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Preface

Membrane computing is a vibrant and fast-growing research area of natural
computation which covers the study of computing models, called membrane
systems or P systems, inspired by the organization of the living cell and the bio-
chemical reactions and phenomena occurring therein. The results obtained in this
field have been published in comprehensive monographs covering theoretical
aspects [4, 5] and applications in linguistics, graphics, computer science [1] and
systems and synthetic biology [2]. The key research topics and further develop-
ments are overviewed in [3].

This book presents for the first time to the international community real-life
complex and challenging applications modeled and analyzed with a membrane
computing apparatus. These applications require different approaches and tools than
those already investigated and described in the above-mentioned publications. They
rely on a combination of different membrane systems and evolutionary or fuzzy
reasoning methods, applied to a wide range of applications from various engi-
neering areas, including engineering optimization, power systems fault diagnosis,
mobile robots controller design, or complex biological systems involving data
modeling and process interactions. This book goes far beyond the content of the
Chinese textbook focusing mainly on applications of membrane computing [6] by
addressing the basis of merging membrane computing concepts and evolutionary
computing algorithms, by presenting a broader spectrum of real-life applications
and the solid foundation of assessing the results and consequently targeting a much
wider and diverse international audience.

The chapters covered in this monograph provide a clear image of the depth and
breadth of the real-world applications of membrane systems.

– In Chap. 1, Membrane Computing—Key Concepts and Definitions: Basic
membrane computing concepts that are used in the models presented in the next
chapters are introduced. The most significant references to the research text-
books and overview papers are also provided.
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– In Chap. 2, Fundamentals of Evolutionary Computation: Fundamental concepts
and principles of evolutionary computation are addressed. Five variants of
evolutionary computation techniques, including genetic algorithms, quantum-
inspired evolutionary algorithms, ant colony optimization, particle swarm
optimization and differential evolution, are discussed.

– In Chap. 3, Membrane Algorithms: Hybrid approximate optimization algo-
rithms, called membrane algorithms or membrane-inspired evolutionary
algorithms, integrating the hierarchical/network structure of P systems with
meta-heuristic approaches are introduced and the design principles, their
developments with key instances and examples are discussed. In addition, the
impact of different variants of P systems with respect to membrane algorithms is
analyzed.

– In Chap. 4, Engineering Optimization with Membrane Algorithms: A wide range
of engineering applications of membrane algorithms with cell-like, tissue-like
and neural-like P systems are discussed. The engineering problems include radar
emitters signal analysis, digital image processing, controllers design, mobile
robots path planning, constrained manufacturing parameters optimization
problems, and distribution networks reconfiguration.

– In Chap. 5, Electric Power System Fault Diagnosis with Membrane Systems:
Spiking neural P systems incorporating fuzzy logics are utilized to solve fault
diagnosis problems of electric power systems. Definitions, reasoning algorithms
and examples of fuzzy reasoning spiking neural P systems are presented.

– In Chap. 6, Robot Control with Membrane Systems: Numerical P systems and
enzymatic numerical P systems are employed for designing membrane con-
trollers for mobile robots. Simulators for numerical P systems and enzymatic
numerical P systems modeling the robots’ behavior are described and the results
are analyzed.

– In Chap. 7, Data Modeling with Membrane Systems: Applications to Real
Ecosystems: A bioinspired computing modeling paradigm within membrane
computing, multienvironment P systems, is presented. This paradigm provides
two different approaches (multicompartmental P systems and population
dynamics P systems). The last approach is used to model population dynamics
of real-world ecosystems. Ad hoc algorithms and simulators are introduced to
simulate, analyze and (experimentally) validate population dynamics P systems.

This book will be of particular interest to researchers looking for applications of
membrane computing, studying the interplay between membrane systems and other
computational approaches and methods such as meta-heuristic optimization, fuzzy
set theory and control theory. More generally, the book will be of interest to anyone
studying bioinspired computing, engineering optimization, electric power systems
fault diagnosis, robotics and ecosystems.

Finally, we would like to thank Gheorghe Păun for his continuous support in
writing the book, as well as for many insightful comments and suggestions made.
We are also very grateful to many colleagues, collaborators, Ph.D. students and
friends for their helpful comments and discussions, especially to Jixiang Cheng,
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Luis F. Macías-Ramos, Miguel A. Martínez-del-Amor, Agustín Riscos-Núñez, Luis
Valencia-Cabrera, Tao Wang and Xueyuan Wang. Gexiang Zhang also acknowl-
edges the support of his research activities provided by the National Natural
Science Foundation of China (61170016, 61373047 and 61672437), the Research
Project of Key Laboratory of Fluid and Power Machinery (Xihua University),
Ministry of Education, P.R. China (JYBFX-YQ-1). We also thank the publisher for
a friendly and efficient collaboration.

Chengdu, China Gexiang Zhang
Sevilla, Spain Mario J. Pérez-Jiménez
Bradford, UK Marian Gheorghe
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Chapter 1
Membrane Computing - Key Concepts
and Definitions

Abstract The basic membrane computing concepts used in the models presented
in the next chapters are introduced. A basic transition membrane system, membrane
systems with active membranes, a neural-like network of membranes and a spiking
neural membrane system are defined and some simple examples are provided.

1.1 Introduction

In this chapter we introduce the basic membrane computing concepts that are used
in the models presented in the next chapters. Some examples illustrate the way these
concepts are used in various definitions. The presentation ismeant to be as intuitive as
possible, but also rigorous enough to serve the purpose of the models introduced. We
also provide the most significant references to the research text books and overview
papers. For a comprehensive and up-to-date list of publications we point to the
membrane computing main website [6].

The first membrane computing text book presents the basic membrane computing
definitions and variants of the key systems (called membrane systems or P systems),
together with the main theoretical developments of the field in the early 2000 [7].
A later text book reports results on some special classes of membrane systems - sym-
port/antiport P systems, P systems with catalysts, spiking, splicing and conformon
P systems -, as well as relationships between membrane systems, on the one hand,
and Petri nets and brane calculi, on the other hand [3]. The theory of a special class
of deterministic P systems inspired by the cell metabolism, called metabolic P sys-
tems, and its applications in modeling various biological system are presented in [5].
Applications of membrane computing in modeling protocol communication, sorting,
graphics, linguistics and biology problems, but also in describing computationally
hard problems and approximate algorithms, are presented in [1]. Specific applica-
tions in systems and synthetic biology are discussed in [2]. A more recent text book
[9] presents a summary of some theoretical results and applications of evolutionary
membrane computing, a type of evolutionary computation algorithms using various
membrane computing concepts, such as different membrane structures and rules. A
thorough presentation of both theoretical developments in membrane computing and

© Springer International Publishing AG 2017
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2 1 Membrane Computing - Key Concepts and Definitions

key applications of this computational model is given in [8]. An overview of themain
developments in membrane computing and new research challenges are presented
in [4] and an overview of evolutionary membrane computing developments and new
challenges are discussed in [10].

1.2 Origins of Membrane Computing

Membrane computing is a computational paradigm motivated by the structure and
functioning of the living cells. The role of membranes in delimiting compartments
of the living cells is essential to this approach. They localize the interactions of the
objects within compartments and allow exchanges between neighbor compartments.
Some of the models are based on a cell-like structure, i.e., a hierarchical arrange-
ment of membranes, whereas others, tissue-like models, consider membranes linked
through communication channels and arranged as a network, i.e., a graph structure.
The more recent developments are neural-like membrane systems which are moti-
vated by spiking neural networks. Most of the features of these models are inspired
by biological phenomena, but there are some derived from computer science or
mathematics. The computational models are called either membrane systems or P
systems.

1.3 Preliminary Concepts and Notations

Given an alphabet V (a nonempty set of symbols), a string (or word) over V is an
ordered finite sequence of elements from V . For instance, for V = {a, b, c}, aab,
ccbbb and baabbbc are words over V ; these are also denoted by a2b, c2b3 and
ba2b3c, respectively. The empty string is denoted by λ. The set of all the strings
over V is denoted by V ∗ and by V+ we denote V ∗ \ {λ}. A multiset M over an
alphabet V is a mapping, M : V −→ N, where N is the set of nonnegative integer
numbers. For a ∈ V , M(a) is the multiplicity of a in the multiset M . We denote
by supp(M), the support of M , the set {a ∈ V | M(a) �= 0}. A multiset is finite
(respectively, empty) if its support is a finite (respectively, empty) set. We denote by
λ the empty multiset and by M f (O) the set of all finite multisets over O . When the
set V is finite, i.e. V = {a1, . . . , an}, then the multiset M can be explicitly written as
{(a1, M(a1), . . . (an, M(an)} and we use the notation w = aM(a1)

1 . . . aM(an)
n . We call

M(a1) + · · · + M(an) the cardinality of the multiset and we denote it by |M |.
For two multisets M1, M2 : V −→ N, the union of M1 and M2 is M1 ∪ M2 :

V −→ N, where (M1 ∪ M2)(a) = M1(a) + M2(a), for all a ∈ V . The intersection
ofM1 andM2 isM1 ∩ M2 : V −→ N , where (M1 ∩ M2)(a) = min{M1(a), M2(a)},
for all a ∈ V . We say that M1 is included in M2 (M1 ⊆ M2) if M1(a) ≤ M2(a), for
all a ∈ V . It follows that Mw1 ∪ Mw2 = {(a, 1), (b, 8), (c, 2)} and Mw1 ∩ Mw2 =
{(b, 3)}.
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1.4 Membrane Computing Concepts

Membranes represent a fundamental concept in membrane computing. They delimit
compartments (or regions) of a membrane system (also called P system). In our
approaches we consider that these compartments are arranged in a hierarchical struc-
ture (formally, a rooted tree), like in a living cell, and these systems are called cell-like
membrane systems. A membrane structure defines the way the compartments are
arranged by providing links between compartments and their neighbors. Its notation
will be informally introduced below.

The compartments will be identified by some labels over an alphabet, very often
a finite set of nonnegative numbers. A compartment identified by a label l will
be denoted by a pair of ordered parentheses [ ]l . A cell-like membrane structure
will be formally represented by a sequence of ordered labeled parentheses, each of
them defining the position of a compartment in this hierarchical arrangement. For
instance, μ = [ [ [ ]5 ]2 [ [ ]6 [ ]7 ]3 [ ]4 ]1, defines a membrane structure with the
compartment labeled 1 being the root of the tree and containing compartments 2,
3 and 4. Compartment 2 has inside it compartment 5, whereas compartment 3 con-
tains compartments 6 and 7. Membrane labeled 1 is called skin membrane, whereas
membranes 5, 6, 7 and 4 delimiting compartments without any compartment inside
are called elementary membranes.

Each compartment of a membrane system contains multisets of objects over a
certain alphabet V . These objects are abstractions of the biochemical elements that
appear inside compartments or are attached to the membranes. The objects are trans-
formed or moved between neighboring compartments by the use of rewriting and
communication rules. These rules represent abstractions of biochemical reactions
taking place in the compartments of a cell accounting for both interactions between
biochemicals inside compartments as well as the transfer of them across membranes.

The rules are written in the form u → v, where u is a finite multiset over
V and v is a finite multiset over V × {here, out, in}. The rules are associated
with membranes. For instance, when V = {a, b, c} one can have rules a2b →
(c, here)(a, in)(a, here), ac → (a, here)(b, out)(b, out). These rules are applied
only to multisets w that include the multisets on the left hand side of the rules, i.e.,
a2b ⊆ w and ac ⊆ w. Also the first rule is applied onlywhen the compartment where
the rule appears has at least a child compartment, whereas for the second one it is
necessary to exist a parent compartment. Given a rule associated with a membrane
i , the here, in and out are called target indicators and their meaning is as follows:
here means that the object stays in the same compartment; in means that the object
is sent to one of the child compartments; and out means that the object is sent to the
parent compartment. For instance, if we consider that compartment 3, of the above
defined membrane structure μ, contains the multiset w = a2b3c2 and the two rules
introduced, then by applying the first rule the multiset a2b is removed from w, a and
c are added to it (hence, finally one gets ab2c3 in 3) and an a is sent to one of the chil-
dren (let us assume this is 6). When the second rule is applied to the samemultisetw,
then ac is removed from w, an a is returned to the same compartment (hence, finally
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the multiset a2b3c is obtained in 3) and two b′s are sent to the parent compartment
1. Very often the tag here is ignored and the rules are written without it. For instance,
the rule a2b → (c, here)(a, in)(a, here) is written as a2b → c(a, in)a.

So far we have considered that a single rule is applied to a multiset belonging
to a compartment. One can consider that more rules are applied to a multiset in
each compartment. For instance, given a compartment with the rules r1 : ab → c
and r2 : a2 → bc and the multiset w = a4b, one can apply r1 or r2 or r1, r2 or r2
twice (chosen in a non-deterministic manner). Applying r1 means that ab is removed
from w and c added to the multiset; consequently w1 = a3c is obtained. Similarly,
applying the other rules or a combination of rules, one can get w2 = a2b2c (when r2
is used),w1,2 = abc2 (using r1 and r2) andw2,2 = b3c2 (when r2 is used twice). One
can note that when either r1, r2 are selected or r2 is selected twice then no other rule
can be applied in the same time with them. Indeed, in these cases after extracting the
correspondingmultisets fromw the remainingmultisets a and b, respectively, cannot
be associated with any rule. These two cases correspond to maximal parallelism
mode. In general, for a given compartment containing a multisetw and a set of rules,
R, we say that these are applied to w in accordance with the maximal parallelism
mode, if anytime a multiset of rules is selected to be applied, any submultiset of
objects of w that remain unassigned does not include the left hand side of any of the
rule of R.

We can now formally define a cell-like membrane (P) system.

Definition 1 A basic transition P system of degree n ≥ 1 is a tuple

Π = (O, H,μ, w1, . . . , wn, R1, . . . , Rn, i0),

where:

• O is the alphabet of objects of the system;
• H is the alphabet of membrane labels;
• μ is themembrane structure consisting of n compartments/membranes injectively
labeled by elements from H ;

• w1, . . . , wn are finite multisets of objects associated with the compartments of μ,
called initial multisets of objects;

• R1, . . . , Rn are the finite sets of multiset rewriting and communication rules asso-
ciated with the n compartments;

• i0 ∈ H ∪ {e} defines the output compartment; e is a label, not in H .

We assume that H is an ordered set of labels. Very often this is the set {1, . . . , n}
and in this case it will be omitted from the system definition. Themembrane structure
μ (a rooted tree) will be described as a parentheses expression over H . The initial
multisets of objects, w1, . . . , wn , appear in the compartments 1 to n at the start of
the computation (this will be introduced later on in this chapter). Each compartment,
i , labeled by li ∈ H , has its own set of rules, Ri , applied only to the objects of
this compartment. The label i0 is associated with the output compartment where the
result of the computation is obtained. The symbol e is the label of the environment. In
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some sense, the environment can be considered as another compartment containing
the entire system.

An instantaneous description or a configuration Ct , at an instant t of a P sys-
tem, is described by the following elements: (a) the membrane structure at instant t ;
(b) all multisets of objects present in each compartment of the system at that moment.
The initial configuration of Π is C0 = (μ, w1, . . . , wn). Starting from C0 and using
rules from R1, . . . , Rn in a maximal parallel manner in every compartment one gets
a sequence of configurations. The process of getting a configuration from another
one is called transition. A computation of Π is a (finite or infinite) sequence of
configurations such that: (a) one starts from the initial configuration of the system;
(b) for each n ≥ 2, the n-th configuration of the sequence is obtained from the pre-
vious configuration in one transition step; and (c) if the sequence is finite (called
halting computation) then the last configuration is a halting configuration (a con-
figuration where no rule of the system is applicable to it). In applications one can
consider sometimes only partial computations with a restricted number of steps.

It isworth pointing out that in cell-likeP systems the environment plays a “passive”
role in the following sense: it only receives objects, but cannot contribute objects to
the system.

The P system introduced in Definition 1 is a basic system.Many P system variants
have been considered. A great variety of such systems comes from various types of
rules that one may consider. Also the execution strategy might not be the maximal
parallel mode.

Remark 1 Sometimes rewriting and communication aspects of a rule are separated
into distinct rules. For instance, a2b → ca is a multiset rewriting rule that replaces
the multiset a2b by ca and a → (a, in) is a communication rule sending a to a child
compartment of the current one. In a similar way one can consider communication
rules sending objects to parent compartments by using the out tag. More specific
rules utilised in the next chapters are presented below.

Before discussing other types of rules, let us make a note regarding the alphabet
used by a P system.

Remark 2 In certain P systems one might need to distinguish a special alphabet,
T ⊆ O , of terminal objects used for indicating that the results produced by the
system are obtained only with symbols from this set.

Remark 3 Some P systems allow the membrane structure to be changed during the
computation through some special rules. These systems are called P systems with
activemembranes. Such a systemhas the same syntaxwith a basic transition P system
introduced in Definition 1, but the rules are of the following types (Chap.11 in [8])
listed below, where each membrane is polarised, i.e., has an electrical charge of+,−
or 0:

• Object evolution rules: [a → v]αh , for h ∈ H, α ∈ {+,−, 0}, a ∈ O, v ∈ M f (O);
inmembrane hwith polarisation e, the object a is replaced by themultiset v leaving
the membrane with the same polarisation e.
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• Communication rules of type in: a[ ]α1
h → [b]α2

h , for h ∈ H, α1,α2 ∈ {+,−, 0},
a, b ∈ O; object a enters membrane h when polarised e1 and changes to b leaving
the membrane polarised e2.

• Communication rules of type out : [a]α1
h → [ ]α2

h b, for h ∈ H, α1,α2 ∈
{+,−, 0}, a, b ∈ O; object a exits membrane h when polarised e1 and changes to
b leaving the membrane polarised e2.

• Dissolution rules: [a]αh → b, for h ∈ H, α ∈ {+,−, 0}, a, b ∈ O; the membrane
h is dissolved when it contains a which is transformed into b and together with
the other objects are made available in the surrounding compartment.

• Division rules for elementary membranes: [a]α1
h → [b]α2

h [c]α3
h , for h ∈ H,

α1,α2,α3 ∈ {+,−, 0}, a, b, c ∈ O; membrane h polarisedα1 and containing a is
divided into two membranes, also labelled h, but polarised α2,α3 and containing
the same objects as the initial membrane, with the exception of a, which becomes
b in the membrane polarised α2 and c in the one with polarisation α3.

Some other membrane structure related rules are presented below.

• Merging rules: [x]h[y]k → [z] f ; two compartments, labeled h and k and contain-
ing x , y, respectively, and having the same parent compartment, are merged (there
contents are united, x and y are removed and z is added) and a new compartment
with label f having the same parent compartment with the previous compartments
h and k is replacing them.

• Cell separation rules: [x]h → [U ]h[V ]h , where x is a multiset over O ,U, V ⊆ O
and U and V are complementary subsets. When it is applied, the rule replaces a
compartment labeled h with two compartments where the multiset x is removed
and the rest of the objects overU are moved into one of them and those over V in
the other one.

Apart from considering a special terminal alphabet and some variation of rules one
might consider other types of membrane structures than the tree - these models come
sometimes with specific rules as well. One of the most utilised membrane structure is
the graph with the compartments being vertexes and edges defining communication
channels between compartments. This graph structure is associated with a class of
systems called tissue-like P systems, by analogy with living tissues where cells bump
into each other and communicate through pores or other membrane mechanisms.

Now we consider a special class of tissue-like P systems, called neural-like net-
works of membranes, which are inspired by the way neurons work together in order
to process impulses in a network of neural cells linked through synapses.

Definition 2 A neural-like network of membranes is a tuple

Π = (O,σ1, . . . ,σn, ch, i0),

where

• O and i0 are as in Definition 1;
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• σ1, . . . ,σn denote the cells of the system; each of them having the form σi =
(Qi , si,0, wi , Ri ), 1 ≤ i ≤ n, where Qi is a set of states, si,0 an initial state, wi an
initial multiset of objects and Ri a set of rewriting and communication rules;

• ch ⊆ {(i, j)|i, j ∈ {0, 1, . . . , n}, i �= j} is the set of channels between cells (those
labeled 1 to n) and cells and environment (labeled by 0).

The rules occurring in the above definition are a bit different from the rewriting and
communication rules introduced by Definition 1. In the case of neural-like network
of membranes, the rules have the form s1w → s2xygozout , where s1 and s2 are states
and w, x, y, z are multisets of objects. When the rule, from cell i , is applied to a
multiset u containing w, then w is extracted from u and replaced by x , staying in
cell i , whereas y is sent to neighboring cells (cells j such that (i, j) ∈ ch) and z is
removed from the system, being sent out into the environment.

Remark 4 Another special case of a tissue-like P system is called population P
system. In this case the membrane structure is changing all the time. Some special
rules, called bond making rules, dynamically create communication channels. The
format of them is (i, x; y, j), where i, j aremembrane labels and x and y aremultisets
of objects from i and j , respectively. When the rules is applied, if i contains the
multiset of objects x and j contains y then a bond (a communication channel) is
created between these cells.

Neuronal activities have inspired developments inmembrane computing. Theway
spikes are processed and communicated represents the key computational aspect
considered by these models. The formal definition of these computational models is
given below.

Definition 3 A spiking neural P system (SNP system, for short) of degree n ≥ 1 is
a tuple Π = (O,σ1, . . . ,σn, syn, in, out), where

• O = {a} is the singleton alphabet (a is called spike);
• σ1, . . . ,σn are neurons, of the form σi = (mi , Ri ), 1 ≤ i ≤ n, where

1. mi ≥ 0 is the initial number of spikes contained in σi ;
2. Ri is a finite set of rules of the following two forms:

a. firing (also called spiking) rules, of the form E/ac → a; d, where E is a
regular expression over a, and c ≥ 1, d ≥ 0 are integer numbers. If E = ac

then it is usually written in a simpler way ac → a; d. If d = 0 then it is
omitted from the rule;

b. forgetting rules, of the form as → λ, s ≥ 1, with the restriction that for each
rule E/ac → a; d ∈ Ri , we have as /∈ L(E) (where L(E) is the regular lan-
guage defined by E);

• syn ⊆ {1, . . . , n} × {1, . . . , n},with (i, i) /∈ syn, 1 ≤ i ≤ n, is the directed graph
of synapses between neurons;

• in, out ∈ {1, . . . , n} indicate the input and the output neurons of Π .
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Remark 5 An SNP system, as defined above, has the following behavior.

1. An instantaneous description or a configuration Ct , at an instant t of a SNP
system Π is an n-tuple (r1/t1, . . . , rn/tn), where the neuron σi contains ri ≥ 0
spikes at instant t and will become available (open) after ti ≥ 0 steps, 1 ≤ i ≤ n.
A computation starts in the initial configuration, (m1/0, . . . ,mn/0). In order to
compute a function, a positive integer number is specified in an input neuron -
this is used in the acceptance mode. The result of the computation is captured
through the spikes emitted by the output neurons into the environment. Output
neurons are used in the generative mode.

2. A firing rule E/ac → a; d ∈ Ri is applicable to a configuration Ct if σi contains
k ≥ c spikes in Ct and ak ∈ L(E). The execution of the rule removes c spikes from
σi , leaving k − c spikes in the cell, and sends one spike to every neuron σ j such
that (i, j) ∈ syn. The spike is effectively delivered after d computation steps, or
immediately when d = 0. During the next d computation steps the neuron cannot
receive or send any spikes. The neuron is closed and does not interact in any way
with the system; after that it will open again for further interactions.

3. An extended version for firing rules is considered by using more than a spike on
the right hand side, i.e., rules of the type E/ac → ah; d ∈ Ri , with h ≥ 1.

4. A forgetting rule as → λ can be applied to a configuration Ct if the cell contains
exactly s spikes in Ct and no firing rules are applicable. By the execution of the
rule s spikes are deleted from σi .

5. In every computation step in each neuron one rule, from those applicable, is
selected and executed.Please note that this is different from the usualmaximal
parallelism utilised by other P system variants.

We illustrate now how an SNP system is working in the case of a degree 3 system.
Let the SNP system be given by the following tuple Π1 = (O,σ1,σ2,σ3, syn, out),
where

• O = {a};
• σ1 = (1, {r1,1 : a → a; 1});
• σ2 = (1, {r2,1 : a → a});
• σ3 = (2, {r3,1 : a2 → a, r3,2 : a → λ});
• syn = {(1, 2), (2, 1), (1, 3), (2, 3)};
• out = 3.

The neuron σ1 has one spike and a rule r1,1 which consumes a spike and sends a
spike to each of the σ2 and σ3 neurons, but only after 1 step and this closes σ1 for
a step. The neuron σ2 has also one spike and a rule, r2,1, similar to σ1, but this one
is immediately applied; when the rule is applied a spike is consumed and a spike is
sent to σ1, when it is open, and another spike to σ3. The output neuron, σ3, has two
spikes and two rules; the first rule, r3,1, consumes two spikes and sends one into the
environment, whereas the second rule (a forgetting rule), r3,2, deletes a spike when
only one appears in σ3.
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The initial configuration of the system is C0 = (1/0, 1/0, 2/0). In this case the
rules r1,1, r2,1 and r3,1 are applied in σ1,σ2 and σ3, respectively. As a result, one gets
the configuration C1 = (0/1, 0/0, 1/0). Please note that σ1 is closed and it does not
send spikes to its connected neurons, nor does it receive any. In the next step the
spikes from σ1 are released to σ2 and σ3 and the forgetting rule r3,2 is applied in σ3,
hence the configurationC2 = (0/0, 1/0, 1/0) is obtained. Now the rules r2,1 and r3,2
can be used in σ2 and σ3, respectively, and one gets C3 = (1/0, 0/0, 1/0). Now the
rules r1,1 and r3,2 are applied and the configurationC4 = (0/1, 0/0, 0/0) is obtained.
This configuration leads toC5 = C2. The process restarts from this configuration and
continues in a periodic manner.

1.5 Summary

The definitions introduced in this chapter use the most basic membrane computing
concepts. In the following chapters some more specific concepts will be added to
these definitions in order to make them suitable for the problems we aim to model.
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Chapter 2
Fundamentals of Evolutionary Computation

Abstract The key evolutionary approaches used in the next chapters, including
genetic algorithms, quantum-inspired evolutionary algorithms, ant colony optimiza-
tion, particle swarm optimization and differential evolution are presented.

2.1 Introduction

Evolutionary algorithms (EAs) refer to a generic metaheuristic optimization
algorithms characterized by implementations looking at a guided random search of
an iterative process [49, 59, 111, 122]. EAs include a family of heuristic algorithms,
called metaheuristics [10–12]. As a branch of soft computing referring to less exact
calculations [115], EAs has become a well-known research area in computer science
[82, 111].

Inspired by natural selection [26] and molecular genetics [18], EAs started with
three research topics in the 1950s and 1960s: genetic algorithms (GAs) developed by
Holland [58], evolution strategies (ES) invented by Rechenberg [102] and Schwefel
[106, 107] and evolutionary programming (EP) introduced by Fogel et al. [40], and
has a tremendous growth in the past three decades as witnessed by the increasing
number of international conferences, workshops, papers, books and dissertations as
well as more and more journals dedicated to the field. Historically, one can divide
the EAs research into two groups: classic EAs and recently developed EAs. The
former consists of GAs, ES, EP, and genetic programming (GP) [71–73], which were
developed in the 1990s. The latter is still in a stage of rapid development and includes
quantum-inspired evolutionary algorithms (QIEAs) [54, 119], simulated annealing
(SA) [20, 70], ant colony optimization (ACO) [30], particle swarm optimization
(PSO) [66, 90, 109], differential evolution (DE) [27, 98], estimation of distribution
algorithms (EDAs) [74, 94], biogeography-based optimization (BBO) [110, 111],
cultural algorithms (CA) [103], tabu search (TS) [48], artificial fish swarm algorithm
(AFSA) [76, 87], artificial bee colony algorithm (ABC) [61], firefly algorithm (FA)
[118], bacterial foraging optimization algorithm (BFOA) [93], teaching learning
based optimization algorithm (TLBO) [100], shuffled frog leaping algorithm (SFL)
[37].

© Springer International Publishing AG 2017
G. Zhang et al., Real-life Applications with Membrane Computing,
Emergence, Complexity and Computation 25, DOI 10.1007/978-3-319-55989-6_2
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Underlying the different variants of EAs, there are several common features: a
fundamental algorithm structure show in Algorithm1 [2, 119], a single solution or
a population of tentative solutions, guided random search by an evaluation func-
tion called fitness function, iterative progress toward better solutions to the problem
[36, 111]. In Algorithm1, an EA starts from a single or a population of candidate
solution(s) P(t) (also called individual(s)), where t represents the number of evo-
lutionary generations, to a problem, and then goes to an iterative search process,
and finally stops when a single or a set of satisfactory solution(s) is found. The
search process consists of the evaluation of candidate solution(s), the variation of
individual(s) from P(t) to Q(t) by using various evolutionary mechanisms and the
generation of the offspring individual(s) P(t+1). Defining practical and robust opti-
mization methodologies, EAs have shown outstanding characteristics, such as global
search capabilities, flexibility, robust performance and adaptability, in the process of
solving complex problems with combinations, discontinuities, constrains, multiple
or many objectives, uncertainties or dynamics [1, 2, 36, 111]. So EAs have been
increasinglywidely applied to problems ranging from practical applications in indus-
try and commerce to leading-edge scientific research [36, 60].

Algorithm 1 EA Fundamental algorithm structure
Require: A single or a population of initial solution(s) P(t), t = 0
1: Evaluate P(t)
2: while (not termination condition) do
3: Q(t) ← Vary P(t)
4: Evaluate Q(t)
5: Produce P(t + 1) from Q(t)
6: t ← t + 1
7: end while

This chapter is devoted to five EA variants, GAs, QIEAs, ACO, PSO and DE,
which are the foundation of membrane algorithms and their engineering applica-
tions described in the next two chapters. Thus, the following sections focus on the
presentation of fundamental concepts and principles, rather than on demonstrating
experiments and results. One can note that the EAs discussed in this chapter are used
to solve optimization problems.

2.2 Genetic Algorithms

As genetic algorithms (GAs) are the earliest, most well-known, and most widely
used EAs, there are numerous publications describing them [2, 36, 68, 111]. The
aim of this section is to briefly highlight the fundamental concepts and evolution
principle so as to make it easy for readers to understand the following four EA
variants, QIEAs, ACO, PSO and DE, and membrane algorithms in the next chapter
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because the notions, operations and procedure underlying GAs are the basics of other
types of EAs.

Inspired by natural selection [26] andmolecular genetics [18], Holland introduced
GAs in the mid-1970s [58], on the basis of the influential works of Fraser [41], Box
[14], Friedberg [42], Friedberg et al. [43] and Bremermann [16] in the late 1950s.
In a GA, a potential or candidate solution to an optimization problem is called an
individual; the encoding (binary, numeric, or others) of an individual is known as
its genome or chromosome. A population is a set consisting of a certain number of
individuals. A chromosome is composed of a sequence of genes; specific genes are
known as genotypes, and the problem-specific parameter representing by a genotype
is termed a phenotype; the value of a gene is called an allele. The individuals at
the current generation are named parents and correspondingly the new individuals
produced by them are called children or offspring. The function used to evaluate
an individual is called fitness function and correspondingly the function value with
respect to the individual is called its fitness, which indicates the quality of the solution
in the context of a given problem. The whole process of searching for an optimal
solution to a problem is called evolution [68].

Underlying various variants of GAs, there is a common algorithm structure shown
in Algorithm2, where each step is detailed as follows:

Algorithm 2 GA Algorithm structure
Require: A group of random generated initial solutions P(t), t = 0
1: Evaluate P(t)
2: while (not termination condition) do
3: Select individuals from P(t) to form Q1(t) for crossover
4: Crossover Q1(t) to form Q2(t)
5: Mutate Q2(t) to form Q3(t)
6: Evaluate Q3(t)
7: P(t + 1) ← Q3(t)
8: t ← t + 1
9: end while

Step 0: An initial population P(t), t = 0, consisting of a certain number of individ-
uals is randomly generated. Each individual is composed of a sequence of codes
such as binary, numeric and permutation codes.

Step 1: Each individual in P(t) is evaluated by using the fitness function associated
with the optimization problem. Thus, each individual has assigned a fitness value.

Step 2: The termination criterion may be the prescribed maximal number of evolu-
tionary generations or the preset difference between the best solution searched
and the optimal/desired solution of the optimization problem.

Step 3: Determine each pair of individuals in P(t) to perform crossover opera-
tion. As usual the roulette-wheel selection with respect to fitness, which is also
called fitness-proportional selection or fitness-proportionate selection, is used.
The selected population is represented as Q1(t).
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Step 4: Swap partial genes of each pair of selected individuals in Q1(t) with each
other by a probabilistic value called crossover probability. The crossovered pop-
ulation is denoted as Q2(t). It is well known that the crossover probability should
be assigned a bigger value.

Step 5: Each gene of each individual in Q2(t) is mutated by a probabilistic value
called mutation probability, which is usually set to a smaller value. The mutated
population is denoted as Q3(t). The uniform mutation is a popular approach.

Step 6: This step is similar to Step 1, i.e., each individual in Q3(t) is evaluated.
Step 7: The individuals in Q3(t) are assigned to P(t+1) as the offspring individuals.
Step 8: The evolutionary generation t increases by 1.

The GA research was mainly developed in the past decades with respect to encod-
ing techniques, selection, crossover operators, mutation operators, fitness functions,
hybridization with other techniques and theoretical analysis. As usual the individ-
ual representation, selection methods, crossover and mutation operators, and fitness
functions depend on the optimization problem. The individuals in GAs could be rep-
resented by using various types of codes, such as binary and m-ary codes, numeric
values, permutation codes and quantum-inspired bits. The analysis of various rep-
resentations can be found in [13, 54, 95, 104]. Most of the researches on GAs are
related to the modification of selection, crossover and mutation operators. So numer-
ous variants of selection, crossover andmutation operators and their effect on the GA
performance were reported in literature [15, 44, 55, 62, 63, 81, 89, 92]. Moreover,
the influence of crossover and mutation probabilities were also investigated [3, 4,
79]. To select a suitable fitness function to a real-world application problem is also an
important issue. In [60], a comprehensive survey of the research on fitness approx-
imation in GAs was reviewed with respect to approximation levels, approximate
model management schemes and model construction techniques. Recent research
on GAs principally focused on the hybridization with other techniques such as tabu
search, simulated annealing, quantum computing, rough set, fuzzy logic theory and
other types of EAs. These investigations mentioned above are more concerned with
the question ofwhether GAswork. Actually, the theoretical analysis of GAs answers
satisfactorily the questions of how or why GAs work, which are important and chal-
lenging issues in the further advance of GAs, even of EAs [111]. Some methods like
schema theory, Markov models and Fourier andWalsh transforms have been applied
to analyze the GAs behavior [2, 59, 111].

2.3 Quantum-Inspired Evolutionary Algorithms

The past three decades have witnessed the use of various properties from quantum
physics to devise a new kind of computers, quantum computers [46, 88]. In contrast
with classical computers processing binary digits (bits), quantum computers work
by handling quantum bits (qubits), which are the smallest information units that can
be stored in a two-state quantum computer [56]. A qubit can be in a superposition
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of the usual ‘0’ and ‘1’ states other than themselves. Thus, a quantum particle could
simultaneously be in many incompatible states [88]. Each superposition, |ψ〉 can be
represented as a linear sum of the basis states, |ψ〉 = α|0〉+β|1〉, where α and β are
numbers that denote the corresponding states’ probability amplitudes. The values
|α|2 and |β|2 are the probabilities that the observation of a qubit in state |ψ〉 will
render a ‘0’ or ‘1’ state, respectively [47], and normalization property requires that
|α|2 + |β|2 = 1. A quantum gate can be used to modify the state of a qubit [56]. A
quantum system |ψn〉 with n qubits can represent 2n states simultaneously [5, 50] as

|ψn〉 =
2n∑

j=1

C j |Sj 〉, (2.1)

where C j is the probability amplitude of the j th state Sj described by the binary
string (x1x2 · · · xn), where xi , i = 1, 2, · · · , n, is either 0 or 1. Nonetheless, the
system will “collapse” to a single state if a quantum state is observed.

Inspired byquantumcomputing, a computationalmethod called quantum-inspired
computation is designed to solve various problems in the context of a classical
computing paradigm [83]. Amongst the quantum-inspired computation topics, a
quantum-inspired evolutionary algorithms (QIEA) is receiving renewed attention.
A QIEA is a novel EA for a classical computer rather than for a quantum machine
(or computer). Generally speaking, a QIEA is designed by integrating the EA frame-
work with quantum-inspired bits (Q-bits), quantum-inspired gates (Q-gates) and
probabilistic observation.

Conventional EAs use several different representations to encode solutions onto
chromosomes, such as symbolic, binary, and numeric representations [57]. While in
a QIEA, a novel probabilistic description, Q-bit representation, of Q-bit individuals
is used. A Q-bit individual is represented as a string of Q-bits. The basic computing
unit in a QIEA, Q-bit, is defined as a column vector

[α β]T , (2.2)

where α and β are real numbers satisfying the normalization condition |α|2 +|β|2 =
1. Equation (2.2) is usuallywritten asα|0〉+β|1〉 in quantummechanics ket-notation.
The values |α|2 and |β|2 are the probabilities that the Q-bit will be found in the ‘0’ or
‘1’ state, respectively, in quantum theory [54]. By using a probabilistic observation,
each Q-bit can be rendered into one binary bit. Algorithm3 shows the observation
process, where x is the observed value of the Q-bit shown in (2.2). Differing from the
binary representation that uses 0 or 1 to deterministically represent a bit, the Q-bit
representation uses a Q-bit to describe a probabilistic linear superposition of 0 and
1. The Q-bit representation can be easily extended to multi-Q-bit systems.



16 2 Fundamentals of Evolutionary Computation

Algorithm 3 Observation process in the QIEA [54]
Require: A Q-bit [α β]
1: if random[0, 1) < |α|2 then
2: x ← 0
3: else
4: x ← 1
5: end if

In what follows, the QIEA in [54] is taken as an example to detail the QIEA
algorithm. Algorithm4 shows the pseudocode QIEA algorithm, where each step is
described below.

Algorithm 4 Pseudocode algorithm of the QIEA in [54]
Require: An initial population Q(t), t = 0
1: Make P(t) by observing the states of Q(t)
2: Evaluate P(t)
3: Store all solutions in P(t), into B(t) and the best solution b in B(t)
4: while (not termination condition) do
5: t ← t + 1
6: Make P(t) by observing the states of Q(t − 1)
7: Evaluate P(t)
8: Update Q(t) using Q-gates
9: Store all solutions in P(t), into B(t − 1) and the best solution b in B(t)
10: if (migration condition) then
11: Migrate b or btj to B(t) globally or locally, respectively
12: end if
13: end while

Step 0: In the step of “initialize Q(t)”, a population Q(0) with n multi-Q-bit indi-
viduals is produced, Q(t)={q t

1, q
t
2, · · · , q t

n}, at the generation moment t = 0,
where q t

i (i = 1, 2, · · · , n) is an arbitrary individual in Q(t), denoted as

q t
i =

[
αt
i1|αt

i2| · · · |αt
im

βt
i1|βt

i2| · · · |βt
im

]
, (2.3)

where m is the string length of the Q-bit individual, that is, the number of
Q-bits used in each individual’s representation. The values αt

i j and βt
i j , j =

1, 2, · · · ,m, t = 0, are initialized by the same probability amplitude 1/
√
2,which

guarantees that all possible states are superposed with the same probability at the
beginning.

Step 1: By independently observing each Q-bit of Q(t) (where at this stage t = 0),
using the process described in Algorithm3, binary solutions in P(t), P(t) = {xt1,
xt2, · · · , xtn}, are obtained, where each xti (i = 1, 2, · · · , n) is a binary solution
with m bits. Each bit ‘0’ or ‘1’ is the observed value of a Q-bit [αt

i j βt
i j ]T in q t

i ,
respectively, j = 1, 2, · · · ,m.
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Step 2: The binary solution xti (i = 1, 2, · · · , n) in P(t) is evaluated thus obtaining
its fitness.

Step 3: In this step, all solutions in P(t) are stored into B(t), where B(t) = {bt1, bt2,
· · · , btn} and bti = xti (i = 1, 2, · · · , n) (again, at this stage, t = 0). Furthermore,
the best binary solution b in B(t) is also stored.

Step 4: The termination criterion may be the prescribed maximal number of evolu-
tionary generations or the preset difference between the best solution searched
and the optimal/desired solution of the optimization problem.

Step 5: The evolutionary generation t increases by 1.
Step 6: This step is similar to Step 1. Observation of the states of Q(t − 1) produces

the binary solutions in P(t).
Step 7: This step is similar to Step 2.
Step 8: In this step, all the individuals in Q(t) are modified by applying Q-gates.

The QIEA uses a quantum rotation gate as a Q-gate. To be specific, the j th Q-bit
in the i th Q-bit individual q t

i , j = 1, 2, · · · ,m, i = 1, 2, · · · , n, is updated by
applying the current Q-gate Gt

i j (θ)

Gt
i j (θ) =

[
cos θti j − sin θti j
sin θti j cos θti j

]
, (2.4)

where θti j is an adjustable Q-gate rotation angle. Thus, the update procedure for
the Q-bit [αt

i j βt
i j ]T can be described as

[
αt+1
i j

βt+1
i j

]
= Gt

i j (θ)

[
αt
i j

βt
i j

]
, (2.5)

where θti j is defined as
θti j = s(αt

i j ,β
t
i j )Δθti j , (2.6)

and s(αt
i j ,β

t
i j ) and Δθti j are the sign and the value of θti j , respectively. The par-

ticular values used in the QIEA in [54] are illustrated in Table2.1, in which f (·)
is the fitness function, s(αt

i j ,β
t
i j ) depends on the sign of αt

i jβ
t
i j , and b and x are

certain bits of the searched best solution b and the current solution x, respectively.
It is worth pointing out that Table2.1 was derived from a maximization problem
and hence the condition f (x) ≥ f (b) should be replaced by f (x) ≤ f (b) if a
minimization problem is to be considered.

Step 9: This step is similar to Step 3. The better candidate between xti in P(t) and
bt−1
i in B(t−1), i = 1, 2, · · · , n, is selected and stored into B(t). Simultaneously,

the best candidate b in B(t) is also stored.
Steps 10–11: This step includes local and global migrations, where a migration in

this algorithm is defined as the process of copying btj in B(t) or b to B(t). A global
migration is realized by substituting b for all the solutions in B(t), and a local
migration is realized between each pair of neighboring solutions in B(t), i.e., by
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Table 2.1 Lookup table of θti j , where f (·) is the fitness, s(αt
i j ,β

t
i j ) is the sign of θti j , and b and x

are certain bits of the searched best solution b and the current solution x, respectively [54]

x b f (x) ≥ f (b) Δθti j s(αt
i j ,β

t
i j )

αt
i jβ

t
i j ≥ 0 αt

i jβ
t
i j < 0

0 0 false 0 ±1 ±1

0 0 true 0 ±1 ±1

0 1 false 0.01π +1 −1

0 1 true 0 ±1 ±1

1 0 false 0.01π −1 +1

1 0 true 0 ±1 ±1

1 1 false 0 ±1 ±1

1 1 true 0 ±1 ±1

substituting the better one of two neighboring solutions for the other solution. For
more information about the migrations, see [54].

In summary, in QIEA, Q-bits are applied to represent genotype individuals; Q-
gates are employed to operate on Q-bits to generate offspring; and the genotypes
and phenotypes are linked by a probabilistic observation process. QIEAs were firstly
introduced by Narayanan and Moore in the 1990s to solve the traveling salesman
problem [84], in which the crossover operation was performed based on the concept
of interference. The contribution of Narayanan and Moore signaled the potential
advantage of introducing quantum computational parallelism into the evolutionary
algorithm framework. No further attention was paid to QIEAs until a practical algo-
rithm was proposed by [53, 54], but they are now viewed as an emergent theme
in evolutionary computation. In the last sixteen years have been considered various
variants of QIEAs to solve a large number of problems (for a comprehensive survey
see [119]). The main characteristics of QIEAs can be summarized as follows:

• A QIEA uses a novel representation, Q-bit representation, to describe individuals
of a population. Q-bit representation provides probabilistically a linear superpo-
sition of multiple states.

• A QIEA employs a Q-gate guiding the individuals toward better solutions [54] to
produce the individuals at the next generation.

• A QIEA can exploit the search space for a global solution with a small number of
individuals, even with one element [54].

Currently there is intensive research in this area, but there are some aspects that
need to be addressed from the perspectives of theoretical research, engineering appli-
cations, comparative experiments, extensions ofQIEAs and hybrid algorithms. These
issues were presented in detail in [119].
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2.4 Ant Colony Optimization

Instead of simulating the process of natural selection, some researchers intro-
duced novel algorithms by simulating the collective behavior of decentralized, self-
organized colonies. Ant colony optimization (ACO), originally proposed by Dorigo
and co-workers in 1991 [33] and later explicitly defined in [32], is such a meta-
heuristic approach for combinatorial optimization problem inspired by the foraging
behavior of ants. In nature, to find the shortest path from the nest to a food source, ant
colonies exploit a positive feedback mechanism by laying and detecting the chemi-
cal trail (pheromone) on the ground during their trips. More pheromone is left when
more ants go through the trip, which improves the probability of other ants choosing
this trip. Furthermore, the pheromone has a decreasing action over time because
of evaporation of trail. In the ACO metaphor, a generic combinatorial optimization
problem is transformed into a shortest path problem which is encoded as a graph;
a number of paths are constructed by artificial ants walking on the graph based on
a probabilistic model using pheromone; the cost of the generated path is utilized to
modify the pheromone, and hence to bias the generation of further paths.

ACOwas initially applied to solve traveling salesman problem (TSP) [32], one of
the well-known NP-complete problems and most intensively studied combinatorial
optimization problems in the areas of optimization, operational research, theoretical
computer science, and computational mathematics. The TSP can be described as
follows [121]. Given a set C of N cities, i.e., C = {c1, c2, · · · , cN }, and a set D
of the pairwise travel costs, D = {di j |i, j ∈ {1, 2, · · · , N }, i �= j}, it is requested
to find the minimal cost of the path taken by a salesman visiting each of the cities
just once and returning to the starting point. More generally, the task is to find
a Hamiltonian tour with a minimal length in a connected, directed graph with a
positive weight associated to each edge. If di j = d ji , the TSP is symmetric in the
sense that traveling from city ci to city c j costs just as much as traveling in the
opposite direction, otherwise, it is asymmetric. This section uses symmetric TSP as
an example to describe ACO.

ACO is an iterative metaheuristic. At each iteration, a number of paths are con-
structed based on stochastic decisions which are biased by pheromone and heuristic
information. These paths are used for updating the pheromone in order to bias fur-
ther solutions towards promising regions of the search space. Algorithm5 gives the
pseudocode of a generic ACO algorithm. In the pseudocode, a local search procedure
may be applied for further improving the solutions constructed by ants. The use of
such a procedure is optional; however, it has been observed that its use improves the
algorithms’s overall performance. The most used and well-known tour improvement
local searches are 2-opt and 3-opt [69], in which two and three edges of a tour are
exchanged, respectively.
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Algorithm 5 Pseudocode of a generic ACO
Require: t = 0
1: Pheromone trail initialization
2: while (not termination condition) do
3: Construct tours
4: Apply local search (optional)
5: Update pheromone
6: t ← t + 1
7: end while

Themost well-knownACO algorithms in literature include the earliest ant system
(AS) [33, 34], MAX-MIN ant system [114], hyper-cube ant system [9], and ant
colony system (ACS) [29], and they differ in the way to construct tours and/or
update pheromone. According to the studies in [8, 28, 31], the ACS is one of the
most powerful ACO algorithms. Therefore, we take it as an example to describe the
ACO algorithm. Algorithm6 shows the pseudocode of an ACS algorithm, where
each step is described below.

Algorithm 6 Pseudocode algorithm of the ACS in [29]
Require: t = 0
1: Pheromone trail initialization
2: while (not termination condition) do
3: Randomly place M ants in the N nodes
4: for k = 1, 2, . . . , M do
5: for n = 1, 2, . . . , N do
6: Ants moving
7: end for
8: Evaluate the length of the path construct by ant k
9: Local pheromone updating
10: end for
11: Global pheromone updating
12: t ← t + 1
13: end while

Step 1: At the beginning of a run, the initial pheromone value τ0 is set to be 1/NDa ,
where N is the number of cities in a TSP and Da is the length of a feasible tour
generated randomly or by the nearest-neighbor heuristic.

Step 2: The termination criterion may be the prescribed maximal number of gen-
erations or the preset difference between the best path searched and the opti-
mal/desired path of the problem.

Step 3: The M ants are randomly positioned on the N nodes of the TSP graph as the
initial state of tour construction.

Step 4: The ants construct paths one by one.
Steps 5–7: Each ant constructs a whole path step by step using a pseudorandom

proportional rule. Specifically, the kth ant in the i th city chooses the next city j
by using the following formula
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j =
⎧
⎨

⎩
argmax
l∈N k

i

{[τil]α[ηil]β}, if q ≤ q0

J, otherwise
(2.7)

where arg max{·} stands for the argument of the maximum, that is to say, the set of
points of the given argument for which the value of the given expression attains its
maximum value; τil is the pheromone value of the edge connecting the i th node
and the lth node; ηil is a heuristic information value, equal to the inverse of the
distance between the i th and lth cities; the parameters α and β (α > 0 and β > 0)
determine the relative importance of the pheromone value τil and the heuristic
information ηil ;N k

i (N k
i ⊆ N ) is the set of all nodes of the TSP graph that the kth

ant in the i th city can visit; q0 (0 ≤ q0 ≤ 1) is a user-defined parameter specifying
the distribution ratio of the two choices; q is a random number generated by using
a uniform distribution function in the interval [0, 1]; J means that the next city
j is chosen by using a random proportional rule, i.e., the kth ant in the i th city
visits the city j at the next step according to the probability

pki j =
⎧
⎨

⎩

[τi j ]α[ηi j ]β∑

l∈N k
i

[τil ]α[ηil ]β , j ∈ N k
i

0, otherwise
(2.8)

Step 8: At each time an ant construct a whole path, the length of this path is evaluated
and compared with the best path stored. If the new path is better than the stored
best path, the best path is updated.

Step 9: Ant releases a mount of pheromone on edges at its every traveling when it
completes a path construction procedure. In ACS, an ant updates the pheromone
value τi j of the tour by applying a local pheromone update rule, defined as follows

τi j = (1 − υ)τi j + υτ0 (2.9)

where υ (0 < υ < 1) is a local pheromone decay coefficient. The local pheromone
update is used to encourage subsequent ants to choose other edges and, hence, to
produce different solutions, by decreasing the pheromone value on the traversed
edges.

Step 11: In this step, the globally best ant, i.e., the ant which constructs the shortest
tour form the beginning of the trial, is allowed to deposit additional pheromone
via a global pheromone update rule. To be specific, the pheromone value τi j of
the edge connecting the i th node and the j th node is modified by

τi j = (1 − ρ)τi j + ρΔτi j (2.10)

where ρ (0 < ρ ≤ 1) is a global pheromone decay coefficient which is also called
pheromone evaporation rate, and Δτi j is



22 2 Fundamentals of Evolutionary Computation

Δτi j =
{
1/Db, if (i, j) ∈ Tb
0, otherwise

(2.11)

where Db is the length of the shorted path searched so far, and Tb is the path
corresponding to Db.

Step 12: The iteration counter t increases by 1.

At present, the research of ACO focuses on three main aspects, i.e., improve-
ment of different ACO algorithms, applications, and theoretic analysis. Regarding
the performance improvement, researchers proposed a large variety of ACO variants
by designing new path construct schemes, pheromone update schemes, mixing with
various local search operators, or even incorporating novel mechanism like chaos
[75]. As for applications, although ACO was originally introduced in connection to
TSP, it is now recognized as one of the state-of-the-art methods for solving other
kinds of discrete optimization problems, such as assignment problems, scheduling
problems, graph coloring, vehicle routing problems, design of communication net-
works. Furthermore, in recent years, some researchers have extended its use for
continuous optimization problems, multi-objective discrete problems and dynamic
problems. Since experimental results show better performance of ACO over other
meta-heuristics, researchers have paid much attention to the ACO theory to explain
why and how it works. The first convergence proof of ACO was given in [51]. Since
then various convergence proofs for various ACO variants have been published, e.g.
[19, 30, 52]. For more details of the progress of ACO, the readers can refer to the
comprehensive survey papers [6, 28].

2.5 Particle Swarm Optimization

Particle swarm optimization (PSO) is another well-known population-based meta-
heuristic approach proposed by Kennedy and Eberhart in 1995 for continuous opti-
mization problems [65]. This technique was motivated by social behavior of bird
flock. In PSO, each individual is called a “particle” with properties being described
by the current position vector, its velocity vector and its personal best position vector,
which represents a potential solution to a problem. Instead of using genetic opera-
tors (e.g., crossover, mutation) to evolve individuals, the trajectory of each particle is
adjusted by dynamically altering its velocity according to its own flying experience
and its companion’s experience.

Suppose there are N particles in a PSO, and each particle is treated as a point
in a D-dimensional space, representing a candidate solution to the problem. Each
particle is characterized by the current position vector xi = (xi,1, xi,2, . . . , xi,D),
velocity vector vi = (vi,1, vi,2, . . . , vi,D) and its personal best position vector pi =
(pi,1, pi,2, . . . , pi,D), i = 1, 2, . . . , N . The particle with its personal best position
which returns the best fitness value among the population is called the global best
particle and its position is recorded as pg = (pg,1, pg,2, . . . , pg,D), where g is the
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index of the global best particle. Algorithm7 shows the pseudocode PSO algorithm,
where each step is described below [25, 77, 90, 116, 123].

Algorithm 7 Pseudocode algorithm of the PSO
Require: An initial population of N particles with positions P(t) and velocities V (t), t = 0
1: Evaluate the particles
2: Initialize personal best and global best
3: while (not termination condition) do
4: for i = 1, 2, . . . , N do
5: Change the velocity and position
6: Evaluate the particle
7: Update personal and global best positions
8: end for
9: t ← t + 1
10: end while

Step 0: In this step, uniform distribution on [xmin
j , xmax

j ] ( j = 1, 2, . . . , D) in the
j th dimension is used to generate the initial current position vector xi for the i th
particle,where xmin

j and xmax
j are lower limit andupper limit of particle positions in

the j th dimension. Similarly, the initial velocity vector vi is initialized by choosing
its j th component randomly in [−vmax

j , vmax
j ] ( j = 1, 2, . . . , D), where vmax

j is
the upper limit of velocities in the j th dimension. vmax

j is an important parameter
that determines the search behavior of the algorithm. If vmax

j is too small, particles
may become trapped in local optima, unable to move far away to a better position.
On the other hand, if vmax

j is too large, particles might fly past good solutions.
Step 1: The performance of each particle is measured according to a pre-defined

fitness function.
Step 2: For each particle, set its personal best position as the current position, i.e.,

pi = xi , i = 1, 2, . . . , N . Also, identify the global best position pg based on the
fitness value of the particles.

Step 3: The termination criterion may be the prescribed maximal number of gener-
ations or the preset difference between the best solution searched and the opti-
mal/desired solution of the problem.

Step 4: The particle flies one by one.
Step 5: The velocity and position of the i th particle are updated according to the

following equation,

vi = vi+c1r1(pi − xi )+c2r2(pg − xi ) (2.12)

xi = xi + vi (2.13)

where c1 and c2 are acceleration coefficients, r1 and r2 are two different sequences
of random numbers uniformly distributed over (0, 1). In (2.12), the first part
represents the previous velocity, which provides the necessary momentum for
particles to roam across the search space; the second part is the “cognition” part,
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which represents the private thinking of the particle itself; the third part is the
“social” part, which represents the collaboration among the particles in finding
the global optimal solution. Equation (2.12) is used to calculate the particle’s new
velocity and the particle flies toward a new position according to (2.13). In this
step, if the particle’s velocity on j th dimension exceeds the maximum value vmax

j ,
then it is clamped to vmax

j .
Step 6: The performance of the particle ismeasured according to a pre-definedfitness

function.
Step 7: Comparing particle’s fitness with its personal best performance. If current

value is better than its personal best fitness, then update its personal best fitness
as the current fitness and set pi = xi . Also, comparing particle’s fitness with the
population’s overall previous best. If current value is better that the previous best
value, then update the global best fitness as the current value and set pg = xi .

Step 9: The iteration counter t increases by 1.

The original PSO has been found performing well in solving some simple
problems, however, its performance is not satisfactory when solving complex
problems. Therefore, a considerable amount of work has been done in develop-
ing the original PSO. For example, in [108], to reduce the importance of vmax

j , Shi
and Eberhart introduced the concept of inertia weight in the calculation of velocities
to balance the local and global search, and later they further improved the algo-
rithm performance with a linearly varying inertia weigh over the iterations. In [101],
time-varying acceleration coefficients are introduced to control the local search and
the convergence to the global optimum solution. In fully informed particle swarm
algorithm [80], the particle is affected by all its neighbors, sometimes with no influ-
ence from its own previous success. In [77], a novel learning strategy whereby all
other particles’ historical best information is proposed to update a particle’s velocity,
which enables the diversity of the swarm to be preserved to discourage premature
convergence. Instead of moving toward a kind of stochastic average of personal best
position and global best position, particles moving toward points defined by personal
best position and local best position is also widely investigated, where the best posi-
tion is the location of the particle’s neighborhood defined by a certain topology. Cur-
rently, various topologies have been studied, such as simple ring lattice, small-world
modifications [64, 117], or von Neumann structure [67]. Some theoretical analysis
for PSO approaches has been developed. For example, in [25], Clerc and Kennedy
analyzed a particles trajectory as itmoves in discrete time from the algebraic view and
in continuous time from the analytical view. In [24], Clerc analyzed the distribution
of velocities of a particle in order to observe algorithm behavior in stagnation phases.
As for applications, PSO has been applied across various areas, such as classification,
pattern recognition, planning, signal processing, power system, controller design. For
more information of the important work in PSO, the readers can refer to the survey
paper [96].
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2.6 Differential Evolution

Differential Evolution (DE) is ameta-heuristic approach originally proposed byStorn
and Price in 1996 for handling continuous optimization problems [112, 113]. Rather
than using natural selection or colony collective behavior, DE relies on engineer-
ing aspects. In 1994, Price published a genetic annealing algorithm [97], which is a
population-based, combinatorial optimization algorithm that implements an anneal-
ing criterion via thresholds. Later, Genetic Annealing has been used to solve Cheby-
shev polynomial fitting problem. As the performance of genetic annealing was not
very satisfactory because of its slow convergence and difficulties to set effective con-
trol parameters, Price introduced floating-point encoding, arithmetic operations and
differential mutation operator in genetic annealing algorithm. As a result, these alter-
ations transformed the combinatorial algorithm genetic annealing into a numerical
optimizer, which becomes the first generation of DE. Due to its distinguished charac-
teristics, such as few control parameters, simple and straightforward implementation,
remarkable performance and low complexity, DE [27, 86] has been recognized as a
competitive continuous optimization technique.

Similar to GA or PSO, DE also maintains a population during the evolution.
Let P(t) = {xt1, xt2, . . . , xtN } be the population at the t th iteration, and xti =
(xti,1, x

t
i,2, . . . , x

t
i,D) (i = 1, 2, . . . , N ) be the i th individual in P(t) that represents a

potential solution to the problem, where N is the population size and D is the number
of decision variables of the problem. Starting with an initial population P(t)(t = 0),
the optimization process involves three basic steps, i.e., mutation, crossover and
selection. Algorithm8 shows the pseudocode of a basic DE, where each step is
described below [21–23, 86].

Algorithm 8 Pseudocode algorithm of the basic DE
Require: An initial population P(t), t = 0
1: Evaluate the population P(t)
2: while (not termination condition) do
3: Mutate to form V (t)
4: Crossover to form U (t)
5: Evaluate U (t)
6: Selection to form P(t + 1)
7: t ← t + 1
8: end while

Step 0: The initial population P(0) = {x01, x02, . . . , x0N } is produced, where each
component of an individual is uniformly and randomly sampled in the feasible
space, that is,

x0i, j = xmin
j + rand(0, 1) · (xmax

j − xmin
j ), (2.14)
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where i = 1, 2, . . . , N ; j = 1, 2, . . . , D; rand(0, 1) is a uniformly distributed
random variable within the interval [0,1], xmin

j and xmax
j are the lower and upper

bound of the j th decision variable.
Step 1: The performance of each individual is evaluated according to a pre-defined

fitness function.
Step 2: The termination criterionmaybe the prescribedmaximal number of iterations

or the preset difference between the best solution searched and the optimal/desired
solution of the problem.

Step 3: The mutation operator is performed on xti (called target vector)
(i = 1, 2, . . . , N ) to create a mutant vector vti (called donor vector) by perturbing
a randomly selected vector xtr1 with the difference of two other randomly selected
vector xtr2 and xtr3 . This operation is formulated as

vti = xtr1 + F · (xtr2 − xtr3) (2.15)

where xtr1 , x
t
r2 and xtr3 are distinct vectors randomly selected from the current

population P(t), and they are selected a new for each mutation operation. F ∈
(0, 1) is a constant called differential factor, which scales the differential vector
(xtr2 − xtr3) added to the base vector xtr1 .

Step 4: Followingmutation, the donor individual vti (i = 1, 2, . . . , N ) is recombined
with the target individual xti to produce an offspring uti (called trial vector) by
using a binomial crossover operator, which is a typical case of genes’ exchange,
formulated as

uti, j =
{

vt
i, j , if rand j (0, 1) ≤ Cr or j = jrand
xti, j , otherwise

, (2.16)

where j = 1, 2, . . . , D; Cr ∈ (0, 1) is a crossover rate which is used to control
the diversity of the population; and jrand ∈ {1, 2, . . . , D} is a random integer
generated once for each individual xti . The condition j = jrand makes sure that at
least one component of uti inherits from vti so that u

t
i will not be identical with x

t
i .

Step 5: The trial vector uti (i = 1, 2, . . . , N ) is evaluated according to a pre-defined
fitness function.

Step 6: The selection operator is performed on P(t) andU (t) to construct the popula-
tion P(t+1) by choosing vectors between the trial vectors and their corresponding
target vectors following the formula

xt+1
i =

{
uti , if f (uti ) ≤ f (xti )
xti , otherwise,

, (2.17)

where f (·) is a fitness function.
Step 7: The iteration counter t increases by 1.

In spite of several advantages, DE still suffers from prematurity and/or stagna-
tion. Hence a good volume of work in the literature has been devoted to overcome
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its drawbacks, mainly from the perspectives of parameter control, operator design,
population structure, and hybridization with other meta-heuristics. Many attempts
have been made to improve DE performance by setting appropriate parameter values
[45, 105, 112] or using parameter adaptation techniques [17, 78, 99] for scale factor
F and crossover rate Cr . Also, lots of work focused on designing of new muta-
tion operators, such as trigonometric mutation [39], “DE/current-to-pbest” mutation
[120], GPBX-α mutation [35], or mixing mutation operators [78, 99]. The popu-
lation structure determines the way individuals share information with each other
and many researchers investigate the population structure in DE, see [21, 35, 38].
Hybridization has become an attractive route in algorithm design due to its capability
for handling quite complex problems. Therefore, significant work has been done on
hybridizing DE with other meta-heuristics, see [7, 85, 91]. In addition to improving
DE performance, DE has also been applied to various areas, like signal processing,
controller design, planning, power systems, clustering, etc. For more details of DE,
two most recently survey papers [27, 86], are recommended.

2.7 Conclusions

This chapter introduced the fundamental concepts and principles of several EA vari-
ants including GAs, QIEAs, ACO, PSO and DE. For each variant, we reviewed
its history, detailed its algorithm and addressed its future research issues. The five
variants will be used to design different types of membrane algorithms in the next
chapter.
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Chapter 3
Membrane Algorithms

Abstract MembraneAlgorithms (MAs) area is focusing on developing newvariants
of meta-heuristic algorithms for solving complex optimization problems by using
either the hierarchical or network membrane structures, evolution rules and com-
putational capabilities of membrane systems and the methods and well-established
techniques employed in Evolutionary Computation. MAs studied in this volume, and
described in this Chapter, refer to four variants of meta-heuristics using the hierar-
chical structure of the membrane systems - nested membrane structure, one-level
membrane structure, hybrid membrane structure and dynamic membrane structure;
whereas those using the network structure consist of two subcategories - statical
network structure and dynamical network structure.

3.1 Introduction

Natural computing, a fast growing interdisciplinary field, aims to develop concepts,
computational paradigms and theories inspired from various natural processes and
phenomena. Membrane computing (MC) and evolutionary computation (EC) are
main branches of natural computing. MC with rigor and sound theoretical devel-
opment for all variants of membrane systems provides a parallel-distributed frame-
work and flexible evolution rules. While EC has outstanding characteristics, such as
easy-understanding, robust performance, flexibility, and good results in solving real-
world problems. These features suggest the exploration of the interactions between
membrane computing and evolutionary computation, leading to the research of evo-
lutionary membrane computing (EMC). At present, the possible interplay ofMC and
EC has produced two research topics [88]: membrane-inspired evolutionary algo-
rithms (MIEAs), also called membrane algorithms (MAs), and automated design
of membrane computing models (ADMCM). On the one hand, MIEAs represent a
research direction in MC with great success in approaching real-world applications
[53]. On the other hand, ADMCM aims to circumvent the programmability issue of
membrane system models [13, 32] by using EC techniques. The difference between
MIEA and ADMCM is illustrated by Fig. 3.1, where they have different inputs and
outputs. This chapter only focuses on the MIEAs part.
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Fig. 3.1 Difference between
MIEA and ADMCM

Fig. 3.2 Classification of
MIEAs with respect to the
membrane structure

AnMIEA orMA concentrates on developing new variants of meta-heuristic algo-
rithms for solving complex optimization problems by using the hierarchical or net-
work membrane structures, evolution rules and computational procedures utilized
by P systems and the methods and well-established techniques employed by EC
[88]. In different variants of MIEAs, membrane structures have significant effects
on their design. According to the membrane structure used, MIEAs can be classified
into two categories: hierarchical structure basedMIEAs and network structure based
MIEAs. On the one hand, the hierarchical structure is subclassified into four cate-
gories: nested membrane structure (NMS: a rooted tree with only one branch), one-
level membrane structure (OLMS), hybrid membrane structure (HMS) and dynamic
membrane structure (DMS). The network structure is divided into two subcategories:
statical network structure (SNS) and dynamical network structure (DNS). Figure3.2
gives the classification of MIEAs from the point of view of membrane structure.

As a hybrid approximate optimization algorithm integrating P systems with
meta-heuristic approaches, MIEA has been a novel and promising interdisciplinary
research direction and attracted the attention of researchers from various areas. In
what follows, we describe each of the abovementioned classes ofMIEAs, presenting
the principle behind its design, current development and some instances of it. Mean-
while, experimental results on some benchmark problems will be given to verify
the algorithm performance. Finally, P systems roles in MAs are investigated in an
empirical manner.
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3.2 Membrane Algorithms with Nested Membrane
Structure

Anestedmembrane structure (NMS, for short) is the first kind ofmembrane structure
considered for designing an MIEA, initiating the research of such problems. This
section first describes the research progress and principle of NMS-based MIEAs.
Then an instance, called genetic algorithm based on P systems (GAPS, for short), is
presented and its performance is verified on Knapsack problems.

3.2.1 Principle

The NMS-based MIEAs were designed by integrating NMS and transport rules of a
cell-like P systemwith severalmeta-heuristic approaches. Algorithms in amembrane
(AIM) (in fact, within the region delimited by the membrane), is a concept unifying
various subalgorithms, algorithm components and an independent algorithm; com-
munications are performedonly between adjacent regions. Thefirst versionofMIEAs
with NMS was introduced in [47]. For this kind of MIEAs, several meta-heuristic
approaches were used as AIMs. For example, AIM in [47, 49] was designed by using
a tabu search. Brownian and genetic algorithm (GA) were used to design AIM in
[51, 52]. In [65], a GA was used as AIM to design a MIEA to solve a DNA sequence
design problem. In [36], a GA and a local search were considered as AIM to design
MIEAs for min storage problems. In [61, 69], a GA was regarded as AIM to design
MIEAs for function optimization problems and proton exchange membrane fuel cell
model parameter estimation problems. In [91], a sequential quadratic programming
(SQP) algorithm was used as AIM to solve complex constrained problems and the
gasoline blending scheduling problem.

Generally, the NMS-basedMIEAs of orderm are composed of three components:

(i) m membranes, which is shown in Fig. 3.3, where the outermost one is the skin
membrane and the innermost one is an elementary membrane;

(ii) Inside the ith region delimited by the ith membrane, i = 1, 2, . . . ,m, a subal-
gorithm is running and a new population is obtained;

(iii) Solution transporting mechanisms between adjoining regions.

After the initial setting, an NMS-based MIEA works as follows:

Fig. 3.3 A nested membrane structure [47]
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(i) The tentative solutions in the ith region are updated by the subalgorithm with
respect to the ith region, i = 1, 2, . . . ,m.

(ii) The copies of the better and worse solutions from the ith membrane (1 ≤ i ≤
m − 1) are sent into its adjoining inner and outer regions, respectively. The copy
of the better solution from the (m − 1)th region is collected in the innermost
membrane labeled m.

(iii) Several best individuals from the solutions in the region and received from the
adjacent regions are selected to construct the next population in each region.

(iv) Goes to Step (i) until the termination criterion holds.
(v) The innermost membrane stores the computing result.

3.2.2 Genetic Algorithm Based on P System

3.2.2.1 Algorithm

An approximate optimization algorithm integrating genetic algorithm and NMS,
called GAPS, is presented to solve knapsack problems. In GAPS, the objects consist
of binary strings; the rules are composed of selection, crossover, mutation of GA,
and communication rules of P systems in each membrane. Binary strings, organized
as individuals, are dealt with as multisets of objects, each of which corresponds to a
candidate solution of the problem. The set of rules are responsible for evolving the
system and transporting the best or worst individuals between adjacent regions. The
best individual in the innermost membrane is the final solution of the problem.

More precisely, the P system used in GAPS consists of:

Algorithm 1 Pseudocode algorithm of the GAPS
1: t = 1
2: Initialize the membrane structure
3: while (not termination condition) do
4: for i = 1, 2, . . . ,m do
5: Perform GA inside the ith region
6: end for
7: Execute the communication rules
8: t ← t + 1
9: end while

(i) a membrane structure [[, . . . , [ ]m, . . . , ]2]1 with m regions, where the mem-
branes or regions from the outmost to the innermost are labeled by 1, 2, . . . ,m,
respectively;

(ii) an alphabet that consists of the set {0, 1};
(iii) a set of terminal symbols, T , {0, 1};
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(iv) initial multisets associated with each membrane
w1 = x1x2 . . . xn1 ,
w2 = xn1+1xn1+2 . . . xn2 ,
· · · · · ·
wm = xn(m−1)+1xn(m−1)+2 . . . xnm ,
where xj, 1 ≤ j ≤ N , is a binary coded individual; ni, 1 ≤ i ≤ m, is the number
of individuals in wi;

∑m
i=1 ni = N , where N is the total number of individuals

in the system;
(v) rules which are classified as

(a) evolution rules in each membrane; these are transformation-like rules
including selection, crossover, and mutation of GA;

(b) communication ruleswhich send the best orworst individual to the adjacent
region.

The pseudocode algorithm for GAPS is shown in Algorithm 1. In what follows
each step is described in detail.

Step 1: Initially, the iteration counter t is set to 1.
Step 2: In the initialization, an NMS shown in Fig. 3.3 with m membranes is con-

structed. N individuals (e.g., let N = Am, where A is an integer), each of which
consists of D binary numbers, denoted as x1, x2, . . . , xN , are scattered across the
m regions with equal size. The population in the ith region is denoted as P(i), and
its size is ni = A, i = 1, 2, . . . ,m.

Step 3: The termination criterion may be the prescribed maximal number of gener-
ations or the preset difference between the best solution searched and the opti-
mal/desired solution of the problem.

Steps 4–6: In each region, the individuals are made to evolve by using GA. Specifi-
cally, the population with size ni in the ith region first undergoes a roulette-wheel
selection to create a set of ni parents. Then each pair of parents undergoes a single
point crossover with probability pc to create two new individuals. Afterwards,
each new individual undergoes a mutation with a probability pm. The pseudocode
of the GA algorithm with one iteration is shown in Algorithm 2.

Step 7: The ith membrane sends the copies of the better and worse solutions into
its adjoining inner and outer regions, respectively. The innermost membrane,
membrane m, only collects the copy of the better solution coming from the
(m − 1)th region.

Step 8: The iteration counter increases by 1.
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Algorithm 2 Pseudocode algorithm of the GA
Require: A population P with size N
1: Q1 ← ∅
2: fi ← fitness(xj), j ∈ [1,N]
3: fsum = ∑N

i=1 fi
4: for j = 1, 2, . . . ,N do
5: Generate a uniformly distributed random number r ∈ [0, fsum]
6: F ← f1
7: k ← 1
8: while F < r do
9: k ← k + 1
10: F ← F + fk
11: end while
12: Q1 ← Q1

⋃{xk}
13: end for
14: Q2 ← ∅
15: for j = 1, 2, . . . ,N/2 do
16: Randomly select two individuals from Q1, denoted as x1, x2
17: if rand(0, 1) < pc then
18: Generate a random crossover point l ∈ [1,D]
19: Swap the last D − l bits of x1 and x2 to create children c1 and c2
20: Q2 ← Q2

⋃{c1, c2}
21: else
22: Q2 ← Q2

⋃{x1, x2}
23: end if
24: end for
25: Q3 ← ∅
26: for j = 1, 2, . . . ,N do
27: for k = 1, 2, . . . ,D do
28: Generate a random number r ∈ [0, 1]
29: if r < pm then
30: Change the kth bit of the jth individual from 0 to 1 or 1 to 0
31: end if
32: end for
33: Q3 ← Q3

⋃{cj}
34: end for
35: Q ← Q3

3.2.2.2 Examples

To show the effectiveness of GAPS algorithm, a knapsack problem is used as an
application example. The knapsack problem is a combinatorial optimization problem
which can be described as the selection of the most profitable items within a group
given that the knapsack has a limited capacity [18]. Formally, the knapsack problem
requires the selection of a subset of a given set of items so as to maximize a profit
function

f (x1, . . . , xK) =
K∑

i=1

pixi, (3.1)
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Table 3.1 Comparisons of GAPS and GA on three instances of the knapsack problem

Item GAPS GA

Best Worst Average SD Best Worst Average SD

50 296.54 281.98 287.29 3.06 293.91 278.52 283.64 3.05

200 1047.98 1017.15 1027.13 7.34 1044.91 1011.55 1024.59 8.99

400 2120.54 2086.29 2100.86 9.01 2115.16 2084.17 2097.83 8.55

subject to
K∑

i=1

rixi ≤ C, (3.2)

where K is the number of items, pi is the profit of the ith item, ri is the weight of the
ith item, C is the capacity of the given knapsack, and xi is 0 or 1.

To verify the advantage of GAPS over GA, three stochastic knapsack problems
with 50, 200 and 400 items, with ri randomly generated from [1, 10], pi = ri + 5
and C = 0.5

∑K
i=1 ri are constructed. For both GAPS and GA, the population size,

crossover rate pc, mutation probability pm and the termination conditions are set to
20, 0.8, 0.05 and 20000 function evaluations, respectively. In addition, the number
m of membranes in GAPS is set to 4. Each algorithm independently solves each
of three problems for 30 runs. Table3.1 lists the best, worst, mean and standard
deviation (SD) of the solutions.

From Table3.1, it can be seen that GAPS outperforms GA, which demonstrates
the effectiveness of combining GA with NMS. Although the superiority of NMS-
based algorithm is not quite significant; however, it initiates the research of MAs. In
the next few sections, some advanced MAs will be introduced.

3.3 Membrane Algorithms with One-Level Membrane
Structure

One-level membrane structure (OLMS, for short), first proposed in [78], is currently
the most widely used membrane structure in MIEAs. This section first describes
the basic principle of OLMS-based MIEAs. Then three instances by using different
AIMs are presented in detail, and their performances are tested on three kinds of
optimization problems.

3.3.1 Principle

OLMS, which is a special hierarchical membrane structure coming from a cell-like
P system, has a certain number of elementary membranes inside the skin membrane.
The communication inOLMS is usually a global process and canbe executedbetween
any two or more elementary membranes. In the first OLMS-based MIEA [78], a
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quantum-inspired evolutionary algorithm (QIEA) was considered as an AIM. After
that, several variants ofMIEAswithOLMSwere presented by using different types of
AIM designed by using GA [68, 91, 92], particle swarm optimization (PSO) [55, 66,
67, 94], ant colony optimization (ACO) [83], quantum particle swarm optimization
[16], quantum shuffled frog leaping algorithm [15] and differential evolution (DE)
[5]. TheMIEA performancewas tested by applying knapsack problems, satisfiability
problems or TSPs in [78, 79, 82–84]. A multi-objective MIEA with OLMS was
discussed in [81]. The algorithm performance was verified in [4, 5, 12, 39, 66–68,
94] by using various benchmark functions. In addition, a wide range of engineering
problems, such as digital filter design [39], broadcasting problems of P systems [85],
radar emitter signal processing [5, 40, 82, 94], image decomposition [84], controller
design [63], spectrum allocation problems in cognitive radio systems [15, 16] and
image segmentation [55, 62], were solved by using different variants of MIEAs with
OLMS.

The investigations onOLMS [87] show thatOLMS-basedMIEAshave better opti-
mization performance than their counterpart approaches because of their improved
capacity of balancing exploration and exploitation, which is derived from their better
balance between convergence and diversity.

Generally, in an OLMS, there are m elementary membranes, labeled as 1, 2,
. . . ,m, placed inside the skin membrane, denoted by 0, as shown in Fig. 3.4. The
rules are of two types: evolution rules in each of the compartments 1 to m which are
transformation-like rules for updating an individual according to the evolutionary
mechanism of a metaheuristic approach and communication rules which send the
fittest individual from each of the m regions delimited by m elementary membranes
into the skin membrane and then the overall fittest individual from the skin back to
each region.

The general steps for implementing MIEAs with OLMS can be described as
follows.

(i) Design the OLMS shown in Fig. 3.4.
(ii) Inside each elementary membrane, at least one individual, which is randomly

chosen from the population with N individuals, is put. There are totally m
elementarymembranes (m ≤ N). So the number of individuals in an elementary
membrane varies from 1 to N − m + 1.

(iii) The number of iterations is decided for the subpopulation inside each elemen-
tary membrane, where a metaheuristic approach is independently performed.
Specifically, the number gi (i = 1, 2, . . . ,m) of iterations is randomly generated
between 1 and a certain integer number for the ith elementary membrane.

Fig. 3.4 A one level membrane structure
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(iv) Each elementary membrane independently perform its evolutionary process of
the meta-heuristic approach.

(v) Specific information between regions is exchanged by using communication
rules. For example, the best individual found inside each elementary membrane
is sent into the skin membrane; the best individual inside the skin membrane is
sent back to all the elementary membranes.

InOLMS-basedMIEAs, the individuals in a population is initially scattered across
the membrane structure. Inside eachmembrane, the number ni, 1 ≤ i ≤ m, of objects
is randomly chosen. All the individuals are evaluated at each generation to select the
best individual found. The communication rule is executed once at every gi (1 ≤
i ≤ m) generations for each compartment. If the best individual found in the skin
membrane is not updated for a certain number of iterations, the algorithm terminates.

3.3.2 Quantum-Inspired Evolutionary Algorithm Based
on P Systems

3.3.2.1 Algorithm

Quantum-inspired evolutionary algorithm (QIEA) based on P systems (QEPS)
[78] uses the concepts and principles of QIEAs within a P system framework. A
Q-bit representation and Q-gate evolutionary rules together with an OLMS and
transformation/communication-like rules are employed. The objects are organized
in multisets of special strings built either over the set of Q-bits or {0, 1}. The rules
will be responsible to evolve the system and select the fittest Q-bit individuals.

More precisely the P system-like framework consists of:

(i) an one-level membrane structure (OLMS) [[ ]1, [ ]2, . . . , [ ]m]0, which has m
regions labeled by 1, . . . ,m, respectively, inside the skin membrane, labeled by
0;

(ii) an alphabet with all possible Q-bits and the set {0, 1};
(iii) a set of terminal symbols, T , {0, 1};
(iv) initial multisets associated with each membrane

w0 = λ,

w1 = q1q2 . . . qn1 ,
w2 = qn1+1qn1+2 . . . qn2 ,
. . . . . . . . .

wm = q(n(m−1)+1)q(n(m−1)+2) . . . qnm ,

where qj, 1 ≤ j ≤ N , is a Q-bit individual; ni, 1 ≤ i ≤ m, is the number of
individuals in wi;∑m

i=1 ni = N , where N is the total number of individuals
used in this computation;
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(v) rules consisting of two types:

(a) transformation-like evolution rule in each compartment for updating aQ-bit
individual using the current Q-gate (see Step 8 of the QIEA in Sect. 2.3);

(b) observation rules from Q-bit individuals to binary solutions, shown in
Algorithm 3 of Chap.2;

(c) communication rules for sending the best binary individual from m com-
partments into the skin membrane and then the overall best binary repre-
sentation from the skin membrane back to each compartment.

At the beginning of QEPS, the initial population with m multisets w1, . . ., wm,
each of which represents a Q-bit individual, is scattered across OLMS. Inside each
compartment, the number ni, 1 ≤ i ≤ m, of objects is randomly chosen. All the
individuals in all the compartments are evaluated by using rules of type (b) to select
the best one, which is used to adjust the Q-gates to generate the offspring according
to evolution rules. The communication rule is executed once every gi(1 ≤ i ≤ m)

iterations for the ith compartment. The process does not halt until the best solution
found keeps unchanged for a certain number of generations.

