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Abstract

Text-to-Speech (TTS) synthesis, i.e., artificially produced speech, has finally
attained a quality level that makes it possible to include it into ordinary services that
are used by common people. With the increasing processing power of smartphones
and the development of intelligent personal assistants like Siri, Cortana, and Google
Now, synthetic speech started to affect even more people. Therefore, within the past
couple of years, TTS has made its way from a geeky accessory to a normal part of
everyday life.

Nonetheless, modern TTS systems still suffer from diverse quality constraints:
frequent concatenations and temporal manipulations in diphone synthesis cause
discontinuous speech, HMM synthesis can lead not only to natural sounding but
also to very buzzy and muffled speech, and the quality of unit selection voices not
only depends on the degree of the fit, but also on the appropriateness of the
available speech units. Therefore, the resulting impairments all yield different
perceptual impressions. Thus, the quality of synthetic speech is of multidimensional
nature.

Therefore, research towards perceptual quality dimensions of synthetic speech is
reviewed and two experiments towards perceptual quality are conducted. Their
findings are compared with the state of the art and a set of five perceptual quality
dimensions is derived. They are: (i) naturalness of voice, (ii) prosodic quality,
(iii) fluency and intelligibility, (iv) absence of disturbances, and (v) calmness.
Moreover, a test protocol is designed that recommends an experimental setup to
assess these five dimensions.

In addition, several factors that influence these dimensions are analyzed. First,
the findings of two studies show that the relevance of these dimensions shift
depending on the use case (short messages readers vs. synthesized audiobooks).
Second, a significant effect of a speaker’s voice of a speech corpus is verified for all
dimensions. And third, it is shown that the size of the speech corpus for unit
selection voices significantly affects all dimensions.

Furthermore, different approaches towards instrumental quality assessment of
synthetic speech are examined. Two linear regression models are developed and
employed to estimate the quality of TTS signals. Even though they reach
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correlations between estimated score and auditory rating of up to 0.74, they are
outperformed by two more complex, non-linear approaches. One of these
non-linear measures is utilized with the aim to improve the quality of MaryTTS unit
selection voices. Even though this goal could not be achieved, the study highlights
different approaches to further improve the prediction accuracy and therefore also
the quality of the generated voice.

xvi Abstract



Chapter 1
Introduction

1.1 Motivation

The quality of Text-to-Speech (TTS) synthesis, i.e., artificially produced human
speech, has increased remarkably over the past years. Until recently, when talking
about synthetic speech, most people thought of robot-like voices like the one of
Steven Hawking’s formant synthesizer [1]. State-of-the-art systems, however, are
finally able to generate speech that is close to human produced speech. With the
popularity of smartphones and the development of intelligent personal assistants
like Siri, Cortana, or Google Now, TTS has found its way into the lives of many
people.Nonetheless,modernTTSsystems still suffer fromdiverse quality constraints:
depending on the type of system and synthesis method different distortions occur,
e.g., diphone synthesizers usually sound very artificial due to their frequent concate-
nations, Hidden Markov Model (HMM) synthesis can lead to very natural sounding
but often also muffled speech signals, and the quality of unit selection synthesizers
depends to a high degree on how well the speech units fit to the utterance that is to be
synthesized. Therefore, the quality of synthetic speech is of multidimensional nature.
Thus, two different systems can score similar overall quality ratings in a listening
test, while reaching contrasting scores on different quality dimensions. In addition
to the TTS system itself, further factors influence the perceived overall quality or
specific quality dimensions, e.g., the application the TTS system is designed for:
due to the shorter exposure, a speech synthesizer will trigger a different perceptual
impression when employed to announce weather information over the phone com-
pared to a synthesized version of a novel. Furthermore, the quality of corpus based
speech synthesizers also depends on the size of the speech corpus and speaker of the
recordings.

During the development of a TTS system, regular evaluations are necessary to
assess the progress. Depending on the quality aspect of interest, different kinds
of auditory tests can be carried out: to check whether the system is able to carry
information on a segmental or supra-segmental level, articulation and intelligibility
tests can be carried out [2], comparison tests examine if a human listener is able to

© Springer Nature Singapore Pte Ltd. 2017
F. Hinterleitner, Quality of Synthetic Speech, T-Labs Series
in Telecommunication Services, DOI 10.1007/978-981-10-3734-4_1
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2 1 Introduction

comprehend the content of the synthesized signal [3], and overall quality tests like
the one recommended in ITU-T Rec. P.85 [4] are able to capture different quality
aspects, e.g., listening effort, comprehension problems, voice pleasantness, and the
overall impression. However, doubts have been cast on the suitability of various
of the included items [5, 6]. Moreover, since this protocol was developed in 1995
when unit selection synthesis just started to become popular and long before HMM
synthesis was developed, it is not clear whether the protocol is still able to capture
all relevant quality aspects of state-of-the-art TTS systems.

Considering that auditory tests are extremely time consuming and cost inten-
sive, constant auditory assessment of TTS systems in development is rarely feasible.
Therefore, instrumental measures that estimate the quality perceived by a listener,
without the requirement of inviting test participants for extensive listening tests,
could greatly simplify the process of developing new TTS voices. Taking the TTS
system development one step further by integrating such a measure into an existing
TTS system could even improve the selection of speech units to be concatenated.
This would then result in an increase in perceived overall quality of the final synthetic
speech signal.

Considering that synthetic speech can be seen as distorted human speech, an
application of existing quality measures for coded speech signals (i.e., signals trans-
mitted through telephone networks) for the quality assessment of synthetic speech,
seems to be a worthwhile attempt. Several measures that estimate the quality of
coded signals are standardized by the Telecommunication Standardization Sector of
the International Telecommunication Union (ITU-T) [7, 8] and have already been
tested on synthetic speech [9–11] with mixed results. Moreover, few measures were
developed to estimate the quality of specific TTS systems, e.g., quality prediction
models for a unit selection synthesizer [12] and for anHMMvoice [13]. Nonetheless,
no standardized measures that are able to give analytic information (i.e., information
on different perceptual quality dimensions) on a TTS signal exist today.

Therefore, this book seeks to answer the following research questions:

RQ1 Which perceptual quality dimensions are relevant for state-of-the- art TTS
systems?

RQ2 How should a listening test be designed in order to capture all rele- vant quality
dimensions?

RQ3 Which factors in uence these perceptual quality dimensions?

RQ4 How can the quality of synthetic speech be assessed by an instrumental
measure?

RQ5 Which requirements does an instrumental measure need to fulfill in order to
be integrated into a TTS system?
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1.2 Outline

Chapter 2 presents the fundamentals of speech synthesis. The general setup of a
speech synthesizer is introduced with a focus on different approaches to speech
signal generation. Moreover, the open-source TTS synthesis platformMary Text-to-
Speech (MaryTTS) is described.MaryTTSwill be the basis for applying instrumental
assessment during the synthesis process, as outlined in Chap.7.

Chapter 3 starts off with a definition of the term quality in the context of speech
synthesis, and thereafter introduces a taxonomy for the quality assessment of syn-
thetic speech. Furthermore, several auditory quality evaluationmetrics are introduced
and state-of-the-art instrumental quality measures for coded speech signals are dis-
played.

In Chap.4, an overview of different studies on perceptual quality of TTS systems
is given. Moreover, two extensive studies on perceptual quality dimensions are pre-
sented: in the first one, a semantic differential is developed, while the second one
utilizes a direct comparison method for the evaluation of TTS stimuli.

In the following, Chap.5 investigates factors influencing TTS quality, e.g., the
application the system is used in, the voice of the recorded speaker, the size of the
used speech corpus, and the utterance that is to be synthesized.

Chapter 6 employs different reference-based and reference-free approaches for the
quality prediction of synthetic speech.Moreover, several newmeasures are developed
and tested on the databases that were introduced in the previous chapters.

In Chap.7 the benefit of the integration of a quality prediction model into a TTS
system is investigated, difficulties that arise with this task are highlighted, and ways
to resolve these problems are discussed.

Finally, Chap. 8 concludes the findings and gives an outlook on future work.
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Chapter 2
Speech Synthesis

This chapter gives an introduction to speech synthesis. A general structure of TTS
systems is introduced and the four main steps for producing a synthetic speech signal
are explained. Themain focus is put upon differentmethods for the speech signal gen-
eration, namely: parametric methods, concatenative speech synthesis, model-based
synthesis approaches and hybrid models. Moreover, distortions that are specific for
these systems are discussed. Finally, the open-sourceMaryTTS system is introduced.

2.1 Setup of a Speech Synthesizer

Different approaches towards synthetic speech have been developed over the years.
So called canned speech systems use prerecorded phrases and play them back with-
out, or only with very little changes. Such systems are therefore only employed
in limited-domain systems, e.g., train station announcements. A more sophisticated
approach is taken by Concept-to-Speech (CTS) systems. The main idea of CTS is the
generation of waveforms directly from a linguistic description, i.e., without any spec-
ified input text. Although the idea of bypassing the difficulties of natural language
processing seems promising, CTS systems have not managed to play an important
role in speech synthesis.

Considering the limitations of canned speech and the shortcomings of CTS, this
book exclusively concentrates on Text-to-Speech (TTS) synthesis. Even though there
is a multitude of different approaches to TTS, there are similar steps every system
has to go through in order to produce a synthetic speech signal. A general structure
for a TTS system can be seen in Fig. 2.1. Such systems usually consist of four main
steps: natural language processing, prosody generation, concatenation, and speech
generation. These four steps are explained in the following sections.

© Springer Nature Singapore Pte Ltd. 2017
F. Hinterleitner, Quality of Synthetic Speech, T-Labs Series
in Telecommunication Services, DOI 10.1007/978-981-10-3734-4_2
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Fig. 2.1 General structure of TTS systems based on [1]

2.1.1 Natural Language Processing (NLP)

The first module of every TTS system is a text preprocessing unit. It analyzes the
orthographic text and identifies special cases, e.g., abbreviations, numbers, foreign
language terms, proper names etc. Those cases require special treatment, e.g., num-
bers have to be transformed into written text.

The preprocessing step is followed by an analysis of word and sentence structure.
Therefore, on the one hand a morphologic analysis identifies word stems, prefixes,
and suffixes which are important for the word stress. On the other hand, the sentence
level structure is evaluated. This reveals sentence accents and information on phrases
(i.e., groups of words). Word and sentence accents as well as identified phrases are
needed in the following for the prosody generation.

Moreover, the morphologic output is used by the Grapheme-to-Phoneme (G2P)
unit to transform the graphemes into their corresponding phonemes and thus create a
phonetic representation of the orthographic text in a computer-readable format, e.g.,
using the (SAMPA) [1, 2].
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2.1.2 Prosody Generation

The prosody generation unit uses information on word and sentence accents along
with information on phrases to create the corresponding prosody of the orthographic
text, i.e., duration, intensity and pitch.

To achieve this, procedures like the Fujisaki model [3, 4] can be applied. This
model describes a pitch contour as a superposition of phrase commands and accent
commands and an underlying base frequency. A detailed view on the Fujisaki model
and features that can be derived from it is given in Sect. 6.2.2.1.

2.1.3 Concatenation and Generation of Speech-Signal
Parameters

Based on the phonetic representation of the orthographic text generated by the
G2P unit and the prosodic information, the concatenation unit creates a continu-
ous sequence of signal parameters and/or articulation gestures.

Thosefirst three units (NLP, prosodygeneration, and concatenation) solely depend
on the given orthographic input text and are thus completely independent of the
speaker of the speech signal to be synthesized.

2.1.4 Speech Signal Generation

This section introduces different methods for the speech signal generation within
a TTS system based on the continuous sequence of acoustic units and/or signal
parameters.

2.1.4.1 Parametric Speech Synthesis

In contrast to all other synthesis techniques that will be discussed in the following
sections, parametric synthesizers do not use any prerecorded speech data, they gen-
erate the speech signal solely based on their input parameters. The basic principle
behind this approach is the source-filter model of the human voice production system
as shown in Fig. 2.2. According to this model, a speech signal can be generated from
a voiced or an unvoiced excitation signal (or a combination of both) and parameters
that describe the filter characteristics of the vocal tract, e.g., through parameters that
reflect the shape of the pharynx and the mouth, the position of the tongue, and the
rounding of the lips etc. Thus, these parameters specify a simple model of the vocal
tract geometry. This model can then be used for an acoustic simulation of the human
speech production. Such articulatory synthesizers [5] are still being developed,

http://dx.doi.org/10.1007/978-981-10-3734-4_6
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Fig. 2.2 Source-filter model of the human voice production

however, due to their inferior quality and their high computing time, they are mainly
used for research.

An easier way to implement a parametric speech synthesizer is the realization of
the vocal tract by formant filters.1 These so called (FO) synthesizers are still being
used, especially in systems with strong memory restrictions.

Formant Synthesizer

First attempts towards a synthesis based on formant filters have already been made
in the early 1960s [6] and stayed popular long after that. The development of FO
synthesis peaked in the late 80s/early 90s just before TTS research turned towards
the concatenation of speech units. During this time, the Klatt synthesizer [7] was
one of the state-of-the-art systems. Klatt’s FO synthesis [8] (and FO synthesis in
general) closely follows the source-filter model in which an impulse train is used to
model voiced parts of a signal while white noise is the basis for the excitation of
unvoiced sounds. Combining both excitation types adds breathiness to the generated
speech signal and is used for the creation of fricatives. The filter itself can be realized
through 2nd order IRR filters which represent the resonances of the vocal tract. In
Klatt’s FO synthesizer, a cascading of several sections (cascading model) is used to
generate voiced sounds while adding several sections together (parallel model) is
used to synthesize fricatives and stops.

While FO synthesizers are able to create “clean” sounding, intelligible speech,
the achieved quality is far from that of natural speech. Reasons for this are the too
simplistic models for both the excitation signal as well as the vocal tract [9]. Typical
artifacts of FO synthesis are “metallic” voices that sound very artificial. Therefore,
FO synthesizers cover the lower end of TTS quality of the synthesizers discussed in
this chapter. Nonetheless, due to their parametric nature, FO synthesizers are easily

1Formants are peaks in the envelope of speech sounds and thus define the characteristics of a sound.
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customizable, e.g., modifications of speech rate can be executed by simple parameter
changes. This is an important feature, especially for visually impaired people who
prefer acoustic cues rather than written text. By increasing the speech rate they are
able to comprehend even faster [10]. Studies have shown that blind people are even
able to comprehend ultra-fast synthetic speech at speaking rates above 17 syllables
per second while a normal speech rate features only 3–5 syllables per second [11].

2.1.4.2 Concatenative Speech Synthesis

The development of concatenative speech synthesizers brought a great leap forward
for the quality of TTS. By playing back prerecorded speech samples, the quality of
synthesized speech was now theoretically able to equal that of natural speech. In
reality, however, the quality of concatenative systems varies greatly: If the corpus
contains units that are close to the text to be synthesized, the quality can be almost
human-like. If that is not the case, severe distortions can occur. Thus, the inventory
design is a crucial task. In most cases tailor-made speech corpora are recorded to fit
the context of the systems.

The choice of unit size is one of the most important decisions for a TTS system.
Finding the right balance between a preferably small footprint and a quality that is
sufficient for the use case is a challenging task. At first sight it may seem that building
a speech corpus based on the phonemes of a language, e.g., 42 phonemes for English,
would cover every necessary sound. In practice, however, this would lead to major
distortions at the transitions between the units. This is due to the coarticulation effect,
i.e., the influence of a phone on its proceeding phone. Therefore, the smallest unit
used in speech synthesis is the diphone, i.e., a unit that starts at the center of a phone
and ends at the center of the following phone and thus covers the coarticulation. For
the English language this leads to an approximate number of units of about 1500
diphones. Longer units, e.g., triphones, demisyllables, syllables etc., yield superior
quality with the drawback of a much larger database. Building a TTS using, for
example, a word inventory, would cause between 100K and 1.5M units [8].

But even with longer units synthesized speech still contains distortions that make
it sound artificial. These distortions are due to two types of discontinuities [8]:

• spectral discontinuities occurwhen the formants of two aligned units do notmatch;
• prosodic discontinuities emerge from unfitting pitch curves at the concatenation
point.

There are two different approaches to deal with these discontinuities:

• A technique called Pitch Synchronous Overlap and Add (PSOLA)manipulates the
units in the time or spectral domain to correct these discontinuities.

• Unit Selection (US) synthesis uses an inventory that contains multiple instances of
every unitwith different pitch and formant curves and chooses themost appropriate
one during concatenation.

Both approaches are discussed in the following sections.
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Fig. 2.3 Using PSOLA to increase the pitch of a signal by 50% [12]

Pitch Synchronous Overlap and Add (PSOLA)

In order to ensure a smooth transition, i.e., eliminating spectral and prosodic dis-
continuities, amplitude, duration and pitch of conjoined units have to be adjusted.
The amplitude can easily be varied just by multiplying the waveform to the desired
value. Applying PSOLA makes it possible to also change duration and pitch of each
segment. In general, however, these modifications introduce distortions in each unit.
To keep them as small as possible the most common PSOLA approach operates in
the time domain (TD-PSOLA). This still causes degradations, but the gain of prosod-
ically modified concatenated units usually is greater than the introduced distortions.

An example of how PSOLA works is shown in Fig. 2.3. Here the pitch gets
increased by 50%. The upper part of the figure shows a diphone unit in blue with
the red ticks marking its pitch cycles. A window function is applied which splits
up the original diphone unit into smaller PSOLA units that cover two pitch cycles
(waveforms in black). By doubling half of the PSOLA units (waveforms in red)
while keeping the duration of the whole diphone unit constant the resulting diphone
(waveform at the bottom of the figure) then features a pitch increased by 50%.

A similar technique is implemented in theMBROLAalgorithmwhich has reached
popularity due to its non-commercial availability. Since both approaches are very
similar and are necessary for diphone concatenation they will both be referred to as
(DI) systems.

Other, less common approaches apply PSOLA in the in the Frequency Domain
(FD-PSOLA) or via Linear Prediction (LP-PSOLA). Given their high computational
complexity, these approaches are rarely used.

Compared to the parametric approaches, PSOLAgenerates a decent quality which
is moreover more independent from the context to be synthesized than the US
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ti−1 ti ti+1

ui−1 ui ui+1

Ct

Cj

Fig. 2.4 Unit selection costs [15]

approach which will be described in the next section. Furthermore, PSOLA can oper-
ate on a reasonably small inventory. The downside of this technique is its sensitivity
to accurate pitch marks. Moreover, changes in pitch are limited to ±0.5 octaves and
spectral discontinuities can only be corrected by the computationally more complex
LP-PSOLA [12].

Unit Selection (US) Synthesizer

Even though PSOLA synthesis yields decent quality, the signal manipulations that
come with this approach induce new distortions. In order to overcome the need for
adjustments in speech units, Black et al. introduced the Unit Selection (US) approach
for their synthesis platformCHATR [13, 14]. In contrast to PSOLA, aUS synthesizer
stores a huge database of speech units. Therefore, during the concatenation process a
US system can choose from a large pool of candidate units. Each unit in the database
has an attached feature vector that describes, e.g., phonetic and prosodic context
(duration, power, and pitch) and acoustic join costs. This enables a synthesizer to
pick units that guarantee smooth pitch and formant transitions. Hence, the main
challenge for a US system is to select the most appropriate units.

The basis for the selection of units are the two cost functions [15, 16] shown in
Fig. 2.4. Here, a unit from the database is denoted by ui whereas a target unit is given
by ti . Thus the cost functions are defined as follows:

• target costs Ct (ui , ti ) are given as the difference between a database unit ui and a
target unit ti which it should represent

• join costs2 Cc(ui−1, ui ) estimate the quality of two joined units (ui−1 and ui ) and
can be computed offline, before the actual synthesis takes place.

Thus, the process of unit selection means to find a balance between target and
join costs without putting too much emphasis on one of them. An optimization of
this problem leads to smooth transitions between all chosen units and thereby also to
a minimum of discontinuities for pitch and formant curves of the respective speech
database.

While a pure US system concatenates the units from the database without any
signal manipulations, newer approaches shape both pitch and formant curves in

2Also known as concatenation costs.
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order to ensure even smoother transitions. However, these manipulations occur far
less often than in PSOLA synthesis.

The main advantage of the US approach is its perceptually high quality. However,
to achieve high qualitywith aUS system, the available units have tomatch the context
to be synthesized. If this is not the case, glitches may occur and thus the quality will
be severely degraded. Even a single glitch in an otherwise perfectly synthesized
sentence will spoil the perceptual impression of a listener. Therefore, the quality of
a US system strongly depends on the context and can vary drastically over time.
Moreover, if there are no modifications to the units in the database, the synthesized
speech is limited to the speaking style of the original recordings. More sophisticated
approaches include a PSOLA algorithm to make slight changes to the units before
concatenation in order to guarantee smoother transitions.

2.1.4.3 Statistical Parametric Speech Synthesis

The idea behind the US approach is to find the best fitting units and to connect them
without any modifications of the signal so that no additional distortions are induced.
Statistical parametric synthesis pursues a different objective which Black describes
as “generating the average of some set of similarly sounding speech segments” [17],
i.e., a natural speech database is converted into a statistical parametric model which
can then be used for speech generation. In the following, the basic approach that is
based on (HMMs) is introduced.

Hidden Markov Model (HMM) Synthesizer

HMM speech synthesis was first introduced by Tokuda for Japanese [18] and later
adapted for the English language [19]. Figure2.5 shows an overview of the two parts
of an HMM synthesizer.

In the training part, excitation (e.g., log F0) and spectral parameters (e.g., MFCC,
their delta, and delta-delta coefficients) are extracted from a given database of nat-
ural speech, similar to a speech recognizer. These parameters are then used to train
context-dependentHMMs.To appropriately realize the temporal structure of a speech
signal, each HMM features state duration densities that are modeled byGaussian dis-
tributions.

For the synthesis, the desired text is first converted into a context-based label
sequence. According to this sequence a sentence HMM is constructed by concate-
nating the trained context-dependent HMMs. From this sentence HMM excitation
and spectral parameters can be derived. In conjunction with the state durations those
parameters are then used to synthesize the desired text.

This creates very smooth speech which does not feature the occasional glitches
of US systems. Moreover, HMM synthesis guarantees robust quality. In addition,
a system’s footprint is very small and voice characteristics can be easily adjusted.
However, when comparing HMM synthesizers to US systems, the overall quality
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Fig. 2.5 Overview of a typical HMM based speech synthesis system [19]

still lags behind. This is mainly due to three factors: the used vocoder,3 the model-
ing accuracy, and an over-smoothing of excitation and spectral parameters. These
impairments are responsible for the characteristic buzzy andmuffled sound of speech
generated by HMM synthesizers [17, 20].

2.1.4.4 Hybrid Models

In an effort to combine the positive aspects of concatenative models with those
of statistical parametric synthesizers, while bypassing their downsides, different
approaches on hybrid models were developed.

In [21] a system is introduced that consists of a regular HMM in the training
phase. For the actual speech generation part, however, these trained HMM are then
used to select an optimal phone-sized unit sequence. Therefore, this model utilizes
statistical criteria for the calculation of target and join costs.

In [22] an approach on multiform segment synthesis is proposed. The used seg-
ments are either template segments which consist of real waveforms or model seg-
ments which are abstractions of speech segments produced by an HMM. The target
of this algorithm is to identify the best combination of model and template segments
to synthesize a given text.

3A vocoder provides a parametric representation of a speech signal.
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2.1.4.5 Advantages and Disadvantages of All Approaches

As mentioned in the previous section, different approaches on speech signal gen-
eration not only lead to different levels of quality but they also feature different
perceptual impressions. An overview of the characteristics of these methods is given
in Table2.1.

2.2 The Mary Text-to-Speech System (MaryTTS)

This section presents an overview of the open-source TTS system MaryTTS [23].
MaryTTS is a Java-based speech synthesis platform that is able to generate diphone,
unit selection, and HMM voices. It was developed in collaboration between the
DFKI’s Language Technology Lab4 and the Institute of Phonetics5 at the Saarland
University. The basic architecture is shown in Fig. 2.6.

MaryTTS is able to process plain input text, SABLE text6 and SSML7 text. Ini-
tially, the input has to be converted intoMaryTTS’s internal XML-based represen-
tation language (MaryXML). Plain text input can be directly converted, whereas
SABLE and SSML have to pass through a parser before conversion. Then the tok-
enizer cuts the input text into tokens (i.e., words and punctuation marks) and the
preprocessing unit performs a text normalization which converts numbers and abbre-
viations. Afterwards, a part-of-speech tagger adds word category information to each
token.

From there on, two parallel branches exist: one where the prosody of the sig-
nal is modeled using GToBi,8 a German version of ToBi (a set of conventions for
transcribing the intonation and prosodic structure of speech). The second branch,
first deals with inflection endings, i.e., correct endings are assigned to ordinals and
abbreviations which were identified in the preprocessing, and second, pronunciation
rules for each unit are looked up in a lexicon or generated by rule, if no lexicon entry
exists.

Then the prosody information and the transcriptions of the input text aremerged in
the phonological processing module. Here the resulting phonological representation
can be restructured on the basis of phonological rules. The generated information
is again added to the MaryXML structure. The following module then transforms
the symbolic information into the physical domain, i.e., GToBi and a set of duration
rules add information on duration and pitch to the MaryXML structure.

4DFKI Language Technology Lab: http://www.dfki.de/lt/, last accessed 22.04.2016.
5Institute of Phonetics, Saarland University: http://www.coli.uni-saarland.de/groups/WB/
Phonetics/, last accessed 22.04.2016.
6SABLE: https://www.cs.cmu.edu/~awb/festival_demos/sable.html, last accessed 21.04.2016.
7SSML: https://www.w3.org/TR/speech-synthesis/, last accessed 21.04.2016.
8GToBi: http://www.gtobi.uni-koeln.de/gm_gtobi_modell.html, last accessed 22.04.216.

http://www.dfki.de/lt/
http://www.coli.uni-saarland.de/groups/WB/Phonetics/
http://www.coli.uni-saarland.de/groups/WB/Phonetics/
https://www.cs.cmu.edu/~awb/festival_demos/sable.html
https://www.w3.org/TR/speech-synthesis/
http://www.gtobi.uni-koeln.de/gm_gtobi_modell.html
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Fig. 2.6 Processing architecture within MaryTTS [23, 24]

Finally, the synthesis module utilizes the updated MaryXML information to gen-
erate a synthesized speech file. Therefore, an MBROLA based synthesizer can be
applied to generate a diphone voice and more recent versions also allow the genera-
tion of unit selection as well as HMM voices.
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Chapter 3
Auditory and Instrumental Quality
Evaluation Metrics

This chapter starts off with a definition of quality and its related aspects followed
by a detailed description of the quality perception and assessment process inside
a listener. Moreover, it gives an overview of auditory quality assessment methods
for synthesized speech. Therefore, a taxonomy of assessment tasks and techniques
for TTS signals is introduced. A deeper insight into a variety of auditory tests for
the evaluation of global quality as well as specific quality aspects is presented in
Sect. 3.3.

Until this point, there are no standardized methods for the instrumental quality
assessment of TTS signals, therefore, Sect. 3.4 introduces common approaches in
the related field of instrumental quality assessment of distorted speech signals. Their
benefit for the quality assessment of synthetic speech will be presented in Chap. 6.

3.1 What Is Perceptual Quality?

First, relevant definitions of quality and its related concepts are outlined, and sec-
ondly, the quality perception and quality formation process of a listener is examined.

Depending on the context it is used in, the definitions of the term quality vary.
In general it specifies how good or bad something is. A definition for the field of
speech perception, that will be used for the remainder of this book, is introduced by
Jekosch [1]: Quality is the

“result from a perception and assessment process in which a subject compares the perceived
features of an entity with the individual expectations, and/or appropriate requirements,
and/or social demands.”

© Springer Nature Singapore Pte Ltd. 2017
F. Hinterleitner, Quality of Synthetic Speech, T-Labs Series
in Telecommunication Services, DOI 10.1007/978-981-10-3734-4_3
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Fig. 3.1 Schematic description of a quality event [2, 3].Note circles represent perceptual processes,
two parallel horizontal lines represent storages for different types of representations, and boxes
outside of the person represent input and output information. Moreover, continuous lines represent
direct input to the perception process while dashed lines represent indirect input
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In which entity is a

“material or immaterial object under observation” [1]

and a feature is defined as a

“recognizable and nameable characteristic of an entity” [1].

Therefore, a quality feature is

“a recognized and designated characteristic of an entity that is relevant to an entity’s
quality”. [1]

These quality features will be referred to as perceptual quality dimensions in
the remainder of this book.

With these definitions in mind, the quality perception and assessment process of
a listener can be described as in Fig. 3.1. Even though, different definitions of the
terms assessment and evaluation can be found in the literature, both terms will be
used synonymously in this book.

This process is triggered by a physical signal which is, in the context of this book,
a speech sample generated by a speech synthesizer. This signal is perceived and
the listener reflects upon this input. This step creates perceived quality features. In
parallel a similar process is executed on the listener’s experiences which leads to
desired quality features.

A comparison and judgment between the desired and perceived quality features
yields the perceived quality. However, these desired quality features do not only
affect the comparison and judgment step, they can also influence the perception of
the input signal through anticipation of the listener. The same effect can arise from
response modifying factors that originate outside of the listener, e.g., background
noise, situation and application-specific content, etc.

However, since the perceived quality only exists inside the listener, an encoding
has to be executed in order tomake the perceived quality visible. In the field of speech
synthesis this encoding is performed via listening tests. Depending on the quality
feature of interest, different types of listening tests can be applied. A deeper insight
into several different test mechanics is discussed in the following sections. A more
elaborated version of the quality perception and assessment process is given in [4].

3.2 Taxonomy for the Quality Assessment
of Synthetic Speech

In Fig. 3.2 a modified version of the taxonomy of assessment tasks by van Bezooijen
and van Heuven [5] is displayed. Hereby every path from the top to the bottom yields
a meaningful specification of a test scenario. The four fundamental dichotomies
are described in detail in the following subsections. Moreover, in the subsequent
sections amore detailed view on auditory (Sect. 3.3) as well as instrumental measures
(Sect. 3.4) is given.
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Fig. 3.2 Taxonomy for the evaluation of synthesized speech (modified version of [5])

3.2.1 Glass Box Versus Black Box

As introduced in Fig. 2.1 fromChap.2.1, every TTS system consists of a multitude of
different modules. Developers of such systems usually have total control over every
module. Therefore, in a glass box approach it is possible to modify a certain module
while keeping all others unchanged. Thus, you can, for example, check whether an
updated G2P module outperforms the previous version.

In the case of commercial systems the user commonly has no control over certain
modules. Hence the only part of the TTS system that can be evaluated in such a
black box approach is the synthesized speech signal as a result of a sequence of all
involved modules.

Therefore, glass box approaches are used in order to receive diagnostics on indi-
vidual modules while black box approaches assess the performance or quality of the
whole system.

3.2.2 Laboratory Versus Field Studies

Laboratory tests feature a highly controlled environment, e.g., listening to stimuli
over head phones in a soundproof booth. This guarantees results that contain a very
low level of noise and that are comparable between different studies and laborato-
ries. The drawback that comes with laboratory testing is the artificial situation test
participants find themselves in. A test setup that brings participants into a real life
situation in which they would normally use the to-be-tested TTS system can make
up for some of the introduced artificiality but in order to record data that actually
reflects the real use of a TTS system a field test has to be conducted.

http://dx.doi.org/10.1007/978-981-10-3734-4_2
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On the other hand, the lack of control in a field test over the test setup yields results
that are not reproducible and can strongly differ between test participants, e.g., when
evaluating a Spoken Dialog System (SDS) on a cell phone while walking along a
road, the sound of passing cars can influence the intelligibility of one participant
while another participant might use the SDS in a quiet environment without induced
noise.

3.2.3 Linguistic Versus Acoustic

Figure2.1 shows that the setup of a TTS system consists of four main parts: Natural
Language Processing (NLP), prosody generation, concatenation, and speech genera-
tion. Linguistic testing involves evaluating units from the NLP part of a system, e.g.,
checking if numbers are processed correctly or if words that are not part of the local
lexicon are transformed into a meaningful phonological representation. Besides the
linguistic testing, the NLP unit can also be tested at the acoustic level by evaluating
the generated speech signal. Therefore, only errors of the NLP unit that actually lead
to audible impairments affect the evaluation. However, a detected error can not only
be traced back to the NLP unit, it could also have its origin in the prosody generation,
the concatenation, or the actual speech generation algorithm.

