

PARALLEL
COMPUTATIONAL

FLUID
DYNAMICS

IMPLEMENTATIONS AND RESULTS
USING PARALLEL COMPUTERS

This Page Intentionally Left Blank

PARALLEL

C O M P UTAT I O NAL

FLUID

DYNAMICS

IMPLEMENTATIONS AND RESULTS

USING PARALLEL COMPUTERS

Proceedings of the Parallel CFD '95 Conference

Pasadena, CA, U.S.A., 26-29 June, i995

Edited by

A . E C E R

IUPUI
Indianapolis, IN, U.S.A.

d . P E R I A U X

Dassault-Aviation
Saint-Cloud, France

N. SATOFU KA

Kyoto Institute of Technology
Kyoto, Japan

S . TAYLO R

California Institute of Technology
Pasadena, CA, U.S.A.

N
, 9 9 6

ELSEVIER

A m s t e r d a m - Lausanne - New York - Oxford - S h a n n o n - Tokyo

ELSEVIER SCIENCE B.V.
Sara Burgerhartstraat 25
P.O. Box Zli, iooo AE Amsterdam, The Netherlands

ISBN: o 444 82322 o

�9 I996 Elsevier Science B.V. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written
permission of the publisher, Elsevier Science B.V., Copyright & Permissions Department, P.O. Box 521,
iooo AM Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A.- This publication has been registered with the Copyright
Clearance Center Inc. (CCC), 222 Rosewood Drive, Danvers, MA o1923. Information can be obtained from
the CCC about conditions under which photocopies of parts of this publication may be made in the U.S.A.
All other copyright questions, including photocopying outside of the U.S.A., should be referred to the
copyright owner, Elsevier Science B.V., unless otherwise specified.

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a
matter of products liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions or ideas contained in the material herein.

This book is printed on acid-free paper.

Printed in The Netherlands.

PREFACE

This book contains a collection of papers presented at the Parallel CFD
1995 Conference held on June 26-28, 1995 in Pasadena, California. The
Parallel CFD Conference is international in scope and has doubled in
participation since its inception in 1989. Past conferences have been held
in France, Germany, Japan, and the United States.

In order to keep track of current global developments in a fast growing
field, the Parallel CFD Conference annually brings individuals together
to discuss and report results on the utilization of parallel computing as a
practical computational tool for solving complex fluid dynamic problems.
The purpose of this volume is to disseminate results of research
conducted during the past year. The content of the papers included in
this volume suggest that there is considerable effort being made to utilize
parallel computing to solve a variety of fluid dynamics problems in topics
such as climate modeling, consultation, aerodynamics, and many others.

The papers presented at the 1995 conference included subject areas such
as novel parallel algorithms, parallel Euler and Navier-Stokes solvers,
parallel Direct Simulation Monte Carlo method, parallel multigrid
techniques, parallel flow visualization and grid generation, and parallel
adaptive and irregular solvers. The applications of interest included the
following: reacting flows, rarefied gas flows, multiphase flows, and
turbulence; vehicle design, hypersonic reentry problems, and aerodynamic
flows; challenges such as moving boundaries, interfaces, free surfaces and
fluid-structure interactions; and parallel computing in aeronautics,
astronautics, mechnical engineering, and environmental engineering.

We would like to thank all of the sponsors of the 1995 conference whose
support was vital to the success of this conference. Special recognition
should be given to CRAY, IBM, Intel, NASA-Ames Research Center, and
Silicon Graphics for their financial support. In addition, we would also
like to recognize and thank the organizing committee who make the
annual international conference of Parallel CFD possible.

The Editors

vi

A C K N O W L E D G E M E N T S

Sponsors of the Parallel CFD'95 Conference

CRAY
IBM
Intel
NASA-Ames Research Center
Silicon Graphics

Conference Organizing Committee

S. Taylor- Chairperson, California Institute of Technology, USA
R. Agarwal, Wichita State University, USA
A. Ecer, Purdue University-Indianapolis (IUPUI), USA
D. Emerson, DRAL, UK
I. Foster, Argonne National Laboratory, USA
P. Fox, Purdue University-Indianapolis (IUPUI), USA
A. Geiger, RUS Stuttgart, Germany
J. Haeuser, Center for Logistic and Expert Systems, Germany
D. Keyes, Old Dominion University and CASE, USA
C. Lin, National Tsing Hua University, Taiwan
S. Peigin, Tomsk University, Russia
R. Pelz, Rutgers University, USA
J. Periaux, Dassualt Aviation, France
D. Roose, Katholike Universiteit, Belgium
N. Satofuka, Kyoto Institute of Technology, Japan
P. Schiano, CIRA, Italy
H. Simon, Silicon Graphics, USA
M. Vogels, NLR, The Netherlands
D. Weaver, Phillips Laboratory, USA

vii

TABLE OF CONTENTS

Preface

Acknowledgements vi

1. Invited Speakers

C. de Nicola (Universita di Napoli)
R. Tognaccini and P. Visingardi
Multiblock Structured Algorithms in Parallel CFD

C. Fischberg (Pratt & Whitney)
C. Rhie, R. Zacharias, P. Bradley and T. DesSureault
Using Hundreds of Workstations for Production Running of
Parallel CFD Applications

M. Garbey (University Claude Bernard Lyon I)
D. Tromeur-Dervout
Parallel Computation of Frontal Processes

C. Gwilliam (Southampton Oceanography Centre)
Modelling the Global Ocean Circulation on the T3D

R. Haimes (Massachusetts Institute of Technology)
Concurrent Distributed Visualization and Solution Steering

W. Loeve (National Aerospace Laboratory)
From R&D in Parallel CFD to a Tool for Computer Aided
Engineering

Y. Takakura (Tokyo Noko University)
F. Higashino, T. Yoshizawa, M. Yoshida and S. Ogawa
Parallel Computation of Unsteady Supersonic Cavity Flows

23

33

41

51

59

2. React ing Flows

M. Wright and G. Candler
A Data-Parallel LU Relaxation Method for Reacting Viscous
Flows 67

viii

M. Yokokawa, D. Schneider, T. Watanabe and H. Kaburaki
Parallel Simulation on Rayleigh-B~nard Convection in 2D by
the Direct Simulation Monte Carlo Method

O. Yasar and T. Zacharia
Distributed Implementation of KIVA-3 on the Intel Paragon

A. Stoessel
A Parallel Tool for the Study of 3D Turbulent Combustion
Phenomena

E. Kessy, A. Stoukov and D. Vandromme
Numerical Simulation of Reacting Mixing Layer with
Combined Parallel Approach

Y. Tsai
On the Optical Properties of a Supersonic Mixing Layer

J. Carter, D. Cokljat, R. Blake and M. Westwood
Computation of Chemically Reacting Flow on Parallel
Systems

H. Bergman, J. Vetter, K. Schwan and D. Ku
Development of a Parallel Spectral Element Method Code
Using SPMD Constructs

J. Lepper
Parallel Computation of Turbulent Reactive Flows in Utility
Boilers

75

81

89

97

105

113

121

129

3. Eu ler So lvers

C. Bruner and R. Walters
A Comparison of Different Levels of Approximation in Implicit
Parallel Solution Algorithms for the Euler Equations on
Unstructured Grids

M. Perid and E. Schreck
Analysis of Efficiency of Implicit CFD Methods on MIMD
Computers

137

145

ix

S. Lanteri and M. Loriot
Parallel Solutions of Three-Dimensional Compressible Flows
Using a Mixed Finite Element~ini te Volume Method on
Unstructured Grids

A. Stamatis and K. Papailiou
Implementation of a Fractional Step Algorithm for the
Solution of Euler Equations on Scalable Computers

C. Helf, K. Birken and U. Kfister
Parallelization of a Highly Unstructured Euler-Solver Based
on Arbitrary Polygonal Control Volumes

R. Silva and R. Almeida
Performance of a Euler Solver Using a Distributed System

L. Ruiz-Calavera and N. Hirose
Implementation and Results of a Time Accurate Finite-
Volume Euler Code in the NWT Parallel Computer

153

161

169

175

183

4. Algorithms

D. Drikakis
Development and Implementation of Parallel High Resolution
Schemes in 3D Flows over Bluff Bodies

V. Garanzha, I. Ibragimov, I. Konshin, V. Konshin, and
A. Yeremin
High Order Pad~-type Approximation Methods for
incompressible 3D CFD Problems on Massively Parallel
Computers

M. Obata and N. Satofuka
Parallel Computations of CFD Problems Using a New Fast
Poisson Solver

J. Cuminato
A Parallel Free Surface Flow Solver

A. Ochi, Y. Nakamura and H. Kawazoe
A New Domain Decomposition Method Using Virtual Sub-
domains

191

199

207

215

223

5. Spectral Methods

P. Fischer and M. Venugopal
A Commercial CFD Application on a Shared Memory
Multiprocessor using MPI

H. Ma
Parallel Computation with the Spectral Element Method

G. DePietro, A. Pinelli and A. Vacca
A Parallel Implementation of a Spectral Multi-domain Solver
for Incompressible Navier-Stokes Equations

A. Deane
A Parallel Spectral Element Method for Compressible
Hydrodynamics

231

239

247

255

6. Large Scale Applications

K. Matsushima and S. Takanashi
Large Scale Simulations of Flows about a Space Plane Using
NWT

J. Vadyak, G. Shrewsbury, G. Montry, V. Jackson, A. Bessey,
G. Henry, E. Kushner and T. Phung
Large Scale Navier-Stokes Aerodynamic Simulations of
Complete Fighter Aircrait on the Intel Paragon MPP

\ 7. Performance Issues

C. Oosterlee, H. Ritzdorf, H. Bleecke and B. Eisfeld
Benchmarking the FLOWer Code on Different Parallel and
Vector Machines

Y. Hu, J. Carter and R. Blake
The Effect of the Grid Aspect Ratio on the Convergence of
Parallel CFD Algorithms

R. Richter and P. Leyland
Master-Slave Performance of Unstructured Flow Solvers on
the CRAY-T3D

265

273

281

289

297

xi

8. F low Visual izat ion

K. Ma
Runtime Volume Visualization for Parallel CFD

D. Sujudi and R. Haimes
Integration of Particle Paths and Streamlines in a Spatially-
Decomposed Computation

M. Palmer, S. Taylor and B. Totty
Interactive Volume Rendering on Clusters of Shared-Memory
Multiprocessors

307

315

323

9. Mult igrid Methods

A. Degani and G. Fox
Application of Parallel Multigrid Methods to Unsteady Flow:
A Performance Evaluation

P. Crumpton and M. Giles
Multigrid Aircraft Computations Using the OPlus Parallel
Library

B. Basara, F. Durst and M. Sch~ifer
A Parallel Multigrid Method for the Prediction of Turbulent
Flows with Reynolds Stress Closure

331

339

347

10. Appl icat ions

S. Sibilla and M. Vitaletti
Cell-Vertex Multigrid Solvers in the PARAGRID Framework

C. Bender, P. Buerger, M. Mittal and T. Rozmajzl
Fluid Flow in an Axisymmetric, Sudden-Expansion Geometry

K. Badcock and B. Richards
Implicit Navier-Stokes Codes in Parallel for Aerospace
Applications

N. Alum, K. Law, A. Raefsky and R. Dutton
FIESTA-HD: A Parallel Finite Element Program for
Hydrodynamic Device Simulation

355

363

371

379

Xll

R. Ito and S. Takanashi
Parallel Computation of a Tip Vortex Induced by a Large
Aircraft; Wing

R. M~ikinen, J. Periaux and J. Toivanen
Shape Design Optimization in 2D Aerodynamics Using
Genetic Algorithms on Parallel Computers

M. Vogels
A Model for Performance of a Block-structured Navier-Stokes
Solver on a Cluster of Workstations

T. Yamane
Further Acceleration of an Unsteady Navier-Stokes Solver for
Cascade Flows on the NWT

Y. Shieh, J. Lee, J. Tsai and C. Lin
Load Balancing Strategy for Parallel Vortex Methods with
Distributed Adaptive Data Structure

R. HSld and H. Ritzdorf
Portable Parallelization of the Navier-Stokes Code NSFLEX

M. Shih, M. Stokes, D. Huddleston and B. Soni
Towards an Integrated CFD System in a Parallel
Environment

O. Byrde, D. Cobut, J. Reymond and M. Sawley
Parallel Multi-block Computation of Incompressible Flows for
Industrial Applications

387

395

403

411

419

427

437

447

11. T u r b u l e n c e

C. Crawford, C. Evangelinos, D. Newman and G. Karniadakis
Parallel Benchmarks of Turbulence in Complex Geometries

S. Mukerji and J. McDonough
Parallel Computation of 3-D Small-Scale Turbulence Via
Additive Turbulent Decomposition

P. Yeung and C. Moseley
A Message-Passing, Distributed Memory Parallel Algorithm
for Direct Numerical Simulation of Turbulence with Particle
Tracking

455

465

473

. o o

X l l l

R. Garg, J. Ferziger and S. Monismith
Simulation of Stratified Turbulent Channel Flows on the Intel
Paragon Parallel Supercomputer 481

12. Adaptive Schemes

R. Biswas and L. Dagum
Parallel Implementation of an Adaptive Scheme for 3D
Unstructured Grids on a Shared-Memory Multiprocessor

T. Minyard and Y. Kallinderis
A Parallel Adaptive Navier-Stokes Method and Partitioner for
Hybrid Prismatic~etrahedral Grids

A. Patra and J. Oden
Parallel Adaptive hp Finite Element Approximations for
Stokesian Flows: Adaptive Strategies, Load Balancing and
Domain Decomposition Solvers

T. Tysinger, D. Banerjee, M. Missaghi and J. Murthy
Parallel Processing for Solution-Adaptive Computation of
Fluid Flow

P. LeTallec, B. Mohammadi, T. Sabourin and E. Saltel
Distributed CFD on Cluster of Workstations Involving
Parallel Unstructured Mesh Adaptation, Finite-Volume-
Galerkin Approach and Finite-Elements

489

497

505

513

521

13. Climate Modeling

B. Nadiga, L. Margolin and P. Smolarkiewicz
Semi-Lagrangian Shallow Water Modeling on the CM-5 529

J. Reisner, L. Margolin and P. Smolarkiewicz
A Reduced Grid Model for Shallow Water Flows on the Sphere 537

C. Hill and J. Marshall
Application of a Parallel Navier-Stokes Model to Ocean
Circulation 545

A. Malagoli, A. Dubey, F. Cattaneo and D. Levine
A Portable and Efficient Parallel Code for Astrophysical Fluid
Dynamics 553

xiv

14. Navier-Stokes Solvers

R. Choquet, F. Guerinoni and M. Rudgyard
Towards Modular CFD Using the CERFACS Parallel Utilities

E. Bucchignani and F. Stella
A Fully Implicit Parallel Solver for Viscous flows; Numerical
Tests on High Performance Machines

V. Seidl, M. Perid and S. Schmidt
Space- and Time-Parallel Navier-Stokes Solver for 3D Block-
Adaptive Cartesian Grids

J. H~iuser, R. Williams, H. Paap, M. Spel, J. Muylaert and R.
Winkelmann
A Newton-GMRES Method for the Parallel Navier-Stokes
Equations

Z. Zhao and R. Pelz
A Parallell, Globally-Implicit Navier-Stokes Solver for Design

R. Pankajakshan and W. Briley
Parallel Solution of Viscous Incompressible Flow on Multi-
Block Structured Grids Using MPI

Y. Hu, D. Emerson and R. Blake
Comparing the Performance of Multigrid and Conjugate
Gradient Algorithms on the CRAY T3D

R. Glowinski, T. Pan and J. Periaux
Domain Decomposition/Fictitious Domain Methods with
Nonmatching Grids for Navier-Stokes Equations Parallel
Implementation on a KSR1 Machine

C. Jenssen and K. Scrli
A Parallel Implicit Time Accurate Navier-Stokes Solver

X. Xu and B. Richards
Parallel Implementation of Newton's Method for 3-D Navier-
Stokes Equations

561

569

577

585

593

601

609

617

625

633

XV

15. Distributing Computing

N. Verhoeven, N. Weatherill and K. Morgan
Dynamic Load Balancing in a 2D Parallel Delaunay Mesh
Generator

P. Crumpton and R. Haimes
Parallel Visualisation of Unstructured Grids

N. Satofuka, M. Obata, and T. Suzuki
A Dynamic Load Balancing Technique for Solving Transonic
and Supersonic Flows on Networked Workstations

641

649

657

16. Mesh Partit ioning

D. Hodgson, P. Jimack, P. Selwood, and M. Berzins
Scalable Parallel Generation of Partitioned, Unstructured
Meshes

K. McManus, C. Walshaw, M. Cross, P. Leggett and S.
Johnson
Evaluation of the JOSTLE Mesh Partitioning Code for
Practical Multiphysics Applications

665

673

17. Internal Flows

S. Khandelwal, G. Cole, and J. Chung
Parallel Computation of Unsteady Supersonic-Inlet Flows

K. Ciula and M. Stewart
Parallel, Axisymmetric, Aerodynamic Simulation of a Jet
Engine

N. Gopalaswamy, Y. Chien, A. Ecer, H. Akay, R. Blech and
G. Cole
An Investigation of Load Balancing Strategies for CFD
Applications on Parallel Computers

681

695

703

18. Software Tools

M. Rudgyard and T. SchSnfeld
CPULib - A Software Library for Parallel Applications on
Arbitrary Meshes 711

xvi

S. Chakravarthy
Host-node Client-Server Software Architecture for
Computational Fluid Dynamics on MPP Computers

P. Olsson, J. Rantakokko and M. Thun~
Software Tools for Parallel CFD on Composite Grids

719

725

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

Multiblock Structured Algorithms in Parallel CFD

C. de Nicola a, R. Tognaccini a and P. Visingardi b

~Dipartimento di Progettazione Aeronautica, University of Naples,
P.le Tecchio 80, 80125 Naples, Italy

bIRSIP, Parallel Informatic Systems Research Institute, CNR,
via P. Castellino 111, 80131 Naples, Italy

1. I N T R O D U C T I O N

Realistic flow field simulations in aeronautical applications need large computer memory
and CPU time. In spite of the significant progress of recent algorithms in accuracy and
efficiency, the analysis of complex flow fields is still an expensive task; the advent of
parallel machines seems to be the solution to drastically reduce the computation time
and to permit a more extensive application of CFD methods.

The aim of the present work is to analyze some aspects of a widely diffused solution
strategy, the Multiblock Structured Algorithm (MSA) and in particular to discuss on its
peculiarities when applied in a parallel environment. From an aerodynamicist viewpoint,
some of the main problems of MSA parallel implementation will be underlined. It will
be highlighted, in particular, how aerodynamic requirements can often be in conflict with
choices ruled by optimum parallel performance. Furthermore, stability considerations
and their implication on the parallel performance will give the opportunity to indicate
the main guidelines to follow in the application of these methods.

The MSAs were firstly addressed to overcome problems related to practical calculations
by CFD methods. As far as we know the first application was performed at the Boeing

CFD Laboratories [1]; the simulation of the Euler flow around a propfan/nacelle/wing
configuration was limited by the central memory available at that time. The problem
was overcome by loading in memory each block at time and performing one time step
of a Runge-Kutta scheme. Later on this technique was more precisely defined in order
to solve the problem of the grid generation around very complex aircraft configurations
[2-5]: until this time, in fact, the high improvement in flow simulation algorithms and
computer performance had not been supported by efficient grid generation tools. By
dividing the domain into geometrically simpler subdomains (blocks), it was possible to
realize computational grids around arbitrary domains.

It is here made a major distinction between what we call Domain Decomposition Tech-
nique (DDT) and the MSA. We refer to DDT when the parallelization is obtained by a
simple data re-arrangement without affecting the numerical algorithm. The more general

multiblock approach consists of dividing the differential problem into a number of parallel
mixed initial boundary vah:e problems exchanging data via artificial interface boundary

conditions:

Ot
+ AWb(rb, t) = 0 b = 1,..,nb (1)

0)= e (2)

f~l U . . . U f~b U . . . U f~,~b = f /

Since additional internal boundary conditions are introduced at block interfaces, the
original single domain scheme can be altered; in particular accuracy and stability can be
affected. Whereas in literature several works on the accuracy of Multiblock approaches
are available [6-8], the problem of their stability has been poorly discussed, although we
recognized, as will be shown in the follows, their impact on computational performance.

An example of the capabilities of present MSAs is given in Figure 1, where the Euler
pressure distribution around a Supersonic Commercial Transport configuration designed
by Alenia (the main Italian aerospace industry) is presented. The solution was obtained
by applying the Euler/Navier-Stokes flow simulation system developed at CIRA in coop-
eration with the University of Naples [9,10]. Interesting results concerning the parallel
computations on the same configuration were presented by CIRA specialists [11].

Figure 1. Euler flow solution around Alenia SCT3 configuration.
Moo = 2, a = 4 ~ isobars (ACp = 0.005).

Although the advantages offered by the MSAs are sufficient to ensure their success,
there are a number of drawbacks. First of all, it is necessary the introduction of another

task in the flow simulation process, the block decomposition, that is difffcult to auto-
mate and nowadays still requests a high percentage of the calculation turn-around time.
Furthermore additional artificial boundary conditions are required by the introduction
of block interfaces: to really improve grid generation flexibility, discontinuous grid lines
across blocks should be allowed while preserving solution accuracy and stability. Any-
way the most important point in this context is related to their parallel implementation.
Are the MSAs intrinsically parallel? That is, do the efficiency and the speed-up reach
satisfactory values in practical applications?

2. P A R A L L E L P E R F O R M A N C E

Even if MSAs are widely used on parallel machines they do not straightforward ensure
high performance. The well known performance indices of parallel systems are the speed-
up (S) and the efficiency (e), that respectively measure the earnings and the effective cost
of the computation. These indices are generally far from ideal values for several causes;
in particular we here deal with the load overhead, that is present when the computational
load is not uniformly distributed among the processors, and with the communication over-
head, that is caused by the physical swapping of data and information among processors
and by the waiting time among the communications.

2.1. Load overhead
The load overhead problem is critical due to several conflicts between aerodynamic and

parallel constraints:

�9 the grid is properly refined in each block on physical basis following aerodynamic
requirements; a load balancing control at this time would further complicate the
grid generation task;

�9 different flow models imply different type of loads in different regions (a zonal Eu-
ler/Navier Stokes model is a clear example);

�9 the computational load can dynamically change; see for instance the problem of the
Aerodynamics of reacting flows.

The load balancing is the real problem of MSAs; it consists in minimizing the idle time
related with communications among blocks. A way to perform it is to use a different
block decomposition during the grid generation task and during the parallel computation
since a topology decomposition only addressed to balance the load can be more easily
automated. Anyway grid quality constraints across blocks could be more stringent re-
ducing grid generation flexibility. This is the reason why this kind of technique provided
the best results in conjunction with DDT. An example is given by the masked multiblock
proposed by CIRA [12].

For steady state applications another possibility could be to asynchronize the commu-
nications among blocks, that would be equivalent, on a block scale, to use a local cell time
step. Anyway, at present, there is no theoretical guaranty of stability and convergence of
such an algorithm.

2.2. C o m m u n i c a t i o n overhead
The communication overhead is another main problem. In the near future it is expected

that its influence on parallel performance will be reduced since it is strongly related to the
available hardware technology. An evaluation of the communication overhead is provided
by the fractional communication overhead (tic) defined as the ratio between the communi-
cations and the computations, that is, in our case, the ratio between the block surface and
the block volume in the computational domain. In practice Fc can be very high providing
small efficiencies. The trivial reduction of F~, obtained by increasing "ad hoc" the number
of grid points per block, is not the proper solution, since the correct grid sizing depends
on the aerodynamic accuracy. When massively parallel MIMD architectures are used,
the Fr factor becomes critical and can only be reduced by diminishing communications.
This can be done, for instance, by modifying internal boundary conditions; in this case,
since the numerical algorithm results different from the single block case, the stability
properties can be again affected.

3. S T A B I L I T Y

The introduction of internal boundary conditions, as well as the strategies proposed to
reduce the overheads, suggested to examine the consequences on the numerical stability.
In particular we studied the problem with reference to explicit Runge-Kutta like schemes
widely used for the numerical solution of initial value problems [13]. The question is:
if we minimize communications, for example by freezing boundary conditions updating
once per time step instead of once per stage, do we reduce the stability range and/or the
convergence speed of the scheme?

Firstly it has been investigated the practical occurrence of instabilities due to artificial
internal boundary conditions. The subsonic flow field solutions around the same 2D grid
(NACA 0012 airfoil) respectively divided in 1 and 4 blocks are shown in Figures 2a,b. A
standard 4-stage scheme with the stability limit CFL (2.8) was used for both the cases
without smoothers (enthalpy damping, residual averaging). In the second test the internal
boundary conditions were updated only once per time step: the unstable modes arising
at block interfaces are clear. Only by halving the CFL number it was possible to get
convergence.

The stability analysis was performed for 1D model problems by means of two classical
eigenvalues methods: the Spectral Analysis of the Transitional Operator [14] and the
more flexible Normal Mode Analysis [15]. An example of the obtained results relative to
the advection-diffusion equation is shown in Figure 3. The used scheme was a two-stage
Runge-Kutta with central space discretization; in the picture the non dimensional time
step limit (Ptimit) for the 1 block and the 2 block cases are plotted versus the Runge-Kutta
coefficient of the 1 ~t stage (al). Unfortunately stability limits of the multiblock scheme
revealed much lower at al values providing the largest time steps for the one-block scheme.
These results were in perfect agreement with the numerical experiments. A simple remedy
that has been theoretically proved for the model problems and extended with success to
practical Euler calculations consisted in reducing time step only near interfaces. In Figure
4 the convergence histories obtained for the airfoil test with and without the Local Time
Step (LTS) correction are compared with the reference one-block case showing that the

original one-block convergence history has been practically recovered. The application
of the LTS correction to parallel computing provided particularly interesting results: in
fact communications could be strongly reduced preserving the convergence speed of the
one-block scheme. The performance (S, e) of quasi-lD Euler nozzle flow computations
are summarized in table 1.

Table 1
Parallel Performance

Number of nodes --+
2 4 8

S e S e S e

Upd/it

4 1.30 0.65 1
1 1.71 0.85 2
1/2 1.91 0.95 3
1/4 1.95 0.97 3
1/6 1.99 0.99 3
1/8 2.00 1.00 3
1/10 2.00 1.00 3

32 0.33 1.58 0.20
63 0.66 3.80 0.47
16 0.79 4.92 0.61
45 0.86 5.69 0.71
66 0.91 6.12 0.76
66 0.91 6.31 0.79
69 0.92 6.44 0.80

Quasi-lD Euler nozzle flow: CFL=2.8, 4 stages Runge-Kutta scheme

They have been obtained by using the CONVEX MPP Metaseries of CIRA and PVM
software as message passing tool. The total number of grid cells was fixed, the loads
were perfectly balanced with the number of blocks equal to the number of nodes so that
only the communication overhead was treated. The first and the last row values were
respectively obtained by updating the internal boundary conditions at each stage of the
Runge-Kutta scheme (equivalent to a DDT) and every 10 time steps (1/10 Upd/it) with
a global communication reduction equal to 40. The improvement in parallel performance
was obvious.

Similar stability problems are also present in implicit MSA as discussed in [16]. In
particular, the convergence rate strongly decays by increasing the number of blocks when
explicit internal boundary conditions are used (the simplest and most efficient procedure).
Recent progress obtained by using a sort of coarse grid correction are reported in [17]
and show that also for implicit MSA an accurate tayloring of the method can provide
significant improvements in computational performance.

4. C O N C L U D I N G R E M A R K S

The aim of this work was to underline some typical problems related to MSA and, in
particular, to their application in parallel CFD. Beyond the indisputable features of the
method, there are a number of points to always keep in mind when MSA are going to be
applied.

The first one regards the clear conflict between the aerodynamic and the parallel re-
quirements limiting the computational efficiency or the functionalities of the method.

The second argument of our discussion concerned with the relevance of the stability

analysis of MSA being their convergence rate strongly reduced by interface boundary
conditions for both explicit and implicit schemes. We have suggested the LTS correction
to reduce or eliminate these problems in case of multistage explicit methods enabling
moreover a significant communication overhead reduction.

This is a first step towards an asynchronous communication approach also solving the
load overhead problem for steady state calculations without the use of load balancing
pre-processors. An interesting convergence acceleration technique, based on similar con-
siderations, has been presented in [18]. It consists of processing only blocks with larger
residuals, therefore reducing the total computational work. Anyway only supersonic ap-
plications were presented, while the more critical elliptic problems should be studied in
detail to assert the real capability of this convergence accelerator.

Figure 2a. NACA 0012 airfoil. 1 block. Moo = 0.63, a = 2 ~ CFL = 2.8.

Figure 2b. NACA 0012 airfoil. 4 blocks. Moo = 0.63, a = 2 ~ CFL = 2.8 (500 iterations).

2 .00

q

"7
1 . 6 0 "7

1 . 2 0

]
!

"3
- t
"3

o.so q

Y
0 . 4 0 i

Matrix
~_ ~__~_~_~ NMA

J
0 .00 ~ , . , i t ' "~ I ~ I' i "l I ' , " l ~' s i i ~ " i ' ~ 1 ~'" ~ ' " ' r 1

0 .00 0 .20 0 .40 0 .60 0 .80 1 .00
61

Figure 3. Two-stage stability limits for the advection-diffusion equation
Matrix: Spectral Analysis of the Transitional Operator.
NMA: Normal Mode Analysis.

1 I ~ �9 ' " ' " " ' ' ' ~ i

d

- " * , z ,~ ,T2< ~ . . _ ,v~ 1

- 5 . , 1

0 400 800 1200 1600 2000
i t e r a t i o n s

Figure 4. Euler flow convergence history. Moo = 0 . 6 3 a - 20
A: 1 block, CFL=2.8; B: 4 blocks, CFL=I.4; C" 4 blocks, CFL=2.8 LTS correction.

R E F E R E N C E S

1. N.J . Yu, S. S. Samanth, P. E. Rubbert, Flow Prediction for Propfan Configurations
Using Euler Equations, AIAA Paper 84-1645, 1984.

2. N.P. Weatherill, J. A. Shaw, C. R. Forsey, K. E. Rose, A Discussion on a Mesh Gener-
ation Technique Applicable to Complex Geometries, AGARD Symp. on Applications

.

.

10.

11.

12.

13.

14.

15.

16.

17.

18.

of CFD in Aeronautics, Aix-En-Provence, France, 1986.
A. Amendola, R. Tognaccini, J. W. Boerstoel, A. Kassies, Validation of a Multiblock
Euler Flow Solver with Propeller-Slipstream Flows, AGARD CP 437 Vol. 2, 1988.
J. W. Boerstoel, J. M. J. W. Jacobs, A. Kassies, A. Amendola, R. Tognaccini, P.
L. Vitagliano, Design and Testing of a Multiblock Grid-Generation Procedure for
Aircraft Design and Research, 64 th AGARD Fluid Dynamics Panel Meeting, Loen,
1989.
H. C. Chen, N. J. Yu, Development of a General Multiblock Flow Solver for Complex
Configurations, 8 th GAMM Conference on Numerical Methods in Fluid Mechanics,
Delft, 1989.
L. E. Eriksson, Numerical Solution of the Euler Equations Using Local Grid Refine-
ment, FFA Report, 1988.
K. A. Hessenius, M. M. Rai, Three-Dimensional, Conservative, Euler Computations
Using Patched Grid Systems and Explicit Methods, AIAA Paper 86-1081, 1986.
A. Kassies, R. Tognaccini, Boundary Conditions for Euler Equations at Internal Block
Faces of Multiblock Domains Using Local Grid Refinement, AIAA Paper 90-1590,
1990.
C. de Nicola, R. Tognaccini, P. Visingardi, L. Paparone, Progress in the Aerodynamic
Analysis of Inviscid Supersonic Flow Fields around Complex Aircraft Configurations,
AIAA Paper 94-1821, 1994.
C. de Nicola, R. Tognaccini, A. Amendola, L. Paparone, P. L. Vitagliano, Euler Flow
Analysis of Supersonic Transport Aircraft Configurations for Aerodynamic Optimiza-
tion in Transonic and Supersonic Regimes, 19 th ICAS Congress, Anaheim, USA, 1994.
M. Amato, A. Matrone, L. Paparone, P. Schiano, A Parallel Multiblock Euler/Thin
Layer Navier Stokes Flow Solver, Parallel CFD'94 Conference, Kyoto, Japan, 1994.
S. Borrelli, A. Matrone, P. Schiano, A Multiblock Hypersonic Flow Solver for Mas-
sively Parallel Computer, Proc. of Parallel CFD'92, May 92, North-Holland, 1993.
Van der Houwen, Construction of Integration Formulas for Initial Value Problems,
North Holland, 1977.
C. de Nicola, G. Pinto, R. Tognaccini, On the Numerical Stability of Block
Structured Algorithms with Applications to 1-D advection-diffusion problems,
Computers&Fluids, Vol.24, N.1, pp 41-54, 1995.
C. de Nicola, G. Pinto, R. Tognaccini, A Normal Mode Stability Analysis of Multiblock
Algorithms for the Solution of Fluid-Dynamics Equations, to appear on J. of Applied
Numerical Mathematics.
C. B. Jenssen, Implicit Multiblock Euler and Navier-Stokes Calculations, AIAA Jour-
nal, Vol. 32, N.9, September 1994.
C. B. Jenssen, P. A. Weinerfelt, A Coarse Grid Correction Scheme for Implicit Multi
Block Euler Calculations, AIAA Paper 95-0225, 1995.
M. L. Sawley, J. K. Tegner, A Data- Parallel Approach to Multiblock Flow Compu-
tations, Int. J. for Numerical Methods in Fluids, Vol. 19, 707-721, 1994.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

Using Hundreds of Workstations for Production Running of Parallel CFD
Applications

Craig J. Fischberg ~"
Chae M. Rhie*

o, .

Robert M. Zacharias ~"
Peter C. Bradley*

Tom M. DesSureault*
Pratt & Whitney, 400 Main Street, East Hartford, Connecticut 06108

Abstract
This paper describes the many software and hardware systems that were developed at Pratt
& Whitney (P&W) to harness the power of hundreds of networked workstations.
Historically, expensive dedicated supercomputers were used to perform realistically sized
CFD analyses fast enough to impact hardware designs. With the large scale introduction of
workstations a new less expensive computing resource became available to replace the
supercomputer for the large scale execution of production, design oriented, CFD analyses.
The software created to facilitate all aspects of the parallel execution of a three-dimensional
Navier-Stokes solver are described. The evolution of this software and the hardware
required to make the system robust, reliable, efficient and user-friendly in a large scale
environment are also presented. The impact this parallelization has had on the design
process, product quality and costs are also summarized. It will be shown that the use of
networked workstations for CFD applications is a viable, less expensive alternative to
supercomputers.

