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Foreword

The ProCoS Project (1989-1991) was funded by the European Community as a
Basic Research Project, with a continuation (ProCoS II) also funded from 1992 to
1995. Tt was included in the ESPRIT programme of internationally collaborative
research in Information Technology. The inspiration of the project was the recent
completion of the Stack verification project, undertaken by Computational Logic,
Inc. This was a start-up company founded and directed by Bob Boyer and J Moore,
professors at the University of Texas at Austin. Both the European and the US
projects sought to advance the technology of software verification by accepting the
challenge of verification of components of a free-standing computer system. These
included its operating system, its assembler, and its automatic verification aids, and
even the hardware of a processor chip.

Many technological breakthroughs were triggered by these two challenge pro-
jects. The international collaboration which was forged by the ProCoS Project has
continued under support of the individual national funding agencies. It has inspired
and accelerated the automation of program verification. The resulting tools have
found application in many advanced modern industries, including industrial giants
in aerospace, electronics, silicon fabrication, automobiles, communications,
advertising, social networks, retail sales, as well as suppliers of compilers and of
operating systems and general software.

Many of the collaborators in the original ProCoS project, together with their
students and followers, have contributed to this broadening of the application of the
original basic research. A representative selection of their recent work was pre-
sented at the ProCoS Workshop in March 2015; and I welcome the publication
of the proceedings in book form. I offer its authors and readers my best wishes for
further progress in the understanding of the basic science, coupled with its broadest
possible application.

Cambridge, UK Tony Hoare
June 2016



Preface

ProCoS is the acronym for “Provably Correct Systems”, a basic research project
funded in two phases by the European Commission from 1989 to 1995. This project
was planned by Tony Hoare (Oxford University), Dines Bjorner (DTU, Technical
University of Denmark, Lyngby), and Hans Langmaack (University of Kiel). Its
goal was to develop a mathematical basis for the development of embedded,
real-time computer systems.

The survey paper on ProCoS presented at the conference FTRTFT (Formal
Techniques in Real-Time and Fault-Tolerant Systems) 1994 states in its
introduction:

An embedded computer system is part of a total system that is a physical process, a plant,
characterized by a state that changes over time. The role of the computer is to monitor this
state through sensors and change the state through actuators. The computer is simply a
convenient device that can be instructed to manipulate a mathematical model of the
physical system and state. Correctness means that the program and the hardware faithfully
implement the control formulas of the mathematical model of the total system, and nothing
else. However, the opportunities offered by the development of computer technology have
resulted in large, complex programs which are hard to relate to the objective of system
control.

The ProCoS project developed a particular approach to mastering the complexity of
such systems. Its emphasis was on proving system correctness across different
abstraction layers. The inspiration for ProCoS stems from a sabbatical of Tony
Hoare at the University of Austin at Texas in 1986. There he was impressed by the
work of Robert S. Boyer and J Strother Moore on automated verification with their
“Boyer-Moore” prover ACL2 at their company “Computational Logic, Inc.” (CLI),
in particular its application to a case study known as the “CLInc Stack”. Discussing
later with Dines Bjerner and Hans Langmaack, a project on the foundation of
verification of many-layered systems was conceived: ProCoS. The different levels
of abstraction studied in this project became known as the “ProCoS Tower”. They
comprised (informal) expectations, (formal) requirements, (formal) system speci-
fications, programs (in the “occam” programming language), machine code (for the
“transputer” microprocessor), and circuit diagrams (described using “netlists”).

vii



viii Preface

During the final deliverable for the first phase of ProCoS, Tony Hoare wrote in
1993:

In summary, our overall goal is not to produce a single verified system or any particular
verified language or compiler, but rather to advance the state of the art of systematic design
of complex heterogeneous systems, including both hardware and software; and to con-
centrate attention on reducing the risk of error in the specification, design and implemen-
tation of embedded safety critical systems.

In the first phase, the ProCoS project comprised seven partners: Oxford University,
Technical University of Denmark at Lyngby, Christian-Albrechts Universitét Kiel,
Universitit Oldenburg, Royal Holloway and Bedford New College, Arhus
University, and the University of Manchester. In the second phase (ProCoS 1II), the
team consisted of the first four original partners. The EU funding of ProCoS was
relatively small. During the second phase only one researcher at each of the four
partner sites was funded, but many more students and researchers at these sites
contributed to the goals.

ProCoS was much influenced by the work of two Chinese scientists contributing
to the project at Lyngby and Oxford: Zhou Chaochen and He Jifeng.

Zhou Chaochen and Anders P. Ravn initiated a major conceptual development
of ProCoS: the Duration Calculus, an interval-based logic for specifying real-time
requirements. The first paper on it was published by Zhou Chaochen, Tony Hoare
and Anders P. Ravn in 1991. The types of durational properties that can be
expressed in the Duration Calculus were motivated by the case study of a gas
burner that was defined by E.V. Sarensen from DTU in collaboration with a Danish
gas burner manufacturer. He Jifeng cooperated closely with Tony Hoare on a
predicative approach to programming that led to the book “Unifying Theories of
Programming” (UTP) published in 1998. The work on UTP has attracted a number
of researchers and led to a series of symposiums on this topic.

To bridge the gap from requirements to programs, a combination of specification
techniques for data and processes with transformation rules was developed by the
group of E.-R. Olderog in Oldenburg. The topic of correct compilers, exemplified
for the translation of an occam-like programming language to transputer machine
code, was investigated in the group of Hans Langmaack in Kiel. Oxford contributed
an algebraic approach to compiling verification.

Associated with the ProCoS project was an EU-funded ProCoS Working Group
(1994-1997) of 25 academic and industrial partners interested in provably correct
systems, arranging various meetings around Europe.

Other associated national projects in the United Kingdom included the “safemos”
project (1989-1993), a UK EPSRC project on “Provably Correct Hardware/Software
Co-design” (1993-1996), and an EPSRC Visiting Fellowship on “Provably Correct
Real Time Systems” (1996-1997). Associated travel funding to encourage collab-
oration included ESPRIT/NSF ProCoS-US initiative on “Provably Correct Hardware
Compilation” with Cornell University in the US, and KIT (Keep in Touch) grants
with UNU/IST in Macau (1993-1998) and PROCORSYS with the Federal
University of Pernambuco in Brazil (1994-1997).
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Impact

An extension of the Duration Calculus to cover continuous dynamical systems was
led by Anders P. Ravn and Hans Rischel at DTU to contribute to the initial research
on hybrid systems.

From 1992 until 1997, Dines Bjerner was the founding director of UNU-IIST,
the International Institute for Software Technology of the United Nations
University in Macau. Ideas from the ProCoS project flourished at the institute and
were taken up by researchers from Asia working there. Also, a number of scientists
associated with ProCoS visited UNU-IIST or had research posts for several years,
including He Jifeng and Zhou Chaochen. From 1997 until 2002, Zhou Chaochen
succeeded Dines Bjorner as the director of UNU-IIST, during the time of transition
of Macau from a Portuguese to a Chinese city. Regrettably, in 2013 the United
Nations decided to disband academic staff at UNU-IIST.

A number of young ProCoS contributors pursued academic careers. Martin
Frinzle and Markus Miiller-Olm, students in Kiel during the ProCoS project, are now
professors at the universities of Oldenburg and Miinster, respectively. Also, Debora
Weber-Wulff and Bettina Buth, at Kiel during the ProCoS project, are now professors
in Berlin and Hamburg, respectively. Michael Schenke, a ProCoS contributor at
Oldenburg, is now a professor in Merseburg. Augusto Sampaio, during ProCoS
working on his Ph.D. at Oxford on an algebraic approach to compilation during
ProCoS, has became a professor at the University of Pernambuco, Brazil. Paritosh K.
Pandya, working at Oxford during the ProCoS project, has become a professor at the
Tata Institute of Fundamental Research in Mumbiai, India. Zhiming Liu, who during
ProCoS times spent a year as a postdoc at DTU and later was a researcher at
UNI-IIST, is now professor at the Southwest University in Chongqing, China.

The collaborative project Verifix (Construction and Architecture of Verifying
Compilers) directed by Gerhard Goos, Friedrich von Henke and Hans Langmaack
and funded 1995-2004 by the German Research Foundation (DFG) deepened
research on compiler correctness begun in the ProCoS project.

The large-scale Transregional Collaborative Research Center AVACS
(Automatic Verification and Analysis of Complex Systems), directed by Werner
Damm and funded by German Research Foundation (DFG) during the period
2004-2015, continued research pioneered in ProCoS but with emphasis on
automation and for wider classes of systems. The collaborating sites were
Oldenburg, Freiburg, and Saarbriicken. AVACS comprised of nine projects in the
areas of real-time systems, hybrid systems, and systems of systems.

A series of conferences called VSTTE (Verified Systems—Theories, Tools and
Experiments), was initiated by a vision for a Grand Challenge project formulated by
Tony Hoare and Jay Misra in July 2005.

The ProCoS project and its related initiatives have inspired a number of books,
including the following:

e He Jifeng, Provably Correct Systems—Modelling of Communicating Languages
and Design of Optimized Compilers, McGraw-Hill, 1994,
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Jonathan P. Bowen (ed.), Towards Verified Systems, Elsevier Science,
Real-Time Safety Critical Systems Series, 1994.

Mike G. Hinchey and Jonathan P. Bowen (eds.), Applications of Formal
Methods, Prentice Hall, Series in Computer Science, 1995.

C.A.R. Hoare and He Jifeng, Unifying Theories of Programming, Prentice Hall,
Series in Computer Science, 1998.

Jonathan P. Bowen and Mike G. Hinchey, High-Integrity System Specification
and Design, Springer, FACIT Series, 1999.

Zhou Chaochen and Michael R. Hansen, Duration Calculus—A Formal
Approach to Real-Time Systems, Springer, 2004.

E.-R. Olderog and Henning Dierks, Real-Time Systems—Formal Specification
and Automatic Verification, Cambridge University Press, 2008.

Structure of this Book

In September 2013, Jonathan Bowen and Ernst-Riidiger Olderog met at the
Festschrift Symposium for He Jifeng in Shanghai and discussed the possibility of
having a workshop celebrating 25 years of ProCoS. This idea materialized with the
help of Mike Hinchey in March 2015, when a two-day ProCoS Workshop with
around 40 invited researchers and 25 presentations on the topic of ‘“Provably
Correct Systems” took part in the rooms of the BCS in London. This book consists
of 13 chapters mainly describing recent advances on “Provably Correct Systems”,
based on presentations at that workshop. Each paper has been carefully reviewed by
three to five reviewers. The chapters address the following topics:

Historic Account,

Hybrid Systems,

Correctness of Concurrent Algorithms,
Interfaces and Linking,

Automatic Verification,

Run-time Assertions Checking,

Formal and Semi-formal Methods, and
Web-Supported Communities in Science.

Historic Account

In the note “ProCoS: How it all Began—as seen from Denmark”, Dines Bjerner
opens his diary and shows entries by Tony Hoare during a meeting of IFIP Working
Group 2.3 at Chéateau du Pont d’Oye in Belgium in 1987. The author explains that
this was a first draft on the content of ProCoS.
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Hybrid Systems

Martin Fréanzle, Yang Gao, and Sebastian Gerwinn review in Chap. “Constraint-
Solving Techniques for the Analysis of Stochastic Hybrid Systems” definitions of
(parametric) stochastic hybrid automata as needed for reliability evaluation. The
authors then discuss automatic verification and synthesis methods based on arith-
metic constraint solving. The chapters are able to solve step-bounded stochastic
reachability problems and multi-objective parameter synthesis problems,
respectively.

Mingshuai Chen, Xiao Han, Tao Tang, Shuling Wang, Mengfei Yang, Naijun
Zhan, Hengjun Zhao, and Liang Zou introduce in Chap. “MARS: A Toolchain for
Modelling, Analysis and Verification of Hybrid Systems” the toolchain MARS for
Modelling, Analysing and verifying hybrid Systems. Using MARS, they build
executable models of hybrid systems using the industrial standard environment
Simulink/Stateflow, which facilitates analysis by simulation. The toolchain includes
a translation of Simulink/Stateflow models to Hybrid CSP and verification using an
interactive prover for Hybrid Hoare Logic.

Correctness of Concurrent Algorithms

John Derrick, Graeme Smith, Lindsay Groves, and Brijesh Dongol study in
Chap. “A Proof Method for Linearizability on TSO Architectures” the correctness
of non-atomic concurrent algorithms on a weak memory model, the TSO (Total
Store Order) model. They show how linearizability is defined on TSO, and how one
can adapt a simulation-based proof method for use on TSO. Their central result is a
proof method that simplifies simulation-based proofs of linearizability on TSO.

Interfaces and Linking

E.-R. Olderog, A.P. Ravn, and R. Wisniewski investigate in Chap. “Linking
Discrete and Continuous Models, Applied to Traffic Manoeuvrers” the interplay
between discrete and continuous dynamical models, and combine them with linking
predicates. The topic of linking system specifications at different levels of
abstraction was central to the ProCoS project. However, here the application area is
more advanced: traffic manoeuvrers of multiple vehicles on highways.

Zhiming Liu and Xin Chen discuss in Chap. “Towards Interface-Driven Design of
Evolving Component-Based Architectures” how software design for complex
evolving systems can be supported by an extension of the rCOS method for
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refinement of component and object systems. It shows the need for a suitable
interface theory and of multi-modelling notations for the description of
multi-viewpoints of designs. This requires a theoretical foundation in the style of
Unifying Theories of Programming as proposed by Tony Hoare and He Jifeng.

Automatic Verification

J Strother Moore presents in Chap. “Computing Verified Machine Address Bounds
During Symbolic Exploration of Code” an abstract interpreter for machine address
expressions that attempts to produce a bounded natural number interval guaranteed
to contain the value of the expression. The interpreter has been proved correct by
the ACL2 theorem prover. The author discusses the interpreter, what has been
proved about it by ACL2, and how it is used in symbolic reasoning about machine
code.

Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann describe in
Chap. “Engineering a Formal, Executable x86 ISA Simulator for Software
Verification” a formal, executable model of the x86 instruction-set architecture
(ISA). They use this model to reason about x86 machine-code programs. Validation
of the x86 ISA model is done by co-simulating it regularly against a physical x86
machine.

Jens Otten and Wolfgang Bibel present in Chap. “Advances in Connection-
Based Automated Theorem Proving” calculi to automate theorem proving in
classical and some important non-classical logics, namely first-order intuitionistic
and first-order modal logics. These calculi are based on the connection method. The
authors present details of the leanCoP theorem prover, a very compact PROLOG
implementation of the connection calculus for classical logics. leanCoP has also
been adapted to non-classical logics by integrating a prefix unification algorithm.

Run-Time Assertion Checking

Frank S. de Boer and Stijn de Gouw extend in Chap. “Run-Time Deadlock
Detection” run-time assertions by attribute grammars for specifying properties of
message sequences. These assertions are used in a method for detecting deadlocks
at run-time in both multi-threaded Java programs and systems of concurrent objects.

Tim Todman and Wayne Luk present in Chap. “In-Circuit Assertions and
Exceptions for Reconfigurable Hardware Design” a high-level approach to adding
assertions and exceptions in a hardware design targeting FPGAs (Field
Programmable Gate Arrays). They allow for imprecise assertions and exceptions to
trade performance for accurate location of errors.
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Formal and Semi-formal Methods

Bettina Buth reports in Chap. “From ProCoS to Space and Mental Models — A
Survey of Combining Formal and Semi-Formal Methods” on work influenced by
the ProCoS project. Systems from the application areas of space and aerospace are
analysed using suitable abstractions to CSP specifications and the FDR model
checker.

Web-Supported Communities in Science

Jonathan P. Bowen studies in Chap. “Provably Correct Systems: Community,
Connections, and Citations” the building and support of scientific communities and
collaboration, especially online, visualized graphically and formalized using the Z
notation, including the concept of a “Community of Practice”. His examples are
drawn from the ProCoS project.

In summary, we hope that you enjoy this volume, providing a selection of
research developments and perspectives since the original ProCoS initiatives of the
1990s. Further ProCoS-related information can be found online under:

http://formalmethods.wikia.com/wiki/ProCoS

va kb
i L

P.COS

Limerick, Ireland Mike G. Hinchey
London, UK Jonathan P. Bowen
Oldenburg, Germany Ernst-Ridiger Olderog
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Part I
Historic Account



ProCoS: How It All Began — as Seen
from Denmark

Dines Bjgrner

Abstract I reminisce over an episode at the 9—13 November 1987 IFIP WG2.3
meeting at Chateau du Pont d’Oye in Belgium — and at what followed.

I had given a half hour presentation of how we, in Denmark, had developed a com-
piler for the full Ada programming language. My presentation had evolved around a
single slide showing boxes and arrows between these, all properly labeled. Edsger
W. Dijkstra had railed during my short presentation against my using diagrams —
despite my claiming that boxes denoted certain kinds of algebras and arrows certain
kind of morphisms between these. After my talk there was a coffee break. Tony
Hoare took me aside. Asked permission to write in my note book. And this is what
he wrote:

HoqrL i Pal 40 Belgam
) Ridy, ™ 388
GIVEN 2 Acnnsibil £
)¢ 4, adidion Mackisie:  mausl oudpud comnd s o vng.
OCcG o Iu.:!r _umln\‘: F o' oulp & LL
spec 0cc - CSP B asunankics L& te = s“«nq;“tﬁ.l_w Al \f.> o E
VLST o IVLSEH demn: waladivs then  behav(M)/br = behav ()5
behav: VLST — €SP b ssmmihic £ behar (M)/Load (£)
FIND wheee Joad = codeedumnperack.
M: VLS| FIND d-uwg\u:q.lx.-. duwmp — OCC

awd  code; OCC— s {'m.Lm.' LPI))
such Ht Rr ol D:occ
behay ('H\-:ff.“&' (D) = _\lw.c. [D}

(co cole i loodd by ame ot Hho boginin)

Paper read at the BCS-FACS ProCoS Workshop on Provably Correct Systems, London, UK, 9—10 March 2015.

D. Bjgrner ()
Fredsvej 11, 2840 Holte, Denmark
e-mail: mike.hinchey @lero.ie

© Springer International Publishing AG 2017 3
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_1



4 D. Bjgrner

As he wrote it, Tony carefully explained what he was after. To me that became the
day of conception of the first ProCoS project.

I leave it to you to decipher the characteristic handwriting of Tony. OCC is some
programming language. So is CSP. A specification maps programs in OCC into
programs in CSP. VLSI is a language for specifying VLSI designs. Its semantics,
in terms of CSP, is behav.

/TOhv}\
¥

GIVEN
elde N rmJMw;a nctatin
spec: 0CC - CSP s derinantics
VLSL - & VLS| dug nafation
behay: VLST — CSP ds  smanitics .
FIND
M: VLS|
and code; OCC— tracs ((behav (M)
saci. thels . B ol D Occ.
behav (M) feode (D) < spec (D)
(e code i loaded oy onee ot Y l»ojm;»j)

L ——

Now find, i.e., develop, a VLS| implemented machine, M, and some OCC code
which maps into traces of the behaviour of M such that for all programs, D, in OCC,
the VLSI machine implements the OCC specification correctly.
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HOQHL i Pl cl'ﬁll.r{lﬁr{jﬂm id
¥ "Tady <300

? r—‘\ww,\,éu,Jo;,l;l:T
* Mackiie: moast outpuck camnd Sk on ot
L tr = staprtiages | o frgqe] o b
then  behav (M)/br = behav (1) /s
< behav (M)/Load (t)
where  foad = ma..,otwruuk.

FIND &wruw./\& clww\F-—-r OCL. .

At the end of writing and narrating this, Tony asked: should we try get an ESPRIT
BRA project around this idea ? We did.

Zhou Chaochen had visited me, at DTU, two times in the 1980s and was due again 1.
July 1989. The ESPRIT BRA ProCoS proposal had not yet been finally approved,
but when 4. June 1989 occurred I spent a full day and night wording a one page fax
to be sent to China, officially to Prof. Xu Kongshi, Zhou’s “boss”, the founder and
director of CAS’s (Chinese Academy of Sciences)’, Software Institute. I sent
it also, “under the table”, to top officials in the Chinese PLA (People’s Liberation
Army), making sure that it would be discussed at the highest level in the ministry’s
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COSTIND (Commission for Science and Technology for Industry) — they had
bought our Ada compiler. I risked stating that the project had been approved and
that, for industry, it would focus on theories and methods for the design of provably
correct embedded systems. Something that the military guys like. Within 24 h I had
an assuring reply: certainly Zhou would come, and with his family. Zhou arrived,
wife and children ! The PRC ambassador was at the airport to meet them, and we
had a garden party that Sunday afternoon.

The next day I installed Zhou in the office next to mine. After he had settled Zhou
came into my room, closing the usually open door. Took his glasses off. Somewhat
not in full control of his voice he said: I cannot under the present circumstances return
to China: some of my students were fatally involved on the 4th of June. I reached
behind my back, for the phone, dialed the short-cut number, #1, and after some
ringing Tony replied. I told him the good news: that Zhou was here and was about
to accept an offer to be part of the ProCoS project for three years — and would stay
8 months at Lyngby, 4 at Oxford. Tony tried to reverse the numbers, in vain. After
a month or so I contacted Xu Kongshi and informed him that the (now definitely
approved) ProCoS project needed a scientist like Zhou And was it possible that he
could stay on? Again a positive answer by return fax.

To me a deciding moment of the project occurred during our Bornholm workshop.
Prof. E.V. Sgrensen had given a talk in which he sketched, from the background
of his field, Circuit Theory, some ideas about handling digital signal transitions. I
believe that Erling’s talk gave impetus to the Duration Calculus. During the break,
after EVS’ talk, I saw Anders (Ravn), Tony and Zhou discussing, it appeared, the
evolving DC ideas.

-

1\:»'-—:&:‘@&24——.
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Constraint-Solving Techniques
for the Analysis of Stochastic
Hybrid Systems

Martin Frinzle, Yang Gao and Sebastian Gerwinn

Abstract The ProCoS project has been seminal in widening the perspective on
verification of computer-based systems to a coverage of the detailed interaction and
feedback dynamics between the embedded system and its environment. We have
since then seen a steady increase both in expressiveness of the “hybrid” modeling
paradigms adopting such an integrated perspective and in the power of automatic
reasoning techniques addressing relevant fragments of logic and arithmetic. In this
chapter we review definitions of stochastic hybrid automata and of parametric sto-
chastic hybrid automata, both of which unify the hybrid view on system dynamics
with stochastic modeling as pertinent to reliability evaluation, and we elaborate on
automatic verification and synthesis methods based on arithmetic constraint solving.
The procedures are able to solve step-bounded stochastic reachability problems and
multi-objective parameter synthesis problems, respectively.

1 Introduction

An increasing number of the technical artifacts shaping our ambience are relying
on often invisible embedded computer systems, rendering embedded computers the
most common form of computing devices today. The vast majority — 98% according
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to www.artemis-ju.eu — of all processing elements manufactured goes to embedded
applications, where they monitor and control all kinds of physical processes. Such
interactions of the virtual with the physical world range from traditional control
applications, like controlling an automotive powertrain, over computer-controlled
active safety systems, like the anti-locking brake, the electronic stability program, or
recently pedestrian detection integrated with emergency braking capabilities, to the
vision of cyber-physical networks bringing even remote physical processes into our
sphere of control.

Even to the general public, it has become evident that such immersion of comput-
ing elements into physical environments renders their functionality critical in many
respects: critical to the function of the overall product, where a malfunction or unde-
sired interaction of the embedded system may render the whole product partially
or totally dysfunctional; critical to the performance of the overall product, where
embedded control may influence power consumption, environmental impact, and
many more performance dimensions; finally safety-critical, as causal chains medi-
ated by the physical environment may propagate software faults and thus endanger
life and property. A direct consequence is that correctness (in a broad sense) of
embedded systems most naturally is defined in terms of the possible physical impact
of its interaction with the environment. This insight marked a paradigm shift in the
attitude to software correctness at the times when the ProCoS project was conceived
a good quarter of a century ago. Rather than saying that correct software ought to
infallibly implement some abstract algorithm or establish correctness properties in
terms of conditions on intrinsic program variables (and other notions intrinsic to
the algorithm, like termination), correctness became defined in terms of observables
of external physical processes underlying an independent dynamics extrinsic to and
only partially controllable by the software.

Within the ProCoS project, this issue was taken up by Zhou Chaochen and Anders
Ravn, who first together with Tony Hoare defined the Duration Calculus [9] and later
together with Hans Rischel and Michael R. Hansen extended it to cover hybrid
discrete-continuous phenomena [10, 34]. While the former took the perspective of
durational metric-time properties at the interface between embedded system and envi-
ronment, thus not really covering environmental dynamics, the extension to Extended
Duration Calculus in [10] permitted integration about environmental variables and
thus formulation of integral equations, as equivalent to initial-value problems of
ordinary differential equations. It thus is an example of a formal model permitting
to model and analyze the tight interaction, and hence feedback dynamics, of the
discrete switching behavior of embedded systems and the continuous dynamics of
the physical environment as well as of continuous control components embedded
into it. A related model also confining the description of environmental dynamics to
ordinary differential equations and also adopting a qualitative view of the embed-
ded system as a potentially demonically non-deterministic discrete computational
device is Hybrid Automata [1]. Such models support qualitative behavioral veri-
fication in the sense of showing that a system behaving according to its nominal
dynamics would never be able to engage in an undesired behavior, which, however,
is a goal unlikely to be achieved in practice. First, designing systems to that level of
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correctness may be prohibitively expensive or it may be impractical due to necessary
inclusion of components lacking tangible models of nominal behavior, like, e.g.,
computer vision and image classification algorithms. Second, even when possible in
principle, the systems verified to that level will necessarily eventually deviate from
their nominal behavior due to, e.g., component failures. Reflecting the consequen-
tial need for quantitative verification, stochastic variants of hybrid-system models
have been suggested, like Probabilistic Hybrid Automata (PHA) [35] or Stochastic
Hybrid Automata (SHA) [25]. In such extensions, either discrete actions can feature
probabilistic branching or continuous evolution can evolve stochastic along, e.g.,
stochastic differential equations, or both.

The resulting models are inherently hard to analyze, as they combine various
sources of undecidability, like state reachability in even the simplest classes of hybrid
automata and the fragments of arithmetic induced by ordinary differential equations,
with the necessity of reasoning about probability distributions over complexly shaped
and sometimes not even first-order definable carriers, like the reachable states. It is
thus obvious that exact automatic analysis methods for properties of interest, like
the probability of reaching undesirable states, are impossible to attain. Nevertheless,
safe approximations can be computed effectively, and often prove to be of sufficient
accuracy to answer relevant questions with scrutiny, like certifying that the proba-
bility of reaching undesirable states remains below a given quantitative safety target.
The pertinent techniques do either rely on state-space discretization by safe abstrac-
tion, e.g. Hahn et al.’s approach [43], or on constraint solving for stochastic logic
involving arithmetic [15, 19], or on massive simulation paired with statistical hypoth-
esis testing, beginning with Younes’ seminal work [42]. We will in the remainder
of this chapter report on our contributions to the constraint-based approach, thereby
building on a series of results obtained over the past decade.

Structure of the Chapter

In the next section, we provide an introduction to a class of stochastic hybrid
automata featuring stochasticity —paired with non-determinism or parametricity—
in their transitions. In Sect.3, we move on to the depth-bounded safety analysis
of such stochastic hybrid automata. The underlying technology is an extension of
satisfiability-modulo-theory solving (SMT, [4]) to Stochastic Satisfiability-Modulo-
Theory (SSMT) akin to the extension of Propositional Satisfiability (SAT) to Sto-
chastic Propositional Satisfiability (SSAT) suggested by Papadimitriou and Majercik
[28, 33]. Section4, finally, turns to the problem of multi-objective parameter syn-
thesis in parametric variants of stochastic hybrid automata, which we solve by a
machine-learning style integration of simulation and arithmetic constraint solving.

2 Stochastic Hybrid Transition Systems

The model of hybrid automata [1, 2, 22, 26] has been suggested as a formal set-up
for analyzing the the interaction of discrete and continuous processes in hybrid-
state dynamical systems. They combine pertinent formalism for describing discrete,
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Fig. 1 A simple hybrid automaton (/eft) and a trajectory thereof (right)

computational and continuous, mostly physical or control-oriented dynamical
processes by extending finite automata with a vector of continuous variables and
“decorating” them with ordinary differential equations in each location and assign-
ments to these extra variables upon transitions. A simple hybrid automaton and
its associated dynamic behavior, which is a piece-wise continuous trajectory, are
depicted in Fig. 1.

While this model permits the analysis of deterministic as well as uncertain hybrid-
state systems, as the latter can be modeled by various forms of non-determinism in the
automata, like uncontrolled inputs, non-deterministic transition selection, or para-
meter ranges in the differential (in-)equations, it is confined to gualitative behavioral
verification in the sense of showing that a system behaving according to its nomi-
nal dynamics would never be able to engage in an undesired behavior. This ideal,
however, is hardly achieved in practice, as systems strictly adhering to their nom-
inal behavior would either be prohibitively expensive or even infeasible to design.
Qualitative verification consequently is indicative of the nominal behavior only,
yet does not cover the full set of expected behaviors of the system under design,
which includes (traditionally rare, but with the advent of trained classifiers in, e.g.,
computer vision systems for automated driving increasingly frequent) deviations
from nominal behavior also.

As the expected low to moderate frequency of deviations from nominal behavior
would not justify the same demonic view of uncertainties in system dynamics as
adopted in qualitative verification, namely that every single abnormal behavior that
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Fig.2 Model of moving-block train control in ETCS level 3 including relevant random disturbances
(encircled areas) in the form of measurement error in positional information and possible message
loss, after [17]

might be possible would render the system design incorrect, guantitative counterparts
to qualitative hybrid models and verification methods have been developed. The
corresponding probabilistic or stochastic models provide more concise quantitative
information about the uncertainties involved in terms of probabilities. To incorporate
this kind of information, both the underlying models and the corresponding analysis
techniques have to be adapted. Verifying reachability and safety properties within
this extended setting then corresponds to obtaining statements about the probability
of these properties to be satisfied.

To illustrate the challenges arising in incorporating the information about random
disturbances into the model of hybrid automata, we show a model model mimicking
distance control at level 3 of the European train control systems ETCS in Fig. 2. The
idea of the control system is to switch to an automatic braking mode “AutoBrake”
initiating a controlled emergency deceleration whenever the necessary deceleration
rate for coming to a standstill at a safety distance (400 m) behind the preceding train
exceeds a threshold value (—0.7 mTZ) The function of this control system, however, is
impeded by measurement noise in determining train positions and the risk of message
loss between trains, as positions are determined locally in a train and announced via
train-to-train communication. The extended hybrid model depicted in Fig.2 incor-
porates these stochastic disturbances. More specifically, the perturbed measurement
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of the position of the leading train is characterized by a normal distribution A (s;, o)
centered around the true position s; and the measurement process itself is modeled
by copying this skewed image of the physical entity s; into its real-time image m.
This is in contrast to a typical nominal model, where the controller may be modeled
as having direct access to the physical entities. Additionally, unreliable communi-
cation is also considered, i.e., the communication of resultant movement authorities
is allowed to fail with probability 0.1. The resulting model is called a Stochastic
Hybrid Automaton (SHA) [25, 35]. Note that the automaton in Fig.2 features both
non-determinism and stochasticity in its transitions, with the former being interpreted
demonically.

For such models, we are interested in solving two problems, which will be the
subjects of Sects. 3 and 4:

1. Given a stochastic hybrid automaton A and a set of undesirable states G in the
state set of A, determine whether the probability of reaching G stays below a
given safety target . Given that non-determinism is interpreted demonically, the
probability of reaching G thereby has to be determined w.r.t. a most malicious
adversary resolving the non-deterministic choices.

2. Given a stochastic hybrid automaton featuring parameters in its probability dis-
tributions, determine whether there is a parameter instance satisfying a design
objective in terms of expectations on some cost and/or reward variables in the
hybrid system.

Formally, SHA are infinite-state Markov Decision Processes (MDP), where the
infinite-state behavior is induced by the hybrid discrete-continuous state dynamics,
while the MDP property arises from the interplay of stochastic and non-deterministic
choices. A stochastic hybrid system (in its continuous-time variant) thus interleaves

1. continuous flows arising while residing in a discrete location and being governed
by the differential (in-)equation and the invariant condition assigned to the loca-
tion with

2. immediate transitions featuring a guard condition on the continuous variables, a
deterministic or non-deterministic state update w.r.t. both some continuous vari-
ables and possibly the discrete successor location, and potentially a series of
randomized updates to continuous variables are the successor location.

As a suitable semantic basis for the automatic analysis of hybrid automata featuring
stochastic behavior, we can consequently base our investigations on a more abstract
definition of hybrid-state transition systems featuring stochastic behavior, a form of
infinite-state Markov Decision Process (MDP). In full generality, such a (parametric)
hybrid stochastic transition system comprises the following:

1. A finite set D = {d;,....d,,} of discrete variables. Discrete variables range
over Z.!

I'The reader might expect to rather see finite sub-ranges of Z or other finite sets as domains. To
avoid cluttering the notation, we abstained from this. It should be noted that this does not induce a
loss of generality, as not all of Z need to be dynamically reachable.
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2. Afinite set C = {x, ..., x,} of continuous variables. Continuous variables range
over R.2
3. Afinite (and possibly empty) set P = {p, ..., pi} of parameters with associated

range ) C R,
4. Aninitial statei € X, where X = Z" x R" is the state set of the transition system.
5. A finite set T = {1y, ..., t;} of stochastic transitions. Each such transition com-
prises a non-deterministic guarded assignment, expressed as a pre-post relation in
Y x X, followed by a finite (possibly empty) sequence of stochastic assignments
to individual variables, which are executed in sequence and may depend on the
preceding ones and on the parameters.

Traditional stochastic hybrid automata diagrams, as depicted in Figs.2 and 6, can
easily be interpreted as instances of this model by interpreting both their continuous
flows and immediate transitions as stochastic transitions. To this end, please note
that stochastic transitions need not contain a proper stochastic part, but may also be
just non-deterministic or even deterministic.

In order to achieve a uniform treatment of discrete and continuous stochastic
assignments, we equip R with the Lebesgue measure and Z with cardinality of its
subsets as a measure. Given this convention, we can uniformly write fab p(x)dx for
determining the probability mass assigned by a density (or, in the discrete case, a
distribution) p to the interval [a, b], as the measure is understood. Note that in the
discrete case, fu b px)dx = Ziza p(x) dueto the particular choice of the measure for
Z. This permits us to uniformly treat densities over the continuum and distributions
over discrete carriers as densities. A density over domain X, where X is either R
or Z, is a measurable function § : X — R-( with f_oooo d(x)dx = 1. We denote by
Py the set of all densities over X. A stochastic assignment for a variablev € D U C
with its associated domain V € {Z, R} is a mapping sa, : § — ¥ — Py. It assigns
to each parameter instance and each state a density of the successor values for v.

We are ultimately interested in determining the probability of reaching a certain
set G C X of goal states or the expectation of a function f : ¢ — R. As the formeris
a special case of the latter, using the characteristic function x> as reward, it suffices
to define expectations.

Given that a non-deterministic assignment simply is a relation between pre- and
post-states, i.e., a subset of X' x X' defining both the transition guard (due to possi-
ble partiality of the relation) and the (possibly non-deterministic) update to all the
variables, depth-bounded expectations in the infinite-state MDP mediated by the
stochastic hybrid transition system can now be defined inductively by means of a
Bellmann backward induction [5] as follows: The (best-case) expectation £ ]]E (o, 0) of
reward f over k steps of the transition system under parameterization 6 and starting
from state 0 € X' is

2 As for discrete variables, this does not exclude the possibility that only a bounded sub-range may
dynamically be reachable.
1 ifo e G,

3Defined as =
X6 =106 it g6
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£%(0,0) = f(o) ,

5;?“(0, 0) = max max
‘ t=(na,say,..., sa,)eT 01€X such that (o,01)€na

/ . / 5a{(01)(02) -+ - 84 (0, ) (O 1)E (Oni1, 0)doy .. doyyy

Here, na denote the non-deterministic assignment and sa? denotes the effect of a
stochastic assignment, resp., in a transition t = (na, say, ..., sa,). The effect sa’ of
a stochastic assignment sa to variable v is

o(x if x £ v,
sa @)y = 17 o7

sa(@)(o)(v) if x = v.
Taken together, the non-deterministic transition selection as well as the non-deter-
ministic assignment thus implements an oracle maximizing rewards, while the sto-
chastic assignments just implement their stochastic transition kernels.

3 Bounded Reachability Checking for Stochastic
Hybrid Automata

In order to analyze Stochastic Hybrid Automata (SHA) models, like the one depicted
in Fig. 2, we need techniques being able to analyze their intrinsic combination of sto-
chastic dynamics and infinite-state behavior. Formally, SHA are infinite-state Markov
Decision Processes (MDP), where the infinite-state behavior is induced by the hybrid
discrete-continuous state dynamics, while the MDP property arises from the inter-
play of stochastic and non-deterministic choices (e.g., concerning a in Fig.2). As
verification tools for finite-state MDP are readily available, a particular technique is
to use abstraction for obtaining a safe finite-state overapproximation, subsequently
verifying the properties of interest on the abstraction, as pursued e.g. in [17]. A
more direct approach along the lines of bounded model checking (BMC) [6, 21]
in its variant for hybrid automata [3, 12, 23] is to encode the stochastic behavior
within the constraint formula. This requires more expressive constraint logic then
the satisfiability-modulo-theory calculi used in the case of qualitative verification [3,
12, 23, among others], which have been pioneered by Frinzle, Hermanns, and Teige
under the name Stochastic Satisfiability Modulo Theory (SSMT) [15].