3.3.2.2 Examples

Three types of QEPS namely QEPSo, QEPSm and QEPSn are implemented by
using different Q-gate update methods. The three algorithms use different methods
for deriving the rotation angle θtij in Gt

ij(θ), illustrated by (2.4), where θtij is defined
as (2.6). The particular values of s(αt

ij,β
t
ij) and Δθtij used in QEPSo, QEPSm, and

QEPSn are illustrated in Tables3.2, 3.3 and 3.4, respectively. At the same time,
four types of QIEA are considered as compared algorithms, including bQIEAo [22],

Table 3.2 Look-up table of θtij for bQIEAo, bQIEAcms and QEPSo, where f (.) is the fitness,

s(αt
ij,β

t
ij) is the sign of θtij , and b and x are certain bits of the current best solution b and the binary

solution x, respectively [22]

x b f (x) ≥
f (b)

Δθtij s(αt
ij,β

t
ij)

αt
ijβ

t
ij > 0 αt

ijβ
t
ij < 0 αt

ij = 0 βt
ij = 0

0 0 False 0 0 0 0 0

0 0 True 0 0 0 0 0

0 1 False 0 0 0 0 0

0 1 True 0.05π −1 +1 ±1 0

1 0 False 0.01π −1 +1 ±1 0

1 0 True 0.025π +1 −1 0 ±1

1 1 False π +1 −1 0 ±1

1 1 True π +1 −1 0 ±1

http://dx.doi.org/10.1007/978-3-319-55989-6_2
http://dx.doi.org/10.1007/978-3-319-55989-6_2
http://dx.doi.org/10.1007/978-3-319-55989-6_2
http://dx.doi.org/10.1007/978-3-319-55989-6_2
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Table 3.3 Look-up table of θtij for bQIEAm and QEPSm, where f (.) is the fitness, s(αt
ij,β

t
ij) is

the sign of θtij , and b and x are certain bits of the current best solution b and the binary solution x,

respectively [23]

x b f (x) ≥ f (b) Δθtij s(αt
ij,β

t
ij)

0 0 False 0 ±1

0 0 True 0 ±1

0 1 False 0.01π +1

0 1 True 0 ±1

1 0 False 0.01π −1

1 0 True 0 ±1

1 1 False 0 ±1

1 1 True 0 ±1

Table 3.4 Look-up table of θtij for bQIEAn and QEPSn, where d1 = α
′t
ijβ

′t
ij , ξ1 = arctan(β

′t
ij /α

′t
ij),

α
′t
ij , β

′t
ij are the amplitudes of the current best solution, and d2 = αt

ijβ
t
ij , ξ2 = arctan(βt

ij/α
t
ij), αt

ij ,

βt
ij are the amplitudes of the current solution, and e = 0.5π||α′t

ij | − |αt
ij||

d1 > 0 d2 > 0 θtij f (αt
ij,β

t
ij)

|ξ1| ≥ |ξ2| |ξ1| < |ξ2|
True True e +1 −1

True False e −1 +1

False True e −1 +1

False False e +1 −1

bQIEAm [23], bQIEAcms [38] and bQIEAn [80]. In bQIEAo, the look-up table in
Table3.2 is used to decide the rotation angle of the Q-gate. bQIEAm [23] determines
the rotation angle of the Q-gate according to Table3.3. bQIEAcms uses the same
method as bQIEAo to determine the rotation angle of each Q-gate [38]. The rotation
angle in bQIEAn is modified according to the look-up table in Table3.4.

Extensive comparisons between three QEPS variants and four QIEA variants on
three knapsack problems are shown in Table3.5. According to the results, the three
types ofQEPSobtainmuch higher profits than fourQIEAvariants. QEPSm is the best
among the seven algorithms with respect to profits. QEPSm and QEPSo consume
less time than bQIEAm and bQIEAo, respectively.

More experiments on the knapsack problems with 200, 400 and 600 items are
carried out to study the effect of parameter m on the QEPSm performances. QEPSm
uses 20 individuals as a population, i.e., N = 20. The termination criterion is that
the best individual found cannot be further improved in 20 successive iterations. Let
m vary from 2 to N . m = N indicates that there is only one individual inside each
elementary membrane. Parameter gi, 1 ≤ i ≤ m, is assigned as a uniformly random
integer ranged from 1 to 10. Figures3.5, 3.6 and 3.7 show the mean best solutions
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Table 3.5 Experimental results of the knapsack problem: the number of items is 200, 400 and
600, the number of runs is 30. BS, MBS, WS, STD and ET represent best solution, mean best
solution, worst solution, standard deviation and elapsed time (in seconds), respectively. IT and CRI
are abbreviations for items and criteria, respectively

IT CRI QEPSm QEPSo QEPSn bQIEAm bQIEAo bQIEAn bQIEAcms

200 BS 1188.31 1089.90 1099.96 1178.33 1078.01 1088.27 1078.14

MBS 1179.65 1056.24 1080.21 1159.27 1050.47 1064.90 1056.69

WS 1168.33 1041.38 1057.85 1138.16 1032.56 1046.28 1032.90

STD 5.07 10.82 9.81 9.26 10.91 11.56 12.43

ET 2093.22 847.64 1076.95 2468.33 872.75 936.45 1014.00

400 BS 2406.43 2168.68 2215.23 2371.42 2150.47 2162.89 2170.44

MBS 2380.60 2133.95 2177.03 2319.48 2130.82 2135.95 2132.92

WS 2361.43 2101.38 2145.47 2281.34 2109.57 2110.97 2110.63

STD 8.91 14.76 15.54 21.13 12.19 12.84 14.70

ET 6988.12 1495.03 2129.05 7106.36 1574.77 1828.38 1757.16

600 BS 3557.69 3183.18 3262.69 3492.68 3172.15 3175.50 3177.64

MBS 3524.35 3145.81 3202.06 3421.55 3143.61 3143.98 3177.64

WS 3492.68 3116.26 3151.57 3362.53 3119.98 3115.38 3115.22

STD 14.81 16.82 21.77 39.44 15.46 14.91 13.83

ET 13231.31 2216.11 3557.66 13597.50 2525.98 2807.94 2372.56

Fig. 3.5 Experimental results of 200 items with different number of membranes

over 30 runs and the elapsed time per run for the three cases of 200, 400, and 600
items, respectively. The experimental results indicate that m could be assigned as N
in terms of profits and the elapsed time.

To investigate the effect of the number of evolutionary generations parameter gi,
1 ≤ i ≤ m, on the QEPSm performances, experiments are conducted on knapsack
problems with 200, 400 and 600 items. Let N = 20 and m = 20. Thus, ni = 1
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Fig. 3.6 Experimental results of 400 items with different number of membranes

Fig. 3.7 Experimental results of 600 items with different number of membranes

(1 ≤ i ≤ m). The halting condition is the same as the experiments above. Let gi
(1 ≤ i ≤ m) change between 1 and 10. Figures3.8, 3.9 and 3.10 show the mean best
profits over 30 runs and the elapsed time per run. The results indicate that the profits
are not affected by the change of parameter gi.

3.3.3 Ant Colony Optimization Based on P Systems

3.3.3.1 Algorithm

In this section, an approximate optimization algorithm integrating ant colony opti-
mization techniques andP systems, calledACOPS [83], is presented to solve traveling
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Fig. 3.8 Mean best profits and elapsed time of 200 items

Fig. 3.9 Mean best profits and elapsed time of 400 items

Fig. 3.10 Mean best profits and elapsed time of 600 items
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salesman problems (TSPs). In ACOPS, the pheromonemodel and pheromone update
rules of the Ant Colony System (ACS, described in Sect. 2.4 of Chap.2), and the hier-
archical membrane structure and transformation/communication rules of a cell-like
P systems are used.More specifically, ACOPS applies OLMS to organize objects and
evolution rules. These objects consist of ants or TSP construction graphs. Evolution
rules, which are responsible to evolve the system and select the best ant, include a tour
construction, and transformation/communication rules implemented by using local
and global pheromone update rules. The P system-like framework has the following
ingredients:

(i) anOLMSmembrane structureμ = [[ ]1[ ]2 . . . [ ]m]0 withm + 1compartments,
which are delimited by m elementary membranes labeled by 1, . . . ,m, respec-
tively, and the skin membrane labeled by 0;

(ii) a vocabulary with all the ants;
(iii) a set of terminal symbols, T and TSP construction graphs;
(iv) initial multisets associated with each membrane

w0 = λ,

w1 = A1A2 . . .An1 ,

w2 = A(n1+1)A(n1+2) . . .An2 ,

. . . . . . . . .

wm = A(n(m−1)+1)A(n(m−1)+2) . . .Anm ,

where where Aj (1 ≤ j ≤ N) is an ant; ni (1 ≤ i ≤ m) is the number of ants in
wi;∑m

i=1 ni = N , where N is the total number of ants;
(v) rules with two types:

(a) transformation-like tour construction rules in each compartment for con-
structing tours of the ants (i.e., the ACS algorithm);

(b) communication rules for updating the edges of the TSP graphs by using
pheromone values, including the use of the local pheromone update strat-
egy of the ACS to exchange information between the current ant and its
subsequent ant, the use of the global pheromone update strategy in the ACS
to implement communications between the best ant and the rest within a
certain membrane and between the ants in the elementary membranes and
those in the skin membrane.

At the beginning of ACOPS, the multisets w1, . . . ,wm, each of which is an ant
in the colony, are scattered across OLMS. Each ant uses the rules of type (a) to
sequentially construct its tours in its elementary membrane. Thus, an ant can sketch
a whole path for the N cities through N steps. The evaluation is performed at each
generation for all the ants to select the best one for adjusting the pheromone values in
the TSP graph to communicate with the other ants in the same elementarymembrane.
The best ant in the ith compartment is sent out to the skin membrane every gi (i =
1, 2, . . . ,m) generations. The process does not halt until the termination criterion, a

http://dx.doi.org/10.1007/978-3-319-55989-6_2
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certain number of iterations, is arrived. Algorithm 3 shows the pseudocode algorithm
for ACOPS. Details are described as follows:

Algorithm 3 Pseudocode algorithm of the ACOPS
1: t = 1
2: Initialize the membrane structure
3: while (not termination condition) do
4: Scatter ants into elementary membranes
5: Determine iterations for each of elementary membranes
6: for i = 1, 2, . . . ,m do
7: Perform ACS inside the ith elementary membrane
8: end for
9: Form a colony of ants in the skin membrane
10: Perform ACS in the skin membrane
11: Execute global communication
12: t ← t + 1
13: end while

Step 1: Set the iteration counter t to 1.
Step 2: Construct the OLMS with m elementary membranes shown in Fig. 3.4.
Step 3: The termination criterion may be the prescribed maximal number of gener-

ations or the preset difference between the best solution searched and the opti-
mal/desired solution of the problem.

Step 4: N ants in the colony are randomly scattered across OLMS and each elemen-
tary membrane contains at least two ants.

Step 5: The number gti (i = 1, 2, . . . ,m) of iterations is randomly generated between
gmin and gmax for the ith elementary membrane, where gmin and gmax are lower
and upper limits of iterations for elementary membranes, respectively.

Steps 6–8: The ACS algorithm is independently performed in each of them elemen-
tary membranes. This process consists of the tour construction, local pheromone
update and global pheromone update.

Step 9: Each compartment sends its best ant out into the skin membrane.
Step 10: In the skin membrane, the ACS algorithm is independently executed for gt0

iterations.
Step 11: Communication rules are used to exchange some information between the

ants in the skin membrane and those in the elementary membranes.
Step 12: The iteration counter t increases by 1.

3.3.3.2 Examples

Several TSP instances are used to show the ACOPS performance. First, how to set
the number of elementary membranes is empirically discussed. Then the ACOPS
is compared with its counterpart ACS algorithm and the first MIEAs [47]. All the
TSP benchmarks are available in [59]. To discuss how to choose the number m of
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elementary membranes and the number gi (i = 1, 2, . . . ,m) of generations for
each elementary membrane, four TSP benchmarks including Eil76, Eil101, Ch130
and Ch150, are tested. Parameter setting is as follows: the number N = 40 of
ants, the parameters α = 1 and β = 3 for determining the relative importance of
the pheromone values, the global pheromone decay coefficient ρ = 0.6, the local
pheromone decay coefficient υ = 0.1 and the user-defined parameter q0 = 0.9, and
10000 function evaluations as the termination condition.

The effect of the number of elementary membranes on the ACOPS performance
is first investigated. Let m vary from 2 to 20, gmin = 10 and gmax = 30. The mean
of best solutions and their corresponding mean of elapsed time per run, out of 20
independent runs, are used to evaluate the performances of ACOPS for each of the
19 cases. Experimental results are shown in Figs. 3.11, 3.12, 3.13 and 3.14. It can be
seen from the figures that there are some general trends. The fluctuant behavior can
be observed from the best solutions and the mean of best solutions over 20 runs. A
general increase as m goes up from 2 to 20 can be seen from the elapsed time per
run. The experimental results indicate thatm could be assigned as about 4 by trading
off the quality of solutions and the elapsed time.

Fig. 3.11 Experimental results of Eil76 with different number of membranes

Fig. 3.12 Experimental results of Eil101 with different number of membranes
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Fig. 3.13 Experimental results of Ch130 with different number of membranes

Fig. 3.14 Experimental results of Ch150 with different number of membranes

To investigate the effects of the number of communications (NoC), varying from
1 to 40, between the skin membrane and the elementary membranes on the ACOPS
performance, the number of elementarymembranes is assigned as 4. The termination
criterion is the maximal number 10000 of function evaluations (NoFE), gmin = 10.
Thus, gmax can be calculated by using (3.3).

gmax = 2 · NoFE
NoC · (N + m)

− gmin (3.3)

whereN andm are the total number of ants and the number of elementarymembranes,
respectively. The four TSP benchmarks, Eil76, Eil101, Ch130 and Ch150, are also
applied to perform the tests. The ACOPS performance is evaluated by using the
mean of best solutions and their corresponding mean of elapsed time per run for
each of the 40 cases. The number of independent runs is set to 20 for each case.
Figures3.15, 3.16, 3.17 and 3.18 show experimental results. It is observed that there
is a behavior oscillating between various maxima and minima underlying the mean
of best solutions over 20 runs. A drastic fluctuation first occurs in the elapsed time
per run and a relatively steady level is the kept. So it is recommended that NoC could
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Fig. 3.15 Experimental results of Eil76 with different NoC

Fig. 3.16 Experimental results of Eil101 with different NoC

Fig. 3.17 Experimental results of Ch130 with different NoC

be chosen between 15 and 35 by trading off the quality of solutions and the elapsed
time.

In what follows, an experimental comparison is drawn between ACOPS and
its counterpart ACO. Twenty symmetric TSP benchmark problems are shown in
Table3.6. ACOPS and ACS use the same parameter setting, i.e., the number N = 40
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Fig. 3.18 Experimental results of Ch150 with different NoC

of ants, the parameters α = 1 and β = 3 for determining the relative importance of
the pheromone values, the global pheromone decay coefficient ρ = 0.6, the local
pheromone decay coefficient υ = 0.1 and the user-defined parameter q0 = 0.9, and
NoFE, which are also provided in Table3.6, for different TSPs as halting condition.
In ACOPS, gmin, gmax and the number of elementary membranes are assigned as 10,
30 and 4, respectively. The best, the worst and the average length of paths over 20
independent runs, which are listed in Table3.6, are used to compare ACOPS and
ACS.

It is observed from the best and mean solutions shown in Table3.6 that ACOPS is
superior toACS in 19 out of 20 instances. The statistical techniques in [17] are used to
analyze the behavior of ACOPS and ACO over the 20 TSPs. To check whether there
are significant differences between ACOPS and ACO, a 95% confidence Student
t-test is used. To check whether the two algorithms are significantly different or
not, two non-parametric tests, Wilcoxon’s and Friedman’s tests, are performed. The
level 0.05 of significance is considered. Tables3.6 and 3.7 show the results of t-
test, Wilcoxon’s and Friedman’s tests, respectively, where the symbols ‘+’ and ‘–’
denote significant difference and no significant difference, respectively. There are 16
significant differences between ACOPS and ACO, with respect to t-test. The results
in Table3.7 indicate that ACOPS really outperforms ACO because the p-values are
far smaller than the level 0.05 of significance.

In the sequel, a comparative experiment is executed to show the performance
of ACOPS and Nishida’s methods in [47, 48, 50]. In ACOPS, the number N = 40
of ants, the parameters α = 1 and β = 3 for determining the relative importance
of the pheromone values, the global pheromone decay coefficient ρ = 0.6, the local
pheromonedecay coefficientυ = 0.1 and the user-definedparameterq0 = 0.9,m= 4,
gmin = 10 and gmax = 30. The number 20 of trials and a prescribed NoFE as halting
condition are used as the same as Nishida’s methods. Tables3.8, 3.9, 3.10 and 3.11
show the results, where NoM represents the number of membranes and the results
of Nishida’s algorithm are obtained from [48, 50]. Table3.11 shows the results of
Wilcoxon’s and Friedman’s tests. The results indicate that ACOPS is superior to
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Table 3.7 Results of non-parametric statistical tests for ACOPS and ACS in Table3.6. ‘+’ repre-
sents significant difference

Tests ACOPS versus ACO

Wilcoxon test(p-value) 1.6286e–004(+)

Friedman test(p-value) 5.6994e–005(+)

Nishida’s algorithm with respect to the quality of solutions, the number of NoFE and
statistical tests.

3.3.4 Differential Evolution Based on P Systems

3.3.4.1 Algorithm

To have a good balance between exploration and exploitationwith a limited computa-
tional budget [34], it is advisable to consider the combination of a global optimization
algorithm and a local search operator. This section discusses a membrane-inspired
optimization algorithm called DEPS [5] by using a P system with a distributed par-
allel framework to properly organize differential evolution (described in Sect. 2.6)
and the simplex method, which was introduced by Nelder and Mead [46].

To be specific, DEPS uses the OLMS with m elementary membranes, shown in
Fig. 3.4, to arrange the objects consisting of real-valued strings, the rules composed
of mutation, crossover and selection in elementary membranes and evolution rules
in P systems, and simplex search in the skin membrane. A solution of the problem
is represented by a real-valued string. Real-valued strings, which are organized as
individuals, are processed asmultisets of objects. The P system inDEPS is composed
of the following elements:

(i) a membrane structure, OLMS, [[ ]1[ ]2, . . . , [ ]m]0 withm + 1 regions delimited
by m elementary membranes labeled by 1, . . . ,m, respectively, and the skin
membrane labeled by 0;

(ii) an alphabet with all real-valued strings used;
(iii) the set of terminal symbols formed by real-valued strings;
(iv) initial multisets associated with each membrane

w0 = λ,

w1 = x1x2 . . . xn1 ,
w2 = x(n1+1)x(n1+2) . . . xn2 ,
. . . . . . . . .

wm = x(n(m−1)+1)x(n(m−1)+2) . . . xnm ,

http://dx.doi.org/10.1007/978-3-319-55989-6_2
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Table 3.10 Comparisons of Nishida’s algorithm and ACOPS on 8 TSPs

TSP Nishida’s algorithm ACOPS

NoFE Best Average Worst NoFE Best Average Worst

ulysses22 9.9e+7 75.31 75.31 75.31 2e+4 75.31 75.32 75.53

eil51 9.9e+7 429 434 444 4e+4 429 431 434

eil76 9.9e+7 556 564 575 6e+4 546 551 558

eil101 9.9e+7 669 684 693 8e+4 641 647 655

kroA100 9.9e+7 21651 22590 24531 1e+5 21285 21320 21427

ch150 9.9e+7 7073 7320 7633 1.2e+5 6534 6560 6584

gr202 9.9e+7 509.7 520.1 528.4 1.4e+5 489.2 492.7 497.1

tsp225 9.9e+7 4073.1 4153.6 4238.9 7e+4 3899.6 3938.2 4048.2

Table 3.11 Results of non-parametric statistical tests for Nishida’s algorithm and ACOPS in
Table3.10. ‘+’ represents significant difference

Tests ACOPS versus Nishida’s algorithm

Wilcoxon test(p-value) 0.0156 (+)

Friedman test(p-value) 0.0339 (+)

where xj (1 ≤ j ≤ N) is an ant; ni (1 ≤ i ≤ m) is the number of individuals in
wi;∑m

i=1 ni = N , whereN is the total number of individuals in the computation;
(v) rules with the following types:

(a) evolution rules consisting of mutation, crossover and selection in each of
the elementary membranes 1 to m;

(b) evolution rules composed of reflection, expansion, contraction and shrink-
ing in the skin membrane;

(c) communication rule responsible for sending the best ki individuals from
the ith elementary membrane into the skin membrane;

(d) communication rule responsible for sending the ki individuals from the skin
membrane back to the ith elementary membrane.

Algorithm4 shows theDEPSpseudocode algorithm,where each step is elaborated
as follows:

Step 1: Initially, the iteration counter t is set to 1.
Step 2: In the initialization, an OLMS with m elementary membranes shown in

Fig. 3.4 is constructed. A population with N individuals is randomly scattered
across the m elementary membranes. Each individual is formed by D real-valued
numbers. Inside each elementary membrane, there are at least n0 individuals.
Thus, the subpopulation in the ith elementary membrane is represented as Pi(t)
with a size of ni (i = 1, 2, . . . ,m).

Step 3: Determine the numbers k = (k1, k2, . . . , km) of the objects for executing the
communication rules in the elementary membranes with the criterion that ki is
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Algorithm 4 Pseudocode algorithm of the DEPS
1: t = 1
2: Initialize the membrane structure
3: Generate k
4: while (not termination condition) do
5: for i = 1, 2, . . . ,m do
6: Perform DE inside the ith elementary membrane
7: end for
8: Execute the communication rules (b)
9: Perform simplex search in skin membrane
10: Execute the communication rules (c)
11: t ← t + 1
12: end while

proportional to ni and the sum of ki (i = 1, 2, . . . ,m) is D + 1, where D is the
number of variables of the problem.

Step 4: Determine the halting condition, which could be the prescribed maximal
number of generations or the preset difference between the best solution searched
and the optimal/desired solution of the problem.

Steps 5–7: The evolutionary procedures of DE shown in Algorithm 8 in Sect. 2.6 are
independently executed in each elementary membrane to evolve the objects.

Step 8: This step, together with Step 10, is used to fulfill the information exchange
among individuals in the elementary membranes and the skin membrane. The
best ki individuals from Pi(t) with respect to fitness values in the ith elementary
membrane form a subpopulationQi(t) (i = 1, 2, . . . ,m). A copy of the individual
in Qi(t) is sent out into the skin membrane.

Step 9: The simplex local search is performed inside the skin membrane on the
population Q0(t), Q0(t) = (Q1(t),Q2(t), . . . ,Qm(t)). The pseudocode simplex
method is shown in Algorithm 5, where α, β, γ are the coefficients for the reflec-
tion, contraction, expansion and shrinking operations, respectively. This process
will stop when a predetermined maximal number of iterations or the number of
function evaluations is satisfied. The original population Q0(t) evolves to Q̄0(t),
and the sub-populationQi(t) inQ0(t) is made to evolve to Q̄i(t) (i = 1, 2, . . . ,m).

Step 10: Store the overall best individual among Q̄0(t) into X∗(t). The type (d) com-
munication rule is used to send each individual in Q̄i(t) back to the ith elementary
membrane to replace the worst ki individuals in Pi(t) (i = 1, 2, . . . ,m).

Step 11: The iteration counter t increases by 1.

The computation ofDEPS starts from the initial configurationwith initialmultisets
wi (i = 1, 2, . . . ,m) and evolution rules inside each membrane. According to the
rules in each region available in a non-deterministic and maximally parallel manner,
the system goes from one configuration to a new one. If no rules can be applied to
the existing objects in any region, the computation halts and the output is collected
from the skin membrane.

http://dx.doi.org/10.1007/978-3-319-55989-6_2
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Algorithm 5 Pseudocode algorithm of simplex in [46]
Require: A population with size D + 1
1: while (not termination condition) do
2: Determine the worst and the best individuals as xh and xl
3: Calculate the centroid of xi (i 	= h) as x̄
4: xr = (1 + α)x̄ − αxh and yr = f (xr)
5: if yl < yr < yh then
6: Replace xh with xr
7: else if yr < yl then
8: xe = γxr + (1 − γ)x̄ and ye = f (xe)
9: if ye < yl then
10: Replace xh with xe
11: else
12: Replace xh with xr
13: end if
14: else if yr > yi (i 	= h) then
15: if yr ≤ yh then
16: Replace xh with xr
17: end if
18: xc = βxh + (1 − β)x̄ and yc = f (xc)
19: if yc ≤ yh then
20: Replace xh with (xi + xl)/2
21: else
22: Replace xh with xc
23: end if
24: end if
25: end while

3.3.4.2 Examples

To show the effectiveness of DEPS, the experiments are carried out on several bench-
mark functions with various dimensions in continuous spaces. In what follows, the
description on the benchmark functions is first presented and then the number m
of elementary membranes is empirically investigated. Experimental comparisons
between DE and DEPS are finally drawn.

The experiments use the test suit [70] shown in Table3.12, which consists of
nine difficultly unconstrained benchmark functions: four unimodal functions, f1, f2,
f3 and f4, and five multi-modal functions, f5, f6, f7, f8 and f9. DEPS has the following
presetting parameters: population size N , the differential factor F, the crossover rate
C, the reflection coefficient α, expansion coefficient γ and contraction coefficient β
in simplex search, the minimum size n0 of the population in elementary membranes,
the number m of the elementary membranes, and 3 sub-termination criterions which
include the outmost termination condition TC0 as shown in the while loop of Algo-
rithm 4, the termination condition TC1 of DE in elementary membranes, and the
termination condition TC2 of simplex search in the skin membrane.

To investigate the setting of the number m of elementary membranes, the experi-
ments are performed on six benchmark functions, f1, f3, f5, f6, f7 and f8 with 30 dimen-
sions. Parameter setting is as follows: N = 3 × D, F = 0.6, C = 0.2, α = 1, γ = 2,
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Table 3.12 Nine benchmark functions [70], where D is the dimension of functions

Function Name Range Optimum

f1 Sphere model [−100, 100]D 0

f2 Schwefel problem 1.2 [−100, 100]D 0

f3 Schwefel problem 2.21 [−100, 100]D 0

f4 Generalized Rosenbrock’s function [−30, 30]D 0

f5 Generalized Schwefel’s problem 2.26 [−500, 500]D 0

f6 Generalized Rastrigin’s function [−5.12, 5.12]D 0

f7 Ackley’s function [−32, 32]D 0

f8 Generalized Griewark function [−600, 600]D 0

f9 Generalized Penalized function [−50, 50]D 0

Table 3.13 Mean best solutions over 30 runs. The numberm of elementary membranes varies from
1 to 10, and the dimensions D of all functions are 30

m f1 f3 f5 f6 f7 f8

1 1.65e−08 4.57e−07 2.52e+01 6.20e+00 3.66e−07 7.33e−09

2 1.08e−18 1.14e−07 2.49e+01 4.45e+00 1.83e−10 3.02e−12

3 4.41e−26 5.13e−08 2.49e+01 5.76e+00 5.03e−14 3.35e−20

4 2.49e−25 2.63e−08 2.67e+01 6.69e+00 2.72e−14 1.32e−30

5 1.37e−37 5.67e−08 3.10e+01 9.01e+00 2.58e−14 6.88e−29

6 3.07e−39 1.60e−07 2.83e+01 8.84e+01 2.07e−14 3.70e−46

7 1.94e−27 9.63e−07 5.03e+01 7.77e+00 2.01e−14 2.84e−30

8 3.60e−26 1.90e−06 3.85e+01 9.22e+00 2.13e−14 1.66e−29

9 1.25e−22 3.11e−06 1.37e+02 1.27e+01 2.32e−14 1.65e−22

10 1.10e−22 3.74e−06 1.18e+02 1.39e+01 3.17e−14 2.32e−17

β = 0.5, n0 = 6. m varies from 1 to 10. TC0 uses the maximal number 1.5e + 05 of
function evaluations. TC1 and TC2 refer to the halting criterions that the best solu-
tions found are not changed at 20 and 50 successive generations, respectively. The
independent runs is 30. Experimental results are shown in Table3.13 with respect to
the mean of the best solutions. To clearly show the difference, Fig. 3.19 gives the log-
arithm values of mean best values against the number m of elementary membranes.
The results indicate that the DEPS performance varies with the values of m and the
value of m could be assigned as 4 by considering both unimodal and multimodal
functions.

The following experiments are used to compare DEPS with DE. The tests use the
nine benchmark functions with dimensions D varying from 10 to 100 at intervals of
10. DEPS with DE have the following common parameter setting: N = 3 × D, F =
0.6, C = 0.2 and the same TC0 which are 1e + 05, 1.25e + 05, 1.5e + 05, 1.75e +
05, 2e + 05, 2.25e + 05, 2.5e + 05, 2.75e + 05, 3e + 05, 3.25e + 05 for ten differ-
ent dimensionsD, respectively. DEPS has several additional parameters:m = 4;α =
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Fig. 3.19 The mean best solutions over 30 runs as the number m of elementary membranes

1, γ = 2, β = 0.5, n0 = 6, the same TC1 and TC2 as the above tests on the discussion
of m. The independent runs is 30.

Experimental results are shown in Tables3.14 and 3.15 with respect to the mean
and standard deviation of the best solutions. The statistical tests [17], “t-test”,
Wilcoxon’s and Friedman’s tests, are used to check whether there is a significant
difference between DEPS and DE or not. The “t-test” is a single-problem analysis
technique. The confidence level is set to 0.95. The results are listed in last column
in Tables3.14 and 3.15, where the symbols “+” and “–” indicate that there is a sig-
nificant difference or not between DEPS and DE with respect to each test problem.
Wilcoxon’s and Friedman’s tests are two multi-problem analysis techniques. The
significance level is set to 0.05. Table3.16 show the results, where the symbol “+”
means that there is a significant difference between the two algorithms.

As indicated in Tables3.14 and 3.15, DEPS is superior to DE due to more better
results in the test problems and 78 symbols “+” out of 90 test problems. The results in
Table3.16 ofWilcoxon’s and Friedman’s tests indicate that DEPS really outperforms
DE due to far smaller values than the level 0.05 of significance.



62 3 Membrane Algorithms

Table 3.14 Comparisons of DE andDEPS on f1–f5.D, FEs,Mean and Std represent dimension, the
number of function evaluations, mean of best solutions and standard deviation over 30 independent
runs, respectively

f D FEs DE DEPS t-test

Mean Std Mean Std

f1 10 1e+5 2.19e–120 7.38e–120 3.55e–59 1.93e–58 3.19e–01(–)

20 1.25e+5 1.30e–35 8.53e–36 2.13e–67 1.16e–66 1.69e–11(+)

30 1.5e+5 1.68e–16 5.41e–17 2.49e–25 7.62e–25 3.68e–24(+)

40 1.75e+5 1.04e–08 2.11e–09 4.59e–16 2.49e–15 1.93e–34(+)

50 2e+5 1.10e–04 1.73e–05 1.33e–09 4.47e–09 1.26e–40(+)

60 2.25e+5 3.24e–02 4.80e–03 2.13e–07 4.96e–07 3.19e–42(+)

70 2.5e+5 1.25e+00 1.54e–01 1.89e–04 9.84e–04 1.67e–46(+)

80 2.75e+5 1.70e+01 1.53e+00 2.10e–03 6.70e–03 2.70e–54(+)

90 3e+5 1.09e+02 8.80e+00 5.30e–03 1.25e–02 6.29e–57(+)

100 3.25e+5 4.46e+02 2.29e+01 3.68e–02 1.68e–01 3.19e–42(+)

f2 10 1e+5 4.31e–09 6.76e–09 0.00e–00 0.00e–00 9.25e–04(+)

20 1.25e+5 9.11e+02 2.25e+02 6.19e–02 2.13e–01 5.22e–30(+)

30 1.5e+5 1.12e+04 1.97e+03 1.72e–00 4.87e+00 7.16e–38(+)

40 1.75e+5 2.80e+04 3.49e+03 5.51e–01 1.16e+00 2.88e–46(+)

50 2e+5 5.10e+04 5.00e+03 1.21e–01 2.10e–01 3.84e–52(+)

60 2.25e+5 7.94e+04 5.30e+03 2.77e+00 3.67e+00 1.10e–61(+)

70 2.5e+5 1.06e+05 1.01e+04 8.86e+00 4.97e+00 5.32e–53(+)

80 2.75e+5 1.42e+05 9.57e+03 2.85e+01 1.53e+01 1.87e–61(+)

90 3e+5 1.84e+05 1.30e+04 6.43e+01 2.23e+01 2.46e–60(+)

100 3.25e+5 2.25e+05 1.33e+04 1.27e+02 3.70e+01 9.62e–65(+)

f3 10 1e+5 2.89e–27 2.06e–27 2.60e–03 1.20e–02 2.46e–01(–)

20 1.25e+5 2.00e–05 4.25e–06 1.52e–08 4.37e–09 1.81e–33(+)

30 1.5e+5 1.52e–01 1.88e–01 2.63e–08 2.11e–08 2.04e–46(+)

40 1.75e+5 3.24e+00 2.36e–01 3.87e–06 3.00e–06 1.44e–59(+)

50 2e+5 1.23e+01 5.12e–01 2.18e–04 1.10e–04 1.47e–73(+)

60 2.25e+5 2.43e+01 1.32e+00 5.00e–03 2.80e–03 6.92e–67(+)

70 2.5e+5 3.57e+01 1.11e+00 3.41e–02 1.66e–02 6.64e–81(+)

80 2.75e+5 4.46e+01 1.05e+00 1.55e–01 5.62e–02 1.17e–87(+)

90 3e+5 5.16e+01 1.27e+00 4.62e–01 1.53e–01 2.31e–86(+)

100 3.25e+5 5.65e+01 1.01e+00 9.32e–01 2.88e–01 1.85e–93(+)

f4 10 1e+5 7.81e–01 1.29e+00 4.57e–02 1.01e–01 2.90e–03(+)

20 1.25e+5 1.58e+01 9.20e–01 1.41e+01 2.76e+00 1.60e–03(+)

30 1.5e+5 2.47e+01 1.47e+00 2.67e+01 1.11e+01 4.70e–07(+)

40 1.75e+5 4.71e+01 7.25e+00 3.36e+01 1.89e+00 4.28e–14(+)

50 2e+5 1.82e+02 3.34e+01 4.39e+01 4.47e+00 2.27e–30(+)

(continued)
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Table 3.14 (continued)

f D FEs DE DEPS t-test

Mean Std Mean Std

60 2.25e+5 6.37e+02 6.38e+01 6.58e+01 2.47e+01 3.30e–47(+)

70 2.5e+5 2.44e+03 1.95e+02 7.45e+01 2.14e+01 2.84e–56(+)

80 2.75e+5 1.51e+04 1.84e+03 9.60e+01 3.30e+01 1.42e–46(+)

90 3e+5 9.37e+04 1.22e+04 9.83e+01 2.98e+01 4.89e–45(+)

100 3.25e+5 4.85e+05 4.96e+04 1.06e+02 3.15e+01 4.67e–51(+)

f5 10 1e+5 1.27e–04 0.00e+00 1.27e–04 0.00e+00 1.00e+00(–)

20 1.25e+5 2.55e–04 5.51e–20 2.55e–04 0.00e+00 1.00e+00(–)

30 1.5e+5 3.82e–04 1.65e–19 3.83e–04 3.86e–06 3.22e–01(–)

40 1.75e+5 6.13e+00 6.04e+00 5.09e–04 1.10e–19 7.09e–07(+)

50 2e+5 5.75e+03 2.49e+02 1.58e+01 4.09e+01 3.88e–72(+)

60 2.25e+5 9.81e+03 3.69e+02 2.76e+01 5.62e+01 1.09e–75(+)

70 2.5e+5 1.33e+04 3.66e+02 2.65e+03 2.09e+03 7.66e–35(+)

80 2.75e+5 1.66e+04 2.39e+03 7.19e+03 4.58e+02 4.47e–29(+)

90 3e+5 2.02e+04 4.57e+02 1.09e+04 2.15e+03 4.12e–31(+)

100 3.25e+5 2.35e+04 4.46e+02 1.36e+04 2.44e+03 9.73e–30(+)

Table 3.15 Comparisons of DE andDEPS on f6–f9.D, FEs,Mean and Std represent dimension, the
number of function evaluations, mean of best solutions and standard deviation over 30 independent
runs, respectively

f D FEs DE DEPS t-test

Mean Std Mean Std

f6 10 1e+5 0.00e+00 0.00e+00 6.63e–01 1.12e+00 1.90e–03(–)

20 1.25e+5 2.37e–08 7.73e–08 1.93e+00 1.84e+00 3.52e–07(–)

30 1.5e+5 5.45e+01 4.36e+00 6.69e+00 3.57e+00 1.98e–47(+)

40 1.75e+5 1.21e+02 6.69e+00 1.17e+01 4.30e+00 1.95e–59(+)

50 2e+5 1.97e+02 9.46e+00 2.75e+01 1.29e+01 2.00e–53(+)

60 2.25e+5 2.86e+02 1.19e+01 7.52e+01 3.72e+01 1.11e–36(+)

70 2.5e+5 3.81e+02 1.10e+01 1.24e+02 4.55e+01 4.79e–37(+)

80 2.75e+5 4.84e+02 1.19e+01 2.06e+02 6.23e+01 7.26e–32(+)

90 3e+5 5.90e+02 1.11e+01 2.62e+02 8.54e+01 1.38e–28(+)

100 3.25e+5 7.01e+02 1.61e+01 2.49e+02 1.22e+02 1.07e–27(+)

f7 10 1e+5 4.20e–15 9.01e–16 3.73e–15 1.45e–15 1.33e–01(–)

20 1.25e+5 4.20e–15 9.01e–16 3.73e–15 1.45e–15 1.56e–01(–)

30 1.5e+5 3.29e–09 6.55e–10 2.72e–14 2.72e–14 5.62e–35(+)

40 1.75e+5 2.19e–05 5.61e–06 2.21e–08 1.13e–07 5.62e–35(+)

50 2e+5 2.10e–03 1.70e–04 1.83e–06 5.10e–06 4.64e–57(+)

(continued)
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Table 3.15 (continued)

f D FEs DE DEPS t-test

Mean Std Mean Std

60 2.25e+5 3.57e–02 2.50e–03 6.17e–05 1.26e–04 5.74e–60(+)

70 2.5e+5 3.10e–01 2.07e–02 6.85e–04 1.90e–03 1.79e–61(+)

80 2.75e+5 1.77e+00 8.21e–02 3.00e–03 6.10e–03 1.03e–70(+)

90 3e+5 3.29e+00 7.30e–02 6.00e–03 1.33e–02 6.53e–89(+)

100 3.25e+5 4.52e+00 7.92e–02 6.00e–03 1.32e–02 6.27e–95(+)

f8 10 1e+5 7.43e–102 2.20e–101 2.07e–02 2.33e–02 9.17e–06(–)

20 1.25e+5 3.93e–34 1.31e–33 7.56e–66 3.04e–65 1.06e–01(+)

30 1.5e+5 3.85e–15 4.64e–15 1.32e–30 5.78e–30 2.92e–05(+)

40 1.75e+5 4.43e–08 2.76e–08 5.14e–15 2.81e–14 2.75e–12(+)

50 2e+5 2.46e–04 6.78e–05 1.33e–10 4.01e–10 1.36e–27(+)

60 2.25e+5 4.52e–02 1.21e–02 2.16e–07 5.47e–07 3.49e–28(+)

70 2.5e+5 7.13e–01 4.15e–02 4.11e–05 1.38e–04 4.01e–65(+)

80 2.75e+5 1.15e+00 1.08e–02 5.45e–04 1.40e–03 9.66e–
111(+)

90 3e+5 1.96e+00 6.36e–02 1.01e–02 3.32e–02 1.27e–76(+)

100 3.25e+5 5.02e+00 3.03e–01 9.60e–04 3.30e–03 2.58e–64(+)

f9 10 1e+5 4.71e–32 0.00e+00 4.71e–32 0.00e+00 1.00e+00(–)

20 1.25e+5 2.36e–32 0.00e+00 2.36e–32 0.00e+00 1.00e+00(–)

30 1.5e+5 3.62e–17 1.77e–17 7.78e–24 4.26e–23 3.76e–16(+)

40 1.75e+5 4.80e–09 1.19e–09 1.89e–15 1.03e–14 7.29e–30(+)

50 2e+5 1.89e–04 4.76e–05 1.80e–14 8.05e–14 1.60e–29(+)

60 2.25e+5 2.83e–01 6.86e–02 6.61e–11 3.37e–10 2.07e–30(+)

70 2.5e+5 4.69e+00 4.32e–01 2.52e–10 6.35e–10 1.17e–53(+)

80 2.75e+5 1.84e+01 2.10e+00 4.72e–09 1.47e–08 2.49e–48(+)

90 3e+5 1.65e+03 1.19e+03 2.28e–07 8.07e–07 3.06e–10(+)

100 3.25e+5 1.29e+05 4.21e+04 2.49e–07 5.01e–07 6.95e–24(+)

Table 3.16 Results of
non-parametric statistical
tests for DE and DEPS

Tests DE versus DEPS

Wilcoxon test(p-value) 1.8239e–013(+)

Friedman test(p-value) 8.2157e–015(+)

This subsection further investigates theDEPS scalability by showing the changing
trends of the mean best solutions as the dimension D. The experimental results are
show in Fig. 3.20. It is observed that DE has advantage over DEPS with respect to
small D and DEPS outperforms DE as D increases.
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Fig. 3.20 Logarithm values of mean best solutions over 30 runs for functions f1–f9 with various
dimensions
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Fig. 3.20 (continued)

3.4 Membrane Algorithms with Hybrid Hierarchical
Membrane Structure

Hybrid membrane structure (HMS, for short) is a combination of nested membrane
structures (NMS, for short) (depth direction) and one-level membrane structure
(OLMS) (horizontal direction). Due to various combination possibilities, HMS is
very flexible, complex and difficult to give a convincing reason. Thus, the study on
membrane-inspired optimization algorithms within the framework of HMS is some-
how limited. Here only an overview of this work is presented by omitting a specific
example.

In [73], the HMS-based MIEAs was designed by using an NMS and a star topol-
ogy to organize differential evolution. In [26, 31, 58, 76], two NMS were put inside
the skin membrane to arrange GA or PSO and rules including transformation, com-
munication, rewriting, splicing and/or uniport to design an HMS-based algorithm.
Benchmark functions were used to test the algorithm performance. In [54], several
NMS, each of which has two membranes, were placed inside the skin membrane to
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organize differential evolution and transformation and communication rules to build
an HMS-based algorithm. An image segmentation problem was solved. HMS was
also constructed by using two layers of OLMS [93]. In [26, 31], optimal controllers
for a marine diesel engine and a time-varying unstable plant were discussed by using
a single objective and a dynamic multi-objective MIEA, respectively.

3.5 Membrane Algorithms with Dynamic Hierarchical
Membrane Structure

Differing from the static membrane structure with a fixed P system framework
through the whole evolution like NMS, OLMS and HMS, dynamic membrane struc-
ture (DMS, for short) refers to a membrane structure which can be changed during
the evolution. In what follows, the basic principle of DMS-based MIEAs is first
discussed and then an approximate algorithm with instances of the P systems with
active membranes and QIEA follows.

3.5.1 Brief Introduction

As a special hierarchical membrane structure coming from a cell-like P system with
active membranes, DMS can produce an exponential workspace (in terms of the
number of membranes) in linear time and consequently are able to efficiently solve
NP-complete problems, from a mathematical perspective. Thus, the dynamic struc-
ture underlying the P systems might have a certain degree of influence on the popula-
tion diversity which is a direct factor affecting the algorithm performance. Therefore,
much attention has been paid to DMS.

In [27, 42–44], the DMS can be described as follows: at the beginning, a certain
number of membranes are placed inside the skin membrane; as the system goes for-
ward from a configuration to another, all the membranes inside the skin membrane
merge into one membrane by using the merge rule of a P system; then the membrane
inside the skin membrane is divided into a certain number of membranes by apply-
ing the division rule of a P system; the two processes of merging and division are
repeated until the computation halts. In [42–44], DMS can be regarded as a changing
OLMS. To be specific, the division and merging rules are performed on elementary
membranes inside the skin membrane. In [72], a membrane structure with a star
topology was considered as the initial membrane structure; then the dissolution of
a membrane and the division of a membrane were performed at the same time, so
the total number of regions is fixed. In [27], a certain number of NMS contained in
the skin membrane were used to form the initial membrane structure and then recur-
rent division operations were applied to produce a new membrane structure. In [90],
an MIEA was designed by using the separation and merging rules of the P system
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with active membranes. In this DMS, the number of elementary membranes inside
the skin membrane varies with the number of iterations in a non-deterministic way.
In [64], in response to the requirements of the mobile robot path planning prob-
lem, a dynamic double OLMS was introduced to organize the particles with various
dimensions and fulfill the communications between particles in differentmembranes.
DMS-basedMIEAs have been used to various applications, such as benchmark func-
tions [27, 43, 44], satisfiability problems [90], S-boxes in cryptographic algorithms
[72], radar emitter signal analysis [42], and robot path planning [64].

3.5.2 Approximate Algorithm Using P Systems with Active
Membranes

3.5.2.1 Algorithm

The approach combining a QIEA and a P system with active membranes is called
QEAM [90]. It is based on the hierarchical arrangement of the compartments and
developmental rules (e.g., membrane separation, merging, transformation/
communication-like rules) of a P system with active membranes model, and the
objects consisting of Q-bit individuals, a probabilistic observation and the evolution-
ary rules designed with Q-gates to specify the membrane algorithms.

The dynamic P system in QEAM is composed of the following elements:

(i) a dynamic membrane structure [[ ]1[ ]2, . . . , [ ]m]0 with m regions labeled by
1, . . . ,m, respectively, contained in the skin membrane, labeled by 0, where m
is a changing number with the evolution process;

(ii) an alphabet with the binary set {0, 1} and all possible Q-bits;
(iii) a set of terminal symbols, T = {0, 1};
(iv) initial multisets associated with each membrane

w0 = λ,

w1 = q1q2 . . . qn1 ,
w2 = q(n1+1)q(n1+2) . . . qn2 ,
. . . . . . . . .

wm = q(n(m−1)+1)q(n(m−1)+2) . . . qnm ,

where qj (1 ≤ j ≤ N) is a Q-bit individual; ni (1 ≤ i ≤ m) is the number of
individuals in wi;∑m

i=1 ni = N , where N is the total number of individuals in
this computation;

(v) rules include the following types:

(a) [a → v]h, for h ∈ H, a ∈ V , v ∈ V∗; (object evolution rules, associated
with membranes and depending on the label, but not directly involving
the membranes, in the sense that the membranes are neither taking part in
the application of these rules nor are they modified by them);
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Algorithm 6 Pseudocode algorithm of the QEAM
1: t = 1
2: Initialize the membrane structure
3: while (not termination condition) do
4: Produce kt = (kt1 , kt2 , . . . , ktm )

5: Perform object evolution rule (a) in elementary membranes
6: Perform communication rule (c)
7: Perform object evolution rule (a) in the skin membranes
8: t ← t + 1
9: Determine the number mt+1 of elementary membranes
10: if mt+1 < mt then
11: Perform membrane merging rule (d)
12: else if mt+1 > mt then
13: Perform membrane separation rule (e)
14: end if
15: Perform communication rule (b)
16: end while

(b) a[ ]h → [b]h, for h ∈ H, a, b ∈ V ; (communication rules; an object is intro-
duced in membrane h, possibly modified during this process);

(c) [a]h → [ ]hb, for h ∈ H, a, b ∈ V ; (communication rules; an object is sent
out of membrane h, possibly modified during this process);

(d) [ ]h[ ]h → [ ]h, for h ∈ H; (merging rules for elementary membranes; two
elementary membranes with the same label are merged into a single mem-
brane; the objects of the former membranes are put together in the new
membrane);

(e) [W ]h → [U]h[W − U]h, for h ∈ H,U ⊂ W ; (separation rules for elemen-
tary membranes; the membrane is separated into two membranes with the
same labels; the objects from U are placed in the first membrane, those
from (W − U) are placed in the other membrane);

To easily understandQEAM, the steps are listedwith pseudocodes inAlgorithm6.
More details are as follows:

Step 1: Set the iteration counter t to 1.
Step 2: Construct the initial membrane structure, a one-level membrane structure

[[ ]1, [ ]2, . . . , [ ]m]0 with m elementary membranes (1, 2, . . . ,m) inside the skin
membrane denoted by 0. The parameter m is a random number ranged from 1 to
the number N of Q-bit individuals. At the initial configuration, N objects formed
by N Q-bit individuals are scattered across the m elementary membranes in a
random and non-deterministic way, which satisfies that each elementary mem-
brane contains at least one object. Thus, the number of objects in each elementary
membrane varies between 1 to N − m + 1.

Step 3: Choose a halting criterion, which may be the difference between the best
solution found and the optimal or close-to-optimal solution, and a prescribed
number of maximal iterations.
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Algorithm 7 Pseudocode algorithm of the TABU search
1: t = 1
2: Initialize Tabu search
3: while (t < tmax) do
4: t ← t + 1
5: Search the neighborhood
6: Evaluate candidate solutions
7: Update tabu list
8: end while

Step 4: Determine the numbers kt = (kt1 , kt2 , . . . , ktm), where kti (i = 1, 2, . . . ,m)

is the number of evolutionary generations for independently performing object
evolution rule (a) in the ith elementary membranes. kti is randomly produced
between 1 and a certain integer number tmax.

Step 5: Perform the QIEA evolutionary operations in each elementary membrane.
The halting criterion for the ith elementary membrane is the maximal number
kti (i = 1, 2, . . . ,m) of evolutionary generations. To transform a current Q-bit
[α β]T into the corresponding Q-bit [α′ β′]T at the next generation, the Q-gate
update procedure defined in (2.5) and (2.6) is used, where the rotation angle θ in
the Q-gate G(θ) in (2.6) can be obtained from the Table2.1.

Step 6: The communication rule (b) is used to exchange information among the
objects in the elementary membranes and the skin membrane, which is imple-
mented by applying the best individual searched to operate on the Q-gate update
procedure to generate the offspring. This step is to send the best binary solution
in each elementary membrane out into the skin membrane.

Step 7: The local search, tabu search [19], is executed on the best binary solution
in the skin membrane. The pseudocode algorithm of tabu search is shown in
Algorithm 7. In the “Initialize tabu search” step, an empty tabu list is created and
tabu length is set to a value. Tabu search is to explore the neighborhood of the
best binary solution in the skin membrane to generate a set of candidate solutions.
Then a fitness function is used to evaluate each candidate solution. Finally, the
tabu list is updated by using the best one among the candidate solutions.

Step 8: The iteration counter t increases by 1.
Step 9: Generate the numbermt+1 of elementarymembranes at iteration t + 1, where

mt+1 is a random number between 1 and N . This step decides the membrane
structure at the next iteration.

Steps 10–11: Perform the merging rules for elementary membranes. If mt+1 < mt ,
the (mt − mt+1) elementary membranes are merged into the mt+1 elementary
membranes. The merging process is shown in Algorithm 8. The merging process
is as follows: any two arbitrary elementary membranes i and j are chosen fromM
elementary membranes (1 ≤ i, j ≤ M and i 	= j); then the elementary membranes
i and j are merged into a single membrane; accordingly, all the objects in the
elementary membranes i and j are placed into the merged membrane. The initial
value of M is mt .

http://dx.doi.org/10.1007/978-3-319-55989-6_2
http://dx.doi.org/10.1007/978-3-319-55989-6_2
http://dx.doi.org/10.1007/978-3-319-55989-6_2
http://dx.doi.org/10.1007/978-3-319-55989-6_2
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Algorithm 8Membrane merging process
1: M ← mt
2: while (M > mt+1) do
3: Choose any two arbitrary elementary membranes
4: Perform the merging rule (d)
5: M ← M − 1
6: end while

Algorithm 9Membrane separation process
1: M ← mt
2: while (M < mt+1) do
3: Choose any one elementary membrane whose content is W
4: if |W | ≥ 2 then
5: Perform the separation rule (e)
6: end if
7: M ← M + 1
8: end while

Steps 12–14: Perform the separation rule (e) for elementary membranes. If mt+1 >

mt , each of the (mt+1 − mt) elementary membranes are separated into two mem-
branes. The separation process is shown in Algorithm 9, where |W | is the number
of objects in the pre-separation membrane. To be specific, the separation process
is described as follows: any one elementary membrane i (1 ≤ i ≤ M) with at least
two objects is chosen from M elementary membranes; |U| (|U| < |W |) objects
are put in the first membrane and the |W | − |U| objects are placed in the other
membrane. The initial value of M is mt .

Step 15: Perform the communication rule (c) between the skin membrane and the
elementarymembranes. In this step, the best binary solution in the skinmembrane
is sent into each elementary membrane.

3.5.2.2 Examples

To show the QEAM performance, a well-known NP-complete problem, the satisfia-
bility problem (SAT), is used to carried out experiments. As SAT is a fundamentally
paradigmatic problem in artificial intelligence applications, automated reasoning,
mathematical logic, and related research areas [14], much attention has been paid
for many years. SAT can be briefly described as follows [20]: given a Boolean for-
mula in conjunctive normal form (CNF), determine whether or not it is satisfiable,
that is, whether there exists an assignment to its variables on which it evaluates
to true. To be specific, a SAT instance is the following: given a Boolean formula
f (x), where x is a set of Boolean variables x1, x2, . . . , xn, i.e., xi ∈ {0, 1}, 1 ≤ i ≤ n,
to search a variable assignment a1, a2, . . . , an, with ai ∈ {0, 1}, 1 ≤ i ≤ n, to vari-
ables x1, x2, . . . , xn such that f (a1, a2, . . . , an) becomes true. Here the experiments
consider only 3-SAT problems, where each clause has exactly three literals.
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Table 3.17 Comparisons of QIEA, QEPS and QEAM on 55 instances of the SAT problem
SAT QIEA QEPS QEAM QEAM versus QIEA QEAM versus QEPS

Mean Std Mean Std Mean Std t-test Imp.(%) t-test Imp.(%)

1 7.67 0.82 6.60 1.18 0.93 0.26 5.23e–23(+) +87.87 5.30e–17(+) +85.91

2 8.27 2.12 7.40 1.12 1.53 0.64 2.32e–12(+) +81.50 1.13e–16(+) +79.32

3 7.40 1.40 6.27 0.88 1.00 0.53 5.90e–16(+) +86.49 5.64e–18(+) +84.05

4 7.87 1.19 6.33 0.98 1.00 0.38 7.31e–19(+) +87.29 5.74e–18(+) +84.20

5 7.13 1.41 6.20 0.86 0.07 0.26 1.30e–17(+) +99.02 2.50e–21(+) +98.87

6 7.27 0.80 5.93 0.80 0.20 0.41 5.39e–23(+) +97.25 1.53e–20(+) +96.63

7 7.73 1.16 6.40 1.18 1.07 0.46 1.73e–18(+) +86.16 8.26e–16(+) +83.28

8 8.73 0.70 7.67 1.18 1.53 0.83 5.99e–21(+) +82.47 6.01e–16(+) +80.05

9 7.87 1.13 6.87 1.19 1.47 0.64 1.27e–17(+) +81.32 2.84e–15(+) +78.60

10 8.33 0.82 6.93 0.88 1.07 0.59 5.74e–22(+) +87.15 7.33e–19(+) +84.56

11 16.67 1.11 15.40 0.99 2.00 0.93 5.05e–26(+) +88.00 9.32e–26(+) +87.01

12 15.07 1.49 14.60 0.74 1.47 0.74 1.76e–23(+) +90.25 1.38e–28(+) +89.93

13 16.33 0.82 14.80 2.01 2.07 0.88 6.61e–28(+) +87.32 1.84e–19(+) +86.01

14 14.00 1.20 12.87 1.60 1.87 0.64 1.53e–24(+) +86.64 1.41e–20(+) +85.47

15 15.07 1.03 14.87 0.92 1.60 1.06 9.13e–25(+) +89.38 3.01e–25(+) +89.24

16 16.13 1.06 14.87 1.19 2.20 0.68 4.29e–27(+) +86.36 5.80e–25(+) +85.21

17 15.33 1.40 14.53 1.64 1.67 0.90 1.54e–23(+) +89.11 2.00e–21(+) +88.51

18 15.73 1.44 14.53 1.51 2.20 0.86 2.54e–23(+) +86.01 8.03e–22(+) +84.86

19 14.93 1.49 13.80 1.97 1.80 0.41 6.02e–24(+) +87.94 9.25e–20(+) +86.96

20 14.40 1.45 13.93 1.22 2.00 0.76 1.48e–22(+) +86.11 1.19e–23(+) +85.64

21 24.53 1.81 22.93 1.39 3.0 0.93 1.44e–26(+) +87.77 5.29e–28(+) +86.92

22 24.20 1.21 22.80 2.14 3.33 0.62 4.78e–31(+) +86.24 3.08e–24(+) +85.39

23 24.27 1.28 22.93 1.79 4.20 0.94 1.15e–28(+) +82.69 6.05e–25(+) +81.68

24 23.40 1.68 22.80 1.08 3.53 0.92 2.63e–26(+) +84.91 1.51e–29(+) +84.52

25 24.27 1.22 22.80 1.47 3.73 0.88 1.45e–29(+) +84.63 4.13e–27(+) +83.64

26 24.00 1.51 22.47 1.60 3.60 0.74 3.53e–28(+) +85.00 1.06e–26(+) +83.98

27 24.13 1.06 23.40 1.35 3.87 0.74 2.99e–31(+) +83.96 1.08e–28(+) +83.46

28 24.00 1.85 23.40 1.30 3.73 0.80 6.33e–26(+) +84.46 6.40e–29(+) +84.06

29 25.13 1.68 24.13 2.00 4.27 1.28 1.06e–25(+) +83.01 9.18e–24(+) +82.30

30 22.93 2.15 22.27 1.98 3.40 0.74 4.81e–24(+) +85.17 1.64e–24(+) +84.73

31 33.53 1.96 32.87 1.51 5.67 0.90 6.07e–29(+) +83.09 3.87e–31(+) +82.75

32 33.80 1.90 32.07 2.12 5.40 1.06 6.07e–29(+) +84.02 2.76e–27(+) +83.16

33 34.47 1.81 33.73 1.33 6.07 1.33 4.37e–28(+) +82.39 1.85e–30(+) +82.00

34 34.06 1.84 33.27 2.34 5.13 0.74 1.13e–30(+) +84.94 1.78e–27(+) +84.58

35 34.67 1.76 33.60 2.20 5.20 1.32 2.25e–29(+) +85.00 4.32e–27(+) +84.52

36 34.80 2.21 33.93 1.44 6.20 1.47 9.51e–27(+) +82.18 1.93e–29(+) +81.73

37 32.80 2.86 32.93 1.33 5.27 1.28 2.49e–24(+) +83.93 1.05e–30(+) +84.00

38 32.80 1.97 32.47 1.19 5.27 1.10 3.02e–28(+) +83.93 4.14e–32(+) +83.77

39 34.20 2.08 33.40 1.76 5.67 0.98 1.78e–28(+) +83.42 1.09e–29(+) +83.02

40 33.93 1.67 33.20 2.34 5.67 0.98 1.96e–30(+) +83.29 7.19e–27(+) +82.92

(continued)
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Table 3.17 (continued)
SAT QIEA QEPS QEAM QEAM versus QIEA QEAM versus QEPS

Mean Std Mean Std Mean Std t-test Imp.(%) t-test Imp.(%)

41 42.60 1.50 41.20 2.01 6.87 1.13 1.29e–33(+) +83.87 1.13e–30(+) +83.33

42 43.07 1.67 40.00 2.67 5.40 0.91 4.16e–34(+) +87.46 2.66e–28(+) +86.50

43 41.73 1.71 41.53 1.06 6.27 1.75 2.55e–30(+) +84.97 2.08e–32(+) +84.90

44 42.80 3.28 41.07 1.94 6.47 1.25 2.73e–26(+) +84.88 1.01e–30(+) +84.25

45 43.93 1.67 42.60 2.64 7.13 1.06 2.38e–33(+) +83.77 1.66e–28(+) +83.26

46 43.00 3.23 42.07 1.62 7.60 1.30 4.55e–26(+) +82.33 6.09e–32(+) +81.93

47 43.20 2.04 42.73 1.87 7.87 1.30 2.12e–30(+) +81.78 5.60e–31(+) +81.58

48 44.27 2.19 43.60 2.32 7.47 1.06 7.50e–31(+) +83.13 4.97e–30(+) +82.87

49 44.67 2.26 43.53 2.10 8.93 1.67 9.21e–29(+) +80.01 6.37e–29(+) +79.49

50 43.13 1.55 41.47 2.50 6.53 0.99 3.87e–34(+) +84.86 5.45e–29(+) +84.25

51 83.07 3.45 81.27 2.91 12.93 1.33 1.48e–33(+) +84.43 5.51e–35(+) +84.09

52 83.40 3.44 82.73 2.96 15.27 1.67 8.05e–33(+) +81.69 4.07e–34(+) +81.54

53 83.00 2.73 81.60 2.50 12.67 1.50 1.05e–35(+) +84.73 3.04e–36(+) +84.47

54 85.13 3.23 83.60 3.14 15.80 1.66 1.15e–33(+) +81.44 1.14e–33(+) +81.10

55 84.87 2.83 80.80 2.31 14.20 1.52 2.22e–35(+) +83.27 1.76e–36(+) +82.43

The experiments consider QIEA [23] and QEPS [78] as benchmark algorithms,
together with QEAM, to solve fifty-five 3-SAT benchmark problems, where each of
the first ten, the second ten, the third ten, the fourth ten, the fifth ten and the last five
problems has 50, 75, 100, 125, 150 and 250Boolean variables and 218, 325, 430, 538,
645 and 1065 clauses, respectively. Parameter setting for QEAM, QIEA and QEPS
is as follows: a population with 50 individuals, the prescribed number of 2.75 × 106

evaluations to solutions as the halting criterion, the number of clauses that are not
satisfied by the variable assignment as the fitness function, and the independent runs
for each of them is 15. In QEAMandQEPS, kti (i = 1, 2, . . . ,m) is set to a uniformly
random integer ranged from 1 to 10, and the number of elementary membranes
is assigned to 15. The mean of best solutions (Mean, for short) and the standard
deviation of best solutions (Std, for short) are listed in Table3.17, where the symbol
‘(+)’ represents the significant difference according to t-test with a confidence level
of 95%. Table3.17 also show the percentage of improvement (Imp., for short) in the
average number of false clauses due to the QEPS algorithm over QIEA andQEPS. To
check whether there are significant differences between the two pairs of algorithms,
QEAM versus QIEA and QEAM versus QEPS over all tested SAT instances, two
non-parametric tests, Wilcoxon’s and Friedman’s tests, are performed. The results
are shown in Table3.18, where symbols ‘+’ and ‘–’ represent significant difference
and no significant difference, respectively.

It is observed in Table3.17 that QEAM is superior to QIEA andQEPS. This is also
verified by the t-test results with 55 significant differences between the two pairs of
algorithms, QEAMversus QIEA andQEAMversus QEPS. The same conclusion can
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Table 3.18 Non-parametric statistical tests results between QEAM and QIEA or QEPS

Tests QEAM versus QIEA QEAM versus QEPS

Wilcoxon test (p-value) 1.21e–13 (+) 1.21e–13 (+)

Friedman test (p-value) 1.11e–10 (+) 1.11e–10 (+)

be also drawn from Wilcoxon’s and Friedman’s tests. The p-values far smaller than
the level of significance 0.05 in Table3.18 indicates that QEAM really outperforms
QIEA and QEPS.

3.6 Membrane Algorithms with Static Network Structure

This section describes the static network structure-based (SNS-based, for short)
MIEAs. Similar to the previous sections, a brief introduction and some main work
of this kind of MIEAs is given. Then an instance called a hybrid approach based on
DE and Tissue P Systems (DETPS) is presented.

3.6.1 Brief Introduction

A tissue membrane system has a network membrane structure consisting of several
one-membrane cells in a common environment and a certain number of channels
connecting the cells. The network membrane structure is flexible and adaptable to
various network topologies. These features are very useful in organizing algorithms
with distinct evolutionary mechanisms and characteristics. Two types of SNS were
reported in the literature.

• In [28, 30], the SNS-based MIEA was designed by using a tissue P system with
seven cells to organize GA evolutionary operators to solve multi-objective prob-
lems. Three cells are for three single-objective optimizations and three cells are
for optimizing all the objectives. The last one cell is for collecting results. Bench-
mark functions, simulated moving bed and controller design were considered as
application examples.

• In [86], a tissue P system with five cells in a common environment was used to
arrange five representative and widely used variants of differential evolution (DE)
algorithms. The five cells use fully connected channels to communicate with each
other. The solution of constrainedmanufacturing parameter optimization problems
were discussed. More details can be referred to Sect. 3.6.2.
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3.6.2 A Hybrid Approach Based on Differential Evolution
and Tissue P Systems

3.6.2.1 Algorithm

The hybrid MIEA based on differential evolution and tissue P systems (DETPS, for
short) [86] uses a tissue-like P system framework with five fully connected cells to
arrange five representative and widely used variants of DE algorithms. Specifically,
the network membrane structure of a tissue-like P system with five cells was used to
design aMIEAby placing each of fiveDEvariants into each of the five cells. The fully
connected channels are used for the mutual communications of the five cells. Inside
each cell, the DE variant evolves independently according to its own evolutionary
mechanism for a certain number of generations. The communication between the
cells happens every a certain number of iterations. In DETPS, real-valued strings
corresponding to DE individuals are organized as multisets; the transformation and
communication rules in a tissue P system and evolutionary operators of DE are used
to construct the DETPS evolution rules, which are responsible to evolve the system.
Figure3.21 shows the tissue P system of DETPS, where ovals represent the cells and
arrows indicate the channels.

The tissue-like P system are described as the following tuple

Π = (O,σ1,σ2, . . . ,σ5, syn, iout) ,

where

(1) O = {x1, x2, . . . , xN } ,with xi (i = 1, 2, . . . ,N) a real-valued string (objects)
and N is the total number of individuals involved in the system;

(2) syn ⊆ {1, 2, . . . , 5} × {1, 2, . . . , 5} (channels amongcells, here is a fully-connected
network);

(3) iout = 1 designates the output cell;
(4) σ1,σ2, . . . ,σ5 are cells of the form σi = (

Qi, si,0,wi,0,Pi
)
, 1 ≤ i ≤ 5,

Fig. 3.21 The tissue-like P
system in DETPS
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where

(a) Qi = {si,0, si,1, . . . , si,tmax }where si,j is the state of cell σi at generation j and tmax

is the number of generations when the system halts; 1 ≤ i ≤ 5, 1 ≤ j ≤ tmax;
(b) si,0 ∈ Qi is the initial state;
(c) wi,0 = {

x0i,1, x
0
i,2, . . . , x

0
i,ni

}
, where ni is the number of individuals in cell σi and

satisfies
∑5

i=1 ni = N ;
(d) Pi is a finite set of rules of the form si,kwi,k → si,k+1wi,k+1ygo, where

si,k, si,k+1 ∈ Qi; wi,k,wi,k+1 ∈ O∗, ygo ∈ (O × {go})∗, k = 1, 2, . . . , tmax.

In DETPS, there are two types of evolution rules: transformation-like rules and
communication rules. The former are put inside the cells and are responsible for
guiding individuals towards better solutions generation by generation according to
the evolutionary mechanism of DE. The latter are used to send the best individual
in each cell into the rest four cells for exchanging the information between the five
cells. In what follows, the details on each step of the DETPS algorithm are provided.

Step 1: Initialization. Create a network membrane structure of a tissue P system
with five cells in a common environment, shown in Fig. 3.21. Each pair of the five
cells are linked through channels. An initial population withN individuals consisting
of five group ni = N

5 , 1 ≤ i ≤ 5, is produced. Each group is placed inside each cell.
Each individual is formed by a real-valued string composed of D random numbers
uniformly generated in the interval [0, 1], where D is the number of genes of an
individual or the number of parameters.

Step 2: Parameter setting. Two parameters, the scaling factor F and the crossover
probability Cr, need to be set. There is a direct influence from the two parameters
on the DETPS performance, such as search capability, convergence and robustness.
In DETPS, the value of the scaling factor is assigned as a real number following a
uniform distribution in the range [0.4, 1]; the crossover probability Cr follows the
distribution

Cr =

⎧
⎪⎨

⎪⎩

1√
2πσ1

e
− (α−μ1)

2

2σ1
2 , 0 ≤ α < 0.5

1√
2πσ2

e
− (α−μ2)

2

2σ2
2 , 0.5 ≤ α ≤ 1.

(3.4)

where α is a random number with a uniform distribution in the interval [0, 1];
μ1 and μ2 are mean values, μ1 = 0, μ2 = 1; σ1 and σ2 are standard deviations,
σ1 = σ2 = 0.2.

Step 3:Evolutionary process. InDETPS, each of the five cells contains a variant of
DE,which is shown in Fig. 3.21. The five variants of DE have the identical population
initialization, crossover operation and selection operation, but they have distinct
mutation operators described as follows:

Cell 1: rand/1

vti1 = xtr11 + F · (
xtr12 − xtr13

)
(3.5)
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Cell 2: rand/2

vti2 = xtr21 + F · (xtr22 − xtr23
) + F · (xtr24 − xtr25

)
(3.6)

Cell 3: best/1

vti3 = xtb3 + F · (xtr31 − xtr32
)

(3.7)

Cell 4: best/2

vti4 = xtb4 + F · (
xtr41 − xtr42

) + F · (
xtr43 − xtr44

)
(3.8)

Cell 5: current-to-best/1

vti5 = xti5 + F · (
xtb5 − xti5

) + F · (
xtr51 − xtr52

)
(3.9)

where the scaling factor F is a random value with a uniform distribution in the range
[0.4, 1] for each mutant vector; vtij is the mutant vector at generation t in cell j,
1 ≤ ij ≤ nj (1 ≤ j ≤ 5); xtr11 , x

t
r12 and xtr13 are any three arbitrary individuals in the

subpopulation with n1 individuals inside cell 1 and four individuals xtb2 , x
t
b3

, xtb4 and
xtb5 ; r11, r12 and r13 are different integers in the range [1, n1 + 4]; xtr21 , x

t
r22 , x

t
r23 , x

t
r24

and xtr25 are any five arbitrary individuals in the subpopulation composed of n2 indi-
viduals inside cell 2 and four individuals xtb1 , x

t
b3

, xtb4 and xtb5 ; r21, r22, r23, r24 and
r25 are different integers in the range [1, n2 + 4]; xtr31 and xtr32 are any two arbi-
trary individuals in the subpopulation consisting of n3 individuals inside cell 3 and
four individuals xtb1 , x

t
b2
, xtb4 and xtb5 ; r31 and r32 are different integers in the range

[1, n3 + 4]; xtr41 , x
t
r42 , x

t
r43 and xtr44 are any four arbitrary individuals in the subpopu-

lation made up of n4 individuals inside cell 4 and four individuals xtb1 , x
t
b2

, xtb3 and
xtb5 ; r41, r42, r43 and r44 are different integers in the range [1, n4 + 4]; xtr51 and xtr52
are any two arbitrary individuals in the subpopulation consisting of n5 individuals
inside cell 5 and four individuals xtb1 , x

t
b2

, xtb3 and xtb4 ; r51 and r52 are different inte-
gers in the range [1, n5 + 4]; xtb1 , x

t
b2

, xtb3 , x
t
b4
and xtb5 are the best individuals in cells

1–5, respectively, and each of them is sent out into the other four cells through the
channels connecting them.

This step also uses the objective function to evaluate individuals. To cope with
linear and nonlinear constraints, the parameterless penalty strategy in [9] is employed
in DETPS. This strategy uses a pair-wise comparison method by considering the
following three scenarios:

(i) Any feasible solution is preferred to any infeasible solution, to be specific, when
one feasible and one infeasible solutions are compared, the feasible solution is
chosen.

(ii) Among two feasible solutions, the one having better objective function value
is preferred, that is, when two feasible solutions are compared, the one with
better objective function value is chosen.
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(iii) Among two infeasible solutions, the one with smaller constraint violation is
preferred, i.e., when two infeasible solutions are compared, the one having
smaller constraint violation is chosen.

A feasible solution refers to the one satisfying all linear and non-linear constraints.
An infeasible solution refers to the one for which at least one constraint is violated.

Step 4: Termination criterion. A prescribed number of function evaluations or a
difference between the optimal solution and the best one found can be regarded as
the halting criterion.

Step 5: Output. The computation result coming from cell 1 is the best one among
the five solutions corresponding to the five individuals xtmaxb1

, xtmaxb2
, xtmaxb3

, xtmaxb4
and xtmaxb5

.

3.6.2.2 Examples

To show the effectiveness of DETPS, five constrained problems are used to conduct
experiments and several algorithms in the literature are considered as comparisons.
The five problems, with formulations shown in (3.10)–(3.14), have different char-
acteristics of objective functions and multiple constraints, such as linear, nonlinear
and quadratic. Some special features of the problems are discussed in detail in the
following description.

Problem 1:

min f (x) = 5
4∑

i=1

xi − 5
4∑

i=1

x2i −
13∑

i=5

xi (3.10)

subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0
g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0
g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0
g4(x) = −8x1 + x10 ≤ 0
g5(x) = −8x2 + x11 ≤ 0
g6(x) = −8x3 + x12 ≤ 0
g7(x) = −2x4 − x5 + x10 ≤ 0
g8(x) = −2x6 − x7 + x11 ≤ 0
g9(x) = −2x8 − x9 + x12 ≤ 0

where 0 ≤ xi ≤ 1, i = 1, 2, 3, . . . , 9; 0 ≤ xi ≤ 100, i = 10, 11, 12; 0 ≤ x13 ≤ 1.The
optimal solution is f (x∗) = −15 at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1).

Problem 2:

max f (x) = (
√
D)D

D∏

i=1

xi (3.11)

subject to
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g(x) =
D∑

i=1

x2i − 1 = 0

where n = 10 and 0 ≤ xi ≤ 10, i = 1, 2, . . . , n. The global maximum f (x∗) = 1 at
x∗ = (1/

√
n, 1/

√
n, 1/

√
n, . . .).

Problem 3:

min f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2

+ 10x65 + 7x26 + x47 − 4x6x7 − 10x6 − 8x7
(3.12)

subject to
⎧
⎪⎪⎨

⎪⎪⎩

g1(x) = −127 + 2x21 + 3x42 + x3 + 4x24 + 5x5 ≤ 0
g2(x) = −282 + 7x1 + 3x2 + 10x23 + x4 − x5 ≤ 0
g3(x) = −196 + 23x1 + x22 + 6x26 − 8x7 ≤ 0
g4(x) = 4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10, i = 1, 2, . . . , 7. The optimal solution is f (x∗) =
680.6300573 at x∗ = (2.330499, 1.951372, −0.4775414, 4.365726, −0.6244870,
1.1038131, 1.594227).

Problem 4:
min f (x) = x1 + x2 + x3 (3.13)

subject to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g1(x) = −1 + 0.0025 (x4 + x6) ≤ 0
g2(x) = −1 + 0.0025 (x5 + x7 − x4) ≤ 0
g3(x) = −1 + 0.01 (x8 − x5) ≤ 0
g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0
g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, i = 2, 3, 100 ≤ xi ≤ 10000, i = 4, 5, . . . , 8.
Theoptimal solution is f (x∗) =7049.248021at x∗ = (579.3066, 1359.9709, 5109.9707,
182.0177, 295.601, 217.982, 286.165, 395.6012).

Problem 5:

max f (x) = 100 − (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2

100
(3.14)
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subject to

g(x) = (x1 − p)2 − (x2 − q)2 − (x3 − r)2 ≤ 0

where 0 ≤ xi ≤ 10, i = 1, 2, 3, p, q, r = 1, 2, 3, . . . , 9. The optimal solution is
f (x∗) = 1 at x∗ = (5, 5, 5).

In Problem 1, there are thirteen variables and nine linear inequality constraints.
The ratio of the feasible search space to the entire search space is approximately
0.0003% [41]. There are six active constraints at the optimal point. Two kinds of
experiments with different halting criterions are carried out.

(1) A prescribed number 120,000 of function evaluations or a tolerance 1.0e–6
between the optimal solution and the best one found is considered as the halting
criterion. A population with 80 individuals in DETPS is equally divided into
5 groups, i.e., N = 80, n1 = n2 = n3 = n4 = n5 = 16. Benchmark algorithms
include hybrid immune-hill climbing algorithm (HIHC) [71], genetic algorithm
with an artificial immune system (GAIS) [7] and genetic algorithm based on
immune network modeling (GAINM) [21]. Table3.19 lists the statistical results
over 30 independent runs.

(2) A prescribed number 25,000 of function evaluations or a tolerance 1.0e–2
between the optimal solution and the best one found is regarded as the halting
criterion. A population with 40 individuals in DETPS is equally divided into 5
groups, i.e.,N = 40, n1 = n2 = n3 = n4 = n5 = 8. Six optimization algorithms
are considered as benchmark algorithms: teaching-learning-based optimization
(TLBO) [56], multimembered evolutionary strategy (M-ES) [45], particle evolu-
tionary swarm optimization (PESO) [74], cultural differential evolution (CDE)
[1], co-evolutionary differential evolution (CoDE) [29] and artificial bee colony
(ABC) [33]. Table3.20 lists the statistical results over 30 independent runs.

Tables3.19 and 3.20 show that DETPS with a much smaller number of func-
tion evaluations obtains competitive results than the nine optimization algorithms:
HIHC, GAIS, GAINM, TLBO, M-ES, PESO, CDE, CoDE and ABC. According to
Table3.19, DETPS has only 53.46% function evaluations of HIHC and only 42.77%
function evaluations of GAIS and GAINM, respectively. Table3.20 indicates that

Table 3.19 Statistical results of DETPS, HIHC, GAIS and GAINM to test problem 1. The results
of HIHC, GAIS and GAINM are referred from [7, 21, 71], respectively. Best, Mean, Worst and SD
represent best solution, mean best solution, worst solution and standard deviation over independent
30 runs, respectively

Methods Best Mean Worst SD Function evaluations

DETPS –15.0000 –15.0000 –15.0000 2.2362e–6 64,156

HIHC –15 –14.8266 –14.3417 0.145 120,000

GAIS –14.7841 –14.5266 –13.8417 0.2335 150,000

GAINM –5.2735 –3.7435 –2.4255 0.9696 150,000
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Table 3.20 Statistical results of seven algorithms to test problem 1. The results of TLBO, M-ES,
PESO, CDE, CoDE and ABC are referred from [1, 29, 33, 45, 56, 74], respectively. Best, Mean
and Worst represent best solution, mean best solution and worst solution over independent 30 runs,
respectively

Methods Best Mean Worst Function evaluations

DETPS –15.0 –15.0 –15.0 20,875

TLBO –15.0 –15.0 –15.0 25,000

M–ES –15.0 –15.0 –15.0 2,40,000

PESO –15.0 –15.0 –15.0 3,50,000

CDE –15.0 –15.0 –15.0 1,00,100

CoDE –15.0 –15.0 –15.0 2,48,000

ABC –15.0 –15.0 –15.0 2,40,000

Table 3.21 Statistical results of six algorithms to test problem 2. The results of TLBO, M-ES,
PESO, CDE and ABC are referred from [1, 33, 45, 56, 74], respectively. Best, Mean and Worst
represent best solution,mean best solution andworst solution over independent 30 runs, respectively

Methods Best Mean Worst Function evaluations

DETPS 1.001 0.992 0.955 90,790

TLBO 1 1 1 1,00,000

M-ES 1.000 1.000 1.000 2,40,000

PESO 1.005 1.005 1.005 3,50,000

CDE 0.995 0.789 0.640 1,00,100

ABC 1.000 1.000 1.000 2,40,000

the number of function evaluations of DETPS is 83.50, 8.70, 5.96, 20.85, 8.42 and
8.70% of TLBO, M-ES, PESO, CDE, CoDE and ABC, respectively.

In Problem 2, there are ten variables and one nonlinear equality constraint. The
ratio of the feasible search space to the entire search space approaches 0 [41]. There
is only one active constraint at the optimal point. A population with 50 individuals in
DETPS is equally divided into 5 groups, i.e., N = 50, n1 = n2 = n3 = n4 = n5 = 10.
The halting criterion is a prescribed number 100,000 of function evaluations or a
tolerance 1.0e–6between the optimal solution and the best one found.The experiment
considers five optimization algorithms, TLBO [56], M-ES [45], PESO [74], CDE
[1] and ABC [33], as benchmarks. Table3.21 lists the statistical results over 30
independent runs. It can be observed that DETPS obtains competitive results to
TLBO,M-ES, PESO,CDEandABC, byusing 90.79, 37.83, 25.94, 90.70 and37.83%
function evaluations, respectively.

In Problem 3, there are seven variables and four nonlinear inequality constraints.
The ratio of the feasible search space to the entire search space is approximately
0.5256% [41]. There are two active constraints at the optimal point. A population
with 50 individuals in DETPS is equally classified into 5 groups, i.e., N = 50, n1 =
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Table 3.22 Statistical results of seven algorithms to test problem 3. The results of TLBO, M-ES,
PESO, CDE, CoDE and ABC are referred from [1, 29, 33, 45, 56, 74], respectively. Best, Mean
and Worst represent best solution, mean best solution and worst solution over independent 30 runs,
respectively

Methods Best Mean Worst Function evaluations

DETPS 680.630 680.630 680.630 32,586

TLBO 680.630 680.633 680.638 1,00,000

M-ES 680.632 680.643 680.719 2,40,000

PESO 680.630 680.630 680.630 3,50,000

CDE 680.630 680.630 680.630 1,00,100

CoDE 680.771 681.503 685.144 2,40,000

ABC 680.634 680.640 680.653 1,00,000

Table 3.23 Statistical results of six algorithms to test problem 4. The results of TLBO, M-ES,
PESO, CDE and ABC are referred from [1, 33, 45, 56, 74], respectively. Best, Mean and Worst
represent best solution,mean best solution andworst solution over independent 30 runs, respectively

Methods Best Mean Worst Function evaluations

DETPS 7049.257 7050.834 7063.406 1,00,000

TLBO 7049.248 7083.673 7224.497 1,00,000

M-ES 7051.903 7253.047 7638.366 2,40,000

PESO 7049.459 7099.101 7251.396 3,50,000

CDE 7049.248 7049.248 7049.248 1,00,100

ABC 7053.904 7224.407 7604.132 2,40,000

n2 = n3 = n4 = n5 = 10. A prescribed number 1,00,000 of function evaluations or
a tolerance 1.0e–6 between the optimal solution and the best one found is regarded
as the halting criterion. Table3.22 lists the statistical results of DETPS over 30
independent runs. The experiment considers six comparison algorithms: TLBO [56],
M-ES [45], PESO [74], CDE [1], CoDE [29] and ABC [33]. Table3.22 shows that
DETPS requires only 32.59, 13.85, 13.85 and 32.59% function evaluations of TLBO,
M-ES, CoDE and ABC, respectively, to gain better results, and requires only 9.31
and 32.55% function evaluations of PESO and CDE, respectively, to obtain the same
solution.