Introduction
Through the late 1980's the only computer platform that provided the execution speed and
memory required for solving the 3-d Navier-Stokes equations for turbomachinery was the
vector "supercomputer". The large number of grid points required for accurate 3-d Navier-
Stokes flow simulation creates the need for both high speed computers to handle the
tremendous number of floating point operations in a reasonable time and large amounts of
memory to hold the data associated with all the grid points. In the 1980's, only a
supercomputer could come close to meeting both of these demands.

* CFD Group, MS 163-01, email: fischbcj@pweh.com, rhiecm@pweh.com, zacharrl@pweh.com,
bradlepc@pweh.com

* Network Services Group, MS 101-01, email: dessurtm@pweh.com

10

In 1986, Pratt & Whitney (P&W) purchased a Cray XMP supercomputer with 8 Mwords
(64 Mbytes) of memory (RAM) at a cost of $13M to meet the needs of its high intensity
computing applications such as 3-d Navier-Stokes solvers. For the next two years, P&W's
Navier-Stokes solver, NASTAR, as well as other computational fluid dynamics (CFD) and
structures applications were executed and developed using this XMP. The limitations of
this high priced machine quickly became apparent: as the demands for the XMP grew so did
the time jobs spent in queues waiting to be executed, even though the machine had 64
Mbytes of memory (high for the time), it was not sufficient to run fine enough meshes for
most design applications and taking full advantage of the machine's vector processor
required specialized, machine specific programming. To run a compressor fan analysis with
a coarse mesh of 100,000 grid points, NASTAR required 16 Mwords of memory (including
solid state disk) and 2-3 days to converge (due to the amount of time spent waiting in a
queue plus CPU time). To run the desired mesh size of 500,000 grid points would have
required 80 Mwords of memory, more than was available on the Cray XMP and would take
too much time to have an impact on the design process.

In 1989, P&W made the decision to purchase workstations to replace mainframes for
design/drafting work. The mainframes were expensive, continuously overloaded and
provided crude graphics capability for design work. The decision was made to purchase Sun
Sparc2 workstations configured with 32 MB of RAM to be used for design/drafting and
small scale scientific computing. Even though the Sparc2 was a viable tool for drafting
purposes its computational power for Navier-Stokes applications was limited. Running
NASTAR with the 100,000 point coarse grid for a fan required 64 MB of RAM and one
week of continuous execution time to converge. Most of the workstations that were
purchased only had 32 MB of memory and could not be dedicated solely to the execution of
NASTAR. The bottom line was that running large cases on single workstations was
possible but a step back in turnaround time. Furthermore, the size of the grids that could be
used was severely limited. The cost, however, was dramatically reduced. Each workstation
cost only $20,000.

In mid-1989, after suffering through the limitations imposed by the Cray XMP and seeing
no improvement offered by the workstations a fan designer proposed the idea of subdividing
a standard, monolithic geometric model of a fan into pieces that could each be analyzed
separately on different workstations. By utilizing this domain decomposition technique the
size of the grid could be expanded because now each subdomain was limited by the
workstation's memory instead of the entire problem. The number of workstations used for a
problem could be increased according to the total memory required. Furthermore, by
subdividing the problem a speedup due to parallel processing could be realized because each
subdomain was sized smaller than would have been used for the single, non-parallelized
problem.

11

Figure 1. Daily parallel CFD throughput on Pratt & Whitney's Connecticut and Florida
workstation networks.

By the end of 1989, the software to perform parallel CFD on networked workstations was
in place. The innovative designer successfully executed a new fan design using this parallel
computing environment at much less cost and time than was required for previous designs.
As a result of the fan design success, this parallel CFD technology was quickly adopted by
groups designing other engine components. Figure 1 shows the growth in computer usage
for parallel CFD at P&W over time in terms of Cray XMP equivalents. The relative peaks
correspond to large design efforts.

NASTAR: The Solver Parallelization
The first step of the parallelization process was to develop a scheme for distributing the
work required to solve one single domain across multiple workstations. The algorithms in
the three dimensional Navier-Stokes solver, NASTAR l, were modified so that the original
domain could be divided into chunks (sub-domains) such that each chunk could be solved as
independently of the other chunks as possible.

In the solution procedure, the momentum equations are solved with a previously iterated
pressure field. Since this preliminary velocity field does not satisfy the continuity equation,
pressure correction equations are solved to establish new velocity and pressure fields which
satisfy the continuity equation. A multi-step pressure correction procedure is used. One
advantage of this pressure correction procedure is that only scalar matrices are solved for
each equation. Coupling between the momentum and the continuity equations are achieved
through the pressure correction procedure. The equations are solved in a sequential manner
while each equation is solved in parallel. The momentum, energy, and turbulence scalar
equations are solved with successive line under relaxation (SLUR) using the tri-diagonal
matrix algorithm. The pressure correction equation is solved with a conjugate gradient
matrix algorithm.

12

Figure 2: Jet engine nozzle grid and decomposition for parallel NASTAR. 2

Domain decomposition is used for the parallel calculation. For example, Figure 2 shows an
example of how the nozzle domain is broken up for a parallel calculation. The linearized
influence coefficients are evaluated in parallel with explicit communication across the
domain boundaries. Only the matrix solver is required to do more frequent or implicit
communications. For the SLUR solver, each domain is solved independently and the
domain boundary conditions are communicated a few times during the sweeping of the line
inversions.

The solution stability depends on how complicated the flow field is and on how frequently
the boundary conditions are communicated. Obviously, complex flow features such as flow
separations or strong flow gradients across the domain boundaries can hamper convergence
rate. To minimize the time to convergence a delicate balance between the convergence rate
(number of iterations to convergence) and the communication overhead has to be found by
numerical experiments.

In the present pressure correction procedure, the majority of the computational effort is
spent in the pressure corrections. Therefore, it is essential to be very effective in solving the
pressure correction equations. This efficiency is achieved by using a parallelized
Preconditioned Conjugate Residual (PCR) solver, a conjugate gradient method. The
parallel PCR solver is similar to a standard PCR algorithm 3 but interprocess communication
has been added and some adaptations have been made to maximize parallelism.

The PCR solver uses two different types of communication. First, processes that share a
domain boundary must swap boundary values at each PCR iteration using direct, point-to-
point communication. Also, the solver's line searches require that a global inner product be
calculated. In order to calculate this product, each process first calculates a local inner
product and broadcasts it to the other processes. Broadcasted values are then combined by
each process to form the global product.

In order to ensure convergence, it is necessary to precondition the original system Ax = b.
A preconditioning matrix M should be chosen such that M approximates A and is easy to
solve. Solution then proceeds on the preconditioned system M -~Ax - M-~b. For nonparallel
solvers, an incomplete LU factorization of A is a good choice for M as it offers a good
balance of convergence acceleration and CPU consumption. Unfortunately, inverting M

13

entails forward and backward sweeps that are inherently serial. The parallel PCR solver
uses a modified LU factorization of A that allows each domain to do sweeps in parallel.
The convergence rate is significantly lower than the rate for the unmodified factorization,
but overall solver speed is much greater due to parallel execution.

Prowess: Communication System and Parallel Process Control
Several software systems were created or modified to run NASTAR in parallel. The first
requirement was to create a system to facilitate the exchange of information between the
solver processes running on different workstations. The Prowess (Parallel Running of
Workstations Employing SocketS) communication system was designed to fulfill this need.
Prowess was developed to isolate the solver developer from all the details of initiating
multiple processes on different workstations, establishing communication channels between
these processes and the low level mechanisms used to pass information. Initially, Prowess'
sole role was as a communication facilitator but, as requirements for parallel job process
control, accounting, reliability and workstation user protection were encountered, these too
were developed into Prowess.

The number and complexity of the Prowess functions were minimized to simplify the
already daunting task of parallelizing a complex CFD code consisting of over 100,000 lines
of FORTRAN code. To achieve this simplification, the paradigm that was adopted for
message passing was that of file I/O. The significance of this paradigm is that
communication is performed in streams. Most message passing libraries such a s P V M 4 and
MPI 5 implement communication using discrete messages. Reading and writing data with
Prowess, as when reading/writing files, if process A writes 20,000 bytes to process B,
process B can read this data as four 5,000 byte messages, two 10,000 byte messages or one
20,000 byte message. Also, as with file I/O only two functions are required to read and
write data, Slave_read0 (islave_read0 in FORTRAN) and Slave_write() (islave_write0 in
FORTRAN). By default, all communication uses blocking I/O so that neither function
returns until the requested amount of data has been read or written. The Slave_read_select()
(islave_read_slect0) function is available to determine which communication channels have
data waiting to be read. Non-blocking communication can be implemented using this
function.

Communication within Prowess is very efficient. To minimize message passing latency and
maximize bandwidth all communication is performed directly between the communicating
processes with no intermediary process touching the data. This technique is similar to
running PVM in "route direct" mode, however, the deadlock problems that are common
when using this mode of PVM have been eliminated in Prowess through the use of
proprietary deadlock prevention algorithms. Figure 3 shows the performance of Prowess
relative to PVM on different network types.

14

Latency (sec)

0.12 i i i i
Prowess

0.1 PVM x

0.08 MPEthernet x . . '
FDDI . .. -"

0.06

0.04

0.O2

0 10000 20000 30000 40000 50000 60000 70000
Message Size (Mbits/sec)

Throughput (Mbits/sec)
80 i l i i l i

70 Prowess
PVM - - - / - - - - *

60 . / - /

40 PEthernet x
/ / / FDDI .

:..L..7.:~- :::::2::..i i i i i.,..i l i , * - . . , - . . . - 1 0 " ; " " " " " "

0
x x x

x l i i i i i
10000 20000 30000 40000 50000 60000 70000

Message Size (bytes)
, a .

Figure 3: Prowess vs. PVM message passing latency and bandwidth "

Once the foundation was laid upon which the solvers could be parallelized Prowess was
developed to initiate the solver "slave" processes on each workstation and establish the
appropriate communication channels. One of the command line arguments to Prowess is the
name of an input file containing the names of the processes to run, the hosts on which to
run them and interprocess connectivity information. When the "prowess" command is
executed, a master process is initiated. This master process starts the slave processes
provided in the input file on the hosts also provided in the input file and establishes
communication channels as described in the input file connectivity table. After the slave
processes are started, the master stays alive to monitor and control the slave processes until
they have all terminated. The master also ensures that orphaned processes are terminated so
that dead or runaway processes are not left alive all over the network.

To help the user control all the slave processes of a job, the master propagates the UNIX
signals TSTP, CONT, INT, TERM, USR1 and USR2 that it receives to the slave processes.
As a result, the user can terminate all slave processes at once by sending the appropriate
signal to the master. At P&W, all parallelized applications have been written to checkpoint
and terminate when they receive a UNIX TERM signal so that an entire parallel CFD job
can be checkpointed and terminated by sending a TERM signal to the Prowess master.

Protecting the interactive workstation user was one of the major obstacles that was
overcome to make parallel CFD on P&W's open network successful. The majority of
workstations at P&W sit on the desktops of CAD users. These users perform mostly
interactive work that can be severely impacted by the execution of CFD solvers on their
workstations. Protecting these users from unwanted CFD processes was required in order
to get permission to run parallel CFD on these workstations company wide. This protection
is provided through Prowess in three ways: automatic morning shutdown, the "prowesskill"
command and activity detection.

To prevent users from being impacted at login time on weekdays, Prowess is configured to
automatically shutdown most parallel CFD jobs by 6:00 AM Monday through Friday. Both

* Measurements performed under the direction of Dr. Patrick Dowd, SUNY, Buffalo on NASA Lewis Lace
Workstation Cluster

15

the time and days at which the shutdown occurs are configurable through the Prowess
configuration file. The shutdown is performed by each master process by sending a TERM
signal to its slaves. This action results in the solvers saving their current states and
terminating. Each of the parallel jobs throughout P&W begins terminating at a random time
between 5:30 AM and 6:00 AM to help reduce the peak network load that would occur if
all jobs terminated simultaneously.

The prowesskill command was created to give workstation users absolute control over
Prowess jobs running on any workstation. All users can use the prowesskill command to
terminate any Prowess job executing on any workstation. The execution of prowesskill
causes the parallel application to checkpoint and terminate. A job migration technique has
also been implemented so that a prowesskilled application can continue executing on an
unoccupied workstation.

P&W's policy is that the interactive user has first priority on a workstation. It is for this
reason that the prowesskill command was created. Before its implementation, users had no
guarantee that they could gain control of a workstation if a parallel application was running
on it. Furthermore, many parallel CFD jobs were lost due to users rebooting workstations
that were occupied by CFD slave processes. The prowesskill command provides users with
a means to gain control of a workstation while preserving all the work performed by the
parallel application up to the time of the prowesskill execution. With the implementation of
process migration a prowesskilled application only suffers a minor delay.

The final user protection is provided through Prowess' activity detection options. Prowess'
activity detection causes slave processes to be suspended or terminated as soon as any
activity is detected on a workstation's keyboard or mouse. Either slave suspension or
termination can be chosen by the Prowess user on a host by host basis. In most cases, users
choose termination over suspension so that a job can be moved elsewhere to continue
executing instead of remaining suspended for hours while a user continues to use a
workstation. The termination occurs through the automatic execution of the prowesskill
command on the workstation on which activity was detected.

Execution Techniques for Robustness
The initial attempts at parallel execution of NASTAR were less than 50% successful. Many
factors combined to make parallel execution unreliable. Bugs in the workstation operating
systems, volatility of file servers, network traffic spikes and other unpredictable events
resulted in lost work and delays in turnaround time. Several techniques were developed to
reduce both the vulnerability of NASTAR to these events and the amount of work lost if a
catastrophic event does occur.

The most significant obstacles to reliability were presented by operating system and
network interface bugs. Both Hewlett-Packard's HPUX 9.05 and Sun Microsystems'
SunOS 4.1 contained bugs related to the acknowledgment of packets in the TCP protocol
stack. These bugs caused the network between communicating slaves to be periodically
flooded with tens of thousands of acknowledgment packets per second. Whenever one of
these events occurred, the flooding of the network would continue until the parallel job

16

failed. Both of these bugs were fixed through patches provided by Hewlett Packard and Sun
and do not exist in newer versions of their operating systems.

One bug created storms of address request packets (ARP's) at midnight causing
communication failures. Others caused the corruption of large data files during the
initiation and termination of NASTAR jobs and communication deadlocks. The reliability of
parallel CFD jobs jumped from below 50% to over 90% following the elimination of these
bugs. The major lesson learned through this experience is not to ignore the operating
system as a possible cause for software system breakdowns.

Other events that continue to occur cause the failure of parallel CFD jobs. These events
include slave workstation crashes and reboots, file server problems, network hardware
failures, user error and application code bugs. Two approaches are used to reduce the
impact of these failures. The first approach is to reduce the exposure of parallel jobs to
these events and the second is to reduce the amount of work lost when one of these events
O c c u r s .

To reduce the exposure of parallel CFD jobs to network hardware failures the workstation
selection algorithm limits the span of each job to a minimum number of network
"segments." In this context a segment is any physical network wholly contained on one side
of a router, bridge or switching hardware such as an ethernet segment or FDDI ring. The
workstation search process attempts to find as many hosts as possible in one segment before
searching in a new segment. This algorithm minimizes the number of points of failure in the
network hardware to which jobs are exposed.

Initial runs of parallel NASTAR frequently failed due to poor reliability of the file servers on
which the input and output data and executable files were stored. P&W uses Sun's
Network File System (NFS) to provide a uniform file system image across all hosts.
Parallel NASTAR initially utilized NFS to access both its input data and executable files.
This technique was unreliable because NFS is not robust enough to handle the loads that
were being placed on the file servers by hundreds of NASTAR process running
simultaneously. NASTAR was vulnerable to this unreliability during its entire 13 hour
execution period.

The reliance of parallel jobs on network file servers is now minimized by copying all input
data and most executable code to the local hosts on which the solver slave processes are
running. Further safety is provided by performing all file output to the local host during the
solver execution instead of writing accross the network. The first steps taken by a
NASTAR slave process are to create a directory in the/ tmp directory and then copy its
chunk of data and solver binary code into this new directory using the "rcp" command
instead of relying on NFS. Typical slave processes require 7-12 Mbytes of input data and 8
Mbytes of executable files. By utilizing the local host for file I/O the window of
vulnerability to file servers is reduced from 13 hours or more to the time required to
perform the initial copies. Following the completion of the slave process, all output data is
copied to the host from which the input data was initially copied again, using rcp.

Even after reducing NASTAR's vulnerability to file servers, catastrophic events still occur.
The amount of work lost due to these events is reduced by providing a checkpointing
capability in the NASTAR solver. Each solver process writes its current state to the local

17

disk at a user defined interval. A checkpoint process that is started by each NASTAR slave
has the responsibility of detecting this output and copying it to the data repository.
However, before copying the data, this checkpointer analyzes the solver output to make
sure it contains a valid solution and that solution has not diverged. If the solution is invalid
the checkpointer terminates the entire parallel job immediately so as not waste computer
resources on a failing execution. Furthermore, by checking the output before copying, the
history of the solution before failure is not overwritten by the latest invalid output.

Through the combination of the various techniques described above, parallel CFD at P&W
has reached a reliability rate of 95-98%. As new causes for job failures are discovered both
the Prowess and NASTAR software are modified to prevent these failures in the future.
P&W's goal is to achieve 100% reliability for all parallel CFD jobs running on its
production network regardless of the job size.

LSF TM and Wsfind: Finding Available Workstations
To bring the power of hundreds of workstations at P&W to bear on everyday design
problems, the burden of finding idle computers for parallel CFD was removed from the
user. P&W has thousands of UNIX workstations of varying power (including differing
numbers of CPU's per host) and operating systems spread throughout its East Hartford,
Connecticut site. The LSF rM6 (Load Sharing Facility) software from Platform Computing
Corporation of Toronto, Canada is used to manage this large volume of resources. The
wsfind software, written at P&W, utilizes LSF TM to locate idle workstations capable of
executing NASTAR's slave processes.

The basis of LSF TM is a system for monitoring the load of every computer on the network
and the resources available on those systems. Resources include available memory, swap
space, space in/tmp, etc. whereas, system loads include paging rate, run queue lengths,
percent CPU utilization, keyboard idle time, etc. 7 LSF TM gathers this information in 15
second intervals and stores it using a hierarchical "cluster" based system. Wsfind uses the
application program interface (API) provided with LSF TM to access this load and resource
information and make job placement decisions based on host loads and job requirements.

Over time P&W has developed a complex set of resource requirements that must be
satisfied before a NASTAR job can begin execution. These requirements were designed to
not only satisfy the physical requirements of a NASTAR slave process (e.g. memory) but
also to protect interactive users and minimize the shared use of workstation CPU's to
maximize performance. These requirements vary depending on the time of day of the search
and the relationship of the job owner to the workstation owner. At no point in time is a
NASTAR job allowed to start on a host with logged in users unless the host belongs to the
group of the NASTAR job owner, has multiple CPU's or has had no interactive use for at
least 60 minutes.

This wsfind/LSF TM system is used to schedule CFD jobs on hundreds of workstations daily
at P&W's East Hartford, Connecticut, West Palm Beach, Florida and Canadian facilities.
The lsbatch TM batch scheduling software that comes with LSF TM is being used at P&W
Canada to perform batch scheduling of parallel CFD jobs across their network of 100+ IBM
and Hewlett Packard workstations. Platform Computing Corp. is currently modifying

18

lsbatch TM to provide multi-cluster batch scheduling of parallel jobs across the thousands of
hosts available at P&W in East Hartford and West Palm Beach. Prowess is closely coupled
with LSF TM to take advantage of all existing and future capability provided by both LSF TM

and lsbatch TM.

Visgrid: Parallelized Grid Generation to Remove a New Bottleneck
Using hundreds of workstations to compute the complex aerodynamic flowfield through a
modem turbofan engine allowed designers to quickly and confidently assess new
aerodynamic design concepts on the computer instead of in a wind tunnel. As will be
discussed in the last section, this ability has had a profound effect on the Pratt & Whitney
product, because new design concepts can be evaluated much more quickly and cheaply
than in the past. However, the speed at which a new design could be evaluated exposed a
new bottleneck in the CFD design analysis procedure: the time required to create the
computational model of the new design.

A typical compressor airfoil (rotor or stator) is modeled using 250,000 computational
nodes, or grid points. This is an accuracy requirement that was established through
extensive CFD code validation. The proper placement of the grid points is crucial to the
accuracy of the simulation. The software that generated the mesh originally took up to 30
minutes to generate the mesh for a single airfoil row. A typical high pressure compressor
contains 23 rows of airfoils, so generating the model for the entire compressor would take
from up to 12 hours. This was not acceptable for design purposes, when many
perturbations of a base design would have to be evaluated. To remove this grid generation
bottleneck, the in-house grid generator Visgrid was parallelized using Prowess.

Visgrid is a quasi-three-dimensional mesh generator which is executed in two steps. In step
one, the computational mesh is generated on axisymmetric surfaces that vary in the axial
and circumferential directions. (Figure 4). In the original implementation of Visgrid, these
surfaces were processed sequentially, beginning with the surface coincident with the inner
diameter of the compressor and progressing with increasing diameter to the outer diameter
of the compressor. In step two, the mesh is re-processed on radial surfaces that vary in the
axial and radial directions (Figure 5). Again, these surfaces were processed sequentially in
the original implementation of Visgrid.

Figure 4. Axial-circumferential surface. Figure 5. Axial-radial surface.

19

In order to speed the execution of Visgrid, Prowess was used to control the processing of
these surfaces in parallel rather than in sequence. Prowess launches a master process that
performs preliminary initialization. It also launches a number (typically 10) of slave

processes that receive, process, and return a surface (either an axial-circumferential surface,
step one, or an axial-radial surface, step two). The master process is like a card dealer,
dealing cards to the players (slaves). The players play their card (process the surface) and
return it to the dealer. The master receives the processed data, determines the next surface
available for processing, and gives it to the slave. This technique of giving a surface to the
next available slave "desensitizes" Visgrid to slow slaves. That is, a given slave can process
at its own pace without slowing down its neighbors. This is possible because there is no
interprocess communication (interdependency) between slaves, only between the slaves and
the master. (Any interdependency is handled in the initialization step, and appropriate
information is "funneled" to each slave.) This is a critical difference from the parallelization
of the flow solver NASTAR, because in that application, there is a high degree of
interdependency between slaves.

This parallelization of Visgrid reduced the grid generation time from up to 30 minutes per
blade row to 5-8 minutes per blade row. This drastic reduction in grid generation setup
time was a key ingredient in creating a CFD tool that allowed aerodynamic designers to
quickly set up and numerically test new airfoil contouring concepts.

Computer Communication Network
The advent of parallel CFD on workstations resulted in a new emphasis on the Pratt &
Whitney local area network (LAN). Running the parallel CFD jobs across the network
resulted in a virtually continuous stream of ethernet traffic between all slave machines that
increased proportionally with the number of workstations being utilized for all parallel jobs.
This traffic was unlike the typical bursty LAN traffic and quickly resulted in ethernet
utilizations of over 50%. This high utilization rate impacted interactive users connected to
the same LAN and also the execution time of the CFD jobs. Thus, most Prowess
executions were forced to run during off-shift periods (6 PM - 6 AM).

During the evolution of parallel CFD, efforts were continually focused on reducing the
amount and impact of interprocess communications. Changes to both the LAN and the
Prowess message passing software have played a complimentary role in the success of
parallel computing. This work not only reduced the CFD execution times but also
minimized the network impact on other applications and interactive users. This in turn,
positively impacted the social and political effects of using idle desktop workstations
normally used for CAD or other functions, for CFD analysis.

The network impact of the parallel workstation communications during parallel NASTAR
execution has been studied and characterized over a number of years. The average effective
network traffic rate for a typical single communications edge between two slave processes
is currently 300-500 kbits per second. This average is calculated with a 1 second sample
rate during a typical execution over many hours.

20

Workstation Type Number per
Ethernet Segment

Sun SparcStation 2 or less 12-24

Sun SparcStation 5 10
.

Sun SparcStation 10 8

Sun SparcStation 20 (2 CPU) 1

Table 1

With the increasing use of Prowess on idle desktop workstations, continuous monitoring of
the LAN bandwidth utilization was implemented. Simple Network Management Protocol
(SNMP) scripts were created polling all ethernets every 2 minutes for utilization and error
information. This data quickly pointed out that network utilization was typically twice as
high during "Prowess shifts" as during the normal business day. This forced new network
design guidelines to be based on parallel CFD network requirements. These requirements
resulted in a reduction of the number of workstations per ethernet segment. Today at Pratt
& Whitney the number of prowess capable workstations per ethernet segment is shown in
Table 1.

Pratt & Whitney Network Architecture
The overall network architecture is comprised of multiple 100 Mbits per second Fiber
Distributed Data Interface (FDDI) backbone networks connecting approximately 200
ethernet segments as shown in Figure 6. The FDDI networks are connected with redundant
Digital Equipment FDDI Gigaswitches. The ethernet segments are connected using
multiport ethernet switching products that provide media rate bridging performance and a
FDDI backbone network connection. The availability of low cost ethemet
switching/bridging equipment has been a key enabler to the evolution of the Prowess
parallel computing environment.

Figure 6. Pratt & Whitney, East Hartford network backbone.

21

Although there is a large number of ethernet segments, the network is still one logical
Internet Protocol (IP) domain. The use of router centric network architectures (multiple IP
domains or subnets) connecting large numbers of ethernets has been found to adversely
affect prowess CFD application performance. This performance degradation is a function of
the processing power of the routers with large numbers of ethernets, all heavily utilized for
long periods. However, a combination of clusters of ethernet switches, connected by routers
can also be effective with some additional administration to ensure most of the parallel CFD
executions are contained on individual subnets.

Another factor that has had a major affect on network design is the use of multiple
processor workstations. These workstations are configured such that an interactive CAD
user can be using the power of one CPU while a Prowess application uses the remaining
CPU power. This translates to 24 hour workstation availability for parallel CFD
applications. Efforts are continuing to minimize any impact to the interactive user including
providing a dedicated or personal ethernet connection to all high end multi-processor
workstation as indicated in Table 1.

Business Impact: Better Products in Less Time
What has been described so far is of academic interest but most importantly it is positively
impacting the cost and quality of actual compressor airfoil designs. Figure 1 shows the
volume of parallel CFD work performed on networked workstations at P&W in terms of
equivalent Cray XMP supercomputers throughout the history of Prowess. Today, 40-50
Cray XMP's would be required to provide the equivalent throughput at a cost of $500M-
$600M (in 1986) whereas 95% of the workstations used for parallel CFD were purchased
for interactive daytime use. The additional hardware costs for using these machines for
parallel CFD is minimal. The shear capacity of this system has not only allowed many
designers to run simultaneous design analyses but has also dramatically accelerated the
development of NASTAR and other P&W CFD codes.

The combination of high design CFD throughput and accelerated code development
resulted in two hardware designs with dramatically increased performance in reduced time.
An efficiency gain of .6% in fan efficiency and 1.0% in low pressure compressor efficiency
were realized in the latest fan redesign that utilized parallel NASTAR and Prowess 8. Not
only was the performance improved but the time for design to hardware was reduced from
18 months to 6 months. Approximately $20M were saved due to reduced rig testing and
improved fuel burn for the customer. A similar result was achieved in the redesign of the
PW4000 high pressure compressor for which the design time was cut in half, the
development cost was reduced by $17M while the compressor efficiency was increased by
2 % 9 . These achievements result in more competitive products through improved quality
and shorter time to market.

References
Rhie, C. M., "Pressure Based Navier-Stokes Solver Using the Multigrid Method," AIAA

Journal, Volume 27, Number 8, pp. 1017-8, August, 1989.

22

2 Malecki, R. E. and Lord, W. K., A 2-D Duct~Nozzle Navier-Stokes Analysis System for Use by
Designers, AIAA 95-2624, 1995.

3 Canuto, C., Hussaini, M., Quarteroni, A., Zang, T., Spectral Methods in Fluid Dynamics,
Springer-Verlag, New York, 1988, p. 454.

4 Geist, AI, Beguelin, Adam, Dongarra, Jack, Jiang, Weicheng, Manchek, Robert and Sunderam,
Vaidy, "PVM: Parallel Virtual Machine, A Users' Guide and Tutorial for Networked Parallel
Computing, The MIT Press, Cambridge, Massachusetts, 1994.

5 Message Passing Interface Forum (MPIF), MPI: A Message-Passing Interface Standard,
University of Tennessee, Knoxville, Tennesee, 1994.

6 Zhou, S,, Wang, J., Zheng, X. and Delisle, P., "Utopia: A Load Sharing System for Large,
Heterogeneous Distributed Computer Systems," Software: Practice and Experience, December,
1993.

7 LSF User's Guide, Platform Computing Corporation, 1994.

8 Rhie, C. M., Zacharias, R. M., Hobbs, D. E., Sarathy, K. P., Biederman, B. P., Lejambre, C. R.,
and Spear D. A., "Advanced Transonoic Fan Design Procedure Based On A Navier-Stokes
Method," ASME Journal ofTurbomachinery, Vol. 116, No. 2, April 1994, pp. 291-7.

9 Lejambre, C. R., Zacharias, R. M., Biederman, B. P., Gleixner, A. J. and Yetka, C. J.,
"Development and Application of a Multistage Navier-Stokes Solver, Part II: Application to a High
Pressure Compressor Design," presented at The 40th ASME Gas Turbine Conference, Houston,
Texas, June 5-8, 1995.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

23

Parallel Computation of Frontal Processes

Marc Garbey and Damien Tromeur-Dervout a �9

~L.A.N, URA 740, University Claude Bernard Lyon 1,
Bat101, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France

In this paper we study the computation of combustion fronts using MIMD architecture
with up to 200 nodes. Our applications in gas combustion, solid combustion as well
as frontal polymerization are characterized by stiff fronts that propagate with nonlinear
dynamics. The understanding of the mechanism of instabilities is the goal of our direct
numerical simulation. The multiple scale phenomena under consideration lead to very
intense computation. This paper emphasizes the special use of domain decomposition
and operator splitting combined with asymptotic analytical qualitative results to obtain
more efficient and accurate solvers for such problems.

1. I n t r o d u c t i o n

We consider the two following models of combustion front:

�9 first, a classical thermo-diffusive model describing the combustion of a gas with a
two-step chemical reaction [10][16] [18] [1]. Such a model describes the appearance
of cellular flames and more complex pattern formation, [3] [4]. This model has been
analyzed rather intensively, but few numerical result seems to be available.

�9 second, a model describing the reaction process of frontal polymerization. Frontal
polymerization has been studied for several years in former USSR [22][17][20][21] to
design new materials. New aspect of frontal polymerization are currently investi-
gated to design new materials that cannot be produced by classical processes [2].
Our first step in the modelization is to couple a reaction diffusion system well known
in solid combustion [6] to the Navier Stokes equations written in Boussinesq approx-
imation. Our interest in this second model is to study the interaction between a
mechanism of convective UN-stability similar to Rayleigh B6nard instability and a
mechanism of thermal UN-stability well known in solid combustion [6] [13]. The
direct numerical simulation [9] complements our analytical work in [7] [8].

We will refer to Model A and Model B respectively as the first and respectively second
items described above.

*The authors want to thanks the Oak Ridge National Laboratory and especially J. Dongarra for the access
to the iPSC/860 machines and the Bergen University parallel Laboratory and especially Tot Sorevich for
the access to the Paragon machine. These parallel codes were elaborated on the Paragon of the Centre
Pour le Ddveloppement du Calcul Scientifique Parall~le of Lyon sponsored by R$gion Rh6ne Alpes

24

The former problems are characterized by stiff fronts that propagate with nonlinear
dynamics. The understanding of the mechanism of UN-stabilities is the goal of our direct
numerical simulation. The multiple scale phenomena under consideration lead to very
intense computation. We make a special use of domain decomposition and operator
splitting combined with asymptotic analytical qualitative results to obtain more efficient
and accurate solvers [5][19] adapted to the nature of the solution of such problems.

2. Numer ica l m e t h o d

Both models we consider here present one or several thin layers, so the numericals
methods to solve these two problems follow the same approach.

The main difficulty to compute the solutions of our combustions problems are the
zone(s) of rapid variation of the temperature and concentration of the reactant(s). More
precisely, we have one (or two) transition layer(s) that correspond to the sharp combustion
front: the Arrhenius nonlinear term is of order one only in these layer(s); we use this
criterion to numerically locate the layers. The dynamics of the combustion process is
driven by these thin layers; consequently it is critical to compute them very accurately.

The computation to obtain a highly accurate representation of the solution in the
Transition Layer (TL) is of leading importance because the UN-stability of the front
starts in the TL and then smoothes out in the regular domain. Therefore we design our
numerical method essentially to solve this difficulty.

Let us notice for Model B, that derivation of the corresponding interface model [9]
shows that in the limit of infinite activation energy the concentration exhibits a jump at
the front, the temperature is continuous, but has a jump of its first order normal derivative
to the front, and the velocity up to the third order normal derivative to the front stays
continuous. Therefore the main difficulty on the computation is driven by the combustion
process itself and not the computation of the flow.

Domain decomposition technique for combustion problems was introduced in [12]. We
use the adaptive multiple domain decomposition technique of [5], which is specific to
singular perturbation problems.

Let us describe briefly the method. We consider first the example of a scalar equation:

0-7 = Oz- Z + o,

with some appropriate initial condition. We suppose that u exhibits a TL of e thickness
located at z = S(t) E (-1 ,1) and we suppose that S is such that F~(u(z,t)) reaches its
maximum at z = S(t), with F~ = O(1).

We recall the properties of pseudospectral approximations with Chebyshev polynomials
on a single domain of computation denoted ~2 and with no adaptivity. Let fl be a compact
subset of the interval [-1,1] and u E C~(ft). Let further h be an atone function from
[-1, 1] into ft. In the Chebyshev pseudospectral method, u(z) is approximated as a finite
sum of Chebyshev polynomials:

N
PNtt(z) = E a jT j (h - l (z)) ,

j=o

25

where Tj(y) = cos(j cos- '(y)). The coefficients ar are obtained by collocating the solution
at the points (zj)j=0...N such that

h-~(zj) = cos(N) , j = 0 . . .N.

Let eN be the error: eN = u - PNu. We put fi(h-l(z)) = u(z). Then the following a
priori estimate takes place:

I~N I_< c' II ~ I1~
~Vp:a '

where] �9 [is the maximum norm, p is an integer and C t is a real number depending
on the choice of the Sobolev norm I[][p. Since p is not specified the error seems to be
smaller than any inverse power of N. However, the constant C t grows as p increases
according to the smoothness of u. In practice for stiff problems, which we consider here,
the pseudospectral method is error prone and subject to spurious oscillations. To avoid
this difficulty we introduce an adaptive grid. It was shown in [3], [5] that an efficient and
accurate way to solve a TL is to use two subdomains with an interface located at the front
and a mapping that concentrates the collocation points at the end of the subdomains in
the layer.