3.2.4 Auditory Versus Instrumental

The common way to assess the quality of TTS systems is to invite human listeners to
evaluate a system based on their auditory impression. Even though, human listeners
generate noisy data, due to, e.g., different preferences or hearing abilities, and listen-
ing tests are very time consuming and cost intensive, to date it is still the only way
to reliably assess the quality of TTS systems. In order to overcome these restricting
factors research has started to develop instrumental measures that can predict the
quality a user would perceive when using this device.

3.3 Auditory Quality Evaluation Metrics

Judgment tests are the most common approach to auditory quality evaluation. Test
participants are asked to give ratings on different attribute scales or compare two or
more stimuli with each other. Scales can either refer to global aspects of the TTS
signal such as the overall quality impression or to specific quality features of a system
like the rhythm of the generated voice. Alternatively, a system can also be evaluated
via functional tests which indirectly grade a system. Hereby, test participants do not
use scales to rate, e.g., the intelligibility, but solve a task fromwhich the intelligibility

http://dx.doi.org/10.1007/978-981-10-3734-4_2
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can be derived. This bypasses user ratings which are often noisy due to, e.g., different
preferences of every single participant or contrasting interpretations of rating scales.

3.3.1 Functional Tests1

The primary goal of speech is to serve the communication of information. Thus, a
key requirement to synthetic speech is that it is intelligible, i.e., that the linguistic
information can be discerned by the listener. However, intelligibility is commonly
not enough, and synthetic speech - even if it was 100% intelligible - is not perceived
as human-like, mostly due to a lack in naturalness, which largely determines the
overall quality. In the following, functional tests to evaluate the intelligibility of a
TTS signal are described.

3.3.1.1 Intelligibility on Word Level

Since consonants are more problematic to synthesize, the test material of intelli-
gibility tests on a word level mainly focuses on them. In the following the simple
Diagnostic Rhyme Test (DRT), its successor the Modified RhymeTest (MRT), and
the more complex CLuster IDentification Test (CLID) are presented. See [5] for a
detailed overview of these and further intelligibility tests.

Diagnostic Rhyme Test (DRT)

The DRT [7, 8] uses a fixed set of meaningful words to test for intelligibility of the
initial consonant. The examined items are of the form CVC, i.e., an initialConsonant
followed by a medial Vowel followed by a final Consonant. One auditory stimulus
and one word pair as answer option are presented at a time. The word pair consists of
two words which differ only in the initial consonant, e.g., dune and tune. The listener
marks which of those two words he thinks was presented. For each of six categories
(i.e., voicing, nasality, etc.) specific word pairs are chosen. The intelligibility is
expressed by the total error rate or the percentage of correct initial consonants.

Modified Rhyme Test (MRT)

The MRT [8] is an extension of the DRT which is able to test for initial as well as
final consonant intelligibility. The test items consist of sets of six one-syllable words.
Half of the set differs in initial while the other half differs in final consonant, e.g.,
bus, bug, but, buff, bun, and buck. The listener has to identify which of the six items
in the list was presented. The intelligibility is given as initial and final consonant
error rate, or as overall percentage of correct consonants.

1The content of this section has previously been published in a slightly different version in [6].
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CLuster IDentication Test (CLID)

The previous two approaches are fast, reliable, easy to administer, and no training of
the participants is required. However, the intelligibility may be overestimated since
the participants can chose words from the presented categories; thus, there is a prob-
ability to select the right word by chance. In addition, the words presented in a set are
meaningful, but not equally frequent in a language; thus, there is an inherent distor-
tion of the participants’ responses, which is due to their knowledge of the language.
A more balanced approach in intelligibility testing which overcomes the limitations
of rhyme tests is the CLID test [9]. On the basis of linguistic statistics gathered from
speech databases containing monosyllables, an automatic word generator is used
to create phonotactically correct monosyllables of the type Ci V C j (where i and j
represent the number of initial and final consonants, respectively). These, mostly
non-sense words, are evaluated in an open response test where participants have to
accomplish a task like:

“Please write down what you have heard in such a way that another person would
read it aloud in the same way as you heard it originally.” [10]

This guarantees that the participants are not biased by any given response cate-
gories.

Subsequently, the recognition rates can be computed on word and on cluster level
(initial, medial, and final consonant).

3.3.1.2 Intelligibility on Sentence Level

While intelligibility tests on word level lead to very diagnostic results, tests on sen-
tence level aremore similar to speechperception in normal communication situations.

Semantically Unpredictable Sentences (SUS)

In the most common test methodology, short semantically unpredictable sentences
[11] are used, i.e., they do not occur in real life. The advantage of SUS results from
the fact that, even though the syntax of each sentence is correct, the whole sentence
does not make sense, thus the listeners can not rely on a semantic context. This
increases the importance of the acoustic characteristics of the TTS signal. A SUS
test uses five different syntactic structures, e.g., subject - verb - object could yield
the sentence “The strong way drank the day.” [12]. Ten sentences for each of the
five categories are produced and assessed in random order in a listening test.
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artificial natural

Fig. 3.3 Naturalness scale with separate scale and end points [14]

3.3.2 Judgment Tests2

While the previous section discussed evaluation methods focused on functional
testing, i.e., intelligibility was measured by how well listeners correctly identify
words and phrases, the current section addresses judgment tests. Since different TTS
approaches lead to different distortions in the synthetic speech signal (see Table2.1),
the quality of TTS signals is generally of multidimensional nature. Therefore, the
judgment tests highlighted in this section depict a multidimensional analysis of the
characteristics of a TTS system. Here listeners are instructed to rate stimuli along a
number of attribute scales determining specific quality features of a system or com-
paring two or more stimuli concerning one quality feature and thus yielding very
analytic results [5]. The most simple way would be to ask listeners to rate, e.g.,
the naturalness of TTS stimuli, on a 5-point Absolute Category Rating (ACR) scale
and to build a Mean Opinion Score (MOS) of all ratings. In order to make the task
for the test participants easier, continuous scales with separate scale and end points
can be used as proposed by Bodden and Jekosch [14] (see Fig. 3.3). This reduces
the impact of two effects often noticed when subjects use rating scales: first, most
subjects avoid to give ratings on the end of scales because they expect even better
or worse stimuli to come. Moreover, scales with fixed end points make it hard for
subjects to differentiate between stimuli of an either very good or very bad quality.
All the studies presented in the Chaps. 4 and 5 assess quality via such continuous
scales.

The two main approaches to analyzing perceptual quality dimensions with the
help of human listeners are discussed in the following.

3.3.2.1 Semantic Differential (SD)

In a Semantic Differential (SD), pre-defined attribute scales featuring antonym pairs
at the ends of each scale are used to measure the auditory impression of the listen-
ers. This guarantees a direct relationship between the used attribute scales and the
perceptual quality dimensions that can be derived from them. Therefore, the results
are usually easy to interpret. On the downside, the ratings of the test participants
are always limited to the set of presented scales. If a perceived quality feature can
not be expressed by any of the presented scales, this information will be lost. Thus,
it is crucial to carefully choose a set of scales for the listening test. To reduce the

2Parts of the content of this section have previously been published in a slightly different version
in [13] and [6].

http://dx.doi.org/10.1007/978-981-10-3734-4_2
http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_5


3.3 Auditory Quality Evaluation Metrics 27

influence of the test designers to a minimum, a suitable set of scales can be developed
through several pretests, i.e., the goal of a first pretest is to collect attributes and cor-
responding attribute scales which describe the auditory impression of the listeners;
in a second pretest, this set of attribute scales can be reduced to a final selection of
scales.

While individual scales can target very analytic quality features of a system, e.g.,
disturbances in the signal or the pronunciation of the speaker, there are also items
that assess the general satisfaction of a user, e.g., overall impression or acceptability
of the system. Such a standardized protocol is discussed in the following paragraph.

ITU-T Rec. P.85

A judgment test for the auditory assessment of TTS systems which is close to an SD
was published in the ITU-T Rec. P.85 [15], “A method for subjective performance
assessment of the quality of speech voice output devices” in 1995. In contrast to an
SD the quality is rated on 5-point ACR scales with quality describing labels at every
step. Even though this protocol is now over 20years old and was thus developed far
before current state-of-the-art TTS systems emerged and triggered a huge leap in the
quality of synthesized speech, it is still the only standardized auditory assessment
technique for TTS systems.

It is recommended to assess the quality of telecommunication services which pro-
vide synthetic speech output, be it via concatenating sentences, parts of sentences,
or via TTS synthesis. A test according to this recommendation should include at
least 5 different synthesis systems and at least one reference condition (e.g., nat-
ural speech corrupted with a degradation or a known synthesis system). The test is
designed in a way that requires the listener to concentrate on the content of each
message, i.e., before rating each stimulus on 5-point ACR scales the test participants
have to answer several questions concerning the information contained in the stim-
ulus. Thus, the messages should contain a fixed part that is specific to the addressed
use case and a variable part that differs between stimuli. The duration of the stimuli
should be between 10 and 30s. A possible test phrase in a mail order shopping sce-
nario would be:

Mr. Zimmerman, you have ordered running shoes, color: white, size: 41, price:
61e. They will be delivered to you in 9days.

The name, the shoe color, it’s size, the price and the delivery date are variable
parts that can be requested from the listener.

Each stimulus is presented twice consecutively. After the first presentation the test
participants answer questions on the information contained in the stimulus, and after
the second presentation they judge the quality of the presented stimulus on different
rating scales. Each listening test consists of 3 sessions: a training session, where
the test participants should get used to the test procedure, the environment, and get
an impression of the quality range of the stimuli in the test, and two main sessions
that either use scales concerning the intelligibility or the quality of the synthesizers.
The intelligibility scales test the listening effort, comprehension problems and the



28 3 Auditory and Instrumental Quality Evaluation Metrics

articulation while the quality scales assess pronunciation, speaking rate and voice
pleasantness. Furthermore, each session also includes the scales overall impression
and acceptance.

An extension of P.85 towards the assessment of synthesized audiobooks was pro-
posed in [16]. Therefore, scales that are relevant when synthesizing the content of
books were included, e.g., scales that assess intonation and emotion. The develop-
ment of these additional attribute scales will be presented in Sect. 5.1.1.

Given the complexity of this test, the question arises why an evaluation via P.85
should be preferred over a simpler intelligibility test or aMOS test addressing overall
quality. These three methods were compared in [17]. The results showed that high
intelligibility ratings do not necessarily come together with high ratings on the nat-
uralness and overall impression scales. Moreover, the best ranked synthesizer in the
naturalness test did not get the best rating on the overall quality scale. Thus, while a
simpleMOS naturalness test can give a basic overview of the quality of synthesizers,
the P.85 yields far more fine grained information about the performance of a system.

However, this evaluation protocol has also been heavily criticized. In [18] the
authors suggested extensive modifications:

• natural speech reference stimuli should not be included because they affect the
mean ratings of TTS systems and thus tend to diminish the differences between
them

• items that assess naturalness, audio flow, and ease of listening should be included
• the item speaking rate should be modified so that one end of the scale represents
an optimal speed while the other end indicates extremely slow or extremely fast
speech

One of the main points that has already been addressed in [17] is the fact that many of
the recommended scales are highly correlated. Thus, some of the scales mainly mea-
sure the same perceptual impression, when they should actually cover all perceptual
quality features of synthetic speech. These features are not necessarily orthogonal
but certainly exhibit smaller correlations than the scales from P.85.

Given these points of criticism and the fact that all state-of-the-art synthesis tech-
niques (unit selection, HMM, and hybrid synthesis) have been developed far after the
publication of this protocol, the need for amethod that captures all artifacts that come
along with current TTS systems arises. The development of such an SD protocol is
presented in Sect. 4.2. A similar approach was used to generate a test protocol for the
auditory evaluation of synthesized audiobooks. The approach as well as the resulting
protocol are displayed in Sect. 5.1.1.

3.3.2.2 Pairwise Comparison (PC) and Multidimensional
Scaling (MDS)

In comparison to an SD, the Pairwise Comparison (PC) approach with subsequent
Multidimensional Scaling (MDS) is solely based on the perceptual impression of
the listener and not on any given rating scales. Participants are instructed to rate the

http://dx.doi.org/10.1007/978-981-10-3734-4_5
http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_5
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similarity of one quality feature of pairs of speech signals, e.g., similarity in nat-
uralness. Therefore, every stimulus in a set of n stimuli has to be compared to all
remainingn−1 stimuli. Theoutcome is amatrix that represents the similarity between
all stimuli [19]. Via an MDS algorithm, the dimensionality of this matrix can then be
reduced until the solution is interpretable but still represents the observed stimulus
space. However, since a complete comparison of all stimuli leads to n(n−1)

2 compar-
isons and a listening-test duration of several hours per subject, this approach is hardly
deployable with larger sets of objects. For these cases, Tsogo [20] proposed a Sorting
Task (ST). Here, subjects are instructed to build groups of stimuli that are similar
to each other while being different from the stimuli in other groups. This yields one
incidence matrix per subject from which a similarity matrix can be derived that can
be further processed as described above. Even though the MDS approach has the
advantage that the participant’s ratings are not influenced by given rating scales, its
major drawback is the interpretability of the resulting dimensions. MDS dimensions
as such give no indication on their interpretation, thus, additional knowledge about
the nature of the stimuli has to be obtained, e.g., via expert listening, rating scales or
measures derived from the synthesis system.

An extensive study on perceptual quality dimensions using the ST and a subse-
quent MDS on a dataset of various different TTS systems is presented in Sect. 4.3.

3.4 Instrumental Quality Evaluation Metrics

Given the time, effort and costs auditory listening tests implicate, the need for instru-
mental measures arises. This is especially true for developers who need to evaluate
their systems on a regular basis. Unfortunately, to date there are no standardizedmea-
sures that were developed for the quality assessment of synthesized speech. However,
several measures exist that are able to predict the quality of encoded speech signals.
Therefore, the distortions these measure evaluate do not stem from the concatenation
of speech units or the generation through a parametric synthesizer but rather they are
introduced through the transmission of signals over a telephone channel.

Given the fact that in both cases distortions in speech signals need to be assessed,
similar instrumental measures could be used. Therefore, this section gives an
overview of instrumentalmeasures that are used for the quality prediction of distorted
speech signals. Two main approaches exist: firstly, reference based-measures use an
undistorted source signal as a comparison standard while reference-free measures
are used if such an undistorted signal is not available. Some of these measures have
already been applied on synthetic speech. The achieved results will be discussed in
Sect. 6.

http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_6
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3.4.1 Reference-Based Measures3

Several reference-based models have been developed to predict distortions in natural
speech introduced by transmission channels of telephone networks. Therefore, they
use a clean reference signal and evaluate the perceptual distance to the distorted
signal. In the following 3 different measures are introduced.

3.4.1.1 ITU-T Rec. P.862 (PESQ)

The ITU-T Rec. P.862 [22] for speech quality assessment of narrow-band telephone
networkswas released in 2001.With P.862.2 (WB-PESQ) [23] Perceptual Evaluation
of Speech Quality (PESQ) was extended to wide-band speech signals. Figure3.4
shows an overview of the PESQ model (the wide-band version basically follows the
same stages).

Firstly, several preprocessing steps take place: level alignment, IRS [24] filtering
mimicking the transfer characteristics of traditional handset telephones, voice activ-
ity detection, followed by a time alignment between the original speech signal and
the degraded signal. Secondly, both signals are converted via a perceptual model.
Therefore, the signals are transformed into internal representations which emulate
the ones of the human auditory system. This step comprises spectrum computation,
band integration, frequency and gain compensation, as well as loudness compres-
sion. In the final step a distance between the 2 perceptually transformed signals
is computed. This includes disturbance, masking and asymmetry computation, fre-
quency and time averaging, and results in a final PESQ quality score. Subsequently,
a mapping function transfers the results onto a MOS scale.

For WB-PESQ the IRS receive filter was replaced with a bandpass filter in the
range 200–8000Hz and the mapping function was adjusted.

3.4.1.2 DIAL

Due to the ongoing advancements in telephone networks the ITU-T started a stan-
dardization project to come up with a new reference-based measure. As one of the
contestants the Diagnostic Instrumental Assessment of Listening quality (DIAL)
model [25, 26] was proposed. Its framework is presented in Fig. 3.5.

The preprocessing consists of active speech level normalization, voice activity
detection, and the time alignment from the PESQ model. The main model combines
3 building blocks: the core model estimates non-linear degradations introduced by
speech processing systems. The dimension estimators introduced by Wältermann
[27] cover the perceptual dimensions directness/frequency content (DFC), noisiness
(N), loudness (L) and continuity (C) of speech signals. Finally, the cognitive model

3Parts of the content of this section have previously been published in a slightly different version
in [21].



3.4 Instrumental Quality Evaluation Metrics 31

Fig. 3.4 Overview of the PESQ model

Fig. 3.5 Overview of the DIAL model

uses the so far computed score for each dimension to simulate the cognitive process of
a human listener. Besides narrow-band (300–3400Hz) and wide-band (50–7000Hz)
signals, the DIAL model can also be used in a super-wide-band (50–14000Hz)
context.



32 3 Auditory and Instrumental Quality Evaluation Metrics

3.4.1.3 ITU-T Rec. P.863 (POLQA)

The Perceptual Objective Listening Quality Assessment (POLQA) model [28] was
released in 2011 and defines an algorithm for speech quality assessment of state-
of-the-art telephony systems. Being the successor of PESQ, its framework is very
similar to the one in Fig. 3.4. Moreover, it allows quality estimation of super-wide-
band speech signals and the assessment of networks and codecs that introduce time
warping.

Firstly, a time alignment takes place. Therefore both signals are split up into small
chunks. The delay between each chunk of the reference signal and the distorted
signal is calculated and used to adjust the sampling rate of the degraded signal.
Subsequently, both signals are transformed into an internal representation of the
human auditory system similar to the PESQmodel. Additionally, low levels of noise
in the reference signal which might lead to the impression of a signal of minor
quality are eliminated. This represents the idealization process that subjects usually
go through during their quality judgment. Then the cognitive model uses 6 indicators
(frequency response, noise, room reverberation and 3 indicators that describe the
internal difference in the time-pitch-loudness domain) to compute a final estimated
MOS score.

PESQ and POLQA have already been tested for synthetic speech impaired by
coding and packet loss [29–31]. Moreover, PESQ has been tested on narrow-band
TTS signals [32]. Its impressing performance on single-word TTS signals lead to the
approach of verifying these results and comparing the performance of PESQwith the
performance of the two other state-of-the-art algorithms DIAL and POLQA. Even
though all of these algorithms are designed for a different domain their performance
on synthetic speech can give an impression of what is possible in the area of qual-
ity estimation of TTS systems. The performance of PESQ, DIAL, and POLQA on
synthetic speech will be discussed in detail in Chap.6.

3.4.2 Reference-Free Measures

In most cases, especially when evaluating TTS systems, a “clean reference”, i.e.,
an undistorted natural reference signal, is not existent. Therefore, reference-free
methods have to be applied. In general, such a measure uses the given signal to
estimate an undistorted reference signal. This signal can then be used as a reference,
just like in the reference-based approaches described in the previous section. The
following section discusses a reference-free approach that is currently used for the
instrumental assessment for distorted speech signals.

http://dx.doi.org/10.1007/978-981-10-3734-4_6
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Fig. 3.6 Overview of the P.563 model

3.4.2.1 ITU-T Rec. P.563

In 2004 the ITU-T introduced the Rec. P.563 [33] as a standard for the quality
assessment of narrow-band telephony applications. An overview of its structure is
given in Fig. 3.6. Its main parts are described in the following:

• Preprocessing
In the preprocessing step of P.563 the input signal is normalized to −26dBov.
Subsequently two additional versions of the signal are created to cover the charac-
teristics of different types of terminals, e.g., hands-free phones andmobile phones.
Moreover, a Voice Activity Detection (VAD) is performed to omit unvoiced parts
of the signal.

• Pitch Synchronous Vocal Tract Model and LPC Analysis
Within the vocal tract model, P.563 tries to simulate the human speech production
system. Therefore, a series of tubes with varying diameters model the human vocal
tract. Given the fact that the inertance of the human vocal tract prohibits abrupt
changes, a distortion in the signal is detected if sudden changes in tube diameter
occur.

• Speech Reconstruction and Full-Reference Perceptual Model
A speech reconstruction module generates a quasi-clean speech signal from the
distorted input signal. From there on a reference-based module, similar to PESQ
and POLQA, is used to estimate the quality of the degraded input signal.



34 3 Auditory and Instrumental Quality Evaluation Metrics

• Distortion-Specific Parameters
This unit detects distortions which are specific for certain degradations, e.g., noise,
temporal clipping, robotization.

• Dominant Distortion Classification and Perceptual Weighting
Since human listeners mainly focus on the most prominent distortion when mul-
tiple distortions are present at the same time, the distortion-specific parameters
from the previous step are then weighted linearly according to their influence on
speech quality.

Finally, an estimated quality value is computed. A more detailed description of
P.563 and its internal parameters can be found in [34].

The P.563 algorithm, together with the similar approaches ANIQUE [35],
ANIQUE+ [36] and an algorithm presented by the company Psytechnics [37, 38],
have already been tested on synthetic speech [39–42]. The achieved results as well
as further research in this area is presented in Chap.6.
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Chapter 4
Perceptual Quality Dimensions

Chapter 2 introduced a general structure of TTS systems and highlighted different
approaches towards signal generation. Although nowadays TTS systems produce
speech signals that sound very humanlike, they still feature degradations. Consider-
ing that these degradations are system specific, i.e., degradations of a PSOLA syn-
thesizer evoke a different perceptual impression than the degradations of an HMM
synthesizer, the quality of TTS systems is of multidimensional nature.

In the following, Chap. 3 introduced several auditory evaluation metrics that are
able to assess specific quality features. Several studies have employed these auditory
methods to derive perceptual quality dimensions. However, they were all restricted
in one way or the other, e.g., they only analyzed one or very few systems, they
employed signals of a very short duration, or only a limited number of attribute
scales was utilized in the experiment. Thus, there is no unified picture of perceptual
quality dimensions of state-of-the-art TTS systems. Therefore, this chapter seeks to
answer RQ1 and RQ2:

Which perceptual quality dimensions are relevant for state-of-the-art TTS
systems?

How should a listening test be designed in order to capture all relevant
quality dimensions?

The chapter begins with a review of several studies concerning the quality of TTS
systems followed by a discussion of the restrictions of these studies. Afterwards, two
studies on two extensive German TTS databases are presented. In the first study a
Semantic Differential (SD) is developed that covers all perceptual quality features of
state-of-the-art TTS systems, while the second study is based on a direct comparison
of TTS stimuli without the help of any attribute scales. Following that, the results are
brought in line with the findings from Sect. 4.1, and five universal quality dimensions,
as well as a test protocol for identifying them in an efficient way, are derived.
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4.1 State-of-the-Art Perceptual Quality Dimensions1

This section gives an overview of studies on perceptual quality of TTS that have
been conducted within the past 20 years as well as an interpretation of the resulting
perceptual quality dimensions. Moreover, the restrictions of the test setups and their
influence on the resulting quality dimensions is highlighted. Each study will be later
on referred to by its abbreviation introduced in brackets in the title.

4.1.1 Study: Kraft and Portele (Kraft1995)

In 1995, Kraft and Portele [2] evaluated five German speaking TTS systems in
an auditory listening test. The database consisted of stimuli produced by two
formant synthesizers (male voices) and three concatenative diphone/demisyllable
synthesizers (two female voices, one male voice). The 44 subjects were instructed to
rate the stimuli on eight presented ACR scales with five to six categories. Six familiar
and unfamiliar passages were synthesized with a total duration of about 100 words.
A subsequent Principal Component Analysis (PCA) with Promax rotation revealed
two factors which were connected to (i) prosodic and long term attributes and to
(ii) segmental attributes. Even though the first dimension was linked to prosody, it
also comprises attribute scales that are specific to the voice of the systems, such as
naturalness and pleasantness.

4.1.2 Study: Mayo et al. I (Mayo2005)

In a pilot study Mayo et al. [3] unveiled the perceptual quality dimensions of the
Festival synthesizer [4]. In this study, eight sentences from the TIMIT database [5]
were chosen and synthesized with an English speaking female voice. The stimulus
duration varied from 1.9 to 4.1 s. Eight native speakers of English which were all
experienced with listening to synthetic speech took part in a PC test. They were
instructed to rate whether the two presented stimuli were similar or different in
terms of naturalness. The responses were compiled into a dissimilarity matrix which
was then processed via an MDS analysis. The resulting dimensions were interpreted
through visual and auditory analysis of the configuration of the stimulus space. The
first dimension represents (i) prosodic cues which reflect the appropriateness of
duration and intonation. The second dimension is linked to (ii) segmental and unit-
level cues. It describes the appropriateness of units selected for synthesis as well as
the number of selected units.

1Parts of the content of this section have previously been published in a slightly different version
in [1].
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4.1.3 Study: Viswanathan and Viswanathan (Vis2005)

To test the reliability and validity of the test method proposed in the ITU-T Rec.
P.85 [6] which was introduced in Sect. 3.3.2.1, Viswanathan et al. [7] conducted a
series of five consecutive listening tests. In the final study, stimuli produced by five
English speaking TTS systems were evaluated on nine 5-point ACR scales. Addition-
ally, participants were instructed to also rate the overall quality and the acceptability
of the systems. The investigated systems used either phones or sub-phone units for
concatenative synthesis. The synthesizers included algorithmic variations for pitch
and duration generation. The stimuli were rated by 128 naïve test participants. A
Factor Analysis (FA) revealed two factors: Dimension 1 is related to the extent to
which speech is similar to natural human speech and was thus labeled (i) naturalness;
Dimension 2 describes how well the content of the signal can be understood, hence
it can be assigned to the (ii) intelligibility of the signal.

4.1.4 Study: Seget (Seget2007)

Seget [8] conducted a study using speech material from six German TTS systems.
The stimuli were created by diphone-based synthesizers using the PSOLA technique
and unit-selection systems. A total of 10 speech samples have been generated per
TTS system, half for male speakers and half for female ones. The synthesized speech
samples have an average duration of 12 s and consist of two utterances separated by
a silence interval of approximately 2 s. All stimuli were bandpass filtered according
to ITU-T Rec. G.712 [9]. The listening test closely followed the ITU-T Rec. P.85 [6].
Thus, besides the rating of the stimuli on eight ACR scales, the 17 test participants
were also given a parallel task. As suggested in P.85, the listening test also included
natural speech reference files. A subsequent Principal Axis Factor (PAF) analysis with
subsequent Promax rotation revealed two dimensions. The first dimension consists
of scales concerning the naturalness of the synthesized voice as well as prosodic
attributes of the signal. The second dimension comprises scales that cover the fluency
and intelligibility of the signal. Thus, dimension 1 was labeled (i) naturalness and
prosody while dimension 2 was named (ii) intelligibility.

4.1.5 Study: Hinterleitner (Hint2010)

In 2010 Hinterleitner [10] evaluated six German TTS systems in a listening test that
followed closely the requirements of the P.85 test protocol. The TTS systems featured
female and male voices of PSOLA and US synthesizers. Moreover, one female and
one male voice of a natural speaker were included in the test. The five synthesized
utterances per system exhibit an average duration of 6 s. All files were preprocessed

http://dx.doi.org/10.1007/978-981-10-3734-4_3
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according to the ITU-T Rec. G.711 [11] and bandpass filtered according to ITU-T
Rec. G.712 [9]. Twenty-five subjects (12 female, 13 male) were invited to rate the
stimuli on four rating scales (overall impression, voice pleasantness, naturalness,
listening effort) while also mastering a parallel task. Prior to the listening test every
subject completed a training phase which helped them get used to the test setup and
the quality range of the presented TTS stimuli. Since the quality was only evaluated
on four rating scales no subsequent FA was performed.

4.1.6 Study: Mayo et al. II (Mayo2011)

Mayo et al. [12] pursued the investigations described in Sect. 4.1.2. Twenty-four
sentences from the TIMIT [5] corpus were selected and synthesized with an English
speaking female voice by unit selection TTS system Festival [4]. The average duration
of the stimuli was 2.7 s. Thirty participants took part in a PC test, where they were
instructed to rate the similarity of a pair of stimuli in terms of naturalness. Two types
of acoustic analyses were carried out: the automatic analysis consisted of measures
that were computed by Festival during the synthesis process (e.g., target and join
costs) and measures that were derived from those features (e.g., total cost, target
costs of different types of diphones); the manual analysis included comparisons with
natural speech files (e.g., number of transcription/pronunciation errors per synthetic
utterance).

A subsequent MDS analysis yielded three dimensions. Through visual, audi-
tory and cluster analysis these dimensions could be linked to (i) overall join qual-
ity/quantity, (ii) join distribution and detectability, and (iii) unit appropriateness
and prosody. By the chosen wording the first two dimensions seem to be connected
to segmental attributes that concern the fluency and the intelligibility of the speech
signal, while the third dimension represents global characteristics that describe the
prosodic quality of the signal.

4.1.7 Restrictions of Discussed Studies

This section outlines the similarities and differences of the studies presented in the
previous sections and their impact on the resulting quality dimensions. An overview
of all relevant characteristics of the experimental setups can be seen in Table 4.1 and
is discussed in the following.

One of the main restrictions of all presented studies is their limitation to very few
synthesis techniques. Strictly speaking, no more than two different TTS techniques
are covered in each study. This limits the spectrum of featured degradations and thus
also the resulting quality dimensions.

Moreover, resulting quality dimensions depend on the different types of synthe-
sizers that were part of the dataset, thus synthesizer-specific characteristics, e.g., the
noise of HMM-synthesizers or the sonic glitches of concatenative systems, can nat-
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urally only be assessed if these types of systems are part of the study. Accordingly,
studies that only feature formant synthesizers and diphone based PSOLA systems,
e.g., as in Kraft1995, are most likely to lead to different dimensions than studies that
only assess unit-selection synthesizers, e.g., as in Mayo2005 and Mayo2011.

Furthermore, none of the studies covers the very popular technique of HMM
synthesis. Therefore, a perceptual quality dimension that would cover the noise HMM
systems produce can not emerge from those studies.

Besides the included TTS systems the studies that use an SD (Kraft1995, Vis2005,
Seget2007, and Hint2010) are also restricted to the rating scales presented to the test
participants. Firstly, these studies only feature a small number of presented rating
scales. Thus, none of those 4 studies lead to more than two quality dimensions
(in the case of Hint2010 no FA was performed due to only four presented scales).
Secondly, most of the studies (Vis2005, Seget2007, Hint2010) are based on the
partially outdated evaluating protocol P.85 from 1995. Therefore, degradations that
are distinctive for modern-day TTS systems might not have been captured.

Moreover, two studies are also crucially influenced by the inclusion of natural
reference stimuli. Even though TTS systems nowadays can sound very natural, in
most cases a quality gap between synthesized speech and natural speakers can be
easily discerned. Thereby, test participants tend to give lower ratings to TTS stimuli
if a natural reference speaker is part of the test. As a consequence, the range on a
rating scale that is normally used for TTS systems shrinks. Therefore, quality aspects
that are relevant when only listening to synthetic speech might get suppressed due
to the small range that is available for TTS systems.

In addition, the evaluation of a system can also be compromised due to too short
TTS samples, e.g., the studies Mayo2005 and Mayo2011 use stimuli with an average
duration of below 4 s. These very short utterances might affect a rating of more global
attributes, e.g., the prosody of a system.

Moreover, the studies Kraft1995, Vis2005, and Seget2007 presented female and
male TTS stimuli in the same session. Thus, test participants with a preference for
speakers of one gender might have been entrapped to give lower ratings to stimuli of
a speaker of the opposite sex due to a direct comparison. This effect can be softened
when female and male stimuli are presented in different sessions.

The studies Seget2007 and Hint2010 investigated the use of TTS in telephone
services. Thus all stimuli were G.712 bandpass filtered and in case of Hint2010 also
G.711 coded. Therefore, coding distortions were induced that are not generated by
a synthesis system.

Those two studies were also the only ones that provided information concerning
the sampling rate (8 kHz). This raises the question whether distortions that affect
higher frequencies (above 8 kHz) could be perceived at all in any of the presented
studies.

Considering all the differences of the presented studies it is not surprising that the
resulting quality dimensions are not consistent. With the goal to reveal a set of uni-
versal perceptual quality dimensions of state-of-the-art TTS systems, two extensive
studies were conducted. Their setups and results are presented in the following two
sections.
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4.2 Semantic Differential and Factor Analysis2

In Sect. 3.3.2 two different approaches for multidimensional analysis of TTS systems
were introduced. In the following a Semantic Differential (SD) protocol is developed
and subsequently tested on an extensive database of synthesized speech.