In Problem 4, there are eight variables, three nonlinear inequality and three linear
inequality constraints. The ratio of feasible search space to entire search space is
approximately 0.0005% [41]. There are three active constraints at the optimal point.
A population with 50 individuals in DETPS is equally classified into 5 groups, i.e.,
N = 50, n1 = n2 = n3 = n4 = n5 = 10. A prescribed number 100,000 of function
evaluations or a tolerance 1.0e-4 between the optimal solution and the best one
found is considered as the halting criterion. Table3.23 lists the statistical results of
DETPS over 30 independent runs and the results of TLBO [56], M-ES [45], PESO
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Table 3.24 Statistical results of seven algorithms to test problem 5. The results of TLBO, M-ES,
PESO, CDE, CoDE and ABC are referred from [1, 29, 33, 45, 56, 74], respectively. Best, Mean
and Worst represent best solution, mean best solution and worst solution over independent 30 runs,
respectively

Methods Best Mean Worst Function evaluations

DETPS 1 1 1 6,540

TLBO 1 1 1 50,000

M-ES 1 1 1 2,40,000

PESO 1 1 1 3,50,000

CDE 1 1 1 1,00,100

CoDE 1 1 1 2,40,000

ABC 1 1 1 1,00,000

[74], CDE [1] and ABC [33]. It can be observed that DETPS is competitive to other
five algorithms with respect to the quality of solutions and the number of function
evaluations. DETPS requires 41.67, 28.57 and 41.67% function evaluations ofM-ES,
PESO and ABC, respectively, to obtain better results. But a little bit worse solutions
than TLBO and CDE is gained by DETPS by applying a similar number of function
evaluations.

In Problem 5, there are three variables and 93 = 729 nonlinear inequality con-
straints. The ratio of feasible search space to entire search space is approximately
4.779% [41]. There is not any active constraint at the optimal point. A popula-
tion with 50 individuals in DETPS is equally divided into 5 groups, i.e., N = 50,
n1 = n2 = n3 = n4 = n5 = 10. A prescribed number 50,000 of function evaluations
or a tolerance 1.0e–6 between the optimal solution and the best one found is con-
sidered as the shalting criterion. Table3.24 lists the statistical results of DETPS and
the results of TLBO [56], M-ES [45], PESO [74], CDE [1], CoDE [29] and ABC
[33]. It can be observed that DETPS requires a much smaller number of function
evaluations, only 13.08, 2.73, 1.87, 6.53, 2.73 and 6.54% of TLBO, M-ES, PESO,
CDE, CoDE and ABC, respectively, to obtain the same results.

3.7 Membrane Algorithms with Dynamic Network
Structure

A population P system is a special kind of tissue P systems except for two important
differences that the structure can be dynamically changed by using bond making
rules and cells are allowed to communicate indirectly by means of the environment
[2]. This feature could be utilized to design novel MIEAs. In this section, the basic
principle and somemainwork of the dynamical network structure based (DNS-based,
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for short) MIEAs are given. Then two instances for knapsack and multi-objective
function optimization problems are presented, respectively.

3.7.1 Brief Introduction

DNS-based MIEAs are representative optimization algorithms of a quite new and
promising research direction, where the communication channel between cells can
be dynamically built if they are necessary. This class of MIEAs have great potential
to be extended to a complex structure with a number of cells for solving complex
problems. In [89], aMIEAwas introduced by using theDNSof a population P system
with three cells to arrange three variants of QIEAs. The communication between a
pair of cells is executed at the level of genes, which is different from the usual level of
individuals. The channel for communication is created in response to the requirement.
In [6], DNS was used to design a MIEA for multi-objective optimization problems.
In the algorithm, the cells are divided into two groups with different functions.
The first group focuses on evolving objects/individuals, while the second kind aims
at selecting objects/individuals and re-distributing them across evolving cells for
the next generation. Meanwhile, local communications and global communications,
respectively performed among neighboring evolving cells and among all cells, are
designed to promote the convergence and diversity.

3.7.2 Population Membrane-System-Inspired Evolutionary
Algorithm

3.7.2.1 Algorithm

PMSIEA in [89] uses the dynamic network of a population P system to organize three
representative variants of QIEAs, includingQIEA02 [23], QIEA04 [24] andQIEA07
[75]. The three QIEAs are placed inside three cells of the population P system in a
common environment. In PMSIEA, both Q-bits and classical bits form the objects;
there are several types of rules for evolving the system: transformation rules like in
the population P system, observation and Q-gate update rules like in QIEAs, evalu-
ation rules for candidate solutions, communication rules for information exchange
between cells, and bondmaking rules for modifying the structure of the system. Each
cell independently performs the processes consisting of initialization, observation,
evaluation and Q-gate update for generating offspring. The individuals in different
cells exchange some information at the level of genes through the communication
channels. In PMSIEA, a candidate solution of a problem is represented by a binary
string. Figure3.22 shows the framework of the population P system used in PMSIEA.
The ovals and dashed lines represent the cells and the links, respectively.
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Fig. 3.22 The framework of
the population P system
involved in PMSIEA

The population P system used in PMSIEA is described as the following tuple

P = (V , γ,α,we,C1,C2,C3, ce),

where

(i) V is a finite alphabet that consists of all possible Q-bits and classical bits
(objects);

(ii) γ = ({1, 2, 3},E), with E = {{1, 2}, {1, 3}, {2, 3}}, is a finite undirected graph;
(iii) α is a finite set of bond making rules (i,λ;λ, j) or ∅ if no new bond can be

added;
(iv) we = λ;
(v) Ci = (wi, Si,Ri), for each 1 ≤ i ≤ 3, with

(a) wi = q01q
0
2 . . . q0ni , where q0j , 1 ≤ j ≤ ni, is a Q-bit individual as shown in

(2.3) of Chap.2; ni is the number of individuals in cell Ci and satisfies∑3
i=1 ni = N , where N is the total number of individuals in this system;

(b) Si is a finite set of communication rules; each rule has one of the following
forms: (λ; b, in), (b, exit), for b ∈ V ,

(c) Ri is a finite set of transformation rules of the form a → y, for a ∈ V , and
y ∈ V+;

(vi) ce indicates that the result is collected in the environment.

In what follows PMSIEA is described by using algorithmic elaboration.
Step 1: Initialization. An initial population with N individuals, each of which

consisting of a certain number of Q-bits, is randomly scattered across the membrane
structure of a population P system with three cells in a common environment. ni > 1
and

∑3
i=1 ni = N .

Step 2: Observation. PMSIEA uses a probabilistic observation process in QIEAs
to link genotypes, Q-bits, with phenotypes, classical bits. For example, as for the Q-
bit [α β]T , if a random number r between 0 and 1 is less than |β|2, i.e., r <|β|2, the
observed classical bit equals 1, otherwise, it is 0. Thus, aQ-bit individual corresponds
to a binary solution. The observation process is shown in Algorithm 3 of Chap.2.

Step 3: Evaluation. All the binary solutions obtained at Step 2 are evaluated by
using a specific criterion with respect to a problem.

Step 4: Communication. Let Pk represent the binary individuals gained at Step
2 in cell Ck , Pk = xk1, x

k
2, . . . , x

k
nk , where k = 1, 2, 3; xki = bki1b

k
i2 . . . bkim, where b

k
ij is

http://dx.doi.org/10.1007/978-3-319-55989-6_2
http://dx.doi.org/10.1007/978-3-319-55989-6_2
http://dx.doi.org/10.1007/978-3-319-55989-6_2
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a gene of xki and m is the number of genes in an individual; the fitness of the indi-
vidual xki is f (x

k
i ). At this step, a random number rc following a uniform distribution

between 0 and 1 is generated for each gene bkij in the binary individual x
k
i ; if rc < pc,

two binary individuals, xk1c1 and x
k2
c2 , are randomly chosen from the whole population

(N individuals) except for the individual xki , where k1 and k2 are the labels of cells,
k1, k2 = 1, 2, 3 and pc denotes the communication rate discussed in the next section.
If f (xk1c1) is better than f (xk2c2), replace b

k
ij by the gene bk1c1j, otherwise, replace b

k
ij by

the gene bk2c2j. Thus another binary individual x
k
i corresponding to x

k
i can be obtained.

During the replacement operation, the values of k1, k2 and k determine what links
will be created to carry out the communication between cells k and k1 or k2. There
are three cases for the values of k1, k2 and k: (1) k1 = k2 = k indicates no communi-
cation, i.e., the dashed lines in Fig. 3.22 do not work and the three cells are separate;
(2) k1 = k2 	= k or k1 = k 	= k2 or k1 	= k2 = k indicates the communication between
two cells, i.e., only one of the dashed lines in Fig. 3.22 works and the communication
rule (λ; b, in) is executed between the two cells with the channel that works; (3)
k1 	= k2 	= k indicates that the three dashed lines in Fig. 3.22 work and the three cells
communicate with each other. Thus the communication rule (λ; b, in) is executed
between each pair of cells.

Step 5: Q-gate update. The objects in each of the three cells evolve according
to transformation rules of the form a → y according to evolutionary mechanisms of
QIEAs, instead of the semantics of P systems. The Q-gate update procedure is shown
in (2.3)–(2.4), where the rotation angle θ in different cells has different definitions.
Specifically, the rotation angle in cell 1 is defined as θ = s(α,β) · Δθ, where Δθ
is the value of θ determining the convergence speed of the algorithm and s(α,β) is
the sign of θ deciding the search direction. The approach for looking up the rotation
angle θ in [23] is shown in Table3.25, where f (.) is the fitness function; α and β are
the probabilities of the current Q-bit.

Table 3.25 Q-gate update approach in cell 1, where f (.) is the fitness function, Δθ and s(α,β) are
the value and the sign of θ, x and b are the bits of the binary individuals x1i and x

1
i , respectively [23]

x b f (x) ≥ f (b) Δθ s(α,β)

α = 0 β = 0

0 0 False 0 – –

0 0 True 0 – –

0 1 False 0.01π +1 −1

0 1 True 0 – –

1 0 False 0.01π +1 −1

1 0 True 0 – –

1 1 False 0 – –

1 1 True 0 – –

http://dx.doi.org/10.1007/978-3-319-55989-6_2
http://dx.doi.org/10.1007/978-3-319-55989-6_2
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Table 3.26 Q-gate update approach in cell 3, where f (.) is the fitness function, x and b are the bits
of the binary individuals x1i and x1i , respectively [75]

x b f (x) ≥ f (b) s(α,β) f (γα, γβ)

αβ ≥ 0 αβ < 0 αβ = 0

0 0 False −1 +1 ±1 exp(−γβ)

0 0 True −1 +1 ±1 exp(−γβ)

0 1 False +1 −1 ±1 exp(−γα)

0 1 True −1 +1 ±1 exp(−γβ)

1 0 False −1 +1 ±1 exp(−γβ)

1 0 True +1 −1 ±1 exp(−γα)

1 1 False +1 −1 ±1 exp(−γα)

1 1 True +1 −1 ±1 exp(−γα)

In cell 2, theQ-gate update procedure in cell 1 is firstly applied. Then an additional
process is used to modify the Q-bit

[
αt+1 βt+1

]T
. The modification method is as

follows:

(i) If |αt+1|2 ≤ ε and |βt+1|2 ≥ 1 − ε then
[
αt+1 βt+1

]T = [√
ε

√
1 − ε

]T
;

(ii) If |αt+1|2 ≥ 1 − ε and |βt+1|2 ≤ ε then
[
αt+1 βt+1

]T = [√
1 − ε

√
ε
]T
.

According to the investigation in [24], parameter ε is usually assigned as 0.01.
In cell 3, the approach for deciding the quantum rotation angle was defined by

using the ratio of the probabilities of Q-bits [75]. The rotation angle θ is defined as

θ = θ0 · s(α,β) · f (γα, γβ) (3.15)

where α and β represent the probabilities of a Q-bit; θ0 is an initial rotation angle
and is usually set to 0.05π; s(α,β) is a function determining the search direction of
the algorithm; f (γα, γβ) is a function of γα or γβ , where γα = |β|/α and γβ = 1/γα.
The values of s(α,β) and f (γα, γβ) can be obtained in Table3.26.

Step 6:Halting. A preset number of evolutionary generations is considered as the
halting condition.

Step 7: Output. The computation result is the best solution collected in the envi-
ronment.

3.7.2.2 Examples

To show the PMSIEA performance, a well-known NP-hard combinatorial optimiza-
tion problem, knapsack problem described in Sect. 3.2.2.2, is used to conduct the
experiments. The knapsack problem uses strongly correlated sets of unsorted data,
i.e., ri randomly generated from [0, 50], pi = ri + 25 and C = 0.5

∑K
i=1 ri.
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In what follows, how to choose the parameter pc in PMSIEA is experimentally
discussed by considering five instances of the knapsack problem with 600, 1200,
1600, 1800, 2400 and 3000 items, respectively. Population size N is set to 20. The
halting conditions for instances of the knapsack problemwith 600, 1200, 1600, 1800,
2400 and 3000 items, respectively, use the numbers, 20000, 30000, 40000, 60000
and 60000, of function evaluations. Twenty-one cases for pc are considered when
pc varies from 0 to 1 with interval 0.05. The best, mean and worst solutions over
30 independent runs and the elapsed time per run are used to evaluate the algorithm
performance. Figure3.23 shows experimental results. It is observed that the results
of the two cases, pc = 0.9 and pc = 0.95, are better than other cases. So it is better
to set pc to 0.9 in the subsequent experiments.

In the experiments to show the PMSIEA performance, 15 instances of the knap-
sack problem with the items varying from 200 to 3000 items with interval 200 are
used. The four variants of QIEAs: QIEA02 in [23], QIEA04 in [24], QIEA07 in
[75] and QIEA08 [60], and the QEPS in Sect. 3.3.2 are considered as comparison
methods. The population consists of 20 individuals in all the algorithms. Each test
for each of the 15 cases of each algorithm is independently repeated for 30 times.
The maximal numbers of function evaluations as the halting condition for the six
algorithms are set as follows: 20000 for the first 4 instances of the knapsack problem;
30000 for the 3 instances of the knapsack problem with 1000, 1200 and 1400 items;
40000 function evaluations for the 4 instances of the knapsack problem with 1600,
1800, 2000 and 2200 items; 60000 for the last 4 instances of the knapsack problem.
Tables3.27 and 3.28 show the best, mean and worst solutions over 30 independent
runs and the elapsed time per run. To verify that PMSIEA really outperforms the
other five algorithms, the statistical techniques are used to analyze the behavior of
the six algorithms over the 15 instances of the knapsack problem. To check whether
there are significant differences between each pair of algorithms, PMSIEA versus
QIEA02, QIEA04, QIEA07, QIEA08 and QEPS, a parametric test, the t-test with
95% confidence, and two non-parametric tests, the Wilcoxon’s and Friedman’s tests
with significance level 0.05, are considered. Tables3.29 and 3.30 list the test results.
The symbols “+” and “–” represent significant difference and no significant differ-
ence, respectively.

It is observed from Tables3.27 and 3.28 that PMSIEA is better than QIEA02,
QIEA04, QIEA07, QIEA08 and QEPS due to better quality of best, mean and worst
solutions and the elapsed time. The test results in Tables3.29 and 3.30 show that
there are significant differences between the two pairs of algorithms, PMSIEA versus
QIEA02, QIEA04, QIEA07, QIEA08 andQEPS, with respect to the t-test. Table3.30
indicates that the p-values of the Wilcoxon’s and Friedman’s tests are far smaller
than the level of significance 0.05, which means that PMSIEA really outperforms
QIEA02, QIEA04, QIEA07, QIEA08 and QEPS.
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Fig. 3.23 Experimental results for pc
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Table 3.27 Experimental results of the first 8 instances of the knapsack problem. Best, Mean,
Worst and Time represent the best, mean and worst solutions over 30 independent runs and the
elapsed time per run, respectively

Items 200 400 600 800 1000 1200 1400 1600

QIEA02 Best 5885 11650 17403 22940 28673 34399 39560 45277

Mean 5786 11553 17173 22659 28333 33984 39149 44864

Worst 5359 11396 16851 22010 27954 33424 38488 44423

Time 24 48 72 96 182 221 259 413

QIEA04 Best 5749 11272 16561 21684 27024 32429 37329 42892

Mean 5674 11081 16327 21499 26812 32210 37134 42596

Worst 5627 10666 15680 20809 26524 31213 36028 42096

Time 29 57 89 115 225 272 320 547

QIEA07 Best 5935 11850 17749 23390 29204 35099 40490 46403

Mean 5893 11760 17627 23286 29080 34949 40267 46184

Worst 5859 11700 17527 23139 28929 34822 40114 46002

Time 26 52 78 104 197 249 402 420

QIEA08 Best 5456 10699 15734 20956 26073 31419 36384 41750

Mean 5367 10615 15659 20747 25901 31244 36081 41499

Worst 5325 10536 15591 20634 25775 31071 35942 41387

Time 29 58 92 126 249 309 376 599

QEPS Best 5959 11873 17702 23403 29531 35441 40886 47242

Mean 5945 11837 17647 23257 29373 35292 40722 47018

Worst 5909 11778 17575 23109 29198 35061 40364 46672

Time 22 44 70 92 178 215 246 398

PMSIEA Best 5984 11975 18000 23859 29822 35845 41412 47470

Mean 5963 11965 17945 23782 29750 35782 41301 47365

Worst 5959 11946 17902 23729 29687 35727 41214 47300

Time 32 64 97 129 240 288 337 512

3.7.3 Multi-objective Membrane Algorithm Based
on Population P Systems and DE

3.7.3.1 Algorithm

In this section, a membrane algorithm based on a population P system and differen-
tial evolution (PPSDE, for short) in [6] is discussed for multi-objective optimization
problems. Some basic concepts of multi-objective optimization is first presented.
Then the procedures of PPSDE are described in detail. Finally, the PPSDE perfor-
mance is tested on some benchmark problems.

A multi-objective optimization problem (MOP) contains several objectives to be
simultaneously optimized. Without loss of generality, a minimization MOP can be
formulated as
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Table 3.28 Experimental results of the last 7 instances of the knapsack problem. Best,Mean,Worst
and Time represent the best, mean and worst solutions over 30 independent runs and the elapsed
time per run, respectively

Items 1800 2000 2200 2400 2600 2800 3000

QIEA02 Best 50784 56453 61645 66683 72546 77511 83294

Mean 50163 55879 61175 65984 71992 76734 82608

Worst 49506 55129 59820 64981 71497 75924 82020

Time 475 538 619 1056 1176 1310 1454

QIEA04 Best 47920 53276 58723 62952 68858 73355 79068

Mean 47513 53018 58278 62523 68448 72938 78548

Worst 46444 51889 56942 62250 66910 71360 76743

Time 569 636 708 1268 1356 1448 1560

QIEA07 Best 51882 57579 63199 68351 74531 79471 85343

Mean 51669 57414 62985 68093 74237 79215 85073

Worst 51459 57277 62768 67932 73998 78685 84753

Time 475 530 587 964 1049 1133 1222

QIEA08 Best 46507 52127 57221 61294 67228 71600 77142

Mean 46293 51816 57008 61063 66950 71308 76867

Worst 46155 51618 56811 60894 66817 71121 76709

Time 702 815 983 1706 1950 2230 2515

QEPS Best 52772 58775 64513 70402 76621 81918 88207

Mean 52600 58543 64230 70015 76245 81486 87657

Worst 52395 58065 63680 69726 75296 80683 87044

Time 464 523 605 1051 1170 1289 1441

PMSIEA Best 53201 59091 64955 70244 76569 81806 87899

Mean 53071 58968 64785 70134 76442 81664 87740

Worst 52982 58819 64669 70024 76311 81505 87565

Time 576 643 709 1156 1253 1352 1451

min f(x) = (f1(x), f2(x), . . . , fM(x)) (3.16)

subject to

x ∈ �

where x = (x1, x2, . . . , xD); � is the feasible region in the decision space and f :
� → RM is composed of M real-valued objective functions f1, . . . , fM , where R is
the set of real numbers. The attainable objective space is {f (x)|x ∈ �}.

As usual, a MOP has several contradictory objectives. The improvement of one
objective often deteriorates other objectives. So it is impossible to obtain a solution
for minimizing all the objectives at the same time. Instead, the result of a MOP is a
set of solutions called Pareto optimal solutions. The description on Pareto optimal
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Table 3.29 The results of t-test. Symbols “+” and “–” represent significant difference and no
significant difference, respectively

PMSIEA
versus

QIEA02 QIEA04 QIEA07 QIEA08 QEPS

200 items 3.41e–14(+) 4.57e–49(+) 3.12e–24(+) 1.41e–65(+) 7.83e–08(+)

400 items 6.71e–40(+) 2.81e–49(+) 9.19e–38(+) 1.93e–81(+) 1.81e–33(+)

600 items 7.30e–36(+) 6.41e–53(+) 7.29e–35(+) 1.99e–92(+) 1.72e–43(+)

800 items 4.39e–38(+) 1.66e–60(+) 7.09e–47(+) 6.87e–83(+) 1.24e–44(+)

1000 items 5.93e–44(+) 3.49e–77(+) 1.71e–48(+) 4.70e–94(+) 1.77e–28(+)

1200 items 1.67e–43(+) 8.17e–64(+) 7.48e–50(+) 5.28e–89(+) 4.92e–38(+)

1400 items 5.58e–49(+) 6.68e–66(+) 3.65e–51(+) 1.06e–92(+) 8.74e–33(+)

1600 items 4.75e–54(+) 6.57e–82(+) 6.17e–53(+) 2.12e–98(+) 4.43e–21(+)

1800 items 1.43e–48(+) 1.32e–71(+) 1.61e–59(+) 3.02e–98(+) 1.06e–32(+)

2000 items 3.98e–50(+) 5.76e–73(+) 6.57e–63(+) 1.23e–94(+) 3.71e–19(+)

2200 items 9.07e–51(+) 2.02e–69(+) 6.06e–59(+) 4.94e–97(+) 7.45e–22(+)

2400 items 9.34e–50(+) 8.21e–88(+) 6.78e–63(+) 7.97e–101(+) 2.70e–03(+)

2600 items 6.98e–62(+) 3.20e–72(+) 2.24e–62(+) 4.07e–101(+) 6.71e–04(+)

2800 items 8.78e–59(+) 3.91e–73(+) 1.45e–58(+) 7.47e–102(+) 1.60e–03(+)

3000 items 5.86e–64(+) 9.18e–73(+) 1.36e–64(+) 1.08e–102(+) 1.16e–01(–)

Table 3.30 The p-values of Wilcoxon’s and Friedman’s tests. The symbol + represents significant
difference

PMSIEA
versus

QIEA02 QIEA04 QIEA07 QIEA08 QEPS

Wilcoxon 6.1035e−5(+) 6.1035e-5(+) 6.1035e-5(+) 6.1035e-5(+) 6.1035e-5(+)

Friedman 0.0142(+) 0.0142(+) 0.0142(+) 0.0142(+) 0.0142(+)

solutions is as follows: for u, v ∈ RM , u is said to dominate v, represented as u ≺ v,
if and only if ui ≤ vi for all i = 1, 2, . . . ,M and u 	= v. Given a set S in RM , a point is
called non-dominated if no other point in S can dominate it. A point x ∈ � is called
a Pareto optimal solution if it is non-dominated in the attainable objective space.
Thus f(x) is a Pareto optimal objective vector, that is, there is no z ∈ � such that
f (z) dominates f (x). The set of all the Pareto optimal solutions is called the Pareto
set and the set of all the Pareto optimal objective vectors is called Pareto front. In
practice, it is impossible to find all Pareto optimal solutions, especially for MOPs
with continuous objective functions. Without preference on objectives, the goal of
solving MOPs is to find a limited amount of approximation solutions that converge
well to the true Pareto front and are distributed uniformly along the approximated
Pareto front.

PPSDE uses the dynamic networkmembrane structure of a population P system to
organize DE. The cells in population P systems are composed of two categories with
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Fig. 3.24 A population P
system used in PPSDE when
NP = 8 (H = 7),M = 2 and
R = 0.4

different functions: evolving cells Ck, k = 1, 2, . . . ,NP, and surviving cell CNP+1.
NP is population size and it is also the size of the desired solution set. Thus, there are
totally NP + 1 cells in the system. The evolving cells are responsible for searching
individuals toward Pareto front. The surviving cell handles surviving individuals and
re-scatters them across the evolving cells for the next evolution process.

In PPSDE, a certain number of real-valued strings, each of which corresponds an
individual, forms the objects; The evolution rules, transformation-like rules, in each
evolving cell are responsible for guiding individuals toward Pareto front by appying
the DE evolutionary mechanism. The neighboring evolving cells communicate with
each other through local communication controlled by E1 to enhance the conver-
gence. The individuals in surviving cells survive by following a special selection
and are re-scattered across evolving cells through global communication controlled
by E2. An example is given to clearly illustrate the details of PPSDE. Figure3.24
shows a population P system, where NP = 8 (H = 7),M = 2 and R = 0.4. The
white cell Ck (k = 1, . . . , 8) are evolving cells with respect to a direction vector
rk = (

k−1
7 , 1 − k−1

7

)
, k = 1, 2, . . . , 8. The gray cell C9 is the surviving cell. Each

dash line with arrow (i, j) ∈ E represents the bond made dynamically if necessary
between two cells.

First of all, to obtain a uniformly distributed and well converged solution set, M
direction vectors following a uniform distribution are generated by using simplex-
lattice design. The neighboring cells of each evolving cell are defined, which is
similar to the work in [37]. That is, a direction vector r = [r1, r2, . . . , rM] satisfies

rm ∈
{
0

H
,
1

H
, . . . ,

H

H

}
,m = 1, 2, . . . ,M,

M∑

m=1

rm = 1 (3.17)

whereM a positive integer representing the number of objectives in aMOP. The total
number of direction vectors generated by simplex-lattice design is NV = (H+M−1

M−1

)
.

For instance, NV = 100 when M = 2 and H = 99, while NV = 105 when M = 3
andH = 13. Evolving cell i is associatedwith a unique direction vector ri. The neigh-
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boring cellsN(i) of an evolving cell i are defined as the evolving cells whose direction
vectors are the �R · NV� closest vectors to ri, where R ∈ (0, 1) is a parameter.

The population P systems used in PPSDE is described as the tuple

∏
= (V , γ,α,ωe,C1,C2, . . . ,CNV ,CNV+1, co)

where

(1) V = {x1, x2, . . . , xNV }, where xi is a real-valued string (objects), i = 1,
2, . . . ,NP;

(2) γ = ({1, 2, . . . ,NV + 1},E) with E = E1 ∪ E2 is a finite directed graph, where
E1 = {(i, j)|1 ≤ i ≤ NV , j ∈ N(i)}, E2 = {(i, j)|i = NV + 1, 1 ≤
j ≤ NV}; N(i) represents the direction vectors of the evolving cells;

(3) α is a finite set of bond making rules (i, x1; x2, j), (i, j) ∈ E;
(4) ωe = λ;
(5) Ck = (ωk, Sk,Rk), for each evolving cell k, 1 ≤ k ≤ NV ,

(i) ωk = {x1, x2, . . . , xnk }, where nk is the number of individuals in cell Ck ,
satisfying

∑NV
k=1 nk = NV ;

(ii) Sk is a finite set of communication rules of the form (λ; b, in), b ∈ V ;
(iii) Rk is a finite set of transformation rules of the form x → y, consisting of

the mutation, crossover, and selection operators of DE;

and for the surviving cell CNV+1,

(i) ωNV+1 = {x1, x2, . . . , xNV };
(ii) SNV+1 is a finite set of communication rules of the forms (b, in) and (b, exit)

with b ∈ V ;
(iii) RNV+1 = ∅;

(6) co = NV + 1 is the label of the output cell.

More details on PPSDE algorithmic elaboration is presented step by step as fol-
lows:

Step 1: Initialization. Create a membrane structure of a population P system with
NV + 1 cells in a common environment, which include NV evolving cells labeled
k = 1, 2, . . . ,NV and a surviving cell labeled NV + 1. Evolving cell k is associated
with a direction vector rk . NV individuals forming an initial population are produced
and randomly scattered across evolving cells. Thus, there are nk individuals (objects)
inside each evolving cell, 0 ≤ nk ≤ NV and

∑NV
k=1 nk = NV . The value of nk may

vary between 0 and NV in the process of evolution so that
∑NV

k=1 nk = NV . When
the computation stops, each evolving cell has only one individual, i.e., nk = 1 (k ∈
{1, 2, . . . ,NV}).

Step 2: Parameter setting. PPSDE uses the adaptation scheme in [77] to dynam-
ically adjust the scaling factor F and crossover rate Cr. To be specific, the scaling
factor Fi and crossover rate Cri at generation g for the ith individual in the whole
population are produced by
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Fi = randc(μF, 0.1) (3.18)

Cri = randn(μCr, 0.1) (3.19)

where randc(μF, 0.1) and randn(μCr, 0.1) are a Cauchy distribution with location
parameter μF and scale parameter 0.1, and a normal distribution with mean μCr and
standard deviation 0.1, respectively. If the values of Fi and Cri are out of the range of
(0,1), i = 1, 2, . . . ,NP, they will be generated again by using (3.18) and (3.19). The
initial values μF and μCr are set to 0.5 and they will be updated at each generation
by using the following formula:

μF =
∑

F∈sF
F2/

∑

F∈sF
F (3.20)

μCr =
∑

Cr∈sCr
Cr/W (3.21)

whereW is a parameter; sF and sCr are the sets consisting of most recentW values
of F and Cr.

Step 3: Individual evolution. The individuals in each evolving cell evolve together
with the ones in neighboring cells through local communication. To be specific, for
each individual xi in an evolving cell k (i = 1, 2, . . . , nk), we select three individuals
xr1, xr2 and xr3 from cells kr1, kr2 and kr3 in a random way, where kr1, kr2, kr3 ∈
{k} ∪ {N(k)|nk 	= 0}. Then the individuals xr1, xr2 and xr3 are used to produce an
individual vi by using mutation operator in (2.15) of Chap.2 and parameter value Fi

generated by (3.18). Then, individual xi is recombinedwith vi to produce a trail vector
ui by using crossover operator in (2.16) of Chap.2 and parameter valueCri generated
by (3.19). Subsequently, a selection operation is performed on the objective vector
f(vi) calculated and vector f(xi). If f(vi) ≺ f(xi), xi is replaced by vi; otherwise,
nothing is done. The number of individuals in the system is resized into NP through
global communication at the end of each generation. The values of kr1, kr2 and kr3
decide what membrane structure will be created to perform communication between
cell k and its neighboring cells during the selection process of three individuals
xr1, xr2 and xr3. Thus, there are four scenarios for the values of kr1, kr2 and kr3:
(1) kr1 = kr2 = kr3 = k indicates no communication; (2) kr1 = k, kr2 = kr3 	= k or
kr2 = k, kr1 = kr3 	= k or kr3 = k, kr1 = kr2 	= k or kr1 	= k, kr2 = kr3 = k or kr2 	=
k, kr1 = kr3 = k or kr3 	= k, kr1 = kr2 = k indicates the communication between cell
k and one cell from its neighboring cells N(k); (3) kr1 = k, kr2 	= kr3 	= k or kr2 =
k, kr1 	= kr3 	= k or kr3 = k, kr1 	= kr2 	= k indicates the communication between cell
k and two cells from N(k); (4) kr1 	= kr2 	= kr3 	= k indicate the communication
between cell k and three different neighboring cells.

Step 4: Global communication. This step uses global communication among all
cells to re-scatter the individuals across NP evolving cells satisfying the following
three criterions: (1) the number of individuals in the system should be NP; (2) each

http://dx.doi.org/10.1007/978-3-319-55989-6_2
http://dx.doi.org/10.1007/978-3-319-55989-6_2
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individual should be re-assigned to an evolving cell that the individual approximates
best to the direction vector associated with this cell; and (3) the number of evolving
cells with individuals should be as large as possible. To be specific, the surviving cell
co receives all individuals (including xi and temporally stored ui) from all evolving
cells and forms a temporary population P′ with size NV and NV ∈ [NP, 2NP]. Then,
NP individuals survived in P′ are re-scattered across NP evolving cells. The rest
individuals are released to environment. The temporary population P′ is divided
into fronts F1,F2, . . . ,FL using non-dominated sorting [11] and the individuals
in fronts F1,F2, . . . ,Fl−1, l ≤ L first survive by satisfying

∑l−1
i=1 |Fi| < NP and∑l

i=1 |Fi| ≥ NP. For each individual x in fronts F1,F2, . . . ,Fl, an evolving cell
k is determined so that x can enter according to the closest perpendicular distance
between f(x) and ri, i.e.,

k = argmin
i∈{1,...,NP}

‖f(x) − rTi f(x)ri‖ (3.22)

Next, all individuals in F1,F2, . . . ,Fl−1 are sent to their corresponding cells.
According to the number of individuals, all evolving cells are scanned in ascending
order. If an evolving cell contains the fewest individuals and an individual in Fl

could enter this evolving cell, the individual is sent into this cell and the number of
individuals in this cell increases by 1; otherwise, goes to the next evolving cell with
the fewest individuals. If all evolving cells with the fewest individuals have been
checked and there are still some individuals needed to be kept alive, the evolving
cells with the second fewest individuals are scanned. Repeat this scanning procedure
until NP − ∑l−1

i=1 |Fi| individuals have been survived from Fl. Finally, the current
values of Fi and Cri generating the survived individuals are stored into sF and sCr
for updating μF and μCr at the next generation.

Step 5: Termination condition. A preset number of evolutionary generations or
function evaluations is used as the halting criterion.

Step 6: Output. The final solution set is collected from cell co.

3.7.3.2 Examples

To show the PPSDE performance, twelve widely used test problems, including five
two-objective problems (ZDT1-ZDT4, ZDT6) from ZDT test suit [95] and seven
three-objective problems (DTLZ1-DTLZ7) from DTLZ test suit [10], are used in the
experiment. Three widely used performance metrics [8], generational distance (GD),
inverted generational distance (IGD) and hypervolume (HV), are applied to evaluate
the algorithm performance. The better the algorithm is, the smaller values of GD and
IGD, and larger value on HV there are. About 1000 points for ZDT problems and
5000 points for DTLZ problems in the true Pareto front are sampled to compute GD
and IGD. The reference points (2, 2), (2, 2, 2), and (2, 2, 7) for all ZDT problems,
DTLZ1-DTLZ6, and DTLZ7, respectively, are used to compute HV. Benchmark
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Table 3.31 Comparison of the mean and standard deviation of GD values

PPSDE NSGA-II GDE3 DEMO ε-MyDE MOEA/D-DE

ZDT1 4.281E–4 5.910E–4 4.449E–4 4.017E-4 6.113E–3 6.926E–3

(1.203E–4) (6.436E–5) (2.335E–4) (7.656E–5) (9.366E–3) (5.838E–3)

ZDT2 6.342E–4 7.969E–4 6.601E–4 6.643E–4 8.337E–3 9.860E–3

(2.243E–4) (5.820E–4) (3.758E–4) (3.240E–5) (1.649E–3) (7.644E–3)

ZDT3 4.001E–4 5.953E–4 1.191E–3 1.016E–3 1.017E–2 1.219E–2

(1.322E–4) (2.509E–4) (9.416E–5) (1.054E–4) (1.160E–2) (1.026E–2)

ZDT4 1.996E–3 1.376E–2 9.398E–2 1.535E–2 1.224E–1 7.324E–2

(3.514E–3) (5.445E–3) (1.023E–1) (4.527E–3) (4.527E–2) (9.236E–3)

ZDT6 3.621E–3 2.604E–2 1.732E–3 1.161E–3 3.398E–1 7.324E–2

(8.390E–4) (8.453E–4) (4.137E–3) (5.068E–5) (6.525E–2) (9.236E–3)

DTLZ1 2.825E+0 3.083E+0 3.425E+0 2.553E+0 4.294E+0 3.452E+0

(2.536E–1) (4.295E–1) (4.533E–1) (1.403E–1) (3.582E–1) (5.482E–1)

DTLZ2 3.301E–3 3.579E–3 3.341E–3 3.387E–3 9.417E–4 3.402E–2

(1.096E–4) (3.100E–4) (9.805E–5) (8.074E–5) (1.319E–4) (1.080E–2)

DTLZ3 1.372E+1 3.153E+0 1.126E+1( 1.985E+1 7.677E+1 5.629E+1

(5.443E+0) (4.484E+0) (1.633E+1) (2.236E+0) (8.366E+0) (5.233E+0)

DTLZ4 2.319E–4 4.357E–3 2.231E–3 2.262E–3 1.581E–3 4.250E–2

(9.564E–5) (3.438E–4) (6.653E–5) (6.478E–5) (2.982E–4) (9.572E–3)

DTLZ5 8.265E–4 8.758E–4 8.963E–4 8.856E–4 1.547E–4 1.438E–3

(2.651E–5) (1.925E–4) (3.146E–5) (2.656E–5) (2.579E–5) (1.560E–2)

DTLZ6 4.164E–1 6.569E–1 8.064E–2 2.360E–1 3.388E–1 7.477E–1

(9.853E–2) (6.826E–2) (3.070E–3) (9.825E–3) (1.304E–2) (1.935E–2)

DTLZ7 3.334E–3 6.289E–3 3.648E–3 3.307E–3 5.447E–3 4.878E–1

(1.691E–4) (5.108E–4) (2.353E–4) (1.782E–4) (1.960E–3) (5.615E–2)

algorithms consist of five well-known multi-objective EAs: NSGA-II [11], GDE3
[35], DEMO [57], ε-MyDE [10] and MOEA/D-DE [37].

The algorithmwill stop when the maximal number 30,000 of function evaluations
arrives. Population sizeNP is set to 105 for PPSDE andMOEA/D-DE to three-object
problems. The rest cases use NP = 100. The reason is that the exact number 100 of
uniformly distributed direction vectors or weight vectors cannot be produced by the
simplex-lattice design for PPSDE and MOEA/D-DE to three-objective problems.
According to parameter analysis, R and W in PPSDE are set to 0.3 and 80, respec-
tively. The parameter setting of the other algorithms is referred to their original paper.
The number of independent runs for each algorithm on each test problem is 25.

Tables3.31, 3.32 and 3.33 list the experimental results consisting of the mean and
standard deviation of GD, IGD and HV values for the six algorithms over twelve
test problems. The boldfaced texts highlight the best mean value (i.e., minimal value
for GD and IGD, and maximal value for HV) among six algorithms on each test
problem. Wilcoxon’s rank sum test at a significance level of 0.05 is used to check
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Table 3.32 Comparison of the mean and standard deviation of IGD values

PPSDE NSGA-II GDE3 DEMO ε-MyDE MOEA/D-DE

ZDT1 4.099E–3 4.776E–2 4.455E–3 4.509E–3 2.919E–2 3.685E–2

(1.881E–4) (1.591E–3) (5.090E–4) (1.503E–4) (4.196E–3) (4.685E–3)

ZDT2 1.237E–2 4.912E–2 2.877E–2 5.303E–2 4.884E–2 4.601E–2

(2.096E–3) (2.271E–3) (1.210E–1) (1.675E–1) (6.658E–3) (9.761E–3)

ZDT3 4.773E–2 4.863E–2 4.974E–3 5.107E–3 2.735E–2 5.281E–2

(1.372E–2) (8.053E–3) (9.788E–5) (1.364E–4) (3.588E–3) (2.055E–2)

ZDT4 6.971E–2 5.450E–1 1.014E–1 1.780E–1 1.573E–1 6.286E–1

(1.962E–2) (7.413E–2) (2.382E–2) (3.740E–2) (9.225E–2) (1.320E–1)

ZDT6 4.931E–2 7.124E–2 6.406E–2 1.489E–2 9.748E–1 7.415E–1

(1.184E–3) (5.762E–3) (2.126E–1) (7.178E–4) (1.537E–1) (8.095E–2)

DTLZ1 5.525E+0 6.472E+0 7.054E+0 5.354E+0 8.904E+0 8.240E+0

(6.425E–1) (1.536E+0) (2.925E+0) (1.082E+0) (2.142E+0) (2.435+0)

DTLZ2 5.431E–2 6.991E–2 6.444E–2 6.434E–2 5.960E–2 7.230E–2

(9.078E–3) (2.394E–3) (1.603E–3) (1.639E–3) (1.051E–3) (1.247E–3)

DTLZ3 1.885E+1 2.484E+1 1.607E+1 2.159E+1 2.321E+2 1.135E+2

(6.801E+0) (2.159E+1) (2.486E+0) (5.474E+0) (2.614E+1) (3.303E+1)

DTLZ4 6.058E–2 6.878E–2 6.544E–2 6.452E–2 8.398E–2 7.312E–2

(9.251E–3) (2.180E–3) (2.305E–3) (1.459E–3) (3.202E–3) (1.565E–3)

DTLZ5 8.593E–3 5.653E–3 5.612E–3 5.657E–3 1.329E–2 1.370E–2

(1.095E–3) (2.692E–4) (2.046E–4) (3.015E–4) (2.803E–4) (8.196E–4)

DTLZ6 9.319E–1 1.129E+0 9.214E–1 2.135E+0 4.577E+0 6.535E+0

(2.199E–1) (1.036E–1) (2.954E–2) (1.033E–1) (1.146E–1) (2.196E–1)

DTLZ7 7.662E–2 2.618E–1 7.863E–2 7.549E–2( 7.653E–2 2.568E–1

(1.217E–2) (1.626E–1) (5.505E–3) (5.060E–3) (4.660E–3) (4.345E–2)

whether PPSDE really outperforms other algorithms with respect to three metrics in
a statistical sense. Table3.34 lists the statistical results, where the symbols “+”, “=”,
and “−” represent the numbers of problems where PPSDE performs significantly
better than, equivalent to, and worse than the corresponding algorithm, respectively.

It is observed in Table3.31 that PPSDE and DEMO are better than the rest four
algorithms with respect to the number of the best mean GD values. PPSDE, GDE3
and DEMO in Table3.32 win the best mean IGD values on fives, four and three
problems, respectively. PPSDE achieves the best HVmean values on most test prob-
lems according to Table3.33. The statistical test results in Table3.34 indicate that
PPSDE really outperforms the other methods due to the more number of problems
that PPSDE performs significantly better than five benchmark algorithms.

In PPSDE, the setting of parameter R (i.e., size of N(i)) deciding the number of
neighbors of each evolving cell and parameterW (i.e., size of sF and sCr) controlling
parameter adaptation behavior has much effect on the algorithm performance. So a
parameter sensitivity analysis is made by using DTLZ2 to seek an appropriate range
for the two parameters. Five cases for both R andW , i.e., R ∈ {0.2, 0.4, 0.6, 0.8, 1.0}
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Table 3.33 Comparison of the mean and standard deviation of HV values

PPSDE NSGA-II GDE3 DEMO ε-MyDE MOEA/D-DE

ZDT1 3.661E+0 3.650E+0 3.660E+0 3.659E+0 3.572E+0 3.568E+0

0(2.122E–3) (3.337E–4) (3.239E–4) (2.652E–3) (1.417E–2) (1.639E–2)

ZDT2 3.298E+0 3.286E+0 3.283E+0 3.237E+0 3.117E+0 3.144E+0

(5.672E–3) (4.240E–4) (2.423E–2) (3.364E–2) (3.234E–2) (3.627E–2)

ZDT3 4.633E+0 4.789E+0 4.815E+0 4.814E+0 4.726E+0 4.570E+0

(5.638E–2) (9.302E–2) (2.387E–4) (2.604E–4) (1.643E–2) (7.785E–2)

ZDT4 3.653E+0 3.456E+0 3.359E+0 3.275E+0 3.214E+0 3.004E+0

(1.048E–2) (2.996E–3) (7.708E–1) (5.570E–1) (4.234E–1) (2.492E–1)

ZDT6 3.033E+0 2.939E+0 2.961E+0 3.008E+0 1.382E+0 1.583E+0

(1.181E–3) (2.129E–2) (2.406E–1) (2.428E–3) (2.473E–1) (1.805E–1)

DTLZ1 4.224E+0 3.314E+0 3.125E+0 3.653E+0 2.235E+0 2.535E+0

(5.284E–1) (7.982E–1) (5.093E–1) (2.573E–1) (4.583E–1) (4.713E–1)

DTLZ2 7.369E+0 7.304E+0 7.341E+0 7.359E+0 7.143E+0 7.283E+0

(2.259E–2) (5.495E–2) (1.312E–2) (2.344E–2) (4.217E–2) (6.470E–2)

DTLZ3 1.846E+0 1.745E+0 2.931E–3 0.000E+0 0.000E+0 0.000E+0

(1.323E+0) (1.185E+0) (1.605E–2) (0.000E+0) (0.000E+0) (0.000E+0)

DTLZ4 7.383E+0 7.369E+0 7.382E+0 7.361E+0 7.260E+0 7.251E+0

(1.970E–2) (1.970E–2) (2.132E–2) (1.051E–2) (5.056E–2) (6.683E–2)

DTLZ5 6.074E+0 6.105E+0 6.093E+0 6.104E+0 6.070E+0 6.010E+0

(5.386E–3) (2.601E–2) (3.247E–2) (4.618E–2) (2.864E–2) (9.821E–2)

DTLZ6 2.472E+0 1.824E+0 2.534E+0 1.335E–2 0.000E+0 0.000E+0

(3.714E–1) (1.284E–1) (1.561E–1) (4.747E–2) (0.000E+0) (0.000E+0)

DTLZ7 1.336E+1 1.224E+1 1.313E+1 1.330E+1 1.294E+1 1.052E+1

(9.477E–2) (2.272E–1) (5.521E–1) (9.145E–2) (3.224E–1) (4.908E–1)

Table 3.34 Statistical test results in terms of GD, IGD and HV

GD IGD HV

+ = – + = – + = –

NSGA-II 11 0 1 10 1 1 9 1 2

GDE3 8 2 2 7 2 3 8 2 2

DEMO 6 2 4 7 1 4 8 2 2

ε-MyDE 9 0 3 10 1 1 10 1 1

MOEA/D-DE 12 0 0 11 1 0 11 1 0

and W ∈ {20, 40, 60, 80, 100}, are considered. Thus, there are totally 25 combina-
tions/configurations. The performance metrics, GD, IGD and HV over 25 indepen-
dent runs for each configuration, are used. The mean values of all configurations on
three metrics are shown in Fig. 3.25, where the results indicate that the recommended
values for the two parameters are R ∈ [0.2, 0.6] and W ∈ [60, 100].
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Fig. 3.25 Mean metric values of 25 independent runs obtained by PPSDE with 25 different com-
binations of R and W on DTLZ2

3.8 P Systems Roles in Membrane Algorithms

Amembrane-inspired evolutionary algorithm (MIEA, for short), also called a mem-
brane algorithm, is regarded as a successful instance with a practical use of an
approach combining MC with EC [53]. However, going with this research direc-
tion, a question is always haunting in the researchers in the areas of MC and EC.
That is, what is the role of a P system in a MIEA? Or what advantage can a P
system bring to a MIEA? Obviously, this is a tricky question. This motivates the
dynamic behavior analysis [87] of MIEAs in this section. In what follows, the sets of
population diversity and convergencemeasures are introduced to experimentally per-
form the analysis on the MIEA, QEPS (introduced in Sect. 3.3.2) and its counterpart
algorithm, QIEA (described in Sect. 2.3).

3.8.1 Population Diversity Analysis

Population diversity is one of the most factors that determines the performance of a
population-based search method. The diversity of a population is usually measured
by using an average distance between individuals. A larger distance means a better
population diversity. Diversity measures are used to evaluate the levels and types of
varieties of individuals in a population [3]. In what follows, six diversity measures
are described to compare QEPS and QIEA:

(1) Dqbw: This is a distance in the Q-bit space for measuring the average Q-bit
distance between the best and worst Q-bit individuals corresponding to the best
and worst fitness values in a population, respectively. Dqbw is defined as

Dqbw = 1

m

m∑

j=1

∣∣∣
∣∣abj

∣∣2 − ∣∣awj
∣∣2

∣∣∣ (3.23)

http://dx.doi.org/10.1007/978-3-319-55989-6_2
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Fig. 3.26 Dqbw of QEPS and QIEA with items 400, 600 and 800

wherem is the number of Q-bits in a Q-bit individual;
∣∣abj

∣∣2 and
∣∣awj

∣∣2 are prob-
abilities of the j-th Q-bit in the best and worst Q-bit individuals, respectively.
It is verified that 0 ≤ Dqbw ≤ 1. A larger distance between the best and worst
Q-bit individuals shows a larger value of Dqbw.

(2) Dqa: This is also a distance in the Q-bit space for measuring the average Q-bit
distance of all Q-bit individuals in a population. Dqa is defined as

Dqa = 2

n(n − 1)

n∑

i=1

n∑

j=i+1

{
1

m

m∑

k=1

∣∣∣|aik|2 − ∣∣ajk
∣∣2

∣∣∣

}
(3.24)

where n and m are the numbers of individuals in a population and Q-bits in
a Q-bit individual, respectively; |aik|2 and

∣∣ajk
∣∣2 are probabilities of the k-th

Q-bit in the i-th and j-th Q-bit individuals, respectively. Dqa in (3.24) is the
average value of the Q-bit distance between n(n − 1) pairs of Q-bit individuals.
It is verified that 0 ≤ Dqa ≤ 1. A larger distance between each pair of Q-bit
individuals in a population takes on a larger value of Dqa.
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Fig. 3.27 Dqa of QEPS and QIEA with items 400, 600 and 800

(3) Dhbw and Dhm: These are two distances in the binary space. Hamming distance
Dhbw between the best and worst binary individuals in a population and mean
Hamming distance Dhm of all binary individuals in a population are defined as

Dhbw =
m∑

i=1

(xbi ⊕ xwi) (3.25)

Dhm = 2

n(n − 1)

n∑

i=1

n∑

j=i+1

{
1

m

m∑

k=1

(
xik ⊕ xjk

)
}

(3.26)

where m and n are the numbers of bits in a binary solution and individuals in a
population; xbi and xwi are the i-th bits in the best and worst binary solutions,
respectively; symbol ⊕ is exclusive OR operator; xik and xjk are the k-th bits
in the i-th and j-th binary solutions, respectively. It is verified that Dhbw and
Dhm are in the range [0, m]. More varieties between the best and worst binary
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Fig. 3.28 Dhbw of QEPS and QIEA with items 400, 600 and 800

individuals, and each pair of binary individuals in a population, respectively,
show the larger values of Dhbw and Dhm.

(4) Dbc and Dba: Two diversity measures based on dispersion statistical measures
including the diversityDbc between chromosomes and the diversityDba between
the alleles [3] are defined as

Dbc = 1

n − 1

(∑
i S

2
i

L
− S2

L ∗ n

)
(3.27)

Dba = 1

L − 1

(∑
j S

2
j

n
− S2

L ∗ n

)
(3.28)

where n and L are population size and the length of a chromosome; S is the
sum of genes ‘1’; Si and Sj are the sum over a row i and the sum over a column
j, respectively. Dbc and Dba have the following properties [25]:
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Fig. 3.29 Dhm of QEPS and QIEA with items 400, 600 and 800

(a) Dbc and Dba equals zero when the population is homogeneous in either
0 or 1;

(b) If all the chromosomes in the population are identical, Dbc is zero and
Dba holds a constant value depending on how many genes ‘1’ are in a
chromosome.

The two diversity measures, Dqbw and Dqa, in Q-bit space, can be considered as
genotypic diversity measures. The rest four diversity measures, Dhbw, Dhm, Dbc and
Dba, fall into phenotypic diversity measures.

To intuitively show the changes of the six population diversities in the process
of evolution, knapsack problems described in Sect. 3.2.2.2 are used to conduct the
experiments. Population size is set to 20. The maximal number 20000 of function
evaluations (NoFE) is used as the halting condition. The comparisons of QEPS and
QIEA for three instances of the knapsack problem with 400, 600 and 800 items are
shown in Figs. 3.26, 3.27, 3.28, 3.29, 3.30 and 3.31, where each subfigure shows the
results of 30 independent random runs (green solid lines for QEPS and cyan solid
lines for QIEA) and the mean values over 30 runs (black bold solid lines for QEPS
and black bold dash-dot lines for QIEA).
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Fig. 3.30 Dbc of QEPS and QIEA with items 400, 600 and 800

The comparisons of population diversity between QEPS and QIEA, which are
shown in Figs. 3.26, 3.27, 3.28, 3.29, 3.30 and 3.31, indicate the following observa-
tions: a consistent trend for QEPS and QIEA is observed from the three subfigures
corresponding to the instances of the knapsack problemwith 400, 600 and 800 items,
in each of Figs. 3.26, 3.27, 3.28, 3.29, 3.30 and 3.31, respectively. This observation
indicates the reasonableness of the six diversity measures to a certain degree. Better
population diversity than QIEA in Q-bit space can be obtained by QEPS according
to Figs. 3.26 and 3.27. At the beginning of evolution, QEPS and QIEA have almost
the same value, of about 0.4, for Dqbw and Dqa. After the evolution starts, the values
of Dqbw and Dqa of Q-bit individuals in QEPS decrease gradually to around 0.05 at
the value 20000 of NoFE, whereas the values in QIEA rapidly fall below 0.05 at
the value 3000 of NoFE and approximate 0 at the value 20000 of NoFE. Dhbw and
Dhm in Figs. 3.28 and 3.29 indicate that QEPS has a greater potential to preserve the
population diversity than QIEA. When NoFE increases to 20000, QIEA loses the
population diversity and therefore has not any exploration capability. While QEPS
still has one-fourth of initial values of Dhbw and Dhm, which indicates that QEPS
still has a certain degree of exploration capability. Figures3.30 and 3.31 show that
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Fig. 3.31 Dba of QEPS and QIEA with items 400, 600 and 800

QEPS is superior to QIEA with respect to Dbc and Dba. It is noting that the loss of
population diversity implies that the algorithm fails to further explore the solution
space.

3.8.2 Convergence Analysis

Another one of the most factors determining the performance of a population-based
search method is convergence at the algorithmic level. Convergence can indicates
how fast an algorithm finds a satisfactory solution to an optimization problem. In
what follows, four measures: best Q-bit individual convergence (Cqb), average Q-
bit individual convergence (Cqa), the best fitness convergence (Cfb) and the average
fitness convergence (Cfa), are used to qualitatively analyze the convergence of QEPS
and QIEA. It is worth pointing out that Cqb and Cqa, calculated in the Q-bit space,
measure how much Q-bits approach 0 or 1 in the searching process. Thus, Cqb and
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Fig. 3.32 Cqb of QEPS and QIEA with items 400, 600 and 800

Cqa can be considered as genotypic convergence measures. WhileCfb andCfa, which
have a direct relationship to the quality of solutions, can be regarded as phenotypic
convergence measures.

The definitions of the four convergence measures are as follows:

(1) Cqb: This is a convergence measure in the Q-bit space. The best Q-bit individual
convergence is defined as

Cqb = 1

m

m∑

j=1

max
{∣∣αbj

∣∣2,
∣∣βbj

∣∣2
}

(3.29)

wherem is the number of Q-bits in a Q-bit individual; [αbj βbj]T is the j-th Q-bit
in the best Q-bit individual corresponding to the best fitness in a population. It
is verified that 0.5 ≤ Cqb ≤ 1.

(2) Cqa: This is also a convergence measure in the Q-bit space. The average Q-bit
individual convergence is
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Fig. 3.33 Cqa of QEPS and QIEA with items 400, 600 and 800

Cqa = 1

n

n∑

i=1

⎧
⎨

⎩
1

m

m∑

j=1

max
{∣∣αij

∣∣2,
∣∣βij

∣∣2
}
⎫
⎬

⎭ (3.30)

wherem is the number of Q-bits in a Q-bit individual; [αij βij]T is the j-th Q-bit
in the i-th Q-bit individual in the population with n individuals. It is verified
that 0.5 ≤ Cqa ≤ 1.

(3) Cfb and Cfa: The two convergence measures Cfb and Cfa are described as

Cfb = max{fi(x) | 1 ≤ i ≤ n} (3.31)

Cfa = 1

n

n∑

i=1

fi(x) (3.32)

where fi(x) is the fitness of the i-th individual. It is noting that the description
of Cfb in (3.31) is based on a maximization optimization problem.
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Fig. 3.34 Cfb of QEPS and QIEA with items 400, 600 and 800

Three instances of the knapsack problem with 400, 600 and 800 items are used to
compare the convergence performances of QEPS and QIEA. Population size is set to
20. The halting criterion considers the value 20000 of NoFE. The independent runs
is 30. Figures3.32, 3.33, 3.34 and 3.35 show the changes of Cqb, Cqa, Cfb and Cfa.
Each subfigure shows the results of 30 independently random runs (green solid lines
for QEPS and cyan solid lines for QIEA) and the mean values over 30 runs (black
bold solid lines for QEPS and black bold dash-dot lines for QIEA).

The experimental results in Figs. 3.32, 3.33, 3.34 and 3.35 indicate that there are
similar changes for QEPS and QIEA in the three subfigures corresponding to the
instances of the knapsack problem with 400, 600 and 800 items, respectively. To be
specific, Figs. 3.32 and 3.33 show that Cqb and Cqa take on similar tendencies. QEPS
converges much slower in Q-bit space than QIEA, which indicates that QEPS has
much higher possibility to find better solutions than QIEA. Figures3.34 and 3.35
show that QEPS has a slower increase of Cfb and Cfa than QIEA. When the value
of NoEF goes up, QIEA stays at a relatively flat level, while QEPS can continue its
ascending trend. QEPS is superior to QIEA due to better solutions.
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Fig. 3.35 Cfa of QEPS and QIEA with items 400, 600 and 800

Population diversity and convergence are the most important two conflicting fac-
tors affecting the algorithm performance. As usual, too high population diversity
will result in a slow convergence, vice versa, too low population also result in a
bad convergence. So the most important consideration for a population-based search
method is how to balance the population diversity and convergence, that is, how to
trade off the exploration and exploitation capabilities. Better balance indicates better
performance. The analysis of dynamic behavior in this section show the advantage
of a MIEA over its counterpart method with respect to the balance capability of
exploration and exploitation.

3.9 Conclusions

This chapter presented six classes of membrane algorithms from the perspective of
membrane structures. We discussed the principles, algorithm steps and experimental
results with respect to widely used and well-known benchmark problems. Following
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the introduction of variousmembrane algorithms, the roles of P systems inmembrane
algorithms was also discussed. This chapter highlighted the algorithm principles and
their effectiveness verification with benchmark problems, as the fundamentals of the
engineering applications of membrane algorithms in the next chapter.
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ed. H.J. Hoogeboom, Gh. Păun, G. Rozenberg, and A. Salomaa, 536–553. Lecture Notes in
Computer Science Berlin: Springer.

74. Zavala, A., A. Aguirre, and E. Diharce. 2005. Constrained optimization via evolutionary par-
ticle swarm optimization algorithm (PESO). In Proceedings of the Genetic and Evolutionary
Computation Conference, 209–216.

75. Zhang, R., and H. Gao. 2007. Improved quantum evolutionary algorithm for combinatorial
optimization problem. In International Conference on Machine Learning and Cybernetics,
3501–3505.

76. Zhang, Y., and L. Huang. 2009. A variant of P systems for optimization. Neurocomputing 72
(4–6): 1355–1360.

77. Zhang, J., andA. Sanderson. 2009. JADE: adaptive differential evolution with optional external
archive. IEEE Transactions on Evolutionary Computation 13 (5): 945–958.

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/


References 115

78. Zhang, G., M. Gheorghe, and C. Wu. 2008. A quantum-inspired evolutionary algorithm based
on P systems for knapsack problem. Fundamenta Informaticae 87 (1): 93–116.

79. Zhang, G., C. Liu, M. Gheorghe, and F. Ipate. 2009. Solving satisfiability problems with
membrane algorithm. In Proceedings of the 4th International Conference on Bio-Inspired
Computing: Theories and Applications, 29–36.

80. Zhang, G., L. Hu, and W. Jin. 2010. Resemblance coefficient and a quantum genetic algorithm
for feature selection. InDiscovery Science (DS 2004), vol. 3245, ed. E. Suzuki, and S. Arikawa,
155–168. Lecture Notes in Artificial Intelligence Berlin: Springer.

81. Zhang, G., Y. Li, andM. Gheorghe. 2010. Amulti-objective membrane algorithm for knapsack
problems. In Proceedings of the 5th International Conference on Bio-Inspired Computing:
Theories and Applications, 604–609.

82. Zhang, G., C. Liu, and H. Rong. 2010. Analyzing radar emitter signals with membrane algo-
rithms. Mathematical and Computer Modelling 52 (11–12): 1997–2010.

83. Zhang, G., J. Cheng, and M. Gheorghe. 2011. A membrane-inspired approximate algorithm
for traveling salesman problems. Romanian Journal of Information Science and Technology
14 (1): 3–19.

84. Zhang, G., M. Gheorghe, and Y. Li. 2012. A membrane algorithm with quantum-inspired
subalgorithms and its application to image processing. Natural Computing 11 (4): 701–717.

85. Zhang, G., F. Zhou, X. Huang, J. Cheng,M. Gheorghe, F. Ipate, and R. Lefticaru. 2012. A novel
membrane algorithm based on particle swarm optimization for solving broadcasting problems.
Chinese Journal of Electronics 13 (18): 1821–1841.

86. Zhang, G., J. Cheng, M. Gheorghe, and Q. Meng. 2013. A hybrid approach based on differen-
tial evolution and tissue membrane systems for solving constrained manufacturing parameter
optimization problems. Applied Soft Computing 13 (3): 1528–1542.

87. Zhang,G., J. Cheng, andM.Gheorghe. 2014.Dynamic behavior analysis ofmembrane-inspired
evolutionary algorithms. International Journal of Computers, Communications and Control 9
(2): 235–250.

88. Zhang, G., M. Gheorghe, L. Pan, and M.J. Pérez-Jiménez. 2014. Evolutionary membrane
computing: a comprehensive survey and new results. Information Sciences 279: 528–551.

89. Zhang, G., H. Rong, J. Cheng, and Y. Qin. 2014. A population membrane system-inspired
evolutionary algorithm for distribution network reconfiguration.Chinese Journal of Electronics
23 (3): 437–441.

90. Zhang, G., J. Cheng, M. Gheorghe, F. Ipate, and X. Wang. 2015. QEAM: an approximate
algorithm using P systems with active membranes. International Journal of Computers, Com-
munications and Control 10 (2): 263–279.

91. Zhao, J., and N. Wang. 2011. Hybrid optimization method based on membrane computing.
Industrial and Engineering Chemistry Research 50 (3): 1691–1704.

92. Zhao, J., and N. Wang. 2011. A bio-inspired algorithm based on membrane computing and
its application to gasoline blending scheduling. Computers and Chemical Engineering 35 (2):
272–283.

93. Zhao, J., N. Wang, and P. Zhou. 2012. Multiobjective bio-inspired algorithm based on mem-
brane computing. In Proceedings of International Conference on Computer Science and Infor-
mation Processing, 473–477.

94. Zhou, F., G. Zhang,H. Rong,M.Gheorghe, J. Cheng, F. Ipate, andR. Lefticaru. 2010.A particle
swarm optimization based on P systems. In Proceedings of the 6th International Conference
on Natural Computation, 3003–3007.

95. Zitzler, E., K. Deb, and L. Thiele. 2000. Comparison ofmultiobjective evolutionary algorithms:
empirical results. Evolutionary Computation 8 (2): 173–195.



Chapter 4
Engineering Optimization with Membrane
Algorithms

Abstract In this chapter are described engineering applications of the membrane
algorithms introduced in Chap. 3. The engineering problems we consider are the
following: radar emitter signal analysis, digital image processing, controller design,
mobile robot path planning, constrainedmanufacturing parameter optimization prob-
lems, distribution network reconfiguration and electric power system fault diagnosis.

4.1 Introduction

Numerous complex engineering problems are intractable and they can be effectively
solved by formulating them as optimization problems providing approximate accept-
able solutions rather than optimal solutions. As usual, an engineering optimization
problem may have continuous, discrete or mixed variables, non-linear constraints
and non-linear objective functions with unimodal, multimodal, separable or non-
separable characteristics. Thus, engineering optimization problems are typical rep-
resentatives of difficult or (computationally) hard optimization problems. A heuristic
approach is a good choice for this sort of problems.

Of various heuristic methods, membrane algorithms, as introduced in Chap.3, are
alternatives to solve engineering optimization problems. Given the rigor and sound
theoretical foundation, the parallel distributed framework and flexible evolution rules
of membrane computing models, membrane algorithms can achieve better balance
between exploration and exploitation than their counterpart heuristic approaches
[47, 49].

The general steps for the use of membrane algorithms to solve an engineering
problem include the formulation of an appropriate evaluation function, i.e., a min-
imization or maximization problem, the encoding of the parameters and the design
of a membrane algorithm.

This chapter describes the engineering applications of membrane algorithms with
cell-like, tissue-like and neural-like P systems. We will omit the details on the mem-
brane algorithms used in this chapter, due to the description of various membrane
algorithms in Chap. 3. The engineering problems we consider in this chapter are the
following: radar emitter signal analysis, digital image processing, controller design,
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mobile robot path planning, constrainedmanufacturing parameter optimization prob-
lems, distribution network reconfiguration and electric power system fault diagnosis.
We also briefly review the applications of membrane algorithms in other engineering
fields.

4.2 Engineering Optimizations with Cell-Like P Systems

In this section, we will describe how to apply membrane algorithms with cell-like
membrane structures to analyze radar signals and digital images, and to optimize the
controller design and mobile robot paths.

4.2.1 Signal Analysis

The signal analysis with cell-like P systems in this subsection refers to the use of the
membrane algorithm based on quantum-inspired evolutionary algorithms (QIEA),
introduced in Sect. 3.3.2, to analyze radar emitter signals. To be specific, themodified
QIEA based on P systems (MQEPS) in [53] is applied to optimize the time-frequency
atom decomposition process of radar emitter signals. MQEPS is a modified variant
of QIEA based on P systems (QEPS) by inserting a local search, the tubu search.
The related work was introduced in several papers [7, 25, 27, 53].

The time-frequency atom decomposition (TFAD) of radar emitter signals is the
process by which a radar emitter signal is decomposed into elementary components
with good time and frequency resolution and hence the radar emitter signal can
be represented by a linear superposition of a series of waveforms adapting to the
local structures of the signal. The waveforms and their collection are called time-
frequency atoms and time-frequency atom dictionary, respectively. As usual, the
dictionary is redundant or over-complete. The problem of selecting a series of atoms
from a redundant time-frequency atom dictionary to optimally approximate a signal
has been proved to be an NP-hard problem [8]. The classic method for implementing
TFAD of a signal is the greedy algorithm [32]. But a relatively large time-frequency
dictionary will result in the impossibility to decompose a signal in a reasonable finite
time.

By using TFAD, a radar emitter signal S(t) can be expanded into a linear sum of
time-frequency atoms gγ(t), which are elements of an appropriate countable subset
of gγ(t) with γ ∈ Γ = R+ × R∈ selecting from a redundant time-frequency atom
dictionary D = (gγ(t))γ∈Γ . Thus, S(t) can be described as

S(t) =
+∞∑

h=1

ahgγh (t), (4.1)

http://dx.doi.org/10.1007/978-3-319-55989-6_3
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where ah is the expansion coefficient of atom gγh (t) providing explicit information
on certain types or properties of S(t) [32]. Γ = R+ × R∈ is a set of indices for the
elements of the dictionary. TFAD is implemented by an iterative procedure starting
by projecting S(t) on an atom gγ0 ∈ D and computing the residual RS:

S = 〈S, gγ0〉gγ0 + RS, (4.2)

where RS is the residual vector after approximating S in the direction of gγ0 . Then,
the iterative algorithm subdecomposes the residual RS in a sequential manner by
projecting it on an atom of D. To maximize the module |〈Rh S, gγh 〉|, a nearly best
time-frequency atom gγh is searched at the hth iteration from a time-frequency atom
dictionary D, where R0S = S and Rh S is the hth order residual of the radar emitter
signal S(t), for h ≥ 1. Finally, the signal S can be denoted as

S =
H−1∑

h=0

〈Rh S, gγh 〉gγh + RH S, (4.3)

where H is the maximal number of iterations. As RH S is orthogonal to gγh , the
module of S is

||S||2 =
H−1∑

h=0

|〈Rh S, gγh 〉|2 + ||RH S||2, (4.4)

where ||RH S|| converges exponentially to 0 when H tends to infinity.
The iterative procedure described above is a local and time-consuming technique.

The problem that the best atoms and their corresponding best expansion coefficients
in (4.1) are found in a redundant time-frequency dictionary to optimally approximate
a radar emitter signal, is an NP-hard problem [8]. In this subsection, a membrane
algorithm, MQEPS in [53], is used to search the suboptimal time-frequency atoms
from redundant time-frequency atom dictionaries to reduce the computational load
of TFAD. The pseudocode algorithm for MQEPS-based TFAD is shown in Fig. 4.1.

In what follows, MQEPS is used to analyze 16 radar emitter signals. Their labels
and lengths are listed in Table4.1. Figure4.4a shows a signal with the length of 1024
points. To draw a comparison, we consider four algorithms: greedy algorithm (GrA),
QIEA, QEPS and MQEPS in the experiments. We evaluate the performances of the
four algorithms by five criteria: a correlation rate Cr , elapsed time, a decaying rate
Dr , a final value Dr f of the decaying rate Dr and a time-frequency energy distri-
bution (TFED). The correlation rate Cr = 〈S, Sr 〉/(||S||.||Sr ||) is used to measure
the resemblance between the original radar emitter signal S and the restored radar
emitter signal Sr . Signal Sr is obtained by using TFAD from the corresponding sig-
nal S. The decaying rate Dr = log10(||Rh S||/||S||) is used to measure the decaying
speed of signal energy in the process of decomposing a radar emitter signal into a
certain number of time-frequency atoms, where h is the number of iterations and
Rh S is the hth order residual of the original signal S [32]. The final value Dr f of
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Begin
R S S h
While do

h
g

h h

hR g gS

hR S
h h

h hR R g gS S

h h
End

End

Fig. 4.1 Pseudocode algorithm for MQEPS-based TFAD

Table 4.1 Comparisons of GrA, QIEA, QEPS andMQEPS in terms ofCr and Dr f . NoP represents
the number of points. Symbol/means that it cannot be obtained within a tolerable computing time

No. NoP GrA QIEA QEPS MQEPS

Cr Dr f Cr Dr f Cr Dr f Cr Dr f

1 512 0.9991 −1.3691 0.9965 −1.0753 0.9984 −1.2511 0.9993 −1.4297

2 1024 0.9992 −1.3944 0.9971 −1.1161 0.9986 −1.2752 0.9991 −1.3677

3 1087 0.9991 −1.3638 0.9968 −1.0988 0.9986 −1.2827 0.9989 −1.3236

4 1631 0.9983 −1.2301 0.9950 −1.0025 0.9973 −1.1367 0.9977 −1.1709

5 2767 0.9956 −1.0272 0.9883 −0.8164 0.9929 −0.9243 0.9940 −0.9598

6 3212 / / 0.9506 −0.5080 0.9678 −0.5988 0.9753 −0.6559

7 3529 / / 0.9611 −0.5589 0.9740 −0.6445 0.9780 −0.6811

8 4007 / / 0.8450 −0.2718 0.8745 −0.3143 0.8933 −0.3472

9 4550 / / 0.9541 −0.5234 0.9717 −0.6264 0.9800 −0.7013

10 5434 / / 0.9641 −0.5754 0.9803 −0.7041 0.9821 −0.7247

11 6114 / / 0.9236 −0.4162 0.9566 −0.5354 0.9653 −0.5829

12 7082 / / 0.8398 −0.2652 0.8759 −0.3159 0.8919 −0.3446

13 8906 / / 0.8930 −0.3462 0.9509 −0.5090 0.9618 −0.5625

14 9506 / / 0.9786 −0.6808 0.9952 −1.0074 0.9971 −1.1181

15 13354 / / 0.9128 −0.3887 0.9531 −0.5190 0.9607 −0.5563

16 15642 / / 0.9041 −0.3685 0.9794 −0.6943 0.9879 −0.8093

decaying rates is obtained when the number h of iterations reaches its prescribed
maximum. The TFED is used to intuitively show the time-frequency characteristics
and time-frequency concentration of the time-frequency atoms.

The parameter setting for the experiments is as follows: the maximal number H
of iterations for TFAD, the population size n for MQEPS and the number of Q-bits
for each parameter are set to 200, 20, and 10, respectively; Imax = 9 and the number
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Fig. 4.2 Elapsed time of
QIEA, QEPS and MQEPS
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m = 15 of elementary membranes in QEPS and MQEPS suggested in [25, 50]; the
maximal number of iterations and tabu length for tabu search are set to 50 and 5,
respectively. We consider the following Gabor time-frequency atom

gγ(t) = 1√
s
g

(
t − u

s

)
cos (vt + w). (4.5)

The index γ = (s, u, v, w) is a set of parameters representing the scale, translation,
frequency and phase, respectively, and g(.) is a Gauss-modulated window function,
g(t) = e−πt2 .

Table4.1 lists the correlation ratesCr and the final values Dr f of the decaying rates
of GrA, QIEA,QEPS andMQEPS. Figure4.2 shows the elapsed time ofMQEPS and
QIEA and QEPS, excluding GrA, for decomposing the 16 signals. Figure4.3 shows
the comparisons of the progresses of the decaying rates of the four algorithms. Since
GrA is a very time-consuming approach, Table4.1 and Fig. 4.3 show only the first
five results. GrA consumes 14543, 38874, 61305, 125797 and 262953 (equivalent
to about 73h) seconds for the signals with 512, 1024, 1087, 1631 and 2767 points,
respectively, which is about 19, 39, 50, 73 and 108 times as much as that in MQEPS,
respectively. Even the elapsed time (14543s) of GrA for the signal with 512 points is
muchmore than that (12969s) ofMQEPS for the signal with 15642 points. To further
demonstrate the performance differences of the four algorithms, Fig. 4.4 shows the
TFEDsof the original signalwith a length of 1024points and the signals reconstructed
using time-frequency atoms.

Figure4.2 shows that MQEPS consumes nearly equivalent computing time to
QIEAandQEPS requires smaller elapsed time for 16 signals thanMQEPSandQIEA.
MQEPS has advantages over QIEA for processing long signals. According to the Cr

and Dr f results in Table4.1, MQEPS is superior to QEPS and QIEA. The progresses
of the decaying rates of the 16 signals in Fig. 4.3 indicate theMQEPS advantage over
the other two algorithms. The superiority ofMQEPS can be also observed in Fig. 4.4,
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(b) Decaying rates of signal No.2
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(c) Decaying rates of signal No.3
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(d) Decaying rates of signal No.4
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(e) Decaying rates of signal No.5
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Fig. 4.3 Decaying rates obtained by GrA, QIEA, QEPS and MQEPS

where TFED obtained by MQEPS can effectively reduce the effect of interference
terms in the signal with two linear frequency-modulated components and has good
time-frequency concentration.
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(g) Decaying rates of signal No.7
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(h) Decaying rates of signal No.8
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(i) Decaying rates of signal No.9
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(j) Decaying rates of signal No.10
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(k) Decaying rates of signal No.11
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(l) Decaying rates of signal No.12

Fig. 4.3 (continued)

4.2.2 Image Processing

Image processing is very useful and necessary in various engineering applications
such as robotics, communication systems, biomedical systems and remote sensing.
The image processing discussed here will focus on the use of the membrane algo-
rithm, MAQIS [48], to solve the image sparse decomposition problem.
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(m) Decaying rates of signal No.13
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(n) Decaying rates of signal No.14
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(o) Decaying rates of signal No.15
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(p) Decaying rates of signal No.16

Fig. 4.3 (continued)

A Membrane Algorithm with Quantum-Inspired evolutionary Systems (short for
MAQIS) is constructed by using a one-level membrane structure (short for OLMS)
in [50] to organize the objects consisting of quantum-inspired bits (Q-bits) and clas-
sical bits, and three kinds of rules: evolution rules like in P systems for updating
Q-bits, observation rules like in quantum-inspired evolutionary algorithms (QIEA)
making binary bits solutions from Q-bit individuals, evaluation rules for assigning
a fitness to each binary solution, and communication rules for exchanging infor-
mation between the skin membrane and elementary membranes. MAQIS uses the
OLMS in Fig. 4.5. The skinmembrane containsm elementarymembranes delimiting
m regions. Different types of Q-gate evolutionary rules, QRG1, QRG2, . . ., QRGm ,
are put into different regions. A Q-bit individual consisting of a certain number of
Q-bits and a binary string are dealt with as multisets of objects. The transformation
of a Q-bit individual into a binary string is implemented by using a probabilistic
observation process. In MAQIS, a binary string corresponds to a candidate solution
of a problem. The set of rules are responsible for making the system evolve; the
initialization, observation and evaluation are executed in the skin membrane; Q-gate
update processes for generating offspring are performed in elementary membranes.
More details about MAQIS can be referred to [48, 50].
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(c) TFED obtained by GrA
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(d) TFED obtained by QIEA
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(f) TFED obtained by MQEPS

Fig. 4.4 Time-frequency energy distributions (TFED). RES represents radar emitter signal

Fig. 4.5 The OLMS used in
MAQIS
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In what follows, we use MAQIS to solve the image sparse decomposition in
image processing. The aim is to find as small number of elementary components
with the key features of an image as possible to represent or reconstruct the image
or to obtain a sparse representation of the image [3]. The elementary components of
an image are called image atoms. A collection of image atoms is called an image
atom dictionary. The problem of image sparse decomposition can be described as the
selection of a certain number of image atoms from a very large or redundant image
atom dictionary to approximate an image. Of various image sparse decomposition
techniques, matching pursuit, which was proposed by Mallat and Zhang in 1993
[32], is quite popular. The process for decomposing an image is briefly described as
follows [3, 32, 34].

The aim of matching pursuit is to represent an image I with a size L × W in a
linear superposition by using a certain number H of image atoms gγ selected from
an over-complete atom dictionary D = {gγ}γ∈Γ , where Γ is a set of indices for
the elements of the dictionary D, L and W are the length and the width of image,
respectively. Thus, an image I can be denoted as

I =
H∑

h=1

ahgγh (4.6)

where ah is the coefficient of atom gγh . Matching pursuit is implemented by an
iterative process starting by projecting image I on the first atom gγ0 , gγ0 ∈ D, and
computing the residual RI , i.e., I = 〈I, gγ0〉gγ0 + RI , where 〈I, gγ0〉 is the inner
product of image I and gγ0 ; RI is the residual vector after approximating image I at
the direction of gγ0 . Then, the next atom is selected from the atom dictionary D to
subdecompose the residual vector RI by projecting it on an atom of D. During the
process of decomposition, the best image atom gγh at the hth iteration is searched
from image atom dictionary D to maximize the module

∣∣〈Rh I, gγh 〉
∣∣, where R0 I = I

and Rh I is the residual vector of the image I after h atoms found matches, for h ≥ 1.
Finally, we represent the image I as

I =
H−1∑

h=0

〈Rh I, gγh 〉gγh + RH I (4.7)

where H is the number of iterations. RH I is orthogonal to gγh , which leads to the
module of I

||I ||2 =
H−1∑

h=0

|〈Rh I, gγh 〉|2 + ||RH I ||2 (4.8)

where
∥∥RH I

∥∥ is the norm of the residual vector of the image I after the iterative
process has been performed H times, i.e., there are H atoms found. As H approaches
to infinity,

∥∥RH I
∥∥ exponentially converges to 0.
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Fig. 4.6 Pseudocode
algorithm for image sparse
decomposition

The optimal approximation of an image by using a sequence of best atoms and
their corresponding best coefficients in (4.6), which are obtained from a redundant or
over-complete atom dictionary by applying matching pursuit, is an NP-hard problem
[8]. As usual, the iterative process for matching pursuit is very time-consuming [58],
so MAQIS is used to search the suboptimal atoms from an over-complete dictionary
in the following description. The pseudocode algorithm is shown in Fig. 4.6.

Theover-complete image atomdictionary is constructedbyusing anon-symmetric
atom [34] with the following basic form without normalization processing

g(x, y) = (4x2 − 2)e−(x2+y2) (4.9)

where x and y are the coordinates in a plane representing the length and width of
an image, respectively. The updated version gγ , which is used in the experiments, of
the basic non-symmetric atom by rotating, translating and scaling is

gγ = g

(
x − u

sx
,

y − v

sy

)
(4.10)

where θ, u, v, sx , sy are the rotation factors, translation factors at the direction of x
and y, scale factors at the direction of x and y, respectively, and they form a vector
γ = (θ, u, v, sx , sy).