To be more specific, we introduce two one-parameter families of mappings. Let S , , , ,
be a numerical approximation of S(t) . First we decompose the interval [-1,1] into
[-1, S,,~m] U[S,~,m, 1] and introduce a one-parameter family of affine mappings that cor-
responds to the domain decomposition:

g , : [-1,1] ~D, = [-1, S,~,,m] y ~z = gl(y,S,,~,~)

g2: [-1,1] ~ f~2 = [S,,~,m, 11 y ~ z = g2(y,S,..,..,)

and

Now the solution u of (1) restricted to one of these subdomains exhibits a Boundary Layer
(BL) in the neighborhood of Sn,m. Therefore we use a second family of mapping of BL
type:

fi : [-1,1]) [- 1 , 1] s) y = fi(s, a)

with

f i (s , a) = 4 - [4 t a n - l (a t a n (4 (+ s - 1))) + 1] ,i = 1,2

Here a is a small free parameter that determines the concentration of the collocation
points in the physical space, i = 1 and + (respt. i = 2 and -) corresponds to a boundary
layer at the right end of the interval (respt. the left end). Other mappings can also be
considered.

In singular perturbations, one uses stretching variables of the form: ~ = (z - S) /e ,
where S is the location of the layer and e is a measure of the stretching. It is easy to see
that the parameter a in the non-linear mappings]'1 and f2 plays a role similar to e in the
numerical method.

The unknown function u on the interval [-1,1] is approximated by a piecewise polyno-
mial PN,i, i = 1,2 with the condition of continuity of its first derivative at the interface.
In the numerical computation of the problem (1), we find the maximum of the function

26

F,(u(z, t)) and adapt S,,m in time, depending on the speed of propagation of the front.
We have observed in [5] that the best choice for the parameter a is asymptotically a ~ ~/7.
One can optimize the choice of the stretching parameter a by means of a priori estimate
as in [4], [5].

Let us consider a semi-implicit Euler scheme for the time marching:

U n + 1 _ U n

At
= D2u "+1 + F~(u"), x E fli, i = 1, 2, (2)

where At is a constant time step, and D is the operator of differentiation. We take the
second order derivative term implicitly because it gives the main constraint on the time
step. Since the nonlinear term is taken explicitly, u n+l can be found as a solution of the
linear system

Du "+' = u" + At F~(u"). (3)

with a matrix b invariant in time. Because of the domain decomposition b has the
following block structure:

D = &t 7
& A2

where

�9 7 is a real number,

�9 A1 and A2 are (N - 1) x (N - 1) matrices.

�9 &, ~, at, ~t are vectors with (N - 1)components.

The row (&t, 7, ~t) appears from the condition of continuity of the first derivative at
the interface. The linear system (4) can eventually be solved with two parallel processes.
The domain decomposition with two subdomains that we have presented here can be
generalized to more subdomains to solve multiple front structures [5]. This domain de-
composition is a first level of rough paral le l ism that is a priori not scalable because
of its dependence only on the numbers of the layers.

To move toward a second level of paral le l ism that is using a fine grid level, we
consider now the generalization of our previous example (1) to the case of two space
dimensions"

Ou 02u 02u
0--[= Oz 2 + ~ + F~(u), u (- 1 , x) = 0, u (1 , x) = 1, z E (-1 ,1) , x E (0,2r) (4)

with some appropriate initial condition and the condition of periodicity of the function
u(z , x) in x. We assume now that the TL of the problem (5) depends on x weakly. This
hypothesis simplifies significantly the technique of the domain decomposition method since
we can consider strip subdomains. However orthogonal mapping techniques in two space
dimensions [11] might be used to solve the problems when the front is smooth but not close
to a straight line. In the x-direction, we use a central finite-difference scheme of order 6 for

27

02 D~ the discrete approximation of g~-, on a regular grid with a step h = 2~ In theory, ' Nz-l"
for regular problems where e = Os(1), the numerical accuracy of our method should be
limited to the sixth order by the finite-difference approximation in the x- direction. Since
the front is assumed to be stiff in the z-direction but not stiff in the x-direction, we

02 can keep the numerical error of the finite-difference approximation of ~ smaller than
02 the numerical error of the approximation of ~ with the pseudospectral approximation

02 [5], [3]. Therefore it is not necessary to use a better approximation of ~ such as for
example the Fourier approximation. The finite difference approximation of order 6 of

~ is treated explicitly. We observe that the spectral radius of D~, the discrete the term
02 approximation of ~--~2, is asymptotically smaller with the sixth order finite differences than

with the Fourier approximation. So in our computations the time step constraint due to
the explicit treatment of the second order derivative is of the same order as the time step
restriction due to the explicit treatment of the source terms, and of the same order as the
accuracy requirement connected with the physics of the process. The numerical algorithm
can exploit the fine grid parallelism due to the explicit dependence on x because the
computation of D~u" is fulfilled with an explicit formula which includes only local values
of the function u". It is different for the "global" pseudospectral polynomial explicit
approximation in the x-direction which is less appropriate for the parallel computing
and/or for the use of the cash memory on the RISC architecture. Finally, we observe that
the splitting of the operator in (5) replicate the procedure of the asymptotic expansion
in the shock layer of an analytical study, since the dependence on y occurs as a second
order expansion term. Generally speaking it is possible to derive new parallel algorithm
that exploit systematically this asymptotic feature [14].

However for steady problems analogous to (5), i.e:

~2~ ~2~
u(-1 ,x) = 0, u (1 ,x)= 1, z e (-1,1) , x e (0,2r) (5)

one should use a different approach that is implicit with respect to both space variables.
We look for O as a discrete Fourier expansion:

O(Z, X) -- ~k=-lqz2 , -~ -16k(Z) e ikx.

The functions Ok can be found from the system of k independent ordinary differential
equations:

02 -Nx Nx 1.
O z 2 6 k - k 26k = Fk, k = 2 ' 2

These equations are then solved with the one dimensional same domain decomposition
method than described above. This algorithm has been applied to the stream function
equation in model B and can be extended in a straightforward way to implicit the scheme
for the two dimensional diffusion term in the unsteady equations for the other unknowns.

However the cost of this implicit algorithm is no longer linear with respect to Nx,
due to the Fourier transform. Also the matrices must be transpose and the parallel
implementation of the scheme should carefully overlap communication by computation
using some appropriate partitioning of the datas.

28

A th i rd level of parallel ism is obtained for combustion problems that are modelized
by system of PDE's. As a matter of example, let us consider model A. The combustion
model follows the sequential reaction mechanism:

A ~ ~uB -~ C,

where ~u is the stoichiometric coefficient for the first reaction. Reactant A is converted to
an intermediate species B prior to being burned and converted to the final product C.

This highly simplified model have been used with considerable success in modeling
the combustion of hydrocarbons [23]. Here, we consider the case of a cylindrical flame
stabilized by a line source of fuel. The problem involves three variables-- T, a scaled
temperature, C1, the concentration of reactant A, and C2, the concentration of the inter-
mediate species B, all functions of the polar coordinates r and r and corresponds to
a thermodiffusive model for a two-step Arrhenius reaction [1]. The equations satisfied by
T, C1 and C2 are,

OT K OT
0-~ = A T r Or F (DalC1RI(T) + (1 - ()Da2C2R2(T) (6)

OC1 = - - 1 A C ~ g OC~ DalC~RI(T), (7)
Or L1 r Or

0C2 1 AC2 K 0C2
Or = L--~ r Or ~" Da, C~RI(T) - Da2C2R2(T) (8)

where R1 and R2 are the nonlinear source terms:

f l ~ (T - To) R2(T) = exp fl~(T- 1)
R, (T) = exp 1 + ~/~(T- To))' 1 + "Is(T- 1))'

A is the Laplacian in polar coordinate. The parameters are L1 and L2, the Lewis
numbers; Dal and Da2, the Daemker numbers; ([the heat release of the first reaction; and
K, a measure for the strength of the fuel injection; To E [0,1] is a (scaled) temperature
close to the temperature at which the first reaction occurs. /~i is proportional to the
activation energy Ei of each chemical reaction. The coefficients "yi are function of the
temperature of the unburned fresh mixture, the final adiabatic burned temperature and
To. The activation energy of each chemical reaction is large and consequently fli; i = 1, 2
as well as one of the Daemker number at least are large. The derivation of this model but
for cartesian geometry has been done for example in [18] [1].

We observe that these three equations are weakly coupled in space because coupled
through the Arrhenius source terms

DaiCiRi(T), i = 1, 2

that are exponentially small except in the combustion layers;so the th i rd level of paral-
lelism is to split the three equations into three parallel subsets of computation matched
to three subsets of nodes. In addition, we can improve the parallel efficiency of the scheme
by restricting us to the communications of the only non exponentially small values of the
Arrhenius source terms.

Details of the analysis, numerical validation, and simulation results can be found in
[15]; we will describe shortly in the next section the performance of our method.

29

3. Paral le l i m p l e m e n t a t i o n results

3.1. R e s u l t on thermo-d i f fus ive m o d e l

T h r e e d i f fe rent l eve ls of p a r a l l e l i s m
2 0 0

1 8 0

1 6 0

1 4 0

1 2 0

~ 1 0 0 - '"
8 0 - . . " " "

6 0 - . .""

4 0 - . . . ' " "

2 0 - . - ' ""

O0 20 40 60 80 100 120
p r o c e s s o r n u m b e r

! |

.~ ..'"'"" ~

I I I
1 4 0 1 6 0 1 8 0 200

Figure 1.

Figure 1 shows, for the first Model A the effect on efficiency of the three following levels
of parallelism:

�9 (a) splitting in the space variables, adapted to the frontal structure of our problems.

�9 (b) domain decomposition to solve a Transition Layer (TL) with the pseudospectral
method.

�9 (e) splitting of the equations that are weakly coupled by the Arrhenius terms outside
the TL.

For the first model with two space dimensional and a discretization with about 30.103
degrees of freedom, we obtain an efficiency of 87 per cent with 32 nodes using (a); using
(a) and (c) we can run our code with 96 nodes and reach an efficiency of 70 per cent; using
(a), (b) and (c), we can use up to 192 nodes and reach an efficiency of at least 60 per
cent: for this last case, our code is running 145 times faster than the original optimized
sequential code on a HP720 workstation and 15 times faster than a fully vectorized code
running on a CRAY YMP that provides the same level of accuracy.

30

3.2. Resu l t on the reaction process of frontal polymerizat ion
We present here the result of strategy (a) and (b) applied to Model B. Let Nx be the

number of points in the x direction where finite differences are used, nd the number of
subdomain in the z direction where spectral discretization is performed, and N be the
number of Tchebycheff point in each subdomain. In the different runs of Table 1, each
processor processes one of the nd subdomains, except when only one processor is used.
In this last case it performs the computation of the nd subdomains without any commu-
nications to itself. Table 1 shows an efficiency about 90os for the frontal polymerization

nb of proc
N.
32
64
128
256

1 2 4 8 16 32 64

100% 95.9 % 91.6 % 83.7 % - - -
100% 97.0% 96.5% 92.7% 84.05 % - -
100% 97.9% 96.7% 94.6 % 92.1% 82.7 % -
100% 98.4% 98.3% 96.5 % 93.4% 82.2% 72.6 %

Table 1
Parallel Efficiency, nd = 2, N = 59

code. This efficiency seems to scale i.e when we double the number of Nx points and the
number of processors, the efficiency stays relatively constant. This result seems to be not
satisfied by the last result in the row Nx=256: however we have carefully checked that
the memory swap explains this bad result.

We note that for a fixed number of processor the efficiency increases when Nx grows. So
the non blocking messages strategy work well because a large part of the communication
time comes from the start-up of the non blocking send which is costly than blocking send.

4. Conclusion

We have been able to use MIMD architecture with high efficiency and/or large number
of nodes to compute non linear propagating phenomena such as combustion front. In our
tow dimensional computation the size of the discretization problems were dictated by the
accuracy requirement as well as the illconditionned nature of the operators: however we
were able to use up to 192 nodes on a Paragon system for such small problems and reduce
the computing time dramatically. Our technique relies on combining complementary
levels of parallelism such as domain decomposition or operator splitting according to
the asymptotic property of the mathematical models. We would like further to mention
that our numerical simulations have been compared with great success against the linear
and/or weakly non linear stability analysis for our two model problems.

R E F E R E N C E S

J. Pelaez, Stability of Premixed Flames with two Thin Reactions Layers, SIAM J.
Appl. Math. 4 7 , pp. 781-799 (1987).

31

~

.

10.

11.
12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

I. P. Nagy, L. Sike and J.A. Pojman, Thermochromic Composite Prepared via a Prop-
agating Polymerization Front, J. of the American, Chemical Society, (1995),117.
A. Bayliss, M. Garbey and B.J. Matkowsky, An adaptive Pseudo-Spectral Domain
Decomposition Method for Combustion problem, J. Comput. Phys. (to appear)
A. Bayliss, D. Gottlieb, B.J. Matkowsky, and M. Minkoff, An adaptive Pseudo-Spectral
Method for Reaction Diffusion Problems, J. Comput. Phys. 81, pp 421-443 (1989)
M.Garbey, Domain Decomposition to solve Transition Layers and Asymptotic, SIAM
J. Sci.Comput. Vol15 No4, pp866-891, 1994.
S. B. Margolis, H.G. Kaper, G.K. Leaf, and B.J. Matkowsky, Bifurcation of pulsating
and spinning reaction fronts in condensed two-phase combustion, Comb. Sci. and Tech.
43(1985) , pp. 127-165.
M. Garbey, A. Taik, and V. Volpert, Influence of natural convection on stability of
reaction fronts in liquid Quart. Appl. Math (to appear).
M. Garbey, A. Taik, and V. Volpert, Linear stability analysis of reaction fronts in
liquid Quart. Appl. Math (to appear).
M. Garbey and V. Volpert, Asymptotic and Numerical Computation of Polymerization
Fronts submitted to J. Comp. Phys.
A.P. Aldushin and S.G. Kasparyan, Doklady Akademi{ Nauk SSSR (5) 244, 67-70
(1979) (in Russian).
R. Duraiswami and A. Prosperetti, J. Comput. Phys. 98, 254-268 (1992).
U.Ehrenstein, H.Guillard, and R. Peyret, International Journal for Numerical Meth-
ods in Fluids, 9, 499-515 (1989).
M. Garbey, H.G. Kaper, G.K. Leaf, and B.J. Matkowsky, Using Maple for the Analysis
of Bifurcation Phenomena in Condensed Phase Surface Combustion J. of Symbolic
Comp. 12, 89-113 (1991).
M. Garbey, H.G. Kaper, Heterogeneous Domain Decomposition for Singularly Per-
turbed Elliptic Boundary Value Problems, preprint Argonne Nat. Lab. submitted to
SIAM. J. Num. Analysis.
M. Garbey, D. Tromeur-Dervout, Parallel Computation of Frontal Polymerization to
be submitted to JCP
S.B. Margolis and B.J. Matkowsky, Steady and Pulsating Modes of Sequential Flame
Propagation Comb. Sci. Tech., 27, 193-213, (1982)
B.V. Novozhilov, Proc. Academy Sci. USSR, Phys. Chem. Sect. 141,836-838 (1961).
J.Pelaez, A Linan,Structure and Stability of Flames with two sequential reactions,
SIAM J. Appli. Math 45 (4) 1985.
F.X Roux and D. Tromeur-Dervout, Parallelization of a multigrid solver via a domain
decomposition method, Proceeding of the 7 th conference on Domain Decomposition
Methods, Contemporary Mathematics Volume 180, p. 439-444, 1994
K.G. Shkadinskii, B.I. Haikin, and A.G. Merzhanov, Combustion, Explosion, and
Shock Waves, 7, 15-22, (1971) .
V.A. Volpert, V.A. Volpert, S.P. Davtyan, I.N. Megrabova, and N.F. Surkov, SIAM
J. Appl. Math., 52, No. 2, pp. 368-383 (1992).
Ya.B. Zeldovich and D.A. Frank-Kamenetsky, Zh. Fiz. Khim., 12, 100 (1938) (in
Russian).
C.K. Westbrook and F.L. Dryer, Comb. Sci. Tech., 27, 31-43, (1981).

This Page Intentionally Left Blank

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

33

M o d e l l i n g t h e G l o b a l O c e a n C i r c u l a t i o n o n t h e T 3 D

C. S. Gwilliam*

Southampton Oceanography Centre, Empress Dock, Southampton,
SO14 3ZH, U.K.

A b s t r a c t

The Ocean Circulation and Climate Advanced Modelling Project is developing a
global ocean model suitable for climate studies, especially the investigation of global
ocean characteristics. The model will also act as a test bed for improved schemes
which model ocean physics. The large memory and time requirements for such a
study has led to the use of array processors. In this paper an outline of the model
and the parallel code is given, along with some initial results. A fuller description
of the model can be found in ([7],[13]).

I n t r o d u c t i o n

The OCCAM model is an array processor version of the GFDL Modular Ocean Model ([10],
[12]). It is based on the Bryan-Cox-Semtner ocean general circulation model ([1],[3],[11])
which uses the t ime-dependent equations:

0u 0u 1
0-7 + (u . V) u + W-~z + f x u =

OS
0-5- + (u.V)s + w - -

OT
0-7 + (u.V)T + w - -

V.u + Oz

- - - V p + D~ + F~, (la)
P0

0S
- D s + F s , (lb)

Oz
OT

-- DT + FT, (lc)
Oz

p - p (T , S , p) , (ld)

Op
Pg = Oz' (le)

Ow
= 0. (~f)

Equat ions (l a) - (l c) describe the horizontal momen tum, t empera tu re and salinity changes,
equations (l d) - (l f) describe the density, pressure gradient and incompressibility. The
variables are u, the horizontal velocity; w, the vertical velocity; S, the salinity; and T,

*Supported by a Cray Research Fellowship

34

the potential temperature. The pressure variable is p, the density is p. The Coriolis term,
f, is

f = 2f~sin(0),

where f~ is the earth's rotation rate and 0 is the latitude. D represents diffusion and F
the forcing terms.

The world is mapped on to a 3-D longitude-latitude-depth (i,j, k) grid. Equations (1)
are discretised for this grid using a central finite difference scheme and are stepped forward
in time with an explicit, leapfrog method. Unfortunately, there are very fast surface
gravity waves in the ocean that restrict the timestep and increase the computational cost.
To overcome this, the surface gravity wave part of the solution (the barotropic mode) is
treated separately from the rest of the solution (the baroclinic mode), allowing a longer
timestep to be used for the latter. A free surface scheme, in which the resulting tidal
equations are timestepped explicitly, is used for the barotropic mode. Many timesteps
are used to step the surface gravity wave field for each timestep of the baroclinic part of
the model.

Ocean models need to represent the main ocean features (e.g. the Gulf Stream,
eddies) which are O(10km). However, ocean basins are O(1000km) and, therefore, a
large number of grid points is needed. The requirement for a fine grid resolution means
that the baroclinic timestep must be reduced if numerical stability is to be retained. In
practice, the baroclinic timestep is less than an hour for resolutions finer than 1 ~

The ocean circulation changes and develops over many years and the model has to
be run for a very large number of time steps. To run a high resolution, global model, a
fast computer with a large amount of memory is required. In the past, vector processors
went some way to meeting these requirements and the new array processors appear to
meet them.

In Section 2 issues involved in the parallel model are described. The initial three year
spin up is described in Section 3, including a description of some problems arising during
the run, and future work is described in Section 4.

M a i n F e a t u r e s o f t h e M o d e l

The OCCAM code is a global circulation model. To avoid problems with the convergence
of the longitude-latitude grid at the North Pole a two-grid method ([4],[5],[2])is used.
One grid covers the North Atlantic from the Equator to the Bering Straits. It is rotated
through 90 ~ so that the model's north pole is over land, and it meets the second grid,
which covers the rest of the world, orthogonally at the Equator. The calculation of the
grids for a given resolution is done once off-line, so the only complications to the code
are the need to communicate differently where the grids meet (section 2.2) and the use
there of altered finite difference coefficients.

The main timestep calculation is carried out in subroutine step. The sequential form
of this routine is shown in Figure l(a). The i and j loops are over longitude and latitude.
The baroclinic call is over the column of points associated with each (i, j) point and the
barotropic call is just for the surface point.

35

do baroclinic time step

do j loop

do i loop

call baroclinic(i,j) (over depth)

end i j loops

do barotropic time step

do j loop

do i loop

call barotropic(i,j) (surface)
end i j loops

end barotropic time step

end baroclinic time step

a) Sequential

do baroclinic time step

do 1= 1, no. of points held

find i and j

call baroclinic(i,j) (over depth)

end 1 loop

Exchange halo information for all levels

do barotropic time step

do m= 1, no. of points held

find i and j

call barotropic(i,j) (surface)
end m loop

Exchange halo information at surface

end barotropic time step

end baroclinic time step

b) Parallel

Figure 1: Structure of the main timestepping routine (step) in the sequential and parallel
codes

2 .1 G r i d P a r t i t i o n i n g

Each processor is assigned a compact region of the ocean surface of either grid 1 or
grid 2. As land regions have no calculations associated to them, only sea points are
considered. For an efficient code, the total amount of work to be done needs to be
assigned as evenly as possible between the processors. To allow this, the OCCAM code
is written for irregular shaped processor regions. However, for fine resolution models,
memory requirements restrict the maximum dimensions of the processor regions, at the
expense of load balancing. The partitioning is done off-line and a processor map is read
in at start-up.

The parallel version of subroutine step is shown in Figure l(b). Each processor makes
a list of the sea points it holds and loops over these for the baroclinic and barotropic
calculations.

2 . 2 C o m m u n i c a t i o n s t r u c t u r e

The finite difference discretisation in the horizontal direction uses a nine point stencil.
Each processor has a domain consisting of a core region surrounded by a ring of 'inner
halo' points, which in turn is surrounded by a layer of 'outer halo' points. The outer ha.lo

36

points are points which lie in another processors calculation domain and the inner halo
points are those required by other processors. The processor calculates information for
the core region and the inner halo points, using the information stored in the outer halo
if necessary. At the end of a t ime step, the updated inner halo points are sent out to the
processors which need them and the new values for the outer halo are received. The finite
difference stencil may straddle the boundary between the two grids. Points which are
exchanged across the two grids are sent in a separate message at communication time.

The communication routines have been written to allow different message passing
libraries to be used and to alter the main code as little as possible. When information
needs to be exchanged, a call is made to a send or a receive subroutine. An integer,
called the message tag, is passed down and this dictates the contents of the message
(e.g. surface variables). The basic structure of each message is the same. Send messages
initialise a send, put /pack the data in a buffer and send the buffer; receive messages pick
up the buffer and unpack the data in the buffer. Each of these stages calls a subroutine
which can be altered according to the communications library.

The OCCAM model is being run on a Cray T3D with the SHMEM message passing
library. The shmem_put command takes data from one processing element (PE) and
places it in the memory of another one but it does not check that the variable is not
being used by the receiver. This may lead to cache incoherence. To avoid this, a system
of buffers and locks is used around the SHMEM calls.

For the initialisation stage of sending a message, the sender invalidates its cache and
searches through the buffer lock array for an empty buffer, repeating this until it is
successful. The buffer is filled with the relevant data and a buffer lock for that buffer is
set. Using an atomic swap, the sender gains control of the receiver's queue lock. Once
successful, no other P E can gain control of the queue array or the queue length. The
sender checks the length of the queue array, aborting if the queue is full as an error will
have occurred. The sender's processor number, the buffer number, the message length
and the message tag are placed in the queue array using shmem_put and the queue length
is incremented. An atomic swap is used to release the queue lock, marking the end of
the sender's responsibility.

When receiving a message, the receiver invalidates its cache and gains control of its
own queue lock by using an atomic swap. The P E sweeps through the queue until it finds
a message tag which agrees with the one it is looking for. Using the processor and buffer
numbers held in the queue array, the receiver uses shmem_get to pick up the data from
the sending PE. It then reduces the length of the queue by 1, resets the sender's buffer
lock for the buffer it has picked up and releases its own queue lock, using an atomic swap.
The buffer is then unpacked into the appropriate variables.

Currently the message passing is synchronous in that all halo information is sent and
then received. An asynchronous implementation is being introduced where the messages
are sent and then the processors continue calculating the core region for the next t ime
step. When they reach the calculation for the inner halo points the messages are received.

37

2.3 I/O

Each run of an ocean model produces large quantities of data, which are used to monitor
the development of the world's oceans, to analyze the ocean's behaviour and to restart the
model at a later date. Similarly, at the beginning of a model run, a large amount of data
is needed to start the model correctly. To simplify the handling of the data, one processor
has been set aside to do all the external I/O. At the beginning of each run, this processor
reads in values for restarting the model, the processor map, the topography (depths) map,
and forcing data. Later in the run it also controls and handles the writing out of model
results and the calculation of diagnostics. When a processor reaches an archive t imestep
it buffers the solution it holds before continuing with the main calculation. The I /O
processor takes a slab of latitude lines and, by asking for data from the other processors,
gradually fills up the slab. It then outputs the slab before moving on to the next one.
In this way, the archive file is contiguous and can easily be used for analysis and for
restarting the model, even if a different processor map is being used.

3 I n i t i a l R u n

1 o and with 36 depth levels on a 256 The model was run for three years at a resolution of
PE Cray T3D. A 15 minute timestep was used for the baroclinic calculation and an 18
second one for the barotropic mode. The ocean temperature and salinity were relaxed to
the annual Levitus data set on an annual timescale at depth and to the monthly Levitus
data sets on a monthly timescale at the surface. The ocean surface was also forced using
monthly ECMWF wind stresses. For these three years the Bering Straits were closed and
the Pacanowski and Philander vertical mixing scheme [9] was used from day 480.

During the initial three years various problems have occurred with the numerical
aspects of the code. After a few days, what seemed to be standing waves, which were
increasing in size, appeared off the Pacific coast of America. These were actually surface
gravity waves which were moving their own wavelength every baroclinic timestep. To
overcome these, a t ime averaged scheme is used for the free surface calculation. For each
baroclinic timestep, the free surface is stepped forward the equivalent of 2 baroclinic
t imesteps and the average of the free surface height and surface velocity fields are used
as the solution.

Another problem was chequerboarding in areas where the barotropic flow was chang-
ing rapidly. This was overcome by adding a diffusion term to the free surface height.
Laplacian operators with stencils of the form [0x0] [x0x

X X X - 0 X 0

0 X 0 X 0 X

were used, where X denotes a contribution from a point and 0 denotes no contribution.
These stencils were altered near land masses. This addition filters out small waves and
two grid-point noise. To reduce computational cost it is carried out on the first free
surface t imestep of each baroclinic one.

38

24-

22 -

20 -

18-

16-

14-

.~ 12-

z 1 0 _

6 -

4 -

2 -

0

0

.[. J'
~ - . , r ~ ' . . r r - -

"'l L J,'--LJ"

i , l I I i i , , I i i J i I ' i , l I i i , , I i i , i I i i i i I

500 1000 1500 2000 2500 3000 3500
Timestep no.

Figure 2: Number of seconds spent in each call to subroutine step for a 256 processor
run.

The time taken in subroutine step for each processor of a 256 P E run is shown in
Figure 2. For most timesteps, the time taken is 6 seconds. Every day (i.e. every 96
timesteps) a Matsuno timestep is used instead of a leapfrog to ensure stability. This
requires two sweeps of subroutine step and accounts for the smaller peaks. Every 2 days
a snapshot is taken of some of the data. Variables from two depth levels are output to
a data file. Every 15 days a full restart data set is output. During these times the I/O
processor is busy retrieving the data from the other processors. As all processors barrier
at the top of the baroclinic timestep loop, time is spent waiting if I/O is being done
(although the I/O processor does return to the top of the loop at regular intervals). The
result is that while a data set is being written the time in step increases. The large peak
of 24 seconds is partly because of the I/O problem and partly the time taken by the
calculating processors to buffer the archive solution.

39

4 F u t u r e Work

The model will continue to be spun up for a further three years but with the Bering
Straits open and with a fresh water flux to simulate the change in surface height due to
precipitation and evaporation. After the end of the fourth model year the depth relaxation
to Levitus will be removed and the surface relaxation will be weakened. ECMWF heat
fluxes will be used as well as the wind fields for the surface forcing. After six years the
model will be run without relaxation to Levitus. Instead, improved full surface forcing
with global wind, precipitation, evaporation and heat fluxes will be used. These fluxes
are being developed by a team at the James Rennell Centre, under Dr. P. Taylor.

The advection scheme used in the model is known to cause under and overshooting
of the tracer (salinity and temperature) values where large gradients in tracers and/or
velocities occur. This has led to sea surface temperatures of-5~ at the front between
cold and warm water masses. Although these disappeared, improvements in the advec-
tion scheme need to be made for correct representation of such fronts. The QUICK
scheme ([6],[8]), a second order upwind m e t h o d , for the advection terms in the tracer
equations will be implemented from the end of year four of the model run. The scheme
requires extra halo rows (one inner and one outer) to be added. The communication for
this is currently being tested.

To date very little optimisation work has been carried out. When the QUICK scheme
has been implemented, investigation of various known problem areas will be undertaken.
The current development of the asynchronous message passing will remove some of the
contribution to the large peaks in Figure 2. Inlining of the subroutine calls in the send
and receive message routines will help reduce the time spent in message passing. Most
of the time in the code is spent in the free surface subroutine. This is a small piece of
code and it is therefore an ideal candidate for optimisation. The T3D has a small cache
and cache misses lead to a lack of efficiency. For the current case, with only 1 halo row,
investigation has shown that this is not a problem. For the 2 halo case, however, cache
misses will become important.

Other improvements include the use of variable bottom topography from the end of
year four. This will improve the representation of sills, continental shelves and very deep
ocean basins. The extension of QUICK to the momentum equations will be investigated
and a sea ice model will be added. When these improvements have been made it is hoped

1 ~ that the resolution will be increased to ~ .

5 A c k n o w l e d g e m e n t s

The work represented here has been carried out by the OCCAM core team, consisting
of D. J. Webb, B. A. de Cuevas, A. C. Coward and C. S. Gwilliam, in conjunction with
M. E. O'Neill and R. J. Carruthers of Cray Research, U.K.

40

R e f e r e n c e s

[1] K. Bryan. A Numerical Method for the Study of the Circulation of the World Ocean.
J. Comp. Phys., 4:347-376, 1969.

[2] A. Coward, P. Killworth and J. Blundell. Tests of a Two-Grid World Ocean Model.
J. Geophys. Res., 99:22725-22735, 1994.

[3] M. D. Cox. A Primitive Equation, 3-Dimensional Model of the Ocean. Technical
Report 1, GFDL Ocean Group, GFDL/NOAA, Princeton University, Princeton, N.J.
08542, U.S.A., 1984.

[4] E. Deleersnijder, J.-P. Van Ypersele and J.-M. Campin. An Orthogonal, Curvilin-
ear Coordinate System for a World Ocean Model. Ocean Modelling, 100, 1993.
Unpublished ms.

[5] M. Eby and G. Holloway. Grid Transform for Incorporating the Arctic in a Global
Ocean Model. Climate Dynamics, 10:241-247, 1994.

[6] D. Farrow and D. Stevens. A New Tracer A dvection Scheme for Bryan and Cox
Type Ocean General Circulation Models. J. P. O., 25:1731-1741, July 1995.

[7] C. S. Gwilliam. The OCCAM Global Ocean Model. Coming of Age (The Proceedings
of the Sixth ECMWF Workshop on the use of Parallel Processors in Meteorology).
Editors Geerd-R Hoffman and Norbert Kreitz, World Scientific, 1995.

[8] B. P. Leonard. A Stable and Accurate Convective Modelling Procedure Based on
Quadratic Upstream Interpolation. Computer Methods in Applied Mechanics and
Engineering, 19:59-98, 1979.

[9] R. C. Pacanowski and S. G. H. Philander. Parameterization of Vertical Mixing in
Numerical Models of Tropical Oceans. J. P. 0., 11:1443-1451, 1981.

[10] R. C. Pacanowski, K. Dixon and A. Rosati. The GFDL Modular Ocean Model Users
Guide. Technical Report No. 2, GFDL Ocean Group, 1990.

[11] A. J. Semtner. An Oceanic General Circulation Model with Bottom Topography.
Technical Report No. 9, Dept. of Meteorology, UCLA, 1974.

[12] D. J. Webb. An Ocean Model Code for Array Processor Computers. Technical Report
No. 324, Institute of Oceanographic Sciences, Deacon Laboratory, 1993.

[13] D. J. Webb. A Multi-Processor Ocean General Circulation Model using Message
Passing. Published by Southampton Oceanography Centre, 1995.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

41

C o n c u r r e n t D i s t r i b u t e d V i s u a l i z a t i o n a n d S o l u t i o n S t e e r i n g

Robert Haimes
Principal Research Engineer, Department of Aeronautics and Astronautics
Massachusetts Institute of Technology, Cambridge, MA 02139
haimes@orville.mit.edu

1. I n t r o d u c t i o n

To view the results of a Computational Fluid Dynamics (CFD) solver, as the solution
progresses, has many benefits. If this window to the solution is through a visualization sys-
tern designed for CFD class problems, then that allows debugging of steady-state solvers
at a macro scale. Solution quality assessment and run-time intervention are possible if
the current results are easily accessible. Also, co-processing visualization of the results of
transient applications relieves many resource limitations posed by these cases. Solution
steering is, of course, possible if one can watch the results of an unsteady simulation as
they progress.

Though it has always been a dream of many CFD researchers, almost no 3D transient
codes allow solution steering. This is because the following difficult issues:

Computational arena. 3D transient CFD codes require super-computer class hardware
(which includes parallel machines) in order to get results in a timely manner. Any steering
scheme that cannot be run with these machines will not be used. Suggested steering
techniques (such as Burnett et. al. [1]) that require recasting the solver in new language
assume that the resources required to generate the data are small.

Tool-kit. Mating the visualization to the solver must be simple but general. The
visualization tool-kit should be a complete CFD viewer. Vaziri and Kremenetsky [2]
discuss using CM/AVS on a TMC CM-5 for watching the results from a 3D simulation.
Steering is possible by the use of constructed widgets within the AVS interface. This
work, though innovative, cannot be generally applied. The technique requires a CM-5
and the entire scheme suffers from the data handling inefficiencies associated with AVS.

Coupling. The steering scheme must be able to fit in, or adapt, to the solver. Usually
a great deal of effort goes towards making the solver run efficiently. The visualization of
the results must be subservient to the solution scheme and easily coupled.

When discussing transient applications within this paper, the following classification is
used:

Data Unsteady: In this type of application the grid structure and position are fixed in
time. The data defined at the nodes (both scalar and vector) changes with each time
step. An example is when a boundary condition in the domain is changing.