Since an SD uses pre-defined attribute scales to measure the auditory impression
of the listeners a direct relation between the used attribute scales and the derived
quality dimensions is guaranteed. On the downside, due to the given set of scales,
this approach cannot guarantee that all relevant perceptual dimensions are actually
solicited from the test participants. To reduce the influence of the test designers to
a minimum, a suitable set of scales has to be developed through several pretests. In
pretest 1 attributes describing the auditory impression of the listeners are collected.
These terms are converted into scales and presented in a second pretest. An analysis
of the data of the second pretest leads to a final selection of scales which are presented
in the final SD experiment. On the basis of these attribute ratings, perceptual quality
dimensions can be derived with the help of a factor analysis. The development of
a protocol for TTS quality assessment will be described in the following section
while a statistical analysis of the gathered data and the discovered perceptual quality
dimensions are discussed in Sect. 4.2.2.

4.2.1 Experimental Setup

This section gives an overview of the database of speech synthesizers collected for
the listening tests. Moreover, it describes the approach used to gain a relevant set of
attribute scales that describe the perceptual space of TTS systems in a more or less
complete way.

4.2.1.1 Test Database

Ten German sentences from the EUROM.1 corpus [14] were chosen as source mate-
rial. Utterances containing place names, proper names, or words from a foreign
language were excluded as they often differ from German pronunciation rules which
are likely to cause problems for speech synthesizers. To avoid user fatigue but still
guarantee a valid impression of the occurring distortions, the sentences were short-
ened to a length of about 10 s each.

To capture a broad variety of distortions synthetic speech files generated from
14/15 different German speaking TTS systems for female/male speakers, for some

2Parts of the content of this section have previously been published in a slightly different version
in [13].

http://dx.doi.org/10.1007/978-981-10-3734-4_3
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of them with up to six different voices. Thus, data from 35/28 different configurations3

(female/male) could be produced. Besides the synthetic speech files the database also
contains stimuli from 4/4 amateur (female/male) and 4/4 professional (female/male)
natural speakers. Even though the goal of these tests was to develop a protocol for
synthetic speech, natural speakers were included in the first pretest in order to obtain
quality describing attributes of “ideal” speech. All speech files were downsampled
to 16 kHz and level normalized to −26 dBov using the speech-level meter [15].

The database that was used for the main test contains speech material synthesized
by the following TTS systems4 (the synthesis type and the number of female/male
voices for each synthesizer are given in brackets):
Acapela Infovox3 (US, 1/1), AT and T Natural Voice (US, 1/1), atip Proser (DI, 1/1),
BOSS (US, 1/0), Cepstral Voices (US, 1/1), Cereproc CereVoice (US, 1/1), DRESS
(DI, 1/1), Loquendo TTS (US, 1/1), MARY bits (US, 1/1), MARY hmm-bits (HMM,
1/1), MARY MBROLA (DI, 1/1), NextUp Talker (DI, 1/1), NextUp TextAloud3 (FO,
0/1), Nuance RealSpeak (US, 2/1), SVOX (US, 1/1), SyRUB (DI, 0/1).

4.2.1.2 Pretest 1

The objective of pretest 1 was to collect a broad basis of attributes describing auditory
features of synthetic speech. Therefore audio files from 12/13 different TTS systems
with female/male voices plus two different natural speakers per gender were pre-
sented. Twelve expert listeners (4 female, 8 male) from the Quality and Usability
Lab of the TU Berlin took part in the test. The stimuli were presented in a quiet con-
ference room environment via headphones (AKG K601) and a high-quality sound
device (Roland Edirol UA-25) in randomized order. Two sessions were conducted,
one with female and one with male voices, with a break of 5 min in between. Every
TTS system was covered with two stimuli. The listeners were instructed to write
down nouns, adjectives and antonym pairs describing their auditory impression. Fur-
thermore, they were asked to give an intensity rating for each attribute on a scale
ranging from 1 to 10.

The listening test resulted in 2179 collected terms out of which 296 unique descrip-
tions were found. These attributes were condensed into 44 scales. Attribute scales
that mainly rate quality features concerning individual voice character and accent
and those that rate the same perceived quality features were omitted. The remaining
scales were weighted by frequency of occurrence, and the 28 most named ones were
chosen for pretest 2.

3A configuration denotes a specific combination of one voice/one speech corpus and one synthesis
system.
4While the same TTS systems were used in pretest 1 and 2, the configurations deviate slightly from
what was used in the main test.
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4.2.1.3 Pretest 2

To narrow down the set of attribute scales from pretest 1 to a manageable number, a
second pretest was conducted. Here, audio files from 19/20 different configurations
of TTS systems with female/male voices were presented. Nine expert listeners (3
female, 6 male) from the Quality and Usability Lab of TU Berlin and 13 naïve
listeners (8 female, 5 male, mainly students from the TU Berlin) took part in the test.
All naïve listeners were paid for their participation.

The purpose of this test was to find the set of attribute scales that was most
suitable for the final SD experiment and thus describes the quality stimulus space
most precisely. Therefore, the subjects were instructed to only use scales that were
most relevant for their auditory impression. The stimuli were presented in randomized
order in two sessions, one with female voices and one with male voices, with a 5 min
break in between. The stimuli were presented via headphones (AKG K601) and a
high-quality sound device (Roland Edirol UA-25) in a sound proof booth.

To narrow down the number of attribute scales, unnatural melody versus natural
melody which correlated highly (R > .60) with the other scales that rate naturalness,
and thus measures similar features, was omitted before the main test. Moreover, scales
that were used rather rarely were dropped.

In order to gain a first impression of the perceptual space, a PCA with Varimax
rotation was performed on the remaining items and three factors were extracted.
Subsequently, all items with high loadings on multiple factors and items with com-
munalities < .45 were discarded. This led to a set of 16 attribute scales which is
presented in Table 4.2.

Table 4.2 Set of attribute scales that was used in the main SD experiment

Abbr. Label Attribute Scale

BUMP Bumpiness bumpy vs. not bumpy

CLIN Clink clinking vs. not clinking

DSTO Distortions distorted vs. undistorted

DSTU Disturbances undisturbed vs. disturbed

FLUE Fluency interrupted vs. fluent

HISS Hiss hissing vs. not hissing

INTE Intelligibility unintelligible vs. intelligible

NATU Naturalness artificial vs. natural

NOIS Noise noisy vs. not noisy

POLY Polyphony several voices vs. one voice

RASP Rasping Sound raspy vs. not raspy

RHYT Rhythm unnatural rhythm vs. natural rhythm

SPEE Speed fast vs. slow

STRE Stress unnatural stress vs. natural stress

TENS Tension tense vs. calm

VPLT Voice Pleasantness unpleasant vs. pleasant

OIMP Overall Impression bad vs. excellent

Note labels have been translated from German wordings
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Table 4.3 Mix of synthesis
techniques present in the
main experiment

Synthesis Type Female Male

Formant (FO) 0 1

Diphone (DI) (PSOLA/MBROLA) 4 5

Unit Selection (US) 10 8

HMM 1 1

4.2.1.4 Main Test

For the main test a set of 15 different synthesizer configurations per gender was
chosen. The mix of different synthesis techniques can be seen in Table 4.3. For each
configuration two different stimuli were presented. The test was split in three parts:
since the subjects were not familiar with the quality as well as degradations of TTS
signals, a training with three different stimuli covering the whole quality range from
the TTS signal database was conducted. In the second and third part female and male
stimuli were presented or vice versa, with a 5 min break in between.

Thirty naïve subjects aged 21 to 65 (15 female, 15 male, μ=27.9, σ=7.9) took
part in the test. Most of them were students from the local university. None of them
had any known hearing disabilities. All subjects were paid for their participation.
The stimuli were presented via headphones (AKG K601) and a high-quality sound
device (Roland Edirol UA-25) in a sound proof booth.

After listening to each stimulus the participants had to rate the Overall Impression
(OIMP) of the signal on a continuous scale ranging from bad to excellent. Subse-
quently, a quality estimate for the attribute scales determined in pretest 2 had to be
adjusted via a slide presented on the test GUI. The rating on the OIMP scale was
separated from the ratings on the remaining scales in order to guarantee that the test
participants first thought about their impression of the system as a whole and after
that about degradations of specific quality features.

4.2.2 Statistical Analysis

The following section describes the Factor Analysis (FA) that was used to come up
with an interpretable perceptual space. Moreover, the resulting quality dimensions
are analyzed.

Prior to the execution of any statistical methods the ratings of all test partici-
pants were screened for plausibility. Therefore, box plots featuring the ratings on all
dimensions were created for all stimuli. One participant had more than 5% outlier
ratings and was thus excluded from the study.



4.2 Semantic Differential and Factor Analysis 47

4.2.2.1 Factor Analysis

A first analysis of the data collected in the main test showed that the item SPEE
almost always exclusively loaded on a single factor. Thus, all other items created
the remaining dimensions. To split these dimensions up in order to enable a more
detailed view of the perceptual space the item SPEE was discarded from further
analysis.

A PAF analysis of the remaining 15 items revealed three factors. Separate PAFs
for female and male stimuli showed a similar factor structure, thus one analysis over
the whole dataset seemed sufficient. The three factors account for 61.47% of the
total variance. This value could not be increased significantly by extracting more
than three factors. Residuals were computed between the observed and reproduced
correlations: 5 (4%) were non redundant with absolute values greater than .05.

It was assumed that quality dimensions are not independent of each other, i.e.,
an impairment in one dimension can also affect the quality of other dimensions to a
certain degree. Therefore, an oblique rotation (Promax rotation with κ = 4), which
leads to correlated factors, was performed subsequently. The value of the accounted
variance after rotation will not be analyzed because of a massive overestimation due
to correlated factors.

Table 4.4 Factor pattern
matrix. Note For better
readability values below .20
are suppressed

Scale Factor loadings

1 2 3

Stress .93

Naturalness .90

Rhythm .89

Voice Pleasantness .77

Tension .66

Bumpiness .58

Distortions .45 .32

Hiss .75

Noise .65

Rasping Sound .59

Disturbances .49 .27

Clink .27 .38

Polyphony .79

Intelligibility .21 .57

Fluency .29 .50

Eigenvalues 6.38 1.88 .96

% of variance 42.5 12.5 6.4

Cronbach’s α .90 .69 .74
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Table 4.5 Factor correlation
matrix

Factor 1 2 3

1 1.00 .45 .73

2 .45 1.00 .52

3 .73 .52 1.00

The FA resulted in the factor pattern matrix shown in Table 4.4. For clarity, values
below .20 were suppressed. Due to the oblique Promax rotation the resulting factors
are not orthogonal. The correlations among the three factors can be seen in Table 4.5.

4.2.2.2 Resulting Quality Dimensions

In order to obtain a meaningful interpretation of the quality dimensions, items
with high cross-loadings, meaning similar loadings on multiple factors,5 have to
be excluded before interpretation. In this case this applies to the items DSTO and
CLIN.

Factor 1 is highly correlated with the items STRE, NATU and RHYT, thus it
represents the naturalness of the TTS signal. The items with high loadings on factor
2 (HISS, NOIS, RASP) are all related to disturbances in the signal. Factor 3 seems to
reflect temporal distortions, e.g., concatenation artifacts which occur in US synthesis.
The effect of the item POLY which contributes the most to this dimension can be
witnessed when, e.g., two units with a slightly different speed get connected. This
creates the impression of two different voices speaking at the same time.

Figure 4.1 shows a graphical representation of Table 4.4. It has to be stated that
a TTS signal with high values on all three dimensions is perceived as very natural,
not disturbed, and not temporally distorted. The two items with high cross-loadings
(DSTO, CLIN) in the factor pattern matrix do also stand out here. Both only reach
very low values on all three dimensions, thus they do not account much for any of
these. Furthermore, the item BUMP is not only correlated with naturalness but also
with the dimension temporal distortions (R = .59). This is hardly surprising since
temporal distortions can be perceived as bumps in a speech signal.

Moreover, as an effect of the oblique rotation, it has to be stated that all factors are
correlated. Especially factor 1 and factor 3 show a very high correlation. This means
that a very natural sounding TTS system will most likely be bound to the impression
of a fluent, intelligible speaker.

In order to get a clearer view on the quality features of each single system a
mapping of the stimuli in the perceptual space is presented in Fig. 4.2. Figure 4.2a
displays the values for the different systems for dimensions 1 (naturalness) and 2
(disturbances), in which the subscripted character (f/m) represents the speaker
gender; FO systems are marked with cyan asterisk, US synthesizers with green
dots, DI synthesizers with blue squares, and HMM synthesizers with red diamonds.

5|loading factor A - loading factor B| < .20.
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Fig. 4.1 Mapping of the quality scales in three dimensional perceptual space

Independent of the speaker’s gender most synthesizers build clusters, e.g., US1,
US2, US6. It is striking, however, that some systems obviously do not stick together:
US7 f and US7m for instance are clearly separated with differing values for all three
dimensions. This indicates that the speech material used for the female US7 system
features disturbances that could not be found in the corresponding male data. More-
over, it can be stated that some systems reach high values on one axis while only low
ratings on the other, e.g., HMM1 is perceived as natural but also disturbed. Besides,
systems with equal values in the disturbances dimension, for instance US3 f , US4m ,
and US5 f can be perceived as natural sounding as well as artificial.

Figure 4.2b shows the perceptual space of dimension 3 (temporal distortions)
and 2 (disturbances). Again, the clustering effect can be observed. However, both
figures reveal that undisturbed stimuli always get rated as natural as well as not
temporally distorted. In contrast, natural and not temporally distorted synthesizers
can also be perceived as disturbed (e.g., HMM1).

An analysis of the correlations of the extracted dimensions with the rating on the
OIMP scale can be seen in Table 4.6. Therefore, the naturalness dimension accounts
the most for the overall impression rating.
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Fig. 4.2 Mapping of the stimuli in the perceptual space
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Table 4.6 Correlations
between the three dimensions
and the OIMP

Dimension 1 2 3

OIMP .81 .47 .56

4.3 Sorting Task and Multidimensional Scaling6

The previous section showed how to create a set of attribute scales that can be
used in an SD to assess the quality of TTS synthesizers. This study clearly led to
a better understanding of perceptual quality of synthetic speech, considering that
TTS stimuli generated by all popular speech synthesis methods (FO synthesizers, DI
concatenation, US synthesis, HMM synthesis) were evaluated on scales that most
likely cover all common TTS artifacts. Therefore, the results are relevant for the
development and optimization of modern TTS systems. Moreover, the study yielded
three quality dimensions that were easily interpretable and generally intelligible.
Nevertheless, this method also implies some drawbacks:

1. During the two pretests the attributes were mainly solicited from audio and speech
experts as test participants. This fact guaranteed that all relevant artifacts are
captured and reproduced in the derived rating scales. However, the disadvantage
of this approach is that experts also perceive degradations that are not as relevant
for the quality impression of normal listeners. Though naïve listeners might be
able to discern stimuli with respect to specific degradations (i.e., on corresponding
attribute scales), this score does not necessarily affect their quality impression to
a large degree. Hence, through the process of a factor analysis this can lead to
dimensions that only have a minor influence on the overall quality.

2. Even though the intention was to keep the developed scale labels as simple as
possible, one cannot be certain that the naïve listeners of the main test understood
all scales in the same way.

3. Furthermore, methods that assess quality on global scales always limit the test
participants’ rating to the presented scales.
Therefore, it is crucial to investigate if those three quality dimensions could also
be derived through a listening test that is not based on given rating scales, but
rather on the unrestricted perceptual quality impression of the listeners itself.

To overcome these drawbacks, this section presents further research on the above
mentioned dimensions. In the following, a set of TTS stimuli that was used in the
listening test is described. Furthermore, the principle of Multidimensional Scaling
(MDS) and the Sorting Task (ST) that was chosen for the listening test are explained.
The results of the experiments are statistically analyzed and an interpretation of the
resulting perceptual dimensions is given.

6Parts of the content of this section have previously been published in a slightly different version
in [16].
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Table 4.7 Mix of synthesis
techniques present in the ST
experiment

Synthesis Type Female Male

Formant (FO) 2 5

Diphone (DI) (PSOLA/MBROLA) 9 10

Unit Selection (US) 17 10

HMM 2 2

4.3.1 Experimental Setup

In the following, the TTS database is introduced, the principle of MDS is presented,
and the listening test following the ST method is described. Moreover, to help with
the interpretation of the obtained perceptual dimensions, a post test using the attribute
scales developed in Sect. 4.2 is conducted.

4.3.1.1 Test Database

To guarantee a fair comparison of the test stimuli, one German sentence7 with a
synthesized duration of approximately 5 s was chosen for the listening test. Twenty
different TTS systems were selected (some of them with different voices) and used to
synthesize this utterance. All in all, 16 female systems in 30 different configurations8

and 19 male systems in 27 different configurations were used. The TTS systems that
were used to generate the stimuli are the following ones (the synthesis type and the
number of female/male voices for each synthesizer are marked in brackets):
Acapela Infovox3 (US, 2/1), AT and T Natural Voices (US, 1/1), atip Proser (DI,
2/1), BOSS (US, 2/0), Cepstral Voices (US, 1/1), Cereproc CereVoice (US, 1/1),
DRESS (DI, 4/4), ESpeak (FO, 0/1), Fonix Speech FonixTalk (FO, 2/2), IVONA
(US, 1/1), Loquendo TTS (US, 1/1), MARY bits (US, 2/2), MARY hmm-bits (HMM,
2/2), MARY MBROLA (DI, 2/3), Meridian Orpheus (FO, 0/1), NextUp Talker (DI,
1/1), NextUp TextAloud3 (FO, 0/1), Nuance RealSpeak (US, 4/1), SVOX (US, 2/1),
SyRUB (DI, 0/1).

Thus, the database contains stimuli generated by FO synthesizers, Diphone (DI)
synthesizers, Unit Selection (US) synthesizers, and one HMM-synthesizer (HMM)
(Table 4.7).

The generated speech files were downsampled to 16 kHz (if necessary) and level
normalized to −26 dBov using the speech-level meter [15].

7German: Letzte Nacht habe ich die Haustür geöffnet um die Katze nach draußen zu lassen.
English translation: Last night I opened the front door to let the cat out..
8A configuration denotes a specific combination of one voice/one speech corpus and one synthesis
system.
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4.3.1.2 Main Test

This section describes the main principle of MDS as well as a method suitable for
large object sets. To simplify the interpretation of the dimensions extracted by the
MDS algorithm, a post-test was carried out in which all stimuli were analyzed on
the 16 attribute scales that were developed in Sect. 4.2.

Pairwise Comparison and Multidimensional Scaling

The main idea of multidimensional scaling is to identify orthogonal perceptual
dimensions without prior knowledge about the nature of the stimuli, by asking test
participants to scale the dissimilarities between pairs of stimuli. The dissimilarities
between stimuli can then be transformed into a stimulus space in which the between-
point distances correspond to the dissimilarities between stimuli.

Dissimilarities are usually derived in listening tests in which each stimulus in a
set of n stimuli is compared with all other n − 1 stimuli. Subjects rate the similarity
of two stimuli on a scale with the end points very similar and not similar at all. The
outcome is a matrix that represents the similarity between all stimuli [17].

Via an MDS algorithm, the dimensionality of this matrix can be reduced until
the solution is interpretable but still represents the observed stimulus distances. As
a badness-of-fit measure for the MDS representation, Kruskal [18] introduced the
Stress function (low Stress values indicate a better fit).

The downside of PC tests is that a complete comparison of all stimuli leads to
n(n−1)

2 comparisons. With large sets of objects the amount of comparisons reaches
a level that is not suitable for the assessment in listening tests. With the database
described in Sect. 4.3.1.1 this would yield 435/351 comparisons for female/male
stimuli and a test duration per subject of over two hours. Therefore, a method is
introduced in the following paragraph to derive dissimilarity matrices without a full
PC test.

Sorting Task

Tsogo [19] proposed to use an ST when dealing with large object sets. Subjects
are instructed to build groups of stimuli that are similar to each other while being
different from stimuli in other groups. This results in one n × n incidence matrix per
subject containing zeros and ones representing unsimilar and similar objects. Adding
the matrices of all test participants together yields one similarity matrix from which
one can easily derive a dissimilarity matrix as an input for the MDS algorithm.

To avoid that test participants sort stimuli with respect to gender, the test consisted
of two sessions, one with female and one with male stimuli. The stimuli had to be
sorted in up to eight groups with a minimum of two stimuli per group. Fourty naïve
subjects aged between 19 and 37 (20 female, 20 male, μ = 25.6, σ = 3.25) took part.
All of them were native German speakers, none had any known hearing disabilities.
All test participants were paid for their participation. The stimuli were presented via
headphones (AKG K601) and a high-quality sound device (RME Hammerfall DSP
Multiface II) in a soundproof booth.
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4.3.1.3 Post-Test

MDS dimensions as such give no indication on their interpretation unless the stimuli
are analyzed along the identified dimensions via expert listening or an additional
auditory test. Thus, an interpretation is often a vague and moreover a highly subjective
task. Therefore, a post-test in which all stimuli were rated on the 16 attribute scales
from Sect. 4.2 was conducted.

The stimuli were presented in two groups (one with female, one with male stimuli)
in randomized order. Five expert listeners from the Quality and Usability Lab of the
TU Berlin and seven naïve subjects aged between 23 and 31 (5 female, 7 male, μ =
27, σ = 2.64) took part in the post-test. All of them were native German speakers
without any known hearing disabilities. The stimuli were presented via headphones
(Sennheiser HD 485) and a high-quality sound device (Roland Edirol UA-25) in a
quiet listening environment.

4.3.2 Statistical Analysis

In the following an MDS is applied on the data gathered from the PC test and the
ratings on the attribute scales are used to interpret the resulting quality dimensions.

4.3.2.1 Multidimensional Scaling

Via a non-metric MDS [20] three dimensions were extracted for both female and male
stimuli. The statistical fit parameter Stress1 for the female/male solution reached
values of 0.07/0.06 and was thus far below the Stress1 values for random data as
reported in [21]. To maximize the variance in each dimension the stimulus space was
Varimax-rotated.

In order to ensure a meaningful interpretation, the Pearson correlation coefficient
R between the factor scores and the median values of the ratings on the 16 attribute
scales from the post-test was computed. Among others, dimension 1 correlated highly
with the items VPLT (|R| ≥ .80) and INTE (|R| ≥ .80), dimension 2 correlated
highly with RHYT (|R| ≥ .80) and FLUE (|R| ≥ .70), and dimension 3 reached the
highest correlation with SPEE (|R| ≥ .50). Dimensions 1 and 2 both also correlated
highly with the item NATU (|R| ≥ .80). But since this scale does not help to discern
between both dimensions it was not taken into account for the following optimization.

In the next step the point configurations for both female and male stimuli were
further rotated in a way which maximized the correlation between each dimension
and the item(s) mentioned in the previous paragraph. The correlations between the
optimized rotated dimensions and the items are shown in Table 4.8.

As can be seen, dimension 1 not only correlates highly with VPLT and INTE
but also with the items NATU and STRE for female and male data. The correlation
with OIMP is the highest for this dimension. Dimension 2 achieves high correlations
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Table 4.8 Pearson correlation between rotated factor scores and attribute scale ratings

scales dimension 1 dimension 2 dimension 3

female male female male female male

bumpiness −.61 −.81 −.79

clink −.67 −.60 −.56 .62

distortions −.72 −.77 −.77 −.70

disturbances −.63 −.69 −.77 −.69

fluency .59 .53 .88 .78 −.53

hiss −.54

intelligibility .83 .87 .73 .64

naturalness .85 .85 .77 .88

noise pleasantness .88 .87 .78 .78

polyphony −.64 −.63 −.77 −.58 .54

rasping sound −.56 −.63

rhythm .80 .76 .86 .84 −.55

speed .54 .65
stress .84 .74 .76 .83 −.53

tension −.71 −.51 −.59 −.59 .68 .54

overall impression .90 .89 .76 .76

Note for better readability correlations with |R| < .50 are suppressed; the correlations for the
selected scales are in bold

with RHYT and FLUE but also with BUMP and NATU. The correlations between
dimension 3 and the attribute scales are much lower than for the other two dimensions.
However, it is the only dimension that correlates with the item SPEE (|R| ≥ .50).
Moreover, it correlates with the item TENS and the female data achieves a correlation
of (R = .62) with CLIN.

4.3.2.2 Resulting Quality Dimensions

The 2D-mapping of the stimuli in the perceptual space of dimensions 1 and 2 and
dimensions 1 and 3 can be seen in Figs. 4.3 and 4.4. The two Fig. 4.3a, b display the
perceptual space for the female and male stimuli in the perceptual space of dimensions
1 and 2 while the Fig. 4.4a, b show the results for the female and male stimuli in
the perceptual space of dimensions 1 and 3. Subscripted indices indicate different
voices; FO systems are marked with cyan asterisk, US synthesizers with green dots,
DI synthesizers with blue squares, and HMM synthesizers with red diamonds.

For the interpretation of the extracted dimensions all stimuli were sorted accord-
ing to their value in each dimension. The auditory impression of the sorted stimuli
along with the correlations from Table 4.8 served as an indication for the interpreta-
tion of the dimensions. The voices of high-ranked stimuli in dimension 1 sounded
very human-like even if the speech was somehow distorted. These stimuli can be
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described as voices with personality and charisma; they evoke the impression of
listening to a real human being. Thus, this dimension was labeled naturalness of
voice. The auditory impression for stimuli sorted along dimension 2 confirms the high
positive correlations with RHYT and FLUE and the high negative correlation with
BUMP. Stimuli with low values in this dimension lacked natural sounding prosody
while they often also cause the impression of a stuttering speaker. Therefore, this
dimension can be associated with temporal distortions (low values indicate severe
temporal distortions). Stimuli with high values in dimension 3 were slowly speak-
ing and relaxed while voices with low values sounded more stressed and restless.
This impression is confirmed by the correlations from Table 4.8. Thus dimension 3
describes the calmness of the voice.

A closer look at Fig. 4.3 reveals a clustering effect: most US systems build a cluster
in the upper right corner, most DI synthesizers are in bottom center of the figure and
FO synthesizers can be found at the far left of each figure. The only systems that
achieve high values in dimension 2 are US synthesizers. However, not all US stimuli
that sound very human-like also reach high values in dimension 2 (US21, US22,
US31, and US32 in Fig. 4.3a and US21 in Fig. 4.3b).

Dimension 2 on the other hand is linked to prosody and concatenation artifacts.
Thus, especially DI synthesizers that connect lots of small speech units should score
low values in this dimension. In this context it is interesting to see that the stimuli
in Fig. 4.3a with the lowest values in dimension 2 are also US synthesizers (US21,
US32). However, these are two non commercial, scientific systems that apparently
have major issues with the pitch contour at the junctions between units. Strikingly,
the stimulus US81 in Fig. 4.3b achieves one of the highest ratings of male stimuli
in dimension 1, still its OIMP rating was only 2.5 (on the MOS scale which ranges
from 1 to 5). The main reason for that is the low score in the dimension temporal
distortions. Thus, the voice sounds human-like while the quality is still mediocre.

In Fig. 4.4b the clustering effect for the male stimuli can be seen even more
clearly. The US systems sound very human-like and show similar speech rates, the
DI systems more or less span across the whole range of dimension 1 with rather low
values in dimension 3, FO synthesizers build a cluster on the far left of the figure,
and the two HMM voices can be found in the top center of the figure. The highest
values in dimension 3 and therefore the system with the lowest perceived speech
rate is the HMM synthesizer for female as well as for male voices. After listening to
all stimuli the auditory impression of system DI5 stood out. Even though it is a DI
synthesizer it sounded very metallic and artificial. This could point to a system that
uses coded speech units. Thus, the proximity of DI5 and the FO systems especially
in the Figs. 4.3b and 4.4b is not surprising.

Furthermore, it can be stated that most of the stimuli that were produced by the
same TTS system build clusters regardless of the voice’s gender, e.g., DI2, HMM1,
US9. Nonetheless, some of the stimuli of one system score very differently in one
dimension (US8 in Fig. 4.3a, DI1 in Fig. 4.3b). Moreover, while high values in the
dimensions 1 and 2 indicate a better overall impression, Fig. 4.4a and 4.4b denote
that the highest-ranked stimuli on the scale OIMP (US91, US92, US7 in Fig. 4.4a
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Table 4.9 Correlations
between the three dimensions
and the OIMP

Dimension 1 2 3

OIMP .89 .76 .33

and US22, US9, US4 in Fig. 4.4b) show medium values in dimension 3. Therefore,
a medium speech rate seems to achieve the best listening impression.

An analysis of the correlations of the extracted dimensions with the rating on the
OIMP scale can be seen in Table 4.9. Therefore, the naturalness of voice dimension
accounts the most for the overall impression rating.

4.4 Summary of the SD/FA and ST/MDS Studies9

The studies presented in Sect. 4.1 all featured different restrictions, e.g., they all
included one or only very few synthesis techniques, none contained any HMM sys-
tems, they mostly used attribute scales that were developed in the mid 90s, some
used a natural reference speaker etc. This ultimately lead to diverse sets of percep-
tual quality dimensions.

Thus, in order to come up with a set of universal perceptual quality dimensions one
had to eliminate these restrictions. This was done in the studies that were discussed
in Sects. 4.2 and 4.3. Tabel 4.10 sums up the characteristics of these studies.

As can be seen, all relevant synthesis techniques were covered in both tests.
Therefore, most likely both databases contained all relevant quality degradations
that are present in state-of-the-art TTS systems. By applying two different auditory
quality evaluation metrics, one based on attribute scales specifically developed for the
quality assessment of TTS systems and one that was solely based on the perceptual
impression of the listeners, it is safe to assume that all quality features that are relevant
for TTS systems were present in those studies.

On first sight, however, the results from Sects. 4.2 and 4.3 differ slightly. The study
SD/FA yielded the dimensions naturalness, temporal distortions, and disturbances
while ST/MDS lead to the dimensions naturalness of voice, temporal distortions,
and calmness.

9Parts of the content of this section have previously been published in a slightly different version
in [16].
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Table 4.10 Comparison of the main characteristics of the
different test setups of studies SD/FA and ST/MDS

Nonetheless, a closer look reveals that the dimension naturalness of voice specifies
the broad dimension naturalness from SD/FA, that consisted of scales assessing the
naturalness as well as the prosody of a system. The results show that the quality
dimension naturalness of voice apparently covers how human-like the synthetic voice
sounds. This dimension gives an answer to the question: does the listener have the
impression that this TTS signal has been produced by a human being or does it sound
like it was produced by a computer?

Even though the dimensions temporal distortions of both tests carry the same
name, they represent slightly different perceptual impressions. While the dimension
from the SD/FA study exclusively evaluates temporal distortions that originate from
concatenation artifacts from DI or US synthesizers the dimension from the ST/MDS
study also covers long-term prosodic characteristics of speech signals. Therefore, it
does not only account for local concatenation errors but also for the prosody of the
whole synthesized utterance.

Furthermore, the calmness dimension of ST/MDS corresponds to the dimension
speed that was also detected previously in SD/FA but seemed to be of minor impor-
tance. Apparently, the impression of fast speech also evokes a feeling of stress and
restlessness while a slow speaker sounds relaxed and in some cases even a bit drowsy.
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A wide difference can be noticed concerning the dimension disturbances. While
this dimension was highly relevant in the SD/FA study, the ST/MDS experiment did
not capture a perceptual importance of disturbances for the participants of this study.
Though listeners could clearly distinguish, e.g., the grade of noise and hiss in the
signal through the attribute scales presented in the post-test, this can not be stated
for the ST/MDS experiment. This effect seems to be due to the nature of most TTS
signals: even though the quality improved dramatically over the years, there are still
major issues that catch the attention of listeners. Those issues mainly concern natu-
ralness and temporal distortions and become so important that minor problems like
disturbances are masked by the degradations in the first two dimensions. Moreover,
listeners are used to impairments like noise and hiss through, e.g., coding and trans-
mission artifacts in cell phone or IP-based communication and might thus be more
tolerant with respect to disturbances in the signal. The SD/FA clearly yielded very
analytic information while the ST/MDS resulted in dimensions that are completely
unaffected (e.g., by attribute scales) and thus represent the relevant dimensions that
were perceived by the listeners in this test.

