
123

NASA Monographs in Systems and Software Engineering

Mike G. Hinchey
Jonathan P. Bowen
Ernst-Rüdiger Olderog Editors

Provably
Correct
Systems

NASA Monographs in Systems and Software
Engineering

Series editor

Mike G. Hinchey, Limerick, Ireland

The NASA Monographs in Systems and Software Engineering series addresses
cutting-edge and groundbreaking research in the fields of systems and software
engineering. This includes in-depth descriptions of technologies currently being
applied, as well as research areas of likely applicability to future NASA missions.
Emphasis is placed on relevance to NASA missions and projects.

More information about this series at http://www.springer.com/series/7055

Mike G. Hinchey • Jonathan P. Bowen
Ernst-Rüdiger Olderog
Editors

Provably Correct Systems

123

Editors
Mike G. Hinchey
Lero–The Irish Software Research Centre
University of Limerick
Limerick
Ireland

Jonathan P. Bowen
School of Engineering
London South Bank University
London
UK

Ernst-Rüdiger Olderog
Department für Informatik
Universität Oldenburg
Oldenburg
Germany

ISSN 1860-0131 ISSN 2197-6597 (electronic)
NASA Monographs in Systems and Software Engineering
ISBN 978-3-319-48627-7 ISBN 978-3-319-48628-4 (eBook)
DOI 10.1007/978-3-319-48628-4

Library of Congress Control Number: 2016959748

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

The ProCoS Project (1989–1991) was funded by the European Community as a
Basic Research Project, with a continuation (ProCoS II) also funded from 1992 to
1995. It was included in the ESPRIT programme of internationally collaborative
research in Information Technology. The inspiration of the project was the recent
completion of the Stack verification project, undertaken by Computational Logic,
Inc. This was a start-up company founded and directed by Bob Boyer and J Moore,
professors at the University of Texas at Austin. Both the European and the US
projects sought to advance the technology of software verification by accepting the
challenge of verification of components of a free-standing computer system. These
included its operating system, its assembler, and its automatic verification aids, and
even the hardware of a processor chip.

Many technological breakthroughs were triggered by these two challenge pro-
jects. The international collaboration which was forged by the ProCoS Project has
continued under support of the individual national funding agencies. It has inspired
and accelerated the automation of program verification. The resulting tools have
found application in many advanced modern industries, including industrial giants
in aerospace, electronics, silicon fabrication, automobiles, communications,
advertising, social networks, retail sales, as well as suppliers of compilers and of
operating systems and general software.

Many of the collaborators in the original ProCoS project, together with their
students and followers, have contributed to this broadening of the application of the
original basic research. A representative selection of their recent work was pre-
sented at the ProCoS Workshop in March 2015; and I welcome the publication
of the proceedings in book form. I offer its authors and readers my best wishes for
further progress in the understanding of the basic science, coupled with its broadest
possible application.

Cambridge, UK
June 2016

Tony Hoare

v

Preface

ProCoS is the acronym for “Provably Correct Systems”, a basic research project
funded in two phases by the European Commission from 1989 to 1995. This project
was planned by Tony Hoare (Oxford University), Dines Bjørner (DTU, Technical
University of Denmark, Lyngby), and Hans Langmaack (University of Kiel). Its
goal was to develop a mathematical basis for the development of embedded,
real-time computer systems.

The survey paper on ProCoS presented at the conference FTRTFT (Formal
Techniques in Real-Time and Fault-Tolerant Systems) 1994 states in its
introduction:

An embedded computer system is part of a total system that is a physical process, a plant,
characterized by a state that changes over time. The role of the computer is to monitor this
state through sensors and change the state through actuators. The computer is simply a
convenient device that can be instructed to manipulate a mathematical model of the
physical system and state. Correctness means that the program and the hardware faithfully
implement the control formulas of the mathematical model of the total system, and nothing
else. However, the opportunities offered by the development of computer technology have
resulted in large, complex programs which are hard to relate to the objective of system
control.

The ProCoS project developed a particular approach to mastering the complexity of
such systems. Its emphasis was on proving system correctness across different
abstraction layers. The inspiration for ProCoS stems from a sabbatical of Tony
Hoare at the University of Austin at Texas in 1986. There he was impressed by the
work of Robert S. Boyer and J Strother Moore on automated verification with their
“Boyer-Moore” prover ACL2 at their company “Computational Logic, Inc.” (CLI),
in particular its application to a case study known as the “CLInc Stack”. Discussing
later with Dines Bjørner and Hans Langmaack, a project on the foundation of
verification of many-layered systems was conceived: ProCoS. The different levels
of abstraction studied in this project became known as the “ProCoS Tower”. They
comprised (informal) expectations, (formal) requirements, (formal) system speci-
fications, programs (in the “occam” programming language), machine code (for the
“transputer” microprocessor), and circuit diagrams (described using “netlists”).

vii

During the final deliverable for the first phase of ProCoS, Tony Hoare wrote in
1993:

In summary, our overall goal is not to produce a single verified system or any particular
verified language or compiler, but rather to advance the state of the art of systematic design
of complex heterogeneous systems, including both hardware and software; and to con-
centrate attention on reducing the risk of error in the specification, design and implemen-
tation of embedded safety critical systems.

In the first phase, the ProCoS project comprised seven partners: Oxford University,
Technical University of Denmark at Lyngby, Christian-Albrechts Universität Kiel,
Universität Oldenburg, Royal Holloway and Bedford New College, Århus
University, and the University of Manchester. In the second phase (ProCoS II), the
team consisted of the first four original partners. The EU funding of ProCoS was
relatively small. During the second phase only one researcher at each of the four
partner sites was funded, but many more students and researchers at these sites
contributed to the goals.

ProCoS was much influenced by the work of two Chinese scientists contributing
to the project at Lyngby and Oxford: Zhou Chaochen and He Jifeng.

Zhou Chaochen and Anders P. Ravn initiated a major conceptual development
of ProCoS: the Duration Calculus, an interval-based logic for specifying real-time
requirements. The first paper on it was published by Zhou Chaochen, Tony Hoare
and Anders P. Ravn in 1991. The types of durational properties that can be
expressed in the Duration Calculus were motivated by the case study of a gas
burner that was defined by E.V. Sørensen from DTU in collaboration with a Danish
gas burner manufacturer. He Jifeng cooperated closely with Tony Hoare on a
predicative approach to programming that led to the book “Unifying Theories of
Programming” (UTP) published in 1998. The work on UTP has attracted a number
of researchers and led to a series of symposiums on this topic.

To bridge the gap from requirements to programs, a combination of specification
techniques for data and processes with transformation rules was developed by the
group of E.-R. Olderog in Oldenburg. The topic of correct compilers, exemplified
for the translation of an occam-like programming language to transputer machine
code, was investigated in the group of Hans Langmaack in Kiel. Oxford contributed
an algebraic approach to compiling verification.

Associated with the ProCoS project was an EU-funded ProCoS Working Group
(1994–1997) of 25 academic and industrial partners interested in provably correct
systems, arranging various meetings around Europe.

Other associated national projects in the United Kingdom included the “safemos”
project (1989–1993), a UK EPSRC project on “Provably Correct Hardware/Software
Co-design” (1993–1996), and an EPSRC Visiting Fellowship on “Provably Correct
Real Time Systems” (1996–1997). Associated travel funding to encourage collab-
oration included ESPRIT/NSF ProCoS-US initiative on “Provably Correct Hardware
Compilation” with Cornell University in the US, and KIT (Keep in Touch) grants
with UNU/IIST in Macau (1993–1998) and PROCORSYS with the Federal
University of Pernambuco in Brazil (1994–1997).

viii Preface

Impact

An extension of the Duration Calculus to cover continuous dynamical systems was
led by Anders P. Ravn and Hans Rischel at DTU to contribute to the initial research
on hybrid systems.

From 1992 until 1997, Dines Bjørner was the founding director of UNU-IIST,
the International Institute for Software Technology of the United Nations
University in Macau. Ideas from the ProCoS project flourished at the institute and
were taken up by researchers from Asia working there. Also, a number of scientists
associated with ProCoS visited UNU-IIST or had research posts for several years,
including He Jifeng and Zhou Chaochen. From 1997 until 2002, Zhou Chaochen
succeeded Dines Bjørner as the director of UNU-IIST, during the time of transition
of Macau from a Portuguese to a Chinese city. Regrettably, in 2013 the United
Nations decided to disband academic staff at UNU-IIST.

A number of young ProCoS contributors pursued academic careers. Martin
Fränzle andMarkusMüller-Olm, students in Kiel during the ProCoS project, are now
professors at the universities of Oldenburg and Münster, respectively. Also, Debora
Weber-Wulff and Bettina Buth, at Kiel during the ProCoS project, are now professors
in Berlin and Hamburg, respectively. Michael Schenke, a ProCoS contributor at
Oldenburg, is now a professor in Merseburg. Augusto Sampaio, during ProCoS
working on his Ph.D. at Oxford on an algebraic approach to compilation during
ProCoS, has became a professor at the University of Pernambuco, Brazil. Paritosh K.
Pandya, working at Oxford during the ProCoS project, has become a professor at the
Tata Institute of Fundamental Research in Mumbai, India. Zhiming Liu, who during
ProCoS times spent a year as a postdoc at DTU and later was a researcher at
UNI-IIST, is now professor at the Southwest University in Chongqing, China.

The collaborative project Verifix (Construction and Architecture of Verifying
Compilers) directed by Gerhard Goos, Friedrich von Henke and Hans Langmaack
and funded 1995–2004 by the German Research Foundation (DFG) deepened
research on compiler correctness begun in the ProCoS project.

The large-scale Transregional Collaborative Research Center AVACS
(Automatic Verification and Analysis of Complex Systems), directed by Werner
Damm and funded by German Research Foundation (DFG) during the period
2004–2015, continued research pioneered in ProCoS but with emphasis on
automation and for wider classes of systems. The collaborating sites were
Oldenburg, Freiburg, and Saarbrücken. AVACS comprised of nine projects in the
areas of real-time systems, hybrid systems, and systems of systems.

A series of conferences called VSTTE (Verified Systems—Theories, Tools and
Experiments), was initiated by a vision for a Grand Challenge project formulated by
Tony Hoare and Jay Misra in July 2005.

The ProCoS project and its related initiatives have inspired a number of books,
including the following:

• He Jifeng, Provably Correct Systems—Modelling of Communicating Languages
and Design of Optimized Compilers, McGraw-Hill, 1994.

Preface ix

• Jonathan P. Bowen (ed.), Towards Verified Systems, Elsevier Science,
Real-Time Safety Critical Systems Series, 1994.

• Mike G. Hinchey and Jonathan P. Bowen (eds.), Applications of Formal
Methods, Prentice Hall, Series in Computer Science, 1995.

• C.A.R. Hoare and He Jifeng, Unifying Theories of Programming, Prentice Hall,
Series in Computer Science, 1998.

• Jonathan P. Bowen and Mike G. Hinchey, High-Integrity System Specification
and Design, Springer, FACIT Series, 1999.

• Zhou Chaochen and Michael R. Hansen, Duration Calculus—A Formal
Approach to Real-Time Systems, Springer, 2004.

• E.-R. Olderog and Henning Dierks, Real-Time Systems—Formal Specification
and Automatic Verification, Cambridge University Press, 2008.

Structure of this Book

In September 2013, Jonathan Bowen and Ernst-Rüdiger Olderog met at the
Festschrift Symposium for He Jifeng in Shanghai and discussed the possibility of
having a workshop celebrating 25 years of ProCoS. This idea materialized with the
help of Mike Hinchey in March 2015, when a two-day ProCoS Workshop with
around 40 invited researchers and 25 presentations on the topic of “Provably
Correct Systems” took part in the rooms of the BCS in London. This book consists
of 13 chapters mainly describing recent advances on “Provably Correct Systems”,
based on presentations at that workshop. Each paper has been carefully reviewed by
three to five reviewers. The chapters address the following topics:

• Historic Account,
• Hybrid Systems,
• Correctness of Concurrent Algorithms,
• Interfaces and Linking,
• Automatic Verification,
• Run-time Assertions Checking,
• Formal and Semi-formal Methods, and
• Web-Supported Communities in Science.

Historic Account

In the note “ProCoS: How it all Began—as seen from Denmark”, Dines Bjørner
opens his diary and shows entries by Tony Hoare during a meeting of IFIP Working
Group 2.3 at Château du Pont d’Oye in Belgium in 1987. The author explains that
this was a first draft on the content of ProCoS.

x Preface

Hybrid Systems

Martin Fränzle, Yang Gao, and Sebastian Gerwinn review in Chap. “Constraint-
Solving Techniques for the Analysis of Stochastic Hybrid Systems” definitions of
(parametric) stochastic hybrid automata as needed for reliability evaluation. The
authors then discuss automatic verification and synthesis methods based on arith-
metic constraint solving. The chapters are able to solve step-bounded stochastic
reachability problems and multi-objective parameter synthesis problems,
respectively.

Mingshuai Chen, Xiao Han, Tao Tang, Shuling Wang, Mengfei Yang, Naijun
Zhan, Hengjun Zhao, and Liang Zou introduce in Chap. “MARS: A Toolchain for
Modelling, Analysis and Verification of Hybrid Systems” the toolchain MARS for
Modelling, Analysing and verifying hybrid Systems. Using MARS, they build
executable models of hybrid systems using the industrial standard environment
Simulink/Stateflow, which facilitates analysis by simulation. The toolchain includes
a translation of Simulink/Stateflow models to Hybrid CSP and verification using an
interactive prover for Hybrid Hoare Logic.

Correctness of Concurrent Algorithms

John Derrick, Graeme Smith, Lindsay Groves, and Brijesh Dongol study in
Chap. “A Proof Method for Linearizability on TSO Architectures” the correctness
of non-atomic concurrent algorithms on a weak memory model, the TSO (Total
Store Order) model. They show how linearizability is defined on TSO, and how one
can adapt a simulation-based proof method for use on TSO. Their central result is a
proof method that simplifies simulation-based proofs of linearizability on TSO.

Interfaces and Linking

E.-R. Olderog, A.P. Ravn, and R. Wisniewski investigate in Chap. “Linking
Discrete and Continuous Models, Applied to Traffic Manoeuvrers” the interplay
between discrete and continuous dynamical models, and combine them with linking
predicates. The topic of linking system specifications at different levels of
abstraction was central to the ProCoS project. However, here the application area is
more advanced: traffic manoeuvrers of multiple vehicles on highways.

Zhiming Liu and Xin Chen discuss in Chap. “Towards Interface-Driven Design of
Evolving Component-Based Architectures” how software design for complex
evolving systems can be supported by an extension of the rCOS method for

Preface xi

refinement of component and object systems. It shows the need for a suitable
interface theory and of multi-modelling notations for the description of
multi-viewpoints of designs. This requires a theoretical foundation in the style of
Unifying Theories of Programming as proposed by Tony Hoare and He Jifeng.

Automatic Verification

J Strother Moore presents in Chap. “Computing Verified Machine Address Bounds
During Symbolic Exploration of Code” an abstract interpreter for machine address
expressions that attempts to produce a bounded natural number interval guaranteed
to contain the value of the expression. The interpreter has been proved correct by
the ACL2 theorem prover. The author discusses the interpreter, what has been
proved about it by ACL2, and how it is used in symbolic reasoning about machine
code.

Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann describe in
Chap. “Engineering a Formal, Executable x86 ISA Simulator for Software
Verification” a formal, executable model of the x86 instruction-set architecture
(ISA). They use this model to reason about x86 machine-code programs. Validation
of the x86 ISA model is done by co-simulating it regularly against a physical x86
machine.

Jens Otten and Wolfgang Bibel present in Chap. “Advances in Connection-
Based Automated Theorem Proving” calculi to automate theorem proving in
classical and some important non-classical logics, namely first-order intuitionistic
and first-order modal logics. These calculi are based on the connection method. The
authors present details of the leanCoP theorem prover, a very compact PROLOG
implementation of the connection calculus for classical logics. leanCoP has also
been adapted to non-classical logics by integrating a prefix unification algorithm.

Run-Time Assertion Checking

Frank S. de Boer and Stijn de Gouw extend in Chap. “Run-Time Deadlock
Detection” run-time assertions by attribute grammars for specifying properties of
message sequences. These assertions are used in a method for detecting deadlocks
at run-time in both multi-threaded Java programs and systems of concurrent objects.

Tim Todman and Wayne Luk present in Chap. “In-Circuit Assertions and
Exceptions for Reconfigurable Hardware Design” a high-level approach to adding
assertions and exceptions in a hardware design targeting FPGAs (Field
Programmable Gate Arrays). They allow for imprecise assertions and exceptions to
trade performance for accurate location of errors.

xii Preface

Formal and Semi-formal Methods

Bettina Buth reports in Chap. “From ProCoS to Space and Mental Models – A
Survey of Combining Formal and Semi-Formal Methods” on work influenced by
the ProCoS project. Systems from the application areas of space and aerospace are
analysed using suitable abstractions to CSP specifications and the FDR model
checker.

Web-Supported Communities in Science

Jonathan P. Bowen studies in Chap. “Provably Correct Systems: Community,
Connections, and Citations” the building and support of scientific communities and
collaboration, especially online, visualized graphically and formalized using the Z
notation, including the concept of a “Community of Practice”. His examples are
drawn from the ProCoS project.

In summary, we hope that you enjoy this volume, providing a selection of
research developments and perspectives since the original ProCoS initiatives of the
1990s. Further ProCoS-related information can be found online under:

http://formalmethods.wikia.com/wiki/ProCoS

Limerick, Ireland Mike G. Hinchey
London, UK Jonathan P. Bowen
Oldenburg, Germany Ernst-Rüdiger Olderog

Preface xiii

Acknowledgements

The following reviewed papers in these proceedings:
Wolfgang Bibel, Darmstadt University of Technology, Germany
Simon Bliudze, EPFL, Switzerland
Jonathan P. Bowen, London South Bank University, UK
Bettina Buth, HAW Hamburg, Germany
Michael Butler, University of Southampton, UK
Ana Cavalcanti, University of York, UK
Frank de Boer, CWI, The Netherlands
Willem-Paul de Roever, University of Kiel, Germany
John Derrick, Unversity of Sheffield, UK
Martin Fränzle, University of Olderburg, Germany
Anthony Hall, Independent consultant, UK
Jifeng He, East China Normal University, China
Warren Hunt, University of Texas, USA
Cliff Jones, Newcastle University, UK
Zhiming Liu, Southwest University, China
Annabelle McIver, Macquarie University, Australia
Dominique Méry, University of Lorraine, LORIA, France
Ernst-Rüdiger Olderog, University of Olderburg, Germany
Jan Peleska, University of Bremen, Germany
Anders P. Ravn, Aalborg University, Denmark
Augusto Sampaio, Federal university of Pernambuco, Brazil
Elizabeth Scott, University of London, UK
Jianqi Shi, National University of Singapore, Singapore
Marina Waldén, Åbo Akademi University, Finland
Jim Woodcock, University of York, UK
Naijun Zhan, Institute of Software, Chinese Academy of Sciences, China
Huibiao Zhu, East China Normal University, China

xv

Contents

Part I Historic Account

ProCoS: How It All Began – as Seen from Denmark 3
Dines Bjørner

Part II Hybrid Systems

Constraint-Solving Techniques for the Analysis of Stochastic
Hybrid Systems . 9
Martin Fränzle, Yang Gao and Sebastian Gerwinn

MARS: A Toolchain for Modelling, Analysis and Verification
of Hybrid Systems. 39
Mingshuai Chen, Xiao Han, Tao Tang, Shuling Wang, Mengfei Yang,
Naijun Zhan, Hengjun Zhao and Liang Zou

Part III Correctness of Concurrent Algorithms

A Proof Method for Linearizability on TSO Architectures 61
John Derrick, Graeme Smith, Lindsay Groves and Brijesh Dongol

Part IV Interfaces and Linking

Linking Discrete and Continuous Models, Applied to Traffic
Manoeuvrers . 95
Ernst-Rüdiger Olderog, Anders P. Ravn and Rafael Wisniewski

Towards Interface-Driven Design of Evolving Component-Based
Architectures . 121
Xin Chen and Zhiming Liu

xvii

Part V Automatic Verification

Computing Verified Machine Address Bounds During Symbolic
Exploration of Code . 151
J Strother Moore

Engineering a Formal, Executable x86 ISA Simulator
for Software Verification . 173
Shilpi Goel, Warren A. Hunt Jr. and Matt Kaufmann

Advances in Connection-Based Automated Theorem Proving 211
Jens Otten and Wolfgang Bibel

Part VI Run-Time Assertion Checking

Run-Time Deadlock Detection . 245
Frank S. de Boer and Stijn de Gouw

In-Circuit Assertions and Exceptions for Reconfigurable Hardware
Design . 265
Tim Todman and Wayne Luk

Part VII Formal and Semi-formal Methods

From ProCoS to Space and Mental Models—A Survey
of Combining Formal and Semi-formal Methods 285
Bettina Buth

Part VIII Web-Supported Communities in Science

Provably Correct Systems: Community, Connections,
and Citations . 313
Jonathan P. Bowen

xviii Contents

Part I
Historic Account

ProCoS: How It All Began – as Seen
from Denmark

Dines Bjørner

Abstract I reminisce over an episode at the 9–13 November 1987 IFIP WG2.3
meeting at Château du Pont d’Oye in Belgium — and at what followed.

I had given a half hour presentation of how we, in Denmark, had developed a com-
piler for the full Ada programming language. My presentation had evolved around a
single slide showing boxes and arrows between these, all properly labeled. Edsger
W. Dijkstra had railed during my short presentation against my using diagrams —
despite my claiming that boxes denoted certain kinds of algebras and arrows certain
kind of morphisms between these. After my talk there was a coffee break. Tony
Hoare took me aside. Asked permission to write in my note book. And this is what
he wrote:

Paper read at the BCS-FACS ProCoS Workshop on Provably Correct Systems, London, UK, 9–10 March 2015.

D. Bjørner (B)
Fredsvej 11, 2840 Holte, Denmark
e-mail: mike.hinchey@lero.ie

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_1

3

4 D. Bjørner

As he wrote it, Tony carefully explained what he was after. To me that became the
day of conception of the first ProCoS project.

I leave it to you to decipher the characteristic handwriting of Tony. OCC is some
programming language. So is CSP. A specification maps programs in OCC into
programs in CSP. VLSI is a language for specifying VLSI designs. Its semantics,
in terms of CSP, is behav.

Now find, i.e., develop, a VLSI implemented machine, M, and some OCC code
which maps into traces of the behaviour of M such that for all programs, D, in OCC,
the VLSI machine implements the OCC specification correctly.

ProCoS: How It All Began – as Seen from Denmark 5

At the end of writing and narrating this, Tony asked: should we try get an ESPRIT
BRA project around this idea ? We did.

• • •
Zhou Chaochen had visited me, at DTU, two times in the 1980s and was due again 1.
July 1989. The ESPRIT BRA ProCoS proposal had not yet been finally approved,
but when 4. June 1989 occurred I spent a full day and night wording a one page fax
to be sent to China, officially to Prof. Xu Kongshi, Zhou’s “boss”, the founder and
director of CAS’s (Chinese Academy of Sciences)’, Software Institute. I sent
it also, “under the table”, to top officials in the Chinese PLA (People’s Liberation
Army), making sure that it would be discussed at the highest level in the ministry’s

6 D. Bjørner

COSTIND (Commission for Science and Technology for Industry) – they had
bought our Ada compiler. I risked stating that the project had been approved and
that, for industry, it would focus on theories and methods for the design of provably
correct embedded systems. Something that the military guys like. Within 24 h I had
an assuring reply: certainly Zhou would come, and with his family. Zhou arrived,
wife and children ! The PRC ambassador was at the airport to meet them, and we
had a garden party that Sunday afternoon.

• • •
The next day I installed Zhou in the office next to mine. After he had settled Zhou
came into my room, closing the usually open door. Took his glasses off. Somewhat
not in full control of his voice he said: I cannot under the present circumstances return
to China: some of my students were fatally involved on the 4th of June. I reached
behind my back, for the phone, dialed the short-cut number, #1, and after some
ringing Tony replied. I told him the good news: that Zhou was here and was about
to accept an offer to be part of the ProCoS project for three years – and would stay
8 months at Lyngby, 4 at Oxford. Tony tried to reverse the numbers, in vain. After
a month or so I contacted Xu Kongshi and informed him that the (now definitely
approved) ProCoS project needed a scientist like Zhou And was it possible that he
could stay on? Again a positive answer by return fax.

• • •
To me a deciding moment of the project occurred during our Bornholm workshop.
Prof. E.V. Sørensen had given a talk in which he sketched, from the background
of his field, Circuit Theory, some ideas about handling digital signal transitions. I
believe that Erling’s talk gave impetus to the Duration Calculus. During the break,
after EVS’ talk, I saw Anders (Ravn), Tony and Zhou discussing, it appeared, the
evolving DC ideas.

Part II
Hybrid Systems

Constraint-Solving Techniques
for the Analysis of Stochastic
Hybrid Systems

Martin Fränzle, Yang Gao and Sebastian Gerwinn

Abstract The ProCoS project has been seminal in widening the perspective on
verification of computer-based systems to a coverage of the detailed interaction and
feedback dynamics between the embedded system and its environment. We have
since then seen a steady increase both in expressiveness of the “hybrid” modeling
paradigms adopting such an integrated perspective and in the power of automatic
reasoning techniques addressing relevant fragments of logic and arithmetic. In this
chapter we review definitions of stochastic hybrid automata and of parametric sto-
chastic hybrid automata, both of which unify the hybrid view on system dynamics
with stochastic modeling as pertinent to reliability evaluation, and we elaborate on
automatic verification and synthesis methods based on arithmetic constraint solving.
The procedures are able to solve step-bounded stochastic reachability problems and
multi-objective parameter synthesis problems, respectively.

1 Introduction

An increasing number of the technical artifacts shaping our ambience are relying
on often invisible embedded computer systems, rendering embedded computers the
most common form of computing devices today. The vast majority—98% according

This research has partially been funded by the German Research Foundation through the
Collaborative Research Action SFB-TR 14 “Automatic Verification and Analysis of Com-
plex Systems” (AVACS, www.avacs.org) and the Research Training Group DFG-GRK 1765:
“System Correctness under Adverse Conditions” (SCARE, scare.uni-oldenburg.de).

M. Fränzle (B) · Y. Gao
Department of Computing Science, Carl von Ossietzky Universität Oldenburg,
Oldenburg, Germany
e-mail: fraenzle@informatik.uni-oldenburg.de

Y. Gao
e-mail: yang.gao@informatik.uni-oldenburg.de

S. Gerwinn
OFFIS Institute for Information Technology, Oldenburg, Germany
e-mail: sebastian.gerwinn@offis.de

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_2

9

www.avacs.org

10 M. Fränzle et al.

to www.artemis-ju.eu— of all processing elements manufactured goes to embedded
applications, where they monitor and control all kinds of physical processes. Such
interactions of the virtual with the physical world range from traditional control
applications, like controlling an automotive powertrain, over computer-controlled
active safety systems, like the anti-locking brake, the electronic stability program, or
recently pedestrian detection integrated with emergency braking capabilities, to the
vision of cyber-physical networks bringing even remote physical processes into our
sphere of control.

Even to the general public, it has become evident that such immersion of comput-
ing elements into physical environments renders their functionality critical in many
respects: critical to the function of the overall product, where a malfunction or unde-
sired interaction of the embedded system may render the whole product partially
or totally dysfunctional; critical to the performance of the overall product, where
embedded control may influence power consumption, environmental impact, and
many more performance dimensions; finally safety-critical, as causal chains medi-
ated by the physical environment may propagate software faults and thus endanger
life and property. A direct consequence is that correctness (in a broad sense) of
embedded systems most naturally is defined in terms of the possible physical impact
of its interaction with the environment. This insight marked a paradigm shift in the
attitude to software correctness at the times when the ProCoS project was conceived
a good quarter of a century ago. Rather than saying that correct software ought to
infallibly implement some abstract algorithm or establish correctness properties in
terms of conditions on intrinsic program variables (and other notions intrinsic to
the algorithm, like termination), correctness became defined in terms of observables
of external physical processes underlying an independent dynamics extrinsic to and
only partially controllable by the software.

Within the ProCoS project, this issue was taken up by Zhou Chaochen and Anders
Ravn, who first together with Tony Hoare defined the Duration Calculus [9] and later
together with Hans Rischel and Michael R. Hansen extended it to cover hybrid
discrete-continuous phenomena [10, 34]. While the former took the perspective of
durationalmetric-timeproperties at the interface between embedded systemand envi-
ronment, thus not really covering environmental dynamics, the extension to Extended
Duration Calculus in [10] permitted integration about environmental variables and
thus formulation of integral equations, as equivalent to initial-value problems of
ordinary differential equations. It thus is an example of a formal model permitting
to model and analyze the tight interaction, and hence feedback dynamics, of the
discrete switching behavior of embedded systems and the continuous dynamics of
the physical environment as well as of continuous control components embedded
into it. A related model also confining the description of environmental dynamics to
ordinary differential equations and also adopting a qualitative view of the embed-
ded system as a potentially demonically non-deterministic discrete computational
device is Hybrid Automata [1]. Such models support qualitative behavioral veri-
fication in the sense of showing that a system behaving according to its nominal
dynamics would never be able to engage in an undesired behavior, which, however,
is a goal unlikely to be achieved in practice. First, designing systems to that level of

www.artemis-ju.eu

Constraint-Solving Techniques for the Analysis … 11

correctness may be prohibitively expensive or it may be impractical due to necessary
inclusion of components lacking tangible models of nominal behavior, like, e.g.,
computer vision and image classification algorithms. Second, even when possible in
principle, the systems verified to that level will necessarily eventually deviate from
their nominal behavior due to, e.g., component failures. Reflecting the consequen-
tial need for quantitative verification, stochastic variants of hybrid-system models
have been suggested, like Probabilistic Hybrid Automata (PHA) [35] or Stochastic
Hybrid Automata (SHA) [25]. In such extensions, either discrete actions can feature
probabilistic branching or continuous evolution can evolve stochastic along, e.g.,
stochastic differential equations, or both.

The resulting models are inherently hard to analyze, as they combine various
sources of undecidability, like state reachability in even the simplest classes of hybrid
automata and the fragments of arithmetic induced by ordinary differential equations,
with the necessity of reasoning about probability distributions over complexly shaped
and sometimes not even first-order definable carriers, like the reachable states. It is
thus obvious that exact automatic analysis methods for properties of interest, like
the probability of reaching undesirable states, are impossible to attain. Nevertheless,
safe approximations can be computed effectively, and often prove to be of sufficient
accuracy to answer relevant questions with scrutiny, like certifying that the proba-
bility of reaching undesirable states remains below a given quantitative safety target.
The pertinent techniques do either rely on state-space discretization by safe abstrac-
tion, e.g. Hahn et al.’s approach [43], or on constraint solving for stochastic logic
involving arithmetic [15, 19], or onmassive simulation pairedwith statistical hypoth-
esis testing, beginning with Younes’ seminal work [42]. We will in the remainder
of this chapter report on our contributions to the constraint-based approach, thereby
building on a series of results obtained over the past decade.

Structure of the Chapter

In the next section, we provide an introduction to a class of stochastic hybrid
automata featuring stochasticity —paired with non-determinism or parametricity—
in their transitions. In Sect. 3, we move on to the depth-bounded safety analysis
of such stochastic hybrid automata. The underlying technology is an extension of
satisfiability-modulo-theory solving (SMT, [4]) to Stochastic Satisfiability-Modulo-
Theory (SSMT) akin to the extension of Propositional Satisfiability (SAT) to Sto-
chastic Propositional Satisfiability (SSAT) suggested by Papadimitriou andMajercik
[28, 33]. Section4, finally, turns to the problem of multi-objective parameter syn-
thesis in parametric variants of stochastic hybrid automata, which we solve by a
machine-learning style integration of simulation and arithmetic constraint solving.

2 Stochastic Hybrid Transition Systems

The model of hybrid automata [1, 2, 22, 26] has been suggested as a formal set-up
for analyzing the the interaction of discrete and continuous processes in hybrid-
state dynamical systems. They combine pertinent formalism for describing discrete,

12 M. Fränzle et al.

Fig. 1 A simple hybrid automaton (left) and a trajectory thereof (right)

computational and continuous, mostly physical or control-oriented dynamical
processes by extending finite automata with a vector of continuous variables and
“decorating” them with ordinary differential equations in each location and assign-
ments to these extra variables upon transitions. A simple hybrid automaton and
its associated dynamic behavior, which is a piece-wise continuous trajectory, are
depicted in Fig. 1.

While this model permits the analysis of deterministic as well as uncertain hybrid-
state systems, as the latter can bemodeled by various forms of non-determinism in the
automata, like uncontrolled inputs, non-deterministic transition selection, or para-
meter ranges in the differential (in-)equations, it is confined to qualitative behavioral
verification in the sense of showing that a system behaving according to its nomi-
nal dynamics would never be able to engage in an undesired behavior. This ideal,
however, is hardly achieved in practice, as systems strictly adhering to their nom-
inal behavior would either be prohibitively expensive or even infeasible to design.
Qualitative verification consequently is indicative of the nominal behavior only,
yet does not cover the full set of expected behaviors of the system under design,
which includes (traditionally rare, but with the advent of trained classifiers in, e.g.,
computer vision systems for automated driving increasingly frequent) deviations
from nominal behavior also.

As the expected low to moderate frequency of deviations from nominal behavior
would not justify the same demonic view of uncertainties in system dynamics as
adopted in qualitative verification, namely that every single abnormal behavior that

Constraint-Solving Techniques for the Analysis … 13

Fig. 2 Model ofmoving-block train control in ETCS level 3 including relevant randomdisturbances
(encircled areas) in the form of measurement error in positional information and possible message
loss, after [17]

might be possiblewould render the systemdesign incorrect, quantitative counterparts
to qualitative hybrid models and verification methods have been developed. The
corresponding probabilistic or stochastic models provide more concise quantitative
information about the uncertainties involved in terms of probabilities. To incorporate
this kind of information, both the underlying models and the corresponding analysis
techniques have to be adapted. Verifying reachability and safety properties within
this extended setting then corresponds to obtaining statements about the probability
of these properties to be satisfied.

To illustrate the challenges arising in incorporating the information about random
disturbances into the model of hybrid automata, we show a model model mimicking
distance control at level 3 of the European train control systems ETCS in Fig. 2. The
idea of the control system is to switch to an automatic braking mode “AutoBrake”
initiating a controlled emergency deceleration whenever the necessary deceleration
rate for coming to a standstill at a safety distance (400m) behind the preceding train
exceeds a threshold value (−0.7 m2

s). The function of this control system, however, is
impeded bymeasurement noise in determining train positions and the risk ofmessage
loss between trains, as positions are determined locally in a train and announced via
train-to-train communication. The extended hybrid model depicted in Fig. 2 incor-
porates these stochastic disturbances. More specifically, the perturbed measurement

14 M. Fränzle et al.

of the position of the leading train is characterized by a normal distributionN (sl,σ)

centered around the true position sl and the measurement process itself is modeled
by copying this skewed image of the physical entity sl into its real-time image m.
This is in contrast to a typical nominal model, where the controller may be modeled
as having direct access to the physical entities. Additionally, unreliable communi-
cation is also considered, i.e., the communication of resultant movement authorities
is allowed to fail with probability 0.1. The resulting model is called a Stochastic
Hybrid Automaton (SHA) [25, 35]. Note that the automaton in Fig. 2 features both
non-determinism and stochasticity in its transitions, with the former being interpreted
demonically.

For such models, we are interested in solving two problems, which will be the
subjects of Sects. 3 and 4:

1. Given a stochastic hybrid automaton A and a set of undesirable states G in the
state set of A, determine whether the probability of reaching G stays below a
given safety target ε. Given that non-determinism is interpreted demonically, the
probability of reaching G thereby has to be determined w.r.t. a most malicious
adversary resolving the non-deterministic choices.

2. Given a stochastic hybrid automaton featuring parameters in its probability dis-
tributions, determine whether there is a parameter instance satisfying a design
objective in terms of expectations on some cost and/or reward variables in the
hybrid system.

Formally, SHA are infinite-state Markov Decision Processes (MDP), where the
infinite-state behavior is induced by the hybrid discrete-continuous state dynamics,
while theMDP property arises from the interplay of stochastic and non-deterministic
choices. A stochastic hybrid system (in its continuous-time variant) thus interleaves

1. continuous flows arising while residing in a discrete location and being governed
by the differential (in-)equation and the invariant condition assigned to the loca-
tion with

2. immediate transitions featuring a guard condition on the continuous variables, a
deterministic or non-deterministic state update w.r.t. both some continuous vari-
ables and possibly the discrete successor location, and potentially a series of
randomized updates to continuous variables are the successor location.

As a suitable semantic basis for the automatic analysis of hybrid automata featuring
stochastic behavior, we can consequently base our investigations on a more abstract
definition of hybrid-state transition systems featuring stochastic behavior, a form of
infinite-stateMarkov Decision Process (MDP). In full generality, such a (parametric)
hybrid stochastic transition system comprises the following:

1. A finite set D = {d1,dm} of discrete variables. Discrete variables range
over Z.1

1The reader might expect to rather see finite sub-ranges of Z or other finite sets as domains. To
avoid cluttering the notation, we abstained from this. It should be noted that this does not induce a
loss of generality, as not all of Z need to be dynamically reachable.

Constraint-Solving Techniques for the Analysis … 15

2. A finite setC = {x1, . . . , xn} of continuous variables. Continuous variables range
over R.2

3. A finite (and possibly empty) set P = {p1, . . . , pk} of parameters with associated
range θ ⊆ R

k.
4. An initial state i ∈ Σ , whereΣ = Z

m × R
n is the state set of the transition system.

5. A finite set T = {t1, . . . , tl} of stochastic transitions. Each such transition com-
prises a non-deterministic guarded assignment, expressed as a pre-post relation in
Σ × Σ , followed by a finite (possibly empty) sequence of stochastic assignments
to individual variables, which are executed in sequence and may depend on the
preceding ones and on the parameters.

Traditional stochastic hybrid automata diagrams, as depicted in Figs. 2 and 6, can
easily be interpreted as instances of this model by interpreting both their continuous
flows and immediate transitions as stochastic transitions. To this end, please note
that stochastic transitions need not contain a proper stochastic part, but may also be
just non-deterministic or even deterministic.

In order to achieve a uniform treatment of discrete and continuous stochastic
assignments, we equip R with the Lebesgue measure and Z with cardinality of its
subsets as a measure. Given this convention, we can uniformly write

∫ b
a p(x)dx for

determining the probability mass assigned by a density (or, in the discrete case, a
distribution) p to the interval [a, b], as the measure is understood. Note that in the
discrete case,

∫ b
a p(x)dx = ∑b

x=a p(x)due to the particular choice of themeasure for
Z. This permits us to uniformly treat densities over the continuum and distributions
over discrete carriers as densities. A density over domain X , where X is either R
or Z, is a measurable function δ : X → R≥0 with

∫∞
−∞ δ(x)dx = 1. We denote by

PX the set of all densities over X . A stochastic assignment for a variable v ∈ D ∪ C
with its associated domain V ∈ {Z,R} is a mapping sav : θ → Σ → PV . It assigns
to each parameter instance and each state a density of the successor values for v.

We are ultimately interested in determining the probability of reaching a certain
setG ⊂ Σ of goal states or the expectation of a function f : σ → R. As the former is
a special case of the latter, using the characteristic function χG

3 as reward, it suffices
to define expectations.

Given that a non-deterministic assignment simply is a relation between pre- and
post-states, i.e., a subset of Σ × Σ defining both the transition guard (due to possi-
ble partiality of the relation) and the (possibly non-deterministic) update to all the
variables, depth-bounded expectations in the infinite-state MDP mediated by the
stochastic hybrid transition system can now be defined inductively by means of a
Bellmann backward induction [5] as follows: The (best-case) expectation Ek

f (σ, θ) of
reward f over k steps of the transition system under parameterization θ and starting
from state σ ∈ Σ is

2As for discrete variables, this does not exclude the possibility that only a bounded sub-range may
dynamically be reachable.

3Defined as χG(σ) =
{
1 if σ ∈ G,

0 if σ /∈ G.

16 M. Fränzle et al.

E0
f (σ, θ) = f (σ) ,

Ek+1
f (σ, θ) = max

t=〈na,sa1,...,san〉∈T
max

σ1∈Σ such that (σ,σ1)∈na∫
. . .

∫
saθ

1(σ1)(σ2) · · · saθ
n(σn,)(σn+1)Ek

f (σn+1, θ)dσ1 . . . dσn+1 .

Here, na denote the non-deterministic assignment and saθ
i denotes the effect of a

stochastic assignment, resp., in a transition t = 〈na, sa1, . . . , san〉. The effect saθ of
a stochastic assignment sa to variable v is

saθ(σ)(x) =
{

σ(x) if x �= v,

sa(θ)(σ)(v) if x = v.

Taken together, the non-deterministic transition selection as well as the non-deter-
ministic assignment thus implements an oracle maximizing rewards, while the sto-
chastic assignments just implement their stochastic transition kernels.

3 Bounded Reachability Checking for Stochastic
Hybrid Automata

In order to analyze Stochastic Hybrid Automata (SHA)models, like the one depicted
in Fig. 2, we need techniques being able to analyze their intrinsic combination of sto-
chastic dynamics and infinite-state behavior. Formally, SHAare infinite-stateMarkov
Decision Processes (MDP), where the infinite-state behavior is induced by the hybrid
discrete-continuous state dynamics, while the MDP property arises from the inter-
play of stochastic and non-deterministic choices (e.g., concerning a in Fig. 2). As
verification tools for finite-state MDP are readily available, a particular technique is
to use abstraction for obtaining a safe finite-state overapproximation, subsequently
verifying the properties of interest on the abstraction, as pursued e.g. in [17]. A
more direct approach along the lines of bounded model checking (BMC) [6, 21]
in its variant for hybrid automata [3, 12, 23] is to encode the stochastic behavior
within the constraint formula. This requires more expressive constraint logic then
the satisfiability-modulo-theory calculi used in the case of qualitative verification [3,
12, 23, among others], which have been pioneered by Fränzle, Hermanns, and Teige
under the name Stochastic Satisfiability Modulo Theory (SSMT) [15].

3.1 Stochastic Satisfiability Modulo Theory

The idea of modeling uncertainty in satisfiability problems was first proposed
within the framework of propositional satisfiability (SAT) by Papadimitriou, yielding

Constraint-Solving Techniques for the Analysis … 17

Stochastic SAT (SSAT) [33], a logic featuring both existential quantifiers and
randomized quantifiers allowing to express 1 1

2 player games (one strategic, one ran-
domized player). This work has been lifted to Satisfiability Modulo Theories (SMT)
by Fränzle, Teige et al. [15, 38], providing a logic called Stochastic Satisfiability
Modulo Theory (SSMT) permitting symbolical reasoning about bounded reacha-
bility problems of probabilistic hybrid automata (PHA). Instead of being true or
false, an SSAT or SSMT formula Φ has a probability as semantics. This quantitative
semantics reflects the probability of satisfaction ofΦ under optimal resolution of the
non-randomquantifiers. SSAT and SSMTpermit concise description of diverse prob-
lems combining reasoning under uncertainty with data dependencies. Applications
range from AI planning [27, 29, 30] to analysis of PHA [15]. A major limitation of
the SSMT-solving approach pioneered by Teige [37] is that all quantifiers (except for
implicit innermost existential quantification of all otherwise unbound variables) are
confined to range over finite domains. As this implies that the carriers of probability
distributions have to be finite, a large number of phenomena cannot be expressed
within that SSMT framework, such as continuous noise or measurement error in
hybrid systems. To overcome this limitation, our recent work [19] relaxes the con-
straints on the domains of randomized variables, now also admitting quantification
over continuous domains and continuous probability distributions in SSMT solving.

The approach is based on a combination of the iSAT arithmetic constraint solver
[13] with branch-and-prune rules for the quantifiers generalizing those suggested
in [14, 37]. Covering an undecidable fragment of real arithmetic involving addi-
tion, subtraction, multiplication and transcendental functions, measuring solution
sets exactly by an algorithm obviously is infeasible. The solving procedure therefore
approximates the exact satisfaction probability of the formula under investigation and
terminates with a conclusive result whenever the approximation gets tight enough to
answer the question whether the satisfaction probability is above or below a target
value specified by the user, e.g., a safety target.

We will subsequently introduce the logic manipulated by our solver, then explain
the solving procedure, and finally demonstrate its use for analyzing stochastic hybrid
automata.

The syntax of the input language of the solver, which is SSMT formulae over
continuous quantifier domains, CSSMT for short, agrees with the discrete version
from [15], except that continuous quantifier ranges are permitted.

Definition 1 An SSMT formula with continuous domain (CSSMT formula) is of
the form Φ = Q : ϕ, where

• Q = Q1x1 ∈ dom(x1) . . . Qnxn ∈ dom(xn) is a quantifier prefix binding a
sequence x1, . . . , xn of quantified variables. Here dom(xi) denotes the domain
of variable xi , which may be an interval over the reals or integers. Each Qi either
is an existential quantifier ∃ or a randomized quantifier

R

pi assigning a computable
probability density function pi over dom(xi) to xi .4

4In practice, we offer a selection from a set of predefined density functions over the reals. For
discrete carriers, we offer the ability to write arbitrary distributions by means of enumeration.

18 M. Fränzle et al.

• ϕ is a quantifier-free formula over some arithmetic theory T , in our case involving
addition, subtraction,multiplication, exponentiation, and transcendental functions,
as supported by the iSAT SAT-modulo-theory solver. As definitional translations
[40] permit to rewrite arbitrary formulae to equisatisfiable conjunctive normal
forms (CNF), we may w.l.o.g. assume thatϕ is in conjunctive normal form (CNF),
i.e., that ϕ is a conjunction of clauses, and a clause is a disjunction of (atomic)
arithmetic predicates of the forms v ∼ c or v = e, where v is a variable, ∼∈
{<,≤,=,≥,> a relational symbol, c a rational constant, and e an expression
over variables involving addition, subtraction, multiplication, and transcendental
functions. ϕ is also called the matrix5 of the formula.

The semantics of CSSMT formulae is defined by a 11
2 -player game mediated by

the alternation in the quantifier prefix: following the sequence in the quantifier prefix
and respecting the possible moves permitted by the quantifier domains, an existential
player tries to maximize the overall probability of satisfaction while her randomized
opponent subjects the existential player’s strategy to random disturbances. Formally,
the semantics can be defined by a Bellman backward induction over the game graph
[5], akin to the semantics for SSAT [33]:

Definition 2 The semantics of a CSSMT formula Φ = Q : ϕ is defined by its prob-
ability of satisfaction Pr(Φ) as follows, where ε denotes the empty quantifier prefix:

Pr(ε : ϕ) = 0, if ϕ is unsatisfiable;

Pr(ε : ϕ) = 1, if ϕ is satisfiable;

Pr(∃xi ∈ dom(xi)Q : ϕ) = sup
v∈dom(xi)

Pr(Q : ϕ[v/xi]) ;

Pr(

R

pi xi ∈ dom(xi)Q : ϕ) =
∫

dom(xi)
Pr(Q : ϕ[v/xi])pi (v)dv .

Here,Q denotes an arbitrary (possibly empty) quantifier prefix and ϕ[v/xi] signifies
the substitution of value v into ϕ.

According to Definition2, the semantics yields the supremal probability of sat-
isfaction Pr(Φ), which is computed by resolving the quantifiers from left to right,
whereby existential quantifiers are resolved by an optimal strategy guaranteeing high-
est reward and randomized quantifiers yield the expectation of the remaining formula.
For a quantifier-free formula, and thus also after all quantifiers have been resolved,
the probability of satisfaction of the matrix φ is associated with its satisfiability.

Example 1 Figure3 exemplifies the semantics by depicting a simplified image of the
infinitely branching tree spanned by the domains of the individual quantifiers. Equiv-
alent branches have been collapsed, which is signified by the intervals associated to
branches in the graphics. The graphics shows the game tree constructed according
to the semantics of CSSMT formula Φ = ∃x ∈ [−1, 1] R

N (′,∞)y ∈ (−∞,+∞) :

5In SSAT parlance, this is the body of the formula after rewriting it to prenex form and stripping
all the quantifiers.

Constraint-Solving Techniques for the Analysis … 19

Fig. 3 Semantics of a CSSMT formula depicted as a quantifier tree with agglomerated branches

(x2 ≤ 1
9 ∨ a3 + 2b ≥ 0) ∧ (y > 0 ∨ a3 + 2b < −1), where N (0, 1) refers to the

normal distribution with mean value 0 and variance 1. Semantically, Φ determines
the maximum probability of the matrix across all values of x between [−1, 1] when
the values of y are distributed according to a standard normal distribution, i.e., deter-
mines an optimal choice of x as strategy for the existential player. We have grouped
the uncountably infinitely many instances of the quantified variables into a finite set
of branches reflecting cases not distinguished by the matrix. In the first branch, the
domain of x is split into three parts, i.e., x ∈ [−1,− 1

3), x ∈ [− 1
3 ,

1
3] and x ∈ (13 , 1].

For each part, we branch the domain of y into two parts. When all the quantified
variables are resolved, we can check the satisfiability. For example, the leftmost leaf
can be annotated with probability of satisfaction of 0, because x ∈ [−1,− 1

3] and
y ∈ (−∞, 0] for this branch and the matrix consequently cannot be satisfied. When
all the branches have been annotated, we can propagate the probability according to
the corresponding quantifiers towards the root of the tree. For example, as y is distrib-
uted according to a standard normal distribution, the probability that y ∈ (−∞, 0] is
0.5. If we combine the probability from bottom to top and choose maximum value
across the branches for x , as x is existentially quantified, then we obtain the prob-
ability of satisfaction of Φ, which in this simple case (but of course not generally)
is 1. �

The Bellman backward induction inherent to Definition2 seems to suggest build-
ing tool support based on branching the quantifier tree and calling appropriate SAT-
modulo-theory (SMT) solvers on the (many) instances of the matrix thus evolving,
as sketched in the example. This, however, is impractical for two reasons:

1. when continuous quantifier domains are involved, the number of branches to be
spawned, and thus of SMT problems to be solved, would be uncountably infinite,6

6To this end please note that collapsing equivalent branches, as pursued in Fig. 3, can only be
done after solving the instances of the matrix and thus only is an option in cases where continuity
arguments (or similar) permit generalizations from samples to neighborhoods.

20 M. Fränzle et al.

2. even in the case of merely discrete domains, the number of branches is strictly
exponential in the quantifier depth and thus rapidly becomes prohibitive for the
bounded model-checking (BMC) problems we want to solve, which feature a
quantifier depth proportional to the depth of BMC.

We do consequently need more efficient means of solving CSSMT formulae, which
are subject of the next section.

3.2 CSSMT Solving

Wewill now expose a practical algorithm for solving a CSSMT formula. As the exact
probability Pr(Q : ϕ) of satisfaction is not computable in case the matrix ϕ stems
from an undecidable fragment of arithmetic, as usual in the hybrid-system domain,
we formulate the goal of solving as an approximate decision problem. The problem
we want our solving engine to resolve therefore is formalized as follows:

Definition 3 Given aCSSMTformulaΦ = Q : φ, a reference probability ε ∈ [0, 1],
and a desired accuracy δ ≥ 0, a procedure which upon termination returns

• “GE”, if Pr(Φ) is greater than or equal to ε + δ;
• “LE”, if Pr(Φ) is less than or equal to ε − δ;
• “GE” or “Inconclusive”, if Pr(Φ) ∈ [ε, ε + δ];
• “LE” or “Inconclusive”, if Pr(Φ) ∈ [ε − δ, ε].
is called sound. It is called quasi-complete if it terminates whenever δ > 0.

A sound and quasi-complete solver for CSSMT thus is required to yield a definite
(and correct) answer whenever the actual probability of satisfaction is separated
from the acceptance threshold ε by at least δ. If closer to the threshold than δ, it may
provide inconclusive, yet never counter-factual answers.

Our method for solving CSSMT formulae is intuitively split into three distinct
—yet overlapping in practice— phases:

1. Quantifier branching: In this phase, each quantified variable’s domain is covered
by a finite interval-partitioning, thereby branching a collapsed quantifier tree akin
to that depicted in Fig. 3. In contrast to the case depicted in Fig. 3, we do, however,
neither make sure that the individual multi-dimensional cells (i.e., product of
intervals) thus obtained contain points indistinguishable by thematrix in the sense
of all yielding the same truth value, nor use the same partitioning in all sub-trees.
Due to the latter, we are not confined to regular gridding of the n-dimensional
variable space, which helps in adaptive local refinement enhancing precision.

2. Paving: For each multi-dimensional cell C generated in the previous phase, we
generate two sets of sub-boxes7 of the cell: one set C under-approximating the

7As usual in interval constraint solving,we call any product of intervalswith computer-representable
bounds a box.

Constraint-Solving Techniques for the Analysis … 21

set of points p ∈ C satisfying the matrix and another set C over-approximating
the set of points p ∈ C satisfying the matrix. Such covers can be obtained by
established paving techniques from interval analysis, e.g., by using the RealPaver
tool [20]. The sum of the—easily computable due to box shape—measures μ(B)

of the boxes B ∈ C (or analogously B ∈ C) provide a lower estimate lC (upper
estimate uC , resp.) of the probability of satisfaction over C .
Themeasureμ(B) of a box B = ∏n

i=1[ai , bi], where n coincides with the number
of quantified variables x1, . . . , xn , thereby is defined as

μ(B) =
n∏

i=1

μi ([ai , bi]), where

μi (X) =
{∫

X νn(x)dx if xn is randomly quantified with density νn ,

1 if xn is existentially quantified.

Note that this measure does not expose an effect of existential quantification, as
B is an axis-parallel box such that the choices of existential variables impose no
constraints on the random variables.

3. Projection and lifting: Given the bounds lC and uC for the satisfaction probability
over each cell C , the final phase recursively synthesizes the overall satisfaction
probability over the full domain by combining cells according to the quantifier
prefix. If C and D are (necessarily neighboring) cells together forming a larger
box-shaped cell (i.e., a product of intervals) E , then their probability masses
can be combined as follows: if lC , lD are the respective lower and uC , uD the
respective upper estimates of the satisfaction probabilities, and if C and D are
adjacent in direction of variable x , then

lE =
{
max{lC , lD} if x is existentially quantified,

lC + lD if x is randomly quantified,

uE =
{
max{uC , uD} if x is existentially quantified,

uC + uD if x is randomly quantified.

In practice, these three phases should, however, be interleaved in order to provide
adaptive refinement of covers in quantifier branching. That is, new cells are generated
—and thus, the quantifier tree fromphase 1 expanded— if and only if the computation
of basic set measures in phase 2 or the computation of combined measures in phase 3
yield overly large differences between lower (lC) and upper (uC) probability estimates
for some cell. In that case, the cell will be split into two in order to facilitate a
sharper approximation of the actual satisfaction probability within the cell. Vice
versa, local estimates generated in phase 3 can be used for pruning expansion of the
quantifier tree from phase 1, generalizing Teige’s effective search-space reduction
[37] to the CSSMT case. To this end, it should be noted that residual cells need
not be investigated if their total probability mass does not suffice to lift a partially

22 M. Fränzle et al.

computed (due to phase 2) mass above the acceptance threshold ε, or if the threshold
already is exceed even without their contribution, or if alternative branches can be
decided to yield better reward, to name just a fewof numerous pruning rules rendering
the procedure computationally tractable. The interested reader may refer to [37] for
details of such pruning rules.

After generating an upper estimate u and a lower estimate l for the whole domain,
all that remains is to check for their relation to the threshold ε: as u is a safe upper
approximation of P(φ), we can report “LE”, i.e., P(φ) ≤ ε whenever u ≤ ε. Simi-
larly, as l is a safe lower approximation of P(φ), we can report “GE”, i.e., P(φ) ≥ ε
whenever l ≥ ε. If, however, l < ε < u then the test is inconclusive, which we are

5 10 15 20 25

y

-10

-8

-6

-4

-2

0

2

4

6

8

10

z

1 Inner Box

(a-1) 1 inner box

5 10 15 20 25

y

-10

-8

-6

-4

-2

0

2

4

6

8

10

z

172 Inner Boxes

(b-1) 172 inner boxes

5 10 15 20 25

y

-10

-8

-6

-4

-2

0

2

4

6

8

10

z

1 Outer Box

(a-2) 1 additional outer box

5 10 15 20 25

y

-10

-8

-6

-4

-2

0

2

4

6

8

10

z

115 Outer Boxes

(b-2) 115 additional outer boxes

Fig. 4 Two-dimensional projections of the inner and outer approximations for the solution set of
matrix x > 3 ∧ y ≤ 20 ∧ x2 > 49 ∧ y ≥ z over computation cell x ∈ [7, 10], y ∈ [5, 25] and z ∈
[−10, 10] (corresponding to outermost frame). The gray area marks the exact set of models of the
matrix within the cell. The left side gives a very rough approximation of the solution set by one inner
box (a-1) and two outer boxes (a-1 plus a-2) for the over- and under-approximation, respectively.
The right side provides a much tighter inner (b-1) and outer (b-1 plus b-2) approximation by 172
and 287 boxes, respectively

Constraint-Solving Techniques for the Analysis … 23

allowed to report iff ε − l < δ and u − ε < δ. If the latter is not the case then we
have to refine the cover of the quantifier domains by computation cells, which we
obviously do by splitting those cells having the highest difference between their
upper and lower probability estimates, i.e., the ones featuring the lowest accuracy.

Example 2 We consider the paving phase for the CSSMT formula

Φ = ∃ x ∈ [−10, 10] R

y ∈ U[5, 25] R

z ∈ U[−10, 10] :
(x > 3 ∨ y < 1) ∧ (z > x2 + 2 ∨ y ≤ 20) ∧
(x2 > 49 ∨ y > 7x) ∧ (x < 6 ∨ y ≥ z) ,

where U[a, b] refers to uniform distribution with carrier [a, b]. If the paving pro-
cedure generates just one box for the under- and two for the over-approximation,
as shown in Fig. 4(a-1 and a-2), the measures returned are l = 0.5 and u = 0.75. A
more precise estimation will be obtained by generating more boxes in the paving:
the 172 inner boxes and 287 outer boxes of Fig. 4(b-1 and b-2) yield l = 0.7181 and
u = 0.7191. �

3.2.1 Encoding Bounded Reachability for SHA

CSSMT solving permits bounded model checking (BMC) of stochastic hybrid
automata just the same way SMT facilitates it for hybrid automata (HA) devoid of
stochasticity. The encodings of the transition relation are virtually identical to those
established for HA [3, 12, 23], yet the alternation between non-deterministic and
stochastic branching additionally has to be encoded by a corresponding alternation
of ∃ and

R

quantifiers. The basic idea is illustrated in Fig. 5.
For computing the worst-case (in the sense that non-deterministic choices are

resolved by a malicious adversary) probability of reaching a bad state in k steps,
where bad states are encoded by a predicate Bad, this encoding is unwound to a
formula Φ of the shape

∃t1 R

d p1∃t2 R

d p2 . . . ∃tk R

d pk︸ ︷︷ ︸
alternating non-determinist. and probabil. choices

:

⎛

⎜
⎜
⎜
⎜
⎝

I ni t (�x0)
∧ Trans(�x0, �x1)
∧ Trans(�x1, �x2)
∧ . . .

∧ Trans(�xk−1, �xk)

⎞

⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
k-bounded reach set

∧

⎛

⎜
⎜
⎜
⎜
⎝

Bad(�x0)
∨ Bad(�x1)
∨ Bad(�x2)
∨ . . .

∨ Bad(�xk)

⎞

⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
hits bad state︸ ︷︷ ︸

BMC(k)

,

where the k-fold alternating quantifier prefix reflects the alternation between non-
deterministic and randomized choices inherent to the semantics of SHA and where
the matrix is a conventional symbolic encoding of the k-step BMC problem. The

24 M. Fränzle et al.

Fig. 5 Principle of encoding stochastic hybrid automata: non-deterministic choice maps to existen-
tial quantification (top left part of the graphics), probabilistic choice to randomized quantification
(bottom right part of the graphics), and the transition relation is encoded symbolically as in SMT-
based BMC (table), yet adding the dependencies on choices (columns 3 and 4 in the formula)

quantifiers and the symbolic transition relation Trans correspond to the respective
objects in Fig. 5. Details of this encoding can be found in [15, 16, 37]. Its central
property is that the satisfaction probability Pr(Φ) of the resulting formula is exactly
identical to the worst-case probability of the encoded SHA reaching a bad state
within k steps, such that CSSMT solving can be used for discharging the proof
obligations arising from bounded probabilistic reachability problems. Verification
problems of the form “can the the (worst-case under all adversary strategies resolving
non-determinism) probability of reaching a bad state over a horizon of k steps be
guaranteed to stay below a given safety target ε” are thus amenable to automatic
analysis.

It should be noted that the above encoding yields extremely deep quantifier pre-
fixes, as the alternation depth grows linearly in the number of steps of the probabilistic
BMC problem. While this might seem to render (C)SSMT solving infeasible, ade-
quate pruning rules in SSMTproof search permit to solve surprisingly large instances
[37], speeding up solving by up to significantly more than ten orders of magnitude
compared to naïve quantifier traversal.

Constraint-Solving Techniques for the Analysis … 25

4 Parameter Synthesis for Parametric Stochastic
Hybrid Automata

Within the model of stochastic hybrid automata (SHA), we allowed for stochas-
tic updates on the continuous as well as discrete variables using fixed probability
distributions. This enables modeling of, among many other random phenomena,
random component failures or data packet losses. Additionally, SHA contained non-
determinism in terms of non-deterministic values and transitions. Extending SHA,
within this section, we allow for an additional non-determinism in terms of a para-
metric dependence of the discrete probabilistic branching by replacing transition
probabilities with parametric terms (ti in Fig. 6). However, apart from this parametric
non-determinism within the discrete probabilistic transitions, we require the system
to be either deterministic or probabilistic, hence reducing the expressive power of
SHA. Therefore, the resulting parametric stochastic hybrid automata (PSHA) fea-
ture a finite set of discrete locations (or modes), each of which comes decorated with
a differential equation governing the dynamics of a vector of continuous variables
while residing in that mode.

Modes change through instantaneous transitions guarded by conditions on the
current values of the continuous variables, and may yield discontinuous (poten-
tially stochastic) updates of the continuous variables. Aiming at simulation-based

Fig. 6 PSHAmodel of a charging station.Modes are labeledwith labelscharge and discharge
abbreviating ODE (not shown explicitly) representing corresponding dynamics over a continuous
capacity �. Modes can switch according to guarded transitions leading to a probabilistic branch.
Probabilities are summarized as terms t1, . . . , t4 indicating their parameter dependencies

26 M. Fränzle et al.

evaluation methods as in Statistical Model Checking (SMC) [42], transition selec-
tion in this section is assumed to be deterministic, i.e., guard conditions at each mode
are mutually exclusive or overlaps are resolved deterministically as, e.g., by the pri-
ority mechanisms in Simulink-Stateflow. To prevent non-determinism between pos-
sible time flows and transitions, we also assume that transitions are urgent, i.e., they
are taken as soon as they are enabled (which furthermore renders mode invariants
redundant). In addition to these mechanisms from deterministic hybrid automata,
PSHA allow for the probabilistic selection of a transition variant based on a discrete
random experiment. The probability distribution governing the random experiment
is allowed to have a parametric dependence. Following the idea of Sproston [35,
36], the selected transition entails a randomized choice between transition variants
according to a discrete probability distribution. The different transition variants can
lead to different follow-up locations and different continuous successors, as depicted
in Fig. 6, where the guard condition determining transition selection is depicted along
the straight arrows leading to a potential branching annotated with probability terms
denoting the random experiment.

To model the parametric dependence of PSHA, we allow the branching mode-
transition probabilities to be terms over a setΘ of parameter names (ti in Fig. 6). The
viable parameter instances θ : Θ → R are constrained by an arithmetic first-order
predicate φ over Θ , defining their mutual relation. Let Φ = {θ : Θ → R | θ |= φ}
denote the set of all viable parameterizations. Arithmetic terms over Θ are subject
to the constraint that for all viable parameter valuations θ |= φ, the sum of outgoing
probabilities assigned to each transition is 1, i.e., φ =⇒ ∑n

i=1 ti (θ) = 1 holds for
the probability terms ti associated to each transition t . Note that the probability terms
need not contain free variables from θ; non-parametric distributions are special cases
of parametric distributions and do not require special treatment.

For the sake of formal analysis, we formalize the semantics of PSHA through
a reduction to a parametric infinite-state Markov chain. For a PSHA with location
set Λ and continuous variables x1, . . . , xD , the states of the Markov chain are given
by Σ = Λ × R

D and the initial state distribution is inherited from the PSHA. Each
state σ = (l, �x) ∈ Σ gives rise to a parameter-dependent probability distribution of
successor states σ′:

pσ(σ′, θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t (θ) if a transition (σ,σ′) labeled with probability term t is enabled

in σ,

1 if σ′ = (l, g(t)), where g is a solution to the ODE associated to

l ∈ Λ with g(0) = �x, and no transition is enabled in (l, g(t ′))
for any t ′ ∈ [0, t[, and a transition is enabled in σ′ = (l, g(t)),

0 otherwise.

Constraint-Solving Techniques for the Analysis … 27

Given a parametric infinite-state Markov chain M with its initial state distribution
given by a density ι : Σ → R≥0 and a parametric next-state probabilitymass function
pσ : Σ × Φ → [0, 1], the distribution associated to finite runs 〈σ0,σ1, . . . ,σk〉 ∈
Σ∗ given a parameter instance θ ∈ Φ is given by the following probability mass
function:

pM(〈σ0,σ1, . . . ,σk〉; θ) = ι(σ0) ·
k−1∏

i=0

pσi (σi+1, θ).

Note that θ can be vector valued, comprising multiple individual parameters.
Let f : Σ → R be a scalar function on states, to be evaluated on the last state of

a run and called the reward f of the run,8 and let k ∈ N. The k-bounded expected
reward for f in a parameter instance θ ∈ Θ is

EM,k[f ; θ] =
∫

Σk

f (σk−1)pM(〈σ0,σ1, . . . ,σk−1〉; θ) d〈σ0,σ1, . . . ,σk−1〉, (1)

where Σk denotes the sequences over Σ of length k. We will subsequently drop the
index M in EM,k and pM whenever it is clear from the context. Although the finite
nature of the parametric-dependent probabilistic branching would allow us to write
the expectation in terms of a sum, we represent the expected value in form of an
integral in Eq. (1) to illustrate the similarities to SHA and the general applicability
of importance sampling (see below).

Rewards represent quantitative measures of the system’s performance, and there-
fore mutual constraints on their values can be used for capturing design goals. The
design problem we are thus facing is, given a vector f1, . . . , fn : Σ → R of rewards
in a parametric infinite-state Markov chain M , to ensure via adequate instantiation
of the parameter that the expected rewards meet the design goal:

Definition 4 (Parameter synthesis problem) Let f1, . . . , fn : Σk → R be a vector
of rewards in a parametricMarkov chainM and letC be a design goal in the form of a
constraint on the expected rewards, i.e., an arithmetic predicate containing f1, . . . , fn
as free variables. A parameter instance θ : Θ → R is feasible (w.r.t. M and C) iff

θ |= φ and [f1 �→ E(f1; θ), . . . , fn �→ E(fn; θ)] |= C.

The multi-objective parameter synthesis problem is to find a feasible parameter
instance θ, if it exists, or to prove its absence otherwise.

Stated in words, a parameter instance θ is feasible w.r.t.φ andC iff the parameters are
in the range defined by φ and the expected rewards resulting from the instantiation
of M with θ meet the multi-objective C . Note that the aim is to find some parameter

8Due to the generality of the PSHA model, defining rewards exclusively on the final state is as
expressive as defining them via functions on the whole run.

28 M. Fränzle et al.

instance meeting our design goal; we are not considering determining the set of
all suitable instantiations. That is, in contrast to the setting in the previous Sect. 3,
we are here interested in a parameter value satisfying the constraints on multiple
rewards rather than determining the probability of satisfaction for a given parameter
instance. In fact, the constraint system of Definition4 is indeed more general, as
one can specify as objective a constraint system relating different expected values
rather than just a required threshold on a single probability. For example, with the
notation in Definition4, it is possible to ask for a parameter instance, such that one
expected value is larger than another expected value, both of which are allowed to
depend on the parameter value under consideration. Note that such a problem cannot
be stated using the CSSMT formalism of Sect. 3. On the other hand, the technology
from Sect. 3 can deal with 11

2 -player games, i.e., SHA involving both stochasticity
and non-determinism, whereas we here deal with probabilistic systems only— albeit
parametric ones.

4.1 Parameter Synthesis Using Symbolic Importance
Sampling

Expected values aggregate contributions frommany different states or trajectories as
in Eq. (1). In particular, when each of the states contributes a different non-zero value
to the overall expected values, an exact calculation of the expected value requires
to evaluate all states or trajectories. As a result, the computation of the expected
values can be the main bottleneck in finding a suitable parameter instance. We aim
in the following at a statistical evaluation of the expected value, which scales with
the number of samples used for such a statistical evaluation and therefore has the
potential of producing results faster. As these statistical estimates of the expected
values are merely arithmetic expressions, we then use these expressions to construct
a constraint systemwhich represents the parameter-dependencies of the expectations
symbolically and can be solved using available constraint solvers, such as the iSAT
solver [14]. However, due to the statistical sampling underlying the generation of the
constraint system, these results are also only of statistical nature. That is, instead of
finding a parameter instance forwhichwe can rigorously guarantee that the constraint
system is satisfied, we can only guarantee with a well-defined statistical confidence
that the constraint system is likely to be satisfied. Similarly, we can only bound the
probability that no parameter instance exists satisfying the constraint system in case
of a negative satisfiability result.

In [18], we developed a scheme which uses a symbolic version of importance
sampling in order to use a sampling-based strategy for estimating expected values
while keeping track of the parametric dependence of these expectations, which we
will review in the following. This technique combines statistical model-checking
of a parameter-free instantiation of the parametric hybrid system with a symbolic

Constraint-Solving Techniques for the Analysis … 29

variant of importance sampling in order to learn a symbolic model of the parameter
dependency.

In order to introduce the general concept of importance sampling [39], we
mostly abstract from our PSHA setting in this section, but highlight specifics to the
PSHA setting when necessary. We instead assume that the parametric probability
distribution of the random variable x ∈ X is given in terms of a density function
p(·; θ) which depends on a vector θ of bounded real-valued parameters. Permissible
values of θ are defined by a first-order constraint φ.

Given an arbitrary (bounded) function f : X → R, we are interested in estimating
expected values of f under all parameter values θ |= φ. The expectation E[f ; θ] for
reward f given parameter vector θ is

E[f ; θ] =
∫

X
f (x)p(x; θ) dx . (2)

Given a specific parameter instance θ∗ and a process sampling xi according to the
distribution p(·; θ∗), the expectation E[f ; θ∗] can be estimated by

Ẽ[f ; θ∗] = 1

N

N∑

i=1

f (xi) , (3)

which is the empirical mean of the sampled values of reward f . In our PSHA setting,
a reasonable process for generating such samples xi according to the distribution
p(·; θ∗) would be a simulator for non-parametric SHA, applied to the instance of the
PSHA under investigation obtained by substituting concrete parameter values θ∗ for
the free parameters.

For sufficiently large N , we expect E[f ; θ∗] ≈ Ẽ[f ; θ∗] due to the law of large
numbers. We can quantify the quality of the approximation in (3) using Hoeffding’s
inequality [24], provided that f has a bounded support [a f , b f]:

P
(
E[f ; θ∗] − Ẽ[f ; θ∗] ≥ ε

)
≤ exp

(

−2
ε2N

(b f − a f)2

)

,

P
(
Ẽ[f ; θ∗] − E[f ; θ∗] ≥ ε

)
≤ exp

(

−2
ε2N

(b f − a f)2

)

. (4)

Therefore, the empirical mean (3) yields a very reliable estimate of the actual expec-
tation when the number of samples is large, with the accuracy given by (4).

As can be seen from Eq. (3), the estimate of the expected value depends only
implicitly on the parameter of interest as the samples xi are drawn from a fixed prob-
ability distribution using the concrete parameters θ∗. Consequently, one has to fix
some parameter instance to generate the samples xi , thereby losing the parametric

30 M. Fränzle et al.

dependence. To alleviate this problem, we one can use importance sampling using an
arbitrary proposal distribution q, which does not depend on any parameter. Specif-
ically, one can use the same sampling approach as (3) for (5), however, modifying
the reward function:

E[f ; θ] =
∫

X
f (x)

p(x; θ)

q(x)
q(x) dx (5)

Using the same naïveMonteCarlo estimate yields the following empirical approx-
imation to the expectation, including the parameter dependence on θ using N samples
drawn from the substitute distribution q:

Ẽq [f ; θ] = 1

N

N∑

i=1

f (xi)
p(xi ; θ)

q(xi)
. (6)

Note that such a procedure can be used to obtain unbiased estimates of the expectation
for both continuous probability distributions (densities) aswell as discrete probability
distributions (probability mass functions).

Doing so, however, requires being able to actually compute the quotient p(x;θ)
q(x) =:

gain(xi ,Θ) for each sample xi . Whenever xi is a trace in a PSHA, this can easily
be achieved by taking

gain(xi ,Θ) =
k∏

i=1

(
ti (Θ)

ti (Θ∗)

)#ti (xi)

, (7)

where t1, . . . , tk are the different parametric terms occurring in the automaton and
#ti (xi) is the number of times the transitionmarked with ti was taken in trace xi . Note
that gain(xi ,Θ) contains only the parameter vector Θ as free variables (all other
entities are constants), such that (6) provides a symbolic expression for the parameter-
dependency of E[f ; θ]. For details concerning this automatically generated symbolic
encoding, the interested reader may confer [18].

To synthesize a feasible parameter instance, we can generate an arithmetic con-
straint characterizing feasibility by plugging the symbolic parametric estimate (6)
with the concrete gain term (7) into the condition for parameter feasibility from Def-
inition4, thereby adding an additional constraint for error control in the second line
of the following equation. Here, ε(qi , δ, N) is an uncertainty term which captures
the variability of the estimates as a function of the proposal distribution, the number
of samples, and the confidence.

Constraint-Solving Techniques for the Analysis … 31

θ |= φ and [f1 �→ E(f1; θ), . . . , fn �→ E(fn; θ)] |= C

and E(fi ; θ)] ∈ [Ẽqi [fi ; θ] − ε(qi , δ, N), Ẽqi [fi ; θ] + ε(qi , δ, N)] (8)

Note that here, each of the expected values is replaced by the empirical estimate using
samples drawn from a proposal distribution stemming from a parameter substitution
Θ∗. As the resulting constraint system contains only constraints over arithmetic
expressions, this system can directly be fed into a constraint solving engine such
as iSAT [14], which is able to efficiently handle the polynomials of high degree
stemming from the gain term (7). Due to the randomness involved in sampling, the
estimates are themselves random variables. The result (a parameter instance or an
infeasibility result) thus itself is subject to random fluctuations and we can guarantee
the correctness of this result only with probability ≥ 1 − δ.

In order for this result to be valid, we have to determine ε(qi , δ, N) such that we
can guarantee (with high probability)

E(fi ; θ) ∈ [Ẽqi [fi ; θ] − ε(qi , δ, N), Ẽqi [fi ; θ] − ε(qi , δ, N)] .

Importantly, due to the parameter dependence of the empirical estimates, one cannot
use Hoeffding’s inequality (4), but this statement has to hold uniformly across all θ
satisfying φ.

Example 3 To illustrate this problem, consider the following example. Let f (x) =
sign(x − π) be a reward function on a continuous variable x ∈ [0, 2π] ⊂ R. Further,
let the parametric probability density p(x; θ) ∝ (sin(xθ) + 1). When sampling xi
and calculating the empirical average reward, one can tune the corresponding Eq. (6)
arbitrarily, such that the density p(x; θ) close to zero for all xi with f (xi) = 1 and
close to one for all xi with f (xi) = −1 by appropriately choosing θ. However, the true
expected reward is almost independent of θ. Importantly, for this choice of density,
setting sampling points to zero or one is possible for arbitrarilymany sampling points.
Therefore, the empirical parametric expression does not necessarily converge to the
true expectation with an increasing number of samples (as would be suggested by
Hoeffding’s inequality). To adjust for this effect, one has to account for the complexity
of the parametric function. �

In fact, describing the effect of tuning parameters within such empirical expres-
sions is one of the major research questions within the field of statistical learning
theory (see [8, 41]), resulting in different complexity measures. For example, the
sinusoidal function above has Vapnik-Chervonenkis dimension of infinity, indicat-
ing a very high complexity. By tuning the parameters after the data has been observed,
a common phenomenon is called over-fitting, i.e., overly adapting the parameter to
the data thereby introducing a larger error in the statistical estimate of the true value
of the expected reward.

When using Eq. (8) together with a constraint solver as iSAT, we have to show the
validity of the results, i.e., we have to show that the probability of the obtained result

32 M. Fränzle et al.

being wrong is bounded by a pre-specified value δ. To this end, we first consider
the case that the constraint solver produces the result UNSAT. That is, the constraint
solver cannot find a candidate solution θ∗ satisfying the constraint system (8). The
reason for such unsatisfiability can either rightfully lie within infeasibility of the
synthesis problem itself, or can be erratic due to the statistical uncertainty within the
estimation of the expected values.

UNSAT Case

In case the solver cannot find a candidate value for the parameter such that the
constraints are satisfied, we would like to bound the probability for this statement
beingwrong, i.e., an artifact of the randomness in sampling. To bound this probability,
we can examine the following events for arbitrary probability thresholds c:

E1 : min
θ

E[fi ; θ] < c and min
θ

Ẽ[fi ; θ] ≥ c + ε (9)

E2 : max
θ

E[fi ; θ] > c and max
θ

Ẽ[fi ; θ] ≤ c − ε (10)

Intuitively, we would like to bound the probability that we were not able to solve a
slightly easier task Ẽ[fi ; θ] ≥ c + ε while the original task is possible E[fi ; θ] < c.

Theorem 1 (Confidence for UNSAT)

Let ε = 2Bi

√
− log(δ)

N and Bi = maxx,θ
fi (x)p(x;θ)

qi
be given. Then P(E1) ≤ δ and

P(E2) ≤ δ.

Proof For E1 the following holds:

P

(

min
θ

Ẽ[fi ; θ] ≥ ε + c ∧ min
θ

E[fi ; θ] < c

)

≤ P

(

min
θ

Ẽ[fi ; θ] ≥ min
θ

E[fi ; θ] + ε

)

Jensen ineq.≤ P

⎛

⎜
⎜
⎝min

θ
Ẽ[fi ; θ]

︸ ︷︷ ︸
=:g(x1,...,xN)

−E
[

min
θ

Ẽ[fi ; θ]
]

≥ ε

⎞

⎟
⎟
⎠

= P (g(x1, . . . , xN) − E [g(x1, . . . , xN)] ≥ ε)

McDiarmid ineq.≤ exp

(

−ε2N

4B2
i

)

= δ; Bi = max
x,θ

fi (x)p(x; θ)

qi (x)

(11)

To apply McDiarmid’s inequality [31] in Eq. (11), we used the following bounds:

Constraint-Solving Techniques for the Analysis … 33

−2B

N
≤ min

θ

{
1

N
f (xN ; θ) − 1

N
f (x ′

N ; θ)

}

≤ min
θ

{
1

N

N−1∑

i

f (xi ; θ) + 1

N
f (xN ; θ)

}

− min
θ

{
1

N

N−1∑

i

f (xi ; θ) + 1

N
f (x ′

N ; θ)

}

= (
g(x1, . . . , xN) − g(x1, . . . , x

′
N)
)

≤ −min
θ

{
1

N
f (x ′

N ; θ) − 1

N
f (xN ; θ)

}

≤ 2
B

N

⇒ ∣
∣(g(x1, . . . , xN) − g(x1, . . . , x

′
N)
)∣∣ ≤ 2

B

N

(12)

In general, due to the concavity of the minimum, we have

min(f − g) ≤min(f) − min(g) ≤ −min(−(f − g)) = max(f − g) (13)

For E2 the proof is analogous replacing min with max. �

SAT Case

Unfortunately, we are not able to construct a similar argument for the SAT case, as
this would require calculating a complexity measure such as a Vapnik-Chernovenkis
or Rademacher complexity for the function fi (x)

qi (x)
p(x; ·), for which the dependency on

the parameter has to be analyzed to much more detail. However, if we construct the
proposal distribution qi by choosing a particular value of θ, e.g., qi (x) = p(x; θ∗),
we can use the standard Hoeffding inequality (4) to check whether this particular
instance of parameter value θ∗ satisfies the constraint system. That is, if we found
that the constraint system (8) with the particular setting:

Ẽqi [fi ; θ] = 1

N

∑

l

fi (xl) with xl ∼ qi = p(·; θ∗) and ε(qi , δ, N) = 2

√

− log(δ)

N

is satisfied for θ∗, then we know that the original constraint system is also satisfied
with a probability ≥1 − δ, due to Hoeffding’s inequality.

Taken the results obtained so far, we have the following algorithm for checking a
constraint system involving expected values of parametric probability distributions:

1. Select a particular parameter instance θ∗ |= φ.
2. Draw N samples {xi }, i = 1, . . . , N from the proposal distribution q = p(·; θ∗).
3. Check the particular parameter instance for satisfaction of C using the empir-

ical estimates Ẽ[fi ; θ∗] = 1
N

∑
k fi (xk) (see also (3)). To do so, we check if

Ẽ[fi ; θ∗] ± 2
√

− log(δ)
N satisfies C . This step is referred to in Algorithm1 as

CheckSamples.

34 M. Fränzle et al.

4. If the system is satisfied, we have found a feasible parameter instance θ∗ with
confidence 1 − δ, i.e., the probability of violating the constraints on the expected
rewards is smaller than δ. This is due to Hoeffding’s inequality (4), which guar-
antees the high probability (see also [44] where the same method is applied).

5. If the system is unsatisfiable, we construct the empirical constraint system
using (8).

6. Check the corresponding constraint system using iSAT once again.
7. If the system is unsatisfiable, we know with confidence 1 − δ that the original

constraint system is unsatisfiable.

It could, however, happen that the first check yields unsatisfiable, while the second
yields satisfiable, i.e., iSAT could neither verify the particular parameter instance θ∗,
nor could refute existence of feasible parameter instances. In this case, the second
check, however, generates another candidate parameter vector θ∗∗ using the empirical
parametric constraint system (8).With the newly obtained parameter instance,we can
now re-iterate the algorithm until we either find a statistically valid solution or refute
existence of feasible instances. Taken together, we obtain the iterative Algorithm1.

Algorithm 1 Parameter Fitting by Symbolic Importance Sampling
function SYM- IMP(φ,C , confidence δ, number of samples N , max. iterations I)

δc ← δ
I ; θ0 ← SolveConstraintSystem(φ); ε ←

√
log(1

δc)

N 2B; m ← 0; φ̂0 ← φ

while m ≤ I do
q ← p(·; θm)
S = (x1, . . . , xN) ← DrawSamples(q, N) � Simulate N times w.

� parameterization θm .
if CheckSamples(S, δ, φ,C) then

return θm � Found parameterization satisfying C with prob. ≥ 1 − δ
else

φ̂m+1 ← φ̂m ∧∧n
i=1 E(fi ; θ) ∈ [Ẽq [fi ; θ] − ε(q, δ, N), Ẽq [fi ; θ] + ε(q, δ, N)]

� Add samples to empirical system
θm+1 ← SolveConstraintSystem(φ̂m+1)
if φ̂m+1 is unsatisfiable then

return Unsat � Original system is unsatisfiable with prob. ≥ 1 − δ
else m ← m + 1
end if

end if
end while
return Unknown � Reached maximal iterations I

end function

In each iteration, we perform a hypothesis test by checking the satisfiability or
unsatisfiability, adding to amaximum amount of hypothesis tests of I for each of both
results. As the samples we use at one iteration are used in the next iteration as well
by adding the corresponding empirical estimate as an additional constraint, the tests
are not independent to each other. Note that we have to use a Bonferroni correction
δc ← δ

I to compensate for this dependency (see [32]). As we would like to have the

Constraint-Solving Techniques for the Analysis … 35

final result to hold with confidence 1 − δ, the Bonferroni correction requires each
of the hypothesis tests (there is a maximum of I) to give a valid result with at least
1 − δ

I , thereby guaranteeing that the overall probability of obtaining a valid result is
bounded by (1 − δ

I)
I ≥ 1 − I δ

I = 1 − δ.
Taken together, this implies that whenever the algorithm terminates with a definite

result, this result is sound with a confidence ≥ 1 − δ. Hence, any parameter instance
generated will actually satisfy the feasibility condition Definition1 with probability
≥ 1 − δ. Likewise, an infeasibility result reported implies that the problem actually
is infeasible with probability ≥ 1 − δ.

5 Conclusion

Addressing the quest for automatic analysis tools covering the state dynamics of
hybrid discrete-continuous systems,we have over the past decade developed a rich set
of constraint solvers facilitating their symbolic or mixed symbolic-numeric analysis,
starting from the first practical SAT-modulo-theory solver for real arithmetic involv-
ing transcendental functions and thus going beyond the confined decidable fragments
of arithmetic (iSAT, [14]) over the seamless integration of safe ODE enclosures in
SAT-modulo-theory solving (odeSAT, [11]) to stochastic extensions of SAT-modulo-
theory (SSMT andCSSMT, [15, 19]). These techniques permit key-press verification
of bounded safety properties of the embedded system within its physical environ-
ment, whereby both qualitative, i.e., normative, and quantitative, stochastic models
of system dynamics are supported. The related tools have been developed within
the Transregional Collaborative Research Action SFB-TR 14 “Automatic Verifica-
tion and Analysis of Complex Systems” (AVACS, www.avacs.org) and the Research
Training Group DFG-GRK 1765: “System Correctness under Adverse Conditions”
(SCARE, scare.uni-oldenburg.de) and some of them, like the iSAT tool,
are freely available from the respective web sites.