3.1 Stochastic Satisfiability Modulo Theory

The idea of modeling uncertainty in satisfiability problems was first proposed
within the framework of propositional satisfiability (SAT) by Papadimitriou, yielding
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Stochastic SAT (SSAT) [33], a logic featuring both existential quantifiers and
randomized quantifiers allowing to express 1% player games (one strategic, one ran-
domized player). This work has been lifted to Satisfiability Modulo Theories (SMT)
by Frinzle, Teige et al. [15, 38], providing a logic called Stochastic Satisfiability
Modulo Theory (SSMT) permitting symbolical reasoning about bounded reacha-
bility problems of probabilistic hybrid automata (PHA). Instead of being true or
false, an SSAT or SSMT formula @ has a probability as semantics. This quantitative
semantics reflects the probability of satisfaction of @ under optimal resolution of the
non-random quantifiers. SSAT and SSMT permit concise description of diverse prob-
lems combining reasoning under uncertainty with data dependencies. Applications
range from Al planning [27, 29, 30] to analysis of PHA [15]. A major limitation of
the SSMT-solving approach pioneered by Teige [37] is that all quantifiers (except for
implicit innermost existential quantification of all otherwise unbound variables) are
confined to range over finite domains. As this implies that the carriers of probability
distributions have to be finite, a large number of phenomena cannot be expressed
within that SSMT framework, such as continuous noise or measurement error in
hybrid systems. To overcome this limitation, our recent work [19] relaxes the con-
straints on the domains of randomized variables, now also admitting quantification
over continuous domains and continuous probability distributions in SSMT solving.

The approach is based on a combination of the iSAT arithmetic constraint solver
[13] with branch-and-prune rules for the quantifiers generalizing those suggested
in [14, 37]. Covering an undecidable fragment of real arithmetic involving addi-
tion, subtraction, multiplication and transcendental functions, measuring solution
sets exactly by an algorithm obviously is infeasible. The solving procedure therefore
approximates the exact satisfaction probability of the formula under investigation and
terminates with a conclusive result whenever the approximation gets tight enough to
answer the question whether the satisfaction probability is above or below a target
value specified by the user, e.g., a safety target.

We will subsequently introduce the logic manipulated by our solver, then explain
the solving procedure, and finally demonstrate its use for analyzing stochastic hybrid
automata.

The syntax of the input language of the solver, which is SSMT formulae over
continuous quantifier domains, CSSMT for short, agrees with the discrete version
from [15], except that continuous quantifier ranges are permitted.

Definition 1 An SSMT formula with continuous domain (CSSMT formula) is of
the form @ = Q : ¢, where

e Q= Qx; €edom(xy)...Q,x, € dom(x,) is a quantifier prefix binding a
sequence Xxi, ..., x, of quantified variables. Here dom(x;) denotes the domain
of variable x;, which may be an interval over the reals or integers. Each Q; either
is an existential quantifier 3 or arandomized quantifier ¥, assigning a computable
probability density function p; over dom(x;) to x;.*

“In practice, we offer a selection from a set of predefined density functions over the reals. For
discrete carriers, we offer the ability to write arbitrary distributions by means of enumeration.
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e ¢ is a quantifier-free formula over some arithmetic theory 7', in our case involving
addition, subtraction, multiplication, exponentiation, and transcendental functions,
as supported by the iSAT SAT-modulo-theory solver. As definitional translations
[40] permit to rewrite arbitrary formulae to equisatisfiable conjunctive normal
forms (CNF), we may w.l.o.g. assume that ¢ is in conjunctive normal form (CNF),
i.e., that ¢ is a conjunction of clauses, and a clause is a disjunction of (atomic)
arithmetic predicates of the forms v ~ ¢ or v = e, where v is a variable, ~€
{<, <, =, >, > a relational symbol, ¢ a rational constant, and e an expression
over variables involving addition, subtraction, multiplication, and transcendental
functions. ¢ is also called the matrix’ of the formula.

The semantics of CSSMT formulae is defined by a lé-player game mediated by
the alternation in the quantifier prefix: following the sequence in the quantifier prefix
and respecting the possible moves permitted by the quantifier domains, an existential
player tries to maximize the overall probability of satisfaction while her randomized
opponent subjects the existential player’s strategy to random disturbances. Formally,
the semantics can be defined by a Bellman backward induction over the game graph
[5], akin to the semantics for SSAT [33]:

Definition 2 The semantics of a CSSMT formula @ = Q : ¢ is defined by its prob-
ability of satisfaction Pr(®) as follows, where € denotes the empty quantifier prefix:

Pr(e : p) = 0, if ¢ is unsatisfiable;
Pr(e : p) =1, if @ is satisfiable;
Pr(3x; e dom(x;) Q:¢) = sup Pr(Q:plv/x]) ;

vedom(x;)

Pr(d,x € dom(x) Q: ¢) = / Pr(Q: ¢lv/x D pi(v)dv .
dom(x;)

Here, Q denotes an arbitrary (possibly empty) quantifier prefix and ¢[v/x;] signifies
the substitution of value v into ¢.

According to Definition 2, the semantics yields the supremal probability of sat-
isfaction Pr(®), which is computed by resolving the quantifiers from left to right,
whereby existential quantifiers are resolved by an optimal strategy guaranteeing high-
estreward and randomized quantifiers yield the expectation of the remaining formula.
For a quantifier-free formula, and thus also after all quantifiers have been resolved,
the probability of satisfaction of the matrix ¢ is associated with its satisfiability.

Example 1 Figure 3 exemplifies the semantics by depicting a simplified image of the
infinitely branching tree spanned by the domains of the individual quantifiers. Equiv-
alent branches have been collapsed, which is signified by the intervals associated to
branches in the graphics. The graphics shows the game tree constructed according
to the semantics of CSSMT formula @ =3x € [—1, 1]dn/(.00)y € (—00, +00) :

SIn SSAT parlance, this is the body of the formula after rewriting it to prenex form and stripping
all the quantifiers.
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¢ =3z e [~1,1 U1y € (00, +00) : (22 < v ad +20>0)A(y >0Vad+2b< —1
N(0.1) 9 °
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Fig. 3 Semantics of a CSSMT formula depicted as a quantifier tree with agglomerated branches

x? < é val4+2b>0)A(y>0Vva®+2b< —1), where N(0, 1) refers to the
normal distribution with mean value O and variance 1. Semantically, @ determines
the maximum probability of the matrix across all values of x between [—1, 1] when
the values of y are distributed according to a standard normal distribution, i.e., deter-
mines an optimal choice of x as strategy for the existential player. We have grouped
the uncountably infinitely many instances of the quantified variables into a finite set
of branches reflecting cases not distinguished by the matrix. In the first branch, the
domain of x is split into three parts, i.e., x € [—1, —%), X € [—%, %] and x € (%, 1].
For each part, we branch the domain of y into two parts. When all the quantified
variables are resolved, we can check the satisfiability. For example, the leftmost leaf
can be annotated with probability of satisfaction of 0, because x € [—1, —%] and
y € (—o0, 0] for this branch and the matrix consequently cannot be satisfied. When
all the branches have been annotated, we can propagate the probability according to
the corresponding quantifiers towards the root of the tree. For example, as y is distrib-
uted according to a standard normal distribution, the probability that y € (—oo, 0] is
0.5. If we combine the probability from bottom to top and choose maximum value
across the branches for x, as x is existentially quantified, then we obtain the prob-
ability of satisfaction of @, which in this simple case (but of course not generally)
isl. 0O

The Bellman backward induction inherent to Definition 2 seems to suggest build-
ing tool support based on branching the quantifier tree and calling appropriate SAT-
modulo-theory (SMT) solvers on the (many) instances of the matrix thus evolving,
as sketched in the example. This, however, is impractical for two reasons:

1. when continuous quantifier domains are involved, the number of branches to be
spawned, and thus of SMT problems to be solved, would be uncountably infinite,®

To this end please note that collapsing equivalent branches, as pursued in Fig.3, can only be
done after solving the instances of the matrix and thus only is an option in cases where continuity
arguments (or similar) permit generalizations from samples to neighborhoods.
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2. even in the case of merely discrete domains, the number of branches is strictly
exponential in the quantifier depth and thus rapidly becomes prohibitive for the
bounded model-checking (BMC) problems we want to solve, which feature a
quantifier depth proportional to the depth of BMC.

We do consequently need more efficient means of solving CSSMT formulae, which
are subject of the next section.

3.2 CSSMT Solving

We will now expose a practical algorithm for solving a CSSMT formula. As the exact
probability Pr(Q : ¢) of satisfaction is not computable in case the matrix ¢ stems
from an undecidable fragment of arithmetic, as usual in the hybrid-system domain,
we formulate the goal of solving as an approximate decision problem. The problem
we want our solving engine to resolve therefore is formalized as follows:

Definition 3 Givena CSSMT formula® = Q : ¢, areference probability € € [0, 1],
and a desired accuracy ¢ > 0, a procedure which upon termination returns

“GE”, if Pr(®) is greater than or equal to € + d;
“LE”, if Pr(®) is less than or equal to € — §;
“GE” or “Inconclusive”, if Pr(®) € [e, e + 41;
“LE” or “Inconclusive”, if Pr(®) € [¢ — 6, €].

is called sound. It is called quasi-complete if it terminates whenever § > 0.

A sound and quasi-complete solver for CSSMT thus is required to yield a definite
(and correct) answer whenever the actual probability of satisfaction is separated
from the acceptance threshold ¢ by at least . If closer to the threshold than d, it may
provide inconclusive, yet never counter-factual answers.

Our method for solving CSSMT formulae is intuitively split into three distinct
—yet overlapping in practice— phases:

1. Quantifier branching: In this phase, each quantified variable’s domain is covered
by a finite interval-partitioning, thereby branching a collapsed quantifier tree akin
to that depicted in Fig. 3. In contrast to the case depicted in Fig. 3, we do, however,
neither make sure that the individual multi-dimensional cells (i.e., product of
intervals) thus obtained contain points indistinguishable by the matrix in the sense
of all yielding the same truth value, nor use the same partitioning in all sub-trees.
Due to the latter, we are not confined to regular gridding of the n-dimensional
variable space, which helps in adaptive local refinement enhancing precision.

2. Paving: For each multi-dimensional cell C generated in the previous phase, we
generate two sets of sub-boxes’ of the cell: one set C under-approximating the

7 As usual in interval constraint solving, we call any product of intervals with computer-representable
bounds a box.
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set of points p € C satisfying the matrix and another set C over-approximating
the set of points p € C satisfying the matrix. Such covers can be obtained by
established paving techniques from interval analysis, e.g., by using the RealPaver
tool [20]. The sum of the —easily computable due to box shape— measures .(B)
of the boxes B € C (or analogously B € C) provide a lower estimate /¢ (upper
estimate uc, resp.) of the probability of satisfaction over C.

The measure p(B) of abox B = H?:l [a;, b;], where n coincides with the number
of quantified variables xi, ..., x,, thereby is defined as

p(B) = [ | (i, bi1), where
i=1

x) { | « Va(x)dx if x,, is randomly quantified with density v, ,
i =

1 if x,, is existentially quantified.

Note that this measure does not expose an effect of existential quantification, as
B is an axis-parallel box such that the choices of existential variables impose no
constraints on the random variables.

3. Projection and lifting: Given the bounds /¢ and u¢ for the satisfaction probability
over each cell C, the final phase recursively synthesizes the overall satisfaction
probability over the full domain by combining cells according to the quantifier
prefix. If C and D are (necessarily neighboring) cells together forming a larger
box-shaped cell (i.e., a product of intervals) E, then their probability masses
can be combined as follows: if I, [p are the respective lower and uc, up the
respective upper estimates of the satisfaction probabilities, and if C and D are
adjacent in direction of variable x, then

_|max{lc,Ip} if x is existentially quantified,
T le+1p if x is randomly quantified,

[max{uc, up} if x is existentially quantified,
Ugp =

uc +up if x is randomly quantified.

In practice, these three phases should, however, be interleaved in order to provide
adaptive refinement of covers in quantifier branching. That is, new cells are generated
—and thus, the quantifier tree from phase 1 expanded— if and only if the computation
of basic set measures in phase 2 or the computation of combined measures in phase 3
yield overly large differences between lower (/) and upper (u¢) probability estimates
for some cell. In that case, the cell will be split into two in order to facilitate a
sharper approximation of the actual satisfaction probability within the cell. Vice
versa, local estimates generated in phase 3 can be used for pruning expansion of the
quantifier tree from phase 1, generalizing Teige’s effective search-space reduction
[37] to the CSSMT case. To this end, it should be noted that residual cells need
not be investigated if their total probability mass does not suffice to lift a partially



22 M. Frinzle et al.

computed (due to phase 2) mass above the acceptance threshold ¢, or if the threshold
already is exceed even without their contribution, or if alternative branches can be
decided to yield better reward, to name just a few of numerous pruning rules rendering
the procedure computationally tractable. The interested reader may refer to [37] for
details of such pruning rules.

After generating an upper estimate u and a lower estimate / for the whole domain,
all that remains is to check for their relation to the threshold ¢: as u is a safe upper
approximation of P(¢), we can report “LE”, i.e., P(¢) < € whenever u < ¢. Simi-
larly, as / is a safe lower approximation of P (¢), we can report “GE”, i.e., P(¢) > ¢
whenever [ > ¢. If, however, [ < € < u then the test is inconclusive, which we are

1 Inner Box 172 Inner Boxes
10 10
8 8
6 6
4 4
2 2
N 0 N 0
2 -2
-4 -4
-6 -6
-8 -8
10 10
5 10 15 20 25 5 10 15 20 25
y y
(a-1) 1 inner box (b-1) 172 inner boxes
1 Outer Box 115 Outer Boxes
10 10
8 8
6 6
4 4
2 2
N 0 N 0
2 -2
-4 -4
-6 -6
-8 -8
-10 10
5 10 15 20 25 5 10 15 20 25
y y
(a-2) 1 additional outer box (b-2) 115 additional outer boxes

Fig. 4 Two-dimensional projections of the inner and outer approximations for the solution set of
matrix x >3 Ay <20 Ax2 > 49 A y > z over computation cell x € [7,10], y € [5,25] and z €
[—10, 10] (corresponding to outermost frame). The gray area marks the exact set of models of the
matrix within the cell. The left side gives a very rough approximation of the solution set by one inner
box (a-1) and two outer boxes (a-1 plus a-2) for the over- and under-approximation, respectively.
The right side provides a much tighter inner (b-1) and outer (b-1 plus b-2) approximation by 172
and 287 boxes, respectively
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allowed to report iff ¢ —/ < § and u — € < 4. If the latter is not the case then we
have to refine the cover of the quantifier domains by computation cells, which we
obviously do by splitting those cells having the highest difference between their
upper and lower probability estimates, i.e., the ones featuring the lowest accuracy.

Example 2 We consider the paving phase for the CSSMT formula

® = 3Jx e[—10,10]dy € U[5,25]dz € U[—10, 10] :
x>3Vy<DA@E>x24+2Vvy<20) A
@P>49Vvy>T)AKX<6VyYy>2),

where Ula, b] refers to uniform distribution with carrier [a, b]. If the paving pro-
cedure generates just one box for the under- and two for the over-approximation,
as shown in Fig.4(a-1 and a-2), the measures returned are / = 0.5 and u = 0.75. A
more precise estimation will be obtained by generating more boxes in the paving:
the 172 inner boxes and 287 outer boxes of Fig.4(b-1 and b-2) yield/ = 0.7181 and
u=0.7191. O

3.2.1 Encoding Bounded Reachability for SHA

CSSMT solving permits bounded model checking (BMC) of stochastic hybrid
automata just the same way SMT facilitates it for hybrid automata (HA) devoid of
stochasticity. The encodings of the transition relation are virtually identical to those
established for HA [3, 12, 23], yet the alternation between non-deterministic and
stochastic branching additionally has to be encoded by a corresponding alternation
of 3 and ¥ quantifiers. The basic idea is illustrated in Fig. 5.

For computing the worst-case (in the sense that non-deterministic choices are
resolved by a malicious adversary) probability of reaching a bad state in k steps,
where bad states are encoded by a predicate Bad, this encoding is unwound to a
formula @ of the shape

Init(Xp) Bad (xXy)
A Trans(Xg, X1) V Bad(x)
Ay p13dyps ... Adypr | ATrans(Xy, Xo) AV Bad(x) |,
alternating non-determinist. and probabil. choices e N . V... N
ATrans(Xp_1, Xp) V Bad(xy)
k-bounded reach set hits bad state
BMC(k)

where the k-fold alternating quantifier prefix reflects the alternation between non-
deterministic and randomized choices inherent to the semantics of SHA and where
the matrix is a conventional symbolic encoding of the k-step BMC problem. The
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Fig.5 Principle of encoding stochastic hybrid automata: non-deterministic choice maps to existen-
tial quantification (fop left part of the graphics), probabilistic choice to randomized quantification
(bottom right part of the graphics), and the transition relation is encoded symbolically as in SMT-
based BMC (table), yet adding the dependencies on choices (columns 3 and 4 in the formula)

quantifiers and the symbolic transition relation Trans correspond to the respective
objects in Fig.5. Details of this encoding can be found in [15, 16, 37]. Its central
property is that the satisfaction probability Pr(®) of the resulting formula is exactly
identical to the worst-case probability of the encoded SHA reaching a bad state
within & steps, such that CSSMT solving can be used for discharging the proof
obligations arising from bounded probabilistic reachability problems. Verification
problems of the form “can the the (worst-case under all adversary strategies resolving
non-determinism) probability of reaching a bad state over a horizon of k steps be
guaranteed to stay below a given safety target €” are thus amenable to automatic
analysis.

It should be noted that the above encoding yields extremely deep quantifier pre-
fixes, as the alternation depth grows linearly in the number of steps of the probabilistic
BMC problem. While this might seem to render (C)SSMT solving infeasible, ade-
quate pruning rules in SSMT proof search permit to solve surprisingly large instances
[37], speeding up solving by up to significantly more than ten orders of magnitude
compared to naive quantifier traversal.
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4 Parameter Synthesis for Parametric Stochastic
Hybrid Automata

Within the model of stochastic hybrid automata (SHA), we allowed for stochas-
tic updates on the continuous as well as discrete variables using fixed probability
distributions. This enables modeling of, among many other random phenomena,
random component failures or data packet losses. Additionally, SHA contained non-
determinism in terms of non-deterministic values and transitions. Extending SHA,
within this section, we allow for an additional non-determinism in terms of a para-
metric dependence of the discrete probabilistic branching by replacing transition
probabilities with parametric terms (#; in Fig. 6). However, apart from this parametric
non-determinism within the discrete probabilistic transitions, we require the system
to be either deterministic or probabilistic, hence reducing the expressive power of
SHA. Therefore, the resulting parametric stochastic hybrid automata (PSHA) fea-
ture a finite set of discrete locations (or modes), each of which comes decorated with
a differential equation governing the dynamics of a vector of continuous variables
while residing in that mode.

Modes change through instantaneous transitions guarded by conditions on the
current values of the continuous variables, and may yield discontinuous (poten-
tially stochastic) updates of the continuous variables. Aiming at simulation-based

¢ :=10+0.048

¢ = (+0.048 =10 —0.048

£>0.0

0 :=10—-0.048

< 1.0

0= 0 =10 —0.048

Fig.6 PSHA model of a charging station. Modes are labeled with labels charge and discharge
abbreviating ODE (not shown explicitly) representing corresponding dynamics over a continuous
capacity £. Modes can switch according to guarded transitions leading to a probabilistic branch.
Probabilities are summarized as terms ?1, . . ., #4 indicating their parameter dependencies
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evaluation methods as in Statistical Model Checking (SMC) [42], transition selec-
tion in this section is assumed to be deterministic, i.e., guard conditions at each mode
are mutually exclusive or overlaps are resolved deterministically as, e.g., by the pri-
ority mechanisms in Simulink-Stateflow. To prevent non-determinism between pos-
sible time flows and transitions, we also assume that transitions are urgent, i.e., they
are taken as soon as they are enabled (which furthermore renders mode invariants
redundant). In addition to these mechanisms from deterministic hybrid automata,
PSHA allow for the probabilistic selection of a transition variant based on a discrete
random experiment. The probability distribution governing the random experiment
is allowed to have a parametric dependence. Following the idea of Sproston [35,
36], the selected transition entails a randomized choice between transition variants
according to a discrete probability distribution. The different transition variants can
lead to different follow-up locations and different continuous successors, as depicted
in Fig. 6, where the guard condition determining transition selection is depicted along
the straight arrows leading to a potential branching annotated with probability terms
denoting the random experiment.

To model the parametric dependence of PSHA, we allow the branching mode-
transition probabilities to be terms over a set ® of parameter names (#; in Fig. 6). The
viable parameter instances f : ® — R are constrained by an arithmetic first-order
predicate ¢ over ©, defining their mutual relation. Let ® = {0 : ® — R | 0 = ¢}
denote the set of all viable parameterizations. Arithmetic terms over @ are subject
to the constraint that for all viable parameter valuations 6 = ¢, the sum of outgoing
probabilities assigned to each transition is 1, i.e., ¢ = >', ;(6) = 1 holds for
the probability terms #; associated to each transition 7. Note that the probability terms
need not contain free variables from #; non-parametric distributions are special cases
of parametric distributions and do not require special treatment.

For the sake of formal analysis, we formalize the semantics of PSHA through
a reduction to a parametric infinite-state Markov chain. For a PSHA with location
set A and continuous variables xi, ..., xp, the states of the Markov chain are given
by ¥ = A x RP and the initial state distribution is inherited from the PSHA. Each
state 0 = (I, X) € X gives rise to a parameter-dependent probability distribution of
successor states o':

t(0) if a transition (o, o’) labeled with probability term ¢ is enabled
ino,

» (a’ o) = 1 ito! = (, g(t)), where g is a solution to the ODE associated to

A I € A with g(0) = ¥, and no transition is enabled in (I, g(¢'))

for any t’ € [0, ¢[, and a transition is enabled in ¢’ = (I, g(2)),

0 otherwise.
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Given a parametric infinite-state Markov chain M with its initial state distribution
givenbyadensity ¢ : ¥ — R and a parametric next-state probability mass function
Do X X @ — [0, 1], the distribution associated to finite runs (o9, oy, ..., 0%) €
X* given a parameter instance 6 € @ is given by the following probability mass
function:

k—1

puoo, 01, ..., 01); 0) = t(op) - Hpai(0i+1, 0).
i=0

Note that # can be vector valued, comprising multiple individual parameters.

Let f : ¥ — R be a scalar function on states, to be evaluated on the last state of
a run and called the reward f of the run,® and let k € N. The k-bounded expected
reward for f in a parameter instance 6 € © is

Emilf; 0= / flor—D)puoo, o1, ..., 00-1); ) d{oo, 01, ..., 0—1), (1)
sk

where X* denotes the sequences over X of length k. We will subsequently drop the
index M in £y and py whenever it is clear from the context. Although the finite
nature of the parametric-dependent probabilistic branching would allow us to write
the expectation in terms of a sum, we represent the expected value in form of an
integral in Eq. (1) to illustrate the similarities to SHA and the general applicability
of importance sampling (see below).

Rewards represent quantitative measures of the system’s performance, and there-
fore mutual constraints on their values can be used for capturing design goals. The
design problem we are thus facing is, given a vector fi, ..., f, : ¥ — R of rewards
in a parametric infinite-state Markov chain M, to ensure via adequate instantiation
of the parameter that the expected rewards meet the design goal:

Definition 4 (Parameter synthesis problem) Let fi, ..., fu: X% — R be a vector
of rewards in a parametric Markov chain M and let C be a design goal in the form of a
constraint on the expected rewards, i.e., an arithmetic predicate containing fi, ..., f,
as free variables. A parameter instance 6 : ® — R is feasible (w.r.t. M and C) iff

0F=¢ and [fi>E(f130),.... fu> Ens O] = C.

The multi-objective parameter synthesis problem is to find a feasible parameter
instance 6, if it exists, or to prove its absence otherwise.

Stated in words, a parameter instance 6 is feasible w.r.t. ¢ and C iff the parameters are
in the range defined by ¢ and the expected rewards resulting from the instantiation
of M with 6 meet the multi-objective C. Note that the aim is to find some parameter

8Due to the generality of the PSHA model, defining rewards exclusively on the final state is as
expressive as defining them via functions on the whole run.
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instance meeting our design goal; we are not considering determining the set of
all suitable instantiations. That is, in contrast to the setting in the previous Sect. 3,
we are here interested in a parameter value satisfying the constraints on multiple
rewards rather than determining the probability of satisfaction for a given parameter
instance. In fact, the constraint system of Definition4 is indeed more general, as
one can specify as objective a constraint system relating different expected values
rather than just a required threshold on a single probability. For example, with the
notation in Definition4, it is possible to ask for a parameter instance, such that one
expected value is larger than another expected value, both of which are allowed to
depend on the parameter value under consideration. Note that such a problem cannot
be stated using the CSSMT formalism of Sect. 3. On the other hand, the technology
from Sect. 3 can deal with lé—player games, i.e., SHA involving both stochasticity
and non-determinism, whereas we here deal with probabilistic systems only — albeit
parametric ones.

4.1 Parameter Synthesis Using Symbolic Importance
Sampling

Expected values aggregate contributions from many different states or trajectories as
in Eq. (1). In particular, when each of the states contributes a different non-zero value
to the overall expected values, an exact calculation of the expected value requires
to evaluate all states or trajectories. As a result, the computation of the expected
values can be the main bottleneck in finding a suitable parameter instance. We aim
in the following at a statistical evaluation of the expected value, which scales with
the number of samples used for such a statistical evaluation and therefore has the
potential of producing results faster. As these statistical estimates of the expected
values are merely arithmetic expressions, we then use these expressions to construct
a constraint system which represents the parameter-dependencies of the expectations
symbolically and can be solved using available constraint solvers, such as the iSAT
solver [14]. However, due to the statistical sampling underlying the generation of the
constraint system, these results are also only of statistical nature. That is, instead of
finding a parameter instance for which we can rigorously guarantee that the constraint
system is satisfied, we can only guarantee with a well-defined statistical confidence
that the constraint system is likely to be satisfied. Similarly, we can only bound the
probability that no parameter instance exists satisfying the constraint system in case
of a negative satisfiability result.

In [18], we developed a scheme which uses a symbolic version of importance
sampling in order to use a sampling-based strategy for estimating expected values
while keeping track of the parametric dependence of these expectations, which we
will review in the following. This technique combines statistical model-checking
of a parameter-free instantiation of the parametric hybrid system with a symbolic
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variant of importance sampling in order to learn a symbolic model of the parameter
dependency.

In order to introduce the general concept of importance sampling [39], we
mostly abstract from our PSHA setting in this section, but highlight specifics to the
PSHA setting when necessary. We instead assume that the parametric probability
distribution of the random variable x € X is given in terms of a density function
p(+; 8) which depends on a vector 6§ of bounded real-valued parameters. Permissible
values of § are defined by a first-order constraint ¢.

Given an arbitrary (bounded) function f : X — R, we are interested in estimating
expected values of f under all parameter values 6 = ¢. The expectation E[ f; 6] for
reward f given parameter vector 6 is

ELSf: 0] =/ f)p(x; 0)dx . 2
X

Given a specific parameter instance 6* and a process sampling x; according to the
distribution p(-; %), the expectation E[ f; #*] can be estimated by

. 1 &
ELfi 07 =5 2 f) 3)
i=1

which is the empirical mean of the sampled values of reward f. In our PSHA setting,
a reasonable process for generating such samples x; according to the distribution
p(+; 8%) would be a simulator for non-parametric SHA, applied to the instance of the
PSHA under investigation obtained by substituting concrete parameter values 6* for
the free parameters.

For sufficiently large N, we expect E[ f; 6*] &~ E[ f; 6*] due to the law of large
numbers. We can quantify the quality of the approximation in (3) using Hoeffding’s
inequality [24], provided that f has a bounded support [a, b/]:

e Brop e eIN
P(ELf: 671 ELf: 012 <) <exp <_2W) ,
~ . . 2N
P(E[f;9]—5[f,9]28)§exp<—zm) : 4)

Therefore, the empirical mean (3) yields a very reliable estimate of the actual expec-
tation when the number of samples is large, with the accuracy given by (4).

As can be seen from Eq.(3), the estimate of the expected value depends only
implicitly on the parameter of interest as the samples x; are drawn from a fixed prob-
ability distribution using the concrete parameters 8*. Consequently, one has to fix
some parameter instance to generate the samples x;, thereby losing the parametric
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dependence. To alleviate this problem, we one can use importance sampling using an
arbitrary proposal distribution g, which does not depend on any parameter. Specif-
ically, one can use the same sampling approach as (3) for (5), however, modifying
the reward function:

;0
ELf: 0] = / Fo P ax 5)
X q(x)

Using the same naive Monte Carlo estimate yields the following empirical approx-
imation to the expectation, including the parameter dependence on # using N samples
drawn from the substitute distribution ¢:

~ i 0
AU Zf( )”(x ). (©6)

Note that such a procedure can be used to obtain unbiased estimates of the expectation
for both continuous probability distributions (densities) as well as discrete probability
distributions (probability mass functions).

Doing so, however, requires being able to actually compute the quotient Z 0&?) =
gain(x;, ®) for each sample x;. Whenever x; is a trace in a PSHA, this can easily
be achieved by taking

#1; (x;)
1 (O)
ain(x;, ®) = , 7
gain(x;, ©) H(t(o*) (7
where 11, ..., t; are the different parametric terms occurring in the automaton and

#t; (x;) is the number of times the transition marked with 7; was taken in trace x;. Note
that gain(x;, ®) contains only the parameter vector ® as free variables (all other
entities are constants), such that (6) provides a symbolic expression for the parameter-
dependency of £[ f; 0]. For details concerning this automatically generated symbolic
encoding, the interested reader may confer [18].

To synthesize a feasible parameter instance, we can generate an arithmetic con-
straint characterizing feasibility by plugging the symbolic parametric estimate (6)
with the concrete gain term (7) into the condition for parameter feasibility from Def-
inition 4, thereby adding an additional constraint for error control in the second line
of the following equation. Here, €(g;, 6, N) is an uncertainty term which captures
the variability of the estimates as a function of the proposal distribution, the number
of samples, and the confidence.
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O0F¢ and [fi—>E(f1:0),.... fu> Efui DI EC

~ ~ 8
and £SO € 6y Lfrs 01— c(gr. 6. N). £ i 61+ elgrn 8. N)]
Note that here, each of the expected values is replaced by the empirical estimate using
samples drawn from a proposal distribution stemming from a parameter substitution
®*. As the resulting constraint system contains only constraints over arithmetic
expressions, this system can directly be fed into a constraint solving engine such
as iSAT [14], which is able to efficiently handle the polynomials of high degree
stemming from the gain term (7). Due to the randomness involved in sampling, the
estimates are themselves random variables. The result (a parameter instance or an
infeasibility result) thus itself is subject to random fluctuations and we can guarantee
the correctness of this result only with probability > 1 — 4.
In order for this result to be valid, we have to determine €(g;, 6, N) such that we
can guarantee (with high probability)

E(fi: 0) € [E,1f3 01 — €(qi, 0, N), E L fis 01 — e(qi, 6, N)] .

Importantly, due to the parameter dependence of the empirical estimates, one cannot
use Hoeffding’s inequality (4), but this statement has to hold uniformly across all 6
satisfying ¢.

Example 3 To illustrate this problem, consider the following example. Let f(x) =
sign(x — 7) be a reward function on a continuous variable x € [0, 27] C R. Further,
let the parametric probability density p(x; 6) o (sin(x6) + 1). When sampling x;
and calculating the empirical average reward, one can tune the corresponding Eq. (6)
arbitrarily, such that the density p(x; €) close to zero for all x; with f(x;) = 1 and
close to one for all x; with f(x;) = —1 by appropriately choosing 6. However, the true
expected reward is almost independent of 6. Importantly, for this choice of density,
setting sampling points to zero or one is possible for arbitrarily many sampling points.
Therefore, the empirical parametric expression does not necessarily converge to the
true expectation with an increasing number of samples (as would be suggested by
Hoeffding’s inequality). To adjust for this effect, one has to account for the complexity
of the parametric function. [J

In fact, describing the effect of tuning parameters within such empirical expres-
sions is one of the major research questions within the field of statistical learning
theory (see [8, 41]), resulting in different complexity measures. For example, the
sinusoidal function above has Vapnik-Chervonenkis dimension of infinity, indicat-
ing a very high complexity. By tuning the parameters after the data has been observed,
a common phenomenon is called over-fitting, i.e., overly adapting the parameter to
the data thereby introducing a larger error in the statistical estimate of the true value
of the expected reward.

When using Eq. (8) together with a constraint solver as iSAT, we have to show the
validity of the results, i.e., we have to show that the probability of the obtained result



32 M. Frinzle et al.

being wrong is bounded by a pre-specified value 4. To this end, we first consider
the case that the constraint solver produces the result UNSAT. That is, the constraint
solver cannot find a candidate solution §* satisfying the constraint system (8). The
reason for such unsatisfiability can either rightfully lie within infeasibility of the
synthesis problem itself, or can be erratic due to the statistical uncertainty within the
estimation of the expected values.

UNSAT Case

In case the solver cannot find a candidate value for the parameter such that the
constraints are satisfied, we would like to bound the probability for this statement
being wrong, i.e., an artifact of the randomness in sampling. To bound this probability,
we can examine the following events for arbitrary probability thresholds c:

Elzmeiné'[ﬁ;a]<c and meinf[f,';G]Zc—i—e 9)

Ezzm?xg[ﬁ;0]>c and mgaxg[ﬁ;ﬁ]fc—e (10)

Intuitively, we would like to bound the probability that we were not able to solve a
slightly easier task £[ f;; 8] > ¢ + € while the original task is possible £[ f;; 0] < c.

Theorem 1 (Confidence for UNSAT)
Let € = ZBi,/—% and B; = max, g mm+pc;9) be given. Then P(E\) < and
P(Ey) <.

Proof For E| the following holds:
P (meinc‘f[f,-; fl>e+c A meinE[fi; 0] < c)

-p (mgné[ﬁ; 012 min€1f;: 01+ e)

Jensen ineq. ~ ~
2" p mging[ﬁ;e]—g[memg[ﬁ;e]] > ¢ an
~—————
=:g(X1,...,XN)

:P(g(.x1,...,XN)_5[9()(:1,...,)(1\/)] ZE)

MeDiarmid ineq. o _EZ_N _ s B-:maxfi(x)p(x;e)
= U TP TR T e

i

To apply McDiarmid’s inequality [31] in Eq.(11), we used the following bounds:
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—2—B<min[lf(x '9)—if(x"9)]
N ~ ¢ N> N>

< mm[ Zf(x,, 0+ 1o 9)]

—mln[ Zf(x170)+ f(xN’H)} (12)

(g9(x1. .. xN) — g1, ... xy))

B
—mem[ fxy: 0) — —f(xN,G)]<2N

IA

, B
:>|(g(-x17"'1xN)_g(-x1’"'7-xN))| ZN
In general, due to the concavity of the minimum, we have

min(f — g) =min(f) —min(g) < —min(—=(f —g)) =max(f —g)  (13)

For E, the proof is analogous replacing min with max. [J
SAT Case

Unfortunately, we are not able to construct a similar argument for the SAT case, as
this would require calculating a complexity measure such as a Vapnik-Chernovenkis
or Rademacher complexity for the function f : (x) p(x -), for which the dependency on
the parameter has to be analyzed to much more detail. However, if we construct the
proposal distribution ¢; by choosing a particular value of 6, e.g., ¢;(x) = p(x; 6%),
we can use the standard Hoeffding inequality (4) to check whether this particular
instance of parameter value 6* satisfies the constraint system. That is, if we found
that the constraint system (8) with the particular setting:

- 1 [ log(d
Elfi; 01 = NZﬁ(x;) with x; ~ ¢; = p(; 0") and e(q;, 6, N) =2,/ — O%\E )
[

is satisfied for 6%, then we know that the original constraint system is also satisfied
with a probability >1 — §, due to Hoeffding’s inequality.

Taken the results obtained so far, we have the following algorithm for checking a
constraint system involving expected values of parametric probability distributions:

1. Select a particular parameter instance 6* = ¢.

2. Draw N samples {x;},i = 1, ..., N from the proposal distribution g = p(-; 6%).

3. Check the particular parameter instance for satisfaction of C using the empir-
ical estimates &[ [fi; 0°] = % > fi(xp) (see also (3)). To do so, we check if

f[f,-; 0*1£2,/— 105(") satisfies C. This step is referred to in Algorithm1 as
CHECKSAMPLES.
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4. If the system is satisfied, we have found a feasible parameter instance 6* with
confidence 1 — 4, i.e., the probability of violating the constraints on the expected
rewards is smaller than ¢. This is due to Hoeffding’s inequality (4), which guar-
antees the high probability (see also [44] where the same method is applied).

5. If the system is unsatisfiable, we construct the empirical constraint system

using (8).

. Check the corresponding constraint system using iSAT once again.

7. If the system is unsatisfiable, we know with confidence 1 — § that the original
constraint system is unsatisfiable.

(@)}

It could, however, happen that the first check yields unsatisfiable, while the second
yields satisfiable, i.e., iISAT could neither verify the particular parameter instance 6*,
nor could refute existence of feasible parameter instances. In this case, the second
check, however, generates another candidate parameter vector ** using the empirical
parametric constraint system (8). With the newly obtained parameter instance, we can
now re-iterate the algorithm until we either find a statistically valid solution or refute
existence of feasible instances. Taken together, we obtain the iterative Algorithm 1.

Algorithm 1 Parameter Fitting by Symbolic Importance Sampling

function SYM- IMP(¢, C, confidence §, number of samples N, max. iterations /)

log(5) b
F—2Bm <« 0; ¢g < ¢

0¢ < %; 0o <— SOLVECONSTRAINTSYSTEM(¢); £ <
while m < I do
q < p(; Om)
S = (x1,...,xy) < DRAWSAMPLES(¢, N) > Simulate N times w.
> parameterization 6,,.
if CHECKSAMPLES(S, 0, ¢, C) then
return 0,, > Found parameterization satisfying C with prob. > 1 — ¢
else
Omi1 < Om A NiZy E(fi 0) € [Efi3 0] — (g, 8, N), &L fi; 0] + e(g, 8, N)]
> Add samples to empirical system
Om+1 < SOLVECONSTRAINTSYSTEM(&,H1)
if q?&,,,ﬂ is unsatisfiable then
return Unsat > Original system is unsatisfiable with prob. > 1 — ¢
elsem <~ m+1
end if
end if
end while
return Unknown > Reached maximal iterations /
end function

In each iteration, we perform a hypothesis test by checking the satisfiability or
unsatisfiability, adding to a maximum amount of hypothesis tests of / for each of both
results. As the samples we use at one iteration are used in the next iteration as well
by adding the corresponding empirical estimate as an additional constraint, the tests
are not independent to each other. Note that we have to use a Bonferroni correction
0¢ «— % to compensate for this dependency (see [32]). As we would like to have the
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final result to hold with confidence 1 — ¢, the Bonferroni correction requires each
of the hypothesis tests (there is a maximum of 7) to give a valid result with at least
11— % thereby guaranteeing that the overall probability of obtaining a valid result is
bounded by (1 — 9)!/ > 115 =1-4.