The analysis of the results with respect to the types of TTS systems (FO, DI,
US, HMM synthesis) brought interesting insights concerning, e.g., concatenation
techniques and speech rate. From a system-developer’s point of view it would have
also been interesting to analyze the results with respect to the inventory size or the
amount of training data. But, unfortunately, this information is unknown especially
for all of the commercial systems.

4.5 Universal Perceptual Quality Dimensions10

The differences in all presented studies concerning the quality assessment meth-
ods, the included synthesizer types, the different stimulus durations and many more
yielded ambiguous results. In the following, a comparative overview of the percep-
tual quality dimensions resulted from the studies in Sects. 4.1, 4.2, and 4.3 is given.
Moreover, it will be shown that these dimensions can be linked to five universal
perceptual quality dimensions of synthetic speech, which are:

• Naturalness of Voice (NOV)
• Prosodic Quality (PQ)
• Fluency and Intelligibility (FAI)
• Absence of Disturbances (AOD)
• Calmness (C)

Table 4.11 shows the perceptual quality dimensions of each study and the universal
quality dimensions they can be linked to, along with attributes that are relevant for
the corresponding dimension.

10Parts of the content of this section have previously been published in a slightly different version
in [1].
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4.5.1 Naturalness of Voice

As can be seen in Table 4.11, the dimension NOV is part of the outcome of most
studies. High values in this dimensions indicate a voice that sounds natural, a voice
where listeners can imagine that it was produced by a human being, a voice with
character. The exceptions are the two MDS experiments (Mayo2005 and Mayo 2011).
However, this can be explained considering the stimuli from those tests: they were
all generated from the same voice by the Festival synthesizer. Thus, none of them
differed in voice characteristics. Therefore, this dimension was not relevant for the
test participants at that point in time.

4.5.2 Prosodic Quality

Due to the overlap of the first two dimensions in some studies (Kraft1995, Seget2007,
SD/FA) and the bonding with the FAI dimension in others (Vis2005, ST/MDS), the
second dimension seems to be a bit more vague. Mayo2005 and Mayo2011 show that
this dimension can indeed be regarded as an independent dimension. It represents the
prosody of the synthesized utterance, thus high values in PQ imply natural prosody
while low values occur when rhythm or stress of the generated voice deviate from
that of a regular human speaker.

4.5.3 Fluency and Intelligibility

The third prominent dimension covers fluency and intelligibility and it can be found
in all studies. This dimension captures segmental artifacts that are characteristic for
synthesizers that concatenate smaller units like PSOLA synthesizers or diphone-
based US systems. This can create the impression of a stuttering speaker or even
two speakers speaking at the same time. The MDS study Mayo2011 shows that this
dimension can be further split up, at least for US synthesizers. On the contrary, the
overlap of PQ and FAI in the ST/MDS experiment shows that these two dimensions
are not always easy to distinguish for naïve listeners.

4.5.4 Absence of Disturbances

The dimension AOD could only be retrieved from the extensive experiments in
SD/FA. This is most likely due to the fact that the presented scales were developed
with the help of speech and audio experts who are able to focus on various types
of degradations. Even though the test participants could clearly distinguish, e.g.,



64 4 Perceptual Quality Dimensions

the grade of noise and hiss in the signal, these degradations were obviously less
important to them than issues concerning the naturalness of the voice or the prosody
of the signal. Nonetheless, this dimension can be useful to assess, e.g., the quality
of HMM synthesizers or systems that concatenate coded speech units which can
produce noisy speech signals.

4.5.5 Calmness

Finally, the dimension C was found in SD/FA and ST/MDS. It is associated with the
rate of speaking. However, a high rate of speaking not only evokes the impression
of a person speaking fast, the generated voices also sounded very tense, stressed,
and restless while slowly speaking voices generally generated the impression of a
relaxed speaker. This dimension, however, appears to be less important since most
of the speech synthesizers run at a similar speech rate. Nonetheless, when assessing
the quality of fast synthesizers, like they are deployed in reading devices for the
blind [22], this quality aspect can play a crucial role.

These five dimensions measure all relevant perceptual features state-of-the-art
TTS systems produce. Nonetheless, this does not mean that they are necessarily rel-
evant in each study (see Table 4.11). Depending, e.g., on the kind of quality assess-
ment method or the synthesizer types under test, some dimensions might overlap,
correlate highly with one another, or might not be relevant at all, while in another
test scenario they are strongly needed to distinguish the quality of two TTS systems.

4.5.6 Instructions for TTS Quality Assessment

In order to reliably assess the aforementioned quality dimensions, this section
presents a test protocol which features attribute scales for each dimension and ques-
tions that further explain the perceptual concept behind each dimension.

Table 4.11 not only shows the perceptual dimensions that resulted from each study,
but also attribute scales that are relevant for the assessment of each dimension. The
presented scales were part of several studies and featured high factor loadings in their
respective factor analyses. The following list links two of those attribute scales to
each dimension and depicts questions that help a test participant to better understand
these scales.

• NOV:
attribute scales:

– voice pleasantness: unpleasant voice versus pleasant voice
– naturalness: artificial versus natural
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Does the speaker have an unpleasant or a pleasant voice?
Does the voice sound artificial or natural?
Do you have the impression of listening to a human being?

• PQ:
attribute scales:

– stress: unnatural stress versus natural stress
– rhythm: unnatural rhythm versus natural rhythm

Are the pronounced words emphasized naturally?
Does the intonation sound natural to you?

• FAI:
attribute scales:

– intelligibility: unintelligible versus intelligible
– fluency: interrupted versus fluent

How easy is it to understand the speaker?
Do you have problems to comprehend some of the words?
Is the speaker stuttering or does the voice sound fluent?

• AOD:
attribute scale:

– disturbances: disturbed versus undisturbed
– noise: noisy versus not noisy

Do you recognize any disturbances in the signal, e.g., noise, hissing, clinking, or
rasping sounds?

• C:
attribute scales:

– speed: slow versus fast
– tension: tense versus calm

Does the speaker speak slowly or fast?
Does the speaker sound relaxed or restless?

The listening test should be designed according to the instructions below:

• Speech material:
In order for the test participants to be able to observe all quality features, a mini-
mum stimulus duration of 5 s is recommended. Utterances containing place names,
proper names, or words from a foreign language should be excluded as they often
differ from pronunciation rules of the language under test, which is therefore likely
to cause problems for speech synthesizers.
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• Attribute scales:
To simplify the task of differentiating between stimuli of an either very good or
very bad quality, scales should feature separate scale and end points as shown in
Fig. 3.3. If a scale covering the overall impression of the listeners is included in
the test, it should be rated prior to the remaining scales, in order to guarantee that
the test participants first think about their impression of the system as a whole and
after that about degradations of specific quality features.

• Test procedure:
The listening test should take part in a quiet listening environment, preferably in
a sound proof booth. Each test should start with a short training session in which
each participant has the possibility to get used to the setup, e.g., the utilized GUI.
This training session should consist of high and low quality stimuli so that the
participants get an idea of the quality range that will be presented in the main test.
To avoid listener fatigue, participants should take a short break if the experiment
lasts longer than 30 min. Female and male voices should be rated in separate
sessions in order to avoid any gender specific preferences. And finally, to avoid
any impact with regard to the order of the scales or the order of the stimuli, both the
sequence of scales and the playlist of the stimuli should be randomized between
subjects.

4.6 Summary

Two studies towards perceptual quality dimensions of synthetic speech were pre-
sented in this chapter. Comparing the findings of these studies with the outcome of
several studies that have been conducted in the past, lead to a set of five perceptual
quality dimensions that can be seen as universal for state-of-the-art TTS systems.
They were named: Naturalness of Voice (NOV), Prosodic Quality (PQ), Fluency
and Intelligibility (FAI), Absence of Disturbances (AOD), and Calmness (C).
Moreover, a test protocol was designed that is able to capture a listener’s impression
of each of the dimensions.
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Chapter 5
Influencing Factors on Perceptual Quality

The previous chapter reviewed (a) the results of several studies concerning perceptual
quality dimensions of TTS, (b) described original work related to this domain, and (c)
introduced a set of five universal quality dimensions. This chapter pursues research
in this domain by discussing factors influencing these dimensions. Thus, this chapter
addresses RQ3:

Which factors influence these perceptual quality dimensions?

Until now, the TTS stimuli under test featured a duration of a couple of seconds
which is typical for applications such as email and short message readers as well
as smart-home systems. Since the quality of TTS systems has noticeably increased
over the past years, using speech synthesizers to read books has suddenly become a
feasible task. For this application, however, quality features different from the ones
in the use case of short message readers can suddenly come into focus, or at least
the weighting of the known features can be altered. Therefore, a test protocol for the
auditory quality assessment of synthesized audiobooks is developed in Sect. 5.1.1
and tested in Sect. 5.1.2.

A further important influencing factor on data-driven systems is the voice of the
speaker a TTS system is based on. How the perceived quality is affected by a speakers
voice, and which aspects of a voice are relevant for a TTS system, is examined in
Sect. 5.2.

Moreover, the quality of popular data-driven TTS approaches like US and HMM
synthesis also depends on the size of the natural speech database and the training
database, respectively. To which extent the size of the speech corpus affects a US
system is shown in Sect. 5.3 by creating new voices for the MaryTTS synthesizer.

Thus, the studies presented in this chapter examine (i) the influence of the appli-
cation a synthesizer is used in (TTS in audiobook reading tasks vs. TTS for short
messages), (ii) the importance of the voice of the speaker, and (iii) the impact of the
size of the speech corpus. The first factor is chosen due to recent research on this
topic in the Blizzard Challenge and the second and third factor were selected because

© Springer Nature Singapore Pte Ltd. 2017
F. Hinterleitner, Quality of Synthetic Speech, T-Labs Series
in Telecommunication Services, DOI 10.1007/978-981-10-3734-4_5
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of the general popularity of corpus-based speech synthesis. However, other factors,
e.g., the gender of the speaker, selection strategies of unit selection synthesizers, or
the compilation of a speech database for voice building, are also worth investigating
and should thus be part of future research.

5.1 Influence of the Application1

Since 2005, the Blizzard Challenge (BC) gathers developers of TTS systems to
compare techniques in building corpus-based speech synthesizers. The fact that all
participants get the same speech corpus to build their systems on assures a com-
parability between all synthesizers. In 2011 the BC has announced a special task
concerning audiobooks read by TTS systems for 2012. With this new application
area, quality aspects of TTS like listening effort, the ability for emotional speech, or
the placing of speech pauses in a way that supports the comprehension of the text,
get more important.

Depending on which aspect of the system is to be evaluated, different types of
listening tests are recommended: articulation and intelligibility experiments [2] test
whether theTTS signal is able to carry information on a segmental or supra-segmental
level; comprehension tests [3] show if the listener can discern the content; and overall
quality tests [4] capture different global quality aspects and dimensions [5]. However,
none of these methods is specialized in measuring quality aspects like the ones
mentioned in the previous paragraph. Therefore, new ways of evaluating the quality
of TTS systems have to be designed.

Thus, this section addresses RQ3. More precisely, the following questions will be
answered:

• Which perceptual dimensions are relevant for synthesized audiobooks?
• How should a listening test be designed to capture these perceptual dimensions?

Therefore, this section presents the development and application of an evalua-
tion protocol for the subjective assessment of TTS in audiobook reading tasks. In
Sect. 5.1.1, an overview of the experimental setup of the pretest including the used
speech material, the TTS stimuli, the design of the experiment, the test procedure,
the analysis of the test data and a discussion of the results is given. Finally, Sect. 5.1.2
presents the outcome of the main test during the BC 2012.

5.1.1 Pretest

This section presents the development of an auditory quality assessment protocol for
quality evaluation of TTS in audiobook reading tasks.

1Parts of the content of this section have previously been published in a slightly different version
in [1].
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Table 5.1 Selected books for the audiobook pretest

ID Text Type Author Book

1 Long sentences Sven Regener Der kleine Bruder∗

2 Direct speech,
incomplete sentences Douglas Adams The Hitchhiker’s

Guide to the Galaxy

3 Higher level of lexis,
complex sentence structure Charles Dickens The Adventures of

Oliver Twist
4 Poetic, picturesque Antoine Saint-Exupéry Wind, Sand and Stars

5 Direct speech,
basic language Tommy Jaud Resturlaub∗

6 Action, short sentences Thomas Harris Hannibal
7 Children’s book Astrid Lindgren Pippi Longstocking
8 Thriller Ken Follett Code to Zero

∗ no English translation available

5.1.1.1 Experimental Setup

Test Database

Eight passages fromGerman issues of the books in Table5.1 were chosen as material
for the listening test. These paragraphs were selected with the objective to cover a
wide variety of writing styles and book categories including thrillers, funny books,
action-packed passages, books for children, books with very long sentences, and
passages containing almost only direct speech.

In order to ensure a high quality listening experience, two German unit selection
voices of the TTS systems CereProc CereVoice (CV, female: Gudrun, male: Alex)
and the IVONA (IV, female: Marlene, male: Hans) were selected for the listening
test. Each of the systems was used to synthesize the same passages from the books
listed in Table5.1. TTS systems that had problems synthesizing English names had to
be manually adjusted to ensure a normal pronunciation. Additionally, four samples
were synthesized by the IV Marlene voice and subsequently manually optimized
(IVO). The optimization included an adjustment of wrong articulated words and an
improvement of pauses between sentences and paragraphs. The mean length of all
stimuli was 54.7 s with an average of 138 words.

Attribute Scales

Since this study was conducted prior to the design of the test protocol introduced
in Sect. 4.5.6, an inclusion of the highlighted attribute scales was not an option.
Therefore, attribute scales from the ITU-T Rec. P.85 (see Sect. 3.3.2.1) were selected
for the evaluation of the generated stimuli. The chosen items were modified in order
to adjust them to the task of assessing audiobook stimuli. Furthermore, attribute

http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_3
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scales were added to assess specific quality features that should be considered when
evaluating TTS audiobooks.

The additional items were selected based on the review of current literature.
Prosodic elements like communicative, structuring, aesthetic, and emotional aspects
can be seen as the most important factors for reading and interpreting books [6],
thus most of the selected scales are focused on prosodic evaluation (STRE, COPR,
SPAU, INTO, EMOT). The 11 items are discussed in the following:

• Overall Impression (OIMP):
This scale evaluates the overall quality of the synthesized signal from bad to
excellent.

• Voice Pleasantness (VPLT):
Measures the degree of voice pleasantness from very unpleasant to very pleasant.

• Stress (STRE):
Unnatural stress and accentuations are often perceived as very annoying and thus
also have a great influence on the text comprehension [6]. Therefore, the item
covering anomalies in pronunciation from the ITU-T Rec. P.85 was included with
slight modifications.

• Listening Effort (LSTE):
Describes the effort a listener is required to make when listening to this voice over
a longer period of time.

• Comprehension Problems (COPR):
This item captures any comprehension problems that might occur due to badly
synthesized speech.

• Acceptance (ACCP):
The binary acceptance item from the ITU-T Rec. P.85 questionnaire was modified
into a continuous rating scale.

• Speech Pauses (SPAU):
The SPAU item evaluates if punctuation marks (e.g., periods, commas, question
marks, exclamation marks, colons, etc.) have been converted into appropriate
speech pauses between words, sentences, and paragraphs in a way that supports
the comprehension of the text [7].

• Intonation (INTO):
This item captures if the produced pitch curve fits to the type of sentence, e.g., the
pitch of interrogative sentences usually increases at the end of a sentence whereas
the pitch of declarative sentences decreases [6, 7].

• Emotion (EMOT):
Variation of emotion is achieved byvariations of soundpressure, intonation, speech
pauses and volume [6]. To ensure an authentic reading experience, the voice should
reflect the atmosphere of the scene and the moods of the characters [8]. This is
captured by the EMOT item.

Furthermore, the following two attribute scales were included to test whether they
influence the test participants’s judgment on the other items:
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• Content (CONT):
This item measures if the participants liked the content of the synthesized passage
on a scale from no, not at all to yes, very much.

• Level of Familiarity (LOFA):
LOFA captures if the participants knew the book prior to the listening test.

Test Procedure

Twenty-five naïve subjects aged 19–32 years (13 female, 12 male, μ = 25.3, σ =
3.1) took part in the test. All of them were native German speakers. None of them
suffered from any known hearing problems or dyslexia. All subjects were paid for
their participation. The stimuli were presented via headphones (AKG K601) and
a high-quality sound device (Roland Edirol UA-25) in a soundproof booth. The
listening test was designed within subjects, i.e., all participants listened to all stimuli.

The subjects were instructed to first rate the OIMP of the stimulus on a continuous
rating scale. Subsequently, quality estimates for the other nine scales had to be given
via a slider presented on the GUI. This was done with the objective to first think
about the overall quality and after that about specific quality features of the presented
stimuli. In the end, the test participants had to rate if they knew the presented passage
prior to the listening test. To avoid any impact with regard to the order, the sequence
of scales (except for OIMP, CONT and LOFA) was randomized between subjects.
To make themselves familiar with the test procedure, all subjects first had to pass a
training phase with two stimuli that were not included in the main test. The main test
consisted of two blocks with 18 stimuli and a 5min break in between.

After the test, boxplots featuring the ratings on all dimensions were created for
all stimuli. Two test participants had more than 5% outlier ratings and were thus
excluded from the study.

5.1.1.2 Statistical Analysis

This work has been previously published in [1, 9] in a slightly different version.
Further analysis on the data is presented by placing the focus of the statistical analysis
on the derived quality dimensions. Therefore, the influence of text type and TTS
system on the extracted factors is examined.

Factor Analysis

To get an impression of the perceptual space that was captured in the listening test, a
PCAwas carried out. All items except for LOFA,which only had nominal scale level,
and OIMP, since it comprises the information from the other scales, were included.

Three factorswere extractedwhich account for 71.8%of the total variance. Subse-
quently, an oblique rotation (Promax rotation with κ = 4) was performed in order to
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Table 5.2 Factor pattern
matrix. Note For better
readability, values below .20
are suppressed

Scale Factor loadings

1 2 3

Voice Pleasantness .96

Acceptance .89

Listening Effort .82

Comprehension Problems .44 .43

Intonation .95

Speech Pauses .83

Emotion .24 .61

Stress .30 .55

Content .98

Eigenvalues 4.56 0.98 0.92

% of variance 50.1 10.8 10.3

Cronbach’s α .86 .79 –

Table 5.3 Factor correlation
matrix

Factor 1 2 3

1 1.00 .62 .13

2 .62 1.00 .14

3 .13 .14 1.00

obtain interpretable factors since correlated dimensions were assumend. The result-
ing factor pattern matrix can be seen in Table5.2.

Due to the oblique rotation method the factors are no longer orthogonal. The
correlations between the three factors can be seen in Table5.3.

To ensure a meaningful interpretation of the perceptual space, items with high
cross-loadings2 will not be taken into account. In this case this only applies to COPR.

Factor 1 includes the itemsVPLT, LSTE, andACCP. Thus, it covers the perceptual
construct that is related to the listening pleasure the TTS systems achieve. With the
high loading of the items INTO and SPAU, the second dimension seems to reflect
the prosody of the signal. Moreover, the two other scales that account for factor 2
express emotion and stress. Factor 3 only consists of the itemCONT thus it represents
the content appreciation.

2|loading factor A − loading factor B| < .20.
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Resulting Quality Dimensions

The mapping of the stimuli in the perceptual space of dimension 1 and 2 is displayed
in Fig. 5.1, in which the subscripted characters (f/m) represent the speaker gender
and the subscripted numbers (1–8) the text ID from Table5.1. As it can be seen the
stimuli form one cluster for each of the synthesis systems. The stimulus IV f 3 is the
only outlier. Its values for the dimension 1 and 2 are far below the mean value for the
IV system. This impression is confirmed by the ratings this stimulus achieved in the
listening test: it scored lowest on INTO and VPLT while getting the highest values
in COPR and LSTE of all female IV stimuli.

It is surprising that two stimuli of the manually optimized version of the female
voice of IVONA (IVO f 4, IVO f 7) are inferior in both dimensions to the stimuli
synthesized by the original TTS system. However, IVO f 8 performed better than IV f 8

and even achieved the best dimension 1 value of all stimuli. This shows that simply
by adjusting wrong articulated words and improving the pause lengths between
sentences and paragraphs even the quality of good synthesizers can be improved, but
also worsened.

In addition, it is noticeable that most stimuli of the same text type and the same
system reach similar prosody values (e.g., CV f 7 andCVm7, IV f 5 and IVm5).However,
for a given system the listening pleasure of the male stimuli is always superior to the
female voices. This accounts for the data from the CV as well as the IV synthesizer
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Table 5.4 Linear model of
predictors for overall
impression. Note R2 = .71

B SE B β p

Constant 3.36 0.02 p ≤ .001

Factor 1 0.61 0.03 .59 p ≤ .001

Factor 2 0.37 0.03 .35 p ≤ .001

Factor 3 −0.04 0.02 −.04 p = .029

(except for text 8). Furthermore, it can be stated that both synthesizers have difficulties
with different kinds of texts, e.g., the stimuli of text type 4 are one of the best rated
stimuli of synthesizer CV whereas IVm4 is one of the worst rated of IV.

These findings already show that the quality of the synthesized speech signal
mostly depends on the system and not on the text type, even though the quality of
the tested synthesizers varies highly between text types. Further statistical analysis
on this effect is presented in the following sections.

Scatter plots of dimension 3 in comparison to dimension 1 or 2 showed no inter-
esting clusters.

Importance of the Factors for the Overall Quality

To unveil the importance of each dimension for the experienced overall quality,
a linear regression was performed with the dimensions as predictors and OIMP as
outcome variable. The result can be seen in Table5.4. The table lists the three factors,
their beta values (B), their standard errors (SE B), and their standardized values (β).

The model explains 71% of the total variance. Moreover, the table shows that
Factor 1 contributes most to the overall impression (β = .59). Factor 2 reaches a β

value of .35. Factor 3 that only consists of the item CONT only reaches a β value of
−.04 and is thus irrelevant for the perceived overall quality.

Influence of Text Type and the TTS System

In order to get deeper insight into the data, a MANOVA was performed. It fur-
ther examines how the dependent variables text type and system (CV, IV and IVO
with male and female voices) influence the three dimensions. Using Pillai’s trace, a
significant effect of text type (V = 0.10, F(21, 2379) = 3.6, p ≤ .001) and system
(V = 0.28, F(12, 2379) = 20.5, p ≤ .001) was found while no combined effect
(text type*system) could be discovered (V = 0.10, F(72, 2379) = 1.1, p = .249).

The main effect of the independent variable text type on the dimensions is dis-
played in Table5.5.

Therefore, the text type does not have a significant effect on the listening pleasure
but on the prosody of the synthesized signal. Moreover, the text type also has a highly
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Table 5.5 Effect of text type
on the three dimensions

F p

Dimension 1 1.933 p = .062

Dimension 2 2.238 p = .029

Dimension 3 7.649 p ≤ .001

Table 5.6 Effect of system
on the three dimensions

F p

Dimension 1 55.159 p ≤ .001

Dimension 2 36.756 p ≤ .001

Dimension 3 0.308 p = .873

significant effect on dimension 3. This is not at all surprising since this dimension
captures whether a test participant liked the content of the presented stimuli or not.

The effect of the TTS system is presented in Table5.6.
The system has a highly significant effect on dimensions 1 and 2 while it does not

have an effect on dimension 3.

Influence of Familiarity of Texts

To analyze whether the test participants were biased if they knew some of the books
prior to the listening test, the data was split in one set of ratings that were given
by subjects that did not know the synthesized passages and one set with ratings by
subjects that knew the passages. The mean values of each stimulus from each dataset
were compared and no significant differences could be found. Therefore, the LOFA
of the text does not introduce any bias on the ratings of other scales.

5.1.1.3 Discussion and Suggestions for the Blizzard Challenge

A PCA on the gathered data from the listening test revealed three dimensions: one
that covers the listening pleasure, one that comprises prosodic impressions, and one
that represents whether a test participant likes the content of the presented stimulus.

A MANOVA revealed that the system (combination of TTS system and male/
female voice) has a significant influence on the dimensions 1 and 2 while it does not
have an influence on dimension 3. Moreover, text type has a significant influence on
the dimensions 2 and 3.

Therefore, the following suggestions were forwarded to the Blizzard Challenge
organizers:
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• the system has a highly significant effect on the dimensions 1 and 2 which were
shown to be most relevant for the overall impression. Therefore, items that capture
these dimensions should be included in a questionnaire.

• the text type has a significant (but minor, when compared to the system) influence
on the values of dimension 2, thus the use of a variety of texts of different categories
and with different writing styles was proposed.

• the Level of Familiarity does not have a significant influence on the ratings on
other scales. Therefore, this item can be excluded from further tests.

• the item Comprehension Problems has high cross-loadings on the dimensions 1
and 2 and should thus be dropped since it does not help to discern between the 2
dimensions.

• the item Content represents the 3rd dimension from the factor analysis. Since the
system does not have a significant effect on it and it is also not relevant for the
overall impression this item should not be included in further tests.

5.1.2 Main Test3

Considering the findings from the previous section, the organizers of the Blizzard
Challenge chose the experimental setup for the audiobook task which is described
in the following section.

5.1.2.1 Experimental Setup

This section shows an overview of the books that were synthesized and presented in
the listening test. Moreover, the attribute scales that were used to evaluate the stimuli
are presented and the test procedure of the online listening test is described.

Test Database

Due to the large number of stimuli that needed to be evaluated for the BC, the
listening test was carried out online. Therefore, it was open to the public and the texts
that were synthesized were limited to copyright-free and out-of-copyright sources.4

Books were selected with the idea to cover a wide variety of writing styles and
book categories as proposed in Sect. 5.1.1.3. The 13 chosen passages featured a
mean stimulus duration of 44.5 s. The full list of authors and books can be seen in
Table5.7.

3The content of this section has previously been published in a slightly different version in [10].
4Many Books http://manybooks.net/, Project Gutenberg http://www.gutenberg.org.

http://manybooks.net/
http://www.gutenberg.org
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Table 5.7 Selected books for the audiobook task of the BC

Author Book

Jane Austen Emma
Charles Dickens Oliver Twist
Arthur Conan Doyle The Hound of the Baskervilles
Alexandre Dumas The Three Musketeers
Jerome K. Jerome Three Men in a Boat
Franz Kafka The Trial
Edgar Allan Poe The Fall of the House of Usher
Mary Shelley Frankenstein or the Modern Prometheus
Mark Twain Alonzo Fitz
Mark Twain Those Extraordinary Twins
Jules Verne Twenty Thousand Leagues Under the Sea
H.G. Wells Time Machine
P.G. Wodehouse My Man Jeeves

Test Procedure

The online listening test consisted of nine sections of which two were dedicated for
the evaluation of audiobook stimuli. One of the audiobook sections also included
a natural reference voice while the other one did not. Both sections consisted of
10 synthetic stimuli from 10 different TTS systems. All in all 230 audiobook stimuli
were evaluated during the listening test. The test was designed between subjects,
therefore each stimulus was rated by at least 20 test participants.

Taking into account the findings from the pretest in Sect. 5.1.1 the following seven
attribute scales were chosen for the online evaluation:

• Overall Impression (OIMP)
• Voice Pleasantness (VPLT)
• Speech Pauses (SPAU)
• Stress (STRE)
• Intonation (INTO)
• Emotion (EMOT)
• Listening Effort (LSTE)

The scores on each scale were given on a continuous slider. Just like in the pretest,
attribute scales with separate scale and end points were used as proposed by Bodden
and Jekosch [11]. A screenshot of the GUI from the online listening test can be seen
in [10].
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5.1.2.2 Statistical Analysis

Factor Analysis

A PAF analysis was conducted on the seven presented items. The KMO measure
verified the sampling adequacy for the analysis, KMO = .90, and all KMO values
for the individual items were >.86, which is well above the acceptable limit of
.50. Bartletts’s test of sphericity, χ2(21) = 21459.16, indicated that correlations
between the items were sufficiently large for a PAF. An initial analysis was run to
obtain the eigenvalue for each component in the data.Only one itemhad an eigenvalue
over Kaiser’s criterion of 1. The scree plot also indicated to retain one component.
However, given the very large sample size (4809), the easy interpretability after an
extraction of two factors, and the fact that a 2-factor model allows a deeper insight
into the human perception of TTS signals, two components were retained in the final
analysis. These two factors together explained 75.61% of the total variance.

Since correlated quality dimensions were assumed, an oblique rotation method
(Promax rotation with κ = 4) was chosen. The resulting factor pattern matrix can
be seen in Table5.8. For clarity, values below .40 are suppressed. Due to the oblique
rotation the factors are not orthogonal, rather they correlate with .78.

Resulting Quality Dimensions

To achieve ameaningful interpretation of the resulting quality dimensions, itemswith
high cross-loadings, meaning high loadings on both factors, were omitted before the
interpretation. This only applies to the item LSTE.

Given the high loadings of the items INTO and STRE and the medium loading of
SPAUon factor 1, this dimension is clearly linked to the prosody of the speech signal.

Table 5.8 Factor pattern
matrix. Note For better
readability, values below .40
are suppressed

Scale Factor loadings

1 2

Intonation .86

Stress .76

Emotion .60

Speech Pauses .54

Voice Pleasantness .90

Overall Impression .87

Listening Effort .44 .47

Eigenvalues 4.67 0.62

% of variance 66.8 8.9

Cronbach’s α .84 .91
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The item EMOTwhich assesses the ability of TTS systems to synthesize appropriate
emotions, i.e., through prosodic modulations, also contributes to this interpretation.

Dimension 2 correlates highly with the items VPLT and OIMP. This indicates that
dimension 2 is related to the voice of the speaker as well as the naturalness of the
signal and the overall experience. Thus, this dimension can be associated with the
listening pleasure. The affiliation of the item OIMP indicates that this dimension is
in fact more important for the quality impression of the listener than dimension 1.

5.1.2.3 Discussion

Comparing the results from this study to the outcome of the pretest in Sect. 5.1.1
reveals major similarities. The assignment of the items to the quality dimensions
is nearly the same as in the previous study. Thus, both dimensions represent about
the same perceptual quality impression of the user as before. Nevertheless, there
are some differences: first of all, the item LSTE which highly correlated with the
dimension listening pleasure before, has very high cross-loadings in the current study
and thus did not help to discern between the factors.

Interestingly, the importance of both dimensions shifted in the current study.While
in Sect. 5.1.1 the dimension listening pleasure explained most of the variance in the
data and was thus the first factor, the order of importance is reversed in the current
study. Nonetheless, since the item OIMP correlates highly with factor 2 here, this
dimension is clearly themost relevant when it comes to the overall quality impression
of the user.

5.1.3 Conclusions

The development and testing of an evaluation protocol for synthesized audiobooks
has been described in this section. A factor analysis revealed two main dimensions,
namely listening pleasure and prosody. Furthermore, the pretest led to a third dimen-
sion which was labeled content appreciation. However, since this dimension has no
significant importance for the overall quality it can be disregarded. With high corre-
lations of VPLT and OIMPwith the dimension listening pleasure it is save to assume
that it can be associated with the universal quality dimension NOV. High correla-
tions of INTO and STRE with dimension prosody suggest a relation between this
dimension and the PQ.

Even though these two dimensions are most relevant to the overall quality of a
synthesized book, other dimensions of minor perceptual importance should not be
ruled out. Due to the long duration of the stimuli it is possible that the impression of
listeners is mainly influenced by those two dominant perceptual constructs, nonethe-
less a dimension that, e.g., classifies concatenation artifacts, may exist here as well.
This could be tested via a PC test/ST with subsequent MDS. However, performing a
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direct auditory comparison of stimuli of such a long duration is an almost impossible
task for test participants.

Furthermore, it could be revealed that the familiarity of the presented books has no
significant influence on the quality ratings. The synthesized passage itself however
influences the prosodic dimension. Therefore, when assessing the quality of TTS in
synthesized audiobook tasks, a wide variety of different text types should be used.

5.2 Influence of a Speakers Voice5

In order to present a comprehensive overview of TTS quality, most of the studies
mentioned in Chap.4 evaluated numerous synthesizers. Therefore, it is not possible
to draw a conclusion on the effect of the speaker of a speech corpus (i.e., the “voice”
of the synthesizer) on the quality of a TTS system. To measure such an effect, stimuli
of different voices generated by one TTS system would have to be evaluated. In this
section a study is presented which used two synthesizers, each with five different
voices, to unveil the impact of a speakers voice on the quality of the synthesized
speech samples perceived by a user.

