling. In the following, we shall analyze different policies for as-
signing priorities to tasks and their impact in obtaining the desired real-time
behavior, making sure that every job terminates within its assigned deadline.

12.1.1 Preemption

Before discussing about priority assignment policies, we need to consider an
important fact: what happens if, during the execution of a task at a given
priority, another task with higher priority becomes ready? Most modern op-
erating systems in this case reclaim the processor from the executing task and
assign it to the task with higher priority by means of a context switch. This
policy is called preemption, and it ensures that the most important task able
to utilize the processor is always executing. Older operating systems, such as
MS-DOS or the Mac OS versions prior to 10, did not support preemption,
and therefore a task that took possession of the processor could not be forced
to release it, unless it performed an I/O operation or invoked a system call.
Preemption presents several advantages, such as making the system more re-
active and preventing rogue tasks from monopolizing the processor. The other
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side of the coin is that preemption is responsible for most race conditions due
to the possibly unforeseen interleaved execution of higher-priority tasks.

Since in a preemptive policy the scheduler must ensure that the task cur-
rently in execution is always at the highest priority among those that are
ready, it is important to understand when a context switch is possibly re-
quired, that is, when a new higher priority task may request the processor.
Let us assume first that the priorities assigned to tasks are fixed: a new task
may reclaim the processor only when it becomes ready, and this may happen
only when a pending I/O operation for that task terminates or a system call
(e.g., waiting for a semaphore) is concluded. In all cases, such a change in the
task scenario is carried out by the operating system, which can therefore effec-
tively check current task priorities and ensure that the current task is always
that with the highest priority among the ready ones. This fact holds also if
we relax the fixed-priority assumption: the change in task priority would be
in any case carried out by the operating system, which again is aware of any
possible change in the priority distribution among ready tasks.

Within the preemptive organization, differences may arise in the manage-
ment of multiple ready tasks with the same highest priority. In the following
discussion, we shall assume that all the tasks have a different priority level, but
such a situation represents somehow an abstraction, the number of available
priority levels being limited in practice. We have already seen that POSIX
threads allow two different management of multiple tasks at the same highest
priority tasks:

1. The First In First Out (FIFO) management, where the task that
acquires the processor will execute until it terminates or enters in
wait state due to an I/O operation or a synchronization primitive,
or a higher priority task becomes ready.

2. The Round Robin (RR) management where after some amount of
time (often called time slice) the running task is preempted by the
scheduler even if no I/O operation is performed and no higher-
priority task is ready to let another task at the same priority gain
processor usage.

12.1.2 Variable Priority in General Purpose Operating
Systems

Scheduling analysis refers to two broad categories in task priority assignment
to tasks: Fixed Priority and Variable Priority. As the name suggests, in fixed
priority scheduling, the priority assigned to tasks never changes during system
execution. Conversely, in the variable-priority policy, the priority of tasks is
dynamically changed during execution to improve system responsiveness or
other parameters. Before comparing the two approaches, it is worth briefly
describing what happens in general-purpose operating systems such as Linux
and Windows. Such systems are intended for a variety of different applica-
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tions, but interaction with a human user is a major use case and, in this
case, the perceived responsiveness of the system is an important factor. When
interacting with a computer via a user interface, in fact, getting a quick re-
sponse to user events such as the click of the mouse is preferable over other
performance aspects such as overall throughput in computation. For this rea-
son, a task that spends most of its time doing I/O operations, including the
response to user interface events, is considered more important than a task
making intensive computation. Moreover, when the processor is assigned to a
task making lengthy computation, if preemption were not supported by the
scheduler, the user would experience delays in interaction due to the fact that
the current task would not get a chance to release the processor if performing
only computation and not starting any I/O. For these reasons, the scheduler
in a general purpose operating system will assign a higher priority to I/O
intensive tasks and will avoid that a computing-intensive task monopolize the
processor, thus blocking interaction for an excessively long period. To achieve
this, it is necessary to provide an answer to the following questions:

1. How to discriminate between I/O-intensive and computing-
intensive tasks?

2. How to preempt the processor from a computing-intensive task that
is not willing to relinquish it?

3. How to ensure enough fairness to avoid that a ready task is post-
poned forever or for a period of time that is too long?

The above problems are solved by the following mechanism for dynamic pri-
ority assignment, called timesharing, which relies on a clock device that peri-
odically interrupts the processor and gives a chance to the operating system
to get control, rearrange task priorities and possibly operate a context switch
because a task with a higher priority than the current one is now available.
Interestingly enough, many dynamic priority assignment schemes in use today
still bear a strong resemblance to the scheduling algorithm designed by Cor-
bató [21] back in 1962 for one of the first experimental timesharing systems.

A time slice (also called quantum) is assigned to every task when it ac-
quires the processor, and at every clock period (called tick), the operating
system decreases the quantum value of the running task in case no other task
with a higher priority becomes ready. When the quantum reaches 0, and there
is at least another task with equal or higher priority, the current task is pre-
empted. In addition to the quantum mechanism, a variable is maintained by
the operating system for each task: whenever the task is awakened, this vari-
able is incremented; whenever the task is preempted or its quantum expires,
the variable is decremented.

The actual value of the variable is used to compute a “priority bonus” that
rewards I/O-intensive tasks that very seldom experience quantum expiration
and preemption (an I/O-intensive task is likely to utilize the processor for a
very short period of time before issuing a new I/O and entering in wait state),
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and which penalizes computing-intensive tasks that periodically experience
quantum expiration and are preempted.

In this way, discrimination between I/O and computing-intensive tasks is
carried out by the actual value of the associated task variable, the quantum
expiration mechanism ensures that the processor is eventually preempted from
tasks that would otherwise block the system for too long, and the dynamic
priority mechanism lowers the priority of computing-intensive tasks that would
otherwise block lower priority tasks waiting for the processor. Observe that
I/O-intensive tasks will hardly cause any task starvation since typically they
require the processor for very short periods of time.

Timesharing is an effective policy for interactive systems but cannot be
considered in real-time applications because it is not possible to predict in
advance the maximum response time for a given task since this depends on
the behavior of the other tasks in the systems, affecting the priority of the task
and therefore its response time. For this reason, real-time systems normally
assign fixed priorities to tasks, and even general-purpose operating systems
supporting timesharing reserve a range of higher priorities to be statically
assigned to real-time tasks. These tasks will have a priority that is always
higher than the priority of timesharing tasks and are therefore guaranteed to
get the processor as soon as they become ready, provided no higher-priority
real-time task is currently ready. The next section will present and analyze
a widely adopted policy called Rate Monotonic in fixed-priority assignment.
The reader may, at this point, wonder whether dynamic priority assignment
can be of any help in real-time applications. The next section shows that
this is the case and presents a dynamic priority assignment policy, called
Earliest Deadline First, which not only ensures real-time behavior in a system
of periodic tasks, but represents the “best” scheduling policy ever attainable
for a given set of periodic tasks under certain conditions as described in the
following pages.

12.2 Rate Monotonic

Rate monotonic is a policy for fixed-priority assignment in periodic tasks,
which assigns a priority that is inversely proportional to the task period: the
shorter the task period, the higher its priority. Consider, for example, the
three tasks listed in Table 12.1: task τ1, which has the smallest period, will
have the highest priority, followed by tasks τ3 and τ2, in that order.

Observe hat the priority assignment takes into account only the task pe-
riod, and not the effective computation time. Priorities are often expressed by
integers, but there is no general agreement on whether higher values represent
higher priorities or the other way round. In most cases, lower numbers indi-
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TABLE 12.1
An example of Rate Monotonic priority assignment

Task Period Computation Time Priority
τ1 20 7 High
τ2 50 13 Low
τ3 25 6 Medium

cate higher priorities, but in any case, this is only an implementation issue
and does not affect the following discussion.

In order to better understand how a scheduler (the rate monotonic sched-
uler in this case) works, and to draw some conclusions about its characteris-
tics, we can simulate the behavior of the scheduler and build the corresponding
scheduling diagram. To be meaningful, the simulation must be carried out for
an amount of time that is “long enough” to cover all possible phase relations
among the tasks. As for the cyclic executive, the right amount of time is the
Least Common Multiple (LCM) of the task periods. After such period, if no
overflow occurs (i.e., the scheduling does not fail), the same sequence will re-
peat, and therefore, no further information is obtained when simulation of the
system behavior is performed for a longer period of time. Since we do not have
any additional information about the tasks, we also assume that all tasks are
simultaneously released at t = 0. We shall see shortly that this assumption
is the most pessimistic one when considering the scheduling assignment, and
therefore, if we prove that a given task priority assignment can be used for
a system, that it will be feasible regardless of the actual initial release time
(often called phase) of task jobs. A sample schedule is shown in Figure 12.1.

The periods of the three tasks are 20 ms, 25 ms and 50 ms, respectively,
and therefore the period to be considered in simulation is 100ms, that is the
Least Common Multiplier of 20, 25 and 50. At t = 0, all tasks are ready: the
first one to be executed is τ1 then, at its completion, τ3. At t = 13 ms, τ2
finally starts but, at t = 20 ms, τ1 is released again. Hence, τ2 is preempted
in favor of τ1. While τ1 is executing, τ3 is released, but this does not lead to a
preemption: τ3 is executed after τ1 has finished. Finally, τ2 is resumed and then
completed at t = 39 ms. At t = 40 ms, after 1 ms of idling, task τ1 is released.
Since it is the only ready task, it is executed immediately, and completes at t
= 47 ms. At t = 50ms, both τ3 and τ2 become ready simultaneously. τ3 is run
first, then τ2 starts and runs for 4 ms. However, at t = 60 ms, τ1 is released
again. As before, this leads to the preemption of τ2 and τ1 runs to completion.
Then, τ2 is resumed and runs for 8 ms, until τ3 is released. τ2 is preempted
again to run τ3. The latter runs for 5 ms but at, t = 80 ms, τ1 is released for
the fifth time. τ3 is preempted, too, to run τ1. After the completion of τ1, both
τ3 and τ2 are ready. τ3 runs for 1 ms, then completes. Finally, τ2 runs and
completes its execution cycle by consuming 1 ms of CPU time. After that, the
system stays idle until t = 100 ms, where the whole cycle starts again.
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100 ms

τ1 Period 20ms, Exec. time 7ms

τ2 Period 50ms, Exec. time 13ms

τ3 Period 25ms, Exec. time 6ms

τ1 release times

τ3 release times

τ2 release times

τ1,1 τ3,1

τ2,1

Preemption

τ1,2 τ3,2 τ1,3 τ3,3

τ2,2

τ1,4

τ3,4

τ1,5

FIGURE 12.1
Scheduling sequence for tasks τ1, τ2, and τ3.

Intuitively Rate Monotonic makes sense: tasks with shorter period are
expected to be executed before others because they have less time available.
Conversely, a task with a long period can afford waiting for other more urgent
tasks and finish its execution in time all the same. However intuition does
not represent a mathematical proof, and we shall prove that Rate Monotonic
is really the best scheduling policy among all the fixed priority scheduling
policies. In other words, if every task job finishes execution within its deadline
under any given fixed priority assignment policy, then the same system is
feasible under Rate Monotonic priority assignment. The formal proof, which
may be skipped by the less mathematically inclined reader, is given below.

12.2.1 Proof of Rate Monotonic Optimality

Proving the optimality of Rate Monotonic consists in showing that if a given
set of periodic tasks with fixed priorities is schedulable in any way, then it will
be schedulable using the Rate Monotonic policy. The proof will be carried out
under the following assumptions:

1. Every task τi is periodic with period Ti.

2. The relative deadline Di for every task τi is equal to its period Ti.

3. Tasks are scheduled preemptively and according to their priority.

4. There is only one processor.
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We shall prove this in two steps. First we shall introduce the concept of “crit-
ical instant,” that is, the “worst” situation that may occur when a set of
periodic tasks with given periods and computation times is scheduled. Task
jobs can in fact be released at arbitrary instants within their period, and the
time between period occurrence and job release is called the phase of the task.
We shall see that the worst situation will occur when all the jobs are initially
released at the same time (i.e., when the phase of all the tasks is zero). The
following proof will refer to such a situation: proving that the system under
consideration is schedulable in such a bad situation means proving that it will
be schedulable for every task phase.

We introduce first some considerations and definition:

• According to the simple process model, the relative deadline of a task is
equal to its period, that is, Di = Ti∀i.

• Hence, for each task instance, the absolute deadline is the time of its next
release, that is, di,j = ri,j+1.

• We say that there is an overflow at time t if t is the deadline for a job that
misses the deadline.

• A scheduling algorithm is feasible for a given set of task if they are scheduled
so that no overflows ever occur.

• A critical instant for a task is an instant at which the release of the task
will produce the largest response time.

• A critical time zone for a task is the interval between a critical instant and
the end of the task response.

The following theorem, proved by Liu and Layland [60], identifies critical
instants.

Theorem 12.1. A critical instant for any task occurs whenever it is released
simultaneously with the release of all higher-priority tasks.

To prove the theorem, which is valid for every fixed-priority assignment,
let τ1, τ2, . . . , τm be a set of tasks, listed in order of decreasing priority, and
consider the task with the lowest priority, τm. If τm is released at t1, between
t1 and t1 + Tm, that is, the time of the next release of τm, other tasks with
a higher priority will possibly be released and interfere with the execution
of τm because of preemption. Now, consider one of the interfering tasks, τi,
with i < m and suppose that, in the interval between t1 and t1 + Tm, it is
released at t2; t2 + Ti, . . . ; t2 + kTi , with t2 ≥ t1. The preemption of τm by
τi will cause a certain amount of delay in the completion of the instance of τm
being considered, unless it has already been completed before t2, as shown in
Figure 12.2.

From the figure, it can be seen that the amount of delay depends on the
relative placement of t1 and t2. However, moving t2 towards t1 will never
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FIGURE 12.2
Interference to τm due to higher-priority tasks τi.

decrease the completion time of τm. Hence, the completion time of τm will be
either unchanged or further delayed, due to additional interference, by moving
t2 towards t1. If t2 is moved further, that is t2 < t1, the interference is not
increased because the possibly added interference due to a new release of τi
before the termination of the instance of τm is at least compensated by the
reduction of the interference due the instance of τi released at t1 (part of
the work for the first instance of τi has already been carried out at t2). The
delay is therefore largest when t1 = t2, that is, when the tasks are released
simultaneously.

The above argument can finally be repeated for all tasks τi; 1 ≤ i < m,
thus proving the theorem.

Under the hypotheses of the theorem, it is possible to check whether or not
a given priority assignment scheme will yield a feasible scheduling algorithm
without simulating it for the LCM of the periods. If all tasks conclude their
execution before the deadline—that is, they all fulfill their deadlines—when
they are released simultaneously and therefore are at their critical instant,
then the scheduling algorithm is feasible.

What we are going to prove is the optimality of Rate Monotonic in the
worst case, that is, for critical instants. Observe that this condition may also
not occur since it depends on the initial phases of the tasks, but this fact does
not alter the outcome of the following proof. In fact, if a system is schedulable
in critical instants, it will remain schedulable for every combination of task
phases.

We are now ready to prove the optimality of Rate Monotonic (abbreviated
in the following as RM), and we shall do it assuming that all the initial task
jobs are released simultaneously at time 0. The optimality of RM is proved by
showing that, if a task set is schedulable by an arbitrary (but fixed) priority
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FIGURE 12.3
Tasks τ1 and τ2 not scheduled under RM.

assignment, then it is also schedulable by RM. This result also implies that
if RM cannot schedule a certain task set, no other fixed-priority assignment
algorithm can schedule it.

We shall consider first the simpler case in which exactly two tasks are
involved, and we shall prove that if the set of two tasks τ1 and τ2 is schedulable
by any arbitrary, but fixed, priority assignment, then it is schedulable by RM
as well.

Let us consider two tasks, τ1 and τ2, with T1 < T2. If their priorities are
not assigned according to RM, then τ2 will have a priority higher than τ1. At
a critical instant, their situation is that shown in Figure 12.3.

The schedule is feasible if (and only if) the following inequality is satisfied:

C1 + C2 ≤ T1 (12.1)

In fact, if the sum of the computation time of τ1 and τ2 is greater than
the period of τ1, it is not possible that τ1 can finish its computation within
its deadline.

If priorities are assigned according to RM, then task τ1 will have a priority
higher than τ2. If we let F be the number of periods of τ1 entirely contained
within T2, that is,

F =

⌊
T2

T1

⌋
(12.2)

then, in order to determine the feasibility conditions, we must consider two
cases (which cover all possible situations):

1. The execution time C1 is “short enough” so that all the instances
of τ1 within the critical zone of τ2 are completed before the next
release of τ2.

2. The execution of the last instance of τ1 that starts within the critical
zone of τ2 overlaps the next release of τ2.
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FIGURE 12.4
Situation in which all the instances of τ1 are completed before the next release
of τ2.

Let us consider case 1 first, corresponding to Figure 12.4.
The first case occurs when

C1 < T2 − FT1 (12.3)

From Figure 12.4 , we can see that the task set is schedulable if and only
if

(F + 1)C1 + C2 ≤ T2 (12.4)

Now consider case 2, corresponding to Figure 12.5. The second case occurs
when

C1 ≥ T2 − FT1 (12.5)

From Figure 12.5, we can see that the task set is schedulable if and only if

FC1 + C2 ≤ FT1 (12.6)

In summary, given a set of two tasks, τ1 and τ2, with T1 < T2 we have the
following two conditions:

1. When priorities are assigned according to RM, the set is schedulable
if and only if

• (F + 1)C1 + C2 ≤ T2, when C1 < T2 − FT1.
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FIGURE 12.5
Situation in which the last instance of τ1 that starts within the critical zone
of τ2 overlaps the next release of τ2.

• FC1 + C2 ≤ FT1, when C1 ≥ T2 − FT1.

2. When priorities are assigned otherwise, the set is schedulable if and
only if C1 + C2 ≤ T1

To prove the optimality of RM with two tasks, we must show that the following
two implications hold:

1. If C1 < T2 − FT1, then C1 + C2 ≤ T1 ⇒ (F + 1)C1 + C2 ≤ T2.

2. If C1 ≥ T2 − FT1, then C1 + C2 ≤ T1 ⇒ FC1 + C2 ≤ FT1.

Consider the first implication: if we multiply both members of C1 + C2 ≤ T1

by F and then add C1, we obtain

(F + 1)C1 + FC2 ≤ FT1 + C1 (12.7)

We know that F ≥ 1 (otherwise, it would not be T1 < T2), and hence,

FC2 ≥ C2 (12.8)

Moreover, from the hypothesis we have

FT1 + C1 < T2 (12.9)



Real-Time, Task-Based Scheduling 291

As a consequence, we have

(F + 1)C1 + C2 ≤ (F + 1)C1 + FC2 ≤ FT1 + C1 ≤ T2 (12.10)

which proves the first implication.
Consider now the second implication: if we multiply both members of

C1 + C2 ≤ T1 by F , we obtain

FC1 + FC2 ≤ FT1 (12.11)

We know that F ≥ 1 (otherwise, it would not be T1 < T2), and hence

FC2 ≥ C2 (12.12)

As a consequence, we have

FC1 + C2 ≤ FC1 + FC2 ≤ FT1 (12.13)

which concludes the proof of the optimality of RM when considering two tasks.
The optimality of RM is then extended to an arbitrary set of tasks thanks

to the following theorem [60]:

Theorem 12.2. If the task set τ1, . . . , τn (n tasks) is schedulable by any
arbitrary, but fixed, priority assignment, then it is schedulable by RM as well.

The proof is a direct consequence of the previous considerations: let τi and
τj be two tasks of adjacent priorities, τi being the higher-priority one, and
suppose that Ti > Tj . Having adjacent priorities, both τi and τj are affected
in the same way by the interferences coming from the higher-priority tasks
(and not at all by the lower-priority ones). Hence, we can apply the result just
obtained and state that if we interchange the priorities of τi and τj , the set is
still schedulable. Finally, we notice that the RM priority assignment can be
obtained from any other priority assignment by a sequence of pairwise priority
reorderings as above, thus ending the proof.

The above problem has far-reaching implications because it gives us a
simple way for assigning priorities to real-time tasks knowing that that choice
is the best ever possible. At this point we may wonder if it is possible to
do better by relaxing the fixed-priority assumption. From the discussion at
the beginning of this chapter, the reader may have concluded that dynamic
priority should be abandoned when dealing with real-time systems. This is
true for the priority assignment algorithms that are commonly used in general
purpose operating systems since there is no guarantee that a given job will
terminate within a fixed amount of time. There are, however, other algorithms
for assigning priority to tasks that do not only ensure a timely termination of
the job execution but perform better than fixed-priority scheduling. The next
section will introduce the Earliest Deadline First dynamic priority assignment
policy, which takes into account the absolute deadline of every task in the
priority assignment.
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12.3 The Earliest Deadline First Scheduler

The Earliest Deadline First (abbreviated as EDF) algorithm selects tasks ac-
cording to their absolute deadlines. That is, at each instant, tasks with earlier
deadlines will receive higher priorities. Recall that the absolute deadline di,j
of the j-th instance (job) of the task τi is formally

di,j = φi + jTi +Di (12.14)

where φi is the phase of task τi, that is, the release time of its first instance
(for which j = 0), and Ti and Di are the period and relative deadlines of task
τi, respectively. The priority of each task is assigned dynamically, because it
depends on the current deadlines of the active task instances. The reader may
be concerned about the practical implementation of such dynamic priority
assignment: does it require that the scheduler must continuously monitor the
current situation in order to arrange task priorities when needed? Luckily,
the answer is no: in fact, task priorities may be updated only when a new
task instance is released (task instances are released at every task period).
Afterwards, when time passes, the relative order due to the proximity in time
of the next deadline remains unchanged among active tasks, and therefore,
priorities are not changed.

As for RM, EDF is an intuitive choice as it makes sense to increase the
priority of more “urgent” tasks, that is, for which deadline is approaching. We
already stated that intuition is not a mathematical proof, therefore we need
a formal way of proving that EDF is the optimal scheduling algorithm, that
is, if any task set is schedulable by any scheduling algorithm, then it is also
schedulable by EDF. This fact can be proved under the following assumption:

• Tasks are scheduled preemptively;

• There is only one processor.

The formal proof will be provided in the next chapter, where it will be shown
that any set of tasks whose processor utilization does not exceed the processor
capability is schedulable under EDF. The processor utilization for a set of tasks
τ1, . . . , τn is formally defined as

n∑
i=1

Ci

Ti
(12.15)

where each term Ci

Ti
represents the fraction of processor time devoted to task

τi. Clearly, it is not possible to schedule on a single processor a set of tasks for
which the above sum is larger than one (in other words, processor utilization
cannot be larger than 100%). Otherwise, the set of tasks will be in any case
schedulable under EDF.
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12.4 Summary

This chapter has introduced the basics of task based scheduling, providing two
“optimal” scheduling procedures: RM for fixed task priority assignment, and
EDF for dynamic task priority assignment. Using a fixed-priority assignment
has several advantages over EDF, among which are the following:

• Fixed-priority assignment is easier to implement than EDF, as the schedul-
ing attribute (priority) is static.

• EDF requires a more complex run-time system, which will typically have
a higher overhead.

• During overload situations, the behavior of fixed-priority assignment is eas-
ier to predict (the lower-priority processes will miss their deadlines first).

• EDF is less predictable and can experience a domino effect in which a large
number of tasks unnecessarily miss their deadline.

On the other side, EDF is always able to exploit the full processor capacity,
whereas fixed-priority assignment, and therefore RM, in the worst case does
not.

EDF implementations are not common in commercial real-time kernels
because the operating system would need to keep into account a set of param-
eters that is not considered in general-purpose operating systems. Moreover,
EDF refers to a task model (periodic tasks with given deadline) that is more
specific than the usual model of process. There is, however, a set of real-time
open-source kernels that support EDF scheduling, and a new scheduling mode
has been recently proposed for Linux [29]. Both have developed under the FP7
European project ACTORS [1].

Here, each task is characterized by a budget and a period, which is equal to
its relative deadline. At any time, the system schedules the ready tasks having
the earliest deadlines. During execution, the budget is decreased at every clock
tick, and when a task’s budget reaches zero (i.e., the task executed for a time
interval equal to its budget), the task is stopped until the beginning of the
next period, the deadline of the other tasks changed accordingly, and the task
with the shortest deadline chosen for execution.

Up to now, however, the usage of EDF scheduling is not common in em-
bedded systems, and a fixed task priority under RM policy is normally used.

As a final remark, observe that all the presented analysis relies on the
assumption that the considered tasks do not interact each other, neither are
they suspended, for example, due to an I/O operation. This is a somewhat
unrealistic assumption (whole chapters of this book are devoted to interprocess
communication and I/O), and such effects must be taken into consideration
in real-world systems. This will be the main argument of Chapters 15 and 16,
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which will discuss the impact in the schedulability analysis of the use of system
resources and I/O operations.
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The previous chapter introduced the basic concepts in process scheduling and
analyzed the two classes of scheduling algorithms: fixed priority and vari-
able priority. When considering fixed-priority scheduling, it has been shown
that Rate Monotonic (RM) Scheduling is optimal, that is, if a task set is
schedulable under any-fixed priority schema, then it will be under RM. For
variable-priority assignment, the optimality of Earliest Deadline First (EDF)
has been enunciated and will be proved in this chapter.

Despite the elegance and importance of these two results, their practical
impact for the moment is rather limited. In fact, what we are interested in
practice is to know whether a given task assignment is schedulable, before
knowing what scheduling algorithm to use. This is the topic of this chapter
and the next one. In particular, a sufficient condition for schedulability will
be presented here, which, when satisfied, ensures that the given set of tasks is
definitely schedulable. Only at this point do the results of the previous chapter
turn out to be useful in practice because they give us an indication of the right
scheduling algorithm to use.

We shall discover in this chapter that the schedulability check will be
very simple, being based on an upper limit in the processor utilization. This
simplicity is, however, paid for by the fact that this condition is only a sufficient
one. As a consequence, if the utilization check fails, we cannot state that the
given set of tasks is not schedulable. A more accurate but also more complex
check will be provided in Chapter 14.

295



296 Real-Time Embedded Systems—Open-Source Operating Systems Perspective

13.1 Processor Utilization

Our goal is to define a schedulability test for either RMS or EDF based on very
simple calculations over the tasks period and execution time. In the following,
we will assume that the basic process model is being used and, in particular,
we shall consider single-processor systems.

Given a set of N periodic tasks Γ = {τ1, . . . , τN}, the processor utilization
factor U is the fraction of processor time spent in the execution of the task
set, that is,

U =

N∑
i=1

Ci

Ti
(13.1)

where Ci
Ti is the fraction of processor time spent executing task τi. The proces-

sor utilization factor is therefore a measure of the computational load imposed
on the processor by a given task set and can be increased by increasing the
execution times Ci of the tasks. For a given scheduling algorithm A, there
exists a maximum value of U below which the task set Γ is schedulable, but
for which any increase in the computational load Ci of any of the tasks in the
task set will make it no longer schedulable. This limit will depend on the task
set Γ and on the scheduling algorithm A.

A task set Γ is said to fully utilize the processor with a given scheduling al-
gorithm A if it is schedulable by A, but any increase in the computational load
Ci of any of its tasks will make it no longer schedulable. The corresponding
upper bound of the utilization factor is denoted as Uub(Γ, A).

If we consider now all the possible task sets Γ, it is interesting (and use-
ful) to ask how large the utilization factor can be in order to guarantee the
schedulability of any task set Γ by a given scheduling algorithm A. In order
to do this, we must determine the minimum value of Uub(Γ, A) over all task
sets Γ that fully utilize the processor with the scheduling algorithm A. This
new value, called least upper bound and denoted as Ulub(A), will only depend
on the scheduling algorithm A and is defined as

Ulub(A) = min
Γ

Uub(Γ, A) (13.2)

where Γ represents the set of all task sets that fully utilize the processor. A
pictorial representation of the meaning of Ulub(A) is given in Figure 13.1. The
least upper bound Ulub(A) corresponds to the shaded part of the figure. For
every possible task set Γi, the maximum utilization depends on both A and
Γ. The actual utilization for task set Γiwill depend on the computational load
of the tasks but will never exceed Uub(Γi, A). Since Ulub(A) is the minimum
upper bound over all possible task sets, any task set whose utilization factor
is below Ulub(A) will be schedulable by A. On the other hand, it may happen
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FIGURE 13.1
Upper Bounds and Least Upper Bound for scheduling algorithm A.

that Ulub(A) can sometimes be exceeded, but not in general case.

Regardless of the adopted scheduling algorithm, there is an upper limit in
processor utilization that can never be exceeded, as defined in the following
theorem:

Theorem 13.1. If the processor utilization factor U of a task set Γ is greater
than one (that is, if U > 1), then the task set is not schedulable, regardless of
the scheduling algorithm.

Even if the theorem can be proved formally, the result is quite intuitive
and, stated in words, it says that it is impossible to allocate to the tasks a
fraction of CPU time greater than the total quantity of CPU time available.
This, therefore, represents a necessary condition: if the total utilization is
above one for a single processor system, then we definitely know that the
system is not schedulable, but we cannot say anything in the case where the
total utilization is below one, as shown in Figure 13.2.
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FIGURE 13.2
Necessary schedulability condition.

13.2 Sufficient Schedulability Test for Rate Monotonic

We will now show how to compute the least upper bound Ulub of the processor
utilization for RM. From this we will derive a sufficient schedulability test
for RM so that, if a given task set Γ satisfies it, its schedulability will be
guaranteed by RM. This is a practical result and can be used, for example, in
a dynamic real-time system that may accept in run time requests for new tasks
to be executed. Based on the expected processor usage of the new task, the
system may accept or reject the request: if accepted, there is the guarantee
that the real-time requirements of the system are not infringed. Of course,
since the test will not be exact, its failure will give us no information about
schedulability, and therefore, it may happen that a task will be refused even if
it may be safely run. This is the price paid for the simplicity of the utilization-
based test. In the next chapter, a more accurate and complex schedulability
test will be presented.

In the following, the utilization limit for RM will be formally derived for
two tasks. The general result for n tasks will then be enunciated. Readers not
interested in the proof details may safely skip to the end of the section where
the final result is presented.

13.2.1 Ulub for Two Tasks

Let us consider a set of two periodic tasks τ1 and τ2, with periods T1 < T2.
According to the RM priority assignment, τ1 will be the task with the highest
priority. We will first compute the upper bound Uub of their utilization factor
by setting the task computation times to fully utilize the processor. Then, to
obtain Ulub, we will minimize Uub over all the other task parameters.
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FIGURE 13.3
No overlap between instances of τ1 and the next release time of τ2.

As before, let F be the number of periods of τ1 entirely contained within T2:

F =

⌊
T2

T1

⌋
(13.3)

Without loss of generality, we will adjust C2 to fully utilize the processor.
Again, we must consider two cases:

• The execution time C1 is short enough so that all the instances of τ1 within
the critical zone of τ2 are completed before the next release of τ2.

• The execution of the last instance of τ1 that starts within the critical zone
of τ2 overlaps the next release of τ2.

Let us consider the first case, shown in Figure 13.3. The largest possible value
of C2 is:

C2 = T2 − (F + 1)C1 (13.4)

If we compute U for this value of C2, we will obtain Uub. In fact, in this case,
the processor is fully utilized, and every increment in either C1 or C2 would
make the task set no more schedulable.
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FIGURE 13.4
Overlap between instances of τ1 and the next release time of τ2.

By definition of U we have

Uub =
C1

T1
+

C2

T2
=

C1

T1
+

T2 − (F + 1)C1

T2

= 1 +
C1

T1
− (F + 1)C1

T2

= 1 +
C1

T2
[
T2

T1
− (F + 1)] (13.5)

Since F =
⌊
T2

T1

⌋
,

FT1 ≤ T2 < (F + 1)T1 (13.6)

and the quantity between square brackets will be strictly negative. Therefore,
Uub is monotonically decreasing with respect to C1.

Consider now the second case, in which the execution of the last instance
of τ1 that starts within the critical zone of τ2 overlaps the next release of τ2.
This case is shown in Figure 13.4. The largest possible value of C2 in this case
is

C2 = FT1 − FC1 (13.7)
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Again, if we compute U for this value of C2, we will obtain Uub. By definition
of U we have

Uub =
C1

T1
+

FT1 − FC1

T2

= F
T1

T2
+

C1

T1
− F

C1

T2

= F
T1

T2
+

C1

T2
[
T2

T1
− F ] (13.8)

Since F =
⌊
T2

T1

⌋
, then F ≤ T2

T1
, and the quantity between square brackets will

be either positive or zero. Therefore, Uub is monotonically nondecreasing with
respect to C1. Considering the minimum possible value of Uub we have, for
each of the two cases above

• In the first case, since Uub is monotonically decreasing with respect to C1,
its value will be at its minimum when C1 assumes its maximum allowed
value.

• In the second case, since Uub is monotonically nondecreasing with respect
to C1, its value will be at its minimum when C1 assumes its minimum
allowed value.

Observe now that as C1 < T2 − FT1 by hypothesis in the first case (see
Figure 13.3), and C1 ≥ T2 − FT1 in the second case (see Figure 13.4), Uub is
at its minimum at the boundary between the two cases, that is, when

C1 = T2 − FT1 (13.9)

At this point, we can take either one of the expressions we derived for Uub

and substitute C1 = T2−FT1 into it. In fact, both refer to the same situation
from the scheduling point of view, and hence, they must both give the same
result.
It should be noted that the resulting expression for Uub will still depend on
the task periods T1 and T2 through F , and hence, we will have to minimize it
with respect to F in order to find the least upper bound Ulub. By substituting
C1 = T2 − FT1 into (13.8), we get

U = F
T1

T2
+

T2 − FT1

T2
(
T2

T1
− F )

= F
T1

T2
+ (1− F

T1

T2
)(
T2

T1
− F )

= F
T1

T2
+

T1

T2
(
T2

T1
− F )(

T2

T1
− F )

=
T1

T2
[F + (

T2

T1
− F )(

T2

T1
− F )] (13.10)
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Let us define now G as

G =
T2

T1
− F (13.11)

Since, by definition, F =
⌊
T2

T1

⌋
, 0 ≤ G < 1. It will be G = 0 when T2 is an

integer multiple of T1. By back substitution, we obtain

U =
T1

T2
(F +G2)

=
F +G2

T2/T1

=
F +G2

(T2/T1 − F ) + F

=
F +G2

F +G

=
(F +G)− (G−G2)

F +G

= 1− G(1 −G)

F +G
(13.12)

Since 0 ≤ G < 1, then 0 < (1 − G) ≤ 1 and 0 ≤ G(1 − G) ≤ 1. As a
consequence, U is monotonically nondecreasing with respect to F and will
be minimum when F is minimum, that is, when F = 1. Therefore, we can
substitute F = 1 in the previous equation to obtain

U = 1− G(1−G)

1 +G

=
(1 +G)−G(1 −G)

1 +G

=
1 +G2

1 +G
(13.13)

We arrived at expressing the full utilization as a function of a single and con-
tinuous variable G, and therefore, we can find its minimum using its derivative

dU

dG
=

2G(1 +G)− (1 +G2)

(1 +G)2

=
G2 + 2G− 1

(1 +G)2
(13.14)

dU
dG will be zero when G2 + 2G− 1 = 0, that is, when

G = −1±
√
2 (13.15)

Of these solutions, only G = −1 +
√
2 is acceptable because the other one is

negative.
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Finally, the least upper bound of U is given by

Ulub = U |G=
√
2−1

=
1 + (

√
2− 1)2

1 + (
√
2− 1)

=
4− 2

√
2√

2

= 2(
√
2− 1) (13.16)

In summary, considering two tasks and RM scheduling, we have the following
value for the least upper utilization:

Ulub = 2(
√
2− 1) (13.17)

13.2.2 Ulub for N Tasks

The result just obtained can be extended to an arbitrary set of N tasks. The
original proof by Liu and Layland [60] was not completely convincing; it was
later refined by Devillers and Goossens [22].

Theorem 13.2. For a set of N periodic tasks scheduled by the Rate Monotonic
algorithm, the least upper bound of the processor utilization factor Ulub is

Ulub = N(21/N − 1) (13.18)

This theorem gives us a sufficient schedulability test for the RM algorithm:
a set of N periodic tasks will be schedulable by the RM algorithm if

N∑
i=1

Ci

Ti
≤ N(21/N − 1) (13.19)

We can summarize this result as shown in Figure 13.5. With respect to Fig-
ure 13.2, the area of uncertain utilization has been restricted. Only for uti-
lization values falling into the white area, are we not yet able to state schedu-
lability.

The next three examples will illustrate in practice the above concepts. Here
we shall assume that both Ti and Ci are measured with the same, arbitrary
time unit.

Consider first the task set of Table 13.1. In this task assignment, the com-
bined processor utilization factor is U = 0.625. For three tasks, from (13.19)
we have Ulub = 3(21/3−1) ≈ 0.779 and, since U < Ulub, we conclude from the
sufficient schedulability test that the task set is schedulable by RM.

Consider now the set of tasks described in Table 13.2. The priority as-
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FIGURE 13.5
Schedulability conditions for Rate Monotonic.

TABLE 13.1
A task set definitely schedulable by RM.

Task τi Period Ti Computation Time Ci Priority Utilization
τ1 50 20 Low 0.400
τ2 40 4 Medium 0.100
τ3 16 2 High 0.125

TABLE 13.2
A task set for which the sufficient RM scheduling condition does not hold.

Task τi Period Ti Computation Time Ci Priority Utilization
τ1 50 10 Low 0.200
τ2 30 6 Medium 0.200
τ3 20 10 High 0.500
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FIGURE 13.6
RM scheduling for a set of tasks with U = 0.900.

signment does not change in respect of the previous example because periods
Ti are still ordered as before. The combined processor utilization factor now
becomes U = 0.900 and, since U > Ulub, the sufficient schedulability test does
not tell us anything useful in this case.

A snapshot of the scheduling sequence is given in Figure 13.6, where all
the tasks are released at time 0. In fact we know that if all tasks fulfill their
deadlines when they are released at their critical instant, that is, simultane-
ously, then the RM schedule is feasible. However, it is easy to show that task
τ1 misses its deadline, and hence the task set is not schedulable.

Let us now consider yet another set of processes, listed in Table 13.3. As
before, the priority assignment does not change with respect to the previous
example because periods Ti are still ordered in the same way. The combined
processor utilization factor is now the maximum value allowed by the necessary
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TABLE 13.3
A task set for which the sufficient RM scheduling condition does not hold.

Task Period Computation Time
τi Ti Ci Priority Utilization
τ1 40 14 Low 0.350
τ2 20 5 Medium 0.250
τ3 10 4 High 0.400

schedulability condition, that is, U = 1. We already know that for a larger
utilization, the task set would definitely be not schedulable. However, since
U > Ulub, the sufficient schedulability test does not tell us anything useful,
even in this case.

We can check the actual behavior of the scheduler as shown in Figure 13.7,
and we discover that all deadlines are met in this case, even if the utilization
is larger than in the previous example.

In summary, the utilization check for RM consists in computing the cur-
rent value of the utilization U and comparing it with Ulub = N(21/N − 1).
Ulub is monotonically decreasing with respect to the number N of tasks and,
for large values of N , it asymptotically approaches ln 2 ≈ 0.693, as shown in
Figure 13.8. From this observation which is simpler, but more pessimistic, a
sufficient condition can be stated for any N : any task set with a combined
utilization factor of less than ln 2 will always be schedulable by the RM algo-
rithm.

13.3 Schedulability Test for EDF

In the previous section we have derived a utilization limit for RM that turns
out to be less than 1. Informally speaking, this is a “penalty” to be paid for
the fact that tasks have a fixed priority and therefore it is not possible to make
runtime adjustments when a task needs to be processed more “urgently” than
another one whose fixed priority is larger. EDF scheduling does exactly this
and decides run time, which is the task that needs to be served first.

Therefore, we may expect that the utilization limit below which the task
set is definitely schedulable will be greater in EDF scheduling compared to
RM. Here we shall discover that this limit is exactly 1, that is, every task set
is either nonschedulable by any scheduling algorithm because its utilization is
greater than 1, or it can be safely scheduled under EDF. This fact is described
by the following theorem, from Liu and Layland [60]:
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FIGURE 13.7
RM scheduling for a set of tasks with U = 1.
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FIGURE 13.8
Ulub value versus the number of tasks in the system.

Theorem 13.3. A set of N periodic tasks is schedulable with the Earliest
Deadline First algorithm if and only if

N∑
i=1

Ci

Ti
≤ 1 (13.20)

The proof of the only if part (necessity) is an immediate consequence of
the necessary schedulability condition. To prove the if part (sufficency), we
use a reductio ad absurdum, that is, we assume that the condition U ≤ 1 is
satisfied and yet the task set is not schedulable. Then, we show that, starting
from these hypotheses, we come to a contradiction.