Grid Unsteady: These cases are 'Data Unsteady' plus the grid coordinates associated

42

with each node are also allowed to move with each snapshot. An example of this is
stator/rotor interaction in turbomachinery. The stator and rotor grids are separate, with
the rotor grid sliding past the stator grid. In this case the stator portion is actually 'Data
Unsteady' and the rotor grid moves radially.

Structure Unsteady: If the number of nodes, number of cells or cell connectivity changes
from iteration to iteration the case is 'Structure Unsteady'. An example of this mode is
store separation.

2. Traditional Computational Analysis

Before discussing a complex system built on concurrent visualization, it is important
to view how traditional analysis using CFD is performed. The computational steps tra-
ditionally taken for analysis (or when CFD is used in design) are:

Grid Generation. The surfaces of the object(s) to be analyzed (usually derived from
a CAD system) specify part of the domain of interest. Usually for the analysis of
external aerodynamics, the airplane is surrounded by other surfaces that extend
many body lengths away from the craft. This enclosed volume is then discretized
(subdivided) in one of three ways. Unstructured meshes are built by having the
subdivisions composed of tetrahedral elements. Another technique breaks up the
domain into sub-domains that are hexahedral. These sub-domains are further re-
fined so that individual cells in the block can be indexed via an integer triad. The
structured block schemes may have the sub-domains abut or overlap. Finally, some
systems use meshes that are not body fit. In this class of grid generation, the sur-
faces of the object intersect a hierarchical (embedded) Cartesian mesh. For all of
these methods, the number of nodes produced for complex geometries can be on the
order of millions.

Flow Solver. The flow solver takes as input the grid generated by the first step.
Because of the different styles of gridding, the solver is usually written with ability to
use only one of the volume discretization methods. In fact there are no standard file
types, so most solvers are written in close cooperation with the grid generator. The
flow solver usually solves either the Euler or Navier-Stokes in an iterative manner,
storing the results either at the nodes in the mesh or at the element centers. The
output of the solver is usually a file that contains the solution. Again there are no
file standards. PLOT3D [3] files can be used by grid generators and solvers that use
structured blocks and store the solution at the nodes. In practice, this file type is
not used by the solver writer because it contains no information on what to do at
the block interfaces (the boundary conditions to be applied). Therefore, even this
subclass of solvers writes the solution to disk in a manner that only the solver can
use (to restart) and this file is converted to a PLOT3D file for the next step.

�9 Post-processing Visualization. After the solution procedure is complete, the output
from the grid generator and flow solver is displayed and examined graphically by this
step in this process. Usually workstation class equipment with 3D graphics adapters
are used to quickly render the output from data extraction techniques. The tools

43

(such as iso-surfacing, geometric cuts and streamlines) allow the examination of the
volumetric data produced by the solver. Even for steady-state solutions, much time
is usually required to scan, poke and probe the data in order to understand the
structure of the flow field. In general, most visualization packages read and display
PLOT3D data files as well as a limited suite of output from specific packages. There
are some systems that can deal naturally with unstructured meshes and few that
can handle hybrid structured/unstructured solutions. No general package can, at
this point, deal with the output from Cartesian systems.

This 3-step process has proceeded for years as individuals and teams have worked
on each component with the assumption that a steady-state problem is being tackled.
Therefore this process works (sometimes efficiently) for steady-state solutions. When
these steps are applied to a transient problem there are two crucial steps that easily
become overwhelmed. First, if the grid changes in time, the grid generation process can
take enormous amounts of human interaction.

Understanding the results is the second limitter to effectively using the traditional
CFD analysis steps for transient problems. What is usually done is the production of a
movie. This is accomplished by treating each saved snap-shot of the solution (on disk)
as a steady-state visualization task. Image (window) dumps are produced from the same
view (or a fly-by) with the same tools active. These images are played back a some later
time to give the viewer information on what is changing within the solution. This can
be a very efficient method for communicating what is going on in the changing flow field,
but is non-effective as a vehicle for understanding the flow physics. Rarely are we smart
enough to 'story board' our movie in a way that displays salient features without finding
them first.

3. P r o b l e m s w i t h P o s t - p r o c e s s i n g

If we follow the traditional computational analysis steps for CFD (assume the simple
case- 'Data Unsteady'), and we wish to construct an interactive visualization system, we
need to be aware of the following:

Disk space requirements. A single snap-shot must contain at least the values (primi-
tive variables) stored at the appropriate locations within the mesh. For most simple
3D Euler solvers that means 5 floating-point words. Navier-Stokes solutions with
turbulence models may contain 7 state-variables. The number can increase with
the modeling of multi-phase flows, chemistry and/or electo-magnetic systems. If we
examine a 5-equation system with 1 million nodes (the field variables stored at the
nodes) a single snap-shot will require 20 Megabytes. If 1000 time-steps are needed
for the simulation (and the grid is not moving), 20 Gigabytes are required to record
the entire simulation. This means that the workstation performing the visualization
of this simulation requires vast amounts of disk space. You do not want to access
this much data over a distributed file system!

�9 Disk speed vs. computational speeds. The time required to read the complete so-
lution of a saved time frame from disk is now longer than the compute time for a

44

set number of iterations from an explicit solver. Depending on the hardware and
solver an iteration of an implicit code may also take less time than reading the so-
lution from disk. If one examines the performance improvements in the last decade
or two, it is easy to see that depending on disk performance (vs. CPU improve-
ment) may be a bad 'bet' for enhancing interactivity. Workstation performance
continues to double every 18 months. The price per Megabyte of disk drives has
dropped at amazing rates, but the performance of commodity drives has gone from
about 1 Megabyte/sec in 1985 to about 5 Megabytes/sec in 1995. To augment disk
performance, techniques may be applied like disk striping, RAID technology, or
systems like Thinking Machine's DataVault, which depend on using multiple disks
and controllers functioning in parallel. But most workstations currently have SCSI
interfaces that limit data transfer rates to about 5 Megabytes/sec (SCSI II) per
chain. High performance workstations that have other methods may only be able
to move 20 Megabytes/sec through an I/O channel. Therefore, if you wish to post-
process on a normal workstation, it may take 4 seconds per iteration, just to read
the solution for the above example.

Cluster and Parallel Machine I/O problems. Disk access time is much worse within
current Massively Parallel Processors (MPPs) and cluster of workstations that are
acting in concert to solve a single problem. In this case we are not trying to read
the volume of data, but are running the solver to produce the data. I /O is the
bottleneck for an MPP with a front-end. The MPP probably has the ability to
compute in the GigaFLOP range but all the data has to be funneled to a single
machine and put on disk by that machine. Clusters of workstations usually depend
upon distributed file systems. In this case the disk access time is usually not the
bottleneck, but the network becomes the pacing hardware. An IBM SP2 is a prime
example of the difficulties of writing the solution out every iteration. The machine
has a high-speed interconnect, but the distributed file system does not use it. There
are other access points into each node. Most SP2s have an Ethernet port for every
node, some also have FDDI connections. These traditional network interfaces must
be used for the file system. The SP2 can also be used in the traditional front-
end paradigm if one of the nodes has a disk farm. In this model, the high-speed
interconnect can be used with explicit message passing to the I /O node that does
the writing. This obviously requires special code and knowledge of the underlying
hardware. In our above example, it would take about 20 seconds to write one time
frame (Ethernet hardware - distributed file system). If the machine is dedicated (no
other tasks running), then that wastes 20 seconds of cycles.

Numerics of particle traces. Most visualization tools can work on a single snap
shot of the data but some visualization tools for transient problems require dealing
with time. One such tool is the integration of particle paths through a changing
vector field. After a careful analysis (numerical stability and accuracy) of integration
schemes [4], it has been shown that there exist certain time-step limitations to insure
that the path calculated is correct. Even for higher order integration methods, the
limitation is on the order of the time step used for the CFD calculation. This is
because of a physical limit, the time-scale of the flow. What this means for the

45

visualization system is that in order to get accurate particle traces, the velocity
field must be examined close to every time step the solver takes.

Because of the disk space requirements and the time to write the solution to disk, the
authors of unsteady flow solvers perform some sort of sub-sampling. This sub-sampling
can either be spatial or temporal. Because the traditional approach is to deal with the data
as if it were many steady-state solutions, this sub-sampling I/O is almost always temporal.
The individual running the simulation determines the frequency to write the complete
solution based on the available disk space. In many cases, important transitions are
missed. Also since the solution is coarsely sampled in time, streaklines (unsteady particle
paths as discussed above) almost always produces erroneous results. The problem with
sub-sampling is that the time-step selected for the visualization is based on the available
disk space and not the physical problem.

With the huge storage equipment (and financial) burden on the compute facility it is no
wonder that only large national labs routinely visualize results from transient problems.
We must adopt another visualization architecture in order to overcome the limitations
produced by post-processing.

4. Co-process ing Vi sua l i za t ion

One solution to the problems described above is co-processing. Concurrent solving
with interactive visualization can relieve the compute arena of the disk space, speed
and sampling issues. It does require a complete re-thinking of the architecture of the
visualization system and poses the following issues:

Coupling to the solver. The solver must communicate with the visualization system.
This can be accomplished by one of three methods:

Disk files: In this approach the solver task communicates with the visualization
task by data written to disk. This method is rejected for the disk timing and
I/O arguments discussed above.

Shared memory: In this approach the solver and visualization system com-
municate via shared memory. This has the advantage that the solver and
visualization tasks are separate and the communication is fast. The disadvan-
tages are that the solver must be written with the shared memory interface,
and the data that is exposed must be done in a way that the visualization task
knows where and how to get individual data elements. Also, some method is
required to mark the data invalid as it is being updated.

Application Programming Interface (API): This method couples the visualiza-
tion task (or some portion of the visualization system) with the solver. This
coupling is done at the programming level. The advantages to this approach
are that all the data is shared (there is only one task), no special system level
requirements are needed, and it can be used with solvers written in different
languages. The challenge is to develop a software architecture that is general,
non-invasive and that allows the visualization system and solver to function
independently.

45

Additional resources. Whichever approach is selected, an additional burden is placed on
the computer resources. Now both the solver and at least a portion of the visualization
system are active on the computer. The visualization system should not place a large
encumbrance on either the memory requirements or need large numbers of CPU cycles.

Robustness. The visualization system is running concurrently with the solver. Either it
is part of the same task, or has access to crucial data. The visualization must be robust
and not interfere with the solver's functioning. A problem with the visualization portion
must not crash the solver.

Interactivity. It is important for interactivity that the resources required by a co-
processing visualization system be a minumum. The cost of CPU cycles and additional
memory are the barometer for the frame rate. To accomplish fast frame rates, it is neces-
sary to use the classification of transient problems already discussed. If the visualization
system is properly designed, this classification can be used to determine when the results
of a tool should be saved and when recalculation is necessary.

5. Co-p roces s ing w i t h pV3

The distributed visualization tool-kit, pV3 [5], has been developed for co-processing.
pV3 builds heavily from the technology developed for Visual3 [6]. This re-tooling was
necessary to support the visualization of transient problems without having to dump the
entire volume of data to disk every iteration. The design of pV3 allows the solver to run
on equipment different than the graphics workstation.

pV3 segregates the visualization system into two parts. The first part is the task
that actually displays the visualization results onto the graphics workstation, the server.
The second portion is a library of routines that allows the solver (solver portions or
solvers) to communicate with the visualization server by providing windows to the data
at critical times during the simulation. This client library separates all visualization based
calculations from the flow solver, so that the solver programmer only needs to feed pV3
the current simulation data.

pV3 has been designed to minimize network traffic. The client-side library extracts
lower dimensional data required by the requested visualization tool from the volume of
data in-place. This distilled data is transferred to the graphics workstation. To further
reduce the communication burden posed by the visualization session, the transient prob-
lem classification described above is used. Only the extracted data that has changed from
the last iteration is sent over the network.

An added benefit of this architecture is that most of the visualization compute load is
run in parallel for a cluster environment or an MPP. This is because most visualization
tools are based on operations performed on individual cells within a partition. This means
that these tools are embarrassingly parallel. If the partitions are balanced on the basis
of cells, then the result of the visualization computation is also executed in parallel with
some balance. Therefore much better performance for the visualization is achieved.

Each client may be assigned a different class of unsteadiness. This tells the system if
data needs to be recalculated and re-transmitted. For example, if a sub-domain is 'Data
Unsteady' and a geometric cut is desired (such as a planar cut), only the field data at the
nodes (scalar and/or vector) n.eed to be re-transmitted to the server every iteration. The

47

]Initialize solver 1
I.

I Calcluate Bes [

] Compute RHS J

]Smoothing Step]

IReport Iteration]

I Update Field 1_i_
J

Flow Solver

"l pV-Init("') t 1~[....
pVCell

pVSurface

pVGrid

pVScal

iii; pvv t
,~V_Update(time)ll~ - ~1--I

pV3 client library Visual3-1ike call-backs

Figure 1. Archetypical Iterative CFD Solver coupled with p V 3 - A Client

geometry (node locations and mesh data to support the surface) is communicated only
when the cut is initiated. If, in the above example, the case is 'Grid Unsteady' all data
needs to sent every iteration to the server.

To maximize pV3's effectiveness, client-side libraries exist for most major workstation
vendors, MPPs and super-computer manufacturers, pV3 has been designed so that the
process of coupling to the solver is simple and noninvasive. The solver's control structure
is maintained with the visualization subservient. In the distributed setting, client(s)
perform their appropriate calculations for the problem, then as the solution is updated,
supplied call-back routines are executed by the visualization library.

The coupling is performed by adding two calls to the pV3 client library in the solver
code. The first call informs the visualization system about the following:
Volume discretization- the number of disjoint elements, their type, and the number and
size of structured blocks.
Unsteady mode- 'Steady-state', 'Grid', 'Data' or 'Structure Unsteady'.
Visualization field variables- the number, type, name and limits for each scalar, vector
and threshold field.
Programmed cuts - Any non-planar geometric cuts defined for this case.

After a successful initialization, the process is entered into the pV3 client group.

The programming model for a typical iterative CFD application can be seen in Fig. 1
on the left. In general, at the top of each time step boundary conditions are calculated
and set, the solver computes the change to the solution for the entire volume. Then the
change to the solution is applied. The two access points into the solver are depicted in
the middle. The call-backs required by pV3 are shown toward the right of the Figure.

48

This second access point (call to PV_UPDATE) informs the visualization system of two
things; (1) the simulation time for time-accurate solvers and (2) the solution has been
updated and synchronized. This is the mechanism that allows p V3 to operate. Without
the server running, every time the solution is updated and this call is executed, a check is
made for any members in the server group. If none is found, this call returns. When the
visualization task starts, it enrolls in the server group, and waits for initialization messages
from the clients. The next time the client goes through an iteration, and calls the pV3
update routine, an initialization message is sent to the server. The server processes all
initialization messages, figures out the number of clients and the visualization session
begins. Each subsequent time the client goes through the loop and makes this p V3 call,
visualization state messages and tool requests are gathered. Then the appropriate data
is calculated, collected and sent to the graphics workstation.

Because PV_UPDATE is where all requests with the graphics workstation are per-
formed, the overall response to state changes and the interactive latency associated with
these changes (and the next time frame) depends on how often this routine is called.
About one call per second is optimal. If the solution is updated significantly faster then
much of the compute cycles will be used for the visualization, moving the solution slowly
forward in time. In this case it is advisable to call PV_UPDATE only every AT times
the solver updates the solution. (When skipping iterations and particle integrations are
desired, some analysis of how many iterations can be missed is required.)

The more dii~cult case is when the solution update rate is much slower than optimal.
In this situation, there are two choices; (1) live with large lags between user requests
and the result of the request seen on the screen or (2) setup another task between the
solver and the pV 3 server. This software's responsibility is to communicate with the
solver. It should be the task to make all the pV3 client-side calls. This secondary task
can communicate with the solver using PVM (and therefore must be on the same ma-
chine to avoid large network transfers). Or, if the machine supports multi-threading, the
task can be a second thread and perform double-buffering of the solution space, so no
data need be transferred. These methods are a trade-off of memory usage for interactivity.

When the user is finished with the visualization, the server sends a termination message,
leaves the server group, and exits. The clients receive the message and clean up any
memory allocations used for the visualization. The pV3 client update call reverts to
looking for members in the server group.

The visualization system gets the solver's data via call-back routines supplied with the
solver. These routines furnish details about the volume discretization, define the surfaces
(partition as well as computational boundaries), the node locations and the requested
scalar and vector fields. These are virtually the same call-backs used for a Visual3
driver.

During the design of pV3, the state of the solver (client side) was always viewed as
the most important component. No error condition, exception or unusual state within
the visualization portion of the client effects the solver. To maintain this robustness, no
visualization state is stored within the client, all tools are handled via a specific request
for data and the response is calculated and sent to the server. If any condition occurs
that would cause some problem with the visualization, the pV3 server shuts itself down.

49

This allows the simulation to continue, with at most a delay of pV3's time-out constant.
The pV3 server can always be restarted to re-connect to the solver at any later time.

6. S tee r ing w i t h pV3

Before using pV3 for solution steering, it is important to understand the dynamics of
this distributed system. The server is data double-buffered. This is done for interactivity
and allowing the view only of complete data frames. As data from the current time-step
is collected, the investigator is viewing the last iteration. When all the data from the
current iteration has been received by the server, the buffers are flipped and the extracts
from the new iteration are viewed. It should be noted that by the time the server has
completed a time frame, the solver is already on the next iteration. This means that what
is being viewed is, at best, an iteration behind the current solution.

The mechanism used within pV3 for communication (and therefore steering) between
the server and the solver is simple. It uses the architectural framework already in place on
the client side. If the individual sitting in front of the graphics workstation wishes to send
a command to the solver, then a character string is typed into the server. This string is
sent to all active clients. When, within the request handling of PV_UPDATE, this string
is encountered, a call-back routine is executed. The pV3 client-side library contains a
dummy string-catch routine, so that if the call-back is executed without a mechanism
to interpret these messages, nothing is done. If the solver's programmer wishes to allow
communication with the pV3 server, all that is required is that the call-back be supplied.
There are also routines so that character strings can be output on the server's console to
give feedback or indicate errors in parsing the command strings.

All communication is between the server and the known pV3 clients. It is important
that if all solver tasks are not clients, that these non-client tasks are also passed the steer-
ing information. This is an issue if the solver is set-up using the master/slave paradigm
common within PVM applications. In most cases, the master will not be a pV3 client,
for it usually does not contain a volume partition. It is the responsibility of a slave-client
to pass any changes back to the master. This may require additional message passing not
needed within the normal solver and pV3 usage.

Using this technique, the complex control of a running application is made simple.

7. Conc lus ions

The computational analysis of such complex problems as the flow about complete air-
craft configurations has yet to reach its full potential even for steady-state problems.
Euler and Navier-Stokes codes are yet to be used routinely in the design cycle. This is
partly due to the difficulties in moving data (via non-existent file standards) between
the traditional components of the analysis steps. These data handling problems become
intractable for transient applications.

One obvious solution to dealing with the masses of information created by transient
CFD codes is to closely couple the components avoiding placing data on disk unless nec-
essary. This scheme also has some difficulties, but the direction that computer hardware
is taking leads one to believe that this is the best approach. An added benefit of any
co-processing is the ability to remove steps from the analysis (and therefore the design)

50

loop, potentially making the entire process streamlined. Also if one is watching the results
of the solution procedure as they are calculated, solution steering is possible.

pV3 is an attempt to closely couple 3D CFD solvers with a complete visualization
system for transient applications. This marries only the last two phases of the tradi-
tional computational analysis. As grid generators become more reliable and require less
intervention, it is possible to envision completely coupled systems that incorporate, with
a seamless Graphical User Interface, all three components. Several commercial vendors
now supply turn-key integrated products for steady-state applications.

It is the view of this author, that in the near future, it will be possible to 'fly' a new
design completely within the computer. Geometry changes will be made and propagated
throughout the system. This is steering beyond modifying the boundary conditions of the
solver. With this technology, a designer will be able to test a new configuration not just
in steady-state, but in off-design situations. Through interactive investigation, the issues
of design (are the control surfaces in the right place and are they sized correctly), issues
of maneuverability (does the craft respond properly to control), and side effects (vortices
shed, noise) can be addressed.

pV3 has shown that it is possible to perform concurrent solver/visualization for tran-
sient problems. The dream of complete flight simulation is possible at the solver level
because the compute power continues to increase greatly. Grid generators, with the input
of 'good' geometry can generate meshes about complex 3D geometries on the order of
10 minutes on currently available workstations. If small and isolated geometry changes
are required, the grid modification time can be much less. The key component, that is
now missing, is the control over the geometry, including changes and movement to control
surfaces. With this control, and a smooth interface to the gridding component, a new
future in numerical simulation for CFD is possible.

R E F E R E N C E S

1. M. Burnett, R. Hossli, T. Pulliam, B. VanVoorst, and X. Yang. Toward Visual Pro-
gramming Languages for Steering Scientific Computations. IEEE Computational Sci-
ence and Engineering, 1994.

2. A. Vaziri and M. Kremenetsky. Visualization and Tracking of Parallel CFD Simula-
tions. Proceedings of HPC '95, Society of Computer Simulation, 1995.

3. P. Buning and J. Steger. Graphics and Flow Visualization in Computational Fluid
Dynamics. AIAA Paper 85-1507, 1985.

4. D. Darmofal and R. Haimes. An Analysis of 3-D Particle Path Integration Algorithms.
AIAA Paper 95-1713, 1995.

5. R. Haimes. pV3: A Distributed System for Large-Scale Unsteady Visualization. AIAA
Paper 94-0321, 1994.

6. R. Haimes and M. Giles. Visual3: Interactive Unsteady Unstructured 3D Visualiza-
tion. AIAA Paper 91-0794, 1991.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

51

F r o m R & D in paral lel C F D to a tool for c o m p u t e r a ided eng inee r ing

W. Loeve

National Aerospace Laboratory, P.O. Box 90502, 1006 BM Amsterdam, The Netherlands

For industry, CFD is only of interest if it helps to minimise the cost and maximise
certainty and speed for a "good" design. Consequently a performance of about 10 GFLOP/s
is required for R&D and application of the next generation CFD tools that are of interest
for aircraft industry. This requires parallelization of CFD. Technically and financially for
the time being vector computers with the maximal possible performance per processor are
the best compute servers for CFD. The compute servers have to be integrated in the IT
infrastructure of the user organisation. The integration shall be such that for use and
management of data, software and electronic documents, the IT infrastructure presents
itself to the users as one single virtual computer.

1 INTRODUCTION

Many R&D organisations are confronted with reduced budgets and more critical
evaluation of R&D targets and results by management or funding agencies than in the past.
These changes force R&D organisations to reconsider their base of existence. A sound
strategy for continuation of R&D is to derive R&D targets more directly from economic
targets. The economic targets are dictated by industry.

In view of these considerations, R&D in CFD should be directed towards realisation of
tools that can be used in industrial engineering processes. In that case it is essential at least
to minimise the time-to-market and cost of new CFD tools. Quality of new CFD tools in
this context is determined by the degree of satisfaction of the industry for which the tools
are meant. Innovation and technology are of minor importance in the quality measure for
new CFD tools than the added value for the using industry.

From listening to industry, the following considerations emerge:
1. Industry is confronted by drastic changes in their commercial marketplace. Customer
satisfaction has become the main issue in industry. R&D of CFD therefore is only of
interest for industry if it leads to new CFD tools that can be used to increase the certainty
of design processes, to speed up design processes, to reduce the cost of design processes or
to generate any other benefit that helps to satisfy the aircraft operator.
2. For industry not only CFD computations are of interest. New computational methods
are judged with respect to a possible improvement of the complete CFD process: geometry
handling, grid generation, configuring the computation for the applied computer,
computation, analysis of results and last but not least the exchange of information with
other processes in designing aircraft. Moreover it must be possible to implement the tools
in the industrial information technology (IT) infrastructure.

52

3. Complexity of the computer networks and of the collections of software systems used in
engineering processes both increase continuously in industry. The IT infrastructure requires
tools for management of data, software and electronic documents. Because aircraft design
is cooperative work, sharing of information between specialists is required. Tools to
support this also have to form part of the IT infrastructure. The CFD software needs to
operate together with the tools.
4. Industry requirements with respect to the behaviour of the software elements used in the
CFD process not only concern nominal application conditions. Requirements with respect
to behaviour under non-nominal conditions (user or system generated errors) and time and
cost for maintenance are just as important. CFD software has to be designed in view of
error handling, testability, maintainability and re-usability.

NLR operates as support organisation for aerospace industries. As such, NLR provides
facilities for experiments and for computing. Software is being developed for CFD and
NLR's IT infrastructure contains compute servers for this. These servers are accessible for
interested parties such as industries. NLR's position in the market requires the availability
of among other things maximum computer performance for R&D and application of CFD.
The considerations described above are regarded as quality criteria for CFD. They have
been the guidelines at NLR for the choice of:
- the type and performance of the compute servers for CFD,
- tools for integration of the compute servers in the IT infrastructure of NLR, and when

desired in that of customer organisations,
- practices for management and engineering of software systems.
In the next chapters this will be discussed.

2. CHOICE OF COMPUTE SERVER FOR CFD

When we look at the most powerful compute servers installed in the world [1], we see
that in recent years, at the top of the list, parallel computers based on many scalar
processors and distributed memory are taking over in number from the vector computers
with several processors and shared memory. NLR and its customers are solution oriented
organisations as far as application of computers is concemed. Cost and time-to-market of
new software have to be minimised, if necessary at the cost of innovation and technology.
In view of this, for many of the users of NLR systems the massively parallel machines in
the TOP500 list [1] are inadequate. Although NLR has a well developed informatics
division, the capabilities of this division are used for automation in customer organisations
and in NLR rather than for development of parallelization strategies on computers that
require too much effort. For the time being, the massively parallel computers are regarded
as interesting platforms for R&D in computer science mainly and not for application
driven R&D in aircraft CFD. As a result of this conclusion, NLR has only compared
vector computers and workstations with regard to suitability for CFD, as part of the
procurement process of a new computer.

The CFD application in aircraft design is characterised with the following:
1. The most advanced industrially applicable CFD for aerodynamic analysis at the moment

is based on the Reynolds-Averaged Navier-Stokes equations [2]. One not too detailed
computation for a full aircraft configuration requires about 5 hours in case of a

53

sustained computer performance of about 500MFLOP/s. One of the interesting
applications of these computations for the near future is support of aerodynamic
optimisation. See for instance publications from Boeing and NASA specialists [3]. This
target requires a computer performance that is one to two orders larger than what is
used in analysis. This computer performance is required for instance because about 40
times solution of the flow equations in combination with an optimisation algorithm is
required.

2. The process of designing an aircraft is characterised by a large number of activities
executed by specialists from various disciplines. The specialists use a variety of tools
including many different software systems. Rubbert [2] describes a possible
aerodynamic wing design process. In this process the Reynolds Averaged Navier Stokes
(RANS) equations so far only are solved to check selected points in the aircraft flight
envelope. The limited use of the RANS equations has to do with the cost involved
according to [2]. In the same paper it is explained that industry needs to minimise the
time for design and to maximise certainty of the design process. Apparently it can help
industry if the performance and the performance/price ratio of compute servers are
increased so that the RANS equations can be solved more frequently in the design
process.

3. Application of CFD in industry has all the characteristics of computer supported co-
operative work [2]. Also R&D of industrially relevant CFD requires a computer
supported cooperative work approach [4]. This means that information management and
sharing of information between specialists has to be safeguarded in the IT infrastructure
of industry and of R&D organisations. The information becomes available in three
forms: data, software and electronic documents.

From the description above of CFD in design in industry, the requirement can be
derived that it shall be possible for more certainty and less design time, to perform one
aerodynamic optimisation run in one night and to apply the Reynolds Averaged Navier-
Stokes calculation more frequently than is possible at the moment. The first requires a
sustained computer performance of 10 ~t 20GFLOP/s. If this compute power can be made
available at sufficiently low price, it can also serve to realise the second requirement. This
compute power has to be integrated in the IT infrastructure of industry together with other
computer based servers such as workstations and data management servers to support use
and sharing of information in the organisation.

Industry prefers workstation clusters for CFD because these are available in large
quantities during the night and weekend. These are purchased for mainly engineering
activities and are available at no cost so far for CFD according to Lewis (Boeing), Cosner
(McDonnell Aircraft) and Fischberg (Pratt&Whitney) [5]. These workstations are clustered
in units of about 16 for execution of CFD calculations. Limiting the number is because
adding more workstations to the cluster does not result in increase of performance. Why
this is the case is explained with the help of a simple application oriented model in [6].

For NLR it is essential to be informed in-depth about the situation in the computer
market. It also appears that NLR is an interesting source of in-depth information about
advanced computer applications for computer manufacturers. As a consequence NLR is so
lucky to be able to cooperate with NEC with the purpose to enhance NEC supercomputers
and to optimise application at NLR thereof. NLR also appreciates the cooperation with

54

IBM and SGI that generates information for NLR's system engineers about how to
optimise use of multi-processor workstations and clusters for CFD. For IBM and SGI,
information is generated about how to improve their systems for CFD applications. The
cooperation with SGI, apart from parallel computing and networking also covers IT
environments for computer supported cooperative work. The experiences from the
cooperations and from in-house availability of top-of-the-line vector computers since 1987,
were used to compare the suitability for industrially relevant CFD, of contemporary CRAY
an NEC vector computers and SGI's (Power) Challenge workstation based high
performance computer systems that also can be found in the TOP500 list [1].

Solvers for both multi-block structured grids and unstructured grids were applied to
determine the suitability of the mentioned compute servers for CFD. Parallelization was
based on domain decomposition. The result of the investigations is that for the applications
the single processor sustained performance of the Power Challenge processors was about
25% of the peak performance of 300MFLOP/s. Of the NEC SX-3 that at present is
installed at NLR, the single processor sustained performance varies between 20 and 35%
of the peak performance which is 2.75GFLOP/s. The SX-3 is 7 to 14 times faster than the
Power Challenge per processor. With the present performance of workstation clusters this
means that the maximum sustained performance of Power Challenge single processor
workstation clusters, is about the same as the sustained performance of 1 SX-3 processor,
for practical aircraft CFD. This is also the case for the Power Challenge configurations
with 18 processors that share memory. On the multi-processor workstations CFD
applications can be implemented easier than on workstation clusters with distributed
memory.

The performance of multi-processor workstations can only be improved for aircraft CFD
if the transfer speed of data and the single processor sustained performance are improved
considerably [7]. This will lead to computer characteristics that are comparable with
characteristics of the vector computers of the NEC SX-4 and CRAY T90 type. The single
processor peak performance of these computers is respectively 2 and 1.8GFLOP/s. The
single processor sustained performance for aircraft CFD is about 1GFLOP/s. The vector
computers that are on the market at the moment are supplied in configurations with up to
32 processors with shared memory. With these configurations it is easy to obtain the
performance of 10 5. 20GFLOP/s that is required for the next step in development and
application of CFD in aircraft design.

Now of course it is interesting to look at prices and price/performance of the computers
discussed so far. The problem with prices of computers is that they vary in time and that
list prices mostly are not paid. In what follows a picture is given of list prices only at a
given moment in time (and place). In april 1995 NLR was informed by NEC and CRAY
that the list price of a 16 processor vector supercomputer of the type SX-4 and T90, was
about NLG 20M and NLG 25M respectively. The single processor sustained performance
of these systems is about 900MFLOP/s for the NLR applications.
SGI offered an 8 processor Challenge for NLG 0.8M, and an 8 processor Power Challenge
for NLG 1.5M. The single processor sustained performance of these workstations appeared
to be 20MFLOP/s and 70MFLOP/s respectively in the NLR tests.

The numbers lead to the conclusion that the price/performance of the vector processors
in contemporary supercomputers is about twice as good for CFD computations as the
price/performance of a workstation processor that dominates the bottom of the TOP500 list

55

[1]. The internal communication performance of vector supercomputers is much better than
that of multi-processor workstations. As a result of this, the 16 processor vector
supercomputers will have a sustained performance of more than 10GFLOP/s for aircraft
CFD computations. The conclusion is that the multi-processor vector computers can supply
the required sustained performance for application oriented CFD and that multi-processor
workstations cannot. It should be remarked that for other tasks in the CFD process,
workstations are the best or only choice. For grid generation for instance, the single
processor NEC SX-3 performance is the same as the single processor SGI Power
Challenge performance.

Based on the evaluation described above the conclusion is that R&D in parallelization
of aircraft CFD for the time being best can be based on vector computers with the
maximal possible performance per processor. Configuring the CFD computation for this
type of computer is straightforward. To effectuate this conclusion in practice requires to
avoid that all money is spent on technically and economically sub-optimal combinations of
workstation processors. This is possible in research organisations. However it requires
involvement of high management levels in the automation policy in organisations. NLR
has a centralised automation strategy and was able to buy a 32 processor NEC SX-4 vector
computer for R&D in CFD. The first 16 processors will be installed in June 1996. The
second set of 16 processors will be installed 1.5 year later. Because some industries prefer
workstation-based automation, at NLR the CFD codes also are ported to combinations of
workstations. This is facilitated by application of an object oriented software structure.

Introduction of new vector supercomputers probably is difficult for aircraft
manufacturers. This is because industry needs already so many workstations for their
engineering and production activities. It is the strong belief of the author that cooperation
of national aerospace institutes with aircraft manufacturers can lead to a situation that at
short notice computers with the required 10GFLOP/s sustained performance can be applied
in aircraft design. This will make it possible for industry to improve the certainty and
speed for a "good" design. As soon as proper cost accounting for workstations is
introduced in industry the use of vector supercomputers probably will also prove to lower
the cost for a good design. In the next chapter some remarks will be made about the use of
remote compute servers in or outside the user organisation. Despite the conclusions
presented above, for the time being CFD computational methods developed in R&D
organisations have to be ported to workstation clusters. This will restrict applicability of
the CFD tools in the design process.

3. I N T E G R A T I O N OF CFD APPLICATION E N V I R O N M E N T S

For application of CFD not only high performance compute servers are required. There
is also a need for graphical presentation and processing with the help of workstations and
for information management by means of specific servers. In applications of CFD in
integrated aircraft design, activities are performed by cooperating teams. For this reason
the different computer based systems have to be integrated in a network. This network has
to give access, for all persons and groups that take part in the cooperation, to the
computers as well as the software, data and electronic documents that are stored on the
computers. The capacity of the network has to be sufficient for the often large information

56

FLOWS.
In CFD environments the easy and simultaneous processing of often distributed infor-

mation is required as well as a reliable seamless FLow of information through the succes-
sive steps of CFD processes. The development of software for CFD concerns
physical/mathematical modelling, software engineering, and validation with relation to the
relevance of results of simulation. Especially development of new advanced CFD tools
requires contributions from various disciplines. As a result of this, development and
application of CFD tools both require a cooperative approach, and for both a similar
computer and software is required.