In addition to the speaker’s voice there is always an influence of the size of the
speech corpus on the quality of the synthesizer (more on this topic will be discussed
in Sect. 5.3). In this study equal corpora sizes within the TTS systems under test are
assumed.

Thus, this section addresses RQ3 by answering the following questions:

• What is the influence of the voice of the speech material on the quality of a TTS
system?

• Which perceptual quality dimensions are affected by a speaker’s voice?

The remainder of this section is organized as follows: in Sect. 5.2.1 the experi-
mental setup is described. This includes the TTS systems that were used in the test,
the speech material that was synthesized, the attribute scales that were used to rate
the stimuli, and a description of the test procedure. Section5.2.2 outlines the statisti-
cal analyses that were conducted to extract perceptual dimensions and to determine
the influence of a speaker’s voice on the perceived quality of a TTS system, and
Sect. 5.2.3 concludes the presented findings.

5.2.1 Experimental Setup

This section gives an overview of the TTS systems, the speechmaterial, and the rating
scales that were used in the experiment. Moreover, it describes the test procedure.

5The content of this section has previously been published in a slightly different version in [12].

http://dx.doi.org/10.1007/978-981-10-3734-4_4
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Table 5.9 Selected utterances used in the listening test

Utterance-ID Utterance

1 It’s my turn to feed the baby again tonight. I hope she’s not off her
food. Then there’s the bath and getting her ready for bed.

2 My sister is terrified of the dark. She absolutely refuses to go out
alone at night. She wants someone to go with her all the time.

3 I’m in a mood for something light and entertaining. There’s sure to
be some old American musical or other. They certainly don’t make
them like that anymore nowadays.

4 There seems to have been some mistake. I ordered a teddy bear from
the catalog and was billed for an electric lawnmower. And I don’t
even have a garden.

5 Singing is an expression of deep-felt emotion. It can indicate ex-
treme happiness and deep sorrow. Strangely, though, different na-
tions tend to one or the other end of the spectrum.

5.2.1.1 Test Database

In order to be able to make a valid statement about the influence of a speaker’s voice
on the quality of a TTS system the synthesizers IVONA (IV) and ACAPELA (AC)
were selected. These two unit selection systems were chosen because of their high
quality and the amount of different voices. three female (IV: f1, f2, f3; AC: f4, f5,
f6) and two male (IV: m1, m2; AC: m3, m4) American English voices were chosen
in both cases to synthesize the five utterances that are introduced in the following
paragraph. The stimuli used for the listening test had an average duration of 9 s.

Five English passages from the EUROM.1 corpus [13] were selected as material
for the listening test.Utterances containing place names, proper names, orwords from
a foreign language were excluded as they often differ from English pronunciation
rules, this is likely to cause problems for speech synthesizers. The five passages used
in the listening test are shown in Table5.9.

5.2.1.2 Attribute Scales

For this listening test, the following two attribute scales for each of the perceptual
quality dimensions introduced in Sect. 4.5 were selected:

• Naturalness of Voice (NOV): naturalness, voice pleasantness
• Prosodic Quality (PQ): stress, rhythm
• Fluency and Intelligibility (FAI): fluency, intelligibility
• Absence of Disturbances (AOD): noise, disturbances
• Calmness (C): speed, tension

Moreover, the following scales which have proven valuable when evaluating the
likeability of a voice [14] were included:

http://dx.doi.org/10.1007/978-981-10-3734-4_4
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• Darkness: dark versus bright
• Pitch: low versus high
• Pitch Variation: monotonous versus varied
• Pressure: pressed versus lax
• Resonance: toneless versus sonorous
• Likeability: unlikeable versus likeable

Additionally, the Overall Impression (OIMP) was assessed on a scale ranging
from bad to excellent.

5.2.1.3 Test Procedure

Twenty-four naïve subjects (10 female, 14 male) aged between 19 and 63 (μ = 30.1,
σ = 4.2) took part in the test. All of them were native English speakers though not
everyone had an American English background. All subjects were paid for their
participation. The stimuli were presented via headphones (AKG K601) and a high-
quality sound device (Roland Edirol UA-25) in a sound proof booth. The test was
designed within subjects, i.e., all participants rated all stimuli.

The test participants were instructed to first rate the overall impression of the
stimulus on a continuous rating scale. Subsequently, quality estimates for the other
16 scales had to be given via a slider presented on a GUI. To avoid any impact with
regard to the order of the attribute scales or the order of the stimuli, both the sequence
of scales and the playlist of the stimuli were randomized between subjects. To make
themselves familiar with the test procedure, all test participants first had to pass a
training phase with three stimuli. The main test consisted of two blocks with female
and male stimuli and a 5min break in between.

After the test, boxplots featuring the ratings on all dimensions were created for
all stimuli. Two test participants had more than 5% outlier ratings and were thus
excluded from the study.

5.2.2 Statistical Analysis

Tounveil the inherent perceptual quality dimensions, a factor analysiswas performed.
In a further step, a linear regression analysis was conducted, in order to investigate
how the obtained quality dimensions contribute to the perceived overall quality.
Finally, a MANOVA was calculated to explore the influence of the speaker’s voice
on the overall quality as well as on the perceptual quality dimensions.
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5.2.2.1 Factor Analysis

A PAF analysis on the 16 attribute scales was carried out and resulted in four per-
ceptual dimensions. TheKaiser–Meyer–Olkin (KMO)measure verified the sampling
adequacy for the analysis, KMO= .87, and all KMOvalues for individual itemswere
above .62, which is well above the acceptable limit of .5. The four factors account
for 65.6% of the total variance in the dataset. Residuals were computed between
the observed and reproduced correlations: 9 (7%) were nonredundant residuals with
absolute values greater than 0.05. A subsequent Varimax rotation lead to the rotated
factor matrix shown in Table5.10.

A reliability analysis was performed and reached good values (Table5.10) for all
factors (all Cronbach’s α ≥ .7) except for factor 4 (α = .65).

The two-tailed Pearson correlation coefficient R between each factor score and
the MOS of the overall impression scale was computed: factor 1 reaches a very
strong correlation (R = .71) while the other factors only feature amoderate (factor 2:
R = .34, factor 3: R = .31) or weak positive relationship (factor 4: R = .21). All
correlations are significant on the .01 level.

Table 5.10 Rotated factor matrix

Scale Factor loadings

1 2 3 4

Stress (PQ) .82

Rhythm (PQ) .81

Naturalness (NOV) .76 .32

Voice Pleasantness (NOV) .60 .46

Fluency (FAI) .60

Likeability .53 .39 .38

Intelligibility (FAI) .41

Pressure .80

Tension (C) .75

Speed (C) .54

Disturbances (AOD) .37 .51

Noise (AOD) .48

Resonance .76

Pitch Variation .63

Pitch .69

Darkness .65

Eigenvalues 5.6 2.4 1.4 1.0

% of variance 35.4 15.1 8.8 6.3

Cronbach’s α .89 .77 .71 .65

Note For better readability values below .30 are suppressed. The abbreviations in brackets indicate
the corresponding perceptual quality dimensions as introduced in Sect. 4.5

http://dx.doi.org/10.1007/978-981-10-3734-4_4


86 5 Influencing Factors on Perceptual Quality

Table 5.11 Linear model of predictors for overall impression

B SE B β p

Constant 3.73 0.02 p ≤ .001

Factor 1 0.97 0.03 .65 p ≤ .001

Factor 2 0.44 0.03 .29 p ≤ .001

Factor 3 0.35 0.03 .22 p ≤ .001

Factor 4 0.32 0.03 .19 p ≤ .001

Note R2 = .66

5.2.2.2 Resulting Quality Dimensions

A closer look at the rotated factor matrix in Table5.10 reveals that the three most
important perceptual dimensions for synthesized speech [15] all coincide with the
first factor. Hence, the first factor represents the NOV, the PQ, and FAI of the TTS
systems. Therefore, the strong correlation between factor 1 and the OIMP scale
is plausible. Factor 2 features the scales that were highlighted as relevant for the
perceptual dimensionsAODandC [15] plus the scale pressurewhich is not surprising
since it is similar to the scale tension (R = .70). Factor 4 displays the scales pitch
and darkness and is thus related to the pitch and the spectral center of gravity of the
speaker. Factor 3 features the scales resonance and pitch variation. The interpretation
of this factor seemed difficult, thus the stimuli were sorted by their factor 3 scores
and experts listened to them. As a result this factor is assumed not to be related
to prosodic features, but instead it is related to spectral characteristics of the TTS
signals. Still, the interpretation of this factor is vague and should be part of future
research.

5.2.2.3 Importance of the Factors for the Overall Quality

To unveil the importance of each resulting factor for the experienced overall quality,
a linear regression was performed with the factors as predictors and the overall
impression as outcome variable. The results can be seen in Table5.11. The table
lists the four factors, their beta values (B), their standard errors (SE B), and their
standardized values (β).

The model explains 66% of the total variance. Moreover, the table shows that
Factor 1 contributes most to the overall impression (β = .65) while the other factors
reach β values between .19 and .29.

5.2.2.4 Influence of a Speaker’s Voice

An initial MANOVA examined the influence of the independent variable speaker of
the TTS voice on the OIMP scale and the four factors from the factor analysis. To
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Table 5.12 p-values of the post-hoc Scheffé test for the IVONA data

f1 f2 f3 m1 m2

f1 MOS – .421 .000 .000 .735

factor 1 – .681 .000 .019 .984

factor 2 – .031 .493 .075 .000
factor 3 – 1.000 .011 .942 .000
factor 4 – .000 .147 .988 .940

f2 MOS .421 – .000 .005 .989

factor 1 .681 – .000 .448 .938

factor 2 .031 – .731 .998 .000
factor 3 1.000 – .013 .953 .000
factor 4 .000 – .000 .000 .000

f3 MOS .000 .000 – .034 .000
factor 1 .000 .000 – .054 .000
factor 2 .493 .731 – .884 .000
factor 3 .011 .013 – .111 .290

factor 4 .147 .000 – .385 .562

m1 MOS .000 .005 .034 – .001
factor 1 .019 .448 .054 – .095

factor 2 .075 .998 .884 – .000
factor 3 .942 .953 .111 – .000
factor 4 .988 .000 .385 – .999

m2 MOS .735 .989 .000 .001 –

factor 1 .984 .938 .000 .095 –

factor 2 .000 .000 .000 .000 –

factor 3 .000 .000 .290 .000 –

factor 4 .940 .000 .562 .999 –

Note p-values less or equal to .05 are marked bold

avoid any influence of the speech synthesizers on the results, the dataset was split up
by TTS system and separate MANOVAs were performed for the data of AC and IV
systems.

Using Pillai’s trace, a significant effect of speaker for the IV dataset6 and for the
AC dataset7 was found. The results of the post-hoc Scheffé tests for the IV and AC
dataset can be seen in Tables5.12 and 5.13, respectively.

Both tables highlight that some voices differ from all other voices concerning
the overall quality, e.g., Table5.12 depicts that voice f3 and m1 differ from all other
voices of the IV dataset. The same applies for voice f5 in theACdataset. Accordingly,
the data indicates that the voice of the speech corpus has a significant effect on the
perceived overall quality of a TTS system.

6effect of speaker for the IV dataset: (V = 0.45, F(15, 1494) = 17.7, p ≤ .001).
7effect of speaker for the AC dataset: (V = 0.66, F(15, 1494) = 28.1, p ≤ .001).
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Table 5.13 p-values of the post-hoc Scheffé test for the ACAPELA data

f4 f5 f6 m3 m4

f4 MOS – .000 .431 .263 .088

factor 1 – .000 .515 .086 .018
factor 2 – .000 .123 .030 .000
factor 3 – .353 1.000 .748 .037
factor 4 – .000 .000 .000 .000

f5 MOS .000 – .000 .000 .000
factor 1 .000 – .000 .000 .000
factor 2 .000 – .000 .000 .160

factor 3 .353 – .292 .973 .875

factor 4 .000 – .978 .052 .000

f6 MOS .431 .000 – .998 .938

factor 1 .515 .000 – .890 .601

factor 2 .123 .000 – .987 .000
factor 3 1.000 .292 – .681 .026
factor 4 .000 .978 – .217 .000

m3 MOS .263 .000 .998 – .989

factor 1 .086 .000 .890 – .986

factor 2 .030 .000 .987 – .000
factor 3 .748 .973 .681 – .510

factor 4 .000 .052 .217 – .000

m4 MOS .088 .000 .938 .989 –

factor 1 .018 .000 .601 .986 –

factor 2 .000 .160 .000 .000 –

factor 3 .037 .875 .026 .510 –

factor 4 .000 .000 .000 .000 –

Note p-values less or equal to .05 are marked bold

Moreover, there are some voices that differ from the others with regard to one of
the factors, e.g., in the IV dataset f2 differs from all other voices concerning factor 4
and m2 differs from all other voices concerning factor 2. In the AC dataset the voice
f5 sticks out: it differs from all other voices concerning OIMP, factor 1 and from all
but voice m4 concerning factor 2. In addition, voice f4 and voice m4 both differ from
the other voices concerning factor 4.

In conclusion, significant differences between a speaker and all other voices of the
corresponding dataset could be found: this applies for OIMP (IV and AC), factor 1
(AC), factor 2 (IV), and factor 4 (IV and AC).

These differences are visualized in Fig. 5.2 for theOIMP scale. The boxplot shows
the variance in overall impression for all voices of the systemsAC (red) and IV (blue)
for all five utterances. As can be seen, the overall quality variance within a system
is much higher then between both systems. Therefore, selecting a voice for a TTS
system is crucial because it tremendously influences the perceivedquality impression.
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Fig. 5.2 Boxplot of the
mean overall impression
ratings for the five
synthesized utterances

Utterance ID
1 1 2 2 3 3 4 4 5 5

O
ve

ra
ll 

Im
pr

es
si

on

2

2.5

3

3.5

4

4.5

5

5.5

Ivona
Acapela

Within the scope of the MANOVAs, an effect of the test material on the overall
quality for the IV systems was also discovered. However, this is a minor effect
compared to the influence of the speaker’s voice. Further research on the influence
of the material is presented in Sect. 5.3.

5.2.3 Conclusions

As shown in Table5.10, the factor analysis revealed four factors for this dataset. A
comparison with the five universal perceptual quality dimensions unveils that these
five dimensions are distributed among factor 1 and 2. However, it has to be taken
into consideration that this database consists of two state-of-the-art unit selection
synthesizers with a variety of different voices. Therefore, it is plausible that some of
the presented attribute scales contribute to the same factor whereas they would define
different perceptual constructs if they were used to assess, e.g., databases with TTS
stimuli produced by systems of different quality and/or of different synthesizer type
(e.g., PSOLA synthesizer, US systems, and HMM synthesizer) like it was shown in
Sect. 4.5.

Moreover, some of the scales that were introduced through previous likeability
studies built new factors. Factor 4 can be associated with the pitch and the spectral
center of gravity of the signals whereas the meaning of factor 3 could not be clari-
fied completely. Furthermore, the scale likeability features very high cross-loadings
between factors 1, 2, and 3. Thus, it does not contribute to discriminate between those
perceptual constructs and should be omitted in future research. In contrast, the scale
pressure supports the impression of the dimension C and can be seen as a substitute
for one of the scales associated with this dimension.

http://dx.doi.org/10.1007/978-981-10-3734-4_4
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When analyzing the influence of the different voices on the overall quality and
the extracted factors of the TTS systems IV and AC, a significant effect was found
for both datasets. Moreover, it could be shown that some of the voices differ from
the others of the same system concerning the overall impression and the factors 1, 2,
and 4.

The interpretation of factor 3 seemed difficult and even expert listeners could
not fully resolve the problem. Further research will have to focus on this perceptual
sensation.

5.3 Influence of Corpus Size and Utterance8

Nowadays, the most common approaches for TTS are unit selection and HMM
synthesis. Both methods are data-driven, thus they build a voice out of a database of
prerecorded speech. Therefore, the size of such a speech corpus also has a significant
impact on the quality of the synthesized speech signal. The extent to which the corpus
size influences the perceptual quality will be investigated in this section by creating
different unit selection voices with the MaryTTS system (see Sect. 2.2). Moreover,
the impact of the synthesized utterance on the five universal quality dimensions will
also be examined.

Thus, this section addresses RQ3 by seeking answers to the following questions:

• Does an increase in corpus size necessarily lead to an increase in quality?
• How strong is the influence of the corpus size on the five perceptual quality dimen-
sions?

• Which quality dimensions are affected by the content of the synthesized utterance?

In the following section the experimental setup is described. This includes the
generation of different unit selection voices with MaryTTS and the listening test
procedure itself. In Sect. 5.3.2 different statistical analyses are performed and the
influence of the corpus size, the utterance, and their interaction effect are investigated.
Finally, Sect. 5.3.3 concludes the findings.

5.3.1 Experimental Setup

This section gives an overview of the generated TTS voices, the speech material,
and the rating scales that were used in the experiment. Moreover, it describes the test
procedure.

8Parts of the content of this section have been submitted for publishing in a slightly different
version [16].

http://dx.doi.org/10.1007/978-981-10-3734-4_2
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5.3.1.1 Test Database

TTS Systems

A German speech corpus spoken by a professional male speaker was used as a
basis for the TTS voices. The full speech corpus consists of files containing names,
addresses, names of places and countries, abbreviations, directions, numbers, and
short sentences mainly containing news content.

In order to unveil the influence of the size of the speech corpus on different
perceptual quality dimensions, voices based on different subsets of the full speech
corpus A were created. Thus, B is a subset of A, C is a subset of B, etc. The subsets
were selected in a way that guaranteed an equal distribution of content (names,
addresses, numbers, etc.) across all subsets. The duration of each corpus can be seen
in Table5.14.

Due to the prerequisites of MaryTTS the high quality recordings had to be down-
sampled to 16kHz sampling rate. Based on these corpora six unit selection voices
were created with the MaryTTS [17] system, using MAUS [18, 19] to align text and
audio.

Even though the voices all feature the same speaker, they will be referred to as
Voices A–F in the following.

Speech Material

Table5.15 shows all utterances that were synthesized for the listening test. Utter-
ances containing place names, proper names, or words from a foreign language were
excluded as they often differ from German pronunciation rules and are thus likely to
cause problems for speech synthesizers. Five shortened German passages from the
EUROM.1 spoken language resource database [13] were selected (Utterances 01–
05). Moreover, five utterances (Utterances 06–10) that were part of the recordings of
corpus A but not of the five subsets B to F were chosen. Therefore, since Utterances
06 to 10 were part of the speech corpus of Voice A, the synthetic speech generated
by Voice A for these utterances equals natural speech.

Table 5.14 Corpus sizes for
voices A to F

Corpus Duration (hh:mm)

A 07:49

B 06:31

C 04:20

D 02:10

E 00:52

F 00:11
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Table 5.15 Selected utterances used in the listening test

Utterance-ID Utterance

00 Was soll ich heute abend nur essen? Ich habe noch einen Eintopf
.ehurtlhükfeiTredni

01 hcaneztaKeidmu,tenfföegrütsuaHeidhciebahthcaNetzteL
.lefiuzrimretnihrüTeideiw,hcietröhhcilztölP.nessaluzneßuard

02 rebügnuzrükbAeniehcuasuaHmeniemuzsetbigsuareihnoV
.tkupstrodsessad,nelhäzreetueLnetsiemeiD.legüHned

03 Kannst du mir sagen, was heute abend im Fernsehen kommt? Ich
.setnasümAdnusethcieLsawtefuatsuLettäh

04 nnaklaM.nelhüfeGnednefiergfeitnovkcurdsuAnietsinegniSsaD
.nekcürdsuareuarTefeitlam,kcülGsemertxese

05 Ich kann auf langen Schiffsreisen einfach nicht schlafen. Dazu sind
.hciltümegnuuzleiveztiSeid

06 -rEegidnewtondnegnirdenierüfllossetseFseseidsölrenieRreD
.nedrewtednewrevehcüknetragredniKredgnuretiew

07 Entsprechend der zuvor vom Parlament verabschiedeten Verfas-
.nedrewretsiniMetendroegbArunnennök,gnurednäsgnus

08 Brandenburgischen Zollfahndern ist ein Schlag gegen den interna-
tional organisierten Zigarettenschmuggel gelungen.

09 ennoSnovleshceWnredleflebeNnetleznierevnovgnusöfluAhcaN
und Wolken.

10 -uelettiMniretteWsemrawrüfhcoHnietgrosgnafnaremmoSmuZ
ropa.

Furthermore, an additional utterance (Utterance 00) from the EUROM.1 spoken
language resource database was synthesized for the training session participants had
to take prior to the listening test.

While the utterances from the EUROM.1 spoken language resource database
feature short stories from everyday life, theUtterances 06–10 comprise news content.
The average duration of all test stimuli is around 8s.

5.3.1.2 Attribute Scales

The objective was to assess the test participant’s perceptual impression on several
different perceptual dimensions. Therefore, several of the attribute scales that were
introduced in Sect. 4.5 were selected. Two attribute scales were selected for each
dimension. The perceptual quality dimensions and their associated attribute scales
are:

• Naturalness of Voice (NOV): naturalness, voice pleasantness
• Prosodic Quality (PQ): stress, rhythm
• Fluency and Intelligibility (FAI): fluency, intelligibility
• Absence of Disturbances (AOD): noise, disturbances
• Calmness (C): speed, tension

http://dx.doi.org/10.1007/978-981-10-3734-4_4
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5.3.1.3 Test Procedure

Thrity naïve participants (13 female, 17 male) aged 18 to 35 (μ = 25.6, σ = 4.1)
were invited to take part in the listening test. All of themwere nativeGerman speakers
and were paid for their participation. The stimuli were presented via headphones
(AKGK601) and a high-quality sound device (RolandEdirolUA-25) in a soundproof
booth. The test was designed within subjects, i.e., all participants rated all stimuli.

Stimuli were presented within a Matlab GUI, where ratings could be given on a
continuous scale ranging from 0 to 100. To avoid any impact with regard to the order
of the scales or the order of the stimuli, both the sequence of scales and the playlist
of the stimuli were randomized between subjects.

The test consisted of three parts. At first, all participants started off with a training
phase where they could get used to the user interface and the quality range of the
presented stimuli. Three stimuli generated by the Voices A, D, and F were rated in
this session. In case any problems occurred during the training, every participant
had the chance to ask questions after this first part. Subsequently, the main test took
place. Part 2 and 3 consisted of 30 stimuli each, interrupted by a 5min break to avoid
listener fatigue.

5.3.2 Statistical Analysis

This section shows the results of the statistical analysis of the gathered data. Prior
to the execution of any statistical methods the ratings of all test participants were
screened for plausibility. Therefore, boxplots featuring the ratings on all dimensions
were created for all stimuli. Three test participants had more than 10% outlier ratings
and were thus excluded from the study.

5.3.2.1 Overview of Gathered Data

For the following statistical analysis, the values of the five perceptual dimensions
were computed by calculating the mean value of the items associated with each
dimension. A first overview of the data from the listening test is given in the box-
plots in Fig. 5.3 for the dimension NOV. Each box represents all scores in the NOV
dimension for the Voices A–F. Moreover, the boxes are grouped by the utterance
(01–05: dark blue boxes, 06–10: light blue boxes).9

There are three things that stand out:

1. Utterances 06–10 synthesized by Voice A reach by far the best rating in the NOV
dimension. This effect was expected since these stimuli represent a natural voice.
Thus, these ratings can be seen as an upper quality threshold.

9Similar results occur for the other four dimensions.
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Fig. 5.3 Boxplot of the
NOV scores for all corpus
sizes (A–F) grouped by
utterance-ID
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2. Even though Voice A equals natural speech for the Utterances 06–10, there were
still single ratings below 30. One reason for this is probably the neutral speaking
style of the professional speaker during the recordings of the speech corpus.
Furthermore, due to the downsampling to 16kHz, which was a prerequisite of
MaryTTS, all spectral information in the speech signals above 8kHz were lost.
This will also have affected the perceived voice pleasantness.

3. The highest median value for the Utterances 01–05 is obtained by Voice B. This
however is a surprising result since larger corpora were expected to lead to better
voice quality.

5.3.2.2 Influence of Corpus Size and Utterance

In order to analyze the influence of all corpus sizes (A–F), the Utterances 06–10 had
to be excluded to avoid any bias due to the naturalness of Voice A on these sentences
(see Fig. 5.3). Therefore, the following statistical analyses are performed on the data
of the Utterances 01–05.

Five separateANOVAs10 with each of the five perceptual dimensions as dependent
variable, the corpus size (A-F) and the utterance (01–05) as fixed factor, and the test
participants as random factor were performed.

Influence of Corpus Size

There were significant effects of corpus size on all five perceptual dimensions. The
results are shown in Table5.16. The effect of corpus size on all five dimensions is

10The assumptions for the execution of ANOVA have been met.
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Table 5.16 Influence of corpus size and utterance on the five perceptual quality dimensions
Dimension Corpus Size Utterance test subject Corpus Size * Utterance

NOV F(5, 754) = 71.4 F(4, 754) = 10.8 F(26, 754) = 18.9 F(20, 754) = 5.6

PQ F(5, 754) = 24.5 F(4, 754) = 28.0 F(26, 754) = 14.3 F(20, 754) = 4.5

FAI F(5, 754) = 157.7 F(4, 754) = 28.9 F(26, 754) = 10.0 F(20, 754) = 9.2

AOD F(5, 754) = 60.1 F(4, 754) = 4.5 F(26, 754) = 18.0 F(20, 754) = 6.4

C F(5, 754) = 43.6 – F(26, 754) = 11.1 F(20, 754) = 3.7

Note p < .001 for all reported F-ratios

also reflected in the bar graph in Fig. 5.4. To unveil significant differences between
the corpus sizes post-hoc tests (REGWQ) were performed for all five ANOVAs.

As can be seen in Fig. 5.4, similar patterns occur for all five dimensions: the larger
the corpus of the corresponding voice, the higher the rating. This, however, is not
true for Voice A. Despite Voice A being the one with the largest speech corpus,
Voice B reaches the highest score in all but the PQ dimension. The only dimension
in which this difference is significant is FAI. Therefore, the most fluent speech was
not produced by the voice with the largest corpus but by a voice that was built on
a subset of this corpus. This is an outcome that was not excepted. Therefore, target
and join costs for Voices A and B were compared for several of the utterances that
were rated better when synthesized by Voice B. However, since the corpus influences
the computation of the join costs of a voice in MaryTTS, diphones which are part
of Voice A as well as Voice B feature different join costs depending in which voice
they are used. Therefore, a comparison between the costs of different voices is not
permissible. Thus, the source of this effect remains unclear. It seems, however, as if
the unit selection algorithm of MaryTTS chooses unit that can lead to a decrease in
quality when the speech corpus gets increased above a certain point. It is unknown
if the unit selection algorithm of MaryTTS was ever used on a speech corpus of over

Fig. 5.4 Bar chart of mean
scores of all voices on the 5
dimensions (error bars
illustrate the standard
deviation)
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Fig. 5.5 Bar chart of mean
scores of all utterances on
the dimensions NOV, PQ,
FAI, and AOD (error bars
illustrate the standard
deviation)
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seven hours; e.g., the German BITS corpus [20] which was also used to create unit
selection voices with MaryTTS [17] is only around 3:40 hours per speaker.

Furthermore, at the lower end of the quality range, Voice F was found to be rated
significantly lower than all other voices on the five dimensions.

When comparing the range of ratings of the quality dimensions, the smallest
variance could be found for the PQ dimension. Here three groups that differ signifi-
cantly from each other were found: A&B, C&E, and D&E. The biggest variance is
achieved for FAI, leading to significant differences between A, B, the group C&D, E
and F. Thus, the corpus size has only a limited influence on the prosody while highly
affecting the fluency and intelligibility of the voices.

Influence of Utterance

There were significant effects of utterance on all but the calmness dimension (see
Table5.16). This effect is also shown in the bar graph in Fig. 5.5.

Utterance 05 sticks out on the positive end of all dimensions. It got significantly
better ratings than all other utterances in the NOV dimension and together with
Utterance 03 it gets the best ratings in PQ and FAI. Therefore, these two utterances
seem to be an easier task than the other utterances.

Furthermore, while Utterances 01, 02, and 04 do not differ significantly concern-
ing the NOV dimension, Utterances 02 and 04 got rated significantly lower in the PQ
dimension compared to Utterance 01. However, when looking at FAI, Utterances 02
and 04 perform significantly better than Utterance 01.

Thus, the utterance that is to be synthesized can impactmultiple perceptual quality
dimensions (see Utterances 03 and 05) but it can also boost the performance in
one dimension while decreasing the performance in another (see Utterance 01 vs
Utterances 02 and 04).
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Even though there was a significant effect on AOD no interesting patterns could
be found. For the C dimension, no significant effect of utterance was detected.

Interaction Effect

Moreover, an interaction effect of corpus size*utterance was detected on all of the
perceptual quality dimensions. This interaction effect is exemplarily shown for the
FAI dimension in the line plot in Fig. 5.6 (similar results occur for the other four
dimensions).

A trend as the one found forUtterance 03was expected, i.e., a larger corpus triggers
an increase in the quality dimensions (here fluency). But here a larger corpus does
not necessarily help to increase the quality (see the change from corpus E to D or B
to A for Utterance 02) and in certain cases a larger corpus can also lead to a dramatic
decrease in quality (see change from corpus B to A for Utterance 01). Moreover, for
Utterance 05 a strong increase in fluency can be seen when increasing the corpus
from F to E and from then on the fluency fluctuates around a certain level.

These results show that even though a larger corpus possibly offers units with
smaller target and join costs, finding these units is not an easy task.

Additionally, there was also a significant effect of the test subjects on all
five dimensions. This indicates different preferences between test subjects. Future
research on user characteristics can lead to more information on this effect.

Fig. 5.6 Line plot of mean
FAI scores for utterances
01–05 for all voices
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5.3.3 Conclusions

Through statistical analyses, the effect of the size of the speech corpus, the utter-
ances, and the interaction effect between both of them on different perceptual quality
dimensions could be verified.

The size of the speech corpus affects all dimensions with the highest significant
effect on FAI. Surprisingly, for this dimension the system with the second largest
speech corpus achieved significantly higher ratings than all other systems. This may
indicate a threshold in the unit selection algorithm of MaryTTS from which on a
system does not further improve its quality when increasing its database. The exact
source of this effect remains unclear but will be further investigated. The smallest
effect of the size of the speech corpus could be determined for the PQ dimension.

Secondly, an effect of the synthesized utterance on all but the dimension C could
be detected. Some utterances were an easier task for the TTS system than others,
which lead to significantly higher scores in the first four dimensions. On the other
hand, the synthesized utterance can affect dimensions differently, i.e., this can lead
to higher scores in one dimension while achieving lower scores in another.

Moreover, an interaction effect corpus size*utterance was found for all dimen-
sions. It was expected that the synthesized quality of an utterance increases continu-
ouslywith increasing corpus size. However, thiswas not true for all of the synthesized
utterances: some utterances reached their peak in quality at a small corpus size and
fluctuated around this value when further increasing the corpus size, while the quality
of others increased linearly until their peak at the second largest corpus size.

These results show that the unit selection process of a TTS system is a very
sensitive task. Even though a larger corpus theoretically holds units that are able
to create superior synthetic speech, selecting the right units is crucial. In order to
further improve this process, a quality predictor could be included. Such a predictor
could provide quality estimates for the concatenation of different candidate units
with the units that already have been selected. Therefore, by selecting the candidate
unit that yields the highest score, the predictor can help to optimize the unit selection
process. Different approaches on instrumental quality prediction for TTS signals are
presented in the following chapter.

5.4 Summary

This chapter analyzed different influencing factors on the perceptual quality of TTS
systems. First, an evaluation protocol for synthesized audiobooks was designed and
tested during the BC 2011. The outcome highlights the importance of the two dimen-
sions listening pleasure and prosody for this use case. Moreover, a study examined
the influence of the voice of a speaker for corpus-based TTS systems. A significant
effect on the overall impression and three of the four extracted factors was found.
Finally, the influence of the corpus size and the utterance to be synthesized was
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examined by creating several unit selection voices in MaryTTS. A significant effect
for corpus size was found on all five universal perceptual quality dimensions, while
the utterance only affected four of them.
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Chapter 6
Instrumental Quality Assessment

During the development of new TTS systems, a continuous auditory quality assess-
ment is desirable in order to see whether recent changes positively affect the overall
quality of the system. Unfortunately, such auditory assessments are cost-intensive
as well as time consuming. Therefore, a reliable instrumental quality measure could
support the development of high quality TTS systems.As introduced in Sect. 3.4, sev-
eral instrumental measures exist that are able to estimate the quality of speech signals
distorted by coding and transmission artifacts. Considering synthetic speech being
some kind of distorted natural speech, applying those measures to synthetic speech
seems admissible. Two different kinds of measures exist: reference-based measures
that use a clean reference signal, i.e., a signal without distortions, to compute a
perceptual distance between the clean and the distorted signal, and reference-free
measures that are able to estimate the quality solely based on the distorted signal.
Some of these measures have already been tested on synthetic speech signals. There-
fore, this Chapter seeks to answer RQ4:

How can the quality of synthetic speech be assessed by an instrumental
measure?