Consider any task set that is not schedulable: this means that there will
be at least one overflow. Let t2 be the instant at which the first overflow
occurs. Now, go backward in time and choose a suitable t1 so that [t1, t2] is
the longest interval of continuous utilization before the overflow so that only
task instances τi,j with an absolute deadline di,j ≤ t2 are executed within
it. Observe that t2 is the deadline for the task for which the overflow occurs:
tasks with greater absolute deadline will have a lower priority and therefore
cannot be executed in [t1, t2]. By definition, t1 will be the release time of some
task instance. This situation is shown in Figure 13.9, highlighting such an
interval [t1, t2]. In the figure, it is also shown that the processor may have
been busy for a longer period due to task τ1 (in the figure, task τ1 has a lower
priority than τ4). The deadline of τ1 is however outside the [t1, t2] interval
and, therefore, is not considered in [t1, t2].

Let Cp(t1, t2) be the total computation time demand in the time interval
[t1, t2]. It can be computed as

Cp(t1, t2) =
∑

i|ri,j≥t1∧di,j≤t2

Ci (13.21)
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A sample task set where an overflow occurs.
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The maximum number of instances of each τi to be considered in the foregoing
formula is equal to the number of periods of τi entirely contained within the
time interval [t1, t2], that is, ⌊

t2 − t1
Ti

⌋
(13.22)

Observe, in fact, that if we add another instance of τi, either the first instance
would have a release time before t1, or the last one would have a deadline
after t2, and therefore, it would not be considered here. For N tasks, we can
define Cp(t1, t2) more explicitly as

Cp(t1, t2) =
N∑
i=1

⌊
t2 − t1
Ti

⌋
Ci (13.23)

From the definition of �� and U we have

Cp(t1, t2) =
N∑
i=1

⌊
t2 − t1
Ti

⌋
Ci

≤
N∑
i=1

t2 − t1
Ti

Ci (by definition of ��)

= (t2 − t1)

N∑
i=1

Ci

Ti

= (t2 − t1)U (by definition of U) (13.24)

In summary, we have:
Cp(t1, t2) ≤ (t2 − t1)U (13.25)

On the other hand, since there is an overflow at t2, then Cp(t1, t2) (the total
computation time demand) must exceed t2 − t1, which is the time interval in
which that demand takes place, that is,

Cp(t1, t2) > (t2 − t1) (13.26)

By combining the two inequations just derived, we obtain

(t2 − t1)U ≥ Cp(t1, t2) > (t2 − t1) (13.27)

That is, dividing both sides by t2 − t1,

U > 1 (13.28)

This is absurd because the conclusion contradicts one of the hypotheses,
namely, U ≤ 1. The contradiction comes from having supposed the task set
to be not schedulable. Hence, we can conclude that the condition

N∑
i=1

Ci

Ti
≤ 1 (13.29)
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FIGURE 13.10
Utilization based schedulability check for EDF.

is both necessary and sufficient to guarantee the schedulability of a task set
with the EDF algorithm.

The EDF algorithm is optimum in the sense that, if any task set is schedu-
lable by any scheduling algorithm, under the hypotheses just set out, then it
is also schedulable by EDF. In fact,

• If a task set Γ is schedulable by an arbitrary algorithm A, then it must
satisfy the necessary schedulability condition, that is, it must be U ≤ 1.

• Since Γ has U ≤ 1, then it is schedulable with the EDF algorithm, because
it satisfies the sufficient schedulability test just proved.

The schedulability condition for EDF is graphically expressed in Figure 13.10.
With respect to the sufficient schedulability test for the RM algorithm, the
corresponding test for the EDF algorithm is conceptually simpler, and there
is no “grey area” of uncertainty.

13.4 Summary

This chapter has presented two simple schedulability tests based on the proces-
sor utilization for RM and EDF scheduling algorithms. The major advantage
of such tests is simplicity: it is possible to execute at run-time a schedulabil-
ity acceptance test whenever a new task is dynamically added in a running
system. As already stated before, fixed priority is the scheduling algorithm
supported by most current operating system, and RM can be implemented in
this case by

1. Setting the priority of the tasks as fixed;
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2. Assigning a priority to each task that is inversely proportional to
its period.

As an example of periodic task assignment, consider an embedded system that
supervises the execution of a number of control loops. Every loop cycle is trig-
gered, for example, by the availability of a new (set of) input samples whose
acquisition has been triggered by an external clock determining the period for
that control cycle. Whenever new data are available, the system must acquire
and process them to produce one or more control signals for the controlled
plant. The deadline for this task is typically the occurrence of the next sam-
pling clock, to ensure that the system never overruns. More than one control
cycle may be hosted in the same embedded system, and new controls may be
turned on or off run time. In this case, the RM schedulability test allows us
to safely assign control tasks, provided we have a reliable estimation of the
computational load of each task. Two main practical factor must, however, be
considered:

1. The model assumes that no interaction occurs between tasks: this
assumption may be true or false depending on the nature of the con-
trol being performed. If the system consists of a number of indepen-
dent controls, such an assumption is satisfied. More sophisticated
controls, however, may require some degree of information sharing
and therefore may introduce logical dependencies among separate
tasks.

2. The real computational load may be difficult to estimate since it
depends not only on the processor load required to carry out the
required control computation (whose execution time may be nev-
ertheless affected by external parameters such as the cache perfor-
mance) but also on I/O operations that may interfere with I/O due
to the other tasks in the system. For this reason, a conservative
estimate of task utilization must be chosen, covering the worst case
in execution. The next chapters will analyze this aspect in more
detail.

Another fact to be considered is that the results presented in this chapter
cannot be extended to multiprocessor systems. Considering, in fact, a sys-
tem with N tasks and M processors, the necessary schedulability condition
becomes, as expected

N∑
i=1

Ci

Ti
≤ M (13.30)

In this case, however, RM and EDF scheduling, provably optimum for single-
processor systems, are not necessarily optimum. On the other side, multicore
computers are becoming more and more widespread even in the embedded
systems market. A good compromise between the computational power offered
by multicore systems and the required predictability in real-time applications
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is to statically assign task sets to cores so that schedulability checks can be
safely performed. Provided the execution of the single cores can be considered
independent from the other activities of the system, real-time requirements
can be satisfied even for such systems. This assumption is often met in practice
in modern multicore systems, especially when the amount of data exchanged
with I/O devices and memory is not large.
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The previous chapter introduced an approach to schedulability analysis based
on a single quantity, the utilization factor U , which is very easy to compute
even for large task sets. The drawback of this simple approach is a limit in the
accuracy of the analysis, which provides only necessary or sufficient conditions
for fixed-priority schedulability. Moreover, utilization-based analysis cannot
be extended to more general process models, for example, when the relative
deadline Di of task τi is lower than its period Ti. In this chapter, a more
sophisticated approach to schedulability analysis will be presented, which will
allow coping with the above limitations. This new method for analysis will
then be used to analyze the impact in the system of sporadic tasks, that is,
tasks that are not periodic but for which it is possible to state a minimum
interarrival time. Such tasks typically model the reaction of the system to
external events, and their schedulability analysis is therefore important in
determining overall real-time performance.

14.1 Response Time Analysis

Response Time Analysis (RTA) [8, 9] is an exact (necessary and sufficient)
schedulability test for any fixed-priority assignment scheme on single-processor
systems. It allows prediction of the worst-case response time of each task,
which depends on the interference due to the execution of higher-priority tasks.
The worst-case response times are then compared with the corresponding task
deadlines to assess whether all tasks meet their deadline or not.

The task organization that will be considered here still defines a
fixed-priority, preemptive scheduler under the basic process model, but the

315
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condition that the relative deadline corresponds to the task’s period is now
relaxed into condition Di ≤ Ti.

During execution, the preemption mechanism grabs the processor from a
task whenever a higher-priority task is released. For this reason, all tasks (ex-
cept the highest-priority one) suffer a certain amount of interference from
higher-priority tasks during their execution. Therefore, the worst-case re-
sponse time Ri of task τi is computed as the sum of its computation time
Ci and the worst-case interference Ii it experiences, that is,

Ri = Ci + Ii (14.1)

Observe that the interference must be considered over any possible interval
[t, t + Ri], that is, for any t, to determine the worst case. We already know,
however, that the worst case occurs when all the higher-priority tasks are
released at the same time as task τi. In this case, t becomes a critical instant
and, without loss of generality, it can be assumed that all tasks are released
simultaneously at the critical instant t = 0.

The contribution of each higher-priority task to the overall worst-case in-
terference will now be analyzed individually by considering the interference
due to any single task τj of higher priority than τi. Within the interval [0, Ri],
τj will be released one (at t = 0) or more times. The exact number of releases
can be computed by means of a ceiling function, as⌈

Ri

Tj

⌉
(14.2)

Since each release of τj will impose on τi an interference of Cj , the worst-case
interference imposed on τi by τj is⌈

Ri

Tj

⌉
Cj (14.3)

This because if task τj is released at any time t < Ri, than its execution must
have finished before Ri, as τj has a larger priority, and therefore, that instance
of τj must have terminated before τi can resume.

Let hp(i) denote the set of task indexes with a priority higher than τi .
These are the tasks from which τi will suffer interference. Hence, the total
interference endured by τi is

Ii =
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (14.4)

Recalling that Ri = Ci + Ii, we get the following recursive relation for the
worst-case response time Ri of τi:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (14.5)
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No simple solution exists for this equation since Ri appears on both sides, and
is inside �.� on the right side. The equation may have more than one solution:
the smallest solution is the actual worst-case response time.

The simplest way of solving the equation is to form a recurrence relation-
ship of the form

w
(k+1)
i = Ci +

∑
j∈hp(i)

⌈
w

(k)
i

Tj

⌉
Cj (14.6)

where w
(k)
i is the k-th estimate of Ri and the (k+1)-th estimate from the k-th

in the above relationship. The initial approximation w
(0)
i is chosen by letting

w
(0)
i = Ci (the smallest possible value of Ri).

The succession w
(0)
i , w

(1)
i , . . . , w

(k)
i , . . . is monotonically nondecreasing.

This can be proved by induction, that is by proving that

1. w
(0)
i ≤ w

(1)
i (Base Case)

2. If w
(k−1)
i ≤ w

(k)
i , then w

(k)
i ≤ w

(k+1)
i for k > 1 (Inductive Step)

The base case derives directly from the expression of w
(1)
i :

w
(1)
i = Ci +

∑
j∈hp(i)

⌈
w

(0)
i

Tj

⌉
Cj ≥ w

(0)
i = Ci (14.7)

because every term in the summation is not negative.

To prove the inductive step, we shall prove that w
(k+1)
i − w

(k)
i ≥ 0. From

(14.6),

w
(k+1)
i − w

(k)
i =

∑
j∈hp(i)

(⌈
w

(k)
i

Tj

⌉
−
⌈
w

(k−1)
i

Tj

⌉)
Cj ≥ 0 (14.8)

In fact, since, by hypothesis, w
(k)
i ≥ w

(k−1)
i , each term of the summation

is either 0 or a positive integer multiple of Cj . Therefore, the succession

w
(0)
i , w

(1)
i , . . . , w

(k)
i , . . . is monotonically nondecreasing.

Two cases are possible for the succession w
(0)
i , w

(1)
i , . . . , w

(k)
i , . . .:

• If the equation has no solutions, the succession does not converge, and it

will be w
(k)
i > Di for some k. In this case, τi clearly does not meet its

deadline.

• Otherwise, the succession converges to Ri, and it will be w
(k)
i = w

(k−1)
i =

Ri for some k. In this case, τi meets its deadline if and only if Ri ≤ Di.

It is possible to assign a physical meaning to the current estimate w
(k)
i . If

we consider a point of release of task τi, from that point and until that task



318 Real-Time Embedded Systems—Open-Source Operating Systems Perspective

TABLE 14.1
A sample task set.

Task τi Period Ti Computation Time Ci Priority
τ1 8 3 High
τ2 14 4 Medium
τ3 22 5 Low

instance completes, the processor will be busy and will execute only tasks

with the priority of τi or higher. w
(k)
i can be seen as a time window that is

moving down the busy period. Consider the initial assignment w
(0)
i = Ci: in

the transformation from w
(0)
i to w

(1)
i , the results of the ceiling operations will

be (at least) 1. If this is indeed the case, then

w
(1)
i = Ci +

∑
j∈hp(i)

Cj (14.9)

Since at t = 0 it is assumed that all higher-priority tasks have been released,
this quantity represents the length of the busy period unless some of the
higher-priority tasks are released again in the meantime. If this is the case, the
window will need to be pushed out further by computing a new approximation
of Ri. As a result, the window always expands, and more and more computa-
tion time falls into the window. If this expansion continues indefinitely, then
the busy period is unbounded, and there is no solution. Otherwise, at a cer-
tain point, the window will not suffer any additional hit from a higher-priority
task. In this case, the window length is the true length of the busy period and
represents the worst-case response time Ri.

We can now summarize the complete RTA procedure as follows:

1. The worst-case response time Ri is individually calculated for each
task τi ∈ Γ.

2. If, at any point, either a diverging succession is encountered or
Ri > Di for some i, then Γ is not schedulable because τi misses
its deadline.

3. Otherwise, Γ is schedulable, and the worst-case response time is
known for all tasks.

It is worth noting that this method no longer assumes that the relative dead-
line Di is equal to the task period Ti but handles the more general case
Di ≤ Ti. Moreover, the method works with any fixed-priority ordering, and
not just with the RM assignment, as long as hp(i) is defined appropriately for
all i and we use a preemptive scheduler.

To illustrate the computation of RTA consider the task set listed in Ta-
ble 14.1, with Di = Ti.
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The priority assignment is Rate Monotonic and the CPU utilization factor
U is

U =

3∑
i=1

Ci

Ti
=

3

8
+

4

14
+

5

22
� 0.89 (14.10)

The necessary schedulability test (U ≤ 1) does not deny schedulability, but
the sufficient test for RM is of no help in this case because U > 1/3(21/3−1) �
0.78.

The highest-priority task τ1 does not endure interference from any other
task. Hence, it will have a response time equal to its computation time, that

is, R1 = C1. In fact, considering (14.6), hp(1) = ∅ and, given w
(0)
1 = C1, we

trivially have w
(1)
1 = C1. In this case, C1 = 3, hence R1 = 3 as well. Since

R1 = 3 and D1 = 8, then R1 ≤ D1 and τ1 meets its deadline.

For τ2, hp(2) = {1} and w
(0)
2 = C2 = 4. The next approximations of R2

are

w
(1)
2 = 4 +

⌈
4

8

⌉
3 = 7

w
(2)
2 = 4 +

⌈
7

8

⌉
3 = 7 (14.11)

Since w
(2)
2 = w

(1)
2 = 7, then the succession converges, and R2 = 7. In other

words, widening the time window from 4 to 7 time units did not introduce
any additional interference. Task τ2 meets its deadline, too, because R2 = 7,
D2 = 14, and thus R2 ≤ D2.

For τ3, hp(3) = {1, 2}. It gives rise to the following calculations:

w
(0)
3 = 5

w
(1)
3 = 5 +

⌈
5

8

⌉
3 +

⌈
5

14

⌉
4 = 12

w
(2)
3 = 5 +

⌈
12

8

⌉
3 +

⌈
12

14

⌉
4 = 15

w
(3)
3 = 5 +

⌈
15

8

⌉
3 +

⌈
15

14

⌉
4 = 19

w
(4)
3 = 5 +

⌈
19

8

⌉
3 +

⌈
19

14

⌉
4 = 22

w
(5)
3 = 5 +

⌈
22

8

⌉
3 +

⌈
22

14

⌉
4 = 22 (14.12)

R3 = 22 and D3 = 22, and thus R3 ≤ D3 and τ3 (just) meets its deadline.
Figure 14.1 shows the scheduling of the three tasks: τ1 and τ2 are released

3 and 2 times, respectively, within the period of τ3, which, in this example,
corresponds also to the worst response time for τ3. The worst-case response
time for all the three tasks is summarized in Table 14.2.

In this case RTA guarantees that all tasks meet their deadline.
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FIGURE 14.1
Scheduling sequence of the tasks of Table 14.1 and RTA analysis for task τ3.
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TABLE 14.2
Worst-case response time for the sample task set

Task τi Period Ti Computation Priority Worst-Case
Time Ci Resp. Time Ri

τ1 8 3 High 3
τ2 14 4 Medium 7
τ3 22 5 Low 22

14.2 Computing the Worst-Case Execution Time

We have just seen how the worst-case response time can be derived by the
knowledge of the task (fixed) priority assignment and from the worst-case
execution time, that is, the time only due to the task in the worst case, without
considering interference by higher-priority tasks.

The worst-case execution time can be obtained by two distinct methods
often used in combination: measurement and analysis. Measurement is often
easy to perform, but it may be difficult to be sure that the worst case has
actually been observed. There are, in fact, several factors that may lead the
production system to behave in a different way from the test system used for
measurement.

For example, the task execution time can depend on its input data, or un-
expected interference may arise, for example, due to the interrupts generated
by some I/O device not considered in testing.

On the other side, analysis may produce a tight estimate of the worst-
case execution time, but is more difficult to perform. It requires, in fact, an
effective model of the processor (including pipelines, caches, memory, etc.)
and sophisticated code analysis techniques. Moreover, as for testing, external
factors not considered in analysis may arise in the real-world system. Most
analysis techniques involve several distinct activities:

1. Decompose the code of the task into a directed graph of basic blocks.
Each basic block is a straight segment of code (without tests, loops,
and other conditional statements).

2. Consider each basic block and, by means of the processor model,
determine its worst-case execution time.

3. Collapse the graph by means of the available semantic information
about the program and, possibly, additional annotations provided
by either the programmer or the compiler.

For example, the graph of an “if P then S1 else S2” statement can be
collapsed into a single block whose worst-case execution time is equal to the
maximum of the worst-case execution times of blocks S1 and S2. If that state-
ment is enclosed in a loop to be executed 10 times, a straight estimation of
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the worst-case execution time would be derived by multiplying the worst-case
execution time of the if block by 10. However, if it were possible to deduce,
say, by means of more sophisticated analysis techniques, that the predicate
P can be true on at the most three occasions, it would be possible to com-
pute a more accurate overall worst-case execution time for the whole loop by
multiplying the execution time of the block by 3.

Often, some restrictions must be placed on the structure of the code so
that it can be safely analyzed to derive accurate values of its worst execution
time. The biggest challenge in estimating worst execution time derives, how-
ever, from the influence of several hardware components commonly found in
modern processors, whose intent is to increase computation throughput. These
devices aim to reduce the average execution time, and normally perform very
well in this respect. As a consequence, ignoring them makes the analysis very
pessimistic. On the other hand, their impact on the worst-case execution time
can be hard to predict and may sometimes be worse than in a basic system
not using such mechanisms. In fact, in order to improve average performance,
it may turn out more convenient to “sacrifice” performance in situations that
seldom occur, in favor of others that happen more frequently. Average per-
formance optimization methods, commonly used in modern processors, are
Caches, Translation Lookaside Buffers , and Branch Prediction.

The cache consists of a fast memory, often mounted on the same proces-
sor chip, limited in size, which is intended to contain data most frequently
accessed by the processor. Whenever a memory location is accessed, two pos-
sible situations arise:

1. The data item is found (cache hit) in the cache, and therefore, there
is no need to access the external memory. Normally, the access is
carried out in a single clock cycle.

2. The data item is not present in the cache (cache miss). In this case,
the data item must be accessed in the external memory. At the
same time, a set of contiguous data are read from the memory and
stored in a portion of the cache (called cache line) so that the next
time close data are accessed, they are found in the cache. The time
required to handle a cache miss can be orders of magnitude larger
than in a cache hit.

The performance of the cache heavily depends on the locality of memory
access, that is, on the likelihood that accesses in memory are performed at
contiguous addresses. This is indeed a common situation: program instruc-
tions are fetched in sequence unless code branches are performed, program
variables are located on the stack at close addresses, and arrays are often ac-
cessed sequentially. It is, however, not possible to exclude situations in which
a sequence of cache misses occurs, thus obtaining a worst-case execution time
that is much larger than the average one. Therefore, even if it is possible to
satisfactorily assess the performance of a cache from the statistical point of
view, the behavior of a cache with respect to a specific data access is often
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hard to predict. Moreover, cache behavior depends in part on events external
to the task under analysis, such as the allocation of cache lines due to memory
accesses performed by other tasks.

Translation Lookaside Buffers (TLB) is a mechanism for speeding memory
access in virtual memory systems. We have seen in Chapter 2 that virtual
memory address translation implies a double memory access: a first access to
the page table to get the address translation, and then to the selected memory
page. As for cache access, very often memory access is local, and therefore,
if a memory page has been recently accessed, then it is likely that it will
be accessed again in a short time. For this reason, it is convenient to store
in a small and fast associative memory the page translation information for
a subset of the memory pages recently accessed to decrease overall memory
access time. Observe that, in virtual memory systems, address translations is
always performed when accessing memory regardless of the availability of the
requested datum in the cache. If the page translation information is found in
the TLB (TLB hit), there is no need to read the page table entry to get the
physical page number. As for caches, even if the average performance is greatly
improved, it is usually hard to predict whether a particular memory access will
give rise to a TLB hit or to a miss. In the latter case, the memory access time
may grow by an order of magnitude. Moreover, as for caches, TLB behavior
depends in part on events external to the task under analysis. In particular,
when a context switch occurs due, for example, to task preemption, the TLB
is flushed because the virtual address translation is changed.

Branch prediction is a technique used to reduce the so-called “branch haz-
ards” in pipelined processors. All modern processors adopt a pipelined orga-
nization, that is, the execution of the machine instructions is split into stages,
and every stage is carried out by a separate pipeline component. The first
stage consists in fetching the instruction code from the memory and, as soon
as the instruction has been fetched, it is passed on to another element of the
pipeline for decoding it, while the first pipeline component can start fetching
in parallel the following instruction. After a startup time corresponding to
the execution of the first instruction, all the pipeline components can work
in parallel, obtaining a speed in overall throughput of a factor of N , where
N is the number of components in the processor pipeline. Several facts in-
hibit, however, the ideal pipeline organization, and one of the main reason for
this is due to the branch instructions. After a branch instruction is fetched
from memory, the next one is fetched while the former starts being processed.
However, if the branch condition turns out to be true (something that may be
discovered some stages later), the following instructions that are being pro-
cessed in the pipeline must be discarded because they refer to a wrong path
in program execution. If it were possible to know in advance, as soon as a
branch instruction is fetched, at what address the next instruction will be
fetched (i.e., whether or not the branch will occur), there would be no need to
flush the pipeline whenever the branch condition has been detected to be true.
Modern processors use sophisticated techniques of branch prediction based on
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the past execution flow of the program, thus significantly reducing the average
execution time. Prediction is, however, based on statistical assumptions, and
therefore, prediction errors may occur, leading to the flush of the pipeline with
an adverse impact on the task execution time.

The reader should be convinced at this point that, using analysis alone,
it is in practice not possible to derive the worst-case execution time for mod-
ern processors. However, given that most real-time systems will be subject
to considerable testing anyway, for example, for safety reasons, a combined
approach that combines testing and measurement for basic blocks and path
analysis for complete components can often be appropriate.

14.3 Aperiodic and Sporadic Tasks

Up to now we have considered only periodic tasks, where every task consists
of an infinite sequence of identical activities called instances, or jobs, that are
regularly released, or activated, at a constant rate.

A aperiodic task consists of an infinite sequence of identical jobs. However,
unlike periodic tasks, their release does not take place at a regular rate. Typical
examples of aperiodic asks are

• User interaction. Events generated by user interaction (key pressed, mouse
clicked) and which require some sort of system response.

• Event reaction. External events, such as alarms, may be generated at un-
predictable times whenever some condition either in the system or in the
controlled plant occurs.

A aperiodic task for which it is possible to determine a minimum inter-arrival
time interval is called a sporadic task. Sporadic tasks can model many situ-
ations that occur in practice. For example, a minimum interarrival time can
be safely assumed for events generated by user interaction, because of the
reaction time of the human brain, and, more in general, system events can be
filtered in advance to ensure that, after the occurrence of a given event, no
new instance will be issued until after a given dead time.

One simple way of expanding the basic process model to include sporadic
tasks is to interpret the period Ti as the minimum interarrival time interval.
Of course, much more sophisticated methods of handling sporadic tasks do
exist, but their description is beyond the scope of an introductory textbook
like this one. Interested readers are referred References [18, 19, 61] for a more
comprehensive treatment of this topic.

For example, a sporadic task τi with Ti = 20 ms is guaranteed not to arrive
more frequently than once in any 20 ms interval. Actually, it may arrive much
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less frequently, but a suitable schedulability analysis test will ensure (if passed)
that the maximum rate can be sustained.

For these tasks, assuming Di = Ti, that is, a relative deadline equal to the
minimum interarrival time, is unreasonable because they usually encapsulate
error handlers or respond to alarms. The fault model of the system may state
that the error routine will be invoked rarely but, when it is, it has a very short
deadline. For many periodic tasks it is useful to define a deadline shorter than
the period.

The RTA method just described is adequate for use with the extended
process model just introduced, that is, whenDi ≤ Ti. Observe that the method
works with any fixed-priority ordering, and not just with the RM assignment,
as long as the set hp(i) of tasks with priority larger than task τi is defined
appropriately for all i and we use a preemptive scheduler. This fact is especially
important to make the technique applicable also for sporadic tasks. In fact,
even if RM was shown to be an optimal fixed-priority assignment scheme when
Di = Ti , this is no longer true for Di ≤ Ti.

The following theorem (Leung and Whitehead, 1982) [59] introduces an-
other fixed-priority assignment no more based on the period of the task but
on their relative deadlines.

Theorem 14.1. The deadline monotonic priority order (DMPO), in which
each task has a fixed priority inversely proportional to its deadline, is optimum
for a preemptive scheduler under the basic process model extended to let Di ≤
Ti.

The optimality of DMPO means that, if any task set Γ can be scheduled
using a preemptive, fixed-priority scheduling algorithm A, then the same task
set can also be scheduled using the DPMO. As before, such a priority as-
signment sounds to be good choice since it makes sense to give precedence to
more “urgent” tasks. The formal proof of optimality will involve transforming
the priorities of Γ (as assigned by A), until the priority ordering is Deadline
Monotonic (DM). We will show that each transformation step will preserve
schedulability.

Let τi and τj be two tasks in Γ, with adjacent priorities, that are in the
wrong order for DMPO under the priority assignment schema A. That is, let
Pi > Pj and Di > Dj under A, where Pi (Pj) denotes the priority of τi (τj).
We shall define now a new priority assignment scheme A′ to be identical to
A, except that the priorities of τi and τj are swapped and we prove that Γ is
still schedulable under A′.

We observe first that all tasks with a priority higher than Pi (the max-
imum priority of the tasks being swapped) will be unaffected by the swap.
All tasks with priorities lower than Pj (the minimum priority of the tasks
being swapped) will be unaffected by the swap, too, because the amount of
interference they experience from τi and τj is the same before and after the
swap.

Task τj has a higher priority after the swap, and since it was schedulable,
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by hypothesis, under A, it will suffer after the swap either the same or less
interference (due to the priority increase). Hence, it must be schedulable un-
der A′, too. The most difficult step is to show now that task τi, which was
schedulable under A and has had its priority lowered, is still schedulable under
A′.

We observe first that once the tasks have been switched, the new worst-
case response time of τi becomes equal to the old response time of τj , that is,
R′

i = Rj .
Under the previous priority assignment A, we had

• Rj ≤ Dj (schedulability)

• Dj < Di (hypothesis)

• Di ≤ Ti (hypothesis)

Hence, under A, τi only interferes once during the execution of τj because
Rj < Ti, that is, during the worst-case execution time of τj , no new releases
of τi can occur. Under both priority orderings, Ci+Cj amount of computation
time is completed with the same amount of interference from higher-priority
processes.

Under A′, since τj was released only once during Rj and R′
i = Rj , it

interferes only once during the execution of τi. Therefore, we have

• R′
i = Rj (just proved)

• Rj ≤ Dj (schedulability under A)

• Dj < Di (hypothesis)

Hence, R′
i < Di, and it can be concluded that τi is still schedulable after the

switch.

In conclusion, the DM priority assignment can be obtained from any other
priority assignment by a sequence of pairwise priority reorderings as above.
Each such reordering step preserves schedulability.

The following example illustrates a successful application of DMPO for a
task set where RM priority assignment fails. Consider the task set listed in
Table 14.3, where the RM and DM priority assignments differ for some tasks.

The behaviors of RM and DM for this task set will be now examined and
compared.

From Figures 14.2 and 14.3 we can see that RM is unable to schedule the
task set, whereas DM succeeds. We can derive the same result performing
RTA analysis for the RM schedule.

For the RM schedule, we have, for τ3, hp(3) = ∅. Hence, R3 = C3 = 3, and
τ3 (trivially) meets its deadline.
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TABLE 14.3
RM and DM priority assignment

Task Parameters Priority
Task Ti Deadline Di Ci RM DM
τ1 19 6 3 Low High
τ2 14 7 4 Medium Medium
τ3 11 11 3 High Low
τ4 20 19 2 Very Low Very Low

τ1

τ2

τ3

τ4

τ1 release times

τ2 release times

τ3 release times

τ4 release times

: Deadline

: Period

τ3,1 τ2,1 τ1,1
RM

FIGURE 14.2
RM scheduling fails for the tasks of Table 14.3.
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τ1

τ2

τ3

τ4

τ1 release times

τ2 release times

τ3 release times

τ4 release times

: Deadline

: Period

τ1,1 τ2,1 τ3,1
DM

τ3,2 τ2,2 τ1,2

τ4

FIGURE 14.3
DM scheduling succeeds for the tasks of Table 14.3.
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For τ2, hp(2) = {3} and:
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Since R2 = 7 and D2 = 7, τ2 meets its deadline.

For τ1, hp(1) = {3, 2} and
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(14.14)

Since R1 = 10 and D1 = 6, τ1 misses its deadline: RM is unable to schedule
this task set.

Consider now RTA for the DM schedule: for τ1, hp(1) = ∅. Hence, R1 =
C1 = 3, and τ1 (trivially) meets its deadline.

For τ2, hp(2) = {1} and
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Since R2 = 7 and D2 = 7, τ2 just meets its deadline.

For τ3, hp(3) = {1, 2} and
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Since R3 = 10 and D3 = 11, τ3 meets its deadline, too.
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For τ4, hp(4) = {1, 2, 3} and
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Finally, τ4 meets its deadline also because R4 = 19 and D4 = 19. This ter-
minates the RTA analysis, proving the schedulability of Γ for the DM priority
assignment.

14.4 Summary

This chapter introduced RTA, a check for schedulability that allows a finer
resolution in respect of the other utilization-based checks. It is worth noting
that, even when RTA fails, the task set may be schedulable because RTA
assumes that all the tasks are released at the same critical instant. It is, how-
ever, always convenient and safer to consider the worst case (critical instant)
in scheduling dynamics because it would be very hard to make sure that crit-
ical instants never occur due to the variability in the task execution time on
computers, for example, to cache misses and pipeline hazards. Even if not so
straight as the utilization-based check, RTA represents a practical schedula-
bility check because, even in case of nonconvergence, it can be stopped as
long as the currently computed response time for any task exceeds the task
deadline.

The RTA method can be also be applied to Earliest Deadline First (EDF),
but is considerably more complex than for the fixed-priority case and will
not be considered in this book due its very limited applicability in practical
application.

RTA is based on an estimation of the worst-case execution time for each
considered task, and we have seen that the exact derivation of this parameter
is not easy, especially for general-purpose processors, which adopt techniques
for improving average execution speed, and for which the worst-case execution
time can be orders of magnitude larger that the execution time in the large
majority of the executions. In this case, basing schedulability analysis on the
worst case may sacrifice most of the potentiality of the processor, with the
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risk of having a very low total utilization and, therefore, of wasting computer
resources. On the other side, considering lower times may produce occasional,
albeit rare, deadline misses, so a trade-off between deadline miss probability
and efficient processor utilization is normally chosen. The applications where
absolutely no deadline miss is acceptable are in fact not so common. For
example, if the embedded system is used within a feedback loop, the effect of
occasional deadline misses can be considered as a disturb (or noise) in either
the controlled process, the detectors, or the actuators, and can be handled by
the system, provided enough stability margin in achieved control.

Finally, RTA also allows dealing with the more general case in which the
relative deadline Di for task τi is lower than the task period Ti. This is the case
for sporadic jobs that model a set of system activities such as event and alarm
handling. As a final remark, observe that, with the inclusion of sporadic tasks,
we are moving toward a more realistic representation of real-time systems. The
major abstraction so far is due to the task model, which assumes that tasks
do not depend on each other, an assumption often not realistic. The next two
chapters will cover this aspect, taking into account the effect due to the use
of resources shared among tasks and the consequent effect in synchronization.
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The basic process model, first introduced in Chapter 11, was used in Chap-
ters 12 through 14 as an underlying set of hypotheses to prove several inter-
esting properties of real-time scheduling algorithms and, most importantly, all
the schedulability analysis results we discussed so far. Unfortunately, as it has
already been remarked at the end of Chapter 14, some aspects of the basic
process model are not fully realistic, and make those results hard to apply to
real-world problems.

The hypothesis that tasks are completely independent from each other re-
garding execution is particularly troublesome because it sharply goes against
the basics of all the interprocess communication methods introduced in Chap-
ters 5 and 6. In one form or another, they all require tasks to interact and
coordinate, or synchronize, their execution. In other words, tasks will some-
times be forced to block and wait until some other task performs an action in
the future.

For example, tasks may either have to wait at a critical region’s boundary
to keep a shared data structure consistent, or wait for a message from another
task before continuing. In all cases, their execution will clearly no longer be
independent from what the other tasks are doing at the moment.

We shall see that adding task interaction to a real-time system raises
some unexpected issues involving task priority ordering—another concept of
paramount importance in real-time programming—that must be addressed
adequately. In this chapter, the discussion will mainly address task interac-
tions due to mutual exclusion, a ubiquitous necessity when dealing with shared
data. The next chapter will instead analyze the situation in which a task is
forced to wait for other reasons, for instance, an I/O operation.

333
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15.1 The Priority Inversion Problem

In a real-time system, task interaction must be designed with great care, above
all when the tasks being synchronized have different priorities. Informally
speaking, when a high-priority task is waiting for a lower-priority task to
complete some required computation, the task priority scheme is, in some
sense, being hampered because the high-priority task would take precedence
over the lower-priority one in the model.

This happens even in very simple cases, for example, when several tasks
access a shared resource by means of a critical region protected by a mutual
exclusion semaphore. Once a lower-priority task enters its critical region, the
semaphore mechanism will block any higher-priority task wanting to enter
its own critical region protected by the same semaphore and force it to wait
until the former exits. This phenomenon is called priority inversion and, if
not adequately addressed, can have adverse effects on the schedulability of the
system, to the point of making the response time of some tasks completely
unpredictable because the priority inversion region may last for an unbounded
amount of time. Accordingly, such as a situation is usually called unbounded
priority inversion.

It can easily be seen that priority inversion can (and should) be reduced
to a minimum by appropriate software design techniques aimed at avoiding,
for instance, redundant task interactions when the system can be designed in
a different way. At the same time, however, it is also clear that the problem
cannot completely solved in this way except in very simple cases. It can then
be addressed in two different ways:

1. Modify the mutual exclusion mechanism by means of an appropriate
technique, to be discussed in this chapter. The modification shall
guarantee that the blocking time endured by each individual task
in the system has a known and finite upper bound. This worst-
case blocking time can then be used as an additional ingredient to
improve the schedulability analysis methods discussed so far.

2. Depart radically from what was discussed in Chapter 5 and devise
a way for tasks to exchange information through a shared memory
in a meaningful way without resorting to mutual exclusion or, more
in general, without ever forcing them to wait. This has been the
topic of Chapter 10.

Before going further with the discussion, presenting a very simple example of
unbounded priority inversion is useful to better understand what the priority
inversion problem really means from a practical standpoint. The same example
will also be used in the following to gain a better understanding of how the
different methods address the priority inversion issue.

Let us consider the execution of three real-time tasks τH (high priority),
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FIGURE 15.1
A simple example of unbounded priority inversion involving three tasks.

τM (middle priority), and τL (low priority), executed under the control of a
fixed-priority scheduler on a single-processor system. We will also assume, as
shown in Figure 15.1, that τH and τL share some information, stored in a
certain shared memory area M .

Being written by proficient concurrent programmers (who carefully pe-
rused Chapter 5) both τH and τL make access to M only within a suitable
critical region, protected by a mutual exclusion semaphore m. On the contrary,
τM has nothing to do with τH and τL, that is, it does not interact with them
in any way. The only relationship among τM and the other two tasks is that
“by chance” it was assigned a priority that happens to be between the priority
of τH and τL.

In the previous statement, the meaning of the term “by chance” is that the
peculiar priority relationship may very well be unknown to the programmers
who wrote τH , τM , and τL. For example, we saw that, according to the Rate
Monotonic (RM) priority assignment, the priority of a task depends only on
its period. When different software modules—likely written by distinct groups
of programmers and made of several tasks each—are put together to build the
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complete application, it may be very hard to predict how the priority of a
certain task will be located, with respect to the others.

The following sequence of events may happen:

• Initially, neither τH nor τM are ready for execution. They may be, for
instance, periodic tasks waiting for their next execution instance or they
may be waiting for the completion of an I/O operation.

• On the other hand, τL is ready; the fixed-priority scheduler moves it into
the Running state and executes it.

• During its execution, at t1 in the figure, τL enters into its critical region RL,
protected by semaphore m. The semaphore primitive P(m) at the critical
region’s boundary is nonblocking because no other tasks are accessing the
shared memory M at the moment. Therefore, τL is allowed to proceed
immediately and keeps running within the critical region.

• If τH becomes ready while τL still is in the critical region, the fixed-priority
scheduler stops executing τL, puts it back into the Ready state, moves
τH into the Running state and executes it. This action has been called
preemption in Chapter 12 and takes place at t2 in the figure.

• At t3, task τM becomes ready for execution and moves into the Ready state,
too, but this has no effect on the execution of τH , because the priority of
τM is lower than the priority of τH .

• As τH proceeds with its execution, it may try to enter its critical region. In
the figure, this happens at t4. At this point, τH is blocked by the semaphore
primitive P(m) because the value of semaphore m is now zero. This behavior
is correct since τL is within its own critical region RL, and the semaphore
mechanism is just enforcing mutual exclusion between RL and RH , the
critical region τH wants to enter.

• Since τH is no longer able to run, the scheduler chooses another task to
execute. As τM and τL are both Ready but the priority of τM is greater
than the priority of τL, the former is brought into the Running state and
executed.

Therefore, starting from t4 in Figure 15.1, a priority inversion region begins:
τH (the highest priority task in the system) is blocked by τL (a lower priority
task) and the system executed τM (yet another lower priority task). In the
figure, this region is highlighted by a gray background.

Although the existence of this priority inversion region cannot be ques-
tioned because it entirely depends on how the mutual exclusion mechanism
for the shared memory area M has been designed to work, an interesting
question is for how long it will last.

Contrary to expectations, the answer is that the duration of the priority
inversion region does not depend at all on the two tasks directly involved in
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it, that is, τH and τL. In fact, τH is in the Blocked state and, by definition, it
cannot perform any further action until τL exits from RL and executes V(m)
to unblock it. On its part, τL is Ready, but it is not being executed because
the fixed-priority scheduler does not give it any processor time. Hence, it has
no chance of proceeding through RL and eventually execute V(m).

The length of the priority inversion region depends instead on how much
time τM keeps running. Unfortunately, as discussed above, τM has nothing
to do with τH and τL. The programmers who wrote τH and τL may even
be unaware that τM exists. The existence of multiple middle-priority tasks
τM1, . . . , τMn instead of a single one makes the situation even worse. In a
rather extreme case, those tasks could take turns entering the Ready state
and being executed so that, even if none of them keeps running for a long
time individually, taken as a group there is always at least one task τMk in
the Ready state at any given instant. In that scenario, τH will be blocked for
an unbounded amount of time by τM1, . . . , τMn even if they all have a lower
priority than τH itself.

In summary, we are willing to accept that a certain amount of blocking
of τH by some lower-priority tasks cannot be removed. By intuition, when
τH wants to enter its critical region RH in the example just discussed, it
must be prepared to wait up to the maximum time needed by τL to execute
within critical region RL. This is a direct consequence of the mutual exclusion
mechanism, which is necessary to access the shared resources in a safe way.
However, it is also necessary for the blocking time to have a computable and
finite upper bound. Otherwise, the overall schedulability of the whole system,
and of τH in particular, will be compromised in a rather severe way.