With increasing importance of CFD for economically relevant applications, also quality
requirements for CFD environments become more severe. Quality concerns reliability,
maintainability, demonstrated applicability, portability, growth potential, flexibility and
time-to-market of CFD tools. This leads to the necessity to apply quality management to
the engineering and production of software for CFD. As a result of this, characteristics that
are required for the CFD systems in industrial application environments are very similar to
characteristics that are required in environments in which CFD software for application in
industrial engineering is being developed. For this reason the Informatics Division of NLR
implemented quality management for mathematical modelling and software engineering
and production. This was certified according to ISO 9001 industry standard requirements,
and AQAP-110 military standard requirements. It was applied to the development of a
RANS solver to define how quality as defined above can be applied in CFD software [8].

Organizational aspects of cooperative development and quality control of software such
as for CFD are described in [4]. A number of technical means to realize it in accordance
with the organizational approach have to be supplied by the CSCW environment. This
concerns tools to find information that is only required at a few occasions and that can
have been changed since the last time that the information was used. It also concerns tools
that avoid that the user of the environment does have to deal with questions such as: on
which computer might the information have been stored, how do I transfer the information
to the system I am working on and how do I find the data set that was used to verify the
last version of this software.

The first thing that has to be realised to avoid problems for the users is that the full
heterogeneous computer environment can be approached and applied on the basis of a
look-and-feel principle as if it is only one single computer. This concerns the user-interac-
tion, processing, information handling and control for execution of functions by members
of specific groups of cooperating specialists. Realizing this will be called functional inte-
gration (of a heterogeneous computer and software environment).

In addition to functional integration it is required that the user can identify software
versions, reconstruct old versions of software under development, identify data and identify
document versions. The CSCW environment has to contain tools to make this possible.
Also the individuals who make use of the environment have to apply the tools in a prescri-
bed way that is in accordance with these requirements, in case they add information in any
form to the environment. Fulfilling these requirements is a prerequisite to be able to work
according to the ISO 9001 standard in development and application of CFD software.

In the recent past functional integration of computer networks and software collections
has become more feasible as a result of emerging standards in computer systems and
software engineering. As a result of this it has been possible to realise a cost effective

57

functional integration for CFD at NLR. It concerns ISNaS: Information System for flow
simulation based on the Navier Stokes equations.The development of the first version of
ISNaS [9] was partly subsidized by the Netherlands Ministries of Education and Sciences
and of Transport and Public Works. The developed ISNaS environment was used to
support the cooperation of two technological institutes and two universities in the
development of tools for simulation of compressible flows around aircraft configurations
and incompressible flows in waterworks. The concerning project was finalized after six
years in 1992. After that at NLR the results of the project were developed further, making
use of tools available in the public domain [10]. This has been done in interaction with the
development of a quality management system for engineering and design of information
systems, and with the development of architecture and construction principles for software
for simulation purposes [8].

ISNaS is implemented on the NLR computer network. This is a UNIX network. The
network includes, apart from specific network hardware:
- a NEC SX-3 supercomputer
- a NEC CENJU-3 distributed-memory parallel computer
- three CD 4680 mainframes (supplied by Control Data)
- a UP4800 server (supplied by NEC)
- a StorageTek ACS tape robot
- 100 Silicon Graphics workstations, including a few multi processor Power Challenges
- 100 HP workstations
- a cluster of IBM workstations
- PCs, X terminals, and ASCII terminals.
All computers run a vendor-supplied UNIX.

ISNaS contains [10]:
- A user shell that supports presentation integration in that it provides uniformity with

respect to the presentation and manipulation of files and the invocation and execution of
programs,

- a tool for managing the versions of the source code of a software product,
- a tool for managing data files in a CSCW environment,
- a tool for managing on-line documents,
- a tool that supports automatic localising software in a network,
- a tool that provides a basis for organising and applying conversion programs, ISNaS is

portable. It also has proved to be applicable to integrate workstations from customer
organisations in NLR's IT infrastructure, to facilitate remote application of NLR's
computers and CFD software. The application of ISNaS for remote access to NLR's
computers is supported by national and international investments in the "electronic
highway". The two NLR establishments are connected via an 34 Mb/s ATM connection.
A 34 Mb/s national research network is under development in the Netherlands and in
Europe.

4 . C O N C L U D I N G R E M A R K S

At present the multi-vector computer with shared memory architecture in combination
with workstations is the best platform for development and application of aircraft CFD.

NLR has a centralised automation strategy and was able to buy a 32 processor NEC

58

SX-4 vector computer for R&D in CFD. The computer has a peak performance of
64GFLOP/s.

Because most industries prefer workstation based automation, at NLR the CFD codes
also are ported to combinations of workstations. This however limits the applicability of
CFD.

If industry can not install new multi vector supercomputers, remote application should
be considered by industry, especially because functional integration of the remote computer
with local workstations is possible.

REFERENCES

.

.

.

.

.

.

10.

J.J. Dongarra, H.W. Meuer, E. Strohmaier, TOP500 Supercomputer Sites June 1995;
retrievable from internet by typing: rcp
anon @ nctlib2.cs.utk.cdu:benchmark/performance performance.
P. E. Rubbert, CFD and the Changing World of Airplane Design; AIAA Wright
Brothers Lecture, Anaheim California; September 18-23, 1994.
C.J. Borland, J.R. Benton, P.D. Frank, T.J. Kao, R.A. Mastro, J-F.M. Barthelemy,
Multidisciplinary design optimization of a Commercial Aircraft Wing - An
Exploratory Study. 5th Symposium on Multidisciplinary Analysis and Optimization,
Panama City Beach, Sept. 7-9, 1994. AIAA-94-4305-CP, pp 505-519.
W. Loeve, Engineering of systems for application of scientific computing in
industry; published in; G. Halevi and R. Weill (eds), Manufacturing in the era of
concurrent engineering 1992; Elsevier Science Publishers B.V. ISBN 0 444
89845 X.
J. Lewis (Boeing), R. Cosner (McDonnell Aircraft), C. Fischberg (Pratt& Whitney),
presentations for panel discussion, published in: S. Taylor, A. Ecer, J. Peraux,, N.
Saofuka (eds), Proceedings of parallel CFD'95, Pasadena, CA, USA, 26-29 June
1995; Elsevier Science B.V..
M.E.S. Vogels, A model for performance of a block-structured Navier-Stokes solver
on clusters of workstations, published in: S. Taylor, A. Ecer, J. Peraux,, N. Satofuka
(eds), Proceedings of parallel CFD'95, Pasadena, CA, USA, 26-29 June 1995.
Elsevier Science B.V.
M.E.S. Vogels, H. van der Ven, G.J. Hameetman, The need for supercomputers in
aerospace research and industry; published in: B. Hertzberger, G. Serazzi (eds),
High-Performance Computing and Networking. 1995; Springer-Verlag ISBN 3-540-
59393-4.
M.E.S. Vogels, "Principles for Software Management of Mathematical Software",
1994 European Simulation Symposium, 9-12 October 1994, Istanbul, Turkey. Also
available as NLR report TP 94324.
M.E.S. Vogels and W. Loeve, Development of ISNaS: An Information System for
Flow Simulation in Design, published in: F. Kimura and A. Rolstadas (eds), Com-
puter Applications in Production and Engineering. 1989; North-Holland ISBN 0 444
88089 5.
E.H. Baalbergen and W. Loeve, Spine: software platform for computer supported
cooperative work in heterogeneous computer and software environments,
NLR TP 94359, 1994; National Aerospace Laboratory Amsterdam.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

59

Pa ra l l e l c o m p u t a t i o n s of u n s t e a d y supe r so n i c cav i ty flows

Yoko TAKAKURA a, Fumio HIGASHINO a, Takeshi YOSHIZAWA ~,
Masahiro YOSHIDA b, and Satoru OGAWA b

a Department of Mechanical Systems Engineering, Tokyo Noko University, 2-24-16
Nakamachi, Koganei-shi, Tokyo 184, Japan

b Computational Sciences Division, National Aerospace Laboratory, 7-44-1
Jindaiji-Higashi-machi, Chofu-shi, Tokyo 182, Japan

Vector-Parallel computations of unsteady supersonic cavity flows have been executed
on the NWT system using a very large eddy simulation. In 2-D computations on rough
grids the characteristic patterns of vortex structures have been recognized according to
the ratio of length to depth of cavity, accompanied with the low-frequent oscillation for the
upward and downward motion of a shear layer and for the appearance and disappearance
of shock waves. It is caused by the inflow and outflow of fluid for the cavity. The effect
of an incident oblique shock wave is to make a right-handed vortex grow through the
inflow of mean flow into the cavity. 2-D computation using a fine grid has indicated
another oscillation with higher frequency caused by the generation of a small vortex
in the shear layer itself and its disappearance with the collision against the cavity wall.
These two frequencies agree with the experiments. In 3-D computation, three-dimensional
nature of shear layer has been recognized. 3-D computation has shown the better parallel
performance than 2-D one, and NWT is hopeful for solving the fluid physics through
large-scale computations.

1. I N T R O D U C T I O N

In the case of supersonic flows within a duct having a rectangular cavity, it is reported
experimentally[1,2] that characteristic structure of vortices is recognized within a cavity
according to the ratio of length to depth of cavity, and that it is accompanied by the
oscillation of a shear layer between the mean flow in the duct and the vortical flow within
the cavity. Further when an oblique shock wave is made incident to the shear layer, an
interaction occurs among the vortices, the shear layer and the incident shock wave. This
interacting phenomenon is significantly interesting from the viewpoint of fluid dynamics,
as well as from the viewpoint of engineering application to flow control for the supersonic
intake of a RAM-jet engine, etc..

The aim of the present study is to solve the physical mechanics of the unsteady super-
sonic cavity flows where the above interaction occurs by large-scale computations, focusing
on the vortex structure, the origins of oscillations, and the effect of an incident oblique
shock wave.

The numerical method used is a very large eddy simulation[3,4] to capture the unsteady
oscillation, and the computing code is implemented for the numerical wind tunnel (NWT)
system in National Aerospace Laboratory (NAL).

50

2. M E T H O D OF N U M E R I C A L ANALYSIS

2.1. Discret izat ion
A very large eddy simulation[3] is carried out, where the governing equations are the fil-

tered 2-D and 3-D Navier-Stokes equations together with the sub-grid scale eddy viscosity
written in [4]. The finite volume method is adopted for discretization: spatial discretiza-
tion is executed by the Chakravarthy-Osher TVD scheme[5] improved in linearization[6]
and time integration is carried out by the second-order Runge-Kutta scheme[7].

2.2. Paral lel implementa t ion
The computing code is implemented for the NWT system[8], a parallel computer system

with distributed memory. It is composed of 140 processor elements (PEs) which is com-
bined under a cross-bar interconnection network. Each PE is a vector computer with 1.7
GFLOPS peak performance and 256 MB main memory. Figure 1 shows the configuration
of the NWT system.

In the vector-parallel implementation two arrays are provided for the usual one data
set. In the 3-D case one array is partitioned in the z-direction with each partitioned data
stored in the individual PEs. This array is used when computing the data vectorized
for the x- and y-direction in parallel. Similarly the other array partitioned in the x- or
y-direction is used to compute the data vectorized for the remaining direction, z. When
the algorithm needs to change the direction of vectors, data are transferred from one array
to the other by the transpose move through the cross-bar network.

Figure 2 shows an example of the transpose move from the z-partitioned array to the
y-partitioned array in the case of 4 PEs. As is indicated by arrows, for example, the data
stored in P E 2 within the z-partitioned array are transferred to all P Es. This transpose
move, that is to say, all to all move using the cross-bar network, makes the efficient
vector-parallel algorithm executable.

3. C O M P U T A T I O N A L C O N D I T I O N S

Figure 3 shows the schematic view of a supersonic duct having a rectangular cavity
and a shock generator. The basic dimension is given by height of duct (H), depth of
cavity (D), and length of cavity (L). These sizes are determined identical with those in
the experiments of our laboratory[2]: H = 2cm, D = lcm, and L/D = 1, 2 and 3. Mach
number of mean flow is given by M~ = 1.83.

First, in order to obtain the overview of the flow stated above, 2-D cavity flows are
numerically solved on rough grids by adopting L/D as a parameter without or with the
incident oblique shock wave created by the shock generator. Second, to investigate the
effect of the shear layer in more detail, a fine grid is used. Finally, to investigate the
three-dimensional nature of the flow-field, the 3-D cavity flows are computed.

4. R E S U L T S A N D D I S C U S S I O N

4.1. 2-D cavity flows on rough grids
Here 2-D cavity flows are numerically solved on rough grids with number of grid points,

453 x 153, in the cases of L/D = 1, 2 and 3 without or with the shock generator.
a) Unsteadiness: L /D = 2 without a shock generator Figure 4 shows the time-

evolving solution with density contours and instantaneous stream lines. At time stage (a)
the two vortices, the distinct vortex having the right-handed rotation in the downstream
and the indistinct vortex in the upstream, are recognized within the cavity. At (b) the

61

outflow from the cavity occurs, accompanied with the growth of the downstream vortex.
It is also observed that the shape of the bow shock wave at the rear corner of the cavity has
abruptly changed during (a) and (b). At (c) when the outflow continues, the pressure and
density within the cavity become low. Further when they become lower by the outflow,
at time stage (d) the fluid starts to flow into the cavity and the upstream vortex with
the left-handed rotation becomes clear. During (c) and (d), since the vortical flow within
the cavity rises upward, it is observed that the oblique shock wave appears from the front
corner of the cavity. At (e) when the pressure is recovered by the inflow, not only the
inflow but also the outflow occurs simultaneously. After this state, the state (a) comes
again, where the upstream vortex is indistinct, the front oblique shock wave disappears,
and the rear bow shock wave is confused. Thus it has been recognized that the inflow and
outflow causes the oscillation such as rise and fall of the boundary surface (shear layer)
between the duct flow and the cavity flow, through the growth and decline of vortices.
Accompanied with this motion, the oscillation of the shock waves, i.e., the oblique shock
wave from the front corner of the cavity and the bow shock wave at the rear corner of the
cavity, also occurs. Since no boundary condition forcing the time-dependency is imposed,
a series of phenomena is considered as a self-sustained oscillation.

The period time for this oscillation is about 50 ~ 60ttsec., which agrees with experi-
mental one in our laboratory[2], and its time scale, T, is represented by T ~ L /U~ (Uoo:
mean flow velocity). Also from this fact it is considered that this oscillation is mainly
caused by the inflow and outflow of mean flow for the cavity.

b) Effect of an incident oblique shock wave: L ID = 2 with a shock generator Fig-
ure 5 (a) and (b) show respectively the density contours and stream lines obtained by
averaging in time the unsteady solution with a shock generator. Compared with Fig.4, it
is observed that the upstream vortex almost vanishes and instead the downstream vortex
with the right-handed rotation is developed. The reason is, we consider, that the oblique
shock wave changes the direction of mean flow downward, and consequently the inflow into
the cavity is caused in the downstream of the shock wave, so that the right-handed vortex
might grow. Comparison between Fig.5 (a) and (c) indicates that the time-averaged solu-
tion in computation agrees well with the schlieren photography in experiments. Referring
to the unsteadiness, the period time for the oscillation is about same in both the cases
without and with the shock generator.

c) Vortex structures: L I D = 1,2 and 3 without or with a shock generator Figure
6 (a) and (b) show solutions in the case of L I D = 1 without and with a shock generator,
respectively. In the instantaneous solution without an incident shock wave (Fig.6 (a)) one
can find a right-handed vortex within the cavity. When the shock generator is installed,
the time-averaged solution (Fig.6 (b)) shows that vortex becomes remarkable because of
the inflow effect of the incident oblique shock wave.

Similarly Figure 7 (a) and (b) show instantaneous solutions in the case of L I D = 3
without and with the shock generator, respectively. In Fig.7 (a) without an incident
shock, mainly two vortices are observed. But evolving the time, another vortex appears
in the upstream of the cavity: totally there are three vortices. Regarding the directions
of vortices, see Fig.8. When the shock generator is installed in the position of Fig.7 (b),
the upstream right-handed vortex, over which the oblique shock wave is incident, grows.

The vortex patterns in the cavities are summarized in Fig.8. For the cavities with
L I D = 1,2 and 3, one, two and three vortices appear, respectively. First in the down-
stream of the cavity a vortex with right-handed rotation is created (for L I D = 1, 2 and
3). Induced by the downstream vortex, the second vortex with left-handed rotation is
generated (for L I D = 2 and 3). Further induced by the second vortex, the third vortex
with right-handed rotation is generated (for L I D = 3).

52

4.2. 2-D cavi ty flows on a fine gr id
Here 2-D cavity flows are numerically solved in the case of L/D = 2 with a shock

generator, using the fine grid (Fig.9) with number of points 927 x 479 where points are
gathered near the shear layer.

Figure 10 shows the instantaneous density contours. One can see a downstream vortex
in the bottom of cavity, and additionally a small vortex in the shear layer. In the time-
evolving solution, the vortex within the cavity moves with the right-handed rotation. On
the other hand, the small vortex generated in the shear layer is floated downstream, and
disappears with the collision against the cavity wall. The period time for the former, that
is, motion of vortex within the cavity, is nearly same as that on the rough grid . The
period time for the latter, that is, motion of the vortex in the shear layer, however, has
the different value: about half of the time for the former motion in this case.

Thus two oscillations have been recognized: one oscillation with low frequency is caused
by the inflow and outflow for the cavity, which was shown in Sec.4.1, and the other with
higher frequency is caused by the shear layer itself. These frequencies are also detected
in the experiments[2].

4.3. 3-D cavi ty flows
Here 3-D cavity flows are numerically solved in the case of LID = 2 without a shock

generator, with number of grid points 201 x 171 x 63. In this case the width of the
computational region is taken as the same size as the cavity length, and the periodic
boundary condition is imposed in the spanwise direction.

Figure 11 shows the instantaneous density contours on the sections at the middle of
span, at the middle of cavity, and at the bottom of duct. In this figure two period of
waves in the spanwise direction are recognized in the shear layer. However, further inves-
tigation would be needed to understand the three-dimensional feature in the computation.

4.4. Parallel performance
Figure 12 shows the parallel performance, where number of grid points are limited so

that computation could be executed even on a P E . As shown in Fig.12 (a), in 2-D case
the speed-up ratio begins to be saturated at 16 PEs, and the efficiency for 16 PEs is about
70%. On the contrary in 3-D case shown in Fig.12 (b), the speed-up ratio is not inclined
to be saturated, and the efficiency for 52 P Es is about 75%. The reason why the 3-D
case indicates the better performance than 2-D one would be that the time ratio of the
transpose move to the total computation decreases in 3-D case.

5. C O N C L U D I N G R E M A R K S

Vector-Parallel computations of unsteady supersonic cavity flows have been executed
using the NWT system.

In 2-D computations on rough grids, one, two and three vortices have been recognized
for the cavity of L/D = 1,2 and 3 respectively with the vortex structures of Fig.8,
accompanied with the oscillation for the upward and downward motion of the shear layer
and for the appearance and disappearance of the front oblique shock wave and the rear
bow shock wave. This oscillation is caused mainly by the inflow and outflow of fluid for
the cavity. The effect of an oblique shock wave which is made incident over the shear layer
is to make a right-handed vortex grow through the inflow of mean flow into the cavity.

2-D computation using a fine grid has indicated another oscillation with higher fre-
quency caused by the generation of a small vortex in the shear layer itself and its disap-
pearance with the collision against the cavity wall, together with the low-frequent oscilla-
tion caused by the inflow and outflow. These two frequencies agree with the experiments.

63

In 3-D computation, three-dimensional nature of shear layer has been recognized, but
further investigation would be needed to understand the computational results.

Referring to the parallel performance, 3-D computation is better than 2-D one for the
vector-parallel implementation using the transpose move, and therefore NWT is hopeful
for solving the fluid physics through large-scale computations.

R E F E R E N C E S

1. X. Zhang and J.A. Edwards, An Investigation of Supersonic Oscillatory Cavity Flows
Driven by Thick Shear Layers, Aeronautical J. December (1990) 355.
2. Y. Watanabe, S. Kudo and F.Higashino, Effects of Cavity Configurations on the Su-
personic Internal Flow, International Symposium on Shock Waves, July (1995).
3. D. Hunt, A Very Large Eddy Simulation of an Unsteady Shock Wave/~hrbulent Bound-
ary Layer Interaction, AIAA Paper 95-2212 (1995).
4. Y. Takakura, S. Ogawa and T. Ishiguro, Turbulence Models for 3-D transonic Viscous
Flows, AIAA Paper 89-1952-CP (1989).
5. S.R. Chakravarthy and S. Osher, A New Class of High Accuracy TVD Schemes for
Hyperbolic Conservation Laws, AIAA Paper 85-0363 (1985).
6. Y. Takakura, T. Ishiguro and S. Ogawa, On TVD Difference Schemes for the Three-
Dimensional Euler Equations in General Co-Ordinates, Int. J. Numerical Methods in
Fluids, Vol.9 (1989) 1011.
7. A. Rizzi, Damped Euler-Equation Method to Compute Transonic Flow Around Wing-
Body Combinations, AIAA J. Vol.20 No.10 (1982) 1321.
8. H. Miyoshi, Y. Yoshioka, M. Ikeda and M. Takamura, Numerical Wind Tunnel Hard-
ware, NAL SP-16 (1991) 99. , cross i netwo,k ,

disks "i'40' ~ata moverl
I . caiar
] m a m ,nit
]memory terrain als) �9 ,ector
[umt lnit

lector
egister

Figure 1. Configuration of NWT system.
z : . K f incident oblique

x : ~ : j shock generator .~1~,-,,-,1, ~/'//A f ~u.t.~ wave

,

[
. L

Figure 2. Transpose move in case of 4 P Es.
Figure 3. Schematic view of duct having

cavity and shock generator.

64

Figure 4. Time-evolutional solution in case of LID- 2 without shock generator:
density contours and stream lines.

55

Figure 5. Time-averaged solution in case of L/D = 2 with shock generator.

Figure 6. Solutions in case of L/D - 1" density contours and stream lines.

F i g u r e 7. So lu t ions in case of L/D - 3 dens i ty con tours a nd s t r e a m lines.

66

Figure 8. Characteristic patterns of vortex structures.

Figure 9. 2-D fine grid. Figure 10. Instantaneous density contours on fine grid
in case of L/D = 2 with shock generator.

Figure 11. 3-D solution in case of L/D = 2 without shock generator: density contours.

Figure 12. Parallel performance: speed up ratio.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

67

A D a t a - P a r a l l e l LU R e l a x a t i o n M e t h o d for R e a c t i n g Viscous Flows

M. J. Wright and G. V. Candler*

Department of Aerospace Engineering & Mechanics and Army High Performance Com-
puting Research Center, University of Minnesota, Minneapolis MN 55455, USA

The LU-SGS method of Yoon and Jameson is modified for the simulation of reacting
viscous flows on massively parallel computers. The resulting data-parallel lower-upper
relaxation method (DP-LUR) is shown to have good convergence properties for many
problems. The new method is implemented on the Thinking Machines CM-5, where a
large fraction of the peak theoretical performance of the machine is obtained. The low
memory use and high parallel efficiency of the method make it attractive for large-scale
simulation of reacting viscous flows.

1. I N T R O D U C T I O N

The large cost associated with solving the reacting Navier-Stokes equations makes
the use of a massively parallel supercomputer (MPP) attractive, since such machines
have a very large peak performance. However, it is difficult to efficiently implement most
implicit methods on an MPP, since a true implicit method requires the inversion of a
large sparse matrix, which involves a great deal of inter-processor communication. The
traditional solution to this problem is to perform some sort of domain decomposition,
which reduces the amount of communication required by solving the implicit problem
on a series of local sub-domains. This approach has been used with good success, but
the resulting algorithms can become costly and complicated due to load balancing and
boundary update issues. 1

Another approach is to seek an implicit method which would be amenable to data-
parallel implementation without domain decomposition. Such an algorithm would then
be readily portable to a wide variety of parallel architectures, since it is relatively easy
to run a data-parallel code on a message-passing machine. The Lower-Upper Symmetric
Gauss-Seidel (LU-SGS) method of Yoon and Jameson 2 is a good starting point, because
it makes some approximations to the implicit problem which eliminate the need for large
block matrix inversions. Candler, Wright, and McDonald have shown 3 that it is possible
to modify the LU-SGS method, making it almost perfectly data-parallel for inviscid flows.
The resulting diagonal data-parallel lower-upper relaxation (DP-LUR) method replaces

* Authors supported by the NASA Langley Research Center Contract NAG-l-1498. This work is also
sponsored in part by the Army High Performance Computing Research Center under the auspices of
the Department of the Army, Army Research Laboratory cooperative agreement number DAAH04-95-2-
0003/contract number DAAH04-95-C-0008, the content of which does not necessarily reflect the position
or the policy of the government, and no official endorsement should be inferred.

58

the Gauss-Seidel sweeps of the LU-SGS method with a series of pointwise relaxation steps.
With this method all data dependencies are removed, and the computation of each relax-
ation step becomes perfectly data-parallel. Also, the formulation of the method ensures
proper load balancing at all times, eliminating the need for a domain decomposition. The
diagonal method has been further modified by Wright, Candler, and Prampolini 4 to im-
prove the performance for viscous flow simulations, and the resulting full matrix DP-LUR
method retains all of the excellent parallel attributes of the original.

This paper presents the evolution of the diagonal and full matrix data-parallel L U
relaxation methods, and discusses their implementation on the Thinking Machines CM-
5. The convergence rates of the methods on several test cases are examined, and their
parallel performance on the CM-5 is presented.

2. D I A G O N A L D P - L U R

The fully implicit form of the two-dimensional Navier-Stokes equations is

un-~ - 1 _ U n (O~~n-~- 1 o e n + 1
-~- -~- ~_ w n - F 1

At 0~ 077

where U is the vector of conserved quantities, $ and G are the flux vectors in the
(body-tangential) and ~ (body-normal) directions, and W is the source vector for chemical
reactions and internal energy relaxation. The flux vectors can be split into convective and
viscous parts

F = F + F . , G = G + G v .

If we focus on the inviscid problem for now, we can linearize the flux vector using

OF (u n + 1 _ Un) = Fn + A~SU~, F n + l ~ F n + - ~

Gn+l ..~ G ~ + B n s u n, W n + l ~ W n _~_ c n (~ u n.

We then split the fluxes according to the sign of the eigenvalues of the Jacobians to obtain
the upwind finite volume representation

At {(A+i+ Si+ 5Ui,j _ A+i_ ~Ui-1) 5v~j + ~ �89 i,j �89189 ,j

+ (A_i+i,jSi+�89 - A_i_�89189)
(1)

+ (B+i,J+�89189 - B+i,J_�89189

(\ f _ i , j + . S i , j + . ~ _ ~ - f _ i , j _ . S i , j _ . ~[7,,j ~ _ ~ ~ - A t C ~ j ~ U ~ j ~- A t R n. . +

where R. ~. is the change of the solution due to the fluxes at time level n S is the surface
area of the cell face indicated by its indices, and v~,i is the cell volume.

The LU-SGS method of Yoon and Jameson 2 is a logical choice for implicit time ad-
vancement, because it makes some simplifications to the implicit equation which diago-
nalize the problem and allow steady-state solutions to be obtained with a dramatically

69

reduced number of iterations over an explicit method, without a substantial increase in
the computat ional cost per iteration. In addition, the extension to three-dimensional flows
is straightforward. Although the method as formulated does not lend itself to implemen-
tat ion on a parallel machine, we will see that it is possible to make some modifications to
the method that make it perfectly data-parallel. Following the method of Yoon and Jame-
son, we approximate the implicit Jacobians in such a manner that differences between the
Jacobians become, for example,

A + - A_ = pal,

where pA is the spectral radius of the Jacobian A, given by the magnitude of the largest
eigenvalue lul + a, where a is the speed of sound. If we then move the off-diagonal terms
to the right-hand side, the resulting implicit equation becomes

I + AAI + ABI + Atdiag(C)i~j = AtRn'~,3

- A t A n 1 (~ 7 In + ~At An+i_ 1,jSi_�89 Vi,j -i+ �89 ~i+l,j (2)

At B~ ~ At Bn n

nt-~i,j +',j-�89 Si,J-�89 (~V;,~-I - ~ -i,J+�89 Si,J+�89 ~U;,j+I,

where ,XA = -~pA. An appropriate diagonalized form for the source term Jacobian C is
given by Hassan et al. 5 The viscous fluxes can be linearized in a manner similar to the Euler
terms following the work of Tysinger and Caughey, 6 or Gnoffo, 7 and can be included easily
in (2) without changing the basic nature of the method. 4 With these approximations, (2)
can be solved without any costly matrix inversions. It is important to note that we are
making approximations only to the implicit side of the problem; therefore the steady-state
solution will be unaffected.

The LU-SGS algorithm employs a series of corner-to-corner sweeps through the flow-
field using the latest available data for the off-diagonal terms to solve (2). This method
has been shown to be efficient on a serial or vector machine. However, significant mod-
ifications are required to reduce or eliminate the data dependencies that are inherent in
(2) and make the method parallelize effectively. The data-parallel LU relaxation (DP-
LUR) approach solves this problem by replacing the Gauss-Seidel sweeps with a series of
pointwise relaxation steps using the following scheme. First, the off-diagonal terms are
neglected and the right-hand side, R~,j, is divided by the diagonal operator to obtain 5U (~

5U} ~ { I + A A' + A~' + A td iag (C)n j } - ' _~ n At R n .
' ' i , j ~ , 3 "

Then a series of km~ relaxation steps are made using

for k = 1, km~

5U/(~ , {I + A~I + ABI + At diag(C)~,j }-1{ = n AtR~..
' i,j *'J

At dn 1 (~v}k~lj) /~t An ~U}+[,~) (3)
~- Yi,j +i- �89 - ' Yi,j -i+�89189

At Bn ,~rr(k_l) At B n ,~fT(k_l) ~
-Jr- ~" ~,3 +i'j--�89189 Yi,J -i'J+�89189 J

then

70

With this approach, all data required for each relaxation step have already been
computed during the previous step. Therefore, the entire relaxation step is performed
simultaneously in parallel without any data dependencies, and all communication can be
handled by optimized nearest-neighbor routines. In addition, since the same pointwise
calculation is performed on each computational cell, load balancing will be ensured as
long as the data are evenly distributed across the available processors. The low memory
usage of the method makes is possible to solve up to 32M grid points on a 512 processor
CM-5. These facts, together with the nearly perfect scalability of the algorithm to any
number of processing nodes, make it attractive for the solution of very large problems.

The diagonal DP-LUR method has been tested on two-dimensional geometries, with
an emphasis on evaluating the convergence properties and parallel performance of the
method. The primary test case for this paper is the Mach 15 flow over a cylinder-wedge
body, with Reynolds numbers based on freestream conditions varying from 3000 to 30 x 106.
The boundary layer resolution is measured with the wall variable y+ = pyu,/tt, where u, is
the friction velocity. For a well resolved boundary layer the mesh spacing is typically cho-
sen so that y§ _< 1 for the first cell above the body surface. The grid is then exponentially
stretched from the wall to the outer boundary, which results in approximately 70 points in
the boundary layer for the baseline 128 x 128 grid. Although the results presented here
are based on modified first order Steger-Warming flux vector splitting for the explicit
fluxes, s it is important to note that the derivation of the implicit algorithm is general
and can be used with many explicit methods. Results have also been obtained using a
Harten-Yee upwind non-MUSCL TVD scheme, 9 with comparable convergence properties.

The effect of the number of relaxation steps (kmax) on convergence is shown in Fig. la
for perfect gas flow over a cylinder-wedge at Re = 30 x 103 and y+ = 1. We see that the
convergence rate steadily improves as k,~ax increases, to a maximum of km~ = 4. It is
possible to further increase the number of relaxation steps, but only small improvements
in convergence are achieved, and the algorithm becomes less stable for many problems.
Figure l b plots the convergence rates for the same case versus computer time on a 64
processor parti t ion of the CM-5. Because each relaxation step has a small cost compared
to the evaluation of the explicit fluxes, km~ = 4 is also the most cost-effective approach.

loo~
10 -1

, .~10 -2
. i
r- 10 .3

"~ 10-4

o 10-:
E

10"
10 7
10 -s
10 -9

10 -1o

. expficit
1 ~ , . , ~ ' - , , " ~ kma = 0 "

...... " ' - - kmaX = 1 ~

~ ' - ----O~kmaX : 2 .
--~"<~E3.,~ " - " - - - - - - o - ~ k a x = 3

2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
I t e r a t i o n

lO~

10 -1

. ,~10 "2

10 .3
0

10 -4

o 0- 5

0_ 6

~..~10 "7

10 -s

10 .9

10-1~ 0

. explicit
-,. ". - k = 0

" , " " - . - k max = 1 -
...... " k m"x 2

" " " - - - ' ' - ~ ma - -

..

50 100 150 2 0 0 2 5 0
C P U t i m e o n 6 4 p r o c e s s o r C M - 5 (s e c)

Figure 1. a) Convergence histories, and b) CPU times on 64 processor CM-5, for t h e
perfect gas diagonal DP-LUR method showing influence of k Cylinder-wedge body at
M o o = 1 5 and Re = 3 x 1 0 4 . 1 2 8 x 1 2 8 grid with y + - - 1.

71

Figure 2 compares the convergence rate of the new DP-LUR method to the original
LU-SGS method. The flow conditions are the same as for Fig. 1. We see that, while the
performance of the two methods is similar at k , ~ = 2, the DP-LUR method converges in
significantly fewer iterations when four relaxation steps (km~ = 4) are used. This result
is surprising, because the relaxation technique limits the distance that information can
travel during each time step. However, this trend holds true for all cases tested to date.

The reacting flow version of the DP-LUR method is implemented for a five-species
chemical and vibrational nonequilibrium model for air, using standard reaction rates. 1~
Figure 3 presents the convergence rate for an inviscid reacting flow case, together with a
perfect gas solution on the same grid. The freestream conditions for both are Mach 15
flow at 60 km. We see that the convergence rate is nearly identical for both the perfect
gas and non-equilibrium chemistry simulations. This result holds approximately true for
many cases, although the reacting flow convergence rate does show some degradation as
the stiffness of the problem increases (increasing density or speed).

1 0 ~

l i f t

10 .2
O0
t-" 10 .3

"1~ 10-4
0
E 105

10 -6 r

10 -7

10 s

10 .9

1040

, , ~ . ' ' - - - -' D P L U R ' kmax=2
",,~ - D P L U R krnax=4

" ' . '~Lo. - - - - o - - - - L U S G S
", "CI

"X "O..(3.
", "C).

", "O
". "'C).

"', "O.
", " O .

" . "O.
", "O

",, "O.

, L

2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
I t e r a t i o n

Figure 2. Convergence histories for the
DP-LUR and original LU-SGS methods.
Cylinder-wedge body at M~ = 15 and Re =
30 x 10 a. 128 x 128 grid with y+ = 1.