In the experiments, four benchmark images widely used in the community of
image processing are considered. The four images are Lena1 with 128× 128 pixels,
Lena2 with 256× 256 pixels, Cameraman1 with 128× 128 pixels and Cameraman2
with 256× 256 pixels, respectively. We consider two versions of MAQIS, MAQIS1
and MAQIS2 [48, 58], and QEPS and five types of QIEAs constructed by using five
types of Q-gate evolutionary approaches, QRG1 [13], QRG2 [14], QRG3 [52], QRG4

[54], QRG5 [11], respectively. According to the description on matching pursuit, We
use the evaluation function

f (γ) = ∣∣〈Rh I, gγh 〉
∣∣ (4.11)

where γ = (θ, u, v, sx , sy); Rh I is the residual vector of image I after h atoms are
found; gγh is the atom found at iteration h. The population size is set to 20. The
number 1000 of atoms and the maximal number 100 of evolutionary generations
are used as the stopping condition. The algorithm performance is evaluated by three
criteria: the elapsed time, the reconstructed images and the quantitative measure for
the quality of reconstructed images, which uses the peak signal-to-noise ratio (PSNR)
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(a) Original image (b) QRG1 (c) QRG2 (d) QRG3

(e) QRG4 (f) QRG5 (g) MAQIS1 (h) MAQIS2

Fig. 4.7 Reconstructed Lena1 images

P SN R = 10 log

⎛

⎜⎜⎜⎝
2552

LW
L−1∑
j=0

W−1∑
i=0

(xi j − x̂i j )

⎞

⎟⎟⎟⎠ (4.12)

where L and W are the length and width of images, respectively; xi j and x̂i j are the
pixels of the original image and the reconstructed image, respectively.

Theoriginal four images,Lena1,Lena2,Cameraman1 andCameraman2, are shown
in Figs. 4.7a, 4.8a, 4.9a and 4.10a, respectively. The reconstructed images obtained
by using QRG1, QRG2, QRG3, QRG4, QRG5, MAQIS1 and MAQIS2, are shown
in Figs. 4.7b–h, 4.8b–h, 4.9b–h and 4.10b–h, respectively. The PSNR of the recon-
structed images and mean of elapsed time (MET) per iteration are listed in Table4.2.

The images reconstructed by using 1000 image atoms of seven algorithms, which
are shown in Figs. 4.7, 4.8, 4.9 and 4.10, have a good visual quality close to the
original images. Table4.2 shows different PSNR values of the reconstructed images
from the seven algorithms at the cost of nearly equal elapsed time in the process
of decomposing each of the four images with different sizes. An order of seven
algorithms with respect to PSNR values from the worst to the best, i.e., QRG3,
QRG4, QRG1, QRG2, MAQIS1, QRG5 and MAQIS2, as indicated in Table4.2.
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Fig. 4.8 Reconstructed
Lena2 images

(a) Original image (b) QRG1

(c) QRG2 3(d) QRG

(e) QRG4 (f) QRG5

(g) MAQIS1 (h) MAQIS2
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(a) Original image (b) QRG1 (c) QRG2 (d) QRG3

(e) QRG4 (f) QRG5 (g) MAQIS1 (h) MAQIS2

Fig. 4.9 Reconstructed Cameraman1 images

4.2.3 Controller Design

A controller is used to monitor and alter the operating conditions of a control system,
which may be a social system, an ecology system, an industrial process, an aircraft
system, or an anti-lock brake system, and so on. Controller design is not only the
central work of control theory, but also an important task in various disciplines. This
subsection discusses the use of themembrane algorithm, particle swarm optimization
based on P systems (PSOPS) [57, 59], to optimize the design of a proportional-
integral-derivative (PID) controller [41].

By combining P systems and particle swarm optimization, PSOPS uses the repre-
sentation of individuals, evolutionary rules of particle swarm optimization, one-level
membrane structure (OLMS) [50] and transformation or communication-like rules
in P systems to design its algorithm. To be specific, PSOPS was designed by using
particle swarm optimization algorithms as algorithm-in-membrane (AIM) organized
in OLMS. The details on PSOPS can be referred to [57, 59].

The block diagram of a PID control system is shown in Fig. 4.11, where r(t), y(t),
e(t) and u(t) represent the input, output, control error and control signal [23]. Their
relationship can be depicted by the following formula

u(t) = K p

[
e(t) + 1

Ti

∫ t

0
e(t)dt + Td

de(t)

dt

]
(4.13)



4.2 Engineering Optimizations with Cell-Like P Systems 131

Fig. 4.10 Reconstructed
Cameraman2 images

(a) Original image (b) QRG1

(c) QRG2 (d) QRG3

(e) QRG4 (f) QRG5

(g) MAQIS1 (h) MAQIS2
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Table 4.2 Experimental results for seven algorithms

Algorithms Lena1 Lena2 Cameraman1 Cameraman2
PSNR MET (s) PSNR MET (s) PSNR MET (s) PSNR MET (s)

QRG1 33.81 38.27 29.17 106.18 32.72 37.54 28.25 105.83

QRG2 34.18 43.79 29.50 112.78 33.16 39.71 28.57 111.80

QRG3 30.78 39.42 27.00 99.94 29.62 39.05 25.87 101.41

QRG4 31.64 42.49 27.71 113.77 30.35 42.17 26.63 113.71

QRG5 34.55 40.01 29.81 106.97 33.55 38.86 29.02 106.92

MAQIS1 34.53 41.47 29.65 110.30 33.33 41.14 28.75 108.72

MAQIS2 34.90 43.00 29.89 110.39 33.68 41.80 29.18 110.01

Fig. 4.11 Block diagram of
a PID control system

or the transfer function

C(s) = U (s)

E(s)
= K p + Ki

s
+ Kds (4.14)

where Ti and Td are integral and derivative time, respectively; K p, Ki = K p/Ti and
Kd = K pTd are proportional, integral and derivative gains, respectively. The design
of a PID controller is to tune the three parameters, K p, Ki and Kd , to obtain good
control performance, such as quick-response, small overshoot, short settling time
and high stability precision.

In the design of a PIDcontrollerwith PSOPS, the three parameters, K p , Ki and Kd ,
are optimization variables; PSOPS is the optimization algorithm; the performance
index of the controller is the evaluation function of PSOPS. In what follows, we
illustrate the design procedure and experimental results by using four examples.

The transfer functions of four single-input single-output control objects [6] are as
follows:

G1(s) = 1

s + 1
e−0.2s (4.15)

G2(s) = 0.33

134s2 + 18.5s + 1
e−18.25s (4.16)

G3(s) = 1 − 1.4s

(1 + s)3
(4.17)
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G4(s) = 1

(s + 1)(s/6 + 1)3
(4.18)

In the experiments, the results obtained by the three methods, Z-N, SGA and
dsDNA-MC [6], are used as benchmarks. The integral of absolute error of control
performance index (IAE) is considered as the fitness function. The parameters of
PSOPS are set as follows: population size is set to 30; the number of elementary
membranes is set to 16; the maximal generations both in the skin membrane and
in each elementary membrane are set to 10; the inertia weight is set to 0.6; the
two acceleration factors are set to 2 and the dimension is set to 3. The values of
PID controller parameters, K p, Ki and Kd , and the control performance indexes,
adjustment time ts , the overshoot σ and the IAE value, are shown in Table4.3. The
step responses of the closed loop systems for the four control objects are shown in
Fig. 4.12.

The results in Table4.3 and the curves in Fig. 4.12 show that PSOPS achieves
better results than the other three methods in [6]. For the objects G1, G2 and G4, the
PID control systems tuned by PSOPS have shorter settling time, smaller overshoot
and performance index than the other three methods. For object G3, the result in
Fig. 4.12c show that the unit step response curves of the former three methods are
slightly better than PSOPS, but the performance index of the fourth method is far
better than others with faster response speed.

Table 4.3 Comparisons of four methods with respect to PID controllers

Objects Methods K p Ki Kd ts (s) σ (%) IAE

G1 Z-N 5.1070 13.7190 0.4750 1.18 57.60 0.5400

SGA 4.8911 3.1814 0.5513 1.03 6.31 0.3550

dsDNA-MC 4.3118 3.2737 0.3218 0.62 8.09 0.3330

PSOPS 3.8884 3.1098 0.2675 0.48 2.39 0.3312

G2 Z-N 2.9010 0.0800 26.4300 103.00 11.30 41.9400

SGA 2.4446 0.1010 30.8800 122.50 13.00 39.7500

dsDNA-MC 2.3757 0.0882 26.8500 66.10 7.00 38.3100

PSOPS 2.3226 0.0863 25.6560 65.53 5.99 38.2715

G3 Z-N 0.9230 0.2700 0.7880 8.50 2.75 3.7450

SGA 0.8714 0.2718 0.7990 4.55 6.10 3.7130

dsDNA-MC 0.8890 0.2895 0.8295 4.31 2.13 3.6580

PSOPS 0.9527 0.3019 0.8946 5.54 7.71 3.4787

G4 Z-N 4.6050 5.9040 0.8470 2.35 52.10 0.9830

SGA 8.3690 2.9330 2.5870 2.74 10.60 0.5850

dsDNA-MC 6.6190 2.0280 1.9980 1.54 4.10 0.5430

PSOPS 4.9104 1.8422 1.3680 1.59 3.08 0.5706
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(a) Object G1 (b) Object G2

(c) Object G3 (d) Object G4

Fig. 4.12 Step responses of closed loop systems for four objects

4.2.4 Mobile Robot Path Planning

This subsection uses a modified membrane-inspired algorithm based on particle
swarm optimization (mMPSO) to solve a multi-objective mobile robot path planning
problem (MR3P) in a challenging environment with various static and dynamic
obstacles. We will first describe MR3P and then present the procedure and results.
The mMPSO is briefly discussed. More details can be referred to [43].

MR3P is proven to be an NP-complete problem [31]. Its aim is to use an opti-
mization technique to find a short, smooth and safe path for a mobile robot from a
starting point to the ending point in an environment with static or dynamic obstacles.
The requirements for the path are characterized by: the shortest distance, smoothness
and safety. So the MR3P objective function f can be defined as

f = Kd · Dis + K f · S + Ks · SD (4.19)

where Dis, S and SD are path length, smoothness and safety degree, respectively,
and their weighing factors are Kd , Ks and Kv , respectively.
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Path length Dis is defined as the sum of distances between n nodes from the
starting point to the ending point, i.e.,

Dis =
n−1∑

i=0

L (i, i + 1) (4.20)

where L(i, i + 1) = √
(xi+1 − xi )2 + (yi+1 − yi )2 is the distance between nodes

i = (xi , yi ) and i + 1 = (xi+1, yi+1).
Smoothness is defined as the sum of the reflection angles formed by any arbitrary

three neighboring nodes of a path. Usually, the direct calculation of the smoothness
is a time-consuming process, thus, we use an indirect approach, i.e., it uses the ratio
Sc of the number of deflection angles which are less than the given expected value
over the total number of deflection angles and the ratio Sp of the number of path
segments which are greater than the number of the segments in the path with the
smallest number of path segments in a group over the total number of path segments
to evaluate the smoothness of a path. Smoothness is computed by the following
formula:

S = α · Sc + β · Sp (4.21)

where

Sc = 1 − D Al

N f − 1
(4.22)

Sp = 1 − Smin

N f
(4.23)

where α and β are two weighing coefficients; D Al is the number of deflection angles
greater than the expected value; N f the total number of path segments; Smin is the
number of the segments in the path with the smallest number of path segments in a
group.

Safety degree (SD) refers to the sum of deviation degrees Ci (i = 1, 2, . . . , N )

between any segment in a path and its nearest obstacle, i.e.,

SD =
n−1∑

i=1

Ci =
{
0, di ≥ λ∑n−1

i=1 eλ−di , di < λ
(4.24)

where di is the minimal distance between the i th segment and its nearest obstacle,
and λ is the threshold of safety degree.

A grid (occupancy cell) environment is used and can be represented by two ways:
a X–Y coordinates plane [39] and an orderly numbered grid. We use the latter tech-
nique. A square environment is evenly divided into a certain number of squares,
i.e., the x-axis and y-axis are divided equally into m segments. Thus, we obtain
m × m grids, where several grids are used to represent the obstacles. The grid-based
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Fig. 4.13 A 7 × 7 grid
environment

environment considered is dynamic and therefore moving obstacles or dangerous
sources may appear or disappear. Figure4.13 shows an example of 7 × 7 grids. In
this figure, the gridmap is encoded by usingMatlab and the grey shadow grids denote
obstacles. The mapping relations between coordinates (x, y) and the serial number
p starting from one is described as

p = f i x(y/SoG) · NoC + f i x(x/SoG) (4.25)

where SoG is the grid size; NoC is the number of columns; the function f i x(t)
rounds t to its nearest integer towards zero.

Thus, MR3P can be described as a minimization problem with the objective
function (4.19) in an orderly numbered grid environment with moving obstacles or
dangerous sources. In what follows, we use mMPSO to solve MR3P.

The modified membrane-inspired algorithm based on particle swarm optimiza-
tion (mMPSO) is designed by using a variable dimension PSO and a dynamic mem-
brane structure with membrane division and dissolution. In mMPSO, a point repair
algorithm, a smoothness approach and a moving direction adjustment technique are
considered. Their details and mMPSO can be referred to [43].

Inwhat follows, several experiments are used to show the application.We consider
three grid models, 16 × 16, 32 × 32 and 64 × 64, and five environments: 16 × 16
with 9 static obstacles (Os = 9), 16 × 16 with Os = 9 and one dynamic obstacle
(Od = 1), 32 × 32 with Os = 20, 32 × 32 with Os = 20 and Od = 1, 64 × 64 with
Os = 20. The 16 × 16 grid model environment with 9 static obstacles is first applied
to compare mMPSO with its counterpart particle swarm optimization with variable
dimensions (vPSO) (when m = 1, mMPSO becomes vPSO) and genetic algorithm
(GA) [39]. Complex environments, 32 × 32 and 64 × 64 grid model environments
with 20 static obstacles, are applied to further show the application. One dynamic
obstacle representing a moving obstacle or a dangerous source occurring suddenly
is considered. The position for the possible occurrence of the dynamic obstacle is
close to the near center because it may block the feasible paths. Parameter setting is
as follows: the population size is set to 100; the proportion coefficients δ1 = 0.65,



4.2 Engineering Optimizations with Cell-Like P Systems 137

Fig. 4.14 Experimental results of mMPSO in the environments 16 × 16 grids, Os = 9 and Od = 1

δ2 = 0.35; ρ is defined as a variable, which varies from 0.246 to 0.157 along the
logarithm function log10(y); the number m of elementary membranes inside the skin
membrane is set to 13; in (4.21), α = 0.6, β = 0.4; in (4.24), λ is set to the robot
radius. The termination condition is designated as the maximal number 2000 of
iterations.

In the experiments on the model with 16 × 16 grids, we consider three cases for
Kd , Ks, K f as follows:

(1) Case 1: Kd = 1, Ks = K f = 0, γ1 = 1, γ2 = 0;
(2) Case 2: Kd = 0.6, Ks = K f = 0.2, γ1 = 0, γ2 = 1;
(3) Case 3: Kd = 0.8, Ks + K f = 0.2, γ1 + γ2 = 1.

Figure4.14 shows the experimental results ofmMPSO. Figure4.14a indicates that
the blue line is the best path in Case 1 considering only one objective, path length,
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Table 4.4 Comparisons of three methods in the environment (Fig. 4.14a)

Method NoO NoNO NoI Fv Gn St

GA [36] 9 78 13 24.68 16 1.68

vPSO 83 108 0 24.95 65 2.97

mMPSO 94 239 0 24.26 27 0.84

Table 4.5 Comparisons of three methods in the environment (Fig. 4.14c)

Method NoO NoNO NoI Fv Gn St

GA [36] 32 68 0 24.71 12 0.69

vPSO 81 103 0 28.56 73 3.12

mMPSO 92 235 0 27.43 34 0.97

Table 4.6 Experimental results of mMPSO in different environments in Fig. 4.15

Environment NoO NoNo Fv Gn St

32 × 32, Os = 20, Od = 0 86 242 28.79 36 1.72

32 × 32, Os = 20, Od = 1 82 225 31.53 45 1.93

64 × 64, Os = 20, Od = 0 83 247 28.14 59 2.68

and the red line is the best result in Case 2 by trading-off safety and smoothness.
Figure4.14b shows 8 near optimal paths (8 colors) in Case 3 through balancing the
path length, safety and smoothness. The paths in Fig. 4.14c are obtained by consider-
ing one dynamic obstacle and the blue line is the best path in Case 1 considering only
one objective, path length, and the red line is the best result in Case 2 by trading-off
safety and smoothness.

Let Kd = 1. We perform the experiment for 100 independent runs to draw a
comparison with GA in [39] and vPSO. The experimental results of GA, vPSO and
mMPSO in the environments with static obstacles and the environments with static
and dynamic obstacles are shown in Tables4.4 and 4.5. NoO, NoNO, NoI, Fv, Gn
and St in Tables4.4, 4.5 and 4.6 are the number of optimal solutions, the number of
near optimal solutions, the number of infeasible solutions and the fitness value in
100 trials, the average generations for finding the optimal solution and the mean of
the elapsed time (s) in each trial, respectively.

Table4.4 and Fig. 4.14 shows that mMPSO takes smaller elapsed time to find
much more optimal paths and near optimal paths than GA. The solutions found by
vPSO and mMPSO are feasible, while GA finds some infeasible solutions. mMPSO
is better than vPSO and GA with respect to optimal and near optimal solutions and
the elapsed time. Similar conclusions are indicated in Tables4.5 and 4.4.

In the following experiments, complex environments with 32 × 32 and 64 × 64
grids containing 20 or 21 obstacles are considered and shown in Fig. 4.15a–d.
Figure4.15a shows the environment with 32 × 32 grids and 20 static obstacles.
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Fig. 4.15 Experimental
results of mMPSO in the
environments 32 × 32,
64 × 64 grids, Os = 20 and
Od = 1

The environment with 20 static obstacles and one dynamic obstacle is shown in
Fig. 4.15b–c. The three objectives, path length, smoothness and safety, are consid-
ered in Fig. 4.15c. We use the same parameters as the previous experiment except
for the population size 150 and m = 15. 100 independent runs are executed for all
the tests. Experimental results are shown in Table4.6. Tables4.4, 4.5 and 4.6 show
that the optimal solutions obtained by mMPSO decrease from 94 to 83, the elapsed
time goes up from 0.84 to 2.68 and the average generations vary from 27 to 59 as
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Fig. 4.15 (continued)

the number of grids increases from 16 × 16 to 64 × 64 and the static obstacles go up
from 9 to 20. The dynamic obstacle slightly increases the elapsed time and average
generations.
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4.2.5 Other Applications

In addition to the engineering applications discussed above, membrane algorithms
were also applied to solve a wider range of engineering problems. For instance, in
[56], gasoline blending scheduling problemswere discussed. In [25], infinite impulse
response digital filters were designed by using membrane algorithms. In [45], the
parameters of proton exchange membrane fuel cell models were estimated. The
cognitive radio spectrum allocation problem was solved in [9, 10].

4.3 Engineering Optimization with Tissue-Like P Systems

4.3.1 Manufacturing Parameter Optimization Problems

This subsection uses the membrane algorithm designed with a tissue P system and
differential evolution (DETPS) [46], which is discussed in Sect. 3.6, to solve manu-
facturing parameter optimization problems.

Manufacturing is a complex process that transforms raw materials, components
or parts into finished products so as to satisfy expectations or constraints imposed
by customers’ specifications. To design and produce a suitable final product, lots of
conditions or factors or parameters are considered in the formulation of the man-
ufacturing process. A set of parameters corresponding to a set of manufacturing
conditions is a solution of the problem. To obtain an efficient manufacturing process
to produce a high-quality product with low cost, a manufacturing parameter opti-
mization problem is usually solved by using an optimization technique to find the
optimal condition. Considering various parameters (or decision variables) and vari-
ous constraints, a manufacturing parameter optimization problem can be formulated
as a mixed discrete-continuous constrained minimization problem:

min f (x) , x = (x1, x2, . . . , xn) (4.26)

subject to:

gi (x) ≤ 0, i = 1, 2, . . . , p (4.27)

h j (x) = 0, j = 1, 2, . . . , q (4.28)

where x = (x1, . . . , xn) represents a solution to the manufacturing parameter opti-
mization problem; xi ∈ R, (i = 1, 2, . . . , n) is a parameter or a variable to be opti-
mized; n is the number of parameters; f (x) is the objective function; p and q are
the number of inequality constraints and equality constraints, respectively. The two
kinds of constraints, gi (x) ≤ 0 and h j (x) = 0, could be linear or nonlinear. Para-
meter xi (i = 1, 2, . . . , n) is one of the four types of variables: type I, type II, type
III and type IV [21]. Type I refers to a binary variable, 0 or 1. Type II is an integer

http://dx.doi.org/10.1007/978-3-319-55989-6_3
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Fig. 4.16 The welded beam
design problem [2, 46]

variable confined within the uniformly spaced values in a bounded range. Type III
is a real-valued parameter consisting of uniformly spaced values within a bounded
range. Type IV could be a discrete or continuous variable that varies within a bounded
range.

In what follows, we use DETPS to solve four manufacturing parameter optimiza-
tion problems [2, 15, 17, 26, 29, 35, 36]: welded beam design problem, pressure
vessel design problem, tension/compression string design problem and speed reducer
design problem.

A welded beam design problem is designed for the minimum cost subject to
constraints on shear stress (τ ), bending stress in the beam (θ), buckling load on the
bar (Pc), end deflection of the beam (δ), and side constraints. There are four design
variables as shown in Fig. 4.16 [2, 46], i.e. h(x1), l(x2), t (x3) and b(x4). This problem
can be mathematically formulated as follows:

min f (x) = 1.10471x2
1 x2 + 0.04811x3x4 (14.0 + x2)

subject to

(1) g1 (x) = τ (x) − τmax ≤ 0,
(2) g2 (x) = σ (x) − σmax ≤ 0,
(3) g3 (x) = x1 − x4 ≤ 0,
(4) g4 (x) = 0.10471x2

1 + 0.04811x3x4 (14.0 + x2) − 5.0 ≤ 0,
(5) g5 (x) = 0.125 − x1 ≤ 0,
(6) g6 (x) = δ (x) − δmax ≤ 0,
(7) g7 (x) = P − Pc (x) ≤ 0.

where

τ (x) =
√

(τ ′)2 + 2τ ′τ ′′ x2
2R + (τ ′′)2,

τ ′ = P√
2x1x2

,

τ ′′ = M R
J ,
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M = P
(
L + x2

2

)
,

R =
√

x2
2
4 + ( x1+x3

2

)2
,

J = 2
√
2x1x2

[
x2
2

12 + ( x1+x3
2

)2]
,

σ (x) = 6P L
x4x2

3
,

δ (x) = 4P L3

Ex3
3 x4

,

Pc (x) = 4.013E

√
x23 x64
36

L2

(
1 − x3

2L

√
E
4G

)
.

where P = 6000 lb, L = 14 in, E = 30×106 psi, G = 12 × 106 psi, τmax = 13,600psi,
σmax = 30,000psi, δmax = 0.25 in, 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤
x4 ≤ 2.

A pressure vessel design problem is for minimizing the total cost f (x) of a
pressure vessel considering the cost of material, forming and welding. A cylindrical
vessel is capped at both ends by hemispherical heads as shown in Fig. 4.17 [2, 46].
There are four design variables: Ts (x1, thickness of the shell), Th (x2, thickness of the
head), R (x3, inner radius) and L (x4, length of the cylindrical section of the vessel,
not including the head). Among the four variables, Ts and Th , which are integer
multiples of 0.0625, are the available thicknesses of rolled steel plates, and R and L
are continuous variables. This problem can be formulated as follows:

min f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1 x4 + 19.84x2
1 x3

subject to

(1) g1 (x) = −x1 + 0.0193x3 ≤ 0,
(2) g2 (x) = −x2 + 0.00954x3 ≤ 0,
(3) g3 (x) = −πx2

3 x4 − 4
3πx3

3 + 1296000 ≤ 0,
(4) g4 (x) = x4 − 240 ≤ 0,

where 1 ≤ x1 ≤ 99, 1 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200.

Fig. 4.17 Center and end section of pressure vessel design problem [2, 46]
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Fig. 4.18 Tension/compression string design problem [2, 46]

A tension/compression string design problem is to minimize the weight ( f (x))
of a tension/compression spring (as shown in Fig. 4.18 [2, 46]) subject to constraints
on minimum deflection, shear stress, surge frequency, limits on outside diameter and
on design variables. The design variables are the mean coil diameter D(x2), the wire
diameter d(x1) and the number of active coils P(x3). The mathematical formulation
of this problem can be described as follows:

min f (x) = (x3 + 2) x2x2
1

subject to

(1) g1 (x) = 1 − x3
2 x3

71785x4
1

≤ 0,

(2) g2 (x) = 4x2
2−x1x2

12566(x2x3
1−x4

1)
+ 1

5108x2
1

− 1 ≤ 0,

(3) g3 (x) = 1 − 140.45x1
x2
2 x3

≤ 0,

(4) g4 (x) = x1+x2
1.5 − 1 ≤ 0,

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.
A speed reducer design problem is shown in Fig. 4.19 [2, 46] for minimizing

the weights of the speed reducer subject to constraints on bending stress of the gear
teeth, surface stress, transverse deflections of the shafts and stresses in the shafts. The
parameters x1, x2, . . . , x7 represent the face width (b), module of teeth (m), number
of teeth in the pinion (z), length of the first shaft between bearings (l1), length of the
second shaft between bearings (l2) and the diameter of the first shaft (d1) and second
shaft (d2), respectively.

Fig. 4.19 The speed reducer
problem [2, 46]
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min f (x) = 0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

− 1.508x1
(
x2
6 + x2

7

) + 7.4777
(
x3
6 + x3

7

)

subject to

(1) g1 (x) = 27
x1x2

2 x3
− 1 ≤ 0,

(2) g2 (x) = 397.5
x1x2

2 x2
3

− 1 ≤ 0,

(3) g3 (x) = 1.93x3
4

x2x3x4
6

− 1 ≤ 0,

(4) g4 (x) = 1.93x3
5

x2x3x4
7

− 1 ≤ 0,

(5) g5 (x) =
((

745x4
x2x3

)2+16.9×106
)1/2

110.0x3
6

− 1 ≤ 0,

(6) g6 (x) =
((

745x4
x2x3

)2+157.5×106
)1/2

85.0x3
7

− 1 ≤ 0,

(7) g7 (x) = x2x3
40 − 1 ≤ 0,

(8) g8 (x) = 5x2
x1

− 1 ≤ 0,

(9) g9 (x) = x1
12x2

− 1 ≤ 0,

(10) g10 (x) = 1.5x6+1.9
x4

− 1 ≤ 0,

(11) g11 (x) = 1.1x7+1.9
x5

− 1 ≤ 0,

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤
8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

DETPS is designed by using a network membrane structure, evolution and com-
munication rules like in a tissue P system and five widely used differential evolution
variants put inside five cells of the tissue P system. In the experiments, a popu-
lation with 20 individuals that are equally divided into 5 groups, i.e., N P = 20,
N P1 = N P2 = N P3 = N P4 = N P5 = 4. A prescribed number of 10,000 function
evaluations is regarded as the stoping criterion. Table4.7 lists the statistical results
over 30 independent runs.We consider seven optimization algorithms as benchmarks.
They are TLBO [36], (μ + λ)-evolutionary strategy ((μ + λ)-ES) [29], unified par-
ticle swarm optimization (UPSO) [35], co-evolutionary particle swarm optimization
(CPSO) [15], CoDE [17], hybridizing particle swarm optimization with differential
evolution (PSO-DE) [26] and artificial bee colony algorithm (ABCA) [2], respec-
tively. In Table4.7, the statistical results of the seven optimization algorithms are
also shown. Table4.7 indicates that DETPS is better than the other seven algorithms
for the welded beam and pressure vessel problems in terms of the best, mean, worst
solutions, standard deviations and the number of function evaluations. DETPS is
competitive to TLBO with respect to the best and mean and the number of function
evaluations on the tension/compression spring problem; DETPS uses a much smaller
number of function evaluations to obtain competitive results compared with PSO-
DE; the rest of five optimization algorithms are inferior to DETPS in terms of the
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Table 4.7 Statistical results of seven algorithms for test problems 6–9. The results of (μ + λ)-ES,
UPSO, CPSO, CoDE, PSO-DE, ABCA and TLBO are referred from [2, 15, 17, 26, 29, 35, 36],
respectively. BT, MN, WT and FE represent best solution, mean best solution, worst solution and
the mean number of function evaluations over independent 30 runs, respectively. Symbol ‘-’ means
that no result can be referred. Pm, WB, PV, TS and SR represent problems, welded beam, pressure
vessel, tension/compression string and speed reducer design problems, respectively

Pm DETPS (μ+λ)

−E S
UPSO CPSO CoDE PSO-DE ABCA TLBO

WB BT 1.724852 1.724852 1.92199 1.728024 1.733462 1.724853 1.724852 1.724852

MN 1.724852 1.777692 2.83721 1.748831 1.768158 1.724858 1.741913 1.728447

WT 1.724853 2.074562 4.88360 1.782143 1.824105 1.724881 - -

SD 2.1e−7 8.8e−2 6.8e−1 1.3e−2 2.2e−2 4.1e−6 3.1e−2 -

FE 10,000 30,000 100,000 200,000 240,000 33,000 30,000 10,000

PV BT 5885.3336 6059.7016 6544.27 6061.0777 6059.7340 6059.7143 6059.7147 6059.7143

MN 5887.3161 6379.9380 9032.55 6147.1332 6085.2303 6059.7143 6245.3081 6059.7143

WT 5942.3234 6820.3975 11638.20 6363.8041 6371.0455 6059.7143 - -

SD 1.0e+1 2.1e+2 9.9e+2 8.6e+1 4.3e+1 1.0e−10 2.1e+2 -

FE 10,000 30,000 100,000 200,000 240,000 42,100 30,000 10,000

TS BT 0.012665 0.012689 0.013120 0.012675 0.012670 0.012665 0.012665 0.012665

MN 0.012680 0.013165 0.022948 0.012730 0.012703 0.012665 0.012709 0.012666

WT 0.012769 0.014078 0.050365 0.012924 0.012790 0.012665 - -

SD 2.7e−5 3.9e−4 7.2e−3 5.2e−5 2.7e−5 1.2e−8 1.3e−2 -

FE 10,000 30,000 100,000 200,000 240,000 24,950 30,000 10,000

SR BT 2996.348 2996.348 - - - 2996.348 2997.058 2996.348

MN 2996.348 2996.348 - - - 2996.348 2997.058 2996.348

WT 2996.348 2996.348 - - - 2996.348 - -

SD 5.2e−5 0.0 - - - 6.4e−6 0.0 -

FE 10,000 30,000 - - - 54,350 30,000 10,000

quality of solutions and the number of function evaluations. DETPS is competitive to
(μ + λ)-ES, PSO-DE, ABCA and TLBO in the results of the speed reducer problem.

4.3.2 Distribution Network Reconfiguration

This subsection discusses the application of a population-membrane-system-inspired
evolutionary algorithm (PMSIEA, for short) described in Sect. 3.7.2 to solve the
distribution network reconfiguration problem in power systems.

The reconfiguration of distribution network in a power system is an important
process that uses remote-controlled switches to improve operating conditions and
planning studies, service restoration and distribution automation of a power system
[1, 30]. There exist lots of candidate-switching combinations in a distribution system,
so the distribution system reconfiguration is a complex combinatorial problem with

http://dx.doi.org/10.1007/978-3-319-55989-6_3
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a large number of integer and continuous variables and various constraints such as
power flow equations, upper and lower bounds of nodal voltages, upper and lower
bounds of line currents, feasible conditions in terms of network topology. Thus, how
to obtain the optimal distribution system reconfiguration is an ongoing issue in a
power system. The problem can be formulated as a minimization cost function f
to minimize the power loss of the system by changing the topology of distribution
systems through altering the open/closed status of sectionalizing switches [1, 37],
i.e.,

min f =
L∑

i=1

ri
P2

i + Q2
i

V 2
i

(4.29)

subject to

(1) g(x) = 0,
(2) Vmin < Vn < Vmax ,
(3) I min

i < Ii < I max
i ,

(4) det(A) = 1 or − 1 (for radial systems),
(5) det(A) = 0 (for not radial systems),

where

• f is the objective function (kW);
• L is the number of branches;
• Pi is the active power at the sending end of branch i ;
• Qi is the reactive power at sending end of branch i ;
• Vn is the voltage at node n;
• Ii is the line current at branch i ;
• g(x) is the power flow equations;
• Vmin and Vmax are the lower and upper voltage limits, respectively;
• I min

i and I max
i are the lower and upper current limits, respectively;

• A is the bus incidence matrix;
• ri is the resistance of branch i .

In what follows, the distribution system reconfiguration problems will be solved
by using PMSIEA described in Sect. 3.7.2 of Chap.3. We use IEEE 33-bus and
PG&E 69-bus distribution systems as examples to show the application. Figures4.20
and 4.21 show the IEEE 33-bus and PG&E 69-bus systems. In Fig. 4.20, the IEEE
33-bus system has 33 buses, 37 branches and 5 tie-lines. Figure4.21 shows that
the PG&E 69-bus system consists of 69 buses, 68 sectionalizing switches and 5 tie
switches. In the IEEE 33-bus system, the normally open switches are 33, 34, 35,
36 and 37, and the initial real power losses (before reconfiguration) are 202.68kW.
The normally open switches are 69, 70, 71, 72 and 73, and the initial real power
losses (before reconfiguration) are 226.4419kW in the PG&E 69-bus system. The
objective function or fitness function is shown in (4.29). The population size and
the value of pc are set to 10 and 0.9, respectively. The maximal number 100 of
evolutionary generations is considered as the determination criterion, which is the

http://dx.doi.org/10.1007/978-3-319-55989-6_3


148 4 Engineering Optimization with Membrane Algorithms

Fig. 4.20 IEEE 33-bus system

Fig. 4.21 PG&E 69-bus system

same as reported in the literature. Table4.8 shows the experimental results of the
IEEE 33-bus system. The results obtained by five optimization approaches reported
in the recent literature, a heuristic approach (HeAp) [30], SA+TS [18], MTS [28],
PSO [1] and ACO [37], are also listed in Table4.8 to make a comparison. Table4.9
lists the experimental results of the PG&E69-bus system. To bring into a comparison,
the results obtained by ACS [12], HPSO [20], VSHDE [33] and ACO [37] are also
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Table 4.8 Results of IEEE 33-bus test system

Methods OpCo RPL (kW) MNV (pu)

BeRe 33, 34, 35, 36, 37 202.68 0.9378

HeAp [30] 7, 9, 14, 32, 37 139.55 0.9378

SA + TS [18] 7, 9, 14, 32, 37 139.55 0.9378

MTS [28] 7, 9, 14, 32, 37 139.55 0.9378

PSO [1] 7, 9, 14, 32, 37 139.55 0.9378

ACO [37] 7, 9, 14, 32, 37 139.55 0.9378

PMSIEA 7, 9, 14, 32, 37 139.55 0.9378

Table 4.9 Results of the PG&E 69-bus test system

Methods OpCo RPL (kW) MNV (pu)

BeRe 69, 70, 71, 72, 73 226.4419 0.9089

ACS [12] 61, 69, 14, 70, 55 99.519 0.943

HPSO [20] 69, 12, 14, 47, 50 99.6704 0.9428

VSHDE [33] 11, 24, 28, 43, 56 99.6252 0.9427

IIGA [40] 69, 14, 70, 47, 50 99.618 0.9427

PMSIEA 47, 12, 50, 14, 69 99.4944 0.9441

shown in Table4.9. BeRe, OpCo, RPL and MNV represent before reconfiguration,
optimal configuration, real power loss and minimum node voltage, respectively.

It can be seen from Table4.8 that PMSIEA is competitive to the nine optimization
approaches, a heuristic approach, SA+TS, MTS, PSO and ACO, in terms of the
optimal solutions. Table4.9 shows that PMSIEA achieves lower real power losses
and higher minimum node voltage than ACS, HPSO, VSHDE and IIGA.

4.4 Engineering Optimization with Neural-Like P Systems

This section discusses the use of an optimization spiking neural P system (OSNPS) to
solve the power system fault diagnosis problem, specifically fault section estimation
problem.

The power system fault diagnosis consists of five processes: fault detection, fault
section estimation, fault type identification, failure isolation and recovery [42, 44].
As a very important process in the fault diagnosis of a power system [38, 42], fault
section estimation uses the status information of protective relays and circuit breakers
(CBs) obtained from supervisor control and data acquisition (SCADA) systems to
identify faulty sections [16]. Until now, some methods have been reported in the
literature to diagnose faults of a power system. These methods include fuzzy logic
(FL) [5], fuzzy Petri nets (FPN) [38], expert systems (ES) [19], multi agent systems
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(MAS) [51], artificial neural networks (ANN) [4], and optimization methods (OM)
[16, 22–44]. Each method has its own pros and cons [42]. Therefore, the continuous
efforts for better solving FSE is a hot topic in the research field of electrical power
systems.

The problem of fault section estimation in a power system can be formulated into
a 0–1 integer programming problem that can be effectively solved by an optimization
method such as OSNPS [55]. This section discusses how to use OSNPS to solve the
power system fault section estimation problem.Whenwe input the status information
of protective relays and circuit breakers read from a supervisory control and data
acquisition system, the results on fault sectionswill be output byOSNPS.Wewill use
different caseswith single fault, multiple faults ormultiple faultswith incomplete and
uncertain information to show the application of OSNPS for fault sections estimation
of power systems.

The problemdescription of the power system fault section estimation is as follows.
Fault section estimation in a power system is to derive a fault hypothesis explaining
warning signals (status information) in the maximum degree. To be specific, fault
section estimation can be described as a 0–1 programming problem, where an error
function obtained according to the causality between a fault and the statuses of
protection devices (protective relays and CBs), is regarded as an objective function,
as shown in (4.30) [22]. Thus, an optimization approach can be used to find the
fault hypothesis, i.e. the minimal value of a status function E(S) in (4.30) of all the
sections in a power system.

E(S) =
nc∑

j=1

∣∣c j − c∗
j (S, R)

∣∣ +
nr∑

k=1

∣∣rk − r∗
k (S)

∣∣, (4.30)

where nc is the number of circuit breakers (CBs) in a protection system; nr is the
number of protective relays; S = (S1, . . . , Sn) is an n vector representing the status
of sections in a power system and n represents the number of sections: if a section is
faulty, then Si = 1, otherwise, Si = 0 (1 ≤ i ≤ n); c = (c1, . . . , cnc ) is an nc-vector
representing the real status of CBs in a protection system. If a CB trips, then c j = 1,
otherwise, c j = 0 (1 ≤ j ≤ nc); c∗(S, R) = (c∗

1, . . . , c∗
nc

) is an nc-vector represent-
ing the expected status of CBs in a protection system. If a CB should trip, then
c∗

j = 1, otherwise, c∗
j = 0 (1 ≤ j ≤ nc); r = (r1, . . . , rnr ) is an nr -vector represent-

ing the real status of protective relays in a protection system and nr represents the
number of protective relays: if a protective relays operates, then rk = 1, otherwise,
rk = 0 (1 ≤ k ≤ nr ); r∗(S) = (r∗

1 , . . . , r∗
nr

) is an nr -vector representing the expected
status of protective relays in a protection system and nr represents the number of
protective relays: if a protective relay should operate, then r∗

k = 1, otherwise, r∗
k = 0

(1 ≤ k ≤ nr ).
When we use OSNPS to minimize E(S) in (4.30) to solve the fault section esti-

mation problem in a power system, the real status of protective relays and CBs
are normally read from a power SCADA system and the expected status of protec-
tive relays and CBs can be obtained according to their operation principles and the



4.4 Engineering Optimization with Neural-Like P Systems 151

Fig. 4.22 The ESNPS
structure

protection structure of a power system. After all the expected and real statuses of
protection are obtained, OSNPS is used to find the minimal value of E(S) in (4.30).
The aim of fault section estimation is to obtain vector elements of S corresponding
to the minimum value of (4.30), where Si = 1 is the faulty section (diagnosis target),
i = 1, . . . , n.

An extended spiking neural P system (ESNPS) of degree m ≥ 1, as shown in
Fig. 4.22, is described in [55] as the following tuple

Π = (O,σ1, . . . ,σm+2, syn, I0), (4.31)

where:

• O = {a} is the singleton alphabet (a is called spike);
• σ1, . . . ,σm are neurons of the form σi = (1, Ri , Pi ), 1 ≤ i ≤ m, such that Ri =

{r1i , r2i } is a set of rules with r1i = {a → a} and r2i = {a → λ}, Pi = {p1
i , p2

i } is a
finite set of probabilities, where p1

i and p2
i are the selection probabilities of rules r1i

and r2i , respectively, satisfying p1
i + p2

i = 1; and σm+1 = σm+2 = (1, {a → a}).
• syn = {(i, j) | (i = m + 2 ∧ 1 ≤ j ≤ m + 1) ∨ (i = m + 1 ∧ j = m + 2)}
• I0 = {1, 2, . . . , m} is a finite set of output neurons, i.e., the output is a spike train
formed by concatenating the outputs of σ1, σ2, …, σm .

This system contains the subsystem consisting of two identical neurons: σm+1

and σm+2, each of which fires at each moment of time and sends a spike to each of
neurons σ1, . . . ,σm , and reloads each other continuously. At each time unit, each of
neurons σ1, . . . ,σm performs the firing rule r1i by probability p1

i and the forgetting
rule r2i by probability p2

i , i = 1, 2, . . . , m. If the i th neuron spikes, its output is 1,
i.e., we obtain 1 by probability p1

i , otherwise, we obtain its output 0, i.e., we obtain 0
by probability p2

i , i = 1, 2, . . . , m. Thus, this system outputs a spike train consisting
of 0 and 1 at each moment of time. If the probabilities p1

1, . . . , p1
m can be adjusted,

the outputted spike train can be controlled. In what follows, a method for adjusting
the probabilities p1

i , . . . , p1
m is described by introducing a family of ESNPS.

A certain number of ESNPS can be arranged into a family of ESNPS (called
OSNPS) by introducing a guider to adjust the selection probabilities of rules inside
each neuron of each ESNPS. Figure4.23 shows the OSNPS structure. In this figure,
OSNPS is composed of H ESNPS: ESNPS1, ESNPS2, . . . , ESNPSH . Each ESNPS
is identical with the one in Fig. 4.22 and the pseudocode algorithm of the guider
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Fig. 4.23 The OSNPS
structure

Fig. 4.24 Guider algorithm

algorithm is described in Fig. 4.24. For details about the guider andmore information
about ESNPS and OSNPS, please see [55].

The sketch map of the use of OSNPS to solve the fault section estimation problem
is shown in Fig. 4.25. Details on the steps are described as follows:
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Fig. 4.25 The sketch map of
fault section estimation using
OSNPS

(1) Step 1. Input data
SCADA data, parameter setting of OSNPS and the initial value of the fitness
function need to be prepared. Thus, the input data consist of three parts:

• Read SCADA data including the status information including the status of
protective relays and CBs, the topological connection of a given power system
and its protection system structure information;

• Set OSNPS parameters: the number of ESNPS (H ), the dimension of each
ESNPS (m), the learning probabilities, the learning rate, the rule probability
matrix and the maximal number of iterations;

• Initialize the fitness function of the fault section estimation problem according
to (4.30) using the above data.

(2) Step 2. Fault section estimation with OSNPS
OSNPS is used to find the minimum value of (4.30). Each ESNPS produces a
spike train for storing the binary results. H ESNPS are arranged into an OSNPS
by a guider to adjust the selection probabilities of rules inside each neuron of
each ESNPS. The guider algorithm, as shown in Fig. 4.24 and described in [55]
in detail, is applied to help OSNPS obtaining the minimum value of (4.30).

(3) Step 3. Termination
The algorithm stops when the maximal number of iterations is obtained.

(4) Step 4. Output fault section estimation results
The spike train corresponding to the minimum value of (4.30) is output in an n
vector S = (S1, . . . , Sn) and Si = 1 is the i th faulty section, i = 1, . . . , n, where
n represents the number of sections in the given power system.

A typical 4-substation system is shown in Fig. 4.26, where there are 28 system
sections, 40CBs and84protective relays [42, 44]. Theprotective relays are composed
of main protective relays (MPRs), first backup protective relays (FBPRs) and second
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Fig. 4.26 A local sketch map of the protection system of an EPS

Table 4.10 Status information about protective relays and CBs

Cases Status information

Operated relays Tripped CBs

1 B1m , L2Rs , L4Rs C B4, C B5, C B7

C B9, C B12, C B27

2 B1m , L1Sm , L1Rp C B4, C B5, C B6

B2m , L2Sp, L2Rm C B7, C B8, C B9

C B10, C B11, C B12

3 T7m , T8P , B7m C B19, C B20, C B29, C B30

B8m , L5Sm , L5Rp C B32, C B33, C B34, C B35

L6Ss , L7Sp, L7Rm , L8Ss C B36, C B37, C B39

backup protective relays (SBPRs) in a power system. The detailed operational rules
of protective relays for main sections in a power system can be seen in [42, 44].

Three cases of the local power system in Fig. 4.26 are used to show the fault
section estimation application ofOSNPS.Table4.10 lists the status information about
protective relays and CBs of these cases. Case 1 has a single fault. Case 2 has
multiple faults. Case 3 has multiple faults with incompleteness and uncertainty. The
fault section estimation results of OSNPS for the three cases are given in Table4.11,
where the results of other three methods are also listed. The symbol “−” means that
this case was not considered in the corresponding literature.
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Table 4.11 Comparisons between OSNPS and three fault diagnosis methods

Cases Diagnosis results

OSNPS FL [5] GA [44] FDSNP [42] GATS [22]

1 B1 B1 B1 B1 -

2 B1, B2 B1, B2 B1, B2 B1, B2 -

L1, L2 L1, L2 L1, L2 L1, L2

3 L5, L7 L5, L7 (1) L5, L7, B7, B8 L5, L7 L5, L7

B7, B8 B8, T7 T7, T8 B7, B8 B7, B8

T7, T8 T8 (2) L5, L7, T7, B8 T7, T8 T7, T8

Table4.11 shows that OSNPS obtains the same results in Cases 1 and 2 as those
by fuzzy logic [FL], genetic algorithm (GA) and FDSNP in [5, 42, 44], respectively.
This indicates the success of OSNPS for solving the fault section estimation problem
of a power systemwith a single ormultiple faults. The results of OSNPS inCase 3 are
different from those in [5, 44]. Referring to [22, 42], we confirm that OSNPS obtains
the correct results. Thus, OSNPS is able to correctly estimate the fault sections for a
power system with a single fault, multiple faults or multiple faults with incomplete
and uncertain alarm information.

4.5 Conclusions

This chapter discussed the engineering applications of several membrane algorithms
designed with cell-like, tissue-like and neural-like P systems. These engineering
applications consist of radar emitter signal decomposition with MQEPS, image
processing withMAQIS, PID controller design with PSOPS, mobile robot path plan-
ning with mMPSO, manufacturing parameter optimization problems with DETPS,
distribution network reconfiguration with PMSIEA and power system fault diagnosis
problem with OSNPS.

The engineering optimization of membrane algorithms discussed in this chapter
show the good potential of the approach. More and wider practical application
problems should be investigated in order to prove the impact of these membrane
algorithms.
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Chapter 5
Electric Power System Fault Diagnosis
with Membrane Systems

Abstract Spiking Neural P systems (SN P systems, for short) are used in electric
power systems fault diagnostics, by expanding their modeling capabilities with fuzzy
theory concepts. The following variants of SN P systems are introduced and investi-
gated: fuzzy reasoning spiking neural P systems with real numbers, weighted fuzzy
reasoning spiking neural P systems and fuzzy reasoning spiking neural P systems
with trapezoidal fuzzy numbers.

5.1 Introduction

Currently, there are three basic types of P systems: cell-like P systems, tissue-like
P systems and neural-like P systems. In recent years, the research on neural-like P
systemsmainly focused on spiking neural P systems (SN P systems, for short), which
was introduced in [17]. This computational paradigm is inspired by the neurophysi-
ological behavior of neurons sending electrical impulses (spikes) along axons from
presynaptic neurons to postsynaptic neurons in a distributed and parallel manner. An
SN P system can be considered as a set of nodes representing neurons in a directed
graph whose arcs express synaptic connections among neurons. The contents of
each neuron are composed of several copies of a single object type. Likewise, each
neuron has a finite set of firing (spiking) and forgetting rules. Firing rules send infor-
mation between neurons in the form of spikes and forgetting rules remove spikes
from neurons. The rules associated with each neuron are used in a sequential man-
ner, but neurons communicate with each other in parallel. Recently, SN P systems
have become a hot topic in membrane computing [2, 7, 12, 26–28, 30–42, 47]. The
features of SN P systems, such as inherent parallelism, understandability, dynamics,
synchronization/asynchronization, non-linearity and non-determinism, are suitable
for solving various engineering problems [27, 35].

Since a power system usually is composed of a large number of parts such as gen-
erators, transmission lines, bus bars and transformers, fault diagnosis is a complicated
process because these parts are protected by a defence system consisting of protective
relays, circuit breakers (CBs) and communication equipments [22]. Fault diagnosis is
always an important and attractive research topic in power systems. Various methods
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have been reported in literature, such as artificial neural networks (ANNs) [1, 33],
multi-agent systems (MAS) [11, 16], fuzzy logic (FL) [3–6], expert systems (ES)
[18, 23], Bayesian networks (BNs) [10, 48], Petri nets (PNs) [22, 28, 46], informa-
tion theory (IT) [20, 32], cause-effect networks (CE-Nets) [5, 6, 9] and optimization
methods (OM) [19, 43]. Eachmethod has its own pros and cons.ANNs have good tol-
erance and powerful learning ability, but their network structures and parameters are
usually designed in an empirical manner [9]. A large number of samples are required
to train ANNs and they suffer from premature convergence. MAS combine effec-
tively several agents representing different methods to cooperatively diagnose faults.
However, there are difficulties in defining theway these agents cooperate [16, 20]. FL
can process imprecision and uncertainty and is often combined with other methods
in studying fault diagnosis [9, 20]. As the earliest artificial intelligence method for
power system fault diagnosis, ES can fully use the knowledge of experts, but it has
a slow inference engine, due to its sequential search approach, and the difficulty of
designing and maintaining a rule-based knowledge system [9, 23]. BNs-based fault
diagnosis methods can find relationships of causality between data, while it is dif-
ficult to gain accurate prior probabilities and model a complex power grid [20, 48].
PN-based methods have graphical knowledge representation and parallel informa-
tion processing, but they cannot avoid bad tolerance and combinatorial explosion
[5]. IT-based fault diagnosis techniques emerging with the informatization of power
systems can deal with the uncertainty in failure processes with fast diagnosis speed
to a certain extent, while there are difficulties in the dynamic description of fault
information needed [20]. As a graphical tool for knowledge representation, CE-Nets
have the features of easy algebraic reasoning and parallel information processing.
However, CE-Nets are required to improve their fault tolerance and are not capable
to visually describe all possible combinations of main, first and second protections
[9, 45], due to their forward reasoning strategy. OM formulates a complex fault
diagnosis problem as a minimization optimization problem, which is conveniently
solved by applying various optimization techniques, but the difficult issues are the
construction of an objective function reflecting the discrepancy between the expected
and actual states of protective devices and the parameter adjustment of optimization
models [9, 15]. Hence, the improvement of these methods and the exploration of
new ones to solve fault diagnosis problems in a power system is of great interest and
very necessary.

As a class of distributed and parallel computing models, SN P systems have good
understandability and dynamics [27, 35, 39]. In an electric power system, the fault
occurrence is a discrete and dynamical process [3–6]. Thus, SN P systems can be
used for diagnosing faults in power systems. This chapter focuses on the application
of several variants of SNP systems to fault diagnosis of electric power systems, called
fuzzy reasoning spiking neural P systems (FRSNP systems, for short). These variants
are fuzzy reasoning spiking neural P systems with real numbers (rFRSN P systems)
[27], weighted fuzzy reasoning spiking neural P systems (WFRSN P systems) [40]
and fuzzy reasoning spikingneural P systemswith trapezoidal fuzzynumbers (tFRSN
P systems) [42], respectively.
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This chapter is structured as follows. Section5.2 introduces some concepts and
essentials that will be used throughout this chapter. The definitions of FRSN P sys-
tems for fault diagnosis, including models and reasoning algorithms, are presented
in Sect. 5.3. In Sect. 5.4, case studies are used to show how to use three kinds of
FRSN P systems to solve fault diagnosis problems. Finally, a comparison between
FRSN P systems and several fault diagnosis approaches, and future work are given
in Sect. 5.5.

5.2 Preliminaries

In this section,we introduce some concepts and essential notationswhichwill be used
throughout this chapter. Fuzzy set theory allows us to effectivelymodel and transform
imprecise information. Bearing in mind that numbers are the predominant carriers
of information, fuzzy numbers play a significant role among all fuzzy entities [21].
First, trapezoidal fuzzy numbers and fuzzy production rules for fuzzy knowledge
representation and reasoning are described. Then, essential concepts of electric power
systems fault diagnosis and principles of model-based fault diagnosis methods are
presented to help readers understand the operating principle of protection devices
and the framework of fault diagnosis in power systems using reasoning model-based
methods.

5.2.1 Fuzzy Knowledge Representation and Reasoning

In order to properly represent real world knowledge, trapezoidal fuzzy numbers and
fuzzy production rules have been used for knowledge representation and reasoning
to process uncertain, incomplete, imprecise and ambiguous knowledge [21]. A fault
diagnosis process consisting of fault information acquisition, processing and repre-
sentation often contains plenty of incompleteness, imprecision or uncertainty. Thus,
trapezoidal fuzzy numbers and fuzzy production rules are used in fault diagnosis.

5.2.1.1 Trapezoidal Fuzzy Numbers

Definition 1 ([13]) A fuzzy set A of the real line R with membership function μA

is a mapping from R to [0, 1], associating with each real number x its grade of
membership μA(x).

Definition 2 A fuzzy number is a fuzzy set A of the real line R with membership
function μA such that:
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(1) A is normal, that is, there exists an element x0 such that μA(x0) = 1;
(2) A is fuzzy convex, that is,μA(λx1 + (1 − λ)x2) ≥ μA(x1) ∧ μA(x2), for all x1, x2 ∈

R and λ ∈ [0, 1];
(3) μA is upper semicontinuous, that is, for all x ∈ R and α ∈ [0, 1] such that

μA(x) < α, there exists a δ > 0 such that x′ ∈ R ∧ |x′ − x| ≥ δ =⇒ μA(x′) <

α;
(4) The set suppA is bounded, where suppA = cl({x ∈ R : μA(x) > 0), and cl is the

closure operator.

Roughly speaking, a fuzzy number is a quantity whose value is imprecise, rather
than exact as is the case with ordinary (single-valued) numbers. There are different
kinds of fuzzy numbers, such as rectangular fuzzy numbers, trapezoidal fuzzy num-
bers, triangular fuzzy numbers, Cauchy fuzzy numbers, bell-shaped fuzzy numbers
and so on, among which trapezoids (triangular fuzzy numbers are specific forms of
trapezoids) are a good class of functions for representing imprecision and uncertainty,
and for modeling granular information by fuzzy sets.

As shown in Fig. 5.1, we use a 4-tuple Ã=(a1, a2, a3, a4) to parameterize a trape-
zoidal fuzzy number. In Fig. 5.1, a1, a2, a3 and a4 are real numbers representing four
horizontal axis values of the trapezoid and satisfy a1 < a2 < a3 < a4. We define the
membership function μÃ(x) of the trapezoidal fuzzy number Ã as follows.

μÃ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x ≤ a1
x−a1
a2−a1

, a1 < x ≤ a2
1, a2 < x ≤ a3

a4−x
a4−a3

, a3 < x ≤ a4
0, x > a4

(5.1)

In what follows, we describe arithmetic operations of two trapezoidal fuzzy num-
bers Ã and B̃, Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4). More operations can be
referred in [4, 5].

(1) Addition ⊕:
Ã ⊕ B̃ = (a1, a2, a3, a4) ⊕ (b1, b2, b3, b4) = (a1 + b1, a2 + b2, a3 + b3,
a4 + b4);

Fig. 5.1 A trapezoidal fuzzy
number (a1, a2, a3 and a4
are real numbers)
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(2) Subtraction 	:
Ã 	 B̃ = (a1, a2, a3, a4) 	 (b1, b2, b3, b4) = (a1 − b1, a2 − b2, a3 − b3,
a4 − b4);

(3) Multiplication ⊗:
Ã ⊗ B̃ = (a1, a2, a3, a4) ⊗ (b1, b2, b3, b4) = (a1 × b1, a2 × b2, a3 × b3,
a4 × b4);

(4) Division of trapezoidal fuzzy numbers �:
Ã � B̃ = (a1, a2, a3, a4) � (b1, b2, b3, b4) = (a1/b1, a2/b2, a3/b3, a4/b4).

Four logic operations are listed as follows, where Ã and B̃ are trapezoidal fuzzy
numbers, and a, b are real numbers [42]:

(1) Minimum operator ∧: a ∧ b = min{a, b};
(2) Maximum operator ∨: a ∨ b = max{a, b};
(3) and ∧©: Ã ∧©B̃ =

(a1, a2, a3, a4) ∧© (b1, b2, b3, b4) = ((a1 ∧ b1), (a2 ∧ b2), (a3 ∧ b3), (a4 ∧ b4));
(4) or ∨©: Ã ∨©B̃ =

(a1, a2, a3, a4) ∨©(b1, b2, b3, b4) = ((a1 ∨ b1), (a2 ∨ b2), (a3 ∨ b3), (a4 ∨ b4)).

In addition, a scalar multiplication operation of a real number b by a trapezoidal
number Ã is defined as follows [42]:

b · Ã = b · (a1, a2, a3, a4) = (b · a1, b · a2, b · a3, b · a4).

The usual order on real numbers can be extended to trapezoidal numbers in a
natural way, as follows: Ã < B̃ if and only if a1 < b1, a2 < b2, a3 < b3, a4 < b4,
being Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4). Similarly, Ã ≤ B̃, Ã > B̃ and Ã ≥
B̃ can be defined.

5.2.1.2 Fuzzy Production Rules

Fuzzy production rules are usually presented in the form of a fuzzy IF-THEN rule in
which both the rule antecedent and the rule consequent have fuzzy concepts denoted
by fuzzy sets. If the rule antecedent part or rule consequent part of a fuzzy production
rule contains AND or OR logic connectors, then this rule is called a composite fuzzy
production rule [8, 21]. Fuzzy production rules are widely used in fuzzy knowledge
representation [4, 8, 21, 24]. Fuzzy production rules consist of five types: simple
fuzzy production rules (type 1), composite fuzzy conjunctive rules in the antecedent
(type 2), composite fuzzy conjunctive rules in the consequent (type 3), composite
fuzzy disjunctive rules in the antecedent (type 4) and composite fuzzy disjunctive
rules in the consequent (type 5).

A simple fuzzy production rule (type 1) is of the form

Ri: IF pj THEN pk (CF = τi) (5.2)
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where Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its confidence
factor; pj and pk represents two propositions each of which has a fuzzy truth value
in [0, 1]. If fuzzy truth values of propositions pj and pk are αj and αk , respectively,
then αk = αj ∗ τi.

A composite fuzzy conjunctive rule in the antecedent (type 2) is of the form

Ri: IF p1 AND · · · AND pk−1 THEN pk (CF = τi) (5.3)

where Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its confidence
factor; p1, . . . , pk−1, with k ≥ 3, are propositions in the antecedent part of the rule.
If fuzzy truth values of propositions p1, . . . , pk are α1, . . . ,αk , respectively, then
αk = min{α1, . . . ,αk−1} ∗ τi.

A composite fuzzy conjunctive rule in the consequent (type 3) is of the form

Ri: IF p1 THEN p2 AND · · · AND pk (CF = τi) (5.4)

where Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its confidence
factor; p1 is a proposition in the antecedent part of the rule; p2, . . . , pk , with k ≥ 3, are
propositions in the consequent part of the rule. If fuzzy truth values of propositions
p1, . . . , pk are α1, . . . ,αk , respectively, then α2 = · · · = αk = α1 ∗ τi,

A composite fuzzy disjunctive rule in the antecedent (type 4) is of the form

Ri: IF p1 OR · · · OR pk−1 THEN pk (CF = τi) (5.5)

where Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its confidence
factor; p1, . . . , pk−1, with k ≥ 3, are propositions in the antecedent part of the rule.
If the fuzzy truth values of propositions p1, . . . , pk are α1, . . . ,αk , respectively, then
αk = max{α1, . . . ,αk−1} ∗ τi.

A composite fuzzy disjunctive rule in the consequent (type 5) is of the form

Ri: IF p1 THEN p2 OR · · · OR pk (CF = τi) (5.6)

where Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its confidence
factor; p1 is a proposition in the antecedent part of the rule; p2, . . . , pk , with k ≥ 3,
are propositions in the consequent part of the rule. This type of rules is unsuitable for
knowledge representation due to the fact that it does notmake any specific implication
[4]. Thus, this type of rules is not discussed here and will not be considered in fault
diagnosis in the following sections.

5.2.2 Essentials of Electric Power System Fault Diagnosis

In a strict sense, fault diagnosis consists of fault detection, fault section identifica-
tion, fault type estimation, failure isolation and recovery [43], of which fault section
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Fig. 5.2 A schematic
illustration of a power
system with sections and
protective relays considered
in this chapter

CB CB
tion

line bus transformer

MPRs

FBPRs except for

SBPRs

identification is a very important process [22, 28]. When faults occur in a power sys-
tem, protective relays detect the faults and trip their corresponding circuit breakers
(CBs) to isolate faulty sections from the operation of this power system and guaran-
tee the other parts can operate normally. The aim of fault diagnosis in this chapter
is to identify the faulty sections by using status information of protective relays and
CBs which are read from supervisor control and data acquisition (SCADA) systems.

The protective system of an electric power system is very important in fault
diagnosis, as well as the protection configuration of this protective system. Thus,
protection devices (protective relays and CBs) and their operating principles are
described in detail in this subsection.

The protective relays are composed ofmain protective relays (MPRs), first backup
protective relays (FBPRs) and second backup protective relays (SBPRs). There are
no FBPR within buses. A schematic illustration of a power system with sections and
protective relays is shown in Fig. 5.2, which is considered in this chapter.

We choose a local sketch map of the protection system of an EPS from [28, 43],
which is shown in Fig. 5.3, to demonstrate the operational rules of different types
of protections. The local system is composed of 28 system sections, 40 CBs and 84
protective relays.

For the convenience of description, we define the notations as follows. A, B, T
and L represent a single bus, double bus, transformer and line, respectively. The
sending and receiving ends of line L are described by S and R, respectively. m, p and
s are used to denote the main protection, the first backup protection and the second
backup protection, respectively. The 28 sections (S1 ∼ S28) are described by A1, . . . ,

A4,T1, . . . , T8,B1, . . . , B8,L1, . . . ,L8. The 40 CBs (C1 ∼ C40) are represented by
CB1,CB2, . . . ,CB40. The 84 protective relays consist of 36 main ones, r1 ∼ r36
denoted by A1m,. . . , A4m, T1m, . . . , T8m, B1m, . . . , B8m, L1Sm, . . . , L8Sm, L1Rm, . . . ,

L8Rm, and 48 backup ones, r37 ∼ r84 described by T1p, . . . , T8P, T1s, . . . , T8s, L1Sp,
. . . , L8Sp, L1Rp, . . . , L8Rp, L1Ss, . . . ,L8Ss, L1Rs, . . . ,L8Rs.

We describe the operational rules of the protective relays for the three kinds of
sections, transmission lines, buses and transformers in [43], as follows:

(1) Protective relays of transmission lines
Protective relays of transmission lines are of two types: sending end protective relays
and receiving end protective relays. Both ends of a line have their ownmain, first and
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Fig. 5.3 A local sketch map of the protection system of an EPS

second protections.When themain protective relays of a line operate, CBs connected
to the line are tripped. For example, if line L7 fails, MPRs L7Sm and L7Rm are operated
to trip CB29 and CB39, respectively. Likewise, when the main protections of a line
fail to operate, the first backup protective relays operate to trip CBs connected to
the line. For example, if line L7 fails and main protection relay (MPR) L7Sm fails
to operate, first backup protective relay (FBPR) L7Sp operates to trip CB29. If line
L7 fails and MPR L7Rm fails to operate, FBPR L7Rp operates to trip CB39. When the
adjacent regions of a line fail and their protections fail to operate, the second backup
protections operate to protect the line. For example, if section B8 fails and CB39

fails to trip off, second backup protective relay (SBPR) L7Ss operates to trip CB29. If
section B5 fails and CB29 fails to trip off, SBPR L7Rs operates to trip CB39.

(2) Protective relays of buses
When the main protective relays of a bus operate, all CBs directly connected to the
bus will be tripped. For example, if bus A1 fails, MPR A1m operates to trip CB1, CB2

and CB3. Similarly, if bus B8 fails, MPR B8m operates to trip CB32, CB33 and CB39.

(3) Protective relays of transformers
When the main protective relays of a transformer operate, all CBs connected to the
transformer are tripped. For example, if transformer T3 fails, MPR T3m operates
to trip CB14 and CB16. Likewise, when the main protections of a transformer fail
to operate, the first backup protective relays operate to trip CBs connected to the
transformer. For example, if transformer T3 fails andMPR T3m fails to operate, FBPR
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T3p operates to trip CB14 and CB16. When the adjacent regions of the transformer
fail and their protections fail to operate, the second backup protections operate to
protect the transformer. For example, if bus A2 fails and CB16 fails to trip off, SBPR
T3s operates to trip CB16 to protect T3.

5.2.3 Principles of Model-Based Fault Diagnosis Methods

Fault diagnosis of power systems based on SN P systems belongs to model-based
fault diagnosis methods. So this subsection describes some basic ideas of model-
based fault diagnosis methods. The framework of fault diagnosis in power systems
using reasoning model-based method is shown as in Fig. 5.4 [14, 45].

There are three important parts in this framework: real-time data, static data and
a flowchart of fault sections identification.

(1) Real-time data. The real-time data, protective relay operation information and
circuit breaker tripping information, are used to estimate the outage areas to
obtain candidate faulty sections using a network topology analysis method, so
as to reduce the subsequent computational burden [14].

(2) Static data. The static data, network topology and protection configuration of
a power system, are used to build a fault diagnosis model for each candidate

Fig. 5.4 Framework of fault diagnosis in power systems using reasoning model-based methods
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section in each outage area. The inputs of each diagnosis model are initialized
by both real-time data and static data.

(3) Flowchart of fault sections identification. Each diagnosis model performs a rea-
soning algorithm to obtain fault confidence levels of the candidate faulty sections
to determine faulty sections. The diagnosis results include the faulty sections and
their fault confidence levels.

5.3 Spiking Neural P Systems for Fault Diagnosis

Up to now, three variants of SN P systems have been proposed for solving fault
diagnosis problems [39], which are fuzzy reasoning spiking neural P systems with
real numbers (rFRSN P systems) [27], weighted fuzzy reasoning spiking neural P
systems (WFRSNP systems) [40] and fuzzy reasoning spiking neural P systemswith
trapezoidal fuzzy numbers (tFRSN P systems) [42]. This section first describes the
definitions of rFRSN P systems, WFRSN P systems and tFRSN P systems, respec-
tively. Then, their reasoning algorithms, called fuzzy reasoning algorithm (FRA),
weighted matrix-based reasoning algorithm (WMBRA) and matrix-based fuzzy rea-
soning algorithm (MBFRA), respectively, are presented. In this section, we focus on
the description of SN P systems for fault diagnosis and their reasoning algorithms.
How to use the SN P systems and their reasoning algorithms to diagnose the faults
in electric power systems, will be detailed in Sect. 5.4.

5.3.1 Models

In this subsection, the definitions of three variants of SNP systems (rFRSNP systems,
WFRSN P systems and tFRSN P systems) are described.

5.3.1.1 rFRSN P Systems

Definition 3 An rFRSN P system of degree m ≥ 1, proposed in [27], is a tuple
Π = (A,σ1, . . . ,σm, syn, I,O), where:

(1) A = {a} is the singleton alphabet (the object a is called spike);
(2) σ1, . . . ,σm are neurons, of the form σi = (αi, τi, ri), 1 ≤ i ≤ m, where:

(i) αi ∈ [0, 1] and it is called the (potential) value of spike contained in neuron
σi (also called pulse value);

(ii) τi ∈ [0, 1] is the truth value associated with neuron σi;
(iii) ri is a firing/spiking rule contained in neuron σi, of the form E/aα → aβ ,

where α, β ∈ [0, 1];
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(3) syn ⊆ {1, . . . ,m} × {1, . . . ,m}with i �= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m (synapses
between neurons);

(4) I,O ⊆ {1, . . . ,m} indicate the input neuron set and the output neuron set of Π ,
respectively.

In what follows, we describe how the rFRSN P systems are extended from SN P
systems as follows:

(1) The content of a neuron is denoted by a real number in [0, 1] instead of the
number of spikes in SN P systems. From the perspective of biological neuron,
this can be interpreted as the (potential) value of spike. If αi > 0 then the neuron
σi contains a spike with (potential) value αi; otherwise, it contains no spike.

(2) Each neuron σi (i ∈ {1, . . . ,m}) of an rFRSN P system has associated either a
fuzzy proposition or a fuzzy production rule, and τi ∈ [0, 1] is used to express
the fuzzy truth value of a fuzzy proposition or the confidence factor (CF) of a
fuzzy production rule.

(3) Each neuron contains only one spiking (firing) rule, of the form E/aα → aβ ,
where E = an is the firing condition and n ≥ 1 is the number of input synapses
from other neurons to this neuron. The firing condition E = an means that if
the neuron receives n spikes, the spiking rule can be applied; otherwise the
rule cannot be enabled until n spikes are received. When the number of spikes
received by a neuron is less than n, the value of the spikes received will be
updated according to logical AND or OR operations.

(4) The firing mechanism of neurons in rFRSN P systems is described in detail
as follows. For the neuron σi, if its firing rule E/aα → aβ can be applied, the
neuron fires. This indicates that its pulse value α > 0 is consumed (removed)
and it produces a spike with value β. Once a spike with value β is excited from
neuron σi, all neurons σj with (i, j) ∈ syn immediately receive the spike.

(5) Three types of neurons are defined in different ways to handle both α and β, and
β relates with both α and τi (see Definitions 4–6).

(6) Time delay is ignored in an rFRSN P system, thus all neurons are always open.

In summary, an rFRSN P system has three kinds of neurons: proposition neurons,
AND-type rule neurons and OR-type rule neurons. They are defined as follows.

Definition 4 The proposition neurons, shown in Fig. 5.5, are a class of neurons
associated with propositions in a fuzzy knowledge base [27].

A proposition neuron can be denoted by σ = (α, τ , r), where α, τ and r are its
pulse value, the truth value of the proposition associated with it and its spiking rule
of the form E/aα → aα, respectively.

If a proposition neuron σ is an input neuron inΠ , thenα = τ ; otherwise,α equals
logical “OR” operation of all pulse values received from other neurons. After the
neuron updates its content, the truth value of the corresponding propositionwill equal
its pulse value, i.e., τ = α. When the neuron fires and applies its firing rule, it will
generate a spike with pulse value α.
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Fig. 5.5 a A proposition
neuron and b its simplified
form

(a) (b)

Fig. 5.6 a An AND-type
rule neuron and b its
simplified form

(a) (b)

Fig. 5.7 a A OR-type rule
neuron and b its simplified
form

(a) (b)

Definition 5 The AND-type rule neurons, shown in Fig. 5.6, are a class of neurons
associated with fuzzy production rules with AND-type antecedent part, where con-
fidence factor (CF) of each rule is denoted by τ [27].

AnAND-type rule neuron is represented by the symbol AND. If anAND-type rule
neuron receives n pulse values from other neurons, α1, . . . ,αn, it uses logic operator
AND to combine all its inputs, i.e.,α = min{α1, . . . ,αn}, whereαi ∈ [0, 1], 1 ≤ i ≤
n. If its firing condition E is satisfied, it fires and applies its spiking rule E/aα → aβ

to generate a spike with value β = α ∗ τ , thus β = min{α1, . . . ,αn} ∗ τ ; otherwise,
it only updates its content by using the pulse values of the received spikes.

Definition 6 The OR-type rule neurons, shown in Fig. 5.7, are a class of neurons
associated with fuzzy production rules with OR-type antecedent part, where confi-
dence factor (CF) of each rule is denoted by τ [27].

An OR-type rule neuron is denoted by the symbol OR. If an OR-type rule neuron
receives n pulse values from other neurons, α1, . . . ,αn, it uses the logic operator OR
to combine all its inputs, i.e., α = max{α1, . . . ,αn}, where αi ∈ [0, 1], 1 ≤ i ≤ n.
Similarly, when E is satisfied, it fires and applies its spiking rule E/aα → aβ to
generate a spike with value β = α ∗ τ , thus β = max{α1, . . . ,αn} ∗ τ ; otherwise, it
only updates its content by using the pulse values of the received spikes.
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5.3.1.2 WFRSN P Systems

Definition 7 A WFRSN P system of degree m ≥ 1, proposed in [40], is a tuple
Π = (O,σ1, . . . ,σm, syn, in, out), where:

(1) O = {a} is a singleton alphabet (a is called spike);
(2) σ1, . . . ,σm are neurons, of the form σi = (θi, ci,

−→ωi ,λi, ri), 1 ≤ i ≤ m, where:

(i) θi is a real number in [0, 1] representing the potential value of spikes (i.e.
value of electrical impulses) contained in neuron σi;

(ii) ci is a real number in [0, 1] representing the truth value associated with
neuron σi;

(iii) −→ωi = (ωi1, . . . ,ωiNi) is a real number vector in (0, 1] representing the output
weight vector of neuron σi, where ωij (1 ≤ j ≤ Ni) represents the weight
on the jth output arc (synapse) of neuron σi and Ni is a natural number
representing the number of synapses starting from neuron σi;

(iv) λi is a real number in [0, 1) representing the firing threshold of neuron σi;
(v) ri represents a firing (spiking) rule contained in neuron σi with the form

E/aθ → aβ , where θ and β are real numbers in [0, 1], E = an is the firing
condition. The firing condition means that if and only if neuron σi receives
at least n spikes and the potential value of spikes is with θ ≥ λi, then the
firing rule contained in the neuron can be applied, otherwise, the firing rule
cannot be applied;

(3) syn ⊆ {1, . . . ,m} × {1, . . . ,m} with i �= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m; that
is, syn provides a (weighted) directed graph whose set of nodes is {1, . . . ,m};

(4) in, out ⊆ {1, . . . ,m} indicate the input neuron set and the output neuron set of
Π , respectively.

In what follows, we describe how a WFRSN P system is extended from a SN P
system as follows:

(1) We extend the definition of neurons. WFRSN P systems consist of two kinds of
neurons, i.e., proposition neurons and rule neurons, where rule neurons contain
three subcategories: general, and and or.

(2) The pulse value θi contained in each neuron σi is a real number in [0, 1], which
represents the potential value of spikes contained in this neuron instead of the
number of spikes in SN P systems.

(3) Each neuron is associated with either a proposition or a production rule, and
ci ∈ [0, 1] denotes the truth value of this proposition or the confidence factor
(CF) of this production rule.

(4) Each weighted directed synapse has an output weight. That is, each synapse
in syn ⊆ {1, . . . ,m} × {1, . . . ,m} has a weight. The output weights of neurons
represent the importance degree of their values in contributing to the computing
results in output neurons.

(5) Each neuron contains only one firing (spiking) rule of the form E/aθ → aβ .
When the firing condition of one neuron is satisfied, the firing rule is applied,
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which indicates that the potential value θ is consumed and then this neuron
generates a new spike with potential value of β. These different types of neurons
handle the potential values θ and β in different ways (see Definitions 8–11).
If the firing condition of one neuron is not satisfied, the potential value of the
spikes received by this neuron is updated by logical operators and or or.

(6) Time delay is ignored in WFRSN P systems, so all neurons are always open.

The definitions of different types of neurons in WFRSN P systems are described
as follows.

Definition 8 A proposition neuron is associated with a proposition in a fuzzy pro-
duction rule. Such a neuron is represented by a circle and symbol P, as shown in
Fig. 5.8 [40].

If a proposition neuron is an input neuron of a WFRSN P system Π , its potential
value θ is received from the environment; otherwise, θ equals the result of logical
operation or on all weighted potential values received from its presynaptic rule
neurons, i.e., θ = max{θ1 ∗ ω1, . . . , θk ∗ ωk}. The firing rule of a proposition neuron
is of the form E/aθ → aθ, that is, the parameter β of the firing rule contained in such
a neuron is identical to θ. When the firing condition E of a proposition neuron is
satisfied, the potential value θ of spikes contained in this neuron is consumed and
then a new spike with potential value θ is generated and emitted.

Definition 9 A general rule neuron is associated with a fuzzy production rule which
has only one proposition in the antecedent part of the rule. Such a neuron is repre-
sented by a rectangle and symbol R(c, general), as shown in Fig. 5.9 [40], where c is
the confidence factor of this rule.

A general rule neuron has only one presynaptic proposition neuron and one or
more postsynaptic proposition neurons. If a general rule neuron σ receives a spike
from its presynaptic proposition neuron and its firing condition is satisfied, the neuron

Fig. 5.8 A proposition
neuron (a) and its simplified
form (b)

(a) (b)

Fig. 5.9 A general rule
neuron (a) and its simplified
form (b)

(a) (b)
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Fig. 5.10 An and rule
neuron (a) and its simplified
form (b)

(a) (b)

Fig. 5.11 An or rule neuron
(a) and its simplified
form (b)

(a) (b)

fires and produces a new spike with the potential value β = θ ∗ ω ∗ c, where ω is the
weight of the output arc to σ.

Definition 10 An and rule neuron is associated with a fuzzy production rule which
has more than one propositions with an and relationship in the antecedent part of
the rule. Such a neuron is denoted by a rectangle and symbol R(c, and), as shown in
Fig. 5.10 [40], where c is the confidence factor of this rule.

An and rule neuron has more than one presynaptic proposition neuron and only
one postsynaptic proposition neuron. If an and rule neuron σ receives k spikes from
its k presynaptic proposition neurons and its firing condition is satisfied, the neuron
fires and produces a new spike with the potential value β = [(θ1 ∗ ω1 + · · · + θk ∗
ωk)/(ω1 + · · · + ωk)] ∗ c, where ω is the weight of the output arc to σ

Definition 11 An or rule neuron is associated with a fuzzy production rule with
more than one propositions having an or relationship in the antecedent part of the
rule. Such a neuron is represented by a rectangle and symbol R(c, or), as shown in
Fig. 5.11 [40], where c is the confidence factor of this rule.

An or rule neuron has more than one presynaptic proposition neuron and only one
postsynaptic proposition neuron. If an or rule neuron σ receives k spikes from its k
presynaptic proposition neurons and its firing condition is satisfied, the neuron fires
andproduces a new spikewith the potential valueβ = max{θ1 ∗ ω1, . . . , θk ∗ ωk} ∗ c,
where ω is the weight of the output arc to σ.

5.3.1.3 tFRSN P Systems

Definition 12 A tFRSN P system with trapezoidal fuzzy numbers (with degree
m ≥ 1) is a tuple [42]
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Π = (O,σ1, . . . ,σm, syn, in, out)

where:

(1) O = {a} is a singleton alphabet (a is called spike);
(2) σ1, . . . ,σm are neurons of the form σi = (θi, ci, ri), 1 ≤ i ≤ m, where:

(i) θi is a trapezoidal fuzzy number in [0, 1] representing the potential value of
spikes (i.e., the value of electrical impulses) contained in neuron σi;

(ii) ci is a trapezoidal fuzzy number in [0, 1] representing the fuzzy truth value
corresponding to neuron σi;

(iii) ri represents a firing (spiking) rule associated with neuron σi of the form
E/aθ → aβ , where E is a regular expression, and θ and β are trapezoidal
fuzzy numbers in [0, 1].

(3) syn ⊆ {1, . . . ,m} × {1, . . . ,m} with i �= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m, is a
directed graph of synapses between the linked neurons;

(4) in, out ⊆ {1, 2, . . . ,m} are the input neuron set and the output neuron set of Π ,
respectively.

The pulse value contained in each neuron in a tFRSN P system is not the number
of spikes denoted by a real number, but a trapezoidal fuzzy number in [0, 1]. This can
be regarded as the potential value of spikes contained in neuron σi. The introduction
of trapezoidal fuzzy numbers are for processing various uncertainties coming from
professional knowledge acquisition due to experts’ subjectivity, or linguistic terms
with a certain degree of uncertainty for expressing human knowledge in the real
world such as knowledge of fault diagnosis process, or the knowledge of practical
applications with a certain degree of uncertainty. For example, we often use fuzzy
concepts (absolutely-false, very-low, low, medium-low, medium, medium-high, high,
very-high, absolutely-high) to describe a degree of uncertainty. The operation process
of protective devices in fault diagnosis usually includes uncertainly protective mes-
sages such as maloperation and misinformation.

If the pulse value θi > (0, 0, 0, 0), neuron σi contains a spike with value θi, oth-
erwise, the neuron contains no spike. The meaning of the firing condition E = an

is that the spiking rule associated with neuron σi can be applied at an instant t if
and only if the number of spikes that neuron σi receives at that moment equals n,
otherwise, the firing rule cannot be applied. If the number of spikes that neuron σi

receives is less than n, neuron σi performs the operation ∧© or ∨© on the potential
values carried by these spikes to update its pulse value.

The neurons in a tFRSN P system are divided into two categories: proposition
neurons and rule neurons. Each neuron σi corresponds to either a proposition or
a fuzzy production rule, which will be described later in this section. Thus, the
trapezoidal fuzzy number ci can be understood as either the fuzzy truth value of a
proposition or the confidence factor of a fuzzy production rule.

The definitions of different types of neurons in tFRSN P systems are described as
follows.
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Fig. 5.12 A proposition
neuron (a) and its simplified
form (b)

a

a

aa

cp

cp

(a) (b)

Definition 13 A proposition neuron, as shown in Fig. 5.12 [42], corresponds to
a proposition in the fuzzy production rules. Such a neuron is represented by the
symbol p.