As for many other concurrent programming issues, it must also be re-
marked that this is not a systematic error. Rather, it is a time-dependent
issue that may go undetected when the system is bench tested.

15.2 The Priority Inheritance Protocol

Going back to the example shown in Figure 15.1, it is easy to notice that the
root cause of the unbounded priority inversion was the preemption of τL by
τH while τL was executing within RL. If the context switch from τL to τH
had been somewhat delayed until after the execution of V(m) by τL—that is,
until the end of RL—the issue would not have occurred.

On a single-processor system, a very simple (albeit drastic) solution to
the unbounded priority inversion problem is to forbid preemption completely
during the execution of all critical regions. This may be obtained by disabling
the operating system scheduler or, even more drastically, turning interrupts
off within critical regions. In other words, with this approach any task that
successfully enters a critical region implicitly gains the highest possible priority
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in the system so that no other task can preempt it. The task goes back to its
regular priority when it exits from the critical region.

One clear advantage of this method is its extreme simplicity. It is also easy
to convince oneself that it really works. Informally speaking, if we prevent
any tasks from unexpectedly losing the processor while they are holding any
mutual exclusion semaphores, they will not block any higher-priority tasks for
this reason should they try to get the same semaphores. At the same time,
however, the technique introduces a new kind of blocking, of a different nature.

That is, any higher-priority task τM that becomes ready while a low-
priority task τL is within a critical region will not get executed—and we
therefore consider it to be blocked by τL—until τL exits from the critical
region. This happens even if τM does not interact with τL at all. The problem
has been solved anyway because the amount of blocking endured by τM is
indeed bounded. The upper bound is the maximum amount of time τL may
actually spend running within its critical region. Nevertheless, we are now
blocking some tasks, like τM , which were not blocked before.

For this reason, this way of proceeding is only appropriate for very short
critical regions, because it causes much unnecessary blocking. A more sophisti-
cated approach is needed in the general case, although introducing additional
kinds of blocking into the system in order to set an upper bound on the block-
ing time is a trade-off common to all the solutions to the unbounded priority
inversion problem that we will present in this chapter. We shall see that the
approach just discussed is merely a strongly simplified version of the priority
ceiling emulation protocol, to be described in Section 15.3.

In any case, the underlying idea is useful: the unbounded priority inversion
problem can be solved by means of a better cooperation between the synchro-
nization mechanism used for mutual exclusion and the processor scheduler.
This cooperation can be implemented, for instance, by allowing the mutual
exclusion mechanism to temporarily change task priorities. This is exactly the
way the priority inheritance algorithm, or protocol, works.

The priority inheritance protocol has been proposed by Sha, Rajkumar,
and Lehoczky [79], and offers a straightforward solution to the problem of
unbounded priority inversion. The general idea is to dynamically increase
the priority of a task as soon as it is blocking some higher-priority tasks. In
particular, if a task τL is blocking a set of n higher-priority tasks τH1, . . . , τHn

at a given instant, it will temporarily inherit the highest priority among them.
This prevents any middle-priority task from preempting τL and unduly make
the blocking experienced by τH1, . . . , τHn any longer than necessary.

In order to define the priority inheritance protocol in a more rigorous way
and look at its most important properties, it is necessary to set forth some
additional hypotheses and assumptions about the system being considered. In
particular,

• It is first of all necessary to distinguish between the initial, or baseline,
priority given to a task by the scheduling algorithm and its current, or
active, priority. The baseline priority is used as the initial, default value of
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the active priority but, as we just saw, the latter can be higher if the task
being considered is blocking some higher-priority tasks.

• The tasks are under the control of a fixed-priority scheduler and run within
a single-processor system. The scheduler works according to active priori-
ties.

• If there are two or more highest-priority tasks ready for execution, the
scheduler picks them in First-Come First-Served (FCFS) order.

• Semaphore wait queues are ordered by active priority as well. In other
words, when a task executes a V(s) on a semaphore s and there is at least
one task waiting on s, the highest-priority waiting task will be put into the
Ready state.

• Semaphore waits due to mutual exclusion are the only source of blocking in
the system. Other causes of blocking such as, for example, I/O operations,
must be taken into account separately, as discussed in Chapter 16.

The priority inheritance protocol itself consists of the following set of rules:

1. When a task τH attempts to enter a critical region that is “busy”—
that is, its controlling semaphore has already be taken by another
task τL—it blocks, but it also transmits its active priority to the
task τL that is blocking it if the active priority of τL is lower than
τH ’s.

2. As a consequence, τL will execute the rest of its critical region with
a priority at least equal to the priority it just inherited. In gen-
eral, a task inherits the highest active priority among all tasks it is
blocking.

3. When a task τL exits from a critical region and it is no longer block-
ing any other task, its active priority returns back to the baseline
priority.

4. Otherwise, if τL is still blocking some tasks—this happens when
critical regions are nested into each other—it inherits the highest
active priority among them.

Although this is not a formal proof at all, it can be useful to apply the priority
inheritance protocol to the example shown in Figure 15.1 to see that it really
works, at least in a very simple case. The result is shown in Figure 15.2. The
most important events that are different with respect to the previous figure
are highlighted with a gray background:

• From t1 to t4 the system behaves as before. The priority inheritance proto-
col has not been called into action yet, because no tasks are blocking any
other, and all tasks have got their initial, or baseline, priority.
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FIGURE 15.2
A simple application of the priority inheritance protocol involving three tasks.

• At t4, τH is blocked by the semaphore primitive P(m) because the value
of semaphore m is zero. At this point, τH is blocked by τL because τL is
within a critical region controlled by the same semaphore m. Therefore, the
priority inheritance protocol makes τL inherit the priority of τH .

• Regardless of the presence of one (or more) middle-priority tasks like τM ,
at t4 the scheduler resumes the execution of τL because its active priority
is now the same as τH ’s priority.

• At t5, τL eventually finishes its work within the critical region RL and
releases the mutual exclusion semaphore with a V(m). This has two distinct
effects: the first one pertains to task synchronization, and the second one
concerns the priority inheritance protocol:

1. Task τH acquires the mutual exclusion semaphore and returns
to the Ready state;

2. Task τL returns to its baseline priority because it is no longer
blocking any other task, namely, it is no longer blocking τH .

Consequently, the scheduler immediately preempts the processor from τL
and resumes the execution of τH .

• Task τH executes within its critical region from t5 until t6. Then it exits
from the critical region, releasing the mutual exclusion semaphore with
V(m), and keeps running past t6.

Even from this simple example, it is clear that the introduction of the priority
inheritance protocol makes the concept of blocking more complex than it was
before. Looking again at Figure 15.2, there are now two distinct kinds of
blocking rather than one, both occurring between t4 and t5:
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FIGURE 15.3
In a task τ , critical regions can be properly (above) or improperly (below)
nested.

1. Direct blocking occurs when a high-priority task tries to acquire a
resource held by a lower-priority task. In this case, τH is blocked
by τL. Direct blocking was already present in the system and is
necessary for mutual exclusion, to ensure the consistency of the
shared resources.

2. Instead, push-through blocking is a consequence of the priority inher-
itance protocol. It occurs when an intermediate-priority task (τM
in this example) cannot run because a lower-priority task (τL in
our case) has temporarily inherited a higher priority. This kind of
blocking may affect a task even if it does not use any shared re-
source, just as it happens to τM in the example. Nevertheless, it is
necessary to avoid unbounded priority inversion.

In the following, we will present the main properties of the priority inheritance
protocol. The final goal will be to prove that the maximum blocking time that
each task may experience is bounded in all cases. The same properties will also
be useful to define several algorithms that calculate the worst-case blocking
time for each task in order to analyze the schedulability of a periodic task
set. As the other schedulability analysis algorithms discussed in Chapters 13
and 14, these algorithms entail a trade-off between the tightness of the bound
they compute and their complexity.

For simplicity, in the following discussion the fact that critical regions can
be nested into each other will be neglected. Under the assumption that critical
regions are properly nested, the set of critical regions belonging to the same
task is partially ordered by region inclusion. Proper nesting means that, as
shown in Figure 15.3, if two (or more) critical regions R1 and R2 overlap in
a given task, then either the boundaries of R2 are entirely contained in R1 or
the other way around.

For each task, it is possible to restrict the attention to the set of maximal
blocking critical regions, that is, regions that can be a source of blocking for
some other task but are not included within any other critical region with the
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same property. It can be shown that most results discussed in the following are
still valid even if only maximal critical regions are taken into account, unless
otherwise specified. The interested reader should refer to Reference [79] for
more information about this topic.

The first lemma we shall discuss establishes under which conditions a high-
priority task τH can be blocked by a lower-priority task.

Lemma 15.1. Under the priority inheritance protocol, a task τH can be
blocked by a lower-priority task τL only if τL is executing within a critical
region Z that satisfies either one of the following two conditions when τH is
released:

1. The critical region Z is guarded by the same semaphore as a
critical region of τH . In this case, τL can block τH directly as soon
as τH tries to enter that critical region.

2. The critical region Z can lead τL to inherit a priority higher than
or equal to the priority of τH . In this case, τL can block τH by means
of push-through blocking.

Proof. The lemma can be proved by observing that if τL is not within a
critical region when τH is released, it will be preempted immediately by τH
itself. Moreover, it cannot block τH in the future, because it does not hold
any mutual exclusion semaphore that τH may try to acquire, and the priority
inheritance protocol will not boost its priority.

On the other hand, if τL is within a critical region when τH is released but
neither of the two conditions is true, there is no way for τL to either block τH
directly or get a priority high enough to block τH by means of push-through
blocking.

When the hypotheses of Lemma 15.1 are satisfied, then task τL can block
τH . The same concept can also be expressed in two slightly different, but
equivalent, ways:

1. When the focus of the discussion is on critical regions, it can also
be said that that the critical region Z, being executed by τL when
τH is released, can block τH . Another, equivalent way of expressing
this concept is to say that Z is a blocking critical region for τH .

2. Since critical regions are always protected by mutual exclusion
semaphores in our framework, if critical region Z is protected by
semaphore SZ , it can also be said that the semaphore SZ can block
τH .

Now that the conditions under which tasks can block each other are clear,
another interesting question is how many times a high-priority task τH can
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be blocked by lower-priority tasks during the execution of one of its instances,
and for how long. One possible answer is given by the following lemma:

Lemma 15.2. Under the priority inheritance protocol, a task τH can be
blocked by a lower-priority task τL for at most the duration of one criti-
cal region that belongs to τL and is a blocking critical region for τH regardless
of the number of semaphores τH and τL share.

Proof. According to Lemma 15.1, for τL to block τH , τL must be executing a
critical region that is a blocking critical region for τH . Blocking can by either
direct or push-through.

When τL eventually exits from that critical region, its active priority will
certainly go back to a value less than the priority of τH . From this point on,
τH can preempt τL, and it cannot be blocked by τL again. Even if τH will
be blocked again on another critical region, the blocking task will inherit the
priority of τH itself and thus prevent τL from being executed.

The only exception happens when τH relinquishes the processor for other
reasons, thus offering τL a chance to resume execution and acquire another
mutual exclusion semaphore. However, this is contrary to the assumption that
semaphore waits due to mutual exclusion are the only source of blocking in
the system.

In the general case, we consider n lower-priority tasks τL1, . . . , τLn in-
stead of just one. The previous lemma can be extended to cover this case and
conclude that the worst-case blocking time experienced by τH is bounded even
in that scenario.

Lemma 15.3. Under the priority inheritance protocol, a task τH for which
there are n lower-priority tasks τL1, . . . , τLn can be blocked for at most the
duration of one critical region that can block τH for each τLi, regardless of the
number of semaphores used by τH .

Proof. Lemma 15.2 states that each lower-priority task τLi can block τH for
at most the duration of one of its critical sections. The critical section must
be one of those that can block τH according to Lemma 15.1.

In the worst case, the same scenario may happen for all the n lower-priority
tasks, and hence, τH can be blocked at most n times, regardless of how many
semaphores τH uses.

More important information we get from this lemma is that, provided all
tasks only spend a finite amount of time executing within their critical regions
in all possible circumstances, then the maximum blocking time is bounded.
This additional hypothesis is reasonable because, by intuition, if we allowed a
task to enter a critical region and execute within it for an unbounded amount
of time without ever leaving, the mutual exclusion framework would no longer
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work correctly anyway since no other tasks would be allowed to get into any
critical region controlled by the same semaphore in the meantime.

It has already been discussed that push-through blocking is an additional
form of blocking, introduced by the priority inheritance protocol to keep the
worst-case blocking time bounded. The following lemma gives a better char-
acterization of this kind of blocking and identifies which semaphores can be
responsible for it.

Lemma 15.4. A semaphore S can induce push-through blocking onto task τH
only if it is accessed both by a task that has a priority lower than the priority
of τH , and by a task that either has or can inherit a priority higher than the
priority of τH .

Proof. The lemma can be proved by showing that, if the conditions set forth
by the lemma do not hold, then push-through blocking cannot occur.

If S is not accessed by any task τL with a priority lower than the priority
of τH , then, by definition, push-through blocking cannot occur.

Let us then suppose that S is indeed accessed by a task τL, with a priority
lower than the priority of τH . If S is not accessed by any task that has or can
inherit a priority higher than the priority of τH , then the priority inheritance
mechanism will never give to τL an active priority higher than τH . In this
case, τH can always preempt τL and, again, push-through blocking cannot
take place.

If both conditions hold, push-trough blocking of τH by τL may occur, and
the lemma follows.

It is also worth noting that, in the statement of Lemma 15.4, it is crucial
to perceive the difference between saying that a task has a certain priority or
that it can inherit that priority:

• When we say that a task has a certain priority, we are referring to its
baseline priority.

• On the other hand, a task can inherit a certain priority higher than its
baseline priority through the priority inheritance mechanism.

Lemma 15.3 states that the number of times a certain task τH can be blocked
is bounded by n, that is, how many tasks have a priority lower than its own
but can block it. The following lemma provides a different bound, based on
how many semaphores can block τH . As before, the definition of “can block”
must be understood according to what is stated in Lemma 15.1.

The two bounds are not equivalent because, in general, there is no one-
to-one correspondence between tasks and critical regions, as well as between
critical regions and semaphores. For example, τH may pass through more than
one critical region but, if they are guarded by the same semaphore, it will be
blocked at most once. Similarly, a single task τL may have more than one
blocking critical region for τH , but it will nevertheless block τH at most once.
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Lemma 15.5. If task τH can endure blocking from m distinct semaphores
S1, . . . , Sm, then τH can be blocked at most for the duration of m critical
regions, once for each of the m semaphores.

Proof. Lemma 15.1 establishes that a certain lower-priority task—let us call
it τL—can block τH only if it is currently executing within a critical region
that satisfies the hypotheses presented in the lemma itself and is therefore a
blocking critical region for τH .

Since each critical region is protected by a mutual exclusion semaphore,
τL must necessarily have acquired that mutual exclusion semaphore upon
entering the critical region and no other tasks can concurrently be within
another critical region associated with the same semaphore. Hence, only one
of the lower-priority tasks, τL in our case, can be within a blocking critical
region protected by any given semaphore Si.

Due to Lemma 15.2, as soon as τL leaves the blocking critical region, it can
be preempted by τH and can no longer block it. Therefore, for each semaphore
Si, at the most one critical region can induce a blocking on τH . Repeating
the argument for the m semaphores proves the lemma.

At this point, by combining Lemmas 15.3 and 15.5, we obtain the following
important theorem, due to Sha, Rajkumar, and Lehoczky [79].

Theorem 15.1. Under the priority inheritance protocol, a task τH can be
blocked for at most the worst-case execution time, or duration, of min(n,m)
critical regions in the system, where

• n is the number of lower-priority tasks that can block τH , and

• m is the number of semaphores that can block τH .

It should be stressed that a critical region or a semaphore can block a certain
task τH even if the critical region does not belong to τH , or τH does not use
the semaphore.

An important phenomenon that concerns the priority inheritance proto-
col and makes its analysis more difficult is that priority inheritance must be
transitive. A transitive priority inheritance occurs when a high-priority task
τH is directly blocked by an intermediate-priority task τM , which in turn is
directly blocked by a low-priority task τL.

In this case, the priority of τH must be transitively transmitted not only to
τM but to τL, too. Otherwise, the presence of any other intermediate-priority
task could still give rise to an unbounded priority inversion by preempting
τL at the wrong time. The scenario is illustrated in Figure 15.4. There, if
there is no transitive priority inheritance, τH ’s blocking may be unbounded
because τB can preempt τL. Therefore, a critical region of a task can block a
higher-priority task via transitive priority inheritance, too.
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FIGURE 15.4
An example of transitive priority inheritance involving three tasks. If transitive
inheritance did not take place, τH ’s blocking would be unbounded due to the
preemption of τL by τB.

Fortunately, the following lemma makes it clear that transitive priority
inheritance can occur only in a single, well-defined circumstance.

Lemma 15.6. Transitive priority inheritance can occur only in presence of
nested critical regions.

Proof. In the proof, we will use the same task nomenclature just introduced to
define transitive priority inheritance. Since τH is directly blocked by τM , then
τM must hold a semaphore, say SM . But, by hypothesis, τM is also directly
blocked by a third task τL on a different semaphore held by τL, say SL.

As a consequence, τM must have performed a blocking P() on SL after
successfully acquiring SM , that is, within the critical region protected by SM .
This corresponds to the definition of properly nested critical regions.

If transitive priority inheritance is ruled out with the help of Lemma 15.6,
that is, if nested critical regions are forbidden, a stronger version of
Lemma 15.4 holds:

Lemma 15.7. In the absence of nested critical regions, a semaphore S can
block a task τH only if it is used both by (at least) one task with a priority less
than τH , and (at least) one task with a priority higher than or equal to τH .

Proof. As long as push-through blocking is concerned, the statement of the
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lemma is the same as Lemma 15.4, minus the “can inherit” clause. The rea-
soning is valid because Lemma 15.6 rules out transitive priority inheritance
if critical regions are not nested. Moreover, transitive inheritance is the only
way for a task to acquire a priority higher than the highest-priority task with
which it shares a resource.

The conditions set forth by this lemma also cover direct blocking because
semaphore S can directly block a task τH only if it is used by another task
with a priority less than the priority of τH , and by τH itself. As a consequence,
the lemma is valid for all kinds of blocking (both direct and push-through).

If nested critical regions are forbidden, as before, the following theorem
provides an easy way to compute an upper bound on the worst-case blocking
time that a task τi can possibly experience.

Theorem 15.2. Let K be the total number of semaphores in the system. If
critical regions cannot be nested, the worst-case blocking time experienced by
each activation of task τi under the priority inheritance protocol is bounded by
Bi:

Bi =

K∑
k=1

usage(k, i)C(k)

where

• usage(k, i) is a function that returns 1 if semaphore Sk is used by (at least)
one task with a priority less than the priority of τi and (at least) one
task with a priority higher than or equal to the priority of τi. Otherwise,
usage(k, i) returns 0.

• C(k) is the worst-case execution time among all critical regions correspond-
ing to, or guarded by, semaphore Sk.

Proof. The proof of this theorem descends from the straightforward applica-
tion of the previous lemmas. The function usage(k, i) captures the conditions
under which semaphore Sk can block τi by means of either direct or push-
through blocking, set forth by Lemma 15.7.

A single semaphore Sk may guard more than one critical region, and it is
generally unknown which specific critical region will actually cause the block-
ing for task τi. It is even possible that, on different execution instances of τi,
the region will change. However, the worst-case blocking time is still bounded
by the worst-case execution time among all critical regions guarded by Sk,
that is, C(k).

Eventually, the contributions to the worst-case blocking time coming from
the K semaphores are added together because, as stated by Lemma 15.5, τi
can be blocked at most once for each semaphore.

It should be noted that the algorithm discussed in Theorem 15.2 is not
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optimal for the priority inheritance protocol, and the bound it computes is
not so tight because

• It assumes that if a certain semaphore can block a task, it will actually
block it.

• For each semaphore, the blocking time suffered by τi is assumed to be
equal to the execution time of the longest critical region guarded by that
semaphore even if that particular critical region is not a blocking critical
region for τi.

However, it is an acceptable compromise between the tightness of the bound
it calculates and its computational complexity. Better algorithms exist and
are able to provide a tighter bound of the worst-case blocking time, but their
complexity is much higher.

15.3 The Priority Ceiling Protocol

Even if the priority inheritance protocol just described enforces an upper
bound on the number and the duration of blocks a high-priority task τH can
encounter, it has several shortcomings:

• In the worst case, if τH tries to acquire n mutual exclusion semaphores
that have been locked by n lower-priority tasks, it will be blocked for the
duration of n critical regions. This is called chained blocking.

• The priority inheritance protocol does not prevent deadlock from occurring.
Deadlock must be avoided by some other means, for example, by imposing
a total order on semaphore accesses, as discussed in Chapter 4.

All of these issues are addressed by the priority ceiling protocols, also proposed
by Sha, Rajkumar, and Lehoczky [79]. In this chapter we will discuss the
original priority ceiling protocol and its immediate variant; both have the
following properties:

1. A high-priority task can be blocked at most once during its execu-
tion by lower-priority tasks.

2. They prevent transitive blocking even if critical regions are nested.

3. They prevent deadlock.

4. Mutual exclusive access to resources is ensured by the protocols
themselves.

The basic idea of the priority ceiling protocol is to extend the priority inher-
itance protocol with an additional rule for granting lock requests to a free
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semaphore. The overall goal of the protocol is to ensure that, if task τL holds
a semaphore and it could lead to the blocking of an higher-priority task τH ,
then no other semaphores that could also block τH are to be acquired by any
task other than τL itself.

A side effect of this approach is that a task can be blocked, and hence
delayed, not only by attempting to lock a busy semaphore but also when
granting a lock to a free semaphore could lead to multiple blocking on higher-
priority tasks.

In other words, as we already did before, we are trading off some useful
properties for an additional form of blocking that did not exist before. This
new kind of blocking that the priority ceiling protocol introduces in addition
to direct and push-through blocking, is called ceiling blocking.

The underlying hypotheses of the original priority ceiling protocol are the
same as those of the priority inheritance protocol. In addition, it is assumed
that each semaphore has a static ceiling value associated with it. The ceiling
of a semaphore can easily be calculated by looking at the application code
and is defined as the maximum initial priority of all tasks that use it.

As in the priority inheritance protocol, each task has a current (or ac-
tive) priority that is greater than or equal to its initial (or baseline) priority,
depending on whether it is blocking some higher-priority tasks or not. The
priority inheritance rule is exactly the same in both cases.

A task can immediately acquire a semaphore only if its active priority
is higher than the ceiling of any currently locked semaphore, excluding any
semaphore that the task has already acquired in the past and not released
yet. Otherwise, it will be blocked. It should be noted that this last rule can
block the access to busy as well as free semaphores.

The first property of the priority ceiling protocol to be discussed puts an
upper bound on the priority a task may get when it is preempted within a
critical region.

Lemma 15.8. If a task τL is preempted within a critical region ZL by another
task τM, and then τM enters a critical region ZM, then, under the priority
ceiling protocol, τL cannot inherit a priority higher than or equal to the priority
of τM until τM completes.

Proof. The easiest way to prove this lemma is by contradiction. If, contrary
to our thesis, τL inherits a priority higher than or equal to the priority of τM,
then it must block a task τH . The priority of τH must necessarily be higher
than or equal to the priority of τM . If we call PH and PM the priorities of τH
and τM , respectively, it must be PH ≥ PM .

On the other hand, since τM was allowed to enter ZM without blocking, its
priority must be strictly higher than the maximum ceiling of the semaphores
currently locked by any task except τM itself. Even more so, if we call C∗ the
maximum ceiling of the semaphores currently locked by tasks with a priority
lower than the priority of τM, thus including τL, it must be PM > C∗.



350 Real-Time Embedded Systems—Open-Source Operating Systems Perspective

The value of C∗ cannot undergo any further changes until τM completes
because no tasks with a priority lower than its own will be able to run and
acquire additional semaphores as long as τM is Ready or Running. The same
is true also if τM is preempted by any higher-priority tasks. Moreover, those
higher-priority tasks will never transmit their priority to a lower-priority one
because, being PM > C∗, they do not share any semaphore with it. Last, if
τM ever blocks on a semaphore, it will transmit its priority to the blocking
task, which will then get a priority at least equal to the priority of τM .

By combining the two previous inequalities by transitivity, we obtain PH >
C∗. From this, we can conclude that τH cannot be blocked by τL because the
priority of τH is higher than the ceiling of all semaphores locked by τL. This
is a contradiction and the lemma follows.

Then, we can prove that no transitive blocking can ever occur when the
priority ceiling protocol is in use because

Lemma 15.9. The priority ceiling protocol prevents transitive blocking.

Proof. Again, by contradiction, let us suppose that a transitive blocking
occurs. By definition, there exist three tasks τH , τM , and τL with decreasing
priorities such that τL blocks τM and τM blocks τH .

Then, also by definition, τL must inherit the priority of τH by transitive
priority inheritance. However, this contradicts Lemma 15.8. In fact, its hy-
potheses are fulfilled, and it states that τL cannot inherit a priority higher
than or equal to the priority of τM until τM completes.

Another important property of the priority ceiling protocol concerns dead-
lock prevention and is summarized in the following theorem.

Theorem 15.3. The priority ceiling protocol prevents deadlock.

Proof. We assume that a task cannot deadlock “by itself,” that is, by trying
to acquire again a mutual exclusion semaphore it already acquired in the past.
In terms of program code, this would imply the execution of two consecutive
P() on the same semaphore, with no V() in between.

Then, a deadlock can only be formed by a cycle of n ≥ 2 tasks {τ1, . . . , τn}
waiting for each other according to the circular wait condition discussed in
Chapter 4. Each of these tasks must be within one of its critical regions;
otherwise, deadlock cannot occur because the hold & wait condition is not
satisfied.

By Lemma 15.9, it must be n = 2; otherwise, transitive blocking would
occur, and hence, we consider only the cycle {τ1, τ2}. For a circular wait to
occur, one of the tasks was preempted by the other while it was within a critical
region because they are being executed by one single processor. Without loss
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of generality, we suppose that τ2 was firstly preempted by τ1 while it was
within a critical region. Then, τ1 entered its own critical region.

In that case, by Lemma 15.8, τ2 cannot inherit a priority higher than or
equal to the priority of τ1. On the other hand, since τ1 is blocked by τ2, then
τ2 must inherit the priority of τ1, but this is a contradiction and the theorem
follows.

This theorem is also very useful from the practical standpoint. It means
that, under the priority ceiling protocol, programmers can put into their code
an arbitrary number of critical regions, possibly (properly) nested into each
other. As long as each task does not deadlock with itself, there will be no
deadlock at all in the system.

The next goal is, as before, to compute an upper bound on the worst-case
blocking time that a task τi can possibly experience. First of all, it is necessary
to ascertain how many times a task can be blocked by others.

Theorem 15.4. Under the priority ceiling protocol, a task τH can be blocked
for, at most, the duration of one critical region.

Proof. Suppose that τH is blocked by two lower-priority tasks τL and τM ,
where PL ≤ PH and PM ≤ PH . Both τL and τM must be in a critical region.

Let τL enter its critical region first, and let C∗
L be the highest-priority

ceiling among all semaphores locked by τL at this point. In this scenario, since
τM was allowed to enter its critical region, it must be PM > C∗

L; otherwise,
τM would be blocked.

Moreover, since we assumed that τH can be blocked by τL, it must nec-
essarily be PH ≤ C∗

L. However, this implies that PM > PH , leading to a
contradiction.

The next step is to identify the critical regions of interest for blocking,
that is, which critical regions can block a certain task.

Lemma 15.10. Under the priority ceiling protocol, a critical region Z, be-
longing to task τL and guarded by semaphore S, can block another task τH
only if PL < PH , and the priority ceiling of S, C∗

S is greater than or equal to
PH , that is, C∗

S ≥ PH .

Proof. If it were PL ≥ PH , then τH could not preempt τL, and hence, could
not be blocked by S. Hence, it must be PL < PH for τH to be blocked by S.

Let us assume that C∗
S < PH , that is, the second part of the hypothesis,

is not satisfied, but τH is indeed blocked by S. Then, its priority must be
less than or equal to the maximum ceiling C∗ among all semaphores acquired
by tasks other than itself, that is, PH ≤ C∗. But it is PH > C∗

S , and hence,
C∗

S < C∗ and another semaphore, not S, must be the source of the blocking
in this case.
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It is then possible to conclude that τH can be blocked by τL, by means of
semaphore S, only if PL < PH and C∗

S ≥ PH .

By combining the previous two results, the following theorem provides an
upper bound on the worst-case blocking time.

Theorem 15.5. Let K be the total number of semaphores in the system. The
worst-case blocking time experienced by each activation of task τi under the
priority ceiling protocol is bounded by Bi:

Bi =
K

max
k=1

{usage(k, i)C(k)}

where

• usage(k, i) is a function that returns 1 if semaphore Sk is used by (at least)
one task with a priority less than τi and (at least) one task with a priority
higher than or equal to τi. Otherwise, it returns 0.

• C(k) is the worst-case execution time among all critical regions guarded by
semaphore Sk.

Proof. The proof of this theorem descends from the straightforward applica-
tion of

1. Theorem 15.4, which limits the blocking time to the duration of
one critical region, the longest critical region among those that can
block τi.

2. Lemma 15.10, which identifies which critical regions must be con-
sidered for the analysis. In particular, the definition of usage(k, i)
is just a slightly different way to state the necessary conditions set
forth by the lemma to determine whether a certain semaphore SK

can or cannot block τi.

The complete formula is then built with the same method already discussed
in the proof of Theorem 15.2.

The only difference between the formulas given in Theorem 15.2 (for prior-
ity inheritance) and Theorem 15.5 (for priority ceiling), namely, the presence
of a summation instead of a maximum can be easily understood by comparing
Lemma 15.5 and Theorem 15.4.

Lemma 15.5 states that, for priority inheritance, a task τH can be blocked
at most once for each semaphore that satisfies the blocking conditions of
Lemma 15.7, and hence, the presence of the summation for priority inher-
itance. On the other hand, Theorem 15.4 states that, when using priority
ceiling, τH can be blocked at most once, period, regardless of how many
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semaphores can potentially block it. In this case, to be conservative, we take
the maximum among the worst-case execution times of all critical regions
controlled by all semaphores that can potentially block τH .

An interesting variant of the priority ceiling protocol, called immediate
priority ceiling or priority ceiling emulation protocol, takes a more straight-
forward approach. It raises the priority of a task to the priority ceiling asso-
ciated with a resource as soon as the task acquires it, rather than only when
the task is blocking a higher-priority task. Hence, it is defined as follows:

1. Each task has an initial, or baseline, priority assigned.

2. Each semaphore has a static ceiling defined, that is, the maximum
priority of all tasks that may use it.

3. At each instant a task has a dynamic, active priority, that is, the
maximum of its static, initial priority and the ceiling values of any
semaphore it has acquired.

It can be proved that, as a consequence of the last rule, a task will only suffer
a block at the very beginning of its execution. The worst-case behavior of the
immediate priority ceiling protocol is the same as the original protocol, but

• The immediate priority ceiling is easier to implement, as blocking relation-
ships must not be monitored. Also, for this reason, it has been specified
in the POSIX standard [48], along with priority inheritance, for mutual
exclusion semaphores.

• It leads to less context switches as blocking is prior to the first execution.

• On average, it requires more priority movements, as this happens with
all semaphore operations rather than only if a task is actually blocking
another.

A different method of addressing the unbounded priority inversion issue,
known as adaptive priority ceiling, is used by RTAI, one of the Linux real-
time extensions. It has a strong similarity with the algorithms just discussed
but entails a different trade-off between the effectiveness of the method and
how much complex its implementation is. More details about it can be found
in Chapter 18.

15.4 Schedulability Analysis and Examples

In the previous section, an upper bound for the worst-case blocking time Bi

that a task τi can suffer has been obtained. The bound depends on the way
the priority inversion problem has been addressed. The worst-case response
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time Ri, already introduced in Chapter 14, can be redefined to take Bi into
account as follows:

Ri = Ci +Bi + Ii (15.1)

In this way, the worst-case response time Ri of task τi is expressed as the
sum of three components:

1. the worst-case execution time Ci,

2. the worst-case interference Ii, and

3. the worst-case blocking time Bi.

The corresponding recurrence relationship introduced for Response Time
Analysis (RTA) becomes

w
(k+1)
i = Ci +Bi +

∑
j∈hp(i)

⌈
w

(k)
i

Tj

⌉
Cj (15.2)

It can be proved that the new recurrence relationship still has the same
properties as the original one. In particular, if it converges, it still provides
the worst-case response time Ri for an appropriate choice of w0

i . As before,
either 0 or Ci are good starting points.

The main difference is that the new formulation is pessimistic, instead of
necessary and sufficient, because the bound Bi on the worst-case blocking
time is not tight, and hence, it may be impossible for a task to ever actually
incur in a blocking time equal to Bi.

Let us now consider an example. We will consider a simple set of tasks
and determine the effect of the priority inheritance and the immediate priority
ceiling protocols on their worst-case response time, assuming that their periods
are large (> 100 time units). In particular, the system includes

• A high-priority task τH , released at t = 4 time units, with a computation
time of CH = 3 time units. It spends the last 2 time units within a critical
region guarded by a semaphore, S.

• An intermediate-priority task τM , released at t = 2 time units, with a
computation time of 4 time units. It does not have any critical region.

• A low-priority task τL, released at t = 0 time units, with a computation
time of 4 time units. It shares some data with τH , hence it spends its middle
2 time units within a critical region guarded by S.

The upper part of Figure 15.5 sketches the internal structure of the three
tasks. Each task is represented as a rectangle with the left side aligned with
its release time. The rectangle represents the execution of the task if it were
alone in the system; the gray area inside the rectangle indicates the location
of the critical region the task contains, if any.

The lower part of the figure shows how the system of tasks being considered
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FIGURE 15.5
An example of task scheduling with unbounded priority inversion.

is scheduled when nothing is done against unbounded priority inversion. When
τH is blocked by its P(s) at t = 5 time units, task τM is resumed because it is
the highest-priority task ready for execution. Hence, τL is resumed only after
τM completes its execution, at t = 7 time units.

Thereafter, τL leaves its critical region at t = 8 and is immediately pre-
empted by τH , which is now no longer blocked by τL and is ready to execute
again. τH completes its execution at t = 10 time units. Last, τL is resumed
and completes at t = 11 time units.

Overall, the task response times in this case are: RH = 10− 4 = 6, RM =
7− 2 = 5, RL = 11− 0 = 11 time units. Looking at Figure 15.5, it is easy to
notice that RH , the response time of τH , includes part of the execution time of
τM ; even if τM ’s priority is lower, there is no interaction at all between τH and
τM , and executing τM instead of τH is not of help to any other higher-priority
tasks.

The behavior of the system with the priority inheritance protocol is shown
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FIGURE 15.6
An example of task scheduling with priority inheritance.

in Figure 15.6. It is the same as before until t = 5 time units, when τH is
blocked by the execution of P(s). In this case, τH is still blocked as before,
but it also transmits its priority to τL. In other words τL, the blocking task,
inherits the priority of τH , the blocked one.

Hence, τL is executed (instead of τM ) and leaves its critical region at t = 6
time units. At that moment, the priority inheritance ends and τL returns to
its original priority. Due to this, it is immediately preempted by τH . At t = 8
time units, τH completes and τM is resumed. Finally, τM and τL complete
their execution at t = 10 and t = 11 time units, respectively.

With the priority inheritance protocol, the task response times are RH =
8− 4 = 4, RM = 10− 2 = 8, RL = 11− 0 = 11 time units. From Figure 15.6,
it can be seen that RH no longer comprises any part of τM . It does include,
instead, part of the critical region of τL, but this is unavoidable as long as τH
and τL share some data with a mutual exclusion mechanism. In addition, the
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FIGURE 15.7
An example of task scheduling with immediate priority ceiling.

worst-case contribution it makes to RH is bounded by the maximum time τL
spends within its critical region.

It can also be noted that RM , the response time of τM , now includes part
of the critical region of τL, too. This is a very simple case of push-through
blocking and is a side effect of the priority inheritance protocol. In any case,
the contribution to RM is still bounded by the maximum time τL spends
within its critical region.

As shown in Figure 15.7, with the immediate priority ceiling protocol, τL
acquires a priority equal to the priority of τH , the ceiling of s, as soon as it
enters the critical region guarded by s itself at t = 1 time unit.

As a consequence, even if τM is released at t = 2, it does not preempt
τL up to t = 3 when τL leaves the critical region and returns to its original
priority. Another preemption, of τM in favor of τH , occurs at t = 4 time units,
as soon as τH is released.

Then, τM is resumed, after the completion of τH , at t = 7 time units,
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TABLE 15.1
Task response times for Figures 15.5–15.7

Actual Response Time Worst Case
Task Nothing P. Inheritance Imm. P. Ceiling Response Time
τH 6 4 3 5
τM 5 8 8 9
τL 11 11 11 11

and completes at t = 10 time units. Finally, τL completes at t = 11 time
units. With the immediate priority ceiling protocol, the task response times
are RH = 7− 4 = 3, RM = 10− 2 = 8, RL = 11− 0 = 11 time units.

Applying RTA to the example is particularly easy. The task periods are
large with respect to their response time, and hence, each interfering task must
be taken into account only once, and all the successions converge immediately.
Moreover, since there is only one critical section, the worst-case blocking times
are the same for both protocols.

The worst-case execution time among all critical regions guarded by s is
2 time units. Therefore,

• BH = 2 because s can block τH ;

• BM = 2 because s can block τM ;

• BL = 0 because s cannot block τL.

Substituting back into (15.2), we get

• For τH , hp(H) = ∅ and BH = 2, and hence: RH = CH + BH = 5 time
units.

• For τM : hp(M) = {H} and BM = 2, and hence: RM = CM +BM +CH = 9
time units.

• For τL: hp(L) = {H,M} and BL = 0, and hence: RL = CL+CH+CM = 11
time units.

Table 15.1 summarizes the actual response time of the various tasks involved
in the example, depending on how the priority inversion problem has been
addressed. For comparison, the rightmost column also shows the worst-case
response times computed by the RTA method, extended as shown in (15.2).
The worst-case response times are the same for both priority inheritance and
immediate priority ceiling because their Bi are all the same.

Both the priority inheritance and the immediate priority ceiling protocols
bound the maximum blocking time experienced by τH . It can be seen that its
response time gets lower when any of these protocols are in use. On the other
hand, the response time of τM increases as a side effect.

The response time of τL does not change but this can be expected because
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it is the lowest priority task. As a consequence, it can only suffer interference
from the other tasks in the system but not blocking. For this reason, its
response time cannot be affected by any protocol that introduces additional
forms of blocking. It can also be seen that RTA provides a satisfactory worst-
case response time in all cases except when the priority inversion problem has
not been addressed at all.

15.5 Summary

In most concurrent applications of practical interest, tasks must interact with
each other to pursue a common goal. In many cases, task interaction also
implies blocking, that is, tasks must synchronize their actions and therefore
wait for each other.

In this chapter we saw that careless task interactions may undermine pri-
ority assignments and, eventually, jeopardize the ability of the whole system
to be scheduled because they may lead to an unbounded priority inversion.
This happens even if the interactions are very simple, for instance, when tasks
manipulate some shared data by means of critical regions.

One way of solving the problem is to set up a better cooperation between
the scheduling algorithm and the synchronization mechanism, that is, to allow
the synchronization mechanism to modify task priorities as needed. This is the
underlying idea of the algorithms discussed in this chapter: priority inheritance
and the two variants of priority ceiling.

It is then possible to show that all these algorithms are actually able to
force the worst-case blocking time of any task in the system to be upper-
bounded. Better yet, it is also possible to calculate the upper bound, starting
from a limited amount of additional information about task characteristics,
which is usually easy to collect.

Once the upper bound is known, the RTA method can also be extended
to take consider it and calculate the worst-case response time of each task in
the system, taking task interaction into account.
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The schedulability analysis techniques presented in Chapters 12 through 14
are based on the hypothesis that task instances never block for any reason,
unless they have been executed completely and the next instance has not been
released yet. In other words, they assume that a task may only be in three
possible states:

1. ready for execution, but not executing because a higher-priority
task is being executed on its place,

2. executing, or

3. not executing, because its previous instance has been completed
and the next one has not been released yet.