Taken together, this implies that whenever the algorithm terminates with a definite
result, this result is sound with a confidence > 1 — . Hence, any parameter instance
generated will actually satisfy the feasibility condition Definition 1 with probability
> 1 — 4. Likewise, an infeasibility result reported implies that the problem actually
is infeasible with probability > 1 — 4.

5 Conclusion

Addressing the quest for automatic analysis tools covering the state dynamics of
hybrid discrete-continuous systems, we have over the past decade developed a rich set
of constraint solvers facilitating their symbolic or mixed symbolic-numeric analysis,
starting from the first practical SAT-modulo-theory solver for real arithmetic involv-
ing transcendental functions and thus going beyond the confined decidable fragments
of arithmetic (iSAT, [14]) over the seamless integration of safe ODE enclosures in
SAT-modulo-theory solving (odeSAT, [11]) to stochastic extensions of SAT-modulo-
theory (SSMT and CSSMT, [15, 19]). These techniques permit key-press verification
of bounded safety properties of the embedded system within its physical environ-
ment, whereby both qualitative, i.e., normative, and quantitative, stochastic models
of system dynamics are supported. The related tools have been developed within
the Transregional Collaborative Research Action SFB-TR 14 “Automatic Verifica-
tion and Analysis of Complex Systems” (AVACS, www.avacs.org) and the Research
Training Group DFG-GRK 1765: “System Correctness under Adverse Conditions”
(SCARE, scare.uni-oldenburg.de) and some of them, like the iSAT tool,
are freely available from the respective web sites.

Within this chapter, we have in particular elaborated on the most recent meth-
ods and tools from that series. These are able to, first, solve quantitative bounded
reachability of stochastic hybrid systems involving both discrete and continuous
non-determinism and stochasticity and, second, synthesize feasible parameters for
probabilistic branching in such systems satisfying multi-objective design goals w.r.t.
expected cost/rewards in parametric stochastic hybrid systems. The workhorses here
are CSSMT solving (Continuous Stochastic Satisfiability Modulo Theory [19]) and a
novel blend of statistical model checking and arithmetic constraint solving facilitated
by a symbolic version of importance sampling [18]. We expect such combinations to
have a much broader area of application, as they can be used for automatically min-
ing from samples a formal model of rigorously controlled epistemological validity:
the methods provide a learning scheme yielding a formal constraint model whose
validity can be guaranteed up to a quantifiable confidence, as explained in Sect.4.
We are currently trying to exploit that latter fact for porting formal verification to
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safety-critical embedded software inherently devoid of a formal functional specifi-
cation, like the computer vision components with their object classifiers trained by
machine learning that are central to future automated driving functions.
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MARS: A Toolchain for Modelling, Analysis
and Verification of Hybrid Systems

Mingshuai Chen, Xiao Han, Tao Tang, Shuling Wang, Mengfei Yang,
Naijun Zhan, Hengjun Zhao and Liang Zou

Abstract We introduce a toolchain MARS for Modelling, Analyzing and veRifying
hybrid Systems we developed in the past years. Using MARS, we build executable
models of hybrid systems using the industrial standard environment Simulink/State-
flow, which facilitates analysis by simulation. To complement simulation, formal
verification of Simulink/Stateflow models is conducted in the toolchain via the fol-
lowing steps: first, we translate Simulink/Stateflow diagrams to Hybrid CSP (HCSP)
processes by an automatic translator Sim2HCSP, where HCSP is an extension of CSP
for formally modelling hybrid systems; second, to justify the translation, another
automatic translator HCSP2Sim that translates from HCSP to Simulink is provided,
so that the consistency between the original Simulink/Stateflow model and the trans-
lated HCSP formal model can be checked by co-simulation; then, the HCSP processes
obtained in the first step are verified by an interactive Hybrid Hoare Logic (HHL)
prover; during the verification, an invariant generator independent of the theorem
prover for synthesizing invariants for differential equations and loops is needed. We

M. Chen (X)) - S. Wang - N. Zhan - L. Zou

State Key Lab. of Computer Science, Institute of Software, Chinese Academy
of Sciences, Beijing, People’s Republic of China

e-mail: chenms @ios.ac.cn

S. Wang
e-mail: wangsl@ios.ac.cn

N. Zhan
e-mail: znj@ios.ac.cn

L.Zou
e-mail: zoul @ios.ac.cn

X. Han - T. Tang
State Key Lab. of Rail Traffic Control and Safety, Beijing Jiaotong University,
Beijing, People’s Republic of China

M. Yang
Chinese Academy of Space Technology, Beijing, People’s Republic of China

H. Zhao
School of Computer and Information Science, Southwest University,
Chonggqing, People’s Republic of China

© Springer International Publishing AG 2017 39
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_3



40 M. Chen et al.

will demonstrate the toolchain by analysis and verification of a descent guidance
control program of a lunar lander, which is a real-world industry example.

1 Introduction

Hybrid systems combine discrete controllers and continuous plants, and occur ubig-
uitously in safety-critical application areas such as transportation and avionics. To
guarantee the correctness, formal techniques on modelling and verification of hybrid
systems have been proposed [2, 20, 26, 28]. Besides, as a complementary activity
to verification, several approaches have also been proposed for testing such systems
[1, 3, 9]. However, the deep interactions between discrete and continuous compo-
nents, and in addition, the complex continuous dynamics described by (non-linear)
differential equations, make the formal analysis and verification of hybrid systems
extremely difficult. Most existing work mentioned above can only deal with restricted
systems, e.g., [2, 20] deal with dynamic and hybrid systems with a decidable reacha-
bility problem; [26] considered how to verify hybrid systems using simulation seman-
tics, which cannot guarantee the correctness of hybrid systems in general because of
the inherent incompleteness of simulation; while it is difficult to handle communi-
cation and parallelism using the approach in [28].

To develop reliable complicated hybrid systems, we propose the toolchain MARS
for Modelling, Analyzing and veRifing hybrid systems. As shown in Fig.1, the

Simulink/Stateflow model

R

HCSP model in the form of
HHL Specifications

MARS

Invariant
generator

Fig. 1 Verification architecture
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architecture of MARS is composed of three parts: a translator Sim2HCSP, an HHL
prover, and an invariant generator. At the top level, we build executable models of
hybrid systems in the graphical environment Simulink/Stateflow. As an industrial de-
facto standard for designing embedded systems, Simulink/Stateflow facilitates the
building of an executable model for a complicated system. Specifically, analysis and
validation of a Simulink/Stateflow model can be conducted by simulation. However,
simulation is inherently incomplete in coverage of system test cases and unsound
due to numerical error. As a remedy, it deserves to further verify Simulink/Stateflow
models in a formal verification tool.

In our approach, the translator Sim2HCSP is designed to translate Simulink/S-
tateflow models to HCSP [17, 39]. By extending CSP with differential equations,
HCSP is a formal specification language for modelling hybrid systems, and mean-
while, itis the input language of the interactive HHL prover. By applying Sim2HCSP,
the translation from Simulink/Stateflow to HCSP is fully automatic. Complemen-
tary to Sim2HCSP, an automatic inverse translator HCSP2Sim is implemented to
justify its correctness. We use HCSP2Sim to translate the HCSP model result-
ing from Sim2HCSP back to Simulink, and check the consistency between the
output Simulink/Stateflow model and the original Simulink/Stateflow model by
co-simulation.

The HHL prover is then applied to verify the above HCSP models obtained from
Sim2HCSP. The HHL prover is a theorem prover for Hybrid Hoare Logic (HHL)
[21, 35]. As the input of the HHL prover, the HCSP models are written in the form
of HHL specifications. Each HHL specification consists of an HCSP process, a pre-
/post-condition that specifies the initial and terminal states of the process, and a
history formula that records the whole execution history of the process, respectively.
HHL defines a set of axioms and inference rules to deduce such a specification.
Finally, by applying the HHL prover, the specification to be proved will be trans-
formed into an equivalent set of logical formulas, which will be proved by applying
axioms of corresponding logics in an interactive or automatic way.

To handle differential equations, we use the concept of differential invariants to
characterize their properties without solving them [22, 29]. For computing differ-
ential invariants, we have implemented an independent invariant generator, which
will be called during the verification in the HHL prover. The invariant generator
integrates both the quantifier elimination and SOS (sum-of-squares) based methods
for computing differential invariants of polynomial equations, and can also deal with
non-polynomial systems by transformation techniques we proposed in [23], which
is implemented as EHS2PHS in Fig. 1.

To evaluate MARS, we report our experience in using MARS on a case study in
real industry, i.e. a descent guidance control program of a lunar lander, which is a
closed-loop control system with non-linear differential equations.

In our previous work [36], we studied the same example and verified it by com-
bining several different verification techniques including simulation, bounded model

IThe toolchain MARS and the verification of the lunar lander example can be found at http://Ics.
ios.ac.cn/~znj/toolssyMARS_v1.1.zip.
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checking and theorem proving. In this chapter, we mainly focus on the tool imple-
mentation and integration, rather than on the case study itself as in [36]. The new
contribution of this chapter is threefold:

e Firstly, we implement the reverse translator HCSP2Sim from HCSP to Simulink, to
justify the correctness of the translation tool SIm2HCSP from Simulink to HCSP
by co-simulation. This is not considered in the original version of Sim2HCSP
presented in [40];

e Secondly, based on the invariant generation techniques proposed in [22, 23], we
implement an invariant generator for differential equations and integrate it into the
HHL prover. In [36], the invariants of related dynamics are synthesized manually.
Besides, the tool EHS2PHS that abstracts a non-polynomial hybrid system by
a polynomial one based on the technique in [23] is integrated to the invariant
generator;

e Finally, we provide a seamless integration of all the tools on modelling, analysis
and verification of hybrid systems as a toolchain MARS.

1.1 Related Work

There are some work on tools for formal verification of Simulink/Stateflow dia-
grams addressing both discrete and continuous blocks. In [5] Chen et al. proposed an
approach that translates Simulink models to a real-time specification language and
then validated the models via a generic theorem prover. However, their approach can
only handle a special class of differential equations with closed form solutions, and
cannot handle Stateflow diagrams. Tools based on numerical simulation or approxi-
mation are proposed. STRONG [12] performs bounded time reachability and safety
verification for linear hybrid systems based on robust test generation and coverage.
Breach [13] uses sensitivity analysis to compute approximate reachable sets and ana-
lyzes properties in the form of MITL based on numerical simulation. C2E2 [14] ana-
lyzes the discrete-continuous Stateflow models annotated with discrepancy functions
by transforming them to hybrid automata, and then checks bounded time invariant
properties of the models based on simulation.

There are some tools for verifying hybrid systems modelled by formal specifi-
cation languages. The tool d/dt [4] provides reachability analysis and safety veri-
fication of hybrid systems with linear continuous dynamics and uncertain bounded
input. iISAT-ODE [15] is a numerical SMT solver based on interval arithmetic that
can conduct bounded model checking for hybrid systems. Flow* [6] computes over-
approximations of the reachable sets of continuous dynamical and hybrid systems in
abounded time. Both iSAT-ODE and Flow* are able to handle non-polynomial ODEs
(ordinary differential equations). Based on deductive method, the interactive theorem
prover KeYmaera [30] (and its newly developed version KeYmaera X [16]) verifies
hybrid systems specified using differential dynamic logic. These tools, however, are
not directly applicable to Simulink/Stateflow models.
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Organization. The rest of the chapter is organized as follows: Sect.2 introduces the
tool Sim2HCSP for translating Simulink/Stateflow models, as well as its inverse
HCSP2Sim. Sections 3 and 4 introduce the HHL prover for verifying HCSP models
and the invariant generator respectively. In each of the sections, the corresponding
tool is demonstrated by the descent guidance control program of a lunar lander.
Section 5 concludes the chapter.

2  Sim2HCSP Translator

In this section, we demonstrate a fully automatic translator Sim2HCSP [40, 42] that
encodes Simulink/Stateflow diagrams into HCSP processes.

Simulink/Stateflow As an industrial de-facto standard, Simulink [31] is extensively
used for modelling, simulating and analyzing multidomain dynamic and embedded
systems. It provides a graphical block diagramming tool and a customizable set of
block libraries for building executable models of embedded systems and their envi-
ronments. A Simulink model contains a set of blocks, subsystems, and wires, where
blocks and subsystems cooperate by sending messages through the wires between
them. For an elementary bloc k, it basically gets input signals and computes the out-
put signals assisted by a set of user-defined parameters to alter its functionalities. One
typical parameter is the sample time, which defines how frequently the computation
is taken. Two special values, 0 and —1, may be set for sample time, where 0 indicates
that the block is used for simulating the physical environment and hence computes
continuously, and —1 signifies that the sample time of the block is not determined
yet, which will be determined by the sample times of the in-coming wires to the
block. Thus, blocks are classified into two categories, i.e. continuous and discrete,
according to their sample times.

As a toolbox integrated into Simulink, Stateflow offers the modelling capabilities
of statecharts for reactive systems. It can be used to construct Simulink blocks, fed
with Simulink inputs and produces Simulink outputs. A Stateflow diagram has a
hierarchical structure, which can be an AND diagram, for which states are arranged
in parallel and all of them become active whenever the diagram is activated; or an
OR diagram, for which states are connected with transitions and only one of them
becomes active when the diagram is activated. A Stateflow diagram consists of an
alphabet of events and variables, a finite set of states, and transition networks.

Hybrid CSP Hybrid CSP (HCSP) [17, 39] is a formal modelling language for hybrid
systems which extends CSP [18] by introducing differential equations, time con-
structs, and interrupts. In HCSP, exchanging data among processes is solely described
by communications, and no shared variable is allowed between different processes
in parallel. We denote by dVar and cVar the countable set of discrete and continuous
variables respectively, and by Chan ranged over ch, chy, ..., the countable set of
channels. The syntax of HCSP is given as follows:
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P =skip|x:=e|ch?x |chle| P;Q|B— P|PuUQ]|P*
| (F($,5) = 0&B) | (F($,5) =0&B) & [lic;(i0; — Qi)
S =rP|S|S

Here ch, ch; € Chan, io; stands for a communication event, i.e. either ch; ?x or ch;le,
x € dVar U cVar, s € cVar, B and e are Boolean and arithmetic expressions respec-
tively, P, Q, Q; are sequential processes, and S stands for a system, i.e. an HCSP
process.

The intended meaning of the individual constructs is explained as follows:

e skip terminates immediately having no effect on variables; and x := e assigns the
value of expression e to x and then terminates.

e ch?x receives a value along channel ch and assigns it to x, and ch!e sends the value
of e along ch. A communication takes place as soon as both the sending and the
receiving parties are ready, and may cause one side to wait.

e The sequential composition P; Q behaves as P first, and if it terminates, as Q
afterwards.

e The conditional B — P behaves as P if B is true, and otherwise it terminates
immediately.

e The internal choice P LI Q behaves as either P or Q, and the choice is made
randomly by the system.

e The repetition P* executes P for some finite number of times.

e (Z(s,s) = 0&B) is the continuous evolution statement. It forces the vector s of
real variables to evolve continuously according to the differential equations F
as long as the Boolean expression B, which defines the domain of s, holds, and
terminates when B turns false. For hybrid automata, non-determinism occurs when
both the domain of the continuous evolution and the jump condition are satisfied,
i.e. it can choose to stay in the continuous evolution, or leave it by making a discrete
transition. In HCSP, there is no such non-determinism.

o (F(5,5) =0&B) > [lic;(io; — Q;) behaves like the continuous (.7 (s, s) =
0& B), except that it is preempted as soon as one of the communications io; takes
place. That is followed by the respective Q;. Notice that, if the continuous termi-
nates before a communication among {i0; };c; occurs, then the process terminates
immediately without waiting for communication. When multiple communications
from {io;};c; get ready simultaneously before the others, an internal choice among
these ready communications occur.

e §1|S, behaves as if S; and S, run independently except that all communications
along the common channels connecting S; and §, are to be synchronized.

Sim2HCSP Translator Given a Simulink/Stateflow model, SIm2HCSP translates its
Simulink and Stateflow parts separately. With the approach in [40], the Simulink
part is translated into a set of HCSP processes, while using the approach in [42], the
Stateflow part is translated into another set of HCSP processes. Then, these HCSP
processes are composed in parallel to form the whole model of the system. The
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Simulink and Stateflow diagrams in parallel transmit data or events via communi-
cations. Please refer to [40, 42] for details. Sim2HCSP takes Simulink/Stateflow
models (in xml format, which is generated by a Matlab script) as input, and outputs
several files as the definitions for the corresponding HCSP processes, which contain
three files for defining variables, processes, and assertions for the Simulink part, and
the same three files for each Stateflow diagram within the Stateflow part.

We demonstrate the translation approach by a scenario originating from the
descent guidance control program of a lunar lander, which actually provides a spe-
cific sampled-data control system composed of the physical plant and the embedded
control program.

Example 1 (running example) The guidance control program is built as a Simulink
diagram in Fig. 2, which includes three parts: updating mass m, calculating acceler-
ation alC, and calculating thrust F,.. The sample time of all blocks is fixed as 0.128s,
i.e. the period of the guidance program. In Fig. 2, block m_in reads mass m from the
continuous plant (modelled as the Simulink diagram in Fig. 3) periodically, block Fc
is used to calculate thrust F., and the rest are used to calculate acceleration a/C. In
particular, there are two inputs for block Fc: the first is the acceleration alC, which
is defined as
—0.0L(F,/m — gM) — 0.6(v — vslw) + gM
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Fig. 2 Simulink diagram of the guidance program for the slow descent phase
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Fig. 3 The Simulink diagram of the dynamics for the slow descent phase
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as shown in the diagram; the second is the mass m, and F, is then defined as the
product of alC and m. The details of the guidance program can be found in [36].
The lander’s dynamics is mathematically represented by

Vv

F.
. M
& (1)

:q. IS, e
Il

where

e 7, v and m denote the altitude (relative to lunar surface), vertical velocity and mass
of the lunar lander, respectively;

e F, is the thrust imposed on the lander, which is a constant in each sampling period
of length 0.128 s;

e gM = 1.622 m/s? is the magnitude of the gravitational acceleration on the moon;

e Isp denotes the specific impulse® of the lander’s thrust engine. It has two possible
values depending on the values of F,.. When F, is less or equal than 3000 N,
Isp = 2548 N s/kg, and otherwise, Isp = 2842 N s/kg. For simplicity, we use Isp,
and Isp, to represent the two values of the impulse, and meanwhile, use O DE,
and O DE; to represent the two differential equations corresponding to Isp, and
Isp, as defined by (1) respectively.

The physical dynamics in (1) is modelled by the diagram shown in Fig. 3, where
the threshold of block ISP_choose is 3000, meaning that it outputs 2842 as the value
of Isp when F, is greater than 3000 and 2548 otherwise. The initial values of m, v,
and r (m = 1250 kg, r = 30 m, v = —2 m/s) are specified as initial values of the
integrator blocks m, v, and r respectively. Specifically, an integrator block outputs
its initial value at the beginning and the integration of the input signal afterwards.

The safety property we want to prove for the lunar lander system is Safety |[v —
vslw| < e, where ¢ = 0.05 m/s is the tolerance of fluctuation of v around the target
vslw = —2 m/s.

The simulation result w.r.t the velocity v is illustrated in Fig.4. It is shown that
the velocity of the lander is kept between —2 and —1.9999 m/s, which corresponds
to the safety property we proposed above.

Then the manually constructed Simulink model is translated into annotated HCSP
using the tool Sim2HCSP, which employs the HCSP pattern

definition P :: proc where
"P == PC_Init; PD_Init; t:=0; (PC_Diff;t:=0; PD_Rep)*"

In process P, PC_Init and PD_Init are initialization procedures for the continuous
dynamics and the guidance program respectively; PC_Diff models the continuous

2Specific impulse is a physical quantity describing the efficiency of rocket engines. It equals the
thrust produced per unit mass of propellant burned per second.
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dynamics given by (1) within a period of 0.128 s; PD_Rep calculates thrust F,
according to

F! := —0.01(F, —m - gM) — 0.6(v — vslw)m +m - gM 2)

for the next sampling cycle; variable t denotes the elapsed time in each sampling
cycle. Hence, process P is initialized at the beginning by PC_Init and PD_Init, and
behaves as a repetition of dynamics PC_Diff and computation PD_Rep afterwards.

Consistency Checking by Co-simulation To justify the correctness of the translation
above, we provide a method to check the consistency between the original Simulink
model and the generated HCSP formal model. This is done with the help of a tool
called HCSP2Sim [7], an inverse decoding from HCSP back into Simulink. The
translator HCSP2Sim takes as input an HCSP process transformed directly from the
HCSP model generated by Sim2HCSP, and generates a Simulink graphical model in
the mdl format automatically as output. Figure 5 illustrates the co-simulation result,
where the evolution of the lander’s velocity v in the original Simulink model is shown
as the red dash line® and the one for the inversely translated Simulink model as the
blue line. The co-simulation result shows that the translation loop keeps the behaviour
of the system consistently. However, as also shown by the result, there exists a gap
between the red and blue lines. This is the inevitable consequence of introducing some

31dentical to the line in Fig. 4.
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necessary delay blocks in the translation from HCSP to Simulink, to prevent the zeno*
phenomena while keeping the well-composed translation architecture. Nevertheless,
absolute magnitude of the gap can be reduced by means of narrowing the simulation
time step to an acceptable slot. In such way, a more precise co-simulation can be
conducted. As an additional byproduct, the inverse translation also provides people
with the ability to simulate an abstract formal model and see how the system behaves
immediately and intuitively.

3 HHL Prover

This section presents the HHL prover for reasoning about HCSP models, and before
that, gives a brief introduction of the Hybrid Hoare Logic (HHL) based on which the
prover is implemented.

Hybrid Hoare Logic For verifying the behavior of HCSP processes, a deductive
calculus called Hybrid Hoare Logic (HHL) is proposed in [21]. Given a process P,
the specification {Pre} P{Post; HF}isdefined, where Pre and Post are first-order logic
(FOL) formulas for specifying the pre-/post-conditions holding at the beginning and
termination of P, and HF is a duration calculus (DC) [37, 38] formula for specifying
the history throughout the whole execution of P. Here DC is an interval logic for
describing real-time systems. In particular, as used below in the paper, £ is a temporal
variable denoting the length of the considered interval, and [ S for some FOL formula
S means that S holds everywhere in the considered interval.

In HHL, for each HCSP construct, a set of inference rules are given for deducing
its specifications. Below we explain the rule for the continuous evolution {.% (s, s) =
0&B). Instead of explicit solutions, the concept of differential invariant [22, 29] is
used to characterize the behavior of the corresponding differential equations. As
shown by the following rule, a differential invariant Inv needs to be annotated in the
specification:

Init — Inv (Inv, F) — Inv p A close(Inv) A close(—B) — q
I =0V [close(Inv) A p A close(B)] — G

{Init A p} (F (s, s) = 0&Inv&B) {q; G}

where Init specifies the initial state for s, p for other variables rather than s (thus
will not change during the evolution), and function close(-) extends the domain by
the corresponding formula to include the boundary; (Inv, F) represents the formula
describing the post-states of F executing from a state satisfying /nv. Consider the
hypothesis, the FOL formula in the first line indicates that Inv is indeed a sufficiently
strong invariant, i.e. it is satisfied by the initial state, preserved by the continuous

4 A sequence of infinitely many computations that take finite time.
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evolution, and strong enough to guarantee the postcondition; the DC formula in the
second line indicates that the evolution terminates immediately (specified by [ = 0),
or otherwise, if the evolution takes more than zero time, then the closure of invariant
Inv, the precondition p (related to discrete variables) and the closure of domain B
hold everywhere throughout the whole execution. We have proved the soundness
of the rule, and thus the proof of the specification of the continuous evolution will
be reduced to an equivalent differential invariant generation problem: if Inv exists
such that it satisfies the conditions in the hypothesis, then the original specification
is proved.

The HHL Prover The interactive theorem prover HHL prover, as illustrated by Fig. 1,
is implemented in Isabelle/HOL to mechanize the HHL framework and has been
applied for verifying practical hybrid systems [36, 41]. The prover encodes the HHL
framework in a deep style: the HCSP processes and the two assertion languages
(i.e. FOL and DC) are defined by respective new datatypes, and in consequence,
the inference system of HCSP (i.e. HHL), the deductive systems of FOL and DC
are defined as new axioms, of Isabelle/HOL respectively. In the HHL prover, a set
of verification conditions for HHL specifications are generated first by applying
HHL inference rules, and then these conditions are proved by applying the FOL
and DC deductive rules. Most of the proofs are done interactively. To improve this,
we define a conversion function from our FOL formulas to HOL formulas and thus
the existing proof tactics of Isabelle/HOL are applicable. For example, the powerful
sledgehammer that integrates third-party SMT solvers such as Z3 [11] can be applied
to prove FOL formulas in the HHL prover.

When the specification to be proved contains unknown differential invariants,
some verification conditions related to the invariants remain unproved in HHL prover.
For such cases, the prover needs to call external provers, e.g. the invariant generator
in MARS, for solving the invariants. This will be explained in detail in the next
section.

Example 2 (running example) In Sect. 2, by applying SIm2HCSP, we get the HCSP
process P for the lunar lander example. In order to meet the design requirement of
the control program, we need to prove the following specification for it:

{True} P {|v-vlsw|<=0.05; (1=0)]|high(|v-vlsw]|<=0.05)}

where high corresponds to the [ ] operator in DC. The specification indicates that
the slow descent phase satisfies the safety property, i.e., the difference between the
velocity v and the target velocity visw is always at most 0.05. By applying HHL
prover, the specification is finally reduced to the following five unsolved constraints
for the differential invariants of P:

lemma consl: "(t<=0.128) & (t>=0) & Inv |- |v-vlsw]|<=0.05"
lemma cons2: "(v=-2) & (m=1250) & (Fc=2027.5)

& (t=0) |- Inv"
lemma cons3: "(t= 0.128) & Inv

|- substF ([(t,0)], substF ([(Fc,

-0.01*(Fc-1.622*m) - 0.6*(v+2)*m + 1.622*m)],Inv))"
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lemma cons4d: "exeFlow(’’'v, m, r, t’'’,

' (Fc/m) - 1.622, -(Fc/2548), v, 1'’',t < 0.128,Inv) |- Inv"
lemma cons5: "exeFlow(’’'v, m, r, t’'’,

‘""" (Fc/m) - 1.622, -(Fc/2842), v, 1'',t < 0.128,Inv) |— Inv"

The intuitive explanation of the constraints is: during each period of length 0.128 s,
the invariant /nv is sufficiently strong to deduce the safety property (cons1), the initial
state satisfies Inv (cons2), the computation, and the continuous evolution governed
by the two differential equations of P, preserve Inv respectively (cons3, cons4 and
consS). In the above constraints, function exeFlow(ode, f) for given equation ode
and precondition f returns the postcondition after executing the continuous flow
represented by ode from a state satisfying f. In the next section, we will show how
to apply an external invariant generator to handle these constraints.

4 Invariant Generator

To prove the invariant related subgoals during the verification in the HHL prover, we
need to call an external invariant generator from the HHL prover. The invariant gen-
erator of MARS provides two approaches to synthesizing invariants, i.e., quantifier
elimination (QE) based and SOS based. Before introducing the invariant generator,
we explain how to invoke an external prover in Isabelle.

4.1 Isabelle Oracle

Isabelle provides the oracle mechanism to use new decision procedures not based on
its inference kernel. Listing 1 defines the oracle to decide invariant related constraints.
Function trans_allCons translates an invariant constraint in the form of FOL formulas
into the string representation expected by the solver. The core function decide takes
a string representation of the invariant constraints and passes it to the script program
implementing the invariant generator, and then returns true if an invariant exists such
that the constraints are satisfied, or false otherwise. These two functions are then
combined into the oracle inv_oracle, which verifies an input invariant constraint
using decide, and outputs it as a theorem of Isabelle without any change if it is
certified. Finally, to be used for Isabelle proofs, the oracle inv_oracle is wrapped into
a tactic inv_oracle_tac and then a new method inv_oracle is created based on this
tactic.

1| ML { *

2| fun trans_allCons t =

3] fun decide p = "$InvGen/script.sh "A"\""" prnr\""
4 |> Isabelle_System.bash_output

5 |> fst

6 |> isTrue;*}

71 oracle inv_oracle = {* fn ct =>
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8 if decide (trans_allCons (Thm.term_of ct))
9 then ct

10 else error "Proof failed."*}

11| ML { *

12| val inv_oracle_tac =

13 CSUBGOAL (fn (goal, i) =>

14 (case try inv_oracle goal of

15 NONE => no_tac

16 | SOME thm => rtac thm i))*}

17| method_setup inv_oracle = {*

18 Scan.succeed (K (Method.SIMPLE_METHOD ' inv_oracle_tac))*}

Listing 1 The Oracle for deciding differential invariants

Depending on the different methods for computing differential invariants, we
have implemented two oracles: inv_oracle_qge based on quantifier elimination, and
inv_oracle_sos based on the SOS method. We will explain these methods in more

detail in Sects.4.2-4.5.

Example 3 (running example) By applying the oracle inv_oracle_sos, we have
proved the conjunction of the unsolved five constraints presented in Example 2 as a

lemma:

lemma allCons: "|- consl [&] cons2 [&]
apply (simp: add consi_def for all 1)
apply inv_oracle_sos

done

cons3 [&] cons4 [&] cons5"

At this state, by applying MARS, the verification of the safety for the lunar lander
example thus is completed. Specifically, the manual proof script consists of approx-
imately 300 lines and the verification is done within one minute on a 32-bit Linux
computer with a 1.60GHz Intel Core-i5 processor and 4GB of RAM.

Next we present the invariant generator in detail.

4.2 Differential Invariant Generation

The basic idea of differential invariant generation is by using templates and constraint
solving. For simplicity, we illustrate the idea on systems with a single ODE and no
jumps. For such systems, the unresolved constraints as in Examples 2 and 3 would

roughly be as follows:

(a) d’pre — ¢inv;
(b) ppy — X = f1dinys

(C) d’inv - ¢p0st,
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where

e (a) means that a certain precondition ¢, implies the required invariant @iyy;

e (b) means that any trajectory of the ODE x = f starting from ¢y,, will always
satisfy ¢iny, that is, ¢,y is a differential invariant of x = f;

e (c) means that the differential invariant ¢;,, implies a certain postcondition ¢pog.

For systems with different modes and jumps betweens these modes, as well as
reset functions related to the jumps, additional constraints will be imposed, which
are omitted here.

Example 4 In a more readable way, the five unresolved lemmas in Examples 2 and
3 impose the following constraints:

(ChH 1t <0128 At >0 AlInv — |v—vsiw| <0.05;

C2) v==2Am=1250AF. =20275At =0 — Inv;

(C3) t=0.128 Alnv — Inv(t — 0; F, — F), with F defined in (2);
(C4)  Inv is the differential invariant of the constrained dynamical system

(ODE;0 <t <0.128 A F, < 3000)
(C5)  Invis also the differential invariant of the constrained dynamical system
(ODE,; 0 <t <0.128 A F, > 3000)

where ODE| and ODE); are the dynamics in (1) corresponding to Isp, and Isp,
respectively.

If ¢pre and @pos are polynomial formulas, and f is a polynomial vector field,
then we can try to generate ¢;,, by defining a polynomial template, i.e. a polynomial
formula with undetermined parameters as an invariant candidate and then solving
certain constraints to get the parameters. We have the following two approaches for
generating constraints from (a)—(c) and getting the parameters:

(1) QE-Based: transform (a), (b) and (c) into first-order polynomial formulas as
proposed in [22] and then apply quantifier-elimination (QE) [8] to the quantified
conjunction of the transformed formulas to see if the parameters have solutions;

(2) SOS-Based: transform (a), (b) and (c) into sum-of-squares (SOS) constraints
as proposed in [19] and then use an SDP (semi-definite programming) solver to
solve the constraints to get the values of parameters.

The QE-approach is exact and more general, and in particular, the transformation
of [22] is sound and complete, while the SOS approach is more efficient due to the
use of numerical computation. We have implemented invariant generators based on
both QE and SOS, and integrated them into the MARS tool chain. We will give more
details about the two generators in Sects. 4.4 and 4.5 respectively.

When ¢pre and ¢pose are non-polynomial formulas, or f is a non-polynomial vector
field, we will use the abstraction approach proposed in the next subsection.
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4.3 Abstraction of Elementary Hybrid Systems by Variable
Transformation

In practice, HSs (hybrid systems) may contain elementary functions such as exp, In,
sin, cos, etc., called Elementary Hybrid Systems (EHSs). Due to the non-polynomial
expressions which lead to undecidable arithmetic, verification of EHSs is very hard.
Existing approaches based on partition of the state space or overapproximation of
reachable sets suffer from state space explosion or inflation of numerical errors. In
[23], we proposed a symbolic abstraction approach that reduces EHSs to polynomial
hybrid systems (PHSs), by replacing all non-polynomial terms with newly introduced
variables. Thus the verification of EHSs is reduced to the one of PHSs, enabling us
to apply all the well-established verification techniques and tools for PHSs to EHSs.
In this way, it is possible to avoid the limitations of many existing methods. We have
implemented the above abstraction procedure as a tool EHS2PHS.

For example, the dynamics of the lunar lander involves non-polynomial expres-
sion, v = % — gM, which is abstracted by the tool EHS2PHS based on a rule of

variable transformation, i.e. a = %, where a happens to be the instant acceleration
produced by the thrust F, of the lander. The equivalently transformed polynomial
system will then be delivered to the invariant generator.

4.4 QE-Based Invariant Generator

The invariant generator based on quantifier elimination is implemented in Math-
ematica as a Wolfram script. It can be accessed in Isabelle through the method
inv_oracle_ge using command apply inv_oracle_ge. The generator takes two
parameters as input: constraints @acons t0 be solved from the Isabelle function
trans_allCons as shown in Listing 1, as well as a positive integer n through the user
interface. The parameter rn is the order of polynomials which will be used to gen-
erate a parameterized polynomial invariant template based on variables X extracted
from ¢acons- The parameters in the invariant template is denoted as U and there is
a user interface to set certain parameters in U to Oin order to reduce the difficulty
of quantifier elimination. There is a placeholder inv in ¢ucons, Which will then be
replaced by the generated invariant template.

NOW @a1icons 18 @ conjunction of constraints like those shown in Example 4. Then
constraints like (C4) are translated into polynomial formulas using the technique
proposed in [22], and accordingly, @aiicons 1S transformed into a conjunction of poly-
nomial formulas, denoted by ¢p1y. Use the default quantifier elimination function
Resolve in Mathematica to eliminate all the quantifiers in JUVX : ¢yo1y, and a result
True or False will be returned. The invariant generator will then pass this result to
Isabelle.
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4.5 SOS-Based Invariant Generator

In order to avoid the high complexity of quantifier elimination algorithms, which
takes doubly exponential time on real closed fields [10], an alternative is provided
to synthesize invariants based on sum-of-squares (SOS) relaxation approach in the
study of polynomial hybrid systems [19]. Given a bunch of unproven constraints
derived from Isabelle, the SOS-based invariant generator first transforms them into
a sequence of SOS-constraints w.r.t the user-defined invariant template, and then
invokes semidefinite programming (SDP) [27, 34] to solve the parameterized poly-
nomial invariant.

We continue the lunar lander example to demonstrate the use of the generator.
Like the QE method, the SOS-based invariant generator can be triggered in Isabelle
by an oracle called inv_oracle_sos, in which a terminal window is initially popped-up
for the user to specify the upper bound of the polynomial degree d (we assume that
the undetermined invariant Inv is a semialgebraic set of the form PInv < 0, where
Plny is a parameterized polynomial with degree d); and then a Mathematica script
ScriptGenerator is executed to generate an SOS-constraint model sos/nv.m written
as a script of the Matlab-based optimization tool Yalmip [24, 25]. For instance, the
safety constraint (C1) which is equivalent to

t>0At <0128 (v < —=2.05Vvv>—1.95) — Plnyv > 0,
is transformed to an SOS-constraint:
SOS(PInv — s1 %t % (0.128 — 1) — 50 x (v + 1.95) % (v + 2.05) — eps)

where SOS(f) indicates that the function f is a sum-of-squares polynomial, s; and
s, are both SOS polynomials, and eps is a given positive constant denoting a margin
introduced to avoid the errors of numerical computation in Matlab; to determine the
parameters in Plnv, s1, and s,, as well as parameters in the other constraints, the
Yalmip script soslnv.m is then executed in Matlab and invokes the solver SDPT-3
[32, 33] to solve all the SOS-constraints; finally, another Mathematica script
InvChecker is called to check and return the solving result back to Isabelle, namely
True if the problem is successfully solved, or False otherwise. With d = 6, we get a
result of True associated with the invariant shown in Fig. 6 (left part), and complete
the proof of lemma allCons in Example 3 eventually.

In addition, once the SOS-based invariant generator is triggered by applying ora-
cle inv_oracle_sos in Isabelle, all the procedures described above, except for the
pop-up terminal, are transparent to users, i.e. no Matlab desktop or Mathematica
frontend can be observed. Therefore in order to give an intuitive observation of the
invariant, we provide an additional notebook file InvChecker.nb that can be executed
in a Mathematica frontend to plot a graphical region of the generated invariant as
depicted by Fig.6 (right part). Besides, to avoid synthesizing a false invariant due
to numerical computation errors, we can also integrate symbolic posterior checking
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Fig. 6 The invariant generated by SOS relaxation with d = 6

of the generated invariants in InvChecker.nb, based on the symbolic computation
packages provided in Mathematica.

5 Conclusion and Future Work

We presented a toolchain named MARS that links the modelling, analysis and veri-
fication of hybrid systems. The workflow of using MARS consists of the following
phases: firstly, hybrid systems are modelled in the Simulink/Stateflow environment,
which also facilitates model validation through numerical simulation; secondly, to
overcome the limitations of simulation, the informal Simulink/Stateflow models are
automatically transformed through the SIm2HCSP translator into formal models in
the HCSP language; meanwhile, by an inverse translation from HCSP to Simulink
models using the tool HCSP2Sim, and performing co-simulation, the consistency
between the informal and formal models are justified; finally, the HCSP models
can be verified preserving the given properties using the interactive HHL Prover,
in which different schemes for automatic differential invariant generation are inte-
grated, possibly with the support of EHS2PHS to abstract an EHS to a PHS first. We
have discussed the details of the implementation of all components of MARS, and
demonstrated how to use it through a real-life example of the slow descent control
of a lunar lander.