The fuzzy truth value of a proposition neuron equals the fuzzy truth value of its
proposition. If such a proposition neuron receives one spike, i.e., n = 1, it will fire
and emit a spike. The parameter β of the firing rule contained in such a proposition
neuron is identical to θ. If a proposition neuron is an input, its pulse value θ equals
the fuzzy truth value c of this neuron. Otherwise, if there is only one presynaptic rule
neuron, θ equals the pulse value transmitted from this neuron. In any other case, θ
equals the result of the operation ∧© on all pulse values received from its presynaptic
rule neurons.

The three types of rule neurons, general, and and or, are represented by the three
symbols =©, ∧© and ∨©, respectively. A rule neuron is represented by R. If the number
of spikes a rule neuron receives equals the number of its presynapses, it will fire and
emit a spike. In what follows, each type of rule neurons will be defined.

Definition 14 A general rule neuron =©, as shown in Fig. 5.13i [42], corresponds
to a fuzzy production rule with only one proposition in the antecedent part of the

Fig. 5.13 Rule neurons.
i A general rule neuron (a)
and its simplified form (b);
ii An and rule neuron (a) and
its simplified form (b); iii An
or rule neuron (a) and its
simplified form (b)

(a) (b)

(a) (b)

(a) (b)
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rule. The consequent part of the fuzzy production rule may contain one or more
propositions.

A general rule neuron has only one presynaptic proposition neuron and one or
more postsynaptic proposition neurons. The fuzzy truth value of ageneral rule neuron
equals the confidence factor of the fuzzy production rule corresponding to its neuron.
If a general rule neuron receives a spike with potential value θ and its firing condition
is satisfied, the neuron fires and produces a new spike with potential value β = θ ⊗ c,
where c is the confidence factor of this rule.

Definition 15 An and rule neuron ∧©, as shown in Fig. 5.13ii [42], corresponds to
the fuzzy production rule having more than one proposition with an and relationship
in the antecedent part of the rule. The consequent part of the fuzzy production rule
contains only one proposition.

An and rule neuron has more than one presynaptic proposition neuron and only
one postsynaptic proposition neuron. The fuzzy truth value of an and rule neuron
equals the confidence factor of the fuzzy production rule corresponding to its neuron.
If an and rule neuron receives k spikes with potential values θ1, . . . , θk , respectively,
and its firing condition is satisfied, then the neuron fires and produces a new spike
with the potential value β = (θ1 ∧©· · · ∧©θk) ⊗ c, where c is the confidence factor of
this rule.

Definition 16 An or rule neuron ∨©, as shown in Fig. 5.13iii [42], corresponds to the
fuzzy production rule which has more than one proposition with an or relationship
in the antecedent part of the rule. The consequent part of the fuzzy production rule
contains only one proposition.

An or rule neuron has more than one presynaptic proposition neuron and only one
postsynaptic proposition neuron. The fuzzy truth value of an or rule neuron equals
the confidence factor of the fuzzy production rule corresponding to its neuron. If an
or rule neuron receives k spikes with potential values θ1, . . . , θk , respectively and
its firing condition is satisfied, then the neuron fires and produces a new spike with
the potential value β = (θ1 ∨©· · · ∨©θk) ⊗ c, where c is the confidence factor of this
rule.

5.3.2 Algorithms

In this subsection, reasoning algorithms, FRA (fuzzy reasoning algorithm),WMBRA
(weighted matrix-based reasoning algorithm) and MBFRA (matrix-based fuzzy rea-
soning algorithm), for rFRSN P systems, WFRSN P systems and tFRSN P systems
are described, respectively.
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5.3.2.1 FRA

A fuzzy reasoning algorithm (FRA) based on rFRSNP systemswas proposed in [27].
The aim of FRA is to use known fuzzy propositions (input neurons) to reason out the
fuzzy truth values of unknown fuzzy propositions (proposition neurons associated
with output neurons). Assume that all fuzzy production rules in a fuzzy diagnosis
knowledge base have been modeled by an rFRSN P system model Π . The model
Π consists of m neurons: n proposition neurons {σ1, . . . ,σn} and k rule neurons
{σ1, . . . ,σk} (AND type neurons and OR type neurons), where m = n + k.

In what follows, some parameter vectors and matrices are first introduced to be a
preparation of FRA.

(1) U = (uij)n×k is a binary matrix, where uij ∈ {0, 1}. uij = 1 if there is a directed
arc (synapse) from proposition neuron σi to rule neuron σj, otherwise, uij = 0.

(2) V = (vij)n×k is a binary matrix, where vij ∈ {0, 1}. vij = 1 if there is a directed
arc (synapse) from rule neuron σ̄j to proposition neuron σi, otherwise, vij = 0.

(3) Λ = diag(τ1, . . . , τk) is a diagonalmatrix,where τj represents confidence factor
of the jth production rule associated with rule neuron σ̄j, 1 ≤ j ≤ k.

(4) H1 = diag(h1, . . . , hk) is a diagonal matrix. If the jth rule neuron is an AND-
type neuron, hj = 1; otherwise hj = 0.

(5) H2 = diag(h1, . . . , hk) is a diagonal matrix. If the jth rule neuron is an OR-type
neuron, hj = 1; otherwise hj = 0.

(6) αp = (αp1, . . . ,αpn)
T is a truth value vector, αpi ∈ [0, 1]. αpi represents the

truth value of the ith proposition neuron. αr = (αr1, . . . ,αrk)
T is also a truth

value vector, αrj ∈ [0, 1]. αrj represents the truth value of the jth rule neuron.
(7) ap = (ap1, . . . , apn)T is an integer vector, where api represents the number of

spikes received by the ith proposition neuron. ar = (ar1, . . . , ark)T is also an
integer vector, where arj represents the number of spikes received by the jth
rule neuron.

(8) λp = (λp1, . . . ,λpn)
T is an integer vector, where λpi represents the number of

spikes required by firing the ith proposition neuron. λr = (λr1, . . . ,λrk)
T is

also an integer vector, where λrj represents the number of spikes required by
firing the jth rule neuron.

(9) βp = (βp1, . . . ,βpn)
T is a truth value vector, βpi ∈ [0, 1]. βpi represents truth

value exported by the ith proposition neuron after firing. βr = (βr1, . . . ,βrk)
T

is also a truth value vector, βrj ∈ [0, 1]. βrj represents the truth value exported
by the jth rule neuron after firing.

(10) bp = (bp1, . . . , bpn)T is an integer vector, where bpi ∈ {0, 1} represents the
number of spikes exported by the ith proposition neuron after firing. br =
(br1, . . . , brk)T is also an integer vector, where brj ∈ {0, 1} represents the num-
ber of spikes exported by the jth rule neuron after firing.

Then we introduce three multiplication operations:

(1) ⊕: C = A ⊕ B, where A, B and C are all r × s matrices, such that cij =
max{aij, bij}.
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(2) ⊗:C = A ⊗ B, whereA,B andC are r × s, s × t and r × tmatrices respectively,
such that cij = max

1≤m≤s
{aim · bmj}.

(3) �:C = A � B, whereA,B andC are r × s, s × t and r × tmatrices respectively,
such that cij = min

1≤m≤s
{aim · bmj}.

(4) β = fire (α, a,λ), where β = (β1, . . . ,βr)
T , α = (α1, . . . ,αr)

T , a = (a1, . . . ,
ar)T , λ = (λ1, . . . ,λr)

T . The function is defined as follows:

βi =
{

αi, if ai = λi

0 if ai < λi
,

where i = 1, 2, . . . , r.
(5) β = update (α, a,λ), where β, α, a and λ are vectors described above. The

function is defined as follows:

βi =
⎧
⎨

⎩

0 if ai = 0
βi + αi, if 0 < ai < λi

0 if ai = λi

,

where i = 1, 2, . . . , r.
(6) D = diag(b), where D = (dij) is a r × r diagonal matrix and b = (b1, . . . , br).

For 1 ≤ i ≤ r, dii = bi, while dij = 0 for i �= j.

In what follows, an FRA for an rFRSN P system is described.

FRA

INPUT: parameter matrices U , V , Λ, H1, H2, λp, λr , and initial inputs α0
p, a

0
p.

OUTPUT: The fuzzy truth values of propositions associated with the neurons in O.
Step (1) Let α0

r = (0, 0, . . . , 0)T , a0r = (0, 0, . . . , 0)T .
Step (2) Let t = 0.
Step (3)

(1) Process the firing of proposition neurons.
βt
p = fire(αt

p, a
t
p,λp), btp = fire(1, atp,λp), αt

p = update(αt
p, a

t
p,λp),

atp = update(atp, a
t
p,λp), Bt

p = diag(btp).
(2) Compute the truth values of rule neurons and the number of received spikes.

αt+1
r = αt

r ⊕ [(H1 · ((Bt
p ·U )T � βt

p)) + (H2 · ((Bt
p ·U )T ⊗ βt

p)],
at+1
r = atr + [(Bt

p ·U )T · btp].
(3) Process the firing of rule neurons.

βt+1
r = fire(Λ · αt+1

r , at+1
r ,λr), bt+1

r = fire(1, at+1
r ,λr),

αt+1
r = update(αt+1

r , atp,λp), at+1
r = update(at+1

r , atp,λp), Bt+1
r = diag(bt+1

r ).
(4) Compute the truth values of proposition neurons and the number of received

spikes.
αt+1
p = αt

p ⊕ [(V · Bt+1
r ) ⊗ βt+1

r ], at+1
p = atp + [(V · Bt+1

r ) · bt+1
r ].

Step (4) If at+1
p = (0, 0, . . . , 0)T and at+1

r = (0, 0, . . . , 0)T (computation halts), the
reasoning results are obtained; otherwise, t = t + 1, go to Step (3).
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5.3.2.2 WMBRA

We first introduce some parameter vectors and matrices before a weighted matrix-
based reasoning algorithm (WMBRA) is described.

(1) θ = (θ1, . . . , θs)
T is a real truth value vector of the s proposition neurons, where

θi (1 ≤ i ≤ s) is a real number in [0, 1] representing the potential value contained
in the ith proposition neuron. If there is not any spike contained in a proposition
neuron, its potential value is 0.

(2) δ = (δ1, . . . , δt)
T is a real truth value vector of the t rule neurons, where δj

(1 ≤ j ≤ t) is a real number [0, 1] representing the potential value contained
in the jth rule neuron. If there is not any spike contained in a rule neuron, its
potential value is 0.

(3) C = diag(c1, . . . , ct) is a diagonal matrix, where cj (1 ≤ j ≤ t) is a real number
in [0, 1] representing the confidence factor of the jth fuzzy production rule,

(4) Wr1 = (ωij)s×t is a synaptic weight matrix representing the directed connection
with weights among proposition neurons and general rule neurons. If there is
a directed arc (synapse) from proposition neuron σi to general rule neuron σj,
then ωij is identical to the output weight of synapse (i, j), otherwise, ωij = 0.

(5) Wr2 = (ωij)s×t is a synaptic weight matrix representing the directed connection
with weights among proposition neurons and and rule neurons. If there is a
directed arc (synapse) from proposition neuron σi to and rule neuron σj, then
ωij is identical to the output weight of synapse (i, j), otherwise, ωij = 0.

(6) Wr3 = (ωij)s×t is a synaptic weight matrix representing the directed connection
withweights amongpropositionneurons andor rule neurons. If there is a directed
arc (synapse) from proposition neuron σi to or rule neuron σj, thenωij is identical
to the output weight of synapse (i, j), otherwise, ωij = 0.

(7) Wp = (ωji)t×s is a synaptic weight matrix representing the directed connection
with weights among rule neurons and proposition neurons. If there is a directed
arc (synapse) from rule neuron σj to proposition neuron σi, then ωji is identical
to the output weight of synapse (j, i), otherwise, ωji = 0.

(8) λp = (λp1, . . . ,λps)
T is a threshold vector of the s proposition neurons, where

λpi (1 ≤ i ≤ s) is a real number in [0, 1) representing the firing threshold of the
ith proposition neuron.

(9) λr = (λr1, . . . ,λrt)
T is a threshold vector of the t rule neurons, where λrj (1 ≤

j ≤ t) is a real number in [0, 1) representing the firing threshold of the jth rule
neuron.

Subsequently, we introduce some multiplication operations as follows.

(1) ⊗: WT
rl ⊗ θ = (ω̄1, . . . , ω̄t)

T , where ω̄j = ω1j ∗ θ1 + · · · +ωsj ∗ θs, 1 ≤ j ≤ t,
1 ≤ l ≤ 3.

(2) ⊕: WT
rl ⊕ θ = (ω̄1, . . . , ω̄t)

T , where ω̄j = (ω1j ∗ θ1 + · · · + ωsj ∗ θs)/(ω1j +
· · · + ωsj), 1 ≤ j ≤ t, 1 ≤ l ≤ 3.
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Algorithm WMBRA
Input: Wr1,Wr2,Wr3, Wp, λp, λr , C, θ0, δ0

1: Set the termination condition 0 = (0, . . . , 0)Tt
2: Let g = 0, where g represents the reasoning step
3: while δg �= 0 do
4: for each input neuron (g = 0) or each proposition neuron (g > 0) do
5: if the firing condition E = {an, θi ≥ λpi, 1 ≤ i ≤ s} is satisfied then
6: the neuron fires and compute the real truth value vector δg+1 via δg+1 = (WT

r1 ⊗ θg) +
(WT

r2 ⊕ θg) + (WT
r3 � θg)

7: if there is a postsynaptic rule neuron then
8: the neuron transmits a spike to the next rule neuron
9: else
10: just accumulate the value in the neuron
11: end if
12: end if
13: end for
14: for each rule neuron do
15: if the firing condition E = {an, δj ≥ λrj, 1 ≤ j ≤ t } is satisfied then
16: the rule neuron fires and computes the real truth value vector θg+1 via θg+1 = WT

p �
(C ⊗ δg+1) and transmits a spike to the next proposition neuron

17: end if
18: g = g + 1
19: end for
20: end while
Output: θg , which represents the final states of pulse values contained in proposition neurons.

(3) �: WT
rl � θ = (ω̄1, . . . , ω̄t)

T , where ω̄j = max{ω1j ∗ θ1, . . . ,ωsj ∗ θs}, 1 ≤
j ≤ t, 1 ≤ l ≤ 3. Likewise, WT

p � δ = (ω̄1, . . . , ω̄s)
T , where ω̄i = max {ω1i ∗

δ1, . . . ,ωti ∗ δt}, 1 ≤ i ≤ s.

Next, we list the pseudocode of WMBRA.

5.3.2.3 MBFRA

To adapt tFRSN P systems to solve fault diagnosis problems, we describe MBFRA
below.

Given initial truth values of propositions corresponding to all input neurons in
a tFRSN P system, MBFRA can perform fuzzy reasoning to obtain the fuzzy truth
values of other neurons with unknown pulse values and output reasoning results.
Let us assume that the tFRSN P system contains l proposition neurons and n rule
neurons, each of which may be general, and or or rule neurons, with m = l + n,
where m is the number of all the neurons in this system.

In order to clearly present the reasoning algorithm, we first introduce some para-
meter vectors and matrices as follows.

(1) θ = (θ1, . . . , θl)
T is a fuzzy truth value vector of the l proposition neurons,where

θi represents the pulse value contained in the ith proposition neuron, 1 ≤ i ≤ l,
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and is expressed by a trapezoidal fuzzy number in [0, 1]. If there is no spike
contained in a proposition neuron, its pulse value is “unknown′′ or (0, 0, 0, 0).

(2) δ = (δ1, . . . , δn)
T is a fuzzy truth value vector of the rule neurons, where δj

represents the pulse value contained in the jth rule neuron, 1 ≤ j ≤ n, and it is
expressed by a trapezoidal fuzzy number [0, 1]. If there is no spike contained in
a rule neuron, its pulse value is “unknown′′ or (0, 0, 0, 0).

(3) C = diag(c1, . . . , cn) is a diagonal matrix, where cj is the confidence factor of
the jth fuzzy production rule, 1 ≤ j ≤ n, and it is expressed by a trapezoidal
fuzzy number.

(4) D1 = (dij)l×n is a synaptic matrix representing the directed connection between
proposition neurons and general rule neurons. If there is a directed arc (synapse)
from the proposition neuron σi to the general rule neuron σj, then dij = 1, oth-
erwise, dij = 0.

(5) D2 = (dij)l×n is a synaptic matrix representing the directed connection between
proposition neurons and and rule neurons. If there is a directed arc (synapse)
from the proposition neuron σi to the and rule neuron σj, then dij = 1, otherwise,
dij = 0.

(6) D3 = (dij)l×n is a synaptic matrix representing the directed connection between
proposition neurons and or rule neurons. If there is a directed arc (synapse)
from the proposition neuron σi to the or rule neuron σj, then dij = 1, otherwise,
dij = 0.

(7) E = (eji)n×l is a synaptic matrix representing the directed connection between
rule neurons and proposition rule neurons. If there is a directed arc (synapse)
from the rule neuron σj to the proposition neuron σi, then eji = 1, otherwise,
eji = 0.

Subsequently, we introduce some multiplication operations as follows.

(1) ◦©:C ◦© δ = (c1 ⊗ δ1, . . . , cn ⊗ δn)
T ;DT ◦© θ = (d̄1, . . . , d̄n)T , where d̄j = d1jθ1

+ · · · +dljθl, 1 ≤ j ≤ n.
(2) �: DT � θ = (d̄1, . . . , d̄n)T , where d̄j = d1jθ1 ∧© · · · ∧© dljθl, 1 ≤ j ≤ n.
(3) ∗©: ET ∗© δ = (ē1, . . . , ēl)T , where ēi = e1iδ1 ∨© · · · ∨©eniδn, 1 ≤ i ≤ l.

Next, we list the pseudocode of MBFRA.

5.4 Fault Diagnosis with Spiking Neural P Systems

This section uses different application examples to detail how to use the three vari-
ants of SN P systems discussed in Sect. 5.3 for fault diagnosis. Specifically, fault
diagnosis of a transformer, a traction power supply system (TPSS) and a power
transmission network, are applied to show the feasibility and effectiveness of rFRSN
P systems,WFRSN P systems and tFRSN P systems for solving diagnosis problems,
respectively.
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Algorithm MBFRA
Input: D1, D2, D3, E, C, θ0, δ0
1: Set the termination condition 0 = (unknown, . . . , unknown)Tn
2: Let t = 0, where t represents the reasoning step
3: while δt �= 0 do
4: for each input neuron (t = 0) or each proposition neuron (t > 0) do
5: if the firing condition E = as is satisfied then
6: the neuron fires and computes the fuzzy truth value vector δt+1 via δt+1=(DT

1 ◦© θt) ⊕
(DT

2 � θt) ⊕ (DT
3 ∗© θt)

7: if there is a postsynaptic rule neuron then
8: the neuron transmits a spike to the next rule neuron
9: else
10: just accumulate the value in the neuron
11: end if
12: end if
13: end for
14: for each rule neuron do
15: if the firing condition E = as is satisfied then
16: the rule neuron fires and computes the fuzzy truth value vector θt+1 via θt+1 = ET ∗©

(C ◦© δt+1) and transmits a spike to the next proposition neuron
17: end if
18: t = t + 1
19: end for
20: end while
Output: θt , which represents the final states of pulse contained in proposition neurons.

5.4.1 Transformer Fault Diagnosis with rFRSN P Systems

This subsection uses rFRSN P systems to diagnose the faults in transformers [27].
We first present rFRSN P systems for fuzzy production rules and then discuss the
details on the fault diagnosis of transformers.

5.4.1.1 Fuzzy Production Rules

In order to use fuzzy production rules for fault diagnosis of transformers, we need to
map them into rFRSN P systems. The basic principle is described as follows. We use
a proposition neuron to represent a proposition in the fuzzy diagnosis knowledge base
and use a rule neuron (AND-type neuron or OR-type neuron) to a fuzzy production
rule. At the beginning, each input proposition neuron has only one spike and its
pulse value is assigned to the fuzzy truth value of the proposition associated with it.
Then, value τi of each rule neuron is assigned to the confidence factor of the fuzzy
production rule associated with it.

According to the above principle, a simple fuzzy production rule (5.2) can be
modeled by an rFRSN P system Π1, as shown in Fig. 5.14.
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Fig. 5.14 An rFRSN P
system Π1 for simple fuzzy
production rules

Fig. 5.15 An rFRSN P
system Π2 for composite
fuzzy conjunctive rules in the
antecedent

Π1 = (A,σi,σj,σk, syn, I,O), where

(1) A = {a}
(2) σi is a rule neuron associated with rule Ri with confidence factor τi. Its spiking

rule is of the form E/aα → aβ , where β = α ∗ τi.
(3) σj and σk are two proposition neurons associated with propositions pj and pk

with truth values αj and αk respectively. Their spiking rules are of the form
E/aα → aα.

(4) syn = {(j, i), (i, k)}, I = {σj}, O = {σk}.
A composite fuzzy conjunctive rule in the antecedent (5.3) can be modeled by an

rFRSN P system Π2, as shown in Fig. 5.15.
Π2 = (A,σ1,σ2, . . . ,σk,σk+1, syn, I,O), where

(1) A = {a}
(2) σj (1 ≤ j ≤ k) are proposition neurons associated with propositions pj (1 ≤ j ≤

k) with truth values αj (1 ≤ j ≤ k) respectively. Their spiking rules are of the
form E/aα → aα.

(3) σk+1 is an “AND”-type rule neuron associatedwith ruleRi with confidence factor
τi. Its spiking rule is of the form E/aα → aβ , where β = α ∗ τi.

(4) syn = {(1, k + 1), (2, k + 1), . . . , (k − 1, k + 1), (k + 1, k)}.
(5) I = {σ1, . . . ,σk−1}, O = {σk}.

A composite fuzzy conjunctive rule in the consequent (5.4) can be modeled by an
rFRSN P system Π3, as shown in Fig. 5.16.

Π3 = (A,σ1, . . . ,σk+1, syn, I,O), where

(1) A = {a}
(2) σj (1 ≤ j ≤ k) are proposition neurons associated with propositions pj (1 ≤ j ≤

k) with truth values αj (1 ≤ j ≤ k), respectively. Their spiking rules are of the
form E/aα → aα.

(3) σk+1 is a rule neuron associated with rule Ri with confidence factor τi. Its spiking
rule is of the form E/aα → aβ , where β = α ∗ τi.
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Fig. 5.16 An rFRSN P
system Π3 for composite
fuzzy conjunctive rules in the
consequent

Fig. 5.17 An rFRSN P
system Π4 for composite
fuzzy disjunction rules in the
antecedent

(4) syn = {(1, k + 1), (k + 1, 2), (k + 1, 3), . . . , (k + 1, k)}.
(5) I = {σ1}, O = {σ2, . . . ,σk}.

A composite fuzzy disjunction rule in the antecedent (5.5) can be modeled by an
rFRSN P system Π4, as shown in Fig. 5.17.

Π4 = (A,σ1, . . . ,σk+1}, where
(1) A = {a}
(2) σj (1 ≤ j ≤ k) are proposition neurons associated with propositions pj (1 ≤ j ≤

k) with truth values αj (1 ≤ j ≤ k), respectively. Their spiking rules are of the
form E/aα → aα.

(3) σk+1 is an “OR”-type rule neuron associated with rule Ri with confidence factor
τi. Its spiking rule is of the form E/aα → aβ , where β = α ∗ τi.

(4) syn = {(1, k + 1), (2, k + 1), . . . , (k − 1, k + 1), (k + 1, k)}.
(5) I = {σ1, . . . ,σk−1}, O = {σk}.

5.4.1.2 Example

In this subsection, an application example in [27] is employed to show how to use
rFRSN P systems and their FRA to diagnose faults in a transformer. The following
fuzzy production rules are obtained from the knowledge base of a transformer fault
diagnosis system.
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Rule 1 (CF = 0.8)
Symptom:
(1) Total hydrocarbon is little high (p1);
(2) C2H2 is low (p2);
Anticipated Fault: General overheating fault occurs (p11).

Rule 2 (CF = 0.8)
(1) Total hydrocarbon is rather high (p3);
(2) C2H2 is too high (p4);
(3) H2 is high (p5);
(4) C2H2 in total hydrocarbon occupies a too low proportion (p6);
Anticipated Fault: Serious overheating fault occurs (p11).

Rule 3 (CF = 0.8)
(1) Total hydrocarbon is little low (p7);
(2) H2 is high (p5);
(3) CH4 in total hydrocarbon occupies a large proportion (p8);
(4) CH4 in total hydrocarbon occupies a higher proportion than C2H2 (p9);
Anticipated Fault: The partial discharge occurs (p13).

Rule 4 (CF = 0.8)
(1) Total hydrocarbon is rather low (p10);
(2) C2H2 is too high (p4);
(3) H2 is high (p5);
Anticipated Fault: The spark discharge occurs (p14).

These fuzzy production rules can be modeled by the following rFRSN P system
Π5, as shown in Fig. 5.18.

Π5 = (A,σ1, . . . ,σ14,σ15, . . . ,σ18, syn, I,O), where

(1) A = {a}.
(2) σ1, . . . ,σ14 are proposition neurons associated with propositions p1, . . . , p14,

respectively.

Fig. 5.18 An example of a transformer fault diagnosis modeled by an rFRSN P system model Π5
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(3) σ15, . . . ,σ18 are AND-type rule neurons associated with production rules
R1, . . . ,R4, respectively.

(4) syn = {(1, 15), (2, 15), (3, 16), (4, 16), (4, 18), (5, 16), (5, 17), (5, 18),
(6, 18), (7, 17), (8, 17), (9, 17), (10, 18), (15, 11), (16, 12), (17, 13),
(18, 14)}.

(5) I = {σ1,σ2,σ3,σ4,σ5,σ6,σ7,σ8,σ9,σ10}, O = {σ11,σ12,σ13,σ14}.
According to the definition of parameter vectors and matrices given in Sect. 1.3.2,

U , V , Λ, H1 and H2 are follows:

U =

⎡

⎢⎢⎣

1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0

⎤

⎥⎥⎦

T

H1 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

V =

⎡

⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎦

T

H2 =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

Λ =

⎡

⎢⎢⎣

0.8 0 0 0
0 0.8 0 0
0 0 0.8 0
0 0 0 0.8

⎤

⎥⎥⎦

λp = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T λr = (2, 4, 4, 3)T

In on-scene information detection of transformer, total hydrocarbon content is
high (CF = 0.8), C2H2 content is high (CF = 0.8), H2 content is high (CF =
0.9), C2H2 content in total hydrocarbon content is high (CF = 0.8), CH4 content
in total hydrocarbon content is small (CF = 0.1). Thus, initial truth value vec-
tor α0

p = (0.8, 0.2, 0.8, 0.8, 0.9, 0.8, 0.2, 0.9, 0.1, 0.2, 0, 0, 0, 0)T and initial spike
vector a0p = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0)T . Let α0

r = (0, 0, 0, 0)T and a0r =
(0, 0, 0, 0)T .

According to reasoning algorithm described Sect. 1.3.2, we get

(1) α1
p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , α1

r = (0.16, 0.64, 0.08, 0.16)T ,
a1p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , a1r = (2, 4, 4, 3)T ;

(2) α2
p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.16, 0.64, 0.08, 0.16)T , α2

r = (0, 0, 0, 0)T ,
a2p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)T , a2r = (0, 0, 0, 0)T ;

(3) a3p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , a3r = (0, 0, 0, 0)T .

http://dx.doi.org/10.1007/978-3-319-55989-6_1
http://dx.doi.org/10.1007/978-3-319-55989-6_1
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The computationof this system reaches halting condition (a3p = (0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0)T anda3r = (0, 0, 0, 0)T ), so the systemoutputs its reasoning results,
namely, the truth values of propositions p11, p12, p13 and p14 are 0.16, 0.64, 0.08 and
0.16, respectively. According to these reasoning results, there are possible faults:
general overheating fault (CF = 0.16), serious overheating fault (CF = 0.64), partial
discharge (CF = 0.08) and spark discharge (CF = 0.16). The threshold value of
fault occurrence is set to 0.6 in the fault diagnosis system. So the conclusion that the
transformer shows a serious overheating fault is consistent with the actual situation.

5.4.2 Traction Power Supply Systems Fault Diagnosis
with WFRSN P Systems

This subsection first presentsWFRSNP systemmodels for fault diagnosis production
rules in TPSSs. Then how to build WFRSN P system fault diagnosis models for
sections and how to use WFRSN P systems to identify fault sections for feeding
sections, are described in detail. Finally, three cases from a local system of a TPSS are
considered as application examples to show the effectiveness of WFRSN P systems
in fault diagnosis.

5.4.2.1 WFRSN P System Models for Fault Diagnosis Production Rules
in TPSSs

In the following description, fault diagnosis production rules in TPSSs and their
WFRSN P system models in [40], which is shown in Fig. 5.19, are presented.

Type 1 (Simple Rules) Ri: IF pj(θj) THEN pk(θk) (CF = ci), where pj and pk are
propositions, ci is a real number in [0, 1] representing the confidence factor of rule
Ri, θj and θk are real numbers in [0, 1] representing the truth values of pj and pk ,
respectively. The weight of proposition pj is ωj, where ωj = 1 because there is only
one proposition in the antecedent of this kind of rules. Then the truth values of pk is
θk = θj ∗ ωj ∗ ci = θj ∗ ci.

Type 2 (Compound And Rules) Ri: IF p1(θ1) and . . . and pk−1(θk−1) THEN pk (θk)
(CF= ci), where p1, . . . , pk are propositions, ci is a real number in [0, 1] representing
the confidence factor of rule Ri, θ1, . . . , θk are real numbers in [0, 1] representing the
truth values of p1, . . . , pk , respectively. Then theweights of propositions p1, . . . , pk−1

areω1, . . . ,ωk−1, respectively. The truth values ofpk is θk = [(θ1 ∗ ω1 + · · · + θk−1 ∗
ωk−1)/(ω1 + · · · + ωk−1)] ∗ ci.

Type 3 (Compound Or Rules) Ri: IF p1(θ1) or . . . or pk−1(θk−1) THEN pk (θk)
(CF = ci), where p1, . . . , pk are propositions, ci is a real number in [0, 1] representing
the confidence factor of rule Ri, θ1, . . . , θk are real numbers in [0, 1] representing the
truth values of p1, . . . , pk , respectively. The weights of propositions p1, . . . , pk−1 are
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(a) (b)

(c) (d)

Fig. 5.19 WFRSN P system models for fault diagnosis production rules in TPSSs. a Type 1;
b Type 2; c Type 3; d Type4

ω1, . . . ,ωk−1, respectively. The truth values of pk is θk = max{θ1 ∗ ω1, . . . , θk−1 ∗
ωk−1} ∗ ci.

Type 4 (Conditional And Rules) Ri: WHEN p0(θ0) is true, IF p1(θ1) and . . .

and pk−1(θk−1) THEN pk(θk) (CF = ci), where p0, . . . , pk are propositions, ci is a
real number in [0, 1] representing the confidence factor of rule Ri, θ0, . . . , θk are real
numbers in [0, 1] representing the truth values of p0, . . . , pk , respectively. Proposition
p0 is used to judge whether the reasoning condition of rule Ri is satisfied and its truth
value θ0 is not used in reasoningprocess. Thus, theweight of θ0 is not considered in the
model. Theweights of propositionsp1, . . . , pk−1 areω1, . . . ,ωk−1, respectively. Then
the truth values ofpk is θk = [(θ1 ∗ ω1 + · · · + θk−1 ∗ ωk−1)/(ω1 + · · · + ωk−1)] ∗ ci.

5.4.2.2 WFRSN P System Fault Diagnosis Models for Sections

In what follows, we describe the diagnosis models for sections by using WFRSNP
systems [40]. When a WFRSN P system is used to build a fault diagnosis model,
it is necessary to intuitively describe the causality between a fault and the sta-
tuses of its protective devices. Furthermore, the model has to consider all kinds of
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Fig. 5.20 Single line diagram of bus A in a TSS

Fig. 5.21 A WFRSN P system fault diagnosis model for bus A

protective devices including main protective relays, backup protective relays and
their corresponding CBs of a faulty section. In the sequel, bus A shown in Fig. 5.20
in a TPSS, and its WFRSN P system fault diagnosis model shown in Fig. 5.21 are
used as examples to show the model built process and parameter setting. In Figs. 5.20
and 5.21, T is a transformer; dotted line part is a spare section set; m, p, r are main
protection, primary backup protection and remote backup protection, respectively.

A. Model Built Process

If a fault occurs on a section in a TPSS, the statuses of its protective devices will soon
change so as to protect the system. Thus, we can use the observed status information,
protective relay operation information and circuit breaker tripping information as the
inputs of theWFRSN P system fault diagnosis model of the section. The information
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can be obtained from SCADA systems. To be specific, the inputs of the diagnosis
model of busA consist of themain protective relayAm, remote backup protective relay
T1r and their corresponding CBs, CB11 and CB12, as shown in Fig. 5.21. According
to relationships between the protective devices and the fault occurrence on bus A, the
other parts of this model can be given. For instance, the relationships with respect to
bus A are as follows: IF Am operates andCB12 trips THEN bus A fails; IF T1r operates
and (CB11,CB12 trip) THEN bus A fails. Next, we choose proposition neurons and
different types of rule neurons and create their links according to the relationships.
Thus, theWFRSNP system fault diagnosis model in Fig. 5.21 can be obtained.When
WMBRA arrives at the termination condition, output neuron σ10 will output the fault
confidence level of bus A.

A WFRSN P system for the model in Fig. 5.21 can be formally described as
Π6 = (O,σ1, . . . ,σ16, syn, in, out), where:

(1) O = {a} is the singleton alphabet (a is called spike);
(2) σ1, . . . ,σ10 are proposition neurons corresponding to the propositions with truth

values θ1, . . . , θ10; that is, s = 10;
(3) σ11, . . . ,σ16 are rule neurons, where σ11, σ12, σ13 and σ15 are and rule neurons,

σ14 is a general rule neuron and σ16 is an or rule neuron; that is, t = 6;
(4) syn = {(1, 11),(2, 11), (2, 12), (3, 12), (3, 13), (4, 13), (5, 14), (6, 15), (7, 15),

(8, 16), (9, 16), (11, 5), (12, 6), (13, 7), (14, 8), (15, 9), (16, 10)};
(5) in = {σ1, . . . ,σ4};
(6) out = {σ10}.

B. Parameters Setting

The status information of protective devices, which are obtained form SCADA
systems, could have uncertainty and incompleteness that results from abnormal
situations such as operation failure, malversation and misinformation because the
protections of sections in TPSSs are designed in single-ended manner. So a prob-
ability value is required to describe the operation confidence level of each section.
The operation confidence levels of these protective devices are set the same as those
in [34, 44, 46] so that the generality of the reliability of protective relays and CBs in
TPSSs and ordinary power systems can be considered. The confidence levels of oper-
ated protective devices and non-operate protective devices are shown in Table5.1,
where FL, B and T represent the feeder line, bus and transformer, respectively.

At the initial state, each input neuron of aWFRSN P system fault diagnosis model
has only one spike with a real number assigned. The number equals the confidence
level of the protective device associated with this input neuron. The other neurons
in the model do not have spikes and consequently their pulse values are 0. For
instance, if bus Am and CB12 operate and T1r , CB11 do not operate in Fig. 5.21, the
spikes contained in σ1, . . . ,σ4 are assigned the values of 0.8564, 0.9833, 0.4 and
0.2, respectively; while the pulse values of σ5, . . . ,σ16 are 0.

A truth value, which represents the confidence factor of the fault diagnosis pro-
duction rule associated with this rule neuron is assigned to each rule neuron of a
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Table 5.1 Operation and non-operation confidence levels of the protective devices

Sections Protective devices (operated) Protective devices (non-operated)

Main Primary backup Remote backup Main Primary backup Remote backup

Relays CBs Relays CBs Relays CBs Relays CBs Relays CBs Relays CBs

FL 0.9913 0.9833 0.8 0.85 0.7 0.75 0.2 0.2 0.2 0.2 0.2 0.2

B 0.8564 0.9833 – – 0.7 0.75 0.4 0.2 – – 0.4 0.2

T 0.7756 0.9833 0.75 0.8 0.7 0.75 0.4 0.2 0.4 0.2 0.4 0.2

WFRSN P system fault diagnosis model. As usual, a main protection has a higher
reliability than a primary backup protection and a primary backup protection has a
higher reliability than a remote backup protection. So we set the truth values of neu-
rons associated with main, primary backup and remote backup protections to 0.975,
0.95 and 0.9, respectively. It is noting that the truth values of or rule neurons are set
according to their highest protection. In Fig. 5.21, the truth values of σ11, . . . ,σ16

are set to 0.975, 0.9, 0.9, 0.975, 0.9 and 0.975, respectively. The output weights of
proposition neurons associated with protective relays and CBs are set as the same
value 0.5 because both the protective relay operation information and circuit breaker
tripping information is important to a fault diagnosis production rule. If a neuron has
only one presynaptic neuron, the output weight of its presynaptic neuron is set to 1.
The weight of a protection type is also set to 1. The weights ω1, . . . ,ω17 in Fig. 5.21
are set to 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 0.5, 0.5, 1, 1, 1, 1 and 1, respectively.
Since the firing threshold value of each neuron in aWFRSN P system fault diagnosis
model is smaller than the minimum pulse value appeared in the neurons in the whole
reasoning process, the firing threshold value of each neuron is set to 0.1, according
to Table5.1 and the operation of pulse values in different types of neurons.

5.4.2.3 Fault Region Identification for Feeding Sections

Lines in section posts (SPs) are connected in an up and down line paralleling manner
in a TSS-ATP-SP feeding section (FS). So when confirmed faults occur in a feeding
section, one important task of fault diagnosis for traction power supply systems is
to identify fault regions (which parts fail) in FSs. Figure5.22 shows a single line
diagram of a TSS-ATP-SP feeding section and its WFRSN P system fault diagnosis
model for fault region identification is shown in Fig. 5.23, where neurons σ1 and σ2

are associated with the propositions that current directions of I34 and I35 are positive,
respectively; neuron σ3 is associated with the proposition that current is detected in
SP2; neurons σ4 and σ5 are associated with the propositions that current directions of
I42 and I43 are negative; a small circle on an arrow tip represents an inverse proposition
associated with its presynaptic neuron; a hollow tip represents an assistant synapse,
i.e., the proposition associated with its presynaptic neuron is used as a judgement
condition; output neuron σ6 is associated with the proposition being the first part
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Fig. 5.22 Single line
diagram of a TSS-ATP-SP
feeding section

Fig. 5.23 A WFRSN P
system fault diagnosis model
for fault region identification
of a feeding section

I I I IISP

downFSupFS downFS upFS

of the up direction feeding section in FS2, i.e., FS21up has a fault. The meanings of
output neurons σ7 and σ9 are similar. Here, clockwise direction is the positive current
direction while counter-clockwise direction is the negative one.

Figures5.22 and 5.23 showa typical feeding section and itsWFRSNPsystem fault
diagnosis model for fault region identification. The models for other feeding sections
can be built in a similar way. Causality between currents detected and fault regions



5.4 Fault Diagnosis with Spiking Neural P Systems 193

is described by a WFRSN P system fault diagnosis model to get the fault regions
of feeding sections and no numerical calculation is involved in this identification
process. Thus, parameter setting of WFRSN P system fault diagnosis models for
fault region identification of feeding sections is not considered.

5.4.2.4 Examples

In this subsection, an example in [40] is described as follows to show the application
of WFRSN P systems in fault diagnosis. We consider three cases from the local
system of a TPSS in Fig. 5.24 [44]. The first two cases are in normal power supply
and the third case is in over zone feeding. The external transmission lines in a power
system supplying the TPSS are hypothetical. In Fig. 5.24, S and R are the sending
and receiving ends of transmission lines; L is the transmission line. One can note
that the complete line connection of FS1, ATP1, SP1, FS3, ATP3 and TPS-02 is the
same as that of TSS-01, FS2, SP2 and ATP2 in Fig. 5.24.

Case 1: normal power supply. FS21up and AT1 have faults.
Status information from the SCADA system (in time order): AT1m operated, CB31

tripped, AT3 auto switched over; FS2m operated, CB23 and CB24 tripped; feeder

Fig. 5.24 A local single line sketch map of a TPSS
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Fig. 5.25 A WFRSN P system fault diagnosis model for FS2up

lines auto reclosed, FS2up m operated quickly,CB23 tripped again.When faults occur,
current directions of I34 and I35 are positive, and current is not detected in SP2.

A WFRSN P system Π2 (its corresponding WFRSN P system fault diagnosis
model is shown in Fig. 5.25) for FS2up is defined as follows:

Π2 = (O,σ1, . . . ,σ16, syn, in, out),
where:

(1) O = {a} is the singleton alphabet (a is called spike);
(2) σ1, . . . ,σ9 are proposition neurons corresponding to the propositions with truth

values θ1, . . . , θ9; that is, s = 9;
(3) σ10, . . . ,σ13 are rule neurons, where σ10, σ11 and σ12 are and rule neurons, σ14

is an or rule neuron; that is, t = 4;
(4) syn = {(1, 10), (2, 10), (2, 11), (3, 11), (4, 12), (5, 12), (6, 13), (7, 13), (8, 13),

(10, 6), (11, 7), (12, 8), (13, 9)};
(5) in = {σ1, . . . ,σ5};
(6) out = {σ9}.

Figure5.26 shows the synaptic weight matrices of Π2. The other parameter
matrices associated with the model in Fig. 5.25 are described as follows: θ0 =
(0.9913 0.9833 0.8 0.4 0.2 0 0 0 0)T , δ0 = (0 0 0 0)T , C = diag(0.975 0.95 0.9
0.975). To briefly describe the matrices, let us denote Ol = (x1, . . . , xl)T , where
xi = 0, 1 ≤ i ≤ l. When g = 0, we obtain the results: δ1 = (0.9873 0.8917 0.3 0)T ,
θ1 = (0 0 0 0 0 0.9626 0.8471 0.27 0)T .When g = 1, we gain the results: δ2 = (0 0 0
0.9626)T , θ2 = (0 0 0 0 0 0 0 0 0.9385)T . When g = 2, we obtain the results:
δ3 = (0 0 0 0)T . Thus, the termination condition is satisfied and the reasoning process
ends.We obtain the reasoning results, i.e., the truth value 0.9385 of the output neuron
σ9. The feeding section FS2up has a fault with a fault confidence level 0.9385. The
fault region of FS2up can be further identified according to the fault current detected
and the WFRSN P system fault diagnosis model for fault region identification in
Fig. 5.23, and then we get the result that FS21up has a fault with a fault confidence
level 0.9385.
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Wr1 = O 9×4 ,Wr2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0
0.5 0.5 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0.5 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Wr3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Wp =

⎡
⎢⎢⎣
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎦ .

Fig. 5.26 Synaptic weight matrices of WFRSN P system fault diagnosis model for FS2up

Fig. 5.27 A WFRSN P system fault diagnosis model for AT1

Similarly, we can design a WFRSN P system for AT1 and its corresponding
WFRSN P system fault diagnosis model is shown in Fig. 5.27. The diagnosis process
of AT1 is similar to the above description. According to the SCADA data and
Table5.1, the parameter matrices of WFRSN P system fault diagnosis model for
AT1 is built to run WMBRA. The fault confidence level 0.8361 of AT1 is finally
obtained through the reasoning. Thus, the autotransformer AT1 has a fault with a
fault confidence level 0.8361.

Case 2: normal power supply. FS21up has faults.
Status information from the SCADA system (in time order): FS2m operated,CB24

tripped; T1r operated, CB11 and CB12 tripped. When faults occur, current directions
of I34 and I35 are positive, and the current is not detected in SP2. In this case, CB23

refused operation.
According to the SCADAdata and Table5.1, theWFRSNP system fault diagnosis

model for FS21 and its parameter matrices are established to perform WMBRA.
Finally, the fault confidence level 0.7439 ofFS2up is obtained through reasoning. The
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fault region of FS2up can be further identified according to the fault current detected
and the WFRSN P system fault diagnosis model for fault region identification in
Fig. 5.23, and then we get the result that FS21up has a fault. Thus, the feeding section
FS21up has a fault with a fault confidence level 0.7439.

Case 3: FS2 is over zone fed by TPS-02. AT7 and FS22up have faults.
Status information from the SCADA system (in time order): primary backup

protections of feeder lines in SP2 operated, CB42 tripped; meanwhile, CB51 tripped,
AT9 auto switched over; remote backup protection FS3s of feeder lines in TSS-02
operated, CB63 and CB64 tripped. When faults occur, current directions of I34 and
I35 are positive, and the current is detected only in SP2 and ATP2. In this case, main
protection of feeder lines in SP2,CB43 andmain protection of AT7 refused operation,
and status information of primary backup protection of AT7 lost.

According to the SCADAdata and Table5.1, theWFRSNP system fault diagnosis
models for AT7 and FS22 and their parameter matrices are established to perform
WMBRA, respectively. After the reasoning, the fault confidence levels AT7 and
FS2up are obtained, i.e., 0.6946 and 0.6123. The fault region of FS2up can be further
identified according to the fault current detected and the WFRSN P system fault
diagnosis model for fault region identification in Fig. 5.23, and then we get the result
that FS22up has a fault. So the autotransformer AT2 has a fault with a fault confidence
level 0.6946 and the feeding section FS22up has a fault with a fault confidence level
0.6123.

Cases 1–3 indicate that the introduced fault diagnosis technique can obtain satis-
factory results both in the situation in normal power supply and over zone feeding
with complete/incomplete alarm information. Moreover, the results are competitive
to those in [44] by using only one simple reasoning while the method in [44] needs
a second reasoning.

5.4.3 Power Transmission Networks Fault Diagnosis
with tFRSN P Systems

This subsection first presents fault fuzzy production rule sets for main sections in
transmission networks. Second, fault fuzzy productions rules based on tFRSN P
systems are described. Third, an algorithmic elaboration of fault diagnosis method
based on tFRSN P systems (FDSNP, for short) for power transmission networks
is discussed. Finally, seven cases of a local system in an EPS are considered as
application examples to show the effectiveness of tFRSNP systems in fault diagnosis.

5.4.3.1 Fault Fuzzy Production Rule Sets

In this subsection, fault fuzzy production rule sets for main sections including trans-
mission lines (L), buses (B) and transformers (T ) in transmission networks are
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described to obtain the causality between a fault and the statuses of its protective
devices [42]. The fault fuzzy production rules are composed of propositions and
confidence factors. A confidence factor represents the confidence degree that a fault
appears. Each rule has one confidence factor. According to the characteristic of the
uncertainty of the knowledge of experts and senior dispatchers, linguistic terms are
used to describe confidence factors.

In what follows, the fault fuzzy production rule sets for three main sections, lines,
buses and transformers, are presented.A line has six types of protections: sending end
main protections, sending end first backup protections, sending end second backup
protections, receiving end main protections, receiving end first backup protections
and receiving end second backup protections. The fault fuzzy production rule set for
lines consist of nine rules. Table5.2 shows the meaning of each proposition.

R1(c1 = AH) : (p1 and p2 operate) ∧© (CB1 and CB2 trip) → L fails
R2(c2 = AH) : (p1 and p4 operate) ∧© (CB1 and CB4 trip) → L fails
R5(c3 = AH) : (p1 and p6 operate) ∧© (CB1 and CB6 trip) → L fails
R3(c4 = AH) : (p3 and p2 operate) ∧© (CB3 and CB2 trip → L fails
R4(c5 = AH) : (p3 and p4 operate) ∧© (CB3 and CB4 trip) → L fails
R7(c6 = AH) : (p3 and p6 operate) ∧© (CB3 and CB6 trip) → L fails
R6(c7 = AH) : (p5 and p2 operate) ∧© (CB5 and CB2 trip) → L fails
R8(c8 = AH) : (p5 and p4 operate) ∧© (CB5 and CB4 trip) → L fails
R9(c9 = VH) : (p5 and p6 operate) ∧© (CB5 and CB6 trip) → L fails

The fault fuzzy production rule set for buses consist of two rules and the meaning
for each proposition is shown in Table5.3.

R1(c1 = AH) : (p1 operates) ∧© (all or partial CB1 trips) → B fails
R2(c2 = VH) : (p2 operates) ∧© (CB2 trips) → B fails

Table 5.2 Meaning of each proposition in rule set of L

Protections Protective devices CB Relationship

P1 Sending end main protections of L CB1 CBs related to P1

P2 Receiving end main protections of L CB2 CBs related to P2

P3 Sending end first backup protections of L CB3 CBs related to P3

P4 Receiving end first backup protections of L CB4 CBs related to P4

P5 Sending end second backup protections of L CB5 CBs related to P5

P6 Receiving end second backup protections of L CB6 CBs related to P6

Table 5.3 Meaning of each proposition in rule set of B

Protections Protective devices Circuit breaker Relationship

P1 Main protections of B CB1 CBs related to P1

P2 Backup protections of B CB2 CBs related to P2
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Table 5.4 Meaning of each proposition in rule set of T

Protections Protective devices Circuit breaker Relationship

P1 Main protections of T CB1 CBs related to P1

P2 First backup protections of T CB2 CBs related to P2

P3 Second backup protections of T CB3 CBs related to P3

The fault fuzzy production rule set for transformers consist of three rules. Table5.4
shows the meaning for each proposition.

R1(c1 = AH) : (p1 operates) ∧© (all or partial CB1 trips) → T fails
R2(c2 = AH) : (p2 operates) ∧© (all or partial CB2 trips) → T fails
R3(c3 = VH) : (p3 operates) ∧© (CB3 trips) → T fails

As usual, the data from the SCADA system may have operation failure, maloper-
ation and misinformation, so it is necessary to use a confidence level to describe the
operation accuracy of each section. Here, an empirical confidence level is assigned to
each protective device including the protective relay of each line, bus or transformer,
or each of its corresponding CBs. The confidence levels of the operated protective
devices and the non-operated protective devices are shown in Tables5.5 and 5.6,
respectively.

5.4.3.2 Fault Fuzzy Productions Rules Based on tFRSN P Systems

In what follows, fault fuzzy productions rules based on tFRSN P systems in [42] are
described.Fuzzy production rules aremodeled by using tFRSNP systems and further
they are used to model fault diagnosis in power transmission networks. Four types

Table 5.5 Confidence levels of the operated protective devices

Sections Protective devices

Main First backup Second backup

Relays CBs Relays CBs Relays CBs

L VH VH H H MH MH

B VH VH - - MH MH

T VH VH H H MH MH

Table 5.6 Confidence levels of the non-operated protective devices

Sections Protective devices

Main First backup Second backup

Relays CBs Relays CBs Relays CBs

L L L L L L L

B ML L - - ML L

T ML L ML L L L
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Fig. 5.28 Modeling process
of Type 1 using one tFRSN P
system
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of fuzzy production rules are considered. A tFRSN P system can be used to model
one or more fuzzy production rules. In the following description, Ri (i = 1, . . . ,Nr)

is the ith fuzzy production rule, Nr represents the number of fuzzy production rules,
ci is a trapezoidal fuzzy number in [0, 1] representing the confidence factor of Ri, pj
(1 ≤ j ≤ Np) is the jth proposition appearing in the antecedent or consequent part of
Ri, Np represents the number of propositions, and θj is a trapezoidal fuzzy number
in [0, 1] representing the fuzzy truth value of proposition pj.

Type 1: Ri(ci) : pj(θj) → pk(θk) (1 ≤ j, k ≤ Np). The modeling process of this
rule type by using one tFRSN P system is shown in Fig. 5.28, where (a), (b) and (c)
represent spike a being transmitted from input neuron σj to output neuron σk . The
fuzzy truth value of the proposition pk is θk = θj ⊗ ci.

Type 2: Ri(ci) : p1(θ1) ∧© · · · ∧© pk−1 (θk−1) → pk (θk). The process of this rule
type modeled by using one tFRSN P system is shown in Fig. 5.29, where (a), (b) and
(c) represent spike a being transmitted from input neurons σ1, . . ., σk−1 to output
neuron σk . The fuzzy truth value of the proposition pk is θk = (θ1 ∧© · · · ∧©θk−1) ⊗ci.

Type 3: Ri(ci) : p1(θ1) → p2(θ2) ∧© · · · ∧© pk (θk). The process of this rule type
modeled by using one tFRSN P system is shown in Fig. 5.30, where (a), (b) and
(c) represent spike a being transmitted from input neuron σ1 to output neurons σ2,
. . ., σk . The fuzzy truth values of the propositions p2, . . ., pk are identical, i.e.,
θ2 = · · · = θk = θ1 ⊗ ci.

Type 4: Ri(ci) : p1(θ1) ∨© · · · ∨© pk−1 (θk−1) → pk(θk). The process of this rule
type modeled by using one tFRSN P system is shown in Fig. 5.31, where (a), (b) and
(c) represent spike a being transmitted from input neurons σ1, . . ., σk−1 into output
neuron σk . The fuzzy truth value of the proposition pk is θk = (θ1 ∨©· · · ∨©θk−1) ⊗ ci.

It is worth pointing out that linguistic terms can be also used to describe the fuzzy
truth values of the propositions in the fuzzy production rules and the confidence
factor of each fuzzy production rule. The linguistic terms are represented by the
trapezoidal fuzzy numbers shown in Table5.7.
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Fig. 5.29 Modeling process
of Type 2 using one tFRSN P
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5.4.3.3 Algorithmic Elaboration of FDSNP

In this subsection, we elaborate the algorithm for implementing fault diagnosis
method based on tFRSN P systems (FDSNP for short) [42]. Figure5.32 shows the
FDSNP flowchart, where each step is described as follows:

Step 1: Read data. The operation messages about protective relays and/or CBs in
a power transmission network are read from the SCADA system.

Step 2: Search for outage areas. The network topology analysis is used to search
the outage areas. This method can decrease the number of candidate diagnosing areas
and reduce the subsequent computational workload [46]. The searching process is
as follows:

(1) The search iteration t = 1;
(2) Construct a set Qt of section numbers: a number to each section is assigned in

the power transmission network. The numbers of all sections constitute the set
Qt ;

(3) Construct a subset Mt of section numbers: the number of a randomly chosen
section from Qt is put into the subsetMt . If there is a closed CB connecting this
chosen section, all the closed CBs connecting it can be found. Otherwise, the
algorithm goes to Step 2 (6). Find all the other sections linking with each of the
closed CBs and put their numbers from Qt into Mt . Continue to find the closed
CBs and sections according to those in Mt ;

(4) t is increased by one;
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Fig. 5.30 Modeling process
of Type 3 using one tFRSN P
system p
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Fig. 5.31 Modeling process
of Type 4 using one tFRSN P
system p
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Table 5.7 Linguistic terms
and their corresponding
trapezoidal fuzzy numbers

Linguistic terms Trapezoidal fuzzy numbers

Absolutely-false (AF) (0, 0, 0, 0)

Very-low (VL) (0, 0, 0.02, 0.07)

Low (L) (0.04, 0.1, 0.18, 0.23)

Medium-low (ML) (0.17, 0.22, 0.36, 0.42)

Medium (M) (0.32, 0.41, 0.58, 0.65)

Medium-high (MH) (0.58, 0.63, 0.80, 0.86)

High (H) (0.72, 0.78, 0.92, 0.97)

Very-high (VH) (0.975, 0.98, 1, 1)

Absolutely-high (AH) (1, 1, 1, 1)

Fig. 5.32 The flowchart of
FDSNP

(5) Construct the set Qt : remove the numbers of the sections in Mt from Qt−1 and
obtain Qt . If Qt is not empty, the search process goes to Step 2 (3);

(6) Find passive networks, i.e., outage areas, from M1, . . . ,MNs , where Ns is the
maximumnumber of all numbers referring to section subsets. The search process
stops.

Step 3: If there exists only one section in the passive networks found in Step 2, this
section is the faulty one and the algorithm stops, otherwise, a fault diagnosis model
based on a tFRSN P system is built for each section. The model-building process
is described as follows. A section in the passive network is randomly chosen. Fault
fuzzy production rules are designed according to the relay protections of the section.
Proposition and rule neurons are decided and their linking relationship is created to
obtain the tFRSN P system. We set the confidence factor of each rule empirically.
The confidence levels for main protections, first backup protections, second backup
protections and their CBs can be assigned according to Tables5.5 and 5.6. Then,
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we construct a one-to-one relationship between the fuzzy truth value of each input
neuron and the confidence level of each protection to obtain the initial values of the
model.

Step 4: To obtain the fault confidence level of each section, the algebraic fuzzy
reasoning algorithm is used.

Step 5: If the confidence level θ of a section satisfies the condition θ ≥ (0.58, 0.63,
0.80, 0.86), the section is faulty. If θ satisfies the condition θ ≤ (0.17, 0.22, 0.36,
0.42), the section is not faulty. Otherwise, the section may be faulty.

5.4.3.4 Examples

To show the application of FDSNP, we use seven cases with single and multiple fault
situations of the local system in an EPS shown in Fig. 5.3 to conduct experiments
[42]. Table5.8 shows the status information (with/without incompleteness and uncer-
tainty) about protective relays and CBs. The symbol “*” in Table5.8 indicates that a
case includes incomplete or uncertain status information from the SCADA system.
We consider four diagnosis methods, fuzzy logic (FL) [3], fuzzy Petri nets (FPN)
[28], genetic algorithm-tabu search (GATS) [19] and genetic algorithm (GA) [43],
as benchmarks to draw comparisons. After we use FDSNP to diagnose faults in the
seven cases, the results including faulty sections and their fault confidence levels are
obtained and shown in Table5.9. Table5.10 shows the comparisons of five methods.
The symbol “–” means that the case was not considered in the corresponding refer-
ence. It is noting that only the information about CBs was used in FL [3] and GA
may have multiple solutions such as in Cases 5–7 [43].

Table5.9 indicates that the fault confidence levels represented by trapezoidal
fuzzy numbers can provide a quantitative description for the faulty sections, which
makes the results more reliable. In addition, the linguistic terms related to the trape-
zoidal fuzzy numbers are more intuitive and flexible for experts and dispatchers than

Table 5.8 Status information about protective relays and CBs

Cases Status information

Operated relays Tripped CBs

1 B1m,L2Rs,L4Rs CB4,CB5,CB7, CB9,CB12,CB27

2∗ L2Rs,L4Rs CB4,CB5,CB7, CB9,CB12,CB27

3 B1m,L1Sp,L1Rm CB4,CB5,CB6, CB7,CB9,CB11

4 B1m,L1Sm,L1Rp CB4,CB5,CB6, CB7,CB8

B2m,L2Sp,L2Rm CB9, CB10,CB11,CB12

5 T3p,L7Sp,L7Rp CB14,CB16,CB29,CB39

6 L1Sm,L1Rp,L2Sp,L2Rp CB7,CB8,CB11, CB12

L7Sp,L7Rm,L8Sm,L8Rm CB29,CB30, CB39,CB40

7∗ T7m,T8P,B7m, B8m,L5Sm CB19,CB20,CB29,CB30, CB32

L5Rp, L6Ss,L7Sp,L7Rm,L8Ss CB33,CB34,CB35, CB36,CB37,CB39
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Table 5.9 Fault sections and their fault confidence levels obtained by using FDSNP

Cases Diagnosis results of FDSNP

Fault sections Fault confidence levels

Trapezoidal fuzzy numbers Linguistic terms

1 B1 (0.975, 0.98, 1, 1) VH

2 B1 (0.5655, 0.6174, 0.80, 0.86) [M, MH]

3 B1 (0.975, 0.98, 1, 1) VH

L1 (0.9506, 0.9604, 1, 1) [H, VH]

4 B1 (0.975, 0.98, 1, 1) VH

B2 (0.975, 0.98, 1, 1) VH

L1 (0.9506, 0.9604, 1, 1) [H, VH]

L2 (0.9506, 0.9604, 1, 1) [H, VH]

5 T3 (0.72, 0.78, 0.92, 0.97) H

L7 (0.9506, 0.9604, 1, 1) [H, VH]

6 L1 (0.702, 0.7644, 0.92, 0.97) [H, VH]

L2 (0.702, 0.7644, 0.92, 0.97) [H, VH]

L7 (0.702, 0.7644, 0.92, 0.97) [H, VH]

L8 (0.9506, 0.9604, 1, 1) [H, VH]

7 L5 (0.702, 0.7644, 0.92, 0.97) [H, VH]

L7 (0.702, 0.7644, 0.92, 0.97) [H, VH]

B7 (0.975, 0.98, 1, 1) [H, VH]

B8 (0.975, 0.98, 1, 1) [H, VH]

T7 (0.975, 0.98, 1, 1) [H, VH]

T8 (0.72, 0.78, 0.92, 0.97) H

probability values because they often express their knowledge by using linguistic
terms with a certain degree of uncertainty.

Table5.10 shows that FDSNP, inCase 1 andCases 3–6, obtains the samediagnosis
results as the methods in [3, 28]. So FDSNP is feasible and effective for diagnosing
faults in a power transmission network. Furthermore, it is indicated in Table5.10
that FDSNP has an advantage over FL, FPN and GA with respect to diagnosis
correctness in some cases. To be specific, FDSNP obtains different results in Case 7
from those in [3, 28, 43]. Actually, for section L8 in this case, only its second backup
protective relay SL8Ss operated and SL8Ss operated as the second backup protective
relay of section B8, so L8 is not a faulty section; in addition, for section B7, its main
protective relay B7m operated and tripped its corresponding CBs, CB33,CB34 and
CB35, so B7 is a faulty section. Therefore, FDSNP and GATS are better than those
in [3, 28, 43] in Case 7. The comparisons of diagnosis results between FDSNP and
the methods in [43] in Cases 5–7 imply that FDSNP can solve the non-uniqueness
problem of the diagnosis solution. Moreover,Cases 2 and 7 indicate that FDSNP can
obtain satisfactory results to the casewith incomplete or uncertain alarm information.

To showmore details on how to use FDSNP to diagnose faults,Case 1 andCase 2
are used as examples to elaborate the diagnosis process.
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Table 5.10 Comparisons between FDSNP and four fault diagnosis methods

Cases Diagnosis results

FDSNP FL [3] FPN [28] GATS [19] GA [43]

1 B1 B1 B1 – B1

2 B1 – – – –

3 B1 B1 B1 B1

L1 L1 L1 – L1
4 B1 B1 B1 B1

B2 B2 B2 – B2

L1 L1 L1 L1
L2 L2 L2 L2

5 (1)T3,L7
T3 T3 T3 T3 (2)T3
L7 L7 L7 L7 (3)L7

(4)No

6 L1 L1 L1 L1 (1)L1,L2
L2 L2 L2 L2 L7,L8
L7 L7 L7 L7 (2)L1,L7
L8 L8 L8 L8 L8

7 L5 L5 L5 L5
L7 L7 L7 L7 (1)L5,L7
B7 B8 B7 B7 B7,B8

B8 T7 B8 B8 T7,T8
T7 T8 T7 T7 (2)L5,L7
T8 T8 T8 T7,B8

L8

Case 1: The SCADA system provides complete information. Operated relays:
B1m, L2Rs and L4Rs. Tripped CBs: CB4, CB5, CB7, CB9, CB12 and CB27.

The search process of outage areas is detailed as follows:

(1) Construct the set Q1 of section numbers: Q1 = {01, 02, 03, 04, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28}, where numbers 01 ∼ 04 denote four joint nodes considered as active nodes,
between the local power system in Fig. 5.3 and other parts of the power system.

(2) Construct the subset M1 of section numbers: add number 1 into M1 and find all
the closed CBs, i.e., CB1, CB2 and CB3, connecting the section 1. Find all the
other sections, i.e., 01, 13, and 14, linking with CB1, CB2 and CB3 and add them
into M1. No other closed CB is found according to the sections in M1. Thus,
M1 = {01, 1, 13, 14}.

(3) Construct the set Q2: remove the numbers of the sections in M1 from Q1 and
obtainQ2 = {02, 03, 04, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28}.
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(4) Construct the subset M2: add number 2 into M2 and execute Step 2 (3) in
Sect. 5.4.3.3. We get M2 = {2, 3, 16, 20}.

(5) Construct the set Q3: remove the numbers of the sections in M2 from Q2 and
obtain Q3 = {02, 03, 04, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 21, 22, 23,
24, 25, 26, 27, 28}.

(6) Construct the subset M3: add number 4 into M3 and execute Step 2 (3) in
Sect. 5.4.3.3.WegetM3 ={02, 03, 04, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19,
21, 22, 23, 24, 25, 26, 27, 28}.

(7) Construct the set Q4: remove the numbers of the sections in M3 from Q3 and
obtain Q4 = ∅.

(8) Find one passive networkM2 = {2, 3, 16, 20} inM1,M2,M3, where the numbers
2, 3, 16, 20 represent bus B1, bus B2, line L2 and line L4, respectively. The search
process stops.

To show how to use Steps 3–5 in Sect. 5.4.3.3, bus B1 is used as an example.
Figure5.33 shows the fault diagnosis model of B1 based on a tFRSN P system

Fig. 5.33 Fault diagnosis model of bus B1 based on a tFRSN P system
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constructed. The model consists of 35 proposition neurons and 19 rule neurons.
There are four assistant arcs (synapses), i.e., (3, 41), (3, 42), (4, 43) and (22, 52),
marked by hollow tips. The arc (3, 41) means that if CB6 opens, the operation of
L4Rs and CB27 is invalid and then the values of L4Rs and CB27 are set to (0, 0, 0, 0);
otherwise, the operation of L4Rs and CB27 is valid.

The fuzzy reasoning process is described as follows:
First of all, the trapezoidal fuzzy numbers θ0 and δ0 are obtained according to

the alarm information in Case 1 and Tables5.5, 5.6 and 5.7. Numbers θ and δ are
35-dimension and 19-dimension vectors, respectively.

θ0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0.975, 0.98, 1, 1)
(0.975, 0.98, 1, 1)

(0.04, 0.1, 0.18, 0.23)
(0.975, 0.98, 1, 1)
(0.975, 0.98, 1, 1)

(0.58, 0.63, 0.80, 0.86)
(0.58, 0.63, 0.80, 0.86)
(0.04, 0.1, 0.18, 0.23)
(0.04, 0.1, 0.18, 0.23)

(0.975, 0.98, 1, 1)
(0.58, 0.63, 0.80, 0.86)
(0.58, 0.63, 0.80, 0.86)
(0.17, 0.22, 0.36, 0.42)
(0.17, 0.22, 0.36, 0.42)
(0.17, 0.22, 0.36, 0.42)
(0.17, 0.22, 0.36, 0.42)

O

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, δ0 = [
O

]
.

When g = 1, the results are

δ1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0.975, 0.98, 1, 1)
(0.975, 0.98, 1, 1)

(0.04, 0.1, 0.18, 0.23)
(0.975, 0.98, 1, 1)
(0.975, 0.98, 1, 1)

(0.58, 0.63, 0.80, 0.86)
(0.58, 0.63, 0.80, 0.86)
(0.04, 0.1, 0.18, 0.23)
(0.04, 0.1, 0.18, 0.23)
(0.17, 0.22, 0.36, 0.42)
(0.17, 0.22, 0.36, 0.42)

O

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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θ1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O
(0.975, 0.98, 1, 1)i=17

(0.975, 0.98, 1, 1)
(0.04, 0.1, 0.18, 0.23)

(0.975, 0.98, 1, 1)
(0.975, 0.98, 1, 1)

(0.5655, 0.6174, 0.80, 0.86)
(0.5655, 0.6174, 0.80, 0.86)
(0.039, 0.098, 0.18, 0.23)
(0.039, 0.098, 0.18, 0.23)

(0.0156, 0.2156, 0.36, 0.42)
(0.0156, 0.2156, 0.36, 0.42)

O

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

When g = 2, the results are

δ2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O
(0.975, 0.98, 1, 1)j=12

(0.975, 0.98, 1, 1)
(0.975, 0.98, 1, 1)
(0.975, 0.98, 1, 1)

(0.5655, 0.6174, 0.80, 0.86)
(0.5655, 0.6174, 0.80, 0.86)

(0.975, 0.98, 1, 1)
(0, 0, 0, 0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

θ2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O
(0.975, 0.98, 1, 1)i=28

(0.975, 0.98, 1, 1)
(0.975, 0.98, 1, 1)
(0.975, 0.98, 1, 1)

(0.5514, 0.6051, 0.80, 0.86)
(0.5514, 0.6051, 0.80, 0.86)

(0.975, 0.98, 1, 1)
(0, 0, 0, 0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

When g = 3, the results are

δ3 =
[

O
(0.975, 0.98, 1, 1)

]
, θ3 =

[
O

(0.975, 0.98, 1, 1)

]
.

When g = 4, the results are

δ4 = [
O

]
.
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To date, the termination criterion is met and the reasoning process stops. So the
reasoning results, the fuzzy truth values (0.975, 0.98, 1, 1) from output neuron σ35,
are obtained. According to the condition in Step 5 in Sect. 5.4.3.3, it is obvious that
B1 is a faulty section with a confidence level AH.

The rest may be deduced by analogy. B2, line L2 and line L4 gain the same
confidence level (0.04, 0.1, 0.18, 0.23). According to the condition in Step 5 in
Sect. 5.4.3.3, B2, line L2 and line L4 are not faulty sections.

Case 2: The SCADA system provides incomplete information. Operated relays:
L2Rs and L4Rs. Tripped CBs: CB4, CB5, CB7, CB9, CB12 and CB27. It is noting that
the status information of B1m is missing.

Similar to the process of Case 1, we obtain one passive network {2, 3, 16, 20}.
The following description shows how to use Steps 3–5 in Sect. 5.4.3.3 by considering
bus B1 as an example.

According to the alarm information in Case 2 and Tables5.5, 5.6 and 5.7, we
obtain the trapezoidal fuzzy numbers θ0 and δ0.

θ0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0.975, 0.98, 1, 1)
(0.975, 0.98, 1, 1)

(0.04, 0.1, 0.18, 0.23)
(0.975, 0.98, 1, 1)
(0.975, 0.98, 1, 1)

(0.58, 0.63, 0.80, 0.86)
(0.58, 0.63, 0.80, 0.86)
(0.04, 0.1, 0.18, 0.23)
(0.04, 0.1, 0.18, 0.23)
(0.17, 0.22, 0.36, 0.42)
(0.58, 0.63, 0.80, 0.86)
(0.58, 0.63, 0.80, 0.86)
(0.17, 0.22, 0.36, 0.42)
(0.17, 0.22, 0.36, 0.42)
(0.17, 0.22, 0.36, 0.42)
(0.17, 0.22, 0.36, 0.42)

O

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, δ0 = [
O

]

Finally, the reasoning results of Case 2, the fuzzy truth values (0.5655, 0.6174,
0.80, 0.86) of the output neuron σ35, are obtained.

Thus, B1 may be a faulty section with a confidence level (0.5655, 0.6174, 0.80,
0.86), according to the condition in Step 5 in Sect. 5.4.3.3. The rest may be deduced
by analogy. B2, L2 and L4 obtain the same confidence level (0.04, 0.1, 0.18, 0.23). So
busB2, line L2 and line L4 are not faulty sections, in terms of the condition in Step 5 in
Sect. 5.4.3.3. So the final result is achieved, i.e., B1 is the faulty section with a confi-
dence level (0.5655, 0.6174, 0.80, 0.86) (M ≤ (0.5655, 0.6174, 0.80, 0.86) ≤ MH).
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5.5 Conclusions

The rFRSN P systems, WFRSN P systems and tFRSN P systems are collectively
called FRSN P systems in this chapter. The FRSN P systems are novel graphical
models for representing fuzzy knowledge and information. This chapter employs
them to deal with fault diagnose problems. The fault diagnosis ability of a method
is usually associated with the knowledge availability and the reasoning process. A
comparison between FRSNP systems and several fault diagnosis approaches, such as
expert systems (ESs), fuzzy set theory (FST), artificial neural networks (ANNs) and
fuzzy Petri nets (FPNs), regarding knowledge representation and inference process
can be referred to [9, 35, 41, 45].

This chapter shows the effectiveness and correctness of fault diagnosis with fuzzy
reasoning spiking neural P systems and the results of application examples are
obtained by manual computation. To test the speed, convergence and accuracy of
FRA, WMBRA and MBFRA, and to explore automatic generation of FRSN P sys-
tems in fault diagnosis, our future work will simulate them on software platforms,
MATLAB, P-Lingua or MeCoSim [25–27, 29–31]. Meanwhile, how to verify and
realize the parallelism of tFRSN P systems and MBFRA on hardware such as FPGA
and CUDA is also our further research task.

Moreover, valuable research interests refer to the extension of models, algorithms
and application areas. For models and algorithms, one promising direction is to
design new variants of SN P systems and their reasoning algorithms according to
requirements of different fault diagnosis problems, such as on-line diagnosis, fast
fault diagnosis, high-precision diagnosis. Another promising research avenue is to
proposeFRSNPsystemswith learning ability. For application areas, FRSNPsystems
can be used for more different systems, such as power supply systems for urban rail
transit, mechanical fault diagnosis and power systems with new energies.
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7. Chen, H., T.O. Ishdorj, Gh. Păun, and M.J. Pérez-Jiménez. 2006. Handling languages with
spiking neural P systems with extended rules. Romanian Journal of Information Science and
Technology 9 (3): 151–162.

8. Chen, S.M., J.S. Ke, and J.F. Chang. 1990. Knowledge representation using fuzzy Petri nets.
IEEE Transactions on Knowledge and Data Engineering 2 (3): 311–319.

9. Chen, W.H., S.H. Tsai, and H.I. Lin. 2011. Fault section estimation for power networks using
logic cause-effect models. IEEE Transactions on Power Delivery 26 (2): 963–971.

10. Chien, C.F., S.L. Chen, and Y.S. Lin. 2002. Using Bayesian network for fault location on
distribution feeder. IEEE Transactions on Power Delivery 17 (13): 785–793.

11. Davidson, E.M., S.D.J. McArthur, J.R. McDonald, and I. Watt. 2006. Applying multi-agent
system technology in practice: automated management and analysis of SCADA and digital
fault recorder data. IEEE Transactions on Power Systems 21 (2): 559–567.

12. Freund,R.,M. Ionescu, andM.Oswald. 2008. Extended spiking neural P systemswith decaying
spikes and/or total spiking. International Journal of Foundations of Computer Science 19 (5):
1223–1234.

13. Grzegorzewski, P., and E.Mrowka. 2005. Trapezoidal approximations of fuzzy numbers.Fuzzy
Sets and Systems 2005 (153): 115–135.

14. Guo, W.X., F.S. Wen, G. Ledwich, Z.W. Liao, X.Z. He, and J.H. Liang. 2010. An analytic
model for fault diagnosis in power systems considering malfunctions of protective relays and
circuit breakers. IEEE Transactions on Power Delivery 25 (3): 1393–1401.

15. He, Z.Y., H.D.Chiang, C.W.Li, andQ.F. Zeng. 2009. Fault-section estimation in power systems
based on improved optimizationmodel and binary particle swarm optimization. InProceedings
of IEEE Power and Energy Society General Meeting, 1–8.

16. Hossack, J.A., J. Menal, S.D.J. McArthur, and J.R.McDonald. 2003. Amultiagent architecture
for protection engineering diagnostic assistance. IEEE Transactions on Power Systems 18 (2):
639–647.
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Chapter 6
Robot Control with Membrane Systems

Abstract Numerical and Enzymatic Numerical P systems are used to designmobile
robot controllers and for implementing simulators running on webots platform.

6.1 Introduction

P systems were first investigated as a computational model offering the possibility
of solving NP-complete problems at a polynomial time, but much attention has also
been paid to their applications in recent years, especially to real-life applications, in
parallel with richly theoretical results. For instance, probabilistic membrane systems
were applied to model ecological systems [12]; spiking neural P systems were used
for fault diagnosis [34]; the hybrid methods of P systems and meta-heuristics have
been developed to solve broadcasting problems [44], image processing [43] and
constrained engineering optimization problems [40]. This chapter discusses another
promising real-life application of P systems, i.e., the use of Numerical P Systems
(NPS) to model the behaviors of autonomous robots.

Althoughmost of the P systems have been inspired by biological phenomena [27],
there are some variants of P systems that are based on other processes. For instance,
NPS model, introduced in [26], was inspired by processes and phenomena of the
economic reality and can also be represented as a tree-like structure. Compared to
the widely investigated classes of P systems [27], numerical P systems were also
proved to be Turing universal [32] and are suitable for designing robot controllers
[8] due to their flexible evolution rules and parallel distributed framework.

Differing from most of the variants of P systems [27], numerical P systems use
numerical variables to evolve inside the compartments bymeans of programs. A pro-
gram (or rule) is composed of a production function and a repartition protocol. The
variables have a given initial value and the production function is a multivariate poly-
nomial. The value of the production function for the current values of the variables
is distributed among variables in certain compartments according to a repartition
protocol. NPS were designed both as deterministic and non-deterministic systems
[26]. Non-deterministic NPS allow the existence of more rules inside a single mem-
brane and the best rule is selected by a special mechanism, while the deterministic

© Springer International Publishing AG 2017
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NPS can have only one rule inside each membrane. The robot controller requires a
deterministic mechanism and consequently is designed by using the deterministic
NPS. But there is a drawback that a large number of membranes are needed in the
design of NPS controllers, which usually affects the computing efficiency. Thus,
inspired by the behavior of biological systems with enzymatic reactions, an exten-
sion of NPS, called Enzymatic Numerical P Systems (ENPS), in which enzyme-like
variables allow the existence of more than one program (rule) in each membrane
while keeping the deterministic nature of the system, was proposed in [29, 30] for
robot controllers. ENPS are a kind of more powerful modeling tool for controlling
robot behaviors than classical NPS because there are more possibilities of selecting
and executing more rules inside each membrane in ENPS.

This chapter will discuss how (enzymatic) numerical P systems can be used to
design the mobile robot controllers for some behaviors [8, 29, 30, 33]. We also
present the simulator of (enzymatic) numerical P systems and its implementation on
webots platform. So we will first introduce NPS and ENPS in Sect. 6.2. In Sect. 6.3,
the preliminaries of mobile robot control are discussed. Section6.4 presents the
design principle ofmembrane controllers. The simulators forNPS, ENPS andWebots
(a software simulator for robots) are introduced in Sect. 6.5. Themembrane controller
design for several robotic behaviors is detailed in Sect. 6.6. Experiments and results
are shown in Sect. 6.7. Finally, we conclude this chapter by listing some future work
in Sect. 6.8.

6.2 Numerical P Systems

The focus of this section is on the introductions of numerical P systems (NPS, for
short) and enzymatic numerical P systems (ENPS, for short). We begin with the
basic concepts and principles of the simple numerical P systems, which only include
a single rule inside each membrane. Then, we introduce the extension of numerical
P systems, ENPS, which may include more than one production function inside each
membrane inspired by biologically enzyme reactions.

6.2.1 NPS

Inspired by economic and business processes, NPS model uses numerical variables
to fulfill its computation from initial values by means of programs [26]. An NPS
model of degree m (m ≥ 1) is formally expressed as a tuple

Π = (m,μ, (V ar1, Pr1, V ar1(0)), . . . , (V arm, Prm, V arm(0)), x j0,i0)



6.2 Numerical P Systems 215

where

(1) m is the number of membranes used in the system (the degree of Π );
(2) μ is a membrane structure (a rooted tree) consisting of m membranes, with the

membranes (and hence the regions or compartments: space between amembrane
and the immediately innermembranes in the case of non-elementarymembranes)
injectively labeled with 1, . . . , m;

(3) V ari (1 ≤ i ≤ m) is a finite set of variables x j,i from compartment i whose
values must be natural numbers (they can also be zero), the value of x j,i at time
t ∈ N is denoted by x j,i (t), and the initial values for the variables in compartment
i is denoted by the vector V ari (0) (if the initial value of variable x j,i is k, then
will denote it by x j,i [k], that is x j,i [k] means that x j,i (0) = k);

(4) Pri (1 ≤ i ≤ m) is a finite set of programs from compartment i . Programs
process variables and have two components: a production function and a repar-
tition protocol. The l-th program in Pri has the following form:

Prl,i = (Fl,i (x1,i , . . . , xkl ,i ), cl,1|v1, . . . , cl,nl |vnl ) (6.1)

which can be described as Fl,i (x1,i , . . . , xkl ,i ) → cl,1|v1, . . . , cl,nl |vnl , where

(i) Fl,i (x1,i , . . . , xkl ,i ) is the production function, being x1,i , . . . , xki ,i variables
in V ari (usually, only polynomials with integer coefficients are considered);

(ii) cl,1|v1, . . . , cl,nl |vnl is the repartition protocol associated with the program,
being cl,1, . . . , cl,nl natural numbers (the idea is that the coefficients spec-
ify the proportion of the current production distributed to each variable
v1, . . . , vnl in

⋃m
i=1 V ari );

(5) x j0,i0 is a distinguished variable (from a distinguished compartment i0) which
provides the result of a computation.

Next we describe how a program processes variables. Consider a program

(Fl,i (x1,i , . . . , xkl ,i ), cl,1|v1, . . . , cl,nl |vnl )

At a time instant t ≥ 0 we compute (Fl,i (x1,i (t), . . . , xkl ,i (t)). The value

ql,i (t) = Fl,i (x1,i (t), . . . , xki ,i (t))

cl,1 + · · · + cl,nl

represents the unary portion at instant t to be distributed according to the repartition
expression to variables v1, . . . , vnl . Then ql,i (t) · cl,s is the contribution added to the
current value from vs (1 ≤ s ≤ nl), at step t + 1.

A production function may use only part of the variables from a compartment (a
variable is productive if it appears in a production rule). The values of productive
variables are “consumed” (become zero) when the production function is used and
the other variables retain their values. To these values one adds all “contributions”
received from the neighboring compartments, according to the repartition protocols,
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forming the new values. Each program in each membrane can only be used once in
every computation step. All the programs are executed in a parallel manner.