To be more specific, this chapter will give answers to the following questions:

• Are existing reference-based instrumental measuress able to estimate the quality
of TTS signals?

• Which approaches can be employed in order to create a reference-free instrumental
measure for TTS signals?

Therefore, this chapter presents results of the performance of standardized
reference-basedmeasures on synthetic speech.Moreover, recent approaches towards
the reference-free instrumental quality prediction of synthetic speech are discussed
and compared.

© Springer Nature Singapore Pte Ltd. 2017
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6.1 Reference-Based Measures

Reference-based measures are widely popular in the domain of telephone coded
speech signals. Therefore, several different measures are commonly used to evalu-
ate speech signals transmitted through telephone networks, among themWB-PESQ,
DIAL, and POLQAwhichwere introduced in Sect. 3.4.1.While in this domain clean,
undistorted signals, i.e., speech signals before a transmission through a telephone
network, are usually always at hand, this is only very rarely the case when it comes to
synthetic speech. In this context a clean signal would be a natural speech signal spo-
ken by the speaker of the speech corpus of the TTS system. In the following sections,
the three previously described models will be tested on different TTS databases that
also contain a clean reference signal.

6.1.1 State of the Art

In very few studies existing reference-based measures have been used to evaluate the
quality of TTS signals. Počta investigated the influence of packet loss on synthetic
speech quality, measured with PESQ [1], PESQ, and POLQA [2] as well as the
influence of codingmeasured with PESQ and POLQA [3].While PESQ and POLQA
were able to predict the quality of transmitted synthetic speech to a certain degree [2],
his findings also showed a higher vulnerability of synthetic speech to packet loss
impairments than naturally-produced speech [1]. However, the goal of these studies
was not to investigate the quality of synthetic speech per se, but to find out about the
influence of transmission artifacts on TTS signals. Therefore, the reference signal in
this test setup was the “clean” TTS signal before it was distorted.

In contrast, Cernak and Rusko [4] utilized the PESQ measure to estimate TTS
quality by comparing synthetic speech signals to natural speech recordings. While
the predicted MOS only reached values slightly above 1, the correlations between
auditory and predicted MOS were surprisingly high.

The outstanding results from Cernak and Rusko [4] lead to further research in this
direction. The findings are presented in the following section.

The most recent study [5] in this field described the development of a reference-
based measure for the quality prediction of synthetic speech. The model was trained
and tested on data from the Blizzard Challenges (BCs) 2008 to 2013 and reached a
correlation of up to .60 and .84 per file and system respectively.

6.1.2 Quality Prediction1

The three reference-based instrumental quality measures Wide-Band (WB)-PESQ,
DIAL, and POLQA, which were introduced in Sect. 3.4.1, will be used to assess TTS

1The content of this section has previously been published in a slightly different version in [6].

http://dx.doi.org/10.1007/978-981-10-3734-4_3
http://dx.doi.org/10.1007/978-981-10-3734-4_3
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signals which were evaluated during several BCs. In the following section the TTS
databases are presented and the prediction results are discussed.

6.1.2.1 Blizzard Challenge Databases 2008–2010

The Blizzard Challenge (BC) is an annual contest for developers of TTS systems.
Participants in the English part of the challenges 2008–2010 were provided with a
speech corpus of the University of Edinburgh (full corpus) as well as two different
subcorpora (ARCTIC corpus and small corpus2). These corpora were used to build
data-driven TTS voices. A set of test sentences was released to the contestants, who
were asked to submit synthesized versions within a limited time interval. An online
listening test was conducted to evaluate naturalness, intelligibility and the degree of
similarity to the original speaker. Each test also included natural reference stimuli
of the same speaker the TTS systems were built on. These natural reference stimuli
were not made available to the developers, therefore, the synthesized files and their
corresponding reference are completely independent of each other.

In the following, the challenges of the years 2008, 2009, and 2010 are described.

• Blizzard Challenge 2008
The data of the BC 2008 [7] consists of 18 speech synthesis systems, 1 natural
speaker, and 2 systems from participants from previous challenges (a Festival-
based system from CSTR3 and the HTS4 system from the Blizzard Challenge
2005). In an attempt to calibrate the results from year to year, the latter systems
were used as benchmarking systems. For every synthesizer, 42 files were evaluated
during the listening tests.

• Blizzard Challenge 2009
The 2009 database [8] consists of 14 speech synthesis systems, 1 natural speaker,
and 3 benchmarks systems (the 2 systems used during the BC 2008 and the HTS
system from theBC2007). Thirty-eight files generated by each systemwere judged
during the evaluation phase.

• Blizzard Challenge 2010
In 2010, 18 TTS developers took part in the challenge [9]. This database consists of
TTS voices built on the ARCTIC corpus (14 participants, 1 natural reference, and
3 benchmark systems from previous challenges) and of synthetic speech samples
that were built on the rjs speaker provided by Phonetic Arts (15 participants,
1 natural speaker, and 2 benchmark systems). Both databases consist of 36 files
per synthesizer.

2The voices built on the ARCTIC and small corpus in the years 2008 and 2009 were unavailable.
Thus, the research in these years concentrates on the TTS data on the basis of the full corpus.
3The Centre for Speech Technology Research: http://www.cstr.ed.ac.uk/, last accessed 22.04.2016.
4HMM-based Speech Synthesis System: http://hts.sp.nitech.ac.jp/, last accessed 22.04.2016.

http://www.cstr.ed.ac.uk/
http://hts.sp.nitech.ac.jp/
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Quality Evaluation

The listening tests were carried out online, using a design developed for BC 2007.
Various listener types were employed, spanning from volunteers recruited via the
challenge’s participants, mailing lists, blogs for speech experts, and paid undergrad-
uates. Since the results of all listeners were used during the evaluation, there will
be no further differentiation. In the BC 2008, 438 listeners finished the whole test
procedure whereas 365 completed the test in 2009 and 363 in 2010. The listener gen-
der was anonymized, thus gender-related aspects could not be analyzed. The tests
consisted of different sections where listeners had to rate differences in similarity,
naturalness, and intelligibility. The evaluated files from these sections consisted of
sentences from the genres news and novel and were sampled at 16kHz.

6.1.2.2 Results and Discussion

The three reference-based instrumental quality measures WB-PESQ, DIAL, and
POLQA were used to assess the quality of the TTS signals presented in the previous
section.With the objective to estimate the overall quality of the participating systems,
the current study focused on the MOS of the given naturalness ratings.

The corresponding natural speech files were used as reference signals in the esti-
mation process. To evaluate the accuracy of the predicted results, Pearson’s correla-
tion coefficient R between the predicted and the auditory MOS averaged per system
was computed. The results can be seen in Table6.1.

None of the algorithms achieved satisfying results. Only for database BC 2008
DIAL and POLQA reached correlations above .40. Taking a look at Table6.2 shows
that the mean predicted MOS value is usually between 1 and 2 with a variance δ2

just above 0. Obviously all three algorithms detect major distortions in all tested TTS
systems which leads to constant low MOS values with no distinction between good
and bad sounding TTS.

Usually, WB-PESQ, DIAL, and POLQA are used to evaluate audio material of
a duration of at least 8–9s. Because most of the databases consist of TTS files
with a duration of 2–3s, this seems to be one cause for the very low MOS values.
Hence, groups of three TTS files of the same system from the database BC 2008
were concatenated and used as input for WB-PESQ and DIAL. The resulting scores

Table 6.1 Correlations between predicted and auditory MOS scores (per synthesizer)

Database WB-PESQ DIAL POLQA

BC 2008 .17 .49 .46

BC 2009 .19 .25 .33

BC 2010 rjs .02 −.15 .35

BC 2010 arctic .21 −.14 −.08
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Table 6.2 Mean values and variances of the predicted MOS

Database WB-PESQ DIAL POLQA

MOS δ2 MOS δ2 MOS δ2

BC 2008 1.38 0.22 1.97 0.63 1.22 0.06

BC 2009 1.32 0.17 2.09 0.03 1.08 0.02

BC 2010 rjs 1.11 0.00 1.91 0.03 1.34 0.09

BC 2010 arctic 1.13 0.03 2.00 0.03 1.20 0.05
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Fig. 6.1 Predicted MOS in relation to the duration of inserted pauses

were averaged per system and Pearson’s Correlation Coefficient R was computed.
The results showed little improvement for DIAL (R = .59) but none for WB-PESQ
(R = −.18). Moreover, MOS as well as variance remained on a very low level.

One of the reasons for the very low MOS values might have been failures in
the time alignment between the natural speech file and the TTS signal. Compared
to natural speech, TTS systems often produce signals that comprise parts that are
lengthenedor shortened. Thismakes a time alignmentmore challenging than between
a natural speech signal and a telephone-network-coded one. To simulate these TTS
distortions, five to six small pauses with a duration of 0.1–1s were inserted into
four natural speech files. These files were tested with WB-PESQ and DIAL with
the original natural speech files as reference signals. Figure6.1 shows the resulting
MOS.

The quality predicted byWB-PESQ for the natural speech files without any mod-
ifications is around 4.5. After the insertion of pauses (no matter which duration) the
value drops below 1.5. DIAL estimates values between 3.5 and 4 for the original
speech samples. For inserted pauses longer than 0.1 s the MOS predicted by DIAL
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decreases to values between 1.5 and 2.5. Surprisingly, the natural speech files with
inserted pauses of 0.1 s duration get a slightly better rating than the original files with
DIAL.

The achieved correlations lag far behind the results achieved byCernak andRusko
(as presented in Sect. 6.1.1). However, their approach differed in the point that they
used only word long TTS samples which makes the time alignment between the
natural speech and the TTS signals much easier. Hence, five samples from the BC
2008 database for five TTS systems were selected, one word per sample was cut, and
the WB-PESQ scores were computed. However, the results could not be improved:
MOS of 1.11, a variance of 0.03.

6.1.3 Conclusions

The correlations between the predicted and the auditory MOS were disappointing
throughout all databases. The best correlationswere achieved byPOLQAondatabase
BC 2008 (R = .46). Of course, it has to be noted that all of the tested predictors were
used out of their original intended domain, therefore the achieved correlations do not
contradict the good results attained for telephone-transmitted speech.

One of the reasons for the overall low predicted MOS seems to be an inaccurate
time alignment between the TTS samples and the natural speech files. This is due
to the non-linear distortions introduced by the TTS algorithms. For further studies,
a dynamic time warping (and in case of POLQA a more extensive time warping)
could be used as a preprocessing step to ensure exact time alignment of extremely
temporally stretched or compressed signals. For now it has to be stated that standard-
ized instrumental quality evaluation measures, like WB-PESQ, DIAL, or POLQA,
can not be used to estimate the quality of synthetic speech when an actual natural
reference signal is present. Since in most cases such a natural reference signal is not
present, the development of reference-free measures is far more important.

6.2 Reference-Free Measures

Several reference-free predictors have been introduced in Sect. 3.4.2. The following
state of the art section gives an overview of the performances of several of these
reference-free predictors and introduces two recent approaches towards the instru-
mental quality measurement of synthetic speech. Moreover, two linear regression
approaches are presented in detail. One is based on features that can be derived
from the Fujisaki model, and the other one employs feature selection to minimize a
large-scale feature set to few features that still cover most of the information.

http://dx.doi.org/10.1007/978-981-10-3734-4_3
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6.2.1 State of the Art

Besides the reference-based measures utilized in the previous section, there are sev-
eral reference-free measures that estimate the quality of speech signals transmitted
through telephone networks. Among them, there is the ITU-T Rec. P.563 [10, 11]
which was introduced in Sect. 3.4.2. Similar approaches are ANIQUE/ANIQUE+
[12, 13] and an algorithm developed by the company Psytechnics [14, 15]. Möller
et al. [16] and Heimansberg [17] applied the P.563 model on three different data-
bases of synthetic and natural speech, both degraded by telephone channels. While
on some databases the correlation between auditory and estimated MOS reached an
adequate level, on others the measure could not help to estimate the quality. When
estimating the quality of mixed databases (synthetic as well as natural speech), P.563
did not achieve satisfying results. Moreover, Möller et al. [18] also tested ANIQUE+
and the algorithm developed by Psytechnics on the three aforementioned databases
and concluded that the reference-free measures under test mainly predict the effect
of the transmission channel and not the actual quality of a TTS system.

With the objective to investigate the low correlations of P.563, Möller and
Falk [19–21] examined the internal parameters from which P.563 computes the final
MOS estimate. They found that various parameters attained higher correlations with
the auditory MOS than the final MOS estimate. The importance of the parameters,
however, differed between female and male TTS signals. These findings suggested
to develop separate quality prediction models for female and male synthesizers.

Designing an instrumental measure for the exact purpose of quality estimation
of TTS signals has already been proposed in the early 90s [22]. Mariniak suggested
to extract features of natural speakers and of synthetic speech signals and to com-
pute a spectral distance between them. The deviation of the synthetic speech signals
from human produced speech indicates the quality of the TTS system. This topic
was revisited by Falk et al. [23]. They developed a measure which evaluates the
perceptual distance between features extracted from TTS signals and a reference
HMM which is trained on the behavior of natural speech. The obtained normalized
log-likelihood indicates the similarity between synthetic and natural speech. This
approach was tested on the Seget2007 database (see Sect. 4.1.4) and reached corre-
lations with auditory assessed quality features of up to .81 and .83 for female and
male data, respectively [20, 23]. The results were compared to the P.563 measure
and outperformed it for every quality feature.

The positive results of single P.563 features and the HMM predictor described in
the previous paragraphs lead to further investigations in these directions [24, 25].
Therefore, two linear regression models were developed, one based on the P.563
features and one based on a set of approx. 1500 general speech features which are
usually applied for the classification of speech metadata, such as emotion, gender
and age. Given these large sets of parameters, a sequential feature selection had to
be employed before the actual regression model was trained. Therefore, first features
with |R| ≤ .25 were omitted, then a PCA with Varimax rotation was performed to
comeupwith a small set of factorswhich still holdsmost of the variance of the original

http://dx.doi.org/10.1007/978-981-10-3734-4_3
http://dx.doi.org/10.1007/978-981-10-3734-4_4
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features. The factors derived from the P.563 features and the general speech features
were the input for the training of four linear regression models (one per gender for
each P.563 features and general speech features). These twomodels together with the
HMM predictor were tested on three databases: Seget2007, Hint2010, and a smaller
database which contains synthetic as well as natural speech degraded by telephone
networks. While the HMM predictor attained a sufficient accuracy on two databases,
its performance was disappointing especially considering female data. The two other
models reached correlations between .64 and .90 for all databases. Even though the
results were very positive, the high correlations have to be handled with caution
considering that the models were not cross-validated.

In the following two very recent models will be described in more detail.

6.2.1.1 Support Vector Regression (SVR)

Norrenbrock developed an SVR quality prediction model [26] which is based upon
the principle of Support Vector Machines (SVMs) [27]. The SVR model utilizes
extracted features, e.g., MFCCs, for a mapping on a target quality feature, e.g., the
MOS of a given overall impression rating.

By employing a kernel function, an SVM is able to model nonlinear relations, i.e.,
the input is mapped into a high-dimensional feature space and then a linear model
can be constructed. The training data is approximated with limited precision ε and a
model is constructed by minimizing this error.

Norrenbrock uses a special case of SVR called ν-SVR [28, 29], where ε is adap-
tively determined through a fixed constant ν. A radial basis function is employed
as kernel type and features and auditory ratings are scaled to [0, 1] for training and
testing. A supervised feature selection choses features with a minimum correlation
of |R| ≥ .4 for model evaluation.

6.2.1.2 Regular Perception Model (RPM)

Based on the theory of regular perception, Norrenbrock developed an RPM for TTS
quality prediction [30]. TheRPMmakes use of the theory ofRegular Perception (RP),
introduced by Norrenbrock [30], which compares the values of extracted features of
synthetic speech signals with the regular feature values for natural human speech.

The basic principle of regular perception is illustrated in Fig. 6.2. The figure
shows a perceivable physical property, a Physiological Perception Range (PPR) as
well as a Regular Perception Range (RPR). In the context of human speech, the PPR
is restricted by the limitations of the human auditory system (i.e., the bandwidth
between approximately 20Hz and 20kHz) and the RPR defines the range in which a
specific attribute regularly lies, e.g., the range of the pitch of a human female speaker
(approximately 200–250Hz). If a specific property exceeds the upper threshold of
the RPR or falls below the lower threshold, a listener perceives a deviation from the
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Physiological perception range

Regular perception range

Property value

Fig. 6.2 Illustration of the perceptual ranges [30]

expected nature of this property, e.g., a female speaker with a pitch of 160Hz evokes
the impression of an unusually dark voice.

In a more general sense this means that features (e.g., Mel-Frequency Cepstral
Coefficients (MFCCs)) that are utilized for quality estimation are first extracted from
a database of natural reference speakers. The extracted values for each feature then
span the RPR for each feature. Thus, if a feature that is extracted from a synthetic
speech signal falls outside of the RPR of this feature for natural speech, it may carry
information for the listener that the speech signal is not natural, and potentially also
of degraded quality.

The Perceptual Regularization (PR) process for time-invariant features leads to a
binary value {0, 1} for each so called quality element while time-variant features are
converted to values between 0 and 1, where a 0 indicates no degradation and every
value greater than 0 implies a deviation from the norm. The derived quality elements
are then utilized for the actual regular perception model.

The RPM then only selects positively correlating quality elements for model
training. A quality estimate is computed according to the following logistic mapping:

ϕ(ỹ) = 1

1 + exp(a ỹ + b)
(6.1)

were ỹ denotes the unmapped average and the parameters a and b are optimized
using a nonlinear least-squares method.

Therefore, the “RPM represents a gradual display to which extent the quality-
relevant properties of the signal under test fall into their corresponding RPRs” [30].

6.2.1.3 Results

This section presents quality prediction results achieved by the SVR model and
the RPM [31], both developed and trained by Norrenbrock. Therefore, the models
were trained on prosodic and MFCC features. The employed Cross Validation (CV)
approach is introduced and the quality estimation accuracy is discussed.
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Databases and Features

Both approaches were tested on the databases SD/FA, ST/MDS, and
Seget2007 which were introduced in Chap.4. A comparative overview is given in
the Tables4.1 and 4.10.

As a basis for the quality prediction, several features are extracted from the signal.
First, prosodic information is gathered. These properties cover (i) intonation prop-
erties on the level of voiced segments [32, 33], (ii) voice-source properties which
estimate the irregularity of successive pitch periods with respect to length (jitter)
and energy (shimmer) [34], and (iii) formal rhythm-associated properties based on
vocalic and intervocalic durations [32]. Moreover, MFCCs are derived from the sig-
nal [30], i.e., 12th orderMFCCs are evaluated for active speech frameswith awindow
length of 25ms and a frame shift of 12.5ms. Furthermore, their delta and delta-delta
values are included.

Cross Validation Setup

An inter-test CV is performed. Therefore, the model is trained on two databases and
tested on the remaining one (this partitioning process is repeated in every possible
combination). This CV setup will be referred to as Leave-One-Test-Out (LOTO).

Figure6.3 depicts the CV scenario that is used for model training. The feature
matrix is denoted by X while the target vector y contains the auditory ratings. For
the k-th CV partitioning, the model training comprises the steps in the gray area in
the upper part of the figure: feature normalization, supervised feature selection, and
model training. The scaling information of the feature normalization, the indices of
the selected features, and the model parameter vector, parametrize the estimation of
the test data and are passed from the feature normalization, feature selection, and
model training steps to their corresponding steps for the creation of the test model
in the lower part of the figure. A comparison between the estimate ŷtest and the true
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Fig. 6.3 Strict CV setup with feature selection [26]

http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_4
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Table 6.3 Performance of the SVR model and the RPM in a LOTO CV scenario [31]

Database Gender Model NOV PQ FAI

R RMSE R RMSE R RMSE

SD/FA, ST/MDS,
Seget2007

Female SVR .66 0.61 .53 0.68 .38 0.52

RPM .85 0.49 .85 0.54 .77 0.39

Male SVR .75 0.56 .68 0.61 .55 0.50

RPM .90 0.44 .82 0.43 .79 0.34

auditory ratings ytest over all k then yields the average Pearson correlation R and the
average RMSE.

The same setup will be employed in the following sections for random 3-fold
CV [27] for intra-test model validation, i.e., models are trained on 2/3 of the data of a
given database, and tested on the remaining 1/3 of that database. To ensure a reliable
correlation value for one database, training and testing are repeated (e.g., 500 random
CV partitionings) and the correlation values are averaged over all partitionings.

Results and Discussion

Both models were trained to estimate the scores of the following three perceptual
quality dimensions:Naturalness of voice (NOV), ProsodicQuality (PQ), and Fluency
and Intelligibility (FAI). As a measure of accuracy Pearson’s correlation coefficient
R was computed between the estimated and auditory assessed score for each quality
dimension. Moreover, the Root Mean Square Error (RMSE) is reported. The results
are shown in Table6.3.

The RPM outperforms the SVR for each gender and in every dimension.
While the prediction accuracy of both models in the dimensions NOV and FAI is

better on the male data, for the PQ dimension this effect is reversed for the RPM.
Considering the overall performance over all target dimensions the RPM is clearly

the superiormodel. Further information on the performance of these and othermodels
in different CV scenarios and trained on different features is presented in detail by
Norrenbrock [31].

6.2.2 Linear Regression Models

This section presents the development of two new linear regression models. One is
based on a set of prosodic features computed from parameters that can be extracted
via the Fujisaki model, and one approach employs a three step feature selection to
reduce a set of approx. 1500 general speech features to a set of a few that still cover
most of the information. These models are trained on databases that were introduced
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Fig. 6.4 Fujisaki model for the generation of F0 contours [36]

in Chap.4 and the achieved results are compaired with the performance of the SVR
model and the RPM.

6.2.2.1 Linear Regression Based on Fujisaki Features5

In the following, a brief overview of the Fujisaki model is presented as well as a
detailed description of the developed features derived from the extracted parameters.
Moreover, a linear regression model based on the extracted features is constructed.

Fujisaki Model

The F0-contour of speech signals contributes important non-linguistic information
like naturalness and the current emotion of the speaker. Generally, such contours are
characterized by a decline from onset towards the end of an utterance. During word
accent, the F0-contour is superposed by local intonation humps.

The Fujisaki model [36] follows this principle by describing an F0-contour as a
superposition of Phrase Commands (PhCs) and Accent Commands (AcCs) and an
underlying Basefrequency (BF). The concept of this model can be seen in Fig. 6.4.

PhCs consist of several Starting Points (SPs), each of them with a specific ampli-
tude, thus they describe a set of impulses. PhCs amplitudes as well as the onset time
for the first PhC of a signal can have a negative sign. AcCs consist of SPs and Ending
Points (EPs) that describe a set of stepwise functions. The timewithin one pair of SPs
and EPs represents an accented block. In comparison to PhCs, all AcCs amplitudes

5Parts of the content of this section have previously been published in a slightly different version
in [35].

http://dx.doi.org/10.1007/978-981-10-3734-4_4


6.2 Reference-Free Measures 113

and their onset times are always positive. The BF describes the minimum value of
the logarithmized F0-contour throughout the signal.

The PhCs and AcCs are the input for two critically-damped second-order linear
systems to these commands (phrase control mechanism and accent control mecha-
nism, respectively). The PhCs and AcCs are assumed to be smoothed by the low-pass
characteristics of their respective control mechanisms. The output of those control
mechanisms (the phrase components and accent components) and the BF are then
joined to form the pitch curve of an utterance. Thus, this model reduces the com-
plexity of a pitch contour to a minimal set of three parameters (PhCs, AcCs, and BF)
that still capture the main aspects of the pitch contour.

Fujisaki Features

Keeping in mind that the prosody of synthetic speech is one of the most relevant
aspects when it comes to the impression of naturalness, utilizing a model that
describes the pitch contour of speech signals as the basis for a quality predictor
seems to be of great help. Therefore, the Fujisaki model implemented by Mixdorff
especially for the use in German [37] was used to extract the above-mentioned para-
meters for all TTS files from the German TTS databases mentioned in the following
section.

Fourty-seven statistical features based on the extracted Fujisaki parameters were
computed. They comprisemean, minimum,maximumvalues as well as the variances
of the extracted parameters. Moreover, several features based on the quantity of
increasing/decreasing (in relation to the previous command) PhC/AcC segments
in a signal were computed. All features can be derived from Eqs. (6.2)–(6.11) by
combining the terms in curly brackets in every possible way, e.g., one of the features
from Eq. (6.11) is called maximum of distances between AcC SPs.

⎧
⎪⎪⎨

⎪⎪⎩

mean
minimum
maximum
variance

⎫
⎪⎪⎬

⎪⎪⎭

of distances between

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PhC SPs
AcC SPs
AcC EPs

AcC SPs and f ollowing EPs
AcC EPs and f ollowing SPs

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(6.2)

⎧
⎪⎪⎨

⎪⎪⎩

mean
minimum
maximum
variance

⎫
⎪⎪⎬

⎪⎪⎭

of

{
PhC ampli tudes
AcC ampli tudes

}

(6.3)

number of

{
increasing
decreasing

} {
PhCs
AcCs

}

normali zed by length of the signal (6.4)

relative posi tion of

{
minimum
maximum

} {
PhC ampli tude
AcC ampli tude

}

(6.5)

⎧
⎨

⎩

minimum
maximum
sum of all

⎫
⎬

⎭
AcC block(s) (6.6)



114 6 Instrumental Quality Assessment

sum of all AcC blocks normali zed by

{
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}

(6.7)
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}

normali zed by length of the signal (6.9)

base f requency (6.10)

sum of PhC ampli tudes normali zed by maximum ampli tude (6.11)

Databases

The quality prediction models that are developed in the next paragraph were trained
on the following TTS databases:

• Seget2007 (see Sect. 4.1)
• Hint2010 (see Sect. 4.1)
• SD/FA (see Sect. 4.2)
• ST/MDS (see Sect. 4.3)

Even though all databases were generated via similar test procedures, there are
differences that have to be taken into account during the following steps and the
interpretation of the results.

• Seget2007 and Hint2010 used ACR and computed a MOS for the overall quality
scale ranging form 1 to 5, while SD/FA and ST/MDS used continuous scales with
a range of 1–7.

• Seget2007 and Hint2010 employed natural speakers as reference stimuli. This
leads to a compression of the range in which TTS stimuli are rated.

• All databases consist of partially different TTS systems. Hence, the ratings in one
database always also depend on the range of quality of TTS systems in it.

• The mean duration of stimuli varies between databases from 5 to 12s.

A comparative overview of all databases with all relevant information can be seen
in the Tables4.1 and 4.10.

Prediction Models

The aimwas to develop one quality predictor based on the presented Fujisaki features.
The overall impression ratings were chosen as target prediction values, since they
were the only quality feature that was assessed in all of the four studies displayed in
the previous section. Due to the different ranges of ratings the SD/FA and ST/MDS

http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_4


6.2 Reference-Free Measures 115

Table 6.4 Results of stepwise multiple linear regression analysis for female voices. R2 = .26

Feature B SE B β

constant 2.073 0.539

num dec AcC norm length 0.902 0.248 .304 ∗∗∗

basefrequency −0.008 0.003 −.212 ∗

min dist AcC EP SP 6.131 2.099 .248 ∗∗

mean dist PhC SP 0.300 0.107 .234 ∗∗
∗ p < .05. ∗∗ p < .01. ∗∗∗ p < .001
Note see text for explanation of the features

scores had to be transformed to the standardMOS scale range (1–5) before all ratings
could be merged.

As learned from previous research [25] the prediction efficiency of most features
varies highly between genders. Hence, one stepwisemultiple linear regression analy-
sis was conducted for each gender. The auditoryMOS of all four databases were used
as response variable, while the 47 Fujisaki features described in Sect. 6.2.2.1 were
used as predictors.

For both genders one significantmodel could be created. Table6.4 lists the selected
features for the female model, its beta values (B), their standard errors (SE B),
and their standardized values (β). The four features denote the number of decaying
AcCs normed by the length of the speech signal (num dec AcC norm length), the
basefrequency of the signal (basefrequency), the minimum distance between EPs
and the following SP of the AcCs in a signal (min dist AcC EP SP), and the mean
distance between PhC SPs (mean dist PhC SP). Even though the RMSE for the
female predictor is fairly low (RMSE f = 0.52), the model only accounts for 26%
of the variability in the outcome.

The male model (Table6.5) consists of five predictors. These features denote the
mean distance between PhC SPs (mean dist PhC SP), the quantity of AcCs normed
by the length of the speech signal (quantity AcC norm length), the mean amplitude
in the AcCs in a signal (mean AcC amp), the maximum distance between the EP and
the following SP of the AcCs in a signal (max dist AcC EP SP), and the sum of all

Table 6.5 Results of stepwise multiple linear regression analysis for male voices. R2 = .39

Feature B SE B β

constant 1.135 0.407

mean dist PhC SP −0.354 0.089 −.334 ∗∗∗

quantity AcC norm length 0.790 0.171 .404 ∗∗∗

mean AcC amp 4.380 1.030 .512 ∗∗∗

max dist AcC EP SP 0.274 0.072 .428 ∗∗∗

sum AcC blocks −0.519 0.208 −.302 ∗
∗ p < .05. ∗∗∗ p < .001
Note see text for explanation of the features
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Table 6.6 Pearson Correlation between predicted MOS and auditory MOS for each database

Database Female Male

R RMSE R RMSE

Seget2007 .48∗∗ 0.44 .58∗∗ 0.48

Hint2010 .05 0.61 .48∗ 0.55

SD/FA .66∗∗ 0.65 .60∗∗ 0.62

ST/MDS .61∗∗ 0.79 .75∗∗ 0.70
∗ p < .05. ∗∗ p < .01

AcC blocks in a signal (sum AcC blocks). The RMSE for this model is on the same
level as the RMSE for the female predictor (RMSEm = 0.48), however, the male
model accounts for 39% of the variablity in the outcome.

Taking a look at both models reveals that the featuremean dist PhC SP is the only
item that shows up in the female as well as the male predictor.

To test for over-fitting effects a leave-one-out cross-validationwas conducted. The
R2 values for both models could be confirmed. The RMSE showed a minor increase
for both the female (RMSE = 0.55) and the male (RMSE = 0.51) predictor. Thus,
both models can be accounted to be stable.

Results and Discussion

Both models were used to compute quality estimates for the MOS for all available
TTS files. As a measure of accuracy, Pearson’s correlation coefficient R between
predictedMOSand auditoryMOSper database and gender and theRMSE is reported.
The achieved correlations can be seen in Table6.6.

The results for the female stimuli show a strong correlation for the twomore com-
plex databases (SD/FA and ST/MDS) and a medium correlation for Seget2007. For
the female speech files from Hint2010 no significant correlation could be achieved.
The results for the male files are mostly superior to those of the female databases:
for Seget2007, SD/FA, and ST/MDS strong correlations could be achieved while
Hint2010 still reaches R = .48.

When comparing the results across databases the correlations for SD/FA and
ST/MDS stand out with R ≥ .60. The lowest correlations for female and male data
were achieved on the Hint2010 database.

For most databases both predictors achieved strong correlations even though the
four databases differ from each other inmanyways (see Sect. 6.2.2.1).When compar-
ing the results for Seget2007 and Hint2010 with the results for SD/FA and ST/MDS
it is striking that these correlations are on a lower level. The cause could be that
the first two databases contain natural speech stimuli while the others do not. This
circumstance might well have led to a relatively lower rating of the TTS stimuli in
those databases during the listening tests than if there would not have been any nat-
ural references in them. The same accounts for the various different TTS systems in
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all four databases. The combinations in each of them also influence the ratings of the
stimuli. Moreover, the average duration of the TTS signals differs strongly between
databases. Until now, a minimal required signal duration for a reasonable predic-
tion accuracy has not been determined. But it was observed that previous prediction
models showed problems with shorter signals of about 3–4s [38, 39].