As future work, we plan to improve MARS in the following aspects:the HHL
prover needs improving its HHL verification framework and also its encoding in
Isabelle/HOL so that more automation can be achieved for the proofs; the external
invariant generators need to be enhanced with more efficient symbolic or hybrid
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numeric-symbolic computation techniques; the toolchain will be applied to other
real-world case studies such as the modelling and verification of Chinese High-
Speed Train Control System (CTCS); various component tools of MARS need to be
more tightly integrated with a friendly user interface provided; and so on.
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Part 111
Correctness of Concurrent Algorithms



A Proof Method for Linearizability
on TSO Architectures

John Derrick, Graeme Smith, Lindsay Groves and Brijesh Dongol

Abstract Linearizability is the standard correctness criterion for fine-grained non-
atomic concurrent algorithms, and a variety of methods for verifying linearizability
have been developed. However, most approaches to verifying linearizability assume
a sequentially consistent memory model, which is not always realised in practice. In
this chapter we study the use of linearizability on a weak memory model. Specifically
we look at the TSO (Total Store Order) memory model, which is implemented in
the x86 multicore architecture. A key component of the TSO architecture is the
use of write buffers, which are used to store pending writes to memory. In this
chapter, we explain how linearizability is defined on TSO, and how one can adapt a
simulation-based proof method for use on TSO. Our central result is a proof method
that simplifies simulation-based proofs of linearizability on TSO. The simplification
involves constructing a coarse-grained abstraction as an intermediate specification
between the abstract representation and the concurrent algorithm.

1 Introduction

Concurrency is here to stay. Furthermore, many systems and most multiprocessors
use shared memory. The use of concurrent algorithms to optimise performance is
likely to be important for some time in this scenario, where fine-grained algorithms
implement single atomic operations as interleaved non-atomic decompositions. The
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use of such algorithms is already common-place, implementing data structures such
as stacks, queues, trees, etc., and they are now found in standard programming
libraries. In order to fully exploit the potential concurrency, algorithms dispense
with large-scale locking of data structures in the shared memory to prevent lengthy
delays. This means that the shared data structure can be concurrently accessed by
different processors executing possibly different operations. This offers speed-ups
over algorithms that use large-scale locking mechanisms, however, this optimisation
comes at a price — that of verifying their correctness.

There has been extensive work on correctness of fine-grained concurrent algo-
rithms over the last few years [14], where linearizability [16] is the key criteria that is
applied. This requires that fine-grained implementations of data structure operations
appear as though they take effect “instantaneously at some point in time” between
their invocation and response [16], thereby achieving the same effect as an atomic
operation. However, the vast majority of work on linearizability assumes a par-
ticular memory model; specifically a sequentially consistent (SC) memory model,
whereby memory instructions are executed by the hardware in the order specified
by the program. Typical multicore systems communicate via shared memory and,
to increase efficiency, use (local) write buffers. Whilst these relaxed memory mod-
els give greater scope for optimisation, sequential consistency is lost, and because
memory accesses may be reordered in various ways it is even harder to reason
about correctness. Typical multiprocessors that provide such weaker memory mod-
els include the x86 [21], Power [23] and ARM [1] multicore processor architec-
tures.

In this chapter, we focus on the TSO (Total Store Order) model [23] which is
implemented in the x86 architecture. We define a notion of linearizability for use
on this architecture, called 7SO-linearizability [11]. Verifying linearizability on a
sequentially consistent memory model can be challenging even without the additional
complexity that TSO introduces due to the reordering of the memory accesses. We
describe how we can simplify the verification to reduce some of this complexity.
We do this by observing that in many cases the proof obligations required of TSO-
linearizability can be split into two: one aspect dealing with the fine-grained nature
of the concurrent algorithm, and the other with the effect the local write buffers have
on the shared memory.

We exploit this observation in our proof method, which uses a coarse-grained
abstraction that lies between the abstract specification and the concurrent algorithm.
The coarse-grained abstraction captures the semantics of the concurrent algorithm
when there is no fine-grained interleaving of operations by different processes. Our
simplified proof method then requires one set of proof obligations between the
concurrent algorithm and the coarse-grained abstraction, and another set of proof
obligations between the coarse-grained abstraction and the abstract description.
The proof method, originally proposed in [12], is extended in this chapter to be
less dependent on the form of the abstract specification, and hence more generally
applicable.
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We structure the chapter as follows. In Sect. 2 we introduce the standard definition
of linearizability on SC architectures and present an existing proof method for it. In
Sect. 3 we introduce the TSO model and formalise a notion of linearizability on TSO
previously published in [11]. In Sect.4 we show how to construct a coarse-grained
abstraction. We define a transformation from the coarse-grained abstraction to the
abstract one, which together with the results of Sect.2 allows us to prove overall
correctness of the concrete specification with respect to the abstract one. We then
show how to apply the approach to a more complex example, the Chase-Lev work-
stealing deque [6], in Sect. 5, before concluding in Sect. 6.

2 Linearizability

Linearizability [16] is widely regarded as the standard correctness criterion for con-
current objects. Given an abstract specification and a proposed implementation, the
idea of linearizability is that any concurrent execution of the implementation must
be consistent with some abstract execution of the specification.

Linearizability provides the illusion that each operation applied by concurrent processes
takes effect instantaneously at some point between its invocation and its return. This point
is known as the linearization point.

This means that if two operations overlap, then they may take effect in any order
from an abstract perspective, but otherwise they must take effect in the order in which
they are invoked.

Since the original definition there has been considerable interest in deriving tech-
niques for verifying linearizability [14]. These range from using shape analysis
[2, 5] and separation logic [5] to rely-guarantee reasoning [25] and refinement-based
simulation methods [13]. In particular, Derrick et al. have developed a refinement-
based method for verifying linearizability [8—10, 20]. This approach is fully encoded
in a theorem proving tool, KIV [19], and has been proved sound and complete —
the proofs themselves being done within KIV.

Case study: Before providing a formal definition of linearizability we introduce
our running example — a spinlock [3], which is a locking mechanism designed to
avoid operating system overhead associated with process scheduling and context
switching.

The abstract specification (given below in Z) simply describes a lock, with oper-
ations Acquire,, Release, and TryAcquire, parameterised by the identifier of the
process p € P performing the operation, where P is the set of all process identifiers.
A global variable x represents the lock and is set to O when the lock is held by a
thread, and 1 otherwise.
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int x = 1;

acquire () { release( ) { tryacquire( ) {
al while (1) { rl x = 1; tl lock;
a2 lock; } t2 if (x==1) {
a3 if (x==1) { t3 x = 0;
ad x = 0; t4 unlock;
ab unlock; t5 return 1;
a6 return; }

} t6 unlock;

a7’ unlock; t7 return 0;
a8 while (x==0) {}; }

}

Fig. 1 Spinlock implementation

AS _ASInit
(x -{0,1} AS
x=1
~Acquire,__________ _Release,___________ _TryAcquire,
AAS AAS AAS
1 Y1 out! : {0,1}
X=0 ifx=1

then X’ =0 A out! =1
else X =xAout!' =0

A typical implementation of spinlock (taken from [15]) is shown in Fig. 1, given as
pseudo-code. Line numbers, a1, etc., are given to the left of the code, corresponding
to the atomic steps of the operations. A thread trying to acquire the lock spins, i.e.,
waits in a loop, while repeatedly checking x for availability.

A terminating acquire operation will always succeed in acquiring the lock. It
will lock the global memory' so that no other process can write to x. If, however,
another thread has already acquired the lock (i.e., x==0) then it will unlock the global
memory and spin, i.e., loop in the while-loop until it becomes free, before starting
over. Otherwise, it acquires the lock by setting x to 0.

The operation release releases the lock by setting x to 1. The tryacquire
operation differs from acquire in that it only makes one attempt to acquire the
lock. If this attempt is successful it returns 1, otherwise it returns 0.

The point about this concurrent implementation is that it is fine-grained. That
is, the operations acquire, etc., are not executed atomically, but the individual

Locking the global memory is achieved by calling an atomic hardware instruction (in this case, a
test-and-set). It should not be confused with acquiring the software lock of this case study by setting
x to 0.
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statements of different threads, al, r1, etc., can interleave. Linearizability is a means
to ask whether such an interleaved execution is in fact consistent with its atomic
abstract counter-part.

2.1 A Formal Definition of Linearizability

Formally, linearizability is defined in terms of histories, which are sequences of
events which can be invocations or returns of operations from a set / performed by
a particular process from a set P. Invocations have an associated input from domain
In, and returns have an output from domain Out. Both domains contain the value L
indicating no input or output. We therefore define:

Event = inv{(P x I x In)) | ret((P x I x Out))
History = seq Event

Notation: For a history s, h = (head h)"tail h (where ~ is sequence concatena-
tion), #h is the length of the sequence, and h(n) its nth element (for n : 1..#h).
Predicates inv?(e) and ret?(e) determine whether an event e € Event is an invoke
or return, respectively. We let e.i € I denote the operation of an event e, e.wr € P
denote the process which performs e, and e.v € In U Out denote the input/output
value. Two indices m and n match in history % (denoted match(h, m, n)) iff 0 < m <
n <#hAh(m).wr = h(n).wt Ah(m).i = h(n).i Ainv?(h(m)) A ret?(h(n)). O

As in [9], we let mp(h, m, n) identify matching pairs of invocations and returns
in history 4. Its definition requires that 2 (m) and h(n) are an invocation and a return
event, respectively, of the same operation, executed by the same process p. Addition-
ally, it requires that there are no invocation or return events of p between positions
m and n in h. That is:

mp(h, m, n) = match(h, m,n) ANk em < k < n = h(k).m # h(m).w

Since operations are atomic in an abstract specification, its histories are sequential,,
i.e., each operation invocation is followed immediately by its return. For example,

hy = (inv(p, acquire, L), ret(p, acquire, 1), inv(q, tryacquire, 1),
ret(q, tryacquire, 0), inv(p, release, 1), ret(p, release, 1),

inv(q, tryacquire, 1), ret(q, tryacquire, 1))

is the sequential history corresponding to the execution acquire; tryaquire;
release; tryaquire. The histories of a concurrent implementation, however,
may have overlapping operations and hence have the invocations and returns of
operations separated, e.g., as in
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he = (inv(p, acquire, 1), inv(q, tryacquire, 1), ret(p, acquire, 1),
inv(p, release, 1), ret(p, release, 1), ret(q, tryacquire, 0),

inv(q, tryacquire, 1), ret(q, tryacquire, 1)).

However to be legal, a history should not have returns for which there has not been
an invocation. This is captured in the following.

legal(h) =Vn : 1. #heret?(h(n)) = @m : 1. #hemp(h, m, n)).

The histories of abstract specifications are also complete, i.e., they have a return
for each invocation. This is not necessarily the case for implementation histories.
For example, the history .~ (inv(q, release, 1)) is also legal although it is not
complete. To make an implementation history complete, it is necessary to add addi-
tional returns for those operations which have been invoked and are deemed to have
occurred, and to remove the remaining invocations without matching returns. We
define a function complete to do the latter:

() ifh= ()
complete(h)= { complete(tail h) if inv?(head h) A NoRet(h)
(head h)~complete(tail h) otherwise

where NoRet(h) =Vn : 1. #h e —match(h, 1, n).

We define linearizability formally as follows. In this definition Histg is the set of all
histories that are sequences of returns, and /in(h, hs) holds iff concurrent history /4 can
be extended by adding such a sequence A to form a legal history 4™ hg such that linrel
holds for complete(h™hy) and hs. The relation linrel(h, hs) holds if for some (total)
bijective function f between indices of / and hs, f transforms & to hs (according to
maps(h, f, hs)) and the order of non-overlapping operations is preserved (according
to order(h, f)).

Definition 1 (Linearizability) A history h : History is linearizable with respect to
some sequential history As iff lin(h, hs) holds, where

lin(h, hs) = 3hg : seqHistg e legal(h™hy) A linrel(complete(h™ hy), hs)
and

maps(h, f, hs) = (Vn : domf e h(n) = hs(f(n))) A
(Ym, n : domf e mp(h,m,n) = f(n) =f(m) + 1)
order(h,f) =Vm,n,m',n’ : domf e
n<m Amp(h,m,n) Amp(th,m',n') = f(n) <f(m’)
linrel(h, hs) = 3f : 1. .#h —> 1. #hs e maps(h, f, hs) A order(h, [) O
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That is, history £ of the concurrent implementation can be transformed into a sequen-
tial history s such that the operations in 4s do not overlap (each invocation is followed
immediately by its matching return) and the order of non-overlapping operations in
h is preserved in hs. For example, the histories A; and A, above are both complete
and legal, and linrel(h., hy) holds, i.e., h. is linearized by h;.

Finally, we can lift the definition of linearizability of histories to specifications: a
concrete specification is linearizable if all its histories are.

2.2 A Proof Method for Linearizability

The proof method for linearizability defined and applied in [8-10, 20] is based on
showing that a concrete specification is a non-atomic refinement of the abstract one.
The steps from [9] are summarised below.

2.2.1 Modelling the Algorithm in Z

The Z description of the implementation has one operation per line of pseudo-code,
where each operation can be invoked by a given process. The concrete state consists
of the shared memory, given as a global state GS and local state LS for each process.
For spinlock, GS includes the value of the shared variable x (initially 1), and a variable
lock which has value {p} when a process p currently has the global memory locked
(and is @ otherwise).

_GS _GSInit
x:{0,1} GS
lock : PP
x=1
#lock <1 lock = &

For a given process, the local state LS is specified in terms of a program counter,
PC = 1]al]...|a8|t1]...|t7|r], indicating which operation (i.e., line of code) will
be performed next. The value 1 denotes that the process is not executing any of the
three operations. The values ai, for i € 1. .8, denote the process is ready to perform
the ith line of code of acquire, and similarly for #i and tryacquire. The value
r1 denotes the process is ready to perform the first line of release.

LS — LSInit
(pc : PC LS
pc=1

In formalising lines of code in Z, we adopt the convention that the values that are
not explicitly changed by an operation remain unchanged. For process p, we have
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an operation AQ, corresponding to the invocation of the acquire operation, and an
operation A1, corresponding to the line of code while (1).

_A0, _AL,
2GS 2GS

ALS ALS

pc=1Apc =al pc=al Apc =a2

The operation A2, corresponds to the line of code 1ock. Tomodel if (x==1),
we use two operations: A3t, for the case when x = 1, and A3f, for the case when
x=0.

—A2, A3, A3,
AGS 2GS 2GS
ALS ALS ALS
pc=a2 Alock =9 pc=a3Ax=1 |pc=a3Nx=0
pc’ = a3 Nlock' = {p} pc’ = a4 pc =al

The operations corresponding to the rest of acquire are modelled similarly. The
two operations corresponding to while (x==0), A8t, and A8f,, are only enabled
when the memory is not locked (and so x can be read from the global memory).

Ady_ A5, A6,
AGS AGS 2GS
ALS ALS ALS
pc = a4 pc=as pc=ab
X =0Apd =a5 pc’' =ab Alock! =@ pc =1

ATy A8, _ASf,
AGS 2GS =GS
ALS =LS ALS
pc=dl pc =a8 pc=a8
pc’ = a8 Alock! = @ lock=2 Ax=0 lock=2 Nx=1

pc =al

The operations for tryacquire are similar to those of acquire. Those for
release are given below.

R0, _RI1,
2GS AGS
ALS ALS

pc=1Apd =rl pc=rlAX=1Apcd =1
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Abstract operation

Concrete

operation while(1) lock if (x=1) x=0 unlock  return

Fig. 2 Simulation of acquire

2.2.2 Proving Linearizability

Correctness requires showing all concrete histories are linearizable. Following [9],
we use two proof steps for each operation of the concrete specification.

Step 1. Firstly, we need to show that the lines of code defining the concrete operations
simulate the abstract operations. We identify one line of code as the linearization step,
which must simulate the abstract operation, all others simulating an abstract skip.
For example, for acquire we require that line a4, x = 0, simulates the abstract
operation and all other lines simulate an abstract skip (see Fig.2). To do this we
define an abstraction relation relating the global (i.e., shared) concrete state space
gs and abstract state space as. The abstraction relation ABS(as, gs) for spinlock is
simply gs.x = as.x.

We also need to define an invariant to enable the simulation of each line of code to
be proven independently. In our example, to prove that x = O simulates the abstract
operation, this invariant needs to ensure that at line a4 we have x = 1. Such an
invariant is stated in terms of the global and local concrete state spaces. Hence, the
invariant INV (gs, Is) must imply Is.pc = a4 = x = 1.

Each simulation is proved by one of five rules depending on whether the line
of code is an invocation (beginning an operation), return (ending an operation) or
internal step (neither an invocation nor return), and whether it occurs before or after
the linearization step. A function status(gs, ls) is defined to identify the linearization
step. Before invocation, status(gs, Is) is IDLE. After invocation but before the lin-
earization step it is equal to IN (in), where in : In is the input to the abstract operation,
and after the linearization step it is equal to OUT (out), where out : Out is the output
of the abstract operation. For example, the simulation rule for an invocation is:

Vas : AS; gs, gs' : GS;Is,Is' : LS;in:Ine
R(as, gs, Is) A status(gs, Is) = IDLE A COP(in, gs, Is, gs', Is') =
status(gs'ls’) = IN (in) A R(as, gs', Is")
Vv
(Jas’ : AS; out : Out e
AOP(in, as, as’, out) A status(gs', Is') = OUT (out) AR(as’, gs', Is'))
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where primed states, e.g., gs’, represent post-states of operations whereas unprimed
states, e.g., gs, represent pre-states; COP represents the meaning of a line of code
from a concrete operation; and R(as, gs, Is) = ABS(as, gs) A INV (gs, Is). The dis-
junction in this rule allows the invocation to be either the linearization step or to
simulate an abstract skip.

Step 2. Secondly, we need to prove non-interference between threads. This amounts
to showing that a process p running the concrete code cannot, by changing the global
concrete state space, invalidate the invariant which another process g relies on. For
example, a process p should not be able to change the value of x when a process ¢ is
at line a4 since this would invalidate the requirement on INV (gs, Is) above. To do
this we require a further invariant D(ls, Isq) relating the local states of two process
whose local states are Is and Isg. The non-interference rule is then:

Vas : AS; gs, gs' : GS;Is,Is', Isq : LS
ABS(as, gs) ANINV (gs, Is) NINV (gs, Isq) A D(Is, Isq) A COP(gs, s, gs', Is")
= INV (gs', Isq) A D(ls', Isq) Astatus(gs', lsq) = status(gs, Isq).

Of course, there is also an initialisation proof obligation:

Vgs : GSInit e as : ASInit e
ABS(as, gs) A (Vis : LSInit @ INV (gs, Is)) A (Vls, Isq : LSInit e D(Is, Isq)).

As shown in [9] if these proof obligations are discharged then the concrete specifi-
cation is linearizable with respect to the abstract. This is all well and good, however,
so far this discussion has assumed a sequentially consistent memory model, and we
now turn our attention to the weaker memory model TSO.

3 The TSO Memory Model

In the TSO architecture [23] each processor core uses a write buffer, which is a FIFO
queue that stores pending writes to memory. A processor core performing a write
to a memory location enqueues the write to the buffer and continues computation
without waiting for the write to be committed to memory. Pending writes do not
become visible to other cores until the buffer is flushed, which commits pending
writes to memory. The value of a memory location read by a process is the most
recent in that processor’s local buffer, and only from the memory if there is no such
value in the buffer. The use of local buffers allows a read by one process, occurring
after a write by another, to return an older value as if it occurred before the write.
In general, flushes are controlled by the CPU, and from the programmer’s per-
spective occur non-deterministically. However, a programmer may explicitly include
a fence instruction in a program’s code to force a flush to occur. Therefore, although
TSO allows some non-sequentially consistent executions, it is used in many modern
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architectures on the basis that these can be prevented, where necessary, by pro-
grammers using fence instructions. In addition, a pair of lock and unlock commands
allows a process to acquire sole access to the memory. Both commands include a
fence which forces the store buffer of that process to be flushed completely.

So how does the TSO architecture affect the behaviour of the spinlock algorithm
of Sect.2? Since the 1ock and unlock commands include fences on TSO, writes
to x by the acquire and tryacquire operations are not delayed. For efficiency,
however, release does not have a fence and so its write to x can be delayed until
a flush occurs. The spinlock implementation will still work correctly, the only effect
that the absence of a fence has is that a subsequent acquire may be delayed until
a flush occurs, or a tryacquire operation by a thread ¢ may return 0 after the
lock has been released by another thread p.

For example, if we use (¢, tryacquire(0)) to denote process g performing a
tryacquire operation and returning 0, and £ Lush(p) to denote the CPU flushing
a value from process p’s buffer, then the following execution is possible:

ex = ((p, acquire), (p, release), (¢, tryacquire(0)), flush(p)).

That is, the tryacquire returns 0 even though it occurs immediately after the
release. This is because the £ 1ush(p), which sets the value of x in memory to 1
has not yet occurred.

This can be considered correct behaviour since it is as if the release by process
p occurred after, rather than before, the tryacquire of the process ¢, which is
possible since the processes are independent. Although we want to accept this as a
valid concurrent implementation, such a run is not linearizable using the definition
given in Sect. 2. Therefore we adapt the definition of linearizability to work on the
TSO model, paying particular attention to the role of flushes.

To model the above behaviour, the Z specification under TSO is modified from that
of Sect.2 as follows. The global state GS includes an additional variable modelling
a buffer for each process. (Each buffer is a sequence of 0 and 1°s.)

_GS _GSInit
x:{0,1} GS
lock : PP x=1
| buffer : P — seq{0, 1} lock = @
#lock <1 Vp: P e buffer(p) = ()

The local state schemas LS and LSInit, as well as the acquire operations A0,,
Al,, A3t,, A3f, and A6, from Sect. 2 are unchanged. The operation A2, correspond-
ing to the 1ock at line a2, is only enabled when the buffer is empty, modelling the
fact that the lock is a fence, i.e., a sequence of flush operations on p’s buffer must
occur immediately before A2, if the buffer is non-empty. The operation A4,,, corre-
sponding to the line x=0, adds the value O to the buffer.
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A2,
AGS
ALS
buffer(p) = ()
pc=a2 Alock =0
r_ r_
pc’ =a3 Alock’ = {p}
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A4,
AGS
ALS

pc=a4

buffer' () = buffer(p) ™ (0)
pc’ = a5

The operations A5, and A7, are only enabled when the buffer is empty, modelling
that the buffer is completely flushed before unlocking the memory. We elide their

definition.

The two operations corresponding to while (x==0), A80, and A81,, are only
enabled when either x can be read from the buffer, i.e., buffer # (), or the buffer is
empty and the memory is not locked (and so x can be read from the global memory).

A8,

=GS

ELS
pc=al

buffer(p) = () = lock=2 Nx=0

buffer(p) # () = lastbuffer(p) =0

_ASf,
2GS
ALS
pc=a8

buffer(p) = () = lock=2 Ax=1

buffer(p) # () = lastbuffer(p) =1
pc’ =al

The operations for tryacquire and release are similarly modified. We also
have an operation, Flush,,, (Where cpu € P is a special value denoting the CPU),
corresponding to a CPU-controlled flush which outputs the process whose buffer it
flushes. This operation must repeatedly occur to empty the buffer before operations

A3t,, A3f,, A5, and A7, can occur.

— Flushp,
AGS
pl:P

lock =@V lock = {p'}

buffer(p!) # () = x' = head buffer(p!) N buffer’ (p!) = tail buffer(p!)
buffer(p!) = () = x' = x A buffer’ (p!) = buffer(p!)

In our approach to modelling algorithms on TSO, we assume that a flush is
only executed by the CPU process, and that this process is different from all other
processes. We also assume that, in a history of the specification, invocations of flushes

are immediately followed by their returns.
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3.1 TSO-Linearizability

Having seen how TSO affects the behaviour of the concurrent objects, we need to
furnish the model with an appropriate correctness condition. Although most of the
work on linearizability has assumed an SC architecture, some work has been under-
taken for TSO (e.g., see [4, 11, 15, 24]). In particular, a definition for linearizability
on TSO has been proposed in [11], where the role of local buffers and flushes is taken
into account in the following way: since the flush of a process’s buffer is sometimes
the point that the effect of an operation becomes globally visible, the flush can be
viewed as being the return of the operation. For example, the flush of a variable, such
as x, after an operation, such as release, can be taken as the return of that opera-
tion. Using this idea, the release operation begins with its invocation but returns
with the flush which writes its change to x to the global memory. Thus the return
point of an operation on a TSO architecture is not necessarily the point where the
operation ceases execution, but can be any point up to the last flush of the variables
written by that operation.

So we will define TSO-linearizability in terms of history transformations, where
the actual return of an operation may be moved to the return of a corresponding flush
[11]. We wish to reuse as much of the standard definition of linearizability as possible,
so we first transform a concurrent history (which includes flush events) to a history
in which the return of the release is moved to a corresponding flush, and events
corresponding to flushes are removed. This produces a new history with potentially
more overlapping operation calls than the original. The original concurrent history
is judged to be TSO-linearizable iff the new transformed history is linearizable.

Calculating the return of an operation. To define the history transformation,
we need to calculate the position of the flush corresponding to an operation’s return.
This is done by a function mpf (standing for matching pair flush) which in turn uses
mp defined in Sect.2.1. A flush acts as a return for an operation, i.e., makes its effects
visible globally, when it writes the last variable which was updated by that operation
to memory.

We extend the definition of Event to include a natural number representing the
size of the buffer of the process performing the event. This number is always zero in
the case of the cpu process. A TSO history is a sequence of such events.

Eventrso = inv{{I x P x In x N)) | ret{(I x P x Out x N))

Historyrso = seq Eventrso

Let h(m).bs denote the size of the buffer of process h(m).w at point m in the
history h. Consider an operation of a history £ whose invocation is at point m and
whose return is at point n. If the buffer is empty when the operation is invoked, then
the number of flushes to be performed before the operation returns is equal to the
size of the buffer at the end of the operation, i.e., i(n).bs; if this number is O then
the return does not move. Similarly, if an operation contains a fence then the number
of flushes before the operation returns is also equal to a(n).bs. In all other cases,
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we need to determine whether the operation has written to any global variables. If it
has written to one or more global variables then again the number of flushes to be
performed before the operation returns is /(n).bs.

To determine whether an operation has written to global variables, we compare
the size of the buffer at the start and end of the operation taking into account any
modifying flushes, i.e., flushes performed when the buffer is not empty, in between.
Let nf (h, p, m, n) denote the number of modifying flushes of process p’s buffer from
point m up to and including point n in A. The number of writes between the two
points is given by nw(h, p, m, n) = h(n).bs — h(m).bs + nf (h, p, m, n).

The predicate mpf is then defined below where m, n and [ are indices in & such
that (m, n) is a matching pair of an operation and / corresponds to the point to which
the return of the matching pair must be moved.

mpf(h,m,n, 1) = 3p : P eh(m).wm = p A mp(h,m,n) An < IAh(m).i # £lush A
(if nw(h, p,m,n) =0V h(n).bs =0thenl=n
else h(l) = ret(cpu, £1lush, p, 0) Anf(h, p, n, ) = h(n).bs)

The first line of the if states that [ = n if no items are put on the buffer by the
operation invoked at point m, or all items put on the buffer have already been flushed
when the operation returns. The second line states that / corresponds to a flush of p’s
buffer and the number of flushes between n and [ is precisely the number required to
flush the contents of the buffer at 7.

Example 1 Consider the following concurrent history (recall the final element of
each event is the relevant process’s buffer size):

he = (inv(p, acquire, 1,0), inv(q, tryacquire, L, 0), ret(p, acquire, 1, 0),
inv(p, release, 1, 0), ret(p, release, 1, 1), ret(q, tryacquire, 0, 0),
inv(cpu, £lush, 1, 0), ret(cpu, £1ush, p, 0))

For the acquire operation we get mpf (he, 1, 3, 3), for the tryacquire operation
we getmpf (he, 2, 6, 6), and for the release operation we getmpf (he, 4, 5, 8). That
is, the matching flush for the release operation is the final one in the history above,
but the other operations return when they complete. ]

Defining a history transformation. We define our transformation 7Trans which
moves the return of each operation, when necessary, to the flush which makes its
global behaviour visible to other processes. The transformation also removes all
flushes and results in a history of type History (rather than Historyrsp). Therefore,
the types of events in a concrete history /4 and its transformed history Trans(h)
will be different; we use SC(inv(p, i, v, n)) = inv(p, i, v) and SC(ret(p, i, v,n)) =
ret(p, i, v) to convert an event of type Eventrso to type Event.

The formal definition of Trans is based on identifying the matching pairs, and
ordering them by the positions that invocations and returns are moved to. The key
point is that the positions that returns get moved to are different for each event, so
we can order them, and this defines our new history.
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Definition 2 (7rans) Let h be a history of the concrete specification. We define a
set S(h) = {(m, n, L, x)|mpf (h, m, n, [) Ax € {m, [}}, which has one tuple (m, n, 1, x)
for each event e in the transformed history. The first three elements of each tuple
correspond to a matching pair (m, n) of a non-flush operation op in the original
history and the point / to which its return is moved. The event e will be either the
invocation or return of op. The final element x denotes the position in the original
history of the event corresponding to e. If x = m then the event in the original history
is an invocation and e is an invocation. If x = [ then the event in the original history
is a return (possibly of a flush) and e is a return.

We can order the elements of S(k) by their 4th elements: x| < x, < --- < X
where k = #S(h). Then Trans(h) is a history with length k defined (fori : 1. .k) as:

. SC(h(x;)), if (x;,n, 1, x;) € S(h), for some n and /
Trans(h)(i) = .
SC(h(n)),  if (m,n,x;,x;) € S(h), for some m U

Example 2 Consider the history he in Example 1. The elements of set S(he) are
ordered as follows: (x1,3,3,x1), (x2,6,6,x3), (1,3,x3,x3), (x4,5,8,x4),
(2,6, x5,x5), (4,5, x¢, x¢) (Wherex; = 1,xp = 2,x3 = 3,x4 = 4,x5 = 6andxg = 8).
Thus, Trans(he)(1) = he(1) since x; = 1, and Trans(he)(6) = he(8) since xg = 8.
Overall Trans(he) is as follows where the return of the release has been moved
as required:

(inv(p, acquire, 1), inv(q, tryacquire, 1), ret(p, acquire, 1),
inv(p, release, 1), ret(q, tryacquire, 0), ret(p, release, 1)) (|

A key part of adapting the definition of linearizability from Sect.2 to TSO is
formalising what we mean by a matching pair of invocations and returns. The formal
definition of the function mp requires that for all £ between m and n, h(k) is not
an invocation or return event of p. This is not true for our transformed histories on
TSO since operations by the same process may now overlap. So, we calculate the
matching pairs for a transformed history from those of the original history. This is
done by subtracting from the positions m and n of the matching pairs the number of
flushes that have occurred before them. The matching pairs of a transformed history
Trans(h) are given by mprso(h, my, ny) defined over the original history  as follows.

mprso(h, my, n1)=3m, n,l empf (h,m, n, ) A

my=m—3 nf(h,p, 1,m)Any =1—=3 nf(h,p,1,1)
pP pP

Example 3 For the transformed history Trans(he) in Example 2, the matching pairs
are mprso(he, 1, 3), mprso(he, 2, 5) and mprso(he, 4, 6). U

A TSO history is legal if (i) it does not have returns for which there has not been
an invocation (as for standard histories), and (ii) the number of modifying flushes



76 J. Derrick et al.

performed on a process’s buffer never exceeds the number of values placed in the
buffer.

legalrso(h) = legal(h) A
Vp:P;n: 1. #heh(n).w #p= nf(h,p,1,n) =0)A
(Va,m' : 1. #h e ret?(h(n)) A (Vn < k < m' e h(k).m # h(n).7)
= nf (h, h(n).t, n,m’) < h(n).bs)

We adopt the definition of TSO-linearizability from [11]. After extending an
incomplete concrete history with flush operations (to empty all buffers) and returns,
we apply Trans to it before matching it to an abstract history. Let Histgg be the set
of histories that are sequences of complete flush operations and returns.

Definition 3 (7SO-linearizability) A history h : History is TSO-linearizable with
respect to some sequential history s iff linyso(h, hs) holds, where

lingso(h, hs) = 3hg : Histpg .leg(llrso(h’\ho)/\
linrelrso(Trans(complete(h™hy)), hs, h™hg)

where

mapstso(h', f, hs, h) = (Vn : domf e i (n) = hs(f(n))) A
(Vm, n : domf e mprso(h, m, n) = f(n) = f(m) + 1)
orderrso(h, f) = Ym,n,m’,n’ : domf e
mprso(h, m,n) Amprso(h, m',n") An <m' = f(n) < f(m')
linrelrso(W , hs,h) = 3f : 1. #h' —> 1. . #hs e
mapszso(' . f hs. h) A orderpso(h. f) O

As before we lift TSO-linearizability to the level of specifications in the same
manner: a concrete specification is TSO-linearizable if all its histories are TSO-
linearizable.

4 Using a Coarse-Grained Abstraction

Any proof method for proving TSO-linearizability will be complicated by having to
deal with both the inherent interleaving handled by linearizability and the additional
potential overlapping of concrete operations resulting from moving operation returns
to associated flushes. For example, in spinlock, a process may perform a release
but not have its buffer flushed before invoking its next operation.

To handle this complexity, we use an intermediate specification, between the
abstract and concrete, to split the original proof obligations into two simpler compo-
nents. The first, between the concrete and intermediate specifications, deals with the
underlying linearizability, and the second, between intermediate and abstract, deals
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Abstract <?§Q:€Q¥ifqlf'fcf _ | Coarse-grained |_ }’;nf‘fr fzfl%lillf}i | Concrete
specification (A) TSO-based (B) TSO-based (C)
A l

! TSO-linearizability |

Fig. 3 Verification chain

with the effects of local buffers. The intermediate specification is a coarse-grained
abstraction that captures the semantics of the concrete specification with no fine-
grained interleaving of operations by different processes. We describe how to define
such a coarse-grained abstraction in the next subsection.

An overview of the approach is provided in Fig.3. The concrete specification
is proved linearizable, using the existing proof method, with respect to a coarse-
grained abstraction which, ignoring flushes, has the same granularity of operations
as the abstract specification. Hence, TSO effects do not complicate the linearizability
proof. These are instead dealt with when we show that the coarse-grained abstraction
is TSO-equivalent to the abstract specification as detailed in this section. It can be
proved that these two steps imply that the concrete specification is TSO-linearizable
with respect to the abstract specification.

4.1 Defining the Coarse-Grained Abstraction

The coarse-grained abstraction is constructed by adding local buffers to the abstract
specification. Thus, it is still a description on the TSO architecture — since it has
buffers and flushes — but does not decompose the operations. The state space is the
abstract state space with the addition of a buffer for each process (as in the concrete
state space G S). Like in the concrete state space, all buffers are initially empty. Hence
for spinlock we have:

BS _BSInit
x:{0,1} BS

buffer : P — seq{0,1} mVp : P e buffer(p) = ()

Each operation is like that of the abstract specification except that

e aread is replaced by a read from the process’s buffer or from memory, i.e., the
operation refers to the latest value of the variable in the buffer, if there is one, and
to the value in memory otherwise,

e a write is replaced by a write to the buffer (unless the corresponding concrete
operation has a fence),

e because we have buffers in the intermediate state space we need to include fences
and flushes: the buffer is set to empty when the corresponding concrete operation
has a fence, and a flush is modelled as a separate operation.
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For example, for the abstract operation Acquire,, x = 1 represents a read, and
x" = Orepresents a write. Using the above heuristic, we replace x = 1 by (buffer(p) #
() = lastbuffer(p) = 1) A (buffer(p) = () = x = 1) since the latest value of x is
that in the buffer when the buffer is not empty, and the actual value of x otherwise.
We also replace x' = 0 by buffer’(p) = () Ax’ = 0 since the corresponding concrete
operation has a fence. Similarly, while the operation TryAcquire, writes directly to
x and sets the buffer to empty (since it has a fence), the operation Release, writes
only to the buffer.

—Acquire, —Release,
ABS ABS

buffer(p) # () = lastbuffer(p) =1 buffer’ (p) = buffer(p) ™ (1)
buffer(p) = () = x=1
buffer' (p) = () AX' =0

—TryAcquire,
ABS
out!: {0,1}

if (buffer(p) # () A lastbuffer(p) = 1) V (buffer(p) = () Ax=1)
then buffer’ (p) = () AX' =0 A our! =1
else buffer' (p) = () AX =0 A out! =0

Note that x" = 0 holds in the else-predicate of TryAcquirep since if the buffer
is empty, x is O and does not change, and if the buffer is not empty, the last ele-
ment in buffer is 0 and the buffer is completely flushed by the 1ock command in
tryacquire.

Finally, the course-grained abstraction is completed with the Flush,,,, operation.
As in the concrete specification, this operation is performed by the CPU process.

— Flushp,
ABS
pl:P

buffer(p!) # () = x' = head buffer(p!) N buffer’ (p!) = tail buffer(p!)
buffer(p!) = () = x' = x A buffer’ (p!) = buffer(p!)

The coarse-grained abstraction is chosen purposefully to reflect the abstract spec-
ification; this facilitates the final part of the proof. The inclusion of buffers and flush
operations, however, means it can be shown to linearize the concrete specification
using standard proof methods.

Example 4 The concrete history he of Example 1 (with the buffer sizes removed
from the events) is complete and legal, and linearized by the intermediate history
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hs = (inv(p, acquire, 1), ret(p, acquire, 1), inv(p, release, 1),
ret(p, release, 1), inv(q, tryacquire, 1), ret(q, tryacquire, 0),
inv(cpu, £1ush, 1), ref(cpu, £1ush, p)) |

Correctness requires showing all concrete histories are linearizable. The key point
for us is that, for this portion of the correctness proof, we do not have to adapt the
existing proof method.