Within this chapter, we have in particular elaborated on the most recent meth-
ods and tools from that series. These are able to, first, solve quantitative bounded
reachability of stochastic hybrid systems involving both discrete and continuous
non-determinism and stochasticity and, second, synthesize feasible parameters for
probabilistic branching in such systems satisfying multi-objective design goals w.r.t.
expected cost/rewards in parametric stochastic hybrid systems. The workhorses here
are CSSMT solving (Continuous Stochastic SatisfiabilityModulo Theory [19]) and a
novel blend of statistical model checking and arithmetic constraint solving facilitated
by a symbolic version of importance sampling [18]. We expect such combinations to
have a much broader area of application, as they can be used for automatically min-
ing from samples a formal model of rigorously controlled epistemological validity:
the methods provide a learning scheme yielding a formal constraint model whose
validity can be guaranteed up to a quantifiable confidence, as explained in Sect. 4.
We are currently trying to exploit that latter fact for porting formal verification to

www.avacs.org

36 M. Fränzle et al.

safety-critical embedded software inherently devoid of a formal functional specifi-
cation, like the computer vision components with their object classifiers trained by
machine learning that are central to future automated driving functions.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: an algorithmic
approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode,
A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems. Lecture Notes in Computer Science, vol.
736, pp. 209–229. Springer, New York (1993)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138, 3–34 (1995)

3. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial hybrid systems
with MathSAT. ENTCS 89(4) (2004)

4. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere
et al. [7], chap. 26, pp. 825–885

5. Bellman, R.: A Markovian decision process. J. Math. Mech. 6, 679–684 (1957)
6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:

TACAS’99. Lecture Notes in Computer Science, vol. 1579, pp. 193–207. Springer, New York
(1999)

7. Biere, A., Heule,M.J.H., vanMaaren, H.,Walsh, T. (eds.): Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

8. Bousquet, O., Boucheron, S., Lugosi, G.: Introduction to statistical learning theory. Advanced
Lectures on Machine Learning, pp. 169–207. Springer, New York (2004)

9. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett. 40(5),
269–276 (1991)

10. Chaochen, Z., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid real-time
systems. In:Grossman,R.L.,Nerode,A.,Ravn,A.P.,Rischel,H. (eds.)HybridSystems.Lecture
Notes in Computer Science, vol. 736, pp. 36–59. Springer, New York (1992)

11. Eggers, A., Fränzle,M., Herde, C.: SATmoduloODE: a direct SAT approach to hybrid systems.
In: Cha, S.S., Choi, J.Y., Kim, M., Lee, I., Viswanathan, M. (eds.) Proceedings of the 6th
International Symposium on Automated Technology for Verification and Analysis (ATVA’08).
Lecture Notes in Computer Science, vol. 5311, pp. 171–185. Springer, New York (2008)

12. Fränzle, M., Herde, C.: Efficient proof engines for bounded model checking of hybrid systems.
In: Ninth International Workshop on Formal Methods for Industrial Critical Systems (FMICS
04), Electronic Notes in Theoretical Computer Science (ENTCS). Elsevier (2004)

13. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Interval constraint solving using
propositional SAT solving techniques. In: Proceedings of the CP 2006 First InternationalWork-
shop on the Integration of SAT and CP Techniques, pp. 81–95 (2006)

14. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-
linear arithmetic constraint systems with complex boolean structure. JSAT 1(3–4), 209–236
(2007)

15. Fränzle,M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: a novel technique
for the analysis of probabilistic hybrid systems. In: Egerstedt,M.,Mishra, B. (eds.) Proceedings
of the 11th International Conference onHybrid Systems: Computation andControl (HSCC’08).
Lecture Notes in Computer Science (LNCS), vol. 4981, pp. 172–186. Springer, New York
(2008)

16. Fränzle, M., Teige, T., Eggers, A.: Engineering constraint solvers for automatic analysis of
probabilistic hybrid automata. J. Logic Algebr. Program. 79, 436–466 (2010)

Constraint-Solving Techniques for the Analysis … 37

17. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety
verification for stochastic hybrid systems. In: Proceedings of the 14th International Conference
on Hybrid Systems: Computation and Control, pp. 43–52. ACM (2011)

18. Fränzle,M., Gerwinn, S., Kröger, P., Abate, A., Katoen, J.: Multi-objective parameter synthesis
in probabilistic hybrid systems. In: Sankaranarayanan, S., Vicario, E. (eds.) Formal Modeling
and Analysis of Timed Systems - 13th International Conference, FORMATS 2015, Madrid,
Spain, 2–4 September 2015, Proceedings. Lecture Notes in Computer Science, vol. 9268, pp.
93–107. Springer, New York (2015)

19. Gao, Y., Fränzle, M.: A solving procedure for stochastic satisfiability modulo theories with
continuous domain. In: Campos, J., Haverkort, B.R. (eds.) Quantitative Evaluation of Systems,
12th International Conference, QEST 2015, Madrid, Spain, 1–3 September 2015, Proceedings.
Lecture Notes in Computer Science, vol. 9259, pp. 295–311. Springer, New York (2015)

20. Granvilliers, L., Benhamou, F.: Realpaver: an interval solver using constraint satisfaction tech-
niques. ACM Trans. Math. Softw. (TOMS) 32(1), 138–156 (2006)

21. Groote, J.F., Koorn, J.W.C., van Vlijmen, S.F.M.: The safety guaranteeing system at station
Hoorn-Kersenboogerd. In: Conference on Computer Assurance, pp. 57–68. National Institute
of Standards and Technology (1995)

22. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M., Kurshan, R. (eds.) Verification
of Digital and Hybrid Systems. NATO ASI Series F: Computer and Systems Sciences, vol.
170, pp. 265–292. Springer, New York (2000)

23. Herde, C., Eggers, A., Fränzle, M., Teige, T.: Analysis of hybrid systems using HySAT. In:
The Third International Conference on Systems (ICONS 2008), pp. 196–201. IEEE Computer
Society (2008)

24. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat.
Assoc. 58, 13–30 (1963)

25. Julius, A.A.: Approximate abstraction of stochastic hybrid automata. In: Hespanha, J.P., Tiwari,
A. (eds.) Hybrid Systems: Computation and Control: 9th InternationalWorkshop, HSCC 2006,
SantaBarbara,CA,USA, 29–31March 2006. Proceedings. LectureNotes inComputer Science,
vol. 3927, pp. 318–332. Springer, New York (2006)

26. Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. In:Morari, M., Thiele, L. (eds.)
HSCC’05. Lecture Notes in Computer Science, vol. 3414. Springer, New York (2005)

27. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic boolean satisfiability. J. Autom. Reason.
27(3), 251–296 (2001)

28. Majercik, S.M.: Stochastic boolean satisfiability. In: Biere et al. [7], chap. 27, pp. 887–925
29. Majercik, S.M., Littman, M.L.: Maxplan: a new approach to probabilistic planning. AIPS 98,

86–93 (1998)
30. Majercik, S.M., Littman, M.L.: Contingent planning under uncertainty via stochastic satisfia-

bility. In: AAAI/IAAI, pp. 549–556 (1999)
31. McDiarmid, C.: On the method of bounded differences. Surv. Comb. 141(1), 148–188 (1989)
32. Miller, R.G.: Simultaneous Statistical Inference. Springer, New York (1981)
33. Papadimitriou, C.H.: Games against nature. J. Comput. Syst. Sci. 31(2), 288–301 (1985)
34. Ravn, A.P., Rischel, H.: Requirements capture for embedded real-time systems. In: Proceed-

ings of IMACS-MCTS’91 Symposium on Modelling and Control of Technological Systems,
Villeneuve d’Ascq, France, 7–10 May, vol. 2, pp. 147–152. IMACS (1991)

35. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In: Joseph, M. (ed.)
Formal Techniques in Real-Time and Fault-Tolerant Systems. Lecture Notes in Computer
Science, vol. 1926, pp. 31–45. Springer, New York (2000)

36. Sproston, J.: Model checking for probabilistic timed and hybrid systems. Ph.D. thesis, Univer-
sity of Birmingham (2001)

37. Teige, T.: Stochastic satisfiability modulo theories: a symbolic technique for the analysis of
probabilistic hybrid systems. Ph.D. thesis, Universität Oldenburg (2012)

38. Teige, T., Fränzle, M.: Stochastic satisfiability modulo theories for non-linear arithmetic. Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, pp. 248–262. Springer, New York (2008)

38 M. Fränzle et al.

39. Tokdar, S.T., Kass, R.E.: Importance sampling: a review.Wiley Interdiscip. Rev.: Comput. Stat.
2(1), 54–60 (2010)

40. Tseitin, G.: On the complexity of derivations in propositional calculus. In: Studies in Construc-
tive Mathematics and Mathematical Logics (1968)

41. Vapnik, V.N.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)
42. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using

acceptance sampling. In: Computer Aided Verification, 14th International Conference, CAV
2002, Copenhagen, Denmark, 27–31 July 2002, Proceedings, pp. 223–235 (2002)

43. Zhang, L., She, Z., Ratschan, S., Hermanns,H., Hahn, E.M.: Safety verification for probabilistic
hybrid systems. In: Proceedings of the 22nd International Conference on Computer Aided
Verification. Lecture Notes in Computer Science, vol. 6174, pp. 196–211. Springer, New York
(2010)

44. Zhang, Y., Sankaranarayanan, S., Somenzi, F.: Statistically sound verification and optimization
for complex systems. In: Cassez, F., Raskin, J.F. (eds.) Automated Technology for Verification
and Analysis. Lecture Notes in Computer Science, vol. 8837, pp. 411–427. Springer, NewYork
(2014)

MARS: A Toolchain for Modelling, Analysis
and Verification of Hybrid Systems

Mingshuai Chen, Xiao Han, Tao Tang, Shuling Wang, Mengfei Yang,
Naijun Zhan, Hengjun Zhao and Liang Zou

Abstract We introduce a toolchainMARS forModelling, Analyzing and veRifying
hybrid Systems we developed in the past years. Using MARS, we build executable
models of hybrid systems using the industrial standard environment Simulink/State-
flow, which facilitates analysis by simulation. To complement simulation, formal
verification of Simulink/Stateflow models is conducted in the toolchain via the fol-
lowing steps: first, we translate Simulink/Stateflow diagrams to Hybrid CSP (HCSP)
processes by an automatic translator Sim2HCSP, whereHCSP is an extension of CSP
for formally modelling hybrid systems; second, to justify the translation, another
automatic translator HCSP2Sim that translates from HCSP to Simulink is provided,
so that the consistency between the original Simulink/Stateflowmodel and the trans-
latedHCSP formalmodel can be checked by co-simulation; then, theHCSPprocesses
obtained in the first step are verified by an interactive Hybrid Hoare Logic (HHL)
prover; during the verification, an invariant generator independent of the theorem
prover for synthesizing invariants for differential equations and loops is needed. We

M. Chen (B) · S. Wang · N. Zhan · L. Zou
State Key Lab. of Computer Science, Institute of Software, Chinese Academy
of Sciences, Beijing, People’s Republic of China
e-mail: chenms@ios.ac.cn

S. Wang
e-mail: wangsl@ios.ac.cn

N. Zhan
e-mail: znj@ios.ac.cn

L. Zou
e-mail: zoul@ios.ac.cn

X. Han · T. Tang
State Key Lab. of Rail Traffic Control and Safety, Beijing Jiaotong University,
Beijing, People’s Republic of China

M. Yang
Chinese Academy of Space Technology, Beijing, People’s Republic of China

H. Zhao
School of Computer and Information Science, Southwest University,
Chongqing, People’s Republic of China

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_3

39

40 M. Chen et al.

will demonstrate the toolchain by analysis and verification of a descent guidance
control program of a lunar lander, which is a real-world industry example.

1 Introduction

Hybrid systems combine discrete controllers and continuous plants, and occur ubiq-
uitously in safety-critical application areas such as transportation and avionics. To
guarantee the correctness, formal techniques on modelling and verification of hybrid
systems have been proposed [2, 20, 26, 28]. Besides, as a complementary activity
to verification, several approaches have also been proposed for testing such systems
[1, 3, 9]. However, the deep interactions between discrete and continuous compo-
nents, and in addition, the complex continuous dynamics described by (non-linear)
differential equations, make the formal analysis and verification of hybrid systems
extremely difficult.Most existingworkmentioned above can only dealwith restricted
systems, e.g., [2, 20] deal with dynamic and hybrid systems with a decidable reacha-
bility problem; [26] considered how to verify hybrid systems using simulation seman-
tics, which cannot guarantee the correctness of hybrid systems in general because of
the inherent incompleteness of simulation; while it is difficult to handle communi-
cation and parallelism using the approach in [28].

To develop reliable complicated hybrid systems, we propose the toolchainMARS
for Modelling, Analyzing and veRifing hybrid systems. As shown in Fig. 1, the

M
AR

S

Simulink/Stateflow model

HCSP model in the form of
HHL Specifica ons

Sim2HCSP

HHL prover

Invariant
generator

EHS2PHS

HCSP2Sim

Fig. 1 Verification architecture

MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems 41

architecture of MARS is composed of three parts: a translator Sim2HCSP, an HHL
prover, and an invariant generator. At the top level, we build executable models of
hybrid systems in the graphical environment Simulink/Stateflow. As an industrial de-
facto standard for designing embedded systems, Simulink/Stateflow facilitates the
building of an executable model for a complicated system. Specifically, analysis and
validation of a Simulink/Stateflow model can be conducted by simulation. However,
simulation is inherently incomplete in coverage of system test cases and unsound
due to numerical error. As a remedy, it deserves to further verify Simulink/Stateflow
models in a formal verification tool.

In our approach, the translator Sim2HCSP is designed to translate Simulink/S-
tateflow models to HCSP [17, 39]. By extending CSP with differential equations,
HCSP is a formal specification language for modelling hybrid systems, and mean-
while, it is the input language of the interactiveHHL prover. By applying Sim2HCSP,
the translation from Simulink/Stateflow to HCSP is fully automatic. Complemen-
tary to Sim2HCSP, an automatic inverse translator HCSP2Sim is implemented to
justify its correctness. We use HCSP2Sim to translate the HCSP model result-
ing from Sim2HCSP back to Simulink, and check the consistency between the
output Simulink/Stateflow model and the original Simulink/Stateflow model by
co-simulation.

The HHL prover is then applied to verify the above HCSP models obtained from
Sim2HCSP. The HHL prover is a theorem prover for Hybrid Hoare Logic (HHL)
[21, 35]. As the input of the HHL prover, the HCSP models are written in the form
of HHL specifications. Each HHL specification consists of an HCSP process, a pre-
/post-condition that specifies the initial and terminal states of the process, and a
history formula that records the whole execution history of the process, respectively.
HHL defines a set of axioms and inference rules to deduce such a specification.
Finally, by applying the HHL prover, the specification to be proved will be trans-
formed into an equivalent set of logical formulas, which will be proved by applying
axioms of corresponding logics in an interactive or automatic way.

To handle differential equations, we use the concept of differential invariants to
characterize their properties without solving them [22, 29]. For computing differ-
ential invariants, we have implemented an independent invariant generator, which
will be called during the verification in the HHL prover. The invariant generator
integrates both the quantifier elimination and SOS (sum-of-squares) based methods
for computing differential invariants of polynomial equations, and can also deal with
non-polynomial systems by transformation techniques we proposed in [23], which
is implemented as EHS2PHS in Fig. 1.

To evaluate MARS, we report our experience in using MARS on a case study in
real industry, i.e. a descent guidance control program of a lunar lander, which is a
closed-loop control system with non-linear differential equations.1

In our previous work [36], we studied the same example and verified it by com-
bining several different verification techniques including simulation, bounded model

1The toolchain MARS and the verification of the lunar lander example can be found at http://lcs.
ios.ac.cn/~znj/tools/MARS_v1.1.zip.

http://lcs.ios.ac.cn/~znj/tools/MARS_v1.1.zip
http://lcs.ios.ac.cn/~znj/tools/MARS_v1.1.zip

42 M. Chen et al.

checking and theorem proving. In this chapter, we mainly focus on the tool imple-
mentation and integration, rather than on the case study itself as in [36]. The new
contribution of this chapter is threefold:

• Firstly,we implement the reverse translatorHCSP2Sim fromHCSP to Simulink, to
justify the correctness of the translation tool Sim2HCSP from Simulink to HCSP
by co-simulation. This is not considered in the original version of Sim2HCSP
presented in [40];

• Secondly, based on the invariant generation techniques proposed in [22, 23], we
implement an invariant generator for differential equations and integrate it into the
HHL prover. In [36], the invariants of related dynamics are synthesized manually.
Besides, the tool EHS2PHS that abstracts a non-polynomial hybrid system by
a polynomial one based on the technique in [23] is integrated to the invariant
generator;

• Finally, we provide a seamless integration of all the tools on modelling, analysis
and verification of hybrid systems as a toolchain MARS.

1.1 Related Work

There are some work on tools for formal verification of Simulink/Stateflow dia-
grams addressing both discrete and continuous blocks. In [5] Chen et al. proposed an
approach that translates Simulink models to a real-time specification language and
then validated the models via a generic theorem prover. However, their approach can
only handle a special class of differential equations with closed form solutions, and
cannot handle Stateflow diagrams. Tools based on numerical simulation or approxi-
mation are proposed. STRONG [12] performs bounded time reachability and safety
verification for linear hybrid systems based on robust test generation and coverage.
Breach [13] uses sensitivity analysis to compute approximate reachable sets and ana-
lyzes properties in the form of MITL based on numerical simulation. C2E2 [14] ana-
lyzes the discrete-continuous Stateflowmodels annotated with discrepancy functions
by transforming them to hybrid automata, and then checks bounded time invariant
properties of the models based on simulation.

There are some tools for verifying hybrid systems modelled by formal specifi-
cation languages. The tool d/dt [4] provides reachability analysis and safety veri-
fication of hybrid systems with linear continuous dynamics and uncertain bounded
input. iSAT-ODE [15] is a numerical SMT solver based on interval arithmetic that
can conduct bounded model checking for hybrid systems. Flow* [6] computes over-
approximations of the reachable sets of continuous dynamical and hybrid systems in
a bounded time. Both iSAT-ODEand Flow* are able to handle non-polynomialODEs
(ordinary differential equations). Based on deductivemethod, the interactive theorem
prover KeYmaera [30] (and its newly developed version KeYmaera X [16]) verifies
hybrid systems specified using differential dynamic logic. These tools, however, are
not directly applicable to Simulink/Stateflow models.

MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems 43

Organization. The rest of the chapter is organized as follows: Sect. 2 introduces the
tool Sim2HCSP for translating Simulink/Stateflow models, as well as its inverse
HCSP2Sim. Sections3 and 4 introduce the HHL prover for verifying HCSP models
and the invariant generator respectively. In each of the sections, the corresponding
tool is demonstrated by the descent guidance control program of a lunar lander.
Section5 concludes the chapter.

2 Sim2HCSP Translator

In this section, we demonstrate a fully automatic translator Sim2HCSP [40, 42] that
encodes Simulink/Stateflow diagrams into HCSP processes.

Simulink/Stateflow As an industrial de-facto standard, Simulink [31] is extensively
used for modelling, simulating and analyzing multidomain dynamic and embedded
systems. It provides a graphical block diagramming tool and a customizable set of
block libraries for building executable models of embedded systems and their envi-
ronments. A Simulink model contains a set of blocks, subsystems, and wires, where
blocks and subsystems cooperate by sending messages through the wires between
them. For an elementary bloc k, it basically gets input signals and computes the out-
put signals assisted by a set of user-defined parameters to alter its functionalities. One
typical parameter is the sample time, which defines how frequently the computation
is taken. Two special values, 0 and−1, may be set for sample time, where 0 indicates
that the block is used for simulating the physical environment and hence computes
continuously, and −1 signifies that the sample time of the block is not determined
yet, which will be determined by the sample times of the in-coming wires to the
block. Thus, blocks are classified into two categories, i.e. continuous and discrete,
according to their sample times.

As a toolbox integrated into Simulink, Stateflow offers the modelling capabilities
of statecharts for reactive systems. It can be used to construct Simulink blocks, fed
with Simulink inputs and produces Simulink outputs. A Stateflow diagram has a
hierarchical structure, which can be an AND diagram, for which states are arranged
in parallel and all of them become active whenever the diagram is activated; or an
OR diagram, for which states are connected with transitions and only one of them
becomes active when the diagram is activated. A Stateflow diagram consists of an
alphabet of events and variables, a finite set of states, and transition networks.

Hybrid CSP Hybrid CSP (HCSP) [17, 39] is a formal modelling language for hybrid
systems which extends CSP [18] by introducing differential equations, time con-
structs, and interrupts. InHCSP, exchanging data among processes is solely described
by communications, and no shared variable is allowed between different processes
in parallel. We denote by dVar and cVar the countable set of discrete and continuous
variables respectively, and by Chan ranged over ch, ch1, . . ., the countable set of
channels. The syntax of HCSP is given as follows:

44 M. Chen et al.

P =̂ skip | x := e | ch?x | ch!e | P; Q | B → P | P � Q | P∗
| 〈F (ṡ, s) = 0&B〉 | 〈F (ṡ, s) = 0&B〉 � �i∈I (ioi → Qi)

S =̂ P | S‖S

Here ch, chi ∈ Chan, ioi stands for a communication event, i.e. either chi?x or chi !e,
x ∈ dVar ∪ cVar, s ∈ cVar, B and e are Boolean and arithmetic expressions respec-
tively, P, Q, Qi are sequential processes, and S stands for a system, i.e. an HCSP
process.

The intended meaning of the individual constructs is explained as follows:

• skip terminates immediately having no effect on variables; and x := e assigns the
value of expression e to x and then terminates.

• ch?x receives a value along channel ch and assigns it to x , and ch!e sends the value
of e along ch. A communication takes place as soon as both the sending and the
receiving parties are ready, and may cause one side to wait.

• The sequential composition P; Q behaves as P first, and if it terminates, as Q
afterwards.

• The conditional B → P behaves as P if B is true, and otherwise it terminates
immediately.

• The internal choice P � Q behaves as either P or Q, and the choice is made
randomly by the system.

• The repetition P∗ executes P for some finite number of times.
• 〈F (ṡ, s) = 0&B〉 is the continuous evolution statement. It forces the vector s of
real variables to evolve continuously according to the differential equations F
as long as the Boolean expression B, which defines the domain of s, holds, and
terminateswhen B turns false. For hybrid automata, non-determinism occurswhen
both the domain of the continuous evolution and the jump condition are satisfied,
i.e. it can choose to stay in the continuous evolution, or leave it bymaking a discrete
transition. In HCSP, there is no such non-determinism.

• 〈F (ṡ, s) = 0&B〉 � �i∈I (ioi → Qi) behaves like the continuous 〈F (ṡ, s) =
0&B〉, except that it is preempted as soon as one of the communications ioi takes
place. That is followed by the respective Qi . Notice that, if the continuous termi-
nates before a communication among {ioi }i∈I occurs, then the process terminates
immediately without waiting for communication.Whenmultiple communications
from {ioi }i∈I get ready simultaneously before the others, an internal choice among
these ready communications occur.

• S1‖S2 behaves as if S1 and S2 run independently except that all communications
along the common channels connecting S1 and S2 are to be synchronized.

Sim2HCSP TranslatorGiven a Simulink/Stateflowmodel, Sim2HCSP translates its
Simulink and Stateflow parts separately. With the approach in [40], the Simulink
part is translated into a set of HCSP processes, while using the approach in [42], the
Stateflow part is translated into another set of HCSP processes. Then, these HCSP
processes are composed in parallel to form the whole model of the system. The

MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems 45

Simulink and Stateflow diagrams in parallel transmit data or events via communi-
cations. Please refer to [40, 42] for details. Sim2HCSP takes Simulink/Stateflow
models (in xml format, which is generated by a Matlab script) as input, and outputs
several files as the definitions for the corresponding HCSP processes, which contain
three files for defining variables, processes, and assertions for the Simulink part, and
the same three files for each Stateflow diagram within the Stateflow part.

We demonstrate the translation approach by a scenario originating from the
descent guidance control program of a lunar lander, which actually provides a spe-
cific sampled-data control system composed of the physical plant and the embedded
control program.

Example 1 (running example) The guidance control program is built as a Simulink
diagram in Fig. 2, which includes three parts: updating mass m, calculating acceler-
ation aIC, and calculating thrust Fc. The sample time of all blocks is fixed as 0.128s,
i.e. the period of the guidance program. In Fig. 2, block m_in reads mass m from the
continuous plant (modelled as the Simulink diagram in Fig. 3) periodically, block Fc
is used to calculate thrust Fc, and the rest are used to calculate acceleration aIC. In
particular, there are two inputs for block Fc: the first is the acceleration aIC, which
is defined as

−0.01(Fc/m − gM) − 0.6(v − vslw) + gM

Fig. 2 Simulink diagram of the guidance program for the slow descent phase

Fig. 3 The Simulink diagram of the dynamics for the slow descent phase

46 M. Chen et al.

as shown in the diagram; the second is the mass m, and Fc is then defined as the
product of aIC and m. The details of the guidance program can be found in [36].

The lander’s dynamics is mathematically represented by

⎧
⎪⎪⎨

⎪⎪⎩

ṙ = v
v̇ = Fc

m − gM
ṁ = − Fc

Isp

Ḟc = 0

(1)

where

• r, v andm denote the altitude (relative to lunar surface), vertical velocity and mass
of the lunar lander, respectively;

• Fc is the thrust imposed on the lander, which is a constant in each sampling period
of length 0.128 s;

• gM = 1.622 m/s2 is the magnitude of the gravitational acceleration on the moon;
• Isp denotes the specific impulse2 of the lander’s thrust engine. It has two possible
values depending on the values of Fc. When Fc is less or equal than 3000 N,
Isp = 2548 N s/kg, and otherwise, Isp = 2842 N s/kg. For simplicity, we use Isp1
and Isp2 to represent the two values of the impulse, and meanwhile, use ODE1

and ODE2 to represent the two differential equations corresponding to Isp1 and
Isp2 as defined by (1) respectively.

The physical dynamics in (1) is modelled by the diagram shown in Fig. 3, where
the threshold of block ISP_choose is 3000, meaning that it outputs 2842 as the value
of Isp when Fc is greater than 3000 and 2548 otherwise. The initial values of m, v,
and r (m = 1250 kg, r = 30 m, v = −2 m/s) are specified as initial values of the
integrator blocks m, v, and r respectively. Specifically, an integrator block outputs
its initial value at the beginning and the integration of the input signal afterwards.

The safety property we want to prove for the lunar lander system is Safety |v −
vslw| ≤ ε, where ε = 0.05 m/s is the tolerance of fluctuation of v around the target
vslw = −2 m/s.

The simulation result w.r.t the velocity v is illustrated in Fig. 4. It is shown that
the velocity of the lander is kept between −2 and −1.9999 m/s, which corresponds
to the safety property we proposed above.

Then themanually constructed Simulinkmodel is translated into annotated HCSP
using the tool Sim2HCSP, which employs the HCSP pattern

definition P :: proc where
"P == PC_Init; PD_Init; t:=0; (PC_Diff;t:=0; PD_Rep)*"

In process P, PC_Init and PD_Init are initialization procedures for the continuous
dynamics and the guidance program respectively; PC_Diff models the continuous

2Specific impulse is a physical quantity describing the efficiency of rocket engines. It equals the
thrust produced per unit mass of propellant burned per second.

MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems 47

Fig. 4 The original
simulation result

0 5 10 15 20 25
−2

−1.9999

v

t

Fig. 5 The co-simulation
result

0 5 10 15
−2

−2

−2

−2

−2

−1.9999

−1.9999

−1.9999

−1.9999

−1.9999

−1.9999

original
H2S

t

v

dynamics given by (1) within a period of 0.128 s; PD_Rep calculates thrust Fc

according to

F ′
c := −0.01(Fc − m · gM) − 0.6(v − vslw)m + m · gM (2)

for the next sampling cycle; variable t denotes the elapsed time in each sampling
cycle. Hence, process P is initialized at the beginning by PC_Init and PD_Init, and
behaves as a repetition of dynamics PC_Diff and computation PD_Rep afterwards.

Consistency Checking by Co-simulation To justify the correctness of the translation
above, we provide a method to check the consistency between the original Simulink
model and the generated HCSP formal model. This is done with the help of a tool
called HCSP2Sim [7], an inverse decoding from HCSP back into Simulink. The
translator HCSP2Sim takes as input an HCSP process transformed directly from the
HCSP model generated by Sim2HCSP, and generates a Simulink graphical model in
the mdl format automatically as output. Figure5 illustrates the co-simulation result,
where the evolution of the lander’s velocity v in the original Simulinkmodel is shown
as the red dash line3 and the one for the inversely translated Simulink model as the
blue line. The co-simulation result shows that the translation loop keeps the behaviour
of the system consistently. However, as also shown by the result, there exists a gap
between the red andblue lines. This is the inevitable consequence of introducing some

3Identical to the line in Fig. 4.

48 M. Chen et al.

necessary delay blocks in the translation fromHCSP to Simulink, to prevent the zeno4

phenomena while keeping the well-composed translation architecture. Nevertheless,
absolute magnitude of the gap can be reduced by means of narrowing the simulation
time step to an acceptable slot. In such way, a more precise co-simulation can be
conducted. As an additional byproduct, the inverse translation also provides people
with the ability to simulate an abstract formal model and see how the system behaves
immediately and intuitively.

3 HHL Prover

This section presents the HHL prover for reasoning about HCSP models, and before
that, gives a brief introduction of the Hybrid Hoare Logic (HHL) based on which the
prover is implemented.

Hybrid Hoare Logic For verifying the behavior of HCSP processes, a deductive
calculus called Hybrid Hoare Logic (HHL) is proposed in [21]. Given a process P ,
the specification {Pre}P{Post; HF} is defined,wherePre andPost are first-order logic
(FOL) formulas for specifying the pre-/post-conditions holding at the beginning and
termination of P , andHF is a duration calculus (DC) [37, 38] formula for specifying
the history throughout the whole execution of P . Here DC is an interval logic for
describing real-time systems. In particular, as used below in the paper, � is a temporal
variable denoting the length of the considered interval, and �S
 for someFOL formula
S means that S holds everywhere in the considered interval.

In HHL, for each HCSP construct, a set of inference rules are given for deducing
its specifications. Belowwe explain the rule for the continuous evolution 〈F (ṡ, s) =
0&B〉. Instead of explicit solutions, the concept of differential invariant [22, 29] is
used to characterize the behavior of the corresponding differential equations. As
shown by the following rule, a differential invariant Inv needs to be annotated in the
specification:

I ni t → Inv (Inv,F) → Inv p ∧ close(Inv) ∧ close(¬B) → q
l = 0 ∨ �close(Inv) ∧ p ∧ close(B)
 → G

{I ni t ∧ p} 〈F (ṡ, s) = 0&Inv&B〉 {q;G}
where Init specifies the initial state for s, p for other variables rather than s (thus
will not change during the evolution), and function close(·) extends the domain by
the corresponding formula to include the boundary; (Inv,F) represents the formula
describing the post-states of F executing from a state satisfying Inv. Consider the
hypothesis, the FOL formula in the first line indicates that Inv is indeed a sufficiently
strong invariant, i.e. it is satisfied by the initial state, preserved by the continuous

4A sequence of infinitely many computations that take finite time.

MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems 49

evolution, and strong enough to guarantee the postcondition; the DC formula in the
second line indicates that the evolution terminates immediately (specified by l = 0),
or otherwise, if the evolution takes more than zero time, then the closure of invariant
Inv, the precondition p (related to discrete variables) and the closure of domain B
hold everywhere throughout the whole execution. We have proved the soundness
of the rule, and thus the proof of the specification of the continuous evolution will
be reduced to an equivalent differential invariant generation problem: if Inv exists
such that it satisfies the conditions in the hypothesis, then the original specification
is proved.

TheHHLProverThe interactive theorem proverHHLprover, as illustrated by Fig. 1,
is implemented in Isabelle/HOL to mechanize the HHL framework and has been
applied for verifying practical hybrid systems [36, 41]. The prover encodes the HHL
framework in a deep style: the HCSP processes and the two assertion languages
(i.e. FOL and DC) are defined by respective new datatypes, and in consequence,
the inference system of HCSP (i.e. HHL), the deductive systems of FOL and DC
are defined as new axioms, of Isabelle/HOL respectively. In the HHL prover, a set
of verification conditions for HHL specifications are generated first by applying
HHL inference rules, and then these conditions are proved by applying the FOL
and DC deductive rules. Most of the proofs are done interactively. To improve this,
we define a conversion function from our FOL formulas to HOL formulas and thus
the existing proof tactics of Isabelle/HOL are applicable. For example, the powerful
sledgehammer that integrates third-party SMT solvers such as Z3 [11] can be applied
to prove FOL formulas in the HHL prover.

When the specification to be proved contains unknown differential invariants,
some verification conditions related to the invariants remain unproved inHHLprover.
For such cases, the prover needs to call external provers, e.g. the invariant generator
in MARS, for solving the invariants. This will be explained in detail in the next
section.

Example 2 (running example) In Sect. 2, by applying Sim2HCSP, we get the HCSP
process P for the lunar lander example. In order to meet the design requirement of
the control program, we need to prove the following specification for it:

{True} P {|v-vlsw | <=0.05; (l=0)| high(|v-vlsw | <=0.05)}

where high corresponds to the �
 operator in DC. The specification indicates that
the slow descent phase satisfies the safety property, i.e., the difference between the
velocity v and the target velocity vlsw is always at most 0.05. By applying HHL
prover, the specification is finally reduced to the following five unsolved constraints
for the differential invariants of P:

lemma cons1: "(t <=0.128) & (t>=0) & Inv |- |v-vlsw | <=0.05"
lemma cons2: "(v=-2) & (m=1250) & (Fc =2027.5)

& (t=0) |- Inv"
lemma cons3: "(t= 0.128) & Inv

|- substF ([(t,0)], substF ([(Fc ,
-0.01*(Fc -1.622*m) - 0.6*(v+2)*m + 1.622*m)],Inv))"

50 M. Chen et al.

lemma cons4: "exeFlow(’’v, m, r, t’’,
’’(Fc/m) - 1.622, -(Fc/2548) , v, 1’’,t < 0.128,Inv) |- Inv"

lemma cons5: "exeFlow(’’v, m, r, t’’,
’’(Fc/m) - 1.622, -(Fc/2842) , v, 1’’,t < 0.128,Inv) |- Inv"

The intuitive explanation of the constraints is: during each period of length 0.128 s,
the invariant Inv is sufficiently strong to deduce the safety property (cons1), the initial
state satisfies Inv (cons2), the computation, and the continuous evolution governed
by the two differential equations of P , preserve Inv respectively (cons3, cons4 and
cons5). In the above constraints, function exeFlow(ode, f) for given equation ode
and precondition f returns the postcondition after executing the continuous flow
represented by ode from a state satisfying f . In the next section, we will show how
to apply an external invariant generator to handle these constraints.

4 Invariant Generator

To prove the invariant related subgoals during the verification in the HHL prover, we
need to call an external invariant generator from the HHL prover. The invariant gen-
erator of MARS provides two approaches to synthesizing invariants, i.e., quantifier
elimination (QE) based and SOS based. Before introducing the invariant generator,
we explain how to invoke an external prover in Isabelle.

4.1 Isabelle Oracle

Isabelle provides the oracle mechanism to use new decision procedures not based on
its inference kernel. Listing 1 defines the oracle to decide invariant related constraints.
Function trans_allCons translates an invariant constraint in the formof FOL formulas
into the string representation expected by the solver. The core function decide takes
a string representation of the invariant constraints and passes it to the script program
implementing the invariant generator, and then returns true if an invariant exists such
that the constraints are satisfied, or false otherwise. These two functions are then
combined into the oracle inv_oracle, which verifies an input invariant constraint
using decide, and outputs it as a theorem of Isabelle without any change if it is
certified. Finally, to be used for Isabelle proofs, the oracle inv_oracle is wrapped into
a tactic inv_oracle_tac and then a new method inv_oracle is created based on this
tactic.

1 ML{*
2 fun trans_allCons t = ...
3 fun decide p = "$InvGen/script.sh "^"\""^p^"\""
4 |> Isabelle_System .bash_output
5 |> fst
6 |> isTrue ;*}
7 oracle inv_oracle = {* fn ct =>

MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems 51

8 if decide (trans_allCons (Thm.term_of ct))
9 then ct
10 else error "Proof failed."*}
11 ML{*
12 val inv_oracle_tac =
13 CSUBGOAL (fn (goal , i) =>
14 (case try inv_oracle goal of
15 NONE => no_tac
16 | SOME thm => rtac thm i))*}
17 method_setup inv_oracle = {*
18 Scan.succeed (K (Method.SIMPLE_METHOD ’ inv_oracle_tac))*}

Listing 1 The Oracle for deciding differential invariants

Depending on the different methods for computing differential invariants, we
have implemented two oracles: inv_oracle_qe based on quantifier elimination, and
inv_oracle_sos based on the SOS method. We will explain these methods in more
detail in Sects. 4.2–4.5.

Example 3 (running example) By applying the oracle inv_oracle_sos, we have
proved the conjunction of the unsolved five constraints presented in Example 2 as a
lemma:

lemma allCons: "|- cons1 [&] cons2 [&] cons3 [&] cons4 [&] cons5"
apply (simp: add consi_def for all i)
apply inv_oracle_sos
done

At this state, by applying MARS, the verification of the safety for the lunar lander
example thus is completed. Specifically, the manual proof script consists of approx-
imately 300 lines and the verification is done within one minute on a 32-bit Linux
computer with a 1.60GHz Intel Core-i5 processor and 4GB of RAM.

Next we present the invariant generator in detail.

4.2 Differential Invariant Generation

The basic idea of differential invariant generation is by using templates and constraint
solving. For simplicity, we illustrate the idea on systems with a single ODE and no
jumps. For such systems, the unresolved constraints as in Examples 2 and 3 would
roughly be as follows:

(a) φpre −→ φinv;
(b) φinv −→ [ẋ = f]φinv;
(c) φinv −→ φpost,

52 M. Chen et al.

where

• (a) means that a certain precondition φpre implies the required invariant φinv;
• (b) means that any trajectory of the ODE ẋ = f starting from φinv will always
satisfy φinv, that is, φinv is a differential invariant of ẋ = f ;

• (c) means that the differential invariant φinv implies a certain postcondition φpost.

For systems with different modes and jumps betweens these modes, as well as
reset functions related to the jumps, additional constraints will be imposed, which
are omitted here.

Example 4 In a more readable way, the five unresolved lemmas in Examples 2 and
3 impose the following constraints:

(C1) t ≤ 0.128 ∧ t ≥ 0 ∧ Inv −→ |v − vslw| ≤ 0.05;
(C2) v = −2 ∧ m = 1250 ∧ Fc = 2027.5 ∧ t = 0 −→ Inv;
(C3) t = 0.128 ∧ Inv −→ Inv(t �→ 0; Fc �→ F ′

c), with F ′
c defined in (2);

(C4) Inv is the differential invariant of the constrained dynamical system

〈ODE1; 0 ≤ t ≤ 0.128 ∧ Fc ≤ 3000〉

(C5) Inv is also the differential invariant of the constrained dynamical system

〈ODE2; 0 ≤ t ≤ 0.128 ∧ Fc > 3000〉

whereODE1 andODE2 are the dynamics in (1) corresponding to Isp1 and Isp2
respectively.

If φpre and φpost are polynomial formulas, and f is a polynomial vector field,
then we can try to generate φinv by defining a polynomial template, i.e. a polynomial
formula with undetermined parameters as an invariant candidate and then solving
certain constraints to get the parameters. We have the following two approaches for
generating constraints from (a)–(c) and getting the parameters:

(1) QE-Based: transform (a), (b) and (c) into first-order polynomial formulas as
proposed in [22] and then apply quantifier-elimination (QE) [8] to the quantified
conjunction of the transformed formulas to see if the parameters have solutions;

(2) SOS-Based: transform (a), (b) and (c) into sum-of-squares (SOS) constraints
as proposed in [19] and then use an SDP (semi-definite programming) solver to
solve the constraints to get the values of parameters.

The QE-approach is exact and more general, and in particular, the transformation
of [22] is sound and complete, while the SOS approach is more efficient due to the
use of numerical computation. We have implemented invariant generators based on
both QE and SOS, and integrated them into the MARS tool chain. We will give more
details about the two generators in Sects. 4.4 and 4.5 respectively.

Whenφpre andφpost are non-polynomial formulas, or f is a non-polynomial vector
field, we will use the abstraction approach proposed in the next subsection.

MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems 53

4.3 Abstraction of Elementary Hybrid Systems by Variable
Transformation

In practice, HSs (hybrid systems) may contain elementary functions such as exp, ln,
sin, cos, etc., called Elementary Hybrid Systems (EHSs). Due to the non-polynomial
expressions which lead to undecidable arithmetic, verification of EHSs is very hard.
Existing approaches based on partition of the state space or overapproximation of
reachable sets suffer from state space explosion or inflation of numerical errors. In
[23], we proposed a symbolic abstraction approach that reduces EHSs to polynomial
hybrid systems (PHSs), by replacing all non-polynomial termswith newly introduced
variables. Thus the verification of EHSs is reduced to the one of PHSs, enabling us
to apply all the well-established verification techniques and tools for PHSs to EHSs.
In this way, it is possible to avoid the limitations of many existing methods. We have
implemented the above abstraction procedure as a tool EHS2PHS.

For example, the dynamics of the lunar lander involves non-polynomial expres-
sion, v̇ = Fc

m − gM, which is abstracted by the tool EHS2PHS based on a rule of
variable transformation, i.e. a = Fc

m , where a happens to be the instant acceleration
produced by the thrust Fc of the lander. The equivalently transformed polynomial
system will then be delivered to the invariant generator.

4.4 QE-Based Invariant Generator

The invariant generator based on quantifier elimination is implemented in Math-
ematica as a Wolfram script. It can be accessed in Isabelle through the method
inv_oracle_qe using command apply inv_oracle_qe. The generator takes two
parameters as input: constraints φallCons to be solved from the Isabelle function
trans_allCons as shown in Listing 1, as well as a positive integer n through the user
interface. The parameter n is the order of polynomials which will be used to gen-
erate a parameterized polynomial invariant template based on variables X extracted
from φallCons. The parameters in the invariant template is denoted as U and there is
a user interface to set certain parameters in U to 0 in order to reduce the difficulty
of quantifier elimination. There is a placeholder inv in φallCons, which will then be
replaced by the generated invariant template.

Now φallCons is a conjunction of constraints like those shown in Example 4. Then
constraints like (C4) are translated into polynomial formulas using the technique
proposed in [22], and accordingly, φallCons is transformed into a conjunction of poly-
nomial formulas, denoted by φpoly. Use the default quantifier elimination function
Resolve in Mathematica to eliminate all the quantifiers in ∃U∀X : φpoly, and a result
True or False will be returned. The invariant generator will then pass this result to
Isabelle.

54 M. Chen et al.

4.5 SOS-Based Invariant Generator

In order to avoid the high complexity of quantifier elimination algorithms, which
takes doubly exponential time on real closed fields [10], an alternative is provided
to synthesize invariants based on sum-of-squares (SOS) relaxation approach in the
study of polynomial hybrid systems [19]. Given a bunch of unproven constraints
derived from Isabelle, the SOS-based invariant generator first transforms them into
a sequence of SOS-constraints w.r.t the user-defined invariant template, and then
invokes semidefinite programming (SDP) [27, 34] to solve the parameterized poly-
nomial invariant.

We continue the lunar lander example to demonstrate the use of the generator.
Like the QE method, the SOS-based invariant generator can be triggered in Isabelle
by an oracle called inv_oracle_sos, in which a terminal window is initially popped-up
for the user to specify the upper bound of the polynomial degree d (we assume that
the undetermined invariant Inv is a semialgebraic set of the form PInv ≤ 0, where
PInv is a parameterized polynomial with degree d); and then a Mathematica script
ScriptGenerator is executed to generate an SOS-constraint model sosInv.m written
as a script of the Matlab-based optimization tool Yalmip [24, 25]. For instance, the
safety constraint (C1) which is equivalent to

t ≥ 0 ∧ t ≤ 0.128 ∧ (v < −2.05 ∨ v > −1.95) → PInv > 0,

is transformed to an SOS-constraint:

SOS(PInv − s1 ∗ t ∗ (0.128 − t) − s2 ∗ (v + 1.95) ∗ (v + 2.05) − eps)

where SOS(f) indicates that the function f is a sum-of-squares polynomial, s1 and
s2 are both SOS polynomials, and eps is a given positive constant denoting a margin
introduced to avoid the errors of numerical computation in Matlab; to determine the
parameters in PInv, s1, and s2, as well as parameters in the other constraints, the
Yalmip script sosInv.m is then executed in Matlab and invokes the solver SDPT-3
[32, 33] to solve all the SOS-constraints; finally, another Mathematica script
InvChecker is called to check and return the solving result back to Isabelle, namely
True if the problem is successfully solved, or False otherwise. With d = 6, we get a
result of True associated with the invariant shown in Fig. 6 (left part), and complete
the proof of lemma allCons in Example 3 eventually.

In addition, once the SOS-based invariant generator is triggered by applying ora-
cle inv_oracle_sos in Isabelle, all the procedures described above, except for the
pop-up terminal, are transparent to users, i.e. no Matlab desktop or Mathematica
frontend can be observed. Therefore in order to give an intuitive observation of the
invariant, we provide an additional notebook file InvChecker.nb that can be executed
in a Mathematica frontend to plot a graphical region of the generated invariant as
depicted by Fig. 6 (right part). Besides, to avoid synthesizing a false invariant due
to numerical computation errors, we can also integrate symbolic posterior checking

MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems 55

Fig. 6 The invariant generated by SOS relaxation with d = 6

of the generated invariants in InvChecker.nb, based on the symbolic computation
packages provided in Mathematica.

5 Conclusion and Future Work

We presented a toolchain named MARS that links the modelling, analysis and veri-
fication of hybrid systems. The workflow of using MARS consists of the following
phases: firstly, hybrid systems are modelled in the Simulink/Stateflow environment,
which also facilitates model validation through numerical simulation; secondly, to
overcome the limitations of simulation, the informal Simulink/Stateflow models are
automatically transformed through the Sim2HCSP translator into formal models in
the HCSP language; meanwhile, by an inverse translation from HCSP to Simulink
models using the tool HCSP2Sim, and performing co-simulation, the consistency
between the informal and formal models are justified; finally, the HCSP models
can be verified preserving the given properties using the interactive HHL Prover,
in which different schemes for automatic differential invariant generation are inte-
grated, possibly with the support of EHS2PHS to abstract an EHS to a PHS first. We
have discussed the details of the implementation of all components of MARS, and
demonstrated how to use it through a real-life example of the slow descent control
of a lunar lander.

As future work, we plan to improve MARS in the following aspects:the HHL
prover needs improving its HHL verification framework and also its encoding in
Isabelle/HOL so that more automation can be achieved for the proofs; the external
invariant generators need to be enhanced with more efficient symbolic or hybrid

56 M. Chen et al.

numeric-symbolic computation techniques; the toolchain will be applied to other
real-world case studies such as the modelling and verification of Chinese High-
Speed Train Control System (CTCS); various component tools of MARS need to be
more tightly integrated with a friendly user interface provided; and so on.

Acknowledgements The work is supported partly by “973 Program” under grant No. 2014CB-
340701, by NSFC under grants 91418204 and 91118007, by CDZ project CAP (GZ 1023), and by
the CAS/SAFEA International Partnership Program for Creative Research Teams.

References

1. Aerts, A., Mousavi, M.R., Reniers, M.: A tool prototype for model-based testing of cyber-
physical systems. In: Leucker, M., Rueda, C., Valencia, D.F. (eds.) ICTAC 2015, pp. 563–572.
Springer International Publishing (2015)

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: an algorithmic
approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode,
A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems. Lecture Notes in Computer Science, vol.
736, pp. 209–229. Springer, Berlin, Heidelberg (1993)

3. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal
logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011,
pp. 254–257. Springer, Berlin, Heidelberg (2011)

4. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: CAV 2002.
Lecture Notes in Computer Science, vol. 2404, pp. 365–370 (2002)

5. Chen, C., Dong, J.S., Sun, J.: A formal framework for modelling and validating Simulink
diagrams. Form. Asp. Comput. 21(5), 451–483 (2009)

6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow∗: An analyzer for non-linear hybrid sys-
tems. In: CAV 2013. Lecture Notes in Computer Science, vol. 8044, pp. 258–263 (2013)

7. Chen,M., Ravn, A., Yang,M., Zhan, N., Zou, L.: A two-way path between formal and informal
design of embedded systems. In: Proc. UTP 2016 (2016)

8. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decom-
postion. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. Lecture Notes in
Computer Science, vol. 33, pp. 134–183. Springer, Berlin, Heidelberg (1975)

9. Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid systems.
Form. Methods Syst. Des. 34(2), 183–213 (2009)

10. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput.
5(1–2), 29–35 (1988)

11. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS 2008. Lecture Notes in
Computer Science, vol. 4963, pp. 337–340. Springer, Berlin, Heidelberg (2008)

12. Deng,Y., Rajhans,A., Julius,A.A.: STRONG: a trajectory-based verification toolbox for hybrid
systems. In: QEST 2013. Lecture Notes in Computer Science, vol. 8054, pp. 165–168 (2013)

13. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In:
CAV 2010. Lecture Notes in Computer Science, vol. 6174, pp. 167–170 (2010)

14. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for annotated
Stateflow models. In: TACAS 2015. Lecture Notes in Computer Science, vol. 9035, pp. 68–82
(2015)

15. Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M.: Improving SAT modulo ODE for hybrid
systems analysis by combining different enclosure methods. In: SEFM 2011, pp. 172–187.
Springer-Verlag, Berlin, Heidelberg (2011)

16. Fulton, N., Mitsch, S., Quesel, J., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical
theorem prover for hybrid systems. CADE 2015, 527–538 (2015)

MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems 57

17. He, J.: From CSP to hybrid systems. In: A Classical Mind, Essays in Honour of C.A.R. Hoare,
pp. 171–189. Prentice Hall International (UK) Ltd. (1994)

18. Hoare, C.: Communicating Sequential Processes, vol. 178. Prentice-hall Englewood Cliffs
(1985)

19. Kong,H., He, F., Song,X., Hung,W.N.,Gu,M.: Exponential-condition-based barrier certificate
generation for safety verification of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV
2013. Lecture Notes in Computer Science, vol. 8044, pp. 242–257. Springer, Berlin Heidelberg
(2013)

20. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of
linear vector fields. J. Symb. Comput 32(3), 231–253 (2001)

21. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for hybrid CSP.
In: Ueda, K. (ed.) APLAS 2010. Lecture Notes in Computer Science, vol. 6461, pp. 1–15.
Springer, Berlin, Heidelberg (2010)

22. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical
systems. In: EMSOFT 2011, pp. 97–106. ACM, New York, NY, USA (2011)

23. Liu, J., Zhan, N., Zhao, H., Zou, L.: Abstraction of elementary hybrid systems by variable
transformation. In: FM 2015. Lecture Notes in Computer Science, vol. 9109, pp. 360–377
(2015)

24. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings
of the CACSD Conference. Taipei, Taiwan (2004). http://users.isy.liu.se/johanl/yalmip

25. Löfberg, J.: Pre- and post-processing sum-of-squares programs in practice. IEEETrans.Autom.
Control 54(5), 1007–1011 (2009)

26. Manna, Z., Pnueli, A.: Verifying hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P.,
Rischel, H. (eds.) Hybrid Systems. Lecture Notes in Computer Science, vol. 736, pp. 4–35.
Springer, Berlin, Heidelberg (1993)

27. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Pro-
gram. 96(2), 293–320 (2003)

28. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Logic
Comput. 20(1), 309–352 (2010)

29. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints.
In: Gupta, A., Malik, S. (eds.) CAV 2008. Lecture Notes in Computer Science, vol. 5123, pp.
176–189. Springer, Berlin, Heidelberg (2008)

30. Platzer, A., Quesel, J.D.: KeYmaera: a hybrid theorem prover for hybrid systems. In: IJCAR
2008. LectureNotes inComputer Science, vol. 5195, pp. 171–178. Springer, Berlin, Heidelberg
(2008)

31. Simulink User’s Guide. http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
(2013)

32. Toh, K.C., Todd, M., Tütüncü, R.H.: SDPT3 – a MATLAB software package for semidefinite
programming. Optim. Methods Softw. 11, 545–581 (1999)

33. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using
SDPT3. Math. Program. 95(2), 189–217 (2003)

34. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
35. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theorem prover for

hybrid systems. In: ICFEM 2015. Lecture Notes in Computer Science, vol. 9407, pp. 382–399
(2015)

36. Zhao, H., Yang, M., Zhan, N., Gu, B., Zou, L., Chen, Y.: Formal verification of a descent
guidance control program of a lunar lander. In: FM 2014. Lecture Notes in Computer Science,
vol. 8442, pp. 733–748 (2014)

37. Zhou, C., Hansen, M.R.: Duration Calculus – A Formal Approach to Real-Time Systems.
Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin
Heidelberg (2004)

38. Zhou, C., Hoare, C., Ravn, A.P.: A calculus of durations. Inf. Process. Lett. 40(5), 269–276
(1991)

http://users.isy.liu.se/johanl/yalmip
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf

58 M. Chen et al.

39. Zhou, C.,Wang, J., Ravn, A.P.: A formal description of hybrid systems. In: Alur, R., Henzinger,
T.A., Sontag, E.D. (eds.) Hybrid Systems III. Lecture Notes in Computer Science, vol. 1066,
pp. 511–530. Springer, Berlin, Heidelberg (1996)

40. Zou, L., Zhan, N., Wang, S., Fränzle, M., Qin, S.: Verifying Simulink diagrams via a Hybrid
Hoare Logic prover. EMSOFT 2013, 1–10 (2013)

41. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying Chinese train control
system under a combined scenario by theorem proving. In: Cohen, E., Rybalchenko, A. (eds.)
VSTTE 2013. Lecture Notes in Computer Science, vol. 8164, pp. 262–280. Springer, Berlin
Heidelberg (2014)

42. Zou, L., Zhan, N., Wang, S., Fränzle, M.: Formal verification of Simulink/Stateflow diagrams.
In: ATVA 2015. Lecture Notes in Computer Science, vol. 9346, pp. 464–481 (2015)

Part III
Correctness of Concurrent Algorithms

A Proof Method for Linearizability
on TSO Architectures

John Derrick, Graeme Smith, Lindsay Groves and Brijesh Dongol

Abstract Linearizability is the standard correctness criterion for fine-grained non-
atomic concurrent algorithms, and a variety of methods for verifying linearizability
have been developed. However, most approaches to verifying linearizability assume
a sequentially consistent memory model, which is not always realised in practice. In
this chapter we study the use of linearizability on aweak memory model. Specifically
we look at the TSO (Total Store Order) memory model, which is implemented in
the x86 multicore architecture. A key component of the TSO architecture is the
use of write buffers, which are used to store pending writes to memory. In this
chapter, we explain how linearizability is defined on TSO, and how one can adapt a
simulation-based proof method for use on TSO. Our central result is a proof method
that simplifies simulation-based proofs of linearizability on TSO. The simplification
involves constructing a coarse-grained abstraction as an intermediate specification
between the abstract representation and the concurrent algorithm.

1 Introduction

Concurrency is here to stay. Furthermore, many systems and most multiprocessors
use shared memory. The use of concurrent algorithms to optimise performance is
likely to be important for some time in this scenario, where fine-grained algorithms
implement single atomic operations as interleaved non-atomic decompositions. The

J. Derrick (B)
Department of Computing, University of Sheffield, Sheffield, UK
e-mail: J.Derrick@sheffield.ac.uk

G. Smith
School of Information Technology and Electrical Engineering,
The University of Queensland, St Lucia, QL, Australia

L. Groves
School of Engineering and Computer Science, Victoria University of Wellington,
Wellington, New Zealand

B. Dongol
Department of Computer Science, Brunel University of London, London, UK

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_4

61

62 J. Derrick et al.

use of such algorithms is already common-place, implementing data structures such
as stacks, queues, trees, etc., and they are now found in standard programming
libraries. In order to fully exploit the potential concurrency, algorithms dispense
with large-scale locking of data structures in the shared memory to prevent lengthy
delays. This means that the shared data structure can be concurrently accessed by
different processors executing possibly different operations. This offers speed-ups
over algorithms that use large-scale locking mechanisms, however, this optimisation
comes at a price – that of verifying their correctness.

There has been extensive work on correctness of fine-grained concurrent algo-
rithms over the last few years [14], where linearizability [16] is the key criteria that is
applied. This requires that fine-grained implementations of data structure operations
appear as though they take effect “instantaneously at some point in time” between
their invocation and response [16], thereby achieving the same effect as an atomic
operation. However, the vast majority of work on linearizability assumes a par-
ticular memory model; specifically a sequentially consistent (SC) memory model,
whereby memory instructions are executed by the hardware in the order specified
by the program. Typical multicore systems communicate via shared memory and,
to increase efficiency, use (local) write buffers. Whilst these relaxed memory mod-
els give greater scope for optimisation, sequential consistency is lost, and because
memory accesses may be reordered in various ways it is even harder to reason
about correctness. Typical multiprocessors that provide such weaker memory mod-
els include the x86 [21], Power [23] and ARM [1] multicore processor architec-
tures.

In this chapter, we focus on the TSO (Total Store Order) model [23] which is
implemented in the x86 architecture. We define a notion of linearizability for use
on this architecture, called TSO-linearizability [11]. Verifying linearizability on a
sequentially consistent memory model can be challenging even without the additional
complexity that TSO introduces due to the reordering of the memory accesses. We
describe how we can simplify the verification to reduce some of this complexity.
We do this by observing that in many cases the proof obligations required of TSO-
linearizability can be split into two: one aspect dealing with the fine-grained nature
of the concurrent algorithm, and the other with the effect the local write buffers have
on the shared memory.

We exploit this observation in our proof method, which uses a coarse-grained
abstraction that lies between the abstract specification and the concurrent algorithm.
The coarse-grained abstraction captures the semantics of the concurrent algorithm
when there is no fine-grained interleaving of operations by different processes. Our
simplified proof method then requires one set of proof obligations between the
concurrent algorithm and the coarse-grained abstraction, and another set of proof
obligations between the coarse-grained abstraction and the abstract description.
The proof method, originally proposed in [12], is extended in this chapter to be
less dependent on the form of the abstract specification, and hence more generally
applicable.

A Proof Method for Linearizability on TSO Architectures 63

We structure the chapter as follows. In Sect. 2 we introduce the standard definition
of linearizability on SC architectures and present an existing proof method for it. In
Sect. 3 we introduce the TSO model and formalise a notion of linearizability on TSO
previously published in [11]. In Sect. 4 we show how to construct a coarse-grained
abstraction. We define a transformation from the coarse-grained abstraction to the
abstract one, which together with the results of Sect. 2 allows us to prove overall
correctness of the concrete specification with respect to the abstract one. We then
show how to apply the approach to a more complex example, the Chase-Lev work-
stealing deque [6], in Sect. 5, before concluding in Sect. 6.

2 Linearizability

Linearizability [16] is widely regarded as the standard correctness criterion for con-
current objects. Given an abstract specification and a proposed implementation, the
idea of linearizability is that any concurrent execution of the implementation must
be consistent with some abstract execution of the specification.

Linearizability provides the illusion that each operation applied by concurrent processes
takes effect instantaneously at some point between its invocation and its return. This point
is known as the linearization point.

This means that if two operations overlap, then they may take effect in any order
from an abstract perspective, but otherwise they must take effect in the order in which
they are invoked.

Since the original definition there has been considerable interest in deriving tech-
niques for verifying linearizability [14]. These range from using shape analysis
[2, 5] and separation logic [5] to rely-guarantee reasoning [25] and refinement-based
simulation methods [13]. In particular, Derrick et al. have developed a refinement-
based method for verifying linearizability [8–10, 20]. This approach is fully encoded
in a theorem proving tool, KIV [19], and has been proved sound and complete —
the proofs themselves being done within KIV.

Case study: Before providing a formal definition of linearizability we introduce
our running example – a spinlock [3], which is a locking mechanism designed to
avoid operating system overhead associated with process scheduling and context
switching.

The abstract specification (given below in Z) simply describes a lock, with oper-
ations Acquirep, Releasep and TryAcquirep parameterised by the identifier of the
process p ∈ P performing the operation, where P is the set of all process identifiers.
A global variable x represents the lock and is set to 0 when the lock is held by a
thread, and 1 otherwise.

64 J. Derrick et al.

Fig. 1 Spinlock implementation

AS
x : {0,1}

ASInit
AS

x= 1

Acquirep
ΔAS

x= 1
x′ = 0

Releasep
ΔAS

x′ = 1

TryAcquirep
ΔAS
out! : {0,1}
if x= 1
then x′ = 0 ∧ out! = 1
else x′ = x ∧ out! = 0

A typical implementation of spinlock (taken from [15]) is shown in Fig. 1, given as
pseudo-code. Line numbers, a1, etc., are given to the left of the code, corresponding
to the atomic steps of the operations. A thread trying to acquire the lock spins, i.e.,
waits in a loop, while repeatedly checking x for availability.

A terminating acquire operation will always succeed in acquiring the lock. It
will lock the global memory1 so that no other process can write to x. If, however,
another thread has already acquired the lock (i.e.,x==0) then it will unlock the global
memory and spin, i.e., loop in the while-loop until it becomes free, before starting
over. Otherwise, it acquires the lock by setting x to 0.

The operation release releases the lock by setting x to 1. The tryacquire
operation differs from acquire in that it only makes one attempt to acquire the
lock. If this attempt is successful it returns 1, otherwise it returns 0.

The point about this concurrent implementation is that it is fine-grained. That
is, the operations acquire, etc., are not executed atomically, but the individual

1Locking the global memory is achieved by calling an atomic hardware instruction (in this case, a
test-and-set). It should not be confused with acquiring the software lock of this case study by setting
x to 0.

A Proof Method for Linearizability on TSO Architectures 65

statements of different threads,a1,r1, etc., can interleave. Linearizability is a means
to ask whether such an interleaved execution is in fact consistent with its atomic
abstract counter-part.

2.1 A Formal Definition of Linearizability

Formally, linearizability is defined in terms of histories, which are sequences of
events which can be invocations or returns of operations from a set I performed by
a particular process from a set P. Invocations have an associated input from domain
In, and returns have an output from domain Out. Both domains contain the value ⊥
indicating no input or output. We therefore define:

Event =̂ inv〈〈P × I × In〉〉 | ret〈〈P × I × Out〉〉
History =̂ seqEvent

Notation: For a history h, h = 〈head h〉�tail h (where � is sequence concatena-
tion), #h is the length of the sequence, and h(n) its nth element (for n : 1..#h).
Predicates inv?(e) and ret?(e) determine whether an event e ∈ Event is an invoke
or return, respectively. We let e.i ∈ I denote the operation of an event e, e.π ∈ P
denote the process which performs e, and e.v ∈ In ∪ Out denote the input/output
value. Two indices m and n match in history h (denoted match(h,m, n)) iff 0 < m <

n ≤ #h∧ h(m).π = h(n).π ∧ h(m).i = h(n).i∧ inv?(h(m))∧ ret?(h(n)). �
As in [9], we let mp(h,m, n) identify matching pairs of invocations and returns

in history h. Its definition requires that h(m) and h(n) are an invocation and a return
event, respectively, of the same operation, executed by the same process p. Addition-
ally, it requires that there are no invocation or return events of p between positions
m and n in h. That is:

mp(h,m, n) =̂ match(h,m, n)∧ ∀k • m < k < n ⇒ h(k).π �= h(m).π

Since operations are atomic in an abstract specification, its histories are sequential,
i.e., each operation invocation is followed immediately by its return. For example,

hs =̂ 〈inv(p,acquire,⊥), ret(p,acquire,⊥), inv(q,tryacquire,⊥),

ret(q,tryacquire, 0), inv(p,release,⊥), ret(p,release,⊥),

inv(q,tryacquire,⊥), ret(q,tryacquire, 1)〉

is the sequential history corresponding to the execution acquire; tryaquire;
release; tryaquire. The histories of a concurrent implementation, however,
may have overlapping operations and hence have the invocations and returns of
operations separated, e.g., as in

66 J. Derrick et al.

hc =̂ 〈inv(p,acquire,⊥), inv(q,tryacquire,⊥), ret(p,acquire,⊥),

inv(p,release,⊥), ret(p,release,⊥), ret(q,tryacquire, 0),

inv(q,tryacquire,⊥), ret(q,tryacquire, 1)〉.

However to be legal, a history should not have returns for which there has not been
an invocation. This is captured in the following.

legal(h) =̂ ∀n : 1. .#h • ret?(h(n)) ⇒ (∃m : 1. .#h •mp(h,m, n)).

The histories of abstract specifications are also complete, i.e., they have a return
for each invocation. This is not necessarily the case for implementation histories.
For example, the history hc�〈inv(q,release,⊥)〉 is also legal although it is not
complete. To make an implementation history complete, it is necessary to add addi-
tional returns for those operations which have been invoked and are deemed to have
occurred, and to remove the remaining invocations without matching returns. We
define a function complete to do the latter:

complete(h)=̂
⎧
⎨

⎩

〈 〉 if h = 〈 〉
complete(tail h) if inv?(head h)∧NoRet(h)
〈head h〉�complete(tail h) otherwise

where NoRet(h) =̂ ∀n : 1. .#h • ¬match(h, 1, n).
We define linearizability formally as follows. In this definitionHistR is the set of all

histories that are sequences of returns, and lin(h, hs) holds iff concurrent history h can
be extended by adding such a sequence h0 to form a legal history h�h0 such that linrel
holds for complete(h�h0) and hs. The relation linrel(h, hs) holds if for some (total)
bijective function f between indices of h and hs, f transforms h to hs (according to
maps(h, f , hs)) and the order of non-overlapping operations is preserved (according
to order(h, f)).

Definition 1 (Linearizability) A history h : History is linearizable with respect to
some sequential history hs iff lin(h, hs) holds, where

lin(h, hs) =̂ ∃h0 : seqHistR • legal(h�h0) ∧ linrel(complete(h�h0), hs)

and

maps(h, f , hs) =̂ (∀n : domf • h(n) = hs(f (n)))∧
(∀m, n : domf • mp(h,m, n) ⇒ f (n) = f (m) + 1)

order(h, f) =̂ ∀m, n,m′, n′ : domf •
n < m′ ∧ mp(h,m, n) ∧ mp(h,m′, n′) ⇒ f (n) < f (m′)

linrel(h, hs) =̂ ∃f : 1. .#h �→ 1. .#hs • maps(h, f , hs) ∧ order(h, f) �

A Proof Method for Linearizability on TSO Architectures 67

That is, history h of the concurrent implementation can be transformed into a sequen-
tial historyhs such that the operations inhs do not overlap (each invocation is followed
immediately by its matching return) and the order of non-overlapping operations in
h is preserved in hs. For example, the histories hs and hc above are both complete
and legal, and linrel(hc, hs) holds, i.e., hc is linearized by hs.

Finally, we can lift the definition of linearizability of histories to specifications: a
concrete specification is linearizable if all its histories are.

2.2 A Proof Method for Linearizability

The proof method for linearizability defined and applied in [8–10, 20] is based on
showing that a concrete specification is a non-atomic refinement of the abstract one.
The steps from [9] are summarised below.

2.2.1 Modelling the Algorithm in Z

The Z description of the implementation has one operation per line of pseudo-code,
where each operation can be invoked by a given process. The concrete state consists
of the shared memory, given as a global state GS and local state LS for each process.
For spinlock,GS includes the value of the shared variable x (initially 1), and a variable
lock which has value {p} when a process p currently has the global memory locked
(and is ∅ otherwise).

GS
x : {0,1}
lock : PP

#lock ≤ 1

GSInit
GS

x= 1
lock =∅

For a given process, the local state LS is specified in terms of a program counter,
PC ::= 1|a1| . . . |a8|t1| . . . |t7|r1, indicating which operation (i.e., line of code) will
be performed next. The value 1 denotes that the process is not executing any of the
three operations. The values ai, for i ∈ 1. .8, denote the process is ready to perform
the ith line of code of acquire, and similarly for ti and tryacquire. The value
r1 denotes the process is ready to perform the first line of release.

LS
pc : PC

LSInit
LS

pc= 1

In formalising lines of code in Z, we adopt the convention that the values that are
not explicitly changed by an operation remain unchanged. For process p, we have

68 J. Derrick et al.

an operation A0p corresponding to the invocation of the acquire operation, and an
operation A1p corresponding to the line of code while(1).

A0p
ΞGS
ΔLS

pc= 1 ∧ pc′ = a1

A1p
ΞGS
ΔLS

pc= a1 ∧ pc′ = a2

The operation A2p corresponds to the line of code lock. To model if (x==1),
we use two operations: A3tp for the case when x = 1, and A3fp for the case when
x = 0.

A2p
ΔGS
ΔLS

pc= a2 ∧ lock =∅
pc′ = a3 ∧ lock′ = {p}

A3tp
ΞGS
ΔLS

pc= a3 ∧ x= 1
pc′ = a4

A3fp
ΞGS
ΔLS

pc= a3 ∧ x= 0
pc′ = a7

The operations corresponding to the rest ofacquire are modelled similarly. The
two operations corresponding to while(x==0), A8tp and A8fp, are only enabled
when the memory is not locked (and so x can be read from the global memory).

A4p
ΔGS
ΔLS

pc= a4
x′ = 0 ∧ pc′ = a5

A5p
ΔGS
ΔLS

pc= a5
pc′ = a6 ∧ lock′ =∅

A6p
ΞGS
ΔLS

pc= a6
pc′ = 1

A7p
ΔGS
ΔLS

pc= a7
pc′ = a8 ∧ lock′ =∅

A8tp
ΞGS
ΞLS

pc= a8
lock =∅ ∧ x= 0

A8fp
ΞGS
ΔLS

pc= a8
lock =∅ ∧ x= 1
pc′ = a1

The operations for tryacquire are similar to those of acquire. Those for
release are given below.

R0p
ΞGS
ΔLS

pc= 1 ∧ pc′ = r1

R1p
ΔGS
ΔLS

pc= r1 ∧ x′ = 1 ∧ pc′ = 1

A Proof Method for Linearizability on TSO Architectures 69

x= 1 ∧ x ′ = 0

returnwhile(1) lock

Abstract operation

operation
Concrete unlockif (x=1) x=0

Fig. 2 Simulation of acquire

2.2.2 Proving Linearizability

Correctness requires showing all concrete histories are linearizable. Following [9],
we use two proof steps for each operation of the concrete specification.
Step 1. Firstly, we need to show that the lines of code defining the concrete operations
simulate the abstract operations. We identify one line of code as the linearization step,
which must simulate the abstract operation, all others simulating an abstract skip.
For example, for acquire we require that line a4, x = 0, simulates the abstract
operation and all other lines simulate an abstract skip (see Fig. 2). To do this we
define an abstraction relation relating the global (i.e., shared) concrete state space
gs and abstract state space as. The abstraction relation ABS(as, gs) for spinlock is
simply gs.x = as.x.

We also need to define an invariant to enable the simulation of each line of code to
be proven independently. In our example, to prove that x = 0 simulates the abstract
operation, this invariant needs to ensure that at line a4 we have x = 1. Such an
invariant is stated in terms of the global and local concrete state spaces. Hence, the
invariant INV (gs, ls) must imply ls.pc = a4 ⇒ x = 1.

Each simulation is proved by one of five rules depending on whether the line
of code is an invocation (beginning an operation), return (ending an operation) or
internal step (neither an invocation nor return), and whether it occurs before or after
the linearization step. A function status(gs, ls) is defined to identify the linearization
step. Before invocation, status(gs, ls) is IDLE. After invocation but before the lin-
earization step it is equal to IN(in), where in : In is the input to the abstract operation,
and after the linearization step it is equal to OUT(out), where out : Out is the output
of the abstract operation. For example, the simulation rule for an invocation is:

∀as : AS; gs, gs′ : GS; ls, ls′ : LS; in : In •
R(as, gs, ls)∧ status(gs, ls) = IDLE ∧COP(in, gs, ls, gs′, ls′) ⇒

status(gs′ls′) = IN(in)∧R(as, gs′, ls′)
∨
(∃as′ : AS; out : Out •
AOP(in, as, as′, out)∧ status(gs′, ls′) = OUT(out)∧R(as′, gs′, ls′))

70 J. Derrick et al.

where primed states, e.g., gs′, represent post-states of operations whereas unprimed
states, e.g., gs, represent pre-states; COP represents the meaning of a line of code
from a concrete operation; and R(as, gs, ls) = ABS(as, gs) ∧ INV (gs, ls). The dis-
junction in this rule allows the invocation to be either the linearization step or to
simulate an abstract skip.
Step 2. Secondly, we need to prove non-interference between threads. This amounts
to showing that a process p running the concrete code cannot, by changing the global
concrete state space, invalidate the invariant which another process q relies on. For
example, a process p should not be able to change the value of x when a process q is
at line a4 since this would invalidate the requirement on INV (gs, ls) above. To do
this we require a further invariant D(ls, lsq) relating the local states of two process
whose local states are ls and lsq. The non-interference rule is then:

∀as : AS; gs, gs′ : GS; ls, ls′, lsq : LS •
ABS(as, gs) ∧ INV (gs, ls)∧ INV (gs, lsq)∧D(ls, lsq)∧COP(gs, ls, gs′, ls′)

⇒ INV (gs′, lsq)∧D(ls′, lsq)∧status(gs′, lsq) = status(gs, lsq).

Of course, there is also an initialisation proof obligation:

∀gs : GSInit • ∃as : ASInit •
ABS(as, gs)∧ (∀ls : LSInit • INV (gs, ls))∧ (∀ls, lsq : LSInit • D(ls, lsq)).

As shown in [9] if these proof obligations are discharged then the concrete specifi-
cation is linearizable with respect to the abstract. This is all well and good, however,
so far this discussion has assumed a sequentially consistent memory model, and we
now turn our attention to the weaker memory model TSO.

3 The TSO Memory Model

In the TSO architecture [23] each processor core uses a write buffer, which is a FIFO
queue that stores pending writes to memory. A processor core performing a write
to a memory location enqueues the write to the buffer and continues computation
without waiting for the write to be committed to memory. Pending writes do not
become visible to other cores until the buffer is flushed, which commits pending
writes to memory. The value of a memory location read by a process is the most
recent in that processor’s local buffer, and only from the memory if there is no such
value in the buffer. The use of local buffers allows a read by one process, occurring
after a write by another, to return an older value as if it occurred before the write.

In general, flushes are controlled by the CPU, and from the programmer’s per-
spective occur non-deterministically. However, a programmer may explicitly include
a fence instruction in a program’s code to force a flush to occur. Therefore, although
TSO allows some non-sequentially consistent executions, it is used in many modern

A Proof Method for Linearizability on TSO Architectures 71

architectures on the basis that these can be prevented, where necessary, by pro-
grammers using fence instructions. In addition, a pair of lock and unlock commands
allows a process to acquire sole access to the memory. Both commands include a
fence which forces the store buffer of that process to be flushed completely.

So how does the TSO architecture affect the behaviour of the spinlock algorithm
of Sect. 2? Since the lock and unlock commands include fences on TSO, writes
to x by the acquire and tryacquire operations are not delayed. For efficiency,
however, release does not have a fence and so its write to x can be delayed until
a flush occurs. The spinlock implementation will still work correctly, the only effect
that the absence of a fence has is that a subsequent acquire may be delayed until
a flush occurs, or a tryacquire operation by a thread q may return 0 after the
lock has been released by another thread p.

For example, if we use (q,tryacquire(0)) to denote process q performing a
tryacquire operation and returning 0, and flush(p) to denote the CPU flushing
a value from process p’s buffer, then the following execution is possible:

ex =̂ 〈(p,acquire), (p,release), (q,tryacquire(0)),flush(p)〉.

That is, the tryacquire returns 0 even though it occurs immediately after the
release. This is because the flush(p), which sets the value of x in memory to 1
has not yet occurred.

This can be considered correct behaviour since it is as if the release by process
p occurred after, rather than before, the tryacquire of the process q, which is
possible since the processes are independent. Although we want to accept this as a
valid concurrent implementation, such a run is not linearizable using the definition
given in Sect. 2. Therefore we adapt the definition of linearizability to work on the
TSO model, paying particular attention to the role of flushes.

To model the above behaviour, the Z specification under TSO is modified from that
of Sect. 2 as follows. The global state GS includes an additional variable modelling
a buffer for each process. (Each buffer is a sequence of 0 and 1’s.)

GS
x : {0,1}
lock : PP
buffer : P → seq{0,1}
#lock ≤ 1

GSInit
GS

x= 1
lock =∅
∀p : P • buffer(p) = 〈〉

The local state schemas LS and LSInit, as well as the acquire operations A0p,
A1p, A3tp, A3fp and A6p, from Sect. 2 are unchanged. The operation A2p, correspond-
ing to the lock at line a2, is only enabled when the buffer is empty, modelling the
fact that the lock is a fence, i.e., a sequence of flush operations on p’s buffer must
occur immediately before A2p if the buffer is non-empty. The operation A4p, corre-
sponding to the line x=0, adds the value 0 to the buffer.

72 J. Derrick et al.

A2p
ΔGS
ΔLS

buffer(p) = 〈〉
pc= a2 ∧ lock =∅
pc′ = a3 ∧ lock′ = {p}

A4p
ΔGS
ΔLS

pc= a4

buffer′(p) = buffer(p)� 〈0〉
pc′ = a5

The operations A5p and A7p are only enabled when the buffer is empty, modelling
that the buffer is completely flushed before unlocking the memory. We elide their
definition.

The two operations corresponding to while(x==0), A80p and A81p, are only
enabled when either x can be read from the buffer, i.e., buffer �= 〈 〉, or the buffer is
empty and the memory is not locked (and so x can be read from the global memory).

A8tp
ΞGS
ΞLS

pc= a8
buffer(p) = 〈〉 ⇒ lock =∅ ∧ x= 0
buffer(p)
= 〈〉 ⇒ last buffer(p) = 0

A8fp
ΞGS
ΔLS

pc= a8
buffer(p) = 〈〉 ⇒ lock =∅ ∧ x= 1
buffer(p)
= 〈〉 ⇒ last buffer(p) = 1
pc′ = a1

The operations for tryacquire and release are similarly modified. We also
have an operation, Flushcpu (where cpu ∈ P is a special value denoting the CPU),
corresponding to a CPU-controlled flush which outputs the process whose buffer it
flushes. This operation must repeatedly occur to empty the buffer before operations
A3tp, A3fp, A5p and A7p can occur.

Flushcpu
ΔGS
p! : P

lock =∅ ∨ lock = {p!}
buffer(p!)
= 〈〉 ⇒ x′ = headbuffer(p!) ∧ buffer′(p!) = tailbuffer(p!)
buffer(p!) = 〈〉 ⇒ x′ = x ∧ buffer′(p!) = buffer(p!)

In our approach to modelling algorithms on TSO, we assume that a flush is
only executed by the CPU process, and that this process is different from all other
processes. We also assume that, in a history of the specification, invocations of flushes
are immediately followed by their returns.

A Proof Method for Linearizability on TSO Architectures 73

3.1 TSO-Linearizability

Having seen how TSO affects the behaviour of the concurrent objects, we need to
furnish the model with an appropriate correctness condition. Although most of the
work on linearizability has assumed an SC architecture, some work has been under-
taken for TSO (e.g., see [4, 11, 15, 24]). In particular, a definition for linearizability
on TSO has been proposed in [11], where the role of local buffers and flushes is taken
into account in the following way: since the flush of a process’s buffer is sometimes
the point that the effect of an operation becomes globally visible, the flush can be
viewed as being the return of the operation. For example, the flush of a variable, such
as x, after an operation, such as release, can be taken as the return of that opera-
tion. Using this idea, the release operation begins with its invocation but returns
with the flush which writes its change to x to the global memory. Thus the return
point of an operation on a TSO architecture is not necessarily the point where the
operation ceases execution, but can be any point up to the last flush of the variables
written by that operation.

So we will define TSO-linearizability in terms of history transformations, where
the actual return of an operation may be moved to the return of a corresponding flush
[11]. We wish to reuse as much of the standard definition of linearizability as possible,
so we first transform a concurrent history (which includes flush events) to a history
in which the return of the release is moved to a corresponding flush, and events
corresponding to flushes are removed. This produces a new history with potentially
more overlapping operation calls than the original. The original concurrent history
is judged to be TSO-linearizable iff the new transformed history is linearizable.

Calculating the return of an operation. To define the history transformation,
we need to calculate the position of the flush corresponding to an operation’s return.
This is done by a function mpf (standing for matching pair flush) which in turn uses
mp defined in Sect. 2.1. A flush acts as a return for an operation, i.e., makes its effects
visible globally, when it writes the last variable which was updated by that operation
to memory.

We extend the definition of Event to include a natural number representing the
size of the buffer of the process performing the event. This number is always zero in
the case of the cpu process. A TSO history is a sequence of such events.

EventTSO =̂ inv〈〈I × P × In × N〉〉 | ret〈〈I × P × Out × N〉〉
HistoryTSO =̂ seq EventTSO

Let h(m).bs denote the size of the buffer of process h(m).π at point m in the
history h. Consider an operation of a history h whose invocation is at point m and
whose return is at point n. If the buffer is empty when the operation is invoked, then
the number of flushes to be performed before the operation returns is equal to the
size of the buffer at the end of the operation, i.e., h(n).bs; if this number is 0 then
the return does not move. Similarly, if an operation contains a fence then the number
of flushes before the operation returns is also equal to h(n).bs. In all other cases,

74 J. Derrick et al.

we need to determine whether the operation has written to any global variables. If it
has written to one or more global variables then again the number of flushes to be
performed before the operation returns is h(n).bs.

To determine whether an operation has written to global variables, we compare
the size of the buffer at the start and end of the operation taking into account any
modifying flushes, i.e., flushes performed when the buffer is not empty, in between.
Let nf (h, p,m, n) denote the number of modifying flushes of process p’s buffer from
point m up to and including point n in h. The number of writes between the two
points is given by nw(h, p,m, n) =̂ h(n).bs − h(m).bs + nf (h, p,m, n).

The predicate mpf is then defined below where m, n and l are indices in h such
that (m, n) is a matching pair of an operation and l corresponds to the point to which
the return of the matching pair must be moved.

mpf (h,m, n, l) =̂ ∃p : P •h(m).π = p ∧ mp(h,m, n) ∧ n ≤ l∧ h(m).i �= flush∧
(if nw(h, p,m, n) = 0 ∨ h(n).bs = 0 then l = n

else h(l) = ret(cpu,flush, p, 0) ∧ nf (h, p, n, l) = h(n).bs)

The first line of the if states that l = n if no items are put on the buffer by the
operation invoked at point m, or all items put on the buffer have already been flushed
when the operation returns. The second line states that l corresponds to a flush of p’s
buffer and the number of flushes between n and l is precisely the number required to
flush the contents of the buffer at n.

Example 1 Consider the following concurrent history (recall the final element of
each event is the relevant process’s buffer size):

he =̂ 〈inv(p,acquire,⊥, 0), inv(q,tryacquire,⊥, 0), ret(p,acquire,⊥, 0),

inv(p,release,⊥, 0), ret(p,release,⊥, 1), ret(q,tryacquire, 0, 0),

inv(cpu,flush,⊥, 0), ret(cpu,flush, p, 0)〉
For theacquire operation we getmpf (he, 1, 3, 3), for thetryacquire operation
we getmpf (he, 2, 6, 6), and for therelease operation we getmpf (he, 4, 5, 8). That
is, the matching flush for therelease operation is the final one in the history above,
but the other operations return when they complete. �

Defining a history transformation. We define our transformation Trans which
moves the return of each operation, when necessary, to the flush which makes its
global behaviour visible to other processes. The transformation also removes all
flushes and results in a history of type History (rather than HistoryTSO). Therefore,
the types of events in a concrete history h and its transformed history Trans(h)
will be different; we use SC(inv(p, i, v, n)) = inv(p, i, v) and SC(ret(p, i, v, n)) =
ret(p, i, v) to convert an event of type EventTSO to type Event.

The formal definition of Trans is based on identifying the matching pairs, and
ordering them by the positions that invocations and returns are moved to. The key
point is that the positions that returns get moved to are different for each event, so
we can order them, and this defines our new history.

A Proof Method for Linearizability on TSO Architectures 75

Definition 2 (Trans) Let h be a history of the concrete specification. We define a
set S(h) =̂ {(m, n, l, x)|mpf (h,m, n, l)∧ x ∈ {m, l}}, which has one tuple (m, n, l, x)
for each event e in the transformed history. The first three elements of each tuple
correspond to a matching pair (m, n) of a non-flush operation op in the original
history and the point l to which its return is moved. The event e will be either the
invocation or return of op. The final element x denotes the position in the original
history of the event corresponding to e. If x = m then the event in the original history
is an invocation and e is an invocation. If x = l then the event in the original history
is a return (possibly of a flush) and e is a return.

We can order the elements of S(h) by their 4th elements: x1 < x2 < · · · < xk
where k = #S(h). Then Trans(h) is a history with length k defined (for i : 1. .k) as:

Trans(h)(i) =
{
SC(h(xi)), if (xi, n, l, xi) ∈ S(h), for some n and l

SC(h(n)), if (m, n, xi, xi) ∈ S(h), for some m �

Example 2 Consider the history he in Example 1. The elements of set S(he) are
ordered as follows: (x1, 3, 3, x1), (x2, 6, 6, x2), (1, 3, x3, x3), (x4, 5, 8, x4),
(2, 6, x5, x5), (4, 5, x6, x6) (where x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 6 and x6 = 8).
Thus, Trans(he)(1) = he(1) since x1 = 1, and Trans(he)(6) = he(8) since x6 = 8.
Overall Trans(he) is as follows where the return of the release has been moved
as required:

〈inv(p,acquire,⊥), inv(q,tryacquire,⊥), ret(p,acquire,⊥),

inv(p,release,⊥), ret(q,tryacquire, 0), ret(p,release,⊥)〉 �

A key part of adapting the definition of linearizability from Sect. 2 to TSO is
formalising what we mean by a matching pair of invocations and returns. The formal
definition of the function mp requires that for all k between m and n, h(k) is not
an invocation or return event of p. This is not true for our transformed histories on
TSO since operations by the same process may now overlap. So, we calculate the
matching pairs for a transformed history from those of the original history. This is
done by subtracting from the positions m and n of the matching pairs the number of
flushes that have occurred before them. The matching pairs of a transformed history
Trans(h) are given bympTSO(h,m1, n1) defined over the original history h as follows.

mpTSO(h,m1, n1)=̂ ∃m, n, l •mpf (h,m, n, l) ∧
m1 = m − ∑

p:P
nf (h, p, 1,m) ∧ n1 = l − ∑

p:P
nf (h, p, 1, l)

Example 3 For the transformed history Trans(he) in Example 2, the matching pairs
are mpTSO(he, 1, 3), mpTSO(he, 2, 5) and mpTSO(he, 4, 6). �

A TSO history is legal if (i) it does not have returns for which there has not been
an invocation (as for standard histories), and (ii) the number of modifying flushes

76 J. Derrick et al.

performed on a process’s buffer never exceeds the number of values placed in the
buffer.

legalTSO(h) =̂ legal(h)∧
(∀p : P; n : 1. .#h • h(n).π �= p ⇒ nf (h, p, 1, n) = 0)∧
(∀n,m′ : 1. .#h • ret?(h(n))∧ (∀n < k < m′ • h(k).π �= h(n).π)

⇒ nf (h, h(n).π, n,m′) ≤ h(n).bs)

We adopt the definition of TSO-linearizability from [11]. After extending an
incomplete concrete history with flush operations (to empty all buffers) and returns,
we apply Trans to it before matching it to an abstract history. Let HistFR be the set
of histories that are sequences of complete flush operations and returns.

Definition 3 (TSO-linearizability) A history h : History is TSO-linearizable with
respect to some sequential history hs iff linTSO(h, hs) holds, where

linTSO(h, hs) =̂ ∃h0 : HistFR •legalTSO(h�h0)∧
linrelTSO(Trans(complete(h�h0)), hs, h�h0)

where

mapsTSO(h′, f , hs, h) =̂ (∀n : domf • h′(n) = hs(f (n))) ∧
(∀m, n : domf • mpTSO(h,m, n) ⇒ f (n) = f (m) + 1)

orderTSO(h, f) =̂ ∀m, n,m′, n′ : domf •
mpTSO(h,m, n) ∧ mpTSO(h,m′, n′) ∧ n < m′ ⇒ f (n) < f (m′)

linrelTSO(h′, hs, h) =̂ ∃f : 1. .#h′ �→ 1. . #hs •
mapsTSO(h′, f , hs, h) ∧ orderTSO(h, f) �

As before we lift TSO-linearizability to the level of specifications in the same
manner: a concrete specification is TSO-linearizable if all its histories are TSO-
linearizable.

4 Using a Coarse-Grained Abstraction

Any proof method for proving TSO-linearizability will be complicated by having to
deal with both the inherent interleaving handled by linearizability and the additional
potential overlapping of concrete operations resulting from moving operation returns
to associated flushes. For example, in spinlock, a process may perform a release
but not have its buffer flushed before invoking its next operation.

To handle this complexity, we use an intermediate specification, between the
abstract and concrete, to split the original proof obligations into two simpler compo-
nents. The first, between the concrete and intermediate specifications, deals with the
underlying linearizability, and the second, between intermediate and abstract, deals

A Proof Method for Linearizability on TSO Architectures 77

Coarse-grained
TSO-based (B)specification (A)

Abstract TSO-equivalence linearizability Concrete
TSO-based (C)

TSO-linearizability

Fig. 3 Verification chain

with the effects of local buffers. The intermediate specification is a coarse-grained
abstraction that captures the semantics of the concrete specification with no fine-
grained interleaving of operations by different processes. We describe how to define
such a coarse-grained abstraction in the next subsection.

An overview of the approach is provided in Fig. 3. The concrete specification
is proved linearizable, using the existing proof method, with respect to a coarse-
grained abstraction which, ignoring flushes, has the same granularity of operations
as the abstract specification. Hence, TSO effects do not complicate the linearizability
proof. These are instead dealt with when we show that the coarse-grained abstraction
is TSO-equivalent to the abstract specification as detailed in this section. It can be
proved that these two steps imply that the concrete specification is TSO-linearizable
with respect to the abstract specification.