Then, in Chapter 15, we analyzed the effects of task interaction on their
worst-case response time and schedulability. In particular, we realized that
when tasks interact, even in very simple ways, they must sometimes block
themselves until some other tasks perform a certain action. The purpose of this
extension was to make our model more realistic and able to better represent
the behavior of real tasks. However, mutual exclusion on shared data access
was still considered to be the only source of blocking in the system.

This is still not completely representative of what can happen in the real
world where tasks also invoke external operations and wait for they comple-
tion. For instance, it is common for tasks to start an Input–Output (I/O)
operation and wait until it completes or a timeout expires; another example
would be to send a network message to a task residing on a different system
and then wait for an answer.

More generally, all situations in which a task voluntarily suspends itself
for a variable amount of time with a known upper bound—such as those
just described—are called self-suspension or self-blocking. Therefore, in this
chapter, the formulas to calculate the worst-case blocking time that may affect

361
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a task, given in Chapter 15, will be further extended to incorporate self-
suspension. The extension is based on [76], addressing schedulability analysis
in the context of real-time synchronization for multiprocessor systems.

16.1 Self-Suspension and the Critical Instant Theorem

At a first sight, it may seem that the effects of self-suspension should be local
to the task that is experiencing it: after all, the task is neither competing
for nor consuming any processor time while it is suspended, and hence, it
should not hinder the schedulability of any other task because of this. This
is unfortunately not true and, although this sounds counterintuitive, it turns
out that adding a self-suspension region to a higher-priority task may render
a lower-priority task no longer schedulable.

Even the critical instant theorem, on which many other theorems given in
Chapter 12 are based, is no longer directly applicable to compute the worst-
case interference that a task may be subject to. A counterexample is shown
in Figure 16.1.

The upper part of the figure shows how two tasks τ1 (high priority) and
τ2 (low priority) are scheduled when self-suspension is not allowed. Task τ1
has a period of T1 = 7 time units and an execution time of C1 = 4 time
units. The uppermost time diagram shows how it is executed: as denoted by
the downward-pointing arrows, its first three instances are released at t = 0,
t = 7, and t = 14 time units, and since they have a priority higher than τ2,
they always run to completion immediately after being released.

Time diagram A shows instead how the first instance of task τ2 is executed
when it is released at t = 7 time units. This is a critical instant for τ2, because
τ1,2 (the second instance of τ1) has been released at the same time, too. The
execution time of C2 = 6 time units is allotted to τ2,1 in two chunks—from
t = 11 to t = 14, and from t = 18 to t = 21 time units—because of the
interference due to τ1.

Accordingly, the response time of τ2,1 is 14 time units. If the period of τ2
is T2 = 15 time units and it is assumed that its relative deadline is equal to
the period, that is D2 = T2, then τ2,1 meets its deadline. The total amount of
interference experienced by τ2,1 in this case is I2 = 8 time units, corresponding
to two full executions of τ1 and shown in the figure as light grey rectangles.
According to the critical instant theorem, this is the worst possible interference
τ2 can ever experience, and we can also conclude that τ2 is schedulable.

As shown in time diagram B, if τ2,1 is not released at a critical instant,
the interference will never be greater than 8 time units. In that time diagram,
τ2,1 is released at t = 4 time units, and it only experiences 4 time units of
interference due to τ1. Hence, as expected, its response time is 10 time units,
less than the worst case value calculated before and well within the deadline.
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FIGURE 16.1
When a high-priority task self-suspends itself, the response time of lower-
priority tasks may no longer be the worst at a critical instant.

The lower part of Figure 16.1 shows, instead, what happens if each instance
of τ1 is allowed to self-suspend for a variable amount of time, between 0 and
2 time units, at the very beginning of its execution. In particular, the time
diagrams have been drawn assuming that τ1,1 self-suspends for 2 time units,
whereas τ1,2 and τ1,3 self-suspend for 1 time unit each. In the time diagram,
the self-suspension regions are shown as grey rectangles. Task instance τ2,1 is
still released as in time diagram B, that is, at t = 4 time units.

However, the scheduling of τ2,1 shown in time diagram C is very different
than before. In particular,

• The self-suspension of τ1,1, lasting 2 time units, has the local effect of
shifting its execution to the right of the time diagram. However, the shift
has a more widespread effect, too, because it induces an “extra” interference
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on τ2,1 that postpones the beginning of its execution. In Figure 16.1, this
extra interference is shown as a dark gray rectangle.

• Since its execution has been postponed, τ2,1 now experiences 8 time units
of “regular” interference instead of 4 due to τ1,2 and τ1,3. It should be noted
that this amount of interference is still within the worst-case interference
computed using the critical instant theorem.

• The eventual consequence of the extra interference is that τ2,1 is unable to
conclude its execution on time and overflows its deadline by 1 time unit.

In summary, the comparison between time diagrams B and C in Figure 16.1
shows that the same task instance (τ2,1 in this case), released at the same time,
is or is not schedulable depending on the absence or presence of self-suspension
in another, higher-priority task (τ1).

On the other hand, the self-suspension of a task cannot induce any ex-
tra interference on higher-priority tasks. In fact, any lower-priority task is
immediately preempted as soon as a higher-priority task becomes ready for
execution, and cannot interfere with it in any way.

The worst-case extra interference endured by task τi due to its own self-
suspension, as well as the self-suspension of other tasks, can be modeled as
an additional source of blocking that will be denoted BSS

i . As proved in [76],
BSS

i can be written as

BSS
i = Si +

∑
j∈hp(i)

min(Cj , Sj) (16.1)

where Si is the worst-case self-suspension time of task τi and, as usual, hp(i)
denotes the set of task indexes with a priority higher than τi.

According to this formula, the total blocking time due to self-suspension
endured by task τi is given by the sum of its own worst-case self-suspension
time Si plus a contribution from each of the higher-priority tasks. The con-
tribution of task τj to BSS

i is given by its worst-case self-suspension time Sj ,
but it cannot exceed its execution time Cj .

In the example, from (16.1) we have

BSS
1 = S1 + 0 = 2 (16.2)

because the worst-case self-suspension time of τ1 is indeed 2 time units and
the set hp(1) is empty.

Moreover, it is also

BSS
2 = 0 +min(C1, S1) = min(4, 2) = 2 (16.3)

because τ2 never self-suspends itself (thus S2 = 0) but may be affected by the
self-suspension of τ1 (in fact, hp(2) = {1}) for up to 2 time units.
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FIGURE 16.2
When a task self-suspends itself, it may suffer more blocking than predicted
by the theorems of Chapter 15.

16.2 Self-Suspension and Task Interaction

The self-suspension of a task has an impact on how it interacts with other
tasks, and on the properties of the interaction, too. That is, many theorems
about the worst-case blocking time proved in Chapter 15, lose part of their
validity when tasks are allowed to self-suspend.

Figure 16.2 shows how two periodic, interacting tasks, τ1 and τ2, are sched-
uled with and without allowing self-suspension. The general structure of a task
instance is the same for both tasks and is shown in the uppermost part of the
figure:
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• The total execution time of a task instance is C1 = C2 = 10 time units and
comprises two critical regions.

• At the beginning, the task instance executes for 2 time units.

• Then, it enters its first critical region, shown as a dark grey rectangle in
the figure. If we are using a semaphore m for synchronization, the critical
region is delimited, as usual, by the primitives P(m) (at the beginning) and
V(m) (at the end).

• The task instance executes within the first critical region for 2 time units.

• After concluding its first critical region, the task instance further executes
for 3 time units before entering its second critical region.

• It stays in the second critical region for 2 time units.

• After the end of the second critical region, the task instance executes for 1
more time unit, and then it concludes.

Time diagram A of Figure 16.2 shows how the two tasks are scheduled, as-
suming that τ1 is released at t = 3 time units, τ2 is released at t = 0 time
units, and the priority of τ1 is higher than the priority of τ2. It is also taken for
granted that the period of both tasks is large enough—let us say T1 = T2 = 30
time units—so that only one instance of each is released for the whole length
of the time diagram, and no self-suspension is allowed. In particular,

• Task τ2 is executed from t = 0 until t = 3 time units. At t = 2, it enters its
first critical region without blocking because no other task currently holds
the mutual exclusion semaphore m.

• At t = 3, τ2 is preempted because τ1 is released and hence becomes ready
for execution. The execution of τ1 lasts 2 time units until it blocks at the
first critical region’s boundary with a blocking P(m).

• Task τ2 resumes execution (possibly with an increased active priority if
either priority inheritance or priority ceiling are in use) until it exits from
the critical region at t = 6 time units.

• At this time, τ1 resumes—after 1 time unit of direct blocking—and is al-
lowed to enter into its first critical region. From this point on, the current
instance of τ1 runs to run completion without blocking again.

• Thereafter, the system resumes τ2 and concludes it.

It should be noted that the system behavior, in this case, can still be accurately
predicted by the theorems of Chapters 12 through 15, namely:
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1. The interference underwent by τ2 (the lower-priority task) is equal
to the worst-case interference predicted by the critical instant the-
orem and Response Time Analysis (RTA), that is, C1 = 10 time
units. In Figure 16.2, interference regions are shown as light gray
rectangles. Thus, the response time of τ2 is 20 time units, 10 time
units of execution plus 10 time units of interference.

2. Task τ1 (the higher-priority task) does not suffer any interference
due to τ2; it undergoes blocking, instead. We know that τ1 may
block at most once, due to Lemmas 15.2, Lemma 15.5, or Theo-
rem 15.1 (for priority inheritance), as well as Theorem 15.4 (for
priority ceiling).

3. The worst-case blocking time can be calculated by means of The-
orem 15.2 (for priority inheritance), or Theorem 15.5 (for priority
ceiling). The result is the same in both cases and is equal to the
maximum execution time of τ2 within a critical region, that is, 2
time units. In the example, τ1 only experiences 1 time unit of block-
ing, less than the worst case. Accordingly, the response time of τ1 is
11 time units, 10 time units of execution plus 1 time unit of direct
blocking.

Time diagram B of Figure 16.2 shows instead what happens if task τ1 self-
suspends for 3.5 time units after 5 time units of execution:

• Task τ2 is now executed while τ1 is suspended, but it is still subject to
the same total amount of interference as before. Therefore, unlike in the
example discussed in Section 16.1, the response time of τ2 stays the same
in this case.

• The scheduling of τ1 is radically different and implies an increase of its
response time, well beyond the additional 3.5 time units due to self-
suspension. In fact, the response time goes from 11 to 16 time units.

• The reason for this can readily be discerned from the time diagram. When
τ1 is resumed after self-suspension and tries to enter its second critical
region, it is blocked again because τ2 entered its second critical region while
τ1 itself was suspended.

• The second block of τ1 lasts for 1.5 time units, that is, until τ2 eventually
exits from the second critical region and unblocks it.

• The total response time of τ1 is now given by 10 time units of execution
plus 3.5 time units of self-suspension (the gray block marked SS in the
figure) plus 2.5 time units of blocking time (the two gray blocks marked
B). In particular, 1 time unit of blocking is due to the first block and 1.5
units to the second one.

In summary,
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1. It is no longer true that τ1 may block at most once. In fact, τ1
was blocked twice in the example. As a consequence, it is clear
that Lemmas 15.2, Lemma 15.5, and Theorem 15.1 (for priority
inheritance), as well as Theorem 15.4 (for priority ceiling) are no
longer valid.

2. Similarly, Theorem 15.2 (for priority inheritance) and Theorem 15.5
(for priority ceiling) are no longer adequate to compute the worst-
case blocking time of τ1. Even in this simple example, we have just
seen that the total blocking time of τ1 is 2.5 time units, that is,
more than the 2 time units of worst-case blocking time predicted
by those theorems.

There are several different ways to take self-suspension into account during
worst-case blocking time calculation. Perhaps the most intuitive one, presented
in References [61, 76], considers task segments—that is, the portions of task
execution delimited by a self-suspension—to be completely independent from
each other for what concerns blocking. Stated in an informal way, it is as if
each task went back to the worst possible blocking scenario after each self-
suspension.

In the previous example, τ1 has two segments because it contains one
self-suspension. Thus, each of its instances executes for a while (this is the
first segment), self-suspends, and then executes until it completes (second
segment). More generally, if task τi contains Qi self-suspensions, it has Qi+1
segments.

According to this approach, let us call B1S
i the worst-case blocking time

calculated as specified in Chapter 15, without taking self-suspension into ac-
count; that is,

B1S
i =

K∑
k=1

usage(k, i)C(k) (for priority inheritance) (16.4)

or

B1S
i =

K
max
k=1

{usage(k, i)C(k)} (priority ceiling) (16.5)

where, as before,

• K is the total number of semaphores in the system.

• usage(k, i) is a function that returns 1 if semaphore Sk is used by (at least)
one task with a priority less than τi and (at least) one task with a priority
higher than or equal to τi; otherwise, it returns 0.

• C(k) is the worst-case execution time among all critical regions guarded
by semaphore Sk.

This quantity now becomes the worst-case blocking time endured by each
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individual task segment. Therefore, the total worst-case blocking time of task
τi due to task interaction, BTI

i , is given by

BTI
i = (Qi + 1)B1S

i (16.6)

where Qi is the number of self-suspensions of task τi.
In our example, from either (16.4) or (16.5) we have

B1S
1 = 2 (16.7)

because the worst-case execution time of any task within a critical region
controlled by semaphore m is 2 time units and τ1 can be blocked by τ2.

We also have
B1S

2 = 0 (16.8)

because τ2 is the lowest-priority task in the system and cannot be blocked by
any other task. In fact, usage(k, 2) = 0 for any k.

According to (16.6), the worst-case blocking times are

BTI
1 = 2B1S

1 = 4 (16.9)

for τ1, and
BTI

2 = B1S
2 = 0 (16.10)

for τ2. This is of course not a formal proof, but it can be seen that BTI
1 is

indeed a correct upper bound of the actual amount of blocking seen in the
example.

An additional advantage of this approach is that it is very simple and
requires very little knowledge about task self-suspension itself. It is enough
to know how many self suspensions each task contains, information quite
easy to collect. However, the disadvantage of using such a limited amount of
information is that it makes the method extremely conservative. Thus, BTI

i

is not a tight upper bound for the worst-case blocking time and may widely
overestimate it in some cases.

More sophisticated and precise methods do exist, such as that described
in Reference [54]. However, as we have seen in several other cases, the price
to be paid for a tighter upper bound for the worst-case blocking is that much
more information is needed. For instance, in the case of [54], we need to know
not only how many self suspensions each task has got, but also their exact
location within the task. In other words, we need to know the execution time
of each, individual task segment, instead of the task execution time as a whole.

16.3 Extension of the Response Time Analysis Method

In the basic formulation of RTA given in Chapter 14, the worst-case response
time Ri of task τi was expressed according to (14.1) as

Ri = Ci + Ii (16.11)
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where Ci is its execution time, and Ii is the worst-case interference the task
may experience due to the presence of higher-priority tasks.

Then, in Chapter 15, we argued that the same method can be extended to
also handle task interactions—as well as the blocking that comes from them—
by considering an additional contribution to the worst-case response time as
written in (15.1):

Ri = Ci +Bi + Ii (16.12)

where Bi is the worst-case blocking time of τi. It can be proved that (16.12)
still holds even when tasks are allowed to self-suspend, if we redefine Bi to
include the additional sources of blocking discussed in Sections 16.1 (extra
interference) and 16.2 (additional blocking after each self-suspension).

Namely, Bi must now be expressed as:

Bi = BSS
i +BTI

i (16.13)

In summary, referring to (16.1) and (16.6) for the definition of BSS
i and

BTI
i , respectively, and then to (16.4) and (16.5) for the definition of B1S

i , we
can write

Bi = Si +
∑

j∈hp(i)

min(Cj , Sj) + (Qi + 1)

K∑
k=1

usage(k, i)C(k) (16.14)

for priority inheritance, as well as

Bi = Si +
∑

j∈hp(i)

min(Cj , Sj) + (Qi + 1)
K

max
k=1

{usage(k, i)C(k)} (16.15)

for priority ceiling.
The recurrence relationship used by RTA and its convergence criteria are

still the same as (15.2) even with this extended definition of Bi, that is,

w
(k+1)
i = Ci +Bi +

∑
j∈hp(i)

⌈
w

(k)
i

Tj

⌉
Cj (16.16)

A suitable seed for the recurrence relationship is

w0
i = Ci +Bi (16.17)

Let us now apply the RTA method to the examples presented in Sec-
tions 16.1 and 16.2. Table 16.1 summarizes the attributes of the tasks shown
in Figure 16.1 as calculated so far. The blocking time due to task interaction,
BTI

i , is obviously zero for both tasks in this case, because they do not interact
in any way.

For what concerns the total blocking time Bi, from (16.13) we simply have:

B1 = 2 + 0 = 2 (16.18)

B2 = 2 + 0 = 2 (16.19)



Self-Suspension and Schedulability Analysis 371

TABLE 16.1
Attributes of the tasks shown in Figure 16.1 when τ1 is allowed to self-suspend

Task Ci Ti Si BSS
i BTI

i

τ1 (high priority) 4 7 2 2 0
τ2 (low priority) 6 15 0 2 0

TABLE 16.2
Attributes of the tasks shown in Figure 16.2 when τ1 is allowed to self-suspend

Task Ci Ti Si BSS
i BTI

i

τ1 (high priority) 10 30 3.5 3.5 4
τ2 (low priority) 10 30 0 3.5 0

For τ1, the high-priority task, we simply have

w0
1 = C1 +B1 = 4 + 2 = 6 (16.20)

and the succession converges immediately. Therefore, it is R1 = 6 time units.
On the other hand, for the low-priority task τ2, it is

w0
2 = C2 +B2 = 6 + 2 = 8 (16.21)

w1
2 = 8 +

⌈
w

(0)
2

T1

⌉
C1 = 8 +

⌈
8

7

⌉
4 = 16 (16.22)

w2
2 = 8 +

⌈
16

7

⌉
4 = 20 (16.23)

w3
2 = 8 +

⌈
20

7

⌉
4 = 20 (16.24)

Therefore, it is R2 = 20 time units.

Going to the second example, Table 16.2 summarizes the attributes of
the tasks shown in Figure 16.2. The worst-case blocking times due to task
interaction BTI

i have already been derived in Section 16.2, while the worst-
case blocking times due to self-suspension, BSS

i , can be calculated using (16.1)
as:

BSS
1 = S1 = 3.5 (16.25)

BSS
2 = S2 +min(C1, S1) = 0 +min(10, 3.5) = 3.5 (16.26)

The total blocking time to be considered for RTA is therefore:

B1 = 3.5 + 4 = 7.5 (16.27)

B2 = 3.5 + 0 = 3.5 (16.28)
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As before, the high-priority task τ1 does not endure any interference, and
hence, we simply have:

w0
1 = C1 +B1 = 10 + 7.5 = 17.5 (16.29)

and the succession converges immediately, giving R1 = 17.5 time units. For
the low-priority task τ2, we have instead:

w0
2 = C2 +B2 = 10 + 3.5 = 13.5 (16.30)

w1
2 = 13.5 +

⌈
w

(0)
2

T1

⌉
C1 = 13.5 +

⌈
13.5

30

⌉
10 = 23.5 (16.31)

w2
2 = 13.5 +

⌈
23.5

30

⌉
10 = 23.5 (16.32)

The worst-case response time of τ2 is therefore R2 = 23.5 time units.

16.4 Summary

This chapter complements the previous one and further extends the schedu-
lability analysis methods at our disposal to also consider task self-suspension.
This is a rather common event in a real-world system because it occurs
whenever a task voluntarily suspends itself for a certain variable, but upper-
bounded, amount of time. A typical example would be a task waiting for an
I/O operation to complete.

Surprisingly, we saw that the self-suspension of a task has not only a
local effect on the response time of that task—this is quite obvious—but it
may also give rise to an extra interference affecting lower-priority tasks, and
further increase the blocking times due to task interaction well beyond what
is predicted by the analysis techniques discussed in Chapter 15.

The main goal of the chapter was therefore to look at all these effects,
calculate their worst-case contribution to the blocking time of each task, and
further extend the RTA method to take them into account. This last extension
concludes our journey to make our process model, as well as the analysis
techniques associated with it, closer and closer to how tasks really behave in
an actual real-time application.
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This chapter presents the internal structure of FreeRTOS [13]. It is hence
related to Chapter 8, which describes the features and the applications pro-
gramming interface of the same real-time operating system. It is also useful
to read it together with Chapter 18, which discusses the internal structure of
a couple of Linux real-time extensions.

The comparison shows how the target hardware architecture, design prin-
ciple, backward compatibility, standard conformance, as well as the number
and degree of sophistication of the features to be provided are all aspects
that have significant effects on the internal structure of an operating system,
leading to very different solutions to the same problems.

17.1 Task Scheduler/Context Switch

The FreeRTOS scheduler is extremely simple but also very effective from a
real-time execution standpoint. It is a fixed-priority scheduler, and hence, it
can directly support both the Rate Monotonic (RM) and Deadline Monotonic
(DM) scheduling algorithms discussed in the previous chapters.

Figure 17.1 depicts the main data structures handled by the FreeRTOS
scheduler. Most of them are built upon a simpler data structure called xList,
a doubly linked list that implements an ordered queue. Individual xList items
hold a pointer to another data structure that represents the information as-
sociated with the item.

Even if, in principle, the data structure linked to an xList item can be
chosen at will, in most cases it is a Task Control Block (TCB). This is the
main data structure used by the operating system to represent a task and
to store any information associated with it. The list header also contains a

375
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FIGURE 17.1
Simplified view of the data structures used by the FreeRTOS scheduler. The
elements marked with ∗ are optional; they may or may not be present, de-
pending on the FreeRTOS configuration.

count of how many elements currently are in the list, to speed up common
operations like checking whether a list is empty or not.

In Figure 17.1, an xList is represented by a sequence of ordered grey boxes
connected by arrows. The leftmost box is the list header, and the number
within it indicates how many elements currently belong to the list. The next
boxes represent list elements; each of them points to a TCB, although, for
clarity, not all of them are shown in the figure.

It should also be noted that the actual implementation of an xList is
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slightly more complicated than what has been described so far. That is, it
actually is a circular list and incorporates a guard element to delimit its end.
However, those additional details are mainly related to compactness and effi-
ciency, and do not significantly change the underlying idea.

The main components of the scheduler data structures are

• The CurrentTCB pointer designates the TCB of the running task. There is
only one instance of this pointer, because FreeRTOS only supports single-
processor systems, where at the most, one process can be running at a
time.

• ReadyTaskLists[] is an array of xList data structures, one for each pri-
ority level configured in the system. The xList corresponding to a certain
priority links together all tasks that have that priority and are ready for ex-
ecution. This is the main data structure consulted by the scheduler when it
is about to run a task. It should be noted that, for convenience, the running
task is linked to the ready list corresponding to its priority, too.

• A task may become ready for execution while the scheduler is sus-
pended and the ReadyTaskLists[] cannot be manipulated directly. In
this case, the task is temporarily “parked,” by linking its TCB to the
PendingReadyList list. The elements of this list are moved into the proper
position of ReadyTaskLists[], depending on their priority, as soon as the
scheduler becomes operational again and before any scheduling decision is
taken.

• Both the DelayedTaskList and the OverflowDelayedTaskList contain
tasks that are delayed, that is, they are waiting until some instant in the
future, expressed in ticks. Both are ordered by increasing time so that the
tasks nearer to the front of the lists have their timeouts expiring first. The
need for two lists stems from the fact that the operating system tick counter
is an unsigned integer with a limited number of bits and will necessarily
overflow with time.

Therefore, DelayedTaskList contains the tasks with a timeout within
the current tick counter span before the next overflow, whereas
OverflowDelayedTaskList holds the tasks with a timeout beyond the
next tick counter overflow. Those timeouts belong to the future even if
their numeric value is lower than the current value of the tick counter, so
putting them in the same list as the others would lead to confusion.

• The SuspendedTaskList holds the TCBs of all tasks that are currently
suspended, that is, those that are waiting for an undetermined number of
clock ticks. This list is needed only if FreeRTOS has been configured to
support task suspension. Such a configuration is needed to support infinite
timeouts in interprocess communication as well as explicit task suspension.

• Last, the TasksWaitingTermination list collects all tasks that are finished
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TABLE 17.1
Contents of a FreeRTOS Task Control Block (TCB)

Field Purpose Optional
pcTaskName[] Human-readable task name -
uxTCBNumber Task identification number ∗
uxPriority Active priority -
uxBasePriority Baseline priority ∗
pxStack Lowest task stack address -
pxEndOfStack Highest task stack address ∗
pxTopOfStack Current top of the task stack -
xGenericListItem Link to the scheduler’s lists -
xEventListItem Link to an event wait list -
uxCriticalNesting Interrupt disable nesting level ∗
ulRunTimeCounter CPU time consumed ∗
pxTaskTag User-defined, per-task pointer ∗
xMPUSettings Memory protection information ∗

but that have not yet been removed from the system because the memory
associated with them has not yet been freed. For a variety of reasons, this
last operation in the lifetime of a task is accomplished by the idle task,
running at the minimum priority in the system. Hence, finished tasks may
spend a nonnegligible amount of time in this list if the system is busy.

As said before, in FreeRTOS each task is represented by a data structure
called TCB, containing a number of fields. Some of them are always present;
others are optional, in order to save space, because they are needed only for
certain operating system configurations. As shown in Table 17.1, the TCB
contains many of the elements that were discussed in the previous chapters,
namely,

• pcTaskName holds the human-readable task name as a character string.
This information is not directly used in any way by the scheduler but may
be useful to identify the task for debugging purposes.

• Its machine-readable counterpart is the uxTCBNumber. This field is present
only if the FreeRTOS runtime trace facility has been configured, and is a
unique number that represents the task.

• uxPriority represents the current, or active, priority of the task used by
the scheduling algorithm.

• When the system has been configured to support mutual exclusion
semaphores with priority inheritance, the previous field is complemented
by uxBasePriority, which represents the baseline priority of the task.

• pxStack points to the area of memory used to store the task stack. Re-
gardless of the direction in which the stack grows on a certain architecture
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(toward higher or lower addresses), this field always points to the base of
the area, that is, its lowest address.

• For architectures in which task stacks grow upward, that is, toward higher
addresses, pxEndOfStack points to the highest, legal stack address. This
information is required to perform stack occupancy checks.

• pxTopOfStack points to the top of the task stack. This information is used
for two distinct, but related, purposes:

1. When the task context is saved, most of the task state informa-
tion is pushed onto its stack; the pointer is used to later retrieve
this information.

2. The value of the stack pointer itself is part of the task state, and
hence, the pointer is also used to restore the task stack pointer
to the right value during context restoration.

• The xGenericListItem field is used to link the task control block to one
of the lists managed by the scheduler, depending on the task state. In
particular,

1. it links the task to one of the ReadyTaskLists[] when the task
is ready or running;

2. it links the task to the TasksWaitingTermination list when the
task is finished but its memory has not been freed yet;

3. it links the task to either the DelayedTaskList or the
OverflowDelayedTaskList when the task is being delayed for a
certain number of ticks;

4. it links the task to the SuspendedTaskList when the task is
suspended for an undetermined number of ticks.

• The xEventListItem field is used in a similar way when a task is waiting
for an event to occur on an intertask synchronization/communication ob-
ject and must hence be linked to two distinct lists at the same time. For
example, when a task waits to receive a message from an empty message
queue, its xEventListItem field links it to one of the waiting lists associ-
ated to the message queue, the one that groups all tasks that are waiting
for a message to arrive.

At the same time, its xGenericListItem field links it to either one of
the delayed task lists (if the task specified a finite timeout for the receive
operation) or to the suspended task list (if no timeout was specified).

In addition, the xEventListItem field is also used to temporarily link the
task to the PendingReadyList. This is done when a task becomes ready
while the scheduler is suspended and is hence impossible to put it back into
one of the ReadyTaskLists[] directly.
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• The interrupt disable nesting level indicates how many nested critical
regions protected by disabling interrupts are currently in effect for a
given task. It is used to properly reenable interrupts when the outer-
most critical region concludes, that is, when the nesting level goes back
to zero. In some architectures, this datum is held within the TCB in the
uxCriticalNesting field.

• The ulRunTimeCounter is present in the TCB only when FreeRTOS has
been configured to collect runtime statistics. It represents how much time
has been spent running the task from its creation. It should be noted that
its value is not derived from the operating system tick but from a separate,
architecture-dependent timer. Hence, its resolution and unit of measure-
ment may not be the same.

• pxTaskTag holds a pointer that can be uniquely associated with the task
by the user. It is useful, for example, to store a pointer to a data structure
holding additional user-defined, per-task information besides what is held
in the TCB itself.

• If the architecture supports memory protection among tasks, the
xMPUSettings points to an architecture-dependent data structure. Its con-
tents are used during context switch to reprogram the Memory Protection
Unit (MPU) according to the requirements of the task to be executed next.

An interesting omission in the FreeRTOS TCB is the task state, that is, its
location in the process state diagram. However, this information can easily
be inferred, by looking at which lists the TCB is currently linked to, through
xGenericListItem and xEventListItem. The TCB of the running task can
be reached directly through the CurrentTCB pointer.

Another thing that is seemingly missing is the processor state information
pertaining to the task, that is, the value of the program counter, general
registers, and so on. In FreeRTOS, this information is pushed onto the task
stack when its context is saved. Therefore, even if it is not stored in the TCB
directly, it can still be retrieved indirectly because the TCB does contain a
pointer to the top of the stack, pxTopOfStack. This is the situation shown for
task B in Figure 17.2.

We can now start discussing how FreeRTOS implements a context switch
in practice. In particular, let us assume that task A is currently running and
the operating system is about to switch to task B, which is ready for execution.

The status of the main data structures involved in this context switch
before it begins is shown in Figure 17.2. Since task A is being executed, its
processor state (depicted as a dark grey block in the figure) is actually within
the CPU itself. The CPU stack pointer points somewhere within task A’s stack
and delimits the portion of stack currently in use by the task (the light grey
zone) from the free stack space (the white zone). For the sake of the example,
stacks are assumed to grow downward in the figure.

While task A is running, the stack pointer value evolves according to what
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FIGURE 17.2
State of the main FreeRTOS data structures involved in a context switch when
it is executing task A and is about to switch to task B.

the task itself is executing. On most architectures, if task A performs a func-
tion call, the function arguments and program counter are pushed onto the
stack, and the stack pointer is moved down. When the function returns to the
caller, this information is popped from the stack and the stack pointer goes
up to its original place.

The TCB of the running task, A in this case, can be reached from the
CurrentTCB pointer. Since the TCB does not hold a valid stack state at this
moment, its pxTopOfStack field has no particular meaning and is shown as a
black dot.

The situation is different for what concerns task B because it is indeed
ready for execution but not running. First of all, its TCB is linked to one
of the ReadyTaskLists[], the one pertaining to its priority, by means of an
xList element. Since B is not being executed at the moment, its processor
state does not reside in the CPU, as it was for task A. Instead, most of it
has been pushed onto its own stack when its context was last saved. The only
exception is the stack pointer, which is stored in B’s TCB instead, namely, in
the pxTopOfStack field.

Let us now assume that the operating system is about to reevaluate the
scheduling algorithm. This happens for a variety of reasons already discussed
in Chapter 12. For example, a task with a priority higher than the running
task may become ready for execution.

This event must not disrupt the execution of the running task, A. There-
fore, as shown in Figure 17.3, the operating system must first of all save the
context of task A onto its own stack and then update its TCB so that the
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FIGURE 17.3
State of the main FreeRTOS data structures involved in a context switch when
the context of task A has been saved and the scheduler is about to run.

pxTopOfStack field points to the information just saved. In this way, the saved
task context is made accessible from the TCB itself.

At this point, the processor stack pointer is also switched to a dedicated
kernel stack, and hence, the processor can safely be used to execute the
scheduling algorithm without fear of damaging the context of any task in
the system. The final result of the scheduling algorithm is an update of the
scheduler data structures, namely, to the CurrentTCB pointer.

In particular, as shown in Figure 17.4, if we suppose that the scheduling al-
gorithm chooses B as the next task to be executed, it updates the CurrentTCB
pointer so that it refers to the TCB of task B.

It should also be noted that immediately before the context switch takes
place, further updates to the data structures may be necessary, depending on
the reason of the context switch itself. The figure refers to the simplest case,
in which a context switch is needed due to the readiness of a higher-priority
task (B) and the currently executing task (A) is still ready for execution.

In this case, the TCB of A should, in principle, be linked back to one of
the ReadyTaskLists[] according to its priority. Actually, as an optimization,
FreeRTOS never removes a task from its ready list when it becomes running,
so this operation is unnecessary. More complex scenarios involve intertask
synchronization or communication and will be discussed in Section 17.2.

The last step of the context switch is to restore the context of task B to
resume its execution. The final state of the system is depicted in Figure 17.5.
After context restoration, the processor state of task B has been loaded into
the processor, and the processor stack pointer has been brought back exactly
where it was when the context of B was saved. Indeed, by comparing Fig-
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FIGURE 17.4
State of the main FreeRTOS data structures involved in a context switch when
the scheduling algorithm has chosen B as the next task to be executed.

ures 17.2 and 17.5, it can be seen that they are exactly equivalent, with the
roles of tasks A and B interchanged.

17.2 Synchronization Primitives

The most basic intertask communication and synchronization object provided
by FreeRTOS is the message queue. All other objects, for instance semaphores,
are built upon it. A message queue is represented by the xQUEUE data type,
linked to a separate message storage zone. Table 17.2 gives a detailed list of
the data structure contents, while Figure 17.6 shows a simplified summary of
the state of a message queue in two distinct scenarios:

1. when it contains 3 messages out of a maximum capacity of 6, and
there are no tasks waiting to send or receive messages;

2. when it is completely empty and there are two tasks waiting to
receive a message from it.

All xQUEUE fields are always present regardless of the FreeRTOS configuration.
Their purpose is

• Fields uxLength and uxItemSize indicate the “geometry” of the message
queue, that is, what is the maximum number of messages that it can hold,
and the size of each message in bytes, respectively.
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State of the main FreeRTOS data structures involved in a context switch after
the context of task B has been restored.

• pcHead and pcTail delimit the message storage zone associated with the
queue. In particular, pcHead points to the base, that is, the lowest address
of the memory area, and pcTail points to one byte more than the highest
address of the area.

A separate message storage zone is used, instead of embedding it into the
xQUEUE, so that the main xQUEUE data structure always has the same length
and layout regardless of how many messages can be stored into it, and their
size.

• pcReadFrom and pcWriteTo delineate the full portion of the message stor-
age zone, which currently contains messages, and separate it from the free
message storage space. It should be remarked that the meaning of the
pcReadFrom differs from the meaning of pcWriteTo in a slightly counter-
intuitive way: while pcWriteTo points to the first free slot in the message
storage zone, pcReadFrom points to the element that was last read from the
queue. As a consequence, the oldest message in the queue is not pointed
directly by pcReadFrom but resides one element beyond that.

These pointers are used by tasks to know where the oldest message cur-
rently stored in the queue starts (at the location pointed by pcReadFrom

plus the item size) and where the next message must be written (at the
location pointed by pcWriteTo).

Overall, the message storage zone is managed as a circular buffer to avoid
moving messages from one location to another within the storage area when
performing a send or receive operation. Hence, both pointers wrap back to
pcHead whenever they reach pcTail.
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TABLE 17.2
Contents of a FreeRTOS message queue data structure (xQUEUE)

Field Purpose
uxLength Maximum queue capacity (# of messages)
uxItemSize Message size in bytes
pcHead Lowest address of message storage zone
pcTail Highest address of message storage zone +1
pcReadFrom Address of oldest full element -uxItemSize
pcWriteTo Address of next free element
uxMessagesWaiting # of messages currently in the queue
xTasksWaitingToSend List of tasks waiting to send a message
xTasksWaitingToReceive List of tasks waiting to receive a message
xRxLock Send queue lock flag and message counter
xTxLock Receive queue lock flag and message counter

• uxMessagesWaiting counts how many messages are currently stored in the
queue.

• The xTasksWaitingToSend field is an xList that links together all the
tasks waiting to send a message into the queue when that operation cannot
be performed immediately because the queue is completely full. The tasks
are arranged in priority order so that the highest-priority task is awakened
first when a free message slot becomes available.

• The xTasksWaitingToReceive field is an xList that has the same purpose
as xTasksWaitingToSend but for tasks waiting to receive a message from
an empty queue.

• In FreeRTOS, Interrupt Service Routines (ISRs) can use message queues
to send messages to regular tasks, and receive messages from them, by
means of special, nonblocking functions. In some cases—namely, if the
ISR is executed while a task is working on the xQUEUE—these functions
are still allowed to send and receive messages, but must not update the
waiting task lists associated to the queue, xTasksWaitingToSend and
xTasksWaitingToReceive. This is necessary to ensure that the data struc-
tures just mentioned remain consistent.

When this is the case, the fields xRxLock (for the receive part) and xTxLock

(for the send part) are set to a special value to indicate that the queue is
“locked.” When the queue is locked, the same fields are also used to count
how many messages have been received from, and sent to, the queue by an
ISR without updating the waiting task lists. The value is used, as soon as
the queue is unlocked, to bring the queue data structure back to consistency.

As an example, let us see what happens when the running task invokes a
receive operation on an empty message queue. The following sequence of events
takes place:
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Simplified depiction of a FreeRTOS message queue.

• Within a critical section, protected by disabling interrupts, the task checks
if the value of the uxMessagesWaiting field is greater than zero. If this
is the case, at least one message is already stored in the queue, and the
task can retrieve it immediately without blocking. During the check, neither
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other tasks nor ISRs are allowed to operate on the queue because interrupts
are disabled in order to guarantee its consistency.

• If the queue is empty, the task exits from the “strong” critical section just
discussed and enters a “weaker” critical section, protected by disabling the
operating system scheduler. Within this critical section, the running task
cannot be preempted but interrupts are enabled again, and hence, the task
locks the queue against further updates from ISRs by means of the fields
xRxLock and xTxLock.

At first sight, having two distinct critical sections arranged in this way may
look like a useless complication. However, as it will become clearer from
the following description, the operations contained in the weaker critical
section require a relatively long execution time. Hence, especially in a real-
time system, it is important to keep interrupts enabled while they are
carried out, even at the expense of making the code more involved.

• If the timeout of the receive operation has already expired at this point, the
queue is unlocked and the operation is concluded with an error indication.

• If the timeout of the receive operation is not yet expired (or no timeout was
specified) and the queue is still empty—some messages could have been
sent to the queue between the two critical sections—the task is blocked
by removing it from the element of ReadyTaskLists[] it belongs to and
then linked to either one of the delayed task lists (if the task specified
a finite timeout for the receive operation) or to the suspended task list
(if no timeout was specified). In addition, the task is also linked to the
xTasksWaitingToReceive list associated to the queue.

• At this point, the queue is unlocked and the scheduler is reenabled. If the
current task was blocked in the previous step, this also forces a context
switch to occur.

Moreover, unlocking the queue may also wake up some tasks blocked on
either xTasksWaitingToReceive or xTasksWaitingToSend. This is neces-
sary because ISRs are allowed to send and receive messages from the queue
while it is locked, but they are not allowed to update the waiting task lists.
This update is therefore delayed and performed as soon as the queue is
unlocked.

The whole sequence outlined above is repeated to retry the receive operation
whenever the task is awakened. This may happen either because the receive
timeout expired or more messages were sent to the queue. In the first case,
the next receive attempt will necessarily fail because the timeout expiration
will definitely be detected.

However, in the second case, the receive operation is not necessarily bound
to succeed on the next attempt because other, higher-priority tasks may
“steal” all the messages sent to the queue before the current task had a chance
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TABLE 17.3
xQUEUE fields that have a different meaning when the message queue supports
a mutual exclusion semaphore with priority inheritance

Original name New name Purpose
pcHead uxQueueType Queue type
pcTail pxMutexHolder Task owning the mutex
pcReadFrom uxRecursiveCallCount Critical region nesting counter

of running. In this case, the task will find that the queue is empty and block
again.

All other communication and synchronization objects provided by FreeR-
TOS are directly layered on message queues. For example, a counting
semaphore with an initial value of x and a maximum value of y is implemented
as a message queue that can hold at most y zero-byte messages, with x dummy
messages stored into the queue during initialization. Binary semaphores are
handled as a special case of counting semaphores, with y = 1 and either x = 0
or x = 1.

Mutual exclusion semaphores are an important exception because FreeR-
TOS implements the priority inheritance algorithm for them and supports
the recursive lock and unlock feature for them. As a consequence, the message
queue mechanism just described cannot be applied as it is. Just to make an
example, task priorities are obeyed but never modified by the message queue
operations discussed so far.