4.2 From Coarse-Grained to Abstract Specification

Overall, we want to show the correctness of the concrete specification with respect
to the abstract one. The previous section has defined an intermediate, coarse-grained
abstraction, and the inclusion of local buffers in this intermediate specification
avoided us needing to deal with the effects of the TSO architecture. In this sub-
section we introduce the idea of TSO-equivalence which allows us to move between
intermediate and abstract specification via a history transformation which we define
below. Correctness involves showing every history of the intermediate specification
is transformed to a history of the abstract one.

The histories of the intermediate specification are sequential, i.e., returns of opera-
tions occur immediately after their invocations, but the specification includes buffers
and flush operations. The transformation we define now turns the TSO histories of
the intermediate specification into histories of an abstract one, i.e., without buffers,
with the same behaviour. It does this according to the principle adopted in Sect. 3.1,
i.e., it moves the return of an operation to the flush that makes its global behaviour
visible. To keep histories sequential, we also move the invocation of the operation to
immediately before the return.

The history transformation TRANS relies on the fact that the intermediate histories
are sequential, i.e., comprise a sequence of matching pairs. Each matching pair
of a history is either moved to the position of the flush which acts as its return
(given by mpf), or left in the same position relative to the other matching pairs. The
transformation also removes all flushes from the history. In a manner similar to Trans
of Sect. 3.1, this is formalised in the following definition.

Definition 4 (TRANS) Let hs be a history of the intermediate specification. Let
T (hs) = {(m, n, D)|mpf (hs,m, n, )}, and k = #T (hs). We can order elements of
T (hs) by the 3rd element in the tuple: [} < I, < --- < [;. Then TRANS (hs) is an
abstract history with length 2k defined (fori : 1..2k) as:

SC(hs(n)) ifiisevenand (m,n,l;;,) € T(hs)

TRANS (hs) (i) = [SC(hs(m)) if i is odd and (m. n, lgy1)2) € T(hs)
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The definition assigns each odd position in TRANS (hs) to the invocation of an
event in As and the immediately following even position to that event’s return. The
order of the invocations/return pairs corresponds to the order of the points to which
their returns are moved according to mpf .

Example 5 Given the intermediate-level history /s in Example 4, the indices which
are related by mpf are as follows: for the acquire operation we get mpf (hs, 1, 2, 2),
for the release operation we get mpf (hs, 3,4, 8), and for the tryacquire
operation we get mpf (hs, 5, 6, 6). The tuples in T (hs) are then ordered: (1, 2, [;),
(5,6,15), (3,4, 13) (where [y = 2,1, = 6 and /3 = 8). Thus, TRANS (hs)(1) = hs(1)
since 1 is odd and (1, 2, ;) € T (hs), whereas, TRANS (hs)(6) = hs(4) as 6 is even
and (3, 4, [3) € T(hs). Overall, TRANS (hs) is the following:

(inv(p, acquire, 1), ret(p, acquire, 1), inv(q, tryacquire, 1),
ret(q, tryacquire, 0), inv(p, release, 1), ret(p, release, 1)). [

Finally, we can define TSO-equivalence:

Definition 5 (7SO-equivalence) An intermediate specification B is TSO-equivalent
to an abstract specification A if for every legal history hs of B, TRANS (hs) is a history
of A. (]

It is now possible to show that the method of proving TSO-linearizability using
coarse-grained abstractions is sound (a proof is provided in [12]).

Theorem 1 If C is linearizable with respect to B and B is TSO-equivalent to A, then
C is TSO-linearizable with respect to A. O

5 Case Study: Work-Stealing Deque

The spinlock example is fairly simple: Firstly, it has only one global variable and
hence all values stored in the write buffers are values of that variable. Generally,
there would be more than one global variable and hence the buffer values need to be
annotated in some way to identify the associated global variable.

Secondly, the global variables in the abstract specification are identical to those of
the concrete specification. The consequence of this is that when the coarse-grained
abstraction is derived from the abstract specification, it has the same buffer values
as the concrete specification. This is actually required for the approach presented in
Sect. 4, but such a relationship between abstract and concrete global variables does
not always hold.

‘We now show how our approach can be adapted to handle more general algorithms.
In particular, we extend the approach to include an extra specification, between the
abstract specification and coarse-grained abstraction, which is buffer-free (like the
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abstract specification) but has the same state representation as the concrete specifi-
cation. An overview of the approach appears in Fig.4.

As an example we specify the Chase-Lev work-stealing deque [6]. Work-stealing
deques (double-ended queues) are often used for load balancing in multiprocessor
systems. Each worker process has a deque, which it uses to record tasks to be per-
formed. Thus, a worker executes put and take operations that, respectively, add
tasks to and remove tasks from its deque. Load balancing is achieved by allowing
other, so-called “thief” processes, whose own deques are empty, to execute steal
operations that remove elements from the deque. To avoid contention between the
worker and thief processes, put and take operate at the opposite end of the deque
from steal operations — a worker adds and removes tasks at the tail, whereas
thieves steal tasks from the head. Contention between the worker and thieves, there-
fore, only occurs when the deque has one element. The Chase-Lev work-stealing
deque, though linearizable on a sequentially consistent architecture, is not lineariz-
able on TSO without the introduction of fences [17]. Here, we show that one of
the fences required to preserve linearizability [17] can be removed, provided the
correctness condition is weakened to TSO linearizability.

5.1 Abstract Specification

Our abstract specification assumes that the deque holds a maximum of W tasks. At
the abstract level, we leave the behaviour undefined when more than W tasks are
added to the deque. The state is specified in terms of a sequence of tasks of type Task
which is initially empty.

_AS _ASInit
tasks : seqTask AS
#tasks < W tasks = ()

The operations Put, and Take, model the worker p’s operations on the deque;
adding and removing tasks at the tail of the deque. When the deque is empty, Take,
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will return a special value empty. The operation Steal, models a thief process g
(where g # p) removing a task from the head of the deque, when it is not empty.

—Put, _Take,
AAS AAS
task? : Task task! : Task U {empry}
#tasks < W = tasks = () = task! = empty
tasks' = tasks ™ (task?) tasks # () = task = task’ ™ (task!)
—Steal,
AAS
task! : Task U {empty}
tasks = () = task! = empty
tasks # () = tasks = (task!) " tasks’'

5.2 Concrete Specification

An implementation of the Chase-Lev work-stealing deque (taken from [18]) is given
in Fig.5. It comprises a cyclic array of W tasks and two pointers: H, the head pointer,
points to the oldest task in the deque, and T, the tail pointer, to the first unused
position in the array. When T=H, the deque is empty. The pointers are non-wrapping,
i.e., if a pointer has the value i it points to the array element at position 1 mod W.

There are three operations: put enqueues a task to the tail of the deque, take
dequeues from its tail, and steal dequeues from its head. put and take are
performed by a worker process, and steal by a thief process which removes tasks
from the worker’s deque in order to balance the workload in the system. take and
steal return EMPTY when applied to an empty deque. To ensure correct behaviour
on TSO, a single fence has been added at line £3 in Take,,.

There are three extra variables: h and t denoting local copies of the pointer values
H and T, respectively, and task denoting a local copy of a task.

The interesting behaviour is in the way that the take and steal operations
interact when called concurrently. To take the task at position t=T-1, the worker
process decrements T to equal t (line t£2) thereby publishing its intent to take that
task. This publication, ensured by the fence at line t3, means subsequent thieves
will not try to steal the task at position t. It then reads Hinto h and if t > h knows
that there is more than one task in the deque and it is safe to take the task at position
t, i.e., no thief process can concurrently steal it.

If t < h the worker knows the deque is empty and sets T to equal h. The final
possibility is that t=h. In this case, there is one task on the deque and conflict with
a thief may arise. To deal with this conflict, both the take and steal operations
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int H =0, T = 0;
Task [] tasks = new Task[W];

int h, t;
Task task;

put (Task task) {

pl ot =1 tati()t{— T - 1;
p2 tasks[t mod W] = task; - 4
t2 T = t;
p3 T =t + 1;
} t3 fence();
td h = H;
t5 41if (t > h)
steal () { Eg g (ieZui? Easks[t mod W] ;
sl while (true) { s N o
s2 ho=H; t9 ; : EMPTY;
s3 t = T; : return ;
s4 if (h >= t)
s5 return EMPTY; t10 é/—th:l?
s6 task = tasks[h mod W]; 11 ,f_ 'CAé 0oh hel
s7 if (ICAS(H, h, h+l)) if (ICAS(H, h, ))
. tl2 return EMPTY;
// goto line sl
. t13 return tasks[t mod W];
s8 continue; )
s9 return task;

}

Fig. 5 Chase-Lev algorithm

employ an atomic CAS (compare-and-swap) operation. An operation CAS (x,y, z)
checks whether x equals y and, if so, updates x to z and returns true, otherwise it
returns false leaving x unchanged. The CAS is atomic, and the update is immediately
written to memory since the CAS operation also implements a fence.

The steal operation reads the deque’s head and tail into h and t, and if the
deque is not empty tries to increment H from h to h+1 using the CAS at line s7. If
it succeeds, the value of H has not been changed since read into the local variable h
and hence the thief has stolen the task. The take operation works similarly. If t=h,
rather than decrementing T to take the task, the worker increments H. Therefore, after
decrementing T, if the worker finds t=h, it restores T to its original value (line t10)
and then tries to increment H from h to h+1 using the CAS at line t11.

To specify the Chase-Lev deque implementation in Z, we need to allow values of
more than one variable in the write buffers. The buffer can contain array entries, i.e.,
tasks, as well as natural numbers corresponding to the global variable T. The value
of H is never in the buffer since it is only changed in the CAS operations and hence
written directly to memory.

A general way to model such a buffer is illustrated in [22]. Let Id be a set of
identifiers, one for each global variable whose value may be in the buffer, and let
U be the union of the types of all such global variables. Then buffer is of type
P — seq(ld x U) where P is the set of all processes. For example, the Chase-Lev
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deque has W+1 global variables whose value may be in the buffer, each of the W array
entries and the pointer T. Hence, we define Id==0. .W such that the values 0. . W — 1
identify array entries in the buffer and W identifies a value of 7. Representing the

array by a sequence of Tasks we have

~GS

tasks : seqTask
H,T:N
buffer : P — seq(Id x (Task UN))

#rasks = W
Vp:PeVi:dombuffer(p) e
Sirst(buffer(p)(i)) = W

=
second(buffer(p)(i)) € N

_GSInit

GS
H=T=0

Vp: P e buffer(p) = ()

The local state is defined as follows, where PC ::= 1|pl]...|p3|t1]...|¢t13]s]

... ]s9.

LS=[h,t : N; task : Task; pc : PC)

LSInit = [LS|pc = 1]

To simplify the specification of the operations, we write X(p) to denote the value of
x read by a process p. This value is either the most recent in its buffer or, when no
such value exists, the value of the global variable x.

The lines of code of the operation put are modelled as follows.

—PutQ,
=GS; ALS
task? : Task

pc=1Apc =pl
task’ = task?

—Pur2,

AGS; ALS

pc=p2Apc =p3
buffer’ (p) =
buffer(p) ™ ((rmod W, task))

—Putl,
=2GS; ALS

pc=plApc =p2
! =T(p)

—Put3,
AGS; ALS

pc=p3
buffer’ (p) = buffer(p) ~ (W,t+1))
pc =1

The first 6 lines of the operation take, corresponding to a task being returned
without conflict, are specified as follows. Note that 1 is added to the index of the
output task, in Take6,, to convert the array index (between 0 and W — 1) to an index

of the sequence tasks (between 1 and W).
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—Take0,
=GS; ALS

pc=1Apc =tl

_Tuke2,
AGS: ALS

pc=12Apc =13
buffer' (p) = buffer(p) ™ {(W,1))

—Takel,
ZGS; ALS

pc=tlApc =12

! =T(p)—1

—Take3,

AGS; ALS

buffer(p) = ()
pc=13Apc =t4

~Take4, ~Take5t, ~Take5f,
=GS; ALS =GS; ALS =GS; ALS
pc=1t4 pc =15 pc =15
W=H t>h t<h
pc’ =15 pc’ =16 pc’ =11
— Take6,
AGS; ALS
task! : Task

pc =16 A task! = tasks(tmod W +1)(p) A pc’ =1

The next 3 lines of code correspond to empty being returned:

—TakeTt,

=GS; ALS
pc=1t1Apc =18

—TakeTf,
=GS; ALS

pc=1t1Apc =110

pc=1t8Apc =19
buffer' (p) = buffer(p) ~ (W, h))

t<h t>h
—Take8, —Take9,
=GS; ALS EGSALS
task! : Task

pc=19Apc =1
task! = empty

85

The final 4 lines of take, corresponding to conflict for the final task in the deque,
are specified as follows. Note that the Z schemas corresponding to the CAS, Takel1t,
and Take11f,, include a fence (modelled by buffer(p) = ()). Again, 1 is added to the
index of the output task in Takel3,.
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—Takel0, —Takellt,
=GS; ALS EGS; ALS
pc=1t10Apc =tl11 buffer(p) = ()
buffer’ (p) = buffer(p) ~ (W,h+1)) | pc =t11Apc’ =112
H+4h
—Takellf, —Takel2,
=GS; ALS =GS; ALS
PR task! : Task
buffer(p) = () S
pc=t11Apc =13 pc=t12Apc’ =1
H=hAH =h+1 task! = empty
—Takel3,
=GS; ALS
task! : Task
pc =113 A task! = tasks(rmod W + 1)(p) A pc’ =1

We can model the operation steal in a similar fashion. Details are omitted here.
Finally, we specify the flush operation. When the identifier of a value to be flushed
is in the range 0..W — 1, we add 1 to it to get the corresponding position in the
sequence tasks which needs to be updated.

—Flushcp,
AGS
pl:P
buffer(p!) £ () =
(Fid : Id; val : Task UN e

buffer(p!) = {((id,val)) ™ buffer’ (p!) A

(ide0..W—1= tasks' = tasks ® {id+ 1 —val} NT' =T) A

(id =W = T' = val A tasks' = tasks))
buffer(p!) = () = tasks' = tasks N T' =T N buffer’ (p!) = buffer(p!)

5.3 Refined Abstract Specification

It is not possible to directly apply the proof method of Sect.4 to these abstract and
concrete specifications of the Chase-Lev deque. The buffers of the coarse-grained
abstraction would contain entries for tasks in the sequence fasks, but would not
contain entries for the concrete variable 7" which does not appear in the abstract
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specification. In general, the state representation at the abstract and concrete levels
can differ significantly, resulting in a mismatch between buffer values and the number
of flushes required for a given operation. To overcome this problem, we introduce a
second abstract specification which is a data refinement of the original. This refined
abstract specification, like the original, does not have buffers or flushes, but unlike
the original has the same state representation as the concrete specification.

The state schema of this refined abstract specification has variables T and H of
type N and a sequence of tasks of length W.

_AS1 _ASlInit
tasks : seq Task AS1
HT:N H=0AT=0
#tasks =W

The Put, operation adds a task at position (T mod W + 1) of the sequence ((T
mod W) of the modelled array) and increments 7. In the case where there are already
W tasks in tasks, this will result in the earliest added task to be overwritten (as is
done in the implementation). Recall that the behaviour of the original Put, operation
is undefined when Put,, occurs and there are already W tasks.

—Put,
AAS1
task? : Task

tasks’ = tasks ® {(Tmod W + 1) — task?}
T'=T+1

The Take, operation returns empty when H = T, returns the task at position (T’ —
1) mod W + 1 of tasks and increments 7 when H + 1 < T, and returns the task at
position H mod W + 1 of tasks and increments H when H 4+ 1 = T. There is no
conflict with a thief at this level of abstraction as Take, and Steal, are atomic.

—Take,
AAS1
task! : Task U {empty}

H =T = task! = empty
H<T—1= task! =tasks((T—1)modW+ 1) AT =T —1
H=T—1= task! = tasks(Hmod W+ 1) N\H' = H+1

The Steal, operation is modelled in a similar fashion, details are omitted here.
This specification can readily be shown to be a data refinement of the original abstract
specification using the simulation rules for Z refinement [7] and the following retrieve
relation. This relates the tasks starting from position 1 in tasks of AS with those
starting from position H mod W + 1 in tasks of AS1.
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— R
AS
AS1[tasks1 [task]

tasks ={i:0.. (T —H)—1e (i+1,tasks1((H+i)mod W+1))}

5.4 Coarse-Grained Abstraction

Given the refined abstract specification above, we are now in a position to develop
the coarse-grained abstraction. In this case, adding a buffer for each process to AS1
results in the schema GS. Hence, we have BS = GS and BSInit = GSInit, and the
Flush,, operations is as defined for the concrete specification.

The specification of Put, needs to take into account that flushes may occur between
the two writes. Hence, it is possible that the operation returns with only its last write
(to T) in the buffer and the sequence tasks already updated.

—Put,
ABS
task? : Task

buffer' (p) = buffer(p) ™ {(T mod W, task?),(W,T + 1))

V
buffer’ (p) = (W, T +1)) A tasks' = tasks ® {T mod W + 1, rask?}

The nondeterminism in the definition of Put, ensures linearizability can be proved
using the proof method presented in Sect. 2. Any flushes to values not written by the
current Put, operation which are flushed during its execution are linearized to occur
before the operation. A flush of the write to tasks is also linearized to occur before
the operation, but in this case the flush of the coarse-grained abstraction is one that
occurs when the buffer is empty; the updating of fasks is done by the operation.

In general, such nondeterminism will be required in the coarse-grained abstraction
whenever an operation can return with more than one of its writes in the buffer. Hence,
it was not required for spinlock where there was at most one write in the buffer at each
operation return. It is also not required for the remaining operations of the Chase-Lev
algorithm which either end with a fence (and hence have no writes in the buffer) or,
in the case of a take when the buffer is empty, end with one write in the buffer.

To specify Take,, we need to pay careful attention to where the fences occur in
the implementation. The fence at line 3 ensures that all values in the buffer at the
start of the operation are flushed (specified by the first line of the predicate below).
When H = T, the value of T is changed twice: the first write (line t2) is flushed by
the fence at line t3, and the second (line t8) is not. T is also changed twice when
H =T — 1. However in this case, the CAS (line 11) clears the buffer ensuring 7 is
equal to its second value (which happens to be the value of T before the operation).
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—Take,
ABS
task! : Task
(Vi:1..W e tasks' (i) = tasks(i)(p)) N T' =T(p)

H =T(p) = task! = empty NT' =T(p) — 1 A buffer’ (p) = (H)

H < T(p)— 1= task! = tasks((T(p) —1)mod W+ 1)(p) AT =T(p) — 1 A
buffer’ (p) = ()

H=T(p)— 1= task! = tasks(Hmod W+ 1)(p) N\H' =H+1 A
buffer’ (p) = ()

In the implementation of Steal,, the CAS at line s7 causes a fence when H < T
(specified by the last line of the predicate below). Since Steal, and Take, are still
atomic at this level of abstraction, there is no chance of conflict when H < T.

—_Steal,
ABS
task! : Task

H =T(q) = task! = empty
H<T(q) =
task! = tasks(Hmod W +1)(q) NH' = H + 1
(Vi:1..W e tasks' (i) = tasks(i)(q)) N T' =T(q) A buffer(q) = ()

We are now able to apply our approach to prove that the implementation of Fig. 5
is TSO-linearizable with respect to the refined abstract specification of Sect. 5.3, and
hence with respect to the abstract specification of Sect.5.1.

In other work, Liu et al. [17] suggest a further fence is needed after line p3 of
put in order to prove linearizability. This is to prevent a thief process performing a
steal which returns empty, immediately after the worker process has completed
a put operation on an empty deque, i.e., before the writes of the put have been
flushed to memory. Since under TSO-linearizability the return of the put will be
moved to the last flush of the values it writes, the put and steal operations will
overlap in this case and the scenario will linearize to an abstract history where the
steal which returns empty occurs before the push.

6 Conclusion

In this chapter we have developed a method by which to simplify proofs of lineariz-
ability for algorithms running on the TSO memory model. Instead of having to deal
with the effects of both fine-grained atomicity and local buffers in one set of proof
obligations, we have used an intermediate specification to partition the proof oblig-
ations in two. One set of proof obligations is simply the standard existing notion of
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linearizability, and any existing proof method could be employed to verify this step.
The second set of proof obligations involves verifying that an appropriate transfor-
mation (given by TRANS defined in Sect.4) holds.

Although there is existing work on defining linearizability on TSO, to the best of
our knowledge this is the first work that provides simplified reasoning for showing
how linearizability can be verified for algorithms running on TSO, although mention
should be made of the approach in [24] that uses SPIN to check specific runs for
TSO-linearizability.
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Linking Discrete and Continuous Models,
Applied to Traffic Manoeuvrers

Ernst-Riidiger Olderog, Anders P. Ravn and Rafael Wisniewski

Abstract The interplay between discrete and continuous dynamical models is
discussed, and a systematic approach to developing and combining these models
together is outlined. The combination is done with linking predicates that define
refinement relations between the models. As a case study, we build an abstract, discr
spatial model and a concrete, continuous dynamic model for traffic manoeuvrers of
multiple vehicles on highways. In the discrete model we show the safety (collision
freedom) of distance keeping and lane-change manoeuvrers using events and actions
to specify state transitions. By linking the discrete and continuous model via suitable
predicates that express the discrete events and actions as distances and set-points in
the continuous model, the safety carries over to the concrete model.

1 Introduction

Hybrid systems were introduced in order to model dynamical systems with a complex
interaction between discrete actions and continuous evolutions in their trajectories
[15]. Semantic models in the form of Hybrid Automata with the underlying transition
systems [2, 29] were soon developed, and simulation tools like Stateflow [30] and
Ptolemy II [24] appeared as well. Due to the success of model checking for timed
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Symbolic Model StateSpace

Linking
sg = K(y)

z=1L(sa)

Continuous Hybrid Model StateSpace

Fig.1 Modelling approach. The discrete model is a collection of discrete automata with transitions
governed by symbolic guards, sg, and with symbolic actions, sa. The underlying symbolic state
space is hybrid with time evolutions. However, it is asserted that time steps do not change the value
of guards and actions. The continuous model is a conventional control model which accepts set
points, z. Linking is given via suitable functions K and L

automata [3], much effort has been directed towards analysis tools which use over-
and under-approximations of hybrid automata [12, 14, 51], because it was clear from
the outset that decidability was impossible even for very simple models.

There has been much progress both in analysis tools and in the amount of case
studies, but it is still hard to find general composition principles. Often a system is
decomposed into simpler subsystems that are loosely coupled [4, 20, 42] and thus
can be analyzed individually. This loose coupling among concurrently operating
subsystems was illustrated in [7], and it was analysed at a semantic level for hetero-
geneous subsystems in [38]. One observation though is that verification is usually
done on subsystem models abstracted from detailed continuous models. It is this
decomposition that is in the focus of this work. In a search for a more general and
perhaps even teachable aplproach to performing this abstraction, we have tried to
extract the principles from our continued efforts in modelling and verifying vehicle
manoeuvrers in traffic, because it is a setting with a complex state space, a demand
for decentralized control, and hybrid behaviours.

Here, we have reached the conclusion that a key point in the abstraction is to keep
the discrete part, often a supervisory layer, on symbolic and finite level without any
direct reference to time, because it allows for exhaustive verification using conven-
tional techniques. However, this will in itself leave the continuous dynamics as an
unexplored postulate. Thus, there is a need for linking the symbolic quantities of the
discrete model to the concrete continuous model by a proper refinement relation. Via
linking, behavioural properties of the abstract model are preserved for the concrete
model. An inspiration is here the data refinement relations explored in program ver-
ification [8]. However, in the reactive setting, linking predicates as in the approach
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of UTP (Unifying Theories of Programming) [23] are more suitable. In summary,
the approach presented has the following steps, illustrated in Fig. 1.
For the symbolic, discrete model:

1. build a qualitative model of the context with symbolic representation of states of
objects.,

2. formulate rules for interaction as finite state machines operating on the symbolic
state (If the state machines use communication protocols, timeout transitions may
be used to compensate for lost messages),

3. specify safety and liveness properties of the symbolic state,

4. verify the properties.

These steps are illustrated on the case of vehicle manoeuvrers in Sects.2 and 3.
When this part has gone through a number of iterations and the result is satisfac-
tory, consider the concrete model:

5. identify a concrete dynamical model for the objects including available or at least
plausible sensors and actuators,

6. link the models by relating the symbolic state variables to concrete observables
that are computed by a controller for the dynamical system using available sensors
and concrete models of the individual objects, also link symbolic actions to set
points for the control,

7. design and validate the controllers and observers.

These steps are illustrated on the case in Sects.4-6.

Note that often the two models may develop concurrently. When this happens, it
is important to keep the linkage stable when doing separate iterations.

A pragmatic consideration when designing the linking in the concrete case has
been to design a system where a smart car can navigate among ordinary dumb cars.
There is no need to require all cars to be smart and able to communicate with other
cars. This has implications for the sensors and actuators, see Fig.3 in Sect. 5, as well
as impact on the symbolic guards and actions.

In Sect. 7, we comment on generally related work, while the conclusion in Sect. 8
considers limitations of the approach and potential for tool support.

2 Symbolic Model

In this section, we summarize and adapt the model of [22]. In this model, a multi-
lane highway has an infinite extension with positions represented by real numbers
in R and with lanes represented by a finite set of natural numbers, L = {0, ..., N}.
We assume that all traffic proceeds in one direction, with increasing position values,
in pictures shown from left to right. The highway is populated by cars with unique
identities denoted by capital letters [ = {A, B, ...}.

At each moment in time, we represent the traffic on the highway by a traffic
snapshot. It records for each car the current position pos (at the rear end of the car)
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and speed spd, and on which lanes the car reserves or claims space. The idea is that
a reserved space is owned by a unique car. Thus for safety, we have to show that
reserved spaces of different cars are mutually exclusive. In contrast, a claimed space
is used in preparation of a lane change and may still overlap with claimed or reserved
spaces of other cars. However, then the lane change must not take place. The length
of reserved and claimed spaces is given by the safety distance, which is the length
of the car plus a safe estimate of the (speed-dependent) braking distance that the car
will need to come to a complete standstill.

Definition 1 A traffic snapshot & comprises the functions pos, spd, res, clm

e pos : I — R such that pos(C) is the position of car C along the lanes,
e spd : I — R such that spd(C) is the current speed of the car C,
o res : I — Z(LL) such that res(C) is the set of lanes C reserves,
e clm: 1 — Z(L) such that c/m(C) is the set of lanes C claims.

We denote the set of all traffic snapshots by T.

Note that in .7, it is not specified which space is occupied on the reserved and
claimed lanes. This information is given by an uninterpreted function se for safety
envelope. For a given traffic snapshot 7, we introduce for each car C its safety
envelope se 7 (C) as the interval se s (C) = [pos(C), pos(C) + d(C)] starting at
the current position pos(C) of the car and of some uninterpreted length d(C) > 0,
which is intended to be the safety distance of car C dependent on its current speed
spd(C). The exact value of d(C) is not known in the symbolic model, but will be
determined in the concrete dynamic model.

2.1 View

For our safety proof, we restricst ourselves to finite parts of a traffic snapshot .7
called views; the intuition being that safety depends on local information only.

Definition 2 A view V = (L, X, E) consists of an interval of lanes visible in the
view, L = [[, n] C LL, and the extension visible in the view, X = [r, ] € R, and
E € 1, the identifier of the car under consideration.

A subview of V is obtained by restricting the lanes and extension we observe. For
this we use sub- and superscript notation: vl = (LU',X,E) and Vx = (L, X, E),
where L’ and X' are subintervals of L and X, respectively.

For a car E and a traffic snapshot .7 = (pos, spd, res, clm) its standard view is

V{(E. 7) = (L. [pos(E) — ho, pos(E) + hol, E) ,

where the horizon ho is chosen such that a car driving at maximum speed can, with
lowest deceleration, come to a standstill within the horizon.
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2.2 Spatial Logic

To specify properties of traffic snapshots within a given view in an intuitive and yet
precise way, we use a two-dimensional spatial interval logic, MLSL (Multi-Lane
Spatial Logic) [22]. In this logic, the horizontal dimension is continuous, represent-
ing positions on a highway, and the vertical dimension is discrete, representing the
number of a lane on a highway. In the syntax, variables ranging over car identifiers
are denoted by small letters ¢, d, u and v. To refer to the car owning the current
view, we use a special variable ego. By Var we denote the set of all these variables.
Additionally, the letter y ranges over car identifiers or elements in Var.

Definition 3 (Syntax) The syntax of the multi-lane spatial logic MLSL is given by
the following formulae:

¢ =true | u =v | free | re(y) | cl(y) |

Si Ay |~y | Tv: b1 | by ~ ¢ | P2

o
We denote the set of all MLSL formulae by .

Formulae of MLSL express the spatial status of neighbouring lanes on a multi-lane
highway. For a lane, the spatial status describes whether parts of it are reserved or
claimed by a car or completely free. To this end, MLSL has atoms re(y), cl(y), and
free, and two chop operators: the horizontal chop ¢; ~ ¢, expresses that an interval
can be divided into two horizontally adjacent parts such that ¢; holds in the left part

and ¢, in the right part, and the vertical chop :;2 expresses that an interval can be
1

divided into two vertically adjacent parts where ¢; holds on the lower part and ¢, on
the upper part. We use juxtaposition for the vertical chop to have a correspondence
to the visual layout in traffic snapshots.

The logic is given a semantics that defines the when traffic snapshots satisfy a
given formula.

Definition 4 (Semantics) The satisfaction = of formulae is defined inductively with
respect to a model .# = (7, V,v) comprising a traffic snapshot .7, a view V =
(L, X, E) withL = [/, n] and X = [r, t], and a valuation v : 1 U Var — I consistent
with V, i.e., with v(ego) = E and v(C) = C for C € I:

M = true for all .#
MEU=V < v(u) =vm)
M = free < |L|=1and |X]| > 0and

VC el: L Cres(C)Uclm(C) = sez(C)N(r,t) =0
M = re(y) < |L|=1land |X]| > 0and
L € res(v(y)) and X € se7 (v(y))
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M cl(y) < |Ll=1and|X| >0andL C cim(v(y)) and X C se 7 (v(y))
MEONG & AEGrand A = ¢
M= & not A = ¢
ME=ETFv: P & dael: (7, V,ve{v—>a}) E¢
MEP ~ ¢y & Fs:r<s<tand
(7, Virs1,v) E @1 and (7, Vis 1, v) E é2
///I:ZT & dm:l—1<m<n+1and

(7, V™M v) = gy and (7, VI ) = gy

We write 7 = ¢ if (7, V,v) |= ¢ for all views V and consistent valuations v.

For the semantics of the vertical chop, we set the interval [/, m] = @ if [ > m.
A view V with an empty set of lanes satisfies only frue or an equivalent formula.
Both chop modalities are associative. Other logical operators like v, —, <> and V
are treated as abbreviations. Also, we use the notation (¢) for the two-dimensional
modality somewhere ¢, defined in terms of both chop operators:

true
(p) = true ~ ¢ ~ true.
true

For example, Safe =Vc,d : ¢ #d — — (re(c) A re(d)) expresses the safety prop-
erty that any two different cars have disjoint reserved spaces.

2.3 Transition System

A traffic snapshot is an instant picture of the highway traffic. The following transitions
describe how it may change. Time may pass or a car may perform several actions
when attempting and performing a lane change. We use the overriding notation @
for function updates [46].

TSI & T = (pos', spd , res, clm)
AYC € 1: pos'(C) > pos(C) (D
c(C,n) , / /
T—5>T & T = (pos, spd, res, clm’)

Alelm(C)| =0 A |res(C)| =1
An+1,n—1}Nres(C) #0
Aclm' = clm @ {C — {n}} 2)
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FWe€) N T’ = (pos, spd, res, clm')
Aelm' = clm & {C +— 7} 3)
F1€) 5 N T’ = (, pos, spd, res’, clm")
Aclm' = clm & {C — ¥}
Ares = res ®
{C +— res(C) U clm(C)} “4)
gudrcn N T = (pos, spd, res’, clm)
Ares' = res @ {C + {n}}
An € res(C) A lres(C)| = 2. )

In (1), time passes, which results in the cars moving along the highway to the
right. However, note that reservations, res, and claims, c/m, cannot change during
time passing transitions. The new position and speed of each car is determined by
the dynamics of them, which is described at the concrete level. A car may claim a
neighbouring lane n (2) if and only if it does not already claim a lane or is in the
progress of changing the lane and therefore reserves two lanes. Furthermore, a car
may withdraw a claim (3) or reserve a previously claimed lane (4) or withdraw the
reservation of all but one of the lanes it is moving on (5).

3 Abstract Controllers

In this section we present abstract car controllers for keeping distance and changing
lanes. By abstract, we mean that properties, invariants and guards of transitions are
given by MLSL formulas. The controllers should guarantee that at any moment the
spaces reserved by different cars are disjoint. This is expressed concisely by

Safe =Ve,d :c £#d = — (re(c) Are(d)),
stating that in any lane any two different cars have disjoint reserved spaces. The

quantification over lanes arises implicitly by the negation of the somewhere modality
in Safe. A traffic snapshot .7 is safe if 7 = Safe holds.
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3.1 Keeping Distance

A distance controller DC of a car E should guarantee the safety as long as E is driving
along the highway without making any new claim or reservation. This is expressed

by time transitions among traffic snapshots: .7 7. From the perspective of the
car E, safety means that the following collision check remains false:

cc =3c: ¢ # ego N (re(ego) A re(c)) .

Thus we require:
(DC) The distance controller DC of a car E keeps the property —cc invariant

. .. . .. t
under time transitions, i.e., for every transition .7 — .7’ whenever .7 = —cc, also

I E —cc.

3.2 Changing Lanes

We specify an abstract controller by a timed automaton [3] with clocks ranging over
R~ and data variables ranging over Il and I. Strictly speaking, the single clock x,
which is used in the automaton, is unnecessary for proving safety; it is added to
ensure liveness. MLSL formulae appear in transition guards and state invariants.
This can be seen in the lane-change controller in Fig. 2, where the MLSL formulae
¢1 and ¢, are kept symbolic. The abstract lane-change controller LCP of [22] is an
instantiation of this controller, except that it has the invariant —cc in the initial state
qo- Here this property is ensured invariantly by the distance controller DC.

LCP assumes that every car, E, knows the full extension of claims and reservations
of all cars within its view. It thus has perfect knowledge of its neighbouring cars (hence
the letter P in the name of the controller); E perceives another car C as soon as C’s
safety envelope enters the view of E. In the following and in Sect. 5, we identify the
car variables ego and ¢ with their values, the cars E and C, respectively.

At the initial state gy of LCP, the car has reserved exactly one lane, which is saved
in the variable n. An auxiliary variable / stores the lane the ego car wants to move to.
Suppose ego intends to change to a neighboring lane, then it adheres to the following
protocol. First, it claims a space on the target lane adjacent to and of the same
extension as the reservation on its current lane, moving to state g;. Subsequently,
it checks for a potential collision (pc), i.e., whether its claim intersects with the
reservation or claim of any other car. This is expressed by the MLSL formula

pc =dc:c #ego A (cllego) N (re(c) V cl(c))) .
If pc occurs, ego withdraws its claim and returns to state go, giving up the wish

to change lanes for the moment. Otherwise, ego turns its claim into reservations
and thus reserves two lanes. This is in state g3, During this double reservation ego
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1/
wd c(ego)

—(o)
X n+1< N/

c(ego,n + 1);
l:=n+1;
z:=0

0<n-1/
c(ego,n — 1);
l:=n-1
z:=0

b2/
r(ego);z =0

¢1/
wd c(ego)

T > tlc/
wd r(ego,l);n:=1

Fig. 2 The lane-change controller LCP with ¢ = pc and ¢ = —pc

changes lane within 7, time units, an upper time bound for the lane change. Then
ego withdraws its reservation on the original lane and continues to drive on the target
lane, being again in state go. In this protocol, only turning the claim into a reservation
(in the transition from state g, to state g3) may violate the safety property. Thus in
LCP of Fig.2, we instantiate ¢; = pc and ¢, = —pc.

In order to ensure liveness in the states gy and g, they are to be left within 7y time
units. Liveness in state gy could be ensured by adding an invariant asserting that the
state should be left when a claim is made. The lane change timeout #;. should strictly
speaking be replaced by a symbolic guard that would be asserted by the concrete
model when a lane change was completed. This symbolic guard would then be linked
to either a sensor value or most likely to a timer in the concrete model.

3.3 Safety

We stipulate now that every car is equipped with the controllers DC and LCP (or that
its driver manually follows its protocol). Under these assumptions, we can show:

Theorem 1 (Safety of DC and LCP) Let .9 be an initial safe traffic snapshot. Then
every traffic snapshot  that is reachable from %y by transitions allowed by the
controllers DC and LCP is safe.

Proof As in [22], we fix an arbitrary car E and shows that —cc holds for every
traffic snapshot 7 reachable from 7. The argument is by induction on the number
of transitions needed to reach .7 from .7, and the crucial case in the induction
step is that of the reservation transition. In contrast to [22], the initial state go of
LCP in Fig.2 does not have —cc as a built-in invariant. However, since the distance
controller DC is running in parallel to LCP, the safety property —cc is an invariant
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for this state. Moreover, it is also invariant under any transition that is not creating
any new reservation. Regarding LCP, we thus have that —cc holds in the start state
q» of the reservation transition from state ¢, to state g3 in LCP. As in [22], it can be
shown that performing the reservation transition in state g satisfying both —cc and
—pc leads to g3 satisfying —cc. [

4 Concrete Model

The aim of this section is to present a physical model of a vehicle, which describes
the position pos(C) and the speed spd(C) of a vehicle C. It will lay the basis for
the controller design in Sect. 6.

4.1 Longitudinal Motion

A vehicle C is characterised by its velocity given in [m/s] at the current time ¢
given in [s], v¢ : Ry — R,. Both the time and the velocity are considered non-
negative reals. The acceleration and braking of the vehicle C is realised by a torque
T =Tc : R, — R given in [Nm]. The torque is applied to the wheels from the
transmission and braking system, and it belongs at any given time to an interval
[T, T] = [Tc, T_C], where T¢ < 0 is the maximal torque of the brakes, and T_c >0
is the torque at full throttle.

To model aerodynamic drag force, we introduce a drag coefficient Cy. The drag
force is proportional to the square of the velocity

Cw (VE(2).