4.1 Defining the Coarse-Grained Abstraction

The coarse-grained abstraction is constructed by adding local buffers to the abstract
specification. Thus, it is still a description on the TSO architecture – since it has
buffers and flushes – but does not decompose the operations. The state space is the
abstract state space with the addition of a buffer for each process (as in the concrete
state space GS). Like in the concrete state space, all buffers are initially empty. Hence
for spinlock we have:

BS
x : {0,1}
buffer : P → seq{0,1}

BSInit
BS

x= 1 ∧ ∀p : P • buffer(p) = 〈〉

Each operation is like that of the abstract specification except that

• a read is replaced by a read from the process’s buffer or from memory, i.e., the
operation refers to the latest value of the variable in the buffer, if there is one, and
to the value in memory otherwise,

• a write is replaced by a write to the buffer (unless the corresponding concrete
operation has a fence),

• because we have buffers in the intermediate state space we need to include fences
and flushes: the buffer is set to empty when the corresponding concrete operation
has a fence, and a flush is modelled as a separate operation.

78 J. Derrick et al.

For example, for the abstract operation Acquirep, x = 1 represents a read, and
x′ = 0 represents a write. Using the above heuristic, we replace x = 1 by (buffer(p) �=
〈 〉 ⇒ last buffer(p) = 1)∧ (buffer(p) = 〈 〉 ⇒ x = 1) since the latest value of x is
that in the buffer when the buffer is not empty, and the actual value of x otherwise.
We also replace x′ = 0 by buffer′(p) = 〈 〉∧ x′ = 0 since the corresponding concrete
operation has a fence. Similarly, while the operation TryAcquirep writes directly to
x and sets the buffer to empty (since it has a fence), the operation Releasep writes
only to the buffer.

Acquirep
ΔBS

buffer(p)
= 〈〉 ⇒ last buffer(p) = 1
buffer(p) = 〈〉 ⇒ x= 1
buffer′(p) = 〈〉 ∧ x′ = 0

Releasep
ΔBS

buffer′(p) = buffer(p)� 〈1〉

TryAcquirep
ΔBS
out! : {0,1}
if (buffer(p)
= 〈〉 ∧ last buffer(p) = 1) ∨ (buffer(p) = 〈〉 ∧ x= 1)
then buffer′(p) = 〈〉 ∧ x′ = 0 ∧ out! = 1
else buffer′(p) = 〈〉 ∧ x′ = 0 ∧ out! = 0

Note that x′ = 0 holds in the else-predicate of TryAcquireP since if the buffer
is empty, x is 0 and does not change, and if the buffer is not empty, the last ele-
ment in buffer is 0 and the buffer is completely flushed by the lock command in
tryacquire.

Finally, the course-grained abstraction is completed with the Flushcpu operation.
As in the concrete specification, this operation is performed by the CPU process.

Flushcpu
ΔBS
p! : P

buffer(p!)
= 〈〉 ⇒ x′ = headbuffer(p!) ∧ buffer′(p!) = tailbuffer(p!)
buffer(p!) = 〈〉 ⇒ x′ = x ∧ buffer′(p!) = buffer(p!)

The coarse-grained abstraction is chosen purposefully to reflect the abstract spec-
ification; this facilitates the final part of the proof. The inclusion of buffers and flush
operations, however, means it can be shown to linearize the concrete specification
using standard proof methods.

Example 4 The concrete history he of Example 1 (with the buffer sizes removed
from the events) is complete and legal, and linearized by the intermediate history

A Proof Method for Linearizability on TSO Architectures 79

hs =̂ 〈inv(p,acquire,⊥), ret(p,acquire,⊥), inv(p,release,⊥),

ret(p,release,⊥), inv(q,tryacquire,⊥), ret(q,tryacquire, 0),

inv(cpu,flush,⊥), ret(cpu,flush, p)〉 �

Correctness requires showing all concrete histories are linearizable. The key point
for us is that, for this portion of the correctness proof, we do not have to adapt the
existing proof method.

4.2 From Coarse-Grained to Abstract Specification

Overall, we want to show the correctness of the concrete specification with respect
to the abstract one. The previous section has defined an intermediate, coarse-grained
abstraction, and the inclusion of local buffers in this intermediate specification
avoided us needing to deal with the effects of the TSO architecture. In this sub-
section we introduce the idea of TSO-equivalence which allows us to move between
intermediate and abstract specification via a history transformation which we define
below. Correctness involves showing every history of the intermediate specification
is transformed to a history of the abstract one.

The histories of the intermediate specification are sequential, i.e., returns of opera-
tions occur immediately after their invocations, but the specification includes buffers
and flush operations. The transformation we define now turns the TSO histories of
the intermediate specification into histories of an abstract one, i.e., without buffers,
with the same behaviour. It does this according to the principle adopted in Sect. 3.1,
i.e., it moves the return of an operation to the flush that makes its global behaviour
visible. To keep histories sequential, we also move the invocation of the operation to
immediately before the return.

The history transformation TRANS relies on the fact that the intermediate histories
are sequential, i.e., comprise a sequence of matching pairs. Each matching pair
of a history is either moved to the position of the flush which acts as its return
(given by mpf), or left in the same position relative to the other matching pairs. The
transformation also removes all flushes from the history. In a manner similar to Trans
of Sect. 3.1, this is formalised in the following definition.

Definition 4 (TRANS) Let hs be a history of the intermediate specification. Let
T(hs) = {(m, n, l)|mpf (hs,m, n, l)}, and k = #T(hs). We can order elements of
T(hs) by the 3rd element in the tuple: l1 < l2 < · · · < lk . Then TRANS(hs) is an
abstract history with length 2k defined (for i : 1. .2k) as:

TRANS(hs)(i) =
{
SC(hs(n)) if i is even and (m, n, li/2) ∈ T(hs)
SC(hs(m)) if i is odd and (m, n, l(i+1)/2) ∈ T(hs)

�

80 J. Derrick et al.

The definition assigns each odd position in TRANS(hs) to the invocation of an
event in hs and the immediately following even position to that event’s return. The
order of the invocations/return pairs corresponds to the order of the points to which
their returns are moved according to mpf .

Example 5 Given the intermediate-level history hs in Example 4, the indices which
are related bympf are as follows: for theacquire operation we getmpf (hs, 1, 2, 2),
for the release operation we get mpf (hs, 3, 4, 8), and for the tryacquire
operation we get mpf (hs, 5, 6, 6). The tuples in T(hs) are then ordered: (1, 2, l1),
(5, 6, l2), (3, 4, l3) (where l1 = 2, l2 = 6 and l3 = 8). Thus, TRANS(hs)(1) = hs(1)

since 1 is odd and (1, 2, l1) ∈ T(hs), whereas, TRANS(hs)(6) = hs(4) as 6 is even
and (3, 4, l3) ∈ T(hs). Overall, TRANS(hs) is the following:

〈inv(p,acquire,⊥), ret(p,acquire,⊥), inv(q,tryacquire,⊥),

ret(q,tryacquire, 0), inv(p,release,⊥), ret(p,release,⊥)〉 . �

Finally, we can define TSO-equivalence:

Definition 5 (TSO-equivalence) An intermediate specification B is TSO-equivalent
to an abstract specification A if for every legal history hs of B, TRANS(hs) is a history
of A. �

It is now possible to show that the method of proving TSO-linearizability using
coarse-grained abstractions is sound (a proof is provided in [12]).

Theorem 1 If C is linearizable with respect to B and B is TSO-equivalent to A, then
C is TSO-linearizable with respect to A. �

5 Case Study: Work-Stealing Deque

The spinlock example is fairly simple: Firstly, it has only one global variable and
hence all values stored in the write buffers are values of that variable. Generally,
there would be more than one global variable and hence the buffer values need to be
annotated in some way to identify the associated global variable.

Secondly, the global variables in the abstract specification are identical to those of
the concrete specification. The consequence of this is that when the coarse-grained
abstraction is derived from the abstract specification, it has the same buffer values
as the concrete specification. This is actually required for the approach presented in
Sect. 4, but such a relationship between abstract and concrete global variables does
not always hold.

We now show how our approach can be adapted to handle more general algorithms.
In particular, we extend the approach to include an extra specification, between the
abstract specification and coarse-grained abstraction, which is buffer-free (like the

A Proof Method for Linearizability on TSO Architectures 81

Coarse-grained
TSO-based (B)

linearizability

Concrete
TSO-based (C)

TSO-equivalence

buffer-free(A)
Refined abstract

TSO-linearizability

Abstract
specification

Fig. 4 Verification chain

abstract specification) but has the same state representation as the concrete specifi-
cation. An overview of the approach appears in Fig. 4.

As an example we specify the Chase-Lev work-stealing deque [6]. Work-stealing
deques (double-ended queues) are often used for load balancing in multiprocessor
systems. Each worker process has a deque, which it uses to record tasks to be per-
formed. Thus, a worker executes put and take operations that, respectively, add
tasks to and remove tasks from its deque. Load balancing is achieved by allowing
other, so-called “thief” processes, whose own deques are empty, to execute steal
operations that remove elements from the deque. To avoid contention between the
worker and thief processes, put and take operate at the opposite end of the deque
from steal operations — a worker adds and removes tasks at the tail, whereas
thieves steal tasks from the head. Contention between the worker and thieves, there-
fore, only occurs when the deque has one element. The Chase-Lev work-stealing
deque, though linearizable on a sequentially consistent architecture, is not lineariz-
able on TSO without the introduction of fences [17]. Here, we show that one of
the fences required to preserve linearizability [17] can be removed, provided the
correctness condition is weakened to TSO linearizability.

5.1 Abstract Specification

Our abstract specification assumes that the deque holds a maximum of W tasks. At
the abstract level, we leave the behaviour undefined when more than W tasks are
added to the deque. The state is specified in terms of a sequence of tasks of type Task
which is initially empty.

AS
tasks : seqTask

#tasks ≤ W

ASInit
AS

tasks= 〈〉

The operations Putp and Takep model the worker p’s operations on the deque;
adding and removing tasks at the tail of the deque. When the deque is empty, Takep

82 J. Derrick et al.

will return a special value empty. The operation Stealq models a thief process q
(where q �= p) removing a task from the head of the deque, when it is not empty.

Putp
ΔAS
task? : Task

#tasks<W ⇒
tasks′ = tasks� 〈task?〉

Takep
ΔAS
task! : Task∪{empty}
tasks= 〈〉 ⇒ task! = empty

tasks
= 〈〉 ⇒ task = task′ � 〈task!〉

Stealp
ΔAS
task! : Task∪{empty}
tasks= 〈〉 ⇒ task! = empty

tasks
= 〈〉 ⇒ tasks= 〈task!〉� tasks′

5.2 Concrete Specification

An implementation of the Chase-Lev work-stealing deque (taken from [18]) is given
in Fig. 5. It comprises a cyclic array of W tasks and two pointers: H, the head pointer,
points to the oldest task in the deque, and T, the tail pointer, to the first unused
position in the array. When T=H, the deque is empty. The pointers are non-wrapping,
i.e., if a pointer has the value i it points to the array element at position i mod W.

There are three operations: put enqueues a task to the tail of the deque, take
dequeues from its tail, and steal dequeues from its head. put and take are
performed by a worker process, and steal by a thief process which removes tasks
from the worker’s deque in order to balance the workload in the system. take and
steal return EMPTY when applied to an empty deque. To ensure correct behaviour
on TSO, a single fence has been added at line t3 in Takep.

There are three extra variables: h and t denoting local copies of the pointer values
H and T, respectively, and task denoting a local copy of a task.

The interesting behaviour is in the way that the take and steal operations
interact when called concurrently. To take the task at position t=T-1, the worker
process decrements T to equal t (line t2) thereby publishing its intent to take that
task. This publication, ensured by the fence at line t3, means subsequent thieves
will not try to steal the task at position t. It then reads H into h and if t > h knows
that there is more than one task in the deque and it is safe to take the task at position
t, i.e., no thief process can concurrently steal it.

If t < h the worker knows the deque is empty and sets T to equal h. The final
possibility is that t=h. In this case, there is one task on the deque and conflict with
a thief may arise. To deal with this conflict, both the take and steal operations

A Proof Method for Linearizability on TSO Architectures 83

Fig. 5 Chase-Lev algorithm

employ an atomic CAS (compare-and-swap) operation. An operationCAS(x,y,z)
checks whether x equals y and, if so, updates x to z and returns true, otherwise it
returns false leaving x unchanged. The CAS is atomic, and the update is immediately
written to memory since the CAS operation also implements a fence.

The steal operation reads the deque’s head and tail into h and t, and if the
deque is not empty tries to increment H from h to h+1 using the CAS at line s7. If
it succeeds, the value of H has not been changed since read into the local variable h
and hence the thief has stolen the task. The take operation works similarly. If t=h,
rather than decrementing T to take the task, the worker increments H. Therefore, after
decrementing T, if the worker finds t=h, it restores T to its original value (line t10)
and then tries to increment H from h to h+1 using the CAS at line t11.

To specify the Chase-Lev deque implementation in Z, we need to allow values of
more than one variable in the write buffers. The buffer can contain array entries, i.e.,
tasks, as well as natural numbers corresponding to the global variable T. The value
of H is never in the buffer since it is only changed in the CAS operations and hence
written directly to memory.

A general way to model such a buffer is illustrated in [22]. Let Id be a set of
identifiers, one for each global variable whose value may be in the buffer, and let
U be the union of the types of all such global variables. Then buffer is of type
P → seq(Id × U) where P is the set of all processes. For example, the Chase-Lev

84 J. Derrick et al.

deque has W+1 global variables whose value may be in the buffer, each of the W array
entries and the pointerT. Hence, we define Id==0. .W such that the values 0. .W − 1
identify array entries in the buffer and W identifies a value of T . Representing the
array by a sequence of Tasks we have

GS
tasks : seqTask
H,T : N
buffer : P → seq(Id× (Task∪N))
#tasks=W
∀p : P • ∀ i : dombuffer(p) •
first(buffer(p)(i)) =W
⇔
second(buffer(p)(i)) ∈ N

GSInit
GS

H = T = 0
∀p : P • buffer(p) = 〈〉

The local state is defined as follows, where PC ::= 1|p1| . . . |p3|t1| . . . |t13|s1
| . . . |s9.

LS =̂ [h, t : N; task : Task; pc : PC] LSInit =̂ [LS|pc = 1]

To simplify the specification of the operations, we write x(p) to denote the value of
x read by a process p. This value is either the most recent in its buffer or, when no
such value exists, the value of the global variable x.

The lines of code of the operation put are modelled as follows.

Put0p
ΞGS; ΔLS
task? : Task

pc= 1∧pc′ = p1
task′ = task?

Put1p
ΞGS; ΔLS

pc= p1∧pc′ = p2
t′ = T(p)

Put2p
ΔGS; ΔLS

pc= p2∧pc′ = p3
buffer′(p) =
buffer(p)� 〈(tmodW, task)〉

Put3p
ΔGS; ΔLS

pc= p3

buffer′(p) = buffer(p)� 〈(W, t+1)〉
pc′ = 1

The first 6 lines of the operation take, corresponding to a task being returned
without conflict, are specified as follows. Note that 1 is added to the index of the
output task, in Take6p, to convert the array index (between 0 and W − 1) to an index
of the sequence tasks (between 1 and W).

A Proof Method for Linearizability on TSO Architectures 85

Take0p
ΞGS; ΔLS

pc= 1∧pc′ = t1

Take1p
ΞGS; ΔLS

pc= t1∧pc′ = t2
t′ = T(p)−1

Take2p
ΔGS; ΔLS

pc= t2∧pc′ = t3

buffer′(p) = buffer(p)� 〈(W, t)〉

Take3p
ΔGS; ΔLS

buffer(p) = 〈〉
pc= t3∧pc′ = t4

Take4p
ΞGS; ΔLS

pc= t4
h′ = H
pc′ = t5

Take5tp
ΞGS; ΔLS

pc= t5
t > h
pc′ = t6

Take5fp
ΞGS; ΔLS

pc= t5
t ≤ h
pc′ = t7

Take6p
ΔGS; ΔLS
task! : Task

pc= t6 ∧ task! = tasks(tmodW+1)(p) ∧ pc′ = 1

The next 3 lines of code correspond to empty being returned:

Take7tp
ΞGS; ΔLS

pc= t7∧pc′ = t8
t < h

Take7fp
ΞGS; ΔLS

pc= t7∧pc′ = t10
t ≥ h

Take8p
ΞGS; ΔLS

pc= t8∧pc′ = t9

buffer′(p) = buffer(p)� 〈(W,h)〉

Take9p
ΞGS ΔLS
task! : Task

pc= t9∧pc′ = 1
task! = empty

The final 4 lines of take, corresponding to conflict for the final task in the deque,
are specified as follows. Note that the Z schemas corresponding to the CAS, Take11tp
and Take11fp, include a fence (modelled by buffer(p) = 〈 〉). Again, 1 is added to the
index of the output task in Take13p.

86 J. Derrick et al.

Take10p
ΞGS; ΔLS

pc= t10∧pc′ = t11

buffer′(p) = buffer(p)� 〈(W,h+1)〉

Take11tp
ΞGS; ΔLS

buffer(p) = 〈〉
pc= t11∧pc′ = t12
H
= h

Take11fp
ΞGS; ΔLS

buffer(p) = 〈〉
pc= t11∧pc′ = t13
H = h∧H′ = h+1

Take12p
ΞGS; ΔLS
task! : Task

pc= t12∧pc′ = 1
task! = empty

Take13p
ΞGS; ΔLS
task! : Task

pc= t13 ∧ task! = tasks(tmodW+1)(p) ∧ pc′ = 1

We can model the operation steal in a similar fashion. Details are omitted here.
Finally, we specify the flush operation. When the identifier of a value to be flushed
is in the range 0. .W − 1, we add 1 to it to get the corresponding position in the
sequence tasks which needs to be updated.

Flushcpu
ΔGS
p! : P

buffer(p!)
= 〈〉 ⇒
(∃ id : Id; val : Task∪N •

buffer(p!) = 〈(id,val)〉�buffer′(p!) ∧
(id ∈ 0 . .W −1 ⇒ tasks′ = tasks⊕{id+1 �→ val} ∧ T ′ = T) ∧
(id =W ⇒ T ′ = val ∧ tasks′ = tasks))

buffer(p!) = 〈〉 ⇒ tasks′ = tasks ∧ T ′ = T ∧ buffer′(p!) = buffer(p!)

5.3 Refined Abstract Specification

It is not possible to directly apply the proof method of Sect. 4 to these abstract and
concrete specifications of the Chase-Lev deque. The buffers of the coarse-grained
abstraction would contain entries for tasks in the sequence tasks, but would not
contain entries for the concrete variable T which does not appear in the abstract

A Proof Method for Linearizability on TSO Architectures 87

specification. In general, the state representation at the abstract and concrete levels
can differ significantly, resulting in a mismatch between buffer values and the number
of flushes required for a given operation. To overcome this problem, we introduce a
second abstract specification which is a data refinement of the original. This refined
abstract specification, like the original, does not have buffers or flushes, but unlike
the original has the same state representation as the concrete specification.

The state schema of this refined abstract specification has variables T and H of
type N and a sequence of tasks of length W .

AS1
tasks : seqTask
H,T : N

#tasks=W

AS1Init
AS1

H = 0∧T = 0

The Putp operation adds a task at position (T mod W + 1) of the sequence ((T
mod W) of the modelled array) and increments T . In the case where there are already
W tasks in tasks, this will result in the earliest added task to be overwritten (as is
done in the implementation). Recall that the behaviour of the original Putp operation
is undefined when Putp occurs and there are already W tasks.

Putp
ΔAS1
task? : Task

tasks′ = tasks⊕{(T modW+1) �→ task?}
T ′ = T+1

The Takep operation returns empty when H = T , returns the task at position (T −
1) mod W + 1 of tasks and increments T when H + 1 < T , and returns the task at
position H mod W + 1 of tasks and increments H when H + 1 = T . There is no
conflict with a thief at this level of abstraction as Takep and Stealq are atomic.

Takep
ΔAS1
task! : Task∪{empty}
H = T ⇒ task! = empty
H < T −1 ⇒ task! = tasks((T −1)modW+1) ∧ T ′ = T −1
H = T −1 ⇒ task! = tasks(HmodW+1) ∧ H′ = H+1

The Stealq operation is modelled in a similar fashion, details are omitted here.
This specification can readily be shown to be a data refinement of the original abstract
specification using the simulation rules for Z refinement [7] and the following retrieve
relation. This relates the tasks starting from position 1 in tasks of AS with those
starting from position H mod W + 1 in tasks of AS1.

88 J. Derrick et al.

R
AS
AS1[tasks1/task]

tasks= {i : 0 . . (T −H)−1 • (i+1, tasks1((H+ i)modW+1))}

5.4 Coarse-Grained Abstraction

Given the refined abstract specification above, we are now in a position to develop
the coarse-grained abstraction. In this case, adding a buffer for each process to AS1
results in the schema GS. Hence, we have BS =̂GS and BSInit =̂GSInit, and the
Flushp operations is as defined for the concrete specification.

The specification ofPutp needs to take into account that flushes may occur between
the two writes. Hence, it is possible that the operation returns with only its last write
(to T) in the buffer and the sequence tasks already updated.

Putp
ΔBS
task? : Task

buffer′(p) = buffer(p)� 〈(T modW, task?),(W,T+1)〉
∨
buffer′(p) = 〈(W,T+1)〉 ∧ tasks′ = tasks⊕{T modW+1, task?}

The nondeterminism in the definition of Putp ensures linearizability can be proved
using the proof method presented in Sect. 2. Any flushes to values not written by the
current Putp operation which are flushed during its execution are linearized to occur
before the operation. A flush of the write to tasks is also linearized to occur before
the operation, but in this case the flush of the coarse-grained abstraction is one that
occurs when the buffer is empty; the updating of tasks is done by the operation.

In general, such nondeterminism will be required in the coarse-grained abstraction
whenever an operation can return with more than one of its writes in the buffer. Hence,
it was not required for spinlock where there was at most one write in the buffer at each
operation return. It is also not required for the remaining operations of the Chase-Lev
algorithm which either end with a fence (and hence have no writes in the buffer) or,
in the case of a take when the buffer is empty, end with one write in the buffer.

To specify Takep, we need to pay careful attention to where the fences occur in
the implementation. The fence at line 3 ensures that all values in the buffer at the
start of the operation are flushed (specified by the first line of the predicate below).
When H = T , the value of T is changed twice: the first write (line t2) is flushed by
the fence at line t3, and the second (line t8) is not. T is also changed twice when
H = T − 1. However in this case, the CAS (line 11) clears the buffer ensuring T is
equal to its second value (which happens to be the value of T before the operation).

A Proof Method for Linearizability on TSO Architectures 89

Takep
ΔBS
task! : Task

(∀ i : 1..W • tasks′(i) = tasks(i)(p)) ∧ T ′ = T(p)
H = T(p) ⇒ task! = empty ∧ T ′ = T(p)−1 ∧ buffer′(p) = 〈H〉
H < T(p)−1 ⇒ task! = tasks((T(p)−1)modW+1)(p) ∧ T ′ = T(p)−1 ∧

buffer′(p) = 〈〉
H = T(p)−1 ⇒ task! = tasks(HmodW+1)(p) ∧ H′ = H+1 ∧

buffer′(p) = 〈〉

In the implementation of Stealq, the CAS at line s7 causes a fence when H < T
(specified by the last line of the predicate below). Since Stealq and Takep are still
atomic at this level of abstraction, there is no chance of conflict when H < T .

Stealq
ΔBS
task! : Task

H = T(q) ⇒ task! = empty
H < T(q) ⇒

task! = tasks(HmodW+1)(q) ∧ H′ = H+1
(∀ i : 1..W • tasks′(i) = tasks(i)(q)) ∧ T ′ = T(q) ∧ buffer(q) = 〈〉

We are now able to apply our approach to prove that the implementation of Fig. 5
is TSO-linearizable with respect to the refined abstract specification of Sect. 5.3, and
hence with respect to the abstract specification of Sect. 5.1.

In other work, Liu et al. [17] suggest a further fence is needed after line p3 of
put in order to prove linearizability. This is to prevent a thief process performing a
steal which returns empty, immediately after the worker process has completed
a put operation on an empty deque, i.e., before the writes of the put have been
flushed to memory. Since under TSO-linearizability the return of the put will be
moved to the last flush of the values it writes, the put and steal operations will
overlap in this case and the scenario will linearize to an abstract history where the
steal which returns empty occurs before the push.

6 Conclusion

In this chapter we have developed a method by which to simplify proofs of lineariz-
ability for algorithms running on the TSO memory model. Instead of having to deal
with the effects of both fine-grained atomicity and local buffers in one set of proof
obligations, we have used an intermediate specification to partition the proof oblig-
ations in two. One set of proof obligations is simply the standard existing notion of

90 J. Derrick et al.

linearizability, and any existing proof method could be employed to verify this step.
The second set of proof obligations involves verifying that an appropriate transfor-
mation (given by TRANS defined in Sect. 4) holds.

Although there is existing work on defining linearizability on TSO, to the best of
our knowledge this is the first work that provides simplified reasoning for showing
how linearizability can be verified for algorithms running on TSO, although mention
should be made of the approach in [24] that uses SPIN to check specific runs for
TSO-linearizability.

References

1. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.: The seman-
tics of power and arm multiprocessor machine code. In: Petersen, L., Chakravarty, M.M.T. (eds.)
DAMP ’09, pp. 13–24. ACM (2008)

2. Amit, D., Rinetzky, N., Reps, T.W., Sagiv, M., Yahav, E.: Comparison under abstraction for
verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007, Volume of 4590 LNCS,
pp. 477–490. Springer (2007)

3. Bovet, D., Cesati, M.: Understanding the Linux Kernel, 3rd edn. O’Reilly, Sebastopol (2005)
4. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library correctness on the

TSO memory model. In: Seidl, H. (ed.) ESOP 2012, volume 7211 of LNCS, pp. 87–107.
Springer (2012)

5. Calcagno, C., Parkinson, M., Vafeiadis,V.: Modular safety checking for fine-grained concur-
rency. In: Nielson, H.R., Filé, G. (eds.) SAS 2007, volume 4634 of LNCS, pp. 233–238.
Springer (2007)

6. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Gibbons, P.B., Spirakis, P.G.
(eds.) SPAA, pp. 21–28. ACM (2005)

7. Derrick, J., Boiten, E.: Refinement in Z and Object-Z: Foundations and Advanced Applications,
2nd edn. Springer, Berlin (2014)

8. Derrick, J., Schellhorn, G., Wehrheim, H.: Proving linearizability via non-atomic refinement.
In: Davies, J., Gibbons, J. (eds.) IFM 2007, volume 4591 of LNCS, pp. 195–214. Springer
(2007)

9. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations for lineariz-
ability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

10. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisabilty with potential linearisation
points. In: Butler, M., Schulte, W. (eds.) FM 2011, volume 6664 of LNCS, pp. 323–337.
Springer (2011)

11. Derrick, J., Smith, G., Dongol, B.: Verifying linearizability on TSO architectures. In: iFM
2014, volume 8739 of LNCS, pp. 341–356 (2014)

12. Derrick, J., Smith, G., Groves, l., Dongol, B.: Using coarse-grained abstractions to verify
linearizability on TSO architectures. In: HVC2014, volume 8855 of LNCS (2014)

13. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical lock-free
queue algorithm. In: de Frutos-Escrig, D., Nunez, M. (eds.) FORTE 2004, volume 3235 of
LNCS, pp. 97–114. Springer (2004)

14. Dongol, B., Derrick, J.: Verifying linearisability: a comparative survey. ACM Comput. Surv.
48(2):19:1–19:43 (2015)

15. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: sequentially consistent specifica-
tions of TSO libraries. In: Aguilera, M. (ed.) DISC 2012, volume 7611 of LNCS, pp. 31–45.
Springer (2012)

16. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

A Proof Method for Linearizability on TSO Architectures 91

17. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M.T., Yahav, E.: Dynamic synthesis for relaxed
memory models. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI, pp. 429–440. ACM (2012)

18. Morrison, A., Afek, Y.: Fence-free work stealing on bounded TSO processors. In: ASPLOS,
pp. 413–426. ACM (2014)

19. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive proofs
with KIV. In: Automated Deduction, pp. 13–39. Kluwer (1998)

20. Schellhorn, G., Wehrheim, H., Derrick, J.: A sound and complete proof technique for lineariz-
ability of concurrent data structures. ACM Trans. Comput. Logic (2014)

21. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous and usable
programmer’s model for x86 multiprocessors. Commun. ACM 53(7), 89–97 (2010)

22. Smith, G., Derrick, J., Dongol, B.: Admit your weakness: Verifying correctness on TSO archi-
tectures. In: FACS, volume 8997 of LNCS. Springer (2015)

23. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache Coherence.
Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers (2011)

24. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under weak memory
models. In: Bertacco, V., Legay, A. (eds.), HVC2013, volume 8244 of LNCS, pp. 311–326.
Springer (2013)

25. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis, University of Cam-
bridge (2007)

Part IV
Interfaces and Linking

Linking Discrete and Continuous Models,
Applied to Traffic Manoeuvrers

Ernst-Rüdiger Olderog, Anders P. Ravn and Rafael Wisniewski

Abstract The interplay between discrete and continuous dynamical models is
discussed, and a systematic approach to developing and combining these models
together is outlined. The combination is done with linking predicates that define
refinement relations between the models. As a case study, we build an abstract, discr
spatial model and a concrete, continuous dynamic model for traffic manoeuvrers of
multiple vehicles on highways. In the discrete model we show the safety (collision
freedom) of distance keeping and lane-change manoeuvrers using events and actions
to specify state transitions. By linking the discrete and continuous model via suitable
predicates that express the discrete events and actions as distances and set-points in
the continuous model, the safety carries over to the concrete model.

1 Introduction

Hybrid systemswere introduced in order tomodel dynamical systemswith a complex
interaction between discrete actions and continuous evolutions in their trajectories
[15]. Semantic models in the form of Hybrid Automata with the underlying transition
systems [2, 29] were soon developed, and simulation tools like Stateflow [30] and
Ptolemy II [24] appeared as well. Due to the success of model checking for timed

This research was partially supported by the German Research Foundation (DFG) in the Trans-
regional Collaborative Research Center (SFB/TR 14) AVACS(www.avacs.org). This chapter is
a revised and extended version of the conference paper [35].

E.-R. Olderog
Department of Computing Science, University of Oldenburg, Oldenburg, Germany
e-mail: olderog@informatik.uni-oldenburg.de

A.P. Ravn (B)
Department of Computer Science, Aalborg University, Aalborg, Denmark
e-mail: apr@cs.aau.dk

R. Wisniewski
Department of Automation, Aalborg University, Aalborg, Denmark
e-mail: raf@es.aau.dk

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_5

95

www.avacs.org

96 E.-R. Olderog et al.

Fig. 1 Modelling approach. The discrete model is a collection of discrete automata with transitions
governed by symbolic guards, sg, and with symbolic actions, sa. The underlying symbolic state
space is hybrid with time evolutions. However, it is asserted that time steps do not change the value
of guards and actions. The continuous model is a conventional control model which accepts set
points, z. Linking is given via suitable functions K and L

automata [3], much effort has been directed towards analysis tools which use over-
and under-approximations of hybrid automata [12, 14, 51], because it was clear from
the outset that decidability was impossible even for very simple models.

There has been much progress both in analysis tools and in the amount of case
studies, but it is still hard to find general composition principles. Often a system is
decomposed into simpler subsystems that are loosely coupled [4, 20, 42] and thus
can be analyzed individually. This loose coupling among concurrently operating
subsystems was illustrated in [7], and it was analysed at a semantic level for hetero-
geneous subsystems in [38]. One observation though is that verification is usually
done on subsystem models abstracted from detailed continuous models. It is this
decomposition that is in the focus of this work. In a search for a more general and
perhaps even teachable ap1proach to performing this abstraction, we have tried to
extract the principles from our continued efforts in modelling and verifying vehicle
manoeuvrers in traffic, because it is a setting with a complex state space, a demand
for decentralized control, and hybrid behaviours.

Here, we have reached the conclusion that a key point in the abstraction is to keep
the discrete part, often a supervisory layer, on symbolic and finite level without any
direct reference to time, because it allows for exhaustive verification using conven-
tional techniques. However, this will in itself leave the continuous dynamics as an
unexplored postulate. Thus, there is a need for linking the symbolic quantities of the
discrete model to the concrete continuous model by a proper refinement relation. Via
linking, behavioural properties of the abstract model are preserved for the concrete
model. An inspiration is here the data refinement relations explored in program ver-
ification [8]. However, in the reactive setting, linking predicates as in the approach

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers 97

of UTP (Unifying Theories of Programming) [23] are more suitable. In summary,
the approach presented has the following steps, illustrated in Fig. 1.
For the symbolic, discrete model:

1. build a qualitative model of the context with symbolic representation of states of
objects.,

2. formulate rules for interaction as finite state machines operating on the symbolic
state (If the state machines use communication protocols, timeout transitions may
be used to compensate for lost messages),

3. specify safety and liveness properties of the symbolic state,
4. verify the properties.

These steps are illustrated on the case of vehicle manoeuvrers in Sects. 2 and 3.
When this part has gone through a number of iterations and the result is satisfac-

tory, consider the concrete model:

5. identify a concrete dynamical model for the objects including available or at least
plausible sensors and actuators,

6. link the models by relating the symbolic state variables to concrete observables
that are computed by a controller for the dynamical system using available sensors
and concrete models of the individual objects, also link symbolic actions to set
points for the control,

7. design and validate the controllers and observers.

These steps are illustrated on the case in Sects. 4–6.
Note that often the two models may develop concurrently. When this happens, it

is important to keep the linkage stable when doing separate iterations.
A pragmatic consideration when designing the linking in the concrete case has

been to design a system where a smart car can navigate among ordinary dumb cars.
There is no need to require all cars to be smart and able to communicate with other
cars. This has implications for the sensors and actuators, see Fig. 3 in Sect. 5, as well
as impact on the symbolic guards and actions.

In Sect. 7, we comment on generally related work, while the conclusion in Sect. 8
considers limitations of the approach and potential for tool support.

2 Symbolic Model

In this section, we summarize and adapt the model of [22]. In this model, a multi-
lane highway has an infinite extension with positions represented by real numbers
in R and with lanes represented by a finite set of natural numbers, L = {0, . . . , N }.
We assume that all traffic proceeds in one direction, with increasing position values,
in pictures shown from left to right. The highway is populated by cars with unique
identities denoted by capital letters I = {A, B, . . .}.

At each moment in time, we represent the traffic on the highway by a traffic
snapshot. It records for each car the current position pos (at the rear end of the car)

98 E.-R. Olderog et al.

and speed spd, and on which lanes the car reserves or claims space. The idea is that
a reserved space is owned by a unique car. Thus for safety, we have to show that
reserved spaces of different cars are mutually exclusive. In contrast, a claimed space
is used in preparation of a lane change and may still overlap with claimed or reserved
spaces of other cars. However, then the lane change must not take place. The length
of reserved and claimed spaces is given by the safety distance, which is the length
of the car plus a safe estimate of the (speed-dependent) braking distance that the car
will need to come to a complete standstill.

Definition 1 A traffic snapshot T comprises the functions pos, spd, res, clm

• pos : I → R such that pos(C) is the position of car C along the lanes,
• spd : I → R such that spd(C) is the current speed of the car C ,
• res : I → P(L) such that res(C) is the set of lanes C reserves,
• clm : I → P(L) such that clm(C) is the set of lanes C claims.

We denote the set of all traffic snapshots by T.

Note that in T , it is not specified which space is occupied on the reserved and
claimed lanes. This information is given by an uninterpreted function se for safety
envelope. For a given traffic snapshot T , we introduce for each car C its safety
envelope seT (C) as the interval seT (C) = [pos(C), pos(C) + d(C)] starting at
the current position pos(C) of the car and of some uninterpreted length d(C) > 0,
which is intended to be the safety distance of car C dependent on its current speed
spd(C). The exact value of d(C) is not known in the symbolic model, but will be
determined in the concrete dynamic model.

2.1 View

For our safety proof, we restricst ourselves to finite parts of a traffic snapshot T
called views; the intuition being that safety depends on local information only.

Definition 2 A view V = (L,X, E) consists of an interval of lanes visible in the
view, L = [l, n] ⊆ L, and the extension visible in the view, X = [r, t] ⊆ R, and
E ∈ I, the identifier of the car under consideration.

A subview of V is obtained by restricting the lanes and extension we observe. For
this we use sub- and superscript notation: V L′ = (L′,X, E) and VX′ = (L,X′, E),
where L′ and X′ are subintervals of L and X, respectively.

For a car E and a traffic snapshot T = (pos, spd, res, clm) its standard view is

Vs(E,T) = (L, [pos(E) − ho, pos(E) + ho], E) ,

where the horizon ho is chosen such that a car driving at maximum speed can, with
lowest deceleration, come to a standstill within the horizon.

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers 99

2.2 Spatial Logic

To specify properties of traffic snapshots within a given view in an intuitive and yet
precise way, we use a two-dimensional spatial interval logic, MLSL (Multi-Lane
Spatial Logic) [22]. In this logic, the horizontal dimension is continuous, represent-
ing positions on a highway, and the vertical dimension is discrete, representing the
number of a lane on a highway. In the syntax, variables ranging over car identifiers
are denoted by small letters c, d, u and v. To refer to the car owning the current
view, we use a special variable ego. By Var we denote the set of all these variables.
Additionally, the letter γ ranges over car identifiers or elements in Var.

Definition 3 (Syntax) The syntax of the multi-lane spatial logic MLSL is given by
the following formulae:

φ ::=true | u = v | free | re(γ) | cl(γ) |
φ1 ∧ φ2 | ¬φ1 | ∃v : φ1 | φ1 � φ2 | φ2

φ1

We denote the set of all MLSL formulae by �.

Formulae ofMLSL express the spatial status of neighbouring lanes on amulti-lane
highway. For a lane, the spatial status describes whether parts of it are reserved or
claimed by a car or completely free. To this end, MLSL has atoms re(γ), cl(γ), and
free, and two chop operators: the horizontal chop φ1 � φ2 expresses that an interval
can be divided into two horizontally adjacent parts such that φ1 holds in the left part

and φ2 in the right part, and the vertical chop
φ2

φ1
expresses that an interval can be

divided into two vertically adjacent parts where φ1 holds on the lower part and φ2 on
the upper part. We use juxtaposition for the vertical chop to have a correspondence
to the visual layout in traffic snapshots.

The logic is given a semantics that defines the when traffic snapshots satisfy a
given formula.

Definition 4 (Semantics)The satisfaction |= of formulae is defined inductively with
respect to a model M = (T , V, ν) comprising a traffic snapshot T , a view V =
(L,X, E) with L = [l, n] and X = [r, t], and a valuation ν : I ∪ Var → I consistent
with V , i.e., with ν(ego) = E and ν(C) = C for C ∈ I:

M |= true for all M

M |= u = v ⇔ ν(u) = ν(v)

M |= free ⇔ |L| = 1 and |X| > 0 and

∀C ∈ I : L ⊆ res(C) ∪ clm(C) ⇒ seT (C) ∩ (r, t) = ∅
M |= re(γ) ⇔ |L| = 1 and |X| > 0 and

L ⊆ res(ν(γ)) and X ⊆ seT (ν(γ))

100 E.-R. Olderog et al.

M |= cl(γ) ⇔ |L| = 1 and |X| > 0 and L ⊆ clm(ν(γ)) and X ⊆ seT (ν(γ))

M |= φ1 ∧ φ2 ⇔ M |= φ1 and M |= φ2

M |= ¬φ ⇔ not M |= φ

M |= ∃v : φ ⇔ ∃ α ∈ I : (T , V, ν⊕{v �→ α}) |= φ

M |= φ1 � φ2 ⇔ ∃ s : r ≤ s ≤ t and

(T , V[r,s], ν) |= φ1 and (T , V[s,t], ν) |= φ2

M |= φ2

φ1
⇔ ∃m : l − 1 ≤ m ≤ n + 1 and

(T , V [l,m], ν) |= φ1 and (T , V [m+1,n], ν) |= φ2

We write T |= φ if (T , V, ν) |= φ for all views V and consistent valuations ν.

For the semantics of the vertical chop, we set the interval [l,m] = ∅ if l > m.
A view V with an empty set of lanes satisfies only true or an equivalent formula.
Both chop modalities are associative. Other logical operators like ∨,→,↔ and ∀
are treated as abbreviations. Also, we use the notation 〈φ〉 for the two-dimensional
modality somewhere φ, defined in terms of both chop operators:

〈φ〉 ≡ true �

⎛

⎝
true
φ

true

⎞

⎠ � true.

For example, Safe ≡ ∀c, d : c �= d → ¬〈re(c) ∧ re(d)〉 expresses the safety prop-
erty that any two different cars have disjoint reserved spaces.

2.3 Transition System

Atraffic snapshot is an instant picture of the highway traffic.The following transitions
describe how it may change. Time may pass or a car may perform several actions
when attempting and performing a lane change. We use the overriding notation ⊕
for function updates [46].

T
t−→T ′ ⇔ T ′ = (pos′, spd′, res, clm)

∧∀C ∈ I : pos′(C) > pos(C) (1)

T
c(C,n)−−−→T ′ ⇔ T ′ = (pos, spd, res, clm′)

∧ |clm(C)| = 0 ∧ |res(C)| = 1

∧ {n + 1, n − 1} ∩ res(C) �= ∅
∧ clm′ = clm ⊕ {C �→ {n}} (2)

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers 101

T
wd c(C)−−−−→T ′ ⇔ T ′ = (pos, spd, res, clm′)

∧ clm′ = clm ⊕ {C �→ ∅} (3)

T
r(C)−−→T ′ ⇔ T ′ = (, pos, spd, res′, clm′)

∧ clm′ = clm ⊕ {C �→ ∅}
∧ res′ = res ⊕

{C �→ res(C) ∪ clm(C)} (4)

T
wd r(C,n)−−−−−→T ′ ⇔ T ′ = (pos, spd, res′, clm)

∧ res′ = res ⊕ {C �→ {n}}
∧ n ∈ res(C) ∧ |res(C)| = 2. (5)

In (1), time passes, which results in the cars moving along the highway to the
right. However, note that reservations, res, and claims, clm, cannot change during
time passing transitions. The new position and speed of each car is determined by
the dynamics of them, which is described at the concrete level. A car may claim a
neighbouring lane n (2) if and only if it does not already claim a lane or is in the
progress of changing the lane and therefore reserves two lanes. Furthermore, a car
may withdraw a claim (3) or reserve a previously claimed lane (4) or withdraw the
reservation of all but one of the lanes it is moving on (5).

3 Abstract Controllers

In this section we present abstract car controllers for keeping distance and changing
lanes. By abstract, we mean that properties, invariants and guards of transitions are
given by MLSL formulas. The controllers should guarantee that at any moment the
spaces reserved by different cars are disjoint. This is expressed concisely by

Safe ≡ ∀c, d : c �= d ⇒ ¬〈re(c) ∧ re(d)〉 ,

stating that in any lane any two different cars have disjoint reserved spaces. The
quantification over lanes arises implicitly by the negation of the somewhere modality
in Safe. A traffic snapshot T is safe if T |= Safe holds.

102 E.-R. Olderog et al.

3.1 Keeping Distance

Adistance controller DC of a car E should guarantee the safety as long as E is driving
along the highway without making any new claim or reservation. This is expressed

by time transitions among traffic snapshots: T
t−→T ′. From the perspective of the

car E , safety means that the following collision check remains false:

cc ≡ ∃c : c �= ego ∧ 〈re(ego) ∧ re(c)〉 .

Thus we require:
(DC) The distance controller DC of a car E keeps the property ¬cc invariant

under time transitions, i.e., for every transition T
t−→T ′ whenever T |= ¬cc, also

T ′ |= ¬cc.

3.2 Changing Lanes

We specify an abstract controller by a timed automaton [3] with clocks ranging over
R≥0 and data variables ranging over L and I. Strictly speaking, the single clock x ,
which is used in the automaton, is unnecessary for proving safety; it is added to
ensure liveness. MLSL formulae appear in transition guards and state invariants.
This can be seen in the lane-change controller in Fig. 2, where the MLSL formulae
φ1 and φ2 are kept symbolic. The abstract lane-change controller LCP of [22] is an
instantiation of this controller, except that it has the invariant ¬cc in the initial state
q0. Here this property is ensured invariantly by the distance controller DC.

LCP assumes that every car, E , knows the full extension of claims and reservations
of all carswithin its view. It thus hasperfect knowledgeof its neighbouring cars (hence
the letter P in the name of the controller); E perceives another car C as soon as C’s
safety envelope enters the view of E . In the following and in Sect. 5, we identify the
car variables ego and c with their values, the cars E and C , respectively.

At the initial state q0 of LCP, the car has reserved exactly one lane, which is saved
in the variable n. An auxiliary variable l stores the lane the ego car wants to move to.
Suppose ego intends to change to a neighboring lane, then it adheres to the following
protocol. First, it claims a space on the target lane adjacent to and of the same
extension as the reservation on its current lane, moving to state q1. Subsequently,
it checks for a potential collision (pc), i.e., whether its claim intersects with the
reservation or claim of any other car. This is expressed by the MLSL formula

pc ≡ ∃c : c �= ego ∧ 〈cl(ego) ∧ (re(c) ∨ cl(c))〉 .

If pc occurs, ego withdraws its claim and returns to state q0, giving up the wish
to change lanes for the moment. Otherwise, ego turns its claim into reservations
and thus reserves two lanes. This is in state q3, During this double reservation ego

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers 103

Fig. 2 The lane-change controller LCP with φ1 ≡ pc and φ2 ≡ ¬pc

changes lane within tlc time units, an upper time bound for the lane change. Then
egowithdraws its reservation on the original lane and continues to drive on the target
lane, being again in state q0. In this protocol, only turning the claim into a reservation
(in the transition from state q2 to state q3) may violate the safety property. Thus in
LCP of Fig. 2, we instantiate φ1 ≡ pc and φ2 ≡ ¬pc.

In order to ensure liveness in the states q0 and q1, they are to be left within t0 time
units. Liveness in state q0 could be ensured by adding an invariant asserting that the
state should be left when a claim is made. The lane change timeout tlc should strictly
speaking be replaced by a symbolic guard that would be asserted by the concrete
model when a lane change was completed. This symbolic guard would then be linked
to either a sensor value or most likely to a timer in the concrete model.

3.3 Safety

We stipulate now that every car is equipped with the controllers DC and LCP (or that
its driver manually follows its protocol). Under these assumptions, we can show:

Theorem 1 (Safety of DC and LCP) LetT0 be an initial safe traffic snapshot. Then
every traffic snapshot T that is reachable from T0 by transitions allowed by the
controllers DC and LCP is safe.

Proof As in [22], we fix an arbitrary car E and shows that ¬cc holds for every
traffic snapshot T reachable from T0. The argument is by induction on the number
of transitions needed to reach T from T0, and the crucial case in the induction
step is that of the reservation transition. In contrast to [22], the initial state q0 of
LCP in Fig. 2 does not have ¬cc as a built-in invariant. However, since the distance
controller DC is running in parallel to LCP, the safety property ¬cc is an invariant

104 E.-R. Olderog et al.

for this state. Moreover, it is also invariant under any transition that is not creating
any new reservation. Regarding LCP, we thus have that ¬cc holds in the start state
q2 of the reservation transition from state q2 to state q3 in LCP. As in [22], it can be
shown that performing the reservation transition in state q2 satisfying both ¬cc and
¬pc leads to q3 satisfying ¬cc. �

4 Concrete Model

The aim of this section is to present a physical model of a vehicle, which describes
the position pos(C) and the speed spd(C) of a vehicle C . It will lay the basis for
the controller design in Sect. 6.

4.1 Longitudinal Motion

A vehicle C is characterised by its velocity given in [m/s] at the current time t
given in [s], vC : R+ → R+. Both the time and the velocity are considered non-
negative reals. The acceleration and braking of the vehicle C is realised by a torque
T ≡ TC : R+ → R given in [Nm]. The torque is applied to the wheels from the
transmission and braking system, and it belongs at any given time to an interval
[T , T] ≡ [TC , TC], where TC < 0 is the maximal torque of the brakes, and TC > 0
is the torque at full throttle.

To model aerodynamic drag force, we introduce a drag coefficient CW. The drag
force is proportional to the square of the velocity

CW(t)v2C(t).

As indicated in the above equation, CW varies in time. Specifically, CW is charac-
terised as follows. Suppose a vehicle D drives in front of the vehicle under consid-
eration C . The drag coefficient is an empirical quantity approximated by

CW(δ, vD) = CC

(

1 − exp

(

− aδ

CDvD

))2

,

where CC , CD are the aerodynamic coefficients of the vehicles C and D, and a is a
constant [47]. In short, the aerodynamic coefficient of a vehicle is determined by its
geometry: shape and size. The drag coefficient is positive, Image(CW) ⊆ [0,CC]. It
converges to CC for small distances δ and large velocities vD .

As a consequence, the dynamics of the vehicle C is given by

(Mr2 + J)v̇C(t) = −CW(δ(t), vD(t))r2vC(t)2 + rT (t),

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers 105

Fig. 3 Car with observers and actuators

where M is the mass of the vehicle C [kg], J is the combined moments of inertia of
the wheels [kgm2], and r is the radius of the wheels [m].

Let X be the state space of the vehicle C (with the vehicle D driving in in front).
It is the linear space of vectors comprising of the velocity vC of the vehicle C , and
the distance δ from C to D, i.e., X = R

2. We assume that both the velocity and
the distance are available as indicated in Fig. 3, where sensor v̂ measures vC and d̂1
measures δ. If the vehicle D is out of range the distance sensor delivers the value ∞.

A feedback controller is a function T : X → [T , T] that takes the current state to
the torque. Negative values are realised by the braking system; whereas, the positive
values are realised by the transmission (the throttle). As a consequence, T (t) =
T (vC(t), δ(t)).

To simplify the notation, we introduce

x(t) = (x1(t), x2(t)) ≡ (δ(t), vC(t)) ∈ R
2

z(t) ≡ vD(t) ∈ R

b ≡ r

Mr2 + J
∈ R

a(x1, z) ≡ rbCW(x1, z) ∈ C∞(R2,R+)

u(t) ≡ bT ∈ R

(−u, u) ≡ (−bT , bT) ∈ R
2
+

x0 ≡ (d0, v0C) ∈ R
2. (6)

As a result, the equations of motion are given by the following Cauchy problem with
x(0) = x0:

106 E.-R. Olderog et al.

ẋ1(t) = z(t) − x2(t)

ẋ2(t) = −a(x1(t), z(t)) x2(t)
2 + u(t), (7)

where u(t) ∈ [u, u]. The subscripts of x refer to the components of the vector x .

Remark 1 The Eq. (7) can be used to compute the safety or braking distance ds(v0c)
as a function of the initial velocity v0c of the vehicle C . To this end, let z(t) = 0, i.e.,
the vehicle in front instantaneously stops

ẋ1(t) = −x2(t) and ẋ2(t) ≤ u

for x0 = (0, v0C). To compute thebrakingdistance,weapply theGronwall lemma [48],
which we state now for completeness. Suppose that k is a non-negative and bounded
function on an interval [t0, t1] and l a non-decreasing function on the same interval.

If

v(t) ≤ l(t) +
∫ t

t0

k(s)v(s)ds

for t ∈ [t0, t1], then
v(t) ≤ exp

(∫ t

t0

k(s)ds

)

l(t).

Consequently, by the Gronwall lemma, the time to stop is t ≤ t̂ ≡ − v0C
u (notice that

u < 0). Hence, the braking distance is at most ds(v0C) = − (v0C)2

2u .

4.2 Lateral Motion

So far, we have not discussed lateral motion. For the details of modelling, we refer
to [37]. In short, the kinematic model of the vehicle C is given by the global position

Ẋ = vC cos(ψ + β) (8a)

Ẏ = vC sin(ψ + β), (8b)

where vC is the velocity of the vehicle C , β is the slip angle of the vehicle defined
below, and ψ is the yaw angle, that defines the orientation angle of the vehicle w.r.t.
the x-axis

ψ̇ = vC
l
cos(β) tan(θ). (9)

In (9), l is the vehicle base, the distance between the rear and the front wheels, and
θ is the angle between the front wheel and the longitudinal axis of the vehicle, with
θ ∈ [θ, θ] for θ < 0 and θ > 0; θ as the control input.

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers 107

The slip angle of the vehicle is given by the relation

β ≡ β(θ) = tan−1

(
lr tan(θ)

l

)

,

where lr is the distance between the centre of gravity and the rear wheel.

5 Linking

To link the abstract and the concrete model, we must map the symbolic observables
and events to observer functions in the controllers. In this work, we assume that each
car is equipped with the observers, realised by suitable sensors, and actuators listed
in Fig. 3.

The abstract controller LPC takes a view of the traffic snapshot, represented by
MLSL formulae built with the atoms free, re(c),cl(c). By Theorem 1, this suffices for
the safety check at the abstract level. However, the check assumes that the reserved
or claimed spaces are large enough. Whether this assumption is true, depends on the
concrete controller based on the car dynamics.

5.1 Distance Controller

We first turn to the distance controller DC in each car as formalized by assumption
DC. Every car E keeps the property¬cc invariant under time transitions, expressing
that “no collision” occurs:

¬cc ≡ ¬∃c : c �= ego ∧ 〈re(ego) ∧ re(c)〉 .

Since the overlap re(ego) ∧ re(c) is symmetric, the distance controller in ego must
check forward or backward for any other car c. However, considering all cars together,
it suffices that each car ego checks only that there is “no collision forward”. Let c
ahead ego abbreviate the following MLSL formula expressing that car c is immedi-
ately ahead of ego:

c ahead ego ≡
⎛

⎝
¬re(ego)

∧
¬re(c)

⎞

⎠ �

⎛

⎝
re(ego) � ¬re(ego)

∧
¬re(c) � re(c) � ¬re(c)

⎞

⎠ .

108 E.-R. Olderog et al.

Then we replace the invariant ¬cc by the following formula:

¬ccf ≡ ¬∃c : c �= ego ∧ 〈re(ego) ∧ re(c)〉 ∧ 〈c ahead ego〉 .

We recall the resulting “forward looking” distance controller DCf . Note that log-
ically ¬ccf in DCf is weaker than ¬cc in DC, admitting more traffic snapshots.
However, when all cars check ¬ccf instead of ¬cc, safety remains guaranteed. This
is formalized as follows. Consider the abstract setting A, where all cars are equipped
with DC, and the abstract forward setting A f , where all cars are equipped with DCf .

Proposition 1 (Safety of DCf) Every time transition among traffic snapshots per-
mitted in Af is also permitted in A.

In the concrete controller, we have the observable d that implements the abstract
safety distance function d(ego) for car ego at its current speed. Also, there is the
concrete observable d̂1 measuring the distance to the next car c ahead. The formula
¬ccf is satisfied if the inequality d < d̂1 holds. Thus the linking predicate relating
the abstract and concrete levels is here

¬ccf ⇐ d < d̂1.

Note that the implication indicates that d < d̂1 admits no more traffic snapshots than
¬ccf does.

5.2 Lane-Change Controller

To link the abstract lane change controller LCP to the observers at the concrete level,
theMLSL formulae appearing as guards in LCP are replaced by suitable comparisons
of observer values read at the concrete level.

Since the distance controller DC is running in parallel to LCP, the safety property
¬cc holds as long as the reservation transition from state q2 to state q3 in LCP is
not performed (cf. Fig. 2 and the proof of Theorem 1). Note that we can weaken the
guard of any transition in LCP, except for this reservation transition, and the altered
lane change controller will stay safe. For example, we may even weaken the guard
φ1 to true. Then a claim can always be withdrawn, but this does not violate safety.

Regarding the reservation transition from state q2 to state q3, the controller will
stay safe as long as we strenghten its guard φ2, which in LCP is given by the formula

¬pc ≡ ¬∃c : c �= ego ∧ 〈cl(ego) ∧ (re(c) ∨ cl(c))〉

expressing that no potential collison occurs. To link¬pcwith the concrete controller,
we distinguish the cases of reservation and claim of c.
Case 1: φre ≡ ¬∃c : c �= ego ∧ 〈cl(ego) ∧ re(c)〉 . This formula states that no
(other) car c on ego’s target lane has a reservation that overlaps with ego’s claim.

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers 109

The car c may be (i) ahead of ego (or aligned with ego) or (ii) behind ego. In subcase
(i), the concrete controller looks forward using the observables d giving the safety
distance needed for car ego at its current speed and d̂t (with t either 2 or 3) measuring
the distance to the next car c in front of ego on the target lane of its lane change
maneuver. The concrete controller checks the inequality ds < d̂t . In subcase (ii), the
concrete controller looks backward using the observables d̂b (with b either 4 or 5)
measuring the distance to the next car behind ego on the target lane and ds,max , the
maximal braking distance of any car, i.e., an overapproximation of the actual braking
distance of that car. The concrete controller checks the inequality ds,max < d̂b. Thus,
the linking predicate relating the abstract and concrete levels is in this case

φre ⇐ d < d̂t ∧ ds,max < d̂b.

Due to the over-approximation in ds,max the check at the concrete level may be
stronger than necessary, permitting fewer lane changes than ¬pc, but it preserves
safety.
Case 2 : φcl ≡ ¬∃c : c �= ego ∧ 〈cl(ego) ∧ cl(c)〉 .

The formula states that no other car c on ego’s target lane has a claim that overlaps
with ego’s claim. Such a car c may only be in a lane next to ego’s target lane. In this
case, the concrete controller checks with its sensor bt (with t either 1 or 2) on the
side of the target lane for a turn signal of some car c on the lane next to the target
lane. The formula φcl is satisfied if ¬bt holds. Thus, the linking predicate relating
the abstract and concrete levels is in this case

φcl ⇐ ¬bt .

Summarising, at the concrete level, we instantiate

φ2 ≡ (d < d̂t ∧ ds,max < d̂b) ∧ ¬bt ,

which by the linking predicates for φre and φcl implies ¬pc at the abstract level.
For the guards of the two withdrawal transitions from state q1 to state q3 and from

state q2 to state q0 in Fig. 2, we put φ1 ≡ ¬φ2 for the above instantiation of φ2. Thus
compared with the abstract controller LCP, the guard φ1 is weakened, permitting
more withdrawals, but as argued before, this preserves safety.

Altogether, instantiating in the controller in Fig. 2 the formula φ2 by the distance
inequalities and blinker sensor values as stated above and φ1 by its negation, we
obtain a concrete lane-change controller that we call LCPc. Consider the abstract
setting ALC, where all cars are equipped with LCP, and the concrete setting CLC,
where all cars are equipped with LCPc.

Proposition 2 (Safety of LCPc) Every reservation transition among traffic snap-
shots permitted in CLC is also permitted in ALC.

Combining Propositions 1 and 2, we obtain:

110 E.-R. Olderog et al.

Theorem 2 (Safety of DCc and LCPc) Let T0 be an initial safe traffic snapshot.
Then every traffic snapshot T that is reachable from T0 by transitions allowed by
the controllers DCc and LCPc is safe.

6 Concrete Controllers

Themain focus in this sectionwill be on the longitudinalmotion control.Nonetheless,
for completeness we will provide a control for changing the lane.

6.1 Longitudinal Control

We will address the assumptions for the distance controller used in Sect. 5.1 linking
the safety to the safety envelope through the variable d. To this end, we propose a
sliding mode controller for a vehicle C that maintains the velocity of the vehicle at
the reference vref until the distance d betweenC and the vehicle D in front is reached.
Subsequently, the distance d is kept. If D is out of range of the distance sensor, the
controller keeps the velocity at vref . In the following, we assume that at full throttle,
the control u is strong enough to overcome the drag. To this end, we notice that
a(x1, z) ∈ [0, rbCC] for any (x1, z) ∈ R2+, where the constant b is defined in (6). Let
the speed limit be denoted by v̄. Consequently, we assume that the maximal control
u > rbCC v̄2. By a safe control, we understand a control that keeps the motion of a
vehicle safe.

Definition 5 (Safe Control) A safe controller for the control system (7) and a func-
tion z : R+ → [0, v̄] is a function u : R3 �→ R such that the solutions of the dynami-
cal system (7)with u(t) = u(x(t), z(t)) satisfy the following condition: If x1(0) ≥ d,
then x1(t) > 0 for all t ∈ R+.

In plain words, Definition 5 says that an on-board controller is safe if: whenever
the distance from the controlled vehicle to a vehicle in front is initially greater than
d then a collision between these two vehicles will never happen.

Proposition 3 (Existence of a safe controller) Consider the control system (7) and
a function z : R+ → [0, v̄]. Let 0 ≤ vref < v̄, d ≡ d(v̄), and α ≡ rbCC v̄2. Suppose
that u < 0. Let k > 0, and define two affine maps

L1(x) ≡ x2 − vref , L2(x, z) ≡ z − x2 + k(x1 − d), (10)

and a polyhedral set

P(z) ≡ {x ∈ R
2| L1(x) ≤ 0 and − L2(x, z) ≤ 0}. (11)

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers 111

Then the control

u(x, z) =
{
u f or x ∈ R

2\P(z)
u f or x ∈ P(z)

(12)

is safe. Furthermore, the following two properties for the vehicle controlled by the
u in (12) hold:

1. If x2(0) > vref then x2(t) < x2(0) for all t ∈ R+ and there is τ ∈ R
+ such that

x2(t) ≤ vref for t > τ .
2. Let β ≡ inf{ż(t)| t ∈ R+} and γ ≡ sup{ż(t)| t ∈ R+}. Suppose that u < β and

u > α + γ , and assume
0 < k < min{β − u, u − α − γ }/v̄. Then
a. Let 0 ≤ x1(0) < d, and suppose that the controller (12) is such that u(t) = u

holds on an interval [0, τ]. Then x1(t) > x1(0) for all t ∈ [0, τ].
b. limt→∞ x1(t) = d.

Proof If x1(0) ∈ R
2\P(z), then the following holds. There is a family of open

intervals {(τα, τ α)| α ∈ �} such that x(τ α) ∈ P(z) and if t ∈ (τα, τ α) then x(t) ∈
R

2\P(z), hence u(t) = u, and from (7), x1(t) > 0. If t ∈ R\⋃
α∈�(τα, τ α) then

x(t) ∈ P(z(t)), and thus x1(t) ≥ d. The last statement follows from the following.
If x(t) ∈ P(z(t)), then

k(x1(t) − d) ≥ x2(t) − z(t). (13)

And, we consider two cases: x2(t) ≥ z(t) and z2(t) < z(t). If x2(2) ≥ z(t), then
from (13), x1(t) ≥ d. If z2(t) < z(t), then from (7), x1(t) ≥ x1(0) ≥ d. Hence, the
control (12) is safe.

We prove Property 1 and Property 2 of the proposition. To this end, we observe
that for x ∈ R

2\P(z),

L̇1(x, z) = −a(x1, z)x
2
2 + u ≤ u < 0 (14)

L̇2(x, z, ż) = ż + a(x1, z)x
2
2 + k(z − x2) − u

≥ β − kv̄ − u > 0. (15)

whereas, for x ∈ P(z),

L̇1(x, z) = −a(x1, z)x
2
2 + u ≥ −α + u > 0 (16)

L̇2(x, z, ż) = ż + a(x1, z)x
2
2 + k(z − x2) − u

≤ γ + α + kv̄ − u < 0. (17)

By (14), Property 1 holds.
We will show Property 2.a. To this end, we notice that u(t) = u whenever

x(t) ∈ Pz(t). We consider two cases z(t) > x2(t) and z(t) ≤ x2(t). If z(t) > x2(t)
then ẋ1(t) = z(t) − x2(t) > 0 and Property 2.a follows. Suppose that z(t) ≤ x2(t).

112 E.-R. Olderog et al.

Then 0 < k(x1(t) − d) ≥ z(t) − x2 + k(x1(t) − d) = L2(x(t), z(t)) ≥ 0, which is
a contradiction.

To show Property 2.b, we observe that by Inequalities (14)–(17), any flow line of
(7) intersects the boundary of P at a point say x̃ (transversally), i.e., there is t1 ≥ 0
such that x(t1) = x̃ . If L1(x̃) = 0, then the solution (in a Filippov sense) x(·) is such
that L1(x(t)) = 0 for all t ∈ [t1, t2],where t2 is the timeatwhich L2(x(t2), z(t2)) = 0.
Subsequently, the Fillipov solution x(·) is such that L2(x(t), z(t)) = 0 for all t ≥ t2.
As a consequence, z(t) − x2(t) + k(x1(t) − d) = 0, which is equivalent to

d

dt
(x1(t) − d) = −k(x1(t) − d).

Hence, limt→∞ x1(t) = d. �

The above proposition shows that there is a control that keeps the distance from
the vehicle C to the vehicle in front safe while the velocity of C does not exceed
the reference. Also whenever the vehicle C accelerates, u(t) = u, and initially the
distance x1(0) is less than d then the distance increases, i.e., the traffic situation is no
less safe than it was at the beginning. If the distance between C and D was greater
than d then there is no future time that they will hit each other.

To avoid discontinuous control and hence abrupt switches between acceleration u
and deceleration u, the control (12) can be replaced by a continuous approximation.
To this end, we will need an ε-neighbourhood ∂Pε(z) of the boundary ∂P(z) of
the polyhedral set P(z). Subsequently, in P\∂Pε(z), we will use u equal to u, in
R

2\(P(z) ∪ ∂Pε(z)), we will use u equal to u and in ∂Pε(z)), we will use the control
that is a linear combination of u and u weighted by the distance to ∂P(z). These
constructions will be detailed below. For this purpose, recall the definitions of L1,
L2 in (10), and P in (11), and consider

L1 ≡ L−1
1 (0) = {x ∈ R

2| L1(x) = 0} and L2,z ≡ {x ∈ R
2| L2(x, z) = 0},

H1 ≡ {x ∈ R
2| L1(x) ≤ 0} and H2,z ≡ {x ∈ R

2| − L2(x, z) ≤ 0}.

For an ε > 0, we define a map h : [−ε, ε] → [0, 1] by y �→ 1
2

(
1
ε
y + 1

)
. Let Lε

1
be the (closed) ε-neighborhood of L1 (with respect to the Hausdorff metric), Lε

2,z
be the ε-neighborhood of L2,z , Hε

1 be the ε-neighborhood of H1, and H
ε
2,z be the

ε-neighborhood of H2,z . Furthermore, we define the ε-neighbourhood Pε(z) of P
by

Pε(z) ≡ H
ε
1 ∩ H

ε
2,z .

Let xi (x) ≡ x − πLi (x) for i ∈ {1, 2}, where πL1 and πL2 are the projections on
L1 and L2,z , respectively. For l ≡ l(x) = argmax{|xi (x)|| i ∈ {1, 2}} let

y(x) = |xl | sign(〈nl, xl〉),

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers 113

where 〈·, ·〉 is the scalar product onR2, n1 and n2 are the normal vectors to L1(·) and
L2,z(·) pointing into P ,

n1 = (0,−1), n2 = (k,−1).

Finally, we are able to define the ε-neighbourhood ∂Pε(z) of the boundary of P(z)

∂Pε(z) ≡ Pε(z)\(R2\(Hε
1 ∪ H

ε
2,z)).

We define h̄ : P−ε(z) → [0, 1] by

h̄(x) = h(y(x)).

The function h̄ takes a point x in the ε-neighbourhood of ∂P(z) and delivers a number
between 0 and 1 dependent on the distance to ∂P(z): 0 when the distance is ε and x
is outside P and 1 when the distance is ε and x is inside P . The control is then

u(x, z) =
⎧
⎨

⎩

u for x ∈ R
2\Pε(z)

(1 − h̄(x))u + h̄(x)u for x ∈ P−ε(z)
u for x ∈ P(z)\P−ε(z).

The parameter ε is to be chosen as a tradeoff between the accuracy of tracking the
distance d and “evenness” of the control. The bigger ε is, the more even and less
accurate is the control.

6.2 Lane Change

The control for lateral motion is discussed in [37]. For completeness of our study,
we propose a facile feedforward control for changing the lane. To avoid a collision
during themaneuver of changing the lanes, it is assumed that theminimumdistance d
to the front vehicles in the current lane and the neighboring target lane is big enough,
i.e., greater than the sum of the maximal braking distance of the vehicle C and the
distance

∫ tlc
0 vC(t)dt traveled by C during the lane change.

Recall the lateral motion given by the lateral position Y in (8b) and the yaw angle
ψ in (9). We will use the notation

b(θ) ≡ b(θ, vC) ≡ vC
l
cos(β(θ)) tan(θ).

The next proposition characterises the the lateral motion

Proposition 4 Suppose b(θ) �= 0. Then the solution of (8b) and (9) belongs to the
graph Γ ≡ {(ψ,Y) ∈] − π, π [×R| Y = F(ψ)} of the function

114 E.-R. Olderog et al.

F ≡ Fθ,y0,ψ0,vC : ψ �→ ỹ0(y0, ψ0) − vC
b(θ)

cos(ψ + β(θ)),

where ỹ0(y0, ψ0) = y0 + vC
b(θ)

cos(ψ0 + β(θ)), and y0 is the initial lateral position,
and hence ψ0 is the initial yaw angle.

Proof The tangent space T(ψ,Y)Γ to the graph γ at any point (ψ,Y) ∈ Γ is given by

T(ψ,Y)Γ =
{

α

(

1,
∂F

∂ψ
(ψ,Y)

)

∈ R
2

∣
∣
∣
∣ α ∈ R

}

,

but ∂F
∂ψ

(ψ,Y) = vC
b(θ)

sin(ψ0 + β(θ)), and hence by (8b) and (9) we have (ψ̇, Ẏ) ∈
T(ψ,Y)Γ . �

To change the lane, we change the state (Y, ψ) from (y0, 0) to (y1, 0). Without loss
of generality, it is assumed that y0 > y1.

6.2.1 Manoeuvre with Constant Velocity

If we suppose that the velocity vC during the entire manoeuvrer is kept constant,
then suppose that (θ0, θ1) ∈ [θ, 0) × (0, θ] are such that the equation Fθ0,y0,0,vC (ψ) =
Fθ1,y1,0,vC (ψ), or equivalently

ỹ0(y0, 0) − ỹ0(y1, 0) + vc

(
cos(ψ + β(θ1))

b(θ1)
− cos(ψ + β(θ0))

b(θ0)

)

= 0,

has the solution ψ̂ . The proposed manoeuvre consists of

1. turning the front wheels from 0 to the angle θ0 > 0,
2. waiting until the orientation angle ψ is ψ̂ ,
3. turning the wheels to the angle θ1 < 0,
4. waiting until the orientation angle ψ reaches 0,
5. finally turning the front wheels back to 0.

6.2.2 Manoeuvre with Varying Velocity of the Vehicle

Suppose the vehicle velocity vC is piecewise constant on possibly very short time
intervals. Let θ∗(t) be the solution of the following equation

F∗(θ∗(t)) ≡ Fθ∗(t),Y (t),ψ(t),vC (t)(0) = y1.

Notice that θ∗(t) depends on the current velocity vC(t).
Then the lane-change manoeuvre consists of

1. turning the front wheel from 0 to the angle θ0,

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers 115

2. waiting until the yaw angle ψ(t) reaches ψ∗ for some ψ∗ ∈]0, π/2[,
3. keeping the wheels at the angle θ(t) = θ∗(t) until the orientation of the vehicle

reaches 0 yaw angle.
4. turning the front wheels back to 0.

Both proposed controllers are feed-forward, thus a linear control [37] is to be
implemented to remove deviations from the lateral reference y1. The time tlc of the
manoeuvre depends on the vehicle velocity, vC , and it is used in the guard of the
abstract controller LCP depicted in Fig. 2.

7 Related Work

In the following, we consider related work within the categories of verification,
hierarchical design approaches, spatial logics, and traffic maneuvers.

Automatic Verification. Most approaches to the automatic verification of hybrid
systems represent discrete control and continuous dynamics together in one formal
model, e.g., a hybrid automaton [2] or a hybrid program [36]. Whereas the reacha-
bility of locations is decidable for timed automata [3], this is in general not true for
hybrid automata [18]. These limitations are overcome by using suitable abstractions
and symbolic representations.

Model checking of linear hybrid automata by examining the reachable state space
started with the tool HyTech [19]. More advanced techniques are incorporated in
the tools PHAVer [12] and SpaceEx [13]. An alternative to these reachability-based
methods are bounded versions of model checking using SAT-based techniques mod-
ulo the theory of ordinary differential equations [10, 11]. The concept of local theory
extensions has been applied to proving safety properties of hybrid systems in [6].
Interactive theorem proving for hybrid systems in the context of an extended dynamic
logic is pursued in [36]. For Hybrid CSP an experimental tool was developed [49].

Hierarchical Design. To simplify the analysis of hybrid systems, several
approaches to controller design for hybrid systems have pursued a separation of
the dynamics from the control layer.

An early work with an example of keeping distance between vehicles, is the
paper by Nadjm-Tehrani and Strömberg [34], where they study the mapping from
the continuous state space to the discrete state space. In the approach, the twomodels
are combined to a hybrid model, and the linkage from the modes of the continuous
model to the discrete modes is done by a Characterizer that generates events and a
Selector for set-points. These could be characterized by linking predicates as done
in this chapter, that would allow a clearer separation of the models.

Raisch et al. [31, 32] introduce abstraction and refinement to support a hierarchical
design of hybrid control systems. However, this line of work stays within the same
underlyingmodel. Instead, thework here operateswith separatemodels, because they
can be tailored to the reasoning tools available for respectively automata and logics
and those available for conventional control theory. Here, we are more in accordance

116 E.-R. Olderog et al.

with the work in [38], that deals with semantic alignment of heterogeneous models.
The linking predicates introduced in the current workmaymake the alignment easier,
because it relates only specific quantities and not full models.

Another inspiration for our work has been the approach pursued by Van Schuppen
et al. [17] that works upwards from what we call the concrete model and introduce
synthesis of control laws for piecewise-affine hybrid systems based on simplices,
resulting in a discrete controller with transitions between the simplices. This may
be an approach to finding a symbolic state space, when there is no obvious way to
partition it.

Spatial Logic.Work on spatial logic often focusses on qualitative spatial reasoning
[43] as exemplified in the region connection calculus [39]. We have used the spatial
logic MLSL [21] to reason abstractly on highway traffic. The logic gives a compact
formulation of properties and configurations, and an ability to compose and decom-
pose them as well as a potential for deductions [26]. MLSL is inspired by interval
temporal logic [33], the Duration Calculus [50], and the Shape Calculus [40]. It is
a two-dimensional extension of interval temporal logic, where one dimension has a
continuous space (the position in each lane) and the other has a discrete space (the
number of the lane).

In [41], hybrid automata are considered where invariants and guards are expressed
in a spatio-temporal logic S4u . However, there is no separation of space and dynamics
as in our approach.

Traffic Maneuvers. A very influential effort was the California PATH (Partners
for Advanced Transit and Highways) project on automated highway systems for cars
driving in groups called platoons [44]. The manoeuvres include joining and leaving
the platoon, and lane change. Lygeros et al. [28] sketch a safety proof for car platoons
taking car dynamics into account, but admitting safe collisions, i.e., collisions at a
low speed. Not all scenarios of multi-lane traffic are covered in their proof.

Platzer et al. [5, 27] represent traffic applications in a differential dynamic logic
dL that is supported by the theorem prover KeYmaera [36]. This logic does not
separate space (symbolic model) from dynamics (concrete model), that is at the
heart of our approach. The paper [1] proposes a bottom-up strategy, where a concrete
model is gradually abstracted to Markov chains, for which the set of reachable states
is analysed.

On highways, the analysis of safety is simplified because all cars drive in one
direction.More difficult to analyse are country roadswith opposing traffic. The safety
of overtaking manoeuvres on such roads has been proven in [21]. Even more degrees
of freedom in traffic manoeuvres can be found in urban traffic. The manoeuvres at
crossings has been studied in [45].

Since driving assistants are liable to hit the road very soon, the effort at providing
clear modelling and verification for this application area is very important.

Linking. For linking abstract and concrete data-manipulating systems the con-
cepts of data and operation refinement with corresponding simulation-based proof
techniques are well-known [8, 9]. Note that these techniques start by relating abstract
and concrete data variables, that is not quite suitable in our setting, where we have

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers 117

to relate abstract predicates on reservations and claims to concrete sensor values.
The transfer of temporal properties from abstract to concrete transitions systems via
simulations and bisimulations is well-understood in the area of model checking [16].

8 Conclusion

This chapter has presented an approach tohybrid systemsmodellingwhere an abstract
model is built in theories that are decidable modulo symbolic guards and actions
while a concrete model uses conventional continuous time for which controllers are
developed. The key point is that these twoworlds are connected by linking predicates,
so the concrete model is a refinement of the abstract one.

In the following, we discuss pros and cons of the approach for the individual steps
and for the overall work.

Symbolic Model. A symbolic model is well known from a controller side, which
can be built using timed automata. Also the use of symbolic guards and actions is
intuitively easy. Note that time should enter only as timeouts on communications.
These timeouts occur at the interface to the lower level concrete model or in com-
munication protocols for interaction between the state machines.

When this is done, it is feasible to use model checking with a simplified envi-
ronment model that assigns suitable values from finite domains to the predicates,
and accept actions of similar finite types. Thus, an exhaustive automated verification
is possible, although it has not been done in this chapter, because we consider the
decomposition and linking the main points. Also, encoding the spatial model is a
major effort. Steps in this direction have been taken by S. Linker in formalising a
safety proof for a controller specification of [25] using the theorem prover Isabelle.

Defining a suitable state space is intrinsically difficult.We have used a spatial logic
to structure it. The logic gives a compact formulation of properties and configurations,
and an ability to compose and decompose them as well as a potential for deductions.
However, if a developer is not familiar with logic, it may be easier to stay with set
theory, i.e., use the semantics underlying the logic. This would also be the case if a
model checking tool is used, because the logicwould have to be semantically encoded
in most cases. The simple CTL or LTL logics used in model checkers are not nearly
as expressive as spatial logics. Thus, the logic is not essential for the approach or
even the application case, but it is a neat shorthand.

Concrete Model. Identification of the concrete model and controller development
is well known and is highly application dependent. In the current presentation, the
modelling and controller design is very general. For real applications there is much
engineering to do, but this is not relevant for this exposition.

During the development, one must have an eye on the predicates of the symbolic
model, so it is feasible to construct observers that match the guards, and handle set
points presented by the actions.

Linkage. The linking predicates are the formal outcome of elaborate discussions
concerning the interface of the twomodels. They represent the point wheremany real

118 E.-R. Olderog et al.

application projects fail, because engineering traditions from software development
and control system development meet. The advantage of the approach is that the two
sides have to meet and agree. An issue that is common to top-down approaches is
that the defined interface turns out to be either unimplementable in the concrete or
inadequate for the abstract verification. Here, we see no magic bullet.

Overall Comments.The approach seemswell suited for application areas, where a
collection of semi-autonomous entities have to coordinate to achieve common objec-
tives. In a tightly coupled application, where there is a tight centralized supervisor, it
is most likely easier to stay with a one level concrete model, typically a conventional
hybrid automaton.

Acknowledgements We thank three anonymous reviewers for their helpful comments.

References

1. Althoff, M., Stursberg, O., Buss, M.: Safety assessment of autonomous cars using verification
techniques. In: American Control Conference (ACC) 2007, pp. 4154–4159. IEEE (2007)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X., Olivero, A.,
Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1),
3–34 (1995)

3. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
4. Ames, A.D., Cousineau, E.A., Powell, M.J.: Dynamically stable bipedal robotic walking with

nao via human-inspired hybrid zero dynamics. In: HSCC 2012, pp. 135–144. ACM (2012)
5. Arechiga, N., Loos, S.M., Platzer, A., Krogh, B.H.: Using theorem provers to guarantee closed-

loop system properties. In: American Control Conference (ACC) 2012, pp. 3573–3580. IEEE
(2012)

6. Damm, W., Ihlemann, C., Sofroni-Stokkermans, V.: PTIME parametric verification of safety
properties for reasonable linear hybrid systems. Math. Comput. Sci. 5(4), 469–497 (2011)

7. Damm, W., Möhlmann, E., Rakow, A.: Component based design of hybrid systems: a case
study on concurrency and coupling. In: HSCC 2014, pp. 145–150. ACM (2014)

8. de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their
Comparison. Cambridge University Press, New York (1998)

9. Derrick, J., Boiten, E.A.: Refinement in Z and Object-Z: Foundations and Advanced Applica-
tions. Springer, London (2014)

10. Eggers, A., Fränzle,M., Herde, C.: SATmoduloODE: a direct SAT approach to hybrid systems.
In: Cha, S.D., Choi, J., Kim,M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311,
pp. 171–185. Springer, Heidelberg (2008)

11. Fränzle,M., Herde, C.: HySAT: an efficient proof engine for boundedmodel checking of hybrid
systems. Form. Methods Syst. Des. 30(3), 179–198 (2007)

12. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. STTT 10(3),
263–279 (2008)

13. Frehse, G., Guernic, C., Donzé, A., Cotton, S., Dang, T., Maler, O.: SpaceEx: scalable veri-
fication of hybrid systems. CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg
(2011)

14. Frehse, G., Kateja, R., Guernic, C.L.: Flowpipe approximation and clustering in space-time.
HSCC 2014, 203–212 (2013)

15. Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds).: Hybrid Systems. LNCS, vol. 736,
Springer, Heidelberg (1993)

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers 119

16. Grumberg, O.: Abstraction and reduction in model checking. In: Schwichtenberg, H., Stein-
brüggen, R. (eds.) Proof and System-Reliabilty. Nato Science Series II. Math., Physics and
Chemistry, vol. 62, pp. 213–260. Kluwer Academic Publishers, Boston (2002)

17. Habets, L., Collins, P., van Schuppen, J.: Reachability and control synthesis for piecewise-affine
hybrid systems on simplices. IEEE Trans. Autom. Control 51(6), 938–948 (2006)

18. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292. IEEE (1996)
19. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. STTT

1(1–2), 110–122 (1997)
20. Hereid, A., Kolathaya, S., Jones, M.S., Van Why, J., Hurst, J.W., Ames, A.D.: Dynamic Multi-

domain Bipedal Walking with Atrias Through Slip Based Human-Inspired Control. HSCC
2014. pp. 263–272, ACM (2014)

21. Hilscher, M., Linker, S., Olderog, E.-R.: Proving safety of traffic manoeuvres on country roads.
In: Liu, Z.,Woodcock, J., Zhu,H. (eds.) Theories of Programming and FormalMethods. LNCS,
vol. 8051, pp. 196–212. Springer, Heidelberg (2013)

22. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving safety
of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991,
pp. 404–419. Springer, Heidelberg (2011)

23. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall, London (1998)
24. Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. HSCC 2005, 25–53 (2005)
25. Linker, S.: Proofs for traffic safety: combining diagrams and logic. Ph.D thesis, Dept. of. Comp.

Sci, Univ. of Oldenburg (2015)
26. Linker, S., Hilscher, M.: Proof theory of a multi-lane spatial logic. Logical Methods Comput.

Sci. 11(3), 2015. See: https://arxiv.org/abs/1504.06986
27. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now for-

mally verified. In: Butler, M.J., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56.
Springer, Heidelberg (2011)

28. Lygeros, J., Godbole, D.N., Sastry, S.S.: Verified hybrid controllers for automated vehicles.
IEEE Trans. Autom. Control 43(4), 522–539 (1998)

29. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata revisited. HSCC 2001, 403–
417 (2001)

30. MathWorks. Stateflow (1995)
31. Moor, T., Raisch, J., Davoren, J.: Admissiblity criteria for a hierarchical design of hybrid

systems. In: Proceedings IFAD Conference on Analysis and Design of Hybrid Systems,
pp. 389–394. St. Malo, France (2003)

32. Moor, T., Raisch, J., O’Young, S.: Discrete supervisory control of hybrid systems based on
l-complete approximations. Discret. Event Dyn. Syst. 12, 83–107 (2002)

33. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Computer 18(2),
10–19 (1985)

34. Nadjm-Tehrani, S., Strömberg, J.: From physical modelling to compositional models of hybrid
systems. In: Langmaack, H., de Roever, W.P., Vytopil, J. (eds.) Formal Techniques in Real-
Time and Fault-Tolerant Systems, Third International Symposium Organized Jointly with the
Working Group Provably Correct Systems – ProCoS, vol. 863 of LNCS, pp. 583–604. Springer
(1994)

35. Olderog, E.-R., Ravn, A., Wisniewski, R.: Linking spatial and dynamic models for traffic
maneuvers. In: 54th IEEE Conference on Decision and Control (CDC), 8 pp. IEEE (2015)

36. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.
Spinger, Heidelberg (2010)

37. Rajamani, R.:VehicleDynamics andControl.Mechanical engineering series. Springer Science,
New York (2006)

38. Rajhans, A., Krogh, B.H.: Compositional heterogeneous abstraction. In: HSCC 2013, pp. 253–
262. ACM (2013)

39. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In:
Proceedings 3rd International Conference Knowledge Representation and Reasoning (1992)

https://arxiv.org/abs/1504.06986

120 E.-R. Olderog et al.

40. Schäfer, A.: A calculus for shapes in time and space. In: Liu, Z., Araki, K. (eds.) ICTAC 2004.
LNCS, vol. 3407, pp. 463–478. Springer, Heidelberg (2005)

41. Shao, Z., Liu, J.: Spatio-temporal hybrid automata for cyber-physical systems. In: Liu, Z.,
Woodcock, J., Zhu,H. (eds.) ICTAC2013. LNCS, vol. 8049, pp. 337–354. Springer, Heidelberg
(2005)

42. Sreenath, K., Hill Jr., C.R., Kumar, V.: A partially observable hybrid system model for bipedal
locomotion for adapting to terrain variations. In: HSCC 2013, pp. 137–142. ACM (2013)

43. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-Hartmann, I.,
Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298. Springer, Netherlands (2007)

44. Varaija, P.: Smart cars on smart roads: problems of control. IEEE Trans. Autom. Control AC
38(2), 195–207 (1993)

45. Werling,M., Gindele, T., Jagszent, D., Gröll, L.: A robust algorithm for handling traffic in urban
scenarios. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 168–173. Eindhoven,
NL (2008)

46. Woodcock, J., Davies, J.: Using Z – Specification, Refinement, and Proof. Prentice Hall, New
Jersey (1996)

47. Zabat, M., Stabile, N., Farascaroli, S., Browand, F.: The aerodynamic performance of platoons:
a final report. UC Berkeley (1995). http://escholarship.org/uc/item/8ph187fw

48. Zabczyk, J.: Mathematical Control Theory – An Introduction. Birkhäuser (2008)
49. Zhan, N., Wang, S., Zhao, H.: Formal modelling, analysis and verification of hybrid systems.

In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories of Programming and Formal
Engineering Methods. LNCS, vol. 8050, pp. 207–281. Springer, Heidelberg (2013)

50. Zhou, C., Hoare, C., Ravn, A.: A calculus of durations. IPL 40(5), 269–276 (1991)
51. Ziegler, J., Bender, P., Dang, T., Stiller, C.: Trajectory planning for bertha – A local, continuous

method. In: 2014 IEEE Intelligent Vehicles SymposiumProceedings, Dearborn,MI, USA, June
8-11, 2014, pp. 450–457 (2014)

http://escholarship.org/uc/item/8ph187fw

Towards Interface-Driven Design of Evolving
Component-Based Architectures

Xin Chen and Zhiming Liu

Abstract The sustainable development of most economies and the quality of life
of their citizens largely depend on the development and application of evolutionary
digital ecosystems. The characteristic features of these systems are reflected in the
so called Internet of Things (IoT), Smart Cities and Cyber-Physical Systems (CPS).
Compared to the challenges in ICT applications that the ProCoS project used to
face 25 years ago, we today deal with systems with the complexity of ever evolv-
ing architectures of networked digital components, physical components, together
with sensors and devices controlled and coordinated by software. The architectural
components, also called subsystems, are designed with different technologies, run
on different platforms and interact through different communication technologies.
However, the ProCoS project goal remains valid and the critical requirements of
applications of these systems should not be compromised, and thus critical compo-
nents need to be “provably correct”. This chapter is in a form of a summary and
position paper to discuss how software design for complex evolving systems can be
supported by an extension of interface-driven rCOS method that we have recently
been developing. We show the need for an interface theory to underpin development
of techniques and tools. We demonstrate the need of multi-modelling notations for
the description of multi-viewpoints of designs to help mastering system complexity,
and their theoretical foundation in the nature of Unifying Theories of Programming
proposed by Sir Professor TonyHoare and ProfessorHe Jifeng, as part of the outcome
of the ProCoS project.