10 -2

g 10 -3

"0 10-4
0
E 105

_ 1 0 -6

10 .7

10 .8

10 -9

10 -10

l00 i i ~

10 -1
�9
b,,

Q ~ e x p l i c i t -Q
O , Q kma x = 4

, q o - - - - k n , a x = 4 (p g)
qO

,-q
"D.

%~
"q~)

"q'c~
, , , , I i , , , i , i ," "~), i , , , , , ,

1000 2000 3000 4000
Iteration

Figure 3. Convergence histories for the in-
viscid perfect gas and five species react-
ing air DP-LUR methods. Cylinder-wedge
body at M~ = 15 and 60km, 128 x 128 grid.

3. F U L L M A T R I X D P - L U R

While these results show that the diagonal method is very effective for many problems,
it is well known that methods of this type exhibit significant degradation of convergence
rate on the high cell aspect ratio (CAR) grids necessary for the simulation of high Reynolds
number flows. 5,11 One way to alleviate this problem is to remove the Yoon and Jameson
diagonalizing approximation and use the exact split Jacobians on and off the diagonal.
This results in

I + ~ A+i+~,3 3,3 _ _ 1 , _ �89 _ 1 - A tC i , j 5U~,~

atA
-~ A t R~,j + ~i,j + i - � 8 9 1 8 9 Vi,j - iq- �89189 (4)

A t g n si j �89 5g~,j_l At 1 -- B n. ., 1 Si,jA r_ { 6S~j_~_l. + Vi,3 +i,j-~ , - ~ -~,~.~

72

The full matrix form of the DP-LUR method then follows logically if we use the same
approach to solve (4) as shown in (3). The resulting method is somewhat more compu-
tationally and memory intensive than the diagonal version, since a neq • neq matrix must
be inverted and stored at every grid point, where n~q is the number of equations in the
system. However, that calculation requires only local data and must be performed only
once per iteration. The overall algorithm remains entirely data-parallel and free of all
data dependencies, and in fact requires no more communication per iteration than the
diagonal version.

Figure 4a presents the computer time on a 64 processor CM-5 required for the error
norm to fall ten orders of magnitude for the two perfect gas inviscid algorithms as a
function of the maximum cell aspect ratio. We can see that although the more complex
full matrix method takes about 1.7 times as long per iteration, the overall solution time
is slightly better than the diagonal method even for the lowest CAR grids. As the CAR
increases, both methods require more iterations to reach steady-state, but the full matrix
method is less affected by the grid, and converges more than two times faster on the
highest CAR tested (CAR = 10,000). In Fig. 4b we also plot computer time for ten
orders of error norm reduction versus CAR, but this time for a low Reynolds number
(Re = 3000) perfect gas flow. For this case the full matrix method is superior on all grids,
and in fact is about 20 times faster on the highest aspect ratio grid tested. This shows
that the more physical approach of the full matrix method is clearly better suited to the
solution of highly viscous (low Re) flows.

~1000

~J 900

~ 8 0 0

700
600

~ 500

400

~ 300

200
100

v q

._ ' iag'onal

0 ' ' 'CA 22'ib ' i 0 '

~9000

~8000
~7000

~6000

~ 5000

,,~.~4000

= 3000
O

.~ 2000

1000

. i i

-.- diagonal /
full matrix

, t , -

)~ 10 z 10 -~ 104
CAR max

Figure 4. CPU times on 64 processor CM-5 to achieve ten orders of error norm convergence
for the full matrix and diagonal perfect gas DP-LUR methods as a function of maximum
cell aspect ratio, a) Inviscid, and b) viscous with Re = 3 0 0 0 . Cylinder-wedge body at
Mo~ = 15. 128 x 128 grid with y+ = 1 for each case.

An important result from Fig. 4 is that, for all 2-D perfect gas cases run to date,
the full matrix method achieves convergence faster than the diagonal. However, this does
not mean that the diagonal method should be discarded. The 2-D implementation of
the diagonal method uses about 30% less memory than the full matrix method; therefore
it will remain useful for very large simulations. Also, because the full matrix method
requires the formation and inversion of an exact Jacobian, the time and memory required
will scale, at least to some extent, with the square of the number of equations, while the

73

diagonal method scales nearly linearly with neq. This means that the diagonal method
may be a more efficient tool for the solution of certain three-dimensional or reacting flow
problems.

4. P A R A L L E L P E R F O R M A N C E

The viscous DP-LUR method was written in FORTRAN90 and implemented on the
512 processor Thinking Machines CM-5 located at the University of Minnesota Army High
Performance Computing Research Center. Each processor of this machine has four vector
units, each with a peak performance of 32 Mflops; therefore the entire 512-node machine
has a theoretical peak performance of 64 Gflops. Interprocessor communication is very
slow compared to the computational speed of the processors, due primarily to the large
latency. However, communication routines between nearest neighbors, such as CSHIFT ,

are highly optimized and are usually much faster than general router communication.
Thus, it is necessary to minimize the total interprocessor communication in the algorithm
and use the nearest neighbor routines whenever possible to obtain good performance.

Although the CM-5 supports both data-parallel and message-passing programming
environments, the algorithm was implemented only in data-parallel, since as formulated
it is inherently data-parallel and requires no asynchronous communication or computation.
It is important to note that while it is relatively easy to modify a data-parallel code to
run effectively on a message-passing machine by forcing the processors to act in lockstep
with the use of synchronization directives, the reverse is not usually possible. Therefore
this algorithm is quite general, and should run efficiently on a variety of parallel platforms
with only minor modifications.

Both the diagonal and full matrix versions of the DP-LUR algorithm exhibit perfect
scalability and high parallel efficiency. 3-4 The per-processor performance of each method
increases with the number of points on each processing node, and is independent of the
total number of processors. The peak per-processor performance of the perfect gas al-
gorithms, obtained when all of the available memory is used, is about 40 Mflops for the
full matrix method, and 34 Mflops for the diagonal version. The corresponding peak sus-
tained performance on the full 512 node machine is then 21.3 Gflops for the full matrix
method and 17.9 Gflops for the diagonal, which are both over 25% of the peak theoretical
performance of the machine. The reacting flow algorithms are all about 30% slower, due
to the evaluation of the exponentials required to form the reaction rates, which is a very
inefficient operation on the CM5. The increase in performance for larger numbers of grid
points per processor is due primarily to the vector nature of the machine; more points
per processor implies a greater vector length.

5. C O N C L U S I O N S

The lower-upper symmetric Gauss-Seidel method of Yoon and Jameson has been
modified to make it amenable to the solution of the Navier-Stokes equations on data-
parallel machines. The resulting diagonal and full matrix data-parallel LU relaxation
methods are both almost perfectly parallel, and display good stability and convergence
properties on many perfect gas and reacting flows.

74

Both methods are implemented in data-parallel on the Thinking Machines CM-5,
where they exhibit high parallel efficiency and perfect scalability. Their formulation makes
the methods easy to implement in either data-parallel or message-passing modes, and
therefore they should be portable to a variety of different parallel architectures. Floating
point performance on the CM-5 is primarily a function of the number of grid points per
processor, due to the vector nature of the machine. For very large perfect gas problems,
the 512 processor CM-5 runs at about 17.9 Gflops for the diagonal method and 21.3
Gflops for the full matrix version, both of which are over 25% of the peak theoretical
performance of the machine. The reacting flow codes are about 30% slower, due to an
inefficient handling of the required exponentials. In addition, the memory usage of both
methods is quite low, making it possible to run up to 32M grid points with the diagonal
method and 24M grid points with the full matrix method for perfect gas problems on the
512 processor machine.

In short, the high parallel efficiency, low memory requirements, and numerical stability
of the data-parallel LU relaxation methods make them potentially useful for the solution
of very large perfect gas and reacting flow simulations.

R E F E R E N C E S

1. Simon, H. D., ed., Parallel Computational Fluid Dynamics Implementations and Re-
sults, MIT Press, Cambridge, MA, 1992.

2. Yoon, S. and Jameson, A., "An LU-SSOR Scheme for the Euler and Navier-Stokes
Equations," AIAA Paper No. 87-0600, Jan. 1987.

a. Candler, G. V., Wright, M. J., and McDonald, J.D., "Data-Parallel Lower-Upper
Relaxation Method for Reacting Flows," AIAA Journal, Vol. 32, No. 12, pp. 2380-
2386, 1994.

4. Wright, M. J., Candler, G. V., and Prampolini, M., '% Data-Parallel LU Relaxation
Method for the Navier-Stokes Equations," AIAA Paper No. 95-1750CP, June 1995.

5. Hassan, B., Candler, G. V., and Olynick, D.R., "The Effect of Thermo-Chemical
Nonequilibrium on the Aerodynamics of Aerobraking Vehicles," Journal of Spacecraft
and Rockets, Vol. 30, No. 6, pp. 647-655, 1993.

6. Tysinger, T. and Caughey, D., "Implicit Multigrid Algorithm for the Navier-Stokes
Equations," AIAA Paper No. 91-0242, Jan. 1991.

7. Gnoffo, P. A., "An Upwind-Biased, Point Implicit Relaxation Algorithm for Viscous,
Compressible Perfect-Gas Flows," NASA TP 2953, 1990.

8. MacCormack, R. W. and Candler, G. V., "The Solution of the Navier-Stokes Equa-
tions Using Gauss-Seidel Line Relaxation," Computers ~ Fluids, Vol. 17, No. 1, pp.
135-150, 1989.

9. Yee, H. C., "A Class of High-Resolution Explicit and Implicit Shock Capturing Meth-
ods," NASA TM 101088, 1989.

10. Park, C., Howe, J. T., Jaffe, R. L., and Candler, G. V. "Review of Chemical Kinetic
Problems of Future NASA Missions, II: Mars Entries," Journal of Thermophysics and
Heat Transfer, Vol. 8, No. 1, pp. 9-23, 1994.

11. Yoon, S. and Kwak, D., "Multigrid Convergence of an Implicit Symmetric Relaxation
Scheme," AIAA Journal, Vol. 32, No. 5, pp. 950-955, 1994.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

75

Parallel Simulation on Rayleigh-B4nard Convection in 2D by the Direct
Simulation Monte Carlo Method

Mitsuo Yokokawa ~, Dave Schneider b, Tadashi Watanabe ~, and Hideo KaburakP

'~Center for Promotion of Computational Science and Engineering,
JaI)an Atomic Energy Research Institute,
2-28-8, Hon-Komagome, Bunkyo-ku, Tokyo 113, Japan.

bCornell Theory Center, Engineering and Theory Center Bld.
Ithaca, NY 14853-3801, U.S.A.

The Direct Simulation Monte Carlo method is one of the powerflfl methods to obtian
macroscopic properties of flows from the microscopic motion of particles. The parallel
DSMC code has been developed to simulate two dimensional Rayleigh-Bdnard convection
by using a message passing system PVM3. The speedup of 7.9 going from 2 to 16 proces-
sors is obtained by the parallel code with the adaptive scheme for defining collision cells
on tile IBM SP2.

1. I n t r o d u c t i o n

The direct simulation Monte Carlo (DSMC) method is frequently used in gas kinetics
for simulating a wide range of flows from the rarefied to the near continuum region. This
technique was developed by Bird [1] and has been applied to various kinds of flows. This
method obtains macroscopic properties such as temperature and velocities by averaging
microscopic motions of simulated particles over small volumes. Therefore, the method is
suitable for deriving microscipic characteristcis from macroscoI)ic flows.

Several studies for the Rayleigh-B6nard convection have been carried out using tile
DSMC and MD methods and conducted the convection rolls at high Rayleigh number.
In ahnost all of those stu(lies, however, semislip boundary conditions are applied at the
top and bottom walls. Stefanov and Cercignani [2], and Watanabe, et al. [3] have been
successflll in simulating rolls with the diffuse reflection boundary condition. In particular,
Watanabe, et al. have derived the critical RayMgh number for the Rayleigh-Bdnard
systeIn in the continullm region using tile two-dimensional DSMC simulation with diffusive
boundary conditions in a rectangular region with aspect ratio of 2.016 and discussed the
influence of the boundary condition on the field variables.

For the simulation of flows in tile continuum region described by the conventional
hydrodynamics, a large number of simulated partMes are needed to reduce statistical
errors and rel)roduce physically meaningful flow patterns. When the Knudsen number is
small, tlle mean free path is small coInpared with the characteristic length scales and a
large immber of collision cells are required. Moreover, since the time step has to be equal

76

to or less than the mean free time between collisions, a large number of time steps are
necessary to reach a steady state flow. These considerations indicate that the simulations
of two-dimensional flow with larger aspect ratios and three-dimensional continuum flows
by the DSMC method require more computational power and memory capacity than are
currently available on serial and vector mainframe computing platforms.

One of the solutions to reduce the computational time is parallel computation. In the
DSMC method, collisions between simulated particles are restricted only within a small
region called a collision cell during each time step. It is clear that the collision processes
in each cell are independent, thus can be carried out in parallel. Yokokawa, et al.[4]
have developed a parallel code of the DSMC simulation on the Fujitsu AP1000 and have
evaluated the efficiency of parallel processing for this class of problems. In these studies,
the computational domain is divided into subdomains which have the same number of
collision cells and computation of the particles in a subdomain is assigned to a processor.

In this study, we have developed several portable parallel DSMC codes for simulating
flows in a rectangular region using tile PVM (Parallel Virtural Machine) message passing
library. The codes were developed on the IBM SP1 and SP2 systems at the Cornell
Theory Center.

2. T h e D S M C M e t h o d

The DSMC method consists of two distinct processing steps. The movement process
describes the evolution of the system between collisions, and the collision process describes
the effects of collisions between simulated particles. The computational domain is divided
into collision cells in which the interchange of momenta for simulated particles takes place.
Tile length of the collision cell is taken to be nearly equal to the size of the mean free
path. The Bird's time counter method is used for tile collision process and tile hard sphere
model for the particles and tile elastic collision model for the momentum exchange are
assumed in the implementation.

The sampling cells, in which physical quantities such as density and velocities are
derived, are defined as groups of collision cells and can be taken independently of the
collision cell. Tile flow properties of the computational region are calculated by taking
tile time averages of the number of simulated particles and their velocities through several
time steps.

Since the size of the collision cell must be the same order as the mean free path, it is
sometimes difficult to discretize the region by fixed collision cells with appropriate size.
An adai)tive scheme for defining collision cells [5] has been implemented in the code. In
this scheme, each sampling cell is divided into several collision cells automatically with
appropriate size to the local mean free path in the sampling cell as simulation proceeds.

3. Para l l e l i za t ion

As seen in tile algorithm of the DSMC method, collisions between simulated particles
arc restricted only within a collision cell during each time step. It is clear that tile
collision processes in each cell are independent, thus can be carried out in parallel. In tile
previous parallel implementation on tile AP1000[4], the computational domain is divided
into sut)domains so that each processor is assigned nearly equal numbers of collision

77

cells. The assignment of the subdomains to processors is determined in the beginning of
simulation and a reference table between sampling cells and processors (hereafter called
as the SC-PE table) is created on all processors. The sampling cell in which a simulated
particle resides is determined by a simple binning operation using its spatial coordinates,
and the processor in which this sampling cell resides is determined by referring to the
SC-PE table. If the particle moves from one subdomain to another, the data for this
particle is transferred between processors. The dynamic allocation can be applied to keep
the load balance by the mean that the SC-PE table is reconfigured dynamically in all
processors while the simulation is being carried out.

The transfer of particles between processors occurs because particles move throughout
the whole computational domain. The rate of particle transfers between processors can be
q~fite high in the convective flow regime. Initially, two barrier synchronizations were used
in the particle data transfer process. The first synchronization was just after sending the
number of particles to the processor which is expectd to receive the particle data, and the
second one after sending the particle information (positions and velocities). Subsequently,
we developed a loosely synchronous implementation which does not require any global
barrier operations.

The statistics taken in each processor are collected on a processor at some interval
through the simulation and written out onto the file t)y the processor. The whole particle
information is also saved into the file at the end of a run so that the sequence of jobs can
be executed.

The PVM3 system is used for the parallelization and the SPMD programming model
is taken to make parallel DSMC codes on the IBM Powerparallel system SP1 and SP2.

4. C o m p u t a t i o n a l Resul ts and Performance

Two simulations on the lid-driven cavity flow and the Rayleigh-B(~nard convection have
been carried out to check the validity of tile parallel codes.

Tile computational domain is divided into 64 • 64 sampling cells for the lid-driven
cavity flow. The initial temperature and pressure are 283K and 0.002Pa, respectively,
which correspond to the air at an altitude of 100km. The Knudsen number is 0.005 and
the Reynolds number is 100. The simulated particles of 320 are assigned initially in a
sampling cell. The particles of 1,310,720 in total are used in the simulation. The adaptive
scheme is not applied in the simulation. The simulation result is in good agreement
with that of Navier-Stokes simulation. The performance of 7.14, 3.45, 1.78, and 1.06
ll, sec/ i)ar t ic le / i terat ion has been obtained with 2, 4, 8, and 16 processors, respectively, on
the IBM SP1. This correst)onds to a speedup of 6.7 going from 2 to 16 processors.

The results of numerical simulation on Rayleigt>B6nard convection of air by the parallel
code have 1)een compared with those by Watanabe and others [3]. The simulation domain
is a two-dimensional rectangle, the aspect ratio of which is 2.016. The height is 5.6mm.
The initial temperature and pressure are 80K and 20Pa, respectively. The Knudsen
mlmber is about 0.016. This domain is divided into 40 • 20 sampling cells and 400
particles are initially placed in each sampling cell. The Rayleigh mmlber is varied from
2000 to 5000, and the bottom wall temperature corresponding to the Rayleigh number is
placed in the beginning of the simulation. The samplings is taken every 2 time step. The

78

I

t z / / ,;/ .5.C--"--~'-~---5C. x J Z / . ~ ~ \ ~ ,x ,x g I II
I / / , / , / , / . 4 / . / - - ~ t _ _ , \ ~ . X \ l l g Z g (, - f \ \ ~ x . , x ,x ~ ~ ,~ ;I

i l l l / / ~ - /,l "--,,\\\\

.~1 \,~ \ \ \ t ' - ' - ' - - - - - X s / Z I, f, ~ t ~ ~ , ~ , x . ' - - _ . , . / / / / / / . / i ~

I

Figure 1. Velocity profile in the steady state at Ra=3000.

adaptive scheme of generating collision cells is applied for this problem. Each sampling
cell is divided into 25-36 collision cells according to the local mean free path.

Figure 1 shows the convection rolls at Rayleigh number of 3000 in the steady state. Tile
rolls are generated after 4000 time steps and kept in a stable state. Though tile direction
of the vortex is downward flow in the center of the cavity in this case, it is possible to
obtain upward flow in the center due to tile difference of random number sequences.

The comparison of the result by parallel calculation with that by serial one is made and
tile time development of the mid-elevation temperatures of both calculations at Rayleigh
number of 3000 is shown in Figure 2. The result by the serial code is denoted by tile
lines tagged 'Serial' and so is the result by tile parallel code by the lines tagged 'Parallel.'
Tile lines with 'Avg', 'Left', and 'Cntr' in the figure mean that the average temperature
along with the horizontal line, the temperature sampled at the left-most sampling cell and
tile center cell, respectively. The temperatures are normalized so that the tempertures
of the top and bottom walls are 0.0 and 1.0, respectively. The exact agreement was not
obtained between tile codes. It seems that the random number sequences used in the
simulation are different between in serial calculation and in parallel one. However, the
tendency of the temperature development is almost the same in both calculations. The
relation between temperatures and the Rayleigh number are also in good agreement with
those obtained by Watanabe, et al. Figures 3 and 4 show the CPU time measured in
the main process on the SP1 and SP2 as the number of processors increases as 2, 4, 8,
and 16, respectively. The high performance switch is taken as a communication network
between processors on both system. Three different sizes of data are considered in the
measurement, which are 200,400, and 800 particles in a sampling cell and 160000, 320000,
and 640000 paticles in total in a whole computational region. The 20 time steps have
been advanced with 10 samplings. The symbols '<>' and '+ ' mean the total CPU time
and the time within the iteration loop of time advancement, respectively. It is found that

79

Seria~ A/~ I - -
Serial
Serial

Parallel }Av~l
Parallel Le
Parallel (Cnt r)

. : : : : " : ' : : : : .
7 - - - ' "

.,:._. , : '7: : : :< '- "

=:::z >"-::::":::::::::::_:::: ...

0 i i i i i i i
0 10 20 30 40 50 40 50 60

Time step (x lO0)

Figure 2. Comparison of time development of the mid-elevation temperature at tile
RayMgh number of 3000 between the serial and the parallel codes.

tile CPU time decreases at the rate inversely proportional to tile number of processors.
The performance of 11.40, 5.84, 2.83, and 1.45 #sec/particle/ t imestep has been obtained
with 2, 4, 8, and 16 processors, respectively, on the IBM SP2. This corresponds to a
speedup of 7.9 going from 2 to 16 processors. It is clear that the parallel code has the
scalability. However, the performance for the Rayleigh-Bdnard simulation is slightly lower
than that for the'cavity flow simulation. It seems that the adaptive scheme fl'o generating
the collision cells needs more CPU time to define the collision cell dynamically during tile
simulation. The CPU time on the SP2 is 30% faster than that on the SP1.

The CPU time required to save the information of all partilces for restart jobs, which
are the locations and velocities of all particles, is also measured. The amount of data are
6.4, 12.8, and 25.6 megabytes for the number of particles of 160000, 320000, and 640000,
respectively. Tile data is archived into a file in tile main process and the data on the
other processors should be transferred to the main process before saving. The CPU time
increases as the number of processors increases because the time required for the data
transportation increases. The performance of nearly 3MB/sec and 2MB/sec for saving
data onto a file is measured the SP1 and SP2, respectively.

5. C o n c l u s i o n

We have developed the serial and parallel DSMC codes with the adaptive scheme for
defining the collision cells. Tile parallel code is implemented with the SPMD programming
model by using tile PVM3 message passing library. It is found that the results obtained by
tiles(; (:odes are in good agreement with the previous ones. The performance of 11.40, 5.84,

80

1000

g ~0o
o}

E . _

13_
o 1 0

Total - - , - -
Calc. -
I / P E

1000

~" 100
u} v

E ._

13.
(9 10

1 1

Tota l ------
Calc. -

I / P E

1 2 4 8 16 2 4 8 16
N u m b e r of p rocessors N u m b e r of p rocesso rs

Figure 3. CPU time on the SP1 Figure 4. CPU time on the SP2

2.83, and 1.45 #sec/particle/timestep has been obtained with 2, 4, 8, and 16 processors,
respectively, on the IBM SP2 in the case that the adaptive scheme for defining collision
cells is used. This corresponds to a speedup of 7.9 going from 2 to 16 processors. It is
clear that the parallel code has the scalability.

A c k n o w l e d g m e n t s

This research was peformed at the Cornell Theory Center while tlle first author stayed
there as a visiting scientist. The authors would like to thank Profs. Malvin Kalos and
Marcy Rosenkrantz for allowing us to use the facilities. They also would like to thank
Drs. Steve Hotovy and Jerry Gerner for their helpflfl discussion.

R E F E R E N C E S

1. G. A. Bird, Molecular Gas Dynamics, Oxford University Press, Clarendon, Oxford
(1976).

2. S. Stefanov and C. Cercignani, European Journal of Mechanics B Fluids, Vol.ll, 543
(1992).

3. T. Watanabe, H. Kaburaki, and M. Yokokawa, "Simulation of a two-dimensional
Rayleigh-B(~ nard system using the direct simulation Monte Carlo method," Physical
Review E, Vol.49, No. 5, pp.4060-4064 E (1994).

4. M. Yokokawa, K. Watanabe, H. Yamamoto, M. Fujisaki, and H. Kaburaki, "Parallel
Processing for the Direct Simulation Monte Carlo Method," Computational Fluid
Dynamics JOURNAL, Vol.1, No.3, pp.337-346 (1992).

5. H. Kaburaki and M. Yokokawa, "Computer Simulation of Two-Dimensional Contin-
uum Flows by the Direct Simulation Monte Carlo Method,", Molecular Sinmlation,
Vo1.12(3-6), pp. 441-444 (1994).

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

81

Distributed Implementation of KIVA-3 on the Intel Paragon

O. Ya~ar ~* and T. Zacharia b*

~Center for Computational Sciences, Oak Ridge National Laboratory,
P.O. Box 2008, MS-6203, Oak Ridge, TN 37831

bMetals and Ceramics Division, Oak Ridge National Laboratory,
P.O. Box 2008, MS-6140, Oak Ridge, TN 37831

We describe a message-passing implementation of KIVA-3 combustion engine code.
Although the pre-processor uses a block-structured mesh to begin with, the main code
does not require any order in the grid structure. Each computational element is recognized
through the neighborhood connectivity arrays and this leads to indirect addressing that
complicates any type of loop decompostion on parallel machines. Dependencies in the
code extend only one layer in each direction and the presence of ghost cells and cell-face
boundary arrays in the code suits block-wise domain decompostion very well. Internal
boundaries are handled like the external boundaries, enabling one to apply the same
rules, physics and compuatation to a part of of the domain as well as the whole domain.
The code is currently being tested on the Intel Paragon at CCS-ORNL. The parallel
efficiency for a simple baseline engine problem has shown to be more than 95 % on
two nodes, a much more optimistic performance indicator compared to earlier KIVA-2
implementations. Further work is underway to test the validity and scalibility of the
algorithm for a range of problems.

1. I n t r o d u c t i o n

KIVA-3 [1] comes as a package comprising of a pre- and post-processor and the hydro
code. The pre-processor uses a block-structured mesh to represent the physical domain
and that provides an ability to model complex geometries. The physical domain is sur-
rounded by ghost cells in all directions, a significant difference from KIVA-2 [2,3]. The
introduction of ghost cells in such abundance increases the number of mesh points in
one hand, but it gives the ability of dividing the global domain into small independent
blocks, easing the constraints of having a large tensor-product grid to represent complex
geometries. Each block is initially created independently using a tensor-product grid, but
they are all patched together at the end with connectivity arrays describing what the
surrounding points are for each mesh point. Thus, the outcome from the pre-processor
is somehow similar to unstructured meshes and the hydro code will accept mesh created

*The work was sponsored by the Division of Material Sciences of the U.S. Department of Energy, and
the Center for Computational Sciences (CCS) of the Oak Ridge National Laboratory under contract
DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

82

with any pre-processor as long as the connectivity arrays are provided. The fact that the
grid points do not have to be stored in any order in data arrays leads to an ability to
sort out the active and non-active (ghost) cells and that eventually leads to shorter vector
lengths in the computational loops.

The use of connectivity arrays and indirect addressing is advantageous, but there are
disadvantages associated with indirect addressing as well, particularly for parallel im-
plementations that are based on loop decomposition. The only way to counter that is
to have each processor localize its computation to a group of mesh points with the least
number of references to remote points. In other words, instead of dividing the loop among
processors, we divide the problem geometrically such that each processor's computation
is localized to a block of meshes that are in physical contact. Indirect addressing is not a
problem for processors to handle elements in their own region so long as they can identify
the elements that must be exchanged with the neighbor processor during communication.

Altogether; the use of ghost cells, connectivity arrays and cell-face boundary conditions
in all directions creates a general recipe of physics, numerics and boundary conditions that
can be applied to a part of the domain as well as the whole domain, and thereby providing
for a convenient block-wise domain decomposition. The following sections will further
explain the implementation of such a block-wise distribution for data and computation
on distributed-memory parallel computers. Following a section on the grid and data
structure, we will discuss the dependencies for diffusion, advection and spray dynamics
taking place in the computational volumes. Finally, a simple test problem and its parallel
execution on the Intel Paragon will be described.

2. Grid and D a t a S truc ture

KIVA-3 is a 3D finite-difference code, solving fluid, particle and chemistry equations
over a mesh made up of arbitrary hexahedrons. Each hexahedron is a cell with vertices
located at the corners. A regular cell is represented by its lower left front vertex. A
typical representation of the block-structured grid system for KIVA-3 is shown in Figure
1. The data (grid locations, physical quantities) for such a tensor-product grid could be
stored in 1D arrays by a single index that increases in an x-y-z order sweeping x-y planes
one at a time. Data stored in this fashion will still maintain the structure of the grid,
and neighborhood connectivity is defined through the x-y-z ordering of the cell index. A
computational loop over the entire mesh will sweep the elements of 1D arrays from the
start to the end including non-active cells represented by the vertices on the boundaries.
Since boundary vertices do not represent real cells, this might create a significant loss
in execution time when there are many of such non-active cells. KIVA-3 addresses this
problem by storing the connectivity information into separate arrays for each direction
and using indirect addressing through these arrays to identify the neighbor points in the
grid. Since the connectivity information is kept independent of the initial x-y-x ordering
of the data storage, the ordering can be compromised in favor of grouping active and
non-active cells separately using the flags described below. The storage of array elements
according to such sorting in KIVA-3 is illustrated in Figure 2.

The real physical domain is surrounded by ghost cells in all directions. The boundary
vertices on the right, back, and top are real vertices, but they represent ghost cells that are

h) Physical G r ~ d

F=O F = l F=O
FVzO FV#O I"V#O

F = (0, 1): (Ghost. Active) ... Ct.115:
P'V=(O, I): (Ghost, Active) ... Vertices

c) V i s ~ ~ a l rrprcscrrt,at,ion of nctivc ant1 ghost.
a,) Cnniplrt,nt,ionaI.Grid units here,

F i g u r ~ 1. Grid Structilre as shown in x-y planes.

Figure 2. Storage sorted by F and FV to ~ r i a , i r ~ t a i ~ ~ the sliortesl ~os s ib l e vector 1e11gths.

84

not part of the physical domain. There are flags (F for cells, FV for vertices) associated
with each cell and vertex to indicate if they are real or not. The flags take values of 1 or 0.
Based on the flag values one can sort out the elements on such a grid in different groups.
Elements with F = 0, F V = 0 correspond to the ghost cells on the left, front, and bottom,
whereas elements with F = 1, FV = 1 correspond to the active cells, elements with
F = O, F V > 0 correspond to ghost cells on the right, back, and the top as distinguished
through different shapes in Figure 1 and 2.

In a distributed implementation, the ghost cells could match the real cells of outer
layers residing on other adjacent processors. Each processor would then copy information
from adjacent processors into these ghost cells and treat this information just like the
boundary conditions. Since the access pattern for vertices and cells on the boundaries
need to be known in advance for communication requirements, one needs to further sort
out active and non-active cells within themselves separating the ones on the left, right,
and so on. One would also have to assume that the boundary shared between neighbor
processors has the same grid points on both sides to assure proper communication. The
suggested sorting could be either done in the pre-processor or the main program itself.

Although a 3-D domain decomposition is considered as the ultimate goal here, the
current thinking is towards a one-dimensional one. The piston motion in z-direction
suggests that decomposition of blocks be parallel to the z-direction for best possible load
balancing and low communication/computation ratios. During the piston motion, the
grid should be decomposed, re-organized and sorted again as done in the beginning of
the simulation. There is need for processor communication to assure the removal of the
grid at the same x - Y planes. The interface between processors is assumed to have the
same grid points on both sides to match the communication patterns when needed. A
more general approach would eliminate this requirement by gathering into the ghost cells
values computed by interpolations or extrapolations.

3. Time and Spatial Dependency

The governing equations for the fluid and particle dynamics and chemical reactions are
discretized in both time and space in KIVA-3. The temporal differencing is done in 3
steps (A,B, and C). Phase A is where most of the source terms are calculated, Phase B is
where the diffusion terms are calculated and Phase C is where the advection is computed.
KIVA-3 uses a

D n+l = C D " / 9n+l -1 t- (1 - C u) " pn (1)

type formula mixing both explicit and implicit schemes to adapt the solution to the
changing CFL condition. Here, Cu is the implicitness variable and is computed at every
time step to check the flow conditions. Implicit schemes generally pose difficulties for
parallel computing due to the dependencies on the current values of the variable that
is being calculated. However, the implicit solvers in KIVA-3 are iterative ones and the
physical variables on the RHS of the governing equations are already known (predictor)
and thus require no sequential dependencies between processors. However, the processors
have to march together and make available to each other the necessary values at each
iteration.

85

Discretized equations for mass density, specific internal energy and turbulence equations
are solved for cell-centered quantities and thus require both cell-center and cell-face values
of variables involved. Most of the physical quantities are cell-averaged and are computed
via control volume approach. The momentum field is computed via momentum cells that
are centered around vertex locations. Cell-face velocities are computed at cell faces via
cell-face volumes centered around the face it involves. Volume integrals of gradient terms
are converted into surface area integrals using the divergence theorem and computat ion
of such terms constitute the heart of the diffusion solvers in the code. Such area integral
terms over surfaces become sums over cell faces:

V Q . dA - ~--~(VQ)~. A~ (2)
J ~

or

where a represents one of the six cell faces. Evaluating the gradient on the surface is done
as follows

= - + - + sd(Qs -

(3)

where t, b, f , d indicate top, bottom, front and back mid-points on the cell face a, and l, r
indicate the cell centers on the left and right sides of the cell face. Here, al~, atb, and aid
are geometric factors for face a in l e f t - right, top-bottom, f ron t - back directions, and
Qt,b,f,g values are averages computed at mid-points on this face. Averaging is done over
the values of Q in the four cells surrounding cell edge in question. Ql and Q~ are values at
cell centers on the left and right sides of the cell face a. Since the evaluation of variables
on the cell face mid-points is done through averaging among the cells that share the cell
face in question, cell-face averaging is a potential for communication between adjacent
processors for the cell faces on the boundary.

The momen tum equation is solved at vertex locations and thus requires quantities at
both vertex locations and momentum-cell faces. Volume integrals over momen tum cells
are also converted to area integrals. Momentum cells are constructed around vertices and
involve 8 regular cells that share a particular vertex. There are a total of 24 faces (/3),
three of each reside in one of the 8 cells. The vertices on the boundary do not have as many
/3 faces as the internal ones unless the boundary is shared by other processors that have
the remainder of the missing faces. Evaluating quantities on the boundary momen tum
cell faces will involve processor communication. Contributions from other processors also
need to be gathered for physically internal but computationally external boundary vertex
momen tum cells.

Cell-face velocities require the pressure evaluation on both sides of the regular cell faces.
A cell-face volume is centered around the face in question with faces (7) cutting through
the cell centers on both sides. Again the computation for cell-face velocities has to collect
contributions from adjacent processors that share the face in question.