As indicated in the above equation, Cy varies in time. Specifically, Cy is charac-
terised as follows. Suppose a vehicle D drives in front of the vehicle under consid-
eration C. The drag coefficient is an empirical quantity approximated by

as 2
Cw@,vp)=Cc |1 —exp|— ,
CDVD

where C¢, Cp are the aerodynamic coefficients of the vehicles C and D, and a is a
constant [47]. In short, the aerodynamic coefficient of a vehicle is determined by its
geometry: shape and size. The drag coefficient is positive, Image(Cw) C [0, Cc]. It
converges to C¢ for small distances § and large velocities vp.

As a consequence, the dynamics of the vehicle C is given by

(Mr? + D)ic(t) = —Cw(8(t), vp(O))r?ve () +rT (1),
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by

Uref p———> d;

by

‘We assume that each car is equipped with the following observers:

v gives its own velocity,

d 1 gives the distance to the car ahead in the same lane,

d} ((f3) give the distance to the car ahead in the left (right) neighboring lane,

da (d}) give the distance to the car behind in the left (right) neighboring lane, and

b (132) tell whether a car on the lane next to the left (right) one is “blinking”, indicating a
desired lane change to the left (right) neighboring lane.

Also, each car has its blinkers (here shown as small circles at the four corners of the car) and a
torque 7" as actuators. Steering s and desired reference velocity v, are inputs from the driver.

Fig. 3 Car with observers and actuators

where M is the mass of the vehicle C [kg], J is the combined moments of inertia of
the wheels [kgm?], and r is the radius of the wheels [m].

Let X be the state space of the vehicle C (with the vehicle D driving in in front).
It is the linear space of vectors comprising of the velocity v¢ of the vehicle C, and
the distance § from C to D, i.e., X = R2. We assume that both the velocity and
the distance are available as indicated in Fig. 3, where sensor ¥ measures v¢ and cil
measures §. If the vehicle D is out of range the distance sensor delivers the value co.

A feedback controlleris a function 7 : X — [T, T1] that takes the current state to
the torque. Negative values are realised by the braking system; whereas, the positive
values are realised by the transmission (the throttle). As a consequence, 7' (¢) =
T (ve(2), 8(2)).

To simplify the notation, we introduce

x(1) = (x1(1), x2(1)) = (8(1), ve (1)) € R?
z(t) =vp(t) € R

=—¢cR
Mr24+J
a(xy, z) = rbCw(xy, z) € CP(R*, R,)
ut) =bT € R
(—u,u) = (—bT,bT) e R%
xo = (d° Q) e R%. (6)

As aresult, the equations of motion are given by the following Cauchy problem with
x(0) = xo:
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X1(t) = z(t) — x2(2)
% (1) = —a(xi (), 2(1) x2(1)* + u(t), (7)

where u(t) € [u, u]. The subscripts of x refer to the components of the vector x.

Remark 1 The Eq.(7) can be used to compute the safety or braking distance d; (")
as a function of the initial velocity v? of the vehicle C. To this end, let z(r) = 0, i.e.,
the vehicle in front instantaneously stops

X1(t) = —x2(¢) and X(t) <u

forxg = (0, vg). To compute the braking distance, we apply the Gronwall lemma [48],

which we state now for completeness. Suppose that k is a non-negative and bounded

function on an interval [#y, #;] and / a non-decreasing function on the same interval.
It

v(t) <I1(t) +/ k(s)v(s)ds

fo

v(t) < exp (/ k(s)ds) [(1).

~ 0 .
Consequently, by the Gronwall lemma, the time to stop is 7 < 7 = —-¢ (notice that

)2
2u °

fort € [ty, 1], then

u < 0). Hence, the braking distance is at most d; (vg) = —

4.2 Lateral Motion

So far, we have not discussed lateral motion. For the details of modelling, we refer
to [37]. In short, the kinematic model of the vehicle C is given by the global position

X =vecos(y + B) (8a)

Y = vesin(y + B), (8b)

where v is the velocity of the vehicle C, g is the slip angle of the vehicle defined
below, and v is the yaw angle, that defines the orientation angle of the vehicle w.r.t.
the x-axis

V= VTC cos(B) tan(6). 9)

In (9), [ is the vehicle base, the distance between the rear and the front wheels, and
0 is the angle between the front wheel and the longitudinal axis of the vehicle, with
0 €[6,0]forf < 0and B > 0; 6 as the control input.
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The slip angle of the vehicle is given by the relation

B = H(®) = tan”! (@)

where /; is the distance between the centre of gravity and the rear wheel.

5 Linking

To link the abstract and the concrete model, we must map the symbolic observables
and events to observer functions in the controllers. In this work, we assume that each
car is equipped with the observers, realised by suitable sensors, and actuators listed
in Fig.3.

The abstract controller LPC takes a view of the traffic snapshot, represented by
MLSL formulae built with the atoms free, re(c),cl(c). By Theorem 1, this suffices for
the safety check at the abstract level. However, the check assumes that the reserved
or claimed spaces are large enough. Whether this assumption is true, depends on the
concrete controller based on the car dynamics.

5.1 Distance Controller

We first turn to the distance controller DC in each car as formalized by assumption
DC. Every car E keeps the property —cc invariant under time transitions, expressing
that “no collision” occurs:

—cc = —dc: ¢ # ego N (re(ego) A re(c)) .

Since the overlap re(ego) A re(c) is symmetric, the distance controller in ego must
check forward or backward for any other car c. However, considering all cars together,
it suffices that each car ego checks only that there is “no collision forward”. Let ¢
ahead ego abbreviate the following MLSL formula expressing that car c is immedi-
ately ahead of ego:

—re(ego) re(ego) ~ —re(ego)
¢ ahead ego = A ~ A
—re(c) —re(c) ~ re(c) ~ —wre(c)
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Then we replace the invariant —cc by the following formula:
—ccf = —dc: ¢ #£ ego A (re(ego) A re(c)) A (c ahead ego) .

We recall the resulting “forward looking” distance controller DCy. Note that log-
ically —ccf in DCy is weaker than —cc in DC, admitting more traffic snapshots.
However, when all cars check —ccf instead of —cc, safety remains guaranteed. This
is formalized as follows. Consider the abstract setting A, where all cars are equipped
with DC, and the abstract forward setting A r, where all cars are equipped with DC;.

Proposition 1 (Safety of DCy) Every time transition among traffic snapshots per-
mitted in Ay is also permitted in A.

In the concrete controller, we have the observable d that implements the abstract
safety distance function d(ego) for car ego at its current speed. Also, there is the
concrete observable d measuring the distance to the next car ¢ ahead. The formula
—ccf is satisfied if the inequality d < d holds. Thus the linking predicate relating
the abstract and concrete levels is here

—ccf <=d < (21.

Note that the implication indicates that d < d, admits no more traffic snapshots than
—ccf does.

5.2 Lane-Change Controller

To link the abstract lane change controller LCP to the observers at the concrete level,
the MLSL formulae appearing as guards in LCP are replaced by suitable comparisons
of observer values read at the concrete level.

Since the distance controller DC is running in parallel to LCP, the safety property
—cc holds as long as the reservation transition from state ¢, to state gz in LCP is
not performed (cf. Fig. 2 and the proof of Theorem 1). Note that we can weaken the
guard of any transition in LCP, except for this reservation transition, and the altered
lane change controller will stay safe. For example, we may even weaken the guard
¢ to true. Then a claim can always be withdrawn, but this does not violate safety.

Regarding the reservation transition from state g, to state g3, the controller will
stay safe as long as we strenghten its guard ¢,, which in LCP is given by the formula

—pc = —3dc:c # ego A {(cl(ego) A (re(c) V cl(c)))

expressing that no potential collison occurs. To link — pc with the concrete controller,
we distinguish the cases of reservation and claim of c.

Case I: ¢, =—3c:c # ego N (cl(ego) Are(c)). This formula states that no
(other) car ¢ on ego’s target lane has a reservation that overlaps with ego’s claim.
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The car ¢ may be (i) ahead of ego (or aligned with ego) or (ii) behind ego. In subcase
(i), the concrete controller looks forward using the observables d giving the safety
distance needed for car ego at its current speed and d, (with 1 either 2 or 3) measuring
the distance to the next car ¢ in front of ego on the farget lane of its lane change
maneuver. The concrete controller checks the inequality d; < d,. In subcase (ii), the
concrete controller looks backward using the observables c?b (with b either 4 or 5)
measuring the distance to the next car behind ego on the target lane and d ,,,, the
maximal braking distance of any car, i.e., an overapproximation of the actual braking
distance of that car. The concrete controller checks the inequality d; jqx < ﬁb. Thus,
the linking predicate relating the abstract and concrete levels is in this case

¢re <=d < dAt A ds.max < dAb~

Due to the over-approximation in ds .. the check at the concrete level may be
stronger than necessary, permitting fewer lane changes than —pc, but it preserves
safety.

Case2: ¢ =—3c:c#egoNcllego) N cl(c)).

The formula states that no other car ¢ on ego’s target lane has a claim that overlaps
with ego’s claim. Such a car ¢ may only be in a lane next to ego’s target lane. In this
case, the concrete controller checks with its sensor b, (with ¢ either 1 or 2) on the
side of the target lane for a turn signal of some car ¢ on the lane next to the target
lane. The formula ¢, is satisfied if —b; holds. Thus, the linking predicate relating
the abstract and concrete levels is in this case

¢cl S _'bt~
Summarising, at the concrete level, we instantiate
¢2 = (d < dt A ds,max < dh) AN _'bta

which by the linking predicates for ¢,. and ¢, implies —pc at the abstract level.

For the guards of the two withdrawal transitions from state g, to state g3 and from
state ¢ to state gg in Fig.2, we put ¢; = —¢, for the above instantiation of ¢,. Thus
compared with the abstract controller LCP, the guard ¢, is weakened, permitting
more withdrawals, but as argued before, this preserves safety.

Altogether, instantiating in the controller in Fig. 2 the formula ¢, by the distance
inequalities and blinker sensor values as stated above and ¢; by its negation, we
obtain a concrete lane-change controller that we call LCP.. Consider the abstract
setting ALC, where all cars are equipped with LCP, and the concrete setting CLC,
where all cars are equipped with LCP,.

Proposition 2 (Safety of LCP.) Every reservation transition among traffic snap-
shots permitted in CLC is also permitted in ALC.

Combining Propositions 1 and 2, we obtain:
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Theorem 2 (Safety of DC, and LCP,.) Let % be an initial safe traffic snapshot.
Then every traffic snapshot 7 that is reachable from % by transitions allowed by
the controllers DC. and LCP. is safe.

6 Concrete Controllers

The main focus in this section will be on the longitudinal motion control. Nonetheless,
for completeness we will provide a control for changing the lane.

6.1 Longitudinal Control

We will address the assumptions for the distance controller used in Sect.5.1 linking
the safety to the safety envelope through the variable d. To this end, we propose a
sliding mode controller for a vehicle C that maintains the velocity of the vehicle at
the reference v,e¢ until the distance d between C and the vehicle D in front is reached.
Subsequently, the distance d is kept. If D is out of range of the distance sensor, the
controller keeps the velocity at v.s. In the following, we assume that at full throttle,
the control u is strong enough to overcome the drag. To this end, we notice that
a(xy, z) € [0,rbCc]forany (x;, z) € Ri, where the constant b is defined in (6). Let
the speed limit be denoted by v. Consequently, we assume that the maximal control
u > rbCcv?. By a safe control, we understand a control that keeps the motion of a
vehicle safe.

Definition 5 (Safe Control) A safe controller for the control system (7) and a func-
tion z : Ry — [0, ¥]is a function u : R? — R such that the solutions of the dynami-
cal system (7) withu(t) = u(x(¢), z(t)) satisfy the following condition: If x; (0) > d,
then x;(¢) > O forall t € R,.

In plain words, Definition 5 says that an on-board controller is safe if: whenever
the distance from the controlled vehicle to a vehicle in front is initially greater than
d then a collision between these two vehicles will never happen.

Proposition 3 (Existence of a safe controller) Consider the control system (7) and
a function z : Ry — [0,V]. Let O < veer < v, d =d(V), and a = rbCcv2. Suppose
thatu < 0. Let k > 0, and define two affine maps

Li(x) = x2 = Ve, La(x,2) =2 —x2+k(x; —d), (10)
and a polyhedral set

P(z)={x e R’)| L,(x) < 0and — La(x, z) < 0}. (11)
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Then the control
u for x € RZ\P(z)

u for x e P(z) 12

u(x,z) = [

is safe. Furthermore, the following two properties for the vehicle controlled by the
u in (12) hold:

1. If x5(0) > vt then x5(t) < x2(0) for all t € Ry and there is T € R" such that
X2(t) < Vet fort > T.

2. Let B=inf{z(t)|t € Ry} and y = sup{z(¢t)| t € R.}. Suppose that u < B and
u > o + y, and assume
O0<k<min{f —u,u—aoa—y}/v. Then

a. Let0 < x1(0) < d, and suppose that the controller (12) is such that u(t) = u
holds on an interval [0, t). Then x,(t) > x1(0) forallt € [0, t].
b. lim;_ o x1(t) =d.

Proof 1f x;(0) € R*\ P(z), then the following holds. There is a family of open
intervals {(z,,To)| @ € A} such that x(z,) € P(z) and if € (7, To) then x(¢) €
RZ\P(z), hence u(t) = u, and from (7), x;(¢) > 0. If t € R\ UaeA(ga,?a) then
x(t) € P(z(t)), and thus x;(¢#) > d. The last statement follows from the following.
If x(t) € P(z(t)), then

k(x1(t) —d) = x2(t) — z(2). (13)

And, we consider two cases: x,(t) > z(¢) and z,(¢) < z(¢). If x2(2) > z(t), then
from (13), x1(t) > d. If z5(¢t) < z(t), then from (7), x;(¢) > x1(0) > d. Hence, the
control (12) is safe.

We prove Property 1 and Property 2 of the proposition. To this end, we observe
that for x € R2\ P(2),

Li(x,2) = —a(xi,2)x3 +u <u <0 (14)
Ly(x,z,2) =2 +a(x1,z)x§ +k(z—x)—u
>B—kv—u=>0. (15)

whereas, for x € P(z),

Li(x,2) = —a(x;, )x3 +u > —a+u >0 (16)
Ly(x,z,2) =z +a(x,0)x;3 +k(z—x) — 4
<y+4a+kv—u<0. (17)

By (14), Property 1 holds.

We will show Property 2.a. To this end, we notice that u(#) = u whenever
x(t) € P,. We consider two cases z(f) > xp(¢) and z(¢t) < xo(¢). If z(¢) > x2(¢)
then x(f) = z(¢t) — x»(¢t) > 0 and Property 2.a follows. Suppose that z(¢) < x,(¢).
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Then 0 < k(x;(t) —d) > z(t) — xo + k(x1(t) — d) = Lo(x(t), z(t)) > 0, which is
a contradiction.

To show Property 2.b, we observe that by Inequalities (14)—(17), any flow line of
(7) intersects the boundary of P at a point say X (transversally), i.e., there is #; > 0
such that x(#;) = x. If L{(x) = 0, then the solution (in a Filippov sense) x(-) is such
that L{(x(¢t)) = Oforallt € [¢t;, 1], where t, is the time at which L, (x (1), z(t,)) = 0.
Subsequently, the Fillipov solution x(+) is such that L, (x(¢), z(t)) = O forall t > 1.
As a consequence, z(t) — x2(¢) + k(x;(t) — d) = 0, which is equivalent to

d
3, 0 —d) = —k(x, (1) — d).

Hence, lim, o x1(t) =d. O

The above proposition shows that there is a control that keeps the distance from
the vehicle C to the vehicle in front safe while the velocity of C does not exceed
the reference. Also whenever the vehicle C accelerates, u(f) = u, and initially the
distance x; (0) is less than d then the distance increases, i.e., the traffic situation is no
less safe than it was at the beginning. If the distance between C and D was greater
than d then there is no future time that they will hit each other.

To avoid discontinuous control and hence abrupt switches between acceleration u
and deceleration u, the control (12) can be replaced by a continuous approximation.
To this end, we will need an e-neighbourhood 9 P?(z) of the boundary d P(z) of
the polyhedral set P(z). Subsequently, in P\dP*¢(z), we will use u equal to u, in
R2\(P(z) U dP?(z)), we will use u equal to u and in 3 P? (z)), we will use the control
that is a linear combination of u and u weighted by the distance to d P(z). These
constructions will be detailed below. For this purpose, recall the definitions of L,
L, in (10), and P in (11), and consider

Li=L;'0) = {x e R*| Ly(x) =0} and L, = {x € R*| Ly(x, 2) = 0},
H; = {x e R?| L;(x) <0} and H, . = {x € R*| — Ly(x,z) <0}.

For an ¢ > 0, we defineamap / : [—&,¢] — [0, 1] by y > % (%y + 1). Let L
be the (closed) e-neighborhood of IL; (with respect to the Hausdorff metric), L5 -
be the e-neighborhood of I ., Hf be the e-neighborhood of H, and Hj . be the
e-neighborhood of H, .. Furthermore, we define the e-neighbourhood P*(z) of P
by

Pi(z) =H{NHS .

Let x'(x) = x — my, (x) fori € {1, 2}, where 7y, and 7y, are the projections on
IL; and L, ., respectively. For [ = [(x) = argmax{|x’(x)|| i € {1, 2}} let

y(x) = [x| sign((n', x")),
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where (-, -) is the scalar product on R?, n' and n? are the normal vectors to L (-) and
L, .(-) pointing into P,
n' =0, =1),n* = (k, —1).
Finally, we are able to define the -neighbourhood d P¢(z) of the boundary of P(z)
IP*(z) = P*()\(R*\(H] UHS ).
We define i : P~5(z) — [0, 1] by
h(x) = h(y(x)).
The function / takes a point x in the e-neighbourhood of 3 P (z) and delivers a number

between 0 and 1 dependent on the distance to d P(z): 0 when the distance is ¢ and x
is outside P and 1 when the distance is ¢ and x is inside P. The control is then

u for x € R?\P¢(2)
w(x,z) = {1 —h(x)u+h@)u for  x e P()
u for x € P(2)\P*(2).

The parameter ¢ is to be chosen as a tradeoff between the accuracy of tracking the
distance d and “evenness” of the control. The bigger ¢ is, the more even and less
accurate is the control.

6.2 Lane Change

The control for lateral motion is discussed in [37]. For completeness of our study,
we propose a facile feedforward control for changing the lane. To avoid a collision
during the maneuver of changing the lanes, it is assumed that the minimum distance d
to the front vehicles in the current lane and the neighboring target lane is big enough,
i.e., greater than the sum of the maximal braking distance of the vehicle C and the
distance fot" ve (t)dt traveled by C during the lane change.

Recall the lateral motion given by the lateral position Y in (8b) and the yaw angle
Y in (9). We will use the notation

b(O) = b(@, ve) = VTC cos(B(0)) tan(8).

The next proposition characterises the the lateral motion

Proposition 4 Suppose b(0) # 0. Then the solution of (8b) and (9) belongs to the
graph I' = {(y,Y) €] — m, n[xR| Y = F(¥)} of the function
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F = Fyypone ¥ = 000, %0) — % cos(y + B(9)),

where Yo (o, ¥o) = Yo + #g) cos(Yo + B(0)), and yq is the initial lateral position,
and hence ) is the initial yaw angle.

Proof The tangent space T(y y)I" to the graph y at any point (, Y) € I is given by

OF
Tyl = [a (1, w(w, Y)) e R?

S R} ,
but g_g(w, Y) = 7 sin(¥o + (6)), and hence by (8b) and (9) we have (W, Y) €
T(]//’Y)F.

To change the lane, we change the state (Y, ) from (yg, 0) to (y;, 0). Without loss
of generality, it is assumed that yp > y;.

6.2.1 Manoeuvre with Constant Velocity
If we suppose that the velocity v¢ during the entire manoeuvrer is kept constant,

then suppose that (6, 61) € [6, 0) x (0, 8] are such that the equation Fy, y, 0.v. () =
Fy, .00 (W), or equivalently

5000, 0) — Fo (31, 0) + v, (cos(lﬁ +B61)  cos(y + ,3(90))) _o,

b(61) b(6o)

has the solution 1& The proposed manoeuvre consists of

turning the front wheels from O to the angle 6y > O,
waiting until the orientation angle ¥ is v,

turning the wheels to the angle 6; < 0,

waiting until the orientation angle ¥ reaches 0,
finally turning the front wheels back to 0.

Al e

6.2.2 Manoeuvre with Varying Velocity of the Vehicle

Suppose the vehicle velocity v¢ is piecewise constant on possibly very short time
intervals. Let 0*(¢) be the solution of the following equation

F* (0" (1) = For),y (o). () e (0) = y1.

Notice that 0*(¢) depends on the current velocity v (2).
Then the lane-change manoeuvre consists of

1. turning the front wheel from O to the angle 6,
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2. waiting until the yaw angle ¥ (¢) reaches ¥* for some ¥* €]0, 7 /2],

3. keeping the wheels at the angle 6(¢) = 0*(¢) until the orientation of the vehicle
reaches 0 yaw angle.

4. turning the front wheels back to 0.

Both proposed controllers are feed-forward, thus a linear control [37] is to be
implemented to remove deviations from the lateral reference y;. The time #;. of the
manoeuvre depends on the vehicle velocity, v¢, and it is used in the guard of the
abstract controller LCP depicted in Fig. 2.

7 Related Work

In the following, we consider related work within the categories of verification,
hierarchical design approaches, spatial logics, and traffic maneuvers.

Automatic Verification. Most approaches to the automatic verification of hybrid
systems represent discrete control and continuous dynamics together in one formal
model, e.g., a hybrid automaton [2] or a hybrid program [36]. Whereas the reacha-
bility of locations is decidable for timed automata [3], this is in general not true for
hybrid automata [18]. These limitations are overcome by using suitable abstractions
and symbolic representations.

Model checking of linear hybrid automata by examining the reachable state space
started with the tool HyTech [19]. More advanced techniques are incorporated in
the tools PHAVer [12] and SpaceEx [13]. An alternative to these reachability-based
methods are bounded versions of model checking using SAT-based techniques mod-
ulo the theory of ordinary differential equations [10, 11]. The concept of local theory
extensions has been applied to proving safety properties of hybrid systems in [6].
Interactive theorem proving for hybrid systems in the context of an extended dynamic
logic is pursued in [36]. For Hybrid CSP an experimental tool was developed [49].

Hierarchical Design. To simplify the analysis of hybrid systems, several
approaches to controller design for hybrid systems have pursued a separation of
the dynamics from the control layer.

An early work with an example of keeping distance between vehicles, is the
paper by Nadjm-Tehrani and Stromberg [34], where they study the mapping from
the continuous state space to the discrete state space. In the approach, the two models
are combined to a hybrid model, and the linkage from the modes of the continuous
model to the discrete modes is done by a Characterizer that generates events and a
Selector for set-points. These could be characterized by linking predicates as done
in this chapter, that would allow a clearer separation of the models.

Raischetal. [31, 32] introduce abstraction and refinement to support a hierarchical
design of hybrid control systems. However, this line of work stays within the same
underlying model. Instead, the work here operates with separate models, because they
can be tailored to the reasoning tools available for respectively automata and logics
and those available for conventional control theory. Here, we are more in accordance
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with the work in [38], that deals with semantic alignment of heterogeneous models.
The linking predicates introduced in the current work may make the alignment easier,
because it relates only specific quantities and not full models.

Another inspiration for our work has been the approach pursued by Van Schuppen
et al. [17] that works upwards from what we call the concrete model and introduce
synthesis of control laws for piecewise-affine hybrid systems based on simplices,
resulting in a discrete controller with transitions between the simplices. This may
be an approach to finding a symbolic state space, when there is no obvious way to
partition it.

Spatial Logic. Work on spatial logic often focusses on qualitative spatial reasoning
[43] as exemplified in the region connection calculus [39]. We have used the spatial
logic MLSL [21] to reason abstractly on highway traffic. The logic gives a compact
formulation of properties and configurations, and an ability to compose and decom-
pose them as well as a potential for deductions [26]. MLSL is inspired by interval
temporal logic [33], the Duration Calculus [50], and the Shape Calculus [40]. It is
a two-dimensional extension of interval temporal logic, where one dimension has a
continuous space (the position in each lane) and the other has a discrete space (the
number of the lane).

In [41], hybrid automata are considered where invariants and guards are expressed
in a spatio-temporal logic S4,,. However, there is no separation of space and dynamics
as in our approach.

Traffic Maneuvers. A very influential effort was the California PATH (Partners
for Advanced Transit and Highways) project on automated highway systems for cars
driving in groups called platoons [44]. The manoeuvres include joining and leaving
the platoon, and lane change. Lygeros et al. [28] sketch a safety proof for car platoons
taking car dynamics into account, but admitting safe collisions, i.e., collisions at a
low speed. Not all scenarios of multi-lane traffic are covered in their proof.

Platzer et al. [5, 27] represent traffic applications in a differential dynamic logic
d.Z that is supported by the theorem prover KeYmaera [36]. This logic does not
separate space (symbolic model) from dynamics (concrete model), that is at the
heart of our approach. The paper [1] proposes a bottom-up strategy, where a concrete
model is gradually abstracted to Markov chains, for which the set of reachable states
is analysed.

On highways, the analysis of safety is simplified because all cars drive in one
direction. More difficult to analyse are country roads with opposing traffic. The safety
of overtaking manoeuvres on such roads has been proven in [21]. Even more degrees
of freedom in traffic manoeuvres can be found in urban traffic. The manoeuvres at
crossings has been studied in [45].

Since driving assistants are liable to hit the road very soon, the effort at providing
clear modelling and verification for this application area is very important.

Linking. For linking abstract and concrete data-manipulating systems the con-
cepts of data and operation refinement with corresponding simulation-based proof
techniques are well-known [8, 9]. Note that these techniques start by relating abstract
and concrete data variables, that is not quite suitable in our setting, where we have
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to relate abstract predicates on reservations and claims to concrete sensor values.
The transfer of temporal properties from abstract to concrete transitions systems via
simulations and bisimulations is well-understood in the area of model checking [16].

8 Conclusion

This chapter has presented an approach to hybrid systems modelling where an abstract
model is built in theories that are decidable modulo symbolic guards and actions
while a concrete model uses conventional continuous time for which controllers are
developed. The key point is that these two worlds are connected by linking predicates,
so the concrete model is a refinement of the abstract one.

In the following, we discuss pros and cons of the approach for the individual steps
and for the overall work.

Symbolic Model. A symbolic model is well known from a controller side, which
can be built using timed automata. Also the use of symbolic guards and actions is
intuitively easy. Note that time should enter only as timeouts on communications.
These timeouts occur at the interface to the lower level concrete model or in com-
munication protocols for interaction between the state machines.

When this is done, it is feasible to use model checking with a simplified envi-
ronment model that assigns suitable values from finite domains to the predicates,
and accept actions of similar finite types. Thus, an exhaustive automated verification
is possible, although it has not been done in this chapter, because we consider the
decomposition and linking the main points. Also, encoding the spatial model is a
major effort. Steps in this direction have been taken by S. Linker in formalising a
safety proof for a controller specification of [25] using the theorem prover ISABELLE.

Defining a suitable state space is intrinsically difficult. We have used a spatial logic
to structure it. The logic gives a compact formulation of properties and configurations,
and an ability to compose and decompose them as well as a potential for deductions.
However, if a developer is not familiar with logic, it may be easier to stay with set
theory, i.e., use the semantics underlying the logic. This would also be the case if a
model checking tool is used, because the logic would have to be semantically encoded
in most cases. The simple CTL or LTL logics used in model checkers are not nearly
as expressive as spatial logics. Thus, the logic is not essential for the approach or
even the application case, but it is a neat shorthand.

Concrete Model. Identification of the concrete model and controller development
is well known and is highly application dependent. In the current presentation, the
modelling and controller design is very general. For real applications there is much
engineering to do, but this is not relevant for this exposition.

During the development, one must have an eye on the predicates of the symbolic
model, so it is feasible to construct observers that match the guards, and handle set
points presented by the actions.

Linkage. The linking predicates are the formal outcome of elaborate discussions
concerning the interface of the two models. They represent the point where many real
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application projects fail, because engineering traditions from software development
and control system development meet. The advantage of the approach is that the two
sides have to meet and agree. An issue that is common to top-down approaches is
that the defined interface turns out to be either unimplementable in the concrete or
inadequate for the abstract verification. Here, we see no magic bullet.

Overall Comments. The approach seems well suited for application areas, where a
collection of semi-autonomous entities have to coordinate to achieve common objec-
tives. In a tightly coupled application, where there is a tight centralized supervisor, it
is most likely easier to stay with a one level concrete model, typically a conventional
hybrid automaton.

Acknowledgements We thank three anonymous reviewers for their helpful comments.
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Towards Interface-Driven Design of Evolving
Component-Based Architectures

Xin Chen and Zhiming Liu

Abstract The sustainable development of most economies and the quality of life
of their citizens largely depend on the development and application of evolutionary
digital ecosystems. The characteristic features of these systems are reflected in the
so called Internet of Things (IoT), Smart Cities and Cyber-Physical Systems (CPS).
Compared to the challenges in ICT applications that the ProCoS project used to
face 25 years ago, we today deal with systems with the complexity of ever evolv-
ing architectures of networked digital components, physical components, together
with sensors and devices controlled and coordinated by software. The architectural
components, also called subsystems, are designed with different technologies, run
on different platforms and interact through different communication technologies.
However, the ProCoS project goal remains valid and the critical requirements of
applications of these systems should not be compromised, and thus critical compo-
nents need to be “provably correct”. This chapter is in a form of a summary and
position paper to discuss how software design for complex evolving systems can be
supported by an extension of interface-driven rCOS method that we have recently
been developing. We show the need for an interface theory to underpin development
of techniques and tools. We demonstrate the need of multi-modelling notations for
the description of multi-viewpoints of designs to help mastering system complexity,
and their theoretical foundation in the nature of Unifying Theories of Programming
proposed by Sir Professor Tony Hoare and Professor He Jifeng, as part of the outcome
of the ProCoS project.

Zhiming Liuv—The work is funded by the project SWU 116007, and China NSF Grant
61672435.

X. Chen
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
e-mail: chenxin@nju.edu.cn

Z. Liu (X)

Centre for Software Research and Innovation, Southwest University, 2 Tiansheng Rd, Beibeli,
Chongqing 400715, China

e-mail: zhimingliu88 @swu.edu.cn

© Springer International Publishing AG 2017 121
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_6



122 X. Chen and Z. Liu

1 Introduction

In the post-industry era, the challenges of the global concern of sustainable develop-
ment depend on innovation application digital ecosystems. Such a system exists in
the form of a distributed network of smart devices, program controlled physical sys-
tems (such as machines in future manufacturing factories and devices in hospitals),
digital computing systems and services on the Web (or clouds). The digital compo-
nents and physical objects with embedded electronics, software and sensors, which
interact and collaborate through different communication networks and protocols.
Such a system is open and evolving from both of

1. the key feature of the system that allows to plug-and-play new system components
and services, and allows legacy components to be adapted, upgraded or replaced,
and

2. the key feature of the business, social and knowledge communities it supports
that are ever changing and growing.

The generally known Internet of Things (IoT) [26], Smart Cities [35] and Cyber-
Physical Systems [20] are different forms of digital ecosystems. They are becoming
major networks of infrastructures for development of applications in all economic
and social areas such as healthcare, environment management, transport, enterprises,
manufacturing, agriculture, governance, culture, societies and home automation.
These applications share a common model of architectures and involve different
communication technologies and protocols among the architectural components. The
research and applications thus require collaborations among experts with expertise
in a variety of disciplines and various skills in software systems development.

The openness of the architecture, heterogeneity of components and the scale (or
complexity) of both functionality and interactions impose challenges beyond the
capacity of the state of the art of software engineering. One of the most fundamental
problems is that either the traditional top—down or the bottom—up development strat-
egy, or any combination of both kinds, cannot be readily used to the development
and maintenance of digital ecosystems. Therefore, there exist no methods and tools
to support systematic development of digital ecosystems and their front-end appli-
cations. Ad-hoc development using tailored existing methods and tools is far from
meeting the following essential requirements:

e safe and secure integration of new digital and cyber-physical components;

e maintenance and healthy evolution of legacy components and services;

e consistent adaptation of existing Internet and cloud services and applications to
new and special-purpose services/devices;

e development of new applications and services from existing services/devices;

e data collection from different sources with different components, interoperably
communicating among different components for processing, analytics and support
of decision making.

To advance beyond the state of the art of software engineering, we need a model that
captures the ever-evolving nature of the system architectures, allowing dynamically
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integration and replacement of different devices, services and components. We need
to develop software engineering techniques and their tool support for

1. incrementally building the model of the evolving architecture,

2. interface-based development of new components and front end applications, and
their integration into an existing architecture,

3. interface-based adaption and reuse of legacy components in an existing architec-
ture, and

4. validation and verification of components and systems by using integrated tools
of simulation, testing and formal verification of trustworthiness (safety, security,
privacy and dependability).

The architectural model should also support the design of fault-tolerance [10, 27,
36] with techniques of runtime monitoring and recovery [17]. Simulation with large
amount of data is also needed in building models, where the data are either known
or collected in the model building process, say through sensors.

In what follows, we discuss, in Sect. 2, the characteristic of complexity of digital
ecosystems to clarify the challenges stated above and to give a background motivation
to the interface-driven approach to health system evolution. In Sect. 3, we introduce
the basics of the rCOS formal model-driven method of component and object system.
We give an example in Sect. 4 to show how rCOS supports incremental and interface-
driven design. In Sect.5, we propose an extension of rCOS to modelling cyber-
physical component systems.

2 Complex Evolving Systems

Software engineering was born with the aim to deal with the inherent complexity
of software development, and its vision was that complexity should be mastered
through the use of models, techniques and tools developed based on the types of
theoretical foundations and practical disciplines that have been established in the
traditional branches of engineering [28, 33]. The directions and contents of software
engineering and their advances are defined and driven by the following fundamental
attributes of software complexity [1-3]:

the complexity of the domain application,

the difficulty of managing the development process,

the flexibility possible to offer through software, and

the problem of characterising the behaviour of software systems.

el S

The first attribute is the source of the challenges in software requirements gathering,
specification, analysis and validation, that are the main topics of software require-
ments engineering. The second attribute, driving the development of software project
management, concerns the difficulty to define and manage a development process
to deal with complex and changing requirements of software projects that involve a
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large team of software engineers and domain experts. The process has to identify the
software technologies and tools that support collaboration of the team in working on
shared software artifacts. The third attribute concerns the difficulties in the design of
software architecture, and the design and reuse of software components, algorithms
and platforms. The final attribute of software complexity pinpoints the challenges in
modelling, analysis, validation and verification of the behaviour of the software.

2.1 Chronic Complexity of Digital Ecosystems

The fundamental attributes of software complexity are all reflected in software of
digital ecosystems, but their extensions are becoming increasingly wider, due to the
increasing power of these systems, here we quote

“The major cause of the software crisis is that the machines have become several orders
of magnitude more powerful. To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming has become an
equally gigantic problem.”

— Edsger Dijkstra

The Humble Programmer, Communications of the ACM [9]

Now not only we have gigantic computers, but also networked computers of all scales
of power from micro devices, through systems with multi-cores and multiprocessing
units, to supercomputers. They execute programs anywhere and any time, which share
data and communicate and collaborate with each other. These digital ecosystems are
represented by the popular Internet of Things (IoT), Smart Cities, Data Centres and
Cyber-Physical Systems (CPS). There exist not much agreed or clear characteristic
descriptions of these systems, and a variety of viewpoints and classification exist for
them. In fact, it is reasonable not to distinguish them [11, 18], especially when we
are interested in system modelling, design, verification and validation. They all share
the following attributes of these complex and evolving systems

1. They bring together computation, physical objects and processes, electronics,
and networking communication to seamless integration of and close interaction
between the physical world and computer-based systems.

2. The actions of these systems, as well as the objects, are monitored, coordinated,
controlled and integrated by computing systems and existing network infrastruc-
tures.

3. These system are constantly evolving, such that new digital systems, embedded
devices and physical processes keep being integrated into the system, and legacy
digital systems, devices and physical processes keep being removed, modified
and reconfigured.

We consider systems with the above characteristics which have component-
based or system of systems architectures. Some researchers intend to distinguish
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component-based systems from systems of systems and say that the latter have emer-
gent behaviour. We interchange these two terms as there is no clear definition on
what emergent behaviour of CPS is. Complex evolving systems exhibit the follow-
ing features that are the causes of major challenges in their modelling, analysis and
design:

1. Different components of these systems can have different data models, such as
patients’ records in healthcare systems. This feature implies the requirements of
interoperable communication and information sharing.

2. Such a system has multi-stakeholders and multi-endusers who have different
viewpoints of the system and whose applications use different computing, data
and network and physical resources and services of the system.

3. The composition and coordination of distributed computations and services also
support collaborative workflows involving multi-users.

4. Diversity of requirements of safety, security, privacy, timing, and fault-tolerance.

2.2 An Application Examples

The example as shown in Fig. 1, is a smart grid, taken from the presentation at an UK
Innovate event [31]. Such a system includes smart metering and advanced meter-
ing infrastructure that provides intriguing opportunities to embrace new sustainable
services for the whole energy value chain [8, 38].

A network of smart meters can also be part of the grid to provide real-time pricing
for all types of users and so encourage individual consumers to reduce their power
consumption at peak times. To this end, consumers can adjust their own individual

SMART GRID Smart appliances.
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Fig. 1 Smart grid
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load according to the time-differentiated prices. Furthermore, smart meters, software
and communication together also enable consumers to cooperate aiming at achieving
energy-aware consumption patterns, in order to realise for example, the demand-side
management, demand response and Direct Load Control programmes. For illustra-
tion, imagine a smart community that autonomously adapts its energy consumption
by means of enabling a limited number of household smart meters to share real-
time neighbourhood information cooperatively. Users therefore cooperate with each
other and with data collectors, thus facilitating the integration of energy consumption
information into a common view. We will propose to develop a model of an evolv-
ing network of smart meters in Sect.5. As in branches of transitional engineering,
handling the above challenges involves the best practice of the fundamental princi-
ples of separation of concerns, divide and conquer, and use of abstraction through
information hiding (in different design stages).

3 Interfaces and Component-Based Architectures

We now introduce the model of component interfaces that we have developed in the
rCOS methods - Refinement of Component and Object Systems. The work on the
rCOS framework includes formal semantics of an OO specifications, an OO refine-
ment calculus, a unified model of component-based and OO model, that are available
in a number of publications, e.g. [5, 7, 12, 13]. This chapter provides a summary
and linkages among these models and theories without going into formal details. We
have also published work about a UML profile for rCOS and tool support to model
constructions and transformations based on the profile [21, 23, 25]. Therefore, the
UML diagrams used in this chapter all have formal semantics in rCOS.