6.2.2 An Example for NPS

We illustrate the previous definition with the numerical P systems Π1 of degree 2
given in Fig. 6.1:

Π1 = (2,μ, (V ar1, Pr1, V ar1(0)), (V ar2, Pr2, V ar2(0)), x j0,i0),

where

• the hierachical membrane structure μ consists of two membranes: the skin mem-
brane labeled by 1 and the inner membrane labeled by 2;

• V ar1 = {x1,1, x2,1}, V ar2 = {x1,2, x2,2}, V ar1(0) = (1, 2) and V ar2(0) = (3, 1);
• Pr1 = {Pr1,1} and Pr2 = {Pr1,2}, being

Pr1,1 = (F1,1(x1,1, x2,1), c1,1|v1 + c1,2|v2 + c1,3|v3)
= (4x1,1 + x2,1, 1|x1,1 + 1|x2,1 + 1|x2,2)

Pr1,2 = (F1,2(x1,2), c′
1,1|v′

1 + c′
1,2|v′

2 + c′
1,3|v′

3)

= (3x1,2 − 3, 1|x1,1 + 1|x1,2 + 1|x2,2)

that is,

Pr1,1 is the program 4x1,1 + x2,1 → 1|x1,1 + 1|x2,1 + 1|x2,2
Pr1,2 is the program 3x1,2 − 3 → 1|x1,1 + 1|x1,2 + 1|x2,2.

The production functions are:

(�) Associated with program Pr1,1 : F1,1 = 4x1,1 + x2,1;
(�) Associated with program Pr1,2 : F1,2 = 3x1,2 − 3.

The repartition protocols are:

(�) Associated with program Pr1,1 :
c1,1|v1 + c1,2|v2 + c1,3|v3 = 1|x1,1 + 1|x2,1 + 1|x2,2;

(�) Associated with program Pr1,2 :
c′
1,1|v′

1 + c′
1,2|v′

2 + c′
1,3|v′

3 = 1|x1,1 + 1|x1,2 + 1|x2,2.

Fig. 6.1 The numerical P
system Π1

M1
M2 

1,1 2,1[1] [2]x x

1,1 2,1 1,1 2,1 2,24 1| 1| 1|x x x x x

1,2 2,2[3] [1]x x

1,2 1,1 1,2 2,23 3 1| 1| 1|x x x x
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• x j0,i0 is, for instance, x1,1 (the first variable in compartment 1).

Next we summarize the composition of each membrane:

• Membrane labeled by 1 (the skin membrane):

– Variables: x1,1, x2,1. The initial values are x1,1(0) = 1, x2,1(0) = 2.
– Programs: only one program, Pr1,1.
– Production function from Pr1,1: F1,1 = 4x1,1 + x2,1.
– Repartition protocol from Pr1,1: 1|x1,1 + 1|x2,1 + 1|x2,2.

• Membrane labeled by 2 (the inner membrane):

– Variables: x2,1, x2,2. The initial values are x2,1(0) = 3, x2,2(0) = 1.
– Programs: only one program, Pr2,1.
– Production function from Pr1,2: F1,2 = 3x1,2 − 3.
– Repartition protocol from Pr1,2: 1|x1,1 + 1|x1,2 + 1|x2,2.

Next we describe how the system Π1 evolves from step t to step t + 1, for each
t ≥ 0:

• We compute the unary portions associated with each program Pr1,1 and Pr1,2 at
instant t :

– q1,1(t) = F1,1(x1,1(t),x2,1(t))
c1,1+c1,2+c1,3

= 4x1,1(t)+x2,1(t)
1+1+1 ;

– q1,2(t) = F1,2(x1,2(t))
c′
1,1+c′

1,2+c′
1,3

= 3x1,2(t)−3
1+1+1 .

• We distribute the corresponding portions to variables to the repartition protocols:

– Variable x1,1 appears in the production function F1,1 and the repartition protocols
of membrane 1 and membrane 2, hence

x1,1(t + 1) = 0 + c1,1 · q1,1(t) + c′
1,1 · q1,2(t).

– Variable x2,1 appears in the production function F1,1, but only in the repartition
protocol from membrane 1, so

x2,1(t + 1) = 0 + c1,2 · q1,1(t).

– Variable x1,2 appears in the production function F1,2, but only in the repartition
protocol of membrane 2, so

x1,2(t + 1) = 0 + c′
1,2 · q1,2(t).

– Variable x2,2 appears only in the repartition protocols of membrane 1 and mem-
brane 2, consequently

x2,2(t + 1) = x2,2(t) + c1,3 · q1,1(t) + c′
1,3 · q1,2(t).
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We illustrate the previous process in four computation steps:

Step 1.

• We compute the unary portions associated with each program Pr1,1 and Pr1,2 at
instant t = 0:

– q1,1(0) = 4x1,1(0)+x2,1(0)
c1,1+c1,2+c1,3

= 4·1+2
1+1+1 = 2;

– q1,2(0) = 3x1,2(0)−3
c′
1,1+c′

1,2+c′
1,3

= 3·3−3
1+1+1 = 2.

• We distribute the corresponding portions to variables to the repartition protocols
obtaining the new variables’ values for membranes 1 and 2:

– x1,1(1) = 0 + c1,1 · q1,1(0) + c′
1,1 · q1,2(0) = 0 + 1 · 2 + 1 · 2 = 4;

– x2,1(1) = 0 + c1,2 · q1,1(0) = 0 + 1 · 2 = 2;
– x1,2(1) = 0 + c′

1,2 · q1,2(0) = 0 + 1 · 2 = 2;
– x2,2(1) = x2,2(0) + c1,3 · q1,1(0) + c′

1,3 · q1,2(0) = 1 + 1 · 2 + 1 · 2 = 5.

Step 2.

• We compute the unary portions associated with each program Pr1,1 and Pr1,2 at
instant t = 1:

– q1,1(1) = 4x1,1(1)+x2,1(1)
c1,1+c1,2+c1,3

= 4·4+2
1+1+1 = 6;

– q1,2(1) = 3x1,2(1)−3
c′
1,1+c′

1,2+c′
1,3

= 3·2−3
1+1+1 = 1.

• We distribute the corresponding portions to variables of the repartition protocols
obtaining the new variables’ values for membranes 1 and 2:

– x1,1(2) = 0 + c1,1 · q1,1(1) + c′
1,1 · q1,2(1) = 0 + 1 · 6 + 1 · 1 = 7;

– x2,1(2) = 0 + c1,2 · q1,1(1) = 0 + 1 · 6 = 6;
– x1,2(2) = 0 + c′

1,2 · q1,2(1) = 0 + 1 · 1 = 1;
– x2,2(2) = x2,2(1) + c1,3 · q1,1(1) + c′

1,3 · q1,2(1) = 5 + 1 · 6 + 1 · 1 = 12.

Step 3.

• We compute the unary portions associated with each program Pr1,1 and Pr1,2 at
instant t = 1:

– q1,1(2) = 4x1,1(2)+x2,1(2)
c1,1+c1,2+c1,3

= 4·7+6
1+1+1 = 34

3 ;
– q1,2(2) = 3x1,2(2)−3

c′
1,1+c′

1,2+c′
1,3

= 3·1−3
1+1+1 = 0;

• We distribute the corresponding portions to variables of the repartition protocols
obtaining the new variables’ values for membranes 1 and 2:

– x1,1(3) = 0 + c1,1 · q1,1(2) + c′
1,1 · q1,2(2) = 0 + 1 · 34

3 + 1 · 0 = 34
3 ;

– x2,1(3) = 0 + c1,2 · q1,1(2) = 0 + 1 · 34
3 = 34

3 ;
– x1,2(3) = 0 + c′

1,2 · q1,2(2) = 0 + 1 · 0 = 0;
– x2,2(3) = x2,2(2) + c1,3 · q1,1(2) + c′

1,3 · q1,2(2) = 12 + 1 · 34
3 + 1 · 0 = 70

3 .
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Fig. 6.2 Evolution of variables during four computation steps of NPS

Step 4.

• We compute the unary portions associated with each program Pr1,1 and Pr1,2 at
instant t = 1:

– q1,1(3) = 4x1,1(3)+x2,1(3)
c1,1+c1,2+c1,3

= 4· 343 + 34
3

1+1+1 = 170
9 ;

– q1,2(3) = 3x1,2(3)−3
c′
1,1+c′

1,2+c′
1,3

= 3·0−3
1+1+1 = −1.

• We distribute the corresponding portions to variables of the repartition protocols
obtaining the new variables’ values for membranes 1 and 2:

– x1,1(4) = 0 + c1,1 · q1,1(3) + c′
1,1 · q1,2(3) = 0 + 1 · 170

9 + 1 · (−1) = 161
9 ;

– x2,1(4) = 0 + c1,2 · q1,1(3) = 0 + 1 · 170
9 = 160

9 ;
– x1,2(4) = 0 + c′

1,2 · q1,2(3) = 0 + 1 · (−1) = −1;
– x2,2(4) = x2,2(3) + c1,3 · q1,1(3) + c′

1,3 · q1,2(3) = 70
3 + 1 · 170

9 + 1 · (−1) = 371
9 .

The evolution of the variables during the four computation steps can be presented in
a graphical way, as shown in Fig. 6.2.

6.2.3 ENPS

Deterministic numerical P systems have only one production function inside each
membrane. Even if there are multiple production functions inside each membrane,
only one is still selected in a random/non-deterministic way. To make NPS model
suitable for more complex applications and improve the computational efficiency,
Pavel et al. [28] proposed an extended version of NPS, called enzymatic numerical
P systems model and its computational power was shown by Vasile et al. in [32].
In an ENPS model, an enzyme is a protein, which catalyzes reactions occurring in
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biological systems. The ENPS model uses enzyme-like variables, which will not be
consumed in the corresponding reaction (production function). The model works
under the following assumptions:

(1) To apply a production function, the amounts involved need to be totally con-
sumed in a given time step, thus the corresponding enzyme must exist in enough
amounts.

(2) An enzyme can be involved in more than one production function. Enzymes
generally show specificity for their substrates, but there exist exceptions inwhich
enzymes have more than one catalytic function.

(3) All the available production functions are chosen and executed in parallel. The
amounts of the same product that are obtained in the current membrane, as well
as in the parent or child membrane(s) are added up.

The enzyme-like variables used in ENPS are similar to the catalyst objects used
by other classes of P systems [25]. Catalysts are objects that are needed for the
reaction to take place, but are not modified in it. Although enzyme-like variables
behave similarly to catalysts (they are needed in the reaction, but are not consumed
in it), there are two differences: on the one hand, an enzyme can be produced or
consumed in other reactions, except for the ones that are catalyzed by it, just like non-
enzymatic variables; on the other hand, the amount of the enzyme is also important
in establishing if a rule is active. Like biological enzymes, a number of enzyme
molecules can catalyze only a certain amount of a specific substrate (compound).

An ENPS model of degree m (m ≥ 1) is formally expressed as a tuple

Π = (m,μ, (V ar1, Pr1, V ar1(0)), . . . , (V arm, Prm, V arm(0)), x j0,i0) (6.2)

where

(1) m is the number of membranes used in the system (the degree of Π );
(2) μ is a membrane structure (a rooted tree) consisting of m membranes, with the

membranes (and hence the regions or compartments: space between amembrane
and the immediately innermembranes in the case of non-elementarymembranes)
injectively labeled by 1, . . . , m;

(3) V ari (1 ≤ i ≤ m) is a finite set of variables x j,i from compartment i whose
values must be natural numbers (they can also be zero), the value of x j,i at time
t ∈ N is denoted by x j,i (t), and the initial values for the variables in compartment
i are denoted by the vector V ari (0) (if the initial value of variable x j,i is k, then
will denote it by x j,i [k], that is x j,i [k] means that x j,i (0) = k);

(4) Ei (1 ≤ i ≤ m) is a finite set of enzyme variables from compartment i , that is,
Ei ⊆ V ari ;

(5) Pri (1 ≤ i ≤ m) is a finite set of programs from compartment i . Programs
process variables and have two components: a production function and a repar-
tition protocol. The l-th program in Pri has one of the following forms:
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(a) Non-enzymatic form, which is exactly like the form in NPS:

Prl,i = (Fl,i (x1,i , . . . , xkl ,i ), cl,1|v1, . . . , cl,nl |vnl ) (6.3)

which can be described as Fl,i (x1,i , . . . , xkl ,i ) → cl,1|v1, . . . , cl,nl |vnl , where
• Fl,i (x1,i , . . . , xkl ,i ) is the production function and x1,i , . . . , xkl ,i variables
in V ari (usually, only polynomials with integer coefficients are consid-
ered);

• cl,1|v1, . . . , cl,nl |vnl is the repartition protocol associatedwith the program
and cl,1, . . . , cl,nl natural numbers (the idea is that the coefficients spec-
ify the proportion of the current production distributed to each variable
v1, . . . , vnl in

⋃m
i=1 V ari );

(b) Enzymatic form:

Prl,i = (Fl,i (x1,i , . . . , xkl ,i ), e j,i , cl,1|v1, . . . , cl,nl |vnl ) (6.4)

which can be described as Fl,i (x1,i , . . . , xkl ,i )(e j,i →)cl,1|v1, . . . , cl,nl |vnl ,
where
• Fl,i (x1,i , . . . , xkl ,i ) is the production function and x1,i , . . . , xkl ,i variables
in V ari (usually, only polynomials with integer coefficients are consid-
ered);

• cl,1|v1, . . . , cl,nl |vnl is the repartition protocol associatedwith the program
and cl,1, . . . , cl,ni natural numbers (the idea is that the coefficients spec-
ify the proportion of the current production distributed to each variable
v1, . . . , vnl in

⋃m
i=1 V ari );

• e j,i ∈ Ei .

The computing process for an ENPS is shown in Fig. 6.3 [28]. The process is
divided into four main steps:

– selection of the active rules in each membrane;
– combination of the active production functions (optional);
– computation of the active production functions within all membranes;
– distribution of the computed results to the variables of the membranes.

Fig. 6.3 Computing process of ENPS [28]
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1,1 2 ,1 3,1 1,1 2 ,1[2], [4], [1], [5], [3]x x x e e

1,1 1,1 2,1 1,1 2,1 3,1 1,2:2 ( )1| 1| 1|Pr x x e x x x

2,1 2,1 3,1 2,1 2,1 2,3: 3 ( )1| 2 |Pr x x e x x

M2 1,2 2,2 3,2 1,2[4], [2], [1], [5]x x x e

2,2 1,2 2,2 3,2 2,1 2,2: 2 3 1| 2 |Pr x x x x x

M3 1,3 2,3 1,3[5], [4],e [1]x x

1,3 1,3 2,3 1,3 1,3 2,1: 2 3 ( )2 | 1|Pr x x e x x

1,2 1,2 2,2 1,2 1,2 3,1: 2 4 ( )1| 3|Pr x x e x x

Fig. 6.4 ENPS with three membranes

To illustrate the ENPS computing process in detail, a simple ENPS with three
membranes will be presented. Before the description, it is worth pointing out that the
enzymatic mechanism is inspired by biological processes, but P systems themselves
do not aim at modeling chemical reactions and they are usually studied for their com-
putational power. So, the enzymatic mechanism will not constrain the computational
model by considering all the real biological facts.

Let us consider onemembraneMwith the following variables: twomolecule vari-
ables x11, x21 whose initial values are 2 and 4, respectively; one enzymatic variable
e11 whose initial value is 5, and one production function 2x11 + x21(e11 →). This
production function represents a biochemical reaction taking place in a cell: two
molecule variables x11(2) will react with one molecule x21 catalyzed by one enzy-
matic variable e11. Assuming that enough enzymatic molecule are available, then
the biochemical reactions can be executed. The initial values of the variables are the
basis of the initial concentration of molecules. So the rule can be applied only if the
concentration of the enzyme molecules is greater than the minimum between the
concentrations of the reactants. In this example, e11 > min(x11/2, x21) is considered
as the condition. The simplified and more general condition is e11 > min(x11, x21).
So considering the initial amounts of the reactants and the enzyme in this case:
5 > min(2, 4), this rule is active.

If more than one production function is active in a membrane, all of them should
be combined in some way. A simple way to apply the selected production functions
is to compute them in parallel. In the following example, all the active production
functions are computed in parallel. It is worth noting that those production functions
without the corresponding enzymes are considered to be active and are applied.

Figure6.4 shows an enzymatic numerical P system, where there are three mem-
branes (M2 and M3 are included in M1). The computing processwithin allmembranes
is performed in parallel. The process has four main steps:

(1) The selection of the active rules in each membrane, the rules Pr j,i , is based on
the availability of enough enzyme molecules

– M1:
– if Pr1,1 : e1,1 > min(x1,1/2, x2,1) = T RU E ⇒ active production function;
– if Pr2,1 : e2,1 > min(x2,1, x3,1/3) = T RU E ⇒ active production function;
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– M2:
– if Pr1,2 : e1,2 > min(x1,2/2, x2,2/4) = T RU E ⇒ active production function;
– Pr2,2 : has no enzyme ⇒ active production function;
– M3:
– if Pr1,3 : e1,3 > min(x1,3/2, x2,3/3) = F AL SE ⇒ inactive production function.

(2) The combination of the active production functions is based on the fact that all
the rules which are active will be applied independently and in parallel

(3) The computation of the active production functions within all membranes is
given by

– M1:
– Pr1,1 : 2x1,1 + x2,1 = 2 · 2 + 4 = 8;
– Pr2,1 : x2,1 + 3x3,1 = 4 + 3 · 1 = 7;
– M2:
– Pr1,2 : 2x1,2 + 4x2,2 = 2 · 4 + 4 · 2 = 16;
– Pr2,2 : 2x1,2 + 3x2,2 + x3,2 = 2 · 4 + 3 · 2 + 1 = 15;
– M3:
– no rule is computed.

(4) The distribution of the computed results to the membranes’ variables based on
the distribution protocol is as follows

– q1,1 = 2x1,1+x2,1
c1,1+c2,1+c3,1

= 2·2+4
1+1+1 = 8

3 ;

– q2,1 = x2,1+3x3,1
c′

1,1+c′
2,1

= 4+3·1
1+2 = 7

3 ;

– q1,2 = 2x1,2+4x2,2
c1,2+c2,2

= 2·4+4·2
1+3 = 16

4 = 4;

– q2,2 = 2x1,2+3x2,2+x3,2
c′

1,2+c′
2,2

= 2·4+3·2+1
1+2 = 15

3 = 5.

We distribute the corresponding portions to variables of the repartition protocols
obtaining the new variables’ values for membranes, i.e., the amounts of the same
variable which are produced in the native membrane, or in the parent membrane
or in a child membrane are added:

– x2,1 = c1,1 · q1,1 + c′
1,1 · q2,1 + c′

1,2 · q2,2 = 1 · 8
3 + 1 · 7

3 + 1 · 5 = 10;

– x3,1 = c2,1 · q1,1 + c2,2 · q1,2 = 1 · 8
3 + 3 · 4 = 44

3 ;

– x1,2 = c3,1 · q1,1 + c1,2 · q1,2 = 1 · 8
3 + 1 · 4 = 20

3 ;

– x2,2 = c′
2,2 · q2,2 = 2 · 5 = 10;

– x2,3 = c′
2,1 · q2,1 = 2 · 7

3 = 14
3 .
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ENPS is a distributed and parallel computing model with flexible process con-
trol: enzyme variables can be used for conditional transmembrane transport and the
program flow control; active rules are computed in parallel in their membrane and
unnecessary rules are not executed; the calculated results are distributed in a globally
uniform way; thus the computing power of ENPS is optimized and the membrane
structure representation is very efficient for designing robotic behaviors.

6.3 Preliminaries of Mobile Robot Control

Amobile robot is an automatic machine that is capable of moving around in its envi-
ronment and is not fixed to one physical location. It has sensors allowing it to perceive
the environment, and has actuators allowing them to modify its environment, and
also has a micro-processor allowing them to process the sensory information and
control its actuators accordingly. So, mobile robots can be “autonomous” (usually
called autonomous mobile robot (AMR)), which means they are capable of navi-
gating an uncontrolled environment without the direct guidance from physical or
electro-mechanical guidance devices. Alternatively, mobile robots can rely on guid-
ing devices that allow them to travel a pre-defined navigation route in relatively
controlled space (also called autonomous guided vehicle (AGV)). Mobile robots
have become more commonplace in commercial, military, security, industrial set-
tings, etc. The mobile robot is also a major focus of the current research and almost
every major university has one or more labs that focus on mobile robot research [24].

To adapt the environment and to complete the task, from the mechanical and elec-
tronic points of view, robots ought to act as artificial animals. They are equipped
with many sensors (distance sensors, cameras, touch sensors, position sensors, tem-
perature sensors, battery level sensors, accelerometers, microphones, wireless com-
munication, etc.) and actuators (motors, speakers, LEDs, etc.). According to today’s
technology, the hardware technology for intelligent robots is currently abundant and
available, however, it is still necessary to develop a better software technology (con-
trol algorithm) to drive the robots to act as intelligent ones. In other words, we
currently have the bodies of our intelligent robots, but we lack their minds. Robotics
research trends will not focus on robot hardware, but on robot softwares because this
is the most challenging topic in the design of more and more intelligent robots.

There are many types of mobile robots for different tasks, such as insect robots,
humanoid robots, unmanned aerial vehicles (UAV), underwater robots and wheeled
robots. The wheeled robots can also be classified into two-wheel, four-wheel and
multi-wheel robots. Accordingly, the design of robot softwares (controller design)
must aim at the special robots, further the special controller design for special robots
with special sensors and actuators. This chaptermainlydiscusses the controller design
of a commonly useful wheeled robot, especially the mini wheel mobile robot (e-puck
and khepera) [16, 23].

In order to understand how to design an e-puck controller, first we need to know its
physical characteristics. E-puck was designed by Francesco Mondada and Michael
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(a) Type 1 (b) Type 2

Fig. 6.5 Sensors and actuators of e-puck robots [8, 13, 16, 23]

Table 6.1 Features of the e-puck robot [8, 13, 16, 23]

Features Technical information

Size, weight 70mm diameter, 55mm height, 150g

Battery autonomy 5Wh LiION rechargeable and removable battery providing about 3h
autonomy

Processor dsPIC 30F6014A @ 60Mhz (15 MIPS) 16 bit microcontroller with DSP
core

Memory RAM: 8KB; FLASH: 144KB

Motors speed 2 stepper motors with a 50:1 reduction gear, resolution: 0.13mm, Max:
15cm/s

IR sensors 8 infra-red sensors measuring ambient light and proximity of objects up to
6cm

Camera VGA color camera with resolution 480x640 (typical use: 52x39 or 480x1)

Microphones 3 omni-directional microphones for sound localization

Accelerometer 3D accelerometer along the X, Y and Z axis

LEDs 8 independent red LEDs on the ring, green LEDs in the body, 1 strong red
LED in front

PC connection Standard serial port up to 115kbps

Wireless Bluetooth for robot-computer and robot-robot wireless communication

Remote control Infra-red receiver for standard remote control commands

Expansion bus Large expansion bus designed to add new capabilities

Simulation Webots facilitates the use of the e-puck robot: powerful simulation,
remote control, graphical and C programming systems

Bonani in 2006 at EPFL, the Swiss Federal Institute of Technology in Lausanne.
It has become a tool for research and university education. The e-puck robot is
powered by a dsPIC (Digital Signal Programmable Integrated Circuit) processor.
This is a micro-controller processor produced by the Microchip company and is able
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Fig. 6.6 The robot controller receives sensor values (ex: IR sensor, camera, etc.) and sends actuator
commands (motors, LEDs, etc.)

to efficiently perform digital signal processing and works like the robot’s brain. The
e-puck robot also features a large number of sensors and actuators as depicted in
Fig. 6.5 and devices as described by Table6.1 [8, 13, 16, 23]. The electronic layout
is described in [17]. Some of the sensors and actuators will be discussed in detail
later in this chapter when the design of some controllers will be described.

A robot micro-controller processor perceives and handles only the values mea-
sured by the robot sensors and sends commands to the robot actuators as depicted in
Fig. 6.6. This model is also known as the Observe-Decide-Act loop (ODA), which is
also used to represent self-adaptive computing systems [19]. The sensor values are
modified by the environment and processed by some behavior controllers in proces-
sors. A robot can adapt to the environment with its actuators for avoiding motion
or stationary obstacles, tracking some motion targets or recording its own motion
trajectories.

6.4 Membrane Controllers

The architecture of robot controllers usually uses a cognitive architecture, which is a
domain-generic cognitivemodel exhibiting awide rangeof cognitive abilities, such as
high level cognitive architectures (logical reasoning, organization, learning) and low
level cognitive architectures (perception, action, etc.) [5, 15]. Cognitive modeling is
the process of developing computational models of cognitive processes with the aim
of understanding human cognition. In the community of designing robots controller,
there is a long-term tendency to mimic the organization and functional complexity
of the human brain. The cognitive architectures of intelligent robots are designed by
using various bio-inspired computingmethods, such as neural networks, evolutionary
computation, swarm intelligence, fuzzy logics and expert knowledge [1, 10, 35, 41].

Membrane controllers are a sort of controllers with cognitive architectures and
designed by using the syntax (such as the membrane structure, initial multisets and
evolution rules) and semantics of membrane systems. Here we use Numerical P
Systems (NPS) and Enzymatic Numerical P Systems (ENPS) to devise membrane
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controllers to control wheeled mobile robots, to be specific, to solve the mobile
robot environmental adaptability problems, such as obstacle avoidance, follower,
wall following and localization. The use ofNPSorENPS in themembrane controllers
is based on the following considerations: the values of the variables received from
various sensors are real-valued numbers and the computation is performed on real-
valued variables, instead of symbols like in usual P systems.

The algorithm design for robot controllers is fundamentally different from the
algorithm design for solving the problems with well-defined and completely known
data. The robot world is only partially known and imperfectly modeled, so we usu-
ally use a world model to approximate the movement law of a robot. Thus, the robot
controllers have to be designed to overcome uncertainty, errors in modeling and
measurement, and noise. In [5, 7], Buiu et al. started to discuss the possibility of
directly using NPS as a new computational paradigm and cognitive architecture for
implementing such robot controllers. In [8], Buiu et al. presented several examples
of robot behavior controller design with NPS for obstacle avoidance, wall follow-
ing, following another robot, and used two differential robot E-puck to verify the
feasibility of membrane controllers. The controller performance was measured by
the mean execution time of a cycle. The cycle represents the computation of a loop
in which the robotic system reads the information from the sensors, computes the
speeds of the motors based on the information received from the sensors, and sets
the new values of the motors’ speeds.

The generic structure of membrane controllers is summarized as shown in
Algorithm 1 [5, 7, 8], where there are four main steps. The first step is the ini-
tialization phase of the robot parameters with respect to the specific robot and to the
selected behavior. The second step reads the sensors. At the third step, the NPS cor-
responding to the current membrane computing process is executed (this is done as
an http request). The last step is the setting of the motors’ speeds. Then the execution
of the controller goes back to the second step.

Algorithm 1 Generic structure of membrane controllers
Require: parameters = initializeBehaviourParameters(robot, behavior)

While (True)
sensors = readSensors(robot)
# simulate Numerical P System on the network server
query = constructQuery(robot, behaviour, sensors, parameters)
response = queryWebApp(address, query)
speed = extractContent(response)
setSpeed(robot, speed)

End While

Suppose that u and y are the inputs and outputs of a membrane controller and r
is the predefined setpoints. Then, a standard membrane controller (MeC) is defined
[8] as a tuple:

MeC = (m,μ, (V ar1, Pr1, V ar1(0)), . . . , (V arm, Prm, V arm(0)), y, u) (6.5)



228 6 Robot Control with Membrane Systems

where

• m (m ≥ 1) is the number of membranes used in the system (the degree of MeC);
• μ is a membrane structure;
• V ari is a set of variables from compartment i , and the initial values for these
variables are denoted by vector V ari (0);

• Pri is a set of programs from compartment i , which are composed of a polynomial
production function and a repartition protocol, and chosen such that the process
outputs y match the predefined setpoints r as “good” as possible;

• u is a set of input variables of the MeC (from a subset of compartments);
• y is a set of output variables (from a subset of compartments), which provide the
result of the computation.

The membrane controller can be understood as a hierarchical cognitive architec-
ture [8]. It may receive higher level commands from the upper levels, which are also
membranes (using the communication rules coming from the membrane systems).
By using the membrane-based structure, the membrane controller can be easily inter-
faced with the other modules and integrated into the global cognitive architecture.
This is one of the main advantages of the use of numerical P systems as building
blocks for cognitive/control architectures. On the other hand, the membrane con-
troller inherits numerical variables and parallel distributed structure of numerical P
systems as a controller modeling tool. Membranes in an NPS can be distributed over
a grid or over a network of micro controllers in a robot. The computation in each
membrane region (the execution of the membranes programs) can also be performed
in parallel.

To further improve the design and operation efficiency of themembrane controller,
the research team at Politehnica University of Bucharest proposed an extension of
the NPS model, Enzymatic Numerical P Systems (ENPS) in the context of model-
ing robot behaviors. The ENPS model allows the parallel execution of more rules
(programs) inside each membrane while keeping the determinism (the design and
implementation of robot controllers require deterministic computational models).
The possibility of selecting and executing more production functions inside each
membrane makes ENPS be amore flexible modeling tool than NPS. The ENPS robot
controller in [29, 30] has a less complex structure than the NPS robot controller in
[8], and therefore needs less step computations and has better performance.

Due to the parallelism and distributed structure of membrane computing mod-
els and the experimental verification by using a single task membrane controller in
[8, 29, 30], the membrane controller has a great potential in the area of controller
design for robot applications. Taking advantage of the scalability, modularity, various
types of flexible structures and multiple communication rules between membranes,
we can combine membrane computing models with various advanced control algo-
rithms to obtainmore complex and efficient robotmembrane controller. Furthermore,
if a variety of membrane computing models are combined with the methodology
of artificial intelligence, swarm intelligence or evolutionary computation, we may
develop multiple behavioral collaborative work membrane controller for an intel-
ligent robot. For example, we have developed a mobile robot trajectory tracking
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controller with a good balance between efficiency and effectiveness by combining
the efficiency and flexible ENPS with the classic proportional-integral-derivative
(PID) control algorithms and neural networks [33].

6.5 Software Platforms

This section introduces the software platforms for conducting virtual experiments
on the use of membrane controllers associated with mobile robots. The software
platform consists of the simulator of NPS/ENPS and the robot simulator. The for-
mer is the simulator for numerical P systems (SNUPS) and enzymatic numerical
P systems (SimP, for short) and the latter uses Webots, a specialized simulator for
mobile robots. SNUPS was developed by the research team at the University of
Politehnica [2, 6]. SimP is a parallelized GPU-based simulator for ENPS and was
jointly developed by the Research Group on Natural Computing at the University of
Seville and the research team at the Politehnica University of Bucharest [18].Webots
is a professional simulation software for mobile robots [14].

A schematic framework for testing membrane controllers on real and simulated
robots is shown in Fig. 6.7 [31], where XML files, an NPS/ENPS simulator and
Webots are integrated into this framework. The XML files store robot behaviors in a
platform-independent way. The NPS/ENPS simulator simulates the computation of
NPS/ENPS. The Webots provide a virtual robot platform and realize the connection
between the simulated and real robots.

In what follows, we will separately describe SNUPS and Webots simulators in
detail.

Fig. 6.7 Schematic framework for testing membrane controllers of robots [31]
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6.5.1 SNUPS: Numerical P System Simulator

SNUPS, a simulator for numerical P systems, was developed on the standard Java
platform [2, 6]. So, it can work on multiple operating systems, such as Linux, UNIX,
MAC OS, or Microsoft, equipped with a Java Virtual Machine (JDK 1.6.0 or later).
SNUPS has a friendly interface environment. In SNUPS, the rules in different mem-
branes can be performed in a parallel way by using multi-threading software devel-
opment technology so that they can save resources and minimize computing time.
In [18], the research team at the University of Politehnica and the Research Group
on Natural Computing have also launched a hardware platform based on GPU for
SNUPS/ENPS.

The software can be downloaded from the web site [36]. The online resources
include the SNUPSmanual and routines. SNUPS is distributed as a Java archive with
two mandatory libraries (xml.jar and xmlparserv2.jar) for XML operations. There
are two applications: a batch application, where it is supposed that the membranes
have already been encoded as an XML file and the aim is to get the results by
simulating the system, and a graphical user interface (GUI) application, where a new
membrane system, which includes the membrane structure, symbols, evolution rules
and contribution table, is created from scratch by using visual components and is
saved as an XML file.

Here we first explain the concepts of basic elements in SNUPS in the form of
classes. The basic concepts of a membrane system wrapped into corresponding
classes are shown in Fig. 6.8 [2]. In the following description, we introduce sev-
eral main classes, Membrane, Region, Symbol, Contribution and Rule, step by step.

The Membrane class is used to formalize the membranes of the NPS. This class
has two components: region and membranes (sub membranes). The instantiation
of the Membrane class (membrane object) has the following attributes: a name, a

Fig. 6.8 Class diagram in SNUPS [2]
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membrane-object children list and one region-object. A membrane can have 0 or at
least 1 membrane child.

The Region class is applied to formalize the membrane’s region and represents the
container for rules and symbols. The instantiation of the region class (region object)
has the following attributes: a name, a rule object list and a symbol object list.

The Symbol class is employed to formalize the membrane’s symbol class. The
instantiation of the symbol class (symbol object) has the following attributes: con-
tribution list symbol, rule’s symbol and region’s symbol. The contribution list and
rule concepts are explained in the following paragraphs. Each symbol object has
the following attributes: a name, an initial value (floating numbers), a current value
(floating numbers) and an available boolean value. The initial value of the symbol
is used for starting computation and depends on the output of the rule and the cor-
responding contribution list to change the current value of symbols after each rule’s
computing has finished. If the rules computing restarts and all the current values will
be reset, the initial values will be preserved. As mentioned in the last section, each
rule’s computing step is based on some production functions. The computing output
will be distributed among the symbols which belong to the other region or current
regions.

The Contribution class is used to formalize the membrane’s contribution class.
The instantiation of the contribution class (contribution object) has the following
attributes: a distribution coefficient (contribution value) and a symbol object. The
distribution coefficient attribute holds the numerical value from the contributions
table region.

The Rule class is for formalizing the membrane’s rule class. The instantiation of
the rule class (rule object) has the following attributes: a contribution-object list and
a production function. The contribution object list can be reset: add new symbols,
remove symbols, or change symbols (name and/or values).

SNUPS GUI has three main panels: membranes tree, symbols assignment and
rules definitions. We take the example shown in Fig. 6.9 to describe how to build a
membrane system like this case with SNUPS in detail.

The GUI of this membrane system is shown in Fig. 6.10. The left hand side
panel shows the membrane structures (e.g., M1 is the skin membrane), shown in
Fig. 6.10a. It can be noticed that the membrane tree structure in the panel containing
the regions (e.g., R-2 is the region defined by the second membrane), symbols, rules
and contribution tables belong to this membrane system (e.g., x12[3], x22[1] and
x32[0] are the symbols; (x2

12 − x22 − 3x32) is the evolution rule; x22, x32, x23 are the
contribution table symbols, the variables that receive part of the production function
through the coefficients of the current repartition protocol). The symbols allocation
panel is shown on the right hand side in Fig. 6.10a, where the symbols of the current
membrane are in thewhite rows,while the symbols belonging to the othermembranes
are in the gray rows.We can set new symbols and initial values under the same panel.

It is necessary to define the evolution rule and the contribution table for eachmem-
brane after symbols have been allocated. The variables of the production function
(mathematical function) are the symbols allocated to the corresponding membrane.
Figure6.10b shows an evolution rule like 2x2

11 + 7 allocated to the first membrane,
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M1

M2

Variables object 1,1[1]x

Production function 2
1,12 7x

Contribution list 1,1 1,2[1], [1]x x

Variables object 1,2 2,2 3,2[3], [1], [0]x x x

Contribution list 2,2 3,2 2,3[1], [1], [1]x x x
Production function 2

1,2 2,2 3,23x x x

M3

Variables object 1,3 2,3[2], [1]x x

Production function 1,3 2,32 4 4x x

Contribution list 2,2 3,2 2,3[1], [1], [1]x x x

M4

Variables object 1,4 2,4 3,4[2], [2], [2]x x x

Production function 1,4 2,4 3,4x x x

Contribution list 1,4 2,4 3,4[1], [2], [1]x x x

Fig. 6.9 A sample membrane structure with four membranes

which is edited in the rule editor placed on the bottom right corner panel, and this
rule must be validated before assigning it to the membrane system. The validation of
each rule consists of the following verifications: (1) if the symbols of the rule belong
to the current membrane; (2) if the syntax of the mathematical function is correct.
The symbols are added in the contribution table. The rule editor panel from rules tab
on the bottom left corner of rules panel allows editing the function of the rule and its
syntax validation. The following math operations are allowed in the rule editor:

• addition: +;
• multiplication: ∗;
• subtraction: −;
• division: /;
• powers: ∧;

More details are now described according to [6]. The evolution rules inside each
membrane are considered as threads depicting one computing cycle to be performed
in a parallel way. The entire P system will terminate after a predefined number of
cycles. The values of symbols are updated after each computing cycle by using the
sum of the contributions received from the membranes. The updating process of
symbols is synchronous, where a barrier point is set so that each thread waits for
the arrival of all other threads. Therefore, all the codes are ensured for each thread
before the barrier has been completed across all other threads. Finally, a file is used
to store the computing results (in the current cycle number and all symbols values).
In this file, a comma is applied to separate values to be easily accessed, understood,
and further used.
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(a) Symbols panel

(b) Rules panel

Fig. 6.10 SNUPS GUI
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6.5.2 Webots: Mobile Robot Simulator

Webots is a professional mobile robot simulation software package, which has been
developed since 1996 and was originally designed by Olivier Michel at EPFL, the
Swiss Federal Institute of Technology in Lausanne, Switzerland, in the lab of Jean-
Daniel Nicoud. It offers a rapid prototyping environment that allows the user to
create 3D virtual worlds with physics properties such as mass, joints, friction coef-
ficients, etc. The user can add simple passive objects or active objects called mobile
robots. These robots can have different locomotion schemes (wheeled robots, legged
robots, or flying robots). Moreover, they may be equipped with a number of sensor
and actuator devices, such as distance sensors, drive wheels, cameras, servos, touch
sensors, emitters, receivers, etc. It actually allows the designers to visualize rapidly
their ideas, to check whether they meet the requirements of the application, and to
develop the intelligent control of the robots, and eventually, to transfer the simulation
results into a real robot like two-wheeled differential mobile robot (e-puck, Khepera),
humanoids (Asimo), Sony’s dog robot (Aibo), etc.

Users can develop their own controller in C, C++, Java, Python or MATLAB pro-
gramming, and in VRML97 (Virtual Reality Modeling Language) and run Webots
on the operating systems like Linux,Windows (Windows 7,WindowsVista andWin-
dows XP, but they are not supported onWindows 98, ME, 2000 or NT4), Macintosh.
Users can download more technical details, such as software codes, user’s guide and
Reference Manual about Webots [37].

We recommend beginners to start with the user’s guide from the official website
[37]. There are two important points about Webots: (1) the chapter ‘Getting Started
with Webots’ gives an overview of Webots windows and menus. Beginners can be
familiar with Webots platform interface from this section; (2) beginners can learn
from the chapter ‘Tutorials’ how to setup their first world (mybot.wbt), how to set
the environment variable parameter of the first simulated world, how to create their
first simple robot modelmybot , how to design a simple controller formybot and how
to debug on the Webots platform, etc. If beginners do not understand some technical
details in the process of guided leaning, they can quickly view the contents of the
reference manual, where there are detailed descriptions about Webots, such as each
node of the data structure, each API function, parameter settings. Beginners can get
started with Webots after finishing the User’s Guide.

In what follows, we give a brief description about the User Interface of Webots,
basic stages in the project development, controller programming.

(1) Webots GUI

Figure6.11 shows that four principal windows composing Webots GUI: (i) 3D
window lies in the middle ofWebots GUI, which displays and allows to interact with
the 3D simulation; (ii) the Scene tree lies in the left hand of windows, which is a
hierarchical representation of the current world; (iii) the Text editor is in the right
hand of windows, which allows to edit source codes; (iv) the Console is in the bottom
of windows, which displays both controller outputs and compilation. The GUI has
eight menus: File, Edit, View, Simulation, Build, Tools, Wizard and Help.
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Fig. 6.11 Webots GUI

• 3D window
Users can select a solid object in the 3D window by single-clicking. Double-
clicking on the object can open the Scene Tree or Robot Window. Dragging the
mouse while pressing a mouse button can move the camera of the 3D window.
Selecting an object while holding down the shift key and dragging the mouse can
move an object.

• The Scene Tree
The scene tree contains the information that describes a simulated world, such
as robots and environment, and its graphical representation. The scene tree is
structured like a VRML97 file and composed of a list of nodes, each of which
contains fields. Fields can contain values (text strings, numerical values) or other
nodes.

• Text editor
Users can edit their own controller codes in the text editor window. One can run
his own controller on a special robot by changing the robot controller attribution,
which lies in the scene tree window into the custom controller (edit in the text
editor window). One can also change the behavior control of a robot by changing
the codes in the text editor.

• Console window
Console window ofWebots GUI shows the debugging information or output para-
meters of the robot controller just like Visual Studio console.

(2) Basic stages in the project development
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Webots allows users to develop his robotic project with four basic stages as fol-
lows:

Stage 1: Modeling stage is the first stage and for designing the physical features of
the robots control experiment, such as physical model of the environment,
actuators and sensors for the special robot. One can change the robots
properties (color, shape, technical properties of sensors and actuators,
etc.) and can create any kind of robots (flying robots, swimming robots,
humanoid robots, four legged robots and wheeled robots, etc.). Any type
of environment can be created in the sameway (populating the space with
objects like walls, doors, steps, balls, obstacles, etc.). One can define all
the physical parameters of the object, such as the friction, the bounce
parameters, the mass distribution, the bounding objects. The simulation
engine in Webots can simulate robots’ physics. Users can move on to
the second stage after the virtual environment and the virtual robots have
been created

Stage 2: Programming stage is the second stage, in which the designer has to
program the behavior of each robot. To achieve this, different kinds of
programming tools are available, which include the simple graphical pro-
gramming tools for beginners and programming languages (likeC,C++or
Java), which aremore powerful and enable the development ofmore com-
plex behaviors. The program controlling a robot is generally an endless
loop, which is divided into three sections: (1) read the values measured
by the sensors of the robot; (2) compute what should be the next action(s)
of the robot and (3) send actuators commands to perform these actions.
The easiest section are parts (1) and (3). The most difficult one is part (2),
which can be divided into sub-parts like sensor data processing, learning,
motor pattern generation, etc.

Stage 3: Simulation stage is the third stage allowing the designers to test the cor-
rectness of their programs. By running the simulation, users can see the
robot executing the program. One is able to play interactively with his
robot by moving obstacles using the mouse, moving the robot itself. One
is also able to visualize the values measured by the sensors, the results of
the processing of his program. It is likely that one has to return several
times back to the second stage to fix or improve his program and test it
again in the simulation stage.

Stage 4: The final stage is the transfer to a real robot. The control program is
transferred into the real robot running in the realworld.One could then see
whether his control program behaves the same as in simulation or not. If
the simulation model of the robot is carefully performed and is calibrated
against its real counterpart, the real robot should behave roughly the same
as the simulated robot, otherwise, it is necessary to go back to stage 1
and refine the model of the robot so that the simulated robot will behave
like the real one. In this case, one has to go through the second and third
stages again, but mostly for slightly tuning, rather than redesigning the
program.
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6.6 Design of Membrane Controller for Robots

In [8, 29, 30], NPS and ENPS controllers for several behaviors of mobile robots,
such as obstacle avoidance, wall following and following a leader, were designed to
show good performance of membrane controllers. This section uses an example, a
membrane controller for solving a complex mobile robot trajectory tracking problem
(MR2TP), to introduce the design procedure of membrane controllers for wheeled
mobile robots’ behaviors.

6.6.1 Mobile Robot Trajectory Tracking Problem

The mobile robot trajectory tracking problem were briefly described in [33]. In what
follows, we redescribe it in detail. A wheeled mobile robot (WMR) is a complex
system having a large delay, nonholonomic constraints and highly nonlinear charac-
teristic, so it is quite difficult to build a precisely mathematical model for trajectory
tracking control. The aim of solvingMR2TP is to design control rules to makeWMR
move along a desired path quickly and accurately. TheWMRmechanical system that
are considered is shown in Fig. 6.12, where there are two differential driving wheels
and a back unpowered universal wheel. The passive wheel does not have any effect
on the freedom degree of the kinematic model [9] and works with the nonholonomic

Fig. 6.12 The mobile robot
structure and motion
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constraints, which are represented by the following formula:

.
y · cos θ + .

x · sin θ = 0. (6.6)

The Cartesian coordinate vectors with three freedom degrees p = (x, y, θ)T is used
to denote the posture of WMR in two dimensional coordinates X OY . Thus, the
reference posture of the reference WMR is denoted as pR = (xr , yr , θr )

T , where
(xr , yr ) is the centroid of the WMR. The positive direction of θ for guiding the
angle of a robot is anticlockwise. A linear velocity vc and an angular velocity ωc

forming a vector V = (vc,ωc)
T (also called the steering system of WMR) decide

the motion posture of WMR. Correspondingly, the velocity of the referenceWMR is
represented as the vector VR = (vR,ωR)T . It is noting that the two wheels are driven
by independent torques from two direct current (DC)motors, where the radius of two
wheels and the tread of WMR are denoted by r and 2R, respectively. If the speeds of
two wheels are different, then WMR steers to the corresponding direction. Suppose
that theWMRmass center is located at Oc andmountedwith non-deformablewheels.
Let us denotevl andvr (resp.,ωl andωr ) the linear velocities (resp., angular velocities)
of the left and right driving wheels. We describe the relationship between the WMR
body and the wheels velocity as follows:

vl = vc − (ωc · 2R)/2 , ωl = vl/r
vr = vc + (ωc · 2R)/2 , ωr = vr/r

(6.7)

The kinematic model of WMR can be described by using (6.8) with the non-
holomic constraints, where Jacobian matrix J is a transformation matrix.

⎡

⎢⎣

·
x
·
y
·
θ

⎤

⎥⎦ =
⎡

⎣
r ·cos θ

2
r ·sin θ

2− r
2R

r ·cos θ
2

r ·sin θ
2
r
2R

⎤

⎦
[

ωl

ωr

]

=
⎡

⎣
cos θ
sin θ
0

0
0
1

⎤

⎦
[

vc

ωc

]
= J · V

(6.8)

The aim for solvingMR2TP is to design a controller makingWMR real-time track
the reference ones under known continuous excitation inputs vR and ωR . The current
and the next postures (reference WMR posture) of WMR are p = (x, y, θ)T and
pR = (xr , yr , θr )

T , respectively. We assign the posture error as pe = (xe, ye, θe)
T ,

where xe, ye and θe denote the lateral, longitudinal and direction errors inmobile coor-
dinates, respectively. The posture error transformation betweenmobile and Cartesian
coordinates is given as in (6.9).

⎡

⎣
xe

ye

θe

⎤

⎦ =
⎡

⎣
cos θ

− sin θ
0

sin θ
cos θ
0

0
0
1

⎤

⎦

⎡

⎣
xr − x
yr − y
θr − θ

⎤

⎦ (6.9)
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Thus, we derive the differential equations of WMR posture errors from (6.8) and
(6.9) as follows: ⎡

⎢⎣

·
xe·
ye·
θe

⎤

⎥⎦ =
⎡

⎣
ye · ωc − vc + vR · cos θe

−xe · ωc + vR · sin θe

ωR − ωc

⎤

⎦ (6.10)

By further analysis and matrix transformation, we can get

⎡

⎢⎣

·
xe·
ye·
θe

⎤

⎥⎦ =
⎡

⎣
−1
0
0

ye

−xe

−1

⎤

⎦
[

vc

ωc

]

+
⎡

⎣
cos θe

sin θe

0

0
0
1

⎤

⎦
[

vR

ωR

]
(6.11)

where (vc,ωc)
T and (vR,ωR)T are the input velocity vector of the real WMR and the

reference velocity vector of the reference WMR, respectively. vR can be represented
by using (6.12).

vR =
√

·
x2

r +
·

y2r , ωR =
·
xr · ··

yr − ·
yr · ··

xr
·

x2
r +

·
y2r

(6.12)

In order to obtain (vc,ωc)
T making posture error pe converge to zero as t → ∞,

under the effect of (vR,ωR)T , the classic speed controller based on Lyapunov theory
[21] is applied to attain (6.13):

Vc =
[

vc

ωc

]
=

[
vR · cos θe + k1 · xe

ωR + k2 · vR · ye + k3 · vR · sin θe

]
(6.13)

where vR > 0 and k1, k2 and k3 are three positive constants. In the design of the kine-
matic controller, the backstepping method in [10, 11] is used. The aim of kinematic
controller is to produce the input velocities of wheels (vc,ωc) for dynamic controller,
which is illustrated in Fig. 6.13 (the part with dashdot line).

Actually, it is necessary to consider the maximal velocity and acceleration con-
straints of the WMR wheels during inner dynamic control. That is, we bound
the maximally linear velocity and angular velocity of WMR as vmax = ωm · r and
ωmax = ωM · r/R, where ωM , r and R are the maximally rotational velocity ofWMR
wheels, the radius of wheels and the half of tread, respectively. The acceleration of
left and right wheels are set to amax so as to avoid wheel skid. Thus, WMR will not
slip and the controller designed approaches to the actual working condition.
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Fig. 6.13 Kinematic and dynamic controllers for WMR

6.6.2 Kinematic Controller Design for Wheeled Mobile
Robots

The kinematic controller of WMR is shown in Fig. 6.13 (inside the dash dot lines).
The generic control law in (6.13) for the WMR kinematic model actually consists
of two parts: feed-forward and feedback. They can be described as u f = (v f ,ω f )

T

and ub = (vb,ωb)
T , respectively. Thus, (6.13) can be rewritten as

u =
[

v

ω

]
=

[
v f + vb

ω f + ωb

]
(6.14)

and (6.14) is substituted into (6.10) to obtain

⎡

⎢⎣

·
xe·
ye·
θe

⎤

⎥⎦ =
⎡

⎣
ye · (ω f + ωb) − (v f + vb) + vR · cos θe

−xe · (ω f + ωb) + vR · sin θe

ωR − (ω f + ωb)

⎤

⎦ . (6.15)

6.6.2.1 Design of Feed-Forward Control

The design of feed-forward part in the kinematic model is mainly based on sliding-
mode control (SMC) method [11]. The use of SMC for the nonholonomic system
with many constraints has many benefits such as fast system response, robustness
to un-modeled dynamic factors, insensitivity to disturbance and parameter changes.
The switching function and approaching law are improved to enhance the tracking
accuracy. It is worth noting that the inherent jitter of SMC has little direct impact on
the WMR DC motor because the output velocity of kinematic model is only treated
as the input velocity of the WMR dynamic model,

Lemma 1 ([39]) For any x ∈ R and |x | < ∞, ϕ(x) = x · sin(arctan x) ≥ 0, the
equality occurs only x = 0.
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Here SMC is designed by using the backstepping method in [21]. We can deduce
that θe = − arctan(vR ye) can lead to the convergence of ye, as xe = 0, based on the
partial Lyapunov function Vy = 1

2 y2e [39], the second equation of posture error differ-
ential equation in (6.10) and Lemma1. That is, as xe → 0 and θe → − arctan(vR ye),
ye will converge to zero. If the system enters the slide mode, to guarantee xe = 0 and
θe = − arctan(vR ye), a switching function is introduced as follows:

s(pe) =
[

s1(pe)

s2(pe)

]
=

[
xe · ye

θe + arctg(vR · ye)

]
(6.16)

Within a limited time the system will go to the surface of slide mode s = 0 under
varying structure control, as xe = 0 and θe =− arctan(vR ye), on the basis of the SMC
principle. The posture error will converge to zero pe = {xe, ye, θe}T → 0 as t → 0,
due to the asymptotic stability of this sliding mode. If the system states tend to stay
on the surface of sliding mode, the condition ṡT (pe) · s(pe) < 0 must be satisfied,
where s(pe) is

ṡ(pe) = −η · sgn(s(pe)) − κ · s(pe) (6.17)

whereμ is an adjustable parameter having effect on the shape of the sigmoid function
and the boundary layer around the surface of switching mode; η and κ are positive
constants. To weaken the jitter effect of SMC, the sigmoid function 2(1−e−s·μ)

μ(1+e−s·μ)
is used

to replace the sign function sgn(s). Thus, (6.17) can be changed to (6.18)

ṡi (pe) = −ηi
2(1 − e−si (pe)·μi )

μi (1 + e−si (pe)·μi )
− κi · si (pe), i = 1, 2 (6.18)

As φ = arctan(vR · ye) ≥ 0, vb = 0 and ω = 0, (6.18) and (6.15) are substituted
into (6.16) to obtain

s(pe) =
[

ṡ1(pe)

ṡ2(pe)

]
=

⎡

⎣
−η1

2(1−e−s1(pe)·μ1 )
μ1(1+e−s1(pe)·μ1 ) − κ1s1(pe)

−η2
2(1−e−s2(pe)·μ2 )
μ2(1+e−s2(pe)·μ2 ) − κ2s1(pe)

⎤

⎦

=
[

ẋe · ye + ẏe · xe

θ̇e + ∂φ
∂vR

v̇R + ∂φ
∂ye

ẏe

]

=
[

(ye · ω f − v f + vR · cos θe) · ye + (−xe · ω f + vR · sin θe) · xe

ωR − ω f + ∂φ
∂vR

v̇R + ∂φ
∂ye

(−xe · ω f + vR · sin θe)

]

(6.19)
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The feed-forward control law can be derived from (6.19):

u f =
[

v f

ω f

]

=

⎡

⎢⎢⎣
ye · ω f + vR · cos θe + xe ·vR ·sin θe−x2

e ·ω f +η1
2(1−e−s1(pe)·μ1 )

μ1(1+e−s1(pe)·μ1 )
+κ1s1(pe)

ye

ωR+ ∂φ
∂vR

v̇R+ ∂φ
∂ye

(vR ·sin θe)+η2
2(1−e−s2(pe)·μ2 )

μ2(1+e−s2(pe)·μ2 )
κ2s2(pe)

1+ ∂φ
∂ye

xe

⎤

⎥⎥⎦ (6.20)

where,
∂φ

∂ye
= vR

1 + (vR · ye)
2 (6.21)

∂φ

∂vR
= ye

1 + (vR · ye)
2 . (6.22)

6.6.2.2 Design of Feedback Control

In this subsection,Lyapunov function is considered to design feedback control includ-
ing the reference path and real posture ofWMRunder known conditions. On the basis
of (6.13), the feedback part of this trajectory tracking controller can be obtained from
(6.23) as follows:

ub =
[

vb

ωb

]
=

[
k1 · xe

vR(k2 · ye + k3 · sin θe)

]
(6.23)

Actually, a simple control law based on (6.13) was used in [4] as the feedback
part of the kinematic controller. The law is

ub =
[

vb

ωb

]
=

[
k1 · xe

k2 · vR · ye
sin θe

θe
+ k3 · θe

]
(6.24)

By integrating (6.20) with (6.24), the kinematic controller including feed-forward
and feedback is described as follows:

u =
[

v

ω

]
=

[
v f + vb

ω f + ωb

]

=

⎡

⎢⎢⎣
ye · ω f + vR · cos θe + xe ·vR ·sin θe−x2

e ·ω f +η1
2(1−e−s1(pe)·μ1 )

μ1(1+e−s1(pe)·μ1 )
+κ1s1(pe)

ye + k1 · xe

ωR+ ∂φ
∂vR

v̇R+ ∂φ
∂ye

(vR ·sin θe)+ η2
2(1−e−s2(pe)·μ2 )

μ2(1+e−s2(pe)·μ2 )
κ2s2(pe)

1+ ∂φ
∂ye

xe
+ k2 · vR · ye

sin θe
θe

+ k3 · θe

⎤

⎥⎥⎦ .

(6.25)
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6.6.3 Dynamic Controller Design for Wheeled Mobile Robots

The use of the kinematic model control is to make sure that the input velocity vector
(vc,ωc)

T of theWMRmovement can follow the reference velocity vector (vR,ωR)T .
In fact, the trajectory tracking of the WMR kinematic model requires to ultimately
reflect on the motor driving of the wheels. So it is not enough to obtain the WMR
control performance in the kinematic model control and further the dynamic char-
acteristics of the WMR movement is required to be considered. The proportional-
integral-derivative (PID) controller is quite popular in the traditional robot motion
control, but there is an extreme difficulty to properly tune PID controller parame-
ters because the WMR movement is a nonlinear system with large external distur-
bances and system uncertainties. In what follows, a PID based membrane controller
(PIDMC) is presented to control the WMR dynamic model.

6.6.3.1 Dynamic Model of Wheeled Mobile Robots

The classical well-known Euler Lagrange dynamic equation [22] is used to model
the considered WMR with an n-dimensional configuration space p ∈ Rn×1 and m
constraints.

M(p) · p̈ + Vm(p, ṗ) · ṗ + FG( ṗ) + G(p) + τd

= B(p) · τ − J T (p) · λ
(6.26)

M(p) =
⎡

⎣
m R 0 0
0 m R 0
0 0 I

⎤

⎦ , B(p) = 1

r

⎡

⎣
cos θ
sin θ

R

cos θ
sin θ
−R

⎤

⎦ (6.27)

where M(p) ∈ Rn×n is a positive definite and symmetric inertia matrix; p̈ and ṗ
are acceleration and velocity vectors, respectively; Vm(p, ṗ) ∈ Rn×n is a coriolis
and centripetal matrix; FG( ṗ) ∈ Rn×1 is the surface friction; G(p) ∈ Rn×1 is the
gravitational vector; τd ∈ Rn×1 represents bounded unknown disturbances including
unstructured un-modeled dynamics; τ = [τr τl ]T , where τr and τl are right and
left torque inputs generated by DC motors of the two wheels, respectively; B(p) ∈
Rn×(n−m) is the input transformation matrix; I is the moment of inertia of the WMR
about the mass center; m R is the mass of WMR.

Here we can omit the effect of gravity, that is, let G(p) = 0, because the WMR
motion considered is in the horizontal plane. If the surface friction FG and disturbance
torque τd are considered as the disturbance and un-modeled uncertainties items (such
as free wheel), a simpler and more appropriate dynamic model can be described as
follows [10, 11]:

M̄(p) · v̇ + τ̄d = B̄(p) · τ (6.28)

where,

• M̄(p) = J T M(p),
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• J =
[

m R 0
0 I

]
∈ R2×2,

• B̄ = J T B = 1
r

[
1 1
R −R

]
,

• τ̄d = J T τd .

We consider the disturbance torque τd as an external additional item, which is
similar to that in Fig. 6.13. Thus, we can derive from (6.28) the relation between the
WMR velocity and the torque of DC motor, i.e.,

v̇(t) = E · τ (t) (6.29)

where the transformation matrix E is

E = M̄−1(p) · B̄(p) =
[

m R 0
0 I

]−1

· 1
r

[
1 1
R −R

]

= 1

m R · r · I

[
I I

Rm R −Rm R

]
.

(6.30)

6.6.3.2 Proportional-Integral-Derivative Based Membrane Controller
Design

In an enzymatic numerical P system, the enzymes enable it to perform several rules
(protocols or programs) inside a single membrane, while the deterministic behavior
can be kept, as compared with NPS, where a single membrane contains only one rule.
The rules or protocols can be derived from the process of finding the most suitable
proportional-integral-derivative (PID) parameters. These rules can be executed in a
distributed andparallelway and canflexibly alter the formofPIDalgorithmaccording
to the behavior of the biological enzymes. Benefited from the enzymatic numerical
P system, an adaptive controller PIDMC with a powerful capability of continuously
learning is introduced. In what follows, we first briefly describe PID.

PID controller in discrete time can be represented by the standard formula (6.31)
or improved formula (6.32):

u(k) = K P · e(k) + K I

∑k

j=0
e( j) + K D · [e(k) − e(k − 1)] (6.31)

Δu(k) = u(k) − u(k − 1)

= K P · Δe(k) + KI · e(k) + K D · [Δe(k) − Δe(k − 1)]
u(k) = u(k − 1) + Δu(k)

(6.32)

where k = 0, 1, . . . is the sample number; u(k) is the output value at kth sample; e(k)

is the error input value at kth sample; Δe(k) = e(k) − e(k − 1); K P , K I and K D are
proportional, integral and derivative coefficients [3], respectively. The incremental
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PIDΔu(k) in (6.32) has somebenefits, such as little switching impact, little impact on
malfunction and accumulation avoidance. These advantages make it suitable for the
steppermotor applications likeWMRDCmotor. Inwhat follows,wewill describe the
design procedure of PIDMC in detail. Figure6.13 shows the structure of PIDMC.
The motion of WMR is controlled by linear velocity vc and angular velocity ωc,
where vc and ωc are the output velocities of kinematic controller compared with the
reference velocities. The aim of using double PIDMC is to force the linear velocity
error e1 = vc − v and the angular velocity error e2 = ωc − ω to converge to zero.
The WMR outputs of PIDMC are

[
τl

τr

]
=

[
u1 + u2

u1 − u2

]
(6.33)

where u1 and u2 are the outputs of two PIDMC, PIDMC1 and PIDMC2, respectively.
To obtain an auto-tuning strategy for PID parameters based on the deterministic

ENPS, PIDMC has the following three general steps:

(1) the empirical knowledge of experts is transformed into a series of rules which
are allocated to the corresponding membranes;

(2) to enhance the adaptivity of the PID controller, the continuous learning capacity
is endowed to some rules inspired from the idea of neural networks;

(3) the rules are performed according to the action of enzymes.

The inputs of the PIDMC controller in Fig. 6.13 are the reference velocity Vc(k)

and theWMR real velocity V (k). In controller online learning, V (k) is preprocessed
as state variables x1(k), x2(k), x3(k), which are error, error change rate and change
rate of error change rate, respectively. They are

x1(k) = Vc(k + 1) − V (k + 1) = e(k)

x2(k) = Δe(k) = e(k) − e(k − 1)

x3(k) = Δe(k) − Δe(k − 1)

= e(k) − 2e(k − 1) + e(k − 2)

(6.34)

To trade off different kinds of errors at each time sample k, parameters KI , K P ,
K D in (6.32) are regarded as time-varying weighting factors w1(k), w2(k), w3(k):

u(k) = u(k − 1) + K
∑3

i=1
wi (k) · xi (k) (6.35)

where K is a scale factor. In [1, 42], the quadratic error was used as the performance
index function. To avoid the overshoot, PIDMC considers the quadratic of the control
incremental value Δu(k) as performance index function I :

I = 1
2 P · E2(k) + 1

2 Q · Δu2(k) (6.36)
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where P and Q are the proportional coefficients for output error E(k) = Vc(k) −
V (k), and control incrementΔu(k) in (6.36), respectively. The adjustment of weight-
ing factors wi (k) should be along the decreasing direction of performance index I ,
i.e., along the negative gradient direction of E(k) forwi (k). By performing the partial
differential operator on wi (k), we obtain

∂ I

∂wi (k)
= −P · E(k) · ∂V (k)

∂u(k)
· ∂u(k)

∂wi (k)

+ Q · K ·
[∑3

i=1
wi (k)xi (k)

]
· xi (k)

(6.37)

So the adjustment wi (k) is

Δwi (k) = wi (k + 1) − wi (k) = −ζi · ∂ I

∂wi (k)
(6.38)

where ζi is the convergence rate. According to (6.33), (6.35) and (6.37), wi (k) can
be expanded as:

Δw1(k) = ζ1 · P · K · E(k) · x1(k) · ∂V (k)

∂u(k)

− ζ1 · Q · K ·
[∑3

i=1
wi (k)xi (k)

]
· x1(k)

Δw2(k) = ζ2 · P · K · E(k) · x2(k) · ∂V (k)

∂u(k)

− ζ2 · Q · K ·
[∑3

i=1
wi (k)xi (k)

]
· x2(k)

Δw3(k) = ζ3 · P · K · E(k) · x3(k) · ∂V (k)

∂u(k)

− ζ3 · Q · K ·
[∑3

i=1
wi (k)xi (k)

]
· x3(k)

(6.39)

As usual, ∂V (k)

∂u(k)
cannot be directly obtained in a PID algorithm, but can be approx-

imately denoted by the sigmoid function S(x). PIDMC uses sign function sgn(u(k))

as the approximate part. The convergence rate ζi can compensate the inaccurate cal-
culation results. By combining (6.38) with (6.39), the gain tuning formula can be
obtained as follows

w1(k + 1) = w1(k) + ζpk1 · x1(k) · x1(k) · Sgn(k)

− ζqk1 · x1(k) · Sum(k)

w2(k + 1) = w2(k) + ζpk2 · x1(k) · x2(k) · Sgn(k)

− ζqk2 · x2(k) · Sum(k)

w3(k + 1) = w3(k) + ζpk3 · x1(k) · x3(k) · Sgn(k)

− ζqk3 · x3(k) · Sum(k)

(6.40)
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where ζpk1 = ζ1 · P · K , ζpk2 = ζ2 · P · K , ζpk3 = ζ3 · P · K , ζqk1 = ζ1 · Q · K ,
ζqk2 = ζ2 · Q · K , ζqk3 = ζ3 · Q · K , Sgn(k) = sgn(u(k)), Sum(k) = ∑3

i=1 wi (k) ·
xi (k).

The substitution of (6.40) into (6.35) leads to the output value of the PID controller

w̄i (k) = wi (k)∑3
i=1 wi (k)

u(k) = u(k − 1) + K
∑3

i=1 w̄i (k) · xi (k)
(6.41)

In the design of PIDMC, we divide the PID controller into three sub-controllers:
proportional (P), proportional-derivative (PD), and proportional-integral (PI) in the
corresponding zones. Thus, the convergence rate of I in (6.36) can be enhanced.
Moreover, the objective of the division of the three functional zones can improve
the controller performance, such as settling time, rising time and static error, which
is maintained by an appropriate PID controller in each zone. We add the weighting
factors w1(k), w2(k), w3(k). The sub-periods are redefined as a combination of
the knowledge of experts, which can be generally divided into several cases. The
normalized velocity is defined as

N (v) = v

vmax
=

{
1 |v| > vmax

v/vmax |v| < vmax
(6.42)

where vmax is the maximal velocity of the WMR permitted. The normalized velocity
error varies between 0 and 1. According to two set-points M1 and M2, where 0 <

M2 < M1 < 1, the functional zones (error signal of step response) are divided into
three parts.

(1) If |N (e(k))| > M1, the PID model should be switched into P or PD model
because the absolute value of velocity error is too big;

(2) If M1 > |N (e(k)| > M2, the PID model should be applied because the error is
relatively big;

(3) If M2 > |N (e(k)|, PI model should be used to eliminate or minimize the static
error because the error is small.

The PIDMC controller, which is shown in Fig. 6.14, is designed by using a numer-
ical P system with a hierarchical membrane structure containing ten membranes: the
skin membrane OutputControlV alue containing three identical inner membranes
ComputeControlV alue (i = 1, 2, 3). Each membrane ComputeControlV alue
includes membrane ComputeQuadratico f Output-Error and innermost mem-
braneComputeQuadratico f Control I ncrement . The design of the PIDMCmem-
brane system are described as follows:

The skin membrane OutputControlV alue has five variables: the control incre-
mentUinc[0]with the initial value 0, the current positionUcur [Ulast ] of the controller
with the initial value being equivalent to the control value of the controller at the
previous time unit, and three enzymes for controlling the algorithm flow: ED[6emax ]
with the initial value 6emax (emax is a very large value), ET [0] with the initial value
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Fig. 6.14 PIDMC controller

0 and EH [0] the initial value 0. The controller algorithm will end at ET �= 0. The
control value of the controller requires to be updated and the error information is
read again after the reaction of the controller Pr2,control .

The inner membrane ComputeControlV alue has seven variables: enzyme
Ei [emax ] for checking whether the current weights of parameters K P , K I and K D

should be calculated or not, two variables Co1 and Co2 for storing results, enzyme
Ec[1] for determining whether rule Pr2,control or Pr4,control should be performed
or not according to the variable value of Co1 or Co2, the normalized velocity error
Ne[err ] with the initial value being equivalent to the input normalized error of the
PID controller at the current time, Sumi [0] denoting the current weight wi (k) and
Sumall [0] for the sum of weights w̄i (k) in (6.40) and (6.41). The normalized veloc-
ity error Ne[err ] is divided by M1 (rule Pr1,control ) or M2 (rule Pr3,control ). The
computing results are stored into Co1 or Co2. The two summation results (Sumi

and Sumall ) are decided by the relationship between the sizes of ED and EH . The
execution of rule Pr5,control follows the two summation results (Sumi and Sumall ).

The inner membraneComputeQuadratico f Output Error has seven variables:
the input variables sg[uk] of a sign function with the initial value being equivalent
to the control value uk at the previous time unit, enzyme Esg[0] which is combined
with sg in rules (Pr2,accumulatei - Pr4,accumulatei ) to compute sign function, enzyme
Ei1[emax ] with the initial value emax , a sign variable sgn[0], the quadratic error
ac[0] in (6.36), a time-varying weighting variable wi [ωi ] with the initial value ωi

representing parameter values KI , K P , K D at the previous time unit, and the values
xi [ei ] of the three types errors in (6.34). The result of ac · sgn is assigned to Sumi
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and Sumall simultaneously in rule Pr5,accumulatei . The value ωi is also assigned to
Sumi and Sumall simultaneously in rule Pr6,accumulatei .

The innermost membrane ComputeQuadratico f Control I ncrement has two
variables: the sum Sum[0] of three error weighting variables Sum[k] in (6.40) and
enzyme Ei2[emax ] with the initial value emax . Rule Pr1,wighti is executed at Ei2 = 0.
Rule Pr2,wighti is executed at Ei2 �= 0.

6.7 Experiments

In this section, the experiments are conducted on the robotic simulator, Webots. The
robot uses e-puck. BothWebots and e-puck have been described in detail in Sect. 6.5.
In what follows, the experiments and results on the kinematic controller and dynamic
controller are first presented. Then, the robots simulation platform, Webots, is used
to introduce the experiments and results on trajectory tracking control.

6.7.1 Experiments on Kinematic Controller

This experiment considers sine wave trajectory to test the kinematic controller. The
parameter setting is as follows: η1 = η2 = 0.01, κ1 = κ2 = 5, μ1 = μ2 = 0.6 in
(6.20); k1 = k3 = 4, k2 = 6 in (6.24). The reference trajectory uses sine wave. The
initial posture of the actual WMR is pR(0) = [xr (0), yr (0), θr (0)]T = [10, 0, 0]T .
The red dotted sine wave in Fig. 6.15 is the reference trajectory.

The following three kinematic controllers are considered as benchmarks to con-
duct comparative experiments.

(1) classic kinematic control lawwidely used in various publications such as in [22];
(2) feed-forward kinematic control law designed by using a backstepping method

in (6.20);
(3) the presented kinematic control law integrating feed-forwardwith feedback parts

in (6.25).

Experimental results of the three control methods are also shown in Fig. 6.15,
where the blue solid wave is the WMR actual tracking trajectory in the kinematic
model. The results indicate that the introduced integration method obtains better
convergence than the feed-forward method and much better than classic method. As
compared with the other two methods, the introduced method has better tracking
ability at the turning point of sine wave.
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Fig. 6.15 The sine wave trajectory results of three kinematic controllers
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6.7.2 Experiments on PID Based Membrane Controller

In the experiments, the controller parameters in (6.40), learning rate ζ1 of propor-
tional coefficients, integral coefficients ζ2 and derivative coefficients ζ3, are set to
12, 3 and 16, respectively; weighting factors P = 2 and Q = 1; the scale factor
K = 0.02. The proper parameters of PIDMC are obtained by trial-and-error through
experiments. The servo controller of WMR considers the actual friction model: the
friction is common in the servo system and has a complex, non-linear and uncertainty
characteristics. TheLuGremodel in [38] is chosen as the frictionmodel. The dynamic
function for a simpler servo systemuses the differential equation I

..
ω = u − F , where

I is the inertia moment; ω is the rotation angle; u and F are the control torque and
friction torque, respectively. F is described by the following LuGre model [38]:

F = λ1 · s + λ2 · .
s +β · .

ω (6.43)

.
s = .

ω − λ1 · | .
ω | · s

Fc + (Fs−)e
−

( .
ω/

Vs

)2

+ β · .
ω

(6.44)

where λ1 and λ2 are the dynamic friction parameters; state variable s is the average
deformation of the contact surface; Fc, Fs , β and Vs are the static friction parameters;
β is the viscous friction coefficient; Vs is the switching speed; Fc and Fs are the
Coulomb’s friction and static friction, respectively. The parameter values of the servo
system and friction model are given in Table6.2.

In the simulation test, a sinusoidal waveform 0.05 sin(2πt) is used as the desired
input trajectory. We compare the control performance between PIDMC and the con-
ventional PID controller. The parameters of conventional PID controller are set to
K P = 25, KI = 4, K D = 7 through trial and error tests. The initial values of the
PIDMC weight, w1, w2 and w3, are set to be the same as those of conventional PID.
The experimental results are shown in Fig. 6.16.

Table 6.2 Parameter setting for the servo system and friction model

Parameter Value

Moment of inertia I 1.0

Dynamic friction parameter λ1 230

Dynamic friction parameter λ2 2.0

Viscous friction coefficient β 0.025

Coulomb’s friction Fc 0.24

Static friction Fs 0.37

Switching speed Vs 0.03



252 6 Robot Control with Membrane Systems

Fig. 6.16 Position and speed tracking results of two kinds of PID controllers considering friction

It can seen from the results of the conventional PID controller shown in Fig. 6.16a
that there is speed tracking deviation at the beginning and the dead zone phenomenon,
and there is a flat top phenomenon in the position tracking.While a little bit deviation
in speed tracking due to friction occurs in the response of PIDMCshown inFig. 6.16b,
but the deviation is smaller better than the conventional PID controller. Furthermore,
the response of PIDMC in Fig. 6.16b is in accordance with that of position tracking.

We further draw a comparison of PIDMC with the sliding mode control, which is
a special discontinuous control approach with strong robustness to external distur-
bances and system uncertainties. In [20], a hybrid approach of neural network and
sliding mode control (NNSMC) was proposed to overcome the inherent deficiency
of SMC with fixed larger upper boundedness.

In the experiment, a cosine 0.5 cos(2πt) is used as the S-typed trajectories. The
uncertainties and the external disturbances to the control system ofWMR at the third
and sixth second are considered by using the parameter variations of the inertia and
mass of WMR, which are described as follows:

{
I = 0.5 + 0.35 (kg.m2), t = 3 (s)
m = 2 ± 1.25 (kg), 6 < t < 9 (s)

(6.45)
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Fig. 6.17 Comparison of PIDMC and NNSMC

In Fig. 6.17a, the robustness can be ensured for both NNSMC and PIDMC large
disturbances at different time instants with different types of external disturbances
occur due to the self-learning ability of NN. Figure6.17b shows that PIDMC has
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Fig. 6.18 Results of the
introduced controllers for
simulated robot trajectory
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a slightly faster tracking speed and slightly trajectory tracking stability better than
NNSMC, at the cost of a slightly larger tracking error than NNSMC. In Fig. 6.17c,
PIDMC has a smoother control output than NNSMC due to the chattering phenom-
enon, which is the inherent deficiency of SMC.

6.7.3 Experiments on Trajectory Tracking Control
of Wheeled Mobile Robots

We use the mobile robot simulation software Webots Sect. 6.2.1 to conduct experi-
ments to show the feasibility and effectiveness of the introduced approach integrating
outer kinematic controllerwith inner dynamic controller. The experiments on the sim-
ulated robot with differential wheels were carried out in an environment described
in [35]. A path planning algorithm was used to find the optimal path for WMR in
the environment, as shown by the red line (from S to T) in Fig. 6.18a. The same area
with obstacles in the Webots robotics simulator is shown in Fig. 6.18b.

In the experiments, robots with two kinds of controllers (PIDMC controller and
the controller in [42]) are used to make a comparison; the local error of the simulated
robot is set to el = 0.5; the grid step Sg = 1; the starting position of the reference path
is located at grid (0, 0); both of the simulated robots are located at grid (1, 0), where
there is little distance error between them. At the beginning of trajectory tracking,
we find that the robot with PIDMC (blue line) takes less time to find the desired
path than the robot with the controller in [42] (red line). The robots controlled by
the two controllers can walk along the reference path and cross the lane between two
obstacles. Finally, they reach the target grid. It is worth pointing out that the robot
with PIDMC can keep closer to the reference path than another one. In addition,
another sub-optimal path (blue line) from S1 to T 1 is found in Fig. 6.18a. We use
E-puck as the simulated robot. Similarly, the robot with PIDMC (blue line) in
Fig. 6.18b can also keep up with the desired path with much smaller tracking errors
and much stronger tracking ability than the robot with the controller in [42] (red
line).

6.8 Conclusions

This chapter discusses the design ofmembrane controllers forwheeledmobile robots.
The membrane controllers are designed by using (enzymatic) numerical P systems.
The fundamentals of (enzymatic) numerical P systems and their simulators, the
simulator for robots and preliminaries of robot control, are also introduced. Some
experiments and results are presented.

The future work with respect to this robot-based real world applications of P
systems may focus on the following problems:
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(1) the extension of the method discussed in this chapter to designing membrane
controllers for more complex behaviors of a larger class of wheeled robots;

(2) combining numerical P systems with other advanced control strategies for other
control engineering applications;

(3) the use of various classes of P systems, including numerical P systems, in con-
structing cognitive and executable architectures (planning, learning, execution)
of autonomous robots [8]; more specifically, how to develop P systems-based
cognitive architectures at higher levels in a control system, which can communi-
cate with lower level membrane controllers formore complex robot applications.
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Chapter 7
Data Modeling with Membrane
Systems: Applications to Real Ecosystems

Abstract A probabilistic approach to P systems, called population dynamics P
systems (PDP systems, for short) is introduced for studying the dynamics of (real)
ecological populations. An implementation of this approach, as part of the P-Lingua
software library, called pLinguaCore, is provided in order to assist in the definition,
analysis, simulation and validation of PDP-based models. Four significant case stud-
ies of (real) ecosystems - the scavenger birds, Zebra mussel, Pyrenean chamois and
Giant panda - are presented.

7.1 Introduction

In an informal way, amodel is a simplified description of (a part of) a real world sys-
tem that allows studying, analyzing, describing, explaining and reasoning about it.
The use of models is intrinsic to any scientific activity and represents a fundamental
approach when tackling some real-life problems in order to capture many complex
interactions between components operating simultaneously in a highly interdepen-
dent manner. Scientists regularly use abstractions of the reality such as diagrams,
graphs, plots, relationships, laws, etc., with the aim of describing and understanding
real-life phenomena they are examining. In one way or another, they use models
trying to understand how a complex system works/evolves and partially capture its
behavior. Therefore, scientists are using simplified conceptualizations of such sys-
tem incorporating its mechanisms, components and their relationships by means of
a precise language that allows logical reasoning and precise analysis of the system’s
behavior [122].

A formal/mathematical model is an abstraction mapping a real-world scenario
onto a mathematical domain that highlights some key features while ignoring others
that are assumed to be not relevant. Therefore, mathematics is used as an useful
and powerful tool to describe nature. A model should not be seen or presented as a
representation of the truth, but instead as a statement of all our current knowledge
about the phenomenon under study [19]. In particular, it should explicitly describe
which are the assumptions that were made. Formal models are often used instead
of experiments when they are expensive, dangerous, large or time consuming. Thus,
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they provide experimentalists a way to decide which experiments should actually
be carried out, contributing in this way to the progress of our understanding [6].
Models are also useful when proved to be wrong, since they show that our current
understanding of the studied phenomenon does not match reality.

There exists a “balance” issue when designing a model since, on the one hand,
the model has to incorporate the essential or relevant features of the system. On the
other hand, models have to be rich enough in order to provide insights about the
unknown, interesting, helpful and significant behavior of the system.

The development of models usually requires a multidisciplinary approach. In this
context, mathematics and computer science have been used by experts simply as
auxiliary tools to achieve a better quantitative formulation of the phenomena and
interactions involved.

Models must be experimentally validated by comparing simulation results against
an independent observed data set. In this process, it is crucial for the experiments
input conditions to match the input data provided to the model. Validation allows to
determine the uncertainty of the model results, usually caused by limitations in our
knowledge. Contrary to formal validation, experimental validation is not an objective
process: experts act as oracles, validating the model when results are “close enough”
to real data. Defining what is close enough is also a crucial matter, which depends
on the problem domain.

The achievements during the past century in cellular and molecular biology, ecol-
ogy and population dynamics in general, economics, as well as in computer science
of course, both from theoretical and practical points of view, have provided the con-
vergence of such disciplines through the use of mathematical models, with the aim
of obtaining significant progress in science.

The first tools used for cellular processes and population dynamics modeling
are based on differential or partial differential equations (ODEs/PDEs). Despite the
satisfactory results obtained, the deterministic and continuous approach has some
drawbacks. For instance, when the number of species in a model of an ecological
system is greater than two, the equations system proposed is so complex that it is
usually solved using numerical methods. Besides, improvements on the performance
of the models are generally obtained by the addition of ingredients, which in the case
of ODEs/PDEs means that the whole modeling process needs to be done again
from scratch. Besides, that approach is questioned, for instance, in the case of cell
systems with low number of molecules, with slow reactions or non-homogeneous
structures [2, 35], and other stochastic approaches have been developed even for
specific differential equations [100].

In this chapter, a bioinspired computing modeling framework within membrane
computing, called multienvironment P systems, is presented. Two approaches are
considered, stochastic and probabilistic, allowing us to model both cellular processes
and population dynamics of ecological systems. This framework presents important
advantages with respect to classical models based on differential equations, such as
a high computational potential, modularity and ability to work in parallel.
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The chapter focuses on the study of the dynamics of (real) ecological populations
which are modeled following the probabilistic approach, called population dynamics
P systems (PDP systems, for short). The flexibility of our computing framework
enables to increase the number of species with no major changes in the model, by
simply adding the new information into the biological parameters of the new species
to be included, or updating the information already available. It also enables virtual
experimentation on population dynamics under different conditions as well as the
validation of its usefulness as a simulation tool.