A block-wise decomposition (whether in one or multi-direction) requires the processors
share a common face. This in no way indicates that there is a duplication by the adjacent
processors of the vertices on the common faces. A vertex gets 1/8th of its mass from
each cell that has the vertex in common, and vertices on the processor boundary are
only partially represented by each processor. KIVA-3 applies the same rules (physics,
numerics and BCs) to every computational cell, except some of the external boundary

86

@

- - I - -
T C

B C

2 7 0 -

T C

0

1
m |

|
|
|

1 8 0

B C

I 9 0

Figure 3. Basic geometry of the reciprocating internal combustion engine.

conditions are applied via the F flags. Care needs to be taken to treat physically internal
but computationally external boundaries as internal by temporarily changing the flags to
1.0.

Advection of cell-center quantities require computing cell-face quantities and that in
turn requires cell-center quantities and their derivatives on both sides of the face depending
on the upwind conditions. Required information is gathered from other processors and
put into ghost cells. Advection of momentum, however, is a somewhat different. One not
only has to gather derivatives and variable values from vertices in the neighborhood, but
also has to sum the contributions to account for all the momentum cell faces residing in
multiple number of regular cells. One can use either Quasi Second Order Upwind (QSOU)
or first order Partial Donor Cell (PDC) Upwind to evaluate the quantities on the cell faces.
For cell-centered variables (mass, energy, etc) this requires derivatives at cell centers on
either sides of the face. For momentum, this requires derivatives of velocity field at vertex
locations on both sides of the vertex at which the momentum cell is located.

The governing equations for spray dynamics and chemical reactions are discretized over
the same mesh system as we have described so far. The fluid flow is affected by the spray
injection and chemical ignition processes and the effects show up in the fluid equations,
mostly in the source-term. Spray injection and fuel ignition processes are both local
and may not occur in the domains of all the processors, causing a slight load-balancing
problem. Most of the spray and chemistry quantities are cell-centered and involve no
dependencies between neighboring cells. Spray particles cross cell faces and may end up

87

changing processor domains. A mechanism for particle destruction and creation across
processor boundaries is required. Spray particles contribute to the vertex masses and
momentum and their interaction with fluid is described through collisions, breakup, and
evaporation.

4. Test P r o b l e m

A typical problem to test our parallel algorithm would be a reciprocating engine, where
the piston moves back and forth in a cylinder and transmits power through a connecting
rod and crank mechanism to the drive shaft as shown in Figure 4. Our current capability
does not include a dynamic grid yet, thus the piston motion cannot be tested yet at this
stage. Also, the spray injection is turned off to separate the load balancing effects from
the initial focus on the fluid flow and combustion. The piston chamber is modeled with a
20xlx20 (x-y-z) cylindrical grid using the pre-processor separately on two identical blocks
for a two-node execution. Each node then works on a 10xlxl0 physical grid. The compu-
tational grid includes one extra-layer (buffer zone) in each direction to accommodate the
boundary conditions and interprocessor communication. The grid data (tapelT) needed
by the main code can be generated through any pre-processor as long as the grid points,
their connectivity arrays follow required format. Generating this data for different domain
partitioning and varying number of nodes will require a little bit of effort compared to
cases where decomposition and the number of nodes are determined during run time.

The run time was set up to 100 cycles with t=14 seconds. The processors seemed
to march together with the same At time step as if the off-site partition were running
along with the resident partition. The results in tape12 seemed consistent with each other
and also with the single-node output. A comparison of graphical output tape9 shows a
consistent continuity in pressure contours between the two partitions that is also similar
qualitatively with the single-node run. The parallel speedup for both first order (PDC)
and second-order (QSOU) upwind differencing is shown in Figure 4. Though PDC is
normally a cheaper method, it is less amenable to parallelism due to the Robin-Hood
type correction of negative fluxes introduced through first order differencing. If a cell
ends up with a negative mass, then the neighbor cells with positive values have to bring
that to at least zero by giving away from their own. If such a cell happens to be on the
boundary then this will involve interprocessor communication.

5. S u m m a r y

A block-wise decomposition approach is described for implementing KIVA-3 on distributed
memory machines. Dependencies in the code extend only one layer in each direction and
the presence of ghost cells and cell-face boundary arrays in the code suits a distributed-
memory implementation well. There seems to be no dependency created through temporal
differencing since variables are computed based on the quantities from the previous iter-
ation or time step. Spatial differencing requires estimating variables and sometimes their
gradients (diffusion terms) on the cell faces which leads to communication between adja-
cent processors sharing the cell-face in question. Momentum cells around the boundary
vertices are split between processors, requiring each to compute only their share of the ver-
tex momentum contribution. Advection involves fluxing through regular and momentum

88

2.0 2.0

Speedup

1.0

y

/ / - -

/ / QSOU
/ PDC - -

1 2
P r o c e s s o r s

1.5

Figure 4. Speedup results for the test problem.

cell faces. Cell-face values that are evaluated via upwind differencing (QSOU or PDC)
require physical quantities and their derivatives on both sides of the face. Spray dynamics
and chemistry are expected to require little communication but non-uniform distribution
of particles will lead to slight load balancing problems. Particles cross processor bound-
aries and need to be created and destroyed. The grid points on the shared faces between
processors need to have the same structure for predictable communication patterns. The
testing of the algorithms is being done on the Intel Paragon and the speedup of 1.9 have
been obtained for a simple baseline engine case on 2 processors. Further results including
spray dynamics, and piston motion for more general problems are expected in the near
future.

R E F E R E N C E S

1. Amsden, A. A. 1993. "KIVA-3: A KIVA Program with Block-Structured Mesh for
Complex Geometries." Technical Report LA-12503-MS. Los Alamos National Labo-
ratory, Los Alamos, NM 87545.

2. Amsden, A. A., P. J. O'Rourke, and T. D. Butler 1989. "KIVA-II: A Computer
Program for Chemically Reactive Flows with Sprays." Technical Report LA-11560-
MS. Los Alamos National Laboratory, Los Alamos, NM 87545.

3. Ya~ar, O. and Christopher J. Rutland 1992. "Parallelization of KIVA-II on the
iPSC/860 Supercomputer." Proceedings of Parallel Computational Fluid Dynamics
'92 Conference (New Brunswick, NJ, May 18-20), 419-425.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All fights reserved.

89

A PARALLEL TOOL FOR THE STUDY OF
3D TURBULENT COMBUSTION PHENOMENA

A. S toessel * ~

~Institut Franw du P~trole, F-92506 Rueil-Malmaison, France, Alain.Stoessel~ifp.fr

Direct Numerical Simulation of 3D reactive turbulent flow is a very useful tool for a
better knowledge of turbulent phenomena, but accurate and costly numerical methods
have to be used in order to capture all physical scales. A modern efficient tool named
NTMIX3D has thus been built on MPP platforms and released to physicist users to
perform some real practical studies.

We will present in this paper our experience in building this new tool on a wide range
of computers including modern distributed memory parallel computers. After a brief
statement on the physical problem and its numerical implementation, we will describe
the parallel computer implementation including dynamic load balancing and insist on
numerical improvements and software engineering used to achieve high efficiency. Lastly,
we will show a practical simulation of typical turbulent combustion phenomena.

1. P h y s i c a l P r o b l e m a n d P a r a l l e l I m p l e m e n t a t i o n

Predicting and controlling pollution by flames (piston engines, furnaces, heaters, air-
craft engines) will be some of the great challenges of combustion research and industrial
development in the next years. This prediction has to be done in most cases for turbulent
flames for which very little fundamental experience exists on the mechanisms control-
ling pollutant formation. This situation is quite different from the one encountered in
laminar flows for which many research groups have developed efficient tools to predict
flame structure and pollutants for any chemical scheme. Unfortunately the information
obtained in laminar situations can not be applied directly to most practical combustion
devices because these systems are controlled mainly by turbulent motions. New methods
devoted to the problem of chemistry- turbulence interactions have to be developed.

Recently, Direct Numerical Simulation of turbulent flames has emerged as one of the
major tools to obtain information on turbulent flames and to be able to construct models
for those turbulent reacting flows [1-3]. In these methods, the reacting flow is computed
using a high-precision numerical scheme, an accurate description of chemistry and no
model for turbulence.

The present DNS method is solving the full 3D compressible Navier-Stokes equations

*This work is partially supported by the Centre de Recherche en Combustion Turbulente (IFP -
ECP/CNRS - CERFACS).

90

with variable transport coefficients and simple or complex chemistry:

Op* 0
o~. + Ox--~ (P*~;) = o

Om~ 0 Op*_ 1 OTi~
o r . + + - "

Oe; 0 , p, , 1 0 (u; . ri}) - 1 , Oq; , , ,~
Or---: -t- Ox--~i [(e, +)ui] - Re" cox; R e - P r "%-~x~ + a T ; p r R e P r , dJ

0 1 O (O Y) 0 § _ . " _

Or* Ox~ ReXc Ox~

where

. 1 3 ~.~,, - _ _ Z _
e t - -~ P * " x--" u * 2 k p p x %7 1

k=l 7 - 1 7

r , �9 . . (N
* - #0" ~ " (? - 1) TiJ -- # \ Ox~ nt- Ox*

Too
2 ~ij Ou____~ ~
3 Ox*k]

Equations are written in a dimensionless form with Einstein convention for the sum-
mations, p* is the gaz density, u~ are the velocity components, m~ the momentum com-
ponents, e t the total energy and I2 the mass fraction of fresh gaz. p*, T* and #* are
respectively the pressure, the temperature and the viscosity, q* is the heat flux, ~-i~ is
the Reynolds stress tensor, & is the production term coming from the one step chemical
reaction and a / is the temperature factor of this reaction. Re, Pr and Sc are respectively
the Reynolds number, the Prandtl number and the Schmidt number.

The system is discretized by a finite difference method on a regular or irregular cartesian
grid. The code makes use of a 6 th order compact scheme (Pad~ scheme) for spatial deriva-
tion [4] and a 3 Td order Runge-Kutta method for time integration. The low-dispersive and
non-dissipative properties of these schemes allow to handle most of the different scales that
are existing in turbulent combustion phenomena. NSCBC method [5] provides accurate
boundary condition treatments for this kind of codes even with non-reflecting boundaries
such as physical open boundaries.

2. Computer Aspects and Software Engineering

The use of 6 th order compact schemes for the computation of space derivatives implies
the frequent resolution of tridiagonal linear systems (135 times per time step for 3D) with
multiple right hand sides (RHS). These systems are alternatively laying on the 3 different
mesh directions X, Y and Z. The less expensive method for solving such systems is LU
factorization with precomputed coefficients, better known in CFD as Thomas' algorithm.

Even if on shared memory computers parallelization is automatic by spreading the dif-
ferent RHS solution on the different processors, the need of data locality makes the work
much more complex on distributed memory systems. Various methods have been tested
on different platforms and with different programming models [6] but domain decomposi-
tion methods as explained in [7] have been chosen because achieving high efficiency on a
wide range of MPP platforms. These methods are requiring some overlapping between the

91

Figure 1. NTMIX3D Building blocks

different subdomains, a computation overhead is thus existing because of redondant com-
putations. Depending of the communication performance of each MPP, we can choose
between a method which is requiring more communications and less overlapping or a
method with very few communication but more overhead. In the first case, communi-
cations are fully overlapped by computations if the hardware and the message passing
library are allowing this feature.

Moreover, these schemes are enabling a complete encapsulation of these kernels into few
subroutines that are stored into a numerical library. By providing an optimized version of
this library on each architecture, the code is fully portable without any loss of performance.
This point is very important as soon as we want to release the code to physicists. These
people are not only using the code as a black box but they are usually introducing some
new physical models that are adapted to their particular physical configuration. The
concept of the numerical library which is providing the kernels for the computation of the
spatial derivatives makes the code as easy to understand as a classical vector code. No
extra knowledge is needed especially in the field of the programming of MPP computers.
The only point which is actually open is the problem of the I/O since no efficient parallel
I/O systems are provided on modern MPP. Figure 1 is showing the global structure of
the code.

Even if with distributed memory MPP, the available amount of memory is larger (sev-
eral Gbytes) than on classical parallel-vector systems, memory usage is remaining a very
crucial point in a 3D DNS code. For instance, the computation of the 3D Reynolds stress
tensor with variable viscosity and of its derivatives is asking a minimum of 30 3D arrays.

92

The complete solution of Navier-Stokes equations with a 3 step Runge-Kutta scheme is
requiring more than 70 arrays. A plane by plane computation is allowing a reduction
of the need of memory by a factor of 4. Only Z derivatives are computed on the whole
3D domain. All other terms are successively computed in 2D XY planes. Moreover, a
special treatment of the different terms is allowing a maximum reuse of 3D workspace.
But, this method is increasing the amount of messages between the domains since XY
derivative kernels are called for each XY plane. Mixing the two previously stated domain
decomposition methods in the different directions of the mesh is solving the problem: in
Z direction, the low overhead method is used and the low communication one is used in
X and Y. By doing so, we have reduced the need of memory without interfering with
parallelism and without any degradation of performance. In the final code, we are able
to compute an 1283 point grid in less than 50 Mwords of memory. A memory manager
is providing 3D arrays on request and is able to swap-out automatically some arrays on
external storage with a LRU scheme or according to the history of the previous requests
during previous identical iterations.

In order to be able to compute larger domains at lower cost, different physics are
allowed in the different subdomains. Different terms in the equations are activated only
when useful. This technique is allowing some gain in memory usage while memory is
dynamically allocated depending of the different physical models that are activated in the
domain. When coupled to load balancing tool, a large gain in CPU is achievable.

3. M u l t i p h a s e C o m p u t a t i o n s

An additional physical difficulty is that most DNS of turbulent combustion have been
performed using gaseous reactants. DNS of reacting flows with liquid fuel injection is
a field in which very little effort has been produced despite the fact that most practical
systems use liquid fuels. One of the main reasons for this is that a liquid fuel configuration
requires the separate treatment of the gaseous equations and of the droplet movement
and evaporation. The problem which has to be considered then is typical of multiphase
problems in which two separate physical problems (with different numerical techniques)
have to be solved simultaneously and coupled. We have added to our DNS code a 3D
droplet solver which is tidily coupled to the gaseous solver. The different droplets are
distributed among the different nodes and are belonging to the node which is owning the
closest mesh point. Thus, communications are not needed during the coupling of the two
models. But, the droplet density is not uniform in the whole domain and is evolving with
time. It will have a large influence on load balancing.

4. Load Balanc ing

Load balancing is remaining a key topic for the efficiency of the whole parallel code. A
static load balancing technique is implemented in order to take into account the various
costs of boundary condition treatments, the difference in the physic between the domains
and in the computational performance of the different nodes. The load balance is de-
termined by the minimization of a cost function with a two-stage simulated annealing
method. Even if for most of the computations, this static load balancing is sufficient to
assume a good load average between the different processors, a dynamic load balancing

93

Time 9er iteration
for each node

........ ~ " Nodes

rations

0 ~ e r a t i o n s

Without
Load Balancing

Time per iteration

l for each node
. -

~ global

0

:
~ t e r a t i o n s

With
Load Balancing

Figure 2. Theoretical behaviour of a non balanced system (left side) and of a dynamically
balanced system (right side) when the load on a node is increasing suddently

(DLB) paradigm is needed when running on heteregeneous network in timesharing mode.
Averaged load on the different computers is taken into account for the computation of
the cost function and the partitionning is dynamicaly modified in order to optimize the
efficiency of the computation. The cost function is minimized with a parallel multi-shot
simulated annealing algorithm. Figures 2 is showing the theoric behaviour of a DLB
method when the load of one node is suddently increasing. Figures 3 is showing the be-
haviour of the NTMIX3D code when DLB is activated or not. The cost of DLB has been
minimized and is less of 2% of the overall cost, but the gain can be over 100% [8]

5. Re lease to Phys ic i s t s and Real C o m p u t a t i o n s

After an intensive validation phase, the code has been released to physicist users in the
scope of the Centre de Recherche en Combustion Turbulente which is grouping some teams
from Institut Fran~ais du P(~trole, Ecole Centrale de Paris and CERFACS in Toulouse.
This tool is allowing the start of some real studies of 3D turbulent combustion phenomena
like turbulence-flame interaction, flame-wall interaction and spark ignition.

Figures 5 and 4 are showing a 1613 point grid computation of an ignition phenomenon.
The flow is initially a homogeneous isotropic turbulent field of premixed gases and the
flame is initiated by an heat source term which is representing the heat release of a spark
ignition in a reciprocating engine.

6. S u m m a r y and F u t u r e work

NTMIX3D has been built to study 3D turbulent combustion phenomena. The use of
some ad'hoc domain decomposition methods is allowing high efficiency on a wide range
of parallel computers as well as of classical shared memory systems. The addition of a
memory manager and of a dynamic load balancing tool is enabling a very large flexibility
in the use and in the future evolution of the code. We will work now more intensively on
multiphysic and on multiphase computations in order to be able to handle new kinds of
computations.

94

Figure 3. Experimental behaviour of a dynamically balanced system on a 4 processor
machine. Static Load Balancing is allowing a perfect initial balance. The balance is not
perfect during the perturbation phase because the partitionning is a cartesian one

R E F E R E N C E S

1. T. Poinsot, D. Veynante, and S. Candel, "Quenching processes and premixed turbu-
lent combustion diagrams", d. Fluid Mech, vol. 228, pp. 561-606, 1991.

2. D.C. Haworth and T. J. Poinsot, "Numerical simulations of lewis number effects in
turbulent premixed flames", J. Fluid Mech, vol. 244, pp. 405-436, 1992.

3. K. N. C. Bray and R. S. Cant, " Some applications of Kolmogorov's turbulence
research in the field of combustion ", Proc. R. Soc. Lond. A, vol. 434, pp. 217-240,
1991.

4. S.K. Lele, "Compact finite difference schemes with spectral-like resolution", J. Comp.
Phys., vol. 103, pp. 16-42, 1992.

5. T. Poinsot and S.K. Lele, "Boundary conditions for direct simulations of compressible

95

viscous flows", J. Comp. Phys., vol. 101, pp. 104-129, 1992.
6. A. Stoessel, M. Hilka, and M. Baum, "2D direct numerical simulation of turbulent

combustion on massively parallel processing platforms", in Proc. of the 199~ EU-
ROSIM Conference on Massively Parallel Processing, Delft (NL), 1994, pp. 783-800,
Elsevier Science B. V.

7. A. Stoessel and M. Baum, "Direct numerical simulation of 2D turbulent combustion
using domain decomposition methods", in Proc. of the High Performance Computing
199_~ conference, La Jolla (CA-USA), 1994.

8. J.B. Malezieux and A. Stoessel, "Dynamic load balancing in a direct numerical simu-
lation code of 3D turbulent reactive flow", 1995, Accepted to PARCO 95 conference.

Figure 4. Comparison of flame structure for different Lewis numbers
(Lewis=0.4,0.6,0.8,1.0) at a given time. The computations have been achieved with a
161 a point grid on a 4 processor Fujitsu VPP-500

96

Figure 5. Growth of a flame kernel in
an initially isotropic homogeneous turbulent

U ! flow ~-L = 0.1 and Lewis number is set
to 018. Snapshots are made at dimension-
less time= (6,9,12,15,18). Flame surface is
shown and vorticity field on left and bottom
side. The computation has been performed
with a 1613 point grid on a 4 processor Fu-
jitsu VPP-500

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

97

Numerical Simulation of Reacting Mixing Layer with Combined Parallel
Approach

Edgard Kessy, Alexei Stoukov and Dany Vandromme ~

~LMFN, INSA of Rouen, URA-CNRS 230-CORIA, 76821 Mont Saint Aignan CEDEX,
France

This work concerns the parallelization of an explicit algorithm for the simulation of
compressible reacting gas flows, applied to supersonic mixing layers.

The reactive Navier-Stokes equations are characterized by three tightly coupled physical
phenomena, i.e. the convection, diffusion and chemical source terms. To compute the
chemical source terms, full complex chemistry is used. By considering the elapsed time
for solving the problem, the numerical treatment of the chemical source terms takes about
75% of the total execution time.

The main goal of the present work is to reduce the relative cost of chemical source
terms calculation and also to optimize the global cost of the procedure resolution by the
use of parallel computation.

1. C h o i c e o f P a r a l l e l A p p r o a c h

On parallel architectures, computations are executed simultaneously on several pro-
cessors. To achieve this goal, the algorithm is divided into several independent tasks.
All tasks can be executed simultaneously and communicate with each other during the
execution.

Two different types of parallel methodologies exist: data-parallelism and control paral-
lelism [14]. The first approach relies on the fact that each processor performs at a given
time the same instruction on different data. This approach exploits the great potential
of massively parallel computers, SIMD (Single Instruction Multiple Data) architectures
[11].

In the control-parallelism approach, the computational problem is divided into a number
of independent tasks, with different processors performing different tasks in parallel. This
approach is adapted to multi-processor computers, MIMD (Multiple Instruction Multiple
Data) architectures [1].

In order to use MIMD computers very efficiently, the granularity of tasks should be as
large as possible. In CFD the decomposition of the computational domain is the most
efficient technique in order to increase the granularity of tasks for MIMD architectures
[5]. This technique (the so-called multi-domain technique) consists in partitioning the
computational domain into a number of blocks, and to distribute blocks onto different
processors [4]. However, there is still a problem to maintain a well balanced decomposition.

The choice of the adopted parallel approach is influenced by the numerical algorithm.

98

However, one can notice that data-parallel and control-parallel approaches can both be
combined [12]. By considering that in most reacting flows, reacting and non-reacting zones
occur simultaneously, the computation of chemical source terms can be restricted to the
reactive region. Thus a decomposition efficient for pure hydro dynamical problem becomes
inefficient when the reacting zone dimensions differ greatly between blocks. In such a way,
the standard multi-block technique is no longer well suited for the reacting flow. In this
paper, a multi-block technique is used for convective and diffusive terms, whereas SPMD
(Single Program Multiple Data) or SIMD approach is employed for chemical source terms.

Figure 1. Flow configuration

2. Flow conf igura t ion , physical , chemical and m a t h e m a t i c a l mode l

Figure 1 shows the physical model considered in the present study. It consists of two
chemically active hydrogen and air streams with different stream wise velocities. The
spatial mixing of reacting streams has been simulated in a two-dimensional domain.

The static pressure at the inlet side is the same
for both streams. To prescribe the inlet condi-
tions the self similar solution of the compress-
ible mixing layer [9] is used at the inlet with
a vorticity thickness equal to 0.05 of the trans-
verse length. The inlet conditions are presented
in Table 1.

Table 1

Stream Velocity Mach Pressure Temperature Convective
m / s number P a K Mach number

/-/2 3000 1.24 1.013-l0 s 9 3 0 - 1000 0.446
A I R 1780 2.803

The flow evolution is governed by the unsteady compressible Navier-Stokes equations
coupled with the energy and species transport equations. These equations are written in
two-dimensional form as:

OU O F (U) OG(U) = S (U) (1)
O----t -~ Ox t Oy

where the variable vector, the convective and diffusive fluxes and source terms are defined
respectively by:

U = [Pl,""", Pnsp, pu, pv, pet] T

F = F c + F v G = G c + G v

Fc = [p l u , " ' , PnspU, pUU + P, puv , (pet + p)u] T

[Fv = - ~rylx, . . . , ~ryn~.px , ~rx~, cr~y, cr~u + axvv - q~

Gc = [P l v , " ' , PnspV, pVU, pVV -t- p, (pet + p)v] T

99

[G v - - 0"II1 y , �9 �9 �9 , O'YnSpy , O'xy , O'yy , O 'xyU Ji- O 'yyV - - qy

S - ~ , . . . , ~ , o , o , Q~j(%

OYk -- Dk OYk 4 0 u 2 0 v 4 0 v
~ - D ~ - ~ . w o-y~y -~y o - = - "(30x 3 oy) ~ - ~(3 oy

Ou O v l O T nsp

q~- -A-~x - ~ hk~y~
k=l

2 0 u

3Ox)

- A OT nsp

k=l

The chemical kinetic equations are represented by:
nsp n sp

E a~X~ ~ E b~x~ (2)
k=l k= l

where Xkr represents one mole of species k, akr and bk~ are integral stoichiometric coeffi-
cients for reaction r. The rate of changes due to r th chemical reaction is

Pk Y[k P~
(v,. - IQrl-I(~-~k) ~k~ - Kbr (~-~k) bk~ (3)

k

where Kfr and Kb~. come from a generalized Arrhenius form.
In this work the hydrogen-air combustion kinetics is taken as the detailed mechanism

proposed in [7]. The concentrations of H2, 02, OH, H20, H, O, HOe, H202 and N2 species
evolve according to a 37 chemical reactions scheme.

To describe the complex properties of molecular diffusion and thermal conduction the
appropriate modules of CHEMKIN-II package [6] were incorporated into the code. The
values of enthalpies of formation and specific heats of species are obtained with the JANAF
tables [13].

Spatial instability of hydrogen-air mixing zone is generated by disturbing the inlet
velocity profile. In this work, the initially incompressible disturbances are imposed only
on the longitudinal velocity component at the point of maximum of inlet vorticity profile.
The disturbances introduced are U' = A cos(wt), where A is the magnitude equal to 0.5%
of the inlet velocity taken at the point of the maximum vorticity. The w is the circular
frequency of oscillation and is chosen from the linear stability analysis results [9].

3. N u m e r i c a l A l g o r i t h m

The equation (1) is solved with fractional-step approach [15]. Let us denote 5Uc, 5Uv
and 5S the increments of vector U which are due to convection, viscosity and the chemical
source terms respectively. The overall increment of U is then obtained as their sum:

~u = ~u~ + ~u~ + ~s (4)

The numerical scheme is written here for one-dimensional in-viscid part of equation (1).
Following [16,17,8] the numerical solution for second-order upwind TVD (total variation
diminishing) scheme is :

(~ n F n F n U;~ -A(-) (5) ci+1/2 c , - 1 / 2

100

where A - At /Ax , Fci.l.l[2 i s a numerical flux vector, which is expressed for a non-MUSCL
approach as

1 (F~, + F~,+, + Ri+l/2~i+l/2) (6)

The increment of vector U due to viscous/diffusion fluxes is obtained by the central
difference approximation:

A
(7)

where, for example for species k

Y~'+ ~ - Y~ ' (8)
Fvi+~/2 = Dki+ll2 AXi+l/2

To compute the 5S three different algorithms (CHEM [2], EULSIM [3], L$ODE [6])
have been tested. The most accurate results have been obtained with EULSIM scheme
which is, however, the most demanding of CPU time.

Second-order accuracy for the time integration is obtained using a second-order Runge-
Kutta method.

4. Parallelization

For the splitting of a computational domain into N blocks having the same number of
mesh nodes, the calculations are performed according equation (4).

4.1. Hydrodynamic part parallelization
The increments 5Uc~,j and 5Uv~,# are found with the standard multi-blocks technique,

where each processor unit treats a single block. Here the computational domain may be
splitted in arbitrarily, the decomposition being dependent of the particular flow geometry.
Numerical scheme employs five-point discretisation. Therefore to find 8U~,,j at i-th point,
the values at points set (i-2,i-l,i,i+l,i+2) are needed. It means that every neighboring
blocks should have four common mesh nodes. An example of such decomposition is shown
on Fig.2 for two adjacent blocks.

BLOCK 1 11-2 I1-1 I1 I1+1[
, ,

,
, i , l
,

, i |

I2-2 I2-1 I2 I2+1

Figure 2. Linking up of the neighboring blocks

BLOCK 2

Having computed 5Uo~,j and 5Uv~,j , the neighboring blocks 1 and 2 are linked up in a
following manner:

the columns I1 - 2 and I1 - 1 of the block 1 become those 1 2 - 2 and 12 - 1 of the
block 2;

101

the columns I2 and I2 + 1 of the block 2 become those I1 and I1 + 1 of the block 1.

In such a manner we need only the communications between the processors treating the
adjacent blocks.

4 . 2 . P a r a l l e l i z a t i o n o f C h e m i c a l S o u r c e T e r m s C o m p u t a t i o n

To reduce the computer time, the chemical source terms are calculated only on the
mesh nodes where the chemical reactions take place in "reactive" regions. Size of that
region may differ greatly from one block to another, so the domain decomposition with
equal number of grid points may be highly ineffective. This is the case, for example,
for the simulations of reactive mixing layer, triple flames, jets etc. Evidently the overall
computations rate (and cost) will be determined with the t ime needed to treat a block
with the largest reactive sub-zone. Thus we need to equalize the number of "reacting"
points for each processor.

The MIMD-SPMD algorithm may be represented as:

Slaves:

- to determine the reactive region

- to rearrange the data as the vectors

- to send to master a number of points in which the chemical source terms should
be calculated.

Master:

- to get these numbers for each blocks

- to determine the relative load of each slave and the numbers of data points to
be exchanged between them

- to send the orders for data transfer.

Slaves:

- to get the master 's orders and to perform corresponding transactions: to get
the additional scalar values sets for unloaded processor-slave or to send them
for overloaded one. If the load is near the mean one there is no data transfer.

- to compute ~S

- to send back the modified scalar values to the corresponding slave

- to rearrange the data back to the spatial distributions.

The second approach used here is both MIMD-SIMD type. The source terms solver
have been adapted for MASPAR computer (DPU MP1024 with 4096 processors layed on
a 64x64 grid) [14]. In a such architecture the MASPAR front-end plays the master role
and 5 IBM RS6000K are slaves.

The numerical procedure can be described in term of tasks as:

Master:

102

- collection of data required for the chemical source terms calculation from the
whole set of slaves;

- rearrangement of there data in 64x64 grids;

- dispatching of the resulting data towards the MASPAR DPU;

- computation of source terms on DPU;

- compilation of the data resulting from the source terms calculation;

- inverse rearrangement of the data, before sending towards the slaves.

Slaves:

- sending of the data concerning the chemical source terms;

- hydrodynamic phenomena calculation;

- collection of chemical source terms results from the master;

U .~.+1 (corrector) - numerical evaluation of U -~.+l,,J (predictor) or ,,3

5. R e s u l t s

All the calculations have been performed with cluster of 5 IBM RS6000K workstations
and MASPAR DPU MP1024 computer. The MIMD part relies on the PVM communi-
cation library. An effectiveness of the parallelization method has been tested upon the
modeling of supersonic mixing layer with and without chemistry.

5.1. Modeling of Inert Mixing Layer
In this case the equal load of each processor is obtained simply with the equal par-

titioning of the computational domain. Multi-block decomposition linking up on the
boundaries do not introduce any numerical disturbance in comparison with the usual
single block calculation, no matter how the domain has been splitted. However, for the
computational mesh of Nx * Ny = 200 �9 100 nodes, decomposition along x-axe main flow
direction appeared to be much more effective. It can be explained with that resulting
blocks of 200/Nbl ,100 allow to take all the advantages of cache memory. Therefore all
the computations have been performed with the decomposition along x-direction.

10

9

8
7
6
5
4
3
2
1

-'-' ' - ,cPUt ime' ' / ~

1 2 3 4 5 6 7 8 9 1 0
N blocks

Figure 3. Speed-up in comparison with
sequential simulation for inert mixing
layer

1.4
1.3

- 1.2

�9 --- 11 I- �9
1.0
0.9
0.8

~ C P U time
o o elapsed timq

I

1 2 ; 4 ; 6 7 8 6 1 0
N blocks

Figure 4. Time increasing: case of con-
stant blocks size

103

Speed-up is illustrated on Fig.3. The difference between the gain in CPU time and that
in elapsed (i.e. real user time) is due to the non-negligible communication time between
the processors. Although the time of computations is decreased with successive increases
of block number, communications time becomes exceedingly large. As a result we obtain
some efficiency threshold in effective user time.

Figure 4 present the plot of time versus the number of same size blocks. In this case
the CPU time is still constant, but the elapsed time shows a small growth due to the
increasing number of communications.

5.2. Reactive Mixing Layer
As it was mentioned above, chemical source terms are most CPU-time-demanding.

Usually they consume more than 75% of overall CPU time. So, any progress in their
parallelization is rather crucial, and one can expect that improved efficiency would be
more significant than for non-reacting case.

11.0

9.0

-5 7.0 Q)
(D

o~ 5.0

3.0

1.0

elapsed time, MIMD-SIMD
e----e elapsed time, MIMD-SPM[

r

2 3 4 5
N blocks

Figure 5. Speed-up in compari-
son with sequential simulation for
reacting mixing layer

On Fig.5 the results are presented for
hydrogen-air mixing layer with real complex
chemistry. Speed-up in case of MIMD-SPMD
algorithm increases linearly with the number
of blocks. This tendency may be explained
by the fact that the communication time be-
tween blocks is negligible in comparison with
the computation time. In the case of one block
use, the MIMD-SIMD approach shows speed-
up of approximatively 9 in comparison with
the sequential calculation. Furthermore the
number of blocks increases, the speed-up im-
provement given by MIMD-SIMD algorithm
become of the less interest, because both com-
putation time and data manipulation time are
the similar.

6. Conc lus ion

In the present work two combined parallel approach are proposed for the problems
with complex reaction zone structure. The performances of these consecutive algorithm
has been tested in case of simulation of hydrogen-air supersonic mixing layer. It yields a
significant time saving with respect to the ordinary multi-block technique or the sequential
calculation.

MIMD-SPMD algorithm is less efficient than the MIMD-SIMD one when the number
of blocks is small. Nevertheless this algorithm is still easy to implement. MIMD-SIMD
algorithm shows high performances in case of one slave configuration. But numerical
implementation of this algorithm requires a typical massively parallel chemical source
solver.

104

R E F E R E N C E S

.

10.

11.

12.

13.

14.

15.

16.

17.