The rCOS method intends to support model-driven design (MDD) of complex
evolving system. This is characterised by letting system design be carried out in
a process through building system models to gain confidence in requirements and
designs. The process of model construction in MDD emphasises on

e the use of abstraction for information hiding so as to be well-focused and problem
oriented;

e the use of the engineering principles of decomposition and separation of concerns
for divide and conquer and incremental development and evolution; and

e the use of formalisation to make the process repeatable and artefacts (models)
analysable.

3.1 Key Features of rCOS

Main differences of the rCOS method from other model-based formal frameworks,
such as Circus [4, 29], are rather in philosophic principles and intentions, instead of
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expressive power. For example, the rCOS method makes components and interfaces
as first class modelling concepts and elements, and explicitly and systematically
supports separation of concerns with its multi-dimensional modelling approach to
component-based architecture modelling, as shown in Fig. 2.

e First, it allows models of a component at different levels of abstraction, from the
top level models of interface contracts of components, through models produced at
different design stages including platform independent models (PIM) and platform
specific models (PSM), to models of deployment and implementations.

e At each level of abstraction, a component has models of different viewpoints,
including the class model (or data model), the specification of static data func-
tionality (i.e. changes of data states), the model of interaction protocol with the
environment (i.e. actors) of the components, and the model of reactive behav-
iour. These models of different viewpoints support the understanding of different
aspects of the components and support different techniques of analysis, design and
verification of different kinds of properties.

e A model of a component is hierarchical and composed from models of ‘smaller’
components that interact and collaborate with each other through their interfaces.
Some components can also control, monitor or coordinate other components.

The significant advantage is that it allows the model of a component or a system at
a level of abstraction is synthesised from the models of the data model, functional-
ity and architecture, while these individual models can be refined in separation to
preserve their consistency. More distinguished features of rCOS include
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e direct object-oriented abstraction, instead of coding classes, objects and polymor-
phism in process-oriented models with unstructured states [6, 13];

e fully supported by a sound and complete object-oriented refinement calculus [37];

e direct formulation of OO design patterns as refinement rules [32, 37];

e provision of model transformations from component-based models of architecture
of requirements to OO models of design architecture [6], and from OO models of
design architectures to component-based models of design architectures [21];

e the provision of a well defined UML profile so that models can be constructed
using the subset of UML defined by the profile and automatically translated to
into rCOS models [24, 25].

The feature in the last bullet point allows us to use UML to represent models in the
rest of the chapter.

3.2 Components and Their Interfaces

Components are service providers - including computing devices realising func-
tions, processes that coordinate and control components through interactions and
connectors. We intend to have different types of interfaces for different interaction
mechanisms and protocols. Here, we only use a running example to show the rCOS
modelling notation and method.

To ease the understanding and practice, we divide the definition of component into
its syntactic description and semantic specification that we call the contract of the
component. A (syntactic) component is represented by tuple C = (X, IF, A), where

e X is a finite set (possibly empty) of state variables.

e [F is the (provided) interface defining a finite set of operation signatures of the
form m(x; y) with a finite number of input parameters and a finite number of return
parameters. Each operation represents service provided to users.

e A is afinite set (possibly empty) of internal actions, each of which is represented
as a parameterless method «. An internal action is automatous and does not have
parameters.

For example, a memory can be modelled as component that provide a write operation
and read operation to its user, e.g. a processor.

Component M
Zd,
provided interface M/ F {
W(Z v); RG Z v)
}

A faulty memory can be modelled as a component below, that provide write and
read operations to the user (e.g. a processor) but its content can be corrupted by an
internal ‘fault action’.
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component M
Zd;
provided interface M F {
W(Z v); R(; Z v);
}
actions{//fault modelling corruption
fault

}

The syntactic interface defines the static type of the component, but it does not
specify the behaviour of the interface. The behaviour of an interface is specified by
a contract. For incremental understanding, we first define a service contract of an
interface, which specifies the state change of an execution of interface operation,
provided, required or internal operations.

A service contract C of a syntactic component C specifies

e an initial condition defining the allowed possible initial states of the variables X
by a state predicate C.init on X, called the initial condition;

e a state transition relation C.nex that specifies each operation m(x;y) in the pro-
vided interface IF by a pair P I R of a precondition P and a postondition R,
where

— P is apredicate over X UX,
— R is a predicate over X UXU X’ Uy, and X’ and y’ are the sets of the primed
version of the variables in X and 5.

The meaning of P I~ R is that from a state s of X with the input parameters ¥
satisfying precondition P, the execution of m() will change the state s of X into a
state s’ (in which the value of x is represented by x’) with the return values y such
that ((s,¥), (s, 5")) holds for R.

e the state transition relation C.iNexr that specifies each internal operation « in A
by pair P - R of a precondition P and a postondition R, where

— P is apredicate over X UX,
— R s a predicate over X U X'.

In general, it is proven in UTP [16] that all programming statements in tradi-
tional structured programming languages can be defined by designs. In particular, an
assignment x := e is defined as design {x} : frue - x’ = e, meaning that the state is
changed from a state s to a new state s” in which only the value of x is changed to the
evaluation of e in s, keeping other variables unchanged. The following specification
combines the syntax and the service contract of a memory component offering the
environment a write operation and a read operation.

Component M
Zd,
provided interface M F {
W(Z v){d :=v}; R(; Z v){v :=d}
}

The design calculus in UTP [16] is extended to object-oriented designs in [13, 37].
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A service contract only specifies the functionalities of the component in terms of
a contract between the assumption on the current state and input parameters and the
guarantee on the change of the state and return values. However, a component is in
general reactive, thus also controls its interaction protocol with the environment and
the dependency (or causality) relation between its operations. The flow of control
and interaction are specified by the guards of the operations:

e the guard of an operation m() in the interface IF or the international action set A
is a predicate on X such that m() can be executed in a state only when its guard
holds in the state and the action is disabled in the state otherwise.!

Thus, a (guarded) contract C of a component actually defines a labeled state transition
system, but the states combine both control and data together, and the labels are the
interface operations and internal operations. C specifies each operation m() by a triple
of a guard ¢, a precondition P and a post condition R, denoted by g&(P - R), called a
guarded design. A transition from a state s to a state s’ by an operation m(), provided,
required or internal, is possible only if its guard, denoted by C.guard(m), holds in s.
And when it is possible

e if the precondition P of m() holds in s, then R holds for the pair (s, s") of states
together with relation between the input and return parameters if m() is a provided
or required interface operation; and

e if the precondition P of m() does not hold in s, s’ can be any state.

When we separate the control states from the data states in the state transition system
of ¢, we obtain an automaton with the control states and the interface signatures as
the alphabet. This allows us to use the language defined by the automaton, a regular
expression when the automaton is of finite states, to express the interaction protocols.

We propose a textual specification of components in a format similar to Java, that
allows us to declare multiple interfaces. In the corresponding abstract definition of
components, the provided interface IF is the union of the declared interfaces. We take
a few simple examples to illustrate the concepts of components. For example, the
following reactive component specifies a memory that controls the order in which
the write and read operations are invoked.

Component B
Z d, Bool w=1;
provided Interface B/ F {
W(Z v){w&{d, w} : trued =v Aw =—-w};
RG Zr){~w&{v,w}: truev =d A w' = —-w}
}
}

This memory also behaves like a one-place buffer.

'In general, the guard can contain input parameters, and even the primed version y’ of return
parameters y in y, especially when advanced security assurance is required. We do not consider
this general case as we have no semantics yet to handle them.
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3.3 Composition and Orchestration

We can easily see that the one-place buffer B can be built by coordinating the uncon-
trolled memory M

Component B requires M
Bool w = 1;
provided Interface B/ F {
W(Z v){w&(M.W(z); w := 0)};
RGZr){~w&(M.R(;r); w:=1)}
}
}

We use regular expression to specify the protocol of control, obtaining the following
equivalent specification

Component B requires M
provided Interface B F {
W(Z v){M.W(2)};
RGZr){M.RG 1)}
protocol {(WR)* + (WR*)W}
}
}

Thus, a coordination mainly changes the interaction protocol of a component, such
as M, without changing the data functionality of the component. Later in Sect. 3.4,
we will see a visual model the protocol can be represented as state machine diagram
in the rCOS UML profile [23].

With given components, we can construct new components with connectors and
through orchestration of the provided operations in the given components. For exam-
ple, taking B, = B[W;/W, R;/ W] is obtained by the connector that renames the write
W () and read R() operations of B to W;() and read R; (), respectively, fori = 1, 2, we
can have

component M, requires By, B; {
Zy;
provided interface M, F {
} move(){B1.R1(; y); B2.Wi(»)};

This component provides the newly added move() and the operations that B; and
B, provide minus those that are called in the body of move(). And the protocol is
defined by the guard conditions of B; and B,. In general, we can extend a given set
of components to form new components by defining additional provided operations
using structured programming constructs. we can also use the internalising connector
to make a provided operation, such as move(), internal. for example Buff2 = M>\move()
behaves as



132 X. Chen and Z. Liu

component Buff2 requires B;, B>
Zy;
actions A {
move(){B1.R1(; y); B2.W1(»)}:
}

Component Buff2 behaves like M,, except for move() will be executed internally and
autonomously when it is enabled, without the need to be called from the environment.
Thus, it behaves like a two-place buffer.

Now we give an specification of the faulty memory, in which an interaction pro-
tocol is specified using an regular expression that can be coded as guards of the
interface operations.

component fM
Z d;
provided interface MIF {
W(Z v) {d :=v}; R(; Zv) {v:=d};
protocol {(WR)* + (W R)*W// protocol of C}
}

actions{//fault modelling corruption
fault {true| —d' <> d}
}

We use the renaming operators on the (provided) interface of f M and obtain three
faulty memory components fM; = fM[fM; W/W, fM;.R/R],fori = 1, 2, 3. We now
specify the following component.

component V requires fM,, fM,, M5 {
provided interface VIF{
W(Z v) {fM1.W (v); fM2.W (v); fM3.W (v)};
R(; Z v) {v :=vote(fMI.R(v), fM2.R(v), fM3.R(v))};
protocol {(WR)* + (WR)*W}
}

We can prove the proposition that the composition of V is refinement of the perfect
component B = C||M if it is assumed at any time at most one of the f M; is in faulty
state [27, 36]. The component-based architecture is shown in Fig. 3.

3.4 Separation of Concerns

‘When the data model for the variables, interface interaction protocols and the dynamic
behaviour of component become complex, models of different viewpoints for differ-
ent design concerns are needed. To this end, we have a UML profile for rCOS [24].
This allows that for object-oriented design of component-based modelling and design
of finite state components, we use

e UML class models for the representation of the data models at different levels of
abstraction, specially conceptual class model for requirements and design class
models for object-oriented design of components;
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Fig. 3 Component-based architecture of a fault-tolerant memory

e (extended) UML sequence diagrams for modelling interactions among compo-
nents and between components and actors (component sequence diagrams), and
for interaction among objects of a design of a component (object sequence dia-
grams); and

e (extended) UML state machine diagrams for modelling the dynamic behaviour of
a component.

The extended sequence diagrams, together with the textual specification of pre- and
post-conditions of the methods, generate the rCOS functionality definitions of the
participating components, such as V, and the state diagrams of the components define
the protocols that are corresponding to the guards of the methods in the components.
Thus, the contracts of the interfaces can be divided into the contracts of static
functionality and the contracts of dynamic behaviour. The former are given by
the unguarded design of interface operations that are specified only by their pre-
and post-conditions, and the latter by the state machine diagram of the components.
With a UML profile defined for rCOS, these models of different views points can be
automatically integrated into rCOS textual specification [23, 25].

The sequence diagrams and state machine diagrams of different viewpoints of f
the fault-tolerant memory are shown in Fig. 4, and we will discuss more examples in
the next section.
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4 Incremental Design of an Enterprise Application

Incremental/evolutionary modelling and design has been practised in empirical and
ad hoc software development. This section, however, demonstrates how rCOS sup-
ports an incremental/evolutionary modelling and design of the case study of a com-
puterised trading system of an enterprise of supermarkets. It was used as the Common
Component Modelling Example (CoCoME) [6, 14]. It is an extension of the Point of
Sale (POST) example used in Larman’s textbook [19]. The case study was described
in terms of the use cases related to process sales, manage inventory, prepare for prod-
uct orders, process deliveries of ordered products, and exchange products among
different stores, etc.

The evolutionary nature of the system is determined by the development of the
enterprise. The business may just start from a single store and the store requires a
computerised system to improve the automation of the use case process sales to speed
up customer checkout and record the sales. Also, at the early stage of the business,
only one checkout “cash desk™ is enough, or the system development can start with
considering only one checkout cash desk.

4.1 Requirements Modelling

The requirements gathering and analysis starts from describing use cases, and any
described use case explicitly or implicitly implies restrictions on the functionality
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either due to the stage of the business development or consideration for a simplifi-
cation to start with. For example, we start with the use case process sale with cash
payment briefly described below.

Overview: A customer arrives at the Cash Desk with the product items to purchase
with cash payment. The sale and the payment are recorded in the system. Involved
Actors includes Customer and Cashier.

Process: The normal courses of interactions between the actors and the system are
described as follows.

1.  When a Customer comes to the Cash Desk with her items, the Cashier
initiates a new sale. The system creates a new sale.

2. The Cashier enters each item, either by scanning in the bar code or by some
other means; if there is more than one of the same item, the Cashier can enter
the quantity. The system records each item and its quantity and calculates
the subtotal.

3. When there are no more items, the Cashier indicates to the system the end
of entry. The total of the sale is calculated. The Cashier tells the Customer
the total and asks her to pay.

4. The Customer gives the Casher cash and the Cashier enters the amount
received. The system records the cash payment amount and calculates the
change. Then the completed sale is logged.

Alternative courses of events: There are exceptional or alternative courses of
interactions, e.g., if the entered bar code is not known in the system, the Customer
does not have enough money for a cash payment. A system needs to provide
means of handling these exceptional cases, such as cancel the sale.

At the requirements stage, we model a use case as a component by a conceptual class
model, a component sequence diagram, state machine diagram, and the contract
of static functionality of the interface operations. For the use case process sale with
cash payment, we have the class model in Fig.5, sequence diagram in Fig. 6a, and
state machine diagram in Fig. 6b.

The operations that actor Cashier calls in Fig.6a form the provided interface of
component ProcessSale, and the state machine diagram in Fig. 6b defines its contracts
of dynamic behaviour. Their consistency can be checked by FDR [34] after being
translated into processes of CSP [15, 34]. The contract of static functionality of
ProcessSale 1s specified by the pre- and post-conditions of the interface operations.

The precondition of startSale() requires the existence of the Store, the CashDesk,
the Catalog and the Product Specifications. The postcondition of startSale() is to create a
new sale. Thus, the state variables of ProcessSale include Store store, CashDesk cashdesk,
Catalog cat, and Sale sale. The contract of startSale() can be specified as

{store # nil A cashdesk # nil A cat # nil} startSale() {sale’ = new Sale)

Similarly, we can specify the contracts of the other operations. For example,
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AStore # nil
Acashdesk # nil
Acat # nil
Asale.isComplete

AcashPay =new CashPayment
makeCashPayment(a) § AcashPay'.amount = a
As-Pay-by(sale, cash Pay')

The semantics of OO contracts of operations are derived from OO designs in [13].

4.2 0O Design of Components

In practical but informal OO development, the design stage is to decompose the
functionality and responsibility of each interface operation (informally) described
by it pre- and post-conditions and assign the sub-responsibilities to “appropriate”
objects of the component. The decomposition and assignment of the responsibilities
are carried out using GRASP design patterns [19]. These patterns are proven to be
rCOS refinement rules [13, 37]. Therefore, the following design steps can actually
be formally justified in rCOS.

For a requirements model of a component, such as that of ProcessSale given in
the previous subsection, we design each interface operation according to its contract.
This is done by using the formalised GRASP design patterns and refactoring rules that
are formally proven in the OO refinement calculus [37]. In particular, by Controller
pattern, we can decide to implement the provided interface of ProcessSale by class

Is-Described-by
-— -decription
* -upc: UPC
1 -price:real

ey

Is-Contained-in
*  Logs-completed i Is-Managed-by

-date:Date
T . .
-time:Ti
s-Recofded-by Uses
1 0.1
Is-Baid-by Is-Initiated-by *
0.1
e :
1

-amount
-change

Fig. 5 Conceptual class diagram of ProcessSale
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4:makeCashPayment (amount)

Fig. 6 Sequence diagram and state machine diagram of ProcessSale

CashDesk, and the design of each operation is represented by an object sequence
diagram. For example, the design of makeCash Payment() is given in Fig.7.

With the model transformation tool of rCOS [22], we can check that the objects :
CashDesk, sale: Sale and :CashPayment form a component HandleSale with the inter-
face object: CashDesk; and the objects :Store and the container object ((Set))Sale form
another component StoreManagement with the interface object : Store. The tool then
automatically transforms the OO design in Fig.7 to a component-based design in
Fig. 8b.

The design proceeds with OO design of the other provided interface operations of
ProcessSale, followed by decomposition into provided interface operations, startSale(),
enterltem(upc, qty), and endEntry() of HandleSale, and required interface operations of
HandleSale for checking the validity of upc, and extracting the product specification
from the Catalog object continued in the Store object. Therefore, the upc checking
operation check(upc) and specification extracting operation find(upc; spec) are pro-
vided interface ManageStore. We then obtain a component-based decomposition of

| | I
! ! ! !
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I
I
|
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: 1 1.2 1:ndd (sale)
|
|
|

Fig. 7 OO design of makeCash Payment ()
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component ProcessSale shown in Fig.8a. The rCOS transformation tool [22] also
automatically generates the static component diagrams shown in Fig.9 correspond-
ing to the transformation from the OO design in Fig. 7 to the component-based design
in Fig.8.

4.3 Incremental Development and System Evolution

Component ProcessSale designed in the previous subsection assumes some restrictions
on the functionality. For example, among other restrictions, it deals cash payment only
and has no inventory update when the completed sale is logged. In general, in each
cycle of Rational Unified Development Process, components and their individual
operations are designed for restricted functionalities. Further development is to relax
the assumptions to extend their functionalities, and to design new components. The
rCOS method also put such incremental and evolutionary design into its formal
refinement calculus so as to ensure rigorous correctness. We informally show such
incremental design by singling out the process of handling cash payment as a use
case by itself, denoted by HandleCashPayment.

We take the operations represented by messages 1-3 in Fig. 6a to form a compo-
nent, denoted by HandleSale. Component HandleCashPayment itself can be designed as
a component with the provided interface operation makeCashPayment(). Its OO design
is the same as that in Fig. 7, and the component-based decomposition is the same as
that in Fig. 8b, but with a new component name HandleCashPayment. In a new devel-
opment cycle, we can follow the same way in which component HandleCashPayment
is modelled to design a model of component HandleCreditPayment. It provides an
operation makeCreditPayment(). Before a CreditPayment is created, HandleCreditPayment

(a) (b)

Zienterltom(upe, aty)
2 1 zehwck fupe)

1:makoCashPayment ()

1zstartSalo() 1
|
|
2 2: find{upe; spoch |
|

1
1
] I. 1:1og(sale) 1
|
|
1 I
1 |
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Fig. 8 Component sequence diagram of component ProcessSale
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calls the service from actor Bank for the authorisation of the credit payment. There-
fore, HandleCashPayment requires to call an operation of the Bank, that we denote
by authoriseCredit(cardlnfo, amount). After authorisation, the CreditPayment is created,
and the completed sale is logged to Store. In the same way, we design a component
HandleCheckPayment.

Assume that a system that only supports process sale with cash payment is already
developed. In its system evolution, a new component HandleCreditPayment can be
specified through investigation of the original architecture that consists HandleSale
and ManageStore. This new component can then be designed and integrated into the
legacy architecture to support processing credit payment.

With the architecture models in Figs. 8 and 9, we can extend the provided interface
of ManageStore with more product management operations, such as those for changing
the price of a product, increasing and deducting the inventory of a product (after more
items are ordered and sold). We can then upgrade component HandleProcessSale so that
after the complete sale is logged to the Store, the product items of the sale are removed
from stock using the inventory deduction operation, say delnventory(upc, gty). This can
be realised by aspect oriented design and the interface operation makeCashPayment
(and makeCreditPayment()) first executes its original body and then calls the method
decInventory(cpu, qty) of ManageStore repeatedly for each item in the sale. This is an
“after” advice in aspect oriented design. An aspect oriented architecture modification
like this is modelled as a connector component that changes the original component
by modifying the execution of the interface operation according to the advices in the
aspect.

Further system evolution can go from one checkout cash desk to a number of
them in a store, from an one-store business to an enterprise of a store chain. Also,
further extension to the system can be developed to support online shopping. The
model of component-based architecture and interfaces contracts are also imported
for analysis of safety, security and performance vulnerabilities and deficiencies so
that architecture modifications and changes of interaction protocols can be designed
to improve the safety, security and performance.

5 Towards Modelling Cyber-Physical Component Systems

The components in the previous section are digital components. We now propose
to extend the models to physical interfaces and cyber-physical components, using
the evolutionary development of a smart meter network demand response (DR) pro-
gramme [30].
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(a) Physical interface (b) A Cyber-physical component

Fig. 10 Cyber-physical component

5.1 Physical Interfaces and Cyber-Physical Components

We extend the model of components with variables, called physical variables, whose
behaviour are functions from time to real number, depending on conditions of digital
states. The trajectories of the physical variables are specified by differential equa-
tions. For example, the rate of electricity consumption of an electrical appliance are
different when the appliance is in different states, say when it is “on”, “off”, or in
the “energy-saving” state. We model a physical interface as function f(xy, ..., xu; )
with one or more incoming signals xi, ..., x, that are continuous variables, and one?
outgoing signal y, as shown in Fig. 10a. The incoming signals of an interface are also
called requiring signals. A component also provides (or outputs) signals to the envi-
ronment, such as yi, ..., y, in cyber-physical component shown in Fig. 10b. There,
the function f defined in the component is part of hybrid behaviour of the compo-
nent, and the solid circle represents the provided digital (or cyber) interface. The
definition of operations in the provided cyber operations may rely on operations to
be provided by other operations, called the required cyber interface and represented
by the half circle in the diagram. The composition of components is also extended by
linking provided signals of a component to incoming signals of interfaces of another
component.

5.2 Model the Evolution of a Smart Meter Network

The system in this case study consists of three kinds of components.

e Consumer: is a household equipped with one or more smart meters that is con-
nected to the power line, electrical appliances, and to a communication network.

e Data Collector: is in charge of the data aggregation process. According to the
resource allocation algorithm, this process is modelled as a centralised coordinator,
but a distributed approach can be implemented securely.

e Utility: is a set of energy suppliers shared by customers. We assume utilities to
implement distributed generation

2In general, there can be more than one.
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Fig. 11 Appliance and meter

We mainly demonstrate the evolutionary nature of the system and show how our
modelling approach scales up. We first consider a single appliance A of a single
household. An appliance, as shown in Fig. 11a, has a digital state Szarus which takes
a value on or off, and it is changed by the digital interface operation switch(). The
appliance has an observable signal rate representing the electricity consumption rate.
It is a function from “Time” to real numbers, that (presumedly) can be obtained from
manufacturer of the appliance. The signal “rate” is useless if the householder only
observes the “rate” and switches on the appliance when needed.

If the householder wants to know better about his daily use of electricity and to
plan his use of the appliance in order to reduce their electricity bill, an electronic
meter M can be introduced as shown in Fig. 11b. Meter M records the accumulated
consumption of energy of an appliance A. Its provided interface M.pIF provides a
digital operation read() and its required interface M.rIF consists of a single signal
rate. The interface behaviour of M (i.e., the return of read()) is a discretised value of
the internal signal val that is a timed function dependent on the required signal rate.
For example, it can be defined as val(r) = [; ratedx. In general, the the trajectories of
the continuous variables of a component C are specified as timed functions of the
form vC = F(BC,vC, rW), where feedbacks loops are possible. If we compose the
appliance A and the meter M, we have the component shown in Fig. 12a.

There are alternative models. For example, a meter can include a sensor that
observes the rate. Then val would be discretised and represented as a step function.
Then read() directly returns the value of the internal discrete variable val. In this
model, the sensor is actually represented as part of the physical interface. Also, a
meter can be modelled as a component with a required signal rate and a provided
digital operation val() to the meter component. The advantage of the component-
based modelling with explicit interface contracts is exactly to allow different models
and support comparative analysis.

At this stage of system evolution, the read() and switch() are still only manually
operated by the householder. A further desire of home automation is to introduce a
control component P, called a control pad. For accuracy and fault-tolerance, we make
the internal signal val of A||M external, and denote this cyber-physical component as
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Fig. 12 Models of composition of an appliance and a meter

Fig. 13 Automatically
controlled appliance H”

read

MA, as shown in Fig. 12b. We now compose the control pad P and component MA,
and it is shown in Fig. 13. Now the householder can use ser and read() to program
daily use of the appliance, according to a daily budget.

Home automation The evolution continues and a household can have a number of
appliances. Then more meters or a meter with an open number of required input
signals can be used for the design of a control pad. The overall control pad can either
be designed using the existing individual control pads or the individual control pads
are replaced with a centralised control pad. In either case, the design models of the
individual control pads can be reused. The advantage of the proposed framework is
that a household with a number of appliance can be treated in the same ways as if
the household has a single appliance.

A; = Alswitch; /switch, rate; [ rate], AZS A ... || Ax
M; = Alread; [read, val; [val], M=M | ...| My
P; = [set;/set, read; |read, val; /val, switch; /switch], P =Py | ... || P,
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Here, renaming of interface operations and signals are used. We add a global con-
troller P for planning and schedule of a household, and thus obtain an automated
household H = G||P| M| A. This is shown in Fig. 14a. This system is closed inside
the house and thus there are no security threats to it (unless a burglary happens).
However, a further step of evolution can introduce a controller operated through a
mobile phone, as shown in Fig. 14. We denote this automated home by MH. Then, an
open mobile phone communication network is used, and security threats are intro-
duced too. Therefore, interface-driven component-based architectures are essential
to identify system safety vulnerabilities, security threats, and performance deficien-
cies, so as to make architecture modifications to enhance safety, security, availability
and fault-tolerance.

Network evolution The designs of a household can be abstractly described as fol-
lows.

Component H {
attributes: fD, vD: Real;//fixed and variable
//energy demands of the community
signal: val: Real;
provided interface:
Rf(;x:Real), Rv(;y:Real);
Wf (x:Real), Wv(y:Real);
setUp() /** set up budget and policy /** by householder;
val/ ** provided signal

Functionality:
RE(;x){x:=£fD}; Rv(; y){y:=vD};
WE (x) {fD:=x}; Wv(y){vD:=y}

We define a network of households H = H; | ... || H; for a community of resi-
dence. Assume the component Urility provides a operations requestF(x:Real; u: Real)
and requestV(y:Real; v: Real) for supply of fixed energy and variable energy, respec-
tively. When it is called, the method returns the amount of committed supply for
the day through the return parameter. Consider a Coordnator component which peri-
odically calls the interface operations Rf;() and Rv;() and makes a request to Urility
through request(). After it receives notification from Utility about the committed sup-
ply, it “negotiates” with the households (through communication interfaces that we
omit in this chapter) and reallocates budgets to the households through Wf;() and
Wu; (). This gives a network system H || Coordinator|| Utility, as shown in Fig. 15.

Except for the “negotiation” of the Coordinator with individual households, the
composition H of the households behaves exactly the same as one household. Sim-
ilarly, we can imagine that a network of utilities works in collaboration to provide a
power supply. Once they reach an agreement among themselves on how they share
the supply to the request from the collector, they interface with the collector in the
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Fig. 15 A smart grid

Coordinator

same manner as a single utility. Furthermore, the centralised collector can be trans-
formed into a distributed implementation so that the “negotiation” can be performed
among households themselves.

6 Conclusions

This chapter has argued the importance of component-based (or system of systems)
architectures and contracts of interfaces for healthy evolution of digital ecosystems.
We proposed an extension to the rCOS model of digital components and interfaces
to cyber-physical components. This makes the notion of interfaces very general.
For example, a piece of wall or a window can be modelled interfaces between the
temperatures outside and inside a room. Even the “air” between two sections of a
room can modelled as an interface that transforms the temperature of one section
to that of another. However, this general notion of interfaces poses a number of
challenges, for example

1. How to develop a model of contracts of such interfaces, as it is often the case that
there is no known physical laws or functions for defining these interfaces?

2. How to define the formal semantics and the refinement relation between cyber-
physical interface contracts?

These are the first significant questions to ask when developing a semantic theory
for these CPS components and their compositions. Further challenges include

1. how to develop design techniques and tools,
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2. how to combine David Parnas’s Four-Variable Model, Michael Jackson’s Prob-
lem Frames Model, and the Rational Unified Process (RUP) of the use case
driven approach systematically into the continuous evolutionary integration sys-
tem development process?

We believe that our model-driven approach is again promising, and techniques and
tools of simulation with rich data and machine learning would become increasingly
important in building the correct models.
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Computing Verified Machine Address
Bounds During Symbolic Exploration
of Code

J Strother Moore

Abstract When operational semantics is used as the basis for mechanized
verification of machine code programs it is often necessary for the theorem prover to
determine whether one expression denoting a machine address is unequal to another.
For example, this problem arises when trying to determine whether a read at the
address given by expression a is affected by an earlier write at the address given
by b. If it can be determined that @ and b are definitely unequal, the write does not
affect the read. Such address expressions are typically composed of “machine arith-
metic function symbols” such as +, *, mod, ash, logand, logxor, etc., as well as
numeric constants and values read from other addresses. In this chapter we present
an abstract interpreter for machine address expressions that attempts to produce a
bounded natural number interval guaranteed to contain the value of the expression.
The interpreter has been proved correct by the ACL2 theorem prover and is one of
several key technologies used to do fast symbolic execution of machine code pro-
grams with respect to a formal operational semantics. We discuss the interpreter,
what has been proved about it by ACL2, and how it is used in symbolic reasoning
about machine code.

1 Preface

One might ask why a chapter on the ACL2 project is included in the volume marking
the 20" and 25" anniversaries of the European ProCoS project. ProCoS was in part
inspired by the successful effort at Computational Logic, Inc. (CLI), first published
in 1989, to verify a system “stack,” from a gate-level description of a microproces-
sor, through an assembler, linker, loader, two compilers, and an operating system,
to several applications. All were verified using the Nqthm [5] theorem prover and
their correctness results were designed to compose so that each level relieved the
preconditions of the level below. The result was a mechanically checked theorem of
the form: under certain very specific preconditions on the resources available and the
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inputs, the application programs (when compiled, linked, and loaded) run correctly
on the hardware. The only unverified assumptions were the ones at the bottom: the
fabrication of the gate-level description was faithful to the design and the physical
gates behave as logically specified [1].

But the CLI stack inspired more than ProCoS. It was one of several Nqthm projects
in the late 1980s and early 1990s involving models of commercial interest. See for
example the work on the C String Library as compiled by gcc for the Motorola 68020
[6]. These projects stressed Nqthm in ways we had not seen before: its capacity,
efficiency, and convenience as a practical functional programming language. Thus
was born, in 1989, ACL2: A Computational Logic for Applicative Common Lisp [7,
11-13] ACL2 was a reimplementation of Nqthm in an applicative subset of Common
Lisp [19]. But while the logic of Nqthm was a “homegrown” dialect of pure Lisp,
the logic of ACL2 is applicative Common Lisp, a fast, efficient, widely supported
ANSI standard programming language.

ACL2 has since been used in many industrial projects and is in use regularly at
several companies involved with microprocessor design. For a good illustration of
how ACL2 can be used in industry, see [18].

2 Introduction

Operational semantics has long been used to formalize and mechanically verify
properties of machine code programs. Examples of the Edinburgh Pure Lisp Theorem
Prover, Nqthm and ACL2 being used to prove functional correctness of code under
formal operational semantics may be found in numerous publications [1, 2, 6, 10,
16, 17, 20, 21].

In such applications, terms in the logic are used to represent machine states, tran-
sition functions define the effects of individual instructions, these instruction-specific
transition functions are then wrapped up into a “big switch” single-step function that
applies the transition function dictated by the opcode of the next instruction, and
finally the single-step function is wrapped up into a recursive iterated step function
for giving semantics to whole programs. Typically the program being analyzed is
stored in the state, either encoded numerically in memory or symbolically in some
“execute only” state component. Theorems are then posed, typically, as implications
asserting that if the initial state has some property then the “final” state produced by
the iterated step function has some related property. These theorems are typically
proved by induction but the “heavy lifting” in the proof is done by a rewriting strat-
egy that explores the various paths through the program and composes and simplifies
the individual state transitions. The rewriting strategy is just deductive implementa-
tion of symbolic evaluation which we sometimes also call code walking. The basic
idea of symbolic evaluation is to start with a symbolic state expression containing a
concrete program counter and program code but containing variables in some state
components (e.g., memory locations holding program data). Hypotheses typically
constrain these variables. To symbolically step that state: retrieve the instruction at
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the program counter, instantiate the transition function with that instruction, sim-
plify the resulting state (rearranging expressions representing the contents of various
registers and memory locations, testing them, and producing an IF-expression with
new states with known program counters), and repeat on all the new states until some
condition is satisfied.!

We sometimes refer to these proofs as code proofs because they can establish
properties of explicit machine code.

Fundamental to this approach to semantics are the terms denoting reads and writes
to the memory of a state because every transition requires manipulating the memory.
In this work we focus on a byte addressed memory and use these terms for read and
write:

R(a, n, st): returns the natural number obtained by reading n bytes starting at
address a in the memory of state st

'R(a, n, v, st): returns the new state obtained by writing n bytes of natural num-
ber v into the memory of st starting at address a

We call a an address and n an extent. R and ! R use the Little Endian convention to
represent natural numbers as sequences of bytes. If an integer is supplied for v above,
its twos complement representation — a natural number — is used. For example, 'R
writes the least significant byte of the binary representation of v into address a and
writes the more significant bytes into the higher addresses.

R and !R enjoy certain properties that are crucial to code proofs. One such prop-
erty is:

a,n,bmeZ AN (a+n<>b)— R(a,n, 'R(b,m, v, st)) =R(a,n, st).

Such atheorem s called a read-over-write theorem because it tells us about the results
of reading after writing. This particular read-over-write theorem says the write can
be ignored if the read fetches bytes in memory addresses below those written. There
are other theorems to deal with overlapping reads and writes and reads above writes.
There are analogous write-over-write theorems for simplifying state expressions. All
are crucial to code proofs.”

IThe process just described is just ordinary mathematical simplification of the iterated step function
applied to the initial state. A special case of symbolic evaluation is “symbolic simulation” or “bit
blasting” by which we mean a process whereby objects from a given finite set are represented
using nested structures whose leaves are Boolean constants and variables. The process computes
related objects from definitions or other equations using Boolean decision methods typically based
on binary decision diagrams (BDDs) or Boolean satisfiability procedures (SAT). ACL2 supports
symbolic simulation, e.g., see the ACL2 online documentation topic GL, but in this chapter we are
concerned with straightforward simplification.

2Typical machine state models involve many other state components, their “accessor” and “updater”
function symbols, and their analogues to “read-over-write” theorems, etc. But we ignore them in
this chapter since we are focused on address resolution.
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But what is of concern here is how, in a theorem proving context, we establish
such inequalities as (a +n < b) when a, n, and b are given by terms produced by
symbolic evaluation of machine code. Such hypotheses litter the read-over-write and
write-over-write conditional rewrite rules that are heavily used in code proofs. These
rules are typically tried many more times than they are successfully applied: given
an arbitrary read-over-write expression one must try to establish the hypotheses of
each rule to determine whether the read is below, overlapping, or above the write.
Furthermore, in typical code proofs, thousands of read-over-write expressions are
encountered. Finally, the expressions a and b can become very large.

To put some numbers on the adjectives “heavily used,” “large,” etc., consider the
largest symbolic state encountered while symbolically exploring a machine code
implementation of the DES algorithm. The state in question represents the end of
one path through the 5,280 instructions in the decryption loop. The normalized state
expression contains 2,158,895 function calls, including 58 calls of !R to distinct
locations and 459,848 calls of R. (Repeated writes to the same location are eliminated
by the rewriting process.) That state expression also contains 1,698,987 calls of
arithmetic/logical functions such as addition, subtraction, multiplication, modulo,
and bitwise logical AND, exclusive OR, shift, etc. The largest value expression written
is given by a term involving 147,233 function applications, 31,361 of which are calls
of R and the rest are calls of arithmetic/logical functions. Values written often become
indices into arrays and thus become part of address expressions.

We found it impractical to use ACL2’s conventional arithmetic library to answer
the address comparison questions that arise while building up such large state expres-
sions. But ACL2 allows the user to extend the rewriter with special-purpose symbolic
manipulation programs if those programs — which are written in the ACL2 program-
ming language — are first proved correct by ACL2. So we developed special-purpose
programs to answer such questions as “is (a + n < b) true?” or more generally, “how
do the values of expressions a and b compare?” The core technology is an Abstract
Interpreter over Natural Number Intervals called Ainni, which takes a term and the
context in which it occurs and tries to compute a bounded natural number interval
containing all possible values of the term in that context. Ainni is purely syntactic
— it just walks through the term bounding every subterm — and can be thought of
as a verified type-inference mechanism where the types are intervals. Ainni was
then used to develop a variety of metafunctions for manipulating the gigantic expres-
sions produced by the symbolic evaluation of machine code sequences containing
thousands of instructions.

In Sect.3 we give some practical information about ACL2 as well as explain
ACL2 notation which we often use in place of conventional notation because our
techniques involve metafunctions which manipulate the internal ACL2 representa-
tion of terms. In Sect.4 we discuss that representation and metafunctions. In Sect. 5
we introduce ACL2’s pre-existing notion of “bounder” functions and a library of
elementary bounders. In Sect. 6 we describe the key idea: Ainni, our abstract inter-
preter for machine arithmetic expressions that attempts to produce a bounded interval
containing the value of the expression. Also in this section we show the correctness
results for Ainni. These results have been proved by ACL2 and are necessary
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if Ainni is to be used in verified metafunctions. In Sect.7 we illustrate calls of
Ainni and the interpretation of its results. In Sect. 8 we exhibit a metafunction that
uses Ainni to simplify a certain kind of MOD expression. This section shows how
a metafunction assembles the results of Ainni into a provably correct answer. In
Sect. 9 we briefly describe other applications of Ainni, including the motivating one
for simplifying read-over-write expressions. In Sect. 10 we briefly mention related
work. Finally we summarize in Sect. 11 and acknowledge the help of colleagues in
Acknowledgements.