On the one hand, to implement the priority inheritance algorithm, more
information is needed than it is provided by the xQUEUE data structure dis-
cussed so far. On the other hand, several fields in the same data structure
are unneeded when it is used to support a mutual exclusion semaphore rather
than a true message queue.

Hence, as shown in Table 17.3, several xQUEUE fields get a different name
and meaning in this case, such as:

• As seen in Table 17.2, for regular message queues, the pcHead field holds
the lowest address of the message storage zone associated with the queue.
However, as discussed before, message queues used to build semaphores
hold zero-size messages, and thus, no memory at all is actually needed to
store them; only their count is important.

For this reason, the pcHead field—now renamed uxQueueType—is initial-
ized to a NULL pointer to indicate that the message queue is indeed a mutual
exclusion semaphore.

• Likely, the pcTail field—now called pxMutexHolder—is used to store a
TCB pointer. The pointer may be either NULL, to signify that the mutual
exclusion semaphore is currently free, or refer to the TCB of the task that
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currently owns the mutex. In this context, owning the mutex means that
the task is currently within a critical region controlled by that semaphore.

• Moreover, for a recursive mutual exclusion semaphore, it is necessary to
hold a count of how many nested critical regions, controlled by a certain
semaphore, have been entered by the task owning that semaphore but have
not been exited yet. This count is stored in the uxRecursiveCallCount

field, which now takes the place of the pcReadFrom pointer.

17.3 Porting FreeRTOS to a New Architecture

To enhance their portability to different processor architectures, software de-
velopment systems (also known as toolchains), and hardware platforms, most
modern operating systems, including FreeRTOS, specify a well-defined in-
terface between the operating system modules that do not depend on the
architecture, and the architecture-dependent modules, often called Hardware
Abstraction Layer (HAL).

As their name suggests, those modules must be rewritten when the op-
erating system is ported to a new architecture, and must take care of all its
peculiarities. Moreover, they often include driver support for a limited set of
devices needed by the operating system itself and the language support library.
For instance, FreeRTOS needs a periodic timer interrupt to work properly;
moreover, an Input/Output console can be very useful when applications are
tested and debugged.

We will now discuss the main contents of the FreeRTOS architecture-
dependent modules, referring to the ARM Cortex-M3 port of FreeRTOS when
concrete examples and code excerpts are needed. More information about the
architecture can be found in References [6, 7]. This family of microcontrollers
has been chosen because it is a typical representative of contemporary, low-
cost components for embedded applications and, at the same time, it is simple
enough so that the reader can gain a general understanding of architecture-
dependent modules without studying the architecture in detail beforehand.

In most cases, the bulk of the port to a new architecture is done by defining
a set of C preprocessor macros in the architecture-dependent file portmacro.h.
During the build, the contents of this file are incorporated by means of a condi-
tional #include directive contained in the FreeRTOS header file portable.h.

In turn, the conditional inclusion is controlled by an architecture and
toolchain-dependent preprocessor symbol, GCC ARMCM3, for the Cortex-M3 and
the GNU toolchain. The final result is that that the correct header for the ar-
chitecture being targeted by the build and the toolchain being used is included.

The first thing to be found in portmacro.h is a mapping of some abstract
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data types required by FreeRTOS into the corresponding data types supported
by the compiler:

1 #define portCHAR char
2 #define portFLOAT float
3 #define portDOUBLE double
4 #define portLONG long
5 #define portSHORT short
6 #define portSTACK_TYPE unsigned portLONG
7 #define portBASE_TYPE long

For example, the code excerpt shown above states that, for the Cortex-
M3, the FreeRTOS data type portCHAR (an 8-bit character) corresponds to
the C language data type char. Even more importantly, it also states that
portBASE TYPE, the most “natural” integer data type of the architecture,
which usually corresponds to a machine word, is a long integer. Similarly,
the portSTACK TYPE is used as the base type for the task stacks, and its cor-
rect definition is crucial for correct stack alignment.

Then, the data type used by FreeRTOS to represent time, expressed in
ticks, must be defined. This data type is called portTickType and it is defined
as follows:

1 #if( configUSE_16_BIT_TICKS == 1 )
2 typedef unsigned portSHORT portTickType;
3 # define portMAX_DELAY ( portTickType ) 0xffff
4 #else
5 typedef unsigned portLONG portTickType;
6 # define portMAX_DELAY ( portTickType ) 0xffffffff
7 #endif

As can be seen, the definition is both architecture dependent (through
the macros portSHORT and portLONG) and configuration dependent (through
the configuration option configUSE 16 BIT TICKS). Since the definition of
portTickType affects the maximum relative delay in ticks that can be rep-
resented by the operating system and used by applications, the fragment of
code also defines the portMAX DELAY macro accordingly.

More architecture-dependent information is conveyed by means of the fol-
lowing, additional definitions:

1 #define portSTACK_GROWTH ( -1 )
2 #define portTICK_RATE_MS ( ( portTickType ) 1000 / configTICK_RATE_HZ )
3 #define portBYTE_ALIGNMENT 8

The first definition states that, on this architecture, stacks grow downward.
The macro can also be defined as ( +1 ) to denote that they grow upward
instead. The second definition determines the length of a tick in milliseconds,
starting from the configuration option configTICK RATE HZ. The last one ex-
presses the strongest memory alignment constraint of the architecture for any
kind of object in bytes. In this case, the value 8 means that a memory address
that is a multiple of 8 bytes is good for storing any kind of object.

The next definition concerns portYIELD, the function or macro invoked by
FreeRTOS to perform a context switch from the current task to a new one
chosen by the scheduling algorithm. In this case, this activity is delegated to
the architecture-dependent function vPortYieldFromISR:
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1 extern void vPortYieldFromISR( void );
2 #define portYIELD() vPortYieldFromISR()

For some architectures, the code to be executed for a context switch is
not always the same, as in this case, but depends on the execution context
it is invoked from. In this case, the additional macros portYIELD FROM ISR

and portYIELD WITHIN API must be defined. They are used to ask for a con-
text switch from an ISR or the FreeRTOS applications programming interface
(API) functions, respectively.

The last set of architecture-dependent definitions found in portmacro.h

are a bit more involved because they are concerned with interrupt handling:

1 #define portSET_INTERRUPT_MASK() \
2 __asm volatile \
3 ( \
4 " mov r0, %0 \n" \
5 " msr basepri , r0 \n" \
6 ::"i"(configMAX_SYSCALL_INTERRUPT_PRIORITY):"r0" \
7 )
8

9 #define portCLEAR_INTERRUPT_MASK() \
10 __asm volatile \
11 ( \
12 " mov r0, #0 \n" \
13 " msr basepri , r0 \n" \
14 :::"r0" \
15 )
16

17 #define portSET_INTERRUPT_MASK_FROM_ISR() \
18 0; portSET_INTERRUPT_MASK()
19

20 #define portCLEAR_INTERRUPT_MASK_FROM_ISR(x) \
21 portCLEAR_INTERRUPT_MASK();( void)x
22

23 extern void vPortEnterCritical( void );
24 extern void vPortExitCritical( void );
25

26 #define portDISABLE_INTERRUPTS() portSET_INTERRUPT_MASK()
27 #define portENABLE_INTERRUPTS() portCLEAR_INTERRUPT_MASK()
28 #define portENTER_CRITICAL() vPortEnterCritical()
29 #define portEXIT_CRITICAL() vPortExitCritical()

The first two definitions are not used directly by FreeRTOS; rather, they
act as a building block for the following ones. portSET INTERRUPT MASK

unconditionally disables all interrupt sources that may interact with
FreeRTOS by setting the basepri processor register to the value
configMAX SYSCALL INTERRUPT PRIORITY.

This is accomplished with the help of an assembly language insert (in-
troduced by the GCC-specific keyword asm) because the basepri register
can be accessed only by means of the specialized msr instruction instead of a
standard mov.

The effect of the assignment is that all interrupt requests with a priority
lower than or equal to either the specified value or the current execution prior-
ity of the processor are not honored immediately but stay pending. Interrupt
requests with a higher priority are still handled normally, with the constraint
that they must not invoke any FreeRTOS function.

The portCLEAR INTERRUPT MASK macro does the opposite: it uncondition-
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ally reenables all interrupt sources by resetting the basepri processor regis-
ter to zero, that is, the lowest possible priority. As a side effect, the proces-
sor will also handle immediately any interrupt request that was left pending
previously.

The two macros just mentioned are used directly to implement
portDISABLE INTERRUPT and portENABLE INTERRUPT, invoked by FreeRTOS
to disable and enable interrupts, respectively, from a task context. On the other
hand, FreeRTOS invokes two other macros, portSET INTERRUPT MASK FROM

ISR and portCLEAR INTERRUPT MASK FROM ISR, to do the same from an in-
terrupt service routine, as this distinction is needed on some architectures.

On the Cortex-M3 architecture, this is unnecessary, and therefore,
the same code is used in both cases. The rather counterintuitive def-
initions found at lines 17–21 of the listing stem from the fact that
portSET INTERRUPT MASK FROM ISR is expected to return a value that will
be passed to the matching portCLEAR INTERRUPT MASK FROM ISR as an ar-
gument. This simplifies their implementation on some architectures be-
cause it makes possible the passing of some information from one macro
to the other, but it is unnecessary for the Cortex-M3. As a conse-
quence, portSET INTERRUPT MASK FROM ISR returns a dummy zero value, and
portCLEAR INTERRUPT MASK FROM ISR ignores its argument.

The last two functions related to interrupt handling, to be defined here, are
portENTER CRITICAL and portEXIT CRITICAL. They are used within FreeR-
TOS to delimit very short critical regions of code that are executed in a task
context, and must be protected by disabling interrupts.

Since these critical regions can be nested into each other, it is
not enough to map them directly into portDISABLE INTERRUPTS and
portENABLE INTERRUPTS. If this were the case, interrupts would be incor-
rectly reenabled at the end of the innermost nested critical region instead
of the outermost one. Hence, a slightly more complex approach is in order.
For the Cortex-M3, the actual implementation is delegated to the functions
vPortEnterCritical and vPortExitCritical. They are defined in another
architecture-dependent module.

Last, portmacro.h contains an empty definition for the macro portNOP, a
macro that must “do nothing.” For the Cortex-M3 architecture, it is in fact
defined to be empty:

1 #define portNOP ()

Contrary to appearance, portNOP is not as useless as it seems to be. Its
typical use within FreeRTOS, and other real-time operating systems as well, is
to split up critical regions executed with interrupt disabled into smaller pieces
when their execution time as a single unit would introduce an unacceptable
latency in responding to interrupt requests.

To alleviate this issue, FreeRTOS temporarily reenables interrupts within
the critical region (in a place where it is safe to do so), invokes portNOP,
and disables them again. However, on some architectures—most notably the
Intel R© 64 and IA-32 architecture [45]—the instruction that enables interrupts



Internal Structure of FreeRTOS 393

does not have any effect until after the instruction that follows it, whereas
the instruction that disables interrupts takes effect immediately.

Hence, on those architectures, enabling interrupts and disabling them
again in the next instruction—as it happens with the STI/CLI sequence in
the Intel R© 64 and IA-32 architecture—prevents any interrupt requests from
actually being accepted by the processor. The most straightforward solution
is to insert something between the interrupt enable and disable instructions.
This something must not modify the machine state in any way but still count
as (at least) one instruction, and this is exactly what portNOP does.

Besides what has been discussed so far, portmacro.h may also contain
additional macro, data type, and function definitions that are not required by
FreeRTOS but are used by other architecture-dependent modules.

The portmacro.h header only contains data type and macro defini-
tions. We have seen that, in some cases, those macro definitions map func-
tion names used by FreeRTOS, like portYIELD, into architecture-dependent
function names, like vPortYieldFromISR. We shall therefore discuss how
the architecture-dependent functions described so far are actually imple-
mented, along with other functions not mentioned so far but still required
by FreeRTOS.

The implementation is done in one or more architecture-dependent mod-
ules. For the Cortex-M3 architecture, all of them are in the port.c source
file. The first couple of functions to be discussed implements (possibly nested)
critical regions by disabling interrupts:

1 static unsigned portBASE_TYPE uxCriticalNesting = 0xaaaaaaaa;
2

3 void vPortEnterCritical( void )
4 {
5 portDISABLE_INTERRUPTS();
6 uxCriticalNesting++;
7 }
8

9 void vPortExitCritical( void )
10 {
11 uxCriticalNesting--;
12 if( uxCriticalNesting == 0 )
13 {
14 portENABLE_INTERRUPTS();
15 }
16 }

The global variable uxCriticalNesting contains the critical region nest-
ing level of the current task. Its initial value 0xaaaaaaaa is invalid, to catch
errors during startup. It is set to zero, its proper value, when the operating
system is about to begin the execution of the first task.

The two functions are rather simple: vPortEnterCritical disables in-
terrupts by means of the portDISABLE INTERRUPTS macro discussed before.
Then, it increments the critical region nesting counter because one more crit-
ical region has just been entered. The function vPortExitCritical, called
at the end of a critical region, first decrements the nesting counter and then
reenables interrupts by calling portENABLE INTERRUPTS only if the count is
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zero, that is, the calling task is about to exit from the outermost critical re-
gion. Incrementing and decrementing uxCriticalNesting does not pose any
concurrency issue on a single-processor system because these operations are
always performed with interrupts disabled.

It should also be noted that, although, in principle, uxCriticalNesting
should be part of each task context—because it holds per-task information—it
is not necessary to save it during a context switch. In fact, due to the way the
Cortex-M3 port has been designed, a context switch never occurs unless the
critical region nesting level of the current task is zero. This property implies
that the nesting level of the task targeted by the context switch must be zero,
too, because its context has been saved exactly in the same way. Then it is
assured that any context switch always saves and restores a critical nesting
level of zero, making this action redundant.

The next two functions found in port.c are used to request a processor
rescheduling (also called a yield) and perform it, respectively as follows:

1 #define portNVIC_INT_CTRL ( ( volatile unsigned long *) 0xe000ed04 )
2 #define portNVIC_PENDSVSET 0x10000000
3

4 void vPortYieldFromISR( void )
5 {
6 *( portNVIC_INT_CTRL) = portNVIC_PENDSVSET;
7 }
8

9 void xPortPendSVHandler( void )
10 {
11 __asm volatile
12 (
13 " mrs r0, psp \n"
14 " \n"
15 " ldr r3, pxCurrentTCBConst \n"
16 " ldr r2, [r3] \n"
17 " \n"
18 " stmdb r0!, {r4 -r11} \n"
19 " str r0, [r2] \n"
20 " \n"
21 " stmdb sp!, {r3 , r14} \n"
22 " mov r0, %0 \n"
23 " msr basepri , r0 \n"
24 " bl vTaskSwitchContext \n"
25 " mov r0, #0 \n"
26 " msr basepri , r0 \n"
27 " ldmia sp!, {r3 , r14} \n"
28 " \n"
29 " ldr r1, [r3] \n"
30 " ldr r0, [r1] \n"
31 " ldmia r0!, {r4 -r11} \n"
32 " msr psp, r0 \n"
33 " bx r14 \n"
34 " \n"
35 " .align 2 \n"
36 "pxCurrentTCBConst: .word pxCurrentTCB \n"
37 ::"i"(configMAX_SYSCALL_INTERRUPT_PRIORITY)
38 );
39 }

On the Cortex-M3, rescheduling is performed by an exception handler
triggered by a software interrupt request, called PendSV. Hence, the function
vPortYieldFromISR simply sends a PendSV interrupt request to the interrupt
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controller by means of its interrupt control register, portNVIC INT CTRL. The
priority assigned to this interrupt request is the lowest among all interrupt
sources. Thus, the corresponding exception handler is not necessarily executed
immediately.

When the processor eventually honors the interrupt request, it automat-
ically saves part of the execution context onto the task stack, namely, the
program status register (xPSR), the program counter and the link register (PC
and LR), as well as several other registers (R0 to R3 and R12). Then it switches
to a dedicated operating system stack and starts executing the exception han-
dling code, xPortPendSVHandler.

The handler first retrieves the task stack pointer PSP and stores it in the
R0 register (line 13). This does not clobber the task context because R0 has
already been saved onto the stack by hardware. Then, it puts into R2 a pointer
to the current TCB taken from the global variable pxCurrentTCB (lines 15–
16).

The handler is now ready to finish the context save initiated by hardware
by pushing onto the task stack registers R4 through R11 (line 18). At last,
the task stack pointer in R0 is stored into the first field of the TCB, that is,
the TopOfStack field (line 19). At this point, the stack layout is as shown in
Figure 17.7, which represents the specialization of Figure 17.3 for the Cortex-
M3 architecture. In particular,

• the stack pointer currently used by the processor, SP, points to the oper-
ating system stack;

• the PSP register points to where the top of the task stack was after excep-
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tion entry, that is, below the part of task context saved automatically by
hardware;

• the TopOfStack field of the current task TCB points to the top of the task
stack after the context save has been concluded.

Going back to the listing of xPortPendSVHandler, the function now in-
vokes the operating system scheduling algorithm, that is, the function
vTaskSwitchContext (lines 21–27). To avoid race conditions, interrupt
sources that may interact with FreeRTOS are disabled during the execution
of this function by setting the processor base priority mask basepri appro-
priately. The main effect of vTaskSwitchContext is to update CurrentTCB so
that it points to the TCB of the task to be executed next.

Hence, vTaskSwitchContext dereferences CurrentTCB again (line 29) to
get a pointer to the new TCB. From there, it extracts the TopOfStack field
and stores it into R0 (line 30). Using R0 as a stack pointer, the function pops
registers R4 through R11, that is, the part of context previously saved by
software, from the stack of the new task (line 31). After that, the updated
stack pointer is stored into the task stack pointer register PSP (line 32).

The last step of context restoration is performed by asking the hardware
to restore the remaining part of the task context, which was automatically
saved on exception entry. This is done by the bx instruction at line 33. The
last action also restores the task PC, and thus execution continues from where
it was left off when the context was saved.

The next function to be discussed is pxPortInitialiseStack, invoked by
FreeRTOS when it is creating a new task. It should initialize the new task stack
so that its layout is identical to the layout of Figure 17.7, that is, the stack
layout after a context save operation. In this way, task execution can be started
in the most natural way, that is, by simply restoring its execution context.
It takes as arguments the task stack pointer pxTopOfStack, the address from
which task execution should begin pxCode, and a pointer to the task parameter
block pvParameters. The return value of the function is the new value of the
task pointer after the context has been saved.

1 #define portINITIAL_XPSR ( 0x01000000 )
2

3 portSTACK_TYPE *pxPortInitialiseStack(
4 portSTACK_TYPE *pxTopOfStack ,
5 pdTASK_CODE pxCode , void *pvParameters )
6 {
7 pxTopOfStack --;
8 *pxTopOfStack = portINITIAL_XPSR; /∗ xPSR ∗/
9 pxTopOfStack --;

10 *pxTopOfStack = ( portSTACK_TYPE ) pxCode; /∗ PC ∗/
11 pxTopOfStack --;
12 *pxTopOfStack = 0; /∗ LR ∗/
13 pxTopOfStack -= 5; /∗ R12, R3, R2 and R1. ∗/
14 *pxTopOfStack = ( portSTACK_TYPE ) pvParameters; /∗ R0 ∗/
15 pxTopOfStack -= 8; /∗ R11, R10, R9, R8, R7, R6, R5 and R4. ∗/
16

17 return pxTopOfStack;
18 }
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By comparing the listing with Figure 17.7, it can be seen that the initial
context is set up as follows:

• The initial Processor Status Register xPSR is the value of the macro
portINITIAL XPSR.

• The Program Counter PC comes from the pxCode argument.

• The Link Register LR is set to 0 so that any attempt of the task to return
from its main function causes a jump to that address and can be caught.

• Register R0, which holds the first (and only) argument of the task entry
function, points to the task parameter block pvParameters.

• The other registers are not initialized.

We have already examined the architecture-dependent functions that switch
the processor from one task to another. Starting the very first task is somewhat
an exception to this general behavior.

1 void vPortStartFirstTask( void )
2 {
3 __asm volatile (
4 " ldr r0, =0 xE000ED08 \n"
5 " ldr r0, [r0] \n"
6 " ldr r0, [r0] \n"
7 " msr msp, r0 \n"
8 " svc 0 \n"
9 );

10 }
11

12 void vPortSVCHandler( void )
13 {
14 __asm volatile (
15 " ldr r3, pxCurrentTCBConst2 \n"
16 " ldr r1, [r3] \n"
17 " ldr r0, [r1] \n"
18 " ldmia r0!, {r4 -r11} \n"
19 " msr psp, r0 \n"
20 " mov r0, #0 \n"
21 " msr basepri , r0 \n"
22 " orr r14, #0xd \n"
23 " bx r14 \n"
24 " \n"
25 " .align 2 \n"
26 "pxCurrentTCBConst2: .word pxCurrentTCB \n"
27 );
28 }

The function vPortStartFirstTask is called by FreeRTOS to start the
very first task after setting CurrentTCB to point to its TCB. It first fetches
the operating system stack address from the first element of the exception
vector table and stores it into MSP (lines 4–7).

In the Cortex-M3 architecture, the first 32-bit element of the exception
vector table is not used as a real exception vector. It holds instead the ini-
tial value automatically loaded into the processor’s stack pointer upon reset.
FreeRTOS picks it up as the top of its own stack. The actual assembly lan-
guage code to retrieve this value consists of a double dereference at address
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0xE000ED08. This is the address of the VTOR register that points to the base
of the exception table.

It should be noted that the MSP (Main Stack Pointer) register being dis-
cussed here is not the same as the PSP (Process Stack Pointer) register we
talked about earlier. The Cortex-M3 architecture, in fact, specifies two dis-
tinct stack pointers. With FreeRTOS the PSP is used when a task is running
whereas the MSP is dedicated to exception handling. The processor switches
between them automatically as its operating mode changes.

The initial context restoration is performed by means of a synchronous
software interrupt request made by the svc instruction (line 8).

This software interrupt request is handled by the exception handler
vPortSVCHandler; its code is very similar to xPortPendSVHandler, but it
only restores the context of the new task pointed by CurrentTCB without
saving the context of the previous task beforehand. This is correct because
there is no previous task at all. As before, the processor base priority mask
basepri is reset to zero (lines 20–21) to enable all interrupt sources as soon
as the exception handling function ends.

Before returning from the exception with a bx instruction, the contents of
the link register LR (a synonym of R14) are modified (line 22) to ensure that the
processor returns to the so-called “thread mode,” regardless of what its mode
was. When handling an exception, the Cortex-M3 processor automatically
enters “handler mode” and starts using the dedicated operating system stack
mentioned earlier.

When the execution of a task is resumed, it is therefore necessary to restore
the state from that task’s stack and keep using the same task stack to con-
tinue with the execution. This is exactly what the exception return instruction
does when it goes back to thread mode. A similar, automatic processor mode
switch for exception handling is supported by most other modern processors,
too, although the exact names given to the various execution modes may be
different.

1 #define portNVIC_SYSTICK_LOAD ( ( volatile unsigned long *) 0xe000e014 )
2 #define portNVIC_SYSTICK_CTRL ( ( volatile unsigned long *) 0xe000e010 )
3 #define portNVIC_SYSTICK_CLK 0x00000004
4 #define portNVIC_SYSTICK_INT 0x00000002
5 #define portNVIC_SYSTICK_ENABLE 0x00000001
6

7 void prvSetupTimerInterrupt( void )
8 {
9 *( portNVIC_SYSTICK_LOAD) =

10 ( configCPU_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
11 *( portNVIC_SYSTICK_CTRL) =
12 portNVIC_SYSTICK_CLK | portNVIC_SYSTICK_INT
13 | portNVIC_SYSTICK_ENABLE;
14 }
15

16 void xPortSysTickHandler( void )
17 {
18 unsigned long ulDummy ;
19

20 # if configUSE_PREEMPTION == 1
21 *( portNVIC_INT_CTRL) = portNVIC_PENDSVSET;
22 # endif



Internal Structure of FreeRTOS 399

23

24 ulDummy = portSET_INTERRUPT_MASK_FROM_ISR();
25 {
26 vTaskIncrementTick();
27 }
28 portCLEAR_INTERRUPT_MASK_FROM_ISR( ulDummy );
29 }

The next two functions manage the interval timer internal to Cortex-M3
processors, also known as SYSTICK:

• The function prvSetupTimerInterrupt programs the timer to generate
periodic interrupt requests at the rate specified by the configTICK RATE HZ

configuration variable and starts it.

• The function xPortSysTickHandler handles the interrupt requests coming
from the timer:

1. If the FreeRTOS scheduler has been configured to support pre-
emption, the function asks for a rescheduling to be performed as
soon as possible (lines 20–22). Unsurprisingly, the code is iden-
tical to the body of vPortYieldFromISR.

2. The FreeRTOS function vTaskIncrementTick is called, within a
critical region (lines 24–28). It takes care of all aspects related to
the tick timer, such as, for example, updating the current time,
checking whether some task timeouts have expired, and so on.

1 #define portNVIC_SYSPRI2 ( ( volatile unsigned long *) 0xe000ed20 )
2 #define portNVIC_PENDSV_PRI \
3 ( ( ( unsigned long ) configKERNEL_INTERRUPT_PRIORITY ) << 16 )
4 #define portNVIC_SYSTICK_PRI \
5 ( ( ( unsigned long ) configKERNEL_INTERRUPT_PRIORITY ) << 24 )
6

7 portBASE_TYPE xPortStartScheduler( void )
8 {
9 *( portNVIC_SYSPRI2) |= portNVIC_PENDSV_PRI;

10 *( portNVIC_SYSPRI2) |= portNVIC_SYSTICK_PRI;
11

12 prvSetupTimerInterrupt();
13

14 uxCriticalNesting = 0;
15

16 vPortStartFirstTask();
17 return 0;
18 }

The very last function to be discussed here is xPortStartScheduler.
It is called during FreeRTOS startup and, as its name suggests, must per-
form all architecture-dependent activities related to starting the scheduler. In
particular,

• It sets the priority of the two interrupt sources used by FreeRTOS
(the PendSV software interrupt and the SYSTICK timer) to the value
configKERNEL INTERRUPT PRIORITY taken from the FreeRTOS configura-
tion (lines 9–10).



400 Real-Time Embedded Systems—Open-Source Operating Systems Perspective

• It initializes the uxCriticalNesting variable to zero. As previously dis-
cussed, this value indicates that no critical regions, based on disabling
interrupts, are currently in effect.

• It starts the first stack, previously selected by the upper operating system
layers, by calling vPortStartFirstTask.

Under normal conditions, and as long as the operating system is running,
vPortStartFirstTask never returns to the caller, and xPortStartScheduler

is not expected to return, either, unless FreeRTOS is stopped completely by
calling vTaskEndScheduler. However, this capability is not currently sup-
ported by the current version of the Cortex-M3 port.

17.4 Summary

Looking at how a real-time operating system, like FreeRTOS, really works
inside is useful for at least two reasons:

1. To refine concepts such as concurrency, interprocess communica-
tion, mutual exclusion, and synchronization by filling the gap be-
tween their abstract definition and their concrete implementation.
These additional details may seem tedious at a first sight but are
nonetheless necessary for software developers to fully grasp them.

2. To better tell apart the general behavior of operating system prim-
itives from the peculiarities and limitations of a specific operating
system and API. In this way, programmers are faster and more pro-
ficient when they go from one operating system to another, and it
is easier for them to produce portable code.

In this chapter we briefly explored the supporting data structures used by
the FreeRTOS task scheduler and its main interprocess communication mech-
anism, the message queue. Then we showed that, at a closer look, even the
real-world implementation of a task context switch—arguably one of the most
secluded operating system mechanisms—is not as exotic as it may seem when
the concept is contemplated from far away.

A short discussion of how a simple operating system can be ported from
one architecture to another, and what an HAL must contain, concluded the
chapter. Due to lack of space, the presentation is far from being exhaustive
but can be used as a starting point for readers willing to adapt an operating
system to the hardware architecture they are working on.



18

Internal Structures and Operating
Principles of Linux Real-Time Extensions

CONTENTS

18.1 The Linux Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
18.2 Kernel Preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
18.3 The PREEMPT RT Linux Patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

18.3.1 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
18.4 The Dual-Kernel Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

18.4.1 Adeos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
18.4.2 Xenomai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
18.4.3 RTAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

18.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

The scheduling analysis introduced in previous chapters relies on a comput-
ing model with preemptible tasks. As soon as an event makes any task com-
putable, the latter will contend for the processor, possibly becoming the cur-
rent task in the case where its priority is greater than all the other computable
tasks at that time. While in the model the task switch is considered instan-
taneous, in real-world systems this is not the case, and the delay between
event occurrence and the consequent task switch may significantly alter the
responsiveness of the system, possibly breaking its real-time requirements.
This chapter will discuss this issue with reference to the Linux operating sys-
tem.

In the last years Linux evolved toward improved responsiveness, and the
current 2.6 version can be considered as a Soft Real-Time System. In a Soft
real-time system, the latency of the system to external events can be con-
sidered almost always bounded even if this cannot be ensured for all cases.
Observe that soft real-time requirements cover a wide range of embedded ap-
plications, in particular applications where the system is used in a control
loop. In a feedback control application, the system acquires signals from the
sensors, computes a control algorithm, and produces a set of reference values
for the actuators of the controlled plant. In this case, those rare situations in
which the system response does not occur within the given time limit will in-
troduce a delayed update in the actuator references, which may be considered
as an added noise in the control chain. Provided the stability margin of the
system is large enough and that the likelihood of the deadline miss is low, this
fact will not perturb the quality of the control.
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Recent developments in Linux kernel add further real-time features to the
mainstream 2.6 kernel distribution. Even if currently available as separate
patches, they are being integrated in the kernel, and it is expected that they
will become an integral part of the Linux kernel.

In addition to the evolution of the Linux kernel toward real-time respon-
siveness, other real-time extension of Linux have been developed following
an alternative approach, and several solutions have been based on the de-
velopment of a nanokernel between the hardware and the Linux kernel. The
nanokernel will react to system events (interrupts) in real time, delegating
non-real-time operations to the Linux kernel.

This chapter will first discuss the aspects of the Linux kernel organization
that adversely affect real-time responsiveness, and will then show how Linux
evolved to overcome such effects. Afterwards, two nano-kernel based extension
real-time of Linux, Xenomai [30] and RTAI [63], will be described to illustrate
a different approach to achieving real-time responsiveness.

18.1 The Linux Scheduler

The Linux scheduler represents the “heart” of the kernel and is responsible
for the selection of the next process to be executed. Before discussing how
it works, it is important to understand when the scheduler is invoked. Linux
does not really make any distinction between a process and a thread from the
scheduling point of view. Therefore, in the following we shall refer in a generic
way to tasks, with the assumption that a task may refer to either a process
or a thread.

The kernel code provides routine schedule() that can be invoked in a
system routine or in response to an interrupt. In the former case, the run-
ning task voluntarily yields the processor, for example, when issuing an I/O
operation or waiting on a semaphore. In these cases, the kernel code running
in the task’s context will call schedule() after starting the I/O operation or
when detecting that the semaphore count is already zero. More in general,
schedule() will be called by the kernel code whenever the current task can-
not proceed with computation and therefore the processor has to be assigned
to another task. schedule() can also be called by an Interrupt Service Rou-
tine (ISR) activated in response to an interrupt. For example, if the interrupt
has been issued by an I/O device to signal the termination of a pending I/O
operation, the associated ISR, after handling the termination of the I/O op-
eration, will signal to the systems that the task that issued the I/O operation
and that was put in the waiting task queue, is now ready and therefore may
be eligible for processor usage, based on its current priority.

Among the interrupt sources, the timer interrupt has an important role in
task scheduling management. In fact, since the timer regularly interrupts the
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system, at every system tick (normally in the range of 1–10 ms) the kernel can
regularly take control of the processor via kernel routine scheduler tick()

and then adjust task time slices as well as update the priorities of non-real-
time tasks, possibly assigning the processor to a new task.

Unless declared as a First In First Out (FIFO) task, every task is assigned
a timeslice, that is, a given amount of execution time. Whenever the task has
been running for such an amount of time, it expires and the processor can
be assigned to another task of the same priority unless a higher-priority task
is ready at that time. The Linux scheduler uses a queue of task descriptors,
called the run queue, to maintain task specific information. The run queue is
organized in two sets of arrays:

1. Active: Stores tasks that have not yet used their timeslice.

2. Expired: Stores tasks that have used their timeslice.

For every priority level, one active and one expired array are defined. When-
ever the active array becomes empty, the two arrays are swapped, and there-
fore, the tasks can proceed to the next timeslice. Figure 18.1 shows the organi-
zation of the run queue. In order to be able to select the highest-priority task
in constant time, a bitmap of active tasks is used, where every bit corresponds
to a given priority level and defines the presence or absence of ready tasks at
that priority. With this organization of the run queue, adopted since kernel
version 2.4.20, the complexity in the management of the queue is O(1), that
is, the selection of a new task for execution as well as the reorganization of the
queue, can be performed in constant time regardless of the number of active
tasks in the system. Kernel routine scheduler tick(), called at every timer
interrupt, performs the following actions:

• If no task is currently running, that is, all tasks are waiting for some event,
the only action is the update of the statistics for every idle task. Statistics
such as the amount of time a task has been in wait state are then used in
the computation of the current priority for non-real-time tasks.

• Otherwise, the scheduler checks the current task to see whether it is a
real-time task (with priority above a given threshold). If the task is a real-
time task, and if it has been scheduled as a FIFO task, no timeslice check
is performed. In fact, a FIFO task remains the current task even in the
presence of other ready tasks of the same priority. Otherwise, the task
has been scheduled as round-robin and, as the other non-real-time tasks,
its timeslice field is decremented. If the timeslice field goes to 0, the task
descriptor is moved to the expired array and, if for that priority level the
active array is empty, the two arrays are swapped, that is, a new timeslice
starts for the tasks at that priority.

• Based on the new statistics, the priority for non-real-time tasks are recal-
culated. Without entering the details of the dynamic priority computation,
the priority is adjusted around a given base value so that tasks that are
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more likely to be in wait state are rewarded with a priority boost. On the
other side, the priority of computing intensive tasks, doing very few I/O
operations, tends to be lowered in order to improve the user-perceived re-
sponsiveness of the system even if at the price of a slightly reduced overall
throughput.

Whenever scheduler tick() detects that a task other than the current one
is eligible to gain processor ownership, it passes control to kernel routine
schedule(), which selects the new running task, possibly performing a con-
text switch. Recall that routine schedule() can also be called by system
routines or device drivers whenever the current task needs to be put in wait
state, waiting for the termination of an I/O or synchronization operation, or,
conversely, when a task becomes newly ready because of the termination of
an I/O or synchronization operation. The actions performed by schedule()

are the following:

• It finds the highest-priority ready task at that time, first by checking the
active bitmap to find the nonempty active queue at the highest priority (re-
call that in Linux lower-priority numbers correspond to higher priorities).
The task at the head of the corresponding active queue is selected: if it cor-
responds to the current task, no further action is required and schedule()

terminates; otherwise, a context switch occurs.

• To perform a context switch, it is necessary to save first the context of
the current task. Recall that the task context is represented by the set of
processor registers, the kernel stack, that is, the stack (8 Kbytes) used by
the kernel code within the specific task context, and the memory-mapping
information represented by the task-specific content of the page table. In
particular, switching the kernel stack only requires changing the content of
the stack pointer register.

• After saving the context of the current task, the context of the new task is
restored by setting the current content of the page table and by changing
the content of the stack pointer register to the kernel stack (in the task
descriptor) of the new task. As soon as the machine registers are restored,
in particular the Program Counter, the new task resumes, and the final
part of the schedule() routine is executed in the new context.

The replacement of the page table is the most time-consuming operation in a
context switch. Observe that this is not always the case because the two tasks
may refer to two different threads of the same process that share the same
mapping. In this case, the context switch is much faster since no page table
update is required.

Linux kernel routines use a reserved section of the virtual address space,
that is, all the virtual addresses above a given one. As for user address space,
the kernel address space is virtual, that is, it is subject to Memory Manage-
ment Unit (MMU) address translation. However, while user address mapping
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may be different from task to task, kernel memory mapping never changes.
Therefore, kernel routines can exchange pointers among tasks with the guar-
antee that they consistently refer to the same objects in memory. Recall that
it is not possible to exchange memory pointers in user tasks because the same
virtual address may refer to different physical memory due to the task-specific
page table content.

18.2 Kernel Preemption

In addition to user processes and threads, the scheduler will handle another
kind of tasks, such as kernel threads. A kernel thread runs only in kernel mode,
and its memory context only includes the mapping for kernel memory pages.
For this reason, the page table information for kernel threads does not need
to be changed when a kernel thread is involved in a context switch. In this
case, the context switch is a fast operation since it only requires swapping
the stack pointer contents to switch the task-specific kernel stack, and to save
and copy the general-purpose registers. We shall see later in this section how
kernel threads have been used in Linux to reduce the latency of the system.

In order to avoid race conditions corrupting its data structures, it is neces-
sary to protect kernel data against concurrent access. This has been achieved
up to version 2.4 by making the kernel non-preemptible, that is, by ensur-
ing that the kernel code cannot be interrupted. Observe that this does not
mean disabling interrupts, but in any case, the interrupt service routine can-
not directly invoke the scheduler; rather, they will set a scheduler request flag,
when required, which will be checked upon the termination of the kernel code
segment. On multiprocessor (multicore) systems, things are more complicated
because the kernel data structure may be concurrently accessed by kernel
code running on other processors. In principle, kernel data integrity could be
achieved by disabling kernel preemption on all processors, but this would rep-
resent an overkill because the whole system would be affected by the fact that
a single processor is running kernel code. To protect kernel data structures,
a number of spinlocks are used. Every spinlock repeatedly tests and sets an
associated flag: if the flag is already set, it means that another processor is
running the associated critical section, and so, the requesting processor loops
until the flag has been reset by the previous owner of the critical section.

Non-preemptible kernel represents the main reason for the non-real-time
behavior of Linux up to version 2.4. In fact, if an interrupt is received by the
system during the execution of kernel code, the possible task switch triggered
by the interrupt and therefore the reaction of the system to the associated
event was delayed for the time required by the kernel to complete its current
action. The following versions of Linux introduced kernel preemption, that
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is the possibility of the kernel code being interrupted. The kernel cannot, of
course, be made preemptible tout court because there would be the risk of
corrupting the kernel data structures. For this reason, the kernel code will
define a number of critical sections that are protected by spinlocks. A global
counter, preempt count, keeps track of the currently active critical sections.
When its value equals to zero, the kernel can be interrupted; otherwise, in-
terrupts are disabled. preempt count is incremented every time a spinlock is
acquired, and decremented when it is released.

Suppose a high-priority real-time task τ2 is waiting for an event repre-
sented by an interrupt that arrives at time T1 while the system is executing
in kernel mode within the context of a low-priority task τ1, as shown in Fig-
ure 18.2. In a non-preemptible kernel, the context switch will occur only at
time T2, that is, when the kernel section of task τ1 terminates. Only at that
time, will the scheduler be invoked, and therefore, task τ2 will gain proces-
sor ownership with a delay of T2 − T1, which can be tens or even hundreds
of milliseconds. In a preemptible kernel, it is not necessary to wait until the
whole kernel section of task τ2 has terminated. If the kernel is executing in
a preemptible section, as soon as the interrupt is received, the ISR is soon
called and schedule() invoked, giving the processor to task τ1. In the case
where the kernel is executing a critical section, the interrupt will be served at
time T ′

1 < T2, that is, when the kernel code exited the critical section. In this
case, the delay experienced by task τ2 is T ′

1−T1, which is normally very short
since the code protected by spinlocks is usually very limited.

An important consequence of kernel preemptability is that kernel activities
can now be demanded to kernel threads. Consider the case in which an I/O
device requires some sort of kernel activity in response to an interrupt, for
example, generated by the disk driver to signal the termination of the Direct
Memory Access (DMA) transfer for a block of data. If such activity were car-
ried out by the ISR routine associated with the interrupt, the processor would
not be able to perform anything else even if a more urgent task becomes ready
in the meantime. If, after performing a minimal action, the ISR demanded the
rest of the required activity from a kernel task, there would be the chance for
a more urgent task to gain processor ownership before the related activity is
terminated.

Spinlocks represent the most basic locking mechanism in the kernel and,
as such, can be used also in ISR code. If the kernel code is not associated with
ISR but runs within the context of a user or a kernel task, critical sections
can be protected by semaphores. Linux kernel semaphores provide two basic
function: up() and down(). If a task calls down() for a semaphore, the count
field in the semaphore is decremented. If that field is less than 0, the task
calling down() is blocked and added to the semaphore’s waiting queue. If the
field is greater than 0, the task continues. Calling up() the task increments
the count field and, if it becomes greater than 0, wakes a task waiting on the
semaphore’s queue. Semaphores have the advantage over spinlocks of allowing
another task gain processor usage while waiting for the resource, but cannot be
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Latency due to non-preemptible kernel sections.
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used for synchronization with ISRs (the ISR does not run in the context of any
task). Moreover, when the critical section is very short, it may be preferable
to use spinlocks because they are simpler and introduce less overhead.