Furthermore, the R2 values for both models do not account for more than 40% of
the variability in the outcome. Thus, to reliably estimate the quality of TTS systems,
additional features will be necessary.

6.2.2.2 Feature Selection and Stepwise Regression for Large-Scale
Feature Sets6

The previous section presented the development of a linear regression model on a
set of 47 extracted features. This simple process, however, can not be adopted to
large-scale feature sets. In order to conduct a linear regression analysis in such a
case, first a feature selection algorithm has to be executed to reduce the amount of
features. This section presents the development of a linear regression model based
on a set of approx. 1500 general speech features and compares its performance with
the SVR approach which was introduced in Sect. 6.2.1.1.

General Speech Features and Databases

As a basis for the quality prediction approach that will be developed, the feature
extraction algorithm described in [40] will be used. The extracted features provide
a broad variety of information on vocal expression patterns that are useful when
classifying human emotions. As depicted in [25], the inherent information is also
suitable when analyzing the quality of synthetic speech.

In the first step, the following low-level audio descriptors are extracted: pitch,
loudness, MFCCs, spectrals, formants, and intensity. Subsequently, a statistic unit
derivesmoments, extrema, linear regression coefficients, and ranges of the respective
acoustic contours. Among others, this yields features like: pitch range, maximum
value of the second formant, the mean of a Mel frequency cepstral coefficient, and
the maximum change in spectral flux.

The feature extraction was applied on the databases SD/FA and ST/MDS (see
Sects. 4.2 and 4.3) and 1495 features per file were extracted and used as an input for
the quality prediction approach. Similarities and differences of these databases that
are relevant for the discussion of the results are summarized in Sect. 4.4.

6The content of this section has previously been published in a slightly different version in [26].

http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_4
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General Cross-Validation Setup

Different CV schemes are used in order to investigate the extent to which the broad
feature pool can be exploited for quality prediction. Due to the high number of
available features, special care is advisable in order to avoid overfitting. First, random
3-fold CV [27] is used for intra-test model validation, i.e., models are trained on 2/3

of the data of a given database, and tested on the remaining 1/3 of that database.
And second, a Leave-One-Test-Out (LOTO) CV is performed. Therein, the model is
trained using one database and tested on the other (and vice versa). Thus, the results
of different auditory tests are compared on the basis of model generalization. The
CV setup introduced in Sect. 6.2.1.3 is employed for both CV schemes (see Fig. 6.3).

Three-Step Feature Selection and Stepwise Regression

This section introduces a feature selection approach which is able to cope with
extensive feature sets. Due to the differences between female and male speech and
the experience that the importance of features for quality prediction heavily depends
on the speaker gender of the stimuli [23], separate quality prediction models for each
gender were developed.

The main idea of this approach is to reduce a huge feature set via a three-step Fea-
ture Selection (FS) to a small subset (fewer than 10) while keeping enough relevant
information to be able to build an effective quality prediction model via a Stepwise
multiple linear Regression (SR). The FS-SR approach is based on the algorithm
described in [41] and can be seen in Fig. 6.5.

In a first step the Relief algorithm [42] is applied to omit irrelevant features by
a relevance ranking of all i features in the feature set. Relief finds the nearest hit
and the nearest miss for each feature xi in the set, i.e., another sample of the same
class and another sample of a different class, respectively. Subsequently, it adjusts
the relevance value r of each feature xi according to (6.12):

r = (xi − near-hiti )
2 + (xi − near-missi )

2 (6.12)

The so-called Relief-F algorithm is an adaptation of Relief for the handling of
noisy, incomplete, as well as multi-class data sets [43]. This approach utilizes the
Matlab implementation of Relief-F to retain the 12.5% most relevant features, i.e.,
187 features, for further processing.

In a second step redundancy is removed from this feature subset by applying
the k-means algorithm [44] to cluster features into groups of similar features. Ten
feature clusters are build and the feature with the highest Relief-F relevance value
is selected as a representative of each cluster. Since the k-means cluster solution is
strongly dependent on the randomly chosen starting points of the cluster centers, each
execution of k-means yields slightly different clusters and representatives. Therefore,
the occurrence of representatives throughout 2000 executions of k-means is counted
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Fig. 6.5 Three-step feature
selection and model building

and all features with an occurrence rate above 30% are selected. This reduces the
number of features below 15 throughout all databases.

In a third and final step, a stepwise multiple linear regression is applied to select
relevant features from the previous subset and to build a prediction model.

Thus, the steps Relief-F, k-means, and the stepwise multiple linear regression
from Fig. 6.5 are all part of the feature selection blocks in Fig. 6.3. Moreover, the
stepwise multiple linear regression also develops the final prediction model as shown
in the blocks model (training) and model (test). The feature normalization step is
employed prior to the Relief-F algorithm and is covered by a z-score normalization
of all features.

Results and Discussion

For comparing purposes, the SVR model which was introduced in Sect. 6.2.1 was
trained on the same data. Both models were built considering the model assessment
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Table 6.7 Performance of quality prediction models on the test sets (3-fold CV). The figures are
averaged over 500 random CV partitionings

Database Model Male Female

R RMSE R RMSE

SD/FA FS-SR .52 0.76 .48 0.78

SVR .72 0.57 .63 0.65

ST/MDS FS-SR .49 0.77 .35 0.94

SVR .75 0.68 .57 0.83

Table 6.8 Performance of quality prediction models on the test sets (LOTO CV)

Database Model Male Female

R RMSE R RMSE

SD/FA, ST/MDS FS-SR .74 0.64 .43 0.88

SVR .80 0.55 .61 0.73

techniques presented in Sect. 6.2.2.2 (3-fold CV with 500 random partitionings and
LOTO CV). The results can be seen in the Tables6.7 and 6.8.

As can be seen from Table6.7, the average correlation between auditory and
predicted MOS for the 3-fold CV varies between .35 and .75. The error range is
0.57–0.94, where theMOS ratings have been scaled to the common ACR scale [1, 5]
beforehand. Note that good predictive performance of the model is indicated by high
correlations and low error values.

Moreover, this table shows that the SVR approach outperforms the FS-SR in the
3-fold CV scenario. When comparing the results across speaker gender, both models
achieve a higher prediction accuracy for the male data.

Turning to the results of the LOTO CV in Table6.8, the correlations vary between
.43 and .80 while the error range is 0.55–0.88. Compared to the results of the 3-fold
CV, the quality prediction task with LOTOCV is more ambitious because the models
are trained on one database and tested on the other. Strikingly, the correlations for
both models with LOTO CV on the male data exceed the averaged correlations that
are achieved via a 3-fold CV. This effect applies especially for the FS-SR approach
with an average 3-fold correlation of .51 compared to a correlation of .74 in the
LOTO CV. A possible cause lies in the nature of the databases. As mentioned in
Sect. 4.4. both databases contain a very similar set of TTS systems and are thus not
completely independent. Moreover, the models built during the 3-fold CV are always
trained on only 2/3 of one database. This implicates that models in some of the 3-fold
CV loops are built on a training set that contains no stimuli of synthesizer A while
the test set contains only stimuli of synthesizer A (in extreme cases this can happen
with entire synthesizer types, e.g., no US, DI, or HMM-synthesizer). This can lead to
very low correlations in some 3-fold CV loops which affect the average correlation
of the model to a degree that occasionally makes the 3-fold CV inferior to the LOTO

http://dx.doi.org/10.1007/978-981-10-3734-4_4
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CV. Moreover, since the models in the LOTO CV are trained on the whole database
they are theoretically more stable than the models from the 3-fold CV and as a result
they can lead to better correlations on other databases.

Furthermore, it is noticeable that, compared to the 3-fold CV, the performance gap
between FS-SR and SVR for the male data is considerably smaller. Additionally, the
prediction accuracy of both models is substantially better for the male voices than
for the female.

When comparing the number of features that were used for model building, a
big difference between both models is noticable: while the FS-SR approach uses 4
features independent of CV method, the SVR models consist of over 200 features.
Furthermore, the number of features for the SVRmodels depends on the type of CV:
a 3-fold CV uses more features than a LOTO CV.

This points out that one reason for the superior performance of the SVR approach
lies in the number of selected features. With between 55 and 69 times the number
of features of the FS-SR models, the SVR models are far more comprehensive. A
second advantage of the SVR approach is the ability to model nonlinear relationships
while the FS-SR approach relies on the linear procedure of a stepwise regression.
Thus, these two facts explain most of the different prediction accuracies as seen in
the Tables6.7 and 6.8.

6.2.3 Conclusions

Two different instrumental reference-free quality prediction models have been intro-
duced in this section. First, the Fujisaki model implemented by Mixdorff [37] was
used to extract parameters for four German TTS databases with over 200 samples.
From these parameters, 47 statistical features were derived. One stepwise multiple
linear regression analysis with these features as predictors and the auditory MOS as
response variable for female and male data was conducted. Two stable models could
be constructed depending on four features for the female data and five features for
the male data. Both models have proven stable with only minor changes in R2 in a
leave-one-out cross-validation.

Pearson’s correlation coefficient between the predicted MOS and the auditory
MOS for each database and gender was computed. With the exception of the female
data from Hint2010 correlations between .48 and .75 could be reached.

Second, a feature extraction algorithm was used to extract 1495 speech features
on two subjectively evaluated TTS databases. A three-step feature selection was
employed to reduce the large set of features to a small group of features that still
covermost of the relevant information. A stepwisemultiple linear regression analysis
was performed to come up with an estimated quality score.

Two different cross validation techniques were applied: a 3-fold CV, which leads
to a high intra-test model validation, and LOTO CV, where the model is validated
through a second database and thus leads to more generalizable models.

For comparison purposes, the SVR model, which was introduced in Sect. 6.2.1.1,
was trained on the same databases.
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The correlations achieved by the FS-SR model are as high as .52 in the 3-fold CV
case, while the results for LOTO CV show a correlation of up to .74. In both cases
the performance on the male data is superior to the performance on the female data.

However, the more complex SVR models outperform the FS-SR in every case.
While for the 3-fold case the performance of SVR is clearly superior, the gap for the
male data in the LOTO CV case is considerably smaller. When comparing these
results to the results of the SVR model and the RPM which were presented in
Sect. 6.2.1 the clearly most reliable measure is still the RPM.

The superior performance of both, the SVR model and the RPM, originates from
their ability tomodel non-linear relationships and the utilization of a far larger feature
set for model building. Whether this performance is good enough to integrate such
a measure into an existing TTS system to aid during the unit selection process will
be explored in the following chapter.

6.3 Summary

In this chapter different reference-based and reference-free instrumental quality esti-
mation measures were presented. Several state-of-the-art instrumental models for
the quality assessment of distorted natural speech were tested on synthetic speech.
Neither the reference-based nor the reference-free models are helpful for the case of
synthetic speech. In the reference-based case, the main reason for this seems to be
major problems to find a correct temporal alignment between reference and synthetic
speech file. Moreover, two reference-free linear regression models were developed,
which achieved reasonable correlations on some databases. However, especially for
female TTS files, both approaches were outperformed by the more complex SVR
model and the RPM, which are able to model nonlinear relations.
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Chapter 7
Requirements for the Integration
of an Instrumental Quality Measure
into a Concatenative TTS System

In the preceding chapter, several approaches towards the instrumental quality assess-
ment for TTS signalswere displayed and correlations as high as .90 could be achieved
by the cross validated RPM. The ultimate aim for the development of such models,
however, is their integration into a TTS system, in order to further increase its quality.
If the measure is able to estimate the perceived quality of a listener with a sufficient
accuracy, it could be employed, e.g., for the selection of speech units.

This chapter explores the capabilities of the RPM as outlined in Sect. 6.2.1.2 for
the quality improvement of unit selection voices created with MaryTTS. Therefore,
the unit selection approach of MaryTTS is described and methods for the generation
of multiple versions of the same utterance are introduced (Sect. 7.2). The RPM can
then be used to choose the best of these alternatives. A listening test is conducted
to examine whether some of the generated alternative versions actually feature a
superior quality compared to the original MaryTTS output (Sects. 7.3 and 7.4). And
lastly, different RPMs are applied to estimate the quality of the synthesized speech
signals (Sects. 7.5 and 7.6) and the achieved results are used to specify requirements
for the integration of instrumental quality measures (Sect. 7.7). Thus, this chapter
addresses research question RQ5:

Which requirements does an instrumental measure need to fulfill in order to
be integrated into a TTS system?

More precisely, the following questions will be answered:

• How can the MaryTTS unit selection synthesizer be utilized to create multiple
versions for the same input text?

• Is it possible to create alternative versions with a higher quality than the original
MaryTTS output?

• Is the RPM able to automatically chose the superior version?
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7.1 Regular Perception Model (RPM)

Of all instrumental quality measures under test (see Sect. 6.2), the RPM achieved
the highest accuracy, and was therefore chosen as a quality prediction measure for
the upcoming task. In this section the training of the RPM and its attained quality
prediction accuracy are described. All models that are trained in this section will be
referred to as RPM1 later on.

7.1.1 Model Training

When the model from Sect. 6.2.1.1 was trained, its task was to predict the quality of
TTS systems which were built upon recordings of different speakers. Thus, in order
for the employed Regular Perception Ranges (RPRs) to be most comprehensive,
they were extracted from various natural speakers. Therefore, a set of about 6min
duration of different German speakers from the Kiel Corpus [1] was selected for the
RPR identification. From now on, this RPR will be referred to as “a”.

In the current case, however, the task of the RPM is to predict the quality of only
one system that employs one specific speaker. Thus, RPRswere also extracted from a
set of approximately 6min duration, from the recordings that were used for the voice
creation. This RPR will be referred to as “b”. For comparing purposes, separate
models were trained on a and b.

The already subjectively evaluated database of MaryTTS unit selection voices
from Sect. 5.3 was chosen for model training. An overview of the characteristics of
this data set is given in Table7.1. Besides featuring unit selection voices of different
corpus sizes, and thus TTS signals of a wide range of quality, the unit selection
voices that will be developed in the following section also employ the same speech
corpus. Therefore, this database seemed to be an ideal training set for the instrumental
measure.

In order for RPM1 to give a comprehensive impression of the quality of the
estimated TTS signals, separate RPMs were trained on all of the five perceptual
quality dimensions (NOV, PQ, FAI, AOD, and C).

Following the CV setup introduced in Sect. 6.2.1.3, a 3-fold CV with 500 random
CVpartitioningswas employed formodel training. All in all, 10models were trained,
five employing a and five emplyoing b.

7.1.2 Results

The achieved averaged correlations R between estimated and subjectively evalu-
ated values of each quality dimension for the database from Sect. 5.3 are shown in
Table7.2. Moreover, absolute and relative differences between the models trained

http://dx.doi.org/10.1007/978-981-10-3734-4_6
http://dx.doi.org/10.1007/978-981-10-3734-4_6
http://dx.doi.org/10.1007/978-981-10-3734-4_5
http://dx.doi.org/10.1007/978-981-10-3734-4_6
http://dx.doi.org/10.1007/978-981-10-3734-4_5
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Table 7.1 Characteristics of the data used for RPM1 training

Table 7.2 RPM1 performance on the training data (Table7.1)

RPM1a RPM1b Absolute Difference Relative Difference

R RMSE R RMSE R RMSE R RMSE

NOV .75 6.88 .82 6.06 0.08 −0.83 10.26% −12.00%

PQ .79 6.21 .84 5.55 0.05 −0.66 6.48% −10.70%

FAI .68 12.28 .78 10.82 0.09 −1.46 13.90% −11.90%

AOD .73 7.50 .81 6.64 0.08 −0.86 10.52% −11.42%

C .65 4.79 .74 4.33 0.08 −0.46 12.53% −9.59%

Mean value .72 7.53 .80 6.68 0.08 −0.85 10.73% −11.12%

Note RPM1a indicates RPM1 trained employing a and RPM1b indicates RPM1 trained
employing b

on a and b are given. For the interpretation of the corresponding RMSEs it has to be
stated that the dimension values range from 0 to 100.

RPM1 achieves a mean correlation over all dimensions of .72 and .80 for RPM1a
and RPM1b, respectively. Thus, an average increase of over 10% can be stated for
the model, when trained on the RPR that was extracted from the speaker of the actual
TTS voice. In fact, an increase in prediction accuracy can be noted for every single
dimension. Therefore, RPM1 performs better if the RPR of the extracted features
can be computed upon natural speech data that is spoken by the same speaker as the
to be estimated TTS data.
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To check if the performance can be further improved when the data for RPR
computation increases, a set of about one hour of speech material, from the corpus
the voice is built upon, was selected for RPR identification (“c”). Another RPM
was trained (3-fold CV with 500 random CV partitionings) utilizing c, but no further
improvements could be noted.

Overall, when comparing the achieved average correlations with the ones of the
RPM fromTable6.3, a slightly lower correlation for NOVand FAI on the present data
set was found. This however, could have been caused by the different CV method,
which influences the correlations, as shown in Sect. 6.2.2.2.

7.2 Unit Selection Voice Creation in MaryTTS

This section illustrates the unit selection voice creationwithMaryTTS. Therefore, the
employed natural speech database is described, the utterances that were synthesized
are introduced, and different approaches for the generation of multiple versions of
the same utterance within MaryTTS are presented.

7.2.1 Test Database

The current study extends research that was presented in Sect. 5.3 and aims at further
improving unit selection voices generated byMaryTTS. Therefore, the same record-
ings of a professional German speaker serve as a basis for the creation of two unit
selection voices.

7.2.1.1 TTS Systems

This study aimes at creating one high quality and one lowquality voice and at improv-
ing both of them by employing the RPMs trained in the previous section. Considering
the findings of Sect. 5.3.2, two different subsets were chosen for voice building: a
corpus size with an overall duration of 6:31h and one with 2:10h, corresponding to
voice B andD (see Table5.14), respectively. Both speech corpora consist of files con-
taining names, addresses, names of places and countries, abbreviations, directions,
numbers, and short sentences mainly containing news content.

Again, MAUS [2, 3] was used to align text and audio. All recordings were down-
sampled to 16kHz sampling rate due to the prerequisites of MaryTTS.

http://dx.doi.org/10.1007/978-981-10-3734-4_6
http://dx.doi.org/10.1007/978-981-10-3734-4_6
http://dx.doi.org/10.1007/978-981-10-3734-4_5
http://dx.doi.org/10.1007/978-981-10-3734-4_5
http://dx.doi.org/10.1007/978-981-10-3734-4_5
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7.2.1.2 Speech Material

In comparison to the study presented in Sect. 5.3, this time, shorter utterances were
selected for synthesis. This is due to two factors: first, the synthesized files should
be assessed in a PC test which requires stimuli of a short duration in order to be
feasible for the test participants. Secondly, due to the procedure of generating alter-
native versions of each utterance, which will be explained in the following section,
degradations in the signal (and thus a decline in quality) are more likely for stimuli
of a longer duration.

Utterances were again chosen from the EUROM.1 spoken language resource
database [4]. In order for RPM1 to be completely independent from its training data,
only utterances that were not part of the study in Sect. 5.3 were selected. Utterances
that exceeded a synthesized duration of 5 s were shortened to their main clauses. All
95 utterances were synthesized with the voices B and D; the average duration of all
created speech files is 3.5 s.

7.2.2 Generation of Alternative Versions

Up to now, this section described the generated MaryTTS unit selection voices and
the utterances that are to be synthesized. In order for the RPM1 to help to improve
the quality of the generated speech, methods for the generation of multiple versions
of the same utterances have to be developed. RPM1 can then be applied to chose the
one with the highest estimated quality.

Before these approaches are introduced, the process of unit selection within
MaryTTS will be illustrated. The unit selection procedure of MaryTTS is based on
diphone units. Thus, the word “ball”, which transcribes to bQl in SAMPA notation,
consists of the following diphones: -b, b-Q, Q-l, l-.1

An illustration of the unit selection process for the generation of the word “ball”
can be seen in Fig. 7.1. Here, the algorithm has to chose between i candidates for the
diphone -b, j candidates for the diphone b-Q, etc. Thus, considering that there were
10 candidates available for each diphone, this would lead to 104 possible paths just
for the word “ball”. In order to not track every single path until the end, MaryTTS
only keeps track of the last two diphones. Thus, when looking for candidates for the
diphoneQ-l, the decision for the diphone -b gets fixed and only paths from this fixed
diphone will be considered from there on.

The decision for one candidate over the others is based upon the costs for these
units. As introduced in Sect. 2.1.4.2, a unit selection synthesizer choses a unit with
the objective to minimize target and join costs. By default, MaryTTS choses the
candidate with the lowest costs. Thus, alternatives can be created by not selecting
the candidate with the lowest costs, but the one with the second, third, or forth lowest
cost. This leads to the generation of three alternative versions.

1-b and l- mark the starting and ending sounds of the word bQl.

http://dx.doi.org/10.1007/978-981-10-3734-4_5
http://dx.doi.org/10.1007/978-981-10-3734-4_5
http://dx.doi.org/10.1007/978-981-10-3734-4_2
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Fig. 7.1 Unit selection for
the word bQl
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The default weights for these costs in MaryTTS are: target costs = 0.7 and join
costs = 0.3. Therefore, by emphasizing either target or join costs, different signals
can be generated. In order to generate signals that clearly differ from the default
MaryTTS output, two alternatives were created by weighting target or join costs
with a factor of 0.99.

Thus, MaryTTS was assigned to generate the following six versions for each
utterance:

• default output (target costs = 0.7, join costs = 0.3)
• second best path (target costs = 0.7, join costs = 0.3)
• third best path (target costs = 0.7, join costs = 0.3)
• fourth best path (target costs = 0.7, join costs = 0.3)
• best path (target costs = 0.99, join costs = 0.01)
• best path (target costs = 0.01, join costs = 0.99)

After the generation of all six versions of each utterance, RPM1 was applied
to estimate the quality in each dimension. However, expert listening (four expert
listeners from the Quality & Usability Lab of the TU Berlin) showed that RPM1 is
not able to reliably select the best version of a set of six files.

Considering that in most cases the alternative would actually degrade the quality,
due to not choosing the best path or unbalancing the ratio between target and join
costs, it is not clear whether any of the alternatives feature a superior perceptual
quality. To find out whether this is the case, 36 alternatives that exhibited improve-
ments to expert listeners (six expert listeners from the Quality & Usability Lab of
the TU Berlin) and their corresponding default version, were selected for a listening
test which is described in the next section.



7.3 Experimental Setup 131

7.3 Experimental Setup

This section depicts the auditory assessment of original and alternative versions
through pairwise comparison testing and a semantic differential.

7.3.1 Pairwise Comparison (PC)

In the PC test, participants were instructed to compare the original version of a
stimulus with its alternative. By directly comparing two perceptual impressions,
even smaller deviations in quality were expected to be observable compared to the
SD task.

Therefore, pairs of stimuli (X andY), an original and its corresponding alternative,
were presented within a Matlab GUI. Then the participants had to decide on one of
the six categories shown in Fig. 7.2.

Equally distributed values (ranging from −2.5 to 2.5) were assigned to each
category.

7.3.2 Semantic Differential (SD)

The objective of the assessment via an SD was to identify perceptual differences in
multiple dimensions between the original and its corresponding alternative version.
In order to get a comprehensive impression of the listeners perception, the following
quality dimensions were captured through the assigned attribute scales as introduced
in Sect. 4.5:

• Naturalness of Voice (NOV): voice pleasantness
• Prosodic Quality (PQ): stress
• Fluency and Intelligibility (FAI): intelligibility
• Absence of Disturbances (AOD): disturbances

Dimension C was not included in this study due to its low importance, especially
for the evaluation of files that all stem from the same TTS system. Moreover, a scale
covering the overall impression (OIMP) of the listeners was included.

Fig. 7.2 The six categories from the PC task

http://dx.doi.org/10.1007/978-981-10-3734-4_4
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7.3.3 Test Procedure

Thrity-two naïve participants (15 female, 17 male) aged 20 to 33 (μ = 26.47 σ =
3.15) were invited to take part in the listening test. All of them were native German
speakers and were paid for their participation. The stimuli were presented via head-
phones (AKG K601) and a high-quality sound device (Roland Edirol UA-25) in a
sound proof booth. The test was designed within subjects, i.e., all participants rated
all stimuli.

The listening test consisted of three parts. At first, each participant was instructed
to complete the PC task. The other two parts consisted of rating the stimuli from part
1 on the attribute scales introduced in Sect. 7.3.2. Stimuli were presented within a
Matlab GUI, where ratings could be given on a continuous scale ranging from 0 to
100. To avoid any impact with regard to the order of the scales or the order of the
stimuli, both the sequence of scales and the playlist of the stimuli were randomized
between subjects.

To avoid listener fatigue, a 5min break had to be taken after every part.

7.4 Statistical Analysis

In this section, the data gathered in the listening test is statistically analyzed with
the objective to find out whether the selected alternative versions were perceived as
being superior, compared to the original MaryTTS version.

Prior to the execution of any statistical methods, the ratings of all test participants
were screened for plausibility. Therefore, separate boxplots, featuring the ratings
from the PC and the SD task, were created for all stimuli. The PC ratings of three test
participants had more than 10% outliers (4 or more outliers out of 36 given ratings)
and were thus excluded from the study. Moreover, the data of three participants from
the SD task had to be excluded due to more than 5% outliers ratings (18 or more
outliers out of 360 given ratings).

7.4.1 PC Data

To checkwhether the selected alternative versionwas favored over the original, t-tests
for each of the comparisons were computed. The results are shown in the Tables A.1
and A.2 for the files synthesized by voice B and D, respectively. Twenty-four of the
thirty-six alternatives were perceived as significantly better than the original.
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Table 7.3 Significant
improvements detected in PC
and SD

significant improvements

absolute relative

PC 24 66.7%

OIMP 24 66.7%

NOV 19 52.8%

PQ 18 50.0%

FAI 24 66.7%

AOD 21 58.3%

7.4.2 SD Data

In order to gain insight into the improvements in each dimension, t-tests for the ratings
on each attribute scale for all files were conducted. The detailed results are shown in
the Tables A.3–A.38. Twenty-four alternatives achieved significantly higher scores
for the overall impression as well as the FAI dimension.

7.4.3 Discussion

A summary of the analysis of both, the results of the PC and the SD, is shown in
Table7.3. Two surprising resultswere found: firstly, even though the PCwas expected
to be a simpler task for the participants due to the direct comparison of two stimuli,
an equal number of improved stimuli were found in the SD for the scales OIMP and
FAI. And secondly, although most of the significant improvements that were found
for the PC data, overlap with the findings for the scales OIMP and FAI, this is not
always the case. For example, for file 4 a significant improvement could be verified
in the PC task (Table A.1), while no significant improvement was found for any of
the attribute scales (Table A.6). The same effect was found in the opposite direction:
file 23 was perceived as superior in the OIMP and the dimensions NOV, PQ, and
FAI (Table A.25), while no improvement was found in the PC task (Table A.1).

7.5 Quality Prediction

This section examines the quality prediction performance for RPM1 and trains a new
model (RPM2) on the data from the listening test conducted earlier in this chapter.
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Table 7.4 Mean estimated
and subjective scores

mean score estimated mean subjective

by RPM1b score

NOV 30.07 45.18

PQ 31.81 42.64

FAI 36.40 59.55

AOD 27.76 42.05

7.5.1 RPM1 Performance

The previously trained RPM1 was employed to estimate the quality of the files from
the SD task of Sect. 7.3. However, RPM1 only achieved correlations between .06
and .09 for all assessed dimensions. This poor performance is also reflected in a
severe underestimation of the scores in all dimensions, as shown in Table7.4. These
results also explain why RPM1 was not able to help during the selection process of
alternatives in Sect. 7.2.2.

As previous studies have shown [5], quality estimation of TTS files with a short
duration (<5s) is a very challenging task. Therefore, one reason for the poor perfor-
mance could be the difference in duration between the files RPM1 has been trained
on (duration: 8 s) and the files that were assessed in the listening test (duration: 3.5 s).

7.5.2 RPM2 Training

In order to master this task, a new model (RPM2) was trained on the data from
this listening test (see Table7.5). Again, different models for the RPRs a and b
were trained and a 3-fold CV with 500 random partitionings was employed for
model training. Table7.6 lists the correlation R and the RMSE averaged over all CV
partitionings. Just as for RPM1 (see Table7.2), an increase in prediction accuracy
can be stated for the models employing b. This time, however, the average increase,
compared to the models utilizing a, is only around 8%. Also, in comparison to the
performance of RPM1 on the data from Table7.2, a decrease of the averaged Pearson
correlation coefficient of .09 and .12 for themodelsRPM2a andRPM2b, respectively,
could be noted. This is, as stated before, most likely due to the very short duration
of the estimated TTS files.

7.5.3 RPM2 Performance

To test the performance of the newly trained RPM2b, a set containing partly unseen
data was compiled. This set comprises:
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Table 7.5 Characteristics of the data used for RPM2 training

Table 7.6 RPM2 performance on the training data (Sect. 7.3.2)

RPM2a RPM2b Absolute Difference Relative Difference

R RMSE R RMSE R RMSE R RMSE

OIMP .66 7.15 .65 7.15 0.00 0.00 −0.69% 0.03%

NOV .64 6.40 .72 5.77 0.08 −0.62 13.24% −9.76%

PQ .56 9.00 .63 8.41 0.07 −0.58 12.66% −6.49%

FAI .66 7.90 .71 7.48 0.04 −0.42 6.59% −5.31%

AOD .63 7.84 .69 7.36 0.06 −0.48 8.81% −6.14%

Mean value .63 7.65 .68 7.23 0.05 −0.42 8.12% −5.54%

Note RPM2a indicates RPM2 trained employing a and RPM2b indicates RPM2 trained
employing b

• the alternatives with significantly improved quality, as identified by the SD listen-
ing test (see Table7.3),

• their corresponding original MaryTTS output,
• and the other four alternatives that were not part of the test.

RPM2bwas then used to estimate the OIMP and the scores of the four dimensions
of each of the six versions of an utterance (the original and the five alternatives),
with the objective to find out, whether RPM2b would select the alternative from the
listening test over the other files. Table7.7 highlights how often RPM2b rated the
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Table 7.7 RPM2b selection success

OIMP NOV PQ FAI AOD

RPM2b selection success 71% 68% 56% 71% 76%

alternative version from the test as the best version from the set of six files. Thus,
RPM2b achieves a selection success of over 70% for the OIMP and the dimensions
FAI and AOD.

However, since there are no subjective ratings available for the four alternatives
that were not part of the test, it has to be stated that the alternative version from the
listening test is not necessarily the best of all alternatives. Therefore, even files that
RPM2b preferred over the original and the alternative form the test, could feature
a higher perceptual quality than the original. Thus, the scores from Table7.7 might
actually be higher.

7.6 Automatic Selection of Alternative Versions

This section examines the use of RPM2b on completely unseen data and investigates
whether RPM2b can be employed to improve MaryTTS.

Therefore, 200 utterances from the Kiel Corpus [1] (Berlin and Marburg sen-
tences) were selected for synthesis by voices B and D. MaryTTS was used to gen-
erate the original output as well as the five alternatives described in Sect. 7.2.2. The
average duration of all generated TTS files is 2 s.

Then, RPM2b estimated the OIMP and the scores of the first four dimensions.
Due to the low average correlation of .68 (see Table7.6), only files that reached
ratings, 20% above the original in three of the five estimated values, were consid-
ered as improved output. This happened in 80 out of the 400 cases (200 utterances
synthesized by voice B and D).

Subsequently, three expert listeners from the Quality & Usability Lab of the
TU Berlin evaluated the selected alternatives in a PC task to check for perceptual
improvements.While some of the alternatives reached a superior quality, themajority
featured partly critical distortions that degraded the perceived quality. Therefore,
even though some improvements could be achieved in the present case, the severe
degradations that are part of some of the selected files, prevent the application of
RPM2b as a reliable quality measure for TTS data of short duration.
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7.7 Potential Improvements

When looking back at the performance of the RPM on different databases (see
Tables6.3 and 7.2) an average correlation of over .80 can be observed. However,
when the model is applied to TTS files of a shorter duration (3.5 s), the correlations
drop significantly (see Table7.6). Nonetheless, it was assumed that a model that is
trained on data of shorter duration, would still be able to estimate the quality of
shorter files (2 s) with a sufficient accuracy. The results from the previous section,
however, show that this is apparently not the case.