3 A Little Background on ACL2

In this section we present a little practical background on ACL2, its documentation
and user-developed libraries. Then we sketch the syntax of the ACL2 logic and reveal
a bit about the implementation of the ACL2 theorem prover in Lisp. We also reveal
a bit about the semantics.

ACL2 was initially developed by Robert S. Boyer and the author starting in 1989.
However, since the early 1990s it has been extensively further developed, docu-
mented, maintained, and distributed by Matt Kaufmann and the author. It is available
for free in source code form from the ACL2 home page [14].

When we refer to “:DOC x” we mean the documentation topic x in the online
ACL2 documentation, which may be found by visiting the ACL2 home page, clicking
on The User’s Manuals, then clicking on ACL2+Books Manual and typing x into the
“Jump to” box.

In ACL2 parlance, a “book” is a file of definitions and theorems that can be loaded
(see :DOC include-book) into an ACL2 session to extend the current theory.
The actions of the ACL2 rewriter (and other parts of the prover) are influenced by
previously proved theorems. Books are often developed with some particular problem
domain and proof strategy in mind and when included in a session configure the
prover to implement that strategy.

In this chapter we refer to several books in the ACL2 Community Book Repository.
The repository is developed and maintained by the ACL2 user community. The top of
the directory structure may be viewed by visiting GitHub at https://github.com/acl2/
acl2. A particular file may be found by clicking your way down the directory hierar-
chy. For example, to find books /projects/stateman/stateman22.lisp
start on the GitHub page above and click on books, then projects, etc.

ACL2 is the name of a programming language, a first order logic, a theorem prover,
and a program/proof development environment. The ACL2 programming language
is an extension of the applicative subset of Common Lisp [19]. The logic includes an
axiomatization of that language consistent with Common Lisp. The theorem prover
and environment are implemented (largely) in the ACL2 programming language.

In ACL2, the term R(a, n, st) is written (R a n st).ACL2 is case insensitive
so this could also be written (r a n st) or (R A N ST). In this chapter we
write variable symbols in lowercase italics. We tend to use case, both capitalization
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and uppercase, merely for emphasis. If our use of case and italics is confusing just
ignore them!

Internal to the ACL2 theorem prover, the term (R a n st) is represented by the
Lisplistthatprintsas (R A N ST),i.e., alistoflength4 whose car or first element
is the Lisp symbol R, and whose cdr or remaining elements are given by the list (A
N ST). Consing the symbol R onto the list (A N ST) produces the list (R A N
ST) . In Lisp we could create this list by evaluating (cons 'R ' (A N ST)),or
(cons 'R (list A 'N ’'ST))or (list 'R ‘A ’'N ’ST).These three
examples illustrate the most common idioms used to create terms when programming
the theorem prover.

This brings us to the single quote mark and Lisp evaluation. The Lisp convention
is that a single quote mark followed by a Lisp expression « is read as though the
user had typed (QUOTE «). Thus, ' (R A N ST) isread as (QUOTE (R A N
ST) ).

QUOTE is a “special symbol” in the semantics of Lisp. The result of evaluating
(QUOTE «) is . This discussion of internal representation and the special meaning
of QUOTE and the single quote mark are relevant to our discussion of metafunctions
in the next section.

But to foreshadow that discussion, it happens that if « is the Lisp representation of
an ACL2 term then ’ « is the Lisp representation of another ACL?2 term, that second
term in fact denotes a constant in the ACL2 logic, and there is an ACL2 function,
say &, called an “evaluator,” that when applied to that constant and an appropriate
association list (“alist”) will return the same thing as the value of «. For example,
since (Ran st) isan ACL2 term, thensois * (R A N ST), the latter term denotes
a constant in the ACL2 logic, and

£ "(R AN ST) (list (cons 'A a) (cons 'N n) (cons ’'ST st)))

(R a n st)

is a theorem of ACL2.

In Lisp, certain constants, in particular symbols T and NIL, numbers, character
objects, and strings, evaluate to themselves. Thus, when writing Lisp it is not nec-
essary to quote these constants. But constants appearing in ACL2 terms, even T,
NIL, and numbers, are always quoted. This is achieved without inconveniencing the
user by translating user type-in into ACL2’s internal form. Thus, the term we write
as (R 4520 8 st) is represented inside the theorem prover as (R ’4520 ‘8
ST) which we could display as (R (QUOTE 4520) (QUOTE 8) ST). The
user could in fact input the term in any of these ways. All three expressions produce
exactly the same internal form. And because ACL2 is Lisp, it happens that all three
are not only ACL2 terms but Lisp expressions and they produce the same results
when evaluated by Lisp.

Some other ACL2 function symbols used in this chapter are shown in Fig. 1. In
Lisp, a test or predicate is said to be “false” if its value is NIL and is said to be “true”
otherwise. The symbols force and hide of Fig. 1 are trivial identity functions used
to communicate pragmatic information to the ACL2 prover. See :DOC force and
hide.
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ACL2 term name conventional notation
(if z y 2) if-then-else r?Ty 2z
(implies p ) logical implication p—q
(and p q) logical conjunction pAq
(or p q) logical disjunction pVaq
(not p) logical negation -p
(equal z y) equality T=1y
(integerp x) “is-integer” rE€Z
(natp x) “is-natural” reN
<z vy less than <y
<=z y) less than or equal <y
(+ x y) addition r+y
(- x y) subtraction Tz —y
(x x y) multiplication T Xy
(ifix x) “coerce-to-integer” if « is an integer, x; else 0
(expt = y) exponentiation zY
(mod z y) modulus x mod y
(ash = y) shift lz x 2Y]
(logand = y) bitwise and &y
(logior = y) bitwise inclusive or zly
(logxor = y) bitwise exclusive or Ty
(force ) T
(hide x) T

(R a n st)
('R an v st)

read n bytes from addr a
write n bytes of v to addr a

Fig.1 Some ACL2 function symbols

In the internal representation of ACL2 terms, all function symbols take a fixed
number of arguments. “Functions” that allow varying numbers of arguments are
handled as Lisp macros that expand during the previously mentioned translation
phase. For example, the internal form of (+ i j k) is actually (binary-+ i
(binary-+ j k)).Thesymbol +isamacro that expands into a term that uses the
function symbol binary-+. Of the “function symbols” shown in Fig. 1 the symbols
+, *, logand, logior, and logxor are actually macros that expand into right-
associated calls of function symbols that take exactly two arguments. The “functions
symbols” and and or are macros that expand into nests of IF expressions. But in
this chapter we ignore such details and will pretend that they are all function symbols,
not macros; when discussing term processing functions we will act like these symbols
have exactly two arguments. We mention this detail only to reassure readers familiar
with ACL2 that our metafunctions do not mistake macros for function symbols.

ACL2 is untyped and all ACL2 functions are total; thus, ACL2 expressions
mean something no matter what well-formed arguments are supplied; however we
will always use them conventionally and their completions are unimportant here.
For example, ACL2’s universe includes the rationals but not the irrationals. Thus,
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(expt 2 1/2) is a well-formed ACL2 term, it is indeed equivalent to a certain
constant, but that constant is not ﬁ But this does not matter here because no term
involved in this work applies expt to a non-integer.

4 Metafunctions

ACL2 “metafunctions” are ordinary ACL2 functions that operate on the internal
representation of ACL2 terms. Correctness is stated in terms of “evaluators.” Once
ACL2 has proved a metafunction correct, the metafunction may be used by the
theorem prover directly on the internal representation of terms [4]. Metafunctions
have been part of ACL?2 since its beginning; indeed, they were first introduced and
described in 1979 [3] as part of the prover that became Nqthm [5].

An “evaluator” is a function that interprets an object as a term, with respect to some
assignment giving meaning to variable symbols. Lisp’s eval would be a wonderful
evaluator if it were admissible in ACL2’s first order logic of total recursive functions,
but it is not. Fortunately, it suffices for ACL2’s purposes to admit evaluators for a
finite number of already-introduced function symbols and the ACL2 system provides
a macro, defevaluator, that makes this easy. See :DOC defevaluator.

More technically, let o be a set of ACL2 function symbols. An ACL2 evaluator
function over o is a function ev of two arguments, x, treated as the internal represen-
tation of a term, and alist, treated as an association list mapping variable symbols
to values. The value, v, of (ev x alist) is constrained to have certain properties
including: If x is a symbol other than NIL, v is the value assigned x by alist. If
x is "¢, visc. If x is of the form (g xy ... x,), where g € o, then v is (g (ev x;
alist) ... (ev x, alist) ). Additional constraints include that ev be able to interpret
LAMBDA-applications and that on x of the form (g x; ... x,,) where g ¢ o, ev is a
function of the (ev x; alist).

Henceforth, we will assume that £ is an ACL2 evaluator function over all of the
functions mentioned in this chapter (except & itself!).?

Thus,

(6 "(!'R 74000 '8 (LOGAND X Y) ST)
(LIST (CONS ‘X x)
(CONS 'Y y)
(CONS ’ST st)))

('R 74000 '8 (LOGAND x y) sf)
(

'R 4000 8 (LOGAND x y) sf).

3The actual name of this evaluator is stateman-eval, “stateman” being the name of the “State
Management” book that motivated this work. We simply find stateman-eval inconveniently
long for use in a paper.
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A metafunction is an ordinary list processing function in ACL2 with the property
that it takes the internal representation of a term and returns the internal representation
of an equivalent term. To be precise, a metafunction must be proved to operate
correctly on “pseudo terms.” Pseudo terms are term-like list structures that do not
necessarily obey all the internal invariants on ACL2’s term representation. Before
the output of a metafunction is used to replace its input, the output is checked to
satisfy all the internal invariants, unless the user has also proved that the function
preserves them [15].

The general form of the theorem establishing that fn is a verified metafunction
is:

(implies (and (pseudo-termp x)
(alistp alist))
(equiv (&€ x alist)
(& (fn x mfc state) alist)))

where & is any evaluator. The variable name m f ¢ stands for metafunction context and
state is the state of the ACL2 system, which together give fn access to contextual
and heuristic data.

If this theorem has been proved by ACL2, then the ACL2 rewriter is logically
permitted to replace any term x by the result computed by calling fn on x provided
the returned object represents a term. This argument is presented in detail in :DOC
meta.

Furthermore, by convention, if the metafunction returns an answer of the
form ’ (IF test new x) when applied to x, the rewriter uses new as the simplified
version of x provided it can backchain and establish fest. Thus, £n can check some
hypotheses syntactically and leave others to be relieved by the rewriter. This design
means that the user does not have to prove that the metafunction properly interprets
the data found in mfc and state. It also means that the ACL2 implementors do not
have to formalize that data but instead merely provide functions for accessing certain
parts of it. However, when those functions are used properly in a metafunction and
the metafunction accurately “exports” what was learned as a conjunct included in
test, itis generally easy for ACL2 to backchain and prove rest: it is generally proved
by the trusted internal routines of ACL2 for interpreting the data in mfc and state.

Since ACL2’s implementation language is ACL2, programming metafunctions
is just like programming theorem proving utilities, except that we generally use
ACL2 to prove that our programs are correct. For example, suppose we wanted a
utility for conservatively determining that an expression x always returns a natural
number. Here is such a function.* It is not actually necessary for the user to define this
particular function. ACL2 has much more sophisticated built-in ways to recognize
expressions that return naturals. But this function is a good warm-up.

4 As indicated above, a correct definition will use BINARY -+ instead of +, BINARY - * instead of
*, etc.
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(defun syntactic-natp (x)

(cond

((atom x) nil)

((eqg (car x) 'QUOTE)

(natp (nth 1 x)))

( (member (car x) '’ (+ * LOGAND LOGIOR LOGXOR ASH MOD))

(and (syntactic-natp (nth 1 x))
(syntactic-natp (nth 2 x))))

(eq (car x) 'HIDE)
(syntactlc natp (nth 1 x)))
((eq (car x) 'R) t)
(t nll)))

(

Here we use atom to recognize variable symbols, (car x) to fetch the top-level
function symbol (or the QUOTE mark) of the non-atomic term x, (nth 1 x) tofetch
the constant inside a QUOTEd expression, and (nth i x) to fetch the i argument
of function application x.

ACL2 can prove that if (syntactic-natp term) is true, then (natp (&
term alist) ).
(implies (syntactic-natp term) ; {syntactic-natp correct}

(natp (& term alist)))

We might then use syntactic-natp in the definition of some metafunction. For
example, suppose we wished to write a metafunction that recognized terms of the
form (natpx) andreplaced themby T whenx isa syntactic-natp expression.
Here is that metafunction:

(defun meta-natp (x)
(cond ((and (not (atom x))
(eq (car x) 'NATP)
(syntactic-natp (nth 1 x)))
" (QUOTE T))

(t x)))
ACL2 can prove:
(implies (pseudo-termp x) ; {meta-natp correct}

(equal (€ x alist)
(£ (meta-natp x) alist)))

Given this theorem, ACL2 would be justified in applying meta-natp to every
expression it ever encountered and replacing the expression by the result. That would
be needlessly inefficient since meta-natp only changes some NATP expressions.
The user-interface to ACL2 requires the user to provide pragmatic information iden-
tifying likely targets expressions, in this case, calls of NATP.
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5 Bounders

The key to resolving such questions as (a + n < b) by syntactic analysis is to be
able to compute a bounded interval containing all possible values of a term. In this
chapter we assume all intervals are closed, bounded, and over the naturals (i.e., integer
intervals with non-negative lower bound). We denote intervals over the naturals by
[lo, hi], where both lo and hi are natural numbers and lo < hi.

Imagine that x and y lie within certain bounded closed intervals over the naturals.
Then it is easy to compute an interval containing their sum by appealing to the
following theorem:

(x € [loy, hix] Ny € [loy, hiy]) — (x +y) € [lox + Loy, hi, + hi,]

It is easy to imagine a function that takes a term, like (+ x y) in ACL2, and
computes an interval containing its value, provided it can recursively compute such
intervals for x and y. The question is: given intervals containing the arguments of a
function f, can we compute an interval containing the value of f on those arguments?

In ACL2, an n-ary function g is a bounder for an n-ary function f if, for

closed bounded intervals inty, int,, ..., int, over the natural numbers, when x; €
int;, for all 1 <i <mn, then g(inty,...,int,) is an interval and f(x,...,x,) €
g(inty, ..., int,).>

The file books/tau/bounders/elementary-bounders.lisp, in the
ACL2 Community Books repository, developed by the author, defines and verifies
bounders for +, *, -, FLOOR, MOD, LOGAND, LOGNOT, LOGIOR, LOGXOR, EXPT,
ASH and a few other functions.

For example, here is a version of the bounder for LOGAND that is correct provided
the two intervals int, and int, are closed bounded intervals over the naturals. This
function is less general than that in the elementary-bounders Community
Book, which deals with the various kinds of ACL2 intervals, including the cases
where the bounds are negative integers. But the simple function below illustrates the
basic ideas in all of our bounders.

(defun natp-tau-bounder-logand (int, inty)
(let ((lo, (tau-interval-lo int,))
(hi, (tau-interval-hi int,))
(loy (tau-interval-lo inty))
(hiy, (tau-interval-hi int,))
(cond
((worth-computingp lo, hix loy hiy)
(make-natural-interval
(find-minimal-logand lo, hi, loy hiy)
(find-maximal-logand lo, hi, lo, hiy)))

)

5 ACL2 is actually a little more relaxed: it does not require that every argument of f be confined to
an interval. ACL2 furthermore allows both open and closed intervals, possibly unbounded at either
end, over not just the integers but also the rationals.
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(t
(make-natural-interval 0 (min hi, hiy))))))

Here the functions tau-interval-lo and tau-interval-hi extract the
lower and upper bounds of an interval, and make-natural-interval con-
structs a closed ACL2 interval over the naturals when given appropriate lower and
upper bounds. We discuss the “Tau System” of ACL?2 in the next section.

The naive analytic bound on (logand x y) is [0, min(hi,, Aiy)]: the minimum
possible value is 0 because x and y may not have any bits in common. The maximum
possible value is the smaller of the upper limits of x and y, since 1ogand just turns
some bits off. For example, if x € [1032, 1039] and y € [520, 527], then this naive
approach tells us that (Logand x y) € [0, 527].

But this naive approach can grossly overestimate the bounding interval. In fact,
(logand x y) €[8,15], for any x and y bounded as assumed above, as can
be confirmed by simply trying every combination of x and y in the two intervals
and loganding them together. If the two input intervals are sufficiently small this
empirical approach is practical and often produces much tighter results. The func-
tions worth-computingp, find-minimal-logand, and find-maximal
-logand implement this empirical approach to interval analysis.
Worth-computingp deems it worth trying if the number of combinations is
less than 22°. ACL2 can do that many 1ogand operations in about 0.004371s on a
MacBook Pro laptop with a 2.6 GHz Intel Core i7 processor.

6 Ainni: Abstract Interpreter over Natural Number
Intervals

The “easy to imagine” function mentioned above, that takes a term and tries to com-
pute an interval containing its value, is formalized in our function Ainni. Ainni
is an abstract interpreter over natural number intervals. It uses the bounders in the
elementary bounders book, and a few more, compute intervals.

To suggesthow Ainni is defined we exhibit a simpler function ai i below. For the
full definition of Ainni see the ACL2 Community Book books/projects/-
stateman/stateman22.lisp.

Suppose we have k function symbols, opy, ..., opy, of arities ny, ..., ny, and
suppose we have a bounder function for each, bounder-opy, ..., bounder-opy,
respectively. Suppose x is a term over the op;. Then here is a sketch of aii, an
abstract interpreter that attempts to compute an interval containing the value of x.
If it fails to find an interval it returns nil. We show the definition below and then
paraphrase each case shown.

(defun aii (x)
(cond
((atom x) nil)
((eg (car x) ’'QUOTE)
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(cond ((natp (nth 1 x))
(make-nat-interval (nth 1 x) (nth 1 x)))
(t nil)))

((eq (car x) ‘op;)

(let ((intl (aii (nth 1 x)))

(intn; (aii (nth n; x))))

(cond

((and intl ... intn;)
(bounder-op; intl ... intn;)
(t nil)))))

((eq (car x) 'R)
(cond ((and (not (atom (nth 2 x)))
(eg (car (nth 2 x)) ’'QUOTE)
(natp (nth 1 (nth 2 x))))
(make-nat-interval
0
(- (expt 2 (* 8 (nth 1 (nth 2 x)))) 1)))
(t nil)))
(t nil)))
If x is a variable symbol, aii fails and returns nil. If x is a natural number
constant, 'k, it returns the interval [k, k]. If x is an application of one of the known
op;, aii recursively computes an interval for the n; arguments and, provided it suc-
ceeds on each, it calls the bounder for op; to compute the interval for the call. If x is
an application of R, aii asks whether the extent is a natural number constant, 'k,
and if so returns [0, 28% — 1]. Otherwise, aii fails and returns nil.

Of course, the definition could be made more efficient by “failing early,” e.g.,
not trying to compute an interval for the second argument if it failed to find one for
the first. Furthermore, some terms can be bounded even if some of their arguments
cannotbe,e.g., (logandx 31) € [0, 31] regardless of x’s value. But ai i is offered
only as a suggestive model of our more sophisticated Ainni.

A more basic question arises when looking at the definition of aii: What about
intervals for variables? The function above just fails if it encounters a variable. Ainni
on the other hand takes another argument, called ctx, which provides contextual
information, gleaned from the hypotheses governing the occurrence of the term x.
For our purposes here, think of cfx as a map from Boolean terms to truth values.
For example, the assumption that ((R a 8 st) < 16) would be coded in ctx as
a pair associating the term (< (R a 8 st) 16) withtrue.® Ainni uses its ctx
argument to determine the arithmetic bounds on variable values. In our application,
the only “variables” encountered are actually reads from memory, i.e., expressions

2. <,

SWhat we are calling ctx here is actually ACL2’s “type-alist,” and it pairs arbitrary terms with
“types” gleaned from the governing hypotheses.



164 J Strother Moore

of the form (R a n st). If the extent of the read is a natural number constant then
(Ra "kst) €0, 28k _ 1]. However, Ainni uses the ctx argument to try to narrow
that interval by looking for assumptions on the bounds of (Ra 'k st).

Ainni takes three inputs: the term x to bound, a list of hypotheses, 2yps, assumed
so far, and ctx. It returns three values. These values are formally written as shown
below and have the following interpretations:

e (mv-nth 0 (Ainnixhypsctx)):the 0" returned value of (Ainni x hyps
ctx) . Informally this result is called the “output flag.” When the output flag is
non-nil (“true”) it means Ainni successfully computed an interval for x; when
the output flagisnil, Ainni could not find a suitable interval, e.g., perhaps the
input term x is not in the set of terms recognized by Ainni. When the output flag
is nil, the other two results are nil (and irrelevant).

e (mv-nth 1 (Ainni x hyps ctx)):the 1* returned value of (Ainni x hyps
ctx) . Informally this result is called the “list of output hypotheses” and each ele-
ment is called an “output hypothesis.” When the output flag is non-ni1l, the list of
output hypotheses is a list of terms that Ainni is relying on for the correctness of
its answer. The output hypotheses include all of the elements of the input hypothe-
ses hyps plus any hypotheses that Ainni extracted from czx that contributed to
its answer.

e (mv-nth 2 (Ainni x hypsctx)):the2" returned value of (Ainni x hyps
ctx) . Informally this result is called the “output interval.” When the output flag is
non-nil, the output interval is a bounded natural number interval and the value
of x (under the evaluator £ with any variable assignment alist) lies within the
output interval, provided the value of each output hypothesis is true (under the
same evaluator £ with the same variable assignment alist).

Four important theorems about Ainni have been proved with ACL2. The first
says that when given a pseudo term x and a list of pseudo terms Ayps the output
hypotheses are all pseudo terms.

(implies ; {Ainni 1}
(and (pseudo-termp x)
(pseudo-term-listp hyps))
(pseudo-term-listp
(mv-nth 1 (Ainni x hyps ctx))))

The second theorem establishes that when Ainni’s output flag is non-nil its
output interval is indeed a bounded interval over the naturals.
(implies ; {Ainni 2}
(and (pseudo-termp x)
(mv-nth 0 (Ainni x hyps ctx)))
(and (tau-intervalp
(mv-nth 2 (Ainni x hyps ctx)))
(equal (tau-interval-dom
(mv-nth 2 (Ainni x hyps ctx)))
" INTEGERP)
(tau-interval-1lo
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(mv-nth 2 (Ainni x hyps ctx)))
(tau-interval-hi
(mv-nth 2 (Ainni x hyps ctx)))
(<= 0 (tau-interval-1lo
(mv-nth 2 (Ainni x hyps ctx))))))

The first conjunct in the conclusion states that the output interval is an interval; the
next conjunct states that the domain of the interval is INTEGERP. The next two
conjuncts state that the lower and upper bounds of the output interval are non-nil,
which (because of the first two conjuncts) means they are both integers, the lower
bound is weakly below the upper one, and the interval is closed.’

The third theorem establishes that for pseudo term x such that Ainni’s output flag
is non-nil and all of the output hypotheses are true (i.e., the evaluator £ evaluates
the conjunction of those terms to non-ni1), then the value (under £) of x is contained
in the output interval.

(implies ; {Ainni 3}
(and (pseudo-termp x)
(mv-nth 0 (Ainni x hyps ctx))
(£ (conjoin (mv-nth 1 (Ainni x hyps ctx)))
alist))
(in-tau-intervalp (& x alist)
(mv-nth 2 (Ainni x hyps ctx))))

The fourth theorem establishes that Ainni actually preserves the internal invari-
ants on ACL2 terms, i.e., that if the input term and the elements in the input hypotheses
each satisfy ACL2’s internal invariant then the output hypotheses satisfy that invari-
ant. The constant *stateman-arities* is an alist pairing each of the function
symbols known to £ with its arity.

(implies ; {Ainni 4}
(and (termp x w)
(term-listp hyps w)
(arities-okp *stateman-arities* w))
(term-listp
(mv-nth 1 (Ainni x hyps ctx))
w))

This last theorem allows ACL2 to avoid checking that the output hypotheses satisfy
the internal invariants on terms. Instead, ACL2 just has to check that each of the
function symbols listed in *stateman-alist* has the given arity in ACL2’s
then-current logical theory.

Ainni is closely related to the Tau System in ACL2. See :DOC tau-systemn.
Tau is a user extensible abstract interpreter over sets of monadic predicates describing
the types of values returned by an expression. It includes containment in constant

"By definition of tau-intervalp, any interval with INTEGERP domain has integers for its
bounds unless there is no bound (i.e., a “bound” of nil) in some direction. Furthermore, all
bounded integer intervals are, by convention, closed. That is, if the domain is INTEGERP then
instead of, say, [0,8) we use [0,7].
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intervals as a “type.” ACL2 users think of the Tau System as a quick, incomplete
“type checker” for the untyped language of ACL2. By design, the Tau System answers
yes/no questions: is this formula trivial by type-like reasoning?

Ainni is designed to answer quantitative questions: What are the minimal and
maximal values of this expression? Ainni exploits some of the same theorems (in
the elementary bounders book) used to extend Tau. But by defining Ainni in the
logic and verifying it, we make it possible to use interval reasoning during rewriting.

7 Some Examples

Consider this expression:
(+ 2000 (* 8 (LOGAND 31 (R 1000 8 st)))).

This is the formal expression of a fairly typical machine address encountered in
symbolic code evaluation. It corresponds to the compiled version of an array element
reference, where the base address of the array is 2 000, the array consists of quadword
(8-byte) elements, and the index is formed by taking the bottom 5 bits of the quadword
at address 1000. The prevalence of constants in the expression is also quite common
when exploring code recovered from an actual machine image: the locations of data
are fixed or at computed offsets from fixed addresses like the initial stack pointer.
What can Ainni tell us about this expression? We answer that by evaluating

(Ainni ’ (+ 2000 (* 8 (LOGAND 31 (R 1000 8 sf)))) nil nil)

Ainni will return three values. Its output flag will be T, the list of output hypotheses
will be nil, and the output interval will be the ACL2 data structure that represents
the integer interval [2000, 224813

The derivation of the output interval is as follows: (R 1000 8 st) is known to
be in [0, 2%* — 1], but the LOGAND is in [0, 31]. Thus, the product with 8 is in the
interval [0, 248], so the sum with 2000 is in [2000, 2248].

Now imagine ctx contains the assumption that (R 1000 8 s¢) is below 16 and
reconsider

(Ainni ' (+ 2000 (* 8 (LOGAND 31 (R 1000 8 st)))) nil ctx).

This time the output flag will be T, there will be one output hypothesis, namely
(<= (R 1000 8 st) 15), and the output interval will be [2000, 2120]. The
third correctness theorem for Ainni assures us that (+ 2000 (* 8 (LOGAND
31 (R 1000 8 st)))) lies in [2000, 2120] provided
(<= (R 1000 8 st) 15) istrue.

8 As noted earlier, the actual input to Ainni should be in ACL2’s internal form, so, for example, the
“+” should be binary-+ and the numbers should be quoted. The data structure representing the
output interval is (INTEGERP (NIL . 2000) . (NIL . 2248)), indicating an integer
domain, bounded above and below by 2000 and 2248 respectively. The NILs indicate that <

rather than < is used to check whether a number is in bounds.
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Finally, to demonstrate Ainni’s speed compared to ACL2’s more powerful arith-
metic, consider the expression

(LOGIOR (ASH (MOD (R 1000 4 sST) 2) 0)

(ASH (MOD (R 1004 ST) 2) 1)
(ASH (MOD (R 1008 4 ST) 2) 2)

~

(ASH (MOD (R 1052 4 ST) 2) 13)
(ASH (MOD (R 1056 4 8ST) 2) 14)
(ASH (MOD (R 1060 4 ST) 2) 15)).

The value of this expression lies in the interval [0, 2'® — 1] regardless of the values of
the R-expressions. Any programmer would realize the expression is bounded above
by 2'6: each MOD is just a single bit, and the expression shifts those bits into positions
0-15. Using similar “forward” reasoning from the expression, Ainni computes the
interval [0, 2'® — 1] in 0.012's on a MacBook Pro laptop with a 2.6 GHz Intel Core
i7 processor running ACL2 in CCL.

On the other hand, proving the expression is so bounded can feel harder! Indeed,
it takes the same laptop about 13065 to use the standard ACL2 arithmetic library
from the Community Books (books/arithmetic-5/top) to prove that the
expression above is less than 2'°. The library splits the goal into 2'® cases.

Of course, ACL2’s arithmetic library is much more powerful than Ainni. The
library is essentially a collection of theorems about arithmetic/logical functions which
informs the ACL2 rewriter and its integrated linear arithmetic decision procedure.
Those systems can be made to prove anything that is provable about ACL?2 arithmetic,
whereas Ainni is much more limited. But we embarked on the development of
Ainni because we saw the importance of a verified tool to look at typical machine
arithmetic expressions and do what every programmer can do: bound it by interval
reasoning. In addition, Ainni is fast.

The expression above is small compared to expressions encountered when doing
code analysis, especially of long sequences of machine instructions. The expression
above has 63 function calls in it (when the LOGIOR macro is expanded into a right-
associated nest of calls of BINARY-LOGIOR) of which 16 are calls to R and the rest
are calls to logical functions. By contrast, the largest arithmetic/logical expression
encountered in the disassembly of a machine code implementation of the DES algo-
rithm is a term involving 147,233 function applications, 31,361 of which are calls
of R and the rest are calls of arithmetic/logical functions. Ainni can bound that
very large expression in about 0.01 s. It is completely impractical to use the standard
arithmetic library to confirm the correctness of that answer (other than by relying on
the verified correctness of Ainni).

But another major advantage of Ainni, aside from being very fast and quite
capable on huge expressions, is that it discovers bounds whereas the rest of ACL2
(e.g., the Tau System) is oriented toward proving things. That is, ACL2 is generally
used to answer specific Boolean questions, e.g., “Does this value fit in 16-bits”
whereas Ainni gives it the capability of answering quantitative questions such
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as “How big is this?” These advantages mean Ainni can effectively be used in
simplification.

8 Using Ainni in a Metafunction

Because Ainni has been proved correct by ACL2, it can be used in metafunctions
which are in turn used by the rewriter. Thus, one need not choose between Ainni
and a conventional rewrite-driven arithmetic book; one can have both.

Here is a very simple metafunction that shows how we use Ainni. The following
function simplifies (MOD x k) expressions, where k is some natural constant, using
the fact that (MOD x ‘' k) = x, if x is an integer less than k.

(defun mod-constant-simplifier (term mfc state)
(declare (ignore state))

(cond
((and (not (atom term))
(eq (car term) 'MOD)
(not (atom (nth 2 term)))
(eq (car (nth 2 term)) ’'QUOTE))
(let ((x (nth 1 term))
(k (nth 1 (nth 2 term)))
c

(ctx (mfc-type-alist mfc)))

((and (natp k)
(syntactic-natp x))
(mv-let
(flg hyps int)
(Ainni x nil ctx)
(cond
((and flg
(< (tau-interval-hi int) k))
(list 'IF (conjoin hyps) x term))
(t term))))
(t term))))
(t term)))

This function checks that term is a call of MOD and that the second argument is
a quoted constant. If so, it binds x to the first argument of the MOD and k to the
constant. It also extracts the type-alist from the metafunction context m f ¢ and binds
the variable ctx to that. Then it checks that k is a natural number and x is a syntactic
natural. If so, it calls Ainni and if Ainni reports success and the upper bound of
the resulting interval is below k, it creates and returns an IF. The test of the IF is
the conjunction of the output hypotheses, the true branch is x, and the false branch
is term.
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The correctness of this metafunction follows from the correctness of syntac-
tic-natpand Ainni and the previously mentioned fact about (MODx ‘k).Once
verified and installed as a metafunction for MOD, mod-constant-simplifier
isrun on every MOD expression and, when it returns something different from its input,
the theorem prover backchains to establish the truth of the tested output hypotheses
and if so replaces the target term with x.

For example, oncemod-constant-simplifierisverified asametafunction
for MOD, the expression:

(MOD (LOGIOR (ASH (MOD (R 1000 4 sT) 2) 0)

(ASH (MOD (R 1004 ST) 2) 1)
(ASH (MOD (R 1008 4 ST) 2) 2)

N

(ASH (MOD (R 1052 4 ST) 2) 13)

(ASH (MOD (R 1056 ST) 2) 14)

(ASH (MOD (R 1060 4 ST) 2) 15))
(EXPT 2 24))

=

immediately simplifies to the LOGIOR expression.

9 Other Uses of Ainni

While Ainni was developed for answering questions about machine addresses it
is generally useful for answering quantitative questions about formal machine arith-
metic as illustrated in the previous section.

Another very helpful use of Ainni is in a metafunction to simplify (< x y).
Triggered by the less than operator, <, the metafunction uses Ainni on x and y and
if Ainni succeeds the metafunction can use quick checks on the endpoints to often
reduce the (< x y) to T or to NIL. The comparable reduction by the native rewriter
and its linear arithmetic procedure involves duplication of effort, essentially trying
to rewrite both the inequality and its negation since only Boolean questions can be
asked of them.

The motivating applications for Ainni were metafunctions to handle read-over-
write and write-over-write expressions. Consider a read-over-write. Typically, the
write expression is a deep nest of ! R expressions. The metafunction uses Ainni on
the read address and extent to compute the interval containing the region to be read.
Then with that interval in hand it searches down the nest of writes comparing the
read interval to the write intervals (using Ainni on each write address and extent).
Quick checks on the resulting intervals can determine when the regions are disjoint —
without having to reanalyze the addresses to determine whether the read is “above”
or “below” the write.

Thus, Ainni allows the read-over-write metafunction to be much more efficient
than rewrite rules because the read address and each write address is analyzed just
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once. Thisillustrates a major advantage of being able to answer a quantitative question
rather than just a Boolean one.

ACL2 permits memoization and that has proven helpful in avoiding repeated calls
to Ainni on the write addresses. However, we found that it was best to memoize the
read-over-write metafunction itself rather than the individual calls of Ainni inside
it.)

The details of the metafunctions using Ainni may be found by looking at
the heavily commented proof script in the ACL2 Community Book books/-
projects/stateman/stateman22.1lisp.

10 Related Work

Simplification and abstract interpretation are so ubiquitous it is beyond the scope of
this chapter to offer much background on them. Basically every mechanized prover
has libraries or tactics or built-in routines to simplify formulas using various standard
heuristics to control inference; see “auto” in Coq and HOL and the built-in notion of
“simplification” in PVS. The name “abstract interpretation” was introduced by the
Cousots in 1977 [8] and is basically the generalization of an operational semantics or
interpreter to deal with conservative approximations of the actual data (e.g., intervals
instead of numbers). Type checking is an example of abstract interpretation.

The work most closely resembling that reported here is probably the Astrée static
analyzer [9]. Astrée aims at proving the absence of run time errors in programs written
in C. It is based on abstract interpretation and uses interval analysis to approximate
numeric data values.

However, Astrée is a standalone static analyzer whose input is a C program,
whereas Ainni is a user-defined and mechanically verified extension of the ACL2
simplifier. While both are relying on abstract interpretation, Astrée interprets C pro-
grams (including its arithmetic/logical expression language) while Ainni only inter-
prets arithmetic/logical expressions in the ACL2 logic. The program control and data
manipulation done by Astrée is, in our case, done by the ACL?2 system, specifically
its simplifier applied to the formal operational semantics and the object code. So
there are really two different abstract interpreters involved in our code proofs, one
over the program text (done by the simplifier) and one over the semantics of arith-
metic/logical expressions (done by Ainni), and in Astrée they are combined. One
presumes that Astrée contains an abstract interpreter for arithmetic/logical expres-
sions that produces interval bounds on those expressions.

?One could memoize the ACL2 rewriter itself and hope to speed up the rewrite-rule approach.
However this has been unsuccessful because the ACL2 rewriter takes so many arguments to record
the context, the objective of the rewrite, equivalence relations to be maintained, histories used to
avoid infinite backchaining and looping, stacks to track the lemmas used for reporting purposes,
counters to measure or limit the work done, etc. All these extra arguments mean that identical calls
to rewrite virtually never occur and so memoization costs more time than it saves. Ainni and its
callers use far fewer arguments and memoization is effective on them.
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Finally, Ainni is available as a mechanically verified extension of the ACL2
simplifier and is hence of use in any theorem proving setting requiring reasoning
about the bounds of arithmetic/logical expressions. Furthermore, Ainni has been
mechanically verified to be correct by ACL2.

11 Conclusion

We have described an ACL2 function, Ainni, for answering the quantitative ques-
tion “what are the minimal and maximal magnitude of the value of this expression?”
The function is an abstract interpreter for machine arithmetic expressions composed
of arithmetic/logical operators and interprets them over bounded closed natural num-
ber intervals. Ainni can be thought of as a type inference procedure where the types
are intervals.

Ainni has been verified with ACL2 to be correct and can therefore participate
in formal proofs. The vehicles for that participation are metafunctions designed to
simplify machine arithmetic expressions.

Ainni has allowed ACL2 to do symbolic exploration of sequences of realistic
machine code containing thousands of instructions, whose end states contain millions
of function applications. This was not possible using other techniques we have tried
with ACL2.

The success of Ainni has raised important new questions: how can the rest of
ACL2 be made to cope with the expressions now being produced? This is a welcome
— and very typical — step along the evolutionary path ACL2 has followed. A solution
to one scaling problem introduces new scaling challenges.
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Engineering a Formal, Executable x86 ISA
Simulator for Software Verification

Shilpi Goel, Warren A. Hunt Jr. and Matt Kaufmann

Abstract Construction of a formal model of a computing system is a necessary
practice in formal verification. The results of formal analysis can only be valued
to the same degree as the model itself. Model development is error-prone, not only
due to the complexity of the system being modeled, but also because it involves
addressing disparate requirements. For example, a formal model should be defined
using simple constructs to enable efficient reasoning but it should also be optimized
to offer fast concrete simulations. Models of large computing systems are themselves
large software systems and must be subject to rigorous validation. We describe our
fo