Zhiming Liu—The work is funded by the project SWU 116007, and China NSF Grant
61672435.

X. Chen
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
e-mail: chenxin@nju.edu.cn

Z. Liu (B)
Centre for Software Research and Innovation, Southwest University, 2 Tiansheng Rd, Beibei,
Chongqing 400715, China
e-mail: zhimingliu88@swu.edu.cn

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_6

121

122 X. Chen and Z. Liu

1 Introduction

In the post-industry era, the challenges of the global concern of sustainable develop-
ment depend on innovation application digital ecosystems. Such a system exists in
the form of a distributed network of smart devices, program controlled physical sys-
tems (such as machines in future manufacturing factories and devices in hospitals),
digital computing systems and services on the Web (or clouds). The digital compo-
nents and physical objects with embedded electronics, software and sensors, which
interact and collaborate through different communication networks and protocols.
Such a system is open and evolving from both of

1. the key feature of the system that allows to plug-and-play new system components
and services, and allows legacy components to be adapted, upgraded or replaced,
and

2. the key feature of the business, social and knowledge communities it supports
that are ever changing and growing.

The generally known Internet of Things (IoT) [26], Smart Cities [35] and Cyber-
Physical Systems [20] are different forms of digital ecosystems. They are becoming
major networks of infrastructures for development of applications in all economic
and social areas such as healthcare, environment management, transport, enterprises,
manufacturing, agriculture, governance, culture, societies and home automation.
These applications share a common model of architectures and involve different
communication technologies and protocols among the architectural components. The
research and applications thus require collaborations among experts with expertise
in a variety of disciplines and various skills in software systems development.

The openness of the architecture, heterogeneity of components and the scale (or
complexity) of both functionality and interactions impose challenges beyond the
capacity of the state of the art of software engineering. One of the most fundamental
problems is that either the traditional top–down or the bottom–up development strat-
egy, or any combination of both kinds, cannot be readily used to the development
and maintenance of digital ecosystems. Therefore, there exist no methods and tools
to support systematic development of digital ecosystems and their front-end appli-
cations. Ad-hoc development using tailored existing methods and tools is far from
meeting the following essential requirements:

• safe and secure integration of new digital and cyber-physical components;
• maintenance and healthy evolution of legacy components and services;
• consistent adaptation of existing Internet and cloud services and applications to
new and special-purpose services/devices;

• development of new applications and services from existing services/devices;
• data collection from different sources with different components, interoperably
communicating among different components for processing, analytics and support
of decision making.

To advance beyond the state of the art of software engineering, we need a model that
captures the ever-evolving nature of the system architectures, allowing dynamically

Towards Interface-Driven Design of Evolving Component-Based Architectures 123

integration and replacement of different devices, services and components. We need
to develop software engineering techniques and their tool support for

1. incrementally building the model of the evolving architecture,
2. interface-based development of new components and front end applications, and

their integration into an existing architecture,
3. interface-based adaption and reuse of legacy components in an existing architec-

ture, and
4. validation and verification of components and systems by using integrated tools

of simulation, testing and formal verification of trustworthiness (safety, security,
privacy and dependability).

The architectural model should also support the design of fault-tolerance [10, 27,
36] with techniques of runtime monitoring and recovery [17]. Simulation with large
amount of data is also needed in building models, where the data are either known
or collected in the model building process, say through sensors.

In what follows, we discuss, in Sect. 2, the characteristic of complexity of digital
ecosystems to clarify the challenges stated above and to give a backgroundmotivation
to the interface-driven approach to health system evolution. In Sect. 3, we introduce
the basics of the rCOS formalmodel-drivenmethod of component and object system.
We give an example in Sect. 4 to show how rCOS supports incremental and interface-
driven design. In Sect. 5, we propose an extension of rCOS to modelling cyber-
physical component systems.

2 Complex Evolving Systems

Software engineering was born with the aim to deal with the inherent complexity
of software development, and its vision was that complexity should be mastered
through the use of models, techniques and tools developed based on the types of
theoretical foundations and practical disciplines that have been established in the
traditional branches of engineering [28, 33]. The directions and contents of software
engineering and their advances are defined and driven by the following fundamental
attributes of software complexity [1–3]:

1. the complexity of the domain application,
2. the difficulty of managing the development process,
3. the flexibility possible to offer through software, and
4. the problem of characterising the behaviour of software systems.

The first attribute is the source of the challenges in software requirements gathering,
specification, analysis and validation, that are the main topics of software require-
ments engineering. The second attribute, driving the development of software project
management, concerns the difficulty to define and manage a development process
to deal with complex and changing requirements of software projects that involve a

124 X. Chen and Z. Liu

large team of software engineers and domain experts. The process has to identify the
software technologies and tools that support collaboration of the team in working on
shared software artifacts. The third attribute concerns the difficulties in the design of
software architecture, and the design and reuse of software components, algorithms
and platforms. The final attribute of software complexity pinpoints the challenges in
modelling, analysis, validation and verification of the behaviour of the software.

2.1 Chronic Complexity of Digital Ecosystems

The fundamental attributes of software complexity are all reflected in software of
digital ecosystems, but their extensions are becoming increasingly wider, due to the
increasing power of these systems, here we quote

“The major cause of the software crisis is that the machines have become several orders
of magnitude more powerful. To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming has become an
equally gigantic problem.”

— Edsger Dijkstra

The Humble Programmer, Communications of the ACM [9]

Now not onlywe have gigantic computers, but also networked computers of all scales
of power frommicro devices, through systems with multi-cores and multiprocessing
units, to supercomputers. They execute programs anywhere and any time,which share
data and communicate and collaborate with each other. These digital ecosystems are
represented by the popular Internet of Things (IoT), Smart Cities, Data Centres and
Cyber-Physical Systems (CPS). There exist not much agreed or clear characteristic
descriptions of these systems, and a variety of viewpoints and classification exist for
them. In fact, it is reasonable not to distinguish them [11, 18], especially when we
are interested in systemmodelling, design, verification and validation. They all share
the following attributes of these complex and evolving systems

1. They bring together computation, physical objects and processes, electronics,
and networking communication to seamless integration of and close interaction
between the physical world and computer-based systems.

2. The actions of these systems, as well as the objects, are monitored, coordinated,
controlled and integrated by computing systems and existing network infrastruc-
tures.

3. These system are constantly evolving, such that new digital systems, embedded
devices and physical processes keep being integrated into the system, and legacy
digital systems, devices and physical processes keep being removed, modified
and reconfigured.

We consider systems with the above characteristics which have component-
based or system of systems architectures. Some researchers intend to distinguish

Towards Interface-Driven Design of Evolving Component-Based Architectures 125

component-based systems from systems of systems and say that the latter have emer-
gent behaviour. We interchange these two terms as there is no clear definition on
what emergent behaviour of CPS is. Complex evolving systems exhibit the follow-
ing features that are the causes of major challenges in their modelling, analysis and
design:

1. Different components of these systems can have different data models, such as
patients’ records in healthcare systems. This feature implies the requirements of
interoperable communication and information sharing.

2. Such a system has multi-stakeholders and multi-endusers who have different
viewpoints of the system and whose applications use different computing, data
and network and physical resources and services of the system.

3. The composition and coordination of distributed computations and services also
support collaborative workflows involving multi-users.

4. Diversity of requirements of safety, security, privacy, timing, and fault-tolerance.

2.2 An Application Examples

The example as shown in Fig. 1, is a smart grid, taken from the presentation at an UK
Innovate event [31]. Such a system includes smart metering and advanced meter-
ing infrastructure that provides intriguing opportunities to embrace new sustainable
services for the whole energy value chain [8, 38].

A network of smart meters can also be part of the grid to provide real-time pricing
for all types of users and so encourage individual consumers to reduce their power
consumption at peak times. To this end, consumers can adjust their own individual

Fig. 1 Smart grid

126 X. Chen and Z. Liu

load according to the time-differentiated prices. Furthermore, smart meters, software
and communication together also enable consumers to cooperate aiming at achieving
energy-aware consumption patterns, in order to realise for example, the demand-side
management, demand response and Direct Load Control programmes. For illustra-
tion, imagine a smart community that autonomously adapts its energy consumption
by means of enabling a limited number of household smart meters to share real-
time neighbourhood information cooperatively. Users therefore cooperate with each
other and with data collectors, thus facilitating the integration of energy consumption
information into a common view. We will propose to develop a model of an evolv-
ing network of smart meters in Sect. 5. As in branches of transitional engineering,
handling the above challenges involves the best practice of the fundamental princi-
ples of separation of concerns, divide and conquer, and use of abstraction through
information hiding (in different design stages).

3 Interfaces and Component-Based Architectures

We now introduce the model of component interfaces that we have developed in the
rCOS methods - Refinement of Component and Object Systems. The work on the
rCOS framework includes formal semantics of an OO specifications, an OO refine-
ment calculus, a unifiedmodel of component-based and OOmodel, that are available
in a number of publications, e.g. [5, 7, 12, 13]. This chapter provides a summary
and linkages among these models and theories without going into formal details. We
have also published work about a UML profile for rCOS and tool support to model
constructions and transformations based on the profile [21, 23, 25]. Therefore, the
UML diagrams used in this chapter all have formal semantics in rCOS.

The rCOS method intends to support model-driven design (MDD) of complex
evolving system. This is characterised by letting system design be carried out in
a process through building system models to gain confidence in requirements and
designs. The process of model construction in MDD emphasises on

• the use of abstraction for information hiding so as to be well-focused and problem
oriented;

• the use of the engineering principles of decomposition and separation of concerns
for divide and conquer and incremental development and evolution; and

• the use of formalisation to make the process repeatable and artefacts (models)
analysable.

3.1 Key Features of rCOS

Main differences of the rCOS method from other model-based formal frameworks,
such as Circus [4, 29], are rather in philosophic principles and intentions, instead of

Towards Interface-Driven Design of Evolving Component-Based Architectures 127

Fig. 2 rCOS modelling
approach

expressive power. For example, the rCOS method makes components and interfaces
as first class modelling concepts and elements, and explicitly and systematically
supports separation of concerns with its multi-dimensional modelling approach to
component-based architecture modelling, as shown in Fig. 2.

• First, it allows models of a component at different levels of abstraction, from the
top levelmodels of interface contracts of components, throughmodels produced at
different design stages including platform independent models (PIM) and platform
specific models (PSM), to models of deployment and implementations.

• At each level of abstraction, a component has models of different viewpoints,
including the class model (or data model), the specification of static data func-
tionality (i.e. changes of data states), the model of interaction protocol with the
environment (i.e. actors) of the components, and the model of reactive behav-
iour. These models of different viewpoints support the understanding of different
aspects of the components and support different techniques of analysis, design and
verification of different kinds of properties.

• A model of a component is hierarchical and composed from models of ‘smaller’
components that interact and collaborate with each other through their interfaces.
Some components can also control, monitor or coordinate other components.

The significant advantage is that it allows the model of a component or a system at
a level of abstraction is synthesised from the models of the data model, functional-
ity and architecture, while these individual models can be refined in separation to
preserve their consistency. More distinguished features of rCOS include

128 X. Chen and Z. Liu

• direct object-oriented abstraction, instead of coding classes, objects and polymor-
phism in process-oriented models with unstructured states [6, 13];

• fully supported by a sound and complete object-oriented refinement calculus [37];
• direct formulation of OO design patterns as refinement rules [32, 37];
• provision of model transformations from component-based models of architecture
of requirements to OO models of design architecture [6], and from OO models of
design architectures to component-based models of design architectures [21];

• the provision of a well defined UML profile so that models can be constructed
using the subset of UML defined by the profile and automatically translated to
into rCOS models [24, 25].

The feature in the last bullet point allows us to use UML to represent models in the
rest of the chapter.

3.2 Components and Their Interfaces

Components are service providers - including computing devices realising func-
tions, processes that coordinate and control components through interactions and
connectors. We intend to have different types of interfaces for different interaction
mechanisms and protocols. Here, we only use a running example to show the rCOS
modelling notation and method.

To ease the understanding and practice, we divide the definition of component into
its syntactic description and semantic specification that we call the contract of the
component. A (syntactic) component is represented by tuple C = 〈X, IF, A〉, where

• X is a finite set (possibly empty) of state variables.
• IF is the (provided) interface defining a finite set of operation signatures of the
form m(x; y)with a finite number of input parameters and a finite number of return
parameters. Each operation represents service provided to users.

• A is a finite set (possibly empty) of internal actions, each of which is represented
as a parameterless method a. An internal action is automatous and does not have
parameters.

For example, a memory can bemodelled as component that provide a write operation
and read operation to its user, e.g. a processor.

Component M
Z d;
provided interface MI F {

W (Z v); R(; Z v)

}
A faulty memory can be modelled as a component below, that provide write and
read operations to the user (e.g. a processor) but its content can be corrupted by an
internal ‘fault action’.

Towards Interface-Driven Design of Evolving Component-Based Architectures 129

component f M
Z d;
provided interface MI F {

W (Z v); R(; Z v);
}
actions{//fault modelling corruption

f ault
}

The syntactic interface defines the static type of the component, but it does not
specify the behaviour of the interface. The behaviour of an interface is specified by
a contract. For incremental understanding, we first define a service contract of an
interface, which specifies the state change of an execution of interface operation,
provided, required or internal operations.

A service contract C of a syntactic component C specifies

• an initial condition defining the allowed possible initial states of the variables X

by a state predicate C.init on X , called the initial condition;
• a state transition relation C.next that specifies each operation m(x; y) in the pro-
vided interface IF by a pair P � R of a precondition P and a postondition R,
where

– P is a predicate over X ∪ x ,
– R is a predicate over X ∪ x ∪ X ′ ∪ y′, and X ′ and y′ are the sets of the primed
version of the variables in X and y.

The meaning of P � R is that from a state s of X with the input parameters x

satisfying precondition P, the execution of m() will change the state s of X into a
state s ′ (in which the value of x is represented by x ′) with the return values y′ such
that ((s, x), (s′, y′)) holds for R.

• the state transition relation C.iNext that specifies each internal operation a in A

by pair P � R of a precondition P and a postondition R, where

– P is a predicate over X ∪ x ,
– R is a predicate over X ∪ X ′.

In general, it is proven in UTP [16] that all programming statements in tradi-
tional structured programming languages can be defined by designs. In particular, an
assignment x := e is defined as design {x} : true � x ′ = e, meaning that the state is
changed from a state s to a new state s ′ in which only the value of x is changed to the
evaluation of e in s, keeping other variables unchanged. The following specification
combines the syntax and the service contract of a memory component offering the
environment a write operation and a read operation.

Component M
Z d;
provided interface MI F {

W (Z v){d := v}; R(; Z v){v := d}
}

The design calculus in UTP [16] is extended to object-oriented designs in [13, 37].

130 X. Chen and Z. Liu

A service contract only specifies the functionalities of the component in terms of
a contract between the assumption on the current state and input parameters and the
guarantee on the change of the state and return values. However, a component is in
general reactive, thus also controls its interaction protocol with the environment and
the dependency (or causality) relation between its operations. The flow of control
and interaction are specified by the guards of the operations:

• the guard of an operation m() in the interface IF or the international action set A
is a predicate on X such that m() can be executed in a state only when its guard
holds in the state and the action is disabled in the state otherwise.1

Thus, a (guarded) contract C of a component actually defines a labeled state transition
system, but the states combine both control and data together, and the labels are the
interface operations and internal operations. C specifies each operation m() by a triple
of a guard g, a precondition P and a post condition R, denoted by g&(P � R), called a
guarded design. A transition from a state s to a state s′ by an operation m(), provided,
required or internal, is possible only if its guard, denoted by C.guard(m), holds in s.
And when it is possible

• if the precondition P of m() holds in s, then R holds for the pair (s, s′) of states
together with relation between the input and return parameters if m() is a provided
or required interface operation; and

• if the precondition P of m() does not hold in s, s′ can be any state.

When we separate the control states from the data states in the state transition system
of C, we obtain an automaton with the control states and the interface signatures as
the alphabet. This allows us to use the language defined by the automaton, a regular
expression when the automaton is of finite states, to express the interaction protocols.

We propose a textual specification of components in a format similar to Java, that
allows us to declare multiple interfaces. In the corresponding abstract definition of
components, the provided interface IF is the union of the declared interfaces.We take
a few simple examples to illustrate the concepts of components. For example, the
following reactive component specifies a memory that controls the order in which
the write and read operations are invoked.

Component B
Z d, Bool w = 1;
provided Interface BI F {

W (Z v){w&{d, w} : true � d ′ = v ∧ w′ = ¬w};
R(; Z r){¬w&{v,w} : true � v′ = d ∧ w′ = ¬w}

}
}

This memory also behaves like a one-place buffer.

1In general, the guard can contain input parameters, and even the primed version y′ of return
parameters y in y, especially when advanced security assurance is required. We do not consider
this general case as we have no semantics yet to handle them.

Towards Interface-Driven Design of Evolving Component-Based Architectures 131

3.3 Composition and Orchestration

We can easily see that the one-place buffer B can be built by coordinating the uncon-
trolled memory M

Component B requires M
Bool w = 1;
provided Interface BI F {

W (Z v){w&(M.W (z);w := 0)};
R(; Z r){¬w&(M.R(; r);w := 1)}

}
}

We use regular expression to specify the protocol of control, obtaining the following
equivalent specification

Component B requires M
provided Interface BI F {

W (Z v){M.W (z)};
R(; Z r){M.R(; r)}
protocol {(WR)∗ + (WR∗)W }

}
}

Thus, a coordination mainly changes the interaction protocol of a component, such
as M , without changing the data functionality of the component. Later in Sect. 3.4,
we will see a visual model the protocol can be represented as state machine diagram
in the rCOS UML profile [23].

With given components, we can construct new components with connectors and
through orchestration of the provided operations in the given components. For exam-
ple, taking Bi = B[Wi/W, Ri/W] is obtained by the connector that renames the write
W () and read R() operations of B to Wi () and read Ri (), respectively, for i = 1, 2, we
can have

component M2 requires B1, B2 {
Z y;
provided interface M2 I F {

move(){B1.R1(; y); B2.W1(y)};
}

This component provides the newly added move() and the operations that B1 and
B2 provide minus those that are called in the body of move(). And the protocol is
defined by the guard conditions of B1 and B2. In general, we can extend a given set
of components to form new components by defining additional provided operations
using structured programming constructs. we can also use the internalising connector
to make a provided operation, such as move(), internal. for example Buff2 = M2\move()
behaves as

132 X. Chen and Z. Liu

component Buff2 requires B1, B2
Z y;
actions A {

move(){B1.R1(; y); B2.W1(y)};
}

Component Buff2 behaves like M2, except for move() will be executed internally and
autonomouslywhen it is enabled, without the need to be called from the environment.
Thus, it behaves like a two-place buffer.

Now we give an specification of the faulty memory, in which an interaction pro-
tocol is specified using an regular expression that can be coded as guards of the
interface operations.

component fM
Z d;
provided interface MIF {

W (Z v) {d := v}; R(; Z v) {v := d};
protocol {(WR)∗ + (WR)∗W // protocol of C}
}
actions{//fault modelling corruption

f ault {true| − d ′ <> d}
}

We use the renaming operators on the (provided) interface of f M and obtain three
faultymemory components f Mi =̂ f M[f Mi .W/W, f Mi .R/R], for i = 1, 2, 3.We now
specify the following component.

component V requires fM1, fM2, fM3 {
provided interface VIF{

W (Z v) {fM1.W (v); fM2.W (v); fM3.W (v)};
R(; Z v) {v := vote(fM1.R(v), fM2.R(v), fM3.R(v))};
protocol {(WR)∗ + (WR)∗W }

}

We can prove the proposition that the composition of V is refinement of the perfect
component B = C ||M if it is assumed at any time at most one of the f Mi is in faulty
state [27, 36]. The component-based architecture is shown in Fig. 3.

3.4 Separation of Concerns

When thedatamodel for the variables, interface interactionprotocols and thedynamic
behaviour of component become complex, models of different viewpoints for differ-
ent design concerns are needed. To this end, we have a UML profile for rCOS [24].
This allows that for object-oriented design of component-basedmodelling and design
of finite state components, we use

• UML class models for the representation of the data models at different levels of
abstraction, specially conceptual class model for requirements and design class
models for object-oriented design of components;

Towards Interface-Driven Design of Evolving Component-Based Architectures 133

Fig. 3 Component-based architecture of a fault-tolerant memory

• (extended) UML sequence diagrams for modelling interactions among compo-
nents and between components and actors (component sequence diagrams), and
for interaction among objects of a design of a component (object sequence dia-
grams); and

• (extended) UML state machine diagrams for modelling the dynamic behaviour of
a component.

The extended sequence diagrams, together with the textual specification of pre- and
post-conditions of the methods, generate the rCOS functionality definitions of the
participating components, such as V , and the state diagrams of the components define
the protocols that are corresponding to the guards of the methods in the components.
Thus, the contracts of the interfaces can be divided into the contracts of static
functionality and the contracts of dynamic behaviour. The former are given by
the unguarded design of interface operations that are specified only by their pre-
and post-conditions, and the latter by the state machine diagram of the components.
With a UML profile defined for rCOS, these models of different views points can be
automatically integrated into rCOS textual specification [23, 25].

The sequence diagrams and state machine diagrams of different viewpoints of f
the fault-tolerant memory are shown in Fig. 4, and we will discuss more examples in
the next section.

134 X. Chen and Z. Liu

Fig. 4 UML models of interactions and dynamic behaviour

4 Incremental Design of an Enterprise Application

Incremental/evolutionary modelling and design has been practised in empirical and
ad hoc software development. This section, however, demonstrates how rCOS sup-
ports an incremental/evolutionary modelling and design of the case study of a com-
puterised trading system of an enterprise of supermarkets. It was used as theCommon
Component Modelling Example (CoCoME) [6, 14]. It is an extension of the Point of
Sale (POST) example used in Larman’s textbook [19]. The case study was described
in terms of the use cases related to process sales,manage inventory, prepare for prod-
uct orders, process deliveries of ordered products, and exchange products among
different stores, etc.

The evolutionary nature of the system is determined by the development of the
enterprise. The business may just start from a single store and the store requires a
computerised system to improve the automation of the use case process sales to speed
up customer checkout and record the sales. Also, at the early stage of the business,
only one checkout “cash desk” is enough, or the system development can start with
considering only one checkout cash desk.

4.1 Requirements Modelling

The requirements gathering and analysis starts from describing use cases, and any
described use case explicitly or implicitly implies restrictions on the functionality

Towards Interface-Driven Design of Evolving Component-Based Architectures 135

either due to the stage of the business development or consideration for a simplifi-
cation to start with. For example, we start with the use case process sale with cash
payment briefly described below.

Overview: A customer arrives at the CashDeskwith the product items to purchase
with cash payment. The sale and the payment are recorded in the system. Involved
Actors includes Customer and Cashier.

Process: The normal courses of interactions between the actors and the system are
described as follows.

1. When a Customer comes to the Cash Desk with her items, the Cashier
initiates a new sale. The system creates a new sale.

2. The Cashier enters each item, either by scanning in the bar code or by some
other means; if there is more than one of the same item, the Cashier can enter
the quantity. The system records each item and its quantity and calculates
the subtotal.

3. When there are no more items, the Cashier indicates to the system the end
of entry. The total of the sale is calculated. The Cashier tells the Customer
the total and asks her to pay.

4. The Customer gives the Casher cash and the Cashier enters the amount
received. The system records the cash payment amount and calculates the
change. Then the completed sale is logged.

Alternative courses of events: There are exceptional or alternative courses of
interactions, e.g., if the entered bar code is not known in the system, the Customer
does not have enough money for a cash payment. A system needs to provide
means of handling these exceptional cases, such as cancel the sale.

At the requirements stage,wemodel a use case as a component by a conceptual class
model, a component sequence diagram, statemachine diagram, and the contract
of static functionality of the interface operations. For the use case process sale with
cash payment, we have the class model in Fig. 5, sequence diagram in Fig. 6a, and
state machine diagram in Fig. 6b.

The operations that actor Cashier calls in Fig. 6a form the provided interface of
component ProcessSale, and the state machine diagram in Fig. 6b defines its contracts
of dynamic behaviour. Their consistency can be checked by FDR [34] after being
translated into processes of CSP [15, 34]. The contract of static functionality of
ProcessSale is specified by the pre- and post-conditions of the interface operations.

The precondition of startSale() requires the existence of the Store, the CashDesk,
the Catalog and the Product Specifications. The postcondition of startSale() is to create a
new sale. Thus, the state variables of ProcessSale include Store store, CashDesk cashdesk,
Catalog cat, and Sale sale. The contract of startSale() can be specified as

{store 	= nil ∧ cashdesk 	= nil ∧ cat 	= nil} startSale() {sale′ = new Sale}

Similarly, we can specify the contracts of the other operations. For example,

136 X. Chen and Z. Liu

⎧
⎪⎪⎨

⎪⎪⎩

∧store 	= nil
∧cashdesk 	= nil
∧cat 	= nil
∧sale.isComplete

⎫
⎪⎪⎬

⎪⎪⎭
makeCashPayment(a)

⎧
⎨

⎩

∧cashPay′=new CashPayment
∧cashPay′.amount = a
∧Is-Pay-by(sale, cashPay′)

⎫
⎬

⎭

The semantics of OO contracts of operations are derived from OO designs in [13].

4.2 OO Design of Components

In practical but informal OO development, the design stage is to decompose the
functionality and responsibility of each interface operation (informally) described
by it pre- and post-conditions and assign the sub-responsibilities to “appropriate”
objects of the component. The decomposition and assignment of the responsibilities
are carried out using GRASP design patterns [19]. These patterns are proven to be
rCOS refinement rules [13, 37]. Therefore, the following design steps can actually
be formally justified in rCOS.

For a requirements model of a component, such as that of ProcessSale given in
the previous subsection, we design each interface operation according to its contract.
This is done by using the formalisedGRASPdesign patterns and refactoring rules that
are formally proven in the OO refinement calculus [37]. In particular, by Controller
pattern, we can decide to implement the provided interface of ProcessSale by class

Fig. 5 Conceptual class diagram of ProcessSale

Towards Interface-Driven Design of Evolving Component-Based Architectures 137

Fig. 6 Sequence diagram and state machine diagram of ProcessSale

CashDesk, and the design of each operation is represented by an object sequence
diagram. For example, the design of makeCashPayment () is given in Fig. 7.

With the model transformation tool of rCOS [22], we can check that the objects :
CashDesk, sale: Sale and :CashPayment form a component HandleSale with the inter-
face object: CashDesk; and the objects :Store and the container object 〈〈Set〉〉Sale form
another component StoreManagement with the interface object : Store. The tool then
automatically transforms the OO design in Fig. 7 to a component-based design in
Fig. 8b.

The design proceeds with OO design of the other provided interface operations of
ProcessSale, followed by decomposition into provided interface operations, startSale(),
enterItem(upc, qty), and endEntry() of HandleSale, and required interface operations of
HandleSale for checking the validity of upc, and extracting the product specification
from the Catalog object continued in the Store object. Therefore, the upc checking
operation check(upc) and specification extracting operation find(upc; spec) are pro-
vided interface ManageStore. We then obtain a component-based decomposition of

Fig. 7 OO design of makeCashPayment ()

138 X. Chen and Z. Liu

component ProcessSale shown in Fig. 8a. The rCOS transformation tool [22] also
automatically generates the static component diagrams shown in Fig. 9 correspond-
ing to the transformation from theOOdesign in Fig. 7 to the component-based design
in Fig. 8.

4.3 Incremental Development and System Evolution

Component ProcessSale designed in the previous subsection assumes some restrictions
on the functionality. For example, amongother restrictions, it deals cashpayment only
and has no inventory update when the completed sale is logged. In general, in each
cycle of Rational Unified Development Process, components and their individual
operations are designed for restricted functionalities. Further development is to relax
the assumptions to extend their functionalities, and to design new components. The
rCOS method also put such incremental and evolutionary design into its formal
refinement calculus so as to ensure rigorous correctness. We informally show such
incremental design by singling out the process of handling cash payment as a use
case by itself, denoted by HandleCashPayment.

We take the operations represented by messages 1–3 in Fig. 6a to form a compo-
nent, denoted by HandleSale. Component HandleCashPayment itself can be designed as
a component with the provided interface operation makeCashPayment(). Its OO design
is the same as that in Fig. 7, and the component-based decomposition is the same as
that in Fig. 8b, but with a new component name HandleCashPayment. In a new devel-
opment cycle, we can follow the same way in which component HandleCashPayment
is modelled to design a model of component HandleCreditPayment. It provides an
operation makeCreditPayment(). Before a CreditPayment is created, HandleCreditPayment

Fig. 8 Component sequence diagram of component ProcessSale

Fig. 9 A component
diagram

Towards Interface-Driven Design of Evolving Component-Based Architectures 139

calls the service from actor Bank for the authorisation of the credit payment. There-
fore, HandleCashPayment requires to call an operation of the Bank, that we denote
by authoriseCredit(cardInfo, amount). After authorisation, the CreditPayment is created,
and the completed sale is logged to Store. In the same way, we design a component
HandleCheckPayment.

Assume that a system that only supports process sale with cash payment is already
developed. In its system evolution, a new component HandleCreditPayment can be
specified through investigation of the original architecture that consists HandleSale

and ManageStore. This new component can then be designed and integrated into the
legacy architecture to support processing credit payment.

With the architecturemodels in Figs. 8 and 9, we can extend the provided interface
ofManageStorewithmore product management operations, such as those for changing
the price of a product, increasing and deducting the inventory of a product (after more
items are ordered and sold).We can then upgrade componentHandleProcessSale so that
after the complete sale is logged to the Store, the product items of the sale are removed
from stock using the inventory deduction operation, say deInventory(upc, qty). This can
be realised by aspect oriented design and the interface operation makeCashPayment

(and makeCreditPayment()) first executes its original body and then calls the method
decInventory(cpu, qty) ofManageStore repeatedly for each item in the sale. This is an
“after” advice in aspect oriented design. An aspect oriented architecturemodification
like this is modelled as a connector component that changes the original component
by modifying the execution of the interface operation according to the advices in the
aspect.

Further system evolution can go from one checkout cash desk to a number of
them in a store, from an one-store business to an enterprise of a store chain. Also,
further extension to the system can be developed to support online shopping. The
model of component-based architecture and interfaces contracts are also imported
for analysis of safety, security and performance vulnerabilities and deficiencies so
that architecture modifications and changes of interaction protocols can be designed
to improve the safety, security and performance.

5 Towards Modelling Cyber-Physical Component Systems

The components in the previous section are digital components. We now propose
to extend the models to physical interfaces and cyber-physical components, using
the evolutionary development of a smart meter network demand response (DR) pro-
gramme [30].

140 X. Chen and Z. Liu

Fig. 10 Cyber-physical component

5.1 Physical Interfaces and Cyber-Physical Components

We extend the model of components with variables, called physical variables, whose
behaviour are functions from time to real number, depending on conditions of digital
states. The trajectories of the physical variables are specified by differential equa-
tions. For example, the rate of electricity consumption of an electrical appliance are
different when the appliance is in different states, say when it is “on”, “off”, or in
the “energy-saving” state. We model a physical interface as function f (x1, . . . , xn; y)
with one or more incoming signals x1, . . . , xn that are continuous variables, and one2

outgoing signal y, as shown in Fig. 10a. The incoming signals of an interface are also
called requiring signals. A component also provides (or outputs) signals to the envi-
ronment, such as y1, . . . , yn in cyber-physical component shown in Fig. 10b. There,
the function f defined in the component is part of hybrid behaviour of the compo-
nent, and the solid circle represents the provided digital (or cyber) interface. The
definition of operations in the provided cyber operations may rely on operations to
be provided by other operations, called the required cyber interface and represented
by the half circle in the diagram. The composition of components is also extended by
linking provided signals of a component to incoming signals of interfaces of another
component.

5.2 Model the Evolution of a Smart Meter Network

The system in this case study consists of three kinds of components.

• Consumer: is a household equipped with one or more smart meters that is con-
nected to the power line, electrical appliances, and to a communication network.

• Data Collector: is in charge of the data aggregation process. According to the
resource allocation algorithm, this process ismodelled as a centralised coordinator,
but a distributed approach can be implemented securely.

• Utility: is a set of energy suppliers shared by customers. We assume utilities to
implement distributed generation

2In general, there can be more than one.

Towards Interface-Driven Design of Evolving Component-Based Architectures 141

Fig. 11 Appliance and meter

We mainly demonstrate the evolutionary nature of the system and show how our
modelling approach scales up. We first consider a single appliance A of a single
household. An appliance, as shown in Fig. 11a, has a digital state Status which takes
a value on or off, and it is changed by the digital interface operation switch(). The
appliance has an observable signal rate representing the electricity consumption rate.
It is a function from “Time” to real numbers, that (presumedly) can be obtained from
manufacturer of the appliance. The signal “rate” is useless if the householder only
observes the “rate” and switches on the appliance when needed.

If the householder wants to know better about his daily use of electricity and to
plan his use of the appliance in order to reduce their electricity bill, an electronic
meter M can be introduced as shown in Fig. 11b. Meter M records the accumulated
consumption of energy of an appliance A. Its provided interface M.pIF provides a
digital operation read() and its required interface M.r I F consists of a single signal
rate. The interface behaviour of M (i.e., the return of read()) is a discretised value of
the internal signal val that is a timed function dependent on the required signal rate.
For example, it can be defined as val(t) = ∫ t

0 ratedx . In general, the the trajectories of
the continuous variables of a component C are specified as timed functions of the
form γC = F(βC, γC, rW), where feedbacks loops are possible. If we compose the
appliance A and the meter M, we have the component shown in Fig. 12a.

There are alternative models. For example, a meter can include a sensor that
observes the rate. Then val would be discretised and represented as a step function.
Then read() directly returns the value of the internal discrete variable val. In this
model, the sensor is actually represented as part of the physical interface. Also, a
meter can be modelled as a component with a required signal rate and a provided
digital operation val() to the meter component. The advantage of the component-
based modelling with explicit interface contracts is exactly to allow different models
and support comparative analysis.

At this stage of system evolution, the read() and switch() are still only manually
operated by the householder. A further desire of home automation is to introduce a
control component P, called a control pad. For accuracy and fault-tolerance,wemake
the internal signal val of A‖M external, and denote this cyber-physical component as

142 X. Chen and Z. Liu

Fig. 12 Models of composition of an appliance and a meter

Fig. 13 Automatically
controlled appliance

MA, as shown in Fig. 12b. We now compose the control pad P and component MA,
and it is shown in Fig. 13. Now the householder can use set and read() to program
daily use of the appliance, according to a daily budget.
Home automation The evolution continues and a household can have a number of
appliances. Then more meters or a meter with an open number of required input
signals can be used for the design of a control pad. The overall control pad can either
be designed using the existing individual control pads or the individual control pads
are replaced with a centralised control pad. In either case, the design models of the
individual control pads can be reused. The advantage of the proposed framework is
that a household with a number of appliance can be treated in the same ways as if
the household has a single appliance.

Ai =̂ A[switchi/switch, ratei/rate], A =̂ A1 ‖ . . . ‖ An
Mi =̂ A[readi/read, vali/val], M =̂ M1 ‖ . . . ‖ Mn
Pi =̂ [seti/set, readi/read, vali/val, switchi/switch], P =̂ P1 ‖ . . . ‖ Pn

Towards Interface-Driven Design of Evolving Component-Based Architectures 143

Here, renaming of interface operations and signals are used. We add a global con-
troller P for planning and schedule of a household, and thus obtain an automated
household H =̂ G‖P‖M‖A. This is shown in Fig. 14a. This system is closed inside
the house and thus there are no security threats to it (unless a burglary happens).
However, a further step of evolution can introduce a controller operated through a
mobile phone, as shown in Fig. 14. We denote this automated home by MH. Then, an
open mobile phone communication network is used, and security threats are intro-
duced too. Therefore, interface-driven component-based architectures are essential
to identify system safety vulnerabilities, security threats, and performance deficien-
cies, so as to make architecture modifications to enhance safety, security, availability
and fault-tolerance.
Network evolution The designs of a household can be abstractly described as fol-
lows.

Component H {
attributes: fD, vD: Real;//fixed and variable

//energy demands of the community
signal: val: Real;
provided interface:

Rf(;x:Real), Rv(;y:Real);
Wf(x:Real), Wv(y:Real);
setUp() /** set up budget and policy /** by householder;
val/ ** provided signal

Functionality:
Rf(;x){x:=fD}; Rv(; y){y:=vD};
Wf(x){fD:=x}; Wv(y){vD:=y}

}

We define a network of households H =̂ H1 ‖ . . . ‖ Hk for a community of resi-
dence. Assume the component Utility provides a operations requestF(x:Real; u: Real)
and requestV(y:Real; v: Real) for supply of fixed energy and variable energy, respec-
tively. When it is called, the method returns the amount of committed supply for
the day through the return parameter. Consider a Coordnator component which peri-
odically calls the interface operations R fi () and Rvi () and makes a request to Utility

through request(). After it receives notification from Utility about the committed sup-
ply, it “negotiates” with the households (through communication interfaces that we
omit in this chapter) and reallocates budgets to the households through Wfi () and
Wvi (). This gives a network system H‖Coordinator‖Utility, as shown in Fig. 15.

Except for the “negotiation” of the Coordinator with individual households, the
composition H of the households behaves exactly the same as one household. Sim-
ilarly, we can imagine that a network of utilities works in collaboration to provide a
power supply. Once they reach an agreement among themselves on how they share
the supply to the request from the collector, they interface with the collector in the

144 X. Chen and Z. Liu

Fig. 14 Home automation

Towards Interface-Driven Design of Evolving Component-Based Architectures 145

Fig. 15 A smart grid

same manner as a single utility. Furthermore, the centralised collector can be trans-
formed into a distributed implementation so that the “negotiation” can be performed
among households themselves.

6 Conclusions

This chapter has argued the importance of component-based (or system of systems)
architectures and contracts of interfaces for healthy evolution of digital ecosystems.
We proposed an extension to the rCOS model of digital components and interfaces
to cyber-physical components. This makes the notion of interfaces very general.
For example, a piece of wall or a window can be modelled interfaces between the
temperatures outside and inside a room. Even the “air” between two sections of a
room can modelled as an interface that transforms the temperature of one section
to that of another. However, this general notion of interfaces poses a number of
challenges, for example

1. How to develop a model of contracts of such interfaces, as it is often the case that
there is no known physical laws or functions for defining these interfaces?

2. How to define the formal semantics and the refinement relation between cyber-
physical interface contracts?

These are the first significant questions to ask when developing a semantic theory
for these CPS components and their compositions. Further challenges include

1. how to develop design techniques and tools,

146 X. Chen and Z. Liu

2. how to combine David Parnas’s Four-Variable Model, Michael Jackson’s Prob-
lem Frames Model, and the Rational Unified Process (RUP) of the use case
driven approach systematically into the continuous evolutionary integration sys-
tem development process?

We believe that our model-driven approach is again promising, and techniques and
tools of simulation with rich data and machine learning would become increasingly
important in building the correct models.

Acknowledgements We acknowledge the contribution to the development of the rCOS method
from Zhenbang Chen, Ruzheng Dong, He Jifeng, Wei Ke, Dan Li, Xiaoshan Li, Jing Liu, Charles
Morisset, Anders Ravn, Volker Stolz, Shuling Wang, Jing Yang, Liang Zhao, and Naijun Zhan.
We also thank Jonathan Bowen, Xiaohong Chen, Sabita Maharjan, Esther Palomar and Yan Zhang
for the collaboration on Component-Based Modelling for Sustainable and Scalable Smart Meter
Networks [30].

References

1. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison-Wesley, Boston
(1994)

2. Brooks, F.P.: No silver bullet: essence and accidents of software engineering. IEEE Comput.
20(4), 10–19 (1987)

3. Brooks, F.P.: The mythical man-month: after 20 years. IEEE Softw. 12(5), 57–60 (1995)
4. Cavalcanti, A., Sampaio, A., Woodcock, J.: A refinement strategy for circus. Form. Asp. Com-

put. 15(2–3), 146–181 (2003). http://dx.doi.org/10.1007/s00165-003-0006-5
5. Chen, X., He, J., Liu, Z., Zhan, N.: A model of component-based programming. In: Arbab, F.,

Sirjani, M. (eds.) International Symposium on Fundamentals of Software Engineering. Lecture
Notes in Computer Science, vol. 4767, pp. 191–206. Springer, Berlin (2007)

6. Chen, Z., Hannousse, A.H., Hung, D.V., Knoll, I., Li, X., Liu, Y., Liu, Z., Nan, Q., Okika,
J.C., Ravn, A.P., Stolz, V., Yang, L., Zhan, N.: Modelling with relational calculus of object and
component systems–rCOS. In: Rausch, A., Reussner, R., Mirandola, R., Plasil, F. (eds.) The
Common Component Modeling Example. Lecture Notes in Computer Science, chap. 3, vol.
5153, pp. 116–145. Springer, Berlin (2008)

7. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in component-
based model driven design. Sci. Comput. Program. 74(4), 168–196 (2009). Feb

8. Darby, S.: Smart metering: what potential for householder engagement? Build. Res. Inf. 38(5),
442–457 (2010)

9. Dijkstra, E.W.: The humble programmer. Commun. ACM 15(10), 859–866 (1972). An ACM
Turing Award lecture

10. Fischer, C.: Fault-tolerant programming by transformations. Ph.D. thesis, University of War-
wick (1991)

11. Gunes, V., Peter, S., Givargis, T., Vahid, F.: A survey on concepts, applications, and challenges
in cyber-physical systems. Trans. Internet Inf. Syst. 8(12), 4242–4268 (2014)

12. He, J., Li, X., Liu, Z.: A theory of reactive components. Electr. Notes Theor. Comput. Sci. 160,
173–195 (2006)

13. He, J., Liu, Z., Li, X.: rCOS: a refinement calculus of object systems. Theor. Comput. Sci.
365(1–2), 109–142 (2006)

14. Herold, S., Klus, H., Welsch, Y., Deiters, C., Rausch, A., Reussner, R., Krogmann, K., Kozi-
olek, H., Mirandola, R., Hummel, B., Meisinger, M., Pfaller, C.: The common component
modeling example. In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common

http://dx.doi.org/10.1007/s00165-003-0006-5

Towards Interface-Driven Design of Evolving Component-Based Architectures 147

Component Modeling Example. Lecture Notes in Computer Science, chap. 1, vol. 5153, pp.
16–53. Springer, Berlin (2008)

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle River
(1985)

16. Hoare, A., He, J.: Unifying Theories of Programming. Prentice Hall, New York (1988)
17. Kim, M., Viswanathan, M., Lee, I., Ben-Abdellah, H., Kannan, S., Sokolsky, O.: Formally

specified monitoring of temporal properties. In: Proceedings of the European Conference on
Real-Time Systems (1999)

18. Koubaa, A., Andersson, B.: A vision of cyber-physical internet. In: Proceedings of the Work-
shop of Real-Time Networks (RTN 2009), Satellite Workshop of ECRTS 2009 (2009)

19. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process, 2nd edn. Prentice-Hall, Upper Saddle River (2001)

20. Lee, E.: Cyber physical systems: design challenges. Technical Report No. UCB/EECS-2008-8,
University of California, Berkeley (2008)

21. Li, D., Li, X., Liu, Z., Stolz, V.: Interactive transformations from object-oriented models to
component-based models. In: Arbab, F., Ölveczky, P.C. (eds.) Formal Aspects of Component
Software - 8th International Symposium, FACS 2011, Oslo, Norway, September 14–16, 2011,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 7253, pp. 97–114. Springer
(2011). http://dx.doi.org/10.1007/978-3-642-35743-5_7

22. Li, D., Li, X., Liu, Z., Stolz, V.: Interactive transformations from object-oriented models to
component-basedmodels. In: Formal Aspects of Component Software - 8th International Sym-
posium, FACS 2011, Oslo, Norway, September 14–16, 2011, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 7253, pp. 97–114. Springer (2011)

23. Li, D., Li, X., Liu, Z., Stolz, V.: Support formal component-based development with UML
profile. In: 22nd Australian Conference on Software Engineering (ASWEC 2013), 4–7 June
2013, Melbourne, Victoria, Australia. pp. 191–200 (2013)

24. Li, D., Li, X., Liu, Z., Stolz, V.: Support formal component-based development with UML
profile. In: 22nd Australian Conference on Software Engineering (ASWEC 2013), 4–7 June
2013, Melbourne, Victoria, Australia. pp. 191–200. IEEE Computer Society (2013). http://dx.
doi.org/10.1109/ASWEC.2013.31

25. Li, D., Li, X., Liu, Z., Stolz, V.: Automated transformations from UML behavior models to
contracts. SCI. CHINA Inf. Sci. 57(12), 1–17 (2014). http://dx.doi.org/10.1007/s11432-014-
5159-8

26. Li, X., Lu, R., Liang, X., Shen, X., Chen, J., Lin, X.: Smart community: an internet of things
application. Commun. Mag. 49(11), 68–75 (2011)

27. Liu, Z., Joseph, M.: Specification and verification of fault-tolerance, timing, and scheduling.
ACM Trans. Program. Lang. Syst. 21(1), 46–89 (1999)

28. Naur, P., Randell, B. (eds.): Software Engineering: Report of a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, 7–11 Oct. 1968, Brussels, Scientific Affairs
Division, NATO (1969)

29. Oliveira, M., Cavalcanti, A., Woodcock, J.: Formal development of industrial-scale systems in
Circus. ISSE 1(2), 125–146 (2005). http://dx.doi.org/10.1007/s11334-005-0014-0

30. Palomar, E., Liu, Z., Bowen, J.P., Zhang, Y., Maharjan, S.: Component-based modelling for
sustainable and scalable smart meter networks. In: Proceeding of IEEE International Sympo-
sium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2014, Sydney,
Australia, June 19, 2014. pp. 1–6 (2014)

31. Pronios, N.B.: Software verification & validation for complex systems, presentation at Tech-
nical Feasibility Studies Competition Information Event, Innovate UK

32. Quan, L., Qiu, Z., Liu, Z.: Formal use of design patterns and refactoring. In: Margaria, T., Stef-
fen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation, Third
International Symposium, ISoLA 2008, Porto Sani, Greece, October 13–15, 2008. Proceed-
ings. Communications in Computer and Information Science, vol. 17, pp. 323–338. Springer
(2008). http://dx.doi.org/10.1007/978-3-540-88479-8_23

http://dx.doi.org/10.1007/978-3-642-35743-5_7
http://dx.doi.org/10.1109/ASWEC.2013.31
http://dx.doi.org/10.1109/ASWEC.2013.31
http://dx.doi.org/10.1007/s11432-014-5159-8
http://dx.doi.org/10.1007/s11432-014-5159-8
http://dx.doi.org/10.1007/s11334-005-0014-0
http://dx.doi.org/10.1007/978-3-540-88479-8_23

148 X. Chen and Z. Liu

33. Randell, B., Buxton, J. (eds.): Software Engineering: Report of a Conference Sponsored by the
NATOScience Committee, Rome, Italy, 27–31Oct. 1969, Brussels, Scientific Affairs Division,
NATO (1969)

34. Roscoe, A.W.: Theory and Practice of Concurrency. Prentice-Hall, Upper Saddle River (1997)
35. Shapiro, M.: Smart cities: quality of life, productivity, and the growth effects of human capital.

Rev. Econ. Stat. 88, 324–335 (2006). May
36. Zhang, M., Liu, Z., Morisset, C., Ravn, A.P.: Design and verification of fault-tolerant compo-

nents. In: Butler, M., Jones, C., Romanovsky, A., Troubitsyna, E. (eds.) Methods, Models and
Tools for Fault Tolerance. Lecture Notes in Computer Science, vol. 5454, pp. 57–84. Springer,
Berlin (2009)

37. Zhao, L., Liu,X., Liu, Z., Qiu, Z.:Graph transformations for object-oriented refinement. Formal
Aspects Comput. 21(1–2), 103–131 (2009). Feb

38. Zhu, J., Pecen, R.: A novel automatic utility data collection system using ieee 802.15.4-
compliant wireless mesh networks. In: Proceedings of IAJCIJME International Conference
(2008)

Part V
Automatic Verification

Computing Verified Machine Address
Bounds During Symbolic Exploration
of Code

J Strother Moore

Abstract When operational semantics is used as the basis for mechanized
verification of machine code programs it is often necessary for the theorem prover to
determine whether one expression denoting a machine address is unequal to another.
For example, this problem arises when trying to determine whether a read at the
address given by expression a is affected by an earlier write at the address given
by b. If it can be determined that a and b are definitely unequal, the write does not
affect the read. Such address expressions are typically composed of “machine arith-
metic function symbols” such as +, *, mod, ash, logand, logxor, etc., as well as
numeric constants and values read from other addresses. In this chapter we present
an abstract interpreter for machine address expressions that attempts to produce a
bounded natural number interval guaranteed to contain the value of the expression.
The interpreter has been proved correct by the ACL2 theorem prover and is one of
several key technologies used to do fast symbolic execution of machine code pro-
grams with respect to a formal operational semantics. We discuss the interpreter,
what has been proved about it by ACL2, and how it is used in symbolic reasoning
about machine code.

1 Preface

One might ask why a chapter on the ACL2 project is included in the volume marking
the 20th and 25th anniversaries of the European ProCoS project. ProCoS was in part
inspired by the successful effort at Computational Logic, Inc. (CLI), first published
in 1989, to verify a system “stack,” from a gate-level description of a microproces-
sor, through an assembler, linker, loader, two compilers, and an operating system,
to several applications. All were verified using the Nqthm [5] theorem prover and
their correctness results were designed to compose so that each level relieved the
preconditions of the level below. The result was a mechanically checked theorem of
the form: under certain very specific preconditions on the resources available and the

J Strother Moore (B)
Department of Computer Science, University of Texas, Austin, TX, USA
e-mail: moore@cs.utexas.edu

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_7

151

152 J Strother Moore

inputs, the application programs (when compiled, linked, and loaded) run correctly
on the hardware. The only unverified assumptions were the ones at the bottom: the
fabrication of the gate-level description was faithful to the design and the physical
gates behave as logically specified [1].

But theCLI stack inspiredmore than ProCoS. It was one of severalNqthmprojects
in the late 1980s and early 1990s involving models of commercial interest. See for
example thework on theCStringLibrary as compiled bygcc for theMotorola 68020
[6]. These projects stressed Nqthm in ways we had not seen before: its capacity,
efficiency, and convenience as a practical functional programming language. Thus
was born, in 1989, ACL2: A Computational Logic for Applicative Common Lisp [7,
11–13] ACL2was a reimplementation of Nqthm in an applicative subset of Common
Lisp [19]. But while the logic of Nqthm was a “homegrown” dialect of pure Lisp,
the logic of ACL2 is applicative Common Lisp, a fast, efficient, widely supported
ANSI standard programming language.

ACL2 has since been used in many industrial projects and is in use regularly at
several companies involved with microprocessor design. For a good illustration of
how ACL2 can be used in industry, see [18].

2 Introduction

Operational semantics has long been used to formalize and mechanically verify
properties ofmachine code programs. Examples of the Edinburgh Pure LispTheorem
Prover, Nqthm and ACL2 being used to prove functional correctness of code under
formal operational semantics may be found in numerous publications [1, 2, 6, 10,
16, 17, 20, 21].

In such applications, terms in the logic are used to represent machine states, tran-
sition functions define the effects of individual instructions, these instruction-specific
transition functions are then wrapped up into a “big switch” single-step function that
applies the transition function dictated by the opcode of the next instruction, and
finally the single-step function is wrapped up into a recursive iterated step function
for giving semantics to whole programs. Typically the program being analyzed is
stored in the state, either encoded numerically in memory or symbolically in some
“execute only” state component. Theorems are then posed, typically, as implications
asserting that if the initial state has some property then the “final” state produced by
the iterated step function has some related property. These theorems are typically
proved by induction but the “heavy lifting” in the proof is done by a rewriting strat-
egy that explores the various paths through the program and composes and simplifies
the individual state transitions. The rewriting strategy is just deductive implementa-
tion of symbolic evaluation which we sometimes also call code walking. The basic
idea of symbolic evaluation is to start with a symbolic state expression containing a
concrete program counter and program code but containing variables in some state
components (e.g., memory locations holding program data). Hypotheses typically
constrain these variables. To symbolically step that state: retrieve the instruction at

Computing Verified Machine Address Bounds During Symbolic … 153

the program counter, instantiate the transition function with that instruction, sim-
plify the resulting state (rearranging expressions representing the contents of various
registers and memory locations, testing them, and producing an IF-expression with
new states with known program counters), and repeat on all the new states until some
condition is satisfied.1

We sometimes refer to these proofs as code proofs because they can establish
properties of explicit machine code.

Fundamental to this approach to semantics are the terms denoting reads andwrites
to the memory of a state because every transition requires manipulating the memory.
In this work we focus on a byte addressed memory and use these terms for read and
write:

R(a, n, st): returns the natural number obtained by reading n bytes starting at
address a in the memory of state st

!R(a, n, v, st): returns the new state obtained by writing n bytes of natural num-
ber v into the memory of st starting at address a

We call a an address and n an extent. R and !R use the Little Endian convention to
represent natural numbers as sequences of bytes. If an integer is supplied for v above,
its twos complement representation – a natural number – is used. For example, !R
writes the least significant byte of the binary representation of v into address a and
writes the more significant bytes into the higher addresses.

R and !R enjoy certain properties that are crucial to code proofs. One such prop-
erty is:

a, n, b,m ∈ Z ∧ (a + n ≤ b) → R(a, n,!R(b,m, v, st)) = R(a, n, st).

Such a theorem is called a read-over-write theorembecause it tells us about the results
of reading after writing. This particular read-over-write theorem says the write can
be ignored if the read fetches bytes in memory addresses below those written. There
are other theorems to deal with overlapping reads and writes and reads above writes.
There are analogouswrite-over-write theorems for simplifying state expressions. All
are crucial to code proofs.2

1The process just described is just ordinary mathematical simplification of the iterated step function
applied to the initial state. A special case of symbolic evaluation is “symbolic simulation” or “bit
blasting” by which we mean a process whereby objects from a given finite set are represented
using nested structures whose leaves are Boolean constants and variables. The process computes
related objects from definitions or other equations using Boolean decision methods typically based
on binary decision diagrams (BDDs) or Boolean satisfiability procedures (SAT). ACL2 supports
symbolic simulation, e.g., see the ACL2 online documentation topic GL, but in this chapter we are
concerned with straightforward simplification.
2Typical machine statemodels involvemany other state components, their “accessor” and “updater”
function symbols, and their analogues to “read-over-write” theorems, etc. But we ignore them in
this chapter since we are focused on address resolution.

154 J Strother Moore

But what is of concern here is how, in a theorem proving context, we establish
such inequalities as (a + n ≤ b) when a, n, and b are given by terms produced by
symbolic evaluation of machine code. Such hypotheses litter the read-over-write and
write-over-write conditional rewrite rules that are heavily used in code proofs. These
rules are typically tried many more times than they are successfully applied: given
an arbitrary read-over-write expression one must try to establish the hypotheses of
each rule to determine whether the read is below, overlapping, or above the write.
Furthermore, in typical code proofs, thousands of read-over-write expressions are
encountered. Finally, the expressions a and b can become very large.

To put some numbers on the adjectives “heavily used,” “large,” etc., consider the
largest symbolic state encountered while symbolically exploring a machine code
implementation of the DES algorithm. The state in question represents the end of
one path through the 5,280 instructions in the decryption loop. The normalized state
expression contains 2,158,895 function calls, including 58 calls of !R to distinct
locations and 459,848 calls of R. (Repeatedwrites to the same location are eliminated
by the rewriting process.) That state expression also contains 1,698,987 calls of
arithmetic/logical functions such as addition, subtraction, multiplication, modulo,
and bitwise logical AND, exclusive OR, shift, etc. The largest value expressionwritten
is given by a term involving 147,233 function applications, 31,361 of which are calls
of R and the rest are calls of arithmetic/logical functions. Valueswritten often become
indices into arrays and thus become part of address expressions.

We found it impractical to use ACL2’s conventional arithmetic library to answer
the address comparison questions that arise while building up such large state expres-
sions. But ACL2 allows the user to extend the rewriter with special-purpose symbolic
manipulation programs if those programs—which arewritten in theACL2 program-
ming language—are first proved correct byACL2. Sowe developed special-purpose
programs to answer such questions as “is (a + n ≤ b) true?” ormore generally, “how
do the values of expressions a and b compare?” The core technology is an Abstract
Interpreter over Natural Number Intervals called Ainni, which takes a term and the
context in which it occurs and tries to compute a bounded natural number interval
containing all possible values of the term in that context. Ainni is purely syntactic
— it just walks through the term bounding every subterm — and can be thought of
as a verified type-inference mechanism where the types are intervals. Ainni was
then used to develop a variety of metafunctions for manipulating the gigantic expres-
sions produced by the symbolic evaluation of machine code sequences containing
thousands of instructions.

In Sect. 3 we give some practical information about ACL2 as well as explain
ACL2 notation which we often use in place of conventional notation because our
techniques involve metafunctions which manipulate the internal ACL2 representa-
tion of terms. In Sect. 4 we discuss that representation and metafunctions. In Sect. 5
we introduce ACL2’s pre-existing notion of “bounder” functions and a library of
elementary bounders. In Sect. 6 we describe the key idea: Ainni, our abstract inter-
preter formachine arithmetic expressions that attempts to produce a bounded interval
containing the value of the expression. Also in this section we show the correctness
results for Ainni. These results have been proved by ACL2 and are necessary

Computing Verified Machine Address Bounds During Symbolic … 155

if Ainni is to be used in verified metafunctions. In Sect. 7 we illustrate calls of
Ainni and the interpretation of its results. In Sect. 8 we exhibit a metafunction that
uses Ainni to simplify a certain kind of MOD expression. This section shows how
a metafunction assembles the results of Ainni into a provably correct answer. In
Sect. 9we briefly describe other applications of Ainni, including themotivating one
for simplifying read-over-write expressions. In Sect. 10 we briefly mention related
work. Finally we summarize in Sect. 11 and acknowledge the help of colleagues in
Acknowledgements.

3 A Little Background on ACL2

In this section we present a little practical background on ACL2, its documentation
and user-developed libraries. Thenwe sketch the syntax of the ACL2 logic and reveal
a bit about the implementation of the ACL2 theorem prover in Lisp. We also reveal
a bit about the semantics.

ACL2 was initially developed by Robert S. Boyer and the author starting in 1989.
However, since the early 1990s it has been extensively further developed, docu-
mented, maintained, and distributed byMatt Kaufmann and the author. It is available
for free in source code form from the ACL2 home page [14].

When we refer to “:DOC x” we mean the documentation topic x in the online
ACL2 documentation,whichmay be found by visiting theACL2 home page, clicking
on The User’s Manuals, then clicking on ACL2+Books Manual and typing x into the
“Jump to” box.

In ACL2 parlance, a “book” is a file of definitions and theorems that can be loaded
(see :DOC include-book) into an ACL2 session to extend the current theory.
The actions of the ACL2 rewriter (and other parts of the prover) are influenced by
previously proved theorems.Books are often developedwith someparticular problem
domain and proof strategy in mind and when included in a session configure the
prover to implement that strategy.

In this chapter we refer to several books in theACL2Community Book Repository.
The repository is developed andmaintained by the ACL2 user community. The top of
the directory structure may be viewed by visiting GitHub at https://github.com/acl2/
acl2. A particular file may be found by clicking your way down the directory hierar-
chy. For example, to find books/projects/stateman/stateman22.lisp
start on the GitHub page above and click on books, then projects, etc.

ACL2 is the nameof a programming language, a first order logic, a theoremprover,
and a program/proof development environment. The ACL2 programming language
is an extension of the applicative subset of Common Lisp [19]. The logic includes an
axiomatization of that language consistent with Common Lisp. The theorem prover
and environment are implemented (largely) in the ACL2 programming language.

In ACL2, the term R(a, n, st) is written (R a n st). ACL2 is case insensitive
so this could also be written (r a n st) or (R A N ST). In this chapter we
write variable symbols in lowercase italics. We tend to use case, both capitalization

https://github.com/acl2/acl2
https://github.com/acl2/acl2

156 J Strother Moore

and uppercase, merely for emphasis. If our use of case and italics is confusing just
ignore them!

Internal to the ACL2 theorem prover, the term (R a n st) is represented by the
Lisp list that prints as(R A N ST), i.e., a list of length 4whosecar or first element
is the Lisp symbol R, and whose cdr or remaining elements are given by the list (A
N ST). Consing the symbol R onto the list (A N ST) produces the list (R A N
ST). In Lisp we could create this list by evaluating (cons ’R ’(A N ST)), or
(cons ’R (list ’A ’N ’ST)) or (list ’R ’A ’N ’ST). These three
examples illustrate themost common idioms used to create termswhen programming
the theorem prover.

This brings us to the single quote mark and Lisp evaluation. The Lisp convention
is that a single quote mark followed by a Lisp expression α is read as though the
user had typed (QUOTE α). Thus, ’(R A N ST) is read as (QUOTE (R A N
ST)).

QUOTE is a “special symbol” in the semantics of Lisp. The result of evaluating
(QUOTE α) is α. This discussion of internal representation and the special meaning
of QUOTE and the single quote mark are relevant to our discussion of metafunctions
in the next section.

But to foreshadow that discussion, it happens that if α is the Lisp representation of
an ACL2 term then ’α is the Lisp representation of another ACL2 term, that second
term in fact denotes a constant in the ACL2 logic, and there is an ACL2 function,
say E , called an “evaluator,” that when applied to that constant and an appropriate
association list (“alist”) will return the same thing as the value of α. For example,
since (R a n st) is an ACL2 term, then so is ’(R A N ST), the latter term denotes
a constant in the ACL2 logic, and

(E ’(R A N ST) (list (cons ’A a) (cons ’N n) (cons ’ST st)))
=
(R a n st)

is a theorem of ACL2.
In Lisp, certain constants, in particular symbols T and NIL, numbers, character

objects, and strings, evaluate to themselves. Thus, when writing Lisp it is not nec-
essary to quote these constants. But constants appearing in ACL2 terms, even T,
NIL, and numbers, are always quoted. This is achieved without inconveniencing the
user by translating user type-in into ACL2’s internal form. Thus, the term we write
as (R 4520 8 st) is represented inside the theorem prover as (R ’4520 ’8
ST) which we could display as (R (QUOTE 4520) (QUOTE 8) ST). The
user could in fact input the term in any of these ways. All three expressions produce
exactly the same internal form. And because ACL2 is Lisp, it happens that all three
are not only ACL2 terms but Lisp expressions and they produce the same results
when evaluated by Lisp.

Some other ACL2 function symbols used in this chapter are shown in Fig. 1. In
Lisp, a test or predicate is said to be “false” if its value is NIL and is said to be “true”
otherwise. The symbols force and hide of Fig. 1 are trivial identity functions used
to communicate pragmatic information to the ACL2 prover. See :DOC force and
hide.

Computing Verified Machine Address Bounds During Symbolic … 157

ACL2 term name conventional notation
(if x y z) if-then-else x ? y : z
(implies p q) logical implication p q
(and p q) logical conjunction p ∧ q
(or p q) logical disjunction p ∨ q
(not p) logical negation ¬p
(equal x y) equality x = y
(integerp x) “is-integer” x ∈ Z

(natp x) “is-natural” x ∈ N

(< x y) less than x < y
(<= x y) less than or equal x ≤ y
(+ x y) addition x+ y
(- x y) subtraction x − y

(* x y) multiplication x × y
(ifix x) “coerce-to-integer” if x is an integer, x; else 0
(expt x y) exponentiation xy

(mod x y) modulus x mod y
(ash x y) shift x × 2y

(logand x y) bitwise and x&y
(logior x y) bitwise inclusive or x|y
(logxor x y) bitwise exclusive or x^y
(force x) x
(hide x) x
(R a n st) read n bytes from addr a
(!R a n v st) write n bytes of v to addr a

Fig. 1 Some ACL2 function symbols

In the internal representation of ACL2 terms, all function symbols take a fixed
number of arguments. “Functions” that allow varying numbers of arguments are
handled as Lisp macros that expand during the previously mentioned translation
phase. For example, the internal form of (+ i j k) is actually (binary-+ i
(binary-+ j k)). The symbol+ is amacro that expands into a term that uses the
function symbol binary-+. Of the “function symbols” shown in Fig. 1 the symbols
+, *, logand, logior, and logxor are actually macros that expand into right-
associated calls of function symbols that take exactly two arguments. The “functions
symbols” and and or are macros that expand into nests of IF expressions. But in
this chapter we ignore such details andwill pretend that they are all function symbols,
notmacros;when discussing termprocessing functionswewill act like these symbols
have exactly two arguments. We mention this detail only to reassure readers familiar
with ACL2 that our metafunctions do not mistake macros for function symbols.

ACL2 is untyped and all ACL2 functions are total; thus, ACL2 expressions
mean something no matter what well-formed arguments are supplied; however we
will always use them conventionally and their completions are unimportant here.
For example, ACL2’s universe includes the rationals but not the irrationals. Thus,

158 J Strother Moore

(expt 2 1/2) is a well-formed ACL2 term, it is indeed equivalent to a certain
constant, but that constant is not

√
2. But this does not matter here because no term

involved in this work applies expt to a non-integer.

4 Metafunctions

ACL2 “metafunctions” are ordinary ACL2 functions that operate on the internal
representation of ACL2 terms. Correctness is stated in terms of “evaluators.” Once
ACL2 has proved a metafunction correct, the metafunction may be used by the
theorem prover directly on the internal representation of terms [4]. Metafunctions
have been part of ACL2 since its beginning; indeed, they were first introduced and
described in 1979 [3] as part of the prover that became Nqthm [5].

An “evaluator” is a function that interprets an object as a term,with respect to some
assignment giving meaning to variable symbols. Lisp’s eval would be a wonderful
evaluator if it were admissible in ACL2’s first order logic of total recursive functions,
but it is not. Fortunately, it suffices for ACL2’s purposes to admit evaluators for a
finite number of already-introduced function symbols and the ACL2 system provides
a macro, defevaluator, that makes this easy. See :DOC defevaluator.

More technically, let σ be a set of ACL2 function symbols. An ACL2 evaluator
function over σ is a function ev of two arguments, x , treated as the internal represen-
tation of a term, and alist , treated as an association list mapping variable symbols
to values. The value, v, of (ev x alist) is constrained to have certain properties
including: If x is a symbol other than NIL, v is the value assigned x by alist . If
x is ’c, v is c. If x is of the form (g x1 . . . xn), where g ∈ σ , then v is (g (ev x1
alist)…(ev xn alist)). Additional constraints include that ev be able to interpret
LAMBDA-applications and that on x of the form (g x1 . . . xn) where g /∈ σ , ev is a
function of the (ev xi alist).

Henceforth, we will assume that E is an ACL2 evaluator function over all of the
functions mentioned in this chapter (except E itself!).3

Thus,

(E ’(!R ’4000 ’8 (LOGAND X Y) ST)
(LIST (CONS ’X x)

(CONS ’Y y)
(CONS ’ST st)))

=
(!R ’4000 ’8 (LOGAND x y) st)
=
(!R 4000 8 (LOGAND x y) st).

3The actual name of this evaluator is stateman-eval, “stateman” being the name of the “State
Management” book that motivated this work. We simply find stateman-eval inconveniently
long for use in a paper.

Computing Verified Machine Address Bounds During Symbolic … 159

A metafunction is an ordinary list processing function in ACL2 with the property
that it takes the internal representation of a termand returns the internal representation
of an equivalent term. To be precise, a metafunction must be proved to operate
correctly on “pseudo terms.” Pseudo terms are term-like list structures that do not
necessarily obey all the internal invariants on ACL2’s term representation. Before
the output of a metafunction is used to replace its input, the output is checked to
satisfy all the internal invariants, unless the user has also proved that the function
preserves them [15].

The general form of the theorem establishing that f n is a verified metafunction
is:

(implies (and (pseudo-termp x)
(alistp alist))

(equiv (E x alist)
(E (f n x m f c state) alist)))

where E is any evaluator. The variable namem f c stands formetafunction context and
state is the state of the ACL2 system, which together give f n access to contextual
and heuristic data.

If this theorem has been proved by ACL2, then the ACL2 rewriter is logically
permitted to replace any term x by the result computed by calling f n on x provided
the returned object represents a term. This argument is presented in detail in :DOC
meta.

Furthermore, by convention, if the metafunction returns an answer of the
form ’(IF test new x) when applied to x , the rewriter uses new as the simplified
version of x provided it can backchain and establish test . Thus, fn can check some
hypotheses syntactically and leave others to be relieved by the rewriter. This design
means that the user does not have to prove that the metafunction properly interprets
the data found in m f c and state. It also means that the ACL2 implementors do not
have to formalize that data but instead merely provide functions for accessing certain
parts of it. However, when those functions are used properly in a metafunction and
the metafunction accurately “exports” what was learned as a conjunct included in
test , it is generally easy for ACL2 to backchain and prove test : it is generally proved
by the trusted internal routines of ACL2 for interpreting the data in m f c and state.

Since ACL2’s implementation language is ACL2, programming metafunctions
is just like programming theorem proving utilities, except that we generally use
ACL2 to prove that our programs are correct. For example, suppose we wanted a
utility for conservatively determining that an expression x always returns a natural
number. Here is such a function.4 It is not actually necessary for the user to define this
particular function. ACL2 has much more sophisticated built-in ways to recognize
expressions that return naturals. But this function is a good warm-up.

4As indicated above, a correct definition will use BINARY-+ instead of +, BINARY-* instead of
*, etc.

160 J Strother Moore

(defun syntactic-natp (x)
(cond
((atom x) nil)
((eq (car x) ’QUOTE)
(natp (nth 1 x)))

((member (car x) ’(+ * LOGAND LOGIOR LOGXOR ASH MOD))
(and (syntactic-natp (nth 1 x))

(syntactic-natp (nth 2 x))))
((eq (car x) ’HIDE)
(syntactic-natp (nth 1 x)))

((eq (car x) ’R) t)
(t nil)))

Here we use atom to recognize variable symbols, (car x) to fetch the top-level
function symbol (or the QUOTEmark) of the non-atomic term x ,(nth 1 x) to fetch
the constant inside a QUOTEd expression, and (nth i x) to fetch the i th argument
of function application x .

ACL2 can prove that if (syntactic-natp term) is true, then (natp (E
term alist)).
(implies (syntactic-natp term) ; {syntactic-natp correct}

(natp (E term alist)))

We might then use syntactic-natp in the definition of some metafunction. For
example, suppose we wished to write a metafunction that recognized terms of the
form(natp x) and replaced thembyTwhen x is asyntactic-natp expression.
Here is that metafunction:

(defun meta-natp (x)
(cond ((and (not (atom x))

(eq (car x) ’NATP)
(syntactic-natp (nth 1 x)))

’(QUOTE T))
(t x)))

ACL2 can prove:
(implies (pseudo-termp x) ; {meta-natp correct}

(equal (E x alist)
(E (meta-natp x) alist)))

Given this theorem, ACL2 would be justified in applying meta-natp to every
expression it ever encountered and replacing the expression by the result. That would
be needlessly inefficient since meta-natp only changes some NATP expressions.
The user-interface to ACL2 requires the user to provide pragmatic information iden-
tifying likely targets expressions, in this case, calls of NATP.

Computing Verified Machine Address Bounds During Symbolic … 161

5 Bounders

The key to resolving such questions as (a + n ≤ b) by syntactic analysis is to be
able to compute a bounded interval containing all possible values of a term. In this
chapterwe assume all intervals are closed, bounded, and over the naturals (i.e., integer
intervals with non-negative lower bound). We denote intervals over the naturals by
[lo, hi], where both lo and hi are natural numbers and lo ≤ hi .

Imagine that x and y lie within certain bounded closed intervals over the naturals.
Then it is easy to compute an interval containing their sum by appealing to the
following theorem:

(x ∈ [lox , hix] ∧ y ∈ [loy, hiy]) → (x + y) ∈ [lox + loy, hix + hiy]

It is easy to imagine a function that takes a term, like (+ x y) in ACL2, and
computes an interval containing its value, provided it can recursively compute such
intervals for x and y. The question is: given intervals containing the arguments of a
function f , canwe compute an interval containing the value of f on those arguments?

In ACL2, an n-ary function g is a bounder for an n-ary function f if, for
closed bounded intervals int1, int2, . . . , intn over the natural numbers, when xi ∈
inti , for all 1 ≤ i ≤ n, then g(int1, . . . , intn) is an interval and f (x1, . . . , xn) ∈
g(int1, . . . , intn).5

The file books/tau/bounders/elementary-bounders.lisp, in the
ACL2 Community Books repository, developed by the author, defines and verifies
bounders for +, *, -, FLOOR, MOD, LOGAND, LOGNOT, LOGIOR, LOGXOR, EXPT,
ASH and a few other functions.

For example, here is a version of the bounder for LOGAND that is correct provided
the two intervals intx and inty are closed bounded intervals over the naturals. This
function is less general than that in the elementary-bounders Community
Book, which deals with the various kinds of ACL2 intervals, including the cases
where the bounds are negative integers. But the simple function below illustrates the
basic ideas in all of our bounders.

(defun natp-tau-bounder-logand (intx inty)
(let ((lox (tau-interval-lo intx))

(hix (tau-interval-hi intx))
(loy (tau-interval-lo inty))
(hiy (tau-interval-hi inty)))

(cond
((worth-computingp lox hix loy hiy)
(make-natural-interval
(find-minimal-logand lox hix loy hiy)
(find-maximal-logand lox hix loy hiy)))

5ACL2 is actually a little more relaxed: it does not require that every argument of f be confined to
an interval. ACL2 furthermore allows both open and closed intervals, possibly unbounded at either
end, over not just the integers but also the rationals.

162 J Strother Moore

(t
(make-natural-interval 0 (min hix hiy))))))

Here the functions tau-interval-lo and tau-interval-hi extract the
lower and upper bounds of an interval, and make-natural-interval con-
structs a closed ACL2 interval over the naturals when given appropriate lower and
upper bounds. We discuss the “Tau System” of ACL2 in the next section.

The naive analytic bound on (logand x y) is [0, min(hix , hiy)]: the minimum
possible value is 0 because x and y may not have any bits in common. The maximum
possible value is the smaller of the upper limits of x and y, since logand just turns
some bits off. For example, if x ∈ [1032, 1039] and y ∈ [520, 527], then this naive
approach tells us that (logand x y) ∈ [0, 527].

But this naive approach can grossly overestimate the bounding interval. In fact,
(logand x y) ∈ [8, 15], for any x and y bounded as assumed above, as can
be confirmed by simply trying every combination of x and y in the two intervals
and loganding them together. If the two input intervals are sufficiently small this
empirical approach is practical and often produces much tighter results. The func-
tions worth-computingp, find-minimal-logand, and find-maximal
-logand implement this empirical approach to interval analysis.
Worth-computingp deems it worth trying if the number of combinations is
less than 220. ACL2 can do that many logand operations in about 0.004371s on a
MacBook Pro laptop with a 2.6 GHz Intel Core i7 processor.

6 Ainni: Abstract Interpreter over Natural Number
Intervals

The “easy to imagine” function mentioned above, that takes a term and tries to com-
pute an interval containing its value, is formalized in our function Ainni. Ainni
is an abstract interpreter over natural number intervals. It uses the bounders in the
elementary bounders book, and a few more, compute intervals.

To suggest howAinni is definedweexhibit a simpler functionaiibelow.For the
full definition of Ainni see the ACL2 Community Book books/projects/-
stateman/stateman22.lisp.

Suppose we have k function symbols, op1, . . ., opk , of arities n1, …, nk , and
suppose we have a bounder function for each, bounder-op1, . . ., bounder-opk ,
respectively. Suppose x is a term over the opi . Then here is a sketch of aii, an
abstract interpreter that attempts to compute an interval containing the value of x .
If it fails to find an interval it returns nil. We show the definition below and then
paraphrase each case shown.

(defun aii (x)
(cond
((atom x) nil)
((eq (car x) ’QUOTE)

Computing Verified Machine Address Bounds During Symbolic … 163

(cond ((natp (nth 1 x))
(make-nat-interval (nth 1 x) (nth 1 x)))

(t nil)))
. . .

((eq (car x) ’opi)
(let ((int1 (aii (nth 1 x)))

. . .

(intni (aii (nth ni x))))
(cond
((and int1 . . . intni)
(bounder-op1 int1 . . . intni)
(t nil)))))

. . .

((eq (car x) ’R)
(cond ((and (not (atom (nth 2 x)))

(eq (car (nth 2 x)) ’QUOTE)
(natp (nth 1 (nth 2 x))))

(make-nat-interval
0
(- (expt 2 (* 8 (nth 1 (nth 2 x)))) 1)))

(t nil)))
(t nil)))

If x is a variable symbol, aii fails and returns nil. If x is a natural number
constant, ’k, it returns the interval [k, k]. If x is an application of one of the known
opi , aii recursively computes an interval for the ni arguments and, provided it suc-
ceeds on each, it calls the bounder for opi to compute the interval for the call. If x is
an application of R, aii asks whether the extent is a natural number constant, ’k,
and if so returns [0, 28k − 1]. Otherwise, aii fails and returns nil.

Of course, the definition could be made more efficient by “failing early,” e.g.,
not trying to compute an interval for the second argument if it failed to find one for
the first. Furthermore, some terms can be bounded even if some of their arguments
cannot be, e.g.,(logand x 31)∈ [0, 31] regardless of x’s value. But aii is offered
only as a suggestive model of our more sophisticated Ainni.

A more basic question arises when looking at the definition of aii: What about
intervals for variables?The function above just fails if it encounters a variable.Ainni
on the other hand takes another argument, called ctx , which provides contextual
information, gleaned from the hypotheses governing the occurrence of the term x .
For our purposes here, think of ctx as a map from Boolean terms to truth values.
For example, the assumption that ((R a 8 st) < 16) would be coded in ctx as
a pair associating the term (< (R a 8 st) 16) with true.6 Ainni uses its ctx
argument to determine the arithmetic bounds on variable values. In our application,
the only “variables” encountered are actually reads from memory, i.e., expressions

6What we are calling ctx here is actually ACL2’s “type-alist,” and it pairs arbitrary terms with
“types” gleaned from the governing hypotheses.

164 J Strother Moore

of the form (R a n st). If the extent of the read is a natural number constant then
(R a ’k st) ∈ [0, 28k − 1]. However, Ainni uses the ctx argument to try to narrow
that interval by looking for assumptions on the bounds of (R a ’k st).

Ainni takes three inputs: the term x to bound, a list of hypotheses, hyps, assumed
so far, and ctx . It returns three values. These values are formally written as shown
below and have the following interpretations:

• (mv-nth 0 (Ainni x hyps ctx)): the 0th returned value of (Ainni x hyps
ctx). Informally this result is called the “output flag.” When the output flag is
non-nil (“true”) it means Ainni successfully computed an interval for x ; when
the output flag is nil, Ainni could not find a suitable interval, e.g., perhaps the
input term x is not in the set of terms recognized by Ainni. When the output flag
is nil, the other two results are nil (and irrelevant).

• (mv-nth 1 (Ainni x hyps ctx)): the 1st returned value of (Ainni x hyps
ctx). Informally this result is called the “list of output hypotheses” and each ele-
ment is called an “output hypothesis.” When the output flag is non-nil, the list of
output hypotheses is a list of terms that Ainni is relying on for the correctness of
its answer. The output hypotheses include all of the elements of the input hypothe-
ses hyps plus any hypotheses that Ainni extracted from ctx that contributed to
its answer.

• (mv-nth 2 (Ainni x hyps ctx)): the 2nd returned value of (Ainni x hyps
ctx). Informally this result is called the “output interval.” When the output flag is
non-nil, the output interval is a bounded natural number interval and the value
of x (under the evaluator E with any variable assignment alist) lies within the
output interval, provided the value of each output hypothesis is true (under the
same evaluator E with the same variable assignment alist).

Four important theorems about Ainni have been proved with ACL2. The first
says that when given a pseudo term x and a list of pseudo terms hyps the output
hypotheses are all pseudo terms.
(implies ; {Ainni 1}
(and (pseudo-termp x)

(pseudo-term-listp hyps))
(pseudo-term-listp
(mv-nth 1 (Ainni x hyps ctx))))

The second theorem establishes that when Ainni’s output flag is non-nil its
output interval is indeed a bounded interval over the naturals.
(implies ; {Ainni 2}

(and (pseudo-termp x)
(mv-nth 0 (Ainni x hyps ctx)))

(and (tau-intervalp
(mv-nth 2 (Ainni x hyps ctx)))

(equal (tau-interval-dom
(mv-nth 2 (Ainni x hyps ctx)))

’INTEGERP)
(tau-interval-lo

Computing Verified Machine Address Bounds During Symbolic … 165

(mv-nth 2 (Ainni x hyps ctx)))
(tau-interval-hi
(mv-nth 2 (Ainni x hyps ctx)))

(<= 0 (tau-interval-lo
(mv-nth 2 (Ainni x hyps ctx))))))

The first conjunct in the conclusion states that the output interval is an interval; the
next conjunct states that the domain of the interval is INTEGERP. The next two
conjuncts state that the lower and upper bounds of the output interval are non-nil,
which (because of the first two conjuncts) means they are both integers, the lower
bound is weakly below the upper one, and the interval is closed.7

The third theorem establishes that for pseudo term x such that Ainni’s output flag
is non-nil and all of the output hypotheses are true (i.e., the evaluator E evaluates
the conjunction of those terms to non-nil), then the value (under E) of x is contained
in the output interval.
(implies ; {Ainni 3}
(and (pseudo-termp x)

(mv-nth 0 (Ainni x hyps ctx))
(E (conjoin (mv-nth 1 (Ainni x hyps ctx)))

alist))
(in-tau-intervalp (E x alist)

(mv-nth 2 (Ainni x hyps ctx))))

The fourth theorem establishes that Ainni actually preserves the internal invari-
ants onACL2 terms, i.e., that if the input termand the elements in the input hypotheses
each satisfy ACL2’s internal invariant then the output hypotheses satisfy that invari-
ant. The constant *stateman-arities* is an alist pairing each of the function
symbols known to E with its arity.
(implies ; {Ainni 4}
(and (termp x w)

(term-listp hyps w)
(arities-okp *stateman-arities* w))

(term-listp
(mv-nth 1 (Ainni x hyps ctx))
w))

This last theorem allows ACL2 to avoid checking that the output hypotheses satisfy
the internal invariants on terms. Instead, ACL2 just has to check that each of the
function symbols listed in *stateman-alist* has the given arity in ACL2’s
then-current logical theory.

Ainni is closely related to the Tau System in ACL2. See :DOC tau-system.
Tau is a user extensible abstract interpreter over sets ofmonadic predicates describing
the types of values returned by an expression. It includes containment in constant

7By definition of tau-intervalp, any interval with INTEGERP domain has integers for its
bounds unless there is no bound (i.e., a “bound” of nil) in some direction. Furthermore, all
bounded integer intervals are, by convention, closed. That is, if the domain is INTEGERP then
instead of, say, [0,8) we use [0,7].

166 J Strother Moore

intervals as a “type.” ACL2 users think of the Tau System as a quick, incomplete
“type checker” for the untyped language ofACL2.Bydesign, theTauSystemanswers
yes/no questions: is this formula trivial by type-like reasoning?

Ainni is designed to answer quantitative questions: What are the minimal and
maximal values of this expression? Ainni exploits some of the same theorems (in
the elementary bounders book) used to extend Tau. But by defining Ainni in the
logic and verifying it, we make it possible to use interval reasoning during rewriting.

7 Some Examples

Consider this expression:

(+ 2000 (* 8 (LOGAND 31 (R 1000 8 st)))).

This is the formal expression of a fairly typical machine address encountered in
symbolic code evaluation. It corresponds to the compiled version of an array element
reference,where the base address of the array is2000, the array consists of quadword
(8-byte) elements, and the index is formed by taking the bottom5bits of the quadword
at address 1000. The prevalence of constants in the expression is also quite common
when exploring code recovered from an actual machine image: the locations of data
are fixed or at computed offsets from fixed addresses like the initial stack pointer.

What can Ainni tell us about this expression? We answer that by evaluating

(Ainni ’(+ 2000 (* 8 (LOGAND 31 (R 1000 8 st)))) nil nil)

Ainni will return three values. Its output flag will be T, the list of output hypotheses
will be nil, and the output interval will be the ACL2 data structure that represents
the integer interval [2000, 2248].8

The derivation of the output interval is as follows: (R 1000 8 st) is known to
be in [0, 264 − 1], but the LOGAND is in [0, 31]. Thus, the product with 8 is in the
interval [0, 248], so the sum with 2000 is in [2000, 2248].

Now imagine ctx contains the assumption that (R 1000 8 st) is below 16 and
reconsider

(Ainni ’(+ 2000 (* 8 (LOGAND 31 (R 1000 8 st)))) nil ctx).

This time the output flag will be T, there will be one output hypothesis, namely
(<= (R 1000 8 st) 15), and the output interval will be [2000, 2120]. The
third correctness theorem for Ainni assures us that (+ 2000 (* 8 (LOGAND
31 (R 1000 8 st)))) lies in [2000, 2120] provided
(<= (R 1000 8 st) 15) is true.

8As noted earlier, the actual input to Ainni should be in ACL2’s internal form, so, for example, the
“+” should be binary-+ and the numbers should be quoted. The data structure representing the
output interval is (INTEGERP (NIL . 2000) . (NIL . 2248)), indicating an integer
domain, bounded above and below by 2000 and 2248 respectively. The NILs indicate that ≤
rather than < is used to check whether a number is in bounds.

Computing Verified Machine Address Bounds During Symbolic … 167

Finally, to demonstrate Ainni’s speed compared to ACL2’s more powerful arith-
metic, consider the expression

(LOGIOR (ASH (MOD (R 1000 4 ST) 2) 0)
(ASH (MOD (R 1004 4 ST) 2) 1)
(ASH (MOD (R 1008 4 ST) 2) 2)
. . .

(ASH (MOD (R 1052 4 ST) 2) 13)
(ASH (MOD (R 1056 4 ST) 2) 14)
(ASH (MOD (R 1060 4 ST) 2) 15)).

The value of this expression lies in the interval [0, 216 − 1] regardless of the values of
the R-expressions. Any programmer would realize the expression is bounded above
by 216: each MOD is just a single bit, and the expression shifts those bits into positions
0–15. Using similar “forward” reasoning from the expression, Ainni computes the
interval [0, 216 − 1] in 0.012s on a MacBook Pro laptop with a 2.6 GHz Intel Core
i7 processor running ACL2 in CCL.

On the other hand, proving the expression is so bounded can feel harder! Indeed,
it takes the same laptop about 1306s to use the standard ACL2 arithmetic library
from the Community Books (books/arithmetic-5/top) to prove that the
expression above is less than 216. The library splits the goal into 216 cases.

Of course, ACL2’s arithmetic library is much more powerful than Ainni. The
library is essentially a collectionof theoremsabout arithmetic/logical functionswhich
informs the ACL2 rewriter and its integrated linear arithmetic decision procedure.
Those systems can bemade to prove anything that is provable aboutACL2 arithmetic,
whereas Ainni is much more limited. But we embarked on the development of
Ainni because we saw the importance of a verified tool to look at typical machine
arithmetic expressions and do what every programmer can do: bound it by interval
reasoning. In addition, Ainni is fast.