Several ad-hoc algorithms have been proposed to capture semantics of PDP-based
models, such asDNDP,DCBAandothers, presenting different compromises between
accuracy and resource consumption. These algorithms have been implemented as part
of the P-Lingua software library, called pLinguaCore [25, 26]. In order to assist in
the definition, analysis, simulation and validation of PDP-based models related to
different real-world ecosystems, the general purpose application MeCoSim, which
uses pLinguaCore as its simulation engine, has then been used. Also speed-up of the
implemented algorithms by using parallel platforms based on GPUs are addressed.
Finally, four case studies are considered, involving modeling of (real) ecosystems of
scavenger birds, Zebra mussel, Pyrenean chamois and Giant panda.

7.2 A General Bioinspired Computing
Modeling Framework

Theneed to solve concrete real life problemshas led researchers to look for systematic
procedures allowing them to obtain solutions by means of methods that we can
denominate as mechanical. Basically, such procedures consist in performing a finite
sequence of “elemental” tasks in such manner that any entity able to execute such
tasks in an autonomous way, can implement such procedures and, consequently,
solve those problems.

Computing models are mathematical theories aiming to formally define the con-
cept of mechanical procedure, hence they provide a general framework to design
mathematical models able to be handled by using the mechanisms associated with
them.

The computing modeling process consists of some semi-formal stages that guide
us in the design task, in the description within a formal language, as well as its
implementation on a computer for evaluation and analysis. According to [96], a
formal model must be relevant, in the sense of capturing the basic properties of the
phenomena under study, in relation to its structure and its dynamics, and providing
a better understandability of the studied system. A good model has to be easily
extensible and scalable to other levels of organization and changeable with ease in
order to include new knowledge or remove false hypothesis. Finally, a model has to
be computationally tractable, in the sense that we have to be able to implement it in
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order to execute simulations allowing us to study the system dynamics in different
scenarios.

In order to capture inherent randomness and uncertainty associatedwith dynamics
of ecological systems, a strategy considering time-dependent probabilistic functions
is used. These functions are usually assigned to certain basic elements controlling
system dynamics. Their numeric values, associated to those elements in the model
at any instant, represent the probability for each one of them to be used to make the
system evolve in that moment. Those functions can be experimentally obtained or
estimated, but unfortunately in many cases they are unknown, or their values range
within an interval. Then it is necessary to calibrate the model: the different model
results deduced from scenarios associated with sets of parameters must be compared
with the observed values corresponding to the same scenarios. After that, an ad hoc
algorithm is designed to describe the semantics of the computational model, in which
the work is being developed. This semantics must incorporate the treatment of the
random nature materialized by probabilistic constants or functions [53].

The simulation algorithm needs to be experimentally validated by contrasting the
values produced by the algorithm with those data that were obtained by means of
experiments or field work. Obviously, this contrast is not valid unless the algorithm
is simulated under the same specific scenarios in which the data were obtained. To
do so, it is necessary for the algorithm to be efficient enough, so that the simulations
of the different scenarios of interest are executed in a reasonable time. In Sect. 7.2.3,
two probabilistic simulation algorithms for P systems will be described.

7.2.1 Membrane Systems for Modeling Biological Data

Ecological systems consisting of multi-species communities are usually governed
by many intricate processes and inter-specific interactions such as competition or
predation, operating in parallel. Hence, it is essential to detect the relevant processes
and also the important components of the systems in order to be able to organize
these interrelations in a schematic and graphical way. Quantification of the strength
of interactions between species is basic for understanding how ecological systems
are organized and how they respond to human intervention. The volume of data
and knowledge about processes and interactions requires more complex tools, and
mathematics provide a precise framework to express these terms in a succinct way,
and to manage all available information.

A formal model for dynamics of ecological populations is expected to describe
how the population is going to change in time, in its composition, starting from the
current status and the environmental conditions of the ecosystem under study.

Generally, the formal tools used for population dynamics modeling are based on
ordinary differential equations (ODEs). For example, the Lotka–Volterra model has
been one of the most frequently used ones for the modeling of two species, predator
and prey [78], and Verhulst’s model (logistic differential equations) has been used
as a fundamental growth model in ecological studies because of its mathematical
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simplicity and single biological definition [101, 102]. Fuzzy set theory has been
used to estimate the parameters of the ODE-based models studying the interaction
between a prey and its predator [22]. Despite the satisfactory results presented by
these models, ODE-based approach has some drawbacks, due to the implications of
its deterministic and continuous nature. For instance, Russell et al. [100] developed
a stochastic model for three species by using ordinary logistic differential equations
analyzed through numerical analysis techniques. Consequently, in recent years new
models based on the latest computational paradigms and technological advances
have been adopted. Some examples are Petri nets [40], process algebra (π-calculus
[96], bioambients [97], brane calculus [8], κ-calculus [23], etc.), state charts [41],
agent based systems [45] and viability models [105, 106].

Each ecosystem has its own important peculiarities, thus trying to design a “uni-
versal” ecosystem model is not a good approach. For instance, the model should
be adapted taking into account if a protected and endangered species is being stud-
ied, or if the ecosystem deals with an invasive species, or simply an endemic area.
Nevertheless, there are some aspects common to most ecosystems such as:

• They contain a large number of individuals and a large number of species.
• The life cycles of species that inhabit the ecosystem display several basic processes
such as: feeding, growth, reproduction and death.

• These processes are annually repeated.
• The evolution often depends on the environment: weather, soil, vegetation, etc.
• The natural dynamics suffers modifications due to human activities.

These common features yield some requisites for the model, from a computa-
tional point of view: many processes take place simultaneously; there is cooperation
between individuals and elements of the ecosystem; there is partial synchronization
among the dynamic evolution of sub-ecosystems (for example, there could be adverse
weather conditions some year, and this does not affect a single sub-ecosystem, but
has a global influence on the entire ecosystem), and situations need to be restored
annually.

In the original approach, a computation in a membrane system is obtained by
repeatedly applying the rules in a non-deterministic synchronous maximal parallel
way: in each step, in each compartment, all the objects and strings that can evolve
by means of any rule must evolve in parallel at the same time.

According to the original motivation, P systems were not intended to provide
a comprehensive and accurate abstract representation of the living cell, but rather,
to explore the computational nature of various features of biological membranes.
Indeed, much work has been focused on computational completeness by studying
the computational power with respect to deterministic Turing machines, and compu-
tational efficiency by analyzing the capability of the membrane systems to provide
“efficient” solutions to hard problems by trading space for time.

Suzuki and Tanaka were the first researchers to consider membrane computing as
a framework formodeling chemical systems [111–113] and ecological systems [114]
by using abstract rewriting system onmultisets. This research line has been continued
by modeling different biological phenomena presenting membrane systems-based
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models of oscillatory systems [29], signal transduction [93], gene regulation control
[98], quorum sensing [99] and metapopulations [94].

The first application in the field of (real) ecosystems modeling within the frame-
work of membrane computing took place in 2008 [9], and was focused on the study
of the population dynamics of Bearded vulture in the Catalan Pyrenees, Spain. In
that work, a novel computational membrane system was presented to manage the
cited ecosystem, studying in the target area the population dynamics of Bearded
vulture, along with other five species providing the bones which vultures feed from.
In order to experimentally validate the model designed in this framework, a first
ad-hoc software application [3] was developed, including in the source code (in C++
language) all the data about the specific scenario under study: (a) the rules of the
system; (b) the parameters and constants; (c) the rest of the elements of the model;
and (c) the simulation engine itself. In [10, 15] new models were presented, adding
population density regulation, limits over feeding in case of shortage, variability in
terms of growth rate (“reproduction”) of Bearded vulture and competition for certain
resources. These works make use of P-Lingua framework [30] for specifying and
simulating the model, stating a clear separation among: (a) the parser of the spec-
ification language and simulation engine, provided by P-Lingua developers; (b)
the model made by the designer, specifying the structure, rules, multisets, etc. in the
system; and (c) input data, provided by the end users (ecological experts).

Due to the success in the results coming from the previous modeling works, a
new requirement was received from the company Endesa S.A., in order to work in
the modeling of an ecosystem placed in the reservoir of Riba-roja in the area of the
Ebro river basin, specifically focusing on an exotic invasive species: Zebra mussel.
This species has produced an important damage both from an ecological and an
economical point of view over the last decades. Thus, a computational model was
designed, based on P systems, to provide the company with a global view of the
problem, and to help them predicting, to some extent, the evolution of the density of
larvae of this species [18].

After those experiences, additional models based on P systems were designed,
covering a broad range: (a) ecosystems related to scavenger birds in theNavarre Pyre-
nees and in Swaziland (South Africa); (b) ecosystems affected by random changes in
the environment related to temperature, rain, etc. (development and growth of certain
amphibians in ponds or lakes); (c) reintroduction of a species of birds in the Catalan
Pyrenees (Hazel Grouse); (d) ecosystems very sensitive to floods and heavy rainfalls
(prediction of possible scenarios of extinction of species such as the Pyrenean brook
newt in the Segre river, Serra del Cadí, Pyrenees) and (e) the effect of pestivirus in
the population dynamics of Pyrenean chamois.

7.2.2 Multienvironment P Systems

Now, we present a general membrane computing based modeling framework to
model both cellular systems and the dynamics of ecological populations.
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Definition 1 A multienvironment P system of degree (q,m, n) with q,m, n ≥ 1
and T ≥ 1 time units, is a tuple

Π = (G, Γ,Σ, T,RE ,μ,R, { fr, j | r ∈ R ∧ 1 ≤ j ≤ m},
{Mi, j | 1 ≤ i ≤ q ∧ 1 ≤ j ≤ m}, {E j | 1 ≤ j ≤ m})

where:

• G = (V, S) is a directed graph with V = {e1, . . . , em}.
• Γ and Σ are alphabets such that Σ � Γ .
• T is a natural number.
• RE is a finite set of rules of the form

(x)e j
p−−−→(y1)e j1 · · · (yh)e jh ; (Πk)e j

p′−−−→ (Πk)e j1

where x, y1, . . . , yh ∈ Σ , (e j , e jl ) ∈ S, 1 ≤ l ≤ h, 1 ≤ k ≤ n and p, p′ are
computable functions whose domain is {1, . . . , T }.

• μ is a rooted tree with q nodes (called membranes) injectively labeled by elements
from the set {1, . . . , q} × {0,+,−}. If the label of a membrane is (i,α) then such
a membrane will be denoted as [ ]αi and we will say that the membrane has label
i and electrical charge α. The root of the tree has 1 as associated label.

• R is a finite set of rules of the form r ≡ u[v]αi −→ u′[v′]α′
i , where u, v, u′, v′ are

finite multisets over Γ , u + v 	= ∅, 1 ≤ i ≤ q and α,α′ ∈ {0,+,−}. Besides, if
(x)e j

p−−−→(y1)e j1 · · · (yh)e jh is a rule in RE , then there cannot exist any rule in
R whose left-hand side is of the form u[v]α1 with x ∈ u.

• For each r ∈ R and 1 ≤ j ≤ m, fr, j is a computable function whose domain is
{1, . . . , T }.

• For each i, j (1 ≤ i ≤ q, 1 ≤ j ≤ m),Mi j is a finite multiset over Γ .
• For each j , 1 ≤ j ≤ m, E j is a finite multiset over Σ .

A multienvironment P system of degree (q,m, n) and with T time units can be
seen as a set of m environments e1, . . . , em linked by arcs from a directed graph
G and a set of P systems, {Πk | 1 ≤ k ≤ n}, having the same “skeleton”, that
is, the same working alphabet Γ , the same membrane structure μ, and the “same”
rules from R. Each environment e j initially contains a finite multiset E j of objects
from Σ (which will be referred to as environment objects from e j ). Besides, each
system Πk must be included within some environment e j . If a system Πk is located
within an environment e j , then its initial multisets M1,k, . . . ,Mq,k depend on the
environment where it resides. Finally, all membranes in any of the P systems initially
have neutral charge. For the sake of simplicity, neutral polarization will be omitted.

Multienvironment P system allow rules of two types: on the one hand rules asso-
ciated with the P systems contained in the environments, whose set is denoted byR;
and on the other hand rules for communicating objects among environments, as well
as for P systems traveling from an environment to a neighbour one, and this set is
denoted byRE . Every rule r has computable functions associated with it ( fr, j , pr , or
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p′
r ) which depend on the environment where the rule is located. These functions can

be interpreted as an indication of the affinity of each rule, to be taken into account
when several applicable rules compete for the available objects.

The natural number T stands for the simulation time.
The semantics of multienvironment P systems is defined as a parallel, non deter-

ministic, synchronized mode, in the sense that we assume that a global clock exists,
marking the time steps of the system evolution. Let us describe next the semantics
of multienvironment P systems.

An instantaneous description or configuration of the system at a given instant t is a
tuple composed by: (a) themultisets of objects overΣ present in them environments;
(b) the P systems included on each environment; (c) the multisets of objects over
Γ contained on each of the regions of such P systems; (d) the values of functions
associated with the rules of the system; and (e) the polarizations of the membranes
from each P system.

A rule r ∈ R of the type u[ v ]αi fr−−−→ u′[ v′ ]α′
i associated to a system Πk is

applicable to a configuration C at a given instant t if the membrane from Πk labeled
by i has electrical charge α in that configuration, it contains the multiset v, and
besides its parent membrane (or the environment, in case i is the skin membrane)
contains multiset u. The execution of the rule produces the following effects: (a)
multisets v and u are removed from membrane i and its parent region, respectively;
(b) at the same time, multiset u′ is added to the parent membrane of i and multiset
v′ is added to membrane i ; and (c) the new electrical charge of membrane i will now
be α′ (which might be the same as α). It is interesting to note that when applying a
given set of rules to a given membrane, all of the rules must have the same electrical
charge on their right-hand side; that is, all rules applied simultaneously in one step
on the same membrane should be consistent. The value of function fr at a given
instant t indicates the affinity which the rule has.

A rule r ∈ RE of the type (x)e j
pr−−−→(y1)e j1 . . . (yh)e jh is applicable to a con-

figuration C of the system at a given instant t if the environment e j contains object x
in this configuration. The execution of such rule produces the following effects: (a)
the object x is eliminated from environment e j ; and (b) environments e j1 , . . . , e jh
get new objects y1, . . . , yh respectively.

A rule r ∈ RE of type (Πk)e j
pr ′−−−→ (Πk)e j ′ is applicable in environment e j if

this environment contains P systemΠk . The execution of such rule makes the system
Πk move from environment e j into environment e j ′ .

From these notions, one can define in a natural way what means that the mul-
tienvironment P system goes from a configuration C at a given instant to another
configuration C ′ in the next instant, by means of the execution of a maximal mul-
tiset of rules following the previous indications. In this way, a computation step is
obtained; that is, a transition from a configuration to a next configuration of the sys-
tem. Thus, the concept of computation is introduced in a natural way, as a sequence
of configurations as it was defined in Sect. 1.4 of the first chapter.

http://dx.doi.org/10.1007/978-3-319-55989-6_1
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7.2.2.1 Types of Multienvironment P Systems

We can highlight two main types of multienvironment P systems, which correspond
to different frameworks of computational modeling: systems having a stochastic
orientation, called multicompartmental P systems, and those having a probabilistic
orientation, called population dynamics P systems. We will next describe the spe-
cific syntax of each one, as well as some simulation algorithms which allow us to
implement the corresponding semantics.

The stochastic approach of multienvironment P systems is calledmulticompart-
mental P systems and constitutes a variant which provides a framework for modeling
molecular and cellular processes. In these systems, each environment contains a cer-
tain number of P systems which are randomly distributed at the beginning of the
computation. Besides, on each environment, the P systems residing there will get
specific initial multisets associated with this environment.

In these systems, the inherent randomness of molecular and cellular processes is
captured by using a semantics designed for rewriting rules that have associated a
propensity.

Definition 2 Amulticompartmental P system of degree (q,m, n), with q,m, n ≥ 1,
having T ≥ 1 time units, is a multienvironment P system of degree (q,m, n) and
with T time units

Π = (G, Γ,Σ, T,RE ,μ,R, { fr, j | r ∈ R ∧ 1 ≤ j ≤ m},
{Mi, j | 1 ≤ i ≤ q ∧ 1 ≤ j ≤ m}, {E j | 1 ≤ j ≤ m})

which fulfills the following conditions:

• The computable functions associated to the rules of the environment and the rules
of the P systems are the propensities of such rules. These functions are deter-
mined from the values of stochastic constants, by applying the mass action law,
exponential decay law andMichaelis–Menten dynamics. The stochastic constants
associated to each rule are calculated, on their turn, from the values of kinetic
constants which have been experimentally calculated. The propensities are func-
tions which depend on time, but on the other hand, they do not depend on the
environment e j where the corresponding P system currently is.

• Initially, the P systems are randomly distributed among them environments of the
system.

• For every rule r of type (x)e j
pr−−−→(y1)e j1 · · · (yh)e jh , we have h = 1; that is,

an object x can just move from an environment to another one, possibly getting
transformed into another object y1.

The semantics of a multicompartmental P system can be simulated through an
extension of the Gillespie algorithm [34–38], an algorithm for simulating the time-
course evolution of a stochastic kinetic model and developed for a single, well mixed
and fixed volume or compartment. The extension is calledmulticompartmental Gille-
spie algorithm (introduced in [93]) and it is an adaptation of the Gillespie algorithm
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Fig. 7.1 A
multicompartmental P
system

that can be applied in the different regions defined by the hierarchical and com-
partmentalised structure of a multicompartmental P system model (Figs. 7.1 and
7.2).

The probabilistic approach of multienvironment P systems is called population
dynamics P systems and constitutes a variant of multienvironment P systems which
provides a framework for modeling of processes related to population dynamics,
in general. The inherent randomness of such processes is captured by means of a
semantics designed for rewriting rules that have associated probability functions
at any instant which will also depend on the environment. In these systems, each
environment contains a single P system, and the initial multisets of their membranes
are specific for each environment.

Definition 3 A population dynamics P system (PDP system, for short) of degree
(q,m), where (q,m ≥ 1) and having T ≥ 1 time units, is a multienvironment P
system of degree (q,m,m) and with T time units

Π = (G, Γ,Σ, T,RE ,μ,R, { fr, j | r ∈ R ∧ 1 ≤ j ≤ m},
{Mi, j | 1 ≤ i ≤ q ∧ 1 ≤ j ≤ m}, {E j | 1 ≤ j ≤ m})

satisfying the following conditions:

• At the initial instant, each environment e j contains exactly one P system, which
will be denoted by Π j . Therefore, the number n of P systems matches the number
m of environments.

• Function pr associated to rule r from RE of the type

(x)e j
pr−−−→(y1)e j1 · · · (yh)e jh

have their range included in [0, 1] and they verify:

– For each e j ∈ V and x ∈ Σ , the sum of the functions associated to rules of the
above type is the constant function 1.
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Fig. 7.2 A population
dynamics P system

• Function pr ′ associated to rule r ′ from RE of the type (Πk)e j
pr ′−−−→ (Πk)e j ′ are

all constant and equal to 0; that is, one may as well assume that this type of rule is
forbidden, or equivalently, P systems residing in an environment cannot “travel”
to any other environment.

• For each rule r ∈ R of the system Π j located in e j , 1 ≤ j ≤ m, the computable
function fr, j also depends on the environment and its range is contained within
[0, 1]. Moreover, for each u, v ∈ M f (Γ ), 1 ≤ i ≤ q and α,α′ ∈ {0,+,−}, the
sum of the functions fr, j with r ≡ u[v]αi → u′[v′]α′

i , is the constant function 1.
We write RΠ j instead of R.

Note that at any instant t , 1 ≤ t ≤ T , for each object x in environment e j , if there
exist communication rules of type (x)e j

pr−−−→(y1)e j1 . . . (yh)e jh , then some of them
will be applied. In case several of such rules exist having (x)e j as their left-hand
side, then the rules will be applied according to their corresponding probabilities
associated to this particular instant t .

7.2.3 Simulation Algorithms for PDP Systems: DNDP
and DCBA

Simulation algorithms are necessary for reproducing the execution of computational
models, since they provide themechanisms to evolve a system fromone configuration
to another. The aim of simulation algorithms within the PDP systems framework is
to serve as inference engines, reproducing the semantics of the model in a reliable
and accurate way.

On the one hand, the syntactical elements refer to all data elements of P systems
(graph associated membrane structure, multisets of objects, rules, etc.); on the other
hand, the semantics of the model refers to the way the rules are applied, that is,
how the system evolves. Therefore, a simulation algorithm is assumed to represent
a semantics for a model, while dealing with all the syntactical elements.
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Before introducing the defined simulation algorithms for PDP systems, we shall
discuss some semantical properties that are desirable on their simulation. They are
defined to adjust the behavior of the models according to how the experts and design-
ers think about the modeled phenomena. Some of them also come from the fact that
we are actually dealing with P systems and Markov Chains based probabilistic sys-
tems [65].

• Probabilistic behavior: APDP system aims to reproduce the stochasticity of nature
processes according to given probabilities. This random behavior is directly asso-
ciated to rules by the number of times they are going to be applied. To do this, a
simulation algorithm should calculate random numbers according to the defined
probabilities, in such a way that each time the system is simulated the reproduced
computation should be different. Thus, statistical studies over several parallel and
independent simulations should fit the expected mean and variance.

• Resource competition: since the cooperation degree in PDP systems is greater
than 1, rules are used to dictate how groups of elements and individuals evolve
in the model. According to the semantics of PDP systems (and the way experts
think on Population Dynamics), what is going to happen to the same group of
individuals must be predefined, and the probability of each option has to sum 1.
However, the same elements can participate in different groups, and so in different
evolutions. This issue is also known as competition for resources (by the evolution
of groups viewpoint). The behavior for this is not such explicitly specified, and
can be carried out by several approaches. Some algorithms implement a random
way to distribute the resources, while others assume that nature has a tendency
towards proportionally distribute resources to such groups were less elements are
required (the more required, the more energy is needed).

• Maximality of themodel: rules are applied in amaximally parallelway, as tradition-
ally in P systems. This property can, in fact, help to control the evolution of every
element, even if they remain unchanged or disappear. We will see that, sometimes,
an extra phase within the algorithms assuring maximality will be required.

• Consistency of rules: according to the syntactics of themodel, two rules can lead to
an inconsistent configuration in which amembrane can have two different charges.
However, the semantics imposes that each state must be consistent, by restricting
the property of maximality to those rules that produce consistent states of the
system; that is, two rules producing a different charge to the same membrane
cannot be simultaneously applied.

One of the first simulation algorithms for PDP systems was Binomial Block Based
algorithm (BBB) [11]. Basically, the chosen approximation was to arrange rules into
blocks, in such a way that rules having their left-hand sides exactly equal are put in
a single block (see Definitions 4 and 5). The algorithm consists on a random of over
those blocks, maximally selecting a number of applications for each one (according
to that “common” left-hand side), and calculating a multinomial distribution of those
applications to the rules, according to the probabilities. This multinomial distribution
is implemented internally by using binomial random variates according to the rules.
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Although this simulation algorithm is useful for the majority of models, like [10,
11], it has some disadvantages since it does not handle accurately the following
semantic properties:

• Resource competition: Rules with partial (no total) overlapping on their left-hand
sides are classified into different blocks, so the common objects will not be dis-
tributed since these blocks are maximally executed.

• Consistency of rules.
• Evaluation of probabilistic functions related to rules. Only constant probabilities
are considered, what is not the case for forthcoming PDP systems based models.

7.2.3.1 DNDP

The resource competition is a well-known issue in P system simulation. It has been
addressed by different approaches. For instance, in [80], a way to convey the non-
determinism in reconfigurable hardware was studied. This simulation algorithm was
called Direct Non-deterministic Distribution (DND). The procedure consists of two
phases for selecting rules (a random order is assumed): a forward phase which
chooses a random number of applications for each rule, and a backward phase
which iterates again the rules checking and assigning the remaining applications.
This mechanism was the basis for a new simulation algorithm for PDP systems,
called Direct Non-Deterministic distribution with Probabilities (DNDP). It was first
presented in [66], formally verified in [68], and compared with BBB in [16, 65].

Similarly to BBB, the transitions of the PDP system are simulated in two phases,
selection and execution, in order to synchronize the consumption and production of
objects. However, selection is divided in two micro-phases, following the design of
the DND algorithm: first phase calculates a multiset of consistent applicable rules,
and second phase eventually increases the multiplicity of some of the rules in the
previous multiset to assure maximal application, obtaining a multiset of maximally
consistent applicable rules. The main procedure of the DNDP algorithm is shown in
Algorithm 1.

Algorithm 1 DNDP main procedure
Input: A PDP system of degree (q,m) with q ≥ 1, m ≥ 1, taking T time units, T ≥ 1.
1: C0 ← initial configuration of the system
2: for t ← 0 to T − 1 do
3: C ′

t ← Ct
4: INITIALIZATION � (Algorithm 2)
5: FIRST SELECTION PHASE: consistency � (Algorithm 3)
6: SECOND SELECTION PHASE: maximality � (Algorithm 4)
7: EXECUTION � (Algorithm 5)
8: Ct+1 ← C ′

t
9: end for

Firstly, the initialization process (Algorithm 2) constructs two ordered set of
rules, A j and Bj , gathering only rules fromRE andRΠ j in environment e j having a
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probability greater than 0. Finally, the probabilities of rules are recalculated for each
moment t .

Algorithm 2 DNDP initialization
1: for j ← 1 to m do
2: RE, j ← ordered set of rules from RE related with the environment j
3: A j ← ordered set of rules from RE, j whose probability is > 0 at step t
4: LC j ← ordered set of pairs 〈label, charge〉 for all the membranes from Ct

contained in the environment j
5: Bj ← ∅
6: for all 〈h,α〉 ∈ LC j (following the considered order) do
7: Bj ← Bj ∪ ordered set of rules from RΠ j whose probability is > 0 at

step t for the environment j
8: end for
9: end for

As already mentioned, first selection phase (Algorithm 3) calculates a multiset of
consistent applicable rules, denoted by R j (for each environment j). First of all, the
ordered set Dj stores a random order applied to A j ∪ Bj . A temporal copy of the
current configurationCt , calledC ′

t , is also created, that will be updating by removing
the LHS of rules being selected.

A rule r is considered applicable if the following holds: it is consistent with the
previously selected rules in R j (according to the order in Dj ), and the number of
possible applications M in C ′

t is non-zero. When a rule r is applicable, a random
number of applications n is calculated according to the probability function and
using a binomial distribution. On the one hand, since C ′

t has been updated by the
previously selected rules, the number n cannot exceed M . On the other hand, if the
generated number n is 0, the corresponding rule is also added to the multiset R j ,
which gives a new chance to be selected in the next phase (maximality). In this way,
the “multiset” of rules R j is managed as a set of pairs 〈x, y〉, where x ∈ Dj and y
is the number of times that x is going to be applied (eventually y = 0). Let denote
R0

j = {r ∈ Dj : 〈x, 0〉 ∈ R j } and R1
j = {r ∈ Dj : 〈x, n〉 ∈ R j , n > 0}. Only

rules from R1
j are considered for the consistency condition, since they have already

consumed objects in C ′
t .

Algorithm 3 DNDP first selection phase: consistency
1: for j ← 1 to m do
2: R j ← ∅
3: Dj ← A j ∪ Bj with a random order
4: for all r ∈ Dj (following the considered order) do
5: M ← maximum number of times that r is applicable to C ′

t
6: if r is consistent with the rules in R1

j ∧ M > 0 then
7: N ← maximum number of times that r is applicable to Ct
8: n ← min{M, Fb(N , pr, j (t))}
9: C ′

t ← C ′
t − n · LHS(r)

10: R j ← R j ∪ {< r, n >}
11: end if
12: end for
13: end for
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In the second selection phase (Algorithm 4), the consistent applicable rules are
checked again in order to achieve maximality. Only consistent rules are considered,
and taken from R j . If one rule r ∈ R j has still a number of applications M greater
than 0 inC ′

t , then M will be added to the multiplicity of the rule, and subtracted again
from C ′

t . In order to fairly distribute the objects among the rules, they are iterated
in descendant order with respect to the probabilities. Moreover, if one rule from the
multiset R0

j was checked, it would be possible that another rule from R1
j , inconsistent

to this one, had been previously selected. In this case, the consistent condition has
to be tested again.

Algorithm 4 DNDP second selection phase: maximality
1: for j ← 1 to m do
2: R j ← R j with an order by the rule probabilities, from highest to lowest
3: for all < r, n >∈ R j (following the selected order) do
4: if n > 0 ∨ (r is consistent with the rules in R1

j ) then
5: M ← maximum number of times that r is applicable to C ′

t
6: if M > 0 then
7: R j ← R j ∪ {< r, M >}
8: C ′

t ← C ′
t − M · LHS(r)

9: end if
10: end if
11: end for
12: end for

Finally, execution phase (Algorithm 5) is similar to BBB algorithm. It will iterate
all the rules in every R1

j (maximal applicable consistent rules from environment j),
and it will add the right-hand sides of them to the configuration C ′

t . At the end of the
process, C ′

t is actually the next configuration: the left-hand sides of rules have been
removed in the first and second selection phases, and the right-hand sides are added
in the execution stage.

Algorithm 5 DNDP execution
1: for all < r, n >∈ R j , n > 0 do
2: C ′

t ← C ′
t + n · RHS(r)

3: Update the electrical charges of C ′
t according to RHS(r)

4: end for

As it can be seen, DNDP included mechanisms to partially solve the drawbacks
from BBB: handling probability functions, consistency of rules and resource com-
petition. Its functionality has been verified in [68]. Although the behavior of object
distribution is still not accurate enough, its efficiency makes it a good candidate to
simulate many PDP system models. Section7.2.3.3 shows a simple example and a
discussion over its accuracy. However, DNDP still creates some distortion in the dis-
tribution of objects among competing (with overlapped LHS) rules. That is, instead
of rules being selected according to its probabilities in a uniform manner, this selec-
tion process is biased towards those with the highest probabilities. Moreover, the
probabilistic distribution of rule executions inside blocks will not eventually follow
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a multinomial distribution, since competing rules from other blocks might consume
objects in the selection process.

7.2.3.2 DCBA

Both DNDP and BBB share a common drawback: a distortion in the object dis-
tribution among competing rules. This is where the latest algorithm, called Direct
distribution based on Consistent Blocks Algorithm (DCBA) [71], come into play.
The main idea behind DCBA is to implement a proportional distribution of objects
among consistent block of rules (a concept similar, but not the same, to blocks in
BBB), while dealing with consistency and probabilities.

In what follows, the key concepts required for DCBA are going to be described.
Then, the pseudocode of the algorithm is provided, along with brief explanations.
Finally, DCBA and DNDP algorithms are going to be compared by a very simple
test example.

Firstly, rules inR andRE can be classified into blocks having the same left-hand
side, following the Definitions 4 and 5. This notion was also used in BBB algorithm.

Definition 4 The left and right-hand sides of the rules are defined as follows:

(a) Given a rule r ∈ RE of the form (x)e j
p−−−→ (y1)e j1 · · · (yh)e jh where e j ∈ V

and x, y1, . . . , yh ∈ Σ :

• The left-hand side of r is LHS(r) = (e j , x).
• The right-hand side of r is RHS(r) = (e j1 , y1) · · · (e jh , yh).

(b) Given a rule r ∈ R of the form u[v]αi → u′[v′]α′
i where 1 ≤ i ≤ q, α,α′ ∈

{0,+,−} and u, v, u′, v′ ∈ Γ ∗:

• The left-hand side of r is LHS(r) = (i,α, u, v). The charge of LHS(r) is
charge(LHS(r)) = α.

• The right-hand side of r is RHS(r) = (i,α′, u′, v′). The charge of RHS(r)
is charge(RHS(r)) = α′.

The charge of LHS(r) is the second component of the tuple (idem for RHS(r)).

Definition 5 Rules from R and RE can be classified in blocks as follows: (a) the
block associated to (i,α, u, v) is Bi,α,u,v = {r ∈ R : LHS(r) = (i,α, u, v)}; and
(b) the block associated with (e j , x) is Bej ,x = {r ∈ RE : LHS(r) = (e j , x)}.

Recall that, according to the semantics of our model, the sum of probabilities of
all the rules belonging to the same block is always equal to 1. In particular, rules
with probability equal to 1 form individual blocks. Note that rules having exactly
the same left-hand side (LHS) belong to the same block, but rules with overlapping
(but different) left-hand sides are classified into different blocks. The latter leads to
object (resource) competition, which is a critical aspect to manage with simulation
algorithms.
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Rule consistency is easily handled in DCBA by the concept of consistent blocks.
It is an expansion of the notion of block, together with consistent rules and set of
rules, as given in Definitions 6–9.

Definition 6 Two rules, r1 ≡ u1[v1]α1
i1

→ u′
1[v′

1]α
′
1

i1
and r2 ≡ u2[v2]α2

i2
→ u′

2[v′
2]α

′
2

i2
,

are consistent if and only if (i1 = i2 ∧ α1 = α2 → α′
1 = α′

2).

Definition 7 A set of rules is consistent if every pair of rules of the set is consistent.

Definition 8 Given (i,α, u, v) where 1 ≤ i ≤ q, α ∈ EC , u, v ∈ Γ ∗, the block
Bi,α,u,v is consistent if and only if there exists α′ such that, for each r ∈ Bi,α,u,v ,
charge(RHS(r)) = α′.

Definition 9 Given i,α,α′, u, v where 1 ≤ i ≤ q, α,α′ ∈ EC , u, v ∈ Γ ∗, the
block associated with (i,α,α′, u, v) is the set:

Bi,α,α′,u,v = {r ∈ R : LHS(r) = (i,α, u, v) ∧ charge(RHS(r)) = α′}

Note that the block Bi,α,α′,u,v determines a consistent set of rules. Then, the left-
hand side of a block B, denoted by LHS(B), is defined as the left-hand side of any
rule in the block.

Definition 10 We say that two blocks Bi1,α1,α
′
1,u1,v1 and Bi2,α2,α

′
2,u2,v2 are mutually

consistent with each other, if and only if (i1 = i2 ∧ α1 = α2) ⇒ (α′
1 = α′

2).

That is, two rule blocks are mutually consistent if the union of them represents a
consistent set of rules.

Definition 11 A set of blocks B = {B1, B2, . . . , Bs} is self consistent (or mutually
consistent) if and only if they are pairwise mutually consistent, that is ∀i, j (Bi and
B j are mutually consistent).

In such a context, a set of blocks has an associated set of tuples (i,α,α′), that
is, a relation between labels and electrical charges (H × EC) in EC . Then, a set of
blocks is mutually consistent if and only if the associated relationship H × EC in
EC is functional.

DCBA solves the resource competition by performing a proportional distribution
of objects among competing blocks (with overlapping LHS), determining in this
way the number of times that each rule in

⋃m
j=1 RΠ j ∪ RE is applied. Algorithm 6

describes the main loop of the DCBA. It has the same general scheme as its prede-
cessors, DNDP and BBB, where the simulation of a computational step is structured
in two stages: selection and execution. However, in this case, selection stage consists
of three phases: Phase 1 distributes objects to the blocks in a certain proportional
way, Phase 2 assures the maximality by checking the maximal number of applica-
tions of each block, and Phase 3 translates block applications to rule applications by
calculating random numbers using the multinomial distribution.
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Algorithm 6 DCBA main procedure
Require: A Population Dynamics P system of degree (q,m), T ≥ 1 (time units), and A ≥ 1

(Accuracy). The initial configuration is called C0.
1: INITIALIZATION � (Algorithm 7)
2: for t ← 1 to T do
3: Calculate probability functions fr, j (t) and p(t).
4: C ′

t ← Ct−1
5: SELECTION of rules:

– PHASE 1: distribution � (Algorithm 8)
– PHASE 2: maximality � (Algorithm 9)
– PHASE 3: probabilities � (Algorithm 10)

6: EXECUTION of rules. � (Algorithm 11)
7: Ct ← C ′

t
8: end for

INITIALIZATION procedure (Algorithm 7) constructs a static distribution table
T j for each environment. Two variables, B j

sel and R j
sel , are also initialized, in order

to store the selected multisets of blocks and rules, respectively. It can be observed
that each column label of the tables T j contains the information of the corresponding
block left-hand side, and each row of the tables T j contains the information related
to the object competitions (those columns having non-null values are competing for
such a object).

Algorithm 7 Initialization
1: Construction of the static distribution table T :

• Column labels: consistent blocks Bi,α,α′,u,v of rules from R.
• Row labels: pairs (x, i), for all objects x ∈ Γ , and 0 ≤ i ≤ q.
• For each row, for each cell of the row: place 1

k if the object in the row label appears in its
associated compartment with multiplicity k in the LHS of the block of the column label.

2: for j = 1 to m do � (Construct the expanded static tables T j )
3: T j ← T . � (Initialize the table with the original T )
4: For each rule block Be j ,x from RE , add a column labeled by Be j ,x to T j ;

place the value 1 at row (x, 0) for that column.
5: Initialize the multisets B j

sel ← ∅ and R j
sel ← ∅

6: end for

The distribution of objects among the blocks is carried out in selection Phase
1 (Algorithm 8). The expanded static tables T j are used for this purpose in each
environment, together with three different filter procedures. Filter 1 discards the
columns of the table corresponding to non-applicable blocks due tomismatch charges
in LHS and C ′

t . Then, Filter 2 discards the columns with objects in the LHS not
appearing in C ′

t . Finally, in order to save space in the table, Filter 3 discards empty
rows. These three filters are applied at the beginning of Phase 1, and the result is a
dynamic table T t

j (for the environment j and time step t).
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In order to get a set of mutually consistent blocks, the consistency condition is
checked after applying Filters 1 and 2. This checking can be implemented by a
loop over the blocks. If it fails, the simulation process is halted, providing a warning
message to the user. Nevertheless, the algorithm can be configured to find a way to
continue the execution by non-deterministically constructing a subset of mutually
consistent blocks. Since this method can be exponentially expensive in time, this is
optional.

Algorithm 8 Selection phase 1: distribution
1: for j = 1 to m do � (For each environment e j )
2: Apply filters to table T j , using C ′

t and obtaining T t
j , as follows:

a. T t
j ← T j

b. Filter 1 (T t
j ,C

′
t ).

c. Filter 2 (T t
j ,C

′
t ).

d. Check mutual consistency for the blocks remaining in T t
j . If there is at least one inconsis-

tency then report the information about the error, and optionally halt the execution (in case
of not activating step 3).

e. Filter 3 (T t
j ,C

′
t ).

3: (OPTIONAL) Generate a set Stj of sub-tables from T t
j , formed by sets of

mutually consistent blocks, in a maximal way in T t
j (by the inclusion

relationship). Replace T t
j with a randomly selected table from Stj .

4: a ← 1
5: repeat
6: for all rows X in T t

j do
7: RowSumX,t, j ← total sum of the non-null values in the row X .
8: end for
9: T V t

j ← T t
j � (A temporal copy of the dynamic table)

10: for all non-null positions (X, Y ) in T t
j do

11: multX,t, j ← multiplicity in C ′
t at e j of the object at row X .

12: T V t
j (X, Y ) ← �multX,t, j · (T t

j (X,Y ))2

RowSumX,t, j
�

13: end for
14: for all not filtered column, labeled by block B, in T t

j do
15: Na

B ← minX∈rows(T t
j )

(T V t
j (X, B)) � (The minimum of the column)

16: B j
sel ← B j

sel + {BNa
B } � (Accumulate the value to the total)

17: C ′
t ← C ′

t − LHS(B) · Na
B � (Delete the LHS of the block.)

18: end for
19: Filter 2 (T t

j ,C
′
t )

20: Filter 3 (T t
j ,C

′
t )

21: a ← a + 1
22: until (a > A) ∨ (all the selected minimums at step 15 are 0)
23: end for

Once the columns of the dynamic table T t
j represent a set of mutually consistent

blocks, the distribution process starts. This is carried out by creating a temporal copy
of T t

j , called T V t
j , which stores the following products:
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• The normalized value with respect to the row: this is the way to proportionally
distribute the corresponding object along the blocks. It relays on the multiplicities
in the LHS of the blocks; in fact, blocks requiring more copies of the same object
are penalized in the distribution. This is inspired in the amount of energy required
to gather individuals from the same species.

• The value in the dynamic table (i.e. 1
k ): this indicates the number of possible

applications of the block with the corresponding object.
• Themultiplicity of the object in the configurationC ′

t : this performs the distribution
of the number of copies of the object along the blocks.

The number of applications for each block is calculated by selecting the minimum
value in each column of T V t

j . This number is then used to consume the LHS from
the configuration. However, this application could not be maximal. The distribution
process can eventually deliver objects to blocks that are restricted by other objects.
As this situation may occur frequently, the distribution and the configuration update
process is performed A times, where A is an input parameter referring to accuracy.
The more the process is repeated, the more accurate the distribution becomes, while
the performance of the simulation decreases. A = 2 gives experimentally the best
accuracy/performance ratio. In order to efficiently repeat the loop for A, and also
before going to the next phase (maximality), it is interesting to apply Filters 2 and
3 again.

After phase 1, it may be the case that some blocks are still applicable to the
remaining objects. Thismay be caused by a low A value or by rounding artifacts in the
distribution process. Due to the requirements of P systems semantics, a maximality
phase is now applied (Algorithm 9). Following a random order, the maximal number
of applications is calculated for each block still applicable (remaining columns in
table T t

j ).

Algorithm 9 Selection phase 2: maximality
1: for j = 1 to m do � (For each environment e j )
2: Set a random order to the blocks remaining in the last updated table T t

j .
3: for all block B, following the previous random order do
4: NB ← number of possible applications of B in C ′

t .

5: B j
sel ← B j

sel + {BNB } � (Accumulate the value to the total)
6: C ′

t ← C ′
t − LHS(B) · NB � (Delete the LHS of block B, NB times.)

7: end for
8: end for

After the application of phases 1 and 2, a maximal multiset of selected (mutually
consistent) blocks has been computed. The output of the selection stage has to be,
however, a maximal multiset of selected rules. Hence, Phase 3 (Algorithm 10) passes
from blocks to rules, by applying the corresponding probabilities (at the local level
of blocks). The rules belonging to a block are selected according to a multinomial
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distribution M(N , g1, . . . , gl), where N is the number of applications of the block,
and g1, . . . , gl are the probabilities associated with the rules r1, . . . , rl within the
block, respectively.

Algorithm 10 Selection phase 3: probability
1: for j = 1 to m do � (For each environment e j )

2: for all block BNB ∈ B j
sel do

3: Calculate {n1, . . . , nl }, a random multinomial M(NB , g1, . . . , gl ) with
respect to the probabilities of the rules r1, . . . , rl within the block.

4: for k = 1 to l do
5: R j

sel ← R j
sel + {rnkk }.

6: end for
7: end for
8: Delete the multiset of selected blocks B j

sel ← ∅. � (Useful in next step)
9: end for

Finally, the execution stage (Algorithm11) is applied. This stage consists in adding
the RHS of the previously selected multiset of rules, as the objects present on the
LHS of these rules have already been consumed. Moreover, the indicated membrane
charge is safely set (given that the consistency condition is assured).

Algorithm 11 Execution
1: for j = 1 to m do � (For each environment e j )

2: for all rule rn ∈ R j
sel do � (Apply the RHS of selected rules)

3: C ′
t ← C ′

t + n · RHS(r)
4: Update the electrical charges of C ′

t from RHS(r).
5: end for
6: Delete the multiset of selected rules R j

sel ← ∅. � (Useful for the next step)
7: end for

7.2.3.3 A Test Example: DCBA Versus DNDP

Let us consider a test example, with no biological meaning, in order to show the
different behaviors of DNDP and DCBA algorithms. This test PDP system is of
degree (2, 1), and of the following form:

Πtest = (G, Γ,Σ, T,RE ,μ,R, { fr,1 | r ∈ R},M1,1,M2,1, E1)

where:

• G is an empty graph.
• Γ = {a, b, c, d, e, f, g, h} and Σ = {b}.
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• T = 1, only one time step.
• RE = ∅.
• μ = [ [ ]2 ]1 is the membrane structure, and the corresponding initial multisets are:

– E1 = {b} (in the environment)
– M1 = {a60} (in membrane 1)
– M2 = {a90 , b72 , c66 , d30} (in membrane 2)

• The rules R to apply are:
r1.1 ≡ [ a4 b4 c2 ]2 0.7−−−→ e2 [ ]2
r1.2 ≡ [ a4 b4 c2 ]2 0.2−−−→ [ e2 ]2
r1.3 ≡ [ a4 b4 c2 ]2 0.1−−−→ [ e f ]2
r2 ≡ [ a4 d ]2 1−−−→ f 2[ ]2
r3 ≡ [ b5 d2 ]2 1−−−→ g2[ ]2
r4 ≡ b [ a7 ]−1 1−−−→ [ h100 ]−1
r5 ≡ a3 [ ]2 1−−−→ [ e3 ]2
r6 ≡ a b [ ]2 1−−−→ [ g3 ]−2
We can construct a set of six consistent rule blocks BΠtest (of the form bh,α,α′,u,v)

from the setR of Πtest as follows:

• b1 ≡ b2,0,0,∅,a4b4c2 = {r1.1, r1.2, r1.3}
• b2 ≡ b2,0,0,∅,a4d = {r2}
• b3 ≡ b2,0,0,∅,b5d2 = {r3}
• b4 ≡ b1,−,−,b,a7 = {r4}
• b5 ≡ b2,0,0,a3,∅ = {r5}
• b6 ≡ b2,0,−,ab,∅ = {r6}

It is noteworthy that the set BΠtest is not mutually consistent. However, only the
blocks b1, b2, b3 and b5 are applicable in the initial configuration, and they, in fact,
conform a mutually consistent set of blocks. Block b4 is not applicable since the
charge of membrane 1 is neutral, and block b6 cannot be applied because there are
no b’s in membrane 1.

Table7.1 shows five different runs for one time step of Πtest using DNDP algo-
rithm. The values refers to the number of applications for each rule, which is actually
the output of the selection stage (and the input of the execution stage). Note that for
simulation 1, the applications for r1.1, r1.2 and r1.3 follows the multinomial distrib-
ution. The applications of these rules are reduced because they are competing with
rules r2 and r3. However, this competition leads to situations where the applications
of the block b1 does not follow a multinomial distribution. It comes from the fact of
using a random order over the rules, but not over the blocks. Rules having a proba-
bility equals to 1 are more restrictive on the competitions because they are applied
in a maximal way in their turn. This is the reason because on simulations 4 and 5,
none of the rules r1.i , 1 ≤ i ≤ 3 are applied.

This behavior could create a distortion of the reality described in the simulated
model. But it is usually appeased running several simulations andmaking a statistical
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study, at expenses of a larger variance. Finally, rules not competing for objects are
applied as is, in a maximal way. For example, rule r5 is always applied 20 times
because its probability is equal to 1.

Table7.2 shows the corresponding results using DCBA. It is noteworthy that the
selection of rules belonging to block 1 {r1.i , 1 ≤ i ≤ 3} always follows amultinomial
distribution with respect to the 3 probabilities. This solves the drawback we showed
on Table7.1. Moreover, it can be seen that the maximality sometimes can give one
more application to blocks 2 and 3, in spite of keeping the original 10 applications
for block 1 from phase 1. In any case, the number of applications is proportionally
distributed, avoiding the distortion of using a random order over the blocks (or rules),
as made in the DNDP algorithm.

Besides, DNDP is usually more efficient than DCBA, since it is based on a direct
method to calculate the selection of rules, whereas DCBA performs 1 more step and
has to handle a big table.

Table 7.1 Simulating Πtest using the DNDP algorithm

Rules Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

r1.1 11 0 0 0 0

r1.2 4 4 3 0 0

r1.3 1 0 0 0 0

r2 6 18 6 22 2

r3 1 6 12 4 14

r4 – – – – –

r5 20 20 20 20 20

r6 – – – – –

Table 7.2 Simulating Πtest using the DCBA algorithm

Rules Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

r1.1 7 10 7 6 7

r1.2 3 0 4 1 2

r1.3 1 1 5 3 1

r2 11 11 11 12 12

r3 5 5 5 6 6

r4 – – – – –

r5 20 20 20 20 20

r6 – – – – –
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7.3 Simulation Platform

7.3.1 P-Lingua: A General Framework to Simulate P Systems

Since the introduction of Membrane Computing in [88], many variants of its asso-
ciated computational devices, called P systems, have been designed, and their the-
oretical properties and possible practical applications studied. Unfortunately, P sys-
tems cannot be implemented yet on their “natural” substrate, biological cells. Con-
sequently, in order to further research on P systems capabilities, simulation tools,
working on conventional electronic devices, come into scene. In this sense, P-Lingua
framework, was introduced in [26]. This framework provides a general program-
ming language for P systems, called P-Lingua itself, and a Java [116] based open
source library called pLinguaCore. On the one hand, P-Lingua language pro-
vides a common syntax for specifying different kinds of P systems, belonging to the
main variants that can be found within the Membrane Computing paradigm: cell-
like systems, tissue-like systems and neural-like systems. The number of supported
variants is increased with each revision of the language. On the other hand, pLin-
guaCore library provides both parsers and simulators for the variants supported in
the P-Lingua language. P-Lingua framework has been a software platform of many
conference and journal papers, as well as discussed in four Ph.D. theses (see [119]).

In terms of real-life applications, PDP systems constitute a specially relevant
variant which have been successfully applied to study the dynamics of interesting
real ecological systems. P-Lingua framework has provided the required specification
and simulation tools to assist in these tasks, in conjunction with MeCoSim [117], a
general purpose application to model, design, simulate, analyze and verify different
types of models based on P systems, which uses pLinguaCore as its inference engine.

This section aims to the following points: (a) provide a general overview of P-
Lingua framework and (b) cover the details of specifying and simulatingPDP systems
with P-Lingua.

7.3.1.1 P-Lingua Framework Official Versions and Variants

The latest official version of the framework is 4.0. Since this release, different variants
have been developed and presented to the scientific community. One of the most
widely used variant is that included into MeCoSim featuring, among other things,
some syntax extensions to define PDP systems in a easier way. As specification and
simulation of PDP systems by means of P-Lingua is a core part of this section, we
will consider our “working version” of P-Lingua the MeCoSim variant released at
the time of writing of this book.
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7.3.1.2 Supported Models

P-Lingua framework provides support for the many kinds of models belonging to
threemain variants of P systems: cell-like systems, tissue-like systems andneural-like
systems. In MeCoSim version, support for simple kernel P systems is also provided.

Cell-like systems

Cell-like systems are inspired by the hierarchical structure of eukaryotic cells [88].
The following cell-like P system variants are supported in P-Lingua:

• Transition P systems. The basic P systems were introduced in [88] and allow
definition of priority-based rules.

• Symport/antiport P systems. These systemswere introduced in [87] and allow only
communication rules of the symport or antiport kind (a change of the places of
objects with respect to the membranes of a system takes place along computations
but not a change/evolution of the objects themselves). P-Lingua does not support
arbitrary multiplicity of objects in the environment for this variant.

• Active membranes with division rules. These systems were introduced in [89]
and allow membrane duplication by means of division of membranes. P-Lingua
supports object-fired membrane division rules for both elementary and non-
elementary membranes.

• Active membranes with creation rules. These systems were first considered in [51,
79] and allow membrane multiplication by means of creation of membranes.

• Probabilistic P systems. Multienvironment probabilistic functional extended P
systems with active membranes, also called Population Dynamics P systems, were
introduced with this denomination in [15]. This variant takes its name from its
original application to model real-life ecosystems, although this model has proved
successful to deal with other phenomena such like gene networks.

Tissue-like systems

Tissue-like systems take inspiration from the way in which cells organize and com-
municatewithin a net-like structure in tissues [64]. The following tissue-like P system
variants are supported in P-Lingua:

• Tissue P systems with communication and division rules. These systems were
introduced in [90] and allow only communication of objects among cells (or the
environment) and multiplication of cells by means of the process of cell division.

• Tissue P systems with communication and separation rules. These systems were
introduced in [84] and allow only communication of objects among cells (or the
environment) andmultiplication of cells bymeans of the process of cell separation.

Neural-like systems

Neural-like systems are inspired from theway inwhich neurons in the brain exchange
information by means of the propagation of spikes [50]. The following features of
Spiking Neural P systems (SN P systems for short) are supported:
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• SN P systems with neuron division and budding rules, introduced in [85].
• SN P systems with functional astrocytes, introduced in [58].
• SN P systems with excitatory/inhibitory astrocytes, introduced in [86].
• SN P systems with anti-spikes, introduced in [83].

Kernel P systems

Kernel P systems (kP systems for short), introduced in [32] constitute a formal-
ism combining features of different P systems introduced and studied so far. The
following kP systems variants are supported in P-Lingua:

• Simple kP systems, also introduced in [32]. In this variant, a reduced subset of
features of kP systems are considered.

Supported Formats

P-Lingua supports specification of P systems in the following formats:

• P-Lingua format. This format is the “native” format in P-Lingua framework. All
supported P system variants can be defined in this format. Besides, this format
allows parametrization, thus enabling definition of P system families.

• XML format. This format is intended for interoperability of the framework with
other general-purpose systems.Contrary toP-Lingua format, only cell-like variants
are supported in XML format. Parametrization is not supported either.

• Binary format. This format is intended for interoperability of the framework with
CUDA simulators. As these simulators are expected to work with really huge
systems, a compact way to specify them becomes necessary. At present, P systems
with active membranes are supported, with a recent development to support PDP
systems to be incorporated in the next version of the framework.

Input and Output Formats

The previously defined formats can be categorized into input or output formats. Input
formats are intended for P-Lingua framework to accept P systems specifications and
either parse/simulate the related system definitions or transform them to an output
format. At present, P-Lingua and XML are the supported input formats, while XML
and binary are the supported output formats.

pLinguaCore Library

pLinguaCore is JAVA based open source library enabling definition, parsing, simula-
tion and compilation for P systems within P-Lingua framework. It is released under
GNU GPL [115] license, thus users are encouraged to download, use and extend it
and become part of the P-Lingua community.

In pLinguaCore supported P system variants, input/output formats are declared in
XML files. For each input format, a parser is defined while for each output format a
compiler is declared. For each variant, specific syntax checkers can also be specified,
while a list of simulators is declared.

In this way, pLinguaCore can be easily extended to consider other models and
formats. Additionally, the following command-line tools are provided:
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• Compilation command-line tool. This tool allows translating P systems specified
in an input format, such as P-Lingua format or XML format. This specification is
then converted to an output format, such as XML format or binary format.

• Simulation command-line tool. This tool allows defining a P system in an input
format, such as P-Lingua format or XML format, parsing (with error detection)
such definition and simulating the corresponding system execution. An output is
produced containing the resulting computation.

Specific calling method for these tools can be consulted in [31].
The compilation and simulation procedures can also be called by invoking the

corresponding Java methods directly.
For additional information about pLinguaCore, please refer to [119].

7.3.1.3 An Introduction to P-Lingua Language

P-Lingua framework aims to provide a unified programming language for P systems,
which is called P-Lingua itself. This language has evolved to allow specification of
an increasing number of P system variants. The main features of P-Lingua language
are the as follows:

• Specification is provided in plain text files, which favors interoperability.
• P-Lingua specification language is purposely close to P systems mathematical
specification language, reducing the learning curve for users familiar with the
Membrane Computing paradigm.

• P-Lingua specification language is parametric, allowing specification of P system
families.

• P-Lingua specification language ismodular, favoring reusability of code fragments
that can be called more than once during a program execution.

P-Lingua Syntax

P-Lingua language syntax has evolved through different versions of the framework
to include more supported variants and features. At present, there is not any updated
unique documentation detailing the full syntax of P-Lingua. In its place, details of
the syntax are spread over a series of conference and journal papers and Ph.D. theses.
A detailed list of publications can be found at [119]. The following is an essential
list of such publications:

• P-Lingua: A Programming Language for Membrane Computing [25]. This paper
deals with the first version of the language. Only active membranes P systems with
cell division are supported.

• An Overview of P-Lingua 2.0 [31]. This paper deals with version 2.0 of the lan-
guage, which incorporates support for transition P systems, symport/antiport P
systems, active membranes P systems with cell creation, a first implementation
for probabilistic P systems and stochastic P systems.
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• AP-Lingua based simulator for tissueP systems [67]. This paper dealswith version
2.1 of the language, which incorporates support for tissue-like P systems with cell
division.

• DCBA: Simulating Population Dynamics P Systems with Proportional Object Dis-
tribution [71]. This paper deals with a new simulation algorithm, called DCBA,
developed for PDP systems and included in version 3.0 of the framework. Also in
this version, stochastic variant is discontinued in favor of Infobiotics Workbench
[5].

• A P-Lingua based Simulator for Tissue P Systems with Cell Separation [92]. This
paper introduces support for tissue-like P systems with symport/antiport rules and
cell separation starting from version 4.0 of the framework.

• A P-Lingua based simulator for Spiking Neural P systems [56] and On recent
developments in P-lingua based simulators for Spiking Neural P Systems [57].
These two papers introduce support for SN P systems starting from version 4.0 of
the framework.

• Kernel P Systems - Version 1 [32]. This paper introduces support for simple kernel
P systems that can be found in the MeCoSim version of P-Lingua.

Structure of a P-Lingua Program

A P-Lingua program file is mainly composed of a sequence of modules that are used
to specify a P system or family of P systems. The general structure is as follows:

model specification

global variables declaration

main module declaration

other modules declaration

The first line of a P-Lingua file declares the P system variant. Next global variables
are declared, accessible from any program module. With respect to modules, at least
a module, called main has to be declared. This module will be executed in the first
place and may contain calls to other modules that have also to be declared. The order
in which modules are declared is not important.

7.3.1.4 Defining PDP Systems in P-Lingua

In this sectionweprovide an exemplifiedguideline to definePDPsystems inP-Lingua
text files.

Model specification

PDP systems are probabilistic models. Consequently, any PDP system definition in
P-Lingua must start with the following sentence:

@model<probabilistic>



7.3 Simulation Platform 287

Membrane structure specification

In P-Lingua, to define the initial membrane structure of a P system, the reserved
word @mu is used, along with a sequence of matching square brackets representing
the membrane structure, including some identifiers that specify the label and the
electrical charge of each membrane. Neutral charges are omitted.

Examples:

• [[ ]02]01 ≡ @mu = [[]’2]’1

• [[ ]0b[ ]−c ]+a ≡ @mu = +[[]’b, -[]’c]’a

In PDP systems, membranes are arranged in a set of environments, each one
containing the same inner membrane structure (a rooted tree), which is called the
skeleton.

In P-Lingua, environments are contained within a virtual membrane representing
the whole system. This virtual membrane has neutral charge and its label is not
important, but a good convention is to use the global identifier. Each environment
is also represented by a virtual membrane, containing the corresponding skeleton
membranes.

Virtual membranes for environments have neutral charge and a double label,
made of two labels separated by a comma. The first one corresponds to the label of
the virtual membrane, and the second one to the identifier of the environment being
represented by that virtualmembrane.Any skeletonmembrane automatically inherits
the environment identifier of the virtual environment membrane that contains it.

The following constraints apply when specifying a membrane structure for a PDP
system in P-Lingua: (a) each environment must have a unique identifier, and (b) all
the membranes related to a specific environment, the virtual membrane representing
the environment itself and the inner skeleton membranes, must have unique mem-
brane labels. To easily satisfy these constraints, the following design guidelines are
recommended when defining PDP systems in P-Lingua:

1. The label for the virtual membrane representing the whole system takes the
global identifier.

2. Membrane labels and environment identifiers are represented using natural num-
bers.

3. The skeleton skin membrane is labeled by 0. Other skeleton membranes take
labels with correlative numbers starting from that initial number.

4. The label for the first environment membrane corresponds to a number much
higher than the number of inner skeleton membranes. This label usually is 101,
1001, etc. Other environment labels take correlative numbers from that initial
value.

5. The environment identifier for an environmentmembrane is equal to itsmembrane
label.

Example:

@mu = [ [ []’1 ]’0 ]’101,101 [ [ []’1 ]’0]’102,102]’global;
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In this example a membrane structure for a PDP system is defined. The system con-
tains two environments, identified as 101 and 102. Each environment contains a
skeleton with the structure [ [ []’1 ]’0. The aforementioned syntax becomes
too tedious and repetitive when having to define PDP systems with several envi-
ronments each one containing a complex skeleton, which happens to be always the
same. Alternatively, membrane structures can be defined in a recursive way.

As an example, the sentence:

• @mu = [ [ []’1 []’2 ]’0 ]’101,101 [ [ []’1 []’2]’0]’
102,102 ... [ [ []’1 []’2]’0]’140,140]’global;

can be written with the following sentences (using iterators):

• @mu = []’global;
• @mu(global) += [[]’0]’{k},{k}: 101 <= k <= 140;
• @mu(0,{k}) += []’{m}: 1 <= m <= 2, 101 <= k <= 140;

The first sentence specifies a PDP system with an external virtual membrane
labeled with global. The second sentence specifies that within the globalmem-
brane, 140 environments will be created, each one containing a skeleton with a skin
membrane labeled with 0. The third sentence specifies that inside the skin membrane
of each environment, two membranes []’1 []’2 will be created.

Initial multisets specification

In P-Lingua, to define the initial multisets of a P system, the reserved word @ms
is used, along with the list of objects contained in the multiset. In the case of PDP
systems, the two following ways to specify the initial multisets are possible:

• @ms(label) = list_of_objects;
• @ms(label,environment) = list_of_objects;

where label is a membrane label, environment is an environment identifier
and list_of_objects is a comma-separated list of objects. The character # is
used to represent an empty multiset. In the first case, membranes with label label
belonging to any environment are initialized with the specified object list. In the
second case, only the membrane with label label belonging to the environment
environment is initialized. The operator += (union) can be used to enable adding
of objects to the multisets through several sentences.

Examples:

• @ms(2) = c,d*16;
• @ms(2,101) = a,b*12;
• @ms(1,101) = a;
• @ms(1,101) += b,c;



7.3 Simulation Platform 289

Rules specification

In PDP systems, there are two kind of rules, skeleton rules, that define the rewriting
of objects within the skeleton membranes, and environment rules, that define the
communication of objects among environments.

1. Skeleton rules have the signature u[ v ]αh
p−→ u1[ v1 ]βh . They can be defined in

P-Lingua as follows:

• uα[v]’h --> u1β[v1]’h::p;

• uα[v]’h --> u1β[v1]::p;

• uα[v]’h,e --> u1β[v1]’h,e::p;

• uα[v]’h,e --> u1β[v1]::p;

2. Environment communication rules have the signature (x) j
p−→ (y)k . They can

be defined in P-Lingua as follows:

• [ [x]’j --> [y]’k ]’global::p;

where x, y are objects; u, v, u1, v1 aremultisets of objects; h is amembrane label; j, k
are membrane labels corresponding to environments; e is an environment identifier;
global is the label corresponding to the virtual membrane representing the whole
PDP system; α,β are charges; and p ∈ [0, 1] is a real number representing the
probability of the rule.

Examples:

• a, b2[c, d]+2 0,8−→ x, y[z]−2 ≡ a,b*2 +[c,d]’2 --> x,y -[z]’2 ::
0.8;

• (x)i
p{i, j}−−−→ (y) j : 1 ≤ i ≤ E, 1 ≤ j ≤ E ≡

[ [x]’i []’j --> []’i [y]’j ]’global :: p{i,j}
: 1<=i<=E,1<=j<= E

7.3.2 MeCoSim: A Graphical User Interface to Convey
Virtual Experimentation

Membrane Computing has been proved to be a suitable paradigm for modeling
real-life phenomena that are considered complex dynamical systems, involving a
significant number of elements interacting, subject tomanydifferent processes. These
models are interesting on their own from a theoretical point of view, but it is more
enriching for science if these models can also be somehow simulated, so that their
dynamics can be carefully analyzed. In the previous Section, P-Lingua framework has
been presented, providing a specification language for several types of P systems, as
long as the corresponding parsers for these P systems and some simulators capturing
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their dynamics. This framework provides a powerful platform toworkwith P systems
as a designer, and it comes with some command-line tools to parse the specified files
and perform simulations.

A step further is to bring closer these conceptual and software tools to the practi-
cal solution of real problems, not only within the area of Membrane Computing, but
as a more affordable platform for end users, without a deep knowledge about this
paradigm, interested in solving their problems. MeCoSim (Membrane Computing
Simulator) [91, 117, 121], is built on top of P-Lingua as a higher level visual envi-
ronment, more oriented to the end user, with the aim of providing them with final,
end-user visual applications acting as black boxes, such a way that they can enter
the data about their particular problems and get the desired results. It also provides
P systems designers with visual tools to model, edit, debug, analyze, simulate and
verify their models, as well as to deliver end-user applications based on P systems.

In Sect. 7.3.2.1, MeCoSim simulation environment is described, highlighting the
main contributions of the software developed. Then, in Sect. 7.3.2.2 a proposed
methodology is depicted to take us from the study of a problem to the delivery of a
practical solution for end users. Last, the main contributions of this approach within
the area of real ecosystems and population dynamics are outlined in Sect. 7.3.2.3.

7.3.2.1 MeCoSim Simulation Environment

P-Lingua framework provides a complete programming environment forMembrane
Computing. Given an abstract problem, the P system describing a solution by a
specific variant will be written in a file with .pli extension. For instance, for a PDP
system, the following elements must be given:

• Environments and membrane structure.
• Sets of rules.
• Initial multiset present inside each membrane and environment.

The simulation of different instances can be performed by providing specific val-
ues for the parameters in the P-Lingua file, and running through command line. This
specific values determine the set of rules, alphabet, initial multisets and membrane
structure.

This approach is quite useful to define P systems when the designer is the person
who performs the simulations. However, it could be an end user that needed to solve
a problem (e.g. analyzing the population dynamics of an ecosystem, by using amodel
designed by an expert in P systems). He might not be familiar with this framework,
but he usually needs to provide data about the specific instancewhose answer is trying
to solve (e.g. the initial situation and population for a species and environment). From
this data, the parameters for instantiating a P system of the family to solve the specific
instance of the problem could be internally calculated.

In addition, it would be worth for P systems designers having facilities to enter
data about specific instances visually, easing the debugging process. Thus, it would be
interesting to have a high level simulation environment, instead of coding approach
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for introducing data in .pli file for each different instance and running from command
line. Besides, it would be useful to provide some mechanisms for the visual analysis
of P systems complementing the text output produced by pLinguaCore.

It would not be feasible to develop and maintain a software application to manage
each designed model. Instead, MeCoSim is a software environment able to provide
mechanisms for defining simulation applications (apps) customizable for any ecosys-
tem, with user interfaces adapted for each problem. Thus, this environment acts as a
meta-simulation app, allowing the definition of a simulation app for each problem,
by setting the following elements:

1. Input definition to specify the data the user needs to introduce for each instance
of the problem.

2. Generation of parameters of the P system from the data of the instance just
introduced.

3. Output definition, to show the end user the desired information about each target
application (output tables, charts, graphs, etc.), including filtering, grouping and
post-processing of the information from the simulation of the P systems.

4. Some arrangements of the elements in the visual application.

Detailed information about this approach can be found at [121]. A clear separation
of the roles involved in modeling and simulation process is stated in that document:
(a) software developer; (b) P systems designer; and (c) end user of a simulation
app. What does MeCoSim provide within this scope? Figure7.3 illustrates the main
actions performed by each role.

Thus, taking into account these roles, some main functionalities of MeCoSim are
listed below:

• General environment for the simulation of solutions based on P systems.
It is supported by P-Lingua framework, enabling the parsing, debugging and
simulation from MeCoSim environment.

Fig. 7.3 Roles and uses of MeCoSim
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– A visual hierarchical structure determined by the user.
– A definition of input tables for the user to enter information and outputs to show
the desired results of the simulation.

– Output charts of different types (lines, bars, stacked columns, pie, and lists of
charts).
Along with the visual elements described so far, two essential components for
the app have to be defined, as illustrated in the following items.

– Parameters: variable elements of the model based on P systems depending on
the instance of the problem, according to the data entered by the user from the
input tables. It defines theway each parameter is generated from the input tables,
possibly affected by some processing from these data. To achieve this goal, a
new parameters generation language has been defined, as described in [121].

– Results: before showing output tables and charts, the corresponding data to
show should be obtained, essentially coming from computation data, getting
the desired objects from the stated configurations. The set of data available as
part of the simulation, along with the process to get these results, is described
in [121].

MeCoSim environment enables the load and store of simulation apps, and includes
a list of all the previously loaded apps. They are ready to run, thus generating the
corresponding visual application (i.e., its tabs hierarchy, input tables, outputs, etc.)
according to its defined configuration.

In order for the simulation to be performed from the loaded P-Lingua model
or solution, the data about a specific scenario must be given, by entering the data
from the visual input tables or loading a previously saved scenario data, so that the
corresponding P system can be generated. Then, the simulation can be performed
from the initial situation given by the entered data. When the simulation starts, the
first step is the instantiation of the P system corresponding to the given solution
and scenario, including membrane structure, initial configuration and set of rules for
each compartment. This information could depend on the specific instance, so some
processes for adding scenario data to model file will be needed, accounting for the
complementary aspects:

1. A .pli solution/model file could present parameterized structures, rules and initial
configuration, depending on values as n, m, pi , etc. In this way, different values
for this parameters will generate different P systems.

2. The MeCoSim based simulation app will present a custom input with the infor-
mation needed for setting a specific scenario. Therefore, somemechanism should
be designed to convert user input data in specific values for the model or solution,
possibly involving some processing to get derived data. This process is explained
in [121].

Just as an illustrative example, let us analyze a part of the solution of 3-COL
problem by means of tissue-like P systems [24], focusing on the generation of all
possible colorings by using cell division rules, for a graph of n vertices. It can be
described as follows:
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Let Π(n) = (Γ (n), w1, w2(n), ε, R(n), i0) family of tissue-like P systems with
cell division of degree 2, where:

1. Γ (n) = {Ai , Ri , Ti , Bi ,Gi : 1 ≤ i ≤ n}
2. w1 = ∅, w2(n) = {A1, . . . , An}
3. R(n) is a set of division rules:

• r1,i ≡ [Ai ]2 → [Ri ]2[Ti ]2 para i = 1, . . . , n
• r2,i ≡ [Ti ]2 → [Bi ]2[Gi ]2 para i = 1, . . . , n

Thus, the solution .pli file representing the corresponding family of P systems
presents some instructions of the type:

/* Multiset in region 2 */

@ms(2) += A{i} : 1<=i<=n;

/* Division rules: */

/* r1 */ [A{i}]’2 --> [R{i}]’2 [T{i}]’2 : 1<=i<=n;

/* r2 */ [T{i}]’2 --> [B{i}]’2 [G{i}]’2 : 1<=i<=n;

The solution .pli file represents the whole family of P systems solving this abstract
problem, but the user will be interested in simulating a specific instance of the prob-
lem; that is, analyzing the P system associated to each different value of n. To pro-
vide an app accepting values for n and generating and simulating the corresponding
P system for that solution for that specific instance, an input table is defined in the
configuration file, with the information shown in Fig. 7.4 for tabs hierarchy, table
and columns, and parameters generation.

As shown in Fig. 7.4, parameter n is defined, as referenced in P-Lingua file.
In this case, n takes its value from the data entered in the first row, first column of
table with Id 5. When running the solution, if value 3 has been entered in the visual
table, MeCoSim based simulation app generates the parameters (n, as defined in
SimulationParams tab of the configuration file). Then, the specific P system can
be instantiated from the solution .pli file and start the simulation of a computation.

Fig. 7.4 App definition - parameters generation
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Along with the general mechanism for simulating, simulation apps based on
MeCoSim provide debugging functionalities to:

• Parse the given model file (along with the parameters generated from the input
scenario data), leading to:

1. A model or solution with a valid scenario, ready to simulate step by step or a
number of steps.

2. A non valid solution or scenario, thus showing the detected problems.

Both cases will show, along with the previous information:

– ParsingInfo: shows the parameters being generated, along with the unfolded
rules (single rules, generated from – folded – rule schemes that can be expressed
in P-Lingua to iterate over some set of possible indexes) for the P system.

– Warnings: shows warnings related to the parsing of the solution file for the
current scenario, not avoiding the simulation or debugging of the solution.

• Simulate step by step. Two different options are available:

– Step: moves the computation a step forward from the current configuration.
– Run steps: takes the specified number of steps from the current configuration.

In both cases the information about each configuration is shown in SimulationInfo
tab, along with the information about the selected rules for executing every step.
To complement this text output, some plugins show the alphabet, the membrane
structure and the multisets inside each compartment.

Plugins

Functionalities described so far constitute the CORE of MeCoSim, but many others
provide additional features and abilities to interact with other software. MeCoSim
plugins architecture, in conjunction with the customization elements, permits
adding Java-based functionality or external programs being called from MeCoSim.
Following some existing plugins taking advantage of these mechanisms are listed:

• MeCoSimBasics plugin: includes a P-Lingua (.pli) files editor, along with viewers
for alphabets, structures and multisets.

• Processes plugin: permits connecting MeCoSim to external programs, directly
invoked by operating system or command line calls transparently, from MeCoSim
menu options. Besides, additional custom menu options can be included for send-
ing emails or opening web sites.

• Graphs plugin: enables the definition of graphs fromparameters information, com-
ing from input/output tables through parameters generation mechanism. Options
for showing graphs, trees or graphs in a tree hierarchical structure are available.

• Daikon plugin: plugin for invariants extraction from the trace of themodels or solu-
tions computation.A pluginwas developed to connectMeCoSimwith Daikon by
means of a daikonapplication program, developed by collaborators of theUniver-
sity of Pitesti, responsible for calling Daikon with the required input parameters.
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This way, MeCoSim generates a file with the trace of the computation in a for-
mat expected for daikonapplication, which is then called from MeCoSim. This
interface loads the trace file and generates an output with the detected invariants.

• Promela plugin: integrates MeCoSim with tools for formal verification of proper-
ties of the models by model checking techniques. Developed in collaboration with
the Department of Mathematics and Computer Science, University of Pitesti, and
the Department of Computer Science, University of Sheffield, this plugins enables
the generation of a .pml file in Promela format from the model and scenario loaded
in MeCoSim. This file could then be edited to include properties to verify, and run
from MeCoSim by calling Spin Model checker [4, 46, 107].

The details for setting plugins-properties are given in MeCoSim web
site [117], in Getting started> User guide> Plugins section. Further
details are given in [121].

Repositories

MeCoSim based simulation apps, models, scenarios and plugins developed could
be interesting for other P systems designers or end users of the apps. To make them
available publicly, a repositories system has been designed, developed and released
for:

• Plugins (.jar).
• Apps (.xls).
• Models (.pli).
• Scenarios (.ec2).

Any MeCoSim user may provide a repository of plugins, apps, etc. generating
depending on the type of repository. For instance, the configuration of a models
repository would be something like this:

<models>
<model name="Tricolor Simple Kernel 1" pli="tricolor.pli"
path="http://www.gcn.us.es/redmine/dmsf/files/2952/download"/>
...
</models>

Anybody can have his own repository by placing his configuration and associated
files in some public URL, and any user can add that repository in MeCoSim and
access all the available files by simply adding the repository to MeCoSim indicating
the URL. The goal of this mechanism is to provide the community an easy and fast
way of accessing the available models. In addition, it permits other members to share
their own models, enforcing the collaborative work and knowledge sharing.

7.3.2.2 A Methodology for the Practical Solution of Problems

The infrastructure provided by P-Lingua and MeCoSim supports the application of
an integralmethodology for the practical resolution of real life or theoretical problems
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bymeans of P systems.Afirst draft involving some steps of thismethodologywasfirst
presented in [49] for simulation, invariants extraction and verification of properties
over models based on P systems. This approachwas later extended in [33]. Following
the main aspects of the different stages of this methodology are described:

Modeling

From the initial analysis of the problem under study, an abstraction process is
performed to capture the essential data relevant to the studied phenomena, until a
P systems based model or solution is designed to answer the questions posed in
that analysis, including the necessary processes and data. Some of the main steps
involved in this sense, specifically under the scope of the so called Population
Dynamics P systems (PDP systems), are described in the protocol detailed in
[17].
Once a model capturing the essence of a phenomena is designed, this model can
be translated to P-Lingua [30] language and be stored as a .pli file. If the data
corresponding to a specific instance of the problem are introduced in the same
file (that is, the specific values for the parameter of the corresponding scenario of
interest), the model would be ready to work with it in pLinguaCore or MeCoSim
[91].

Simulation

The previous model could be simulated by P-Lingua framework, or in a graphical
way byMeCoSim interface, delegating in pLinguaCore the parsing and simulation
process (also other external simulators can be used). Once a model file is loaded
in MeCoSim, a number of available simulators for its corresponding variant of P
systems will appear in a submenu in MeCoSim, ready for the user to choose the
desired one, as shown in Fig. 7.5.

Customization

MeCoSim mechanism for defining custom simulation apps allows the definition
of input tables for the user to enter the custom data for the studied problem, ready
to introduce data about each particular scenario of that problem. From these data,
the corresponding parameters values will complement the model to be simulated,
instead of being those values hardcoded in the model file. This way, a single model
file can define a family of P systems including a number of parameters, such a way
that the different instances of the problem and their corresponding scenarios lead
to different P systems and inputs for them in simulation time.

Debugging

MeCoSim includes amechanism to perform the debugging ofmodels and solutions
based on P systems. The main options include (Set Model) to load a .pli file,
(I ni t Model) to initialize the model, Errors tab to show possible errors detected
when initializing and validating, and Warnings tab to inform over non critical
possible issues detected. If the model along with the parameters generated for
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Fig. 7.5 Available simulators for a loaded P systems variant

the specific instance introduced are valid, the values for the parameters and the
unfolded rules will be shown in Parsing I n f o tab. Then functionalities for step
by step simulation (Step) or the simulation of a fixed number of steps (Run steps)
will be enabled, thus showing the data about the sequence of configurations and
rules appliances in Simulation In f o tab. An example of debugging is shown in
Fig. 7.6.
The debugging of the models permits detecting errors, not meeting their syntactic
or semantic constraints, as well as mismatches in the values of the parameters used
by the model, depending on the loaded scenario.

Visualization and data analysis

– Definition of custom post-processed outputs: the definition of MeCoSim outputs
permits showing specific information in the form of tables or charts. This extends
the functionalities to visualize information from the computation, focusing on the
specific elements that we are interested in. Besides, it permits showing more com-
plex outputs, post-processing the data from the computation, including filtering
and grouping techniques broadening the possible analysis over data resulting from
simulations. These tools are devoted to provide more information to the P systems
designer and the enduser of the simulation app, interested in his application domain
and not in the underlying P systems.
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Fig. 7.6 Model debugging

Fig. 7.7 Alphabet (left) and structure (right) viewers

– Advanced visualization of structures and elements of P systems configurations:
MeCoSim basics plugin provide viewers oriented to the designer user, for alphabet
(Fig. 7.7, left), structure (Fig. 7.7, right) and multisets inside each compartment.

– Graphs visualization: graphs plugin enables showing graphs with their nodes and
edges coming from the information generated as parameters from the input or
output tables. An example is illustrated in Fig. 7.8.
Further details are given in [121].
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Fig. 7.8 Graphs visualization plugin

Invariants detection

The joint power of customizable outputs in MeCoSim and Daikon [28, 75, 76]
extraction plugin permits the detection of invariants from the models and solutions
designed based on P systems. The outputs definition is used to select the desired
elements from the computation, and Daikon plugin is used to extract traces, select
the desired one and detect properties by delegating in Daikon invariant detector.
This process is described in a deeper way in [49, 121].

Properties verification PromelaPlugin enables the generation of a file in
Promela format (.pml) from the model and scenario loaded in MeCoSim to simu-
late. This file can be edited to include properties to verify, and run from MeCoSim
by calling Spin Model checker [4, 46, 107]. Some details are commented in [33],
taking into consideration the basis for automated verification of P systems through
Spin stated in [47, 48]. The visual interface for the generation of Promela code
and Spin execution from MeCoSim, along with further details, can be found in
[121].

7.3.2.3 Working with Real Ecosystems

The previous sections have widely described a software platform and conceptual
model to bring closer the paradigm of membrane computing to the systematic and
practical solution of the problems a user aims to study. The need of delivering end
user applications to make this abstract devices really solve practical problems, as
black boxes internally working with P systems, was first detected after the study and
modeling of different real ecosystems. Ecologists were not familiar with P systems,
and this was even unnecessary, they only required some practical tools tomanage and
reason about the inherent complexity of the phenomena under study. So it emerged
the need of developing visual tools abstracting them from the details of the under-
lying computational paradigm, allowing them to focus on the study of the processes
involved in the biology of the species, the environment, and all the related parameters
involved in the interactions of the elements inside the ecosystems.
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Thus, apart from designing models to capture the main features and dynamics
of the ecosystems, as P systems designers we had to provide end user software
applications enabling them to enter their data about each particular scenario, as well
as analyzing in some usable way the outputs of the system, not in terms of internal
objects in the PDP system but in terms of facts and elements understood by the
ecologists. Of course it was not feasible to have a permanent development team in
each research center to develop these different software applications, so the tools
described in the previous sections were provided to ease the process of supplying
such end-user apps by simply customizing the system for each particular problem,
each particular ecosystem involving certain population, environment, processes and
requiring different outputs.

In this context, many real ecosystems have been studied, presenting certain com-
mon features:

• A series of species where the study is focused on. Some facts related to the biology
of these species have to be taken into account.

• A specific geographical environment under study, with certain relevant features to
consider.

• Several processes affecting the evolution of the system.

Thus, the design of a model for this kind of complex systems should capture
the essential elements regarding the species, environment, processes and possibly
several other ingredients, depending on the goals of each particular model. As an
abstraction of the too complex underlying reality, a model of this kind should not
be designed to be restricted to a particular scenario, but being abstract enough to
be applied to many different possible situations that may result interesting for the
ecologists. Therefore, when these models are designed they do not come in the form
of specific P systems, but they are given by a family of PDP systems.

For each particular scenario that the ecologists aim to study, each situation subject
to analysis of its evolution, a specific PDP system of the family is instantiated,
finally generating a structure, final set of rules and initial multisets that may vary
depending on each specific instance. Besides, this PDP system will accept certain
data as an input, taking different values depending on the particular scenario under
study, possibly involving different initial populations and parameters affecting certain
processes. In addition, for each situation to analyze the timeframewhere the evolution
of the species is focused should be determined.