Therefore, in a next step, theRPMshould be tested on files of around 10s duration.
Until now, there were two factors that prevented further research in this direction:

1. To detect significant differences between original and alternative, a PC task,which
required short stimuli, was part of the conducted experiment (Sect. 7.3).

2. The approach for generating alternative versions is more likely to lead to degra-
dations for longer stimuli (Sect. 7.2.2).

The analysis of the data gathered by the SD (Table7.3) showed that some of the
attribute scales are able to detect the same amount of significant differences, between
original and alternative, as the PC task. Thus, assessing the quality of original and
alternative only via attribute scales is now a real option.

Therefore, only the second limiting factor still holds. To overcome it, newmethods
for the generation of alternatives, which are less likely to lead to degradations, have
to be established. Unit selection synthesis, however, can only be influenced in a
limited number of ways, i.e., by changing the emphasis of join and target costs and
by choosing different paths during unit selection. However, both techniques were
exploited in this chapter. Therefore, other synthesis methods like HMM synthesis,
which allow an easy adjustment of voice characteristics, should be explored in the
future.

7.8 Summary

In this chapter, the RPM was applied to improve the quality of MaryTTS unit selec-
tion voices. First, methods for the creation of multiple versions of one utterance
in MaryTTS were introduced. A listening test showed that some of the generated
alternatives feature a higher quality than the default output of MaryTTS. The RPM
was trained on this data and achieved correlations of around .68 over all dimensions.
Nonetheless, the RPM was not able to accurately estimate the quality of a different
set of TTS files. This is, however, probably attributed to the fact that the generated
stimuli only featured a duration of around 2s. As observed beforehand, TTS data of
such a short duration complicates the prediction task immensely.

http://dx.doi.org/10.1007/978-981-10-3734-4_6
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The main findings of this chapter are:

• The accuracy of the RPM can be increased, when the RPRs are computed based
upon the natural speaker, the to be estimated TTS files are generated from.

• A small set of around 6min of natural speech is sufficient for RPR computation.
• The introducedmethods for the generation of alternative versionswithinMaryTTS
can lead to an improved quality.

• The RPM is not able to predict the quality of short files (duration < 4s) with a
sufficient accuracy.
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Chapter 8
Conclusions and Future Work

This chapter summarizes the findings of this book, answers the research questions
introduced in Chap.1, and gives an outlook on future work.

8.1 Summary

The research presented in this book focused on the perceptual quality of synthetic
speech. The constant improvement of TTS quality and the popularity of smartphones
and their intelligent personal assistants like Siri, Cortana, and Google Now, made
synthetic speech accessible to a multitude of people.

The theoretical background for this book is provided in the Chaps. 2 and 3. First,
Chap. 2 gave an introduction into speech synthesis. A general setup of a TTS system
was introduced and different approaches towards speech signal generation were dis-
cussed, e.g., parametric, concatenative, and statistical parametric speech synthesis.
The resulting perceptual impression of these systems was examined and reasons for
degradations in the generated speech signals were highlighted. Characteristic degra-
dations like noise, for example, induce different perceptual impressions. As a result,
the quality of synthetic speech is of multidimensional nature. Furthermore, the open
source speech synthesis system MaryTTS was introduced.

In Chap.3, the concept of perceptual quality was introduced and relating terms
were specified. A taxonomy for the quality assessment of synthetic speech high-
lighted the four fundamental dichotomies: glass box versus black box, laboratory
versus field studies, linguistic versus acoustic testing, and instrumental versus. audi-
tory assessment. Furthermore, functional tests were introduced that are able to assess
intelligibility on word and sentence level and a section concerning judgment tests
proposed two different approaches towards multidimensional quality assessment:
a Semantic Differential (SD) measures quality via pre-defined attribute scales and
a Pairwise Comparison (PC) test evaluates the perceptual distance between pairs
of stimuli. Additionally, different instrumental measures that are used for quality
estimation of natural speech degraded by telephone channels were introduced.
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In the following, Chap.4 gave an overview of state-of-the-art studies concerning
perceptual quality dimensions of synthetic speech. Moreover, two experiments were
conducted that derived perceptual quality dimensions via anSDandFAand anSTand
MDS. An overview of all results was given and five perceptual quality dimensions
were derived that can be seen as universal. Subsequently, an evaluation protocol was
constructed that links two attribute scales to each of these dimensions. Subsequently,
Chap. 5 presented research towards factors influencing these quality dimensions:
(i) the perceptual quality of TTS audiobooks was examined, (ii) the influence of
speaker’s voice was investigated, and (iii) the influence of the size of the speech
corpus was analyzed. In the following, Chap.4 gave an overview of state-of-the-art
studies concerning perceptual quality dimensions of synthetic speech.Moreover, two
experiments were conducted that derived perceptual quality dimensions via an SD
and FA and an ST andMDS. An overview of all results was given and five perceptual
quality dimensions were derived that can be seen as universal. Subsequently, an
evaluation protocol was constructed that links two attribute scales to each of these
dimensions. Subsequently, Chap.5 presented research towards factors influencing
these quality dimensions: (i) the perceptual quality ofTTSaudiobookswas examined,
(ii) the influence of speakers voice was investigated, and (iii) the influence of the size
of the speech corpus was analyzed.

Exploring the possibilities of instrumental quality assessment, Chap. 6 first exam-
ined the use of reference-based quality measures that are commonly used for qual-
ity estimation of telephone coded speech signals and then covered reference-free
approaches. More precisely: linear regression models were developed and their per-
formance was compared with the performance of nonlinear state-of-the-art models.

Finally, Chap. 7 presented research towards the integration of the aforementioned
models into a TTS systemwith the objective to improve its quality. Differentmethods
for the generation of multiple versions of the same utterance were introduced, a
listening test was conducted to prove that alternative versions can feature a superior
quality compared to the default output, and the RPMwas employed to automatically
select alternative versions. The study concluded with suggestions towards potential
improvements of this approach.

8.2 Conclusions

This section concludes the findings of this book by answering the research questions
posed in Chap.1.

RQ1 Which perceptual quality dimensions are relevant for state-of-the-art TTS sys-
tems?

The studies presented in Chap.4 revealed the following five perceptual quality
dimensions:

http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_5
http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_5
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http://dx.doi.org/10.1007/978-981-10-3734-4_4
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• Naturalness of Voice (NOV) indicates whether a listener imagines the voice
being produced by a human or a machine.

• Prosodic Quality (PQ) assesses the prosody of TTS systems.
• Fluency and Intelligibility (FAI) captures segmental artifacts that can occur
when concatenating speech units.

• Absence of Disturbances (AOD) measures the amount of disturbances, e.g.,
noise and hiss, in the signal.

• Calmness (C) quantifies whether the voice sounds relaxed and calm or rather
stressed and restless.

It has to be noted that these dimensions were derived from TTS stimuli of a short
duration (<15s) and are therefore primarily significant for applications like short
message readers, information systems, or smart-home assistants. Moreover, the
dimensions can also only account for the quality of speech generated by FO, DI,
US, or HMM systems.

RQ2 How should a listening test be designed in order to capture all relevant quality
dimensions?

The findings of Chap. 4 led to the creation of a test protocol in Sect. 4.5.6 that
is able to assess all five quality dimensions. An SD was constructed that links
two attribute scales to each of the dimensions:

• NOV:

– Voice pleasantness: unpleasant voice versus pleasant voice
– Naturalness: artificial versus natural

• PQ:

– Stress: unnatural stress versus natural stress
– Rhythm: unnatural rhythm versus natural rhythm

• FAI:

– Intelligibility: unintelligible versus intelligible
– Fluency: interrupted versus fluent

• AOD:

– Disturbances: disturbed versus undisturbed
– Noise: noisy versus not noisy

• C:

– Speed: slow versus fast
– Tension: tense versus calm

Moreover, in order for the test participants to be able to observe all quality features,
a minimum stimulus duration of 5 s was recommended. Furthermore, to simplify

http://dx.doi.org/10.1007/978-981-10-3734-4_4
http://dx.doi.org/10.1007/978-981-10-3734-4_4


142 8 Conclusions and Future Work

the task of differentiating between stimuli of an either very good or very bad
quality, scales should feature separate scale and end points as shown in Fig. 3.3.

RQ3 Which factors influence these perceptual quality dimensions?

Chapter5 explored the influence of three factors on the perceptual quality:

• The application the TTS system is used in:

When synthesizing passages of a longer duration, e.g., audiobooks, the
importance of the quality dimensions shift. A test protocol was developed
for the quality assessment of TTS in audiobook listening tasks that covers
the following two dimensions:

– The listening pleasure comprises the voice pleasantness and the overall
impression of the listener.

– The dimension prosody is linked to intonation, stress, emotion and speech
pauses.

A factor covering the content appreciation could also be identified, but was
excluded due to its lack of influence on the overall impression.

It has to be noted that these dimensions do not contradict the findings for
RQ1. The resulting set of only two dimensions can be caused by the different
application the TTS systems are used in (stimuli with a duration of around
50s were assessed) and might also be due to the fact that the employed TTS
systems were of a high quality, e.g., no FO systems were included.

• The voice of the speaker that was used to record the speech corpus:

A factor analysis revealed the following four factors:

– Factor 1 comprises the dimensions NOV, PQ, and FAI.
– Factor 2 could be linked to the dimensions AOD and C.
– Factor 3 gathers scales that assess resonance and pitch variation.
– Factor 4 consists of the attribute scales pitch and darkness.

Therefore, factor 4 could be linked to the pitch and the spectral center of
gravity of the speaker. The interpretation of factor 3, however, could not be
clarified completely.

Furthermore, it could be shown that some of the voices under test differed
significantly concerning the overall impression and the factors 1, 2, and 4.
Thus, the voice of a speaker of a corpus-based TTS system greatly influences
the perceived quality of the system. Therefore, the selection of a speaker is
a crucial task.

http://dx.doi.org/10.1007/978-981-10-3734-4_3
http://dx.doi.org/10.1007/978-981-10-3734-4_5
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• The size of the speech corpus and the to be synthesized utterance:

– A significant effect of the size of the speech corpus was found on all
five dimensions. The highest effect was found for the dimension FAI and
the lowest for PQ. Surprisingly, the voice with the second largest speech
corpus reached the highest rating in most dimensions. However, the cause
of this effect could not be resolved completely.

– A significant effect of the to be synthesized utterance was found on the
first four dimensions. Thus, some utterances were an easier synthesis task
than others. Moreover, the synthesized utterance can affect dimensions
differently, i.e., this can lead to higher scores in one dimension while
achieving lower scores in another.

– A significant interaction effect corpus size*utterance was found for all
five dimensions. It could be shown that the quality in all dimensions does
not always incrementally increase with corpus size, e.g., some utterances
reach their highest quality rating at lower corpus sizes and the quality of
some even decreased towards larger corpus sizes.

RQ4 How can the quality of synthetic speech be assessed by an instrumental mea-
sure?

Chapter6 examined the application and development of reference-free and
reference-based instrumental quality measures.

• The existing reference-based measures PESQ, DIAL, and POLQA were
employed for quality estimation of TTS signals. However, none of these
models were able to estimate the quality of synthetic speech. The main
reason seems to be an inaccurate temporal alignment between reference and
TTS signal.

• Multiple reference-free measures were employed to estimate TTS quality:

– A linear regression model, based on features derived from the Fujisaki
model, was developed and led to average correlations of .45 and .60 for
female and male files, respectively.

– A three step feature selection was used to select relevant and non-
redundant features out of a large scale feature set for model building.
A linear regression model was trained and achieved correlations of .43
and .74 in a LOTO CV setup for female and male files, respectively.

– A more precise estimation can be attained by employing nonlinear mod-
els. Especially the RPM achieved promising correlations of up to .90.

RQ5 Which requirements does an instrumental measure need to fulfill in order to
be integrated into a TTS system?

This RQ was addressed in Chap.7.

http://dx.doi.org/10.1007/978-981-10-3734-4_6
http://dx.doi.org/10.1007/978-981-10-3734-4_7
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• Methods for the generation of multiple versions of one utterance for
MaryTTS unit selection voices were introduced.

• A listening test has shown that some alternatives reach a significantly higher
quality than the default MaryTTS output.

• The accuracy of the RPM could be increased by up to 10% by employ-
ing natural speech data for RPR computation that was spoken by the same
speaker as the to be estimated unit selection voice.

• However, the estimated quality values that were provided by the RPM could
not help to select alternatives that feature a superior quality. This seems to
be mainly attributed to difficulties in estimating the quality of TTS data of
a short duration (<4s).

• Exploring the applicationofHMMsynthesis for a simpler creationof alterna-
tive versions was suggested as one way to generate high quality alternatives
with a duration of over 4 s.

8.3 Future Work

This section presents futurework in the threemain research areas that were addressed
in this book.

8.3.1 Perceptual Quality Dimensions

While the first three dimensions (NOV, PQ, and FAI) appeared in most of the exam-
ined studies, the dimensions AOD and C could only be derived from the two experi-
ments presented in Chap.4. However, a significant impact on the overall impression
could be identified in both cases. Therefore, a next step should concentrate on exam-
ining the influence of these dimensions on other TTS databases.

Furthermore, the studies towards perceptual quality dimensions of synthetic
speech presented in this book focused on German and English TTS voices and there-
fore only covered Germanic languages. The importance of the derived dimensions,
however, may shift in other languages of the Indo-European language family and
will most likely change for tone languages like Mandarin or Thai. Thus, in a next
step, research should be expanded towards other language families.

8.3.2 Influencing Factors

The currently examined use case of TTS in audiobook reading tasks revealed two
perceptual quality dimensions. The deviation from the results of studies examining
the application of TTS in, e.g., short message readers, is not surprising, however,

http://dx.doi.org/10.1007/978-981-10-3734-4_4


8.3 Future Work 145

research could investigate whether a third dimension that also affects the overall
impression, can be derived.

Moreover, recent research just started to explore the use ofTTS inkids audiobooks.
Given the simpler content of audiobooks targeted at an age group between 5 and
10years and the intended vivid speaking style of the narrator, this does not only
require new approaches towards quality assessment due to, e.g., limited reading
skills and therefore a limited ability to read a questionnaire, but might also result in
different perceptual dimensions.

The study on the influence of a speaker’s voice on the perceptual quality yielded
four factors from which the first two could clearly be linked to the five perceptual
quality dimensions. The interpretation of the other two, especially factor 3, however,
wasmore vague. Therefore, acoustic correlates of these factors should be investigated
to support their interpretation.

Exploring the influence of the size of the speech corpus for unit selection voices
within MaryTTS lead to the surprising discovery that the voice built from the second
largest speech corpus was rated best in almost all dimensions. The cause of this
unexpected result should be investigated more thoroughly. Therefore, join and target
costs in each step of the unit selection process of voice A and B should be compared
and deviations have to be explored.

8.3.3 Instrumental Quality Measurement

The poor results of the reference-based quality measures is most likely attributed
to an inaccurate temporal alignment between reference and synthetic speech signal.
Employing a dynamic time warping algorithm that is able to handle more extreme
conditions than the time warping algorithm included in POLQA, could solve this
problem.

The estimation accuracyof reference-freemodels reached correlations of up to .90.
However, training algorithms on larger databases could even increase their accuracy
and, moreover, also generate a more universal model.

Different obstacles were encountered during the attempt to use the RPM to
improve the quality of MaryTTS unit selection voices. Future research should
(i) pursue the current approach by generating a larger set of alternatives. This can
be achieved by, e.g., choosing the second, third, or fourth best diphone only once
in each synthesis process. By repeating the selection process until the second, third,
and fourth best diphone have been chosen once at each possible point, leads to a set
of possibly hundreds of different versions (depending on the length of the utterance).
Then the predictor could chose from this large set of alternatives that most likely
contains files of a higher quality than the set of five alternatives created in Chap.7.
And (ii) the possibilities of other synthesis approaches like HMM synthesis could
be explored. The ability for simple adjustments in voice characteristics seems to be
a promising approach for the generation of alternative versions.

http://dx.doi.org/10.1007/978-981-10-3734-4_7
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Statistical Analysis of Chap. 7

A.1 Results of the PC Test

Table A.1 Results of the t-test for voice B for the PC data

File Voice Test Value = 0

t df Sig. Mean Interval of the

(2-tailed) Difference Lower Upper

1 B 8.430 28 .000 1.328 1.005 1.650

2 B 3.008 28 .006 0.603 0.192 1.014

3 B −1.976 28 .058 −0.397 −0.808 0.014

4 B 2.897 28 .007 0.466 0.136 0.795

5 B 4.353 28 .000 0.776 0.411 1.141

6 B 10.858 28 .000 1.328 1.077 1.578

7 B 4.921 28 .000 0.707 0.413 1.001

8 B 10.239 28 .000 1.431 1.145 1.717

9 B −0.858 28 .398 −0.155 −0.526 0.215

10 B 5.008 28 .000 0.914 0.540 1.288

11 B 3.684 28 .001 0.466 0.207 0.724

12 B 1.647 28 .111 0.328 −0.080 0.735

13 B −1.378 28 .179 −0.293 −0.729 0.143

14 B 7.405 28 .000 1.293 0.935 1.651

15 B 5.069 28 .000 0.845 0.503 1.186

16 B 3.691 28 .001 0.845 0.376 1.314

17 B 4.122 28 .000 0.638 0.321 0.955
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Table A.2 Results of the t-test for voice D for the PC data

File Voice Test Value = 0

t df Sig. Mean Interval of the

(2-tailed) Difference Lower Upper

18 D 0.793 28 .435 0.121 −0.191 0.433

19 D 1.361 28 .184 0.259 −0.131 0.648

20 D 5.791 28 .000 0.741 0.479 1.004

21 D 0.118 28 .907 0.017 −0.281 0.316

22 D 18.331 28 .000 1.948 1.731 2.166

23 D 1.258 28 .219 0.224 −0.141 0.589

24 D 6.076 28 .000 0.983 0.651 1.314

25 D 6.108 28 .000 0.879 0.584 1.174

26 D −0.273 28 .787 −0.052 −0.440 0.337

27 D 4.505 28 .000 0.845 0.461 1.229

28 D 2.906 28 .007 0.431 0.127 0.735

29 D 7.839 28 .000 0.914 0.675 1.153

30 D 10.686 28 .000 1.500 1.212 1.788

31 D 8.573 28 .000 1.086 0.827 1.346

32 D 3.048 28 .005 0.534 0.175 0.894

33 D 1.056 28 .300 0.190 −0.178 0.558

34 D 9.001 28 .000 1.293 0.999 1.587

35 D 1.817 28 .080 0.397 −0.051 0.844

36 D −0.720 28 .478 −0.121 −0.464 0.223

A.2 Results of the SD

Table A.3 Results of the t-test for the SD test of file 1

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −22.724 −28.690 −16.758 −7.802 28 .000

NOV −21.103 −29.894 −12.313 −4.918 28 .000

PQ −34.724 −42.588 −26.860 −9.045 28 .000

FAI −24.138 −35.854 −12.422 −4.220 28 .000

AOD −18.483 −28.351 −8.615 −3.837 28 .001



Appendix: Statistical Analysis of Chap. 7 149

Table A.4 Results of the t-test for the SD test of file 2

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −9.586 −16.373 −2.800 −2.893 28 .007

NOV −4.828 −11.746 2.091 −1.429 28 .164

PQ −7.276 −16.528 1.976 −1.611 28 .118

FAI −17.483 −25.689 −9.277 −4.364 28 .000

AOD −4.862 −11.988 −2.264 −1.398 28 .173

Table A.5 Results of the t-test for the SD test of file 3

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP 5.034 −1.031 11.100 1.700 28 .100

NOV 4.000 −2.866 10.866 1.193 28 .243

PQ 21.862 11.142 32.582 4.178 28 .000

FAI −6.966 −2.335 16.266 1.534 28 .136

AOD −1.966 −7.913 3.982 −0.677 28 .504

Table A.6 Results of the t-test for the SD test of file 4

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −2.786 −8.806 3.235 −0.949 27 .351

NOV −3.643 −10.963 3.677 −1.021 27 .316

PQ −4.107 −13.674 5.460 −0.881 27 .386

FAI −7.679 −16.480 1.123 −1.790 27 .085

AOD −2.464 −9.848 4.920 −0.685 27 .499

Table A.7 Results of the t-test for the SD test of file 5

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −19.276 −25.122 −13.430 −6.754 28 .000

NOV −12.000 −17.687 −6.313 −4.323 28 .000

PQ −15.621 −24.634 −6.608 −3.550 28 .001

FAI −20.000 −27.687 −12.313 −5.329 28 .000

AOD −18.897 −26.664 −11.129 −4.984 28 .000
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Table A.8 Results of the t-test for the SD test of file 6

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −22.862 −29.603 −16.121 −6.947 28 .000

NOV −18.034 −26.637 −9.432 −4.294 28 .000

PQ −17.414 −26.047 −8.780 −4.132 28 .000

FAI −34.172 −43.050 −25.295 −7.885 28 .000

AOD −17.000 −25.341 −8.659 −4.175 28 .000

Table A.9 Results of the t-test for the SD test of file 7

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −6.586 −13.003 −0.170 −2.103 28 .045

NOV −4.655 −13.214 3.904 −1.114 28 .275

PQ −6.966 −16.049 2.118 −1.571 28 .127

FAI −12.207 −20.395 −4.019 −3.054 28 .005

AOD −5.345 −11.740 1.050 −1.712 28 .098

Table A.10 Results of the t-test for the SD test of file 8

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −23.586 −29.573 −17.599 −8.070 28 .000

NOV −24.207 −30.901 −17.512 −7.407 28 .000

PQ −35.586 −44.302 −26.870 −8.363 28 .000

FAI −19.966 −27.692 −12.239 −5.293 28 .000

AOD −20.069 −29.238 −10.900 −4.483 28 .000

Table A.11 Results of the t-test for the SD test of file 9

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −4.828 −12.349 2.694 −1.315 28 .199

NOV −2.759 −10.550 5.033 −0.725 28 .474

PQ −2.069 −11.362 7.224 −0.456 28 .652

FAI −6.310 −11.372 −1.249 −2.554 28 .016

AOD −16.103 −22.991 −9.216 −4.789 28 .000
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Table A.12 Results of the t-test for the SD test of file 10

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −17.862 −23.718 −12.006 −6.248 28 .000

NOV −18.517 −25.643 −11.392 −5.323 28 .000

PQ −21.000 −31.192 −10.808 −4.221 28 .000

FAI −18.586 −26.610 −10.562 −4.745 28 .000

AOD −12.448 −21.911 −2.986 −2.695 28 .012

Table A.13 Results of the t-test for the SD test of file 11

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −8.964 −14.136 −3.793 −3.556 27 .001

NOV −10.500 −15.489 −5.511 −4.319 27 .000

PQ −7.429 −12.236 −2.621 −3.170 27 .004

FAI −14.071 −21.505 −6.637 −3.884 27 .001

AOD −1.643 −8.318 5.032 −0.505 27 .618

Table A.14 Results of the t-test for the SD test of file 12

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −4.517 −10.263 1.229 −1.610 28 .119

NOV 0.483 −8.221 9.187 0.114 28 .910

PQ 12.517 2.890 22.145 2.663 28 .013

FAI 0.276 −7.331 7.883 0.074 28 .941

AOD −11.621 −20.471 −2.770 −2.690 28 .012

Table A.15 Results of the t-test for the SD test of file 13

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −0.345 −5.225 4.535 −0.145 28 .886

NOV 6.379 0.240 12.518 2.129 28 .042

PQ 5.793 −4.898 16.484 1.110 28 .276

FAI 3.621 −3.368 10.610 1.061 28 .298

AOD 0.483 −8.241 9.206 0.113 28 .911
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Table A.16 Results of the t-test for the SD test of file 14

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −22.207 −28.755 −15.658 −6.946 28 .000

NOV −22.379 −30.066 −14.693 −5.964 28 .000

PQ −11.690 −22.515 −0.865 −2.212 28 .035

FAI −27.552 −36.806 −18.297 −6.099 28 .000

AOD −32.897 −40.802 −24.992 −8.524 28 .000

Table A.17 Results of the t-test for the SD test of file 15

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −12.241 −17.640 −6.843 −4.645 28 .000

NOV −21.483 −28.278 −14.688 −6.476 28 .000

PQ −32.414 −40.014 −24.813 −8.736 28 .000

FAI −10.862 −16.185 −5.539 −4.180 28 .000

AOD −17.241 −25.874 −8.609 −4.091 28 .000

Table A.18 Results of the t-test for the SD test of file 16

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −14.276 −21.380 −7.171 −4.116 28 .000

NOV −12.931 −19.448 −6.414 −4.065 28 .000

PQ −26.655 −36.103 −17.207 −5.779 28 .000

FAI −21.552 −31.091 −12.012 −4.628 28 .000

AOD −9.552 −18.703 −0.400 −2.138 28 .041

Table A.19 Results of the t-test for the SD test of file 17

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −10.000 −14.370 −5.630 −4.695 27 .000

NOV −10.893 −15.823 −5.963 −4.533 27 .000

PQ −17.714 −26.296 −9.132 −4.235 27 .000

FAI −8.571 −15.699 −1.444 −2.467 27 .020

AOD −9.071 −16.066 −2.077 −2.661 27 .013
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Table A.20 Results of the t-test for the SD test of file 18

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −1.724 −6.794 3.346 −0.697 28 .492

NOV −1.448 −8.308 5.412 −0.432 28 .669

PQ −5.138 −12.950 2.674 −1.347 28 .189

FAI −2.931 −10.183 4.321 −0.828 28 .415

AOD −3.483 −12.085 5.120 −0.829 28 .414

Table A.21 Results of the t-test for the SD test of file 19

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP 2.414 −1.765 6.592 1.183 28 .247

NOV 6.310 −1.077 13.697 1.750 28 .091

PQ −3.069 −11.637 5.499 −0.734 28 .469

FAI −5.897 −13.444 1.651 −1.600 28 .121

AOD 1.517 −5.700 8.734 0.431 28 .670

Table A.22 Results of the t-test for the SD test of file 20

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −10.690 −16.180 −5.199 −3.988 28 .000

NOV −13.069 −20.381 −5.757 −3.661 28 .001

PQ −22.655 −32.164 −13.147 −4.881 28 .000

FAI −4.655 −10.452 1.142 −1.645 28 .111

AOD −4.897 −11.854 2.061 −1.442 28 .160

Table A.23 Results of the t-test for the SD test of file 21

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −1.759 −8.047 4.530 −0.573 28 .571

NOV −1.655 −9.464 6.154 −0.434 28 .667

PQ −3.448 −13.681 6.784 −0.690 28 .496

FAI 0.069 −8.475 8.613 0.017 28 .987

AOD 2.586 −5.184 10.357 0.682 28 .501
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Table A.24 Results of the t-test for the SD test of file 22

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −32.655 −40.502 −24.809 −8.525 28 .000

NOV −26.862 −36.729 −16.995 −5.576 28 .000

PQ −31.966 −42.076 −21.855 −6.476 28 .000

FAI −28.448 −40.422 −16.474 −4.867 28 .000

AOD −28.138 −36.938 −19.338 −6.550 28 .000

Table A.25 Results of the t-test for the SD test of file 23

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −6.621 −12.893 −0.349 −2.162 28 .039

NOV −6.379 −12.413 −0.346 −2.166 28 .039

PQ −10.207 −17.937 −2.477 −2.705 28 .011

FAI −11.000 −19.552 −2.448 −2.635 28 .014

AOD −2.379 −9.085 4.327 −0.727 28 .473

Table A.26 Results of the t-test for the SD test of file 24

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −7.250 −13.717 −0.783 −2.300 27 .029

NOV −4.607 −10.390 1.175 −1.635 27 .114

PQ −7.179 −15.768 1.411 −1.715 27 .098

FAI −11.893 −20.025 −3.760 −3.001 27 .006

AOD −12.464 −18.271 −6.657 −4.404 27 .000

Table A.27 Results of the t-test for the SD test of file 25

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −9.897 −14.712 −5.081 −4.210 28 .000

NOV −1.448 −6.178 3.282 −0.627 28 .536

PQ 8.793 1.128 16.458 2.350 28 .026

FAI −14.034 −24.787 −3.282 −2.674 28 .012

AOD −14.862 −21.286 −8.438 −4.739 28 .000
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Table A.28 Results of the t-test for the SD test of file 26

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP 3.655 −1.668 8.979 1.406 28 .171

NOV 3.862 −3.278 11.002 1.108 28 .277

PQ −11.552 −19.756 −3.348 −2.884 28 .007

FAI 5.414 0.527 10.300 2.269 28 .031

AOD 13.966 6.950 20.981 4.078 28 .000

Table A.29 Results of the t-test for the SD test of file 27

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −6.759 −10.885 −2.632 −3.355 28 .002

NOV −5.276 −10.399 −0.152 −2.109 28 .044

PQ −10.345 −17.060 −3.630 −3.156 28 .004

FAI −7.138 −12.098 −2.178 −2.948 28 .006

AOD −9.310 −17.618 −1.003 −2.296 28 .029

Table A.30 Results of the t-test for the SD test of file 28

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −8.966 −14.063 −3.868 −3.603 28 .001

NOV −7.276 −15.514 0.962 −1.809 28 .081

PQ −3.517 −9.935 2.901 −1.123 28 .271

FAI −9.931 −16.716 −3.146 −2.998 28 .006

AOD −7.897 −14.899 −0.894 −2.310 28 .028

Table A.31 Results of the t-test for the SD test of file 29

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −8.517 −14.272 −2.762 −3.032 28 .005

NOV −7.828 −13.811 −1.844 −2.680 28 .012

PQ −8.828 −14.724 −2.931 −3.067 28 .005

FAI −9.655 −16.610 −2.700 −2.844 28 .008

AOD −5.517 −11.995 0.961 −1.745 28 .092
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Table A.32 Results of the t-test for the SD test of file 30

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −20.414 −26.020 −14.807 −7.458 28 .000

NOV −14.793 −21.718 −7.869 −4.376 28 .000

PQ −21.379 −30.254 −12.504 −4.934 28 .000

FAI −17.931 −25.820 −10.042 −4.656 28 .000

AOD −18.621 −26.291 −10.951 −4.973 28 .000

Table A.33 Results of the t-test for the SD test of file 31

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −13.214 −19.581 −6.848 −4.259 27 .000

NOV −2.571 −9.928 4.785 −0.717 27 .479

PQ 3.286 −7.631 14.202 0.618 27 .542

FAI −12.214 −21.037 −3.391 −2.841 27 .008

AOD −14.750 −21.432 −8.068 −4.529 27 .000

Table A.34 Results of the t-test for the SD test of file 32

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −4.310 −10.303 1.683 −1.473 28 .152

NOV −7.621 −13.853 −1.388 −2.505 28 .018

PQ −8.897 −18.738 0.945 −1.852 28 .075

FAI −3.103 −7.279 1.073 −1.522 28 .139

AOD −7.483 −14.256 −0.710 −2.263 28 .032

Table A.35 Results of the t-test for the SD test of file 33

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −1.207 −7.098 4.684 −0.420 28 .678

NOV 3.621 −3.895 11.136 0.987 28 .332

PQ 0.414 −7.315 8.142 0.110 28 .913

FAI −4.034 −12.612 4.543 −0.964 28 .344

AOD −4.207 −13.580 5.166 −0.919 28 .366
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Table A.36 Results of the t-test for the SD test of file 34

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −22.448 −27.116 −17.780 −9.850 28 .000

NOV −17.138 −24.258 −10.018 −4.931 28 .000

PQ −9.069 −15.815 −2.323 −2.754 28 .010

FAI −21.690 −28.933 −14.446 −6.133 28 .000

AOD −33.724 −41.623 −25.825 −8.746 28 .000

Table A.37 Results of the t-test for the SD test of file 35

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP −8.276 −12.650 −3.902 −3.876 28 .001

NOV −11.345 −17.894 −4.796 −3.548 28 .001

PQ −4.552 −14.091 4.988 −0.977 28 .337

FAI −8.034 −13.059 −3.010 −3.276 28 .003

AOD −12.207 −19.723 −4.691 −3.327 28 .002

Table A.38 Results of the t-test for the SD test of file 36

Paired Differences

t df

Sig.
Mean Interval of the (2-tailed)

Lower Upper

OIMP 0.379 −5.604 6.362 0.130 28 .898

NOV 1.897 −5.020 8.813 0.562 28 .579

PQ −2.276 −11.367 6.815 −0.513 28 .612

FAI −2.276 −10.474 5.922 −0.569 28 .574

AOD −0.759 −8.497 6.979 −0.201 28 .842
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