18.3 The PREEMPT RT Linux Patch

The kernel preemtability introduced in Linux kernel 2.6 represents an impor-
tant step toward the applicability of Linux in real-time applications because
the delay in the system reaction to events is shorter and more deterministic.
In this case, system latency is mainly due to

• critical sections in the kernel code that are protected by spinlocks; preemp-
tion is in fact disabled as long as a single spinlock is active;

• ISRs running outside any task context, and therefore potentially introduc-
ing delays in the system reaction to events because the scheduler cannot
be invoked until no pending interrupts are present.

The PREEMPT RT Linux patch represents one step further toward hard real-
time Linux performance. Currently, PREEMPT RT is available as a separate
patch for Linux, but work is in progress to integrate the new functionality
into the Linux mainstream distribution. The PREEMPT RT provides the
following features:

• Preemptible critical section;

• Priority inheritance for in-kernel spinlocks and semaphores;

• Preemptible interrupt handlers.

In PREEMPT RT, normal spinlocks are made preemptible. In this case, they
are no more implemented as the cyclic atomic test and set but are inter-
nally implemented by a semaphore called rt-semaphore. This semaphore is
implemented in a very efficient way if the underlying architecture supports
atomic compare and exchange; otherwise, an internal spinlock mechanism is
used. Therefore, the task entering a critical section can now be interrupted,
the integrity of the section being still ensured since, if the new task tries to
acquire the same lock, it will be put on wait. The impact of this different,
semaphore-based implementation of the previous spinlock mechanism is not
trivial since now spinlocks cannot be invoked with either preemption or inter-
rupts disabled. In fact, in the case the spinlock resource is already busy and
the task was put on wait, there would be no chance for other tasks to gain
processor usage.

Another fact that may have an adverse effect in realtime performance is
priority inversion. Consider for example the following sequence:
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• Low-priority task A acquires a lock;

• Medium-priority task B starts executing preempting low-priority task A;

• High-priority task C attempts to acquire the lock held by low-priority task
A but blocks because of medium-priority task B having preempted low-
priority task A.

Priority inversion can thus indefinitely delay a high-priority task. In order to
avoid priority inversion, a possibility would be disabling preemptions so that,
when task A acquires the lock, it cannot be preempted by task B. This works
for “traditional” spinlocks but not for kernel semaphores. The other possibility
is using priority inheritance by boosting the priority of task A to the highest
priority among the tasks contending for that lock. In PREEMPT RT, priority
inheritance is provided for rt semaphores used to implement spinlocks as well
as for the other kernel semaphores.

We have already seen that a well-written device driver avoids defining
lengthy ISR code. Rather, the ISR code should be made as short as possible,
delegating the rest of the work to kernel threads. PREEMPT RT takes one
step further and forces almost all interrupt handlers to run in task context
unless marked SA NODELAY to cause it to run in interrupt context. By de-
fault, only a very limited set of interrupts is marked as SA NODELAY, and,
among them, only the timer interrupt is normally used. In this way, it is pos-
sible to define the priority associated with every interrupt source in order to
guarantee a faster response to important events.

18.3.1 Practical Considerations

In summary, PREEMPT RT currently represents the last step toward real-
time responsiveness of the Linux kernel. The shorter the segments of non-
interruptible kernel and interrupt-level code, the faster will be the system
response. Figure 18.3 illustrates the evolution in the Linux kernel toward al-
most full preemtability.

It is, however, necessary that the application and the system be properly
tuned to achieve the desired real-time behavior. Assume that the real-time
application is composed of a number of threads and that the system consists
of a multicore machine, then the steps to be taken for a proper configuration
are the following:

1. Choose an appropriate organization for load balancing among cores.
Depending on the complexity of the application, one or more cores
can be designated to host the real-time application threads, leaving
the others for the management of system activities such as network
activity.

2. The selection of cores must be reflected in the application code.
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The threads created by the application must be assigned to the
selected core using the system routine sched setaffinity(). The
arguments of sched setaffinity() are the task identifier and a
processor mask that specifies the cores over which the Linux sched-
uler will let the thread run. Thread real-time priorities must also
be set to ensure that the more important application thread can
preempt lower priority ones.

3. In order to avoid other tasks being scheduled over the cores selected
for the application, it is necessary to instruct the Linux scheduler
not to schedule tasks over the selected cores. This is achieved by the
isolcpus kernel configuration parameter. Observe that his setting
is overridden by the CPU mask passed to sched setaffinity(),
so the combined use of isolcpus and sched setaffinity() allows
running only the desired tasks over the selected processors. It is
worth noting that a few kernel threads remain nevertheless resident
on the selected core. Therefore it is necessary to assign a priority
to the application task that is higher among those kernel threads.

4. In order to avoid running unnecessary ISR code over the cores se-
lected for the application, it is necessary to configure Linux accord-
ingly. Interrupt dispatching is a feature that depends on the target
architecture, and normally, an incoming interrupt is dispatched in
a round-robin fashion among cores. Linux provides an architecture-
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independent way of configuring interrupt dispatching. The interrupt
sources available in the system can be displayed by the shell com-
mand cat /proc/interrupts. Every interrupt source is assigned a
number n, and the file /proc/irq/<n>/smp affinity will contain
the processor mask for that interrupt source.

18.4 The Dual-Kernel Approach

We have seen so far how the evolution of Linux toward real-time responsiveness
has been achieved by making its kernel more and more preemptive in order to
achieve a fast response to system events. The complexity of the Linux kernel,
however, makes such evolution a lengthy process, and several improvements
have not been yet moved to the mainstream version because they still require
extensive testing before the official release.

A different approach has been taken in several projects aiming at making
Linux a real-time system. In this case, rather than changing the Linux kernel,
a new software layer is added between the machine and the kernel. The key
idea is simple: if system events such as interrupts are first caught by this
software layer instead of being trapped by the original interrupt handlers of
the kernel, there is a chance of serving them soon in case such events refer to
some kind of real-time activity. Otherwise, the events are passed as they are
to the Linux kernel that will serve them as usual. So, the added software layer
takes control of the event management, “stealing” events related to real-time
activity from the supervision of the Linux kernel.

This layer of software is often called a nanokernel because it behaves as
a minimal operating system whose operation consists in the dispatching of
interrupts and exceptions to other entities. At least two entities will operate
on the top of the nanokernel: the real-time component, normally consisting in
a scheduler for real-time tasks and a few interprocess communication facilities,
and the non-real-time Linux kernel, carrying out the normal system activity.

In the following text we shall analyze two dual-kernel real-time extensions
of Linux: Xenomai [30] and RTAI [63]. Both systems are based on Adeos [87],
which stands for “Adaptive Domain Environment for Operating Systems” and
can be considered a nanokernel.

18.4.1 Adeos

Adeos is a resource virtualization layer, that is, a software system that inter-
faces to the hardware machine and provides an Hardware Abstraction Layer
(HAL). Adeos enables multiple entities, called domains, to exists simultane-
ously on the same machine. Instead of interfacing directly to the hardware,
every domain relies on an Application Programming Interface (API) exported
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by Adeos to interact with the machine. In this way, Adeos can properly
dispatch interrupts and exceptions to domains. A domain is a kernel-based
software component that can ask the Adeos layer to be notified of incom-
ing external interrupts, including software interrupts generated when system
calls are issued by user applications. Normally, at least two domains will be
defined: a real-time kernel application carrying out real-time activity, and a
Linux kernel for the rest of the system activities. It is in principle possible
to build more complex applications where more than one operating system is
involved, each represented by a different domain. Adeos ensures that system
events, including interrupts, are orderly dispatched to the various client do-
mains according to their respective priority. So, a high-priority domain will
receive system event notification before lower-priority domains and can decide
whether to pass them to the other ones. All active domains are queued ac-
cording to their respective priority, forming a pipeline of events (Figure 18.4).
Incoming events are pushed to the head of the pipeline and progress down to
its tail. Any pipeline stage corresponding to a domain can be stalled, which
means that the next incoming interrupt will not be delivered to that domain,
neither to the downstream domains. While a stage is being stalled, pending
interrupts accumulate in the domain’s interrupt log and eventually get played
when the stage gets unstalled. This mechanism is used by domains to protect
their critical sections by interrupts. Recall that, in Linux, critical sections are
protected also by disabling interrupts, thus preventing interrupt handler code
to interfere in the critical section. If the Linux kernel is represented by an
Adeos domain, critical sections are protected by stalling the corresponding
pipeline stage. Interrupts are not delivered to downstream stages (if any), but
upstream domains will keep on receiving events. In practice, this means that
a real-time system running ahead of the Linux kernel in the pipeline would
still be able to receive interrupts at any time with no incurred delay. In this
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way, it is possible to let real-time applications coexist with a non-real-time
Linux kernel.

Implementing a HAL like Adeos from scratch would be a long and risky
process due to the complexity of the kernel and the variety of supported
hardware platforms. For this reason, Adeos developers took a canny approach,
that is, they decided to use an already functional Linux kernel as a host
for Adeos’ implementation. Adeos is implemented as a patch for the Linux
kernel, and once the Adeos code has been integrated in the system, it will
take control of the hardware, using most of the functionality of the HAL layer
already provided by the Linux kernel. So, the Linux kernel carries out a twofold
functionality within Adeos: it will provide low-level hardware management to
Adeos code, and it will represent one of the domains in the Adeos pipeline. An
Adeos-based realtime extension of Linux will therefore provide an additional
domain carrying out real-time activity.

18.4.2 Xenomai

Xenomai is a real-time extension of Linux based on Adeos and defines three
Adeos domains: the primary domain, which hosts the real-time nucleus in-
cluding a scheduler for real-time applications; the interrupt shield, used to
selectively block the propagation of interrupts; and the secondary domain,
consisting in the Linux kernel (Figure 18.5). The primary domain receives all
incoming interrupts first before the Linux kernel has had the opportunity to
notice them. The primary domain can therefore use such events to perform
real-time scheduling activities, regardless of any attempt of the Linux kernel
to lock them, by stalling the corresponding pipeline stage to protect Linux
kernel critical sections.

Xenomai allows running real-time threads, called Xenomai threads, either
strictly in kernel space or within the address space of a Linux process. All
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Xenomai threads are known to the primary domain and normally run in the
context of this domain, which is guaranteed to receive interrupts regardless of
the activity of the secondary (Linux) domain. A Xenomai thread can use spe-
cific primitives for thread synchronization but is also free to use Linux system
calls. In the latter case, the Xenomai thread is moved in the secondary domain
and will rely on the services offered by the Linux kernel. Conversely, when a
Xenomai thread running in the secondary domain invokes a possibly block-
ing Xenomai system call, it will be moved to the primary domain before the
service is eventually performed, relying on the Xenomai-specific kernel data
structures. Xenomai threads can be moved back and forth the primary and sec-
ondary domains depending on the kind of services (Linux vs. Xenomai system
calls) requested. Even when moved to the secondary (Linux) domain, a Xeno-
mai thread can maintain real-time characteristics: this is achieved by avoiding
the Xenomai thread execution being perturbed by non-real-time Linux inter-
rupt activities. A simple way to prevent delivery of interrupts to the Linux
kernel when the Xenomai thread is running in the secondary (Linux) domain
is to stall the interrupt shield domain lying between the primary and sec-
ondary ones. The interrupt shield will then be disengaged when the Xenomai
thread finishes the current computation. In this way, Xenomai threads can
have real-time characteristics even when running in the Linux domain, albeit
suffering from an increased latency due to the fact that, in this domain, they
are scheduled by the original Linux scheduler.

Letting real-time Xenomai threads work in user space and use Linux sys-
tem calls simplify the development of real-time applications, and, above all,
allows an easy porting of existing applications from other systems. To this
purpose, the Xenomai API provides several sets of synchronization primitives,
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called skins, each emulating the set of system routines of a given operating
system.

The Adeos functionality is used in Xenomai also for handling system call
interception. In fact, system calls performed by Xenomai threads, including
Linux system calls, must be intercepted by Xenomai to properly handle the
migration of the thread between the primary and secondary domain. This is
achieved thanks to the possibility offered by Adeos of registering an event
handler that is then activated every time a syscall is executed (and therefore
a software interrupt is generated).

The layers of Xenomai are shown in Figure 18.6. At the lowest level is the
hardware, which is directly interfaced to the Linux HAL, used by Adeos to
export a new kind of HAL that supports event and interrupts dispatching.
This layer is then exported to the primary (xenomai) and secondary (Linux)
domains.

18.4.3 RTAI

Real-Time Application Interface (RTAI) ia another example of dual-kernel
real-time extension of Linux based on Adeos. Its architecture is not far from
that of Xenomai, and the Xenomai project itself originates from a common
development with RTAI, from which it separated in 2005.

In RTAI, the Adeos layer is used to provide the dispatching of system
events to two different domains: the RTAI scheduler, and the Linux kernel.
In RTAI, however, the Adeos software has been patched to adapt it to the
specific requirements of RTAI. So, the clean distinction in layers of Xenomai
(Figure 18.6) is somewhat lost, and parts of the RTAI code make direct access
to the underlying hardware (Figure 18.7). The reason for this choice is the
need for avoiding passing through the Adeos layer when dispatching of those
events that are critical in real-time responsiveness. Despite this difference in
implementation, the concept is the same: let interrupts, which may signal
system events requiring some action from the system, reach the real-time
scheduler before they are handled by the Linux kernel and regardless the
possible interrupt disabling actions performed by the Linux kernel to protect
critical sections.

The main components of RTAI are shown in Figure 18.8. Above the ab-
straction layer provided by the patched version of Adeos, the RTAI scheduler
organizes the execution of real-time tasks. The RTAI component provides In-
terProcess Communication (IPC) among real-time and Linux tasks.

The RTAI scheduler handles two main kind of tasks:

1. Native kernel RTAI threads. These tasks live outside the Linux en-
vironment and therefore cannot use any Linux resource. It is, how-
ever, possible to let them communicate with Linux tasks using RTAI



Internal Structures and Operating Principles of Linux Real-Time Extensions 417

Linux

Low-level-Linux (HAL)

Hardware

Adeos

RTAI

FIGURE 18.7
The RTAI layers.

primitives, such as semaphores and real-time FIFOs, which interface
to character devices on the Linux side.

2. User-space Linux tasks. The ability to deal with user-mode tasks
simplifies the development of real-time applications because of the
possibility of using Linux resources and the memory protection pro-
vided by the MMU. Recall that wrong memory access in a user
space task will let the kernel intervene and handle the fault, nor-
mally aborting the task, while a wrong memory access in kernel
space may corrupt the operating system data structure and crash
the system.

For very stringent real-time requirements, native RTAI threads provide the
shortest context switch time since there is no need to change the page table
contents and the context switch requires only exchanging the values of the
(kernel) stack pointer and reloading the machine general-purpose registers.
In addition to the use of fixed priorities, either in FIFO or round robin (RR)
configuration, RTAI provides support for timed and cyclic task execution. To
this purpose, the RTAI scheduler organizes task descriptors in two different
queues: the ready list, where tasks are ordered by priority, and the timed list,
for the timed tasks, organized by their resume time order. Several scheduling
policies are supported, namely

• Rate Monotonic scheduling (RM)

• Earliest Deadline First (EDF)

• First In First Out (FIFO)

• Round Robin (RR)
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RM and EDF refer to timed tasks. RTAI interfaces directly to the hardware
timer device in order to manage the occurrence of timer ticks with a minimum
overhead. For the EDF scheduling policy, it is also necessary to define release
time and deadline for each timed RTAI thread.

While the shortest latencies in the system are achieved using native kernel
RTAI threads, the possibility of providing real-time responsiveness to selected
Linux tasks increases the practical usability of RTAI. For this purpose, a
new scheduler, called LinuX RealTime (LXRT), has been provided in RTAI,
which is also able to manage Linux tasks. A Linux task can be made real-time
by invoking the RTAI rt make hard real time() routine. In this case, the
task is moved from the Linux scheduler to the RTAI one, and therefore, it
enters the set of tasks that are considered by the RTAI scheduler for real-
time responsiveness. In order to provide a fast response, the RTAI scheduler
is invoked when either

• a timer interrupt is received;

• any ISR, which has been registered in RTAI, returns;

• Any task managed by the RTAI scheduler is suspended.

Considering the fact that, thanks to the underlying Adeos layer, interrupts are
first delivered to the RTAI domain, the LXRT scheduler has a chance to release
new ready tasks whenever a significant system event occurs, including the soft
interrupt originated by the activation of a system routine in the Linux kernel
(traps are redirected by Adeos to the RTAI domain). Basically, the LXRT
scheduler works as a coscheduler of the Linux one: whenever no real-time
task (either “converted” Linux or native RTAI thread) can be selected for
computation, control is passed to the Linux scheduler by invoking the original
schedule() function.

A real-time Linux task can at any time return to its original condition by
invoking rt make soft real time(). In this case, its descriptor is removed
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from the task queues of the LXRT scheduler queues and put back into the
Linux scheduler.

Two levels of priority inheritance are supported by the RTAI scheduler:

1. In the Adaptive Priority Ceiling, the priority of the blocking task
is set to the maximum value among the tasks waiting for that re-
source. Its priority is set to the base level only when all the blocking
resources are released.

2. In the Full Priority Inheritance, the priority of the blocking task
is still set to the maximum value among the tasks waiting for that
resource, but when a resource is released, the current task prior-
ity is adjusted, depending on the current maximum priority of the
remaining tasks blocked on any held resource.

Adaptive priority ceiling represents a trade-off between the real priority in-
heritance schema and the need of avoiding scanning task descriptor queues,
an operation that may depend on the actual number of involved tasks and
that may then introduce nondeterminism in the resource management time.

18.5 Summary

The interest toward real-time Linux is growing due to several factors, among
which are the following

• Linux applications are becoming more and more common in embedded
systems and, consequently, the availability of reusable code and libraries is
increasing. This represents a further factor driving the choice of Linux for
embedded applications and represents a sort of “positive feedback” in this
process.

• The rapid evolution of processor technology allows the integration of a
monolithic kernels like Linux in small and cheap processors also.

• Linux is free. Traditionally, top-level realtime applications have been us-
ing commercial real-time operating systems. For example, the commercial
VxWorks operating system has been used in several Mars missions. The
availability of a free system with real-time performances that are approach-
ing those offered by expensive award-winning systems is changing the sce-
nario, and real-time Linux is more and more used for control in critical
applications.

This chapter presented the two different approaches that have been followed
in the implementation of real-time systems based on Linux: the “mainstream”
evolution of the Linux kernel, and the dual-kernel organization. The former
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is a slower process: the Linux kernel is complex and changes in such a crit-
ical part of software require a long time to be fully tested and accepted by
the user community because they potentially affect a great number of exist-
ing applications. The dual-kernel approach circumvents the problem of kernel
complexity, and therefore, allows implementing working systems in a much
shorter time with much less effort. Nevertheless, systems like Xenomai and
RTAI are implemented as patches (for Adeos) and loadable modules for the
Linux kernel, and require a continuous work to adapt them to the evolution of
the Linux kernel. On the other side, such systems are likely to achieve shorter
latencies because they remove the problem from its origin by defining a com-
pletely different path, outside the Linux kernel, for those system events that
are involved in real-time operations.

The reader may wonder now which approach is going to be the “winner.”
Giving an answer to such a question is not easy, but the authors’ impres-
sion is that the mainstream Linux evolution is likely to become the common
choice, restricting the usage of dual-core solutions to a selected set of highly
demanding applications.
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Through this book we have presented examples based on two different open
source operating systems: Linux and FreeRTOS. These two systems represent
somewhat two opposite extremes in complexity. Linux is a full-fledged system
supporting all those features that are required for handling complex systems,
and is used in top-level applications such as large servers. FreeRTOS is a min-
imal system that is oriented towards small applications and microcontrollers,
with minimal requirements for memory and computing resources, so that it
can be used on very tiny systems such as microcontrollers.

Despite their different sizes, Linux and FreeRTOS provide a similar view
of the systems, where computation is carried out by a number of threads that
can interact by sharing memory and synchronizing via semaphores. Linux
provides, of course, support for more sophisticated features such as virtual
memory, processes, and a sophisticated I/O interface, but nevertheless the
conceptual models of the system are basically the same. How they differ is in
their Application Programming Interface (API), and therefore an application
written for FreeRTOS cannot be ported to Linux as its is, even if all the
features supported by FreeRTOS are supported by Linux as well.

The difference in API is not an issue in the case the development of the
embedded system is targeted to the specific architecture. However there is a
growing number of applications that require multiplatform support, that is,
the ability of the application code to be used on different operating systems,
for the following two reasons:

1. Unless the application is explicitly targeted to a given architecture,
several embedded systems may be involved in an embedded applica-
tion. For example, an application for industrial control may involve
not only microcontrollers mounted on board in the plant machinery,
but also other general purpose computers for the coordination and
the supervision of the system.
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2. Even if a single architecture is used in the application, it may hap-
pen that future releases will use a different platform, for example,
because the current system is no more supported, or, more likely, a
different solution has become more convenient.

As a consequence, it would be desirable to rely on an unified API for inter-
acting with the operating system so that applications can be easily ported
across different platforms. Developing a multiplatform application, however,
restricts in some way the usable platform power since it is necessary to use
primitives that are supported by all the target systems. For example, an ap-
plication that is designed to run on both Linux and FreeRTOS cannot rely on
virtual memory because this is not supported by the latter.

A significant interface unification effort has been carried out in the past
years, and the POSIX specification is the most significant outcome [48]. Pro-
vided an operating system offers a POSIX interface, it can be interchangeably
used in any application using POSIX calls. Despite the great effort in such a
development and definition of standards, using POSIX as a true multiplatform
interface faces some practical problems:

• The amount of system resources required for providing a POSIX compliant
interface can be an overkill for small systems. As it aims at providing a
complete abstraction of the underlying system in the most general case,
POSIX interface is very rich and provides support for a large number of
mechanisms for Interprocess Communication (IPC). This comes, however,
at a cost, and the amount of system resources, especially memory, may be
too large in small systems targeted to microcontrollers.

• A consequence of the fact that the POSIX interface must cover all possible
applications, its interface is complicated, with a large number of parameters
and configurations. Very often, in practice, only a subset of the supported
features is required, which can be described by a simpler API. This is the
case of the original API for several operating systems, which is often simpler
than the corresponding POSIX interface.

For the above reasons, a more pragmatic approach is often taken when de-
veloping multiplatform embedded applications, that is, developing a software
layer that offers a platform independent view of the underlying system. This
layer will be implemented for every used platform, and will provide the func-
tionality that is required by application. In this way, unnecessary requirements
can be skipped, and the interface can be more targeted to the specific appli-
cation.

In this chapter we shall provide an example of such an abstraction, taking
it one step further in respect to the common approach, that is, providing an
Object-Oriented (OO) abstraction of the underlying system. The use of OO
languages and system is becoming more and more widespread, but has been
rather limited in embedded applications directly interacting with the under-
lying hardware. One of the reasons for this was the fact that C++ compilers
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were not available in all the tool chains used to generate the application code
in embedded system, and, above all, that the code produced by C++ compil-
ers was rather inefficient, requiring, for example, a large number of libraries
(and therefore more code in memory) for carrying out even simple operations.
This is no more the case, and modern C++ compilers are able to produce
highly efficient code which can be safely used in time critical applications.

In the following we shall present a generic OO interface for managing
threads, semaphores, monitors, and message queues, as well as its implemen-
tation in Linux and FreeRTOS. This interface will then be used by an applica-
tion implementing publish/subscribe multicast communication among threads
that will work with no changes in its code in both Linux and FreeRTOS.

19.1 An Object Oriented Interface to Threads and Other
IPC Mechanisms

Here, we present a set of C++ classes providing a OO view of threads and
other IPC mechanisms, namely, semaphores, mutexes, conditions, message
queues, and timers. Mapping such entities into C++ classes is straightfor-
ward, and the methods correspond to the associated primitives. A bit less
intuitive is the way threads are mapped to C++ objects. It is natural to think
about a thread as an object able to asynchronously execute some sort of code,
but how is the thread code specified? Passing the address of a routine is con-
trary to the OO philosophy, where information is encapsulated into objects.
So, instead of passing the address of a routine, an object is passed whose
run() method will execute the associated code. The class of the passed object
will define the specific implementation of the run() method, and therefore,
the application code will first define a class whose method run() carries out
the thread computation, and then will pass an instance of such class to the
start() method of the class Thread. The implementation of class Thread,
however, cannot be aware of the specific client class, but this problem is ele-
gantly solved by defining a common abstract superclass, Runnable, defining
one virtual method run(), and letting the application inherit from this class
to override this method and pass an instance of the derived class to Thread’s
start(). An abstract class is one in which some of its methods are declared
but not implemented: it cannot live on its own but can only be inherited
by subclasses that provide the actual implementation of such methods. The
Thread class is therefore unaware of the actual class of the passed object: all
it knows is that it has received an instance of Runnable class and that it is
going to call its run() method.
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19.1.1 Linux Implementation

In the following, the listing of the Linux implementation of the OS abstrac-
tion is presented. The first class is SystemException, and is used for error
management. When an error is detected in any call to the OS routines, an
Exception is thrown, that is, an Exception object is created, containing the
description of the error, the execution of the method aborted, and the call
stack unwound until a calling method able to manage this kind of exception
is found. The C++ try construct is used to declare the ability of a method to
manage the generation of Exceptions. Any exception generated by any called
method will be “caught” by the catch clause of the try statement and the as-
sociated code executed. Here, the Exception class is named SystemException.
Its constructor will take as argument a user-provided message and the system
error number (contained in Linux variable errno), and will build the complete
error message, which can be accessed via method what().

#ifndef OS_ABSTRACTION_LINUX_H
#define OS_ABSTRACTION_LINUX_H
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <semaphore.h>
#include <pthread .h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <errno.h>
#include <sys/time.h>

/∗ Class SystemException i s a support c lass for handling error
management . An instance of th i s c lass w i l l be thrown in an exception
when an error occurs . ∗/

class SystemException
{
/∗ Error message ∗/

char errorMsg [512];

public:
/∗ Constructor : convert the passed code and appends i t to the

passed str ing message ∗/
SystemException(const char *msg , int errNo)
{

memset (errorMsg , 0, 512);
sprintf (errorMsg , "%s: %s", msg , strerror (errNo ));

}
/∗ Get the error message ∗/

char *what()
{

return errorMsg ;
}

};

Class Semaphore specifies a counting semaphore. Its private field is the handle
of the underlying Linux semaphore, which is created by the class’ constructor.
The class exports the public wait() and post() methods.

class Semaphore
{
/∗ The corresponding Linux semaphore handle ∗/

sem_t semHandle;

public:
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/∗ Semaphore constructor . The argument spec i f i e s the i n i t i a l value of
the semaphore ( defau l t 0) ∗/

Semaphore(int initVal = 0)
{

int status = sem_init (&semHandle , 1, initVal );
if(status != 0)

throw new SystemException("Error initializing Semaphore", errno);
}
void wait()
{

int status = sem_wait (& semHandle));
if(status != 0)

throw new SystemException("Error waiting semaphore", errno);
}
void post()
{

int status = sem_post (& semHandle);
if(status != 0)

throw new SystemException("Error posting Semaphore", errno);
}

/∗ Destructor , automatical ly ca l l ed
when the semaphore instance i s discarded ∗/

~Semaphore()
{

int status = sem_destroy(& semHandle);
if(status != 0)

throw new SystemException("Error destroying Semaphore", errno);
}

};

Class Mutex implements mutual exclusion. It is implemented here using the
pthread mutex object. Its public methods are lock() and unlock(). As for the
other classes, the details of the mutex initialization and destruction are hidden
in the constructor and destructor methods, called whenever the class instance
is created and discarded, respectively. The C++ friend construct declares
that another class has access to the private fields. This is used here because
the ptread mutex object must be directly accessed in the implementation of
the following class Condition.

class Mutex
{
/∗ The corresponding pthread mutex ∗/

pthread_mutex_t mutex ;

/∗ In the Linux implementation c lass Condition w i l l require the
private f i e l d mutex ∗/

friend class Condition;

public:
/∗ Constructor : i n i t i a l i z e the internal pthread mutex ∗/

Mutex()
{

int status = pthread_mutex_init(&mutex , NULL );
if(status != 0)

throw new SystemException("Error Creating Mutex", errno);
}
void lock()
{

pthread_mutex_lock(&mutex );
}
void unlock ()
{

pthread_mutex_unlock(& mutex);
}
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~Mutex()
{

pthread_mutex_destroy(&mutex );
}

};

Class Condition carries out the monitor functionality. Its public method
wait() suspends the execution of the current thread until the monitor is
signaled via public method signal(). Method wait() can accept as parame-
ter a reference of a Mutex object. This mutex will be unlocked prior to waiting
and locked again before method wait() returns.

The Linux implementation is straightforward and the monitor functional-
ity is mapped onto a pthread condition object.

class Condition
{

pthread_cond_t cond;

public:
/∗ Constructor : i n i t i a l i z e the internal pthread condition object∗/

Condition()
{

int status = pthread_cond_init(&cond , NULL);
if(status != 0)

throw new SystemException("Error Creating Condition", errno);
}

void wait(Mutex *mutex)
{

/∗ Here i t i s necessary to access the private f i e l d mutex
of c lass Mutex ∗/
pthread_cond_wait(&cond , mutex ->mutex);

}
void signal ()
{

pthread_cond_signal(&cond);
}

/∗ Destructor : destroy pthread conition object ∗/
~Condition()
{

pthread_cond_destroy(&cond);
}

};

Class MessageQueue describes a queue of equally sized messages. The dimen-
sion of the message buffer is passed to the constructor. The Linux implemen-
tation is a bit less straightforward than in the previous classes because Linux
routines msgsnd() and msgrcv() expect a message class as the first longword
of the message buffer. This is hidden outside the class, which uses an internal
buffer for this purpose.

class MessageQueue
{
/∗ Linux message queue handler ∗/

int msgId;
/∗ Message dimension for th i s message queue ∗/

int itemSize ;
/∗ Private message buffer ∗/

char *msgBuf;

public:
/∗ Constructor : i n i t i a l i z e the Linux Message queue , and al locate the
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internal buffer ∗/
MessageQueue(int itemSize )
{

this ->itemSize = itemSize ;
msgId = msgget(IPC_PRIVATE , 0666);
if(msgId == -1)

throw new SystemException("Error Creating Message Queue", errno);
msgBuf = new char[sizeof(long) + itemSize ];

/∗ The message c lass required by Linux i s here always 1 ∗/
*((long *)msgBuf) = 1;

}
/∗ Send message : message dimension has been declared in the constructor ∗/

void send(void *item)
{

memcpy (&msgBuf[sizeof(long)], item , itemSize );
int status = msgsnd(msgId , msgBuf , itemSize , 0);
if(status == -1)

throw new SystemException("Error Sending Message ", errno);
}

/∗ Receive a message , poss ib ly waiting for i t , and return the number
of bytes actua l ly read ∗/

int receive (void *retItem )
{

int retBytes = msgrcv(msgId , msgBuf , itemSize , 0, 0);
if(retBytes == -1)

throw new SystemException("Error Receiving Message ", errno);
/∗ Copy the message from the internal buffer into c l i en t ’ s buffer ,

skipping the f i r s t longword containing the message c lass ∗/
memcpy (retItem , &msgBuf[sizeof(long)], retBytes );
return retBytes ;

}
/∗ Destructor : Remove Linux message queue structures and

dea l locate buffer ∗/
~MessageQueue()
{

msgctl (msgId , IPC_RMID , NULL);
delete [] msgBuf;

}
};

The following are the classes and structures used to implement Thread class.
Class Runnable is declared as an abstract class and must be implemented
by the client application. Thread’s method start() takes two arguments: the
pointer of a Runnable subclass instance and a generic argument to be passed to
Runnable’s method run(). Since the routine passed to pthread create() ac-
cepts only one parameter, this is defined as the pointer to a structure contain-
ing both the address of the Runnable instance and the argument. A pointer to
routine handlerWithArg() is passed to pthread create(), and this routine
will in turn call Runnable’s run()method with the specified argument. Thread
stack size and priority can be set using setter methods setStackSize() and
setPriority(). Finally, method join() will suspend caller’s execution until
the created thread terminates.

/∗ Abstract c lass for representing Runnable en t i t i e s . I t w i l l be
inheri ted by user−provided c lasses in order to specify
spec i f i c thread code . The c lass has only one v i r tua l method ,
run() , which w i l l receive a void∗ generic argument ∗/

class Runnable
{
public:

virtual void run(void *arg) = 0;
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};

/∗ Internal structure passed to the thread . I t contains the pointers
to the runnable object and to the argument to be passed to method run() ∗/
struct ThreadArgs{

Runnable *rtn;
void *arg;

};

/∗ The routine passed to pthread create must be declared as C interface ∗/
extern "C" void handlerWithArg(ThreadArgs *);

/∗ Thread abstraction . I t manages the creation of a thread ∗/
class Thread
{
/∗ Internal pthread handle ∗/

pthread_t threadId ;
/∗ Thread argument structure to be passed to the C trhead routine ∗/

struct ThreadArgs args;
/∗ Internal pthread at tr i butes ∗/

pthread_attr_t attr;
/∗ Thread pr ior i ty ∗/

int priority ;

public:
/∗ Constructor : i n i t i a l i z e pthread at tr i butes ∗/

Thread ()
{

pthread_attr_init (&attr);
priority = -1;

}
/∗ Set the thread stack s i ze ∗/

void setStackSize(int stackSize)
{

pthread_attr_setstacksize(&attr , stackSize);
}

/∗ Set the thread pr ior i ty ∗/
void setPriority(int priority )
{

/∗ Priori ty i s simply recorded , as the pr ior i ty can be set only
when the thread i s started ∗/
this ->priority = priority ;

}
/∗ Start a new thread . The passed routine i s embedded in an instance of

( subclass of ) Runnable c lass ∗/
void start(Runnable *rtn, void *arg)
{

/∗ Prepare the argument structure ∗/
args.rtn = rtn;
args.arg = arg;
int status = pthread_create(&threadId , &attr ,

(void *(*)( void *))handlerWithArg , (void *)&args);
if(status != 0)

throw new SystemException("Error Creating Thread", errno);
if(priority != -1) /∗ I f not defau l t pr ior i ty ∗/
{

status = pthread_setschedprio(threadId , priority );
if(status != 0)

throw new SystemException("Error setting Thread Priority ", errno );
}

}
/∗ Wait the termination of the created thread ∗/

void join()
{

pthread_join(threadId , NULL);
}
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/∗ startScheduler method i s meaningless in Linux ,
but i s required in the FreeRTOS implementation . See below . ∗/

static void startScheduler() {}
};

/∗ The routine passed to pthread create () i s always the same. I t w i l l then
ca l l spec i f i c run() method ∗/

void handlerWithArg(ThreadArgs *args)
{
/∗ Call run() method of the Runnable object ∗/

args ->rtn ->run(args ->arg);
/∗ When run() returns , s i gna l thread termination ∗/

pthread_exit(NULL);
}

Finally, classes TimeInterval and Timer provide an abstract management
of timed execution suspension. An interval of time is represented by class
TimerInterval, internally specifying the number of seconds and of nanosec-
onds. An instance of TimerInterval is then passed to Timer’s sleep()

method, which will suspend execution for the specified amount of time. In
the Linux implementation, the representation of the interval is converted to
a Linux specific timespec structure, which is then passed to Linux routine
nanosleep().

/∗ Class TimeInterval provides a platform independent representation of
a time interva l ∗/

class TimeInterval
{
/∗ Seconds ∗/

long secs;
/∗ Nanoseconds ∗/

long nanoSecs ;
public:
/∗ Constructors and get ter methods ∗/

TimeInterval(long secs , long nanoSecs )
{

this ->secs = secs + nanoSecs / 1000000000;
this ->nanoSecs = nanoSecs % 1000000000;

}
TimeInterval(long milliSecs)
{

this ->secs = milliSecs / 1000;
this ->nanoSecs = (milliSecs % 1000) * 1000000;

}
long getSecs (){return secs;}
long getNanoSecs(){return nanoSecs ;}
long getTotMilliSecs(){return secs * 1000 + nanoSecs / 1000000;}

};

/∗ Timer abstraction : defines the only method sleep () taking a
TimeInterval instance as argument ∗/

class Timer
{
public:

void sleep(TimeInterval &tv)
{

/∗ Build Linux spec i f i c time structure and use Linux nanosleep () ∗/
struct timespec req, rem;
req.tv_sec = tv.getSecs ();
req.tv_nsec = tv.getNanoSecs();
int status = nanosleep(&req , &rem);
if(status != 0)

throw new SystemException("Error in Sleep", errno);
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}
};

#endif //OSABSTRACTIONLINUXH

19.1.2 FreeRTOS Implementation

The same C++ classes that have been implemented under Linux are now
presented for a FreeRTOS system. Despite the differences between the two
systems, the class interface will be the same, allowing then the development
of common applications for Linux and FreeRTOS.

Class SystemException implementation here cannot rely on the transfor-
mation of the error number into the corresponding string because FreeRTOS
does not support translation from error code to error string. Therefore, the
error code is not managed the class in this implementation.

#ifndef OS_ABSTRACTION_FREE_RTOS_H
#define OS_ABSTRACTION_FREE_RTOS_H
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <FreeRTOS .h>
#include <task.h>
#include <semphr.h>

class SystemException
{

char errorMsg [512];

public:
SystemException(const char *msg)
{

memset (errorMsg , 0, 512);
sprintf (errorMsg , "%s", msg);

}
char *what()
{

return errorMsg ;
}

};

Class Semaphore uses a Counting Semaphore, passing a default value as the
maximum allowed value, required by the FreeRTOS counting semaphore cre-
ation routine. The maximum semaphore value in Linux is instead predefined.

#define MAX_FREERTOS_SEM_VAL 256
class Semaphore
{
/∗ Internal semaphore handle ∗/

xSemaphoreHandle semHandle;

public:
/∗ Constructor : creates the semaphore object ∗/

Semaphore(int initVal = 0)
{

semHandle = xSemaphoreCreateCounting(MAX_FREERTOS_SEM_VAL, initVal );
if(semHandle == NULL)

throw new SystemException("Error initializing Semaphore");
}
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void wait()
{

if(xSemaphoreTake(semHandle , portMAX_DELAY) != pdTRUE)
throw new SystemException("Error waiting semaphore");

}
void post()
{

if(xSemaphoreGive(semHandle) != pdTRUE)
throw new SystemException("Error posting Semaphore");

}
~Semaphore()
{

vQueueDelete(semHandle);
}

};

Class Mutex is implemented in FreeRTOS using a recursive binary semaphore.
As usual, the constructor will create the semaphore object, and the destructor
will discard it.

class Mutex
{
/∗ Recursive binary semaphore handle ∗/

xSemaphoreHandle semHandle;

public:
/∗ Constructor : creates the recursive binary semaphore ∗/

Mutex()
{

semHandle = xSemaphoreCreateRecursiveMutex();
if(semHandle == NULL)

throw new SystemException("Error Creating Mutex");
}
void lock()
{

if(xSemaphoreTake(semHandle , portMAX_DELAY) != pdTRUE)
throw new SystemException("Error locking mutex");

}
void unlock ()
{

if(xSemaphoreGive(semHandle) != pdTRUE)
throw new SystemException("Error unlocking mutex");

}
~Mutex()
{

vQueueDelete(semHandle);
}

};

While in Linux monitors are directly supported by the pthread library, they
are not natively available in FreeRTOS. Therefore, in the FreeRTOS im-
plementation, monitors must be implemented using the available objects
(Mutexes and Semaphores). It would be possible to use directly FreeRTOS
semaphores, but using the interface classes makes the code more readable. In
this way, there is no need for a destructor, the native semaphores discarded by
the object fields destructors are automatically called whenever the Condition
instance is discarded.

class Condition
{
/∗ The Mutex to protect condition data structures ∗/

Mutex mutex;
/∗ The Semaphore used to wake waiting processes , i n i t i a l l y set to
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zero ( defau l t constructor value ) ∗/
Semaphore sem;

/∗ Number of tasks waiting for th i s condition ∗/
int waitingCount;

public:
/∗ Constructor : the mutex and semaphore ob jec ts are created by the

constructors of f i e l d s mutex and sem
so the only required action i s to i n i t i a l i z e waitingCount to zero ∗/

Condition()
{

waitingCount = 0;
}

/∗ Simulated wait procedure : increment the waiting counter , wait
for the semaphore af ter releasing the passed Mutex , i f any ,
and acquire i t afterwards ∗/

void wait(Mutex *userMutex)
{

waitingCount++;
if(userMutex)

userMutex ->unlock ();
sem.wait();
if(userMutex)

userMutex ->lock();
}

/∗ Simulated Signal procedure : check writer counter . I f greater
than zero , there i s at l eas t one waiting task , which i s awakened
by posting the semaphore . The check and poss ib le decrement of
var iab le waitingCount must be performed in a c r i t i c a l segment ,
protected by the Mutex ∗/
void signal ()
{

mutex.lock();
if(waitingCount == 0)
{

/∗ No waiting tasks ∗/
mutex.unlock ();
return;

}
/∗ There i s at l eas t one waiting task ∗/

waitingCount --;
sem.post();
mutex.unlock ();

}
};

Class MessageQueue is implemented in FreeRTOS using the native queue ob-
ject. The maximum queue length is not exported by the interface and is there-
fore set to a default value. Unlike the Linux implementation, there is no need
to handle an internal buffer.