The expression above is small compared to expressions encountered when doing
code analysis, especially of long sequences of machine instructions. The expression
above has 63 function calls in it (when the LOGIOR macro is expanded into a right-
associated nest of calls of BINARY-LOGIOR) of which 16 are calls to R and the rest
are calls to logical functions. By contrast, the largest arithmetic/logical expression
encountered in the disassembly of a machine code implementation of the DES algo-
rithm is a term involving 147,233 function applications, 31,361 of which are calls
of R and the rest are calls of arithmetic/logical functions. Ainni can bound that
very large expression in about 0.01 s. It is completely impractical to use the standard
arithmetic library to confirm the correctness of that answer (other than by relying on
the verified correctness of Ainni).

But another major advantage of Ainni, aside from being very fast and quite
capable on huge expressions, is that it discovers bounds whereas the rest of ACL2
(e.g., the Tau System) is oriented toward proving things. That is, ACL2 is generally
used to answer specific Boolean questions, e.g., “Does this value fit in 16-bits”
whereas Ainni gives it the capability of answering quantitative questions such

168 J Strother Moore

as “How big is this?” These advantages mean Ainni can effectively be used in
simplification.

8 Using Ainni in a Metafunction

Because Ainni has been proved correct by ACL2, it can be used in metafunctions
which are in turn used by the rewriter. Thus, one need not choose between Ainni
and a conventional rewrite-driven arithmetic book; one can have both.

Here is a very simple metafunction that shows howwe use Ainni. The following
function simplifies (MOD x ’k) expressions, where k is some natural constant, using
the fact that (MOD x ’k) = x , if x is an integer less than k.

(defun mod-constant-simplifier (term m f c state)
(declare (ignore state))
(cond
((and (not (atom term))

(eq (car term) ’MOD)
(not (atom (nth 2 term)))
(eq (car (nth 2 term)) ’QUOTE))

(let ((x (nth 1 term))
(k (nth 1 (nth 2 term)))
(ctx (mfc-type-alist m f c)))

(cond
((and (natp k)

(syntactic-natp x))
(mv-let
(f lg hyps int)
(Ainni x nil ctx)
(cond
((and f lg

(< (tau-interval-hi int) k))
(list ’IF (conjoin hyps) x term))

(t term))))
(t term))))

(t term)))

This function checks that term is a call of MOD and that the second argument is
a quoted constant. If so, it binds x to the first argument of the MOD and k to the
constant. It also extracts the type-alist from the metafunction context m f c and binds
the variable ctx to that. Then it checks that k is a natural number and x is a syntactic
natural. If so, it calls Ainni and if Ainni reports success and the upper bound of
the resulting interval is below k, it creates and returns an IF. The test of the IF is
the conjunction of the output hypotheses, the true branch is x , and the false branch
is term.

Computing Verified Machine Address Bounds During Symbolic … 169

The correctness of this metafunction follows from the correctness of syntac-
tic-natp and Ainni and the previously mentioned fact about (MOD x ’k). Once
verified and installed as a metafunction for MOD, mod-constant-simplifier
is run on everyMOD expression and,when it returns something different from its input,
the theorem prover backchains to establish the truth of the tested output hypotheses
and if so replaces the target term with x .

For example, oncemod-constant-simplifier is verified as ametafunction
for MOD, the expression:

(MOD (LOGIOR (ASH (MOD (R 1000 4 ST) 2) 0)
(ASH (MOD (R 1004 4 ST) 2) 1)
(ASH (MOD (R 1008 4 ST) 2) 2)
. . .

(ASH (MOD (R 1052 4 ST) 2) 13)
(ASH (MOD (R 1056 4 ST) 2) 14)
(ASH (MOD (R 1060 4 ST) 2) 15))

(EXPT 2 24))

immediately simplifies to the LOGIOR expression.

9 Other Uses of Ainni

While Ainni was developed for answering questions about machine addresses it
is generally useful for answering quantitative questions about formal machine arith-
metic as illustrated in the previous section.

Another very helpful use of Ainni is in a metafunction to simplify (< x y).
Triggered by the less than operator, <, the metafunction uses Ainni on x and y and
if Ainni succeeds the metafunction can use quick checks on the endpoints to often
reduce the (< x y) to T or to NIL. The comparable reduction by the native rewriter
and its linear arithmetic procedure involves duplication of effort, essentially trying
to rewrite both the inequality and its negation since only Boolean questions can be
asked of them.

The motivating applications for Ainni were metafunctions to handle read-over-
write and write-over-write expressions. Consider a read-over-write. Typically, the
write expression is a deep nest of !R expressions. The metafunction uses Ainni on
the read address and extent to compute the interval containing the region to be read.
Then with that interval in hand it searches down the nest of writes comparing the
read interval to the write intervals (using Ainni on each write address and extent).
Quick checks on the resulting intervals can determine when the regions are disjoint –
without having to reanalyze the addresses to determine whether the read is “above”
or “below” the write.

Thus, Ainni allows the read-over-write metafunction to be much more efficient
than rewrite rules because the read address and each write address is analyzed just

170 J Strother Moore

once.This illustrates amajor advantageof being able to answer a quantitative question
rather than just a Boolean one.

ACL2 permits memoization and that has proven helpful in avoiding repeated calls
to Ainni on the write addresses. However, we found that it was best to memoize the
read-over-write metafunction itself rather than the individual calls of Ainni inside
it.9

The details of the metafunctions using Ainni may be found by looking at
the heavily commented proof script in the ACL2 Community Book books/-
projects/stateman/stateman22.lisp.

10 Related Work

Simplification and abstract interpretation are so ubiquitous it is beyond the scope of
this chapter to offer much background on them. Basically every mechanized prover
has libraries or tactics or built-in routines to simplify formulas using various standard
heuristics to control inference; see “auto” in Coq and HOL and the built-in notion of
“simplification” in PVS. The name “abstract interpretation” was introduced by the
Cousots in 1977 [8] and is basically the generalization of an operational semantics or
interpreter to deal with conservative approximations of the actual data (e.g., intervals
instead of numbers). Type checking is an example of abstract interpretation.

The work most closely resembling that reported here is probably the Astrée static
analyzer [9].Astrée aims at proving the absence of run time errors in programswritten
in C. It is based on abstract interpretation and uses interval analysis to approximate
numeric data values.

However, Astrée is a standalone static analyzer whose input is a C program,
whereas Ainni is a user-defined and mechanically verified extension of the ACL2
simplifier. While both are relying on abstract interpretation, Astrée interprets C pro-
grams (including its arithmetic/logical expression language)whileAinni only inter-
prets arithmetic/logical expressions in the ACL2 logic. The program control and data
manipulation done by Astrée is, in our case, done by the ACL2 system, specifically
its simplifier applied to the formal operational semantics and the object code. So
there are really two different abstract interpreters involved in our code proofs, one
over the program text (done by the simplifier) and one over the semantics of arith-
metic/logical expressions (done by Ainni), and in Astrée they are combined. One
presumes that Astrée contains an abstract interpreter for arithmetic/logical expres-
sions that produces interval bounds on those expressions.

9One could memoize the ACL2 rewriter itself and hope to speed up the rewrite-rule approach.
However this has been unsuccessful because the ACL2 rewriter takes so many arguments to record
the context, the objective of the rewrite, equivalence relations to be maintained, histories used to
avoid infinite backchaining and looping, stacks to track the lemmas used for reporting purposes,
counters to measure or limit the work done, etc. All these extra arguments mean that identical calls
to rewrite virtually never occur and so memoization costs more time than it saves. Ainni and its
callers use far fewer arguments and memoization is effective on them.

Computing Verified Machine Address Bounds During Symbolic … 171

Finally, Ainni is available as a mechanically verified extension of the ACL2
simplifier and is hence of use in any theorem proving setting requiring reasoning
about the bounds of arithmetic/logical expressions. Furthermore, Ainni has been
mechanically verified to be correct by ACL2.

11 Conclusion

We have described an ACL2 function, Ainni, for answering the quantitative ques-
tion “what are the minimal and maximal magnitude of the value of this expression?”
The function is an abstract interpreter for machine arithmetic expressions composed
of arithmetic/logical operators and interprets them over bounded closed natural num-
ber intervals. Ainni can be thought of as a type inference procedure where the types
are intervals.

Ainni has been verified with ACL2 to be correct and can therefore participate
in formal proofs. The vehicles for that participation are metafunctions designed to
simplify machine arithmetic expressions.

Ainni has allowed ACL2 to do symbolic exploration of sequences of realistic
machine code containing thousands of instructions, whose end states containmillions
of function applications. This was not possible using other techniques we have tried
with ACL2.

The success of Ainni has raised important new questions: how can the rest of
ACL2 be made to cope with the expressions now being produced? This is a welcome
—andvery typical—step along the evolutionary pathACL2has followed.A solution
to one scaling problem introduces new scaling challenges.

Acknowledgements I would especially like to thank Warren Hunt for his invaluable help during
the development of Ainni. Warren developed the definitions and proved many of the basic rewrite
rules for the byte addressed read and write functions, R, and !R. He also provided an ACL2
formalization of a realistic ISA and implemented the DES algorithm in ACL2. We then compiled
the DES algorithm into the instructions of the ISA thus obtaining an interesting symbolic evaluation
challenge for ACL2. I would also like to thankMatt Kaufmann, who gave me some strategic advice
on lemma development to prove the correctness of one of the metafunctions here as well as his
usual extraordinary efforts to maintain ACL2 while I pursue topics such as this one. This work was
partially supported by ForrestHunt, Inc.

References

1. Bevier, W.R., Hunt Jr., W.A., Moore, J.S., Young, W.D.: Special issue on system verification.
J. Autom. Reason. 5(4), 409–530 (1989)

2. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, New York (1979)
3. Boyer, R.S., Moore, J.S.: Metafunctions: Proving them correct and using them efficiently as

new proof procedures. Technical Report CSL-108, SRI International (1979)

172 J Strother Moore

4. Boyer, R.S.,Moore, J.S.:Metafunctions: Proving themcorrect and using themefficiently as new
proof procedures. The Correctness Problem in Computer Science. Academic Press, London
(1981)

5. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook, 2nd edn. Academic Press, New
York (1997)

6. Boyer, R.S., Yu, Y.: Automated proofs of object code for a widely used microprocessor. J.
ACM 43(1), 166–192 (1996)

7. Brock, B., Kaufmann, M., Moore, J.S.: ACL2 theorems about commercial microprocessors.
In: Srivas, M., Camilleri, A. (eds.) Formal Methods in Computer-Aided Design (FMCAD’96).
LNCS, vol. 1166, pp. 275–293. Springer, Heidelberg (1996). https://www.cs.utexas.edu/users/
moore/publications/bkm96.pdf

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Los
Angeles, California, pp. 238–252. ACM Press, New York (1977)

9. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Min, A., Monniaux, D., Rival, X.: The astre
analyser. In: Sagiv, M. (ed.) European Symposium on Programming (ESOP 2005). LNCS, vol.
3444, pp. 21–30. Springer, New York (2005)

10. Goel, S., Hunt, W.A., Kaufmann, M.: Simulation and formal verification of x86 machine-code
programs that make system calls. In: Claessen, K., Kuncak, V. (eds.) FMCAD’14: Proceedings
of the 14th Conference on Formal Methods in Computer-Aided Design, pp. 91–98. EPFL,
Switzerland (2014)

11. Kaufmann, M., Manolios, P., Moore, J.S. (eds.): Computer-Aided Reasoning: ACL2 Case
Studies. Kluwer Academic Press, Boston (2000)

12. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer
Academic Press, Boston (2000)

13. Kaufmann,M.,Moore, J.S.: An industrial strength theorem prover for a logic based on common
lisp. IEEE Trans. Softw. Eng. 23(4), 203–213 (1997)

14. Kaufmann, M., Moore, J.S.: The ACL2 home page. Department of Computer Sciences, Uni-
versity of Texas at Austin (2014). http://www.cs.utexas.edu/users/moore/acl2/

15. Kaufmann, M., Moore, J.S.: Well-formedness guarantees for ACL2 metafunctions and clause
processors. In: Design and Implementation of Formal Tools and Systems (DIFTS) (2015)

16. Liu, H., Moore, J.S.: Java program verification via a JVM deep embedding in ACL2. In: Slind,
K., Bunker, A., Gopalakrishnan, G. (eds.) 17th International Conference on Theorem Proving
in Higher Order Logics: TPHOLs 2004. Lecture Notes in Computer Science, vol. 3223, pp.
184–200. Springer, New York (2004)

17. Moore, J.S., Martinez, M.: A mechanically checked proof of the correctness of the Boyer-
Moore fast string searching algorithm. In: Engineering Methods and Tools for Software Safety
and Security (Proceedings of theMartoberdorf Summer School, 2008), pp. 267–284. IOS Press
(2009)

18. Slobodova, A., Davis, J., Swords, S., Hunt Jr., W.: A flexible formal verification framework
for industrial scale validation. In: Singh, S. (ed.) 9th IEEE/ACM International Conference on
Formal Methods and Models for Codesign (MEMOCODE), pp. 89–97. IEEE (2011)

19. Steele Jr., G.L.: Common Lisp The Language, 2nd edn, p. 01803. Digital Press, Burlington
(1990)

20. Toibazarov, E.:AnACL2proof of the correctness of the preprocessing for a variant of theBoyer-
Moore fast string searching algorithm. Honors thesis, Computer Science Dept., University of
Texas at Austin (2013). See www.cs.utexas.edu/users/moore/publications/toibazarov-thesis.
pdf

21. Wilding, M.: A mechanically verified application for a mechanically verified environment. In:
Courcoubetis, C. (ed.) Computer-Aided Verification – CAV ’93. Lecture Notes in Computer
Science, vol. 697. Springer, Heidelberg (1993)

https://www.cs.utexas.edu/users/moore/publications/bkm96.pdf
https://www.cs.utexas.edu/users/moore/publications/bkm96.pdf
http://www.cs.utexas.edu/users/moore/acl2/
www.cs.utexas.edu/users/moore/publications/toibazarov-thesis.pdf
www.cs.utexas.edu/users/moore/publications/toibazarov-thesis.pdf

Engineering a Formal, Executable x86 ISA
Simulator for Software Verification

Shilpi Goel, Warren A. Hunt Jr. and Matt Kaufmann

Abstract Construction of a formal model of a computing system is a necessary
practice in formal verification. The results of formal analysis can only be valued
to the same degree as the model itself. Model development is error-prone, not only
due to the complexity of the system being modeled, but also because it involves
addressing disparate requirements. For example, a formal model should be defined
using simple constructs to enable efficient reasoning but it should also be optimized
to offer fast concrete simulations.Models of large computing systems are themselves
large software systems and must be subject to rigorous validation. We describe our
formal, executable model of the x86 instruction-set architecture; we use our model to
reason about x86 machine-code programs. Validation of our x86 ISA model is done
by co-simulating it regularly against a physical x86machine.We present design deci-
sions made during model development to optimize both validation and verification,
i.e., efficiency of both simulation and reasoning. Our engineering process provides
insight into the development of a software verification and model animation frame-
work from the points of view of accuracy, efficiency, scalability, maintainability, and
usability.

1 Introduction

The development of large computing systems is almost always preceded by a mod-
eling and analysis stage. When building a complex computing system, success is
often determined by the accuracy of its model and the quality of analysis this model
receives. For example, it is now impossible to design and manufacture a micro-

S. Goel (B) · W.A. Hunt Jr. · M. Kaufmann
Department of Computer Science, The University of Texas at Austin,
2317 Speedway, M/S D9500, Austin, TX, USA
e-mail: shigoel@cs.utexas.edu

W.A. Hunt Jr.
e-mail: hunt@cs.utexas.edu

M. Kaufmann
e-mail: kaufmann@cs.utexas.edu

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_8

173

174 S. Goel et al.

processor chip without extensive modeling, simulation, and product validation. The
rising complexity and use of software systems necessitates building scalable tools
for analyzing program behavior. To this end, we have used a rigorous mathematical
approach to specify the x86 instruction-set architecture (ISA) for the formal analy-
sis of x86 machine-code programs. Our specification of the x86 ISA is regularly
validated to increase trust in the applicability of the results of formal analysis.

In principle, our approach to specifying an instruction-set architecture was known
by von Neumann [1], Turing [2], and Zuse [3]. Our x86 ISA specification is simply a
transition function that transforms one ISA-level state into the next one; this operation
can be repeated to simulate any x86 program. A critical factor that makes the x86
ISA difficult to specify is its sheer size and complexity. The Intel manuals [4] that
describe the x86 ISA are large documents consisting of around 3700 p. The x86
architecture continues to evolve. In fact, since we began our project in 2010, the x86
ISA has been significantly extended [5] — the AVX (Advanced Vector Extensions)
is one such extension. This continued evolution is common for industrial products,
which are modified and extended as business requirements demand.

In light of the size and complexity of the x86 ISA, the system chosen for its
specification plays an important role. This system should be capable of rigorously
specifying an ISA as large as the x86, and this specification should scale well and
be maintainable. This system should offer an environment for both formal reasoning
and validation; the system should provide a mathematical logic to support formal
analysis about both the model itself and the x86 programs simulated on it, and the
system’s logic should be executable so that the ISA specification can be validated
by performing co-simulations (i.e., comparisons of simulations of x86 programs on
the model with corresponding executions on a real x86 processor). We use the ACL2
theorem-proving system [6, 7] to model the x86 ISA. ACL2 is a state-of-the-art
system used in industry, and we have previously used ACL2 and its predecessor
NQTHM [8] to model microprocessors at the RTL and ISA levels [9, 10].

Our goal is to ensure software reliability, and constructing a formal model of the
x86 ISA is simply a means to that end. However, engineering a model of this scale
is hardly a trivial undertaking. The model-building process is inherently error-prone
because of the size and complexity of the ISA, and it is complicated further by the
nature of demands placed on it. For example, to facilitate faster co-simulations, the
model must provide high execution efficiency, and to support scalable formal analy-
sis, the model must be defined using simple constructs that are easy to reason about.
There is a tension between these two demands — optimizing a function for execu-
tion efficiency often increases the complexity of its underlying algorithm, making it
more difficult to reason about the function. Another example of opposing demands,
typical of large software projects, is completeness versus maintainability. Extend-
ing the model by supporting more x86 features and instructions should not make it
unwieldy and difficult to maintain. Every design decision taken while building the
model has to factor in such inherently disparate requirements. In this chapter, instead
of focusing on our work on program verification, we discuss the framework that we
built to attain our goal. We present our formal, executable model of the x86 ISA from
an engineering standpoint and describe our design decisions, big and small, in detail.

Engineering a Formal, Executable x86 … 175

Our x86 ISA model is more than 45,000 lines of executable ACL2 logic, with
around 20,000 linesmore for our libraries that aid in co-simulations and formal analy-
sis. Our current focus is on the 64-bit mode1 of the x86 ISA; in the rest of this chapter,
whenever we refer to our x86 model, we mean our ISA model of the x86 processor
in this 64-bit mode. The simulation speed of our model is either around 330,000
instructions/second or 3.3 million instructions/second, depending on its mode of
operation.2 To our knowledge, this is the fastest formal simulator for this complex an
ISA model. We currently have a specification of 407 machine opcodes that include
supervisor-mode and floating-point instructions. We have specified access control
(via privileges and permissions) and address translation by capturing IA-32e paging
and segmentation. We model the single-processor x86 architecture, but we someday
hope to have a multi-core version. Just as the x86 ISA has been evolving since its
introduction by Intel, our model continues to evolve as we support more features
and instructions. Our x86 ISA model and related libraries for formal analysis and
simulation are freely available [12] with a permissive BSD license. Their documen-
tation [13] is available online too.

This presentation of our evolving x86 model is meant to be self-contained. We
provide relevant details about ACL2 and the x86 ISA when needed. The reader can
start with only the notion that a state-machine transformer will be presented, one
which can be used both for simulation and for reasoning.

We begin in Sect. 2 by describing our modeling approach. The next two Sects. 3
and 4 present in some detail our model and its validation. After briefly describing in
Sect. 5 the use of our model for software verification, we close in Sects. 6 and 7 with
related work and concluding remarks.

2 Approach

We take a three-pronged approach to the construction of a model to be used for soft-
ware verification. In Sect. 2.1, we explain our decision to use an interactive theorem
prover as the choice of formal tool. Section2.2 discusses why we perform analysis
at the level of machine code to ensure software reliability. Having discussed the tool
and the target of analysis, Sect. 2.3 sets out design goals for our framework, which
includes a unified model for both simulation and formal analysis.

2.1 Formal Methodology

Our aim is to develop capabilities for thorough analysis of software to ascertain
if, under a given set of conditions, it behaves as expected during run-time. Even

1Intel’s IA-32e mode [11] of operation offers two sub-modes: the compatibility mode (which is
similar to 32-bit protected mode) and 64-bit mode.
2The simulation speed is discussed in Sect. 4.

176 S. Goel et al.

trivial programs rely on many complex conditions and properties for their correct
execution. Such properties demand formal scrutiny, simply due to their complexity.
Some examples are:

• The stack or the heap should not overwrite the program in any execution.
• The operating system kernel data should be invisible to application programs.
• Segmentation and paging data-structures should be set up correctly by the OS
kernel. This is a property that is critical to establishing many others; e.g., a correct
configuration will help in determining if process isolation is assured.

The thorough analysis of software requires capturing the intent, including the pre-
conditions and expected behavior of the program. Fully automatic program analysis
tools, like static and dynamic analyzers, do not impose this requirement of writing
specifications on the user, but as a result, they are narrow in their scope. Though
successful in carrying out their particular functions, like detecting memory safety
violations, these tools do not support even the statement of many complex properties.
In addition to such properties, useful metrics like program memory and space usage
are difficult, if not impossible, to obtain using these tools.

The development of the CLI stack [14] in the 1980s using NQTHM, a Boyer–
Moore theorem prover, has already demonstrated that theorem proving techniques
alone can be applied to obtain various kinds of guarantees about computing systems.
We will utilize the state-of-the-art in formal verification by coupling interactive
theorem proving with automated tools, for example SAT solvers, to facilitate the
development and delivery of secure systems.

2.1.1 ACL2

Our theorem prover of choice is the ACL2 system [6, 7], a descendant of the Boyer–
Moore theoremprover used in theCLI stack project. It is amathematical logic (a first-
order logic of recursive functions) based on an applicative subset of Common Lisp
as well as a mechanical theorem prover used to prove theorems in that logic. ACL2
is also a programming language, which offers the execution efficiency provided by
underlying Lisp compilers, thereby enabling the construction of efficient executable
formal models.

The ACL2 theorem prover has many automated proof strategies, and the applica-
tion of a proof strategy recursively decomposes goals until all subgoals are proved.
Users can extend the prover by adding their own proof strategies and external deduc-
tion tools, like SAT/SMT solvers, by using clause processors [15]. We often use
GL [16], a framework for proving theorems involving finite objects using either a
formally verified BDD utility or an external SAT solver like Glucose [17, 18].

ACL2 and its libraries, called books, are freely available [19] and include extensive
documentation, with over 10,000 topics [20, 21]. These books, developed over many
years, are typically included in ACL2 projects to build on existing definitions and
theorems. Books can be certified by ACL2 to ensure their soundness.

Engineering a Formal, Executable x86 … 177

ACL2’s authors are the recipients of 2005 ACM Software System Award [22].
ACL2 is an industrial-strength system; it is regularly used in both academic and com-
mercial applications [23]. For example, Centaur Technology [24], an x86-compatible
processor vendor, uses ACL2 every day for modeling and verifying Centaur proces-
sor designs [25–27]. Other organizations with significant usage of ACL2 for formal
verification areAMD [28–31], IBM [32–35], Intel [36], Kestrel [37, 38], Oracle [39],
and Rockwell-Collins [40–42].

We now briefly discuss some ACL2/Lisp features that are especially important
when building large formal and executable models. Some efficient data structures
provided by ACL2 are discussed in Sects. 3.1 and 3.2.

Guards Though Lisp is syntactically untyped, the Common Lisp standard [43] spec-
ifies an intended domain for each Lisp primitive. The behavior of those primitives
outside these domains depends on the particular Lisp implementation.

In ACL2, a mechanism called guards [44] is used to specify the intended domain
of a function.Completion axioms define the behavior of a primitive for every possible
input; thus, all ACL2 functions are logically total. When the guards of a function
f are verified, it means that f respects the guards of all functions used in its body.
A guard-verified function can thus be called natively in the host Lisp (as opposed
to evaluation within ACL2), such that every ensuing call of any function g respects
the guard of g. Thus, verification of the guards of a function improves its execution
speed. Guards have no effect during reasoning— they do not affect the logical axiom
that is added when an ACL2 function is defined.

Another feature that can allow faster execution of ACL2 functions is mbe [45]
(“must be equal”). This construct allows the following form to be used in functions:

(mbe :logic <logic-code> :exec <exec-code>)

Users can choose to write simple code suitable for efficient reasoning in the :logic
part and code optimized for execution efficiency in the :exec part. Logically,
this mbe form is equal to <logic-code>. During execution, this form is equal
to <exec-code> if the function’s guards are verified. The mbe form generates
proof obligations that are added to the guard proof obligations; when proved, they
establish the equality of <logic-code> and <exec-code>, thereby allowing
<exec-code> to be executed in place of <logic-code> when the function can
be safely run natively in the host Lisp.

TypeDeclarationsCommonLisp supports arbitrary-precision arithmetic; it imposes
no limit on themagnitude of a number [46].Machine integers, called fixnums, are effi-
ciently represented and fast built-in arithmetic operations can be used when working
with them. Integers with an unlimited number of bits are called bignums and special
arithmetic functions are required when working with them. If an integer gets too big
(where the “bigness” is defined by theCommonLisp implementation), Lisp promotes
it from afixnum to a bignumautomatically and subsequent operations involving these
numbers are the slower bignum operations. Therefore, avoiding bignum operations
when possible is important for simulation efficiency.

178 S. Goel et al.

Annotating ACL2/Lisp code with type declarations can avoid run-time type
checking. Type declarations are a Common Lisp mechanism that allows the user
to transmit information about types of objects to the underlying Lisp compiler.
E.g., the user might declare that a certain variable, say x, is always of type
(unsigned-byte 32), i.e., an unsigned integer of width 32 bits. If the Lisp
implementation’s most positive fixnum is greater than or equal to 232 − 1 (true for
64-bit Lisp implementations), this type declaration enables the compiler to generate
efficient machine code that does not involve either bignum computations or run-time
type-checks.

In ACL2, type declarations need to be justified. They are added to the guard
proof obligation to ensure that the execution of the function with type declarations
in ACL2 can be safely done in the host Lisp without the possibility of encountering
any run-time type violations.

OtherEfficiencyConcernsTwoother efficiency-related issues need to bementioned
here — avoid consing (creation of ordered-pair data structures) and use inlining.
Consing is a potentially expensive operation that allocates memory on the heap;
avoiding it can substantially increase ACL2/Lisp code’s execution efficiency.

Defining many small functions, rather than a single large function, is preferred
for reasoning because it decomposes functionality into small easy-to-understand
abstractions. However, for execution, function call overhead is high. Inlining small
functions can improve the code’s execution performance, but inlining big functions
can cause code bloat. The decision to inline a function must be made judiciously.

Constrained Functions ACL2 provides a mechanism called encapsulate to
introduce constrained or uninterpreted functions. The only things known about a con-
strained function are its name, signature (arity), and constraints, if any. Constrained
functions can be introduced together with logical properties of those functions; but
unlike defined functions, they are non-executable.

Trust Tags ACL2 allows users to extend the prover in ways otherwise not allowed
by introducing a trust tag [47]. Typically, users extend the prover by creating ACL2
books that perform a potentially dangerous evaluation. An example of a dangerous
evaluation is a function foo that invokes the command date on the underlying OS
and returns the output; this is not a function in the logical sense because it may return
different outputs for the same input (and in sound logics, foo() == foo() is
always true). Books containing functions like foomust be certified with a trust tag.
Note that careful use of foo (e.g., in a way that does not interfere with reasoning)
should still be safe. If a book uses a trust tag, then it means that the functionality
provided by the book is trusted; it is acknowledged that the formulas proved using
that book are valid only if the book’s functionality is correct. Among its other uses,
trust tags allow the integration of various external tools [15] with ACL2.

Untouchable Functions ACL2 functions can be made untouchable [48] — it is
syntactically illegal to call an untouchable function directly. Typically, this is done to
preserve abstractions; e.g., if a top-level function calls several inferior functions, but

Engineering a Formal, Executable x86 … 179

the top-level function needs to be perceived as an atomic operation, then the inferior
functions are made untouchable.

2.2 Machine-Code Analysis

Even though using high-level semantics for program verification may seem appeal-
ing, we advocate performing software verification at the machine-code level. In the
case where we only have a machine-code program (e.g., an executable downloaded
from the Internet), direct source-level analysis is impossible. Even when high-level
source code is available for analysis, the implementation of the programming lan-
guage needs to be trusted (or verified); for example, the memory semantics being
offered by the programming language are eventually provided by the underlying
memory system. Moreover, analysis of high-level programs does not account for the
possibility of bugs introduced by compilers, thereby decreasing confidence that prop-
erties proved during analysis will hold at run-time. Even with the advent of practical
and verified mainstream compilers [49], assurances that a program does not access
unauthorized memory regions cannot be obtained unless low-level operating system
code, on which programs rely for various services [50–53], is also analyzed; often,
such low-level OS code is written in assembly language. Therefore, it is prudent to
analyze machine code for modern commercially available processors. A big benefit
of machine-code analysis tools is their universal applicability; they can be used to
verify all programs that can compile down to the supported hardware platform. Also,
similar to the CLI stack, machine-code analysis can be used to prove the program-
ming language implementation on a given processor correct; software verification
can then proceed at the programming language level.

Our focus is on the 64-bit mode of the x86 ISA. There are two main reasons for
choosing the x86 ISA over other available ISAs.

1. Since x86 is the dominant processor architecture for non-embedded devices, a
simulation and verification framework based on the x86 ISA will find immediate
practical application. Also, most modern non-embedded devices run in 64-bit
mode.

2 The x86 ISA is one of the most complicated processor architectures, and hence,
any success in this project will demonstrate that our formal methods technology
is mature enough to handle real-world, industrial problems.

In spite of the benefits of machine-code analysis, formal verification of machine
code has few practitioners [54–56], though it is steadily gaining ground. Information
contained in the abstractions provided by high-level languages, like the layout or
“shape” of data structures, is mostly lost at the machine-code level, which makes
machine-code analysis detail-intensive and tedious. Work has been done to provably
lift low-level verification to ahigher-level reasoningprocess [57–59].However, in this
chapter, our focus is not on verification techniques themselves but on the engineering

180 S. Goel et al.

decisions involved in just constructing a reliable model of the x86 ISA to enable the
application of those techniques.

2.3 Design Goals

Inspection of the behavior of machine code is often done by employing instruction-
set simulators [60–62], which use sophisticated techniques to achieve high-speed
simulation of machine instructions and are written in efficient programming lan-
guages like C and C++. Even though such simulators are commonly used as ISA
reference models, they are not formal specifications of these ISAs and hence, do not
directly provide an infrastructure for formal code analysis.

ISA models written in formal specification languages allow the direct application
of formal reasoning tools. Verification using these formal models indeed increases
confidence in the reliability of machine code, but this analysis can not be fully trusted
until the model is known to be faithful to the processor. One way to increase con-
fidence in the accuracy of a model is by performing co-simulations to validate it
against a real machine. Co-simulation is the process of executing a machine program
on the processor as well as on the model; if the state of the processor and the model
are the same after every instruction, then the model is faithful to the processor for at
least those instructions (and data). Unfortunately, formal specification languages do
not usually provide an efficient execution environment. Model validation can also
be done by performing extensive code reviews — an approach that is independent
of the model’s execution efficiency. However, code reviews are time and labor inten-
sive. The reviewers would need to study the vendors’ ISA manuals, which are long
documents mostly consisting of prose [4, 63]. There is always the danger of making
subjective judgments about the processor’s behavior, especially if the processor has
a complicated ISA and if some features are under-specified. Therefore, code reviews
can supplement co-simulations, but not supplant them.

This comparison of ISA simulators and formal ISA specifications justifies the need
to develop a formal ISAmodelwhose execution speed allows efficient co-simulations
for model validation. A validated model increases trust in the applicability of the
results of formal verification.Another benefit of such a unifiedmodel is that it reduces
the overhead associated with designing, developing, and maintaining two separate
models — in particular, maintaining them consistently. ACL2 is an excellent fit for
this task; it is both a mathematical logic and a programming language.

We considered the following factors over the course of engineering our model:

Accuracy No simplification in the semantics of the ISA may be done. For example,
a machine model should be based on machine integers, not unbounded integers.

Efficiency The benefits of a unified model for simulation and formal verification
come at a price: we must mitigate the trade-off between simulation and reasoning
efficiency. If the model is defined using simple constructs, it enables easier reason-
ing but can offer poor execution performance. Definitions optimized for execution

Engineering a Formal, Executable x86 … 181

efficiency are typically more difficult to reason with because they may use an algo-
rithm different from the “obvious” one. Abstraction techniques (e.g., those provided
by ACL2 features like mbe and abstract stobjs [64]) provide leverage to build an
efficient model for both reasoning and execution.

Usability In its role as a simulator, the model must come with dynamic instrumen-
tation tools, similar to the GNU Debugger (GDB) and Intel’s Pin Tool [65]. Such
tools facilitate examination of the machine state during concrete simulations of pro-
grams, thereby helping in model and program debugging. In its role as a reasoning
framework, the model must be accompanied with libraries that aid in machine-code
analysis. For ease of use, the model is documented (available online [13]) — from
the point of view of a simulator as well as a reasoning framework.

The complexity of the x86 ISAmodelwill increase asmore features are added to it,
and this added complexity will inevitably make reasoning more involved. Balancing
verification effort and verification utility is a highly pertinent issue. For example,
users might not want to reason about an application program at the level of physical
memory, i.e., taking into account address translations and access rights management.
This is because it is customary for application programs not to have direct access
to the system data structures.3 The memory model seen by application programs is
that of linear memory, which is an OS-constructed abstraction of the complicated
underlying memory management mechanisms that are based on physical memory.
Therefore, verification of application programs can be performed at the level of
linear memory, if the OS routines that manage the linear memory abstraction can be
either trusted or proved correct.However, systemprograms, like kernel routines,must
necessarily have a view of physical memory since these programs can access/modify
system data structures. In light of the above, the x86 ISA model should provide
the option to deactivate some ISA features, enabling the user to do varying depths
of analysis, depending on the kind of programs being considered for verification.
Consequently, our x86 model has two modes of operation: the programmer-level
mode for the analysis of application programs and the system-level mode for the
analysis of system programs. Details about these modes are in Sect. 3.3.

Usability is further supported by the free availability of our model, under a BSD
3-Clause license, from the Github webpage of the ACL2 Community books [12].
This permissive license can facilitate the adoption of our model.

Scalability and Maintainability The model of the x86 ISA will be large and it will
keep growing larger, due to complexity of the ISA and addition of new features.
Thus, the maintainability of the model is an important factor influencing its design
decisions; the two modes of operation of the model help in this regard.

3The access rights of an application program are ultimately governed by the OS, but it is extremely
rare (and inadvisable) for an application program to have direct access to system resources.

182 S. Goel et al.

3 Model Definition

OurACL2-based formal and executablemodel [66] of the x86 ISAhas a specification
of all addressingmodes,most user-level instructions (including floating point instruc-
tions), some system-level instructions, paging, and segmentation. The instructions
that are unspecified, as of this writing, include those that access co-processor I/O
address spaces, rarely used BCD instructions, cache-related instructions and virtual
machine extensions.

We use the Intel manuals [4] as reference documents for model development.
Ambiguities are resolved by cross-referencing AMD manuals [63], running tests on
real processors, and consulting with x86 processor architects.

Our x86 ISA model provides an interpreter-style operational semantics [67],
where themeaning of amachine-code program is given by a recursively-defined inter-
preter over the machine-code language’s syntax and the processor’s state. Broadly,
there are four main aspects to a model defined using an interpreter-style operational
semantics; we describe them using the x86 ISA.

1. State: Components of the x86 ISA state currently supported by our model
are described in Table1. Sections3.1–3.3 describe how the state is defined and
accessed in our x86 model.

2. Instruction Semantic Functions: Each machine instruction is specified by a
function that defines its semantics. This semantic function takes an initial x86 state
as input and returns an appropriately modified next state as output. Section3.4
describes the instruction semantic functions in our model.

3. Step and Run Functions: A step function fetches, decodes, and executes a
machine instruction by calling its associated instruction semantic function. A
run function takes the number n of instructions to be executed and an initial x86
state. The run function function either takes n steps or terminates early if an
unrecoverable error is encountered, returning an appropriately modified final x86
state in either case. Section3.5 describes the step and run functions in our model.

The semantics of an x86 machine-code program are given by the composition of
the semantics of its constituent instructions, and we can use ACL2 both to simulate
concrete program runs and to reason about symbolic program runs.

Our x86 model is layered to facilitate ease of maintenance and scalability. We
describe each layer below and discuss the reasons for our modeling decisions.

3.1 Concrete State

The x86 state is defined using an ACL2 data structure called a concrete stobj [68].
“Stobj” stands for “Single-ThreadedObject”; such a structure is amutable objectwith
applicative semantics. Stobjs offer high execution performance by allowing destruc-
tive assignments while providing copy-on-write semantics for reasoning. Consider
the defstobj event below that introduces a stobj called foo.

Engineering a Formal, Executable x86 … 183

Table 1 Components of the x86 processor that our currently supported by our model

Component Type and size Comments

1 General-Purpose
Registers

16 64-bit wide
registers

rax, rcx, r11, etc.

2 Instruction Pointer 1 64-bit wide register rip register

3 Flags Register 1 64-bit wide register rflags register

4 Segment Registers 6 16-bit wide registers cs, ss, etc.

5 Segmented
Memory Management
Registers

2 80-bit wide registers Global and local
descriptor registers,
gdtr and ldtr

6 Interrupt and Task
Management Registers

2 16-bit wide registers Interrupt descriptor
and task registers,
idtr and tr

7 Control Registers 16 64-bit wide
registers

cr0 to cr15

8 Floating-Point Data
Registersa

8 80-bit wide registers fp-data0 to
fp-data7

9 Floating-Point Control
Register

1 16-bit wide register fp-ctrl

10 Floating-Point Status
Register

1 16-bit wide register fp-status

11 Floating-Point Tag
Register

1 16-bit wide register fp-tag

12 Floating-Point Last
Instruction Pointer

1 48-bit wide register fp-last-inst

13 Floating-Point Last
Data Pointer

1 48-bit wide register fp-last-data

14 Floating-Point Opcode 1 11-bit wide register fp-opcode

15 XMM Registers 16 128-bit wide
registers

xmm0 to xmm15

16 MXCSR Control and
Status Register

1 32-bit wide register mxcsr

17 Machine-Specific
Registers

6b 64-bit wide
registers

18 Byte-Addressable
Memory

Models 252 bytesc Main memory

aThe MMX registers are aliased to the low 64 bits of the FPU’s data registers, as dictated by the
ISA
bIntel defines a lot more than 6 model-specific registers. Our model currently supports 6 of them:
ia32_efer,ia32_fs_base,ia32_gs_base,ia32_kernel_gs_base,ia32_lstar,
ia32_star, ia32_fmask
c252 bytes is the largest physical address space provided by modern x86 implementations

184 S. Goel et al.

(defstobj foo
(a :type (array (signed-byte 64) (2)) :initially 0)
(b :type (unsigned-byte 48) :initially 10))

In logic, the stobjfoo is simply a list of two elements; the first element (referenced
by the field a) is a list of two elements, each of which is a signed integer of width
64 and has an initial value of 0, and the second element (referenced by the field b) is
an unsigned integer of width 48 and has an initial value of 10. For execution, ACL2
enforces sequencing updates to foo by way of syntactic restrictions ensuring that
only one instance offoo exists at all times, thereby allowing destructive assignments.
Apart from introducing a stobj, a defstobj event also introduces some native
functions: recognizers (functions that check whether the stobj and its constituent
fields are of the right logical representation), a creator (a function that creates an
initial logical representation of the stobj), accessors (functions that read a stobj field),
and updaters (functions that write to a stobj field).

We have modeled components listed in Table1 as fields in the x86 concrete stobj.
For components like the segment registers, task register (tr), and local descriptor
table register (ldtr), our model of the state also includes the hidden or shadow
parts of these registers, as described in the processor manuals. Some fields in our
x86 state are an artifact of the model itself — they do not exist on a real x86
processor. These fields store information about the model state (ms), mode of opera-
tion (programmer-level-mode), environment (env), seed for undefined values
(undef), and information about the operating system (os-info). Themsfield con-
tains information about problems (if any) encountered during a program run. These
problems include those arising due to features that are currently unimplemented in
our model. The processor state is expected to be correct if ms is empty; otherwise,
the run function terminates and processor execution is halted. Other fields will be
discussed when relevant in the rest of this chapter.

Though the use of concrete stobjs to define the x86 state helps in achieving high
simulation efficiency, we can get better performance by choosing the types of the
stobj fields judiciously. The stobj fields should be defined in away that avoids bignum
creation when possible. One common technique we employ for this purpose is illus-
trated by our modeling of the general-purpose registers (GPRs), which are 64-bits
wide on an x86 processor. On most contemporary 64-bit Lisp implementations, 64-
bit numbers are of type bignum. The GPRs are defined as an array of 16 elements,
each of which is a signed integer of width 64 bits instead of an unsigned 64-bit
integer. This approach provides a substantial performance boost because big positive
numbers can be stored as small negative numbers; e.g., bignum 264 − 1 can be rep-
resented by −1 when stored as a 64-bit signed integer. Similar optimizations have
been made for other fields in the x86 state.

The byte-addressable memory deserves special mention.We support a memory of
size 252 bytes (i.e., 4096TB), the largest provided by modern x86 implementations.
However, allocating 4096TB all at once is impractical, if not impossible. We have
implemented a time- and space-efficient memory model [69] in order to keep the
model’s memory footprint manageable. Our memory model can be viewed as a flat

Engineering a Formal, Executable x86 … 185

array consisting of 128MB blocks; memory is allocated on demand in these blocks
of 128MB instead of all at once. Three fields in the concrete stobj are used to imple-
ment this on-demand memory, mem-table$c, mem-array-next-addr$c,
and mem-array$c. mem-table$c stores the 25-bit addresses of the 128MB
blocks.mem-array-next-addr$c stores the 25-bit block address to be allocated
next, and mem-array$c stores the bytes. Hence, the 52-bit physical address of a
byte can be thought of as composed of two parts: the most significant 25 bits are the
address of a block and the remaining 27 bits are the address of the offset within that
block. The following pseudo-code describes how to compute memArrayIndex,
the index into mem-array$c where the byte corresponding to a physical address
addr is located; the notation addr[to:from] represents the slice of addr from
bit positionto to bit position from, inclusive of both indices, and x86$c represents
the concrete x86 state.

blockAddr := mem-array(addr[51:27], x86$c)
if valid-p(blockAddr) then

// Address located in a block previously allocated.
memArrayIndex := (blockAddr << 27) | addr[26:0]

else // A new block needs to be allocated.
addNewBlock(x86$c)
memArrayIndex := (mem-array-next-addr << 27) | addr[26:0]
mem-array-next-addr := mem-array-next-addr + 1

endif

With this notion of on-demand memory in our model, a well-formed x86 state needs
to have a well-formed memory good-memp, i.e., the relationship among the three
memory fields should give a correct model of a 4096TB byte-addressable memory.
We have proved that this is an invariant of ourmodel. Note that this is a property about
our model — it assures us that our memory model, despite heavy optimizations, is
indeed the one we intended to build.

We access and update a byte in the memory using functions called mem$ci and
!mem$ci. These functions locate a byte using the relationship among the concrete
state fields mem-array$c, mem-array-next-addr$c, and mem-table$c
described above. We never access or update these three fields directly.

3.2 Abstract State

Though concrete stobjs enable reasoning and efficient simulation, using them has
the following drawbacks in the context of our x86 model.
Issue (1) Large logical representation of the x86 state: Logically, the concrete x86
state is a list of lists and integers. Two of the fields that implement the memory
model are extremely large linear lists; mem-table$c is a list of 225 elements
and mem-array$c is a list of 228 elements (corresponding to an initial memory
allocation of 256MB), which increases if more memory is requested. The size of
these lists adversely affects reasoning efficiency — they have to be created in order

186 S. Goel et al.

to symbolically simulate functions (in logic, using the bit-blasting tool GLmentioned
above) that take the x86 state as input.
Issue (2) Expensive guard checking: The recognizer of a well-formed x86 state, say
x86$cp, is the conjunction of the concrete stobj recognizer x86$cp-pre and the
well-formedness of the memory model good-memp. Any function, say g, that takes
the concrete x86 state as input would need to have x86$cp as a guard. However,
good-memp is an expensive function because it has to check each element of all the
three memory-related fields to ensure that a good relationship among them holds.
Costly guard checking slows down g whenever it is executed on concrete data in
ACL2. We use abstract stobjs [64] to overcome these issues. An abstract stobj may
be viewed as an alternative representation of a corresponding concrete stobj. Figure1
illustrates the idea behind abstract stobjs, which is in the spirit of bisimulation. Let
x86 be an abstract stobj, x86$c a corresponding concrete stobj, and a function
f be associated with the abstract and concrete functions f$a and f$c that update
the abstract and concrete stobj, respectively. Then, x86$c1 corresponds to x861

provided that:

• f$a maps instance x860 of x86 to x861.
• f$c maps instance x86$c0 of x86$c to x86$c1.
• The correspondence predicate holds for x86$c0 and x860.

Admitting an abstract stobj requires explicitly defining the correspondence predicate
and discharging proof obligations that establish the correspondence of the concrete
and abstract state at all times. Some examples of these are: the so-called correspon-
dence theorems, that establish that the initial concrete and abstract states correspond,
the concrete and abstract accessor functions for the same field produce the same value
when applied to corresponding states, and the concrete and abstract updater func-
tions for the same field produce corresponding states when applied to corresponding
states; and the preservation theorems, which state that the recognizer always holds
for the abstract state — we prove that the recognizer holds for the initial state, and
it is preserved by every well-guarded updater function. For details about these the-
orems, see the documentation in the ACL2 manual [70]. Once an abstract stobj has
been admitted, any native function accessing or updating it reduces to a simple func-
tion associated with the abstract state during reasoning and to an efficient function
associated with the concrete state during execution.

Fig. 1 Abstract and
concrete x86 states

Engineering a Formal, Executable x86 … 187

We define the x86 abstract state corresponding to the concrete state by using
records [71] to model the concrete array fields. A record is a sparse association list
— it is a finite normalized structure that maps keys to non-default values. Memory is
represented by a single record in the abstract state; contrast this with three fields being
used to represent memory in the concrete state. Functions memi and !memi invoke
access and update operations (respectively) on records when reasoning and invoke
mem$ci and !mem$ci (respectively) during execution. The initial representation
of the abstract memory is empty, as opposed to a large linear list of zeroes for the
concrete memory fields. The abstract memory contains only the values that have
been written explicitly to the memory. This results in a smaller x86 state that is more
amenable to reasoning, thereby solving Issue (1). The recognizer for the abstract
x86 state always evaluates to true during execution, as justified by the recognizer
preservation theorems. This solves Issue (2).

A benefit of using abstract stobjs is that the concrete state and its associated
functions can be optimized for execution efficiency without affecting the abstract
layer andother definitions of themodel built on top of it, as long as the correspondence
relation ismaintained. Thus,maintenance of themodel becomes tractable and a trade-
off between reasoning and execution efficiency is avoided.

Theorems about Reads and Writes to the x86 State A program’s behavior can be
described by the effects it has on machine state. Given an initial state, the final state
may be described as a nest of updates made in program order to the initial state. In
order to reason about the behavior of a program, we need to develop lemmas to read
from, write to, and re-arrange these nests of updates.

• Read-over-Write Theorems: There are two types of Read-Over-Write theorems.
The first describes the independence or non-interference of different components
of the x86 state. One example is proving that an update made to a specific register
does not modify the value of any other component of the x86 state. The second
asserts that reading a component after it is modified returns the value that was
written to it during the modification.

• Write-over-Write Theorems: Like the Read-Over-Write theorems, there are two
types of Write-over-Write theorems. The first asserts that independent writes to
the x86 state can commute safely. The second asserts that if consecutive writes are
made to a component, the most recent write is the only visible write.

• State Preservation Theorems: These theorems assert that writing a valid value to
a component in a valid x86 state returns a modified x86 state that is still valid.

We need these theorems for every component of the x86 state, but the number of
theorems required is quadratic in the number of components [72]. Adding compo-
nents to the x86 state to support more features would entail proving more of these
theorems. Apart from being tedious, proving such a large number of theorems can
slow down the theorem prover’s rewriter. Instead, we define interface functions xr
and xw to read from and write to the x86 state, respectively. The functions xr and xw
take field names as input; they branch on the field name and call the corresponding
native accessor or updater function. Now these theorems have to be in terms of just
these two functions — we have just five theorems to manage.

188 S. Goel et al.

Though this simplifies reasoning, simulation efficiency suffers because we incur
an extra function call every time the x86 state needs to be accessed or updated; every
definition in the model will use these functions. Inlining xr and xw can avoid the
cost of the function call, but because these functions contain a big case statement,
this would increase the code and memory footprint of our model.

We solve this problem by using ACL2’s mbe feature. For each component of
the x86 state, we define new accessor and updater functions whose body is an mbe,
where the :logic parts call xr and xw (respectively) and the :exec parts call the
native accessor and updater functions. We then keep these new functions enabled for
reasoning — when these functions are called, reasoning will be done in terms of xr
and xw. We inline these functions so that execution will use the native accessors and
updaters, which in turn will use the efficient concrete stobj functions. Thus, these
new functions are now the top-level interfaces to the x86 state. There still remains
the (small) issue of having to define two functions (a new accessor and updater) for
every field added to the state. We use Lisp’s (and ACL2’s) ability to treat code as
data and automatically generate these functions from the stobj definition.

With this mechanism in place, whenever a model developer adds a new field to the
x86 state, he does not have to worry about manually proving read-over-write, write-
over-write, and state-preservation theorems, and adding new accessor and updater
functions that have an mbe in their body. This makes the model maintainable, which
is critical for the longevity of a model as large as that of the x86 ISA.

3.3 Modes of Operation: Interface to the X86 State

As mentioned in Sect. 2.3, our x86 model offers two modes of operation: the
programmer-level mode and the system-level mode. These modes can be thought
of as interfaces to the x86 state; the programmer-level mode provides the same inter-
face to the x86 state as is provided by the operating system to application programs
and the system-level mode provides the same interface to programs as is provided
by the processor. Thus, these modes enable simulation and reasoning about x86
machine-code programs either from the point of view of an application programmer
or a kernel developer. A field in our x86 state, programmer-level-mode, is set
to twhen operation in the programmer-level mode is required and to nil otherwise.

3.3.1 Programmer-Level Mode

This mode allows the analysis of an application program while assuming that mem-
ory management, I/O operations, and other services are provided reliably by the
underlying OS. We discuss some aspects of this mode below.

Memory Model In the 64-bit mode of an x86 processor, application programs use
64-bit linear addresses. The x86 ISA defines canonical addresses as those which

Engineering a Formal, Executable x86 … 189

have bits 63 through 48 set to all zeros or all ones; if a non-canonical address is
encountered, then a general protection exception or a stack fault occurs, depending
on the context. Thismeans that the canonical linear address ranges are 0 to 247 − 1 and
264 − 247 to 264 − 1, i.e., 248 bytes of linear address space is the total available space.
Note that the second canonical address range would result in addresses that are of
type bignum in Lisp implementations. As discussed in Sect. 2.1.1, it is advantageous
to avoid bignum creation when possible. In this case, we choose to represent linear
addresses as signed integers of width 48 — these will always be fixnum values on
64-bit Lisp implementations. The linear memory range 0 to 247 − 1 is represented
as is, and the other range 264 − 247 to 264 − 1 is represented by −247 to −1.

In the programmer-level mode, our byte-addressable memory model discussed in
Sect. 3.1 serves as the linear memory space and only up to 248 bytes of the memory
model can be accessed—every non-canonical linear access is an error, in accordance
with the ISA. The functions memi and !memi are not used to read from or write to
the memory in this mode (because they can access the entire 252 bytes of available
memory). Linear memory accessor and updater functions that restrict accesses to
248 bytes are defined and used instead. The guards of these linear memory functions
require the address to be a 48-bit signed integer, which is converted to a 48-bit
unsigned integer when indexing into our memory model (for example, −1, which
represents the canonical address 264 − 1, is converted to 248 − 1).

The programmer-level mode provides some support for user-level 64-bit segmen-
tation, even though paging is unavailable in this mode. Segment descriptor tables
(GDT and LDT) are unavailable in this mode, but if a logical address refers to the
FS or GS segments (which are the only segments that can have non-zero bases in
the 64-bit mode), the segment base addresses are obtained from the machine-specific
registers ia32_fs_base or ia32_gs_base, respectively. It is the responsibility
of system software to load these registers, and hence, they are assumed to contain
appropriate values in this mode, thereby providing an environment similar to that
provided by an OS to application programs.

SystemCalls and Non-determinismApplication programs rely on various services
provided by the OS. These services are usually provided by system calls. Some of
these system call services are non-deterministic from the point of view of a program-
mer — different runs can yield different results on the same machine. For example,
the open system call might open a file in one execution, but result in an error in
another execution if the file has been deleted. The syscall instruction is used by
application programs to call system procedures at a higher privilege level in order to
request services from the underlying OS; the value in register rax determines which
system call is to be executed. The sysret instruction is used by system programs to
return control to the application-level program that requested the service. System call
implementations differ in different OSes; a small example is that the read system
call has the number 0 on Linux and 3 on Darwin.

The x86 instructionssyscall andsysret are special in thismode. The seman-
tic function of syscall is extended to provide the semantics of system calls like
read and write, and the instruction sysret is unavailable for use. A field in our

190 S. Goel et al.

x86 state, os-info, also needs to be initialized appropriately (either :linux or
:darwin, which are the two OSes we currently support).

For system call simulations in the programmer-level mode, we use the return val-
ues of functions that invoke the system calls by interacting directly with the underly-
ing OS. That is, simulation of all instructions except syscall occurs within ACL2;
for syscall, we determine which system call is requested and then escape out of
ACL2 to get the real results by executing that system call on the underlying system.
Obviously, these functions are impure: logically, they are not functions because they
can return different values for the same input arguments.

For reasoning about system calls, we incorporate an environment field env into
the x86 state to represent the part of the external world that affects or is affected
by system calls. The env field contains a specification of a subset of the file system
as well as an oracle field. The oracle specifies the result of any action that is non-
deterministic from the point of view of the programmer; it provides information that,
though a part of the real environment, cannot be inferred from our model of the file
system. An example of such information is the file descriptor of a file to be opened
— an OS assigns the file descriptor depending on the number of files already opened
for a particular process at the time the open system call is made. The oracle contains
a map that associates linear addresses to a list of arbitrary values; whenever a value is
needed from the oracle, the current instruction pointer is located in the map, and the
first value in the corresponding list is popped off for use and removed from the list.
If the program control goes to the same instruction later and the oracle is consulted,
again the first value (previously the second value) in the list is popped off and then
removed. Thus, to reason about a system call’s effects, it is the responsibility of the
user to initialize the env field appropriately so that it can be consulted when needed.

For example, suppose that a program makes an open system call to open a file,
then a write system call to write to that file, and finally a close system call to
close it. The env field’s file system fields would need to be initialized to contain
the file information — its name and descriptor — and the oracle field would need to
associate the linear address of the first syscall instruction (i.e., open) with the
value of a descriptor. Broadly speaking, reasoning about this program will involve
reasoning about the following behavior: the first syscall instruction will pop off
the descriptor from the oracle field, associate it with a file name, and change its
mode as requested; the second syscall will use the descriptor to locate the file
and write the requested number of bytes from a specified buffer to the file; and, the
third syscallwill remove the association between the file descriptor and its name.
Our specifications of these system calls include accounting for error conditions too.

The contents of env can be symbolic. For example, to verify a program wc
that counts the number of words in a given file, the contents of the file can be
specified as an arbitrary string in the env field’s file system fields. Of course, it
is also possible to reason about concrete elements in the environment, e.g., wc on
a concrete file, by simply initializing the env field with these elements. The env
field is invisible and inaccessible when the model is used as a simulator. System
call simulation and reasoning use different mechanisms and do not interfere with
each other. However, the following meta-connection exists between them in our

Engineering a Formal, Executable x86 … 191

Fig. 2 Environment during
simulation and reasoning

x86 model; see Fig. 2. Let x86i be an x86 state. Suppose, during simulations, the
evaluation of run(x86i) returns x86f and updates the real environment from ENVi

to ENVf . Then, the following is true during reasoning: if envi corresponds to ENVi,
and x86e

i refers to x86i augmented with envi, then the evaluation of run(x86e
i)

during reasoning produces x86e
f , which is x86f augmented with envf , for some

envf corresponding to ENVf . To ensure that this connection holds for our model
in the programmer-level mode, we perform co-simulations by comparing concrete
program simulations to corresponding evaluations done inside ACL2, that is, using
pure logical functions. More details can be found in our FMCAD’14 paper [73].

We use env to characterize all non-deterministic behavior, not just system calls
in programmer-level mode. For example, the RDRAND instruction (read random
number) is available both in the programmer-level and system-level modes, and for
reasoning, it obtains a random value from the oracle in env.

3.3.2 System-Level Mode

The system-level mode is intended to be used to simulate and verify software that
has supervisor privileges and access to system state, though it can also be used to
verify application programs. We discuss some components of this mode below.

Physical Memory Our model includes 252 bytes of byte-addressable memory; this
is the largest physical address space provided by modern x86 implementations. The
memory read and write functions memi and !memi pertain to physical memory.

PagingPaging is used for address translation and access rightsmanagement. In 64-bit
mode, physical memory cannot be directly accessed by either system or application
software. In fact, switching to the 64-bit mode requires paging to be turned on first.
The system-level mode supports IA-32e paging for all configurations (4KB, 2MB,
and 1GB pages) of paging data-structures, including predicates that check whether
paging structure entries are valid.A linearmemory address, coupledwith information
necessary to check access rights like the origin4 of the address, is used as input to
the paging mechanism. A linear memory access will report a failure in our model
if a page-fault exception is encountered — exceptions are currently unsupported by
our model. We have specified a “page walk” by defining it in terms of traversals of

4Determining the origin of a linear memory address constitutes answering questions like: is the
linear memory reference on behalf of a read, a write, or an instruction fetch and decode?What is the
privilege level, as determined by the segmentation data-structures, of this linear memory reference?.

192 S. Goel et al.

each of the hierarchical paging structures. These traversal functions also perform
on-the-fly updates to the accessed and dirty flags, as specified by the x86 ISA. Thus,
in this mode, every read or write to a linear memory address goes through paging:
permissions are checked to see if thememory access is allowed and the linear address
is translated to its corresponding physical address.

Figure3 represents the paging data-structures with a 4K page configuration —
we assume that the address translation does not result in a page-fault exception. The
paging specification functions clearly require many slicing operations, i.e., getting
and setting some ranges of bits in a number. These functions have been optimized
for execution efficiency by using type declarations and guards. We use pre-existing
ACL2 libraries [74] to aid in this task.

Segmentation In IA-32e mode, much of the functionality of segmentation is dis-
abled. Segment limit checks and null segment selector checks are not performed, but
descriptor table limit checks, type checks, and privilege-level checks are still carried

Fig. 3 IA-32e paging with 4KB page configuration

Engineering a Formal, Executable x86 … 193

Fig. 4 IA-32e segmentation

out. The segment base for all segments except FS and GS is treated as zero; for FS
and GS, logical address to linear address translation is depicted in Fig. 4.

Segment descriptors are data structures inside the descriptor tables that contain
information about a segment — its size, location, access control and status infor-
mation. We have defined predicates that recognize valid segment descriptors. We
have also specified 64-bit segmentation-related privileged instructions like LGDT
(load global descriptor table register) and LLDT (load local descriptor table regis-
ter); these instructions check the descriptor table limits and the validity of the segment
selector and descriptor, and then load the gdtr or ldtr register appropriately.

Segmentation plays an important role in fast system calls, i.e., syscall and
sysret instructions, because these instructions involve changes in privilege levels.
Unlike in the programmer-level mode, the syscall instruction’s specification in
this mode is exactly what is specified by the x86 ISA. The sysret instruction is
also available for use in this mode. See Fig. 5 for an illustration. These instructions

194 S. Goel et al.

Fig. 5 Linux read system call in the two modes of operation of the x86 model

access system state like the machine-specific registers and code segment descriptors
that describe where control is to be transferred if all privilege checks succeed.

3.3.3 Implications for Reasoning

Of all the differences from the programmer-level to system-level mode, the memory
model adds the most complexity. The pseudocode for the top-level function for
accessing a byte, rm08 (which stands for “read memory — 8 bits”), is as follows.
Note that LaToPa is a large, complex function does address translation via paging.

rm08(linAddr, permissions, x86):
if non-canonical-address(linAddr) then

raiseError(x86)
else

if programmer-level-mode(x86) then
memi(linAddr, x86)

else
cpl := get-rpl-from-cs-segment(x86)
[err, phyAddr, x86]:= LaToPa(linAddr, permissions, cpl, x86)
if err then

raiseError(x86)
else

byte := memi(phyAddr, x86)
return (byte, x86)

endif
endif

endif

For convenience, we have similar top-level functions for accessing words, double-
words, quadwords, and octawords. This means that for reasoning, we would need
the usual read-over-write and write-over-write lemmas for each of these top-level
functions in both the modes. Similar to our discussion about xr and xw in Sect. 3.2,
we avoid the need for proving this large number of theorems using ACL2’s mbe
feature; logically, all these functions are equal to a call of another function called rb
(read bytes). The function rb takes a list of linear addresses, permissions, and the

Engineering a Formal, Executable x86 … 195

x86 state as input and if no error is encountered, returns a list of bytes at the input
addresses and the x86 state. For the system-level mode, this equality to rb makes
it possible to reason at the level of linear address space, which is akin to system
programming in 64-bit mode. However, this equality is true only when the paging
data-structures are set up correctly — e.g., no page fault error is encountered during
LaToPa. This is essentially the same as stating that the programmer-level mode is
an abstraction of the system-level mode as far as the memory is concerned, if the
system data structures have been set up correctly.

We have adopted a similar strategy for reasoning about memory writes, where
every write is logically equal to a call of wb (write bytes). Another benefit of using
rb and wb is that all memory accesses are reduced to reasoning about list operations
(like subset) as opposed to tedious arithmetic involving address ranges. Using lists
in rb and wb does not affect the simulation efficiency of the model because these
functions are used only during reasoning; for simulation, efficient stobj code is used.

3.4 Instruction Semantic Functions

Functions likerm08 (see Sect. 3.3.3 above) abstract away the details of accessing the
x86 state, irrespective of the mode of operation. This makes specifying the behavior
of instructions relatively straightforward.

The instruction fetch, decode, and execute function (described in Sect. 3.5) passes
on the decoded parts of the instruction to the appropriate instruction semantic func-
tions, which use them to determine the locations of the operands (if any) and then
fetches them from the x86 state. These functions then call an operation specification
function — e.g., the ADD operation’s specification function takes two operands and
the flags as input and returns the result and the output flags. The instruction semantic
function then writes the outputs from this specification function to the appropriate
parts in the x86 state. A benefit of this approach is that instructions which fetch
inputs and write outputs in the same manner can share the same semantic function;
the actual computation is done by calling the correct operation specification function
inside the semantic function. For example, the following instructions (and opcodes)
have a single semantic function but different operation specification functions: ADD
(0x00, 0x01), OR (0x08, 0x09), ADC (0x10, 0x11), SBB (0x18, 0x19), AND
(0x20, 0x21), SUB (0x28, 0x29), XOR (0x30, 0x31), CMP (0x38, 0x39), and
TEST (0x84, 0x85). Again, this facilitates maintainability.

Characterizing Undefined Behavior Some x86 instructions leave certain parts of
the machine state undefined. For example, according to the Intel manuals, the carry,
parity, auxiliary, zero, sign, and overflow flags are all undefined after an unsigned
divide instruction (DIV) is executed. A property of an “undefined value” is that an
equality test with another value, either defined or undefined, should be indetermi-
nate. This also implies that every undefined value should be unique, in the sense that
any two such values are independent of each other. An illustrative example of why

196 S. Goel et al.

indeterminateness and uniqueness of undefined values is important is as follows: if a
program contains a DIV instruction followed by a JGE instruction (which transfers
control to a given address if the sign flag and overflow flag are equal, otherwise the
control goes to the instruction following JGE), our analysis should not be able to
determine whether the jump occurred or not. This alerts us to unreliable, if not dan-
gerous, behavior that a program may exhibit. Thus, the specification of instructions
like DIV should include such undefined behavior.

Oneway tomodel undefined behavior is to use 4-valued logic, where the unknown
Xmeets our criteria. However, an issue with using 4-valued logic in our model is that
we would need to use at least two bits to represent every bit in the processor state,
thereby doubling the memory footprint of our model. Also, 4-valued logic is more
complicated to reason with because X has a tainting effect. The usual 2-valued logic
equal function cannot be used in cases where either or both of its input values can
be X, in which case the result should also be X.

Instead, we model undefined behavior by defining a constrained function (see
Sect. 2.1.1) called create-undef to provide indeterminateness and by adding a
field called undef to our x86 state to provide uniqueness. Create-undef has
an input and output arity of one; the only thing we know about the output is that it
is an unsigned integer, irrespective of the input. Note that if the input to two calls
of create-undef are different, then we can not determine if they are equal. The
undeffield contains an unsigned integer that is incremented every time an undefined
value is required; thus, we get a unique value. We put undef and create-undef
together by wrapping them up in another function called undef-read, which takes
an x86 state as input, and returns a unique undefined value and a modified x86 state
where undef is one more than what it was in the input x86 state. We ensure that
undef-read is the only function that can modify the undef field by making the
undef updater function,update-undef, untouchable (see Sect. 2.1.1 for details).
Using undef-read will force us to reason about all the possible behaviors if a
program relies on undefined values.

undef-read(x86):
undef-seed := undef(x86)
new-undefined-val := create-undef(undef-seed)
new-x86 := update-undef(1 + undef-seed)
return(new-undefined-val, new-x86)

Characterizing undefined behavior is a bit different for concrete program simu-
lations. Revisiting our DIV and JGE example, if that program runs on a real x86
machine, it would do exactly one of the following: jump to the given address or give
control to the instruction following JGE. A simulator should behave in the same way
as a real x86 processor; we do not have the luxury of accounting for all possible
behaviors here. One way to solve this problem is to perform native execution. If our
model is being used as a simulator on an x86 machine, then for every instruction
that leaves any component undefined, we can escape from ACL2, re-run the same
instruction on the real x86 machine, gather the values of the components that are
supposed to be undefined, and pass those values up to the x86 model. These values

Engineering a Formal, Executable x86 … 197

can then be plugged into the corresponding fields in the x86 state in our model. This
would require a trust tag (see Sect. 2.1.1) when the model is in use as a simulator.
However, switching environments can significantly slow down the simulation speed
of our x86 model. Instead, when our model is used as a simulator, we chose simply
to assign suitable concrete values to the x86 components that are supposed to be
undefined by an instruction. We also log the value of the instruction pointer when
this occurs so that we have a record of which instructions were simulated that con-
cretized any undefined behavior in this manner. The concrete value is chosen based
on tests performed on a real x86 machine that indicate the most probable value for
that instruction. This optimization is an example of balancing efficiency and accu-
racy; the simulator is accurate in that it captures a behavior that is indeed possible
and it is efficient because the entire simulation takes place in ACL2/Lisp.

Note that the principle behind the oracle in the env field (see Sect. 3.3.1) is quite
similar to that of the undef field. We can imagine discarding the undef field com-
pletely and using the oracle field in env to provide undefined values. However, the
undef and env fields are used in different situations. For reasoning about programs
that involve commonly occurring undefined events (like flag computations), using
the oracle field can be tedious because it has to be initialized appropriately, i.e., a
list of values has to be associated with an address which contains an instruction
that involves any undefined behavior. Imagine doing that for all the undefined flags
whenever DIV is executed. The undef field does not need to be initialized. The ini-
tialization of the oracle field provides a way of tracking any computation that relies
on the external environment. Such computations do not happen often, and when they
do, this initialization specifies exactly what we expect from the environment. In the
case of undefined values, we do not have any such expectations — all we want is an
infinite pool of unique and indeterminate values.

3.5 Step and Run Functions

The step function of our x86 ISA model fetches, decodes, and executes a machine
instruction. It takes an x86 state as input, fetches the instruction from the memory at
the location pointed to by the instruction pointer rip, and then dispatches control
to the appropriate instruction semantic function. The x86 ISA has variable-length
instructions, as depicted in Fig. 6— the maximum length of a legal x86 instruction is

Fig. 6 x86 instruction format (64-bit mode)

198 S. Goel et al.

15 bytes. Since most instructions are smaller than this limit, our step function lazily
fetches one byte of an instruction at a time instead of fetching 15 bytes at once. Just
enough bytes are fetched and decoded to determine the instruction opcode (so that
the right instruction semantic function can be called), and the sizes and location of
the operands. Decoding a byte of the instruction gives information about the nature
of the next byte. E.g., if the first byte is a one-byte opcode, then the ISA tells us if that
opcode requires aModR/M byte. If it does not, then we dispatch control to the proper
instruction semantic function, which, if needed, fetches the address displacement or
immediate data encoded in the instruction or the operands from the x86 state. If the
one-byte opcode requires a ModR/M byte, then the byte following the opcode is the
ModR/M byte, which gives us yet more information about whether a SIB byte is
expected, and so on.

The run function is the top-level specification function of our x86 ISA model.

x86-run(n, x86):
if (ms x86) || (n == 0) then

// Problem indicated by the model state field or
// no more instructions left to be run
x86

else
x86-run(n - 1, x86-fetch-decode-execute(x86))

endif

4 Model Validation

A high simulation speed facilitates efficient co-simulations, which increase trust in
the accuracy of the model, as discussed in Sect. 2.3. An added benefit of having
two modes of operation of the x86 model is an increased simulation speed in the
programmer-level mode, where much of the x86 state is abstracted away. For exam-
ple, in the system-level mode, every access to the memory requires yet more accesses
to the hierarchical data structures in the physical memory for memory management,
whereas a memory access in the programmer-level mode is a direct operation.

The simulation speed of our model is ∼3.3 million instructions/second in the
programmer-level mode and ∼330,000 instructions/second in the system-level
mode.5 We have successfully simulated a SAT solver,6 which produced exactly the
same effects as the real machine on the model’s memory and registers.

Figure7 illustrates our framework for performing co-simulations for model vali-
dation. Given a machine-code program in an executable format, we first determine
if it can be simulated on our model. We then parse the executable file using our
ACL2-based parser that determines, among other things, where the program is to be
placed into the memory of our x86 state. Our ACL2-based loader loads the program

5This was measured on a machine with Intel Xeon E31280 CPU @ 3.50GHz with 32GB RAM.
6This solver, developed by Marijn Heule, has performance comparable to state-of-the-art solvers.

Engineering a Formal, Executable x86 … 199

Fig. 7 Model validation via co-simulations

into the x86 state appropriately. The parser and loader are discussed in Sect. 4.1. We
then execute the program on our model as well as on the real machine, taking care to
initialize the state in our model appropriately (see Sect. 4.1.1 for details). The states
of both the model and the machine are then logged in the same manner, i.e., either
after every instruction or at any other granularity using instrumentation tools on the
real machine and their equivalent on our model (Sect. 4.2). Any differences found
between the model and the real machine are logged for later examination.

4.1 Machine Program Parser and Loader

We chose to write our machine program parser and loader in ACL2 itself. Writing
our tools in ACL2 leaves open the possibility of formally reasoning about them.
Also, we find it more convenient to debug and maintain ACL2 code — the books
containing these tools are regularly [75] certified by ACL2.

Our parser and loader support machine-code programs in either ELF [76] format
for Unix systems or Mach-O [77] format for Darwin systems. The parser reads the
executable file, checks whether it is well-formed, and uses its headers to retrieve the
various sections (e.g., text, data) in the file, along with information like their location
in the memory. The loader takes this output from the parser and an initial x86 state
as input, and places the sections in the right locations in the model’s memory.

200 S. Goel et al.

4.1.1 x86 State Initialization

For co-simulations, the initial state of the model should match the initial state of the
real machine. The parser and loader only initialize the memory in the x86 state of
our model. For convenience, we provide a function called init-x86-state to
initialize all the components of the x86 state at once. This function also takes in an
address, which, if encountered as an instruction pointer, halts the simulation of the
program. Thus, simulating only a part of the program is also possible.

If simulation is being done in the system-level mode of the model, we provide a
default paging data-structure configuration (identity-mapped 1GB pages). Of course,
users are free to load their own system data structure configurations as well.

4.2 Instrumentation

For more control over the granularity at which the states of the model and a real
machine are compared during co-simulations, the program must be instrumented in
the samemanner on themodel and themachine.We use tools like the GNUDebugger
and Intel’s Pin [65] to instrument programs on a realmachine.We have developed our
own ACL2-based program instrumentation tools to provide similar capabilities for
our x86 model. Our instrumentation tools are very flexible; e.g., we can trace every
read and/or write to the x86 state (including the memory) or only trace those reads
and writes that meet certain criteria. We can step through a program instruction by
instruction, similar to the nexti and stepi commands on GDB, we can execute
a specified number of instructions, and we can set breakpoints at arbitrary points in
the program (e.g., when rax = 4 or when rip = 0x400952, etc.).

Apart from aiding in co-simulations, our instrumentation tools help in program
comprehension. Our model is a programmable simulator — it provides a safe envi-
ronment to simulate the program and examine its effects on the machine state.

5 Reasoning About x86 Machine-Code Programs

This chapter is primarily about the development and validation of our x86 ISAmodel,
but because optimizing reasoning efficiency affected our modeling decisions, in this
section we briefly discuss x86 machine-code verification using our model.

We have developed general libraries to reason about x86machine code, both in the
programmer-level mode and the system-level mode. An example of such a library is
one which aids in reasoning about the non-interference/overlap of memory regions.
The functions rb and wb (see Sect. 3.3.3) operate in terms of lists of addresses
and bytes, making non-interference and overlap expressible in terms of notions like
disjoint and subset. These libraries are mature enough to reason about non-trivial
properties of a given program automatically, e.g., independence of the stack and

Engineering a Formal, Executable x86 … 201

heap from the program and data. We also have a library to reason about traversals of
and updates to paging data-structures. We have formulated predicates that recognize
a valid paging structure entry, and proved that if these predicates hold on a given
entry, walking that entry will not result in a page-fault exception. Regardless of
on-the-fly updates to these data structures during traversals (accessed and dirty bits),
we have proved that repeated walks of valid entries do not modify the address map-
ping. Such lemmas enable reasoning at the level of linear memory reads and writes
in the system-level mode. This is important because in IA-32e mode, even system
software cannot access physical memory directly— linear memory is the abstraction
that must be used.

We can automatically verify snippets of straight-line machine code using a BDD
or SAT-based bit-blasting proof engine in ACL2 called GL [16, 78]. Providing the
specification is the primary user requirement in order to prove theorems using this
framework. If a conjecture fails, GL can compute counterexamples. Using this tech-
nique, we have verified a complicated population count (bit-count) program [79],
and we detected a bug in an incorrect version [80]. Such an automated symbolic exe-
cution technique for reasoning about straight-line code can facilitate compositional
verification, thereby reducing the cost of reasoning about larger programs.

A verification effort of note in the programmer-level mode is that of a word-count
program [73], which computes the number of characters, words, and lines in a stream
read in from the user using the read system call. We wrote a trio of simple ACL2
specification functions that compute these counts of a string. Thefinal theoremasserts
that the values returned by these three specification functions on standard input are
found in the expected memory locations of the final x86 state, which is obtained by
symbolically running the word-count program on our x86 model. Using our lemma
libraries, we automated the proof of disjointness of the word-count program and its
stack in every execution. We proved that irrespective of the size of the input file, this
program always uses a fixed amount of memory on the stack to compute and store
the counts. Another proof that was discharged automatically was that the word-count
program does not modify unintended regions of memory, i.e., the only writes that
occur during the program’s execution are to the stack and the rest of thememory is the
same as it was before the execution. Our lemma libraries reduced the manual effort
required formachine-code verification of this program substantially, as demonstrated
by some empirical evidence. The lines of ACL2 needed to verify the programwithout
our libraries were appropriately 20K, but with the libraries were appropriately 8K.
Even though 8K lines may still seem inordinate, it should be noted that more than
half of these 8K lines were generated by ACL2 in response to requests to simplify
certain symbolic expressions related to the execution of multiple instructions. These
simplified expressions are large because a typical instruction makes many updates
to the x86 state. The effort with 20K lines also had around 4K lines resulting from
simplification of symbolic expressions.

In the future, we hope to use recently developed ACL2 tools like Codewalker [58]
and Stateman [81] to increase automation. Codewalker is a machine-code decompi-
lation tool — it automatically lifts machine code to a higher level of abstraction (i.e.,
ACL2 functions), given the operational semantics of the ISA. Stateman manages

202 S. Goel et al.

large terms that represent machine states — it reduces the overhead of simplifying
these terms by projecting out only the relevant parts.

6 Related Work

Our main thrust for developing an x86 ISA formal model is to enable program
verification. Though program verification has a long history, with Turing’s 1949
paper [82] being one of the earliest works, we briefly discuss only those efforts that
involved the development and validation of formal simulators for processors.

Our modeling and reasoning strategy has been heavily influenced by the CLI
stack [14], even though it was composed of systems that are simpler than modern
ones. The CLI stack included NQTHM-based formal simulators of both the gate-
level design and the ISA of a microprocessor called FM9001 [83], an assembler with
linking loader for a language called Piton [84] that targets this microprocessor, and a
higher-level language, micro-Gypsy [85], that targets Piton. Each of these simulators
was validated and used as a reasoning framework to prove the correctness of the sys-
tem “above” it. Another project that influenced our work was the formalization [86]
of most of the user-mode instruction set of a commercial Motorola MC68020 micro-
processor byBoyer andYu inNQTHM; this formalmodelwas used to verifymachine
code produced by compiling the Berkeley string library using GCC. Our work on
formalizing the Y86 [87], a simple 32-bit x86-like processor that was developed
by Bryant and O’Hallaron for pedagogical purposes, can be called the precursor of
our x86 ISA model; we used our ACL2-based Y86 model as a prototype to evalu-
ate the design decisions we made for our x86 ISA model. This Y86 model is also
released [88] as a part of the ACL2 Community Books.

Many simulators have been built for semi-formal and formal purposes. Formal
models of processor ISAs have been used as a target specification for microprocessor
design verification [9, 10, 27, 83]. Rockwell Collins built a symbolic simulator [89]
for their JEM1 microprocessor in the PVS [90] theorem proving system to detect
microcode errors. Rockwell also published studies [91, 92] from an engineering
standpoint of how to efficiently simulate formal models of processors in ACL2,
again using the JEM1 microprocessor as an example. Formal models of mainstream
commercial multiprocessors like ARM [93], PowerPC [94], and x86 [95–97] have
been built in the HOL [98] theorem prover to develop rigorous semantics of relaxed-
memory concurrency that are provided by these modern architectures. HOL-based
ISA-level specifications of these mainstream processors (e.g., ARMv7 [99]) have
been used to verify machine-code programs automatically using Myreen’s “decom-
pilation into logic” technique [56, 59, 100], which reduces the problem of reasoning
aboutmachine code to reasoning about simpler logic functions. The verification effort
for seL4 [101, 102], the “world’s first operating-system kernel with an end-to-end
proof of implementation correctness and security enforcement”, was initially done
on formal models of ARMv6 and x86 using Isabelle/HOL.Morrisett et al. developed
a framework for software fault isolation [55] that involved building a Coq-based x86

Engineering a Formal, Executable x86 … 203

ISA specification that can be used for machine-code verification. Morrisett has also
been focused on building scalable formal models for reasoning [103]. The Coq proof
assistant [104] was used by Feng et al. to build a simplified formal model of the
x86 processor in order to verify machine code using domain-specific and separation
logics [105]. Shao’s recent efforts to develop and certify clean-slate OS kernels [106]
has also involved modeling processor architectures in Coq. There have been inves-
tigations into developing domain-specific languages [107, 108] to facilitate clear
and precise specification of ISAs, even by non-experts, to reduce the possibility of
introducing modeling errors.

Simulators used for testing have also received attention— so much so that formal
methods have been employed to ensure that they are faithful to the hardware. A Coq
formalization [109] of the ARM instruction set and addressing modes was done as
a part of a project to certify a System-on-Chip simulator SimSoC. A C model of
SimSoC was obtained in Coq using the C semantics provided by the CompCert
project [110]. Parts of these two models were then proved equivalent in Coq.

7 Conclusion

We have presented our executable model of the x86 ISA, which formalizes an
interpreter-style operational semantics in ACL2. The contribution of our work is a
unified x86 ISAmodel for both simulation and formal analysis of x86 machine-code
programs. It can also be used as a target specification to verify whether a micro-
architecture implements this ISA. Our unified model offers two modes of operation,
which allowchoosing the level of rigorwithwhich analysiswill be performed. Formal
models written in most higher-order theorem proving systems require the extraction
of executable specifications for validation via co-simulations; thus, trusting or ver-
ifying the extraction process is necessary. Our ACL2-based formal specifications
of the x86 ISA are directly executable; we also provide tools that aid in dynamic
program instrumentation. Though higher-order systems offer more expressibility,
applications like specifying processor ISAs are often more “natural” to do in first-
order logic. Models written in first-order logic look very like the procedural code
developers without experience in formal methods work with, which facilitates the
adoption of tools based on these models.

Properties about our model are certified using ACL2. We have proved many
properties (e.g., full functional correctness, memory usage analysis) of several
application-level programs. We are currently working on making our framework
more amenable to reasoning about programs with supervisor privileges — such pro-
grams directly impact system security. At the same time, we continue to extend
our model by supporting more features of the x86 ISA. The latest version of our
framework is available online [12].

Ourwork is in the spirit of the CLI and ProCoS [111, 112] projects. In this chapter,
instead of verification techniques, we have concentrated on the engineering aspect of
formal tool construction. Though developing and improving verification techniques

204 S. Goel et al.

is critical to achieve software reliability, it is equally important to examine our tools.
Modern systems are often large and complex, as a result of which there is a consider-
able amount of engineering involved before the groundwork for useful research can
be laid. We hope that documenting the insights we gained while building our formal
framework will encourage others to discuss and share their own engineering efforts.

Acknowledgements This project was supported by the DARPA CRASH program under N66001-
10-2-4087, and preparation of this chapter was also partially supported by the DARPA MUSE
program under FA8750-15-C-0007.We are currently supported by NSF SaTC program under CNS-
1525472. We thank Marijn Heule for his feedback on the chapter.

References

1. von Neumann, J.: First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 15(4),
27–75 (1993). http://doi.ieeecomputersociety.org/10.1109/85.238389

2. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. J.
Math. 58(345–363), 5 (1936)

3. Rojas, R.: Konrad Zuse’s legacy: the architecture of the Z1 and Z3. Ann. Hist. Comput. IEEE
19(2), 5–16 (1997)

4. Intel Manuals (September, 2015) Intel 64 and IA-32 Architectures Software Developer’s
Manuals. Order Number: 325462-056US

5. Intel (Accessed: October, 2015.) Intel Developer Zone - ISA Extensions. See https://software.
intel.com/en-us/isa-extensions/

6. Kaufmann, M., Moore, J.S.: (Accessed: 2015) ACL2 home page. (see http://www.cs.utexas.
edu/users/moore/acl2)

7. Kaufmann,M.,Manolios, P.,Moore, J.S.: Computer-AidedReasoning: AnApproach. Kluwer
Academic Publishers, Boston (2000)

8. Boyer, R.S., Kaufmann, M., Moore, J.S.: The boyer-moore theorem prover and its inter-
active enhancement. Comput. Math. Appl. 29(2), 27–62 (1995). http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.51.7689

9. Sawada, J., Hunt Jr., J.W.: Verification of FM9801: an out-of-order microprocessor model
with speculative execution, exceptions, and program-modifying capability. Form. Methods
Syst. Des. 20(2), 187–222 (2002). http://dl.acm.org/citation.cfm?id=584665

10. Hunt Jr., W.A.: FM8501: A Verified Microprocessor, LNAI, vol. 795. Springer (1994)
11. Section 2.2.10: Intel 64Architecture, Vol. 1, Intel 64 and IA-32Architectures Software Devel-

oper’s Manual. (September, 2015) Order Number: 325462-056US
12. x86isa Books in the ACL2 Community Books Project on Github (Accessed: October, 2015).