R. Aggarwal, P. Henriksen, R. Keunings, D. Vanderstraeten, and O. Zone. Numerical
simulation of non-newtonian flow on MIMD parallel computers. In Hirch, editor,
Computational Fluid Dynamics'92, pages 1139-1146, 1992.
A.A. Amsden, P.J. O'Rourke, and T.D. Butler. KIVA-II: A computer program for
chemically reactive flows with sprays. Report LA-11560-MS, Los Alamos National
Laboratory, Los Alamos, New-Mexico 87545, 1989.
P. Deuflhard. Uniqueness theorems for stiff ode initial value problems. Preprint SC-
87-:3, Konrad-Zuse-Zentrum fuer Informationstechnik Berlin, 1987.
St. Doltsinis, I. and S. Nolting. Generation and decomposition of finite element models
for parallel computations. Computing Systems in Engineering, 2(5/6):427-449, 1991.
H. Friz and S. Nolting. Towadrs an integrated parallelization concept in computational
fluid dynamics. In ERCOFTAC Bulletin, october 1993.
R.J. Kee and J.A. Miller. A structured approach to the computational modeling of
chemical kinetics and molecular transport in flowing systems. SAND86-8841, Sandia
National Laboratories, 1986.
U. Maas and J. Warnatz. Ignition processes in hydrogen-oxygen mixtures. Combus-
tion and Flame, (74), 1988.
J.L. Montagne, H.C. Yee, and Vinokur M. Comparative study of high-resolution
shock-capturing schemes for a real gas. AIAA Journal, 27(10):1332-1346, 1989.
O.H. Planche and W.C. Reynolds. A numerical investigation of the compressible
reacting mixing layer. Report TF-56, Stanford University, Stanford, California 94305,
October 1992.
P.L. Roe. Some contribution to the modelling of discontinuous flows. In Ameri-
can Mathematical Society, editor, Lectures in Applied Mathematics, pages 163-194,
Providence, RI, 1985.
M.L. Sawley. Control- and data-parallel methodologies for flow calculations. In Su-
percomputing Europe'93, Ultrecht, February 1993. Royal Dutch Fairs.
M.L. Sawley and J.K. Tegner. A data parallel approach to multiblock flow computa-
tions. International Journal For Numerical Methods in Fluids, 19:707-721, 1994.
D.R. Stull and Prophet H. JANAF thermochemical tables, second edition. NSRDS-
NBS 37, U.S. Department of Commerce/National Bureau of Standards, June 1971.
D. Vandromme, L. Vervisch, J. Reveillon, Y. Escaig, and T. Yesse. Parallel treatment
of CFD related problems. In preparation, 1994.
N. N. Yanenko. The method of fractional steps. New York, Springer Verlag edition,
1971.
H.C. Yee. Construction of explicit and implicit symmetric TVD schemes and their
applications. Journal of Computational Physics, 68:151-179, 1987.
H.C. Yee. A class of high-resolution explicit and implicit shock-capturing methods.
Computational Fluid Dynamics, March 1989, Rhode-St-Gen~se, Belgium, Von Kar-
man Institute for Fluid Dynamics, Lecture Series 1989-04, 1989.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

105

On the optical properties of a supersonic mixing layer

Yeong-Pei Tsai

Department of Mechanical Engineering, Chung-Hua Polytechnic
Institute, Hsin Chu, Taiwan, ROC.

Physical properties of spatially developing shear layers
between two flows of different velocities are investigated.
The two fluid streams are supersonic and the convective Mach
number, M , is greater than unity in most cases. The two-

c
dimensional compressible Euler equations are solved directly
using the explicit Godunov method. A hyperbolic-tangent vel-
ocity profile is adopted for the initial streamwise velocity
distributions at the splitter plate. Temporal and optical
statistics of the mixing layer are calculated. The optical
properties of the mixing layer are determined by computing
the Strehl ratio. Although the growth rate of a supersonic
mixing layer is much smaller than that of a subsonic mixing
layer, it is found that the far-field peak intensity is less
than that due to a subsonic mixing layer at the same velocity
ratio and density ratio.

I. BACKGROUND AND PURPOSES

The spatially-developing, plane free shear layer generated
by the turbulent mixing of two co-flowing fluid streams is
gemetrically simple (Fig. l(a)). However, this simple flow
configuration is important in mixing processes and is encount-
ered in many other engineering applications. So the fundament-
al properties of plane mixing layer have been the subject of
extensive investigations for many years. Since there are many
circumstances which involve the interaction between turbulent
mixing layers and laser beam [i], one of the current research
topics in this area is the optical properties of shear layer.

The extraction of power from high-power gas laser, for ex-
ample, often involves passing the beam through interface be-
tween gases of different indices of refraction (e.g. aero-
dynamic window). Turbulent shear layers can produce random
optical phase errors in the beam that can substantially reduce
the maximum intensity to which the beam can be focused. Similar
examples involving beam degradation are found in cases like
aero-optics and atmospheric propagation of light. In the past,
the investigation of shear layer optical properties were based
on the assumptions that the natural shear layers were homo-

geneous and isotropic [2, 3]. There has been no study of the

106

Pig.1 (a) Flow con.fig-mr~tion and geometry. (b) Schematic diagram of the
computational dommin.

4 !

U 2 = .

y o

--4

o.o 0.6 LO

u~l(s)
I.$

Fig.2 The initial stremmwise velocity distribution: a hyperbolic-tangent velocity profile

107

of the optical effects of large-scale structures which are
existing during the course of shear layer development. A
systematic numerical simulation using the methods of computa-
tional fulid dynamics in this field has carried out for sub-
sonic mixing layer [4]. The optical effects of coherent str-
uctures in the mixing layer were identified and the methods
of improving optical performance in the far-field by effective
controlling of the mixing layer were found. Since the aero-
dynamic window may be supersonic, the optical effects of a
supersonic mixing layer are explored in this paper. The com-
pressibility effects of the supersonic flow are emphasized.

2 . NUMERICAL METHODS

The two-dimensional compressible Euler equations are solved
directly using the explicit Godunov methods. A hyperbolic-
tangent velocity profile is adopted for the initial streamwise
velocity distributions at the splitter plate (Fig. 2). Fig. la
indicates the flow configuration and geometry where x is the
streamwise coordinate and y is the cross-stream coordinate. The
upper flow velocity, U I, is always larger than the lower one,

namely U 2. Fig. ib is the schematic diagram of the computation-

al domain. A grid of 200 by 50 is adopted. The computational
cell is a square mesh with side length 0.02cm. The detailed
numerical algorithm can be found in Ref. 4.

3. RESULTS AND DISCUSSIONS

3.1. Fluid mechanical results
As a typical example, the instantaneous flow visualization

of the density field for the natural shear layer with MI=4 and

M =1.024 is illustrated in Fig. 3 which shows that supersonic
c

shear layer also exhibits well-defined coherent structures,
though not as organized as those found in a subsonic mixing
layer [4, 5]. It is obvious that the spreading rate of the
shear layer is unusually small for supersonic mixing layer.
The convective Mach number M is a useful parameter describing

c

supersonic flow which is defined as

where Au: U2 is the velocity ratio and A =-~ is the
P p~

density ratio. The main result shown in Fig. 4, is the plot of

nondimensional mean streamwise velocity, ~u(X,y), versus the

108

.

~

- 2 ~0

,. , _ / - ~ j - _

)

1 2 3 4 5 6 7 8

x(cr~)

" ~ ~ ,F <-"~.'~-
9 10 11 12 13 14 15 16

Fig.3 Instantaneous isodensity plot for M:,=4, Mc-=1.024.

1.oo -~(x,y)- u2

0.75

~u(X,Y)
0 . 5 0

0 . 2 5

- ~Jx, y)=
U 1 - U 2

$

o . o o
= .

- 0 . 2 5 - ' l) ~ I t !)) ! !)

-0.10 -0.05 0.00

~=y/(x-xo)
Fi.g.4 The mean streamwhe velodty profile; MI=4, Mr

~o o" x=8.8 cm

&: x=9.6 cm

~. x=10.4 cm

El: x=11.2 cm

O: x=12.0 cm

t. x=12.8 cm

, , I , , , , I

0.05 0.10

u

8

u

u

o

Pig.5 A comparison among computed, theoretical , and ~pe_dm~ntal n o r m a l i ~ d
growth rates.

109

similarity coordinate r/, where ~u(~Y): U'(x,y)--U~ and r/-=---/--.
U , - U2 x-xo

The lateral distribution of the mean streamwise velocity suggests
that the supersonic free shear layer is also self-similar in the
fully-developed region. Assuming that the extent of the mixing
layer is bounded and which is the region with ~u in the range of
0.01 to 0.99, the local width of the free shear layer is defined

-- at a fixed streamwise location x, where Y0.0! by 6~x) = Y0.gg Y0.01
is the y-location at which ~--U2 + 0.01AU and Y is the 0.gg
location at which u: U2 + 0.99AU. Then the growth rate of the

d6 supersonic mixing layer, ~, can be calculated according to this

definition. The effect of convective Mach number, M , on shear
c layer thickness is uncoupled by comparing the compressible growth

rate to the incompressible growth rate at the same density and
velocity ratio. This is made by plotting d6ttd6~ against M and

~5~/~,~5~Ji c
d~ this is shown in Fig. 5, where -~(~:-]i is the incompressible growth

rate at the same values of lu and ~ as that for the supersonic p
mixing layer. In Fig. 5, the results are also compared with the
experimental results of Papamoschou and Roshko [6], with the re-
sults of Zhuang et al. which is calculated according to the in-
viscid instability theory [7], with the results of Lu and Wu [8],
and with the results obtained from the 2-D free shear layer cal-
culations [9]. Since in the present calculations, the boundary
conditions used are based on the assumption that the top and the
bottom boundaries are considered as streamlines in the computa-
tioal domain, the results may be classified as those correspondig
to a bounded shear layer. It is obvious that the growth rate of
the 2-D supersonic shear layer approaches an asymptotic value as
the convective Mach number becomes supersonic, which is consis-
tent with the experimental results and values.

The time averaged density contours in Fig. 6 illustrate the
interaction between the reflected shoch wave by the wall and the
shear layer, where MI=4 and M =1.024. Since the density ratio is
i.i, this shear is correspondCng to an overexpanded case in ac-
cord with Guirguis et al. [i0]. Also, it is noticed that in the
mixing layer there is a shock/shear interaction region which can
be identified around x=llcm in this case. However the change in
growth rate is not significant there. Samimy and Elliot [ii]
showed the similar result. The trends of the computed results
discussed above to experimental and numerical results of others
lend full confidence that the code has been validated satis-
factorily for the supersonic mixing layer and the density field
may be used for optical properties study and simulation.

110

0 -

I

-2 -0 i P 3 4 5 6 7 8 9 I0 ii 12 13 14 15 16

x(cm)

Fig.8 Time tveraged isodensity plot for Mi=4, Mc=1.024.

(b) ,
%

x =63281
D= 1.28 cm

e

Fig.7 Instantaneous fax-field intensity distribution at different locations of the beam
center Ml=4, Mc=1.024.

SR

L O - -

0 . 8

0 . 0

~=0.768
~c=i.024

_- },(c= 1.28

-" ~ },(c = 1 . 5 3 6

, : f 1 z i , l l t , 1 t t i]

" Xc~ cm) (~ ,,

Pig.8 Time averaged Strehl ratio at different Convective Mach numbers

l l l

3.2. Shear layer optical statistics

The optical effects of the shear layer are calculated by
passing a laser beam through it with circular aperture and
uniform phase. The far-field focal plane intensity distribu-
tions measure the optical quality of the shear layer. The
Strehl ratio, SR, which is defined as the ratio of the maxi-
mum light intensity of the diffraction pattern to that of
the same optical system without aberration, will be used to
evaluate the optical quality quantatively.

A series plots of the instantaneous far-field intensity
contour due to the supersonic shear layer with M =4 and
M =1.024 are shown in Fig. 7. The beam size is D=l.�89 (the
dclameter of the beam) and x is the location of the center
of the beam. In Fig. 7a, the c scale of the fluid fluctuations
is smaller than the beam size, and there are structures, i.e.
the lobes formed in the scattered far-field intensity pattern
because the beam contains more than one large eddies. As the
center of the beam moves further downstream where the size of
the flow disturbance is a fraction of the beam size, and then
the shape of intensity distribution is only distored. The
shift in location of the peak intensity in the far- field is
due to the tilt effect of the shear layer.

The effect of convective Mach number, M , on the Strehl
ratio is illustrated in Fig. 8 where the tiCe averaged Strehl
ratio, ~, is plotted as function of x with density ratio
i.i, D=1.28 cm and the wavelength of bCam is 6328A. For
smaller M , the spreading rate of the mixing layer is larger.
This implCes a thicker mixing layer at a fixed streamwise
location for smaller convective Mach numbers. Therefore the
amplitudes of optical phase fluctuations are enhanced there,
and the beam degradation is larger for the mixing layer at
that position. However, in the upstream region of the shear
layer, it is noted that the difference in Strehl ratio is not
significant for different M .

c

4. CONCLUSION

A comparison between the values of Strehl ratio due to
supersonic shear layer and a subsonic one with the same ve-
locity ratio and density ratio is also made (Fig. 8). Al-
though the growth rate of supersonic shear layer is unusually
small, the Strehl ratio is not high as expected because the
shock/shear layer interaction region enhances the optical
random phase errors in the beam passing through the shear
layer that can substantially reduce the maximum intensity to
which the beam can be focused in the far-field. Unless a me-
thod for the optical phases compensation is available, a
supersonic aerodynamic window is not recommended in a high-
power gas laser system.

112

REFERENCES

I

0

0

I

0

0

0

0

I

i0.

Ii.

Craig, J. E., and Aller, C., " Aero-optical turbulent
boundary layer/shear layer experiment on the KC- 135
aircraft revisited, " Optical Engineering, Vol. 24,
No. 3, 1985, pp. 446- 454.
Vu, B. T., Sutton, G. W., Theophanis, G., and
Limpaecher, R., " Laser beam degradation through
optical turbulent mixing layers, " AIAA paper 80-14 14,
1980.
Sutton, G. W., " Effect of turbulent fluctuations in
a optically active medium, " AIAA Journal, Vol. 7,
1969, pp. 1737 - 1743.
Tsai, Y. P., and Christiansen, W. H., " Two-dimension-
al numerical simulation of shear layer optics, "
AIAA Journal, Vol. 28, No. 12, 1990, pp. 2092 - 2097.
Brown, G. L., and Roshko, A., " On density effects
and large structures in turbulent mixing layer, "
Journal of Fluid Mechanics, Vol. 64, June 1974,
pp. 775 - 816.

Papamoschou, D., and Roshko, A., " Observation of
supersonic free shear layers, " AIAA Paper 86 - 0162,
Jan., 1986.
Zhuang, M., Dimotakis, P. E., and Kubota, T., " The
effect of walls on a spatially growing supersonic
shear layer, " Phys. Fluids A, Vol. 2, No, 4, 1990,
pp. 599 - 604.
Lu, P. J., and Wu, K. C., " Numerical investigation
on the structure of a confined supersonic mixing
layer, " Phys. Fluids A, Vol. 3, No. 12, 1991,
pp. 3063- 3079.
Zhuang, M., Kubota, T., and Dimotakis, P. E., AIAA
Paper 88 - 3588 - CP, 1988.
Guirguis, R. H., Grinstein, F. F., Young, T. R., Oran,
E. S., Kailasanath, K., and Boris, J. P., AIAA Paper
87 - 0373, 1987.
Samimy, M., and Elliot, G. S., " Effects of compress-
ibility on the characteristic of free shear layers, "
AIAA Journal., Vol. 28, No. 3, 1990, pp.439 - 445.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

113

C o m p u t a t i o n of chemical ly reac t ing flow on para l le l sys tems

J.G.Carter a, D.Cokljat a , R.J.Blake ~ and M.J.Westwood b

~CLRC, Daresbury Laboratory, Warrington WA4 4AD, United Kingdom.

bTioxide Group Services Ltd., Billingham, Cleveland, United Kingdom.

The aim of this paper is to report on progress made in the development of a generally-
applicable predictive procedure for chemically reacting turbulent flows in various types of
axisymmetric reactors. For that purpose a code, which solves the Navier-Stokes equations
for chemical reactor problems, has been developed. The main contribution here is in
the assessment of a complete Reynolds-stress transport model (RSM). The RSM was
compared with the results obtained by a standard k-e model for the chemical reactor
considered in the present study. Both models, together with the governing equations, were
discretized using a co-located, finite-volume method. The coupling between the pressure
and velocity equations is achieved using the SIMPLE algorithm and the resulting iterative
equations are solved using either the standard Tri-Diagonal Matrix Algorithm (TDMA)
or a preconditioned conjugate gradient algorithm (PCCG). A parallel version of the code
was developed within the Communicating Sequential Process (CSP) programming model,
implemented within a message passing harness portable to both shared- and distributed-
memory systems. Parallel performances of the code are presented for the Intel i860 and
IBM-SP2.

1. I N T R O D U C T I O N

It is very often the case that a high level of mixing of reactants is required within
a reactor in order to ensure complete reaction. Therefore reactors need to provide the
conditions for efficient mixing and this, together with the chemical kinetics, make the flow
within a reactor very unstable and more turbulent when compared to non-reacting flows.
This is the main motivation for introducing and testing more advanced turbulence models
for the chemically reacting flows. More advanced turbulence modelling, improved chemical
reaction kinetic schemes and numerically finer grids are prerequisite for better predictions
of chemically reacting flows. These higher quality calculations are computationaUy very
demanding and require large scale computational resources which will only be met through
the application of parallel processing technology.

1.1. Description of problem
We are concerned with chemically reacting flows in pipe type geometries. The geomet-

ries can be modified with the inclusion of obstacles, giving a variety of reactor configura-
tions which can be studied. The particular reaction of interest is the oxidation of titanium
tetrachloride to produce pigmentary titania (Ti02). This oxidation process involves sev-

114

era/complicated stages which may include the nucleation, growth and coagulation of the
titania and the dissociation and recombination of chlorine product. In general the react-
ors have multiple inlets through which the feed materials (02 and TIC14) are introduced
at various temperatures and velocities. The products (and any unreacted feed materials)
are convected downstream and out of the reactor.

An important feature of the current numerical scheme is the way the titania pigment is
modelled. Initially titania nuclei are produced which, as they proceed down the reactor,
grow. The particles will also collide and may coalesce together. This process produces a
continuous size distribution of titania particles. Numerically the continuous particle size
domain is discretized into a number of discrete size intervals. Details of this process can
be found in Hounslow et al. [1]. A schematic of the overall process with a typical reactor
configuration is shown in Figure 1.

02

TiCI4 Oz

_ C%o-%-o

~ ' ,

CC ~ O

Figure 1. Typical reactor configuration and pigment formation

2. MATHEMATICAL MODEL

The conservation of the mass and momentum, for steady-state variable density flow,
may be described by the equations:

O(pUi)_.O O(pUiUj)0p ~. 0 [(0Ui 0Uj)]
0xi axj : - a"'~i - ~ j /~ "~xj + "~i'i - puiuj (1)

The above set of equations is not dosed and in order to achieve closure, initially the
standard k-e model of turbulence is considered. In this model, the unknown Reynolds
stresses (~) are linearly correlated to the mean rate of strain as follows:

(0Ui 0Uj) 2
- p uluj'--#t ~xj + ~ x i - g p 5~i k (2)

where the turbulent viscosity pt is given by: #t = p C~ k2/e. The kinetic energy of tur-
bulence (k) and the dissipation rate of turbulent kinetic energy (e) are determined from
their own transport equations.

In the present study, a fast chemistry approach has been assumed where the time
scale of chemistry is very small compared with the turbulence time scale (given by k/e).

115

convection

Uk Oxk =

Consequently it is logical to expect that the reaction rate of the chemical process within
the reactor would rather be mixing then chemically dominated. In such cases the accurate
predictions of turbulence is essential and therefore we consider the Reynolds-stress closure
as an alternative approach to the above mentioned k-e model. The Reynolds stress models,
which are known to be more successful in predicting the turbulent flows (e.g. flows with
recirculation, swirl etc.), are based on solving the transport equations for each stress
component of the following form:

production ~ o n

o u , : i - (u~u---~~x~ + ujU~~x~J- ~x~ [u~u~u~ + (p,~& + ~ 6 ~) - ~ 0x~

- 2u OxkOxk + ~ \Oxj +Ox~/
disaipation redistribution

(3)

The above Reynolds-stress equations are not closed as the diffusion (apart from viscous
diffusion), dissipation and redistribution terms need to be modelled. In the present study,
the model of Speziale et al. [2] was adopted.

Chemical reactions considered here involve a simultaneous reaction of several species for
which the concentration is governed by separate differential equations. The conservation
equation for the mass fraction (m) of the species j can be written as:

o(p u~ mj)
Oxi Oxi Sct Oxi +Sj

(4)

where Sct is an effective Schmidt number and Sj is the mass rate of creation or depletion
of species j.

In order to determine the temperature field within the reactor we solve the transport
equation for the mixture entalpy (h) of the following form:

O(p Ui h) 0 k + kt Oh Omj 0 hjJji - ~i + Sa (5)
ax, =ax~ c , ax~ . a j ~ -ax~ .

where k and kt are molecular and effective conductivity, Cp is mixture specific heat
capacity, Jji corresponds to the flux of species j along direction i, ~ stands for deviatoric
stress tensor and finally Sh is an enthalpy source term for chemical reactions.

Formation of solid particles is controlled by three separate processes; namely nucleation,
surface growth and coagulation resulting in continuous particle size distribution at the
reactor outlet. In order to numerically simulate this distribution, the continuous particle
size distribution is discretized by a finite number of class sizes (minimum 12). Each class
size is then treated as a separate chemical species whose concentration is governed by the
differential equation of the same form as equation (4).

116

3. P A R A L L E L I M P L E M E N T A T I O N

The differential transport equations are transferred into their algebraic form using a
standard Finite volume technique. Co-located grid arrangement, which assumes the place-
ment of all dependent v~ables at the centre of control volume, has been used.

The parallel implementation of the code has been developed using the Communicat-
ing Sequential Process (CSP) programming model. Each process runs its own code and
communicates and synchronizes its actions with other processes by exchanging messages.
Typically a single process is assigned to a single processor. The code can use a various
type of message passing harnesses including Intel Specific (NX/2) for Intel i860 hypercube
and PVM or MPI for IBM SP2 system.

The code is parallelised using a traditional domain decomposition strategy whereby the
global domain is partitioned into rectangular subdomains which are allocated to unique
processes. To ease the implementation of the computations a buffer of two grid points
(Halo cells) is added to the rectangular domains to accommodate the finite difference and
finite volume computational stencils on both real and subdomain boundaries. Figure 2
shows a general partitioning and how the buffer data is replicated around each subdomain.
For the global data circulation (required for the calculation of residuals) the processors
are assumed to map into a ring topology, each processor in the ring having an identif~ng
index (Idnode), and data is circulated to processors with increasing index. The processor
with the largest index Circulates the data to the first processor.

Figure 2. Allocation of grid to four subdoma~ns

The algebraic equations generated by the process of discretization are solved using
a standard Tri-Diagonal Matrix Algorithm (TDMA) for all equations apart from the

117

pressure correction equation. For this equation the Pre-conditioned Conjugate Gradient
(PCCG) Method was used. Both Solvers are weU-established within the CFD community
but it is still important to emphasize a couple of points concerning their parallel imple-
mentation. The parallel implementation of the TDMA solver involves limiting the range
of the back-substitution step. After each sweep of the solver the halo regions are updated
and it is these field values in neighbouring subdomains which are used as boundary condi-
tions for the back-substitution. For the parallel implementation of the conjugate gradient
method it is important to mention that the communication costs are dominated by global
sums as the main steps in this algorithm involve vector products.

4. PARALLEL P E R F O R M A N C E

The target here is to calculate the flow with chemical reactions, described in Section
1.1, on various type of parallel machines. This would include Intel i860 hypercube and
IBM $P2. The main factor in .determining the parallel performance of the code will be
an efficiency coefficient defined as: ~ = T1/(nTn) where T1, Tn are the execution times
using one and n processors respectively. The calculation of this parameter requires first
obtaining the results for the single node and bearing in mind the large number of equa-
tions (23 in conjunction with k - e model or 26 when the RSM is used) which need to be
solved for the present problem, a size of computational grid is determined by memory of
each node. Since the Intel i860 hypercube has only 16 MBytes of memory per node it is
only possible to adopt 64x16 ffrid size for a single processor run.

Table 1 details the performance of the code using both k-e and RSM models of tur-
bulence for different processor configurations. A previous study [3] showed that for this
type of geometry (very long thin pipes) the best performances are achieved when par-
titioning is done along the axial direction and therefore the same approach is adopted
here. The timings given are in seconds per 100 iterations for an Intel i860 hypercube (64
nodes with 16 MBytes of memory per node). The total time (Ttotal) is the sum of the
communication (Tcom) times and calculation times (Tcalc). The communication times
are comprised of the times required to exchange informations between processors (Thalo)
and of global communication times (Tcirc).

In general both models produced a very good efficiency for the present number of pro-
cessors. Results obtained by the k-e model are slightly better which is probably due to the
need to exchange a larger amount of data between processors when using the RSM. There
is only a modest increase in total RSM computation time (compared with k-e results)
indicating that the present computing time is predominantly spent on calculations within
the chemical model.

Table 2 gives results for the same runs but now on IBM-SP2 machine (14 thin nodes
with 64 Mbytes and 2 thick nodes with 128 Mbytes of memory). The MPI message passing
harness is used here for communication between processors. Results presented here are
very similar in terms of ei~ciency compared with previous table indicating a very good

118

scalability of the present code.

Table 1
Total efficiency on Intel i860a

k-e model RSM model
Ttot~(s) Z~r Tr ~;(%) Ttot~(s) Z~,~r Zr ~;(%)

ix l 701 701 - I00 745 745 - i00
2xi 354.6 340.6 14 98.8 380.6 365.4 15.2 97.8
4xl 200 168 32 87.6 216 175 41 86.2
8xl 109 84 25 80.4 117 88 29 79.6

Table 2
Total effidency on IBM SP2

k-e model RSM model
Ttot~(s) Tr162 Tr ~;(%) "Ttot~(s) Tr162 Tr 7;(%)

Ixl 210.2 210.2 - I00 218 218 - I00
2xl 107.2 100.5 6.7 98 113 108.6 4.4 96.4
4xl 59.5 52.6 6.9 88.3 62 54.2 7.8 87.9
8xl 33.1 27.4 5.7 79.4 34.7 28.2 6.5 78.5

5. R E S U L T S

This section is concerned with the results obtained for chemically reacting flows in pipe
type geometries (TIOXIDE reactor). The particular reaction of interest is described in
Section 1.1. Figures 3 and 4 show the contours for both reactants (TIC14 and 02) and
products (TiO2 and C12) of the main chemical reaction occurring within the reactor. The
results are presented for both turbulence models. It is clear that two models lead to a
different level of mixing and, therefore, the distribution of reactants and creation of the
products are occurring at different positions within the reactor. For example the contours
of the main product C12 are more distorted along the line where the strongest mixing
between the incoming horizontal jet and vertical top wall jets occur.

This difference of product and reactant concentrations within the reactor will ultimately
affect the wall deposition rate as well as the size characteristics of the titania particles
at the outlet. These two parameters are of critical importance since, the deposition rate
would have direct effect in determining whether or not a catastrophic build-up on the
wall will arise and furthermore, for any particulate product, their properties depend on
the size of the individual particles created.

Temperature and TIC14 concentration profiles along reactor wall are plotted in Figures
5 and 6 respectively. Clearly, two models produce a different results so that in the case
of maximum temperature point, two models differ from each other by a 100 K. Since a

119

i / ,, ,

Tio2 contours

TIC14 contours i

. . . . 02 contours

~ TiO2 contours

TiCl4 contours

..... 02 contours

.

CI~ contours

�9

Figure 3. Chemical reactor, k-e results. Figure 4. Chemical reactor. RSM results.

maximum metal temperature is a crucial design parameter, an error here can have serious
impact on safety and costs.

1400.

~ 1200.

S

1000.

. tLSM

i j:'
I:

0.0 0.2 0.4 0.6 0.8 1.0
(m)

Figure 5. Temperature distribution
along the wall.

0.8

. , .

0.6

u

o ~ 0.4
. . - T

0.2'

m .

........ tLSM

0.0 0.2 0.4 0.6 0.8 1.0
X (m)

Figure 6. TIC14 distribution along the
wal l .

Two previously shown curves can be used to estimate a deposition rate on the wall using
simple Arrhenius formula: deposition rate ~ [TIC14] exp(- 20000/T). The deposition
rate calculated in this way is shown in Figure 7. Two models produced a factor of 2 in
the peak deposition rate which is clearly very signi~cant.

Creation of solid particles is directly controlled by the reaction rate of each species in
each particular reaction. In the present model reaction rate is chosen as minimum between

120

~ 2.0
I:1

1.5
"U

.~-- ,

~. o.s

"7",
.~ 0.3

. . 0

. ,=.
t . ,

o.2

m

0.1

= =RSM / \

/ \
/ *

.

0.2 0.4 0.6 0.8
Distance along reactor wall (m)

=~.o 1.o o.

Figure 7. Wall deposition rate Figure 8.
particle.

k - e

........ I ~ M

2. 4. 6. 8. 10. 12.
Class sizes (-)

Mass distribution of solid

standard Arrhenius reaction rate and Magnussen and Hjertager model (MH, [4]). In lam-
inar flows the reaction rate is controlled by Arrhenius model while MH model takes into
account the influence of turbulence. The MH model contains an empirical constant (C)
which is assumed to be C=I in present study. Figure 8 includes results for mass dis-
tribution obtained by both turbulence models. Clearly, RSM model alters overall mass
distribution of particles compared to the k-e model.

6. C O N C L U S I O N S

The Reynolds-stress model of turbulence has been used to calculate the chemically
reacting flow. A code has been ported on two different parallel platforms (Intel i860 and
IBM-SP2) and satisfactory ei~ciency has been achieved. It was shown through comparison
with simple k-e model of turbulence that a difference in turbulence field can have an
important impact on prediction of some important reactor parameters. Thus, two different
approaches to turbulence modelling resulted in the difference for the peak deposition rate
by a factor of two and furthermore in different particle size distributions at the reactor
outlet.

R E F E R E N C E S

1. Hounslow, M.J., Ryall, R.L. and Marshall, V.R., (1988), AIChe J., Vol. 34, No. 11,
pp. 1821-1832.

2. Speziale, C. G., Sarkar, S. and Gatski, T. B., (1991), J. Fluid Mech. 227, p. 245.
3. Carter, J.G., Cokljat, D. and Blake, R.J., (1995), Lecture Notes in Computer Science

919, Springen-Verlag, pp. 434-440.
4. Magnussen, B.F., and Hjertager, B.H., (1976), 16th Syrup. on Combustion, Cam-

bridge, MA, Aug. 15-20, pp. 719-729.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

121

D e v e l o p m e n t of a P a r a l l e l S p e c t r a l E l e m e n t C o d e U s i n g S P M D
C o n s t r u c t s

H. L. Bergman, J. S. Vetter*, K. Schwan*, and D. N. Ku

GW Woodruff School of Mechanical Engineering and *College of Computing,
Atlanta, GA 30332

ABSTRACT

While computational fluid dynamics are an al ternat ive to experimentat ion,
the CPU t ime requi rements for three dimensional, uns teady problems are
prohibitive. The spectral e lement method has high spat ia l accuracy and
converges quickly. F u r t h e r m o r e , the spect ra l e lement method can be
paral lel ized wi thout sacrificing numerical efficiency. The na tu ra l domain
decomposition of the spectral e lement method is ideally sui ted for single-
program, mult iple-data execution.

A spect ra l e lement code was paral le l ized on the KSR-2 64-processor
supercomputer using single-program, mult iple-data constructs. Very little of
the sequential code had to be modified for shared memory execution because of
the na tura l domain decomposition inherent in the spectral element method.

The parallelized code was tested on two unsteady flow problems consisting
of an axisymmetr ic sudden expansion at Reynolds number of 175 and a 3-D
curved bifurcation model of the coronary arteries at a Reynolds number of 220.
The parallel code produced a speedup of over 7 using 24 processors for the 2-D
simulation. A speedup of over 3 was realized using 22 processors to s imulate
flow through the 3-D bifurcation.

1. INTRODUCTION

There is a strong correlation between fluid dynamics and atherosclerosis.
In the presence of low, oscillatory wall shear stress, ar ter ies are likely to
occlude, causing hear t a t tack or stroke [1]. For this reason, it is impor tant to
quantify the wall shear stress as a function of time in unsteady branched flows.
Numerical studies, of bifurcated, pulsatile, 3-D flow in the coronary ar ter ies
consumed up to six weeks of computational time per simulation on a fast IBM
RISC/6000 workstation [2]. Using a vector supercomputers offered little benefit.
Al though a Cray was a few t imes fas te r t h a n the h igh-pe r fo rmance
works ta t ion when executing non-optimized code, jobs often wai ted days or
weeks to reach the front of the queue. The computational fluid dynamics (CFD)
code was therefore paral le l ized to bypass the severe t ime const ra in ts of
uniprocessor machines.

122

The spectral element method (SEM) was chosen as the basis for our
numer ica l s imula t ions because it has high order accuracy and can be
parallelized efficiently. The SEM is a high order finite element formulation
which has a natural domain decomposition. Parallelism is typically exploited
by decomposit ion along element boundar ies and incurs no convergence
penalties [3-7].

This paper details the paral lel izat ion of a SEM code onto the KSR2
supercomputer. The KSR2 was selected as the target platform because it has
relatively low overhead, it is easy to program, and it has the time resources
required for this project. Coarse grained parallelism was implemented in a
manner similar to previous work [3]. The major exception in this case was the
use of a shared memory programming model. Decomposition in this style
lends i tself to portabi l i ty onto other shared memory archi tec tures which
support single-program, multiple-data (SPMD) constructs.

2. METHODOLOGY

In the SEM, the physical domain is decomposed into several high order
macroelements. In each macroelement, velocity and pressure are expanded in
terms of Lagrangian interpolants at the N 2 Gauss-Lobatto-Legendre and (N-2) 2
Gauss-Lobat to points, respectively [7]. This creates a locally s t ruc tu red
problem. Consequently, there is a high rat io of i n t r ae l emen t work to
interelement communication. Typically seventh order elements are used in a
coarse mesh and tenth to twelfth are used in a fine mesh.

In this specific implementa t ion, t i m e is advanced with a th i rd order
Adams-Bashforth scheme. The solver uses the Uzawa algorithm to separate
the calculation of the pressure and velocity terms. A diagonally preconditioned
conjugate gradient solver operates on the decomposed equations.

2.1. Target platform: the KSR-2
The KSR-2 is a 64 processor MIMD machine arranged in two rings of 32

cells each. Remote memory access latency on the KSR is roughly 1/20th that of
the iPSC/860 [9]. Physically, the KSR is a distributed memory machine, but on
a programming level the machine acts like a shared memory computer.

Because of its hierarchical structure, memory latency depends highly on
the distance between the processor and the memory location [10]. For this
reason it is impor tant to keep memory references local and, when possible,
keep the parallel execution running on a single ring. All the necessary data
will be stored on the subcache during large parallel execution of typical CFD
problems.

2.2. Prof i l ing
Profi l ing the sequent ia l code was performed prior to p l ann ing the

parallelization strategy. Both a call graph and a list of where time was spent
were determined by the gprof profiler. Gprof showed, as was expected, tha t
most of the execution t ime was spent performing low-level mat r ix -mat r ix
multiplication and vector addition. The call graph showed interest ing results.
Typically, over 90% of the execution time was spent in several high-level
routines which discretize the Navier-Stokes equations.

123

Fortunately, these large blocks of code are performed independently on each
element, usual ly inside a do loop spanning the space of e lements . Such
rout ines can be effectively parallelized. The discret izat ion and conjugate
gradient modules are of this type.

Other functions, such as those to calculate norms, can be parallelized but
require considerable communication. While some execution t ime would be
saved by us ing reduct ion algor i thms, doing so would have c o n s u m e d a
disproport ionate amount of human programmer time and yield only a small
increase in speedup.

Rout ines were paral le l ized in descending order of run time. Those
procedures (and their descendants) which consumed the most amount of run
time and could be productively parallelized were parallelized first.