#define MAX_FREERTOS_QUEUE_LEN 16
class MessageQueue
{
/∗ The dimension of the items ∗/

int itemSize ;
/∗ The message queue native object ∗/

xQueueHandle queue;

public:
/∗ Constructor : create native message queue object ∗/

MessageQueue(int itemSize )
{

this ->itemSize = itemSize ;
queue = xQueueCreate(MAX_FREERTOS_QUEUE_LEN, itemSize );
if(queue == NULL)
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throw new SystemException("Error Creating Message Queue");
}

/∗ Send message : message dimension has been declared in the
constructor ∗/

void send(void *item)
{

if(xQueueSendToBack(queue , item , portMAX_DELAY) != pdPASS)
throw new SystemException("Error Sending Message ");

}
/∗ Receive a message , poss ib ly waiting for i t , and return the

number of bytes ac tua l ly read ∗/
int receive (void *retItem )
{

if(xQueueReceive(queue , retItem , portMAX_DELAY) != pdPASS)
throw new SystemException("Error Receiving Message ");

return itemSize ;
}
~MessageQueue()
{

vQueueDelete(semHandle);
}

};

The basic concept in the Thread interface, that is, embedding the code to be
executed by the thread into the method run() for a Runnable class, is retained
in the FreeRTOS implementation. There are, however, three main differences
with the Linux implementation:

1. There is no native thread join mechanism in FreeRTOS. This is sim-
ulated in the class implementation by using a semaphore to signal
the termination of the thread. This semaphore will be set by the
thread routine after Runnable’s method run() returns and will be
used by the Thread’s join() method.

2. In FreeRTOS, the code associated with a thread can never return,
but must call vTaskDelete() to let the system discard the task.
This is different from the thread model offered by the interface,
where threads terminate whenever the associated core returns. So
the thread routine, after executing the Runnable’s run() method
and setting the termination semaphore, will call vTaskDelete()

3. FreeRTOS requires that the scheduler is started manually after the
threads have been created. Afterwards, the main program does not
exists anymore. Starting the scheduler is performed by static Thread
method startScheduler(), which is void in the Linux implemen-
tation.

/∗ Abstract c lass for representing Runnable en t i t i e s . I t w i l l
be inheri ted by user−provided c lasses in order to specify
spec i f i c thread code . The c lass has only one v i r tua l method run() ,
which w i l l receive a void∗ generic argument ∗/

class Runnable
{
public:

virtual void run(void *arg) = 0;
};

/∗ Internal structure passed to the thread . I t contains the



434 Real-Time Embedded Systems—Open-Source Operating Systems Perspective

pointers to the runnable object , the argument to be passed to
method run () , the termination semaphore and the native thread
object handler (used to de le te the task upon termination ) ∗/

struct ThreadArgs
{

Runnable *rtn;
void *arg;
Semaphore *sem;
xTaskHandle taskHandle;

};

/∗ The routine passed to pthread create must be declared as C interface ∗/
extern "C" void handlerWithArg(ThreadArgs *);

/∗ Default values for p t i or i t y and stack s i ze ∗/
#define DEFAULT_STACK_SIZE (configMINIMAL_STACK_SIZE + 512)
#define DEFAULT_PRIO tskIDLE_PRIORITY

/∗ Thread abstraction . I t manages the creation of a thread ∗/
class Thread
{
/∗ Thread stack s i ze ∗/

int stackSize;
/∗ Thread pr ior i ty ∗/

int priority ;
/∗ Internal thread routine arguments ∗/

struct ThreadArgs args;
/∗ Unique task index : i t i s a s ta t i c f i e l d ( i . e . shared by a l l

thread instances ) and is required because a unique task name
must be passed to xTaskCreate ∗/
static int taskIdx ;

public:
Thread ()
{

/∗ Set defau l t values for stack s i ze and pr ior i ty ∗/
stackSize = DEFAULT_STACK_SIZE;
priority = DEFAULT_PRIO;

}
/∗ Setter methods for stack s i ze and pr ior i ty ∗/

void setStackSize(int stackSize)
{

this ->stackSize = stackSize;
}

void setPriority(int priority )
{

this ->priority = priority ;
}

/∗ Start a new thread . The passed routine i s embedded in
an instance of ( subclass of ) Runnable c lass ∗/

void start(Runnable *rtn, void *arg)
{

/∗ Copy Runnable object reference and argument into the
argument structure ∗/
args.rtn = rtn;
args.arg = arg;

/∗ Create the termination semaphore ∗/
args.sem = new Semaphore(0);

/∗ A task name is required by xTaskCreate () and created based
in the unique value of taskIdx ∗/
char nameBuf [16];
sprintf (nameBuf , "TASK_%d", taskIdx ++);

/∗ Native Task creation ∗/
if(xTaskCreate((void (*)(void *))handlerWithArg ,

(signed char *)nameBuf , stackSize ,
&args , priority , &args.taskHandle) != pdPASS )

throw new SystemException("Error Creating Thread");
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}

/∗ Wait for the termination of th i s thread using the associated
termination semaphore ∗/

void join()
{

args.sem ->wait();
delete args.sem;

}

/∗ Start the scheduler ∗/
static void startScheduler()
{

vTaskStartScheduler();
}

};

/∗ Routine actua l ly executed by the thread ∗/
void handlerWithArg(ThreadArgs *args)
{
/∗ Execute User run() method ∗/

args ->rtn ->run(args ->arg);
/∗ Set termination semaphore ∗/

args ->sem ->post();
/∗ Destroy th i s thread ∗/

vTaskDelete(args ->taskHandle);
}

Timer classes are similar to the Linux implementation. FreeRTOS routine
vTaskDelay(), used to suspend the calling thread, requires the specifica-
tion of the delay expressed as the number of ticks. This number is derived
by configTICK RATE HZ constant specifying the tick frequency for the given
system.

class TimeInterval
{

long secs;
long nanoSecs ;

public:
TimeInterval(long secs , long nanoSecs )
{

this ->secs = secs + nanoSecs / 1000000000;
this ->nanoSecs = nanoSecs % 1000000000;

}

TimeInterval(long milliSecs)
{

this ->secs = milliSecs / 1000;
this ->nanoSecs = (milliSecs % 1000) * 1000000;

}

long getSecs (){return secs;}
long getNanoSecs(){return nanoSecs ;}
long getTotMilliSecs(){return secs * 1000 + nanoSecs / 1000000;}

};

class Timer
{
public:

void sleep(TimeInterval &tv)
{

portTickType numTicks =
(tv.getTotMilliSecs() * configTICK_RATE_HZ)/1000;

vTaskDelay(numTicks );
}
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};
#endif //OSABSTRACTIONFREERTOSH

19.2 A Sample Multiplatform Application

We have just defined an OO interface that abstracts the underlying operating
system and allows the development of common applications, provided they
interface to the system only through the objects exported by this interface.
In the above sections, Linux and FreeRTOS have been mapped to the same
interface despite their big differences. Nevertheless, some limitations arise in
practice. For example, FreeRTOS requires that a multithreaded application
be formed only by threads, and that the main program, once the scheduler
has been started, disappear. This fact cannot be hidden by the interface, and
therefore, an application to be executed by Linux and FreeRTOS must be
organized in such a way that all the work is carried out by the created threads
after an initialization phase performed by the main program.

Supposing that the above listings are stored in two header files named
OSAbstractionLinux.h and OSAbstractionFreeRTOS.h, respectively, a com-
mon include file OSAbstraction.h may be the following:

#ifdef HAVE_LINUX_H
#include "OSAbstractionLinux.h
#elif HAVE_FREE_RTOS_H
#include "OsAbstractionFeeRTOS.h"
#endif

Compilation is then driven by the compiler definition (option -D in the com-
piler command). For example, if compiling the code for a Linux command,
the compiler option will be -DHAVE LINUX H.

In the following, we shall use the abstraction layer to build a multicast
mechanism based on publish subscribe. In this application, actors can sub-
scribe to a multicast channel, as well as publish messages to that channel,
so that they are received by all the actors that have subscribed to it. The
multicast channel is represented by an instance of class MulticastManager.
This class internally manages an array of message queues where every message
queue is associated with one actor that subscribed to that channel. Whenever
an actor subscribes, a new message queue is created and added to the array,
and the subscriber gets an instance of the interface class MulticastReceiver,
internally holding a reference to the created message queue. The subscriber can
then read messages from that channel by calling MulticastReceiver’s method
receive(). MulticastReceiver’s method receive() will in turn call the in-
ternal MessageQueue’s method receive(). To publish a message, an actor
will call MulticastManager’s method publish(), which will send the passed
message to all the message queues currently held by the instance, that is, to
all the subscribers for that channel.
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The reader may wonder why the subscriber should receive a new kind
of object (of class MulticastReceiver) instead of directly a message queue
instance. After all, class MulticastReceiver is just a container for the mes-
sage queue, and doesn’t do anything more. The reason for this choice is that
class MuticastReceiver allows hiding the actual implementation of the mul-
ticast mechanisms. The subscriber is not interested in knowing how multicast
is implemented, and it makes no sense therefore to expose such knowledge.
Moreover, if for any reason the internal structure of MulticastManager were
changed, using a different mechanism in place of message queues, this change
would be reflected in the subscriber’s interface unless not hidden by the in-
terface class MulticastReceiver.

Classes MulticastReceiver and MulticastManager are listed below:

#ifndef MULTICAST_H
#define MULTICAST_H
#include "OSAbstraction.h"

/∗ Multicast management : Object MulticastManager handles publish
and subscribe . The subscribe method returns an instance of
MulticastReceiver . MulticastReceiver method receive () w i l l then
return the multicast message as soon as i t becomes avai lab le .
The dimension of the message buffer i s spec i f i ed in the
MulticastManager constructor . MulticastManager in terna l ly manages
an array of MessageQueue pointers , for each reg is tered l i s t ener .
Method publish w i l l send a message containing the published item
to a l l reg i s tered l i s t ener s . A Mutex object i s used to
protect the internal pointer array . ∗/

class MulticastManager;

class MulticastReceiver
{

MessageQueue *mq;
public:
/∗ This c lass i s ins tant iated only by MulticastManager ,

passing the corresponding message queue ∗/
MulticastReceiver(MessageQueue *mq)
{

this ->mq = mq;
}

/∗ Called by the subscriber to receive muticast messages ∗/
void receive (void *retItem )
{

mq->receive (retItem );
}

};

#define INITIAL_MAX_CLIENTS 100
class MulticastManager
{
/∗ Maximum number of c l i en t s before rea l locat ing arrays ∗/

int maxClients;
/∗ Actual number of c l i en t s ∗/

int currClients;
/∗ All exchanged information i s assumed of the same si ze ∗/

int itemSize ;
/∗ Mutex to protect data structures ∗/

Mutex mutex;
/∗ Array of message queue references ∗/

MessageQueue **msgQueues;

public:
/∗ The dimension of the messages i s passed to the constructor ∗/
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MulticastManager(int itemSize )
{

this ->itemSize = itemSize ;
/∗ In i t i a l a l locat ion ∗/

maxClients = INITIAL_MAX_CLIENTS;
msgQueues = new MessageQueue *[maxClients];
currClients = 0;

}

/∗ Called by subscriber actor ∗/
MulticastReceiver *subscribe()
{

/∗ Create a message queue for th i s subscriber ∗/
MessageQueue *mq = new MessageQueue(itemSize );

/∗ Update message queue , poss ib ly rea l locat ing i t ∗/
mutex.lock();
if(currClients == maxClients)
{

/∗ Need rea l locat ion : double the number of a l located message
queue pointers ∗/

int newMaxClients = maxClients*2;
MessageQueue ** newMsgQueues = new MessageQueue *[newMaxClients];
memcpy(newMsgQueues , msgQueues , maxClients);
delete [] msgQueues;
msgQueues = newMsgQueues;
maxClients = newMaxClients;

}
/∗ At th i s point there i s room for sure ∗/

msgQueues[currClients++] = mq;
mutex.unlock ();
return new MulticastReceiver(mq);

}
/∗ Publish a message : i t w i l l be received by a l l subscribers ∗/

void publish (void *item)
{

/∗ lock data structure to avoid interferences with other
publ ish /subscribe operations ∗/
mutex.lock();

/∗ send the message to a l l subscribers ∗/
for(int i = 0; i < currClients; i++)

msgQueues[i]->send(item);
mutex.unlock ();

}
};
#endif //MULTICAST H

Finally, a sample program handling a publisher thread and a number of sub-
scriber threads is shown below. The program must first define two subclasses
of class Runnable: MulticastListener and MulticastPublisher. Multicas-
tPublisher’s run() method will publish a message (an integer value) every
second for 10 times, and MulticastListener’s method run() will repeatedly
read the message until a special QUIT code is received and the method ter-
minated. The main program than creates a publisher thread, which in turn
will create five subscriber threads and then will start publishing messages.

#define NUM_MESSAGES 10
#define QUIT_CODE -1

/∗ The subscriber code , embedded in a subclass of Runnable ∗/
class MulticastListener:public Runnable
{
/∗ The passed reference to the Multicast Manager ∗/

MulticastManager *mm;
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public:
/∗ Constructor receiving a reference of the multicast manager ∗/

MulticastListener(MulticastManager *mm)
{

this ->mm = mm;
}

/∗ Run method executed by the thread . The passed argument here
i s a pointer to the index of the thread ∗/

void run(void *arg)
{

printf ("run Thread %d\n", *(int *)arg);

/∗ Subscribe and then wait for messages ∗/
try {

int thisIdx = *(int *)arg;
MulticastReceiver *mr = mm->subscribe();
while(true)
{

int item;
/∗ Multicast messages are 4 byte integers ∗/

mr ->receive (&item);
printf("Thread %d: Received item: %d\n", thisIdx , item);

/∗ Check for passed QUIT code ∗/
if(item == QUIT_CODE)

return;
}

}catch(SystemException *exc)
{

/∗ I f an exception occurred , print the error message ∗/
printf("System error in thread: %s\n", exc->what ());

}
}

};

/∗ The publisher code , again implemented as a subclass of Runnable ∗/
class MulticastPublisher:public Runnable
{
public:

void run(void *arg)
{

/∗ Instantiate f i r s t i s the Multicast Manager used to
publ ish /receive integer messages ∗/
MulticastManager mm(sizeof (int));

/∗ Create and star t the threads , where every thread w i l l
receive as argument i t s index ∗/
Thread threads [NUM_THREADS];
int threadIdx[NUM_THREADS];
try {

/∗ Launch NUMTHREAD threads ∗/
for(int i = 0; i < NUM_THREADS; i++)
{

threadIdx[i] = i;
/∗ Create a new subscriber ∗/

threads [i].start(new MulticastListener(&mm), &threadIdx[i]);
}

/∗ Threads cerated and started . Start publ ishing messages
every second ∗/

TimeInterval ti(1,0);
Timer timer;
for(int i = 0; i < NUM_MESSAGES; i++)
{

printf("Publishing message %d\n", i);
/∗ Publish ∗/

mm.publish (&i);
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/∗ Wait 1 second ∗/
timer.sleep(ti);

}
/∗ The las t message contains the QUIT code ∗/

int quitCode = QUIT_CODE;
mm.publish (&quitCode );

/∗ Wait for the termination of a l l threads ∗/
for(int i = 0; i < NUM_THREADS; i++)

threads [i].join();
printf("End of publisher\n");

}
catch(SystemException *exc)
{

/∗ I f anything went wrong , print the error message ∗/
printf("System error in publisher: %s\n", exc ->what());

}
}

};

/∗ Main program ∗/
int main(int argc , char *argv[])
{

Thread publisher;
/∗ Create and star t the publisher thread . ∗/
/∗ I t w i l l create the l i s teners , send them messages ,

and join with them ∗/
try {

publisher.start(new MulticastPublisher(), NULL);
/∗ Start the scheduler (dummy in Linux implementation ∗/

Thread ::startScheduler();
}
catch(SystemException *exc)
{

printf ("System error in main: %s\n", exc->what());
}

}

19.3 Summary

This chapter has presented a possible approach to handling multiplatform
applications. Handling interaction with more than one operating systems may
be desirable for several reasons among which are these:

• Embedded applications for industrial control are likely to handle more
than one platform, ranging from embedded systems for machine control to
general-purpose computers for supervision and graphical user interfaces.

• Even in the case the current implementation is targeted to a given platform,
it may happen that future releases require a different system due to the
rapid evolution of information technology.

• Real-world systems may require a large investment in development and
maintenance, and using an organization where the bulk of the code is inde-
pendent of the adopted platform represents a sort of investment protection
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because the system code or part of it can be reused in different applications,
possibly targeted to different systems.

A proper division in the system between platform-dependent and platform-
independent parts is one of the facets of the larger problem of the proper
management of the software. Software engineering techniques may be not
required when developing small projects with a team of no more than 2–3
developers. They, however, become very important, possibly leading to the
success or the failure of the entire project for larger applications.

The provided example should convince the reader that an abstraction layer
for the underlying platform is feasible even when dealing with very different
systems such as Linux and FreeRTOS. Moreover, the use of an object-oriented
approach introduces a different perspective in the way the underlying system is
presented. Object-oriented techniques are not yet very common in embedded
application. However, thanks to a mature compiler technology, OO techniques,
such as object encapsulation and inheritance for a better code organization
can now be successfully employed in embedded and real-time systems.
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Two case studies will be presented in this chapter in order to introduce ba-
sic concepts in Control Theory and Digital Signal Processing, respectively.
The first one will consist in a simple control problem to regulate the flow of
a liquid in a tank in order to stabilize its level. Here, some basic concepts
of control theory will be introduced to let the reader become familiar with
the concept of transfer function, system stability, and the techniques for its
practical implementation.

The second case study is the implementation of a low-pass digital filter
and is intended to introduce the reader to some basic concepts in digital
signal processing, using the notation introduced by the first example.
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FIGURE 20.1
The tank–pump system.

20.1 Case Study 1: Controlling the Liquid Level in a
Tank

Consider a tank containing a liquid and a pump that is able to move the
liquid back and forth in the tank, as shown in Figure 20.1 The pump is able
to generate a liquid flow and receives the flow reference from a control system
with the aim of maintaining the level of the liquid in the tank to a given
reference value, possibly varying over time. A practical application of such
a system is the regulation of the fuel level inside the aircraft wings housing
the fuel reservoir. The level of the fuel within each wing has to be maintained
controlled in order to ensure the proper weight balancing in the aircraft during
the flight and at the same time provide engine fueling.

The system has one detector for the measurement of the level of the liquid,
producing a time-dependent signal representing, at every time t, the level h(t),
and one actuator, that is, the pump whose flow at every time t depends on the
preset value fp(t). In order to simplify the following discussion, we will assume
that the pump represents an ideal actuator, producing a flow f(t) at any time
equal to the current preset value, that is, f(t) = fp(t). The tank-pump system
of Figure 20.1 will then have an input, that is, the preset flow f(t) and one
output—the liquid level in the tank h(t). A positive value of f(t) means that
the liquid is flowing into the tank, and a negative value of f(t) indicates that
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FIGURE 20.2
Tank–pump system controlled in feedback mode.

the liquid is being pumped away the tank. The tank–pump system input and
output are correlated as follows:

h(t) = h0 +
1

B

∫ t

0

f(τ)dτ (20.1)

where h0 is the level in the tank at time 0, and B is the base surface of
the tank. f(τ)dτ represents, in fact, the liquid volume change during the
infinitesimal time dτ . In order to control the level of the liquid, we may think
of sending to the actuator (the pump) a reference signal that is proportional
to the difference of the measured level and the reference level value, that is,

f(t) = Kp[href (t)− h(t)] (20.2)

corresponding to the schema shown in Figure 20.2. This is an example of
feedback control where the reference signal depends also on its current out-
put. Parameter Kp is called the Proportional Gain, and this kind of feedback
control is called proportional because the system is fed by a signal which is
proportional to the current error, that is, the difference between the desired
output href (t) and the current one h(t). This kind of control intuitively works.
In fact, if the current level h(t) is lower than the reference value href (t), the
preset flow is positive, and therefore liquid enters the tank. Conversely, if
h(t) > href (t), liquid is pumped away from the tank, and when the liquid
level is ok, that is, h(t) = href (t), the requested flow is 0.

20.1.1 The Use of Differential Equations to Describe the
Dynamics of the System

In order to compute the actual time evolution of the liquid level when, say,
the reference value is set to href at time t = 0 and is not changed afterwards,
and the initial level of the liquid is h0, we must consider the input/output
(I/O) relationship of the tank-pump system of Figure 20.1, where the actual
input is given by (20.2). From (20.1) we obtain

h(t) = h0 +
1

B

∫ t

0

Kp[href − h(τ)]dτ (20.3)
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If we consider the time derivative of both terms in (20.3), we get

dh(t)

dt
=

Kp

B
[href − h(t)] (20.4)

that is, the differential equation

dh(t)

dt
+

Kp

B
h(t) =

Kp

B
href (20.5)

whose solution is the actual evolution h(t) of the liquid level in the tank.
The tank–pump system is an example of linear system. More in general,

the I/O relationship for linear systems is expressed by the differential equation

an
dyn

dtn
+an−1

dyn−1

dtn−1
+ ...+a1

dy

dt
+a0 = bm

dum

dtm
+bm−1

dum−1

dtm−1
+ ...+b1

du

dt
+b0

(20.6)
where u(t) and y(t) are the input and output of the system, respectively, and
coefficients ai and bi are constant. In our tank–pump system, the input u(t)
is represented by the applied reference level href (t) and the output y(t) is the
actual liquid level h(t). The general solution of the above equation is of the
form

y(t) = yl(t) + yf (t) (20.7)

where yl(t) is the homogeneous solution, that is, the solution of the same
differential equation, where the term on the right is 0 and describes the free
evolution of the system, and yf (t) is a particular solution of (20.6), also called
forced evolution. In our case, the reference href is constant, and therefore, a
possible choice for the forced evolution is yf (t) = href . In this case, in fact,
for t > 0, the derivative term of (20.5) is 0, and the equation is satisfied.

In order to find the homogeneous solution, we recall that the general so-
lution of the generic differential equation

an
dyn

dtn
+ an−1

dyn−1

dtn−1
+ ...+ a1

dy

dt
+ a0 = 0 (20.8)

is of the form

y(t) =

n′∑
i=1

μi∑
k=0

Aikt
kepit (20.9)

where Aik are coefficients that depend on the initial system condition, and n′

and μi are the number of different roots and their multiplicity of the polyno-
mial

anp
n + an−1p

n−1 + ...+ a1p+ a0 = 0 (20.10)

respectively. Polynomial (20.10) is called the characteristic equation of the dif-
ferential equation (20.7). The terms tkepit are called the modes of the system.
Often, the roots of (20.10) have single multiplicity, and the modes are then
of the form epit. It is worth noting that the roots of polynomial (20.10) may
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be real values or complex ones, that is, of the form p = a + jb, where a and
b are the real and imaginary parts of p, respectively. Complex roots (20.10)
appear in conjugate pairs (the conjugate of a complex number a+jb is a−jb).
We recall also that the exponential of a complex number p = a+ jb is of the
form ep = ea[cos b + j sin b]. The modes are very important in describing the
dynamics of the system. In fact, if any root of the associated polynomial has a
positive real part, the corresponding mode will have a term that diverges over
time (an exponential function with an increasing positive argument), and the
system becomes unstable. Conversely, if all the modes have negative real part,
the system transients will become negligible after a given amount of time.
Moreover, the characteristics of the modes of the system provide us with ad-
ditional information. If the modes are real numbers, they have the shape of an
exponential function; if instead they have a nonnull imaginary part, the modes
will have also an oscillating term, whose frequency is related to the imaginary
part and whose amplitude depends on the real part of the corresponding root.

The attentive reader may be concerned by the fact that, while the modes
are represented by complex numbers, the free evolution of the system must be
represented by real numbers (after all, we live in a real world). This apparent
contradiction is explained by considering that the complex roots of (20.10)
are always in conjugate pairs, and therefore, the imaginary terms elide in the
final summation of (20.9). In fact, for every complex number p = a+ jb and
its complex conjugate p = a− jb, we have

ep = ea[cos(b) + j sin(−b)] = ea[cos(b)− j sin(b)] = (ep); (20.11)

moreover, considering the common case in which solutions of the character-
istic equation have single multiplicity, the (complex) coefficients Ai in (20.9)
associated with pi = a + jb and pi = a − jb are Ai and Ai, respectively, and
therefore

Aie
pit +Aie

pit = ea[2 Re(Ai) cos(bt)− 2 Im(Ai) sin(bt)] (20.12)

where Re(Ai) and Im(Ai) are the real and imaginary parts of Ai, respectively.
Equation (20.12) represents the contribution of the pair of conjugate roots,
which is a real number.

Coming back to our tank–pump system, the polynomial associated with
the differential equation describing the dynamics of the system is

p+
Kp

B
= 0 (20.13)

which yields the single real solution p0 = −Kp

B . The homogeneous solution for
(20.5) is then

hl(t) = Ae−
Kpt

B (20.14)

and the general solution for (20.5) is

h(t) = hl(t) + hf(t) = Ae−
Kpt

B + href (20.15)
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FIGURE 20.3
Tank–pump system response when controlled in feedback mode.

where hl(t) and hf (t) are the free and forced solutions of (20.5).
Parameter A is finally computed considering the boundary condition of

the system, that is, the values of h(t) for t = 0−. Just before the reference
value href has been applied to the system. For t = 0− (20.15) becomes

h0 = Ae0 + href = A+ href (20.16)

which yields the solution A = h0−href , thus getting the final response of our
tank–pump system

h(t) = (h0 − href )e
−Kpt

B + href (20.17)

The system response of the tank–pump system controlled in feedback, that
is, the time evolution of the level of the liquid in the tank in response to a
step reference href is shown in Figure (20.3) for two different values of the
proportional gain Kp, with tank base surface B = 1m2.

20.1.2 Introducing an Integral Gain

We observe that the proportional gainKp affects the readiness of the response,
as shown by Figure 20.3, and larger proportional gains produce a faster re-
sponse. We may therefore think that we can choose a proportional gain large
enough to reach the desired speed in the response. However, in the choice of
Kp we must consider the limit in the pump ability in generating the requested
liquid flow. As an example, the flow request to the pump at the proportional
gains considered in Figure 20.3, is shown in Figure 20.4.

From Figure 20.4 it can be seen that larger proportional gains imply larger
flows requested to the pump. In practice, the maximum allowable value of
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FIGURE 20.4
Flow request to the pump using feedback control with proportional gain.

the proportional gain is limited by the maximum flow the pump is able to
generate. Moreover, the system will always approach the requested liquid level
asymptotically. We may wonder if it is possible to find some other control
schema that could provide a faster response. A possibility could be considering
an additional term in the input for the pump that is proportional to the
integral of the error, in the hope it can provide a faster response. In fact,
in the evolution plotted in Figure 20.3, the integral of the error is always
positive. We may expect that forcing the integral of the error to become null
will provide a faster step response, possibly with an overshoot, in order to
make the overall error integral equal to 0 (see Figure 20.9). To prove our
intuition, we consider a reference signal for the pump of the form

f(t) = Kp[href (t)− h(t)] +Ki

∫ t

0

[href (τ) − h(τ)]dτ (20.18)

where Kp and Ki are the proportional and integral gains in the feedback
control, respectively. We obtain, therefore, the relation

h(t) = h0 +
1

B

∫ t

0

f(τ)dτ =

h0 +
1

B

∫ t

0

{Kp[href (τ) − h(τ)] +
Ki

B

∫ τ

0

[href (τ
′)− h(τ ′)]dτ ′}dτ (20.19)

Derivating both terms, we obtain

dh(t)

dt
=

Kp

B
[href (t)− h(t)] +

Ki

B

∫ t

0

[href (τ) − h(τ)]dτ (20.20)

and, by derivating again

d2h(t)

dt2
=

Kp

B
[
dhref (t)

dt
− dh(t)

dt
] +

Ki

B
[href (t)− h(t)] (20.21)
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that is, the differential equation

B
d2h(t)

dt2
+Kp

dh(t)

dt
+Kih(t) = Kihref (t) +Kp

dhref (t)

dt
(20.22)

whose solution is the time evolution h(t) of the liquid level in the tank.

20.1.3 Using Transfer Functions in the Laplace Domain

At this point the reader may wonder if defining control strategies always means
solving differential equations, which is possibly complicated. Fortunately, this
is not the case, and control theory uses a formalism for describing linear
systems that permits the definition of optimal control strategies without de-
veloping explicit solutions to the differential equations representing the I/O
relationship.
Instead of dealing with time-dependent signals, we shall use Laplace trans-
forms. Given a function on time f(t), its Laplace transform is of the form

F (s) = L{f(t)} =

∫ ∞

0

f(t)e−stdt (20.23)

where s and F (s) are complex numbers. Even if at a first glance this approach
may complicate things, rather than simplifying problems (we are now consid-
ering complex functions of complex variables), this new formalism can rely on
a few interesting properties of the Laplace transforms, which turn out to be
very useful for expressing I/O relationships in linear systems in a simple way.
In particular we have

L{Af(t) +Bg(t)} = AL{f(t)}+BL{g(t)} (20.24)

L{df(t)
dt

} = sL{f(t)} (20.25)

L{
∫

f(t)dt} =
L{f(t)}

s
(20.26)

Equation (20.24) states that the Laplace transform is a linear operator, and,
due to (20.25) and (20.26), relations expressed by time integration and deriva-
tion become algebraic relations when considering Laplace transforms. In the
differential equation in (20.22), if we consider the Laplace transforms H(s)
and Href (s) in place of h(t) and href (t), from (20.24), (20.25) and (20.26),
we have for the tank–pump system

Bs2H(s) +KpsH(s) +KiH(s) = KiHref (s) +KpsHref (s) (20.27)

that is,

H(s) =
Ki +Kps

Bs2 +Kps+Ki
Href (s) (20.28)
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H(s)F(s)

FIGURE 20.5
Graphical representation of the transfer function for the tank–pump system.

Observe that the I/O relationship of our tank–pump system, which is ex-
pressed in the time domain by a differential equation, becomes an algebraic
relation in the Laplace domain. The term

W (s) =
Ki +Kps

Bs2 +Kps+Ki
(20.29)

is called the Transfer Function and fully characterizes the system behavior.
Using Laplace transforms, it is not necessary to explicitly express the differ-
ential equation describing the system behavior, and the transfer function can
be directly derived from the block description of the system. In fact, recalling
the I/O relationship of the tank and relating the actual liquid level h(t) and
the pump flow f(t) in (20.1), using property (20.26),we can express the same
relationship in the Laplace domain as

H(s) =
1

sB
F (s) (20.30)

where H(s) and F (s) are the Laplace transforms of h(t) and f(t), respectively.
This relation can be expressed graphically as in Figure 20.5. Considering the
control law involving the proportional and integral gain

f(t) = Kp[href (t)− h(t)] +Ki

∫ t

0

[href (τ) − h(τ)]dτ (20.31)

the same law expressed in the Laplace domain becomes:

F (s) = (Kp +
Ki

s
)[Href (s)−H(s)] (20.32)

and therefore, we can express the whole tank–pump system as in Figure 20.6.
From that figure we can easily derive

H(s) =
1

sB
[Kp +

Ki

s
][Href (s)−H(s)] (20.33)

that is

H(s) = Href (s)
sKp +Ki

s2B + sKp +Ki
(20.34)

obtaining, therefore, the same transfer function of (20.29) directly from the
graphical representation of the system without explicitly stating the differen-
tial equation describing the system dynamics.
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FIGURE 20.6
Graphical representation of tank–pump system controlled in feedback.

20.1.4 Deriving System Properties from Its Transfer Func-
tion

The transfer function W (s) of a linear system fully describes its behavior and,
in principle, given any reference href (t), we could compute its Laplace trans-
form, multiply it for W (s), and then compute its antitransform to retrieve
the system response h(t). We do not report here the formula for the Laplace
antitransform because, in practice, an analytical solution of the above proce-
dure would be very difficult, if not impossible. Rather, computational tools for
the numerical simulation of the system behavior are used by control engineers
in the development of optimal control strategies. Several important system
properties can, however, be inferred from the transfer function W (s) without
explicitly computing the system evolution over time. In particular, stability
can be inferred from W (s) when expressed in the form

W (s) =
N(s)

D(s)
(20.35)

The roots of N(s) are called the zeroes of the transfer function, while the
roots of D(s) are called the poles of the transfer function. W (s) becomes null
in its zeroes, diverging when s approaches its poles. Recall that W (s) is a
complex value of complex variable. For a graphical representation of W (s),
usually its module is considered. Recall that the module of a complex number
a+jb is

√
a2 + b2, that is, the length of the segment joining the origin and the

point of coordinates (a, b) in a two-dimensional cartesian system, where the
x and y coordinates represent the real and imaginary parts, respectively. The
module of W (s) is therefore represented by a real function (the module) of
two real values (the real and imaginary parts of the complex variable s), and
can be represented in three-dimensional Cartesian system. As an example,
Figure 20.7 shows the representation of the transfer function for the tank–
pump system where the base area of the tank is B = 1, and the feedback
gains are Kp = 1 and Ki = 1.

The function shown in Figure 20.7 diverges when s approaches the roots

of D(s) = s2 + s + 1, i.e., for s1 = − 1
2 + j

√
3
2 and s2 = − 1

2 − j
√
3
2 , and
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FIGURE 20.7
The module of the transfer function for the tank–pump system.
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FIGURE 20.8
Zeroes and poles of the transfer function for the tank–pump system.

becomes null when N(s) = 0, that is, for s = −1 + j0. There is normally no
need to represent graphically in this way the module of the transfer function
W (s), and it is more useful to express graphically its poles and zeroes in the
complex plane, as shown in Figure 20.8. By convention, zeroes are represented
by a circle and poles by a cross. System stability can be inferred by W (s)

when expressed in the form W (s) = N(s)
D(s) , where the numerator N(s) and the

denominator D(s) are polynomials in s. Informally stated, a system is stable
when its natural evolution with a null input is towards quiet, regardless of its
initial condition. The output of an unstable system may instead diverge even
with null inputs. If we recall how the expression of W (s) has been derived
from the differential equation expressing the I/O relationship of the system,
we recognize that the denominator D(s) corresponds to the characteristic
equation of the linear system whose roots define the modes of the system. So,
recalling the definition (20.9) of the modes of the system contributing to its
free evolution, we can state that if the poles of the transfer functionW (s) have
a positive real part, the system will be unstable. Moreover, if the poles ofW (s)
have a non-null imaginary part, we can state that oscillations will be present
in the free evolution of the system, and these oscillation will have a decreasing
amplitude if the real part of the poles is negative, and increasing otherwise.
The limit case is for poles of W (s), which are pure imaginary numbers (i.e.,
with null real part); in this case, the free evolution of the system oscillates
with constant amplitude over time.

Let us now return to the tank–pump system controlled in feedback using a
proportional gain, Kp, and an integral gain, Ki. Recalling its transfer function
in (20.34), we observe that its poles are the solution to equation

s2B + sKp +Ki = 0 (20.36)

that is,

s1,2 =
−Kp ±

√
K2

p − 4KiB

2B
(20.37)

(recall that B is the base surface of the tank). Figure 20.9 shows the controlled
tank–pump response for Kp = 0.4 and Ki = 0.02, compared with the same
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FIGURE 20.9
The response of the controlled tank–pump system with proportional gain set
to 0.4 and integral gains set to 0.02 (black) and 0 (grey), respectively.

response for a proportional gainKp = 0.4 only. It can be seen that the response
is faster, but an overshoot is present, as the consequence of the nonnull integral
gain (recall that control tries to reduce the integral of the error in addition to
the error itself). For Kp > 2

√
KiB Equation (20.36) yields two real solutions,

and therefore, the modes of the system in its free evolution have an exponential
shape and do not oscillate. Conversely, for Ki to be large enough, that is,

Ki >
K2

p

4B the two poles of W (s) become complex and therefore the system
response contains an oscillating term, as shown in Figure 20.10. In any case,
the oscillations are smoothed since Kp ≥ 0, and therefore, the real part of the
poles is not positive. It is interesting to observe that if Kp = 0, that is, when
considering only the integral of the error href (t)−h(t) in the feedback control,
the system response contains an oscillating term with constant amplitude.

Before proceeding, it is worthwhile now to summarize the advantages pro-
vided by the representation of the transfer functions expressed in the Laplace
domain for the analysis of linear systems. We have seen how it is possible
to derive several system properties simply based on its block diagram repre-
sentation and without deriving the differential equation describing the system
dynamics. More importantly, this can be done without deriving any analytical
solution of such differential equation. This is the reason why this formalism
is ubiquitously used in control engineering.

20.1.5 Implementing a Transfer Function

So far, we have learned some important concepts of control theory and ob-
tained some insight in the control engineer’s duty, that is, identifying the
system, modeling it, and finding a control strategy. The outcome of this task
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FIGURE 20.10
The response of the controlled tank–pump system with proportional gain set
to 0.4 and integral gain set to 1.

is the specification of the control function, often expressed in the Laplace do-
main. It is worth noting that in the definition of the control strategy for a
given system, we may deal with different transfer functions. For example, in
the tank–pump system used throughout this chapter, we had the following
transfer functions:

W1(s) =
1

Bs
(20.38)

which is the description of the tank I/O relationship

W2(s) = Kp +
Ki

s
(20.39)

which represents the control law, and

W3(s) =
Ki +Kps

Bs2 +Kps+Ki
(20.40)

which describes the overall system response.
If we turn our attention to the implementation of the control, once the pa-

rameters Kp and Ki have been chosen, we observe that the embedded system
must implement W2(s), that is, the controller. It is necessary to provide to
the controller the input error href (t)−h(t), that is the difference between the
current level of the liquid in the tank and the reference one. The output of
the controller, f(t) will drive the pump in order to provide the requested flow.
The input to the controller is therefore provided by a sensor, while its output
will be sent to an actuator. The signals h(t) and f(t) may be analog signals,
such as a voltage level. This was the common case in the older times, prior
to the advent of digital controllers. In this case the controller itself was im-
plemented by an analog electronic circuit whose I/O law corresponded to the
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Sampling a continuous function.

desired transfer function for control. Nowadays, analog controllers are rarely
used and digital controllers are used instead. Digital controllers operate on
the sampled values of the input signals and produce sampled outputs. The
input may derive from analog-to-digital conversion (ADC) performed on the
signal coming from the sensors, or taking directly the numerical values from
the sensor, connected via a local bus, a Local Area Network or, more recently,
a wireless connection. The digital controller’s outputs can then be converted
to analog voltages by means of a Digital to Analog converter (DAC) and then
given to the actuators, or directly sent to digital actuators with some sort of
bus interface.

When dealing with digital values, that is, the sampled values of the I/O
signals, an important factor is the sampling period T . For the tank–pump
system, the analog input h(t) is then transformed into a sequence of sampled
values h(nT ) as shown in Figure 20.11. Since sampling introduces unavoidable
loss of information, we would like that the sampled signal could represent an
approximation that is accurate enough for our purposes. Of course, the shorter
the sampling period T , the more accurate the representation of the original
analog signal. On the other side, higher sampling speed comes at a cost since
it requires a faster controller and, above all, faster communication, which may
become expensive. A trade-off is therefore desirable, that is, choosing a value
of T that is short enough to get an acceptable approximation, but avoiding
implementing an “overkill.” Such a value of T cannot be defined a priori, but
depends on the dynamics of the system; the faster the system response, the
shorted must be the sampling period T . A crude method for guessing an ap-
propriate value of T is to consider the step response of the system, as shown
in (20.9), and to choose T as the rise time divided for 10, so that a sufficient
number of samples can describe the variation of the system output. More ac-
curate methods consider the poles of W (s), which determine the modes of the
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free system evolution, that is, its dynamics. In principle, the poles with the
largest absolute value of their real part, that is, describing the fastest modes
of the system, should be considered, but they are not always significant for
control purposes (for example, when their contribution to the overall system
response is negligible). Moreover, what gets digitized in the system is only the
controller, not the system itself. For this reason, normally the working range
of frequencies for the controller is considered, and the sampling period chosen
accordingly. The second test case presented in this chapter will describe more
in detail how the sampling period is chosen based on frequency information.