See https://github.com/acl2/acl2/tree/master/books/projects/x86isa
13. x86isa ACL2 Books (Accessed: October, 2015) Documentation of the bleeding-edge ACL2-

based model of the x86 ISA. http://www.cs.utexas.edu/users/moore/acl2/manuals/current/
manual/index.html?topic=ACL2____X86ISA

14. Bevier, W.R., Hunt Jr., W.A., Moore, J.S., Young, W.D.: Special issue on system verification.
J. Autom. Reason. 5(4), 409–530 (1989)

15. Kaufmann, M., Moore, J.S., Ray, S., Reeber, E.: Integrating external deduction tools
with ACL2. J. Appl. Log. 7(1), 3–25 (2009). doi:10.1016/j.jal.2007.07.002, http://www.
sciencedirect.com/science/article/pii/S1570868307000602, special Issue: Empirically Suc-
cessful Computerized Reasoning

16. Swords, S.: A Verified Framework for Symbolic Execution in the ACL2 Theorem Prover.
PhD thesis, Department of Computer Sciences, The University of Texas at Austin (2010).
http://repositories.lib.utexas.edu/handle/2152/ETD-UT-2010-12-2210

http://doi.ieeecomputersociety.org/10.1109/85.238389
https://software.intel.com/en-us/isa-extensions/
https://software.intel.com/en-us/isa-extensions/
http://www.cs.utexas.edu/users/moore/acl2
http://www.cs.utexas.edu/users/moore/acl2
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.7689
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.7689
http://dl.acm.org/citation.cfm?id=584665
https://github.com/acl2/acl2/tree/master/books/projects/x86isa
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____X86ISA
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____X86ISA
http://dx.doi.org/10.1016/j.jal.2007.07.002
http://www.sciencedirect.com/science/article/pii/S1570868307000602
http://www.sciencedirect.com/science/article/pii/S1570868307000602
http://repositories.lib.utexas.edu/handle/2152/ETD-UT-2010-12-2210

Engineering a Formal, Executable x86 … 205

17. Glucose SAT Solver (Accessed: October, 2015). http://www.labri.fr/perso/lsimon/glucose/
18. Minisat SAT Solver (Accessed: October, 2015). http://minisat.se/
19. ACL2System andBooksRepository onGithub (Accessed: October, 2015). See https://github.

com/acl2/acl2
20. Davis, J., Kaufmann, M.: Industrial-Strength Documentation for ACL2. EPTCS 152:9–

25 (2014). http://www.cs.utexas.edu/users/kaufmann/talks/acl2-workshop-2014/acl2-14-
davis-kaufmann.pdf

21. Kaufmann, M., Moore, J.S.: (Accessed: October, 2015) ACL2 documentation. See http://
www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____ACL2

22. 2005 ACM Software System Award (2005) The Boyer-Moore Theorem Prover. (see http://
awards.acm.org/software_system/)

23. ACL2 Applications (Accessed: October, 2015). See http://www.cs.utexas.edu/users/moore/
acl2/current/manual/index.html?topic=ACL2____INTERESTING-APPLICATIONS

24. Centaur Technology (Accessed: October 2015). http://www.centtech.com
25. FV Group at Centaur (Accessed: October, 2015). http://fv.centtech.com
26. Davis, J., Slobodova, A., Swords, S.: Microcode verification — another piece of the micro-

processor verification puzzle. In: Klein, G., Gamboa, R. (eds.) Interactive Theorem Proving,
Lecture Notes in Computer Science, vol. 8558, pp. 1–16. Springer International Publishing
(2014). doi:10.1007/978-3-319-08970-6_1

27. Hunt Jr., W.A., Swords, S., Davis, J., Slobodova, A.: Use of formal verification at centaur
technology. In: Hardin, D.S. (ed.) Design and Verification of Microprocessor Systems for
High-AssuranceApplications, pp. 65–88. Springer (2010). https://www.cs.utexas.edu/~jared/
publications/2010-hardin-centaur.pdf

28. Flatau, A., Kaufmann, M., Reed, D.F., Russinoff, D., Smith, E.W., Sumners, R.: Formal
verification ofmicroprocessors at AMD. In: 4th InternationalWorkshop onDesigning Correct
Circuits (DCC 2002), Grenoble, France (2002)

29. Russinoff, D.M.: A case study in formal verification of register-transfer logic with ACL2: the
floating point adder of theAMDathlonTMprocessor. In: FormalMethods inComputer-Aided
Design, pp. 22–55. Springer (2000)

30. Russinoff, David: Computation and formal verification of SRT quotient and square root digit
selection tables. IEEE Trans. Comput. 62(5), 900–913 (2013)

31. Russinoff, D., Kaufmann, M., Smith, E., Sumners, R.: Formal verification of floating-point
RTL at AMD using the ACL2 theorem prover. In: Proceedings of the 17th IMACS World
Congress on Scientific Computation, Applied Mathematics and Simulation, Paris, France
(2005)

32. Reeber, E., Sawada, J.: Combining ACL2 and an automated verification tool to verify a
multiplier. In: Proceedings of the Sixth International Workshop on the ACL2 Theorem Prover
and Its Applications, pp. 63–70. ACM (2006)

33. Sawada, J., Reeber, E.: ACL2SIX: a hint used to integrate a theorem prover and an automated
verification tool. In: Formal Methods in Computer Aided Design, 2006. FMCAD ’06, pp.
161–170 (2006). doi:10.1109/FMCAD.2006.3

34. Sawada, J., Gamboa, R.: Mechanical verification of a square root algorithm using Taylor’s
theorem. In: Formal Methods in Computer-Aided Design, pp. 274–291. Springer (2002)

35. Sawada, J., Sandon, P., Paruthi, V., Baumgartner, J., Case, M., Mony, H.: Hybrid verification
of a hardware modular reduction engine. In: Proceedings of the International Conference on
Formal Methods in Computer-Aided Design, FMCAD Inc, Austin, TX, FMCAD ’11, pp.
207–214 (2011). http://dl.acm.org.ezproxy.lib.utexas.edu/citation.cfm?id=2157654.2157686

36. O’Leary, J.W., Russinoff, D.M.: Modeling algorithms in SystemC and ACL2. In: Verbeek,
F., Schmaltz, J. (eds.) Proceedings Twelfth International Workshop on the ACL2 Theorem
Prover and its Applications, Vienna, Austria, 12-13th July 2014, Open Publishing Associa-
tion, Electronic Proceedings in Theoretical Computer Science, vol. 152, pp. 145–162 (2014).
doi:10.4204/EPTCS.152.12

37. Coglio, A.: Second-order functions and theorems in ACL2. In: Kaufmann, M., Rager, D.L.
(eds.) Proceedings Thirteenth International Workshop on the ACL2 Theorem Prover and Its

http://www.labri.fr/perso/lsimon/glucose/
http://minisat.se/
https://github.com/acl2/acl2
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-workshop-2014/acl2-14-davis-kaufmann.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-workshop-2014/acl2-14-davis-kaufmann.pdf
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____ACL2
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____ACL2
http://awards.acm.org/software_system/
http://awards.acm.org/software_system/
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____INTERESTING-APPLICATIONS
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____INTERESTING-APPLICATIONS
http://www.centtech.com
http://fv.centtech.com
http://dx.doi.org/10.1007/978-3-319-08970-6_1
https://www.cs.utexas.edu/~jared/publications/2010-hardin-centaur.pdf
https://www.cs.utexas.edu/~jared/publications/2010-hardin-centaur.pdf
http://dx.doi.org/10.1109/FMCAD.2006.3
http://dl.acm.org.ezproxy.lib.utexas.edu/citation.cfm?id=2157654.2157686
http://dx.doi.org/10.4204/EPTCS.152.12

206 S. Goel et al.

Applications, Austin, Texas, USA, 1-2 October 2015, Open Publishing Association, Elec-
tronic Proceedings in Theoretical Computer Science, vol. 192, pp. 17–33 (2015). doi:10.
4204/EPTCS.192.3

38. Selfridge, S., Smith, E.W.: Polymorphic types in ACL2. In: Verbeek, F., Schmaltz, J., (eds.)
Proceedings Twelfth International Workshop on the ACL2 Theorem Prover and its Applica-
tions, Vienna, Austria, 12-13th July 2014, Open Publishing Association, Electronic Proceed-
ings in Theoretical Computer Science, vol. 152, pp. 49–59 (2014). doi:10.4204/EPTCS.152.
4

39. Rager, D.L., Ebergen, J., Lee, A., Nadezhin, D., Selfridge, B., Chau, C.K.: A brief introduc-
tion to oracle’s use of ACL2 in verifying floating-point and integer arithmetic. In: Kaufmann,
M., Rager, D.L. (eds.) Proceedings Thirteenth International Workshop on the ACL2 Theo-
rem Prover and Its Applications, Austin, Texas, USA, 1-2 October 2015, Open Publishing
Association, Electronic Proceedings in Theoretical Computer Science, vol. 192 (2015)

40. Greve, D.: Address enumeration and reasoning over linear address spaces. In: Fifth Interna-
tional Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2004) (2004)

41. Greve, D., Richards, R., Wilding, M.: A summary of intrinsic partitioning verification. In:
5th International Workshop on the ACL2 Theorem Prover and Its Applications (ACL2 2004),
Austin, TX (2004)

42. Hardin, D.S., Smith, E.W., Young, W.D.: A robust machine code proof framework for highly
secure applications. In: Proceedings of the Sixth International Workshop on the ACL2 The-
orem Prover and Its Applications, pp. 11–20. ACM, New York, NY, USA, ACL2 ’06 (2006).
doi:10.1145/1217975.1217978

43. CLHS (Accessed: October, 2015) Common Lisp HyperSpec. http://www.lispworks.com/
reference/HyperSpec/index.html

44. ACL2 Feature: Guards (Accessed: October, 2015). See http://www.cs.utexas.edu/users/
moore/acl2/manuals/current/manual/?topic=ACL2____GUARD

45. Greve, D.A., Kaufmann, M., Manolios, P., Moore, J.S., Ray, S., Ruiz-Reina, J.-L., Sumners,
R., Vroon, D., Wilding, M.: Efficient execution in an automated reasoning environment. J.
Funct. Program. 18(1) (2008)

46. System Class Integer (Accessed: October, 2015) CLHS, Common Lisp HyperSpec. http://
www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

47. ACL2 Feature: Trust Tags (Accessed: October, 2015). See http://www.cs.utexas.edu/users/
moore/acl2/manuals/current/manual/?topic=ACL2____DEFTTAG

48. ACL2 Feature: Untouchable Functions (Accessed: October, 2015). See http://www.
cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____PUSH-
UNTOUCHABLE

49. The CompCert Project (Accessed: October, 2015). The CompCert C Compiler. http://
compcert.inria.fr/compcert-C.html

50. LinuxMemoryManagement (Accessed:October, 2015). LinuxSystemAdministratorsGuide.
http://www.tldp.org/LDP/sag/html/memory-management.html

51. McKusick,M.K., Neville-Neil, G.V.,Watson, R.N.M.: Chapter 6:MemoryManagement. The
Design and Implementation of the FreeBSDOperating System, AddisonWesley Professional
(2014)

52. Kerrisk, M.: The Linux Programming Interface: A Linux and UNIX System Programming
Handbook, 1st edn. No Starch Press, San Francisco (2010)

53. WindowsMemoryManagement (Accessed:October, 2015.)Windows SystemAdministrators
Guide. http://msdn.microsoft.com/en-us/library/windows/desktop/aa366779(v=vs.85).aspx

54. Yu, D., Shao, Z.: Verification of safety properties for concurrent assembly code. In: Proceed-
ings of 2004 International Conference on Functional Programming (ICFP’04) (2004)

55. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.-B., Gan, E.: RockSalt: better, faster, stronger
SFI for the x86. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 395–404. ACM, PLDI ’12 (2012). doi:10.1145/
2254064.2254111

http://dx.doi.org/10.4204/EPTCS.192.3
http://dx.doi.org/10.4204/EPTCS.192.3
http://dx.doi.org/10.4204/EPTCS.152.4
http://dx.doi.org/10.4204/EPTCS.152.4
http://dx.doi.org/10.1145/1217975.1217978
http://www.lispworks.com/reference/HyperSpec/index.html
http://www.lispworks.com/reference/HyperSpec/index.html
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____GUARD
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____GUARD
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____DEFTTAG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____DEFTTAG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____PUSH-UNTOUCHABLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____PUSH-UNTOUCHABLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____PUSH-UNTOUCHABLE
http://compcert.inria.fr/compcert-C.html
http://compcert.inria.fr/compcert-C.html
http://www.tldp.org/LDP/sag/html/memory-management.html
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366779(v=vs.85).aspx
http://dx.doi.org/10.1145/2254064.2254111
http://dx.doi.org/10.1145/2254064.2254111

Engineering a Formal, Executable x86 … 207

56. Myreen, M.O.: Formal Verification of Machine-code Programs. PhD thesis, University
of Cambridge, Computer Laboratory, Trinity College (2008). http://www.cl.cam.ac.uk/
~mom22/thesis.pdf

57. Smith, E.W.: Axe, An Automated Formal Equivalence Checking Tool For Programs. PhD
thesis, Department of Computer Science, Stanford University (2011)

58. Moore, J.S.: (Accessed: October, 2015) Codewalker. See https://github.com/acl2/acl2/books/
projects/codewalker

59. Myreen, M.O., Gordon, M.J.C., Slind, K.: Decompilation into logic - improved. In: For-
mal Methods in Computer-Aided Design (FMCAD), 2012, pp. 78–81 (2012). http://www.cs.
utexas.edu/~hunt/FMCAD/FMCAD12/016.pdf

60. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual Technical
Conference, FREENIX Track, pp. 41–46 (2005)

61. Lawton, K.P.: Bochs: A Portable PC Emulator for Unix/X. Linux J 1996(29es) (1996). http://
dl.acm.org/citation.cfm?id=326350.326357

62. Unicorn (Accessed: October, 2015) Unicorn: Slides from BlackHat USA 2015. http://www.
unicorn-engine.org/BHUSA2015-unicorn.pdf

63. AMDManuals (Accessed:October, 2015.)AMD64Architecture:DeveloperGuides,Manuals
and ISADocuments. http://developer.amd.com/resources/documentation-articles/developer-
guides-manuals/

64. Goel, S., Hunt Jr.,W.A., Kaufmann,M.: Abstract stobjs and their application to ISAmodeling.
In: Proceedings of the ACL2 Workshop 2013, EPTCS 114, pp. 54–69 (2013). http://arxiv.
org/pdf/1304.7858.pdf

65. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: Pin: Building Customized ProgramAnalysis Tools with Dynamic Instrumen-
tation. SIGPLAN Not 40(6), 190–200 (2005). doi:10.1145/1064978.1065034

66. Kaufmann, M., Hunt Jr., W.A.: Towards a Formal Model of the x86 ISA. Technical report,
Department of Computer Science, University of Texas at Austin, Technical Report TR-12-07
(May 2012). see http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2075.pdf

67. Moore, J.S.: (Accessed: October, 2015.) Mechanized Operational Semantics. Lectures in the
Marktoberdorf Summer School (August 5-16, 2008). See http://www.cs.utexas.edu/users/
moore/publications/talks/marktoberdorf-08/index.html

68. Boyer, R.S., Moore, J.S.: Single-threaded Objects in ACL2. In: Krishnamurthy, S., Ramakr-
ishnan, C.R. (eds.) Practical Aspects of Declarative Languages (PADL), vol. 2257, pp. 9–27.
Springer, LNCS (2002)

69. Hunt Jr., W.A., Kaufmann, M.: A formal model of a large memory that supports efficient exe-
cution. In: Proceedings of the 12th International Conference on FormalMethods in Computer-
Aided Design (FMCAD 2012, Cambrige, UK, October 22–25) (2012). http://www.cs.utexas.
edu/~hunt/FMCAD/FMCAD12/014.pdf

70. ACL2 Feature: Abstract Stobjs (Accessed: October, 2015). http://www.cs.utexas.edu/users/
moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFABSSTOBJ

71. Kaufmann, M., Sumners, R.: Efficient rewriting of operations on finite structures in ACL2.
In: ETAPS 2002: European joint conference on theory and practice of software. Satellite
workshop, pp. 141–150 (2002)

72. Greve, D.: Scalable normalization for heapmanipulating functions. In: ACL2Workshop 2007
(2007). http://www.cs.uwyo.edu/~ruben/acl2-07/uploads/Main/017.pdf

73. Goel, S., Hunt Jr., W.A., Kaufmann, M., Ghosh, S.: Simulation and formal verification of x86
machine-code programs that make system calls. In: Proceedings of the 14th Conference on
Formal Methods in Computer-Aided Design (FMCAD’14), pp. 18:91–98 (2014). http://dl.
acm.org/citation.cfm?id=2682923.2682944

74. Bitops (Accessed: October, 2015) An ACL2 Library for Reasoning about Bit-Vector Arith-
metic. See http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=
ACL2____BITOPS

75. Rager D.L.: (Accessed: October, 2015.) Maintaining community [in] sanity with Jenk-
ins and Github. ACL2 Workshop 2015, Rump Session Talk. See https://www.cs.utexas.

http://www.cl.cam.ac.uk/~mom22/thesis.pdf
http://www.cl.cam.ac.uk/~mom22/thesis.pdf
https://github.com/acl2/acl2/books/projects/codewalker
https://github.com/acl2/acl2/books/projects/codewalker
http://www.cs.utexas.edu/~hunt/FMCAD/FMCAD12/016.pdf
http://www.cs.utexas.edu/~hunt/FMCAD/FMCAD12/016.pdf
http://dl.acm.org/citation.cfm?id=326350.326357
http://dl.acm.org/citation.cfm?id=326350.326357
http://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
http://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/
http://arxiv.org/pdf/1304.7858.pdf
http://arxiv.org/pdf/1304.7858.pdf
http://dx.doi.org/10.1145/1064978.1065034
http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2075.pdf
http://www.cs.utexas.edu/users/moore/publications/talks/marktoberdorf-08/index.html
http://www.cs.utexas.edu/users/moore/publications/talks/marktoberdorf-08/index.html
http://www.cs.utexas.edu/~hunt/FMCAD/FMCAD12/014.pdf
http://www.cs.utexas.edu/~hunt/FMCAD/FMCAD12/014.pdf
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFABSSTOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFABSSTOBJ
http://www.cs.uwyo.edu/~ruben/acl2-07/uploads/Main/017.pdf
http://dl.acm.org/citation.cfm?id=2682923.2682944
http://dl.acm.org/citation.cfm?id=2682923.2682944
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____BITOPS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____BITOPS
https://www.cs.utexas.edu/users/moore/acl2/workshop-2015/rump-session-abstracts.html#rager

208 S. Goel et al.

edu/users/moore/acl2/workshop-2015/rump-session-abstracts.html#rager and http://leeroy.
defthm.com/

76. Matz, M., Hubicka, J., Jaeger, A., Mitchell, M.: Chapter 4: Object Files in System V Appli-
cation Binary Interface. AMD64 Architecture Processor Supplement, Draft v0 99 (2005)

77. Mach-O File Format (Accessed: October, 2015.) OS X ABI Mach-O File Format Ref-
erence. Mac Developer Library. https://developer.apple.com/library/mac/documentation/
DeveloperTools/Conceptual/MachORuntime/index.html

78. Swords, S., Davis, J.: Bit-blasting ACL2 theorems. In: Proceedings 10th International Work-
shop on the ACL2 Theorem Prover and its Applications, ACL2 2011, Austin, Texas, USA,
November 3–4, 2011, pp. 84–102 (2011). doi:10.4204/EPTCS.70.7

79. Anderson, S.: (Accessed: 2015) Bit Twiddling Hacks. See http://graphics.stanford.edu/
~seander/bithacks.html

80. Goel, S., Hunt Jr., W.A.: Automated code proofs on a formal model of the x86. In: Verified
Software: Theories, Tools, Experiments (VSTTE’13). Lecture Notes in Computer Science,
vol. 8164, pp. 222–241. Springer, Berlin, Heidelberg (2014). doi:10.1007/978-3-642-54108-
7_12

81. Moore, J.S.: Stateman: using metafunctions to manage large terms representing machine
states. In: Kaufmann, M., Rager, D.L. (eds.) Proceedings Thirteenth International Workshop
on the ACL2 Theorem Prover and Its Applications, Austin, Texas, USA, 1-2 October 2015,
Open Publishing Association, Electronic Proceedings in Theoretical Computer Science, vol.
192, pp. 93–109 (2015). doi:10.4204/EPTCS.192.8

82. Turing, A.M.: Checking a Large Routine, pp. 67–69 (1949). http://www.turingarchive.org/
browse.php/B/8

83. Hunt Jr., W.A.: Microprocessor design verification. J. Autom. Reason. 5(4), 429–460 (1989).
http://www.cs.utexas.edu/~boyer/ftp/cli-reports/048.pdf

84. Moore, J.S.: Piton: A Mechanically Verified Assembly-Level Language. Automated Reason-
ing Series. Kluwer Academic Publishers (1996)

85. Young,WilliamD.: Amechanically verified code generator. J. Autom. Reason. 5(4), 493–518
(1989)

86. Boyer, R.S., Yu, Y.: Automated proofs of object code for a widely used microprocessor. J.
ACM 43(1), 166–192 (1996). http://dl.acm.org/citation.cfm?id=227603

87. Bryant, R.E., O’Hallaron, D.R.: Chapter 4: Processor Architecture, of Computer Systems: A
Programmer’s Perspective. Prentice-Hall (2003)

88. Goel, S., Hunt Jr., W.A., Kaufmann, M., Krug, R.: (Accessed: 2015) y86 Specifications in the
ACL2 Community Books. See https://github.com/acl2/acl2/tree/master/books/models/y86

89. Greve,D.A.: Symbolic simulation of the JEM1microprocessor. In:Gopalakrishnan,G.,Wind-
ley, P., (eds.) FormalMethods inComputer-AidedDesign.LectureNotes inComputer Science,
vol. 1522, pp. 321–333. Springer, Berlin, Heidelberg (1998). doi:10.1007/3-540-49519-3_
21

90. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D. (ed.)
11th International Conference on Automated Deduction (CADE). Lecture Notes in Artificial
Intelligence, vol. 607, pp. 748–752. Springer, Saratoga, NY (1992)

91. Greve, D., Wilding, M., Hardin, D.: High-speed, analyzable simulators. In: Computer-Aided
Reasoning, pp. 113–135. Springer (2000)

92. Wilding, M., Greve, D., Hardin, D.: Efficient simulation of formal processor models. Form.
Methods Syst. Des. 18(3), 233–248 (2001)

93. Fox, A.: Formal specification and verification of ARM6. In: TheoremProving inHigher Order
Logics, pp. 25–40. Springer (2003)

94. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.: The
semantics of power and ARMmultiprocessor machine code. In: Proceedings of DAMP 2009:
the 4th Workshop on Declarative Aspects of Multicore Programming, ACM, New York, NY,
USA, 553091 (2009)

95. Sewell, P., Sarkar, S., Owens, S., Zappa Nardelli, F., Myreen, M.O.: x86-TSO: a rigorous and
usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7), 89–97 (2010)
(Research Highlights)

https://www.cs.utexas.edu/users/moore/acl2/workshop-2015/rump-session-abstracts.html#rager
http://leeroy.defthm.com/
http://leeroy.defthm.com/
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/index.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/index.html
http://dx.doi.org/10.4204/EPTCS.70.7
http://graphics.stanford.edu/~seander/bithacks.html
http://graphics.stanford.edu/~seander/bithacks.html
http://dx.doi.org/10.1007/978-3-642-54108-7_12
http://dx.doi.org/10.1007/978-3-642-54108-7_12
http://dx.doi.org/10.4204/EPTCS.192.8
http://www.turingarchive.org/browse.php/B/8
http://www.turingarchive.org/browse.php/B/8
http://www.cs.utexas.edu/~boyer/ftp/cli-reports/048.pdf
http://dl.acm.org/citation.cfm?id=227603
https://github.com/acl2/acl2/tree/master/books/models/y86
http://dx.doi.org/10.1007/3-540-49519-3_21
http://dx.doi.org/10.1007/3-540-49519-3_21

Engineering a Formal, Executable x86 … 209

96. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Proceedings of
TPHOLs 2009: Theorem Proving in Higher Order Logics, LNCS 5674, pp. 391–407 (2009)

97. Sarkar, S., Sewell, P., Zappa Nardelli, F., Owens, S., Ridge, T., Braibant, T., Myreen, M.,
Alglave, J.: The semantics of x86-CCmultiprocessor machine code. In: Proceedings of POPL
2009: the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages, pp. 379–391 (2009). doi:10.1145/1594834.1480929

98. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem-Proving Environment
for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

99. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 instruction set
architecture. In: Kaufmann, M., Paulson, L.C., (eds.) Interactive Theorem Proving, Lecture
Notes in Computer Science, vol. 6172, pp. 243–258. Springer, Berlin (2010). doi:10.1007/
978-3-642-14052-5_18

100. Myreen, M.O., Gordon, M., Slind, K.: Machine-code verification for multiple architectures -
an application of decompilation into logic. In: Formal Methods in Computer-Aided Design,
2008. FMCAD ’08, pp. 1–8 (2008). doi:10.1109/FMCAD.2008.ECP.24, http://www.cl.cam.
ac.uk/~mom22/decomp.pdf

101. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., et al.: seL4: formal verification of an OS kernel.
In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, pp.
207–220. ACM (2009). http://www.sigops.org/sosp/sosp09/papers/klein-sosp09.pdf

102. sel4: General Dynamics C4 Systems (Accessed: October, 2015). http://sel4.systems/
103. Morrisett, G.: Scalable formal machine models. In: Proceedings of the Second International

Conference on Certified Programs and Proofs, pp. 1–3. Springer, Berlin, Heidelberg, CPP’12
(2012). doi10.1007/978-3-642-35308-6_1

104. Coq Proof Assistant (Accessed: October, 2015). http://coq.inria.fr/
105. Feng, X., Shao, Z., Guo, Y., Dong, Y.: Certifying low-level programs with hardware interrupts

and preemptive threads. J. Autom. Reason. 42(2), 301–347 (2009). http://flint.cs.yale.edu/
flint/publications/aimjar.pdf

106. Shao, Z.: Clean-slate development of certified OS kernels. In: Proceedings of the 2015Work-
shop on Certified Programs and Proofs, pp. 95–96. ACM, New York, NY, USA, CPP ’15
(2015). doi:10.1145/2676724.2693180

107. Fox, A.: Directions in ISA Specification. Interactive Theorem Proving (ITP), pp. 338–344
(2012). https://www.cl.cam.ac.uk/~acjf3/papers/itp12.pdf

108. Degenbaev, U.: Formal Specification of the x86 Instruction Set Architecture. PhD thesis,
Universität des Saarlandes (2012). http://rg-master.cs.uni-sb.de/publikationen/UD11.pdf

109. Shi, X.: Certification of an instruction set simulator. PhD thesis, Université deGrenoble (2013)
110. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009).

http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
111. Bjørner, D.: A ProCoS project description. International Conference on AI and Robotics,

North Holland (1989)
112. Bowen, J.P.: A ProCoS II project description: ESPRIT Basic Research project 7071. Bull.

Eur. Assoc. Theor. Comput. Sci. (EATCS) 50, 128–137 (1993)

http://dx.doi.org/10.1145/1594834.1480929
http://dx.doi.org/10.1007/978-3-642-14052-5_18
http://dx.doi.org/10.1007/978-3-642-14052-5_18
http://dx.doi.org/10.1109/FMCAD.2008.ECP.24
http://www.cl.cam.ac.uk/~mom22/decomp.pdf
http://www.cl.cam.ac.uk/~mom22/decomp.pdf
http://www.sigops.org/sosp/sosp09/papers/klein-sosp09.pdf
http://sel4.systems/
http://dx.doi.org/10.1007/978-3-642-35308-6_1
http://coq.inria.fr/
http://flint.cs.yale.edu/flint/publications/aimjar.pdf
http://flint.cs.yale.edu/flint/publications/aimjar.pdf
http://dx.doi.org/10.1145/2676724.2693180
https://www.cl.cam.ac.uk/~acjf3/papers/itp12.pdf
http://rg-master.cs.uni-sb.de/publikationen/UD11.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf

Advances in Connection-Based Automated
Theorem Proving

Jens Otten and Wolfgang Bibel

Abstract Automatic reasoning tools play an important role when developing
provably correct software. Both main approaches, program verification and program
synthesis employ automated reasoning tools, more specifically, automated theorem
provers. Besides classical logic, non-classical logics are particularly relevant in this
field. This chapter presents calculi to automate theorem proving in classical and
some important non-classical logics, namely first-order intuitionistic and first-order
modal logics. These calculi are based on the connection method, which permits a
goal-oriented and, hence, a more efficient proof search. The connection calculi for
these non-classical logics extend the calculus for classical logic in an elegant and
uniform way by adding so-called prefixes to atomic formulae. The leanCoP theorem
prover is a very compact PROLOG implementation of the connection calculus for
classical logics. We present details of the implementation and describe some basic
techniques to improve its efficiency. leanCoP is adapted to non-classical logics by
integrating a prefix unification algorithm, which depends on the specific logic. This
results in leading theorem provers for the aforementioned non-classical logics.

1 Introduction

Information Technology (IT) has been penetrating literally all areas of our society.
The essential building blocks of IT are algorithms coded in hardware or software.
The tools for hardware design as well as for software production have become
impressively powerful indeed. Their outcomes are engineering constructs of an

J. Otten
University of Oslo, Oslo, Norway
e-mail: jeotten@ifi.uio.no

J. Otten
University of Potsdam, Potsdam, Germany

W. Bibel (B)
Darmstadt University of Technology, Darmstadt, Germany
e-mail: bibel@gmx.net

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_9

211

212 J. Otten and W. Bibel

unprecedented complexity. The correctness of these systems to a certain degree is
guaranteed by ingenious and automated test methods.

Whilewe all use systems of this kind on a daily basis, we tend to ignore their actual
degree of complexity, for which reason we want to remind ourselves at this point
that, for instance, actual operating systems or computing platforms today comprise
hundreds of millions of lines of code (loc). The applications running on top of these
platforms add to this order of magnitude in (extensional) complexity even further.
How far can we trust systems this large and complex?

Unfortunately, experience shows in fact that any of these systems is full of (seman-
tic and syntactic) bugs.Occasionally, these bugs have consequenceswhich are embar-
rassing at the very least, occasionally extremely costly and sometimes even the cause
for injury or death to people. Reference [1] lists fivemost embarrassing software bugs
including the well-known Pentium FDIV bug and the disintegration of the $655-
million Mars Climate Orbiter (in 1998). Further disasters caused by bugs were the
crash of Ariane 5 (1996) and of an Airbus A400M Atlas cargo plane on a test flight
with four people killed (2015, see [2]). Apparently, there is no guarantee for prevent-
ing a future disaster due to a bug killing many more people and causing further huge
damages.

There is a secondmajor aspect to this downside of current IT.Despite an enormous
methodological improvement of the processes producing hardware and software,
software projects that are large, complicated, poorly specified, or involve unfamiliar
aspects, are still vulnerable to large, unanticipated problems, often leading to spec-
tacular and costly failures (e.g. [3]). Generally, the software projects failure rate is
much too high still and extensive delays are commonplace, with huge and costly
consequences for the industry.

Has theory a remedy in store for these two deplorable aspects of IT? In principle,
it has. In fact there are two major perspective routes for ending up with more reliable
systems to begin with, known as verification and synthesis. The idea behind verifi-
cation is to let a verifier check the correctness of a system against its specification.
While this is possible in theory, it has remained an illusion to expect larger software
projects to produce as a by-product a complete system specification, needed by the
verifier. Just imagine the challenge to fully specify an operating systemwith hundreds
of millions of loc in order to understand why, in practice and for large systems, this
will remain an illusion. Smaller systems, however, have been fully and successfully
verified already [26, 30, 36, 43].

Program synthesis follows the more direct route towards producing correct soft-
ware. It starts from the project requirements presented in some informal way which
are assumed to be transformed somehow, possibly aided with system support, into
a precise specification in some formal language. The resulting formal code then in
turn is automatically synthesized into an efficiently executable code which is correct
under the proviso that the specification as well as the synthesizer both are correct.
The problemwith this approach in general— and apart from the difficulties involved
in the transformation just described— is the extreme intellectual challenge involved
in automating (and verifying) the synthesis step. To a limited extent though, synthesis
has already been quite successful. Namely, the techniques used in hardware produc-

Advances in Connection-Based Automated Theorem Proving 213

tion are to a significant extent exactly of this nature. Similarly, popular techniques
in software production such as model-driven engineering (or model-driven software
development), the use of domain specific languages or modelling languages (such as
UML), and so forth do already feature automatic synthesis aspects to some limited
extent. Also, logical programming languages such as PROLOG have substantially
narrowed the gap between a formal system specification and its executable code writ-
ten in such a language, laying part of the synthesis burden on the program interpreter
or compiler. However, while all these approaches may be seen as major steps towards
more reliable systems, the route towards the ultimate synthesis vision has remained
a truly challenging one.

To sum up so far, given the utmost importance of IT and at the same time the
severe problems with IT systems, we are still faced with the challenge to find a way
out of this urging dilemma since neither the practical solutions found so far nor the
two theoretically possible routes have brought a satisfactory solution as yet. Hence
the old vision of building Provably Correct Systems (ProCoS) has by far not lost its
attractions and has remained extremely relevant.

A crucial component in both verification and synthesis is a theorem prover for
some logic [12, 20, 24, 58]. This is why Automated Deduction (AD) or Automated
Theorem Proving (ATP) lies at the heart of the ProCoS vision. The field of ATP has
in fact made remarkable progresses in the last decades and the resulting systems
are in use in numerous applications, including verification and synthesis. Yet, the
problem underlying ATP seems so hard that we will have to go still a long way to
reach the next higher level of performance (see Sect. 6 in this chapter as well as [16]).
This is true even for a popular logic such as classical first-order logic (fol), let alone
more involved logics. In the context of programming, logics other than fol are deemed
necessary though. In fact, in the formal specification of an IT system, which typically
is dynamic by nature, fol seems to be rather inconvenient for this purpose since it
allows to represent transitions in time in an indirectway only.Non-classical or higher-
order logics along with corresponding theorem provers are deemed more convenient
for this purpose. Unfortunately, ATP in non-classical logics has not received the same
level of attention as the one in classical fol. In part, the contributions reported in the
present chapter are an attempt to make up for this neglect.

Concretely, we present a number of theorem provers for various logics some of
which are outperforming any of its competitors internationally. They all belong to the
family of provers uniformly designed on the basis of the leanCoP (lean Connection
Prover) technology, originally developed for classical fol and following a separate
and unique line of research in ATP (see Sect. 5). In fact, since theorem provers are
themselves software systemswhich should be correct aswell according to ourProCoS
vision, these provers are based on amathematically precise formalism serving as their
specification. From this formal specification it is only a rather small step to the actual
codewritten in PROLOG. The correctness proof for this step is rather straightforward
in each case [51]. In otherwords, our provers themselves are provably correct systems
as desired.

True, our provers are small systems indeed (comprising a few dozens of loc only),
hence the term “lean”. They are so by intention. Competitive provers with similar

214 J. Otten and W. Bibel

performance in comparison sometimes feature hundreds of thousands loc, serving
exactly the same purpose. In other words, the comparable intensional complexity of
an algorithmcan be represented in a vast variety of different extensional complexities.
The lean extensional complexity version is accessible to formal correctness proofs
while the huge one is not. This is one of the reasons whywe opt for the lean approach.
It is thereby understood that an optimization of the PROLOG code into some low-
level code could of course be followed once the PROLOG code has settled to a
stable one, whereby the optimizer should consist of verified code as well, of course.
These explanations of our approach demonstrate that, apart from presenting tools in
this chapter relevant for the ProCoS vision, these themselves at the same time may
be seen as a model for how to follow this kind of an approach towards a provably
correct software of high intensive complexity, possibly extended to high extensive
complexity thereafter.

The chapter is organized as follows. Section2 introduces basic concepts and the
matrix characterization of logical validity. Section3 presents the clausal and the
non-clausal connection calculus for classical logic and some basic optimization tech-
niques. In Sect. 4 connection calculi for first-order intuitionistic and first-order modal
logics are introduced. Section5 describes compact PROLOG implementations that
are based on the presented connection calculi. In Sect. 6 we give a brief history of
the line of research in ATP to which this chapter contributes. In addition we outline
there some of the steps which are expected to be taken along this line in the future.
Section7 concludes with a summary and a brief outlook on further research.

2 Preliminaries

This section provides a brief overview of classical and non-classical logics, and
presents the matrix characterization of logical validity, which is the basis for the
connection calculi presented in Sects. 3 and 4.

2.1 Classical Logic

The reader is assumed to be familiar with the language of classical first-order logic,
see, e.g., [8, 54, 62]. In this chapter the letters P is used to denote predicate symbols,
f to denote function symbols and x, X to denote variables. Terms are denoted by t
and are built from functions, constants and variables.

An atomic formula, denoted by A, is built from predicate symbols and terms. The
connectives ¬, ∧, ∨, ⇒ denote negation, conjunction, disjunction and implication,
respectively. A (first-order) formula, denoted by F,G,H, consists of atomic formu-
lae, the connectives and the existential and universal quantifiers, denoted by ∀ and
∃, respectively. A literal L has the form A or ¬A. The complement L of a literal L
is A if L is of the form ¬A, and ¬L otherwise. A formula in clausal form has the

Advances in Connection-Based Automated Theorem Proving 215

form ∃x1 . . . ∃xn(C1 ∨ . . . ∨ Cn), where each Ci is a clause. For classical logic, every
formula F can be translated into an equivalent formula F ′ in clausal form.

2.2 Non-Classical Logics

Intuitionistic logic [23] and modal logics [9] are popular non-classical logics. Intu-
itionistic and classical logic share the same syntax, i.e. formulae in both logics use
the same connectives and quantifiers, but their semantics is different. For example,
the formula

man(Socrates) ∨ ¬man(Socrates) (1)

is valid in classical logic, but not in intuitionistic logic. This property holds for all
formulae of the form P ∨ ¬P for any proposition P. In classical logic this formula is
valid as P or ¬P is true whether P is true or not true. The semantics of intuitionistic
logic requires a proof for P or for ¬P. As this property neither holds for P nor for
¬P, the formula is not valid in intuitionistic logic. For this reason intuitionistic logic
is also called constructive logic. Every formula that is valid in intuitionistic logic is
also valid in classical logic, but not vice versa.

Modal logics extend the language of classical logic by the modal operators �
and ♦ representing necessarily and possibly, respectively. For example, the proposi-
tion “if Plato is necessarily a man, then Plato is possibly a man” can be represented
by the modal formula

�man(Plato) ⇒ ♦man(Plato) . (2)

The Kripke semantics of the (standard) modal logics is defined by a set of worlds
and a binary accessibility relation between these worlds. In each single world the
classical semantics applies to the classical connectives, whereas the modal operators
� and ♦ are interpreted with respect to accessible worlds. There is a broad range
of different modal logics and the properties of the accessibility relation specify the
particular modal logic. Thus, the validity of a formula depends on the chosen modal
logic. For example, the modal formula 2 is valid in all (standard) modal logics.

2.3 Matrix Characterisation

The general questioning inATP is to provide an answer to the question as towhether a
given formulaF ′ is a logical consequence of a given set of formulae {F1,F2, . . . ,Fn}.
According to the deduction theorem, this problem can be reduced to the problem of
determining whether the formula F1 ∧ F2 ∧ . . . ∧ Fn ⇒ F ′ is valid.

The matrix characterization of logical validity considers the formula to be in a
certain form, often clausal form. More formally, a matrix of a formula consists of its

216 J. Otten and W. Bibel

clauses {C1, . . . ,Cn}, inwhich each clause is a set of literals {L1, . . . ,Lm}. The notion
of multiplicity is used to encode the number of clause copies used in a connection
proof. It is a function μ :M → IN that assigns each clause in M a natural number
specifying how many copies of this clause are considered in a proof. In the copy
of a clause C all variables in C are replaced by new variables. Mμ is the matrix
that includes these clause copies. Clause copies correspond to applications of the
contraction rule in the sequent calculus [29]. In the graphical representation of a
matrix, its clauses are arranged horizontally, while the literals of each clause are
arranged vertically. The polarity 0 or 1 is used to represent negation in a matrix, i.e.
literals of the form A and ¬A are represented by A0 and A1, respectively,

Then, a connection is a set {A0,A1} of literals with the same predicate symbol
but different polarities. A term substitution σ assigns terms to variables that occur in
the literals of a given formula. A connection {L1,L2} with σ(L1)= σ(L2) is called
σ -complementary. It corresponds to a closed branch in the tableau calculus [31] or
an axiom in the sequent calculus [29].

For example, the formula

(man(Plato) ∧ ∀X(man(X) ⇒ mortal(X))) ⇒ mortal(Plato) (3)

has the equivalent clausal form

∃X(¬man(Plato) ∨ (man(X) ∧ ¬mortal(X)) ∨ mortal(Plato)) (4)

and its matrix is

M ′ = {{man(Plato)1}, {man(X)0,mortal(X)1}, {mortal(Plato)0}} (5)

which has the graphical representation

[
[
man(Plato)1

]
[

man(X)0

mortal(X)1

]
[
mortal(Plato)0

]
]

.

A path through a matrix M = {C1, . . .,Cn} is a set of literals that contains one
literal from each clause Ci ∈M, i.e. a set ∪n

i=1{L′
i} with L′

i ∈Ci. Then, the matrix
characterization [15] states that a formula F is (classically) valid iff (if and only if)
there exists (1) a multiplicityμ, (2) a term substitution σ , and (3) a set of connections
S, such that every path through its matrix Mμ (attached with the multiplicity μ)
contains a σ -complementary connection {L1,L2} ∈ S.

For example, in order to make {man(X)0,man(Plato)1} a σ -complementary con-
nection, the variableX needs to be substituted byPlato, i.e. σ(X)=Plato. Then every
path through the matrix 5 (with multiplicityμ(Ci)= 1) contains a σ -complementary
connection and, hence, formula 3 is (classically) valid.

All these notions can be generalized to thenon-clausal formcasewhere the clauses
of matrices are not just sets of literals, but may rather contain general matrices as

Advances in Connection-Based Automated Theorem Proving 217

elements as well (see Sect. 3.3). For the following characterization we assume that
the term matrix characterization refers to this general case.

Any proof method that is based on the matrix characterization and operates in a
connection-oriented way is called a connection method. The specific calculus of a
connection method is called a connection calculus. In other words, the connection
method denotes a general approach comprising many different connection calculi.
This general terminology is similar to resolution. We talk of a resolution method,
or simply of resolution, whenever the proof rule of resolution is involved somehow.
Also in this case resolution denotes a general approach comprising many different
specific resolution calculi (like, for instance, linear resolution).

3 Connection Calculi for Classical Logic

Connection calculi are a well-known basis to automate formal reasoning in classical
first-order logic. Among these are the calculi introduced in [13–15], the connection
tableau calculus [38], and the model elimination calculus [40]. Proof search in the
connection calculus is guided by connections {A0,A1}, hence, it ismore goal-oriented
compared to the proof search in sequent or tableau calculi.

First, this section introduces a formal clausal connection calculus for classical
logic. Afterwards the technique of restricted backtracking is introduced that reduces
the search space in connection calculi significantly. Finally, a generalization of the
connection calculus to non-causal formulae is presented.

3.1 The Basic Calculus

The connection calculus for classical logic to be introducednow is based on thematrix
characterization of logical validity presented in Sect. 2.3. It uses a connection-driven
search strategy in order to calculate an appropriate set of connections S. In each
step of a derivation in the connection calculus a connection is identified and only
paths that do not contain this connection are investigated afterwards. If every path
contains a (σ -complementary) connection, the proof search succeeds and the given
formula is valid. A connection proof can be illustrated within the graphical matrix
representation. For example, the proof of matrix 5 consists of two inferences, which
identify two connections:

[
[
man(Plato)1

]
[

man(X)0

mortal(X)1

]
[
mortal(Plato)0

]
]

.

218 J. Otten and W. Bibel

Fig. 1 The clausal connection calculus for classical logic

In contrast to sequent calculi, connection calculi permit a more goal-oriented
proof search. This leads to a significantly smaller search space and, thus, to a more
efficient proof search.

A formal description of the calculus was given by Otten and Bibel [51]. The
axiom and the rules of this formal clausal connection calculus are given in Fig. 1.
The words of the calculus are tuples of the form “C,M,Path”, whereM is a matrix,
C and Path are sets of literals or ε; C is the subgoal clause, Path is the active path,
and σ is a rigid term substitution. A clausal connection proof of a matrix M is a
clausal connection proof of ε,M, ε.

For example,

{},M ′, {mortal(Plato)0,man(X ′)0} A {},M ′, {mortal(Plato)0} A

{man(X ′)0}, {{man(Plato)1}, . . .}, {mortal(Plato)0} E {},M ′, {} A

{mortal(Plato)0}, {{man(Plato)1}, {man(X)0,mortal(X)1}, {mortal(Plato)0}}, {} E

ε, {{man(Plato)1}, {man(X)0,mortal(X)1}, {mortal(Plato)0}}, ε S

is a proof of matrix 5, termed M ′, in the clausal connection calculus with the term
substitution σ(X ′)=Plato, in which a copy of the second clause was made. In
order to prove that Plato as well as Socrates are mortal, another copy of the sec-
ond clause {man(X)0, mortal(X)1} would be needed, using the new variable X ′′ and
σ(X ′′)= Socrates.

The presented clausal connection calculus is correct and complete, i.e. a formula
is valid in classical logic iff there is a clausal connection proof of its matrixM [15].
The proof is based on the matrix characterization for classical logic.

Proof search in the clausal connection calculus is carried out by applying the
rules of the calculus in an analytic way, i.e. from bottom to top, starting with
ε,M, ε, in which M is the matrix of the given formula. At first a start clause is
selected. Afterwards, connections are successively identified by applying reduction
and extension rules in order to make sure that all paths through the matrix contain a
σ -complementary connection. This process is guided by the active path, a subset of

Advances in Connection-Based Automated Theorem Proving 219

a path throughM. During the proof search, backtracking might be required, i.e. alter-
native rules or rule instances have to be considered if the chosen rule or rule instance
does not lead to a proof. This might happen when choosing the clause C1 in the start
and extension rules or the literal L2 in the reduction and extension rules. The term
substitution σ is calculated step by step by one of the well-known term unification
algorithms (see, e.g. [57]) whenever a reduction or extension rule is applied.

3.2 Restricted Backtracking

In contrast to saturation-based calculi, such as resolution [57] or instance-basedmeth-
ods [37], standard connection calculi are not proof confluent, i.e. a significant amount
of backtracking is necessary during the proof search. Backtracking is required if there
is more than one rule instance applicable (see Sect. 3.1). Confluent connection calculi
that have been developed so far [10, 15] have not shown an improved performance,
as these calculi lose the strict goal-oriented proof search.

The idea of restricted backtracking is to cut off any alternative connections once
a literal from the subgoal clause has been solved [46]. A literal L is called solved if
it is the literal L1 of a reduction or extension rule application (see Fig. 1) and in the
case of the extension rule, there is also a proof for the left premise. A solved literal
in the connection calculus corresponds to a closed branch in the tableau calculus.

For example, starting the proof search with the first clause of the following matrix

[[
man(X)0

mortal(X)1

][
man(X)1

martian(X)1

]
[
man(Socrates)1

][
man(Plato)1

][
mortal(Plato)0

]
]

,

?

the first possible connection to the literalman(X)1 in the second clause does not solve
the literal man(X)0, as the literal martian(X)1 cannot be solved. But man(X)0 can be
solved by the second alternative connection to man(Socrates)1 in the third clause,
i.e.

[[
man(X)0

mortal(X)1

][
man(X)1

martian(X)1

]
[
man(Socrates)1

][
man(Plato)1

][
mortal(Plato)0

]
]

.

In case of backtracking, the third alternative connection to the literal man(Plato)1

in the fourth clause would be considered. Restricted backtracking cuts off this third
and all following alternative connections for the literal man(X)0.

The potential of this approach to significantly reduce the search space becomes
clear, if connection proofs for first-order formulae are analysed in a statistical
way [46]. To this end the 1256 connection proofs for formulae in version 3.7.0
of the TPTP problem library [66] that are found by the automated theorem prover

220 J. Otten and W. Bibel

leanCoP are considered. It can be observed that the first connection (or rule applica-
tion) that solves a literal is often the same one used in the final proof. This applies to
89% of all solved literals used within the found connection proofs. In this case, back-
tracking that occurs afterwards can be cut off without effecting a successful proof
search, hence, it is called non-essential backtracking. Backtracking with alternative
connections that occur before the literal is solved is still necessary and, hence, called
essential backtracking. In the above matrix the alternative connection to the third
clause is considered essential backtracking as the connection to the second clause
does not solve the literal man(X)0. However, the alternative connection to the fourth
clause is non-essential backtracking.

Even though most literals within the connection proofs can be solved by per-
forming only essential backtracking, a significant amount of non-essential back-
tracking occurs during the actual proof search. Restricted backtracking cuts off this
non-essential backtracking [46]. As this reduces the search space significantly, the
approach turns out to be very successful in practice. For example, for the formula
AGT016+2of theTPTPproblem library [66],which containsmore than1000 clauses,
the standard proof search requires 84 s using 312,831 inference steps. With restricted
backtracking the proof search requires only 0.3 s, using 427 inference steps. Proofs
are not only found faster, but many new proofs are obtained. A similar technique
can also be used to restrict backtracking when selecting the start clause C1 within
the application of the start rule. Restricted backtracking preserves correctness of the
connection calculus, as the search space is only pruned. However, completeness is
lost, as can be seen by the example matrix shown above. Namely, non-essential back-
trackingwould solveman(X)0 with a connection to the fourth clause and the resulting
substitution of X by Plato would allow to solve the second literal (by connecting it
to the fifth clause) as well.

3.3 Non-clausal Calculus

Clausal connection calculi, such as the ones presented in Sect. 3.1, require the input
formula in disjunctive normal (or clausal) form. Formulae that are not in clausal
form have to be translated into this form. The standard transformation translates a
first-order formula F into clausal form by applying the distributivity laws. In the
worst case, the size of the resulting formula grows exponentially with respect to the
size of the original formula F. This increases the search space significantly. Even
a definitional translation [52] that introduces definitions for subformulae introduces
a significant overhead for the proof search [46]. Furthermore, both clausal form
translations modify the structure of the original formula F.

A non-clausal connection calculus [47] that works directly on the structure
of the original formula does not have these disadvantages. Existing non-clausal
approaches [7, 15, 32] work only on ground formulae. For first-order formulae,
copies of subformulae are added iteratively, which introduces a huge redundancy
into the proof search. For a more efficient proof search, clauses have to be added

Advances in Connection-Based Automated Theorem Proving 221

Table 1 The definition of the non-clausal matrix

Type Fpol M(Fpol)

atomic A0 {{A0}}
A1 {{A1}}

α (¬G)0 M(G1)

(¬G)1 M(G0)

(G ∧ H)1 {{M(G1)}, {M(H1)}}
(G ∨ H)0 {{M(G0)}, {M(H0)}}
(G ⇒ H)0 {{M(G1)}, {M(H0)}}

β (G ∧ H)0 {{M(G0),M(H0)}}
(G ∨ H)1 {{M(G1),M(H1)}}
(G ⇒ H)1 {{M(G0),M(H1)}}

γ (∀xG)1 M(G[x\x∗]1)
(∃xG)0 M(G[x\x∗]0)

δ (∀xG)0 M(G[x\t∗]0)
(∃xG)1 M(G[x\t∗]1)

dynamically during the proof search, similar to the approach used for copying clauses
in clausal connection calculi. To this end, the clausal connection calculus is gener-
alized and its rules are carefully extended.

The non-clausal matrix M(Fpol) of a formula F with polarity pol is a set of
clauses, in which a clause is a set of literals and (sub-)matrices, and is defined
inductively according to Table1 [47]. In this table G[x\t] denotes the formula G
in which all free occurrences of x are replaced by t. x∗ is a new variable, t∗ is the
Skolem term f ∗(x1, . . . , xn) in which f ∗ is a new function symbol and x1, . . . , xn
are the free variables in ∀xG or ∃xG. The non-clausal matrix of a formula F is the
matrixM(F0). In the graphical representation its clauses are arranged horizontally,
literals and (sub-)matrices of its clauses are arranged vertically.

For example, the formula

((man(Plato) ∧ ∀X(man(X) ⇒ mortal(X))) ⇒ mortal(Plato))

∧ (man(Socrates) ∨ ¬man(Socrates)) (6)

has the (simplified) non-clausal matrix

{{{{man(Plato)1}, {man(X)0,mortal(X)1}, {mortal(Plato)0}},
{{man(Socrates)0}, {man(Socrates)1}}}} . (7)

The definition of paths through a non-clausal matrix can be generalized in a
straightforward way. All other concepts used for clausal matrices, e.g. the definitions
of connections and term substitutions, remain unchanged.

222 J. Otten and W. Bibel

For example, the non-clausal connection proof of matrix 7 using the substitution
σ(X)=Plato is illustrated in its graphical (non-clausal) matrix

⎡

⎢
⎣

⎡

⎢
⎣

[
[
man(Plato)1

]
[

man(X)0

mortal(X)1

]
[
mortal(Plato)0

]
]

[[
man(Socrates)0

] [
man(Socrates)1

]]

⎤

⎥
⎦

⎤

⎥
⎦ .

The formal non-clausal connection calculus [47] has the same axiom, start rule,
and reduction rule as the clausal connection calculus. The extension rule is restricted
to so-called extension clauses and a decomposition rule that splits subgoal clauses
into their subclauses is added. A clause C in a matrixM is an extension clause of M
with respect to a set of literals Path iff

a. C contains a literal of Path, or
b. C is α-related to all literals of Path occurring inM and if C has a parent clause,

it contains a literal of Path.

A clause C is α-related to a literal L iff it occurs besides L in the graphical matrix
representation. For example, in the given matrix, man(Plato)1 is only α-related to
man(X)0,mortal(X)1, andmortal(Plato)0. The parent clause of a clauseC in a matrix
M is a clause C′ = {M1, . . . ,Mn} inM such that C ∈ Mi for some 1≤ i≤ n. See [47]
for the full description of the formal non-clausal connection calculus.

The non-clausal connection calculus for classical logic is correct and complete.
The correctness proof is based on the non-clausal matrix characterization, complete-
ness is proved by an embedding into the clausal connection calculus.

The proof search in the non-clausal connection calculus is carried out in the same
way as in the clausal connection calculus. On formulae in clausal form, the non-
clausal connection calculus behaves just like the clausal connection calculus. If the
matrices that are used in the non-clausal connection calculus are slightlymodified, the
start and the reduction rule are subsumedby the decomposition and the extension rule,
respectively [47]. Optimization techniques, such as positive start clauses, regularity,
and restricted backtracking, can be used in the non-clausal connection calculus as
well. Furthermore, the non-clausal calculus can be extended to non-classical logics
in the same way as the clausal connection calculus (see Sect. 4).

4 Connection Calculi for Non-classical Logics

By using the notion of prefixes the connection calculus for classical logics can be
extended to intuitionistic logic and several modal logics.

Advances in Connection-Based Automated Theorem Proving 223

4.1 Intuitionistic Logic

Every formula F that is valid in intuitionistic logic is also valid in classical logic.
The opposite direction does not hold. Hence, the three rules

Γ,G

Γ
 ¬G,Δ

¬-right ,
Γ,G
 H

Γ
 G ⇒ H,Δ
⇒-right ,

Γ
 G[x\a]
Γ
 ∀x G,Δ

∀-right

of the sequent calculus for intuitionistic logic [29] differ from the ones for classical
logic. In all three rules the set of formulae Δ does not occur in the sequent of the
premises anymore. During the proof search these rules are applied from bottom to
top and the formulae inΔ are removed from the sequent. As these formulae might be
necessary to complete the proof, the application of these rules need to be controlled.
To this end, a prefix is assigned to every subformula G of a given formula F. A
prefix is a string, i.e. a sequence of characters over an alphabet Φ ∪ Ψ , in which Φ

is a set of prefix variables and Ψ is a set of prefix constants. Prefix constants and
variables represent applications of the rules ¬-right, ⇒-right, ∀-right, and ¬-left,
⇒-left, ∀-left, respectively [69, 70]. Then, the prefix p of a subformula G, denoted
G : p, specifies the sequence of these rules that have to be applied (analytically) to
obtainG in the sequent. In order to preserve two atomic formulae that form an axiom
in the intuitionistic sequent calculus, their prefixes need to unify. This is done by an
intuitionistic substitution σJ that maps elements of Φ to strings over Φ ∪ Ψ .

In the matrix characterization for intuitionistic logic it is additionally required
that the prefixes of the literals in every connection unify under σJ [70]. For a com-
bined substitution σ := (σQ, σJ), a connection {L1 : p1,L2 : p2} is σ -complementary
iff σQ(L1)= σQ(L2) and σJ(p1)= σJ(p2). An additional interaction condition on σ

ensures that σQ and σJ are mutually consistent [70].
For intuitionistic logic there exists no equivalent clausal form for a given formula

F and the original matrix characterization for intuitionistic logic does not use a
clausal form. In order to adapt the existing clausal connection calculus for classical
logic, Wallen’s original matrix characterization has to be modified. To this end,
the skolemization technique, originally used to eliminate eigenvariables in classical
logic, is extended and also used for prefix constants in intuitionistic logic [44]. This
allows the specification of a clausal matrix characterization, in which clause copies
can simply be made by renaming all term and prefix variables [44]. Furthermore,
there is no need for an explicit irreflexivity test of the reduction ordering. Instead, this
test is realized by the occurs check during the term and prefix unification. For classical
logic this close relationship between the reduction ordering and skolemization was
first pointed out by Bibel [15]. For the extended skolemization, the same Skolem
function symbol is used for instances of the same subformula, a technique that is
similar to the liberalized δ+-rule in classical tableau calculi [31].

The following description gives a formal definition of a prefixed clausal matrix for
intuitionistic logic and the extended skolemization. The prefixed matrix M(Fpol:p)
of a prefixed formula Fpol:p is a set of prefixed clauses, in which pol is a polarity and
p is a prefix, and is defined inductively according to Table2 [44]. In this table it is

224 J. Otten and W. Bibel

Table 2 The definition of the prefixed matrix for intuitionistic logic

Type Fpol : p M(Fpol : p)
atomic A0 : p {{A0 : pa∗}}

A1 : p {{A1 : pV ∗}}
α (¬G)0 : p M(G1 : pa∗)

(¬G)1 : p M(G0 : pV ∗)
(G∧H)1 : p M(G1 : p) ∪ M(H1 : p)
(G∨H)0 : p M(G0 : p) ∪ M(H0 : p)
(G⇒H)0 :p M(G1:pa∗) ∪ M(H0:pa∗)

β (G∧H)0 : p M(G0 : p) ∪β M(H0 : p)
(G∨H)1 : p M(G1 : p) ∪β M(H1 : p)
(G⇒H)1 :p M(G0:pV ∗) ∪β M(H1:pV ∗)

γ (∀xG)1 : p M(G[x\x∗]1 : pV ∗)
(∃xG)0 : p M(G[x\x∗]0 : p)

δ (∀xG)0 : p M(G[x\t∗]0 : pa∗)
(∃xG)1 : p M(G[x\t∗]1 : p)

MG ∪β MH := {CG ∪CH | CG ∈MG, CH ∈MH}. x∗ is a new term variable, t∗ is the
Skolem term f ∗(x1, . . . , xn) in which f ∗ is a new function symbol and x1, . . . , xn
are all free term and prefix variables in (∀xG)0 : p or (∃xG)1 : p. V ∗ is a new prefix
variable, a∗ is a prefix constant of the form f ∗(x1, . . . , xn) in which f ∗ is a new func-
tion symbol and x1, . . . , xn are all free term and prefix variables in A0 : p, (¬G)0 : p,
(G⇒H)0 : p, or (∀xG)0 : p. The intuitionistic matrix M(F) of a formula F is the
prefixed matrixM(F0 : ε), in which ε is the empty string.

For example, the intuitionistic matrix of the formula

(man(Plato) ∧ ∀X(man(X) ⇒ mortal(X))) ⇒ mortal(Plato) (8)

is

{{man(Plato)1 : a1V1}, {man(X)0 : a1V2 a2(X), mortal(X)1: a1V2V3},
{mortal(Plato)0 : a1a3}} , (9)

in which a1, a2(X), a3 are prefix constants, and V1, V2, V3 are prefix variables. Then,

[
[
man(Plato)1 : a1V1

]
[
man(X)0 : a1V2 a2(X)

mortal(X)1: a1V2V3

]
[
mortal(Plato)0 : a1a3

]
]

is a graphical intuitionistic connection proof of matrix 9 with σQ(X) = Plato,
σJ(V1) = a2(Plato), σJ(V2) = ε, and σJ(V3) = a3, where ε is the empty string.

The intuitionistic matrix of the formula

Advances in Connection-Based Automated Theorem Proving 225

Fig. 2 The clausal connection calculus for intuitionistic logic

man(Socrates)∨¬man(Socrates) (10)

is
{{man(Socrates)0 : a1}, {man(Socrates)1 : a2}} . (11)

There is no substitution σJ with σJ(a1)= σJ(a2) and no connection proof of this
matrix. Hence, formula 10 is not valid in intuitionistic logic.

The formal clausal connection calculus for intuitionistic logic [44] is shown in
Fig. 2. It is an extension of the clausal connection calculus for classical logic, in
which a prefix is added to each literal and an additional intuitionistic substitution is
used to identify σ -complementary connections. An intuitionistic connection proof of
the matrixM is a proof of ε,M, ε. The clausal connection calculus for intuitionistic
logic is correct and complete, i.e. a formula F is valid in intuitionistic logic iff there
is an intuitionistic connection proof of its intuitionistic matrixM(F).

The intuitionistic substitution σJ is calculated by a prefix unification algo-
rithm [44]. For a given set of prefix equations {p1 = q1, . . . , pn = qn}, an appropriate
substitution σJ is a unifier such that σJ(pi)= σJ(qi) for all 1≤ i≤ n. General algo-
rithms for string unification exist, but the following unification algorithm is more
efficient, as it takes the prefix property of all prefixes p1, p2, . . . into account: for two
prefixes pi = u1Xw1 and pj = u2Xw2 withX ∈Φ ∪ Ψ the property u1 = u2 holds. This
reflects the fact that prefixes correspond to sequences of connectives and quantifiers
within the same formula.

The prefix unification for the prefixes equation {p= q} is carried out by applying
the rewriting rules in Fig. 3. It isV, V̄ , V ′ ∈ Φ withV �= V̄ ,V ′ is a newprefixvariable,
a, b∈ Ψ , X ∈ Φ ∪ Ψ , and u,w, z ∈ (Φ ∪ Ψ)∗. For rule 10 the restriction (∗) u= ε or
w �= ε or X ∈ Ψ applies. σJ(V)= u is written {V \u}.

The unification starts with the tuple ({p= ε|q}, {}). The application of a rewriting
rule E → E′, τ replaces the tuple (E, σJ) by the tuple (E′, τ (σJ)). E and E′ are
prefix equations, σJ and τ are (intuitionistic) substitutions. The unification terminates
when the tuple ({}, σJ) is derived. In this case, σJ represents a most general unifier.
Rules can be applied non-deterministically and lead to aminimal set of most general

226 J. Otten and W. Bibel

Fig. 3 The prefix unification algorithm for intuitionistic logic

unifiers. In theworst-case, the number of unifiers grows exponentially with the length
of the prefixes p and q. To solve a set of prefix equations Ē = {p1 = p1, . . . , qn = tq},
the equations in Ē are solved one after the other and each calculated unifier is applied
to the remaining prefix equations in Ē.

For example, for the prefix equation {a1V2V3 = a1a3}, there are the two possible

derivations {a1V2V3 = ε|a1a3}, {} 3.−→ {V2V3 = ε|a3}, {} 6.−→ {V3 = ε|a3}, {V2\ε}
10.−→ {V3 = a3|ε}, {V2\ε} 5.−→ {ε = ε|ε}, {V2\ε, V3\a3} and {a1V2V3 =ε|a1a3}, {}
3.−→ {V2V3 = ε|a3},{} 10.−→ {V2V3 = a3|ε},{} 5.−→ {V3 = ε|ε},{V2\a3} 5.−→ {ε = ε|ε},

{V2\a3, V3\ε}, yielding the most general unifiers {V2\ε, V3\a3} and {V2\a3, V3\ε}.

4.2 Modal Logics

For modal logic the classical sequent calculus is extended by rules for the modal
operators � and ♦. For example, the additional modal rules of the modal sequent
calculus [70] for the modal logic T are

Γ,F
 Δ

Γ,�F
 Δ
�-left ,

Γ
 F,Δ

Γ
 ♦F, Δ
♦-right ,

Γ(�)
 F, Δ(♦)

Γ
 �F, Δ
�-right ,

Γ(�),F
 Δ(♦)

Γ,♦F
 Δ
♦-left

with Γ(�) := {G | �G ∈ Γ } and Δ(♦) := {G |♦G ∈ Δ}. When the rules �-right or
♦-left are applied from bottom to top during the proof search, all formulae that are
not of the form �G or ♦G, respectively, are deleted from the sets Γ(�) and Δ(♦)

in the premise. As these formulae might be necessary to complete the proof, the
application of the modal rules need to be controlled. Again, a prefix is assigned to
every subformula G of a given formula F. This prefix is a string over an alphabet
ν ∪ Π , in which ν is a set of prefix variables and Π is a set of prefix constants.
Prefix variables and constants represent applications of the rules �-left or ♦-right,
and �-right or ♦-left, respectively [69, 70].

Proof-theoretically, a prefix of a subformula G captures the modal context of G
and specifies the sequence of modal rules that have to be applied analytically in
order to obtain G in the sequent. Semantically, a prefix denotes a specific world in
a model [27, 70]. Prefixes of literals that form an axiom in the sequent calculus
need to denote the same world, hence, they need to unify under a modal substitution
σM that maps elements of ν to strings over ν ∪ Π . A connection {L1 : p1,L2 : p2} is

Advances in Connection-Based Automated Theorem Proving 227

Table 3 The definition of the prefixed matrix for modal logics

Type Fpol : p M(Fpol : p)
atomic A0 : p {{A0 : p}}

A1 : p {{A1 : p}}
α (¬G)0 : p M(G1 : p)

(¬G)1 : p M(G0 : p)
(G∧H)1 : p M(G1 : p) ∪ M(H1 : p)
(G∨H)0 : p M(G0 : p) ∪ M(H0 : p)
(G⇒H)0: p M(G1 : p) ∪ M(H0 : p)

ν (�G)1 : p M(G1 : pV ∗)
(♦G)0 : p M(G0 : pV ∗)

β (G∧H)0 : p M(G0 : p) ∪β M(H0 : p)
(G∨H)1 : p M(G1 : p) ∪β M(H1 : p)
(G⇒H)1: p M(G0:p) ∪β M(H1 : p)

γ (∀xG)1 : p M(G[x\x∗]1 : p)
(∃xG)0 : p M(G[x\x∗]0 : p)

δ (∀xG)0 : p M(G[x\t∗]0 : p)
(∃xG)1 : p M(G[x\t∗]1 : p)

π (�G)0 : p M(G0 : pa∗)
(♦G)1 : p M(G1 : pa∗)

σ -complementary for a combined substitutionσ := (σQ, σM) iffσQ(L1)= σQ(L2) and
σM(p1)= σM(p2). An additional domain condition specifies if constant, cumulative,
or varying domains are considered [70].

The skolemization technique is extended to modal logic by introducing a Skolem
term also for the prefix constants [48]. This integrates the irreflexivity test into the
term and prefix unification. The prefixed matrix M(Fpol:p) of a prefixed formula
Fpol:p is a set of prefixed clauses, in which pol is a polarity and p is a prefix, and is
defined inductively according to the Table3 [48]. The definitions of ∪β , x∗, and t∗
are identical to the ones used for intuitionistic logic. V ∗ is a new prefix variable, a∗
is a prefix constant of the form f ∗(x1, . . . , xn), in which f ∗ is a new function symbol
and x1, . . . , xn are all free term and prefix variables in (�G)0 : p or (♦G)1 : p. The
modal matrix M(F) of a modal formula F is the prefixed matrixM(F0 : ε), in which
ε is the empty string.

For example, the modal matrix of the formula

�man(Plato) ⇒ ♦man(Plato) (12)

is
{{man(Plato)1 : V1}, {man(Plato)0 : V2}} (13)

228 J. Otten and W. Bibel

Fig. 4 The prefix unification algorithm for the modal logic T

in which V1 and V2 are prefix variables. Then,

[[
man(Plato)1 : V1

] [
man(Plato)0 : V2

]]

is a graphical modal connection proof of matrix 13 with σM(V1)= V2.
The core of the formal clausal connection calculus for modal logic [21, 48] is

identical to the one for intuitionistic logic given in Fig. 2. The only difference to
the intuitionistic calculus is the definition of the prefixes and the prefix unification
algorithm. The clausal connection calculus for modal logic is correct and complete.

A prefix unification algorithm [48] is used to calculate the modal substitution
σM . Depending on the modal logic, the accessibility condition has to be respected
when calculating this substitution: for all V ∈ ν: |σM(V)| = 1 for the modal logic D,
|σM(V)| ≤ 1 for the modal logic T; there is no restriction for the modal logics S4
and S5. The prefix unification for D is a simple pattern matching, for S4 the prefix
unification for intuitionistic logic can be used, for S5 only the last character of each
prefix (or ε if the prefix is empty) has to be unified. The prefix unification for T is
specified by the rewriting rules given in Fig. 4 (with V̄ �=X), which are applied in
the same way as the ones for intuitionistic logic (see Sect. 4.1).

5 Implementing Connection Calculi

Several automated theorem provers for classical logic that are based on clausal con-
nection calculi have been implemented so far, such as KoMeT [18], METEOR [5],
PTTP [64], and SETHEO [39]. Because of their complexity, it would be a difficult
— if not impossible — task to adapt these implementations to the non-classical
connection calculi described in Sect. 4.

At first, this section presents a very compact PROLOG implementation of the
clausal connection calculus for classical logic. Afterwards, this implementation is
extended to intuitionistic and modal logics.

Advances in Connection-Based Automated Theorem Proving 229

5.1 Classical Logic

leanCoP is an automated theorem prover for classical first-order logic [45, 46, 51].
It is a very compact PROLOG implementation of the clausal connection calculus
described in Sect. 3.1. leanCoP 1.0 [51] essentially implements the basic clausal
connection calculus shown in Fig. 1. The source code of the core prover is given in
Fig. 5 (sound unification has to be used). PROLOG lists are used to represent sets and
PROLOG terms are used to represent atomic formulae. PROLOG variables represent
term variables, and “-” is used to mark literals that have polarity 1. For example, the
matrix

{{man(Plato)1}, {man(X)0,mortal(X)1}, {mortal(Plato)0}}

is represented by the PROLOG list

[[-man(plato)],[man(X),-mortal(X)],[mortal(plato)]] .

The prover is invoked by calling the predicate prove(M,I), in which M is a
matrix andI is a positive number. The predicate succeeds only if there is a connection
proof for the matrix M, in which the size of the active path is smaller than I. The
proof search starts by applying the start rule implemented in the first two lines. As a
first optimization technique, the clause C1 in the start rule of Fig. 1 can be restricted
to positive clauses, i.e. clauses that contain only literals with polarity 0 [51]. For
the above example this would be the clause {mortal(Plato)0}. Afterwards, reduction
and extension rules are repeatedly applied. These rules are implemented in the last
four lines by the PROLOG predicate prove(C,M,P,I), in which C is the subgoal
clause, M is the matrix, P is the active path, and I is the path limit. The path limit is
used to perform iterative deepening on the size of the active path, which is necessary
for completeness.When the extension rule is applied, the proof search continues with
the left premise before the right premise is considered. The axiom is implemented
in the third line. The term substitution σ is stored implicitly by PROLOG.

leanCoP 1.0 already shows an impressive performance and proves some formulae
not proven by more complex automated theorem provers [51]. As clause copies are
restricted to ground clauses, leanCoP is also a decision procedure for determining
the validity of propositional formulae.

leanCoP 2.0 integrates additional optimization techniques into the basic connec-
tion calculus [45, 46]. The source code of the core prover is shown in Fig. 6. Lean
PROLOG technology is a technique that stores the clauses of the matrix in PRO-
LOG’s database. It integrates the main advantage of the ”PROLOG technology”
approach [64] into leanCoP by using PROLOG’s fast indexing mechanism to quickly
find connections. A controlled iterative deepening stops the proof search if the cur-
rent path limit for the size of the active path is not exceeded (line 4). This yields a
decision procedure for ground formulae and also allows for refuting some (not valid)
first-order formulae. The regularity condition [38] restricts the proof search such that

230 J. Otten and W. Bibel

Fig. 5 The source code of the leanCoP 1.0 core prover for classical logic

Fig. 6 The source code of the leanCoP 2.0 core prover for classical logic

no literal occurs more than once in the active path (lines 6–7). The lemmata tech-
nique [38] reuses the subproof of a literal in order to solve the same literal on other
branches (line 7). Restricted backtracking [46] cuts off alternative connections once
the application of the reduction or extension rule has successfully solved a literal
(line 11; see also Sect. 3.2). Backtracking over alternative start clauses can be cut
off as well. A definitional clausal form translation is used in a preprocessing step to
translate arbitrary first-order formulae into an equivalent clausal form by introduc-
ing definitions for certain subformulae [46]. Furthermore, leanCoP 2.0 uses a fixed
strategy scheduling, i.e. the PROLOG core prover is consecutively invoked by a shell
script with different strategies [45, 46]. See [46] for a more detailed explanation of
the source code.

The core prover in Fig. 6 is invoked with prove(1,S), where S is a strategy
(see [45] for details) and the start limit for the size of the active path is 1. The predicate
succeeds if there is a connection proof for the clauses stored in PROLOG’s database.
The full source code of the prover and the definitional clausal form translation are
available on the leanCoP website at http://www.leancop.de.

The additional techniques improve the performance of leanCoP significantly, in
particular for formulae containing many axioms [46]. Of the (non-clausal) formulae
in the TPTP v3.7.0 problem library, leanCoP 2.0 proves (within 600s) about 50%
more formulae than leanCoP 1.0, about as many formulae as Prover9 [41], and about

Advances in Connection-Based Automated Theorem Proving 231

30% less formulae thanE [61]. The newdefinitional clausal form translation performs
significantly better than those of E, SPASS, and TPTP [46].

nanoCoP [50] implements the non-clausal calculus described in Sect. 3.3. It proves
more problems from the TPTP library than the core prover of leanCoP for both, the
standard and the definitional translation into clausal form. Furthermore, the returned
non-clausal proofs are on average about 30% shorter than the clausal proofs of
leanCoP.

5.2 Intuitionistic Logic

ileanCoP is a prover for first-order intuitionistic logic [44, 45]. It is a compact
PROLOG implementation of the clausal connection calculus for intuitionistic logic
described in Sect. 4.1. ileanCoP extends the classical connection prover leanCoP by

a. prefixes that are added to the literals in the matrix in a preprocessing step,
b. a set of prefix equations that are collected during the proof search,
c. a set of term variables together with their prefixes in order to check the interaction

condition, and
d. an additional prefix unification algorithm that unifies the prefixes of the literals

in each connection.

The source code of the ileanCoP 1.2 core prover is shown in Fig. 7. The underlined
codewas added to the classical prover leanCoP2.0; noothermodificationsweremade.
Prefixes are represented by PROLOG lists, e.g. the prefix a1V2V3 is represented by
the list [a1,V2,V3]. For example, the intuitionistic matrix

{{man(Plato)1 : a1V1}, {man(X)0 : a1V2 a2(X),

mortal(X)1: a1V2V3}, {mortal(Plato)0 : a1a3}}

is represented by the PROLOG list

[[-man(plato):[a1,V1]], [man(X):[a1,V2,a2(X)],

-mortal(X):[a1,V2,V3]], [mortal(plato):[a1,a3]] .

In a preprocessing step the clauses of the intuitionistic matrix are written into
PROLOG’s database. Then, the prover is invoked with prove(1,S), where S is a
strategy (see [45] for details) and the start limit for the size of the active path is 1.
The predicate succeeds if there is an intuitionistic connection proof for the clauses
stored in PROLOG’s database.

First, ileanCoP performs a classical proof search, which uses only a weak prefix
unification (line 11 and line 12). After a classical proof is found, the prefixes of
the literals in each connection are unified and the interaction condition is checked.
To this end, the two predicates prefix_unify and check_addco are invoked
(line 4). They implement the rewriting rules shown in Fig. 3 and require another 26

232 J. Otten and W. Bibel

Fig. 7 The source code of the ileanCoP 1.2 andMleanCoP 1.2 core provers for intuitionistic and
modal logics

lines of PROLOG code. If the prefix unification or the interaction condition fails, the
search for alternative connections continues via backtracking. The substitutions σQ

and σJ are stored implicitly by PROLOG. The full source code is available on the
ileanCoP website at http://www.leancop.de/ileancop.

Version 1.0 of ileanCoP is based on leanCoP 1.0 and implements only the basic
calculus [44]. In ileanCoP 1.2 all additional optimization techniques used for classical
logic described in Sect. 5.1 are integrated as well [45]. To this end, some of these
techniques are adapted to the intuitionistic approach using prefixes. This includes
regularity, lemmata, and the definitional clausal form translation. Other techniques,
such as the lean PROLOG technology and restricted backtracking, can be applied
directly without any modifications.

ileanCoP 1.2 proves significantly more formulae of the TPTP problem library and
the ILTP problem library [55] than any other automated theorem prover for first-
order intuitionistic logic [45]. Of the (non-clausal) formulae of the TPTP v3.3.0
problem library it proves (within 600s) between 250 and 700% more formulae than
the intuitionistic provers JProver, ileanTAP, ft, and ileanSeP [45]. It solves about
50% more formulae than ileanCoP 1.0, and proves significantly more formulae than
Imogen [42]. Of the formulae of the TPTP v3.7.0 problem library, ileanCoP 1.2
proves a higher number of problems of certain problem classes than some classical
provers [46], even though these classes contain formulae that are valid in classical
but not in intuitionistic logic.

Advances in Connection-Based Automated Theorem Proving 233

5.3 Modal Logics

MleanCoP is a prover for several first-order modal logics [48, 49]. It is a compact
PROLOG implementation of the clausal connection calculi for modal logics, as
described in Sect. 4.2. The source code of the MleanCoP 1.2 core prover is identical
to the source code of ileanCoP 1.2 shown in Fig. 7. PROLOG lists are used to represent
sets and prefixes. For example, the modal matrix

{{man(Plato)1 : V1}, {man(Plato)0 : V2}}

is represented by the PROLOG list

[[-man(plato):[V1]],[man(plato):[V2]] .

In a preprocessing step, the clauses of the modal matrix are written into PRO-
LOG’s database. First, MleanCoP performs a classical proof search using a weak
prefix unification. After a classical proof is found, the prefixes of the literals in each
connection are unified and the domain condition is checked. This is done by the
two predicates prefix_unify and domain_cond. Depending on the chosen
modal logic, the prefix unification algorithm has to respect different accessibility
conditions. For example, for the modal logic T, the rewriting rules shown in Fig. 3
are used. For the modal logic S4, the code of the prefix unification for intuitionistic
logic can be used. For D and S5, the prefix unification is a simple pattern match-
ing. If the prefix unification or the domain condition fails, the search for alternative
connections continues via backtracking. The substitutions σQ and σM are stored
implicitly by PROLOG. The full source code is available on the MleanCoP website
at http://www.leancop.de/mleancop.

As MleanCoP 1.2 is based on leanCoP 2.0, all additional optimization techniques
used for classical logic described in Sect. 5.1 are integrated into this implementation
as well [48]. This includes the lean PROLOG technology, regularity, lemmata, the
definitional clausal form translation, and restricted backtracking.MleanCoP supports
the constant, cumulative, and varying domain variants of the first-order modal logics
D, T, S4, and S5.

MleanCoP 1.2 proves more formulae from the QMLTP v1.1 problem library [56]
than any other prover for first-ordermodal logic, such as the provers LEO-II, Satallax,
MleanSeP, or MleanTAP [21]. For the modal logic D, MleanCoP 1.2 proves (within
600s) between 35 and 120% more problems than any of the other provers; for the
modal logic T, between 25 and 85%more problems; for the modal logic S4, between
30 and 100% more problems, and for the modal logic S5, between 40 and 110%
more problems. MleanCoP is also able to refute a large number of modal formulae
that are not valid.

Version 1.3 of MleanCoP [49] contains additional enhancements, such as the sup-
port for heterogeneous multimodal logics, the output of a compact modal connec-
tion proof, support for the modal TPTP input syntax [56] and an improved strategy
scheduling.

234 J. Otten and W. Bibel

6 A Brief History and Perspectives

One of the fundamental achievements of logic is the discovery that truth can be
demonstrated in a purely syntactic way. This means that any statement, represented
as a formula F in some language, can be shown to be valid by purely syntactical
means. All known methods for such a demonstration use syntactic rules of roughly
the kind F1 ⇒ F2 and some termination criterion which, applied to a formula in
the chain of demonstration, specifies whether the respective line in this chain can
successfully stop at the point of the formula’s occurrence.

When the idea of testing the validity of formulae in a mechanical way came up in
the beginning of the last century, the most obvious way of choosing appropriate rules
of this kind was to inverse the rules of the formal logical systems then known for
deriving valid formulae. Even if the logic is restricted to fol, its formulae are rather
complex syntactic constructs as are the rules of those systems. Hence this approach
led to a rather complicated solution first realized by Prawitz [53] (for more historical
details concerning the beginnings of ATP see Sect. 2 in [17]).

The problem with this solution was tractability — tractability from the point
of view of human researchers and system developers, that is. Hence some kind
of simplification was called for. It was Herbrand who first succeeded in reducing
the problem of determining the validity of fol formulae to propositional ones [34].
This reduction is known as Herbrand’s Theorem. Since propositional logic is much
easier to handle for human researchers this opened a line of research additionally
characterized as a confluent saturation method based on the resolution rule along
with unification which to some extent hides first-order features.

When the second author, abbreviated as WB in the following, entered the field
of ATP around 1970 as a trained logician, the Prawitz line was out of date and
the Herbrand-resolution line was highly in vogue. This observation took him by
surprise as expressed at the beginning of his first publication in ATP [11]: “In the
field of theorem proving in first-order logic almost all work is based on Herbrand’s
theorem. This is a surprising fact since from a logical point of view the most natural
way … .” Hence, for nearly a decade he tried to further develop the Prawitz line and
at the same time to study the virtues and disadvantages of both lines in a comparative
way, in order to reach a rational decision which line to follow in the future.

In the course of this research and after several publications WB, like Prawitz and
others, realized that a core ofATP lies in the connection structure of the given formula
(or of the set of clauses resulting from it), independent of which line of research
is pursued. With this insight different approaches to ATP could be developed and
analysed from a common viewpoint as demonstrated in the paper [13]. The paper
was completed in 1978, published as “Bericht 79” in January 1979 and as a journal
article in 1981 (submitted 1979). It already contains all the basic notions underlying
the matrix characterization of logical validity, provides the basis for the connection
method (CM) and features a number of different results.

In 1979WB attended CADE-4 where Peter Andrews presented his paper [6] later
published as [7]. This independently taken approach turned out to be very closely

Advances in Connection-Based Automated Theorem Proving 235

related to the one taken in the CMwhile using a different terminology (mating instead
of spanning set of connections, etc.). It cites one of WB’s papers while WB had not
been aware of Andrews’ work before this talk. Therefore, it is not yet cited in the
report version of 1979, but then of course in the journal version [13]. Andrews’ future
work focussed more on higher-order logic while WB’s work in ATP continued the
line taken so far, producing [14] as well as the book [15] among numerous other
publications including ones with several co-authors. It eventually resulted in the
system SETHEO [39]. SETHEO in 1996 won first-place at the first international
competition among theorem provers, the CADEATP System Competition or CASC.

There is a close relative to the Prawitz linewhichwemight call theBeth line, today
known under the term tableaux (see e.g. [28]). The team realizing the implementation
of SETHEO featured two members who by education were committed to thinking
in terms of tableaux rather than of the CM. Hence, SETHEO was influenced by the
CM and some of its features but cannot be called a proper CM-prover. The prover
KoMeT [18] may be regarded a more authentical product in this respect; but its main
developer unfortunately soon left the field thus terminating its development towards
an internationally competitive system. Hence, the leanCoP prover family discussed
in this chapter has become the first long-term project on the very basis of the CM.

Most researchers in ATP are still committed to the resolution approach in ATP. In
fact, the twomost successful systems in terms of the CASC competition are based on
resolution. On first sight, this seems to be a good reason to regard resolution superior
to its competitors. But the argument is not really convincing if a closer look is taken,
as we will try to show now.

The high performance of resolution systems is to a large extent due to the following
two reasons. First of all, resolution was designed intentionally as amachine-oriented
inference rule which could be implemented relatively easily and in a way so that an
extremely massive amount of inferences can be performed in a short time. Due to
the resulting successes of those implementations many systems have been developed
on its basis. So, secondly, sheer numbers of investments have made the systems ever
more powerful. Winning a CASC competition may well be a consequence of these
two peculiarities and does not necessarily say something in sufficient detail about
the ultimate potential of the underlying proof method.

In fact, resolution in principle does suffer from serious inherent drawbacks. It
operates on sets of clauses resulting from the original formula F to be proved. The
formula is built from axioms, theorems, lemmas and the assertions and has exactly
in this respect an information-rich structure, from which human mathematicians
draw heavily as they search for a proof of the assertions. This structure is totally
destroyed in the resolution context. In order to cope with this deficiency to some
extent, strategies like set-of-support have been developed. While they are surely
useful to some extent, they do not bring back in full the rich information contained
in the original structure of F. Hence resolution inferences in present systems to a
large extent are carried out in a rather blind way, a disadvantage compensated by
brute force and sheer power due to the two peculiarities mentioned. But for proving
truly hard theorems brute force does and will not suffice. Even Alan Robinson, the
hero in ATP who has laid the basis for the resolution line, in his more recent work

236 J. Otten and W. Bibel

has convincingly argued into the same direction [59] but so far has largely remained
unnoticed by the huge community of his followers who keep sticking exclusively to
his earlier work.

For all these reasons we continue to be deeply convinced that, in contrast, the
research path pursued on the basis of the matrix characterization and the CM in the
long term will yield much better results. Let us therefore summarize here its ultimate
vision of a future proof method which is based on Theorem 10.4 in [15]. The idea
is to elaborate within F a deductively sufficient skeleton (cf. Definition 10.2 in [15])
which is characterized exclusively by the very syntactic items occurring in F and
some relations defined for them (like the pairing relation defining connections, etc.).
This goal has already been achieved by leanCoP for formulae in skolemized clausal
form, and by nanoCoP for arbitrary formulae in skolemized (non-clausal) form, as
discussed in Sect. 5 of the present chapter. The particular feature of splitting by need
(Sect. 10 in [15]) has been studied extensively in [4, 33], but without focussing on
an effective proof search guided by connections. There is the additional feature of
integrating an alternative for skolemization, discussed in Sect. 8 of [15] (and in fact
already introduced in Sect. 4 of [11]). It would not only preserve a given formula
in its truly original structure but would also make the translation back to a more
readable sequent proof significantly easier. Despite these advantages, this alternative
for skolemization is widely unknown in the community.

Altogether a comprehensive calculus combining all these results along with a
corresponding implementation is still missing because the way towards it is a truly
hard one. Once it will be available additional strategies for guiding the proof search
through the information given by the structural elements in F (axioms, theorems,
etc.) may be explored for the first time within a competitive system. This will be
possible since the calculus keeps the given formula in its original structure com-
pletely unchanged. This also opens a way to consider the realization and inclusion
of Robinson’s recent ideas referenced just before.

The line of research described here is unique and pursued so far by only a very few
researchers worldwide. The reason for the lack of popularity also lies in the fact that
the technical details are extremely challenging for anyone. There is a relationship
with tableaux in that both lines originate from related formal systems of fol. But in
contrast to tableaux which redundantly expand F to numerous subformulae accord-
ing to the tableau rules, in our approach F is left completely untouched, instead
accumulating information about its structure in the skeleton. Hence the Beth-line
in terms of performance in principle cannot compete with our much more compact
approach. But tableaux are much easier for humans to work with, thus explaining
their continuing popularity.

The skeleton identified after a successful proof search represents a set of possible
derivations in the underlying formal system of fol and in this sense is an extremely
condensed abstraction from such a set of derivations. Any derivation of this set may
easily be rolled out as soon as the skeleton has been found (see Corollary 10.6
in [15]). In this manner proofs become accessible to human understanding after they
have been discovered by machine.

Advances in Connection-Based Automated Theorem Proving 237

At some point in the last century people believed that resolution had an advantage
in terms of complexity in the limit in comparison with our approach. But in the
book [25] it has been shown that this in fact is not the case (see its Theorem 4.4.1),
provided that one avoids repeating one and the same part of a connection proof
redundantly over and over again. This is another feature which has to be cared for in
a future system following our approach. For further aspects concerning such a future
system see also [16, 19].

7 Conclusion

Formal reasoning in classical and non-classical logics is a fundamental technique
when developing provably correct software. Over the last decades, the implementa-
tion of proof calculi has made considerable advances and automated theorem provers
are nowadays used in industrial applications. But whereas the development of effi-
cient ATP systems for classical logic has made significant progress (See e.g. [60]),
the development of ATP systems for many important non-classical logics is still in
its infancy. This is in particular true for first-order intuitionistic logic and first-order
modal logics. Whereas the time complexity of determining whether a given propo-
sitional formula F is valid in classical logic is co-NP-complete [22], it is already
PSPACE-complete [63] for intuitionistic or the (standard) modal logics (except for
the modal logic S5, which is co-NP-complete [70]). Proof search in these non-
classical logics is considerably more difficult than for first-order classical logic and,
hence, only a few implementations of ATP systems for these logics exist to date.

This chapter provides a summary of research work on proof calculi and efficient
implementations for classical and non-classical logics that has been carried out during
the last ten years. All these calculi and implementations are based on the connection
method. In particular, they are based on thematrix characterization of logical validity
and operate in a goal-oriented connection-driven manner. As a result of this research
work, three efficient automated theorem provers for first-order classical, first-order
intuitionistic, and first-order modal logic are now available. All implemented ATP
systems are elegant and very compact implementations based on uniform clausal con-
nection calculi for classical, intuitionistic, and modal logics. Different non-classical
logics are specified by prefixes in the clausal matrix and additional prefix unification
algorithms. The minimal PROLOG source code of the core theorem provers consists
of between only 11 and 16 lines.

leanCoP is one of the strongest theorem provers for first-order classical logic.
It has won several prizes at CASC, the yearly competition for fully automated
ATP systems, such as the “Best Newcomer” award (leanCoP 2.0) [65] and the
SUMO reasoning prize (leanCoP-SInE) [67] and was winner of the first arith-
metic division (leanCoP-�) [68]. It is currently the most efficient theorem prover
based on a connection calculus. leanCoP includes well-known techniques, such as
regularity, lemmata, and some novel optimization techniques, such as lean PRO-
LOG technology, an optimized definitional clausal form translation, and restricted

238 J. Otten and W. Bibel

backtracking. The definitional clausal form translation works significantly better
than other well-known translations [46]. Restricted backtracking reduces the search
space in connection calculi significantly, in particular for formulae containing many
axioms. Indeed, restricted backtracking turned out to be the single most effective
technique for pruning the search space in connection calculi.