The practical handling of these models by the ecologists requires, as stated in the
previous sections, the translation of the model to a language that the machine can
understand. In this case, the model is specified in P-Lingua language, described in
Sect. 7.3.1. As just mentioned, it is advisable for this model to be useful for many
particular situations (past, present or future, allowing the formulation of hypothesis
of the possible causes of past events or the prediction of possible effects of future
events or actions in advance). Therefore, P-Lingua file should capture the description
of model for a family of PDP systems, not a particular one, thus presenting some
input points that will vary depending on each particular scenario.
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In order for the ecologists to work with the model, they will be required to provide
the data for each particular scenario, and it will be desirable for them to have some
infrastructure available to perform this task in a suitable and usable way. It is here that
MeCoSim plays a very significant role, easing the task of supplying these end-user
applications, that in the case of ecosystems will usually present at least the following
elements:

• Input tables to enter data about:

– Biology of the species.
– Properties of the different areas included in the model.
– Environmental conditions.
– Initial populations of each species.

• Output information from the virtual experiments:

– Tables to quantify the population of the species along time.
– Charts providing a fast view of evolution of certain elements and its trend.

• Controls to set:

– Number of cycles to simulate (this number will represent years, months, days,
etc. depending on the system under study)

– Number of simulations to perform (given the probabilistic nature of PDP sys-
tems, a number of simulations should run, such a way that the output for the
end user will present the average, deviations, etc. of the data across the different
simulations).

These elements will slightly differ from one application to another, but MeCoSim
provides, as described in the previous sections, a mechanism to define the custom
inputs, outputs and internal conversion from inputs to the parameters used to instan-
tiate each specific PDP system to be parsed by P-Lingua and simulated by means of
the simulators available (P-Lingua based ones or external simulators).

The corresponding visual application will appear in MeCoSim when providing
the proper customization file, as shown in Fig. 7.9.

Several output results can be defined according to the needs identified by the end
users. The more general ones are of two types: output tables, as the one shown in
Fig. 7.10, and output charts, as the one shown in Fig. 7.11.

7.3.3 Parallel Simulators on Multi-core and Many-Core
Platforms

As discussed in the previous section, P-Lingua framework enables to conduct PDP
systems simulations through both DNDP and DCBA algorithms. However, the run
times offered by the framework are high for some scenarios involving large and
complex models. This lack of efficiency is mainly given from the facts of using
Java Virtual Machine and implementing sequential algorithms. Indeed, simulating
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Fig. 7.9 MeCoSim based application

Fig. 7.10 MeCoSim app. Output table

massively parallel devices like P systems in a sequential fashion is twice inefficient.
A solution to outcome this issue is by harnessing the highly parallel architecture
within modern processors to map the massively parallelism of P systems.

Current commodity processors offer from 2 to 16 computing cores, or even more
if they are high end. These cores are complex enough to run threads simultaneously,
each one with its own context, exploiting a coarse grain level of parallelism. For
example, OpenMP is a threading library for multicore processors, which can be used
in C/C++.

Alternatively, current graphic processors (GPUs) provide thousands of computing
cores that can be programmed using general purpose frameworks such as CUDA,
OpenCL and OpenAcc [81]. GPUs exploit data parallelism by using a very fast
memory and simplifying the cores. In fact, a GPU consists in SIMDmultiprocessors
interconnected to a fast bus with themainmemory system. Eachmultiprocessor has a
set of computing cores that execute instructions synchronously (they always perform
the same instruction over different data) and a small portion of sketchpad memory
(similar to caches in CPUs, but manually managed by programmers), among other
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Fig. 7.11 MeCoSim app. Output chart

elements. In this case, CUDAprovides an abstraction of theGPUwith a SPMDmodel
(Single Program Multiple Data), in which threads execute the same code (called
kernel) over different pieces of data. Moreover, threads are arranged in blocks, in
such a way that threads belonging to the same block can cooperate and easily be
synchronized.

Given the high level of parallelism within modern GPUs, they have provided an
interesting platform to implement real parallelism of P systems in a natural way.
Many P system models have been considered to be simulated with CUDA [72]: P
systemswith activemembranes, SAT solutions with families of P systemswith active
membranes and of tissue P systems with cell division, Enzymatic Numerical P sys-
tems, SpikingNeural P systemswithout delays, and Population Dynamics P systems,
among others. Most of these simulators are within the scope of PMCGPU (Parallel
simulators for Membrane Computing on the GPU) software project [118], which
aims to gather efforts on parallelizing P system simulators with GPU computing. As
mentioned, there is already a subproject for PDP systems, called ABCD-GPU, that
will be discussed below.

When comparing the efficiency of simulation algorithms, DNDP has been shown
to be faster than BBB in some scenarios, when a substantial amount of rules is
involved [66]. However, DCBA is much slower than DNDP, since it involves the
usage of a large sparse matrix in phase 1, whereas DNDP implements a more direct
method. For example, using the implementation in pLinguaCore for DCBA in order
to simulate the model of the scavenger birds presented in [15] was estimated to take
6 months for 100 simulations. In any case, the simulation of PDP systems should be
as efficient as possible in order to ease their usage for virtual experimentation.
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Parallelization efforts has been also applied to pLinguaCore implementations of
DNDP and BBB [66]. The chosen level of parallelism was at environments: each
environment is assigned to a thread, and one transition step is simulated. However,
Java threads were not enough to extract conclusions, since they are executed through
the Java Virtual Machine in an abstracted way. Therefore, further efforts of par-
allelization should be carried out using compiled programming languages. In this
sense, C and C++ are compiled languages, that also offer support for many parallel
platforms through specific libraries, such as OpenMP and CUDA.

Given the inefficiency of pLinguaCore when executing DCBA [65], even avoid-
ing the implementation of a real table through a hash table approach, efforts for
developing parallel PDP-system simulators have been focused on this algorithm. It
is noteworthy that in this case, Parallel Computing is not only used to get faster
solutions, but also, to obtain better results by enabling the users to run DCBA-based
simulations in an affordable time.

Next, some details of the inner structure of ABCD-GPU simulator (parallel simu-
lators in C++, OpenMP and CUDA for PDP systems) are presented. In general, this
parallel simulator is based on the following principles:

• Efficient representation of the data, both for PDP system syntactical elements and
auxiliary structures of DCBA (virtual table [70]).

• Efficient implementation of the algorithm.
• Exploiting levels of parallelism presented in the simulation of PDP systems:
processing of rule blocks and rules, evolution of environments, and conducting
several simulations to extract statistical data from the probabilistic model.

7.3.3.1 A Virtual Table for DCBA

The first challenge of the DCBA implementation in C/C++ was to save memory by
avoiding the creation of the expanded static table T j , used in phase 1. The implemen-
tation of this table can be inefficient in systems with a large number of rule blocks
and/or objects. Specifically, the size of this table is O(|B| · |�| · (q + 1)), where
|B| is the number of rule blocks, |�| is the size of the alphabet (amount of different
objects), and q + 1 corresponds to the number of membranes plus the space for the
environment.

Moreover, a real implementation of T j can lead to a sparse matrix, having null
values in the majority of the positions: competitions for one object appears for a
relatively small number of blocks. This problem was overcome in pLinguaCore by
using a hash table storing only non-null values. For the sequential version in C++,
the idea was to avoid the construction of T j by translating the operations over the
table to others directly applied to the rule blocks information, as follows [70]:

• Operations over columns: they can be transformed to operations for each rule block
and the objects appearing in the multisets of the LHS.

• Operations over rows: they can be translated similarly to operations over columns,
but the partial results are stored into a global array (one position per row).
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Phase 1 can be implemented as described in Algorithm 12. Note that Filter 3
is not needed any more. Although the full table is not created, some auxiliary data
structures are used to virtually simulate it (called a virtual table):

• activationV ector : the information of filtered blocks is stored here as boolean
values. The full global size is O(|B|∗m), wherem is the number of environments.
This vector is actually implemented passing from boolean to bits.

• addition: the total calculated sums for rows are stored here, one number per each
pair object and region. Its size is of order O(|Γ | ∗ (q + 1) ∗ m).

• MinN : the minimum numbers calculated per column are stored here. This is
needed in order to subtract the corresponding number of applications toC ′

t in each
loop for the A value. The total global size is O(|B| ∗ m).

• BlockSel: the total number of applications for each rule block is stored here. The
total global size is O(|B| ∗ m).

• RuleSel: the total number of applications for each rule is stored here. The total
global size is O((|R| ∗m)+|RE |), where |R| is the number of skeleton rules and
|RE | the number of communication rules.

Algorithm 12 Implementation of selection phase 1 with virtual table
1: for j = 1, . . . ,m do � For each environment
2: for all block B do
3: activationV ector [B] ← true
4: if charge(LHS(B)) is different to the one presented C ′

t then
5: activationV ector [B] ← f alse � (Apply Filter 1)
6: else if one of the objects in LHS(B) does not exist in C ′

t then
7: activationV ector [B] ← f alse � (Apply Filter 2)
8: end if
9: end for
10: Check the mutual consistency of blocks.
11: repeat
12: for all block B having activationV ector [B] = true do � (Row sums)
13: for each object ok appearing in LHS(B), associated to region i do
14: addition[o, i] ← addition[o, i] + 1

k
15: end for
16: end for
17: for all block B having activationV ector [B] = true do � (Col. min.)
18: MinN [B] ← Min[ok ]i∈LHS(B)(

1
k2

∗ 1
addition[o,i] ∗ C ′

t [o, i]).
19: BlockSel[B] ← BlockSel[B] + MinN [B].
20: end for
21: for all block B having activationV ector [B] = true do � (Updating)
22: C ′

t ← C ′
t − LHS(B) ∗ MinN [B]

23: end for
24: Apply Filter 2 again (as described in step 6).
25: a ← a + 1
26: until a = A or for each active block B, MinN [B] = 0
27: end for
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7.3.3.2 Parallel Simulation over Multicore Platforms

Current multicore CPUs can be easily programmed using OpenMP. The parallel
design of the simulator is based on three approaches [70]: (1) simulations, (2) envi-
ronments and (3) a hybrid approach, having the following pros and cons:

• The advantage of running simulations in parallel is that there are no data dependen-
cies between simulations, and, therefore, the problem is embarrassingly parallel.
Also, running 50–100 simulations is enough to fully use all cores in a CPU. How-
ever, some disadvantages of this approach are the increase of amount of memory,
load balancing issuewhen the number of simulations is not divisible by the number
of processors, and resource conflicts as cores compete for shared resources.

• The advantage of parallelizing environments over simulations is thatmemory usage
does not increase. However, dependencies occur twice in each transition step
requiring synchronization, and that modern machines have usually more cores
than environments and just parallelizing environments cannot take advantage of
all computing resources. In addition, as with simulations, load balancing can be
an issue if the number of environments is not divisible by the number of cores, or
if the runtime of environments varies.

• By combining both forms of parallelism, the amount of each resource can be
balanced. This will become more important as the number of cores within a node
increases. For example, the number of simulations can be increased until available
memory is used and then environments within each system can be parallelized.

Conducted experiments [65, 70] indicate the simulations are memory bound. The
OpenMP simulator achieved speedups of up to 2.5x on a 4-core Intel i7. Parallelizing
by simulations or hybrid techniques yields the largest speedups. For this reason,
ABCD-GPU simulator has the parallel simulation approach by default, as shown in
Fig. 7.12.

Fig. 7.12 Multicore selected design, distribution of simulations along the cores/threads
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7.3.3.3 Parallel Simulation over Manycore Platforms

Manycore processors, such as GPUs, can be easily programmed using CUDA. As
mentioned above, the threading model is based on a hierarchical arrange in blocks.
Generally speaking, threads belonging to a block can easily cooperate through syn-
chronization points and fast shared memory. Warps, which are groups of 32 threads,
are the parallelism unit, and they execute in a SIMD mode. In reality, blocks are
scheduled to each multiprocessor, and each warp to the cores in it. A good design is
to define as many blocks (at least twice or three times the number of multiprocessors)
and threads (from 64 to 1024) as possible [65, 81].

At first glance, simulations and environments are two levels of parallelism that
could fit the double parallelism of theCUDAarchitecture (thread blocks and threads).
For example, we could assign each simulation to a block of threads, and each envi-
ronment to a thread (since they require synchronization at each time step). However,
the number of environments depends inherently on the model. Typically, 2 or more
environments are considered, which is not enough for fulfilling the GPU resources.
Number of simulations typically ranges from 50 to 100, which is sufficient for thread
blocks, but still a poor number compared to the several hundred cores available on
modern GPUs.

Therefore, the selection and execution of rule blocks is also considered [69].
Hence, theCUDAsimulator canutilize a hugenumber of threadblocks bydistributing
simulations and environments in each one, and process each rule block by each
thread. Since there are normally more rule blocks (thousand of them) than threads
per thread block (up to 1024), a constant number of threads is launched which iterate
over the rule blocks in tiles. This design is graphically shown on Fig. 7.13. Each phase
of the algorithm has been designed following the general CUDA design explained

Fig. 7.13 Manycore/GPUs selected design, distribution of simulations and environments along the
multicores/blocks, and ruleblocks/rules along cores/threads
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above, and implemented separately as individual kernels. Thus, simulations and
environments are synchronized by the successive calls to the kernels [69].

The parallel design of each DCBA phase is as follows [65, 69]:

• Phase 1: the virtual table algorithm for this phase (as described in Algorithm 12) is
used here as well. As environments are distributed along thread blocks, the outer-
most loop of the algorithm is already inherently performed in parallel. Within each
thread block, firstly, each thread is performing the filters to the rule blocks in par-
allel. Secondly, each thread calculates the additions of rows for the corresponding
rule block, if it is active after applying the filters. This ismade in a scatter approach,
since threads are adding the rows using atomic operations. Thirdly, threads cal-
culate the corresponding column minimums, and eventually, update the temporal
copy of the configuration.

• Phase 2: it is the most challenging part when parallelizing by blocks. The selec-
tion of blocks at this phase is performed in an inherently sequential way: we need
to know how many objects a block can consume before selecting the next one.
The random order to the blocks is simulated by the CUDA thread scheduler: each
thread calculates the position in the order of its rule block by using the atomicInc
operation. Since it does not perform a real random order, random numbers are
going to be used soon in future versions. The chosen solution dynamically checks
the blocks that are really competing for objects, and calculates which blocks can
be selected in parallel, and which depend on the selection of the others. To do
this, some previous computations are needed. Two arrays are used, one storing
the information of the LHS, and another the selection order. Rule blocks hav-
ing the same selection order number will be selected in parallel. Both arrays are
implemented using the GPUs shared memory to speedup this computation.

• Phase 3: for the random multinomial number generation performed in this phase,
the solution is to use an implementation based on the generation of random
binomial numbers by using a CUDA library based on cuRAND [81], called
cuRNG_BINOMIAL [65]. This module implements the BINV algorithm proposed
by Voratas Kachitvichyanukul and Bruce W. Schmeiser [54]. Algorithm BINV
executes with speed proportional to n · p and has been improved by exploiting
properties listed in the paper [54]. Also, it has got the best results assuming a
normal probability approximation when n · p > 10.

• Phase 4: it is implemented as directly shown in the DCBA pseudocode using the
general CUDA design. In this case, threads are assigned to each rule in tiles, and
perform the addition of the corresponding RHS (if it has a number of applications
Nr > 0). Finally, since this operation is scattered or divergent (from rules to
add objects), atomic operations are used again to update the configuration of the
system.

The CUDA simulator has been tested with randomly generated PDP systems with
the aim of stressing the GPU in several ways. Speedups of up to 7x using a NVIDIA
GPU Tesla C1060 (240 cores distributed in 30 multiprocessors, 4 GB of memory
without cache) were reported [65, 69]. Moreover, it has been shown that Phase 2 is
normally the bottleneck, as it can be seen given the lack of parallelism.
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Furthermore, when using a real PDP system based model related to the Bearded
vulture in the Pyrenees [10], phase 2 doesn’t make sense at all, since blocks barely
compete for objects. However, a speedup of up to 4.3x is reported using the same
GPU, given the low number of rule blocks and environments, and the low rate of rule
blocks applications in each transition step.

7.3.3.4 ABCD-GPU Simulator

ABCD-GPU simulator is a stand-alone application for conducting the DCBA over a
desired model. The aim is to serve as an engine for more general simulation frame-
works, such as P-Lingua and MeCoSim. To date, the latest version of ABCD-GPU
is 0.9, and is freely and openly available at the PMCGPU website [118].

Figure7.14 shows the general structure of the simulation framework. The core of
the simulator is the engine, which can be the multicore (CPU or OpenMP) or the
manycore (GPU or CUDA) version. The simulator is able to receive as input a set
of randomly generated PDP systems, and so to output corresponding debugging and
profiling information. But in the latest version, new input and output modules have
been attached. Similar to the Active Membranes simulator, the input is given by a
binary file which defines a PDP system model. This binary file can be generated
using the new version of pLinguaCore, from a P-Lingua file, the standard format
to define PDP systems. The reason of receiving a binary file, instead of a P-Lingua
or XML file, is for compression and efficiency. The usage of the parallel simulator
is only deserved when using a large PDP system model (many rule blocks and
environments). Therefore, the communication should be efficient enough in order

Fig. 7.14 Structure of the ABCD-GPU simulation framework
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not to hide the fast execution of the simulator. The output of the simulator is in turn,
given by a .csv file or plain text. An output binary file version is also available, but it
is still experimental. Future developments will allow to load the output directly into
a database.

7.4 Case Studies

In this section, we analyze the suitability of PDP systems, a membrane computing
based modeling framework, as a singular tool for simulating complex ecosystems
dynamics. This enables assisting managers, conservationists and policy-makers to
make appropriate decisions related to the improvement of management and conser-
vation programs. Specifically, four relevant/interesting case studies involving real
ecosystems populations are illustrated: (a) scavenger birds at the Catalan Pyrenees;
(b) Pyrenean chamois inhabiting the Catalan Pyrenees; (c) the zebra mussel at Riba-
roja reservoir (Spain), managed by the company Endesa S.A.; and (d) giant pandas
in captivity at the Giant Panda Breeding Base, Chengu (China).

7.4.1 Scavenger Birds

Next, following [10], we present a study carried out in the Pyrenean and Prepyrenean
mountains of Catalonia (NE Spain). The ecosystem to be modeled is composed of
13 species: three avian scavengers (the Bearded vulture, the Egyptian vulture and
the Griffon vulture) as predator species, six wild ungulates (the Pyrenean chamois,
the Red deer, the Fallow deer, the Roe deer, the Wild boar, and the Mouflon) and
four domestic ungulates that are found in an extensive or semi-extensive regime (the
Sheep, the Goat, the Cow, and the Horse) providing carrion for the avian scavengers
and considered as prey species. These species are herbivores and their remains form
the primary food resource for the avian scavengers in the study area (more than 80%
of the diet is based on these species [27, 63]).

The model proposed involves 17 types of animals as a consequence of the man-
agement of domestic species mainly. Specifically, we consider two types of animals
for the Red deer due to the fact that males are highly valued by hunters and this
implies that the mortality rate of males (i = 6) is higher than that of females (i = 5).
We also consider two types of animals, denoted by A (annual) and P (periodical),
for domestic ones (except for horses) because some of them spend only six months
in the mountain.

The study area is characterized by the presence of abundant wild ungulates
throughout the year, a strong presence of domestic ungulates during the summer
and low human density. The three scavenger species are cliff-nesting and only the
Egyptian vulture is migratory.
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Fig. 7.15 Modules of the P system

The algorithmic scheme of the proposed model is shown in Fig. 7.15. The algo-
rithm has been sequenced, but all animals evolve in parallel.

• It is assumed that the population growth rate of the Bearded vulture varies depend-
ing on the surface and orography of the systemaswell as on the existing population.

• The mortality module considers that after an animal dies, in addition to the bones
it leaves at the ecosystem, its meat serves as food for other animals.

• The feeding module considers that the feeding resources for the species at the
ecosystem have been modeled.

• The population density of the ecosystem is regulated by a module that has been
incorporated between the mortality and the feeding modules.

When a cycle is performed, all objects which are not associated with species are
eliminated, except the biomass generated by the animals that have died due to the
regulation process.

7.4.1.1 Model

We consider a PDP system of degree (2, 1)

Π = (G, Γ,Σ, T,RE ,μ,R, { fr,1 | r ∈ R},M1,1,M2,1, E1)

with one environment and Π1 = (Γ,μ,M1,1,M2,1,R) is a P system of degree 2
with (only) two electrical charges (neutral and positive) taking T time units, defined
as follows:

• G is an empty graph.
• The working alphabet is

Γ = {Xi j , Yi j , Vi j , Zi j : 1 ≤ i ≤ 17, 0 ≤ j ≤ gi,6}∪
{B, G, M, B ′, G ′, M ′, C, C ′} ∪ {hs : 1 ≤ s} ∪
{Hi , H ′

i , Fi , F ′
i , Ti , ai , b0i , bi , di , ei : 1 ≤ i ≤ 17}

Symbols X,Y, V and Z represent the same animal but in different states. Index
i is associated with the type of animal and index j is associated with their age.
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B, B ′ are auxiliary symbols which represent bones, M, M ′ represent meat and
G,G ′ represent the amount of grass available for the feeding of the animals in
the ecosystem. Objects Hi , H ′

i represent the biomass of bones, and objects Fi , F ′
i

represent the biomass of meat left by species i in different states. ObjectC enables
the creation of objects B ′, M ′ and G ′ which codify bones and meat (artificially
added by human beings) as well as the grass generated by the ecosystem itself.
Besides, objectC produces objectsC ′ which in turn generate objectC allowing the
beginning of a new cycle. Let us notice that different objects (i.e. G,G ′) represent
the same entity (in this case, grass) with the purpose of synchronizing the model.
Ti is an object used for counting the existing animals of species i . If a species
overcomes the maximum density, values will be regulated. Objects b0i , bi and ei
allow us to control the maximum number of animals per species in the ecosystem.
At the moment when a regulation takes place, object ai allows us to eliminate the
number of animals of species i that exceeds the maximum density. Object di is
used to put under control domestic animals that are withdrawn from the ecosystem
for their marketing.

• The alphabet of the environment is Σ = ∅.
• T represents the number of years to be simulated in the evolution of the ecosystem.
• μ = [ [ ]2 ]1 is the membrane structure. The skin membrane is important to
control that the densities that every species does not overcome the threshold of the
ecosystem. Animals reproduce, feed and die in the inner membrane.

• M1,1 and M2,1 are finite multisets over Γ describing the objects initially placed
in regions of μ (encoding the initial population and the initial food);

– M1,1 = {b0i , X
qi j
i j , h

q1 j
t : 1 ≤ i ≤ 17, 0 ≤ j ≤ gi,6}, where qi j indicates the

number of animals of species i initially present in the ecosystem whose age is

j , and t = max {1, �
∑21

j=8 q1 j−6
1.352 �}. The mathematical expression given for t was

obtained using the lineal regression (see Fig. 7.16);
– M2,1 = {C}

• The set R of evolution rules of the only P system of Π consists of:

– The first rule represents the contribution of energetic resources to the ecosystem
at the beginning of each cycle and it is essential for the system to evolve.
r0 ≡ [C → B ′αM ′βG ′γC ′]02,

where α and β are the double of kilos of bones and meat that are externally
introduced to the ecosystem, and γ is the amount of grass produced by the
ecosystem.
The second rule is useful to synchronize the process.
r1 ≡ [b0,i → bi ]01.

– Variation rules of the population.
We consider two cases due to the fact that in nomadic species the said variation
is influenced by animals from other ecosystems.
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Fig. 7.16 Lineal regression
between numbers of pairs
and years for the bearded
vulture

• Case 1. Non-nomadic species (No Bearded vultures).

� Adult males:

r2 ≡ [Xi j
(1−ki,1)−−−→ Yi j ]01, 2 ≤ i ≤ 17, i 	= 5, gi,4 ≤ j < gi,5.

� Adult females that reproduce:

r3 ≡ [Xi j
ki,2 ·ki,1−−−→ Yi jY

ki,3
i0 ]01, 2 ≤ i ≤ 17, i 	= 5, 6, gi,4 ≤ j < gi,5.

r4 ≡ [X5 j
0.5·k5,2−−−→ Y5 j Y

k5,3
50 ]01, g5,4 ≤ j < g5,5.

r5 ≡ [X5 j
0.5·k5,2−−−→ Y5 j Y

k5,3
60 ]01, g5,4 ≤ j < g5,5.

� Adult females that do not reproduce:

r6 ≡ [Xi j
(1−ki,2)·ki,1−−−→ Yi j ]01, 2 ≤ i ≤ 17, i 	= 6, gi,4 ≤ j < gi,5.

� Old females and males that do not reproduce:
r7 ≡ [Xi j −→ Yi j ]01, 2 ≤ i ≤ 17, gi,5 ≤ j ≤ gi,6.

� Young animals that do not reproduce:

r8 ≡ [Xi j
1−ki,4−−−→ Yi j ]01, 2 ≤ i ≤ 17, 1 ≤ j < gi,4.

• Case 2. Nomadic species (Bearded vultures).

r9 ≡ [X1 j hs
vs−−−→ Y1(g1,4−1)Y1 j h2s+1]01,

{
g1,4 ≤ j ≤ g1,6,
t ≤ s ≤ D1

being vs = 1.352/(1.352s + 6) and D1 = min{21, T + t − 1}.

r10 ≡ [X1 j hs
0.01−−−→ Y1(g1,4−1)Y1 j h2s+1]01,

{
g1,4 ≤ j ≤ g1,6
D3 ≤ s ≤ D2

where D2 = max{21, T + t − 1} and D3 = max{21, t}.
r11 ≡ [X1 j hs

1−vs−−−→ Y1 j hs+1]01,
{

g1,4 ≤ j ≤ g1,6
t ≤ s ≤ D1
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r12 ≡ [X1 j hs
0.99−−−→ Y1 j hs+1]01,

{
g1,4 ≤ j ≤ g1,6
D3 ≤ s ≤ D2

– Mortality rules.

� Young animals that survive:

r13 ≡ Yi j [ ]02
1−mi,1−mi,3−−−→[Vi j Ti ]+2 , 1 ≤ i ≤ 17, 0 ≤ j < gi,3.

� Young animals that die:

r14 ≡ Yi j [ ]02
mi,1−−−→[H ′ fi,1·gi,2

i F ′ fi,2·gi,2
i B ′ fi,1·gi,2M ′ fi,2·gi,2 ]+2 ,

{
1 ≤ i ≤ 17
0 ≤ j < gi,3

� Young animals that are retired from the ecosystem:

r15 ≡ [Yi j mi,3−−−→ λ]01, 1 ≤ i ≤ 17, 0 ≤ j < gi,3.

� Adult animals that do not reach an average life expectancy and survive:

r16 ≡ Y1 j hs[ ]02
1−m1,2−−−→[V1 j T1hs]+2 ,

{
g1,3 ≤ j < g1,6
t + 1 ≤ s ≤ D + t

r17 ≡ Yi j [ ]02
1−mi,2−−−→[Vi j Ti ]+2 ,

⎧
⎨

⎩

2 ≤ i ≤ 17
gi,3 ≤ j < gi,6
t + 1 ≤ s ≤ D + t

� Adult animals that do not reach an average life expectancy and die:

r18 ≡ Y1 j hs [ ]02
m1,2−−−→[H ′ f1,3 ·g1,2

1 F
′ f1,4 ·g1,2
i B′ f1,3·g1,2M ′ f1,4 ·g1,2V1,g1,4−1hs T1]+2 ,

where gi,3 ≤ j < gi,6, t + 1 ≤ s ≤ T + t .

r19 ≡ Yi j [ ]02
mi,2−−−→[H ′ fi,3·gi,2

i F
′ fi,4 ·gi,2
i B′ fi,3·gi,2M ′ fi,4 ·gi,2 ]+2 ,

where 1 ≤ 2 ≤ 17, gi,3 ≤ j < gi,6, t + 1 ≤ s ≤ T + t .

� Animals that reach an average life expectancy and die in the ecosystem:

r20 ≡ Y1g1,6 hs [ ]02 −→ [H ′ f1,3·g1,2
1 F

′ f1,4 ·g1,2
i B′ f1,3·g1,2M ′ f1,4 ·g1,2V1,g1,4−1hs Ti ]+2 ,

where t + 1 ≤ s ≤ T + t .

r21 ≡ Yigi,6 [ ]02
c21−−−→[H ′ fi,3·gi,2

i F
′ fi,4 ·gi,2
i B′ fi,3·gi,2M ′ fi,4 ·gi,2 ]+2 ,

where 2 ≤ i ≤ 17, c21 = mi,4 + (1−mi,4) ·mi,2 and t + 1 ≤ s ≤ T + t .

� Animals that reach an average life expectancy and are retired from the
ecosystem:

r22 ≡ [Yigi,6hki,4s
(1−ki,4)·(1−mi,4)·(1−mi,2)−−−→ λ]1,

{
2 ≤ i ≤ 17
t + 1 ≤ s ≤ T + t

– Density regulation rules.

� Creation of objects that are going to enable the control of the maximum
number of animals in the ecosystem:
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r23 ≡ bi [ ]02 → [bia�0,9∗gi,7�
i e�0,2∗gi,7�

i ]+2 , 1 ≤ i ≤ 17.

� Evaluation of the density of the different species in the ecosystem:
r24 ≡ [T gi,7

i a(gi,7−gi,8)
i → λ]+2 , 1 ≤ i ≤ 17.

� Generation of randomness in the number of animals:
r25 ≡ [ei 0,5−−−→ ai ]+2 , 1 ≤ i ≤ 17.

r26 ≡ [ei 0,5−−−→ λ]+2 , 1 ≤ i ≤ 17.
� Change of the names of the objects which represent animals:

r27 ≡ [Vi j → Zi j ]+2 , 1 ≤ i ≤ n, 0 ≤ j < gi,6.
� Change of the names of the objects which represent food resources:

r28 ≡ [G ′ → G]+2 .
r29 ≡ [B ′ → B]+2 .
r30 ≡ [M ′ → M]+2 .
r31 ≡ [C ′ → C]+2 .
r32 ≡ [H ′

i → Hi ]+2 , 1 ≤ i ≤ 17.
r33 ≡ [F ′

i → Fi ]+2 , 1 ≤ i ≤ 17.

– Feeding rules.

r34 ≡ [Zi j h
ki,4
s ai B fi,5·gi,2G fi,6·gi,2M fi,7·gi,2 ]+2 → Xi( j+1)h

k1,4
s [ ]02,

where 1 ≤ i ≤ 17, 0 ≤ j ≤ gi,6, t + 1 ≤ s ≤ D + t .

– Updating rules.
Next rules implement a balance at the end of the year, that is, the leftover food is
not useful for the next year, so it is necessary to eliminate it. But if the amount of
food is not enough, some animals die.

� Elimination of the remaining bones, meat and grass:
r35 ≡ [G → λ]02.
r36 ≡ [M → λ]02.
r37 ≡ [B → λ]02.
r38 ≡ [Ti → λ]02, 1 ≤ i ≤ 17.

r39 ≡ [ai → λ]02, 1 ≤ i ≤ 17.

r40 ≡ [ei → λ]02, 1 ≤ i ≤ n.

r41 ≡ [bi ]02 → bi [ ]02, 1 ≤ i ≤ 17.

r42 ≡ [Hi ]02 → Hi [ ]02, 1 ≤ i ≤ 17.

r43 ≡ [Fi ]02 → Fi [ ]02, 1 ≤ i ≤ 17.
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� Young animals that die because of a lack of food:

r44 ≡ [Zi j
gi,1−−−→ H ′ fi,1

i F ′ fi,2
i B ′ fi,1M ′ fi,2 ]02,

{
1 ≤ i ≤ 17
0 ≤ j < gi,3

r45 ≡ [Zi j ]02
1−gi,1−−−→ di [ ]02, 1 ≤ i ≤ n, 0 ≤ j < gi,3.

� Adult animals that die because of a lack of food:

r46 ≡ [Zi j h
k1,4
s

gi,1−−−→ H
′ fi,3
i F

′ fi,4
i B ′ fi,3M ′ fi,4 ]02,

⎧
⎨

⎩

1 ≤ i ≤ 17
gi,3 ≤ j ≤ gi,6
t + 1 ≤ s ≤ D + t

r47 ≡ [Zi j h
k1,4
s

1−gi,1−−−→ λ]02,
⎧
⎨

⎩

1 ≤ i ≤ 17,
gi,3 ≤ j ≤ gi,6,
t + 1 ≤ s ≤ D + t

The purpose of these rules is to eliminate objects H and F associated with the
quantity of biomass left by every species.

r48 ≡ [Hi → λ]01, 1 ≤ i ≤ 17.

r49 ≡ [Fi → λ]01, 1 ≤ i ≤ 17.

The constants associated with the rules have the following meanings (index i , 1 ≤
i ≤ 17, represents the type of animal):

• gi,1: 1 for wild animals and 0 for domestic animals.
• gi,2: proportion of time they remain in the mountain during the year.
• gi,3: age at which adult size is reached (age at which the animal eats like an adult,
and at which if the animal dies, the amount of biomass it leaves is similar to the
total one left by an adult). At this age it will have surpassed the critical early phase
during which the mortality rate is high.

• gi,4: age at which it starts to be fertile.
• gi,5: age at which it stops being fertile.
• gi,6: average life expectancy in the ecosystem.
• gi,7: maximum density of the ecosystem.
• gi,8: number of animals that survive after reachingmaximumdensity of the ecosys-
tem.

• ki,1: proportion of females in the population (per one).
• ki,2: fertility rate (proportion of fertile females that reproduce).
• ki,3: number of descendants per each fertile female that reproduces.
• ki,4: it is equal to 0 when the species go through a natural growth and it is equal to 1
when animals are nomadic (the Bearded vulture moves from one place to another
until it is 6–7 years old, when it settles down).

• mi,1: natural mortality rate in the first years, age < gi,3 (per one).
• mi,2: mortality rate in adult animals, age ≥ gi,3 (per one).
• mi,3: percentage of domestic animals belonging to non-stabilized populations
which are withdrawn in the first years.
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• mi,4: is equal to 1 if the animal dies at the age of gi,6 and it is not retired, and it
is equal to 0 if the animal does not die at the age of gi,6 but it is retired from the
ecosystem.

• fi,1: amount of bones from young animals when they die, age < gi,3.
• fi,2: amount of meat from young animals when they die, age < gi,3.
• fi,3: amount of bones from adult animals when they die, age ≥ gi,3.
• fi,4: amount of meat from adult animals when they die, age ≥ gi,3.
• fi,5: amount of bones necessary per year and animal (1 unit is equal 0.5kg of
bones).

• fi,6: amount of grass necessary per year and animal.
• fi,7: amount of meat necessary per year and animal.

The values of these constants have been obtained experimentally, except for ki,4
and mi,4 (see [7, 27, 62, 63] for details). Constants k,m and f are associated with
reproduction, mortality and feeding rules, respectively. Constants g are associated
with the remaining rules.

7.4.1.2 Results

In order to experimentally validate the model, an ad-hoc simulator was developed
based on P-Lingua 2.0 [30], starting after data from Table7.3.

We have focused on the evolution of wild species populations for a period of
14 years, since 1994. The scavenger birds populations at the initial year has been
considered according to the data in Table7.3 bymeans of a logarithmic (respectively,
exponential) regression (see Fig. 7.17).

At the validation process, values obtained from the simulator runs have been
compared to those obtained experimentally. It is also worth noting that we have
focused on the population dynamics at wild species from which there are only data
about the initial (1994) and final (2008) years, except for scavengers birds which we
have more information about (see Table7.3).

The ecosystem evolution throughout the period under study has been obtained by
running the simulator for 100 times having the same input data. The simulator execu-

Table 7.3 Number of animals in the Catalan Pyrenees (1979–2009)

Specie 79 84 87 89 93 94 95 99 00 05 08 09

Bearded V. – 7 – 13 – – 21 – 28 34 35 –

Egyptian V. – – 29 – 34 – – – 40 – 66 –

Griffon V. 29 – – 106 – – – 377 – – – 842

Pyrenean C. – – – – – 9000 – – – – 12000 –

Red deer – – – – – 1000 – – – – 5500 –

Fallow deer – – – – – 600 – – – – 1500 –

Roe deer – – – – – 1000 – – – – 10000 –
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Fig. 7.17 Regression relationships between numbers of pairs and years

tions have allowed us to estimate the standard deviation and compute the population
confidence intervals of the different species. The results presented in Fig. 7.18 are the
average of the 100 simulator executions. These results suggest that the PDP system
based model presented correctly simulates the population dynamics in the period of
time analyzed.

Next picture shows the energetic requirements of the Bearded vultures and the
corresponding contributions of three ungulates (see Fig. 7.19).

7.4.2 Pyrenean Chamois

Ungulates have life histories that are conducive to sustainable harvests [12] and, for a
variety of reasons (population control, meat production, and recreational and trophy
hunting), are intensively exploited. Legislation has ensured that appropriate hunting
quotas are set and that thereby the standards for the sustainable use of the species
are met. Pyrenean chamois is a small ungulate living in the three Pyrenean coun-
tries (Andorra, France and Spain) that represents an important economic and social
resource in rural communities. At present the existing population in the Pyrenees is
estimated at about 53,000 individuals. The status of the species has not always been
so favorable, in the late 60s the population decreased down to the edge of extinction
due to indiscriminate hunting. Fortunately National Hunting Reserves managed by
the regional administration were created in order to save the species.

This species has nomajor predators in the Pyrenees, except the brown bear (Ursus
arctos), and the golden eagle (Aquila chrysaetos). However, it is a species with
a small growth rate, compared with other species of ungulates and it has a life
expectancy of 20 years, though the mortality rate is high for animals older than
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Fig. 7.18 Experimental validation-I

11 years. In recent years, two outbreaks of pestivirus and keratoconjunctivitis have
affected some Pyrenean chamois populations of the Catalan Pyrenees. In fact, the
outbreak of pestivirus has caused a decline of 80% of the local population [95].

The pestivirus disease is having a very important impact at the social and economic
scale in the Pyrenees. The suspension of Pyrenean chamois hunting in the affected
areas has led to major loss of economic income. This loss is due not only to the lack
of direct income through payment of hunting licenses, but also by the disappearance
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Fig. 7.19 Experimental validation-II

of the indirect income (ecotourism) that hunters and their guests bring out. It is worth
pointing out to stress the considerable ecological impact of the sudden disappearance
of this herbivore in the affected areas. Despite the detailed studies currently being
carried out, the resulting consequences in the ecosystem are still unclear.

7.4.2.1 Model

Following [14],we aim to present a PDP systembasedmodel to study the dynamics of
the PyreneanChamois in theCatalan Pyrenees based on the following considerations:

• There are four separated areas in theCatalan Pyreneeswhere the Pyrenean chamois
live in herds (see Fig. 7.20).

• Weather conditions, in particular the thickness of the snow layer, influence the
values of biological parameters of the species under study [21].

• Causes of death for this species include: natural death, hunting and to the spread
of disease. We assume that it is unlikely that this species moves between areas,
and hence wherever there is a lack of resources the animals die. Only pestivirus
disease will be taken into account, while other diseases will not be considered yet.

The algorithmic scheme of the proposed model is shown in Fig. 7.21. The
processes to be modeled will be the weather conditions (snow), reproduction, reg-
ulation of density, food, natural mortality, hunting mortality and mortality from the
disease. In order to model these processes for each species, some biological, geo-
graphical and human factors, shown in Table7.4, are needed.
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Fig. 7.20 Study area in the Catalonia Pyrenees. Area 1: Reserva Nacional de Caça de l’Alt Pallars-
Aran. Area 2: RNC Cerdanya-Alt Urgell. Area 3: RNC Cadí. Area 4: RNC Freser-Setcases. Area
5: Parc Nacional, not included in the study

Fig. 7.21 Scheme model of the Pyrenean chamois model

The proposed model consists of a PDP system of degree (11, 4), taking T times
units (G, Γ,Σ, T,RE ,μ,R, { fr, j | r ∈ R∧1 ≤ j ≤ 4}, {Mi, j | 0 ≤ i ≤ 10∧1 ≤
j ≤ 4}, {E j | 1 ≤ j ≤ 4}), where:
• The graph of the system is G = (V, S), where V = {e1, e2, e3, e4} and S =

{(e1, ei ) : 1 ≤ i ≤ 4}.
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Table 7.4 Biological and geographical information (i month, ν area, l Snow thickness category)

Biological Parameter

Age at which they are considered adults g0

Age at which they begin to be fertile g1

Age at which they cease to be fertile g2

Life expectancy g3

Proportion of females in the population (as per 1) k1
Fertility rate (as per 1) k2
Number of descendants per female k3
Rate of natural mortality on young animals (as per 1) m1

Rate of natural mortality on adult animals (as per 1) m2

Amount of grass consumed per month and animal βi 1 ≤ i ≤ 10

Geographical Parameter

Amount of grass produced per month αi,ν , 1 ≤ i ≤ 10, 1 ≤ ν ≤ 4

Probability of having the disease msν , 1 ≤ ν ≤ 4

Probability of dying from a disease mdν , 1 ≤ ν ≤ 4

Maximum density of the ecosystem d1ν , 1 ≤ ν ≤ 4

Number of animals that survive after reaching the maximum
density

d2ν , 1 ≤ ν ≤ 4

Human factors Parameter

Young animals hunted h1ν , 1 ≤ ν ≤ 4

Adult animals hunted h2ν , 1 ≤ ν ≤ 4

• The working alphabet Γ is the set

{X jy , Y jy , Y ′
j y , Y ′′

j y, Z jy, Vjy, Wjy : 0 ≤ j ≤ g3, 1 ≤ y ≤ T } ∪ {ti : 1 ≤ i ≤ 3} ∪
{Gi : 4 ≤ i ≤ 10} ∪ {Ri : 0 ≤ i ≤ 7} ∪ {a, c, d, e, t, h, d1 F, D, S, N }

The objects X , Y , Y ′, Y ′′, Z , V and W are associated with animals in different
states, index j represents the age of the animal and index y represents the moment
of the simulation. The t are objects associated with the weather. F is an object that
allows the generation of food in the form of grass. Gi are objects associated with
the production of grass in the month i . The objects D, c, and e are used to control
the density of animals of each species. The objects h1 and h are used in order to
know the state of pestivirus. The objects S and N indicate presence or absence of
the disease, respectively, and finally there is the counter R that will allow us to
synchronize the system.

• The environment alphabet is Σ = {t, ti : 1 ≤ i ≤ 10}.
• T is a natural number.
• The setRE of environment rules tries to select the weather conditions for the year,
and to distribute this information to all environments. This is done because there
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are some biological parameters that vary depending on weather conditions (we are
able to simulate the snow thickness).

re1 ≡ (
t
)
e1

1/10−−−→ (
ti
)
e1

(
ti
)
e2

(
ti
)
e3

(
ti
)
e4

, 1 ≤ i ≤ 10

re2 ≡ (
t
)
eν

→ (
#
)
eν

, 1 < ν ≤ 4

• For each ν, 1 ≤ ν ≤ 4, Πν = (Γ,μ,M0,ν,M1,ν, . . . ,M10,ν,R) is a P system
of degree 11 whose membrane structure is μ = [ [ ]1[ ]2 . . . [ ]10 ]0.
The set R of rules of Πν is the following (where the probabilistic constants asso-
ciated with the rules have been incorporated):

* Preparation of the system to start a cycle.
r1 ≡ ti [ ]00 → [ti ]00, 1 ≤ i ≤ 10.
r2 ≡ ti [ ]0i → [t]−i , 1 ≤ i ≤ 10.

After applying the environment rules, re1 the object ti enters from the environ-
ment carrying the information about the climatic condition of the next year to
be simulated.

Each of the inner membranes labeled with 1, 2, . . . , 10, stores information on
biological parameters for each one of the ten different climatic scenarios that
the model envisages. The objects associated with animals should then enter the
same membrane as the object ti .

r3 ≡ X j,y[ ]−k → [X j,y]0k,
⎧
⎨

⎩

1 ≤ j ≤ g3,
1 ≤ y ≤ T,

1 ≤ k ≤ 10.

Each geographic area in which the species lives has a monthly production of
food (grass).

r4 ≡ (
F[ ]−k → [Gα4(ν)

4 , . . . ,Gα10(ν)
10 ]0k

)
eν

,

{
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

where α j (ν) corresponds to the amount of grass produced in the area ν for the
month j .
When the pestivirus appears in an area, object h is produced. It will be present
in the following configurations.
r5 ≡ h[ ]−k → [h]0k, 1 ≤ k ≤ 10.

The amount of animals in the ecosystem is controlled by the objects a because
it can not exceed a maximum load

r6 ≡ (
c[ ]−k → [a0.9d1ν e0.2d1ν ]0k

)
eν

,

{
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

The following rules simulate the presence or absence of disease.

r7 ≡ d[ ]−k → [d]0k, 1 ≤ k ≤ 10.

r8 ≡ [d h → d1]0k, 1 ≤ k ≤ 10.

r9 ≡ ([d1 msν−−−→ S]0k
)
eν

,

{
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.
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r10 ≡ ([d1 1−msν−−−→ N ]0k
)
eν

,

{
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

Then we have counter Ri that will allow us to synchronize the P system

r11 ≡ R0[ ]−k → [R0]0k, 1 ≤ k ≤ 10.

r12 ≡ [Ri → Ri+1]0k,
{
0 ≤ i ≤ 4,
1 ≤ k ≤ 10.

Finally, we introduce some randomness in the density control

r13 ≡ [e 0.5−−−→ a]0k, 1 ≤ k ≤ 10.

r14 ≡ [e 0.5−−−→ #]0k, 1 ≤ k ≤ 10.

* Reproduction rules

Males of childbearing age

r15 ≡ [X j,y
1−k1−−−→ Y j,y D]0k,

⎧
⎨

⎩

g1 ≤ j < g2,
1 ≤ y ≤ T,

1 ≤ k ≤ 10.

Females of childbearing age that reproduce

r16 ≡ [X j,y
k1·k2l−−−→ Y j,yY

k3
0,y D

k3+1]0k,
⎧
⎨

⎩

g1 ≤ j < g2,
1 ≤ y ≤ T,

1 ≤ k ≤ 10.

Females of childbearing age that do not reproduce

r17 ≡ [X j,y
k1·(1−k2l )−−−→ Y j,y D]0k,

⎧
⎨

⎩

g1 ≤ j < g2,
1 ≤ y ≤ T,

1 ≤ k ≤ 10.

Animals that are not fertile

r18 ≡ [X j,y → Y j,y D]0k,
⎧
⎨

⎩

g2 ≤ j ≤ g3,
1 ≤ y ≤ T,

1 ≤ k ≤ 10.

Young animals that do not reproduce

r19 ≡ [X j,y → Y j,y D]0k,
⎧
⎨

⎩

1 ≤ j < g2,
1 ≤ y ≤ T,

1 ≤ k ≤ 10.

* Density rules

Checking if the maximum density has been reached

r20 ≡ ([Dd1νad1ν−d2ν ]0k → [h0]]0k
)
eν

,

{
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.
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r21 ≡ [d h0]0k → [d0]0k, 1 ≤ k ≤ 10.

Transformation of objects that represent animals

r22 ≡ [Y j,y → Y ′
j,y]0k,

⎧
⎨

⎩

0 ≤ j ≤ g3,
1 ≤ y ≤ T,

1 ≤ k ≤ 10
* Feeding rules

r23 ≡ [Y ′
j,yaG

β4
4 Gβ5

5 Gβ6
6 Gβ7

7 Gβ8
8 Gβ9

9 Gβ10
10 → Z j,y]0k,

⎧
⎨

⎩

0 ≤ j ≤ g3,
1 ≤ y ≤ T,

1 ≤ k ≤ 10.

where βi represents the need of food in month i .

* Natural mortality rules

Young animals that survive

r24 ≡ ([Z j,y
1−m1k,ν−−−→ Vj,y]0k

)
eν

,

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ j < g0,
1 ≤ y ≤ T,

1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

Young animals that leave the ecosystem or die

r25 ≡ ([Z j,y
m1k,ν−−−→ #]0k

)
eν

,

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ j < g0,
1 ≤ y ≤ T,

1 ≤ k ≤ 10
1 ≤ ν ≤ 4.

Adult animals that survive

r26 ≡ [Z j,y
1−m2−−−→ Vj,y]0k,

⎧
⎨

⎩

g0 ≤ j < g3,
1 ≤ y ≤ T,

1 ≤ k ≤ 10

Adult animals that die

r27 ≡ [Z j,y
m2−−−→ #]0k,

⎧
⎨

⎩

g0 ≤ j < g3,
1 ≤ y ≤ T,

1 ≤ k ≤ 10.

Animals that reach the maximum age of the species

r28 ≡ [Yg3,y → #]0k,
{
1 ≤ y ≤ T,

1 ≤ k ≤ 10.

* Hunting mortality

Young animals that survive hunting

r29 ≡ ([Vj,y
1−h1ν−−−→Wj,y]0k

)
eν

,

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ j < g0,
1 ≤ y ≤ T,

1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.
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Young animals that are hunted

r30 ≡ ([Vj,y
h1ν−−−→ #]0k

)
eν

,

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ j < g0,
1 ≤ y ≤ T,

1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

Adult animals that survive hunting

r31 ≡ ([Vj,y
1−h2ν−−−→Wj,y]0k

)
eν

,

⎧
⎪⎪⎨

⎪⎪⎩

g0 ≤ j < g3,
1 ≤ y ≤ T,

1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

Adult animals that are hunted

r32 ≡ ([Vj,y
h2ν−−−→ #]0k

)
eν

,

⎧
⎪⎪⎨

⎪⎪⎩

g0 ≤ j < g3,
1 ≤ y ≤ T,

1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

* Disease mortality

r33 ≡ [R5S]0k → [R6 h]−k , 1 ≤ k ≤ 10.

r34 ≡ [R5N → R6 h]0k, 1 ≤ k ≤ 10.

r35 ≡ [R5d0 → R6 h]0k, 1 ≤ k ≤ 10.

r36 ≡ [R5d → R6]0k, 1 ≤ k ≤ 10.

r37 ≡ [R6]−k → [#]+k , 1 ≤ k ≤ 10.

r38 ≡ [R6]0k → [#]+k , 1 ≤ k ≤ 10.

r39 ≡ ([Wj,y]−k mdν−−−→[#]+k )eν
,

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ j < g3,
1 ≤ y ≤ T,

1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

r40 ≡ ([Wj,y]−k 1−mdν−−−→[Wj,y]+k )eν
,

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ j < g3,
1 ≤ y ≤ T,

1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

* Updating rules

r41 ≡ [Wj,y]+k → X j+1,y+1[ ]0k,
⎧
⎨

⎩

0 ≤ j < g3,
1 ≤ y ≤ T,

1 ≤ k ≤ 10.

r42 ≡ [Y ′
j,y]+k → [#]0k,

⎧
⎨

⎩

0 ≤ j < g3,
1 ≤ y ≤ T,

1 ≤ k ≤ 10.
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r43 ≡ [t]+k → R0, F, t, c, d[ ]0k, 1 ≤ k ≤ 10.

r44 ≡ [h]+k → h [ ]0k, 1 ≤ k ≤ 10.

r45 ≡ [a]+k → [#]0k, 1 ≤ k ≤ 10.

r46 ≡ [Gi ]+l → [#]0k,
{
4 ≤ i ≤ 10,
1 ≤ k ≤ 10.

r47 ≡ [t]00 → t[ ]00
• The initial multisetsM0,ν, M1,ν, . . . M10,ν of the P system associated with the
environment ν (1 ≤ ν ≤ 4) are the following:

M0,ν = {F, R0, c, d} ∪ {Xqν, j

j,1 : 1 ≤ ν ≤ 4, 1 ≤ j ≤ g3}, for 1 ≤ ν ≤ 4.
Mk,ν = ∅, for 1 ≤ k ≤ 10 and 1 ≤ ν ≤ 4.

7.4.2.2 Results

Now, in order to experimentally validate the model, a MeCoSim based custom sim-
ulator for the designed PDP model is generated. For that, the designer uses a spread-
sheet to edit a MeCoSim configuration by introducing the following information:

• General Data: The designer user introduces an application identifier and an appli-
cation name to define the ecosystem under study, the number of years to simulate,
the total number of simulations to generate and the computational steps per year.
He also introduces the mode to use in the program (designer or end-user).

• Tabs Hierarchy: The designer establishes the desired structure of tabs to contain
the input and output views of the system to simulate (Fig. 7.22).

• Input tables: The designer lists the tables to include in the application to contain
the data of the ecosystem, specifying the identifiers of the tabs in which the tables
will be put, the number of columns, the initial rows and an indicative meaning if
the content of the table must be saved into the data file (Fig. 7.23).

Fig. 7.22 Tabs hierarchy
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Fig. 7.23 Input tables

Fig. 7.24 Table columns configuration

• Table columns configuration: For each table, theremust be listed the set of columns,
including an identifier, a name, a tool-tip to show when the user passes the mouse
over each column of the table and a boolean value indicating if the data of the
column is editable or not (Fig. 7.24)

• P-Lingua parameters: In the parameters tab, the designer lists the sets of para-
meters to use in the simulation of the model, with their name, value and up to 4
indexes for each parameter to produce final parameters to serve as part of the input
of the simulation (Fig. 7.25)

When the designer user of the P system has introduced the required information in
the configuration file, it can be loaded into the general purpose application, generating
the custom simulator that matches the specific necessities of the designer and end-
user. The custom simulator will show the input tables which permit the end-user to
introduce the data for the development of virtual experiments as shown in Fig. 7.26.

From the input data and the parameters introduced in the configuration file, the
custom application will simulate the virtual experiments and will show the outputs
of the simulation.

There are experimental data available from 1988, although censuses where not
carried out annually so that experimental series is not a continuous one. Using the
censuses in 1988 as input for the model, 22 years have been simulated repeating
the process 50 times for each of the years simulated. Figure7.27 shows the results
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Fig. 7.25 P-Lingua parameters

Fig. 7.26 Edition process for the initial parameters of the model

and more specifically, the continuous line represents the average value of the 50
simulations whereas the broken lines correspond to 95% interval and the dots are the
values obtained experimentally. In both Alt Pallars-Aran and Cerdanya-Alt Urgell
areas, animals have suffered from pestivirus infections whereas in Freser-Setcases,
the population dynamics have not suffered the disease caused by this infection.

In general, the model behaves well in all cases. The model considers the main
processes and dynamics of the species although some of them have been omitted
because they are considered to be less important. This may explain the differences
between the values obtained with the model and experimental ones. Among these
factors, we should highlight the influence of domestical animals living in the area
on the spread of pestivirus infection. In addition, there are few data regarding the
thickness of the snow layer and those used in the model have been obtained from
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Fig. 7.27 Results

ski resorts so that they may be overdimensioned and then, may affect the results
significantly. It would be interesting to study the relationship between the thickness
of the snow layer and other available climatic data in the area such as temperature
and the length of the winter interval.



7.4 Case Studies 331

7.4.3 Zebra Mussel

Zebra mussel is an exotic invasive species causing an important damage from an
environmental and economical point of view,wherever it settles. Its presence in Spain
was first detected in 2001, in the reservoir of Riba-roja, managed by the company
Endesa S.A.

Zebra mussel are considered as true engineers of the ecosystem, due to the signif-
icant ecological change they produce when invading an aquatic ecosystem, altering
its structure and functioning [55], including changes in the water composition and
increase in operating and maintenance costs, obstructing drains and pipes [52, 60].

Numerous studies havebeen focusedon the biologyof the species, its geographical
dispersion and its influence on the invaded environment, including essays of methods
to control or eradicate the species [42, 44, 74, 103, 104, 109, 110, 120].

In this section, the study on modeling and simulation of the ecosystem of Zebra
mussel in the reservoir of Riba-roja is presented. In Sect. 7.4.3.1, the main facts
related with the species, the environment and the processes included in our study
are described. A summary of the more relevant aspects of the model is provided in
Sect. 7.4.3.2. Finally, a software application using themodel tomanage the ecosystem
is shown in Sect. 7.4.3.3.

Further explanation about this model is given in [18], and more technical details
and files for simulating its evolution by means of the proposed software tools is
available at [123].

7.4.3.1 Biology of the Species

Zebra mussel (Dreissena polymorpha) is an aquatic bivalve mollusc presenting a fast
life cycle with a huge reproductive potential, a high mobility of larvae and a great
dispersal capacity [1, 13, 61]. It presents two main stages: a larval phase, suspended
in the water column (planktonic state), and a latter phase, settled to the substrate
(benthonic state).

Zebra mussel is a dioecious species with a proportion of genders around 1:1. The
number of eggs emitted by female individual per reproductive cycle depends on its
size, influenced by its age. In [18, 121] the discussion and expressions to calculate
the number of eggs are detailed, referencing the corresponding sources.

Larvae remain in the water column around 3–5 weeks [13]. Some of them are
depredated by the adults themselves. The mortality rate from the spawning period to
the beginning of juvenile phase can reach up to 98% [59]. After this larval stage, they
fall over the substrate by the effect of gravity. According to [108], the recruitment of
young mussels depends on the density of adult mussels [18].

Two reproductive cycles are observed in the reservoir along the year: fromMarch
to June, and from October to November. The individuals produced in the first cycle
could reach sexual maturity before the start of the second one. The production of
larvae is bigger when the temperature raises 15–17 ◦C [52]. Given the size of the
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reservoir, the different temperatures arising and the movements among different
zones, mussels in different stages of development coincide in the same area of the
reservoir.

Zebra mussel can form aggregates of individuals, forming different layers. Max-
imum densities above 100.000 individuals per m2 has been observed [73], reaching
up to 250.000 in the reservoir of Riba-roja [82].

The reservoir is placed in the Ebro river basin, in the Northeast of Spain. With
a length of 35 km and a variable depth (up to 28 m), it receives water from Ebro
river, the reservoir ofMequinenza, and rivers Segre andMatarraña. Different thermal
conditions and features of the substrates are considered.

The river is longitudinally structured in 9 different zones, each of them divided
into 2 parts depending on its depth (U, upper y L, lower), summarizing 17 areas (see
Fig. 7.28). This division is relevant, due to the different development rates of mussels
and different intensity depending on such environmental factors.

In order to perform the study of the population dynamics of Zebra mussel in the
reservoir of Riba-roja, the following factors are considered:

1. The basic biological processes involved in the species life cycle.
2. The special features related to the habitat, an artificial reservoirwithwater currents

and changes in the renewal process over them, managed for the generation of
hydroelectric power, being affected by the features of the incoming water.

3. The possibility for external larvae to enter from reservoirs and close tributaries,
and the transference of individuals from external rivers to the reservoir through
the traffic of vessels.

Fig. 7.28 Division in zones in the reservoir
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Table 7.5 Percentage of mussels starting reproduction per week, given the thermal conditions

Week 1 2 3 4 5 6 7 8 9 10 11

Cycle 1 (%) 4 4 7 15 20 20 15 10 3 1 1

Cycle 2 (%) 80 15 5

It is worth noting the influence of the water thermal conditions. They affect the
probability for an individual to reproduce, as shown in Table7.5. In addition, the
nature and composition of the substrate, specially its toughness and porosity, will
influence drastically the density of mussels and mortality rate of larvae.

Another decisive factor is the effect of human actions over thewater flow, affecting
the movement of larvae among different zones or outside the environment.

In [17] a standardized protocol was presented for computational modeling based
on P systems, briefly presented below.

Stage 1: Purpose

The modeling of the population of Zebra mussel in the reservoir of Riba-roja and
the development of tools to perform virtual experiments assisting managers in the
decision making process.

Stage 2: Processes

The main processes to model are as follows:

• Biology of the species: eggs release, larval phase, settlement to the substrate, mor-
tality depending on state and depredation.

• Environmental processes: generation of thermal conditions, features of the sub-
strate per zone and control of carrying capacity depending on its soundness.

• Human intervention: displacement of larvae among zones due to the water man-
agement, and of adults due to the movement of vessels.

Stage 3: Input of the model and parameters to consider

The input of the model is the size of the initial population, along with some parame-
ters regarding the biology of the species, the environment and the possible human
interventions.

Stage 4: Sequencing and parallelization of processes

In order to have a bigger control over the model, the processes to be represented are
sequenced. In this case, a partial sequencing of the process is proposed, as shown in
Fig. 7.29.
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Fig. 7.29 Model blocks sequencing

The presence of young individuals reaching sexual maturity later than adults
increases the difficulty of a sequencing of processes. This way, processes are said to
be unsynchronized.

A natural year involves the execution of two iterations of the basic cycle, corre-
sponding to the two phases that take place in the two reproductive cycles of Zebra
mussel along the year.
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Stage 5: The model

The design of the model should reflect all the processes and input elements com-
mented in the previous stages descriptions, by using aPopulationDynamics P system.

Stage 6: Graphical analysis of a cycle in the execution of a model

This stage implies the depiction of an execution trace of a cycle of the model, ana-
lyzing the evolution of the objects in the system along the cycle to deeply analyze the
correction of the model and its accuracy with respect to the initial purpose addressed.
See [121] for further details.

Stage 7: Design of the simulator

The application of this stage to our model by using P-Lingua and by MeCoSim
is described in Sect. 7.4.3.3.

7.4.3.2 Model

The details about the notations used in the model are described in [121]. A number
of parameters for the model are defined, concerning:

• Environmental conditions and influence over the species, as P Is,c (proportion of
larvae released during week s of reproductive cycle c) or ps, j (probability for
the reproduction to get enabled for individuals in compartment j during week s),
influenced by I Tc (temperature for starting reproductive cycle c).

• Biological parameters, as g1 (percentage of eggs released in the first cycle).
• Properties of the compartment, as ϕ j (capacity of compartment j , calculated from
the proportion of each type of soil present in the compartment and its capacity C j

in cubic meters).
• Human intervention, as PRs, j, j ′ (probability for larvae to be displaced duringweek
s, from compartment j to compartment j ′ due to the hydraulic regime for water
renewal).

Many objects appear in this model, including objects representing individuals, as
Xsem (adult mussels aged sem in semesters), Qs (young mussels aged s weeks), Os

(eggs produced of reproductive cycle), or Li s for larvae in different stages, and Ts
(auxiliary object to trigger the process of pseudo-random generation of temperatures
during the weeks of each reproductive cycle), among others.

We consider a PDP system of degree (40, 18) taking T ≥ 1 time units defined as
follows:

Π = (G, Γ,Σ, T,RE ,μ,R, { fr, j | r ∈ R ∧ 1 ≤ j ≤ 18} ∪
{Mi, j | 0 ≤ i ≤ 39 ∧ 1 ≤ j ≤ 18} ∪ {E j | 1 ≤ j ≤ 40})
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where:

• G = (V, S) is the directed graph containing nodes V = {e1, . . . , e18}. The move-
ments among environments are shown in [121].

• Theworking alphabet,Γ , and the alphabets of the environment,Σ , are also detailed
in [18, 121].

• μ = [ [ ]1 . . . [ ]39 ]0 is the membrane structure, and the initial multisets for the
environment j include the Xsem with multiplicity q j,sem inside environment j ,
and Qd with multiplicity q j,d .

• T = 51 · 2 · Years. Each year is simulated by 2 cycles of 51 steps.
• E1 = · · · = E18 = {T0, I1}
• The set of rules in the system is detailed in [18, 121]. Let us show some signifi-
cant rules illustrating a very relevant process: the movement of larvae, due to the
hydraulic regime.

re13 ≡ (Lm,i, j, j1
PR(m, j1 , j2)−−−→ Lm+1,i+1, j, j2)e j

⎧
⎪⎪⎨

⎪⎪⎩

1 ≤ j ≤ 18
1 ≤ m ≤ 42
0 ≤ i ≤ 3
1 ≤ j1 ≤ 7
1 ≤ j2 ≤ 7

re15 ≡ (Lm,i, j, j1
PR(m, j1 , j2)−−−→ Lm+1,i+1, j, j2)e j

⎧
⎪⎪⎨

⎪⎪⎩

1 ≤ j ≤ 18
1 ≤ m ≤ 42
0 ≤ i ≤ 3
8 ≤ j1 ≤ 14
8 ≤ j2 ≤ 14

These rules capture the effect of the water renewal cycle, enabled by the managers
of the reservoir, causing the movement of larvae among different compartments.
Specifically, these rules represent the possible movement of a larvae (released
during week m and suspended in the water column water for i + 1 weeks) from a
compartment j1, to another compartment j2, in central areas of the reservoir. Rule
re13 represents this movement for the upper compartments, being re15 devoted to
the lower ones. These movements depend on probabilities PR(m, j1, j2); from
the input data introduced by the managers about the amount of water entering
the reservoir in week m, an algorithm calculates these probabilities taking into
account the proportion of water being displaced to each compartment due to the
incoming water. The overall process involves more rules representing vertical fall
and movements to side areas, as described in [18].

The model presents the modules shown in Fig. 7.29. The simulation of a natural
year implies the running of two cycles of the model.

7.4.3.3 The Model as a Tool for the Management of the Ecosystem

Themodel presented in the previous section captures many of the processes affecting
the population dynamics of Zebra mussel in the reservoir of Riba-roja, including
natural and human elements in the environment influencing its evolution.



7.4 Case Studies 337

Fig. 7.30 MeCoSim app - tabs tree structure

In what follows let us we outline the needed steps to convert the model of Zebra
mussel in an application to serve the managers of the reservoir as a tool to assist
in decision making processes, allowing him to analyze possible consequences and
changes in the population dynamics of the species and the ecosystem, depending on
their possible actions to be performed over the system. Further details of the process
are provided in [121], and the corresponding files are available at [123].

• Specification of the model in a language understandable by the machine, through
the writing of a P-Lingua file.

• Configuration of an application based on MeCoSim adapted to the system under
study (customization). The structure of the resulting application will be shown in
Fig. 7.30.

• Debugging the model, detecting possible errors, initializing and analyzing the
evolution step by step.

• Simulating the model to perform experimental validation.
After validated with the experts, the application will be ready to assist managers
allowing virtual experiments to analyze potential scenarios. For instance, it would
be interesting for the managers of the reservoir to know which could happen in
case of an external inoculation of larvae produced, an input of mussels due to
movement of vessels happened, or a more constant water renewal cycle applied
due to a long period of heavy rains.
For each scenario, the input data must be entered by the managers in the input
tables, to set initial populations, environmental conditions (as the area properties,
Fig. 7.31) and human actions.
Once the simulation has finished, the results from the simulation will be shown.
Some output tables will provide quantitative data about certain elements of the
system, in order to analyze the numbers, as in Fig. 7.32.
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Fig. 7.31 MeCoSim app - area properties

Sometimes it will be easier to analyze the qualitative evolution of the species,
instead of the exact number. For these cases, some type of graphical evolution by
means of charts will be more informative. These charts will be also configurable
for the custom simulation app, as in the example shown in Fig. 7.33, showing the
evolution of adult mussels per compartment, or in the example shown in Fig. 7.34,
allowing the study of the evolution of the amount of larvae in a certain zone of the
reservoir.

7.4.4 Giant Panda

Now, we present a PDP system based model trying to provide an integrated view of
the processes related to Giant panda individuals in the Giant Panda Breeding Base
(GPBB for short) of Chengdu, enabling the study the population dynamics of the
species under various conditions.

The purposes of a model of this kind can be categorized in the following way:

• Diagnosis: analyze and assess what happened, examining the causes and precursor
conditions of some known present or past facts or events.
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Fig. 7.32 MeCoSim app - adults output

Fig. 7.33 MeCoSim app - adults evolution chart
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Fig. 7.34 MeCoSim app - larvae evolution chart

• Prediction: simulate the behavior of the system under possible future scenarios
of interest for the experts, in order to study possible responses to potential future
situations affecting the species.

The spatial environment studied in the presentedmodel is focused on the Chengdu
Research Base of Giant Panda Breeding. However, it also includes the data about the
population of Giant pandas sent to centers and zoos in different parts of China and the
rest of the world. The statistical data needed to estimate parameters was provided by
the Breeding Base, collecting information since the moment of the base creation, in
1987, to 2013. Consequently, these data are stable enough to provide average values
we can trust in.

Once the model was developed, real data about population of panda per gender
and age was provided, to perform the corresponding simulations, covering a period
of time from 2005 to 2013, in such a way that the output of the simulations could be
validated by contrast with these real data.

The model studies population dynamics of the Giant panda species in captivity,
accounting the factors involved in the evolution of the species in this particular
situation. However, further study should be conducted in order to adapt such model
to expand its scope to cover the wild environment. This would require the study
of additional processes involved in the population dynamics of wild individuals,
maybe affected by different threats, feeding problems, competitors, diseases, lower
life expectancy, etc.
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The main processes/modules included in the present model are as follows:

• Reproduction: every year a number of new individuals are born in the Breeding
Base and other centers coordinated from there. There exist historical data recording
the number of new individuals per year. This number presents a strong variance,
from 3 or 4 individuals per sex to a number close to 30. In addition, this number
is not related to the number of total individuals in reproductive age, so an average
number of males and females is taken as a reference. This fact is probably derived
from the controlled nature of the studied system, since in general in wild environ-
mental models for animals, the number of new births is correlated with natural
factors as the fertility ratio, the number of individuals in fertile age, the probability
to meet depending on the surface, etc. In a later model these or other factors could
be considered. The natural growth of the individuals in the population is trivially
modeled by increasing the age of the individuals when not affected by diseases or
natural facts producing their death.

• Mortality: different factors influence the mortality of the individuals in the pop-
ulation, but in a captive environment these are mainly under control. However,
as any species, Giant panda has natural factors conditioning its maximum life
expectancy, and different mortality ratios depending on the age of the individual.
Historical data has been provided, thus permitting statistical data analysis to get
curated data for the model.

• Feeding: every Giant panda has some feeding needs along the year, mainly bam-
boo, bamboo shoots and other minor sources of food (i.e. apples, meat and milk).
An average need of food is considered per individual, taking into account that
these needs are different in different groups of age. The system should provide the
necessary amount of food for the living individuals, which seems to be guaranteed
in the captive environment in Chengdu Breeding Base and controlled zoos but
could not be guaranteed in wild environment.

• Rescue: the total number of Giant pandas can evolve not only by the births and
deaths of individuals, but can also be increased by bringing in newwild individuals
which have been rescued. This number presents a big natural variability among
different years, but based on a series of real data from Breeding Base, the average
and variance in the total number of captured individuals has been obtained. In
addition, there exists a historical proportion of captured individuals per gender,
and the age of these captured Giant pandas is not random, but also follows a
distribution. All these factors are considered in the model, along with the fact that
the lifespan of wild individuals is significantly smaller than in captive individuals
(20–25 instead of 34–36), so a proportional increase in the age of the captured
individuals is simulated depending on the years the individual lived in the wild
environment.

In what follows, the conceptual schema is depicted showing the main processes
involved in the model, adding some needed initialization and update modules to the
natural processes, in order to synchronize and prepare for the next cycle.
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Ini aliza on

Reproduc on

RescueMortality

Feeding

Update

7.4.4.1 Model

We consider a PDP system of degree (2, 1)

Π = (G, Γ,Σ, T,RE ,μ,R, { fr,1 | r ∈ R},M1,1,M2,1, E1)

with one environment and Π1 = (Γ,μ,M1,1,M2,1,R) is a P system of degree 2
with (only) two electrical charges (neutral and positive) taking T time units, defined
as follows:

• G is an empty graph.
• The working alphabet is

Γ = {Xi, j , Yi, j , Zi, j , Wi, j : 1 ≤ i ≤ 2, 0 ≤ j ≤ ki,5} ∪
{ Ci, j : 1 ≤ i ≤ 2, 0 ≤ j ≤ cmaxage} ∪ {S, B, O, F, N , A}

Symbols Xi, j represent individuals of age j before reproduction module, Yi, j
represent individuals of age j within mortality module, Zi, j represent surviving
individuals of age j , Wi, j represent individuals of age j after feeding module and
Ci, j represent rescued individuals of “age” j . Objects S, B, O represents differ-
ent types of food: bamboo shoots, bamboo, or other food, respectively. Objects
F, N , A are auxiliary symbols that represent the following: F is an object used to
generate new quantity of food at the beginning of each time cycle; N is an object
used to generate newborns when beginning each time cycle; and A is an object
used to trigger the income of rescued individuals.
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• The alphabet of the environment is Σ = ∅.
• T represents the number of years to be simulated in the evolution of the ecosystem.
• μ = [ [ ]2 ]1 is the membrane structure.
• M1,1 and M2,1 are finite multisets over Γ describing the objects initially placed
in regions of μ;

– M1,1 = {Xqi, j
i, j : 1 ≤ i ≤ 2, 1 ≤ j ≤ ki,5} (qi, j represents the initial number

of Giant pandas of age j).
– M2,1 = {F N A}.

• The set R of evolution rules of the only P system of Π consists of:

– Initialization rule

� Generation of objects associated with the food:

r1 ≡ [ F ]02 −→ F [ Sg3 Bg4 Og5 ]+2 ,

– Reproduction rules

� Rules associated with newborns:

r2 ≡ [ N ]02 −→ N [ Y g1
1,0 Y

g2
2,0 ]+2 ,

� Growth rules:

r3 ≡ [ Xi, j ]02 −→ [ Yi, j ]+2 , for
{
1 ≤ i ≤ 2
1 ≤ j ≤ ki,5

– Rescued Giant pandas rules

� Probability to have c rescued individuals:

r4 ≡ [ A ]02
pcc−→ A Cc [ ]+2 , for cmin ≤ c ≤ cmax .

� Probability for rescued individuals to have gender i :

r5 ≡ [C pgi−→ Ci ]01, for 1 ≤ i ≤ 2

� Probability for rescued individuals to have age j :

r6 ≡ [Ci
pa j−→ Ci, j+1+� j

3 � ]01, for
{
1 ≤ i ≤ 2
0 ≤ j < cmaxage

– Mortality rules

� Infancy Giant pandas that survive:
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r7 ≡ [ Yi, j 1−ki,6−→ Zi, j ]+2 , for
{
1 ≤ i ≤ 2
0 ≤ j < ki,1

� Infancy Giant pandas that die:

r8 ≡ [ Yi, j ki,6−→ λ ]+2 , for
{
1 ≤ i ≤ 2
0 ≤ j < ki,1

� (analogous mortality rules for each age interval)

� Giant pandas which reach the maximum life expectancy:

r19 ≡ [ Yi,ki,5 −→ λ ]+2 , for 1 ≤ i ≤ 2

– Feeding rules

� Feeding process for infancy Giant pandas:

r20 ≡ [ Zi, j S fi,1 B fi,2 O fi,3 ]+2 −→ [Wi, j ]02, for
{
1 ≤ i ≤ 2
0 ≤ j < ki,1

� (analogous feeding rules for each age interval)

– Updating rules

� Elimination of the remaining food.

r23 ≡ [ S −→ λ]02
r24 ≡ [ B −→ λ]02
r25 ≡ [ O −→ λ]02
� Preparation for the beginning of a new cycle.

r26 ≡ [Wi, j ]02 −→ Xi, j+1 [ ]02, for
{
1 ≤ i ≤ 2
0 ≤ j < ki,5

r27 ≡ F [ ]02 −→ [F]02,
r28 ≡ Ci, j [ ]02 −→ Xi, j+1 [ ]02, for

{
1 ≤ i ≤ 2
0 ≤ j < ki,5

r29 ≡ N [ ]02 −→ [N ]02,
r30 ≡ A [ ]02 −→ [A]02,
A list of the constants associated with the rules where the correspondingmeanings

are specified (for male i = 1, for female i = 2) is the following:

– ki, j : parameters related to mortality ratio for each age interval (i = 1 infancy,
i = 2 subadult, i = 3 youth adult, i = 4 mid-adult and i = 5 elderly), and values
for reaching each of those intervals.

– gi : parameters related to number of newborns per year (i = 1, 2), and amount of
food (bamboo shots, bamboo, and other food) supplied in the GPBB (kg per year).
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– fi, j : amount of food (kg per year) necessary according to the energetic require-
ments of the Giant pandas at each age interval.

– cmin, cmax : min/max number of rescued Giant pandas per year.
– cmaxage: maximum age of rescued Giant pandas.
– pcc: probability to have c rescued individuals.
– pgi : probability for rescued individuals to have gender i .
– pa j : probability for rescued individuals to have age j .

In order to carry out virtual experiments studying the evolution of the system
under different scenarios of interest, the user can interact with the parameters listed
above (in the “Notations” section). The evolution of the elements in the system for
a single cycle of simulation is as follows:

7.4.4.2 Experimental Validation

Results of the model have been corroborated by contrasting the output of the simula-
tion against the real data from 2005 to 2013. Simulation data results are found to be
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Fig. 7.35 Experimental validation statistics

very close to the real ones, presenting very low deviation. Smaller differences can be
easily explained from the natural variability inherent to the processes under study, in
such away that the years whose real data are significantly far from their own averages
are the ones that present an equivalent deviation in the simulation results. Since in
the experimental validation 1000 simulations are performed and average values are
taken, simulation results should be very similar to the expected average result, but
obviously not to each possible real occurrence in our probabilistic scenario.

Data presented in Fig. 7.35 come from the simulation outputs for period 2005–
2013, by using as input the population in the Breeding Base in 2005. The parame-
ters for rescued individuals were estimated by statistically averaging real data from
the same years. The rest of parameters (birth rates, mortality ratios, etc.) has been
extracted from the historical data of the Breeding Base, thus being more reliable and
sound for calibrating the model against the period 2005–2013.

7.4.4.3 Uncertainty and Sensitivity Analysis

No matter what the quality of model and simulation tools is, some uncertainty rises
from the inherent variability of processes and parameters, along with imprecisions
or errors coming from data analysis. Consequently, the pertinent uncertainty and
sensitivity analysis has to be conducted over the parameters, in order to determine
the influence of the variation of each input parameter on the output results, possibly
listing and sorting the influence of each factor or even quantifying it. The latter
would provide a tool to put the focus over parameters that are specially relevant and
therefore should be considered for a more detailed calibration, study, or work field
measurements depending on the nature of the data.

An example of this kind of sensitivity analysis is shown for a very relevant para-
meter, the mortality ratio for males at early ages:

The strong correlation among this ratio and the size of the output population is
shown in the fragment of the table and the chart in Fig. 7.36. In order to assure the
accuracy of the model, it has been validated for its use in scenarios similar to the
one studied, that is, with similar parameter values and environment, such as captive
conditions, pairing system, cares, etc.
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Fig. 7.36 Correlation between the mortality ratio at early ages (horizontal axis) against the total
population at the end of the simulation (vertical axis)

However, both the framework and tools involved in the model design, and the
theoretical model itself, allow easy customization since they are parameterized, thus
enabling their use in different contexts or even the addition of many other features
of interest.

Since the goal of this model is to provide a reliable tool for supporting decision
making, further efforts are necessary in terms of parameter estimation, uncertainty,
and sensitivity analysis, plus an iterative refinement process involving designers,
experts and managers.

7.5 Conclusions

In this chapter, a general membrane computing modeling paradigm for both cellular
processes and population dynamics of ecological systems, is presented. Among the
most important advantages of this new framework with respect to classical models
we highlight a high computational potential, modularity (small changes in the system
to be modeled entails small changes in the model) and the ability for the modeled
process to work in parallel, in any desired order.

In relation to ecological systems and according to [53], our approach (called
Population Dynamics P systems, PDP systems, for short) provides models able to
incorporate spatial distribution among their basic components, to account for adap-
tation or for a shift in composition of individuals/species, including age structure,
and with the possibility of a dynamism in the corresponding parameters associated
with the models. Another interesting feature of PDP systems is that modeling ele-
ments are “natural” for experts, since individuals can bemodeled after single objects,
processes like feeding, reproduction, and mortality with rewriting rules and spatial
distribution with separate membranes and environments.
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PDP systems are (sequentially) simulated by using P-Lingua and MeCoSim,
software tools which enable running simulations considering the model under dif-
ferent scenarios and then experimentally validating it. These programs capture PDP
semantics through an inference engine that implements DNDP and DCBA algo-
rithms. Nevertheless, the inherent parallel structure associated with PDP systems
appoints the convenience of using some parallel hardware architecture. Specifically,
GPUs exploit data parallelism by using a very fast memory and simplifying the
cores by means of SIMD multiprocessors interconnected to a fast bus with the main
memory system.

Presented computing framework and designed simulators have been successfully
applied to model different real ecosystems. In this chapter, four case studies are pre-
sented. First, an ecosystem related to three scavenger birds in the Catalan Pyrenees,
where one of them, the Bearded vulture, is an endangered species. The goal is to
find out what is the most adequate management of the ecosystem for the sustainable
development of species.

The second case study is a complex fluvial ecosystem, characterized by a compo-
sition of dynamic habitats with many variables that interact simultaneously. Specif-
ically, the Riba-roja reservoir (Spain) occupied by an exotic invasive species, the
zebra mussel (Dreissena polymorpha).

The aim of the zebra mussel modeling is the design of a management strategy
for the reservoir in order to control or eradicate, if possible, the this species which
causes serious environmental and economic damages.

The third case study is the Pyrenean chamois dynamics in the Catalan Pyrenees
(Spain). This is an emblematic species that provides significant economic contribu-
tions in the area and constitutes an important food resource for obligate and facul-
tative scavengers. In recent years, several diseases have caused a drastic decrease
in the number of individuals with the population suffering from several infectious
epidemics. More recently, a new disease has appeared associated to some pestivirus.
Due to the importance of the species and the diseases impact on the population, it
is very interesting to provide a model in order to facilitate the management of their
ecosystems. The PDP model designed has been assessed by ecologists resulting in
very encouraging and promising results.

Finally, a PDP model to study the ecosystem related to Giant panda individuals in
the Giant Panda Breeding Base of Chengdu (China) has been presented. The model
enables to study the population dynamics of the species in captivity under different
conditions.

In the four cases studied, PDP models prove to be very useful tools to model
complex, partially desynchronized, processesworking in parallel. It is worth pointing
out that the same framework proves to be highly scalable, since the number of
considered elements significantly differ.
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