Before proceeding further, it is necessary to introduce another mathemat-
ical formalism that turns out very useful in digitalizing transfer functions,
and, in the end, in implementing digital controllers: the Z transform. Given a
sequence of real values y(n), its Z transform is a complex function of complex
variable z defined as

Z{y(n)} =
∞∑

n=−∞
y(n)z−n (20.41)

Even if this may seem another way to complicate the engineer’s life (as for the
Laplace transforms, we are moving from the old, familiar, real space into a
complex one), we shall see shortly how Z transforms are useful for specifying
the I/O relationship in digital controllers. The following important two facts
hold:

Z{Ay1(n) +By2(n)} = AZ{y1(n)}+BZ{y2(n)} (20.42)

that is, the Z transform is linear, and

Z{y(n− 1)} =

∞∑
n=−∞

y(n− 1)z−n =

∞∑
n′=−∞

y(n′)z−n′
z−1 = z−1Z{y(n)}

(20.43)
The above relation has been obtained by replacing the term n in the summa-
tion with n′ = n − 1. Stated in words, (20.43) means that there is a simple
relation (the multiplication for z−1) between the Z transform of a sequence
y(n) and that of the same sequence delayed of one sample. Let us recall the
general I/O relationship in a linear system:

an
dyn

dtn
+ an−1

dyn−1

dtn−1
+ ...+ a1

dy

dt
+ a0 =

bm
dum

dtm
+ bm−1

dum−1

dtm−1
+ ...+ b1

du

dt
+ b0 (20.44)

where u(t) and y(t) are the continuous input and output of the system, re-
spectively. If we move from the continuous values of y(t) and u(t) to the
corresponding sequence of sampled values y(kT ) and u(kT ), after having cho-
sen a period T small enough to provide a satisfactory approximation of the
system evolution, we need to compute an approximation of the sampled time
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derivatives of y(t) and u(t). This is obtained by approximating the first order
derivative with a finite difference:

dy

dt
(kT ) � y(kT )− y((k − 1)T )

T
(20.45)

Recalling that the Z transform is linear, we obtain the following Z represen-
tation of the first-order time-derivative approximation:

Z{y(kT )− y((k − 1)T )

T
} =

1

T
Z{y(kT )}−z−1

T
Z{y(kT )} =

1− z−1

T
Z{y(kT )}

(20.46)
which is a relation similar to that of (20.25) relating the Laplace transforms of
y(t) and its time derivative expressing the I/O relationship for a linear system.
Using the same reasoning, the second-order time derivative is approximated
as

(
1− z−1

T
)2Z{y(kT )} (20.47)

The I/O relationship expressed using Z transforms then becomes

Y (z)[an
(1 − z−1)n

T n
+ ...+ a1

(1− z−1)

T
+ a0] =

U(z)[bm
(1− z−1)m

Tm
+ ...+ b1

(1− z−1)

T
+ b0] (20.48)

that is,
Y (z) = V (z)U(z) (20.49)

where Y (z) and U(z) are the Z transform of y(t) and u(t), respectively, and
V (z) is the transfer function of the linear system in the Z domain. Again,
we obtain an algebraic relationship between the transforms of the input and
output, considering the sampled values of a linear system. Observe that the
transfer function V (z) can be derived directly from the transfer function W (s)
in the Laplace domain, by the replacement

s =
1− z−1

T
(20.50)

From a specification of the transfer function W (s) expressed in the form

W (s) = N(s)
D(s) with the replacement of (20.50), we derive a specification of

V (z) expressed in the form

V (z) =

∑m
i=0 bi(z

−1)i∑n
i=0 ai(z

−1)i
(20.51)

that is,

Y (z)
n∑

i=0

ai(z
−1)i = U(z)

m∑
i=0

bi(z
−1)i (20.52)
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Recalling that Y (z)z−1 is the Z transform of the sequence y((k − 1)T ) and,
more in general, that Y (z)z−i is the Z transform of the sequence y((k− i)T ),
we can finally get the I/O relationship of the discretized linear system in the
form

n∑
i=0

aiy((k − i)T ) =

m∑
i=0

biu((k − i)T ) (20.53)

that is,

y(kT ) =
1

a0
[

m∑
i=0

biu((k − i)T )− (

n∑
i=1

aiy((k − i)T )] (20.54)

Put in words, the system output is the linear combination of the n−1 previous
outputs and the current input plus the m− 1 previous inputs. This represen-
tation of the controller behavior can then be easily implemented by a program
making only multiplication and summations, operations that can be executed
efficiently by CPUs.

In summary, the steps required to transform the controller specification
given as a transfer function W (s) into a sequence of summations and multi-
plications are the following:

1. Find out a reasonable value of the sampling period T . Some insight
into the system dynamics is required for a good choice.

2. TransformW (s) into V (z), that is, the transfer function of the same

system in the Z domain by replacing variable s with 1−z−1

T .

3. From the expression of V (z) as the ratio of two polynomials in z−1,
derive the relation between the current system output y(kT ) and
the previous input and output history.

Returning to the case study used through this section, we can derive the
implementation of the digital controller for the tank–pump system from the
definition of its transfer function in the Laplace domain, that is,

W2(s) =
sKp +Ki

s
(20.55)

representing the proportional and integral gain in the feedback control. Re-

placing s with 1−z−1

T we obtain

V (z) =
Kp +KiT − z−1Kp

1− z−1
(20.56)

from which we derive the definition of the algorithm

y(kT ) = y((k − 1)T + (Kp +KiT )u(kT )−Kpu((k − 1)T ) (20.57)

where the input u(kT ) is represented by the sampled values of the difference
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between the sampled reference href (kT ) and the actual liquid level h(kT ),
and the output y(kT ) corresponds to the flow reference sent to the pump.

Observe that the same technique can be used in a simulation tool to com-
pute the overall system response, given the transfer function W (s). For exam-
ple, the plots in Figures (20.9) and (20.10) have been obtained by discretizing
the overall tank–pump transfer function (20.40).

An alternative method for the digital implementation of the control trans-
fer function is the usage of the Bilinear Transform, that is, using the replace-
ment

s =
2

T

1− z−1

1 + z−1
(20.58)

which can be derived from the general differential equation describing the
linear system using a reasoning similar to that used to derive (20.50).

20.1.6 What We Have Learned

Before proceeding to the next section introducing other important concepts
for embedded system development, it is worthwhile to briefly summarize the
concepts that have been presented here. First of all, an example of linear
system has been presented. Linear systems represent a mathematical repre-
sentation of many practical control applications.We have then seen how dif-
ferential equations describe the dynamics of linear systems. Even using a very
simple example, we have experienced the practical difficulty in finding solu-
tions to differential equations. The definition and some important concepts of
the Laplace transform have been then presented, and we have learned how to
build a transfer function W (s) for a given system starting from its individual
components. Moreover, we have learned how it is possible to derive some im-
portant system characteristics directly from the transfer function W (s), such
as system stability. Finally, we have learned how to implement in practice the
I/O relationship expressed by a transfer function.

It is useful to highlight what we have not learned here. In fact, control the-
ory is a vast discipline, and the presented concepts represent only just a very
limited introduction. For example, no technique has been presented for find-
ing the optimal proportional and integral gains, nor we have explored different
control strategies. Moreover, we have restricted our attention to systems with
a single-input and a single-output (SISO systems). Real-world systems, how-
ever, may have multiple inputs and multiple outputs (MIMO systems), and
require more sophisticated mathematical techniques involving linear algebra
concepts.

It is also worth stressing the fact that even the most elegant and efficient
implementation can fail if the underlying algorithm is not correct, leading, for
example, to an unstable system. So, it is often very important that an accurate
analysis of the system is carried out in order to find a good control algorithm.
The transfer function of the digital controller should also be implemented in



462 Real-Time Embedded Systems—Open-Source Operating Systems Perspective

such a way that its parameters can be easily changed. Very often, in fact,
some fine tuning is required during the commissioning of the system.

As a final observation, all the theory presented here and used in practice
rely on the assumption that the system being controlled can be modeled as
a linear system. Unfortunately, many real-world systems are not linear, even
simple ones. In this case, it is necessary to adopt techniques for approximating
the nonlinear systems with a linear one in a restricted range of parameters of
interest.

20.2 Case Study 2: Implementing a Digital low-pass Fil-
ter

In the previous section we have introduced the Laplace transform, that is,
a transformation of a real function defined over time y(t), representing in
our examples the time evolution of the signals handled by the control sys-
tem, into a complex function Y (s) of a complex variable. In this section we
present another powerful and widely used transformation that converts the
time evolution of a signal into its representation in the frequency domain.

20.2.1 Harmonics and the Fourier Transform

In order to better understand what we intend for frequency domain, let us
introduce the harmonics concept. A harmonic function is of the form

y(t) = A cos (2πft+ ϑ) (20.59)

that is, a sinusoidal signal of amplitude A, frequency f , and phase ϑ. Its period
T is the inverse of the frequency, that is, T = 1

f . Under rather general con-

ditions, every periodic function y(t) can be expressed as a (possibly infinite)
sum of harmonics to form Fourier series. As an example, consider the square
function fsquare(t) with period T shown in Figure 20.12. The same function
can be expressed by the following Fourier series:

fsquare(t) =
4

π

∞∑
k=1

cos (2π(2k − 1)t− π
2 )

2k − 1
(20.60)

Each harmonic is represented by a sinusoidal signal of frequency f = 2k − 1,
phase ϑ = −π

2 and amplitude 4/(π(2k − 1)). Figure 20.13 shows the ap-
proximation provided by (20.60) when considering 1 and 10 harmonics in the
summation, respectively. The first harmonic in this case is a sine function with
the same period and amplitude of the square wave, and considering more and
more harmonics makes the approximation closer and closer to the square func-
tion. The possibility of representing a periodic function y(t) as a summation of
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FIGURE 20.13
The approximation of a square function considering 1 and 10 harmonics.
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FIGURE 20.14
The components (amplitude vs. frequency) of the harmonics of the square
function.

a (possibly infinite) series of harmonics suggests a possible graphical represen-
tation of y(t) different from its time evolution, that is, plotting the amplitude
of its harmonics components against their frequency value. If we do this for
the square function of Figure 20.12 we get the plot shown in Figure 20.14.
The example we have considered so far is, however, somewhat simplified: in
fact, all the harmonics have the same phase, so only the amplitude depends
on their frequency. Moreover, the set of frequencies in the harmonic expansion
is discrete, so that the periodic function can be represented by a summation
of harmonics. When the function is not periodic, this does not hold any more,
and a continuous range of frequencies must be considered in the representation
of the function in the frequency domain.

In the general case, the representation of a function y(t) in the frequency
domain is mathematically formalized by the Fourier transform, which con-
verts a signal y(t) expressed in the time domain into its representation in the
frequency domain, that is, a complex function of real variable of the form

F{y(t)} = Y (f) =

∫ ∞

−∞
y(t)e−j2πftdt (20.61)

Recall that, due to Eulero’s formula,

e−j2πft = cos (2πft)− j sin (2πft) (20.62)

The reader may wonder why the Fourier transform yields a complex value.
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Representation of a complex number in the re–im plane.

Intuitively, this is because for every frequency f , the corresponding harmonics
is characterized by two parameters: its amplitude and its phase. Given a fre-
quency value f1, we shall see that the corresponding value of the Fourier trans-
form Y (f1) is a complex number whose module and phase represent the ampli-
tude and the phase of the corresponding harmonic. Recall that for a complex
number a+ jb, its module is A =

√
a2 + b2, and its phase is θ = arctan (b/a).

Module and phase are also graphically represented in the cartesian plane (Re,
Im) as shown in Figure 20.15. The module is the length of the segment join-
ing the origin with the point representing the number; the phase is the angle
between the real axis and such segment.

Informally stated, the Fourier transform represents, for every given fre-
quency f , the (infinitesimal) contribution of the corresponding harmonic to
function y(t). We can better understand this concept considering the inverse
Fourier transform, that is, the transformation from Y (f) = F{y(t)} into y(t):

y(t) =

∫ ∞

−∞
F (f)ej2πftdf (20.63)

In words, every infinitesimal contribution F (f)ej2πftdf represents the contri-
bution of the harmonic at frequency f whose amplitude and phase correspond
to the module and phase of F (f), respectively. This may seem not so intuitive
(we are considering the product between two complex numbers), but it can
be easily proven as follows.

Consider a given frequency value f1. For this value, the Fourier transform
yields Y (f1), which is a complex number of the form a+jb. From Figure 20.15
we can express the same complex number as

Y (f1) = a+ jb = A[cos θ + j sin θ] = Aejθ (20.64)

Where A =
√
a2 + b2 and θ = arctan (b/a) are the module and phase of F (f1),

respectively. Consider now the expression of the inverse Fourier transform
(20.63). In particular, the contribution due to frequencies f1 and −f1 (the
integral spans from −∞ to ∞) is the following:

Y (f1)e
j2πf1t + Y (−f1)e

−j2πf1t (20.65)
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A property of the Fourier transform Y (f) of a real function y(t) is that Y (−f)
is the complex conjugate of Y (f), and therefore, for the Eulero’s formula, if
Y (f) = Aejθ , then Y (−f) = Ae−jθ. We can then rewrite (20.65) as

Aejθej2πf1t +Ae−jθe−j2πf1t = A[ej2πf1t+θ + e−j2πf1t+θ] (20.66)

The imaginary terms in (20.66) elide, and therefore,

Y (f1)e
j2πf1t + Y (−f1)e

−j2πf1t = 2A cos (2πf1t+ θ) (20.67)

That is, the contribution of the Fourier transform Y (f) at the given frequency
f1 is the harmonic at frequency f1 whose amplitude and phase are given by
the module and phase of the complex number Y (f1).

Usually, the module of the Fourier transform Y (f) is plotted against fre-
quency f to show the frequency distribution of a given function f(t). The plot
is symmetrical in respect of the Y axis. In fact, we have already seen that
Y (−f) = Y (f), and therefore, the modules of Y (f) and of Y (−f) are the
same.

The concepts we have learned so far are can be applied to a familiar
concept, that is, sound. Intuitively, we expect that grave sounds will have
a harmonic content mostly containing low frequency components, while acute
sounds will contain harmonic components at higher frequencies. In any case,
the sound we perceive will have no harmonics over a given frequency value
because our ear is not able to perceive sounds over a given frequency limit.

20.2.2 Low-Pass Filters

A low-pass filter operates a transformation over the incoming signal so that
frequencies above a given threshold are removed. Low-pass filters are useful,
for example, to remove noise from signals. In fact, the noise has a frequency
distribution where most components are above the frequencies of interest for
the signal. A filter able to remove high frequency components will then re-
move most of the noise from the signal. As an example, consider Figure 20.16
showing a noisy signal. Its frequency distribution (spectrum) is shown in Fig-
ure 20.17, where it can be shown that harmonics are present at frequencies
higher than 5Hz. Filtering the signal with a low-pass filter that removes fre-
quencies above 5Hz, we get the signal shown in Figure 20.18, whose spectrum
is shown in Figure 20.19. It can be seen that the frequencies above 5Hz have
been removed thus removing the noise superimposed to the original signal.

The ideal low-pass filter will completely remove all the harmonics above a
given cut-off frequency, leaving harmonics with lower frequency as they are.
So the frequency response of the ideal low-pass frequency filter with cut-off
frequency fc would have the form shown in Figure 20.20, where, in the Y
axis, the ratio between the amplitudes of the original and filtered harmonics
is shown. In practice, however, it is not possible to implement low-pass filters
with such a frequency response. For example, the frequency response of the
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FIGURE 20.16
A signal with noise.
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FIGURE 20.17
The spectrum of the signal shown in Figure (20.16).
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FIGURE 20.18
The signal of Figure 20.16 after low-pass filtering.
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FIGURE 20.19
The spectrum of the signal shown in Figure 20.18.
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FIGURE 20.20
Frequency response of an ideal filter with cut-off frequency fc.

low-pass filter used to filter the signal shown in Figure 20.16 is shown in
Figure 20.21. The gain of the filter is normally expressed in decibel (dB),
corresponding to 20 log10 (A1/A0), where A0 and A1 are the amplitude of the
original and filtered harmonic, respectively. Since the gain is normally less
than or equal to one for filters, its expression in decibel is normally negative.
The frequency response shown in Figure 20.21 is shown expressed in decibel
in Figure 20.22. Referring to Figure 20.21, for frequencies included in the Pass
Band the gain of the filter is above a given threshold, normally −3dB (in the
ideal filter the gain in the pass band is exactly 0 dB), while in the Stop Band
the gain is below another threshold, which, depending on the application, may
range from −20 dB and −120 dB (in the ideal filter the gain in decibel for
these frequencies tends to −∞). The range of frequencies between the pass
band and the stop band is often called transition band: for an ideal low-pass
filter there is no Transition Band, but in practice the transition band depends
on the kind of selected filters, and its width is never null.

A low-pass filter is a linear system whose relationship between the input
(unfiltered) signal and the output (filtered) one is expressed by a differential
function in the form of (20.6). We have already in hand some techniques for
handling linear systems and, in particular, we know how to express the I/O
relationship using a transfer function W (s) expressed in the Laplace domain.
At this point, we are able to recognize a very interesting aspect of the Laplace
transform. Recalling the expression of the Laplace transform of function w(t)

W (s) =

∫ ∞

0

w(t)e−stdt (20.68)

and of the Fourier transform

W (f) =

∫ ∞

−∞
w(t)e−2πftdt (20.69)
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FIGURE 20.21
Frequency response of the filter used to filter the signal shown in Figure 20.16.
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FIGURE 20.22
Frequency response shown in Figure 20.21 expressed in decibel.
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and supposing that f(t) = 0 before time 0, the Fourier transform corresponds
to the Laplace one, for s = j2πf , that is, when considering the values of
the complex variable s corresponding to the imaginary axis. So, information
carried by the Laplace transform covers also the frequency response of the
system. Recalling the relationship between the input signal u(t) and the output
signal y(t) for a linear system expressed in the Laplace domain

Y (s) = W (s)U(s) (20.70)

we get an analog relationship between the Fourier transform U(f) and Y (f)
of the input and output, respectively:

Y (f) = W (f)U(f) (20.71)

In particular, if we apply a sinusoidal input function u(t) = cos (2πft), the
output will be of the form y(t) = A cos (2πft+ θ), where A and θ are the
module and phase of W (s), s = ej2πf .

Let us consider again the transfer function of the tank–pump with feedback
control we defined in the previous section. We recall here its expression

W (s) =
sKp +Ki

s2B + sKp +Ki
(20.72)

Figure 20.23 shows the module of the transfer function for B = 1, Kp = 1,
and Ki = 1, and, in particular, its values along the imaginary axis. The
corresponding Fourier transform is shown in Figure 20.24. We observe that
the tank–pump system controlled in feedback mode behaves somewhat like
a low-pass filter. This should not be surprising: We can well expect that, if
we provide a reference input that varies too fast in time, the system will
not be able to let the level of the liquid in the tank follow such a reference.
Such a filter is far from being an optimal low-pass filter: The decrease in
frequency response is not sharp, and there is an amplification, rather than
an attenuation, at lower frequencies. In any case, this suggests us a way for
implementing digital low-pass filters, that is finding an analog filter, that is, a
system with the desired response in frequency, and then digitalizing it, using
the technique we have learned in the previous section.

A widely used analog low-pass filter is the Butterworth filter, whose transfer
function is of the form

W (s) =
1∏n

k=1(s− sk)/(2πfc)
(20.73)

where fc is the cut-off frequency, and n is called the order of the filter and
sk, k = 1, . . . , n are the poles, which are of the form

sk = 2πfce
(2k+n−1)π/(2n) (20.74)

The poles of the transfer function lie, therefore, on the left side of a circle
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FIGURE 20.23
The module of the transfer function for the tank–pump system controlled in
feedback highlighting its values along the imaginary axis.
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FIGURE 20.24
The Fourier representation of the tank–pump transfer function.
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FIGURE 20.25
The poles of a Butterworth filter of the third-order.

of radius 2πf . Figure 20.25 displays the poles for a Butterworth filter of the
third order. Figure 20.26 shows the module of the transfer function in the
complex plane, highlighting its values along the imaginary axis corresponding
to the frequency response shown in (20.27). The larger the number of poles
in the Butterworth filter, the sharper the frequency response of the filter, that
is, the narrower the Transition Band. As an example, compare the frequency
response of Figure 20.27 corresponding to a Butterworth filter with 3 poles,
and that of Figure 20.21 corresponding to a Butterworth filter with 10 poles.

An analog Butterworth filter can be implemented by an electronic circuit,
as shown in in Figure 20.28. We are, however, interested here in its digital
implementation, which can be carried out using the technique introduces in
the previous section, that is

1. Find an appropriate value of the sampling period T.

2. Transform the transfer function W (s) expressed in the Laplace do-
main into the corresponding transfer function W (z) expressed in
the Z domain by replacing s with (1−z−1)/T , or using the bilinear
transform s = 2(1− z−1)/T (1 + z−1).

3. Implement the transfer function as a linear combination of previous
samples of the input and of the output and the current input.

Up to now we have used informal arguments for the selection of the most
appropriate value of the sampling period T. We have now the necessary back-
ground for a more rigorous approach in choosing the sampling period T.

20.2.3 The Choice of the Sampling Period

In the last section, discussing the choice of the sampling period T for taking
signal samples and using them in the digital controller, we have expressed the
informal argument that the value of T should be short enough to avoid losing
significant information for that signal. We are now able to provide a more
precise statement of this: We shall say that the choice of the sampling period
T must be such that the continuous signal y(t) can be fully reconstructed from
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FIGURE 20.26
The module of a Butterworth filter of the third-order, and the corresponding
values along the imaginary axis.
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FIGURE 20.27
The module of the Fourier transform of a third-order Butterworth filter with
5 Hz cutoff frequency.
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FIGURE 20.28
An electronic implementation of a Butterworth filter of the third order with
5 Hz cutoff frequency.



476 Real-Time Embedded Systems—Open-Source Operating Systems Perspective

its samples y(nT ). Stated in other words, if we are able to find a mathematical
transformation that, starting from the sampled values y(nT ) can rebuild y(t),
for every time t, then we can ensure that no information has been lost when
sampling the signal. To this purpose, let us recall the expression of the Fourier
transform for the signal y(t)

Y (f) =

∫ ∞

−∞
y(t)e−2πftdt (20.75)

which transforms the real function of real variable y(t) into a complex function
of real variable Y (f). Y (f) maintains all the information of y(t), and, in fact,
the latter can be obtained from Y (f) via a the Fourier antitransform:

y(t) =

∫ ∞

−∞
Y (f)ej2πftdf (20.76)

Now, suppose we have in hand only the sampled values of y(t), that is, y(nT )
for a given value of the sampling period T. An approximation of the Fourier
transform can be obtained by replacing the integral in (20.75) with the sum-
mation

YT (f) = T
∞∑

n=−∞
y(nT )e−j2πfnT (20.77)

(20.77) is a representation of the discrete-time Fourier transform. From YT (f)
it is possible to rebuild the original values of y(nT ) using the inverse transform

y(nT ) =

∫ T/2

−T/2

YT (f)e
j2πfnT df (20.78)

Even if from the discrete-time Fourier transform we can rebuild the sam-
pled values y(nT ), we cannot yet state anything about the values of y(t) at
the remaining times. The following relation between the continuous Fourier
transform Y (f) of (20.75) and the discrete time version YT (f) of (20.77) will
allow us to derive information on y(t) also for the times between consecutive
samples:

yT (f) =
1

T

∞∑
r=−∞

Y (f − r

T
) (20.79)

Put in words, (20.79) states that the discrete time Fourier representation
YT (f) can be obtained by considering infinite terms, being the rth term com-
posed of the continuous Fourier transform shifted on the right of rfc = r/T .
The higher the sampling frequency fc, the more separate will be the terms of
the summation. In particular, suppose that Y (f) = 0 for |f | < f1 < fc/2. Its
module will be represented by a curve similar to that shown in Figure 20.29.
Therefore the module of the discrete time Fourier will be of the form shown in
Figure 20.30, and therefore, for −fc/2 < f < fc/2, the discrete time transform
YT (f) will be exactly the same as the continuous one Y (f).
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FIGURE 20.29
A frequency spectrum limited to fc/2.
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FIGURE 20.30
The discrete time Fourier transform corresponding to the continuous one of
Figure 20.29.
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FIGURE 20.31
The Aliasing effect.

This means that, if the sampling frequency is at least twice the highest
frequency of the harmonics composing the original signal, no information is
lost in sampling. In fact, in principle, the original signal y(t) could be derived
by antitrasforming using (20.76), the discrete-time Fourier transform, built
considering only the sampled values y(nT ). Of course, we are not interested
in the actual computation of (20.76), but this theoretical result gives us a
clear indication in the choice of the sampling period T .

This is a fundamental result in the field of signal processing, and is called
the Nyquist–Shannon sampling theorem, after Harry Nyquist and Claude
Shannon, even if other authors independently discovered and proved part of
it. The proof by Shannon was published in 1949 [80] and is based on an earlier
work by Nyquist [67].

Unfortunately, things are not so bright in real life, and normally, it is not
possible for a given function y(t) to find a frequency f0 for which Y (f) =
0, |f | > f0. In this case we will have an aliasing phenomenon, as illustrated
in Figure 20.31, which shows how the spectrum is distorted as a consequence
of sampling. The effect of the aliasing when considering the sampled values
y(nT ) is the “creation” of new harmonics that do not exists in the original
continuous signal y(t). The aliasing effect is negligible for sampling frequencies
large enough, and so the amplitude of the tail in the spectrum above fc/2
becomes small, but significant distortion in the sampled signal may occur for
a poor choice of fc.

The theory presented so far provides us the “golden rule” of data acquisi-
tion, when signals sampled by ADC converters are then acquired in an embed-
ded system, that is, choosing a sampling frequency which is at least twice the
maximum frequency of any significant harmonic of the acquired signal. How-
ever, ADC converters cannot provide an arbitrarily high sampling frequency,
and in any case, this may be limited by the overall system architecture. As an
example, consider an embedded system that acquires 100 signals coming from
sensors in a controlled industrial plant, and suppose that a serial link connects
the ADC converters and the computer. Even if the single converter may be
able to acquire the signal at, say, 1 kHz (commercial ADC converters can have
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a sampling frequency up to some MHz), sending 100 signals over a serial link
means that a data throughput of 100 KSamples/s has to be sustained by the
communication link, as well as properly handled by the computer. Moving to
a sampling frequency of 10 kHz may be not feasible for such a system because
either the data link is not able to sustain an higher data throughput, or the
processing power of the computer becomes insufficient.

Once a sampling frequency fc has been chosen, it is mandatory to make
sure that the conversion does not introduce aliasing, and therefore it is nec-
essary to filter the input signals with an analog low-pass filter whose cut-off
frequency is at least fc/2, before ADC conversion. Butterworth filters, whose
electrical schema is shown in Figure 20.28, are often used in practice, and are
normally implemented inside the ADC boards themselves.

20.2.4 Building the Digital Low-Pass Filter

We are now ready to implement the digital low-pass filter with a cut-off fre-
quency of 5 Hz similar to that which has been used to filter the signal shown in
Figure 20.16, but using, for simplicity, 3 poles instead of 10 (used to obtain the
filtered signal of Figure 20.18). We suppose a sampling frequency of 1 kHz,
that is, T = 10−3s, assuming therefore that the spectrum of the incoming
analog signal is negligible above 500 Hz.

Using (20.74), we obtain the following values for the three poles:

p1 = (−15.7080+ j27.2070) (20.80)

p2 = (−31.4159 + j0) (20.81)

p3 = (−15.7080− j27.2067) (20.82)

and, from (20.73), we derive the transfer function in the Laplace domain

W (s) =

31006.28

(s− (−15.708 + j27.207))(s− (−31.416 + j0))(s− (−15.708− j27.207))

(20.83)

From the above transfer function, with the replacement s = (1 − z−1)/T ,
T = 10−3, we derive the transfer function in the Z domain

W (z) =
3.1416× 10−5

−z−3 + 3.0628z−2 − 3.1276z−1 + 1.06483
(20.84)

and finally the actual computation for the desired low-pass digital filter:

y(nT ) =

y((n− 3)T )− 3.063y((n− 2)T ) + 3.128y((n− 1)T ) + 3.142× 10−5x(nT )

1.065
(20.85)
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We recognize that, in the general case, the implementation of a low-pass filter
(and more in general of the discrete time implementation of a linear system)
consists of a linear combination of the current input, its past samples and the
past samples of the output. It is therefore necessary to keep in memory the past
samples of the input and output. A common technique that is used in order
to avoid unnecessary copies in memory and therefore minimize the execution
time of digital filters is the usage of circular buffers. A circular buffer is a
data structure that maintains the recent history of the input or output. When
new samples arrive, instead of moving all the previous samples in the buffer
array, the pointer to the head of the buffer is advanced instead. Then, when
the head pointer reaches one end of the history array, it is moved to the other
end: If the array is large enough to contain the required history the samples
on the other end of the array are no more useful and can be discarded. Below
is the C code of a general filter implementation. Routine initFilter() will
build the required data structure and will return a pointer to be used in the
subsequent call to routine doFilter(). No memory allocation is performed
by routine doFilter(), which basically performs a fixed number of sums,
multiplications and memory access. In fact, this routine is to be called run
time, and for this reason it is important that the amount of time required
for the filter computation is bounded. Conversely, routine initFilter() has
to be called during system initialization since its execution time may be not
predictable due to the calls to system routines for the dynamic memory al-
location. An alternative implementation would have used statically allocated
buffers and coefficient array, but would have been less flexible. In fact, the
presented implementation allows the run-time implementation of a number of
independent filters.

/∗ Fi l t e r Descriptor Structure : f u l l y describes the f i l t e r and
i t s current s tate .
This structure contains the two c ircu lar buffers and the
current index within them .
It contains also the coef f i c i ents for the previous input
and output samples for the f i l t e r computation
y(nT) = aN∗y((n−N)T)+...+a1∗y((n−1)T)

+ bMu((n−M)T)+...+b1∗u((n−1)T + b0∗u(nT) ∗/

typedef struct {
int currIndex; //Current index in c i rcu lar buffers
int bufSize ; //Number of elements in the buffers
float *yBuf; //Output history buffer
float *uBuf; //Input history buffer
float *a; //Previous output coef f i c ients
int aSize; //Number of a coef f i c ient
float *b; //Previous input coef f i c ients
int bSize; //Number of b coef f i c ients

}FilterDescriptor;

/∗ Fi l t e r structure in i t i a l i z a t i on .
To be ca l led before entering the real−time phase
Its arguments are the a and b coef f i c i ents of the f i l t e r ∗/

FilterDescriptor *initFilter(float *aCoeff , int numACoeff ,
float *bCoeff , int numBCoeff)

{
int i;
FilterDescriptor *newFilter;
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newFilter = (FilterDescriptor *)malloc(sizeof(FilterDescriptor));
/∗ Allocate and copy f i l t e r coef f i c ients ∗/

newFilter ->a = (float *) malloc(numACoeff * sizeof (float));
for(i = 0; i < numACoeff; i++)

newFilter ->a[i] = aCoeff[i];
newFilter ->aSize = numACoeff;
newFilter ->b = (float *) malloc(numBCoeff * sizeof (float));
for(i = 0; i < numBCoeff; i++)

newFilter ->b[i] = bCoeff[i];
newFilter ->bSize = numBCoeff;

/∗ Circular Buffer dimension i s the greatest between the number
of a and b coef f i c ients ∗/

if(numACoeff > numBCoeff)
newFilter ->bufSize = numACoeff;

else
newFilter ->bufSize = numBCoeff;

/∗ Allocate circularBuffers , i n i t i a l i z e d to 0 ∗/
newFilter ->yBuf = (float *) calloc(newFilter ->bufSize , sizeof(float ));
newFilter ->uBuf = (float *) calloc(newFilter ->bufSize , sizeof(float ));

/∗ Buffer index star ts at 0 ∗/
newFilter ->currIndex = 0;
return newFilter;

}

/∗ Run time f i l t e r computation .
The f i r s t argument i s a pointer to the f i l t e r descriptor
The second argument i s the current input
I t returns the current output ∗/

float doFilter (FilterDescriptor *filter , float currIn)
{

float currOut = 0;
int i;
int currIdx ;

/∗ Computation of the current output based on previous input
and output history ∗/

currIdx = filter ->currIndex;
for(i = 0; i < filter ->aSize; i++)
{

currOut += filter ->a[i]*filter ->yBuf[currIdx ];
/∗ Go to previous sample in the c i rcu lar buffer ∗/

currIdx --;
if(currIdx < 0)

currIdx += filter ->bufSize ;
}
currIdx = filter ->currIndex;
for(i = 0; i < filter ->bSize -1; i++)
{

currOut += filter ->b[i+1]*filter ->uBuf[currIdx ];
/∗ Go to previous sample in the c i rcu lar buffer ∗/

currIdx --;
if(currIdx < 0)

currIdx += filter ->bufSize ;
}

/∗ b [ 0 ] contains the coef f i c i ent for the current input ∗/
currOut += filter ->b[0]* currIn;

/∗ Upate input and output f i l t e r s ∗/
currIdx = filter ->currIndex;
currIdx ++;
if(currIdx == filter ->bufSize )

currIdx = 0;
filter->yBuf[currIdx ] = currOut ;
filter->uBuf[currIdx ] = currIn;
filter->currIndex = currIdx ;

return currOut ;
}
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/∗ Fi l t e r deal location routine .
To be ca l l ed when the f i l t e r i s no longer used outside
the real−time phase ∗/

void releaseFilter(FilterDescriptor *filter)
{

free((char *)filter ->a);
free((char *)filter ->b);
free((char *)filter ->yBuf);
free((char *)filter ->uBuf);
free((char *)filter );

}

20.2.5 Signal to Noise Ratio (SNR)

Up to now we have seen the main components of a digital low-pass filter, that
is, antialiasing analog filtering, data sampling and filter computation. The
resulting data stream can be used for further computation or converted to
an analog signal using a DAC converter if filtering is the only function of the
embedded system. We have seen how information may be lost when sampling
a signal, and the techniques to reduce this effect. There is, however, another
possible reason for information loss in the above chain. The ADC converter,
in fact, converts the analog value of the input into its digital representation
using a finite number of bits. This unavoidably introduces an error calledthe
quantization error. Its effect can be considered as a superimposed noise in the
input signal. If N bits are used for the conversion, and A is the input range for
the ADC converter, the quantization interval is Δ = A/2N , and therefore, the
quantization error e(nT ) is included in the interval [−Δ/2,Δ/2]. The sequence
e(nT ) is therefore a sequence of random values, which is often assumed to be
a strictly stationary process, where the probability distribution of the random
samples is not related to the original signal y(nT ). It does not change over
time, and the distribution is uniform in the interval [−Δ/2,Δ/2]. Under these
assumptions, the probability distribution of the error is

fe(a) =
1

Δ
,−Δ

2
≤ a ≤ Δ

2
(20.86)

For such a random variable e, its power, that is, the expected value E[e2] is

Pe = E[e2] =

∫ ∞

−∞
a2fe(a)da =

∫ Δ/2

−Δ/2

a2

Δ
da =

Δ2

12
(20.87)

An important parameter in the choice of the ADC device is the signal-to-noise
ratio (SNR), which expresses the power ratio between the input signal and its
noise after sampling, that is,

SNR = 10 log10
Psignal

Pnoise
(20.88)

using the expression of the power for the quantization error (20.87), we have

SNR = 10 log10
Psignal

Pnoise
= 10 log10 Psignal − 10 log10

Δ2

12
(20.89)
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If we use B bits for the conversion, and input range of A, the quantization
interval Δ is equal to A/(2B) and therefore

SNR = 10 log10 Psignal + 10 log10 12− 20 log10 A+ 20B log10 2 =

CONST + 6.02B (20.90)

that is, for every additional bit in the conversion, the SNR is incremented
of around 6dB for every additional bit in the ADC conversion (the other
terms in (20.90) are constant). This gives us an estimation of the effect of the
introduced quantization error and also an indication on the number of bits to
be considered in the ADC conversion. Nowadays, commercial ADC converters
use 16 bits or more in conversion, and the number of bits may reduced for
very high-speed converters.

20.3 Summary

In this section we have learned the basic concepts of control theory and the
techniques that are necessary to design and implement a digital low-pass filter.
The presented concepts represent facts that every developer of embedded sys-
tems should be aware of. In particular, the effects of sampling and the conse-
quent harmonic distortion due to the aliasing effect must always be taken into
account when developing embedded systems for control and data acquisition.
Another important aspect that should always be taken in consideration when
developing systems handling acquired data, is the choice of the appropriate
number of bits in analog-to-digital conversion. Finally, once the parameters
of the linear system have been defined, an accurate implementation of the
algorithm is necessary in order to ensure that the system will have a deter-
ministic execution time, less than a given maximum time. Most of this book
will be devoted to techniques that can ensure real-time system responsiveness.
A precondition to every technique is that the number of machine instructions
required for the execution of the algorithms is bounded. For this reason, in
the presented example, the implementation of the filter has been split into
two sets of routine: offline routines for the creation and the deallocation of the
required data structures, and an online routine for the actual run-time filter
computation. Only the latter one will be executed under real-time constraints,
and will consist of a fixed number of machine instructions.
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[78] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real
time scheduling theory: A historical perspective. Real-Time Systems,
28(2):101–155, 2004.

[79] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance proto-
cols: an approach to real-time synchronization. IEEE Transactions on
Computers, 39(9):1175–1185, September 1990.

[80] C. E. Shannon. Communication in the presence of noise. Proceedings of
the IRE, 37(1):10–21, January 1949. Reprinted in [81].

[81] C. E. Shannon. Communication in the presence of noise. Proceedings of
the IEEE, 86(2):447–457, February 1998.

[82] A. Shoshani and E. G. Coffman. Prevention, detection, and recovery from
system deadlocks. In Proc. 4th Princeton Conference on Information
Sciences and Systems, March 1970.

[83] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts.
John Wiley & Sons, New York, 7th edition, 2005.



Bibliography 491

[84] P. Sorenson and V. Hemacher. A real-time system design methodology.
INFOR, 13(1):1–18, February 1975.

[85] A. S. Tanenbaum and A. S. Woodhull. Operating Systems Design and Im-
plementation. Pearson Education, Upper Saddle River, NJ, 3rd edition,
2006.

[86] J. von Neumann. First draft of a report on the EDVAC. IEEE Annals
of the History of Computing, 15(4):27–75, 1993. Reprint of the original
typescript circulated in 1945.

[87] K. Yaghmour. Adaptive Domain Environment for Operating Systems.
Available online, at http://www.opersys.com/ftp/pub/Adeos/adeos.
pdf.



492 Real-Time Embedded Systems—Open-Source Operating Systems Perspective



K11932_cover.fhmx 12/21/11 11:07 AM Page 1 

C M Y CM MY CY CMY K


	Front Cover
	Foreword
	The Authors
	Acknowledgments
	Dedication
	List of Figures
	List of Tables
	Contents
	1. Introduction
	I. Concurrent Programming Concepts
	2. A Case Study: Vision Control
	3. Real-Time Concurrent Programming Principles
	4. Deadlock
	5. Interprocess Communication Based on Shared Variables
	6. Interprocess Communication Based on Message Passing
	7. Interprocess Communication Primitives in POSIX/Linux
	8. Interprocess Communication Primitives in FreeRTOS
	9. Network Communication
	10. Lock and Wait-Free Communication

	II. Real-Time Scheduling Analysis
	11. Real-Time Scheduling Based on the Cyclic Executive
	12. Real-Time, Task-Based Scheduling
	13. Schedulability Analysis Based on Utilization
	14. Schedulability Analysis Based on Response Time Analysis
	15. Task Interactions and Blocking
	16. Self-Suspension and Schedulability Analysis

	III. Advanced Topics
	17. Internal Structure of FreeRTOS
	18. Internal Structures and Operating Principles of Linux Real-Time Extensions
	19. OS Abstraction Layer
	20. Control Theory and Digital Signal Processing Primer

	Bibliography


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