The clausal connection calculus for classical logics was adapted to first-order
intuitionistic logic and several first-order modal logics. To this end, an intuitionistic
matrix and a modal matrix were defined, which add prefixes to the clausal matrix.
The skolemization technique is extended to prefixes, hence, clause copies are made
by simply renaming all term and prefix variables. The additionally required prefix
unification algorithm is specified by a small set of rewriting rules and depends on the
particular logic. ileanCoP extends leanCoP to first-order intuitionistic logic by adding
prefixes to literals and integrating an intuitionistic prefix unification algorithm. It is
currently the most efficient automated theorem prover for first-order intuitionistic
logic. MleanCoP extends leanCoP to the first-order modal logics D, T, S4, and S5.
To this end the definition of prefixes and the prefix unification algorithm is modified
and adapted, whereas the core prover already used for ileanCoP remains unchanged.
Experimental results indicate that the performance of MleanCoP is better than that of
any other existing theorem prover for first-order modal logic.

In summary, the use of an additional prefix unification during the proof search for
non-classical logics resembles the use of term unification in first-order logic:

first-order logic = propositional logic + term unification ,

intuitionistic/modal logic = classical logic + prefix unification .

By capturing the intuitionistic and modal contents of formulae in prefixes, most opti-
mization techniques, such as the definitional clausal form translation and restricted
backtracking, can be used for intuitionistic and modal logic as well.

The non-clausal connection calculus is a generalization of the clausal connec-
tion calculus. To this end, a formal definition of non-clausal matrices is given, the
extension rule is slightly modified and a decomposition rule is added. In contrast
to existing approaches, clause copies are added carefully and dynamically during
the proof search. The non-clausal connection calculus combines the advantages of
more natural (non-clausal) sequent or tableau calculi with the goal-oriented property
of connection calculi. The non-clausal connection calculus is implemented in the
compact PROLOG theorem prover nanoCoP. nanoCoP not only returns more natural
non-clausal proofs, but the proofs are also significantly shorter.

To sum up, the presented research work has provided sufficient evidence to sup-
port the assertion that connection calculi are a solid basis for efficiently automating
formal reasoning in classical and non-classical logics. They have been implemented
carefully in a very compact and elegant way. Whereas the resulting performance is
similar or even superior to that of existing — significantly more complex — ATP
systems, the correctness of the concise code of the core provers can be checked
much more easily. Hence, such implementations can not only serve as tools for

Advances in Connection-Based Automated Theorem Proving 239

constructing provably correct software, but they themselves follow an approach
that ensures that they are provably correct software. An observation that was made
25 years ago by Hoare [35]:

I conclude that there are twoways of constructing a software design: Oneway is tomake it so
simple that there are obviously no deficiencies and the other way is to make it so complicated
that there are no obvious deficiencies. The first method is far more difficult.

Acknowledgements We would like to thank several anonymous referees for their constructive
comments which were helpful to improve the text. Our thanks are also due to the editors Jonathan
Bowen,Michael Hinchey and Ernst-Ruediger Olderog for the organization of the ProCoSWorkshop
in 2015, for compiling this volume and for inviting us to both projects.

References

1. http://www.scientificamerican.com/article/pogue-5-most-embarrassing-software-bugs-in-
history/. Accessed 15 June 2016

2. https://en.wikipedia.org/wiki/2015_Seville_Airbus_A400M_Atlas_crash. Accessed 15 June
2016

3. https://en.wikipedia.org/wiki/List_of_failed_and_overbudget_custom_software_projects.
Accessed 15 June 2016

4. Antonsen, R., Waaler, A.: Liberalized variable splitting. J. Autom. Reason. 38, 3–30 (2007)
5. Astrachan, O., Loveland, D.: METEORs: high performance theorem provers using model

elimination. In: Bledsoe,W., Boyer, S. (eds.) AutomatedReasoning: Essays inHonor ofWoody
Bledsoe, pp. 31–60. Kluwer, Amsterdam (1991)

6. Andrews, P.B.: Generalmatings. In: Joyner,W.H. (ed.) FourthWorkshop onAutomatedDeduc-
tion, pp. 19–25 (1979)

7. Andrews, P.B.: Theorem proving via general matings. J. ACM 28, 193–214 (1981)
8. Barwise, J.: An introduction to first-order logic. In: Barwise, J. (ed.) Handbook ofMathematical

Logic, pp. 5–46. North-Holland, Amsterdam (1977)
9. Blackburn, P., van Bentham, J., Wolter, F.: Handbook of Modal Logic. Elsevier, Amsterdam

(2006)
10. Baumgartner, P., Eisinger, N., Furbach, U.: A confluent connection calculus. In: Hölldobler,

S. (ed.) Intellectics and Computational Logic. Applied Logic Series 19, pp. 3–26. Kluwer,
Dordrecht (2000)

11. Bibel, W.: An approach to a systematic theorem proving procedure in first-order logic. Com-
puting 12, 43–55 (1974)

12. Bibel, W.: Syntax-directed, semantics-supported program synthesis. Artificial Intelligence 14,
243–261 (1980)

13. Bibel, W.: On matrices with connections. J. ACM 28, 633–645 (1981)
14. Bibel, W.: Matings in matrices. Commun. ACM 26, 844–852 (1983)
15. Bibel, W.: Automated Theorem Proving, 2nd edn. Vieweg, Braunschweig (1987)
16. Bibel, W.: Research perspectives for logic and deduction. In: Stock, O., Schaerf, M. (eds.)

Reasoning. Action, and Interaction in AI Theories and Systems - Essays dedicated to Luigia
Carlucci Aiello, LNAI 4155, pp. 25–43. Springer, Berlin (2006)

17. Bibel, W.: Early history and perspectives of automated deduction. In: Hertzberg, J., Beetz, M.,
Englert, R. (eds.) KI 2007. LNAI 4667, pp. 2–18. Springer, Berlin (2007)

18. Bibel, W., Brüning, S., Egly, U., Rath, T.: In: Bundy, A. (ed.) CADE-12. LNAI 814,
pp. 783–787. Springer, Heidelberg (1994)

19. Bibel, W., Otten, J.: From schütte’s formal system to modern automated deduction. In: Kahle,
R., Rathjen, M. (eds.), The Legacy of Kurt Schütte. Springer, London, to appear

http://www.scientificamerican.com/article/pogue-5-most-embarrassing-software-bugs-in-history/
http://www.scientificamerican.com/article/pogue-5-most-embarrassing-software-bugs-in-history/
https://en.wikipedia.org/wiki/2015_Seville_Airbus_A400M_Atlas_crash
https://en.wikipedia.org/wiki/List_of_failed_and_overbudget_custom_software_projects

240 J. Otten and W. Bibel

20. Brandt, C., Otten, J., Kreitz, C., Bibel, W.: Specifying and verifying organizational security
properties in first-order logic. In: Siegler, S., Wasser, N. (eds.) Verification, Induction, Termi-
nation Analysis. LNAI 6463, pp. 38–53. Springer, Heidelberg (2010)

21. Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-order modal
logics. In: De Raedt, L., et al. (eds.) 20th European Conference on Artificial Intelligence (ECAI
2012), pp. 163–168. IOS Press, Amsterdam (2012)

22. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual
ACM Symposium on the Theory of Computing, pp. 151–158. ACM, New York (1971)

23. van Dalen, D.: Intuitionistic logic. In: Goble, L. (ed.) The Blackwell Guide to Philosophical
Logic, pp. 224–257. Blackwell, Oxford (2001)

24. Deville, Y.: Logic Programming, Systematic Program Development. Addison-Wesley, Wok-
ingham (1990)

25. Eder, E.: Relative Complexities of First Order Calculi. Vieweg, Braunschweig (1992)
26. Fisher, K.: HACMS: high assurance cyber military systems. In: Proceedings of the 2012 ACM

Conference on High Integrity Language Technoloby, pp. 51–52. ACM, New York (2012)
27. Fitting, M.: Proof Methods for Modal and Intuitionistic Logic. D. Reidel, Dordrecht (1983)
28. Fitting,M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer, Heidelberg

(1996)
29. Gentzen, G.: Untersuchungen über das logische Schließen. Math. Z. 39(176–210), 405–431

(1935)
30. Goel, S., Hunt, W.A., Kaufmann, M.: Engineering a formal, executable x86 ISA simulator

for software verification. In: Bowen, J.P., Hinchey, M., Olderog, E.-R. (eds.) Provably Correct
Systems. Springer, London (2016)

31. Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.) Handbook of
Automated Reasoning, pp. 100–178. Elsevier, Amsterdam (2001)

32. Hähnle, R., Murray, N.V., Rosenthal, E.: Linearity and regularity with negation normal form.
Theor. Comput. Sci. 328, 325–354 (2004)

33. Hansen, C.: A Variable Splitting Theorem Prover. University of Oslo (2012)
34. Herbrand, J.J.: Recherches sur la théorie de la démonstration. Travaux Soc. Sciences et Lettres

Varsovie, Cl. 3 Mathem. Phys. (1930)
35. Hoare, C.A.R.: The emperor’s old clothes. Commun. ACM 24, 75–83 (1981)
36. Klein, G., Elphinstone, K., Heiser, G., Adronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engel-

hardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: SeL4: formal verifi-
cation of an OS kernel. In: Proceedings of the 22nd ACM SIGOPS, pp. 207–220. ACM, New
York (2009)

37. Lee, S.-J., Plaisted, D.: Eliminating duplicates with the hyper-linking strategy. J. Autom. Rea-
son. 9, 25–42 (1992)

38. Letz, R., Stenz, G.: Model elimination and connection Tableau procedures. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 2015–2114. Elsevier, Amsterdam
(2001)

39. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SETHEO: a high-performance theorem prover.
J. Autom. Reason. 8, 183–212 (1992)

40. Loveland, D.: Mechanical theorem proving by model elimination. J. ACM 15, 236–251 (1968)
41. McCune, W.: Release of Prover9. Mile High Conference on Quasigroups, Loops and Nonas-

sociative Systems. Technical report, Denver (2005)
42. McLaughlin, S., Pfenning, F.: Efficient intuitionistic theoremprovingwith the polarized inverse

method. In: Schmidt, R.A. (ed.) CADE-22. LNCS 5663, pp. 230–244. Springer, Heidelberg
(2009)

43. Moore, J.S.: Computing verified machine address bounds during symbolic simulation of code.
In:Bowen, J.P.,Hinchey,M.,Olderog, E.-R. (eds.) ProvablyCorrect Systems. Springer, London
(2016)

44. Otten, J.: Clausal connection-based theorem proving in intuitionistic first-order logic. In: Beck-
ert, B. (ed.) TABLEAUX 2005. LNAI 3702, pp. 245–261. Springer, Heidelberg (2005)

Advances in Connection-Based Automated Theorem Proving 241

45. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving in classical
and intuitionistic logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS 5195, pp. 283–291. Springer, Heidelberg (2008)

46. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23, 159–182 (2010)
47. Otten, J.: A Non-clausal Connection Calculus. In: Brünnler, K., Metcalfe, G. (eds.)

TABLEAUX 2011. LNAI 6793, pp. 226–241. Springer, Heidelberg (2011)
48. Otten, J.: Implementing connection calculi for first-order modal logics. In: Ternovska,

E., Korovin, K., Schulz, S. (eds.), 9th International Workshop on the Implementation of Logics
(IWIL 2012), EPiC, EasyChair, vol. 22, pp. 18–32 (2012)

49. Otten, J.:MleanCoP: a connection prover for first-order modal logic. In: Demri, S., Kapur, D.,
Weidenbach, C. (eds.) IJCAR 2014. LNAI 8562, pp. 269–276. Springer, Heidelberg (2014)

50. Otten, J.: nanoCoP: a non-clausal connection prover. In: Olivetti, N., Tiwari, A. (eds.) IJCAR
2016, LNAI 9706. Springer, Heidelberg (2016)

51. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb. Comput. 36,
139–161 (2003)

52. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput.
2, 293–304 (1986)

53. Prawitz, D.: A proof procedure with matrix reduction. In: Laudet, M., et al. (eds.) Symposium
on Automatic Demonstration. Lecture Notes in Mathem, pp. 207–214. Springer, Berlin (1970)

54. Rautenberg, W.: A Concise Introduction to Mathematical Logic. Springer, Heidelberg (2010)
55. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic. J. Autom.

Reason. 38, 261–271 (2007)
56. Raths, T., Otten, J.: The QMLTP problem library for first-order modal logics. In: Gramlich, B.,

et al. (eds.) IJCAR 2012. LNAI 7364, pp. 454–461. Springer, Heidelberg (2012)
57. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41

(1965)
58. Ray, S.: Scalable Techniques for Formal Verification. Springer, Heidelberg (2010)
59. Robinson, J.A.: Proof = guarantee + explanation. In: Hölldobler, S. (ed.) Intellectics and

Computational Logic. Applied Logic Series 19, pp. 277–294. Kluwer, Dordrecht (2000)
60. Robinson, J.A., Voronkov, A.: Handbook of Automated Reasoning. Elsevier, Amsterdam

(2001)
61. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15, 111–126 (2002)
62. Smullyan, R.M.: First-Order Logic. Springer, Heidelberg (1968)
63. Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theoret. Comput.

Sci. 9, 67–72 (1979)
64. Stickel, M.: A Prolog technology theorem prover: implementation by an extended Prolog

compiler. J. Autom. Reason. 4, 353–380 (1988)
65. Sutcliffe, G.: The CADE-21 automated theorem proving system competition. AI Commun. 21,

71–81 (2008)
66. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts,

v3.5.0. J. Autom. Reason. 43, 337–362 (2009)
67. Sutcliffe, G.: The CADE-22 automated theorem proving system competition - CASC-22. AI

Commun. 23, 47–59 (2010)
68. Sutcliffe, G.: The 5th IJCAR automated theorem proving system competition - CASC-J5. AI

Commun. 24, 75–89 (2011)
69. Waaler,A.: Connections in nonclassical logics. In: Robinson,A.,Voronkov,A. (eds.)Handbook

of Automated Reasoning, pp. 1487–1578. Elsevier, Amsterdam (2001)
70. Wallen, L.A.: Automated Deduction in Nonclassical Logics. MIT Press, Cambridge (1990)

Part VI
Run-Time Assertion Checking

Run-Time Deadlock Detection

Frank S. de Boer and Stijn de Gouw

Abstract This chapter reports research that is partly funded by the EU project
FP7-610582 Envisage. It describes a method for detecting at run-time deadlock in
both multi-threaded Java programs and systems of concurrent objects. The method
is based on attribute grammars for specifying properties of message sequences. For
multi-threaded Java programswe focus on the actual tool-developmentwhich extends
the run-time checking of assertions. For concurrent objects which communicate via
asynchronous message passing and synchronize on futures which store the return
values, we present the underlying theory and sketch its implementation.

1 Introduction

As early as in 1949, Alan Turing suggested the use of assertions in a talk “Checking a
Large Routine” at Cambridge, for specifying and proving program correctness. This
use of assertions in the logical specification of the mathematical relations between
the values of the program variables was further developed by Floyd in inductive
assertion networks and by Hoare in a programming logic. Furthermore, checking
assertions at run-time is an important practical method for finding bugs.

In [1] we enhanced run-time assertion checking with attribute grammars [2] for
describing properties of histories, e.g., sequences of method calls and returns. This
supports strict programming to interfaces because it allows for interface specifica-
tions abstracting from the state as represented by the program variables. In [3] we
extended this approach to multi-threaded Java programs which avoids interference
problems in a natural manner. In this chapter we show how we can express, and

F.S. de Boer (B) · S. de Gouw
CWI, Amsterdam, The Netherlands
e-mail: F.S.de.Boer@cwi.nl

S. de Gouw
Open University, Amsterdam, The Netherlands

F.S. de Boer
Leiden University, Leiden, The Netherlands

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_10

245

246 F.S. de Boer and S. de Gouw

detect at run-time, deadlock in both multi-threaded Java programs and Actor-based
programs (as for example introduced in [4]) by means of attribute grammars.

Related Work In [3] we showed how our approach to run-time assertion checking
can be extended to multi-threaded Java programs while avoiding in a natural manner
interference problems. As an example of the generality of our approach, we showed
in [3] how to express deadlocks in multi-threaded Java programs. In this chapter we
detail the actual implementation of this application to deadlock detection in multi-
threaded Java programs.We further show how to express and detect deadlock arising
in systems of concurrent objects which communicate via asynchronous method calls
and so-called futures which store the return values (as described in [5]).

One of the main related works [6] describes how to detect deadlock potentials in
multi-threaded programs which may give rise to false positives and false negatives.
We however focus on detecting actual deadlocks at run-time.

There exist a variety of static techniques for deadlock analysis. Such techniques
analyze the source code without executing it and aim at establishing absence of
deadlock in all executions or finding a counter-example, i.e., a deadlocking compu-
tation. In general the computational complexity of the algorithms underlying these
techniques is a major obstacle to their application to large software systems. Fur-
thermore, their application in general requires certain abstractions which give rise
to imprecision. For example, in [7] a CFL-reachability analysis1 for deadlock in
multi-threaded Java programs is introduced which is based on a finite abstraction
provided by the underlying call-graphs. As another example, in [8] Dynamic Push
down Networks (DPNs) are introduced as an abstract model for parallel programs
with (recursive) procedures anddynamic process creation. Further, in [9–11] different
techniques for the deadlock analysis of systems of concurrent objects are introduced
based on a variety of abstractions, e.g., abstract descriptions of method’s behaviours.

2 The Framework

This section briefly summarizes the use of attribute grammars in run-time verification
as presented in [1]. We use the interface of the Java BufferedReader (Fig. 1) as
a running example to explain the basic modeling concepts.
Communication View A communication view is a (possibly partial) mapping which
associates a name to each event. Partiality makes it possible to filter out irrelevant
events and event names are convenient in referring to events.

Suppose wewish to formalize the following property of the BufferedReader:

The BufferedReadermay only be closed by the same object which created it, and reads
may only occur between the creation and closing of the BufferedReader.

This property must hold for the local history of all instances. The intuitive idea
behind this property is that the object that opened (created) the buffer “owns” it,

1Here CFL stands for “Context Free Language”.

Run-Time Deadlock Detection 247

interface BufferedReader {
void close();
void mark(int readAheadLimit);
boolean markSupported();
int read();
int read(char[] cbuf, int off, int len);
String readLine();
boolean ready();
void reset();
long skip(long n);

}

Fig. 1 Methods of the BufferedReader interface

local view BReaderView grammar BReader.g
specifies java.util.BufferedReader {
BufferedReader(Reader in) open,
BufferedReader(Reader in, int sz) open,
call void close() close,
call int read() read,
call int read(char[] cbuf, int off, int len) read

}

Fig. 2 Communication view of a BufferedReader

and is as such responsible for closing it, but it may pass the buffer on to clients that
can read from it (so in particular, reads are allowed by multiple other objects). The
communication view in Fig. 2 selects the relevant events and associates them with
intuitive names: open, read and close.

All return and call events not listed in the view are filtered. Note how the view
identifies two different events (calls to the overloaded read methods) by giving them
the same name read. Though the above communication view contains only provided
methods (those listed in the BufferedReader interface), required methods (e.g.
methods of other interfaces or classes) are also supported. Since messages to such
methods are sent to objects of a different class (or interface), one must include the
appropriate type explicitly in the method signature. For example, if we additionally
include the following event in the view:

call void C.m() out

then all call-messages to the method m of class C sent by a BufferedReader
are selected and named out . In general, incoming messages received by an object
correspond to calls of provided methods and returns of required methods. Outgoing
messages sent by an object correspond to calls of required methods and returns of
provided methods. Incoming call-messages of local histories never involve static
methods, as such methods do not have a callee.

248 F.S. de Boer and S. de Gouw

Local communication views, such as the one in Fig. 2, select messages sent and
received by a single object of a particular class, indicated by ‘specifies java.util.
BufferedReader’. In contrast, global communication views select messages sent and
received by any object during the execution of the Java program. This is useful to
specify global properties of a program. In addition to instance methods, calls and
returns of static methods can also be selected in global views.

In contrast to interfaces of the programming language, communication views can
contain constructors, required methods, static methods (in global views) and can
distinguish methods based on return type or method modifiers such as ‘static’, or
‘public’. The following features are supported: constructors, inheritance, dynamic
binding, overloading, static methods, access modifiers. In addition to these features,
in Sect. 4 we add support for multi-threading. We associate a grammar to each view.
The grammar keyword, followed by a file name indicates the file containing the gram-
mar associated to the view (i.e. Fig. 2 refers to the grammar in the file BReader.g).
The next section discusses grammars in detail.

Grammars The context-free grammar underlying the attribute grammar in Fig. 3
generates the valid histories for BufferedReader, describing the prefix closure
of sequences of the terminals ‘open’, ‘read’ and ‘close’ as given by the regular
expression (open read* close). In general, the event names form the terminal symbols
of the grammar, whereas the non-terminal symbols specify the structure of valid
sequences of events. In our approach, a communication history is valid if and only
if it and all its prefixes are generated by the grammar.

We extend the grammar with attributes for specification of the data-flow of
the valid histories. Each terminal symbol has built-in attributes named caller,
callee and the parameter names for respectively the object identities of the caller,
callee and actual parameters. Terminals corresponding to method returns addition-
ally have an attribute result containing the return value. Non-terminals have user-
defined attributes to define data properties of sequences of terminals. We extend
the attribute grammar with assertions to specify properties of attributes. For exam-
ple, in the attribute grammar in Fig. 3 a user-defined synthesized attribute ‘c’ for
the non-terminal ‘C’ is defined to store the identity of the object which closed the
BufferedReader (and is null if the reader was not closed yet). Synthesized

S ::= open R {assert (open.caller == null || open.caller == R.c ||
R.c == null);}

| ε
R ::= read R1 (R.c = R1.c;)

| C (R.c = C.c;)
C ::= close C1 (C.c = C1.caller;)

| close (C.c = close.caller;)
| ε (C.c = null;)

Fig. 3 Attribute grammar which specifies that ‘read’ may only be called in between ‘open’ and
‘close’, and the reader may only be closed by the object which opened it

Run-Time Deadlock Detection 249

attributes define the attribute values of the non-terminals on the left-hand side of
each grammar production, thus the ‘c’ attribute is not set in the productions of the
start symbol ‘S’.

The assertion allows only those histories in which the object that opened (created)
the reader is also the object that closed it. Throughout the chapter the start symbol
in any grammar is named ‘S’. For clarity, attribute definitions are written between
parentheses ‘(’ and ‘)’ whereas assertions over these attributes are surrounded by
braces ‘{’ and ‘}’. We use subscripts to distinguish different occurrences of the same
non-terminal, i.e., in the grammar below C and C1 are different occurrences of the
non-terminal C .

Assertions can be placed at any position in a production rule and are evaluated
at the position they were written. Note that assertions appearing directly before a
terminal can be seen as a precondition of the terminal, whereas post-conditions are
placed directly after the terminal. This is in fact a generalization of traditional pre-
and post-conditions for methods as used in design-by-contract: a single terminal
‘call-m’ can appear in multiple productions, each of which is followed by a different
assertion. Hence different preconditions (or post-conditions) can be used for the
same method, depending on the context (grammar production) in which the event
corresponding to the method call/return appears.

Figure4 shows a parse tree of the sequence of terminals ‘open read read close’,
where the caller of open and close is the same object o1, but the second read operation
is triggered by another object o2. Terminals - corresponding read, open or close events
- are shown as rectangles in the parse tree with a built-in attribute ‘caller’. A circle

Fig. 4 Parse tree of ‘open
read read close’

250 F.S. de Boer and S. de Gouw

denotes a non-terminal, with a user-defined attribute ‘c’ for the non-terminals C and
R to store the object that last closed it.

3 Deadlock Detection for Concurrent Objects

In this section we discuss the run-time detection of deadlock in systems of concurrent
objects as described in [5]. Such systems consist of objects which communicate via
asynchronous method calls and so-called futures which store the return values. An
asynchronous method call v = e!m(ē) (where ē denotes the sequence of actual para-
meters of the call of methodm of the called object denoted by e, and where v denotes
a future), generates a corresponding closure which is stored in the process queue of
the callee. A closure consists of a (sequential) statement, e.g., the body of a method,
and a local environment specifying the values of the local variables (including the
formal parameters). The future variable v stores a reference to the return value (as
such it can be passed around). The operation v.get blocks the current active closure
till the return value has been generated. On the other hand, the operation v.await
suspends the current active closure by storing it in the process queue till the return
value has been generated. This allows so-called cooperative scheduling of another
closure for execution. All objects are executing their active closures concurrently and
fully encapsulate their local data. See Fig. 5 for the formal syntax with the following
non-terminals: T for types, P for programs, L for classes, M for methods, sr for
statements which return a value, s for any other statement, v for fields and local
variables, f for fields, and, finally, x for local variables. By X , where X denotes a
sequence of symbols, we denote a sequence of X ’s. Types include class namesC and
types ↑ T of a future reference to a return value of type T . A program P consists of
a sequence of class definitions L which supports class inheritance. A class definition
consists of a sequence of method definitions M . A method is defined by its return
type, the types of the formal parameters, and its body which terminates in a return
statement. We abstract from the syntax of the side-effect free expressions e. The
main statements of interest are side-effect free assignments v = e to either a field
f or a local variable x , object creation v = new C(), asynchronous method calls
v = v!m(ē) and statements v = v.get and v.awaitwhich involve polling a future,
as described informally above. We assume distinguished local variables this and

T ::= C | !T | . . . P ::= L {Tx; sr}
L ::= class C extends C {Tf ;M} M ::= T m (Tx){Tx; sr}
sr ::= s; return e s ::= v = e |

v = new C() | v = v!m(ē) | v = v.get
v.await | . . .

v ::= f | x

Fig. 5 The language syntax. Variables v are fields (f) or local variables (x), and C is a class name

Run-Time Deadlock Detection 251

class Service {
Sensor sensor; Proxy proxy;
Service(int val) {

sensor = new Sensor; proxy = new Proxy(val);
}
void subscribe(Client cl) { proxy!add(cl) }
void process() {
while (true) {

!Event fut = sensor!detectEvent();
proxy!publish(fut);
await fut?;}

}
}

class Proxy {
List<Clients> myClients; Proxy nextProxy;
Event ev; int limit;
Proxy(int k) {

limit = k; myClients = new List(); nextProxy = null;
}
void add(Client cl) {

if myClients.length < limit { myClients.add(cl); }
else { if nextProxy == null nextProxy = new Proxy(limit);

nextProxy.add(cl); }
}
void publish(!Event fut) {

await fut?;
if nextProxy != null { nextProxy!publish(fut); }
ev = fut.get();
for Client client : myClients { client!signal(ev); }

}
}

Fig. 6 Publisher-subscriber pattern

dest which denote the executing object and the future dest uniquely identifying
the corresponding method invocation.

Figure6 presents a publisher-subscriber pattern which is taken from [5] and (quot-
ing [5]) “wherein an event observed by a sensor is published to objects subscribed
to a service. To avoid bottlenecks when publishing an event, the service delegates to
a chain of proxy objects, where each proxy object informs both the next proxy and
up to a specified limit of subscribing clients. We assume these classes exist: Sensor
with method detectEvent, Client with method signal, and a list parametric in type T,
with method add.”

The operational semantics is defined by a transition relation between global con-
figurations (γ, δ, θ), where γ is the set of active closures, δ the set of suspended
closures, and θ represents the (global) heap. A global heap assigns a local state to
both the existing objects and futures. The local state θ(o) of an object o is an assign-

252 F.S. de Boer and S. de Gouw

(Call)

r �∈ dom(θ) θτ (v) = o c = cl(C, m, o, r, θτ (e))
(γ ∪ {(τ, u = v!m(ē); sr)}, δ, θ) → (γ ∪ {(τ, u = r; sr)}, δ ∪ {c}, θ[r ⊥→�])

(await1)

θτ (v) �=⊥
(γ ∪ {(τ, v.await; sr)}, δ, θ) → (γ ∪ {(τ, sr)}, δ, θ)

(await2)

θτ (v) =⊥
(γ ∪ {(τ, v.await; sr)}, δ ∪ {c}, θ) → (γ, δ ∪ {(τ, v.await; sr)}, θ)

(sched)

c = (τ, sr) ∀(τ ′, sr′) ∈ γ : τ ′(this) �= τ(this)
(γ, δ ∪ {c}, θ) → (γ ∪ {c}, δ, θ)

return

(γ ∪ {(τ, return e)}, δ, θ) → (γ, δ, θ[τ(dest) �→ θτ (e)])

Fig. 7 The operational semantics

ment of values to its fields, whereas the local state θ(r) of a future (reference) r is
simply a value of the corresponding type or the value⊥which stands for “undefined”
(or “uninitialized”). A closure c is a pair (τ , sr), where τ is an assignment of values
to the local variables.

Figure7 gives the main operational rules. Here θτ (e) denotes the value of the
(side-effect free) expression e in the global heap θ and local environment τ ,
e.g., θτ (x) = τ (this), for every local variable x (including this), and θτ (f) =
θ(τ (this))(f), for every field f . For any sequence of expressions ē, we denote
by θτ (ē) the corresponding sequence of values. Further, by θ[o. f �→ d] we denote
the update of θ resulting from assigning the value d to the field f of object o, e,g.,
θ[o. f �→ d](o)(f) = d. Similarly, by θ[r �→ d] we denote the update of θ resulting
from assigning the return value d to the future reference r . The above notation is
extended in the obvious manner to simultaneous updates. The rule call describes
an asynchronous method call. It generates a fresh future reference r and a closure
cl(C,m, o, r, θτ (e))which consists the body of themethod (as defined in classC) and
a local environment τ ′ such that τ ′(this) = o, τ (dest) = r , and τ ′(x̄) = θτ (e),
where x̄ are the formal parameters. This closure is added to the set of suspended clo-
sures and the value of r is set to ⊥. The rule await1 describes the continuation of the
flow of control in case the polled future stores a returned value, whereas rule await2

describes suspending the active closure, in case the polled future is still undefined.
The rule sched allows to schedule a suspended closure in case the object is idle, i.e., it
has no active closure. This rule abstracts from the particular scheduling policy used
and possible optimizations avoiding busy waiting, i.e., scheduling blocked await/get
statements. The last rule return describes the effect of the return statement in terms
of the initialization of the corresponding future dest.

Polling futures gives rise to a dependency relation between method invocations,
e.g., a method invocation executing an await statement v.await depends on the
execution of the method invocation uniquely identified by the future v to return a

Run-Time Deadlock Detection 253

value. A cycle in this dependency relation between method invocations implies that
we have a deadlock in the set of involved method invocations.

Definition 1 (Deadlock) Deadlock arises in a global configuration (γ, δ, θ) when
there exist closures ci = (τi , si ; sri) ∈ γ ∪ δ, where si either denotes an await state-
ment vi .await or a get operation v = vi .get, such that τi (vi) = τi⊕1(dest),
i = 1, . . . , n (⊕ here denotes addition modulo n).

In order to detect deadlock, the built-in attributes of events generated by asyn-
chronous method calls denote, besides the caller, callee and the parameters, the
generated future uniquely identifying the corresponding method invocation, which
is denoted by the attribute name dest. The built-in attributes of events generated
by return statements consist of the executing object (denoted by the attribute name
this), the value returned (denoted by the name val) and the corresponding future
(denoted by dest). The built-in attributes of events generated by await statements
and assignments involving the get operation consist of the polled future (denoted
by fut) and the future uniquely identifying the executing (“polling”) method invo-
cation (denoted by dest). In a (asynchronous) communication view we then can
specify which synchronization events, i.e., await/get operations on futures which
refer to the return value of a certain method, we want to observe by means of the
specifications await C.m (and get C.m). By await any (get any) we refer
to any await (get) operation.

Surprisingly, we can detect deadlock by only observing await and get oper-
ations, by means of the built-in attributes fut and dest, which denote the future
which is polled and the future uniquely identifying the polling method invocation,
respectively. This results in the following (global) communication view which maps
every await/get operation on the same grammar token poll (Fig. 8).

The following grammar then generates, for each sequence of poll tokens, a
corresponding graph of futures and checks absence of cycles (Fig. 9).

At run-time a given program instrumented with history updates which consist of
adding a poll token just before every execution of an await/get operation then
can be checked for absence of deadlock by simply parsing the history according to
the above attribute grammar. Clearly, a deadlock will generate an assertion failure. It
is less obvious that an assertion failure indeed corresponds with a deadlock. Note for

global view DeadlockMyProgram grammar deadlock.g {
await any poll
get any poll

}

Fig. 8 Global asynchronous communication view

Fig. 9 Attribute grammar
for deadlock detection

S ::= poll { g.addEdge(poll.dest,poll.fut); }
| ε {assert g.noCycle();}

254 F.S. de Boer and S. de Gouw

example that edges are not removed when a future is initialized. However, because
futures are assigned to only once we can argue as follows. Let (γ, δ, θ) result from
the execution of an active closure which generates an assertion failure caused by the
addition of an edge (r, r ′) in the graph denoted by g. Let r ′ = r0, . . . , rn−1 = r be
the nodes in g such that between ri and ri⊕1 (⊕ here denotes addition modulo n)
there exists an edge. We have to show that for i = 0, . . . , n − 1 there exist closures
ci = (τi , sri) ∈ γ ∪ δ such that τi (dest) = ri and the initial statement of sri involves
an await or get operation on the future ri⊕1. We show by induction that there exists
such a closure ci . For i = n − 1 let cn−1 = (τ , sr) be the closure in γ such that
τ (dest) = r and the initial statement of sr involves an await or get operation on the
future r ′. Next let 0 < i < n − 1 and ci = (τi , sri) be the closure in γ ∪ δ such that
τi (dest) = ri and the initial statement of sri involves an await or get operation on the
future ri⊕1. Let ci−1 = (τi−1, sri−1) be the closure that resulted from the generation
of the edge (ri−1, ri), i.e., τi−1(dest) = ri−1. Since τi (dest) = ri and ci ∈ γ ∪ δ
it follows from the operational semantics that θ(ri)
=⊥. Therefore ci−1 ∈ γ ∪ δ and
the initial statement of sri−1 involves an await or get operation on the future ri .

4 Deadlock Detection for Multi-threaded Java Programs

Deadlocks in multi-threaded Java programs can arise from Lock objects, or from
synchronized methods and statements. Deadlocks caused through using Lock
objects can be detected in a straightforward manner by tracking calls to the lock()
and unlock() methods, and do not require an extension to the framework
introduced in the previous section. Thus we focus on deadlocks arising from
synchronized methods. The program in Fig. 10 will be used as a running exam-
ple. Depending on the scheduling, it can contain a deadlock: if the first thread starts
executing alphonse.bow(gaston) but does not execute the call to bowBack
before the second thread executes gaston.bow(alphonse), the program dead-
locks.

We specify different aspects of a multi-threaded program with the help of the
following three perspectives:
Thread view: here we specify the behavior of each thread in isolation.
Object view: here we specify the behavior of objects individually.
Global view: here we specify global properties of a program.
All of the above views can be supported by a single formalism: attribute grammars
extended with assertions, but the underlying history on which the grammar is evalu-
ated differs between the various perspectives. The next subsection discusses multi-
threaded events, and the required extensions to communication views to support the
perspectives.

All grammars in this section are given in ANTLR [12] syntax: the input format
of the underlying tool implementation (all grammars have been fully implemented
and were used for run-time checking). The syntax of ANTLR grammars is close to
Java: comments start with ‘//’, and the actions (attribute definitions or assertions) in

Run-Time Deadlock Detection 255

1 package nl.cwi.saga.deadlock;
2

3 import java.io.*;
4

5 public class Deadlock {
6 public static class Friend {
7 private final String name;
8 public Friend(String name) {
9 this.name = name;

10 }
11 public String getName() {
12 return this.name;
13 }
14 public synchronized void bow(Friend bower) {
15 System.out.format("%s: %s"
16 + " has bowed to me!%n",
17 this.name, bower.getName());
18 bower.bowBack(this);
19 }
20 public synchronized void bowBack(Friend bower) {
21 System.out.format("%s: %s"
22 + " has bowed back to me!%n",
23 this.name, bower.getName());
24 }
25 }
26

27 public static void main(String[] args) {
28 final Friend alphonse = new Friend("Alphonse");
29 final Friend gaston = new Friend("Gaston");
30 new Thread(new Runnable() {
31 public void run() { alphonse.bow(gaston); }
32 }).start();
33 new Thread(new Runnable() {
34 public void run() { gaston.bow(alphonse); }
35 }).start();
36 }
37 }

Fig. 10 Example program with a potential deadlock. Source https://docs.oracle.com/javase/
tutorial/essential/concurrency/deadlock.html

the grammar are ordinary Java statements, surrounded by the braces ‘’ and ‘’. The
left-hand side and right-hand side of a production are separated by a colon. ANTLR
supports Extended BNF (EBNF): operators from regular expressions can be used in
productions, such as the ‘*’ (zero or more repetitions) and ‘?’ (an optional symbol).
Figure12 shows an example grammar (the figure is discussed in more detailed in
Sect. 4.2).

https://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html

256 F.S. de Boer and S. de Gouw

4.1 Multi-threaded Events

In a multi-threaded environment, events occur in different threads. Thus the first new
ingredient compared to Sect. 2 is to keep track of the thread identity for each event.
This is achieved with a new built-in attribute Long threadId. This attribute will
be used in the deadlock detector to determine the events that wait on the completion
of other events in a different thread.

In multi-threaded programs, due to scheduling and locking, there can be a delay
between when a method is called, and when its body starts executing. For synchro-
nized methods, a method call indicates that a lock was requested, whereas the start
of the execution of a method body indicates that the lock was acquired successfully.
To distinguish these two events, we introduce an ‘exec’ event, that indicates the start
of execution of a method body (and thus implies acquisition of the lock). Returns of
synchronized methods indicate the release of the lock.

4.2 Multi-threaded Perspectives

Thread View In the thread perspective, we specify the behavior of each thread in
isolation. Each thread has its own dedicated history, and the grammar generates
the set of valid histories of the thread. Semantically, such thread-local histories can
be obtained from the global history by projection on the value of the threadId
attribute (which, as mentioned above, stores the identity of the thread in which the
event occurred).

We illustrate the thread view using the running example (Fig. 10). Figure11
presents the corresponding communication view, introducing the grammar termi-
nals “BOW” and “BOWBACK” for the corresponding events. Only events from
implementations of the Fork interface with synchronized versions of get and
release are selected.

Wewill specify that each person bows back to the same person that bowed to them.
This intuitive property is formalized by the ANTLR grammar in Fig. 12. It specifies
that each thread must first call bow, then bowBack, and (using an assertion) that
the parameter of bow denotes the same object as the callee of bowBack.

thread view BowHistory grammar Bow.g {
call public synchronized void

Deadlock.Friend.bow(Friend bower) BOW,
call public synchronized void

Deadlock.Friend.bowBack(Friend bower) BOWBACK
}

Fig. 11 Communication view of bow and bowBack

Run-Time Deadlock Detection 257

grammar Bow;

///////////// HEADERS

//////////////////////// start ::= s EOF ///////////////////////////////
start : s EOF;

//////////////////////// s ::= BOW BOWBACK? | /\ ///////////////////////
s : BOW

(BOWBACK {assert $BOW.bower() == $BOWBACK.callee();})?
| ;

Fig. 12 ANTLR attribute grammar specifying bowing behavior

Object View In the object view of a Java program, we specify the interactions of a
single object with a communication view and corresponding grammar. The grammar
generates the set of all valid traces of events that the object engages in. In a multi-
threaded setting, several threads can be active (executing) in a single object, thus
the object view is particularly useful for specifying (constrain) the order between
events from different threads active in the same object. Intuitively, the local object
histories can be obtained from the global history by projection on the values of the
built-in attributes caller (for calls made by the object) and callee (for calls to
the object).

For the bow-bowBack example, the object view is uninteresting: all interleav-
ings/orderings between bows and bowBacks from different threads are allowed. A
useful application of the object view is illustrated by the communication view in
Fig. 2 and grammar in Fig. 3 in Sect. 2.

Global View The global view treats the Java program as a single entity that wewish to
specify. The grammar generates the set of all valid global traces of the entire program.
The user can specify the desired interleavings between events from different threads.

We use the global view for our deadlock detector. A thread blocks if it calls a
synchronized method on an object that is already locked by another thread. The
general idea is to build a directed “wait-for” graph to capture such dependencies
between threads. A deadlock corresponds to a cycle in the wait-for graph.

In more detail, the nodes of the graph are thread id’s, and there is an edge from t1
to t2 if t1 calls a method on some object that is locked by t2.

The view depicted in Fig. 13 selects the events relevant for deadlock detection.
Note that we do not need to distinguish whether a certain event arose from bow
or bowBack: the only information needed to identify deadlocks is which thread
has requested/acquired/released the lock for which objects. Thus the calls to bow
and bowBack are identified (mapped to the same terminal). The terminal “REQ”
signifies requesting a lock, “ACQ” events are generated if a lock was acquired, and
“REL” denotes the release of a lock.

258 F.S. de Boer and S. de Gouw

global view DeadlockHistory grammar Deadlock.g {
call public synchronized void

Deadlock.Friend.bow (Deadlock.Friend bower) REQ,
call public synchronized void

Deadlock.Friend.bowBack(Deadlock.Friend bower) REQ,

exec public synchronized void
Deadlock.Friend.bow (Deadlock.Friend bower) ACQ,

exec public synchronized void
Deadlock.Friend.bowBack(Deadlock.Friend bower) ACQ,

return public synchronized void
Deadlock.Friend.bow (Deadlock.Friend bower) REL,

return public synchronized void
Deadlock.Friend.bowBack(Deadlock.Friend bower) REL

}

Fig. 13 Global communication view

Figure14 shows an ANTLR attribute grammar that asserts no deadlock has
occurred. To that end, a wait-for graph is built in the grammar productions with
the help of two inherited attributes (syntactically in the ANTLR grammar, those are
passed as parameters to the “s” non-terminal):

• An attribute reqLock of type Map<Long, Object> that maps a thread id (a
Long) to the object for which it requested, but has not yet acquired the lock.

• An attribute hasLock of type Map<Long, Map<Object, Integer> >.
Given a thread id and an object, this map returns the number of times the lock on
that object has been acquired but not released by the thread.2

The attributes are updated in the grammar productions. In particular, the two maps
are initialized to empty by the start production (line 6–7). Further:

• The production with the “REQ” terminal (line 12–16) signifies the request of a
lock on the callee, correspondingly, in the grammar productionwe insert the thread
identity and callee identity into the reqLock map.

• The production with terminal “ACQ” (line 18–31) signifies that the thread has
successfully acquired the lock on the callee. Since the lock request for the callee
is not pending anymore, the thread id is removed from the reqLock map. Addi-
tionally we increase the number of locks (due to re-entrance, a lock may have been
acquired for that object already by the thread) that that thread has on the callee in
the hasLock map.

• The “REL” terminal (line 33–42) signifies the release of a lock. In the grammar
production we therefore decrease the number of locks that the thread has on the
object. If the count becomes 0, the entry is removed.

2Due to re-entrance, locks in Java can be acquired more than once by the same thread.

Run-Time Deadlock Detection 259

1 grammar Deadlock;
2

3 ///////////// HEADERS
4

5 //////////////////////// start ::= s EOF////////////////////////////////
6 start : s[new HashMap<Long, Object>(),
7 new HashMap<Long, Map<Object, Integer> >()]
8 EOF;
9

10 //////////////////////// s ::= (REQ | ACQ | REL)* //////////////////////
11 s[Map<Long, Object> reqLock, Map<Long, Map<Object, Integer> > hasLock] :
12 REQ
13 {
14 reqLock.put($REQ.threadId(), $REQ.callee());
15 }
16 s[reqLock,hasLock]
17

18 | ACQ
19 {
20 reqLock.remove($ACQ.threadId());
21 Map<Object, Integer> m = hasLock.get($ACQ.threadId());
22 int newCnt = 1;
23 if(m == null) {
24 m = new HashMap<Object, Integer>();
25 hasLock.put($ACQ.threadId(), m);
26 } else if(m.get($ACQ.callee()) != null)
27 newCnt = m.get($ACQ.callee())+1;
28 m.put($ACQ.callee(), newCnt);
29 }
30

31 s[reqLock,hasLock]
32

33 | REL
34 {
35 Map<Object, Integer> m = hasLock.get($REL.threadId());
36 Integer cnt = m.get($REL.callee());
37 if(cnt == 1)
38 m.remove($REL.callee());
39 else
40 m.put($REL.callee(), cnt-1);
41 }
42 s[reqLock,hasLock]
43

44 |
45 {
46 DirectedGraph<Long, DefaultEdge> g =
47 new DefaultDirectedGraph<Long, DefaultEdge>(DefaultEdge.class);
48 for(Long rl : reqLock.keySet()) {
49 for(Long hl : hasLock.keySet()) {
50 if(rl != hl && hasLock.get(hl).containsKey(reqLock.get(rl))) {
51 g.addVertex(rl);
52 g.addVertex(hl);
53 g.addEdge(rl, hl);
54 }
55 }
56 }
57

58 CycleDetector<Long, DefaultEdge> d =
59 new CycleDetector<Long, DefaultEdge>(g);
60 assert !d.detectCycles();
61 };

Fig. 14 ANTLR attribute grammar specifying deadlocks

260 F.S. de Boer and S. de Gouw

Fig. 15 Sequence diagram of a deadlocking executing of program Fig. 10

• The last production (the empty production, line 44–60) builds the wait-for graph:
an edge is drawn from thread t1 to thread t2 if t1 requests a lock owned by t2. If
t1 = t2 then t1 has requested a lock that it already owns. In that case the lock can
be acquired (no deadlock), thus we insert the edge only if t1
= t2. Since a cycle
now corresponds to a deadlock, the assertion (line 60) is true if and only if there
is no deadlock (Fig. 14).

As observed previously, there are schedulings for which the program in Fig. 10
deadlocks.We executed the program, checking for deadlocks using the given attribute
grammar and encountered a deadlocking scenario. Our run-time checker prints cer-
tain information to aid debugging and isolate errors when an assertion fails or a parse
error occurs: a stack trace that indicates the line of code where the error occurred, and
a textual representation of the history that violated the specification. For example, the
stack trace in Fig. 16 shows that execution failed at line 18 in the file Deadlock.java
(Fig. 10).

That textual representation of the history can be visualised by the Quick Sequence
Diagram Editor sdEdit. Figure15 shows a visualization by sdEdit of a deadlocking
trace. sdEdit gives each thread a color: in our case, gray(ish) and yellow. After the
exec_bow-events, the gray thread owns the lock on o1 and the yellow thread has the
lock on o2. With the two call_bowBack-events, the gray thread requests the lock
for o2 and the yellow thread requests the lock for o1, thereby causing a deadlock.

Run-Time Deadlock Detection 261

1 java.lang.AssertionError
2 at DeadlockParser.s(DeadlockParser.java:229)
3 at DeadlockParser.s(DeadlockParser.java:146)
4 at DeadlockParser.s(DeadlockParser.java:146)
5 at DeadlockParser.s(DeadlockParser.java:176)
6 at DeadlockParser.s(DeadlockParser.java:176)
7 at DeadlockParser.s(DeadlockParser.java:146)
8 at DeadlockParser.s(DeadlockParser.java:146)
9 at DeadlockParser.start(DeadlockParser.java:68)

10 at DeadlockHistoryAspect$DeadlockHistory.parse
11 (DeadlockHistoryAspect.java:502)
12 at DeadlockHistoryAspect$DeadlockHistory.update
13 (DeadlockHistoryAspect.java:603)
14 at DeadlockHistoryAspect.ajc$before$DeadlockHistoryAspect5e8e2469d
15 (DeadlockHistoryAspect.java:242)
16 at Deadlock$Friend.bow(Deadlock.java:18)
17 at Deadlock$2.run(Deadlock.java:36)
18 at java.lang.Thread.run(Thread.java:745)

Fig. 16 Assertion failure in attribute grammar

5 Tool Architecture

For practical purposes, an important design goal of our run-time checker SAGA was
to allow the use of up-to-date versions of the Java language. In particular, updates
to the compilers should not break SAGA (in contrast, previous run-time checkers
for JML specifications used a proprietary Java compiler which was not kept in sync
with the Java language). The input of SAGA consists of a specification in the form of
an attribute grammar with assertions, accompanied by a communication view. The
output of SAGA is an AspectJ program for the generation of the events specified by
the communication views (see [1]).

Choosing AspectJ as the output language of SAGA, allows the use of modern Java
language versions, including the latest Java 8. AspectJ is tailored to the interception
of events and as such is a most natural target language. An alternative approach
would to instrument the program with a self-developed component of SAGA. But
this is difficult because in general the instrumentation cannot be restricted locally to
the methods that must be monitored. For example, since the identity of the caller is
a built-in attribute of the grammar terminal, we cannot get away with instrumenting
only the monitored methods, as one does not have access to the low-level stack in
Java. Thus the identity of the callee is not accessible. This means that all call-sites
should be instrumented.

However, the use of AspectJ raises certain challenges: we are now bound by
limitations of Java. For a debugging tool such as a run-time checker, it would be
convenient to have some control or access to various elements from the underlying
execution platform, but this is often prohibited or even impossible in Java. For exam-
ple: in a multi-threaded environment, during the evaluation of the specifications

262 F.S. de Boer and S. de Gouw

(i.e. the attribute grammar), another thread can potentially modify the heap. This
would mean that different parts of the specification are evaluated in different states.
Consider for example the assertion assert x==x;, where x is a field of an object.
If after retrieving the value of the first occurrence of x another thread modifies x
then the assertion may evaluate to false! This problem can be prevented if the run-
time checker had control over the execution platform: it could then stall the other
threads while a specification is evaluated. In [3] we discuss how we solved this with-
out having control over the execution platform, and without stalling other threads
(since this can cause a severe performance loss). A second implication arising from
using AspectJ as target language is that to print an accurate sequence diagram, we
must distinguish objects with different identities in the diagram. In Java, one can test
objects for equality (using “==”), but in general there is no string that identifies each
object uniquely (for example, the memory location for the object would qualify, but
it is not accessible in Java). Thus SAGA generates a unique ID itself for each object
appearing in the history.

Figure17 shows an overview of the resulting tool architecture. It consists of an
integration of four different components: a state-based assertion checker, a parser
generator, a monitor to intercept events and a general tool for meta-programming.
This architecture is further discussed in [3].

Fig. 17 SAGA tool architecture

Run-Time Deadlock Detection 263

6 Conclusion and Future Work

We discussed a method for the run-time detection of deadlock in both multi-threaded
Java programs and systems of concurrent objects. The new version of SAGA which
implements this method for multi-threaded Java programs can be obtained from
https://github.com/cwi-swat/saga. Althoughwe illustrated our framework for detect-
ing deadlock for multi-threaded Java programs which use synchronized methods,
general locks as provided in the package java.util.concurrent.locks can
be handled just as easily by tracking the methods lock, tryLock and unlock
in the communication view. What remains to be done is extending SAGA to dead-
lock detection of concurrent objects as described in this chapter. In general, future
work will focus on further improving and extending the method by applying it to
(industrial) case studies.

Acknowledgements We thank the anonymous reviewers for their most constructive and helpful
comments.

References

1. deBoer, F.S., deGouw, S., Johnsen, E.B., Kohn,A.,Wong, P.Y.H.: Run-time assertion checking
of data- and protocol-oriented properties of java programs: an industrial case study. Trans.
Aspect-Oriented Softw. Dev. 11, 1–26 (2014)

2. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–145 (1968)
3. de Boer, F.S., de Gouw, S.: Run-time checking multi-threaded java programs. In: 42nd Interna-

tional Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM.
Lecture Notes in Computer Science (2016)

4. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core language for
abstract behavioral specification. In: Aichernig, B., de Boer, F.S., Bonsangue, M.M. (eds.)
Proceedings of 9th International Symposium on Formal Methods for Components and Objects
(FMCO 2010). LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

5. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: Proceedings of
Programming Languages and Systems, 16th European Symposium on Programming, ESOP
2007, Held as Part of the Joint European Conferences on Theory and Practics of Software,
ETAPS 2007, Braga, Portugal, 24 March–1 April 2007, pp. 316–330 (2007)

6. Agarwal, R., Bensalem, S., Farchi, E., Havelund, K., Nir-Buchbinder, Y., Stoller, S.D., Ur, S.,
Wang, L.: Detection of deadlock potentials in multithreaded programs. IBM J. Res. Dev. 54(5),
3 (2010)

7. de Boer, F.S., Grabe, I.: Automated deadlock detection in synchronized reentrant multithreaded
call-graphs. In: Proceedings of SOFSEM2010: Theory and Practice of Computer Science, 36th
Conference on Current Trends in Theory and Practice of Computer Science, Spindleruv Mlýn,
Czech Republic, 23–29 January 2010, pp. 200–211 (2010)

8. Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Join-lock-sensitive for-
ward reachability analysis for concurrent programs with dynamic process creation. In: Pro-
ceedings of Verification, Model Checking, and Abstract Interpretation - 12th International
Conference, VMCAI 2011, Austin, TX, USA, 23–25 January 2011, pp. 199–213 (2011)

9. de Boer, F.S., Bravetti, M., Grabe, I., Lee, M.D., Steffen, M., Zavattaro, G.: A petri net based
analysis of deadlocks for active objects and futures. In: FormalAspects ofComponent Software,

https://github.com/cwi-swat/saga

264 F.S. de Boer and S. de Gouw

9th International Symposium, FACS 2012, Mountain View, CA, USA, 12–14 September 2012.
Revised Selected Papers, pp. 110–127 (2012)

10. Giachino, E., Grazia, C.A., Laneve, C., Lienhardt, M., Wong, P.Y.H.: Deadlock analysis of
concurrent objects: Theory and practice. In: Proceedings of Integrated Formal Methods, 10th
International Conference, IFM 2013, Turku, Finland, 10–14 June 2013, pp. 394–411 (2013)

11. Giachino, E., Laneve, C.: Analysis of deadlocks in object groups. In: Proceedings of For-
mal Techniques for Distributed Systems - Joint 13th IFIP WG 6.1 International Conference,
FMOODS 2011, and 31st IFIP WG 6.1 International Conference, FORTE 2011, Reykjavik,
Iceland, 6–9 June 2011, pp. 168–182 (2011)

12. Parr, T.: The Definitive ANTLR Reference. Pragmatic Bookshelf (2007)

In-Circuit Assertions and Exceptions
for Reconfigurable Hardware Design

Tim Todman and Wayne Luk

Abstract We present an approach to enable run-time, in-circuit assertions and
exceptions in reconfigurable hardwaredesigns. Static, compile-timechecking, includ-
ing formal verification, can catchmany errors before a reconfigurable design is imple-
mented. However,many other errors cannot be caught by static approaches, including
those due to run-time data. Our approach allows users to add run-time assertions and
exceptions to a design, giving multiple ways to handle run-time errors.We also allow
imprecise assertions and exceptions, so that the origin of a failed assertion or raised
exception is blurred. Users can take advantage of exception imprecision to trade per-
formance for accurate location of errors. Our work includes a high-level approach
to adding assertions and exceptions to a design, a concrete implementation for
Maxeler streaming designs, and an evaluation. Results show low overhead for sup-
porting assertions and exceptions in hardware design targeting FPGAs. For example,
the cost of including assertions lies between 5% in lookup tables and 15% in Block
RAMs in addition to the area used by the original design, due to logic used to imple-
ment assertion conditions, and buffers used to store assertion results. Furthermore,
imprecision gives immediate benefits and up to 48% speedup over precise exceptions.

1 Introduction

As the size of reconfigurable hardware devices increases, they are used to implement
increasingly large and complex designs. This leads to a challenge: verification, ensur-
ing that designs implement their intended behaviour. There are many approaches to
static, compile-time checking of designs, including formal verification, but static
approaches cannot in general hope to catch all errors that can occur at run-time,
particularly those caused by run-time input data.

T. Todman (B) · W. Luk
Department of Computing, Imperial College London, 180 Queen’s Gate,
London SW7 2AZ, UK
e-mail: timothy.todman@imperial.ac.uk

W. Luk
e-mail: w.luk@imperial.ac.uk

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_11

265

266 T. Todman and W. Luk

Traditionally, simulation is used to catch run-time errors, but designs are now so
large that simulation cannot hope to catch them all. Assertion-based verification is
increasingly popular; examples include Property Specification Language (PSL) [1]
and System Verilog Assertions (SVA) [2]. In-circuit assertions [3] detect errors in
hardware and report them to software. We propose in-circuit exceptions, which han-
dle errors in the circuit where they are detected.

We define an assertion as any run-time Boolean expression which, when false,
indicates an error of some kind, such as an input value out of range, or an intermediate
result thatwill cause overflow.An exception is part of the control or data path that runs
only when a corresponding assertion is false; if no assertions are false, no exception
paths are active.

Assertions and exceptions separate error-handling code from normal operation,
when no errors have been detected. Other language constructs could be used, but
separating normal and error-handling code makes both easier to reason about. Asser-
tions used in development may be removed for deployment; some criticize this as
like “a sailing enthusiast who wears his lifejacket when training on dry land, but
takes it off as soon as he goes to sea” [4].

For reconfigurable hardware, designs with more or fewer assertions and excep-
tions can be swapped at runtime. For example, many assertions about input data
may be removed if processing a known-good set of inputs. Conversely, a design
with more area devoted to assertions and exceptions could be configured if more
than a set number of failed assertions or exceptions occur in a previous batch of
input data. Furthermore, since reconfigurable hardware designs rarely fill the entire
reconfigurable device, the unpopulated area can be filled with monitoring hardware,
such as assertions and exceptions. We have separately developed an approach which
reuses such spare resources for monitoring hardware, such as in-circuit assertions;
since the monitors are added post place-and-route, the timing of the original design
is preserved [5].

Our approach allows users to choose the imprecision of assertions and exceptions:
imprecision means bounded inaccuracy in the reporting of where, or when, failed
assertions and raised exceptions occurred. Zero imprecision means the reporting is
accurate; more imprecision means more uncertainty about the exact code location
or data input causing the error. Since area not spent on supporting assertions and
exceptions can be used to increase performance, by increasing the degree of paral-
lelization or pipelining, user programs controlling the reconfigurable hardware can
make run-time tradeoffs between performance (fewer, lower-precision exceptions)
and fidelity (more, higher-precision exceptions). Increasing imprecision also reduces
the bandwidth between hardware and software.

Furthermore, in-circuit assertions and exceptionsmay be reused between different
designs: for example, straightforward and optimized versions of the same design can
share several assertions which check they implement the specification, or check
assumptions on inputs and outputs.

In-Circuit Assertions and Exceptions for Reconfigurable Hardware Design 267

This work makes the following contributions:

• An high-level, tool-agnostic approach to enabling runtime assertions and excep-
tions in hardware designs, with a language of assertion conditions and user-
customizable policies for actions when assertions are violated;

• An implementation of our high-level approach for Maxeler streaming hardware
designs, showing how the high-level approach maps into streaming hardware;

• The use of user-customizable imprecision, to allow time and space to be traded
for less precise reporting of where a failed assertion originated from, or when it
occurred;

• An evaluation of our approach on a case study. Results show low overhead for
supporting assertions and exceptions in hardware design targeting FPGAs. For
example, the cost of including assertions lies between 5% in lookup tables and
15% in Block RAMs in addition to the area used by the original design, due to
logic used to implement assertion conditions, and buffers used to store assertion
results.

The rest of the chapter is organized as follows: the next section outlines related
work. Section3 describes our high-level approach to runtime assertions for recon-
figurable hardware designs; Sect. 4 details the implementation for Maxeler designs;
Sect. 5 evaluates the approach, while Sect. 6 concludes and outlines future work.

2 Background

Software assertions have a long history: first, as a means of manually checking
programs, then as a means of formally proving correctness, finally as a means of
run-time checking of errors that cannot be detected statically [6]. Assertions are part
of the C standard and by default print a message on the console before aborting.
C has no built-in support for exceptions, but can emulate them using calls to jump
back to functions deeper in the stack. Some languages have extensive support for
exceptions, notably Ada and Eiffel [7].

2.1 Hardware Exceptions

The IEEE754 standard for floating-point arithmetic [8] includes exceptions, recom-
mending that exceptions be resumeable, allowing user programs to fix problems.

Exception handling in pipelined or out-of-order processors is difficult because
exceptions from later instructions may occur before earlier instructions finish. Some
approaches include: allowing imprecise exceptions only, imprecise exceptions for
only some instructions, choice of high-performance mode with imprecise exceptions
or lower performancemodewith precise exceptions; the precisemode can be 10 times
slower or worse [9].

268 T. Todman and W. Luk

2.2 Hardware Debugging

Debugging circuits can correct a design after deployment, whereas exceptions are
included from the beginning. Hung and Wilton [10] monitor signals in FPGA (Field
Programmable Gate Array) designs by reclaiming unused routing resources; condi-
tions causing errors can be observed but not corrected in-place. For hardware designs
targeting FPGAs, Graham et al. [11] propose techniques for instrumenting bitstreams
that are used in debugging FPGA circuits, while Poulos et al. [12] introduce hard-
ware and software techniques for FPGA functional debug that leverage the inherent
reconfigurability of the FPGA fabric to reduce functional debugging time.

2.3 Assertion-Based Verification

This lets designers add assertions to their designs, written in Boolean and temporal
logic [13]. Approaches include PSL [1] and SVA [2]. These approaches only apply to
simulation, not real hardware, and only to hardware parts of designs, not correspond-
ing host software. Assertion-based verification has been extended to in-circuit asser-
tions by Curreri [3], who extended ANSI-C assertions to streaming FPGA designs.
This approach may catch some bugs caused by mismatches between software and
hardware. However, there is no exception mechanism; user programs cannot recover
from exceptions in hardware, only report errors back to software. In-circuit excep-
tions need not be restricted to Boolean expressions: recent work has explored the use
of statistical assertions to check the mean or variance of circuit signals [14].

2.4 Formal Verification

Formal verification of hardware and software has a long history, with academic
approaches going back to Hoare [15], Floyd [16], and Dijkstra [17], efforts which led
to runtime verification by assertions [18]. There has also been research on automatic
assume guarantee algorithms for assertion-based formal verification [19].

3 High-Level Approach

We now describe our high-level approach to runtime assertions and exceptions for
streaming hardware designs. The approach is tool-agnostic: it does not depend on
any particular tool, but could adapt to several available streaming hardware design
tools.

In-Circuit Assertions and Exceptions for Reconfigurable Hardware Design 269

Fig. 1 Verification flow of our high-level approach: program specifications are partitioned into
static and dynamic sets. Static specifications are handled by previous work. This work addresses
dynamic specifications by translating them to assertions and exceptions, which are combined with
an design to make a checked design. If, for all test inputs, there are no unhandled exceptions, the
design is verified as correct (according to the dynamic specifications); otherwise, the unhandled
exceptions can be used to debug the faulty design

We choose streaming hardware designs because they are increasingly used to
implement reconfigurable hardware designs, particularly for high-performance appli-
cations. Much of our approach could also apply to other hardware design languages
such as VHDL and Verilog.

The proposed verification flow (Fig. 1) starts with a design to verify and the prop-
erties to be verified. First, the user divides the properties into static or compile-time
properties, and dynamic or run-time properties, dependent on run-time data. Second,
the user separates the properties into assertions and exceptions; assertions encod-
ing design properties, exceptions labelling error conditions. Static properties can be
handled by existing static verification approaches. Third, the user writes run-time
assertions to encode design assumptions which can only be checked at run-time,
for example input variable ranges. For some exceptions, the user writes handlers to
catch the exception and substitute a replacement value for the expression causing
the exception: for example, an overflow exception might result in the value being
clamped at the maximum value for that variable, resulting in a saturating arithmetic.
Finally, the user runs the design including assertions and exceptions. If no assertions

270 T. Todman and W. Luk

Fig. 2 Design flow of our high-level approach

are raised, and any exceptions are handled, the design is verified as correct for the
input and assertions used.

Figure2 shows the design flow of our high-level approach. This same design
flow can be adapted to multiple concrete implementations for particular streaming
hardware design descriptions; the next section shows an example. Our approach takes
a streaming design language and augments it with features for run-time assertions and
exceptions. Assertions are run-time Boolean conditions which, when false, cause an
error. In software this often causes the program to terminate. In hardware, particularly
streaming hardware, the design cannot simply terminate as the software host program
may be waiting on the hardware for a fixed number of cycles. Our approach hence
records the failed assertions on each cycle and returns these to the software host as
extra outputs.

Multiple designs implement the same specifications, for example straightforward
and optimized implementations. The same assertions and exceptions can be reused
for both, to check requirements are met, saving design effort. Other assertions check
design-specific properties.

Hardware exceptions differ from assertions in that they can be handled, meaning
that a value is substituted for the expression which raised the exception. This allows
designs to handle errors in place rather than relying on host software to fix the
problem, potentially reducing bus traffic between software and hardware. Users can
explore a tradeoff: handling more errors in hardware, costing more resources versus

In-Circuit Assertions and Exceptions for Reconfigurable Hardware Design 271

handling more errors in software, at a cost of more bandwidth required between
hardware and software host.

Another use for assertions is sanity checking, a traditional programming technique
where expressions which should always be true are asserted. Though this wastes
resources (since the expression should always be true), it can reveal compiler bugs
or designer conceptual errors or mistaken assumptions, e.g. wrong assumption about
operator width [3].

Our approach allows assertion and exception imprecision: deliberately blurring
the exact location of an exception either in time (which cycle the error occurs on, and
hence which stream inputs caused it) or in space (which part of the program caused
the error). Users can select the level of imprecision, defined as the number of stream
inputs or program locations that could have caused the error; zero imprecision means
the error is exactly located.

Imprecision can be thought of as data compression for error reporting: increasing
imprecision reduces the size of error reporting data (and hence bandwidth) by a factor
proportional to the imprecision.

To illustrate our approach, we introduce a simple language below which supports
assertions and exceptions.

1d = ...
2|’exception ’ ID’;’
3s = lval’=’ expr
4|’if’’(’ e’)’ s’else’ s
5|’while’’(’ e’)’ s
6|’assert ’’(’ e’)’
7e = e bop e
8| INT
9| FLOAT
10| ID
11|’(’ e’)’
12| uop e
13|’raise’ ID
14|’try’ e’with’ (ID’->’ e)*
15lval= ID | ...
16bop =’+’ |’-’ |’*’ |’/’ | ...
17uop =’+’ |’-’ |’~’ | ...

where d, s and e are declarations, statements and expressions respectively. Extensions
for assertions and exceptions comprise:

• line 2: a declaration to declare possible exceptions in this program; only declared
exceptions can be used;

• line 6: a statement to assert a condition: if false, an exception is raised;
• line 13: an expression to raise an exception;
• line 14: an expression to allow raised exceptions to be handled. Given an expres-
sion e, its result is e if no exceptions are raised in e, otherwise the optional list

272 T. Todman and W. Luk

of exception handlers is consulted. If a handler matches the raised expression,
the corresponding value is the result of the expression, otherwise the exception
propagates to the surrounding program.

The assert statement is directly taken from C99; many designers will already
be familiar with this statement. Since C has no support for exceptions, we base our
design on OCaml, which allows exceptions to be declared, raised and handled within
both expressions and statements.

An informal semantics of our assertions and exceptions is:

• a failed assertion is recorded in a buffer showing which assertion failed, on which
cycle;

• raising an undeclared exception is a compile-time error;
• raising an exception propagates it out to the enclosing expression;
• an exception raised within a try expression is matched against the list of handlers;
if a handler matches, the corresponding expression results, otherwise the exception
propagates to the surrounding expression;

• if an exception propagates to a statement, it is unhandled and recorded like a failed
assertion.

3.1 Step-by-step Approach

We give a three-step approach to adding in-circuit assertions and exceptions to an
existing high-level hardware synthesis tool:

(a) extend a high-level language targeting hardware implementation with language
constructs for assertion and exception as shown above;

(b) provide circuit realisations of the assertions and exceptions, and during the hard-
ware compilation process, instantiate them and link them to their uses in the
design;

(c) include hardware and software Application Programming Interfaces with the
extensions to allow hardware assertion and exceptions to propagate to software.

The next section shows howwe implement these steps for a specific reconfigurable
design technology.

4 Implementation: Maxeler Systems

We implement our high-level approach for Maxeler streaming systems. In the Max-
eler system, users describe hardware designs as Java programs, using a Java class
library and language extensions. When run, the programs build a dataflow graph
of the design, compile the graph into an HDL (Hardware Description Language)

In-Circuit Assertions and Exceptions for Reconfigurable Hardware Design 273

implementation, and call FPGA vendor tools to compile the HDL into a bitstream.
The design consists of a data path reading from one or more stream inputs, one per
cycle, and producing one or more stream outputs, one per cycle. Scalar inputs are set
once per run of the stream and are constant for each run. State machines or counters
control the design.

Note that the Java programs, when run, generate the circuit. The designer can
user Java assertions and exceptions in their program, but these will run at circuit
generation time, not at circuit run time; thus they can only be used to debug or trap
errors at circuit generation time. Our approach allows assertions and exceptions at
circuit run time.

We systematically translate designs using Maxeler kernels extended with asser-
tions and exceptions into regular Maxeler designs. Currently our translation is man-
ual, but future work could automate it.

Following our three-step approach to extending a high-level hardware design tool
with in-circuit assertions and exceptions, we extend the Maxeler system as follows:

4.1 Language Extensions for Runtime Assertions
and Exceptions

We extend the Maxeler kernel description language, based on Java, with our high-
level language features for runtime assertions and exceptions.We extend the grammar
as follows:

1d = ...
2|’__exception ’ ID’;’
3s = ...
4|’__try’ s (’__catch ’’(’ ID’)’ s)*
5|’__assert ’’(’ e’)’
6|’__raise ’ e’;’
7e = ...
8|’__try’ e (__when ID’->’ e)*
9|’__raise ’ e

where existing grammar for declarations (d), statements (s), and expressions (e) is
represented by ellipses (…). We allow exceptions to be raised and handled in both
statements and expressions; this gives designers more choice about where to put
error-handling code: one __try ... __catch block can handle any exceptions
raised in the entire block.

274 T. Todman and W. Luk

Fig. 3 Design flow targeting Maxeler designs. The MaxJ code with exceptions and assertions
is preprocessed, leading to standard MaxJ code with extra outputs representing assertions and
exceptions, along with C code calling standard Maxeler APIs. Any failed assertions or raised
exceptions in the hardware are mapped into failed assertions in the C code

Figure3 shows the design flow for Maxeler systems. The user writes their design
as a software program using our extended version of Maxeler’s API (Application
Programming Interface) for controlling a hardware design written in our extended
version of Maxeler’s MaxJ kernel description language (Maxeler’s version of Java
extended with syntax to ease the description of dataflow designs written using their
class library). Our language extensions allow (a) assertions in hardware designs to
be reflected into software designs; (b) exceptions to be declared, raised and handled
in hardware designs. Unhandled exceptions similarly reflect into software.

4.2 Circuit Realizations of Assertions and Exceptions

For theMaxeler systemwith its streamingmodel, translation of assertions and excep-
tions to circuit realizations is straightforward. Each in-circuit assertion and raised
exception ismapped to a separate single bit streamoutput.We systematically translate
the design in the extended language into the same design in the standard language.
Assertions are translated by connecting the appropriate output to the assertion condi-
tion, relying on the Maxeler tools to implement the condition. Raised exceptions are
similarly implemented by connecting the output for that exception to the condition
which govern whether that exception is raised.

In-Circuit Assertions and Exceptions for Reconfigurable Hardware Design 275

A simple example code fragment:

1__exception OutOfBounds;
2...
3HWVar sum = (cond) ? (__raise OutOfBounds) :

sum + x;

where the first line declares an exception, and the third raises that exception if cond
is true. This is translated to:

1HWVar condOut = cond;
2HWVar sum = condOut ? sum : sum + x;
3HWVar OutOfBounds1 = condOut;
4io.output("OutOfBounds1", OutOfBounds1 , hwBool

());

where:

• line 1 captures the result of the condition cond in a new local variable condOut;
• line 2 performs the assignment unless cond is true, meaning the exception would
be raised;

• line 3 creates another new local variable corresponding to raising the exception;
this is connected to the condition controllingwhether the exception is raised, which
was captured in condOut;

• finally, line 4 connects the exception to a new output of type hwBool(), meaning
a single bit representing a Boolean value.

To implement imprecision, multiple exception or assertion outputs need to be
combined together. Imprecision in space combines assertions from different parts
of the design together; in Maxeler, this maps to a bitwise or operator. Imprecision
in time combines the output same assertion from adjacent clock cycles; in Maxeler,
this can be implemented using registers, multiplexers, and counters to control when
assertion outputs are combined together.

4.3 Hardware and Software APIs for Assertions
and Exceptions

Figure4 shows how exceptions are supported by wrapping Maxeler hardware and
softwareAPIs. Each exceptionwhich can escape from the hardware becomes another
streaming output, which must be passed using standard Maxeler APIs. In software,
our tool adds a loop which performs a C software assertion for each exception output
added.

4.4 Case Study

The following shows a basic C implementation of a 32-bit integer moving average
filter, which we use as a basis for our experiments. The design is parameterised for

276 T. Todman and W. Luk

Fig. 4 Wrapping Maxeler
hardware and software APIs

stream length N and filter radius W ; we use arbitrary stream lengths and radius
W = 64. This code reads from input array inp and writes to output array outp.

1const size_t N=16*1024*1024;
2int inp[N], outp[N];
3for (i=0;i<N;++i) {
4sum=0;
5for (j=0;j<W;++j) {
6sum += inp[i-W/2+j];
7}
8outp[i] = sum/W;
9}

For space reasons we omit code to stop reading outside the input array. AMaxeler
implementation is:

1__exception OutOfRange;// declare exception
2HWVar inp = io.input("inp", hwInt(W));
3__try {
4HWVar sum = constant.var(0);
5for (j=0;j<W;++j) {
6sum += stream.offset(inp ,-(W/2)+j);
7if (sum <0) __raise OutOfRange;
8}
9__catch (OutOfRange) {
10sum = MAX;
11}}
12io.output("outp",sum/W,hwInt(W));

In-Circuit Assertions and Exceptions for Reconfigurable Hardware Design 277

where:

• line 1 declares an exception;
• line 2 declares a stream input inp of 32-bit, unsigned integer type;
• lines 3 to 8 comprise a runtime exception-handling block: an OutOfRange excep-
tion raised in this block is handled by the corresponding catch block;

• line 4 declares a variable sum to store intermediate results;
• lines 5 to 8 implement the filter; this loop runs at compile-time (a fully-unrolled
implementation);

• line 8 raises the OutOfRange exception if sum is negative (indicating overflow);
• lines 9 to 11 handle the exception from lines 4 to 8: if caught, sum is set to MAX;
• finally, line 12 declares output stream outp.

The following shows the C code generated by our example:

1max_run(
2max_input (),
3max_output (),
4max_output(ex1), // exceptions
5max_runfor(N));
6for (i = 0;i<NumExceptions -1;++i) {
7#line 7 "foo.maxj"
8assert(ex1[i] && "unhandled exception

OutOfRange");
9#line 20 "foo_generated.c"}

where:

• lines 1 to 5 comprise a Maxeler API call to run a hardware kernel with inputs and
outputs:

– line 2 reads a C array as a user stream input to the kernel,
– line 3 writes a C array as a user output from the kernel,
– line 4 writes another C array of Boolean values, initialized to false, as exception
outputs from the array;

– line 5 gives the number of stream cycles to run;

• lines 6 to 10 comprise a C loop generating one assertion per raised exception or
failed assertion, using a C preprocessor directive (line) to report from where in
the hardware design file (“foo.maxj”) the unhandled exception originated.

We augment Maxeler API calls interacting with the hardware to read back asser-
tions and exception outputs, and generate one C assertion for each failed hardware
assertion or unhandled exception.While C does not support exceptions, our approach
could adapt to languages which do, so unhandled hardware exceptions lead to soft-
ware exceptions.

278 T. Todman and W. Luk

Unlike C, several other languages do have native support for exception handling.
Although our tool does not yet support other languages, it would be possible to
modify the loop to throw software exceptions into the host program, for example in
C++:

1for (i = 0;i<NumExceptions -1;++i) {
2if (ex1[i]) {
3#line 7"foo.maxj"
4throw std:: runtime_error("sum >0, line 20");
5#line 20 "foo_generated.c"
6}
7}

where the loop throws one software exception for each unhandled hardware excep-
tion, in this case an object of the standard runtime_error class.

5 Evaluation

We evaluate using a moving average filter as a case study; though simple, similar
tradeoffs in terms of area versus speed, and number of exceptions and assertions are
needed in larger designs. Experiments measure the cost (reconfigurable hardware
resources) to add assertions. Assertion imprecision results show how the user can
trade exception imprecision for reconfigurable hardware resources and communica-
tions bandwidth.

5.1 Experimental Setup

Hardware is compiled using Maxeler MaxCompiler version 2012.1 and Xilinx ISE
13.1, targeting the Maxeler MAX3 board (Xilinx Virtex-6 xc6vsx475t device). Each
design targets a clock rate of 300MHz.

5.2 Area Results

To measure assertion costs, we add an assertion to the loop that variable sum is
always positive (a negative number indicates overflow). We add A assertions, where
1 < A < W by inserting the line: if (j<A) assert(sum>0); after the accu-
mulation in the loop body.

Figure5 shows area resources used (LUTs and Flip Flops) versus number of
exceptions for the moving average application The cost of adding assertions lies
between 5% (LUTs) and 15% (BRAMs) (relative to the area used by the original

In-Circuit Assertions and Exceptions for Reconfigurable Hardware Design 279

Fig. 5 Area results: % area
versus no. exceptions for a
64-wide, 32-bit moving
average filter

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70

re
so

ur
ce

s

exceptions

%LUTs
%FFs

%BRAMs

design), due to logic used to implement assertion conditions, and buffers used to
store assertion results. Beyond that, there is a small linear area cost per assertion
added; since each exception is a Boolean stream output, adding an exception has a
small area penalty. Designers may thus add many exceptions without much concern
over area costs. The exception condition has an area cost, but this could be mitigated
if the toolchain eliminates any common subexpressions.

5.3 Imprecise Exceptions

We evaluate the savings from allowing deliberately imprecise assertions and excep-
tions. Figure6 shows the results of increasing levels of imprecision in time, where
zero imprecision means raised exceptions are reported accurate to the cycle they
occurred on, an imprecision of one means they are reported to within one cycle,
and so on. Adding just a single degree of imprecision immediately results in 5%
improvement in throughput and runtime; adding more imprecision results in further
improvements, but with diminishing returns; about 48% is the maximum; note that
at this point the PCI express bus is almost saturated, (on this machine, the maxi-
mum is about 2200MB/s) so little further improvement is possible. We show results
for exceptions represented using both 8-bit and 16-bit output streams. It may seem
wasteful to represent single-bit values with wider streams, but wider streams actually
reduce runtime and increase throughput: the 16-bit is up to 12% faster than the 8-bit
stream. This is due to less time spent in unpacking the exception streams on the
software host.

280 T. Todman and W. Luk

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300
 0

 500

 1000

 1500

 2000

ru
nt

im
e

/ s

th
ro

ug
hp

ut
 (

M
B

/s
)

imprecision

runtime (16 bits)
throughput (16 bits)

runtime (8 bits)
throughput (8 bits)

Fig. 6 Imprecise exceptions: runtime and throughput versus degree of imprecision. In this experi-
ment, imprecision is in time, measured in cycles

6 Conclusion

We present a high-level approach for adding in-circuit assertions and exceptions
to hardware designs, and a concrete implementation for Maxeler systems. Results
show that our assertions and exceptions add little area and speed cost. Exception and
assertion imprecision improves runtimes by up to 48%, with even a single degree of
imprecision giving immediate benefits.

Current and future work includes, firstly, integrating our approach with temporal
logic, allowing a more formal basis for the error handling. Secondly, add support
for run-time reconfiguration. Designs could reconfigure to add exception handlers
if many errors are detected, or running circuits could dynamically change excep-
tion handlers and assertions, without changing the rest of the design. Recent work
has shown that unused resources in an FPGA design can be scavenged for adding
monitoring circuitry, without impacting on timing or functionality [5]. Alternatively,
exception handlers could be reused with a different but compatible design.

Thirdly, explore the adoption of in-circuit assertions and exceptions in enhancing
the performance and capability of self-diagnosis and self-healing of critical systems,
such as addressing sensor failure in avionics [14].

Acknowledgements The support of UK Engineering and Physical Sciences Research Council
(EP/I012036/1, EP/L00058X/1, EP/L016796/1 and EP/N031768/1), the European Union Horizon
2020 Research and Innovation Programme under grant agreement number 671653, the Maxeler
University Programme, Altera, Intel and Xilinx is gratefully acknowledged.

In-Circuit Assertions and Exceptions for Reconfigurable Hardware Design 281

References

1. IEEE standard for property specification language (PSL): IEEE Std 1850-2010 (Revision of
IEEE Std 1850-2005), pp. 1–182 (2010)

2. Bustan, D., Korchemny, D., Seligman, E., Yang, J.: SystemVerilog assertions: past, present,
and future SVA standardization experience. Des. Test Comput. IEEE 29(2), 23–31 (2012)

3. Curreri, J., Stitt, G., George, A.D.: High-level synthesis of in-circuit assertions for verification,
debugging, and timing analysis. Int. J. Reconfigurable Comput. 2011 (2011)

4. Hoare, C.A.R.: Hints on Programming Language Design. Stanford, CA, USA, Tech. Rep.
STAN-CS-73-403 (1973)

5. Hung, E., Todman, T., Luk, W.: Transparent insertion of latency-oblivious logic onto FPGAs.
In: 24th International Conference on Field Programmable Logic and Applications (FPL), 2014.
IEEE, pp. 1–8 (2014)

6. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion checking in
software development. SIGSOFT Softw. Eng. Notes 31(3), 25–37 (2006) [Online]. Available:
http://doi.acm.org/10.1145/1127878.1127900

7. Scott, M.: Programming Language Pragmatics, 3rd edn. Morgan Kaufman (2009)
8. IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pp. 1–58 (2008)
9. Hennessy, J.L., Patterson, D.A.: Computer Architecture, Fourth Edition: A Quantitative

Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2006)
10. Hung, E., Wilton, S.J.E.: Towards simulator-like observability for FPGAs: a virtual overlay

network for trace-buffers. In: FPGA ’13 (2013)
11. Graham, P., Nelson, B., Hutchings, B.: Instrumenting bitstreams for debugging FPGA circuits.

In The 9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
2001. FCCM ’01, pp. 41–50 (2001)

12. Poulos, Z., Yang, Y.-S., Anderson, J., Veneris, A., Le, B.: Leveraging reconfigurability to raise
productivity in FPGA functional debug. In: Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pp. 292–295 (2012)

13. Vasudevan, S: What is assertion-based verification? SIGDA E-News, 42(12) (2012)
14. Todman, T., Stilkerich, S., Luk, W.: Using statistical assertions to guide self-adaptive systems.

Int. J. Reconfigurable Comput. 2014 (2014) [Online]. Available: http://dx.doi.org/10.1155/
2014/724585

15. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–
580 (1969)

16. Floyd, R.W.: Assigning meaning to programs. In: Proceedings of the Symposium on Applied
Maths, vol. 19. AMS, pp. 19–32 (1967)

17. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
18. Hoare, C.A.R.: Assertions: a personal perspective. Ann. Hist. Comput. IEEE 25(2), 14–25

(2003)
19. Wang, D., Levitt, J.: Automatic assume guarantee analysis for assertion-based formal verifica-

tion. In: Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and
South Pacific, vol. 1, pp. 561–566 (2005)

http://doi.acm.org/10.1145/1127878.1127900
http://dx.doi.org/10.1155/2014/724585
http://dx.doi.org/10.1155/2014/724585

Part VII
Formal and Semi-formal Methods

From ProCoS to Space and Mental
Models–A Survey of Combining Formal
and Semi-formal Methods

Bettina Buth

Abstract This contribution reports of work done after the official end of the Pro-
CoS project in 1995. Most of this work was done while the author was affiliated
with Bremen University. The aim of this contribution is to show the effect of ProCoS
on these projects, which comprises analysis of systems from two different applica-
tion domains: space and aerospace. In both examples, the basic approach involves
abstraction to CSP specifications and model-checking using FDR. Another common
factor is the use of other techniques in combination with model-checking.

1 Introduction

One aim of the ProCoS project was to provide methods and tools for a systematic
development of correct systems, specifically for realistic safety critical applications.
This contribution summarizes projects performed after the official end of the ProCoS
project in 1995.Most of this work was performedwhile the author was affiliated with
Bremen University. These projects involve analysis of systems from two different
application domains: space and aerospace. In both examples, the basic approach
involves abstraction to CSP specifications and model-checking using FDR. Another
common factor is the use of combinations of other techniques with model-checking.

The first example addresses analysis done for the Russian module of the ISS,
especially the deadlock and livelock analysis for a realistic concurrent system of
processes, which has been implemented in occam. The initial assumption that the
analysis would just require an abstraction of the occam code and a simple check in
FDR2 turned out to be too optimistic, since neither the abstraction nor the check could
be done that easily. In the end, FDR2 was used for checking subcomponents and we
used various techniques to provide a rigorous argument for the overall conjecture.
Section3 will provide an overview of this work with a focus on the abstraction and
the combination of model-checking and less automatic argumentation. While much
of this project has been presented on various occasions, this section also contains

B. Buth (B)
HAW Hamburg, Hamburg, Germany
e-mail: Bettina.Buth@haw-hamburg.de

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_12

285

286 B. Buth

unpublished experience from a re-verification of the analysis in the context of the
re-use of the software for the automatic transport vehicle (ATV).

The second experiment started at a UNU-IIST summerschool on formal methods
in Beijing in 1999 during a course introducing CSP andmodel-checking using FDR2
[3]. John Rushby was another lecturer at this summerschool and offline a discussion
about his approach analysing mode confusion situations [27] was begun. It involved
a back-to-back-analysis of technical system models and mental models and was
performed using the Murφ model checker [9]. This example was intriguing because
it involved two different models which were manually combined into a single model
and a fairly complicated invariant that was used to capture the assumption that they
are equivalent. The question arose whether the FDR2 refinement approach could be
used to identify the critical deviations between mental model and actual technical
system model without the added complication of the invariant. As a case study, this
work was quite successful - the approach was not only suitable to detect already
known problems, but it uncovered further problems in the application which had
been hidden in the Murφ model. Section4 provides a summary of this case study - a
more detailed report can be found in Buth [1], essential results have been presented
at SafeComp’2004 [2].

These two examples - and several other experiments not reported here - have two
things in common: the abstraction of realistic systems or parts thereof as formal
models using CSP and the use of the model-checker FDR2.

2 Abstraction and Refinement–CSP and FDR2

This section provides a brief introduction to CSP and the model-checker FDR2,
which were used in the verification projects to be regarded below. In addition this
section contains a brief description of a selection of techniques used to combine
local results or to break down a complex verification task into simpler ones. Some
of these are based on CSP semantics and the relating theories, others were adapted
from different analysis methods.

2.1 CSP

The specification language CSP (Communicating Sequential Processes) is associ-
ated with a formal method allowing to verify properties of systems of concurrent
processes. (See Hoare [12] and the books by Roscoe [24, 26] for more details).
CSP processes evolve by engaging in communications. Processes may be composed
by operators which require synchronization on some communications. This, rather
than assignments to shared state variables, is the fundamental means of interaction
between agents. The theory of CSP is based on mathematical models of the observ-
able behaviour of processes represented by

From ProCoS to Space and Mental Models … 287

• traces: a process is represented by the set of finite sequences of communications
it can perform,

• failures: a process is represented by its set of traces as above and also by its refusals
– a set of communications it can refuse after a sequence of communications,

• failures-divergences, which extend the failures model with the divergences of a
process – the traces during or after which the process can perform an infinite
sequence of consecutive internal actions or otherwise show chaotic behaviour.

The communication behaviour of CSP is a synchronous one - two (or more)
processes can engage in a communication over commona channel if all are available,
otherwise a process is blocked on this channel. CSP provides a variety of operators
for sequential as well as concurrent composition. Processes only using sequential
operators can be seen as basic processes.

2.2 Refinement and FDR2

Thenotion of refinement is a particularly useful concept inmany areas of engineering.
If we can establish a relation between components of a system which captures the
fact that one satisfies at least the same conditions as another, then we may replace a
component by abetter onewithout degrading the properties of the system.Refinement
relations can be defined for systems described in CSP in several ways, depending on
the semantic model used. The relation is noted as Refinement P �X Q. where X is T
for trace refinement, F for failures refinement, FD for failures-divergence refinement.
These refinement properties are fulfilled if the process Q can provide only behaviour
also allowed by the process P.

FDR2 (Failures Divergences Refinement) is a model-checking tool for state
machines, with foundations in the theory of concurrency based upon CSP. Its main
method for establishing whether a property P holds for a CSP process system SYS
is to investigate refinement properties: SYS is compared to a specification process
SPEC for which P is known to be valid. The comparison is performed in one of the
semantic models of CSP which is known to preserve property P under refinement.
The main ideas behind FDR2 are presented in [23], it can be summarized as follows:
Every CSP specification consisting of finite-state processes with finite-value chan-
nels can be translated into a finite transition graph representation. This graph contains
all the semantic information of the original CSP specification. As a consequence,
every property of the specification captured as refinement property can be verified
by exhaustive analysis of the transition graph. In particular, the analysis of dead-
lock or livelock potential of concurrent systems of CSP processes can be reduced to
refinement checks; in FDR2 these checks can be directly invoked. Moreover, such an
analysis can be mechanized. The FDR2 tool provides this automation and has been
used for all model checking results described in this document.

288 B. Buth

2.3 Abstraction

Abstraction is the basis for model-based verification of systems in general; it allows
to reduce the overall complexity of a verification goal by providing a simplified per-
spective of the original system, which retains the properties relevant for the analysis.
For the examples shown in the following different original descriptions were used
as a starting point:

• occam code
• finite state models given as sets of rules or as graphical models
• architectural models of a systems describing its components and interfaces

For each of these descriptions a systematic abstraction was found to represent
their essential nature as CSP specifications. These CSP specifications provided the
analysis models for different investigations.

In general, a valid abstraction for a property p is required, defined as follows:
A CSP specification A (P) is called a valid abstraction for a property p of the
corresponding System S, if

Whenever A (S) has property p this implies that S has property p as well.

2.3.1 Abstraction of occam Code

If a valid abstraction A (P) of an occam process P is available, we only need to
analyse A (P) instead of P. For the analysis of communication behaviour of an
occam process P such as deadlock or livelock analysis the following approach in
the translation from occam to CSP can be used:

1. Every sequential code sequence without communication operators is deleted.
2. Each occam channel protocol is reduced to the set of values influencing the

communication behaviour in a distinctive way.
3. Every occam IF-construct IF condition THEN P ELSE Q may be

replaced by the equivalent if-construct in CSP or by the internal choice oper-
ator of CSP yielding P � Q.

4. If valid abstractions A (P), A (Q) for two processes P and Q are available and
these interpretations use the same abstractions on their communication interface
I , then A (P) ‖

I
A (Q) is a valid abstract interpretation of P and Q operating in

parallel. Using this technique, larger abstractions can be build from abstractions
on components.

Figure1 provides an overview about the relationship between occam and CSP
constructs.

From ProCoS to Space and Mental Models … 289

occamConstruct CSPConstruct

IF THEN ELSE � or if then else
PAR (PRIPAR) ||| or ‖
ALT (PRIALT) �

WHILE P= · · · → P or P = if b then · · · else SKIP
c?x c or c?x
c!a c or c!a
SEQ ; or →

Fig. 1 occam abstraction to CSP

2.3.2 Abstraction of Finite State Models

Automata or Finite State Machines (FSM) are an abstract formalization well under-
stood within computer science. Variants are present inUML, design pattern and their
implementation are available for almost any programming language from libraries
or example implementations.

In order to verify properties of systems adhering to this specific pattern it may be
of interest to transform these models to CSP models - in the following this approach
will be used to investigate deviations between to automata models with regard to
their observable equivalence using refinement checks.

In order to do so, it is necessary to provide a systematic transformation of an
automata model to a CSP model. Table1 provides an overview of essential par ts of
an FSM and the chosen CSP construct.

This is very similar to a switch-case implementation of FSM in imperative lan-
guages.

In order to reason about state changes - as required for the equivalence check -
auxiliary channels are used which report a state identification on entering the state.
This allows to refine the checks further and not only compare external behaviour but
also compatibility of states in a step-by-step execution. Furthermore, these auxil-
iary events support the fault localization should the external behaviour deviate from
expected behaviour.

Table 1 Relation between FSM and CSP specifications

Element of FSM CSP construct

State Process

Attribute of state Parameter of processes

Trigger events Channel event

Conditions on transitions Guarded commands

Multiple transitions from a state Choice

Change of state Call of process

290 B. Buth

2.4 Generic Theories–Pattern-Based Verification

Asweknow frompattern-oriented development, it is useful to identify generic classes
of processes and investigate their propertieswithout knowledge of concrete instances.
This leads to generic theoremswhich can be exploited for the verification of instances.
For the examples reported below, this has been used in two ways:

• use the generic process during abstraction directly
• derive properties of process composition based on properties of its components

In both cases it is necessary to make sure that the concrete process is a refinement
of the instance of the generic theory. CSP provides generic theories of abstract
processes. A generic theory provides properties valid for each process instance of
the associated class.

Examples of such generic classes used in the case studies are

• RUN(X)
Instances ofRUN(X) always accept any event from setX. TheRUN process can not
deadlock: instances of this process class can e.g. be used formodelling environment
behaviour, especially to capture specific outputs from the processes in a defined
way.

• YIELD(X)
For a set of events X YIELD(X) will always provide at least one element of X.
Note that this does not exclude that one or more events are never offered, but the
process will not deadlock. YIELD(X) was used to model the behaviour of input
from the process environment.

• pipes
consist of several processes which transfer input from their predecessor to their
successor in a serial way. If the basic processes of the pipe do not deadlock, then
the overall process will not deadlock, thus it suffices to verify deadlock freedom
of the basic processes

• buffers
store data up to a certain capacity and allow to retrieve these data in first in-first
out order. Properties of buffers are well known.

2.5 Algebraic Reasoning

CSP possesses a rich proof theory which provides algebraic laws for the transfor-
mation of CSP processes into equivalent ones. Specifically, deadlock and livelock
freedom are preserved under application of these laws. Algebraic manipulation is
useful to simplify process terms and reduce the state spaces of processes before
starting the model checking process.

From ProCoS to Space and Mental Models … 291

2.6 Compositional Proof Theory

The strongest way of exploiting compositionality is by using theoremswhich allow to
reduce the overall verification obligation to obligations for individualing components
of the system. A simple example is the following:

Let SYS = P Q be a system of two processes P and Q which run concurrently without
any synchronization. Then SYS is free of deadlocks whenever P and Q are free of deadlock
individually.

Another way of exploiting compositionality is to refer to an essential property of
refinement in connection with operators for the composition of processes (preserva-
tion of refinement):

If Pi �FD Qi for i : 0..n − 1 and ω is an n-ary operator,
then ω(P0, . . . ,Pn−1) �FD ω(Q0, . . . ,Qn−1) holds.

In connection with generic processes, compositionality can be used to reduce the
overall verification task so simpler ones.

3 Space

The acceptance of Formal Methods in industries essentially depends on their scala-
bility, i.e. their applicability in large scale realistic industrial projects. An important
aspect is the availability of suitable tools, but from our experience this is but one
aspect. The diverse nature of system components and the techniques used in the dif-
ferent steps of the development process require the use of a combination of methods
for the development as well as for the analysis of these components. In this section
we report experiences using a combination of methods for the analysis of a large soft-
ware system, namely the fault-tolerant data management system for the International
Space Station (ISS).

Deadlocks and livelocks are two essential problem areas for systems consisting of
concurrent processes. This section presents a summary of experiences gained during
the analysis of a fault-tolerant computer for the Russian module of the international
space station ISS between 1995 and 2004. The original analysis of the relevant
software was performed at the end of the design phase and a re-verification during the
coding phase. Deadlock and Livelock Analysis are part of a larger verification suite,
which validates different aspects of the overall system. They employ a combination
of techniques based on local results gained from model-checking abstractions of
software processes using CSP and FDR2.

Various aspects of the original work have been published; see e.g.

• deadlock analysis: Buth et al. [5],
• livelock analysis: Buth et al. [6, 7]

292 B. Buth

• detailed description of abstractionmethods and verification of theByzantine agree-
ment protocol: Peleska et al. [21],

• load analysis using GSPNs: Schlingloff [32], and
• efficient use of generic theories in the verification of fault-tolerant systems: Buth
et al. [4]. More detailed description of some of the aspects can be found in Buth
[1], another overview in Peleska [20].

Some of this material has been reused in this survey.
After a brief introduction to the system under analysis, this section provides an

overview of the techniques employed for the analysis of deadlock and livelock free-
dom of the system components.

3.1 Technical Background: The Fault Tolerant Computer

The software analysed is part of a fault tolerant computer that is used in the Interna-
tional Space Station (ISS) to control space station assembly, reboost operations for
flight control, and data management for experiments carried out in the space station.
In the following, the system architecture and the goal of the analysis as well as the
starting point for the verification are described.

3.1.1 FTC Architecture

The overall architecture consists of up to four communicating lanes, each providing
services for the applications. Each of these lanes is structured into an application
services layer (ASS), a fault management layer (FML), and the avionics interface
(AVI). The ASS resides on the application layer board and contains table driven
services for the application software and the operating system. The AVI is in charge
of the MIL Bus protocol handling according to predefined timing slot allocations.
These are defined in an input/output table. The function of FML is twofold: First,
it provides the interface between ASS and AVI of one lane, transferring messages
from AVI to ASS and vice versa. Second, it performs the data transfer between lanes
thus allowing communication between the fault management layers of all lanes. This
communication is the basis for error detection, error correction, lane isolation (in the
case of an unrecoverable error), and lane reintegration. In each lane, the application
layer plus ASS runs on a customized Matra board using a SPARC CPU. Both FML
and AVI reside on separate transputer boards. The lanes communicate only at FML
level using the transputer links. Each FML uses up to three links for communication
with the other lanes, and one link (link 0) for communication with AVI. Data transfer
with ASS is performed using a VME interface. See Fig. 2 for the architecture of a
full four-lane system.

From ProCoS to Space and Mental Models … 293

FML FML FML FML

AVI AVI AVI AVI

MIL−BUS

ASS ASS ASS ASS

Application Application Application Application

Fig. 2 FTC architecture

Error detection is essentially based on a two round Byzantine distribution schema
[14] where data is communicated between FMLs and voted using various specialized
voters. The aim is to ensure that

• all ASS instances of non-faulty lanes get identical messages from FML,
• all AVI instances of non-faulty lanes get identical messages from FML,
• for data calculated by all lanes (so-called congruent source messages) all non-
faulty lanes get the correct(ed) message,

• for data calculated by one lane (single source messages) all non-faulty lanes get
the correct(ed) message if the originator is not faulty.

The implemented design allows detection of one Byzantine or deterministic fault
in a four-lane system and recognition of a deterministic fault in a three-lane system.

3.1.2 Goals of Communication Behaviour Analysis

Both FML and AVI software are implemented in occam [13], consisting of systems
of processes running concurrently and communicating via internal channels and
partly using shared memory to exchange data without the additional communication
overhead. The software is structured hierarchically: larger processes, each consist-
ing of several subprocesses, implement different parts of the respective functionality
and communicate the computation results to the other main processes. In addition to
the usual aspects of functional correctness and timing, a concurrent architecture of
software adds the new problem of potential blocking. It must be guaranteed that the
software does provide its services to the adjacent components of the overall system.
Blocking can be due to two causes: either the system does not work at all because

294 B. Buth

components mutually wait for results, or it does only work internally without com-
municating with its environment. The first situation is called a deadlock, the second
a livelock. Our essential task for the analysis of the communication behaviour was to
show that neither deadlock nor livelock situations can occur in the implementation
of AVI and FML.

For the deadlock analysis we have to check whether any of the communicating
system of processes that forms the software can continuously block the commu-
nication with the environment. Formally, the following verification goal had to be
investigated:

In an environment that always accepts outputs from the system but may or may not refuse
to provide inputs, the following assertion holds: Whenever the system reaches a stable state
where all internal communications are blocked, the system will always accept new input
from the environment.

In complex hierarchically organized systems of concurrent processes, communi-
cationbetween low-level sub-components is usually concealed from the environment.
occamprovides suitable operators to implement such hiding of internal communica-
tion. Situations, where the interaction of internal components result in uninterrupted
chatter between these components without visible progress at the interface channels
are known as livelock.

The objective of our livelock analysis is to investigate occurrence of internal
divergence only.

A CSP (or occam) system X is called livelock free with respect to interface chan-
nels c1, c2, . . . , cn, if the system will never engage in an unbounded sequence of (inter-
nal) communications without allowing (visible) communication on the (external) interface
c1, c2, . . . , cn.

This property is as important as the absence of deadlocks since it ensures the
interaction of the system with its environment.

3.2 Verification Approach

The material provided as input for the analysis consisted of

• a printed version of pseudo code for AVI,
• source code of the final implementation of FML and AVI,
• diagrams for the overall architecture and communication behaviour of individual
processes,

• general information about the system requirements and technical details of the
system,

• verbal communication with the system engineers.

The general idea for the analysis of communication properties ofoccam programs
as used in the project is to exploit that CSP is an abstract specification for occam

From ProCoS to Space and Mental Models … 295

code. Thus for both deadlock and livelock analysis performed the occam code is
abstracted to CSP and the model-checker FDR2 [10] is used to evaluate the relevant
properties for the model. Provided the CSP model ia a valid abstraction, the check
on the model allows to deduce properties of the code. An early experience: after
manually abstracting the occam programs to CSP processes, the system still is too
large for a direct approach using FDR2. Thus it is necessary to decompose the task
and use several of the other techniques mentioned above for combining the results
to obtain an overall result for the full system.

The mathematical proof theory of CSP allows to verify properties of CSP speci-
fications by means of formal reasoning. The CSP language, its mathematical foun-
dations and its possible applications have been thoroughly investigate since the late
sixties (see [8, 12, 25, 26, 31]). For the verification goal described above we apply
various verification techniques. They can roughly be divided into those which are
applied to basic components and those which are used for combining the respective
results on the basic components

The techniques in the first group are

• Abstraction is applied to “lift” occam process components to CSP components
reflecting the essential aspects of the process communication behaviour while
abstracting from details irrelevant for the verification goal,

• Generic theories increase the efficiency of analysis: process instances of a generic
class inherit the class properties, which means that it is only necessary to show
that concrete processes are instances of a suitable generic process,

• Algebraic reasoning is applied to transform CSP process specifications into equiv-
alent ones better suited for the model checker.

• Model checking is used for the mechanized verification of small-sized CSP com-
ponents for both deadlock and livelock freedom.

Those in the second group are:

• The compositional proof theory of CSP is applied in connection with refinement
properties to derive global properties of the complete system from the local prop-
erties established for the isolated components,

• Liveness induction provides a suitable iterative approach extending the system
step-by-step and making use of local livelock freedom results of the component
processes [7]

• A form of cycle analysis is used on the data flow diagrams to show that cycles in
the communication can not induce an infinite backlog as cause of a livelock [5],

• A dependency analysis is applied in order to reduce the number of cycles to be
investigated for livelock analysis [1, 7]

The size of the FTC system provided an obstacle for the fully formal verification
of the systemwith regard to deadlock and livelock. By decomposing the overall veri-
fication task into smaller subtaskswewere able to provide the analysis required based
on a combination of formal reasoning, model-checking and rigorous arguments.

296 B. Buth

Table 2 Goals of FTC analysis

Verification goal Verification method

Deadlock freedom CSP: generic theories - abstraction - model
checking - algebraic laws - compositional
theory - cycle analysis - liveness induction

Livelock freedom As for deadlock analysis plus dependency
analysis

Absence of bottlenecks Stochastic petri nets

Correct implementation of Byzantine Protocol
and failure detection

Abstraction - model checking - compositional
proof theory

Correct implementation of application services Verification using Hoare Logic

“Most non-deterministic admissible
software/hardware integration is correct”

Hardware-in-the-loop-testing

Table2 gives an overview of the methods used for the communication behaviour
analysis as well as the other verification and test goals for the FTC system.

3.3 Lessons Learned–Part 1

This subsection summarizes the experiences made during the deadlock and live-
lock analysis for the FTC. These relate to deriving valid models suitable for model-
checking, the combination of formal verification and rigorous arguments, the scal-
ability of the model-checking tool FDR2 and the reuse of models and results for
re-verification.

3.3.1 Abstraction of occam Code and Interfaces

Since deadlock and livelock analysis are essentially properties of communication
behaviour of processes in a system of concurrent processes, the models can abstract
from large parts of the sequential parts of the code. The models thus represent a
kind of communication skeleton of the code, sequences of communication events
determined by internal control flow of each process. Similarly a first model can
abstract from data communicated, thus reducing the number of possible events in the
CSP model. The derivation of these models can be done in a systematic way - could
possibly even be automated.

This reduction to causal dependencies between communication events introduces
a high level of non-determinism to the models of processes; not all of the sequences
represent realistic communication sequences - but the realistic sequences are a subset.
With regard to the validity of the results, the approach is still sound - if the larger set of
communication sequences does not allow deadlocks, the subset does neither. On the

From ProCoS to Space and Mental Models … 297

other hand, false positives are potentially introduced and the overall state space for
model checking grows. In order to reduce this effect, the initial models were refined
by introducing details of the code into themodel, such as specific conditions guarding
individual communications or details of the date communicated via channels.

Introducing details can in some cases also increase the state space to be investi-
gated by the model checker. If the state space becomes too large, it may be necessary
to decompose the checks.

The overall model-derivation is thus an iterative process, which requires insight
into the application as well as experience with the constraints of FDR2.

3.3.2 Combining Methods

As explained in the preceding sections, the verification steps involved a number
of semi-formal arguments that were carefully reviewed but could not be checked
in a mechanical way. Therefore it is necessary to assess the completeness of the
verification results obtained and the test coverage achieved. Due to the usage of very
simple communication patterns in the FML software design our confidence into the
adequacy of the abstractions and the completeness of the verification is very high for
the FML software. For technical reasons, the AVI layer could not be designed with
such simple patterns. As a consequence, the deadlock and livelock analysis results
obtained for the AVI should rather be regarded as a “sophisticated test suite” which
after having uncovered a number of errors did not find any new ones. However, it
should be emphasised that the quality of these “tests” is much higher than what
could ever be achieved by systematic but informal design reviews because of the
high number of states explored during the model-checking process.

The verification effort was much smaller for those parts of the system where
standardised design patterns had been used by the software developers. Optimization
for run-time efficiency introducing short-cuts for exceptional situations proved to be
one of the main obstacles for adhering to such pattern.

3.3.3 Differences Between Deadlock and Livelock Analysis

Although deadlock and livelock verification both start from the same code, it is not
directly possible to use the same abstractions. Due to the hierarchical architecture of
both components the freedom of livelock for each of the main processes was tried
to be established first. During this phase some adjustments in the abstractions were
necessary to eliminate non-determinismand formalise the newproof obligations.One
example is the explicit introduction of timer processes in order to avoid divergence
introduced through events depending on specific timers.

298 B. Buth

During these first step of livelock analysis it became obvious that it would not
be feasible to use model-checking directly for the subprocesses of FML and AVI
even in cases where it was possible for the deadlock analysis. On the one hand this
is due to the changes in the abstraction which enlarge the state space, on the other
hand the problem arises since the states themselves are larger. The reason for this is
that livelock analysis uses the failure-divergence model of CSP, while the deadlock
analysis could be performed within the failures model. The internal representation
of the states has to contain the additional information about the divergence sets and
thus is larger.

Similarly, the effort for combining local results of subprocesses required a
more creative approach using additional techniques. Two different approaches were
employed in this situation:

• further abstraction and exploitation of the theorems for preserving the results under
refinement,

• further decomposition of components, separate analysis for each basic unit, and
derivation of properties for the combined units.

While the first proved to be a suitable way of dealing with the main processes
of FMLthe complex communication behaviour of AVI made it necessary to pursue
the second approach. In both cases it was necessary to employ suitable means for
combining the results for the overall unit, such as liveness induction and dependency
analysis.

Last but not least it should be mentioned, that the overall project was a successful
one. The formal analysis uncovered a number of critical scenarios for the application
of the FTC system, which could not be found be conventional tests. The overall
verification suite provided essential input for re-engineering certain parts of the
system and these again were analysed in a re-verification effort.

3.3.4 Reuse of Models and Verification Results

Several years after the original verification project, the occam code developed for
the FTC was reused in the ATV–the Automatic Transport Vehicle transporting goods
to the ISS. The code was fromally re-used, but according to ECSS standards up to
20% of the code can be modified and still from development perspective it is a reuse.

The open question was whether the changes to the code invalidates the results of
the deadlock and livelock analysis. To check this, first an evaluation of the changes
was performed - again with a focus on communiation order and channel usage; the
latter referring to changes in the channel protocol as well as to the concrete data used
in each communication event. In a second step the effect of these changes to the
model were investigate. The following table summarizes the effect of typical classes
of changes to the model.

From ProCoS to Space and Mental Models … 299

Change Potential Impact on Model and Results
Renaming of channels Does not invalidate the analysis result (renaming provides equiva-

lent processes in the model)
Protocol changes Can effect the model unless the details of the protocol are omitted

in the model; otherwise similar effect as for removal and or new
introduction of channel

Removal of channels Can effect both deadlock and livelock behaviour, both locally and
globally; for local results the situation may be uncritical if another
case with the same behaviour exists (these can be identified in a
more abstract model) - requires more detailed analysis to determine
specific situation

New channel or communica-
tion events

Can effect both deadlock and livelock behaviour, both locally and
globally; for local results the situation may be uncritical if another
case with the same behaviour exists (these can be identified in a
more abstract model) - requires more detailed analysis to determine
specific situation

Re-ordering of cases (ALT
or IF)

Without effect on the model

Removal or introduction of
cases

Similar to removal or introduction of channel or channel events

Splitting of a process into
two parallel processes

Will in general effect the model and the validity of the results

As a consequence of these finding, an adaptation of the models according to the
changes was made and the analysis re-run. As it turned out, the changes did not
introduce new deadlock situations, but a new livelock situation was found. Further
analysis identified an older problem, which had been waved as non-realistic in the
original verification project.

The overall experience from this follow-up project is that the classification of
changes provides a suitable basis for a systematic adaptation of the models and that
the re-run of the analysis in FDR2 was without any problems.

4 Mental Models and Refinement

The ever-increasing complexity of computer-based systems has lead to a changed
role of human operators, especially in safety-critical applications such as air-craft
and train control, chemical and nuclear plants, medical equipment, or automobile
components. The use of computers in such systems has a high potential for automa-
tion as well as extended functionality, but also requires sophisticated control and
monitoring mechanisms due to the inherent complexity. These themselves can be
implemented as computer-based processes which allow to take away the strain from
human operators who would otherwise have to cope with a multitude of information
and a higher demand on reaction times required for the interactionwith such systems.

Nonetheless, in many applications a total automation of the system control is
not accepted or (not yet) possible. Human operators are often the ultimate instance

300 B. Buth

for dealing with emergencies or have to react to information not directly available
to the computer-based kernel systems. Research activities in the Human Factors
community focus on human-computer interfaces based on psychological as well as
design-oriented considerations. As Sarter et al. [29] and Leveson et al. [16] point out,
technology-centred automation potentially leads to designs which are problematic
for the human interaction.

One area which has found attention is the investigation of so called automation
surprises, particularly mode confusion. This section discusses the use of model-
checking for the comparison of abstract system models and mental models with the
objective to analysemode confusion situations. The emphasis is on theCSP specifica-
tion and model-checking aspects rather than on the socio-technological perspective.
The remainder of the introduction provides the background for the approach as well
as an informal description of the example, a kill-the-capture scenario. Section4.3
describes one possible approach to the analysis of this example using FDR2. In con-
trast to other attempts using model-checkers for this task, the refinement approach
allows a direct comparison of the two models which can be easily derived from
a rule-based description or an finite automata model. Section4.4 summarizes the
experiences and tries to generalize the results.

4.1 Mode Confusion Analysis–Background

Modes are identifiable and distinguishable states of a systemwhich differ with regard
to the effect of interactions. The complexity of a system is reflected in the number
of different modes and complex rules for mode transitions as well as functionality
in a mode. Mode confusion scenarios – also called automation surprises or feature
interaction depending on the application domain – describe situations where the
operators assumption about the system mode differs from the actual mode of the
system and actions performed under this assumption result in critical situations. In
order to detect and eliminate mode confusion, a thorough analysis of the system
design and functionality as well as the human-computer interface is required.

Techniques from the formal methods field prove to be useful for mode confusion
analysis. Several approaches based on abstract models of the system are documented;
see e.g. Leveson et al. [16], Miller and Potts [18], or Lüttgen and Carreño [17].
These experiments focus on the identification of situations that potentially lead to
mode confusion. Rushby [27, 28] suggests a complementary use of model-checking
based on two different models of the system. The actual model is an abstract model
of the actual system behaviour; the second called mental model reflects the view of
the operator which may be a reduced version of the full model or even may contain
wrong assumptions about the system.

In contrast to the approaches of Leveson andMiller and Potts, Rushby’s approach
aims at identifying critical discrepancies between themodels rather than investigating
the mode confusion potential of the actual model. Rushby formalizes the models in
the Murφ [9] model-checker notation and employs Murφ to perform a full state

From ProCoS to Space and Mental Models … 301

exploration. Since Murφ is not able to compare two models directly, both models
are merged into one by renaming the relevant state components such that these have
disjoint names. TheMurφ rules then are used to describe the effect of inputs or events
to the full set of state variables. An invariant is employed to specify that both models
are in equivalent states after each step.

This is slightly unsatisfactory, since an untrained person will not be able to deter-
mine such a specification from the distinct views of the actual and mental models
respectively, even if the Murφ rules can be easily understood with a basic knowl-
edge of state transition machines or simple automata. Similarly, the formalization
of invariants as criteria for the absence of mode confusion will in general require
some explanation or even a manual analysis of the models (which may very well
uncover the problems in the models). Rushby himself [27, 28] suggests to employ a
different type of model-checker, namely the CSP-based tool FDR2 as an alternative,
since FDR2 allows to compare models in a more direct way. In the following, this
suggested approach is investigated, taking the Murφ model as a starting point.

4.2 The Example

The example in Rushby’s papers [22, 27, 28] is taken from an article by Palmer [19],
which reports two cases of altitude deviation scenarios. These cases and three others
were observed in a NASA study in which several crews flew realistic missions in
DC-9 andMD-88 aircraft simulators. This example has previously been investigated
by Leveson [15].

In the following, the scenario description as stated byRushby [27, 28] is presented,
which is the starting point for the Murφ model. In order to follow the scenario it is
necessary to explain some features beforehand.

The system behaviour depends on two modes: The PITCH mode is a control
element for the autopilot which determines the climbing behaviour of the aircraft.
The modes are

VERT SPD vertical speed; climb at a specified rate (feet per minute)

IAS indicated air speed; climb at a rate which is consistent with holding
the air speed (knots)

ALT HLD altitude hold; hold current altitude

ALT CAP altitude capture; provide smooth levelling off when reaching desired
altitude

The second relevant aspect is the ALT capture mode (one of several possible capture
modes) indicates that the aircraft should climb to the the desired altitude and then

302 B. Buth

hold that altitude. For the example it suffices to imagine this mode as a binary value
which reflects whether the mode is set (armed) or not.

The interaction between the modes is of particular interest:

• if ALT capture is armed and the desired altitude is reached, the pitch mode is set
to ALT HLD.

• the ALT CAP pitch mode is entered automatically when the aircraft gets near the
desired altitude under the condition that ALT is armed; it switches off the ALT
capture mode

• if ALT CAP pitchmode is set and the desired altitude is reached, the aircraft levels
off and pitch mode is changed to ALT HLD.

The scenario as reported by Palmer [19] describes a potentially critical situation
where an aircraft leaves its assigned flight corridor and enters a flight altitude which
could be assigned to other aircrafts. The cause for this situation is obviously that the
ALT capture was switched off without the Captain noticing it (the only information
provided is that one of a large number of flags switches to blank). Analysis of the
situation shows that the interaction between pitch modes and ALT capture mode is
more complex than first assumed.

Rushby [22] also derives a state machine representation of the abstract behaviour
of the autopilot with regard to pitch mode and altitude capture mode. This model
takes into account the relevant modes and the inputs of both the plane crew and the
events from the environment. This model, which is shown in Fig. 3 abstracts from

not active
capture altitude

hold

pitch mode
is alt_cap

capture
armed

IAS/VSPD

HLD/arrived

HLD

nearALT_CAPTURE

IAS/VSPD

IAS/VSPD

ALT_CAPTURE

HLD/arrived

Fig. 3 State machine for actual model

From ProCoS to Space and Mental Models … 303

capture
not active

altitude
hold

capture
active

HLD/arrived

HLD

IAS/VSPD

ALT_CAPTURE

ALT_CAPTURE

IAS/VSPD

Fig. 4 State machine for mental model

the general status of the plane, as for example altitude, speed, motion or similar
and from related values the pilot could enter. What remains is an abstraction of the
behaviour focused on pitch mode and capture mode restricted to ALT. Similarly,
Rushby provides a state machine representation of the mental model as derived from
the case study. This is shown in Fig. 4.

The obvious difference between the two models is the number of states. The
mental model does not contain an explicit state for ALT CAP, the pitch mode which
is entered automatically without pilot interaction. This omission models the fact
that the pilot was not aware of this particular mode and the related changes to the
ALT capture mode. A formal analysis of these automata models with regard to their
language equivalence will also reveal deviations in the possible mode transitions, but
further analysis is required to examine whether these differences are indeed critical.

4.3 Verification Approach

This section presents an approach of employing FDR2 [10] for the investigation
of the mode confusion situation reported by Palmer [19]. The Murφ specification
described by Rushby provided the starting point. The central question is whether the
models can be presented in a user-friendly form as CSP specifications and whether

304 B. Buth

the FDR2 refinement checks provide an adequate means for identifying critical devi-
ations relating to mode confusion.

For this purpose several specifications of the models were investigated, which
involved both rule-based and automata-based models, where the latter is based on
the automata for actual and mental model as presented in Figs. 3 and 4. For the
experiment the error situations uncovered by FDR2 were compared to the problems
found using the Murφ system. A full report of this and the other approaches can be
found in Buth [1], parts of this has also been published in 2004 [2].

This subsection summarizes the possibilities of checkingmental and actual model
by comparing them using the refinement properties of CSP models.

The modes are modelled as enumeration types in CSPM transition events as chan-
nels. In order to be able to observe the change of states additional artificial channels
are introduced, which report entry of a state and the respective transition event.

Two distinct processes ASYS and MSYS are specified for the actual and the mental
model, respectively. The state spaces of both models are determined by the pitch-
mode and the capture-mode, which are stated as parameters of the processes.

The specification of the mental model can easily bee derived from a set of rules or
an automata representation such as the one in Fig. 4. In particular, it can be derived
without information about the actual model. Note that for the analysis of the mode-
confusion situation such a rule-based or automata model will originally need to be
derived from the understanding of the operator rather than other material. For this
study, the mental model was taken from the Murφ example.

In order to prove that the models are equivalent, it is necessary to map them to a
common set of observable events.

Now it is possible to specify the desired equivalence. Since FDR2 does not provide
a directmeans for checking equivalence, it is necessary to checkmutual refinement of
the processes ASYS and MSYS. For mode confusion analysis it is of interest to prove
equivalence both in the trace as well as the failures model. Trace refinement ([T=)
in FDR2, only ensures that both systems are able to perform the same sequences
of events. For the given example this ensures that both systems are able to react to
external inputs in the sameway and that the state changes are performed accordingly.
In addition, it is of interest to know whether at any point in time one of the models
could refuse an event which can not be refused by the other. Refusal properties are
checked using failures refinement ([F=) in FDR2.

The checks reveal that the actual model is not a trace refinement and thus neither
a failures refinement of the mental model. Analysis of the error scenario uncover that
it reports the known problem detected by Murφ. A detailed analysis of the errors
reported can be found in [1] or [2].

After performing the corrections analogously to the suggestions for the Murφ
model, the resulting specification still shows an error.

Checking the traces and refusals reveals that while the actual model is not
allowed to perform ALT_CAPTURE or near, the mental model could also engage
in ALT_CAPTURE. Further analysis of this situation in comparison with the error-
free Murφ model reveals a flaw in that model: rule “ALT CAPTURE” in the Murφ
specification reads as follows:

From ProCoS to Space and Mental Models … 305

rule "ALT CAPTURE" pitch_mode != alt_cap ==>
begin

capture_armed := !capture_armed;
ideal_capture := !ideal_capture;

end;

This means that the behaviour of the mental model, namely the changes to state
variable ideal_capture are influenced by the value of pitch_mode, which is
not part of the mental model - a problem introduced be merging the two models. The
FDR2 error shows the effect of the change to the actual model alone and reveals a
new error situation. This error situation is due to the change with regard to the error
found above: guarding ALT_CAPTURE in the actual model prevents a second such
event in pitch-mode alt_cap, but in the mental model such a change is allowed.
Thus the corrections still do not capture the problems arising from the hidden state
properly.

4.4 Lessons Learned–Part 2

This section summarizes and generalizes the experiences using FDR2 the suitability
of model-checking for mode-confusion analysis in general and the exploitation of
mode-confusion analysis for system design.

4.4.1 Evaluating the FDR2 Approach

The essential difference between the Murφ and the CSPM specification is the way in
which the models are compared. The FDR2 specifications allow a separate specifi-
cation of actual and mental model, while the Murφ specification presents a view of
the combined models with a partially shared state space.

For both approaches it is necessary to determine how mode confusion situations
can be identified, which parts of the specifications need to bemonitored to detect such
a critical situation. The studypresented inButh [1] contains three different variants for
the example: the first directly corresponding to theMurφ version, a second separating
the actual and mental model but still using the rule-based description as basis, and a
third directly derived from the automata representation as given in Figs. 3 and 4.

The overall experience with modelling these versions in FDR2 is quite encour-
aging: each of the models requires little effort for a CSP expert or even someone
with a general specification background. Similarly, the evaluation of error scenarios
reported by FDR2 does not pose any particular obstacles assuming a basic under-
standing of the overall system functionality.

As the FDR2 approach using separate models allowed to reveal additional errors,
the benefit is obvious: it avoids the more complex combination of state spaces and
definition of invariants which is required for using Murφ.

306 B. Buth

Whether the models are derived from rules or from automata depends on the
original data provided; in either case the specification can be generated in a systematic
way, which probably could also be automated.

4.4.2 Model-Checking for Mode Confusion Analysis

A first conclusion from the experiments with FDR2 is the confirmation of Rushbys
résumé: model-checking provides a relatively easy approach to investigating models
with regard tomode confusion situations.Oneparticular benefit is the easewithwhich
the models can be adapted and extended in order to check potential corrections. At
least with the given example themodel-checker provides almost immediate feedback
on error situations.

Two essential questions need to be discussed with regard to the general usage of
model-checking for this kind of task:

• How can the specifications for mental and actual model be derived in a systematic
way and on basis of which input?

• How can the errors found by model-checking be related to situations in the real
system?

Both questions are strongly connected to the topic of suitable abstraction for both
the real system and the operators understanding of the system. With regard to the
application of a model checking tool, the specifications should be as abstract as
possible, restricted to the minimal set of state and environment information. This is
a prerequisite for a successful application of a model-checking tool since too much
information will in general lead to a state explosion and thus to potential problems
with the state-exploration approach.

A discussion of the questions concerning abstraction and error analysis in relation
to the adequacy of themodels for the presented example can be found inButh [1]. The
general conclusion is that the suitability of the abstraction and form of specification
depends on the concrete application and the knowledge of the people involved; a
systematic approach will only be possible when more experiences with this use of
formal methods in the framework of human-computer interfaces are available.

Although the results presented in this study are quite encouraging and point to a
very interesting direction of using model-checking and formal methods in general,
some remarks are due concerning the applicability of this approach. The example
considered here as well as those discussed by the other authors, are fairly small parts
of larger and more complex systems. It requires more examples to prove that the
approach scales to realistic applications.

From ProCoS to Space and Mental Models … 307

5 Conclusion

This section summarizes the overall experience gained from the projects in view
of the use of formal methods and CSP refinement. In addition to the above one
other project is briefly summarized which also used refinement proofs employing
FDR2: the verification of a fault-tolerant communication system. This example is
more directly related to a step-wise development justified by refinement proofs as
suggested by ProCoS.

5.1 Overall Evaluation

While the experience reported in this chapter are only exemplary, they nonetheless
provide encouragement for the use of formal methods, specifically CSP and model-
checking, for some verification tasks of realistic systems. The recommendation is
not to replace other forms of analysis such as static analysis or tests of the respective
systems, but to identify specific properties and criticality levels for which the addi-
tional effort of this type of analysis is justified. In such cases a promising approach
is a joined team of experts in the application domain and experts in formal methods
and tools. Tool support will be essential to manage the number of tasks related to
such a verification project.

Abstraction provides one possible approach to focus on specific properties, but
the systematic derivation of models will still be a significant part of the work to be
done and requires experience and a certain level of creativity. Since this part strongly
depend on the basis material (code, other models, informal information) the potential
for automation can only be evaluated for certain settings - in general a more formal
input will increase the chances. A strong semantic connection as the one between
occam and CSP provides a suitable starting point.

FDR2 proved a very suitable tool for both verification efforts, at least to establish
local results on subprocesses. Refinement was used for different purposes:

• in the FTC example refinement allows to reduce the individual verification tasks
and semantically deadlock and livelock analysis are special variants of refinement.

• in the mode-confusion analysis mutual refinement establishes equivalence.

5.2 Other Experiments

Refinement has been an integral part of the ProCoS approach for developing safety-
critical systems. During the research visit of Michael Schrnen from Capetown at
Bremen University, we had the opportunity to use this idea for the justification of his
architecture for a fault-tolerant train communication system. By using increasingly
more detailed abstractmodels of his system, itwas possible to ensure that the essential

308 B. Buth

requirement of reliable communication was indead achieved through the redundancy
mechanisms used in the system.

The project started as a research activity at the University of Cape Town with the
objective to investigate the possibilities to replace the original parallel transmission
of data between interlockings by a serial transmission system which could use a
variety of serial channels. In addition, the serial channels had to be transparent to
the existing interlockings. This was achieved through the development of fail-safe
data transceivers which were connected to each interlocking (see Schrönen [30] for
details).

In order to justify that the architectural design of the fail-safe communication
system is sound it was necessary to check that the original requirements for the
communication are still fullfilled by the replacement system. The approach involves
a stepwise refinement of the system and its subcomponents including the verification
that each refined view is a valid implementation of the next abstract level. With
increasing detail it is required to reduce the verification tasks to simpler ones and
justifying the overall result using compositionality with regard to refinement. Details
of this example can be found in [1].

Since the projects reported here have been concluded, FDR2 has been developed
further - since 2013 a new version FDR23 [11, 33] is available, which provides a
modern user interface as well as a multi-core architecture to improve scalability.
FDR23 also integrates several other tools developed in the context of CSP such as a
step-by-step interpreter of CSP specifications called probe. Whether the new system
could also improve on the original results with respect to proving larger processes
has not been investigated. Currently it is used in a student project investigating the
use of CSP refinement for analysing the potential for safety-related failure modes at
HAW Hamburg. The idea is similar to the one for mode-confusion, but yet only a
concept has been developed.

References

1. Buth, B.: Formal and Semi-Formal Methods for the Analysis of Industrial Control Systems.
Bremen University (2002)

2. Buth, B.: Analysing mode confusion: an approach using FDR2. In: Heisel, M., Liggesmeyer,
P., Wittmann, S. (eds.) Computer Safety, Reliability, and Security. Lecture Notes in Computer
Science, vol. 3219, pp. 101–114. Springer, Heidelberg (2004)

3. Buth, B., Peleska, J.: Formal methods for large-scale industrial applications – deadlock and
livelock analysis for the international space station. In: Tutorial Material for the Advanced
Summer School in Formal Methods and Applications, Beijing, China, October 1999

4. Buth, B., Cardell-Oliver, R., Peleska, J.: Combining tools for the verification of fault-tolerant
systems. In: Berghammer, R., Buth, B., Peleska, J. (eds.) Tools for Software Development and
Verification. BISS Monographs, vol. 1. Shaker-Verlag (1996) (in print)

5. Buth, B., Kouvaras, M., Peleska, J., Shi, H.: Deadlock analysis for a fault-tolerant sys-
tem. In: Johnson, M. (ed.) Algebraic Methodology and Software Technology. Proceedings
of AMAST’97. LNCS, vol. 1349 , pp. 60–75. Springer, December 1997

From ProCoS to Space and Mental Models … 309

6. Buth, B., Peleska, J., Shi, H.: Combining methods for the analysis of a fault-tolerant system.
In: Haeberer, A.M. (ed.) Algebraic Methodology and Software Technology, Proceedings of
AMAST’98. LNCS, vol. 1548, pp. 124–139. Springer, January 1999

7. Buth, B., Peleska, J., Shi, H.: Combining methods for the analysis of a fault-tolerant system.
In: Proceedings of Quality Week ’99, May 1999. (CDrom)

8. Davies, J.: Specification and Proof in Real-Time CSP. Cambridge University Press, New York
(1993)

9. Dill, D.: The murφ verification system. In: Alur, R., Henzinger, T. (eds.) Computer Aided
Verification, CAV’96. LNCS, vol. 1102. Springer, Heidelberg (1996)

10. Formal Systems (Europe) Lts. FDR2 User Manual, FDR 2.97 edition. http://www.fsel.com/
documentation/fdr2/html/fdr2manual.html

11. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3— a modern refine-
ment checker for CSP. Tools and Algorithms for the Construction and Analysis of Systems.
Lecture Notes in Computer Science, vol. 8413, pp. 187–201. Springer, Heidelberg (2014)

12. Hoare, C.A.R.: Communicating Sequential Processes. Red Series. Prentice-Hall International,
Englewood Cliffs (1985)

13. inmos ltd. occam 2ReferenceManual. Series in Computer Science. Prentice Hall International
(1988)

14. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program.
Lang. Syst. 4(3), 382–401 (1982)

15. Leveson, N.G., Palmer, E.: Designing automation to reduce operator errors. In: Proceedings of
the IEEE Systems, Man, and Cybernetics Conference (1997)

16. Levevson, N.G., Pinnel, L.D., Sandys, S.D., Koga, S., Rees, J.D.: Analyzing software spec-
ifications for mode confusion potential. In: Johnson, C.W. (ed.) Proceedings of a Workshop
on Human Error and System Development, Glasgow, Scotland, Glasgow Accident Analysis
Group, Technical Report GAAG-TR-97-2, pp. 132–146, March 1997

17. Lüttgen, G., Carreño, V.: Analyzing mode confusion via model checking. Technical Report
NASA/CR-1999-209332, ICASE Report No. 99-18, ICASE - NASA Langley Research
Center, May 1999. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.5171&rep=
rep1&type=pdf

18. Miller, S.P., Potts, J.N.: Detecting mode confusion through formal modeling and analysis.
Technical Report NASA/CR-1999-208971, NASA Langley Research Center, January 1999.
https://shemesh.larc.nasa.gov/fm/papers/Miller-99-cr208971-Mode-Confusion.pdf

19. Palmer, E.: Oops, it didn’t arm. A case study of two automation surprises. In: Jensen, R.S.,
Rakovan, L.A. (eds.) Proceedings of the 8th International Symposium on Aviation Psychology,
Columbus, OH, The Aviation Psychology Department of Aerospace Engineering, Ohio State
University, pp. 227–232, April 1995.

20. Peleska, J., Buth, B.: Formal methods for the international space station iss. In: Olderog, E.R.,
Steffen, B. (eds.) Correct System Design - Recent Insights and Advances. Lecture Notes in
Computer Science, vol. 1710, pp. 363–389. Springer, Heidelberg (1999)

21. Peleska, J., Shi, H., Kouvaras, M.: Combining methods for the analysis of a fault-tolerant
system. In: Proceedings of the 1999 Pacific Rim International Symposium on Dependable
Computing (PRDC 1999) (1999) (Submitted)

22. Rushby, J., Crow, J., Palmer, E.: An automated method to detect potential mode confusions.
In: 18th AIAA/IEEE Digital Avionics Systems Conference, St. Louis (MO) (1999)

23. Roscoe, A.W.: Model-checking CSP. In: A Classical Mind, Eassys in Honour of C.A.R. Hoare.
Prentice-Hall International (1997)

24. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall International, Upper
Saddle River (1997)

25. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall International, Upper
Saddle River (1998)

26. Roscoe, A.W.: Understanding Concurrent Systems, 1st edn. Springer, New York (2010)
27. Rushby, J.: Using model checking to help discover mode confusion and other automation sur-

prises. In: Proceedings of the 3rdWorkshop on Human Error, Safety, and SystemDevelopment
(HESSD’99), Liege, Belgium (1999)

http://www.fsel.com/documentation/fdr2/html/fdr2manual.html
http://www.fsel.com/documentation/fdr2/html/fdr2manual.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.5171&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.5171&rep=rep1&type=pdf
https://shemesh.larc.nasa.gov/fm/papers/Miller-99-cr208971-Mode-Confusion.pdf

310 B. Buth

28. Rushby, J.: Using model checking to help discover mode confusions and other automation
surprises. In: Reliability Engineering and System Safety (2002)

29. Sarter, N.B., Woods, D.D., Billings, C.E.: Automation surprises. In: Salvendy, G. (ed.) Hand-
book of Human Factors and Ergonomics. Wiley, New York (1997)

30. Schrönen, M.: Methodology for the Development of Microprocessor-Based Safety-Critical
Systems. Monographs of the Bremen Institute of Safet Systems 8, Bremen University (1998).
Shaker Verlag, Aachen

31. Schneider, S.: Concurrent and Real-Time Systems: The CSP Approach. Wiley, New York
(1999)

32. Twele, L., Schlingloff, H., Szczerbicka, H.: Performability analysis of an avionics-interface.
In: Proceedings of IEEE Conference on Systems, Man and Cybernetics, San Diego, N.J., pp.
499–504 (1998)

33. University of Oxford. FDR3 User Manual, FDR 3.4 edition. https://www.cs.ox.ac.uk/projects/
fdr/manual/index.html

https://www.cs.ox.ac.uk/projects/fdr/manual/index.html
https://www.cs.ox.ac.uk/projects/fdr/manual/index.html

Part VIII
Web-Supported Communities

in Science

Provably Correct Systems: Community,
Connections, and Citations

Jonathan P. Bowen

Abstract The original European ESPRIT ProCoS I and II projects on Provably
Correct Systems took place around a quarter of a century ago. Since then, the legacy
of the initiative has spawnedmany researchers with careers in formal methods, form-
ing a community of researchers with a common interest in this area. This chapter uses
one of the leaders on the ProCoS initiative, Ernst-Rüdiger Olderog, as an example in
demonstrating connections within and around the ProCoS research community. This
is formalized using the Z notation to make the description more precise, especially
with respect to collaborations undertaken through coauthorship of publications and
subsequent citations to this research output. Matching visualizations of the relation-
ships are included. The social science concept of a Community of Practice (CoP) is
introduced in this context. Finally, consideration of citation metrics is also included.

1 Background

Historically, the creation of scientific knowledge has relied on collaborative efforts by
successive generations through the centuries [39]. Scientific advances are gradually
developed by a community of researchers over time (e.g., the abstract algebra of
the French mathematician Évariste Galois (1811–1832) leading to Galois theory and
group theory [11]). A scientific theory can be modelled as a mathematical graph
of questions posed by scientists (represented by the vertices of the graph) and the
corresponding answers (modelled by arcs connecting the vertices in the graph) [36].
The answers to questions lead to further questions and so the process continues,
potentially ad infinitum. In general, mathematical logic underlies the valid reasoning
that is required forworthwhile development of scientific theories andknowledge [20].

J.P. Bowen (B)
School of Engineering, London South Bank University, Borough Road,
London SE1 0AA, UK
e-mail: jonathan.bowen@lsbu.ac.uk
URL: http://www.jpbowen.com

© Springer International Publishing AG 2017
M.G. Hinchey et al. (eds.), Provably Correct Systems, NASA Monographs
in Systems and Software Engineering, DOI 10.1007/978-3-319-48628-4_13

313

314 J.P. Bowen

In recent years, the speed of transmission and the quantity of knowledge avail-
able has accelerated dramatically, especially with improvements in the Internet and
specifically the increasing use of theWorldWideWeb [1]. Whereas previously acad-
emic papers were published on paper in journals, conference proceedings, technical
reports, books, etc., now all these means of communication can and often are done
largely electronically online. The plethora of information has also become indexed
more and more effectively, especially with the advent of the PageRank algorithm as
used by Google [30].

In this chapter, we use the European ProCoS (“Provably Correct Systems”) ini-
tiative of the 1990s [2, 29] as an example of a foundational community of academic
researchers working in various areas towards a common aim.We consider the related
issue of the production of publications and their citations as an important aspect of
scholarly activity. We model some aspects of this formally using the Z notation [5,
7, 37] to help in disambiguating some of the concepts that are often left somewhat
nebulous in social science (e.g., with respect to a Community of Practice [40, 41]).

Section2 introduces the European collaborative ProCoS projects and the sub-
sequent Working Group of the 1990s. In Sect. 3, we present an example ProCoS
researcher and their relationship with other researchers through coauthorship and
citations, with visualizations of these relationships. The Section formalizes the rela-
tionship of researchers in an academic community such as that generated by ProCoS
and Sect. 4 extends this to cover a formalized Community of Practice. Section5 con-
siders someof the citationmetrics that are available formeasuring a researcher’s influ-
ence, including their shortcomings, using publication corpuses that are now available
online. Finally Sect. 6 provides a conclusion and some possible future directions.

2 The ProCoS Community

In this section, we consider the development of the ProCoS initiative and the com-
munity that it has created. The seeds of the ProCoS projects on “Provably Correct
Systems” took place in the 1980s [2, 29], coming out of the formal methods com-
munity [3, 12]. The CLInc Verified Stack initiative of Computational Logic Inc. in
the USA [31, 42], using the Boyer-Moore Nqthm theorem proving to verify a linked
set of hardware, kernel and software in a unified framework, was an inspiration for
the initial ProCoS project. Whereas CLInc was a closely connected set of mechani-
cally proved layers, ProCoS concentrated more on possible formal approaches to the
issues of verifying a complete system atmore levels from requirements, specification,
design, and compilation, using a diverse set of partners around Europe with different
backgrounds, expertise, and interests, but with a common overall goal. A ProCoS
“tower” with appropriate formalisms and approaches was proposed to investigate
proving a system correct in a linked way at the various levels of abstraction. The
approach was based around the Occam parallel programming language and Trans-
puter microprocessor architecture. A gas burner was used as a motivating example
for much of the work.

Provably Correct Systems: Community, Connections, and Citations 315

The first ProCoS project was for 2 1
2 years (1989–1991) with seven academic

partners [2]. The subsequent ProCoS II project (1992–1995) involved amore focused
set of four academic partners [15]. Subsequently a ProCoS-WG Working Group of
25 partners (1994–1997) allowed a more diverse set of researchers to engage in
the ProCoS approach, including industrial partners [16]. The entire ProCoS effort
covered these and a number of other associated projects and initiatives [9].

The ProCoS projects worked on various aspects of formal system development
at different related levels of abstraction, including program compilation from an
Occam-based programming language to a Transputer-based instruction set [10, 23,
29]. A gas burner was used extensively as a case study and this helped to inspire the
development of Duration Calculus for succinctly formalized real-time requirements
[43]. A novel provably correct compiling specification approach was also developed
using a compiling relation for the various constructs in the language that could be
proved using algebraic laws [27]. This was later extended to a larger language includ-
ing recursion [21, 22]. The project used algebraic and operational semantics in its
various approaches. The relationship between these and also denotational semantics
was later demonstrated more universally in the Unified Theories of Programming
(UTP) approach [26].

3 A Community Around a Researcher

Here we use the German computer scientist and one of the original leaders on the
ProCoSproject, Ernst-RüdigerOlderog [32–34] of theUniversity ofOldenburg, as an
example of a leadingmember of a community of researchers, for illustrative purposes.
Of course an endeavour like ProCoS has a number of leading researchers in practice,
each with different influences, both within and outside the ProCoS community itself.
All could be studied in a similar way, with differing characteristics in each case (e.g.,
see [6] for another example).

In the section, the visualization capabilities of the Microsoft Academic Search
facility (available online under http://academic.research.microsoft.com) are used
to illustrate a community around a particular researcher. This was initiated at the
Microsoft Beijing research laboratory in China. As a starting point, see Fig. 1 for
E.-R. Olderog’s home page on the Academic Search website. The site’s facilities
include graphical presentation of direct relationships between collaborators as coau-
thors of publications, direct citations of other researchers to an individual’s pub-
lications, and indirect connections between any two authors through intermediate
coauthors in a transitive manner.

Academic Search also lists the coauthors, conferences and journals for each
author, in reverse order of publication count, and the main keywords associated
with the publications of an author (see Fig. 1). For example, three out of the top five
coauthors of E.-R. Olderog were associated with the ProCoS project. In addition,
he is particularly active in the International Colloquium on Automata, Languages,
and Programming (ICALP), the Integrated Formal Methods (IFM) conferences, as

http://academic.research.microsoft.com

316 J.P. Bowen

Fig. 1 Publication and citation statistics for Ernst-Rüdiger Olderog on Academic Search

well as the Acta Informatica and Theoretical Computer Science journals (again, see
Fig. 1), Important keywords include “Duration Calculus”, a direct (and unpredicted)
result of the ProCoS project.

The links between coauthors and citing authors form mathematical graphs [14].
These can be modelled using relations. The Z notation [24, 37] is a convenient nota-
tion to present these formally, as previously demonstrated in [6], since relations are an
important aspect of the language and are easily represented. Here we concentrate on
authors, rather than individual publications, and the paths of coauthors that connect
researchers. In particular, we augment this model to consider the “collaborative dis-
tance” (the length of the shortest path) between an arbitrary pair of authors in terms
of transitive coauthorship. We model all the possible paths between such authors as
a set of sequences of authors where the two authors under consideration are the first
and last author in each of the sequences. The two authors also do not occur within
these sequences and authors are not repeated in the sequences either.

We use the concept of graphs in our mathematical modelling. A general graph
can be modelled as a relation in Z, using a generic constant on any set X :

Provably Correct Systems: Community, Connections, and Citations 317

[X]
graph : X ↔ X

We can refine a general graph and consider a model for an undirected graph in Z:

[X]
ugraph : Pgraph

ugraph= ugraph∼

ugraph∩ idX =∅

Here all nodes (authors) are connected in both directions (as coauthors) and also a
node cannot be connected to itself (i.e., an author cannot be a coauthor with them-
selves). In the above definition, “∼” indicates the inverse of a relation and “id”
produces the identity relation from a set.

Academic communities consist of people that have authored publications. In Z,
this can be modelled as a given set:

[PEOPLE]

In an academic community of researchers for a particular area, there is often a
main key researcher leading the field’s publications. Then there is a wider number of
researchers that have published papers in the field. Typically published works have a
number of coauthors. Published authors may be related to other authors transitively
through coauthorship. Authors may also be cited by other published authors, even
if not related through coauthorship. These relationships can be modelled formally
using graphs:

Researchers
main : PEOPLE
published : F1PEOPLE
coauthors,related,citing authors : PEOPLE ↔ PEOPLE

main ∈ published
coauthors ⊆ ugraph[published]
related ⊆ ugraph[published]
related= coauthors+
citing authors ⊆ graph[published]

Note that “F1” indicates a finite non-empty set and “+” indicates irreflexive transitive
closure above.

The Academic Search facility enables graphical visualization of the coauthors
(e.g., see Fig. 2) and citing authors (e.g., see Fig. 3) for any particular author in its
database. Figure2 provides a pictorial view of a subset of the relation {author} �
related � coauthors(| {author} |) (where “�” indicates domain restriction of a

318 J.P. Bowen

Fig. 2 Primary coauthors of Ernst-Rüdiger Olderog on Academic Search

relation, “�” indicates range restriction of a relation, and “(| . . . |)” indicates a
relational image of a subset of the domain) for a specific author (in this case
E.-R. Olderog) at the centre. Connections between coauthors who have themselves
written publications together can be shown as well, in addition to coauthorship with
the main author under consideration. This results in groupings of coauthors that are
interconnected in a way than can be seen visually very quickly. For example, in this
case all the coauthors associated with the ProCoS project are in the lower right-hand
quadrant, including the author of this chapter.

Figure3 gives a partial pictorial view of the relation {author} � ci ting_authors,
again for a specific author located at the top left position in the diagram. Citations
from authors involved with the ProCoS project are largely grouped on the left-hand
side of the diagram, during Olderog’s early career. Later citations are to the right.

Provably Correct Systems: Community, Connections, and Citations 319

Fig. 3 Primary citing authors for Ernst-Rüdiger Olderog on Academic Search

Next we consider paths between pairs of nodes (authors):

[X]
path : (X ×X) ↔ iseqX

∀x1,x2 : X; s : iseq X | #s > 1 •
(x1,x2) �→ s ∈ path ⇔

head s = x1 ∧
last s = x2 ∧
(∀n : N1 | n < #s • (s n,s(succ n)) ∈ graph)

The paths aremodelled as injective sequences (“iseq”) of lengthmore than one,where
the first and last entries in the sequences are the two nodes under consideration and
all adjacent pairs in the sequence are directly connected in the graph. Because the
sequences are injective, no nodes are repeated in these sequences. This means that
the pair of nodes under consideration are always two different nodes.

320 J.P. Bowen

The collaborative distance of two authors can be of particular interest. Two authors
maybe connected inmanydifferentways by sequences of coauthors or even in noway
whatsoever (effectively an infinite collaborative distance). The shortest (minimum)
connection between two different authors is of special interest.

[X]
dist : X ×X �→N1

∀x1,x2 : X | (x1,x2) ∈ dompath •
dist(x1,x2)= min(#(| path(|{ (x1,x2)} |)|))

In recent years, the “Erdős number” (i.e., the collaborative distance from Erdős)
has become a metric for involvement in mathematical and even computer science
research [14]. Paul Erdős, a very collaborative 20th century mathematician, is con-
sidered to have an Erdős number of 0. His direct coauthors (511 of them) have an
Erdős number of 1. Other authors can be assigned a number that is the minimum
length of the coauthorship path that links them with Erdős, assuming there is such a
path. More generally, considering a main author, the collaborative distance of other
authors from the main author can be considered, or indeed between any arbitrary
pair of published authors. Authors who have written publications with coauthors of
Erdős (the main author) but not with Erdős himself have an Erdős number of 2. This
process can be continued in an iterative manner, using a path of minimum length to
determine the Erdős number when there is more than one path, as is typically the
case for active researchers in the field.

Academic Search can provide a graphical view of a number of the shortest paths
between any two coauthors, with the Hungarian mathematician and prolific paper
coauthor Paul Erdős (1913–1996) provided as the standard second author unless a
different author is explicitly selected. Figure4 shows an example for E.-R. Olderog.
Here, five paths with a collaborative distance of four are shown. The five researchers
on the right directly connected to Erdős have an Erdős number of 1. Of the five
researchers directly connected to Olderog on the left, one (C.A.R. Hoare) was also
on the ProCoS project. Of course the database of authors and publications may not
be complete or accurate (e.g., especially for authors with common names) and there
could be shorter paths between two authors in practice.

4 Community of Practice

ACommunity of Practice (CoP) [40, 41] is awidely accepted social science approach
used as a framework in the study of the community-based process of producing a
particular Body of Knowledge (BoK) [13]. An example of a CoP is that generated by
the ProCoS initiative in the area of provably correct systems [10, 23]. The important
elements of a CoP include a domain of common interest (e.g., provably correct
systems), a community willing to engage with each other (e.g., members of the

Provably Correct Systems: Community, Connections, and Citations 321

Fig. 4 A selection of connections with Paul Erdős for Ernst-Rüdiger Olderog on Academic Search

ProCoS projects andWorking Group), and exploration of new knowledge to improve
practice (e.g., Duration Calculus [43] and later UTP [26]).

Communities of Practice may be overlapping or subsets of other CoPs. Themain
author, as introduced earlier, could be considered as a coordinator of a Community
of Practice. Direct coauthors with the main coordinator typical take on a major
organizational and editorial role in the CoP. Those that are related to the main author
by transitive coauthorship are active members. These people form the core of the
CoP membership. Those that cite any of the above are peripheral members of the
CoP. Finally, other unrelated published authors are considered to be outsiders to the
CoP, but are potential members.

322 J.P. Bowen

CoP
Researchers
editorial,active,core,peripheral,cop,outsiders : FPEOPLE

editorial = coauthors (|{main} |)
(|{main} |)active = related \ editorial

core = {main}∪ editorial∪active
peripheral = citing authors(|core |)\ core
cop = core∪peripheral
outsiders = published \ cop

In the context of the ProCoS example based on E.-R. Olderog as the main author
nd leader at one of the collaborating sites, those related by transitive authorship
could be considered core members. The collaborative distance could be limited to
some set maximum if desired. Authors that have cited core ProCoS researchers are
peripheral members of the ProCoS community. All other published researchers are
considered outsiders to the community. Of course this formalization could be varied
if desired. For example, the maximum collaborative distance from the “main” author
for core members could be set. However, whatever formalization is chosen, this
gives a precise definition for an informal social science concept of a CoP, potentially
allowing a more rigorous discussion about the nature of a CoP.

5 Citation Metrics

In the previous two section we considered published authors and their communities
of researchers. Here we consider individual authors and their publications. Nowa-
days there are various web-based databases that index academic publications online,
including facilities that allow citation data to be calculated automatically. For exam-
ple, Google has a specific search facility for indexing scholarly publications through
Google Scholar (http://scholar.google.com). Books are also available online through
GoogleBooks (http://books.google.com), although this does not record citation infor-
mation. Google Scholar has very complete and up-to-date information compared to
other sources [18], even if this can mean it is less reliable and authoritative due to
the lack of human checking. However, Google Scholar provides a facility for indi-
viduals to generate a personalized and publicly available web page presenting their
own publications with citation information that can be hand-corrected by the author
involved as needed at any time.

The automated search through crawling of websites including publications with
references that is undertaken byGoogle Scholar is fairly reliable for publicationswith
a reasonable number of citations. The various citations allows automated improve-
ment of the information. Typically for a given author on their personalized page, the
publications list includes a “long tail” of uncited or lesser cited publications, some

http://scholar.google.com
http://books.google.com

Provably Correct Systems: Community, Connections, and Citations 323

of which can be spurious and with poor default information. These can be edited or
deleted as required. In addition to valid publications, Google also trawls online pro-
gramme committee data for conferences, In these cases all the committee members
are normally considered to be authors by Google Scholar.

There are various possible ways to measure the influence of a researcher through
their publications. One of the simplest is the number of citations. This can vary
widely between disciplines, and of course depends on the length of the career so
far for a researcher, as well as patterns of collaboration with other researchers. Joint
publications mean that a researcher can appear much more productive than if only
single-author publications are produced. Thus the sciences where multi-authored
papers are the norm fair better for citation counts than the humanities where single-
author books on research are more normal. However within a given discipline (e.g.,
computer science), comparison using citation metrics has some validity.

The total number of citations can be deceptive for reasons dependent on the field.
For researchers with a reasonable number of publications, there is a standard pattern
to the distribution of citations for individual publications [17]. Normally a researcher
has a small number of publications with significant numbers of citations (and thus
influence). Conversely there is typically a much larger number of publications with
only a few citations (and hence much less influence). In practice, the small number
of highly cited publications are much more important in terms of influence than the
larger number of lesser-cited publications. Yet the total number of citations for the
latter may be significant in size compared with the former.

To overcome these issues, further citations metrics than just citation counts have
been developed. One of the most popular is the h-index [25]. This measures the
number h of publications by an individual author that have h or more citations. This
provides a reasonably simple measure of the influence of an author through their
most highly cited publications. All other lesser-cited publications have no influence
on this metric. Google Scholar includes this metric on personal pages generated by
individual researchers automatically,

The h-index can be formalized using the Z notation [5, 37], for example. This was
done in a functional style in an earlier paper [6]. Here we present a more relational
and arguably more abstract definition. As in the previous paper, we use a Z “bag”
(sometimes also called a multiset) to model the citation count for each individual
publication. We use a generic definition for flexibility.

[X]
h-index : bagX → N

∀b : bagX; h : N • h-indexb= h ⇔ h= #{x : X | b(x) ≥ h}

Note that Z bags are defined as bagX== X �→ N1, a partial function from any generic

set X to non-zero natural numbers. X can be used to represent cited publications, for
example, mapped to the number of citations associated with each of these publica-
tions. A publication with no citations will not be covered in this mapping,

324 J.P. Bowen

The h-index metric should be treated with some caution since comparison across
different academic disciplines and historical periods may well not be valid due to
differences in patterns of publication. Some researchers produce a very small num-
ber of highly influential papers. Alan Turing (1912–1954) is an example of such a
researcher, with three extremely important papers, each founding a field (theoretical
computer science, Artificial Intelligence, and mathematical biology) and new asso-
ciated communities of researchers [8]. He was also a lone researcher will mostly
single-author papers and including few references. In addition to such issues, lan-
guage is an important fact and non-English publications tend to fare less well in
the automated generation of such data, which are typically undertaken by English-
speaking project teams.

In humanities, single-author publications are the norm, as previously mentioned.
In contemporary computer science, a small number of coauthors is typical (e.g.,
two to three on average), with acknowledgements to others that have helped with
the research in some smaller way. A supervisor may be named as second author to
publication by a doctoral student, whereas in humanities the supervisor may well
not be named. In chemistry, a larger number of coauthors is typical, with a team
of people (e.g., ten or more) working on a problem, providing different expertise.
Indeed, coauthors may not have been involved in writing the paper at all, but may
have given help with an experiment, for example. In physics, very large numbers of
coauthors are possible for sizable and expensive initiatives (perhaps even hundreds,
e.g., experiments at CERN).

Many papers on the ProCoS projects were collaborative, including multi-site and
multi-country collaboration. Indeed, this was an important aspect of the initiative
to encourage such collaboration across Europe. Nowadays a record of such collab-
oration is readily available online through comprehensive facilities such as Google
Scholar. Individual researchers can add links to coauthors that also have personal
Google Scholar pages and these are suggested by the system if a coauthor creates
a new personal Google Scholar page. E.-R. Olderog has 23 such coauthors (https://
scholar.google.com/citations?user=G57CATkAAAAJ).

Figure5 shows a graph of the citations E.-R. Olderog’s publications by year on
Google Scholar, from 1982 to the present. The ProCoS I/II projects and the ProCoS
Working Group took place from 1989 to 1997 and this was a period of increasing
citations for Olderog. Soon afterwards, citations dropped off quite rapidly from 1998
and have only recovered to previous levels very recently to exceed these in 2015. This
may indicate that the period of the main activity of ProCoS was a highly productive
one with respect citations and thus research influence for Olderog.

Fig. 5 Citations of Ernst-Rüdiger Olderog by year on Google Scholar (1982–2016)

https://scholar.google.com/citations?user=G57CATkAAAAJ
https://scholar.google.com/citations?user=G57CATkAAAAJ

Provably Correct Systems: Community, Connections, and Citations 325

On an individual author’s personalizedGoogle Scholar page, as set up and editable
by the author, the number of citations for each publication and the total sum of
citations together with the author’s h-index and also i10-index (the number of pub-
lications with ten or more citations [6]), are displayed, for the last six years and
for all time. A particular aspect that is lacking in Google Scholar is any significant
visualization facility. The only visual output provided is in the form of bar charts of
the number of citations each year for authors and also for individual papers. This is
useful but not very impressive.

As an alternative to Google Scholar, Microsoft Research’s Academic Search (see
http://academic.research.microsoft.com) provides another online database of acad-
emic publications. Unfortunately the resource is by no means as complete or up to
date as the information provided by Google Scholar, although historical coverage of
journals in the sciences is good. It appears that regular updates ceased in 2012. On
the positive side, Academic Search does provide much better visualization facilities
compared to Google Scholar, as illustrated in Sect. 3. It has also been possible for any
individual to submit corrections regarding any publication entry within the database.
These have been checked by a human before being accepted (after some variable
delay). Note that Microsoft is replacing Academic Search with a more mainstream
facility,Microsoft Academic (https://academic.microsoft.com).

In addition to the h-index, Academic Search also provides the “g-index” [19] for
each author. This is a refinement of the h-index and arguably provides a somewhat
improved indication of an author’s academic influence. The g-index measure gives
very highly cited publications (e.g., a significant book or foundational paper) more
weight than with the h-index, where additional citations over and above the h-index
itself for individual publications have no effect on its value. In the case of g-index,
the most cited g papers must have at least g2 citations in combination. Thus very
highly cited publications do contribute additional weight to the g-index. Indeed, the
value of the g-index is always at least as great as the h-index for a given author and
is greater if there are some very highly cited publications.

In [6], the g-index was formally defined in Z using a functional style, close to
how its calculation could be implemented. Here we use a more relational style of
specification, arguably more abstract and certainly less easily directly implemented
in an imperative programming language:

[X]
g-index : bagX → N

∀b : bagX; g : N •
g∗g ≤ max{a : bagX | a ⊆ b ∧ #a = g • Σ a} < (g+1)∗ (g+1)

Note that the � function calculates the sum of all items in a bag and was defined
formally in [6].

Other citation indices include the i10-index as used on Google Scholar, indicating
the number of publications with ten ormore citations [6] and the lesser used “f-index”
[28], designed to be fairer in determining researchers with influence across more

http://academic.research.microsoft.com
https://academic.microsoft.com

326 J.P. Bowen

communities. With a plethora of citation indices, caution should be taken as to their
reliability in practice. Encouraging the production of more papers with incremental
results can be detrimental to the advancement of scientific knowledge [35].

6 Conclusion

This chapter has presented the collaborative European ESPRIT ProCoS projects and
Working Group on Provably Correct Systems of the 1990s and the community that
this formed. It considers the framework of a Community of Practice (CoP) in the con-
text of collaboration and influence within such a community through coauthorship.
We have also considered citations to individual publications for a particular author.
The development of knowledge depends on such communities of researchers, which
are created and then transmogrify as needed, depending on the interests of individual
researchers interacting in the larger community.

A case study of an individual involved with the ProCoS project has been included
with visualization of connections between researchers. Key concepts have been for-
malized using the Z notation. Further formalizations and considerations of socio-
logical issues within the CoP framework could be considered in more detail in the
future.

As well as communities of researchers, this chapter has discussed citation metrics
for individual researchers, which have become increasingly widespread. It should
be noted that the relevance of these, like most metrics, is a matter of debate and
any such measurements should always be treated with caution and interpreted in an
appropriate manner. In particular, the citations at any particular point in time are a
snapshot with no precise indication of future citations. In addition, general concepts
are often not cited as all. Many disciplines have a practice of including “passive”
authors that have not directly undertaken the research, perhaps acting as a supervisor
or funder instead. These and other issues mean that all citation statistics should be
used with caution.

Possible future directions include considering the graphs of relationships between
authors and publications more holistically to model movements and influences, but
this is beyond the scope of this current chapter.

Acknowledgements Jonathan Bowen is grateful for financial support from Museophile Limited.
Thank you to Microsoft for the Academic Search facility, which provided the screenshots for
the figures in this chapter. Many thanks to collaborators on the ProCoS projects and Working
Group during the 1990s and subsequently. A special thank you to Prof. Dr Ernst-Rüdiger Olderog
of Oldenburg University for the individual case study. The Z notation in this chapter has been
formatted using the oz.sty LATEX style and type-checked using the fuzz type-checker [38].
Finally, the reviewers provided helpful comments that improved the presentation and content of the
chapter.

Provably Correct Systems: Community, Connections, and Citations 327

References

1. Berners-Lee, T.: Weaving the Web: The Original Design and Ultimate Destiny of the World
Wide Web. HarperCollins, New York (2000)

2. Bjørner, D., Hoare, C.A.R., Bowen, J.P., He, J., Langmaack, H., Olderog, E.R., Martin, U.H.,
Stavridou, V., Nielson, F., Nielson, H.R., Barringer, H., Edwards, D., Løvengreen, H.H., Ravn,
A.P., Rischel, H.S.: A ProCoS project description. Bull. Eur. Assoc. Theor. Comput. Sci.
(EATCS) 39, 60–73 (1989). Oct

3. Boca, P.P., Bowen, J.P., Siddiqi, J. (eds.): FormalMethods: State of the Art andNewDirections.
Springer, Heidelberg (2010)

4. Bowen, J.P. (ed.): Towards Verified Systems, Real-Time Safety Critical Systems, vol. 2. Else-
vier, Amsterdam (1994)

5. Bowen, J.P.: Z: A formal specification notation. In: Frappier, M., Habrias, H. (eds.) Software
Specification Methods: An Overview Using a Case Study, chap. 1, pp. 3–19. FACIT series,
Springer, Heidelberg (2001)

6. Bowen, J.P.: A relational approach to an algebraic community: From Paul Erdős to He Jifeng.
In: Liu, Z., Woodcock, J.C.P., Zhu, H. (eds.) Theories of Programming and Formal Methods.
Lecture Notes in Computer Science, vol. 8051, pp. 54–66. Springer, Heidelberg (2013)

7. Bowen, J.P.: The Z notation: whence the cause and whither the course? In Liu, Z., Zhang, Z.
(eds.) Engineering Trustworthy Software Systems: First International School, SETSS 2014,
Chongqing, China, September 8–13, 2014. Lecture Notes in Computer Science, vol. 9506, pp.
104–151. Springer, Heidelberg (2016)

8. Bowen, J.P.: Alan Turing: virtuosity and visualisation. In Bowen, J.P., Diprose, G., Lambert,
N. (eds.) EVA London 2016 Conference Proceedings. Electronic Workshops in Computing
(eWiC), pp. 197–204. BCS (2016)

9. Bowen, J.P.: ProCoS – Provably Correct Systems. Formal Methods Wiki, Wikia. http://
formalmethods.wikia.com/wiki/ProCoS. (Accessed June 2016)

10. Bowen, J.P., Fränzle, M., Olderog, E.R., Ravn, A.P.: Developing correct systems. In: Proceed-
ings of the 5th EuromicroWorkshop on Real-Time Systems, Oulu, Finland. pp. 176–189. IEEE
Computer Society Press, Washington (1993)

11. Bowen, J.P., Giannini, T.: Galois connections: mathematics, art, and archives. In: Ng, K.,
Bowen, J.P., Lambert, N. (eds.) EVA London 2015 Conference Proceedings, pp. 176–183.
Electronic Workshops in Computing (eWiC), BCS (2015)

12. Bowen, J.P., Hinchey, M.G.: Formal methods. In: Gonzalez, T.F., Diaz-Herrera, J., Tucker,
A.B. (eds.) Computing Handbook, vol. 1, 3rd edn., Chap. 71, pp. 1–25. CRC Press, Florida
(2014)

13. Bowen, J.P., Reeves, S.: From a community of practice to a body of knowledge: a case study of
the formal methods community. In: Butler, M., Schulte, W. (eds.) FM 2011: 17th International
Symposium on Formal Methods. Lecture Notes in Computer Science, vol. 6664, pp. 308–322.
Springer, Heidelberg (2011)

14. Bowen, J.P.,Wilson, R.J.: Visualising virtual communities: FromErdős to the arts. In: Dunn, S.,
Bowen, J.P., Ng, K. (eds.) EVALondon 2012 Conference Proceedings. pp. 238–244. Electronic
Workshops in Computing (eWiC), BCS (2012). arXiv:1207.3420v1

15. Bowen, J.P., et al.: A ProCoS II project description: ESPRIT Basic Research project 7071.
Bull. Eur. Assoc. Theor. Comput. Sci. (EATCS) 50, 128–137 (1993)

16. Bowen, J.P., et al.: A ProCoS-WGWorking Group description: ESPRIT Basic Research 8694.
Bull. Eur. Assoc. Theor. Comput. Sci. (EATCS) 53, 136–145 (1994). Jun

17. Breuer, P.T., Bowen, J.P.: Empirical patterns in Google Scholar citation counts. In: Proceedings
of the IEEE 8th International Symposium on Service Oriented System Engineering (SOSE),
Cyberpatterns 2014: Third InternationalWorkshop onCyberpatterns. pp. 398–403. IEEECom-
puter Society Press, Washington (2014). arXiv:1401.1861 [cs.DL]

18. Brezina, V.: Use of Google Scholar in corpus-driven EAP research. J. Engl. Acad. Purp. 11(4),
319–331 (2012). Dec

http://formalmethods.wikia.com/wiki/ProCoS
http://formalmethods.wikia.com/wiki/ProCoS
http://arxiv.org/abs/1207.3420v1
http://arxiv.org/abs/1401.1861

328 J.P. Bowen

19. Egghe, L.: Theory and practise of the g-index. Scientometrics 69(1), 131–152 (2006)
20. Harré, R.: The Philosophies of Science: An Introductory Survey. Oxford University Press,

Oxford (1972)
21. He, J.: Provably Correct Systems: Modelling of Communication Languages and Design of

Optimized Compilers. International Series in Software Engineering. McGraw-Hill, New York
(1995)

22. He, J., Bowen, J.P.: Specification, verification and prototyping of an optimized compiler. Form.
Asp. Comput. 6(6), 643–658 (1994)

23. He, J., Hoare, C.A.R., Fränzle, M., Müller-Olm, M., Olderog, E.R., Schenke, M., Hansen,
M.R., Ravn, A.P., Rischel, H.: Provably correct systems. In: Langmaack, H., de Roever, W.P.,
Vytopil, J. (eds.) Formal Techniques in Real-Time and Fault-Tolerant Systems. Lecture Notes
in Computer Science, vol. 863, pp. 288–335. Springer, Heidelberg (1994)

24. Henson, M.C., Reeves, S., Bowen, J.P.: Z logic and its consequences. CAI Comput. Inf. 22(4),
381–415 (2003)

25. Hirsch, J.E.: An index to quantify an individual’s scientific research output. In: Proceedings of
the National Academy of Sciences 102(46), 16569–16572 (2005). arXiv:physics/0508025

26. Hoare, C.A.R., He, J.: Unifying Theories of Programming. International Series in Computer
Science. Prentice Hall, New Jersey (1998)

27. Hoare, C.A.R., He, J., Bowen, J.P., Pandya, P.K.: An algebraic approach to verifiable compiling
specification and prototyping of the ProCoS level 0 programming language. In: ESPRIT’90
Conference Proceedings, Brussels. pp. 804–818. CEC DG XIII (1990)

28. Katsaros, D., Akritidis, L., Bozanis, P.: The f index: quantifying the impact of coterminal
citations on scientists’ ranking. J. Assoc. Inf. Sci. Technol. 60(5), 1051–1056 (2009). May

29. Langmaack, H., Ravn, A.P.: The ProCoS project: provably correct systems. In: Bowen [4], pp.
249–265, appendix B

30. Lanville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine
Rankings. Princeton University Press, Princeton

31. Moore, J.S., et al.: Special issue on system verification. J. Autom. Reas. 5(4), 409–530 (1989).
Dec

32. Olderog, E.R.: Nets, Terms and Formulas: Three Views of Concurrent Processes and Their
Relationship. Cambridge University Press, Cambridge (1991)

33. Olderog, E.R.: Interfaces between languages for communicating systems. In: Kuich, W. (ed.)
Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 623, pp.
641–655. Springer, Heidelberg (1992). (invited paper)

34. Olderog, E.R. (ed.): Programming Concepts, Methods and Calculi, IFIP Transactions, vol.
A-56. North-Holland (1994)

35. Parnas, D.L.: Stop the numbers game. Commun. ACM 50(11), 19–21 (2007). Nov
36. Sanitt, N.: Graph theory. In: Science as a Questioning Process, Chap. 3, pp. 31–49. Institute of

Physics Publishing (1996)
37. Spivey, J.M.: The Z Notation: A reference manual. Prentice Hall (1989/1992/2001). http://

spivey.oriel.ox.ac.uk/mike/zrm/
38. Spivey, J.M.: The f uzz type-checker for Z. Technical report, University of Oxford, UK (2008).

http://spivey.oriel.ox.ac.uk/mike/fuzz/
39. Van Doren, C.: A History of Knowledge: Past, Present, and Future. Ballantine Books (1991)
40. Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Cambridge University

Press, Cambridge (1998)
41. Wenger, E., McDermott, R.A., Snyder, W.: Cultivating Communities of Practice: A guide to

managing knowledge. Harvard Business School Press, Massachusetts (2002)
42. Young, W.D.: System verification and the CLI stack. In: Bowen [4], pp. 225–248, appendix A
43. Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett. 40(5), 269–276

(1991). Dec

http://arxiv.org/abs/physics/0508025
http://spivey.oriel.ox.ac.uk/mike/zrm/
http://spivey.oriel.ox.ac.uk/mike/zrm/
http://spivey.oriel.ox.ac.uk/mike/fuzz/

	Foreword
	Preface
	Impact
	Structure of this Book
	Historic Account
	Hybrid Systems
	Correctness of Concurrent Algorithms
	Interfaces and Linking
	Automatic Verification
	Run-Time Assertion Checking
	Formal and Semi-formal Methods
	Web-Supported Communities in Science

	Acknowledgements
	Contents
	Part I Historic Account
	ProCoS: How It All Began -- as Seen from Denmark
	Part II Hybrid Systems
	Constraint-Solving Techniques for the Analysis of Stochastic Hybrid Systems
	1 Introduction
	2 Stochastic Hybrid Transition Systems
	3 Bounded Reachability Checking for Stochastic Hybrid Automata
	3.1 Stochastic Satisfiability Modulo Theory
	3.2 CSSMT Solving

	4 Parameter Synthesis for Parametric Stochastic Hybrid Automata
	4.1 Parameter Synthesis Using Symbolic Importance Sampling

	5 Conclusion
	References

	MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems
	1 Introduction
	1.1 Related Work

	2 Sim2HCSP Translator
	3 HHL Prover
	4 Invariant Generator
	4.1 Isabelle Oracle
	4.2 Differential Invariant Generation
	4.3 Abstraction of Elementary Hybrid Systems by Variable Transformation
	4.4 QE-Based Invariant Generator
	4.5 SOS-Based Invariant Generator

	5 Conclusion and Future Work
	References

	Part III Correctness of Concurrent Algorithms
	A Proof Method for Linearizability on TSO Architectures
	1 Introduction
	2 Linearizability
	2.1 A Formal Definition of Linearizability
	2.2 A Proof Method for Linearizability

	3 The TSO Memory Model
	3.1 TSO-Linearizability

	4 Using a Coarse-Grained Abstraction
	4.1 Defining the Coarse-Grained Abstraction
	4.2 From Coarse-Grained to Abstract Specification

	5 Case Study: Work-Stealing Deque
	5.1 Abstract Specification
	5.2 Concrete Specification
	5.3 Refined Abstract Specification
	5.4 Coarse-Grained Abstraction

	6 Conclusion
	References

	Part IV Interfaces and Linking
	Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers
	1 Introduction
	2 Symbolic Model
	2.1 View
	2.2 Spatial Logic
	2.3 Transition System

	3 Abstract Controllers
	3.1 Keeping Distance
	3.2 Changing Lanes
	3.3 Safety

	4 Concrete Model
	4.1 Longitudinal Motion
	4.2 Lateral Motion

	5 Linking
	5.1 Distance Controller
	5.2 Lane-Change Controller

	6 Concrete Controllers
	6.1 Longitudinal Control
	6.2 Lane Change

	7 Related Work
	8 Conclusion
	References

	Towards Interface-Driven Design of Evolving Component-Based Architectures
	1 Introduction
	2 Complex Evolving Systems
	2.1 Chronic Complexity of Digital Ecosystems
	2.2 An Application Examples

	3 Interfaces and Component-Based Architectures
	3.1 Key Features of rCOS
	3.2 Components and Their Interfaces
	3.3 Composition and Orchestration
	3.4 Separation of Concerns

	4 Incremental Design of an Enterprise Application
	4.1 Requirements Modelling
	4.2 OO Design of Components
	4.3 Incremental Development and System Evolution

	5 Towards Modelling Cyber-Physical Component Systems
	5.1 Physical Interfaces and Cyber-Physical Components
	5.2 Model the Evolution of a Smart Meter Network

	6 Conclusions
	References

	Part V Automatic Verification
	Computing Verified Machine Address Bounds During Symbolic Exploration of Code
	1 Preface
	2 Introduction
	3 A Little Background on ACL2
	4 Metafunctions
	5 Bounders
	6 Ainni: Abstract Interpreter over Natural Number Intervals
	7 Some Examples
	8 Using Ainni in a Metafunction
	9 Other Uses of Ainni
	10 Related Work
	11 Conclusion
	References

	Engineering a Formal, Executable x86 ISA Simulator for Software Verification
	1 Introduction
	2 Approach
	2.1 Formal Methodology
	2.2 Machine-Code Analysis
	2.3 Design Goals

	3 Model Definition
	3.1 Concrete State
	3.2 Abstract State
	3.3 Modes of Operation: Interface to the x86 State
	3.4 Instruction Semantic Functions
	3.5 Step and Run Functions

	4 Model Validation
	4.1 Machine Program Parser and Loader
	4.2 Instrumentation

	5 Reasoning About x86 Machine-Code Programs
	6 Related Work
	7 Conclusion
	References

	Advances in Connection-Based Automated Theorem Proving
	1 Introduction
	2 Preliminaries
	2.1 Classical Logic
	2.2 Non-Classical Logics
	2.3 Matrix Characterisation

	3 Connection Calculi for Classical Logic
	3.1 The Basic Calculus
	3.2 Restricted Backtracking
	3.3 Non-clausal Calculus

	4 Connection Calculi for Non-classical Logics
	4.1 Intuitionistic Logic
	4.2 Modal Logics

	5 Implementing Connection Calculi
	5.1 Classical Logic
	5.2 Intuitionistic Logic
	5.3 Modal Logics

	6 A Brief History and Perspectives
	7 Conclusion
	References

	Part VI Run-Time Assertion Checking
	Run-Time Deadlock Detection
	1 Introduction
	2 The Framework
	3 Deadlock Detection for Concurrent Objects
	4 Deadlock Detection for Multi-threaded Java Programs
	4.1 Multi-threaded Events
	4.2 Multi-threaded Perspectives

	5 Tool Architecture
	6 Conclusion and Future Work
	References

	In-Circuit Assertions and Exceptions for Reconfigurable Hardware Design
	1 Introduction
	2 Background
	2.1 Hardware Exceptions
	2.2 Hardware Debugging
	2.3 Assertion-Based Verification
	2.4 Formal Verification

	3 High-Level Approach
	3.1 Step-by-step Approach

	4 Implementation: Maxeler Systems
	4.1 Language Extensions for Runtime Assertions and Exceptions
	4.2 Circuit Realizations of Assertions and Exceptions
	4.3 Hardware and Software APIs for Assertions and Exceptions
	4.4 Case Study

	5 Evaluation
	5.1 Experimental Setup
	5.2 Area Results
	5.3 Imprecise Exceptions

	6 Conclusion
	References

	Part VII Formal and Semi-formal Methods
	From ProCoS to Space and Mental Models--A Survey of Combining Formal and Semi-formal Methods
	1 Introduction
	2 Abstraction and Refinement--CSP and FDR2
	2.1 CSP
	2.2 Refinement and FDR2
	2.3 Abstraction
	2.4 Generic Theories--Pattern-Based Verification
	2.5 Algebraic Reasoning
	2.6 Compositional Proof Theory

	3 Space
	3.1 Technical Background: The Fault Tolerant Computer
	3.2 Verification Approach
	3.3 Lessons Learned--Part 1

	4 Mental Models and Refinement
	4.1 Mode Confusion Analysis--Background
	4.2 The Example
	4.3 Verification Approach
	4.4 Lessons Learned--Part 2

	5 Conclusion
	5.1 Overall Evaluation
	5.2 Other Experiments

	References

	Part VIII Web-Supported Communities in Science
	Provably Correct Systems: Community, Connections, and Citations
	1 Background
	2 The ProCoS Community
	3 A Community Around a Researcher
	4 Community of Practice
	5 Citation Metrics
	6 Conclusion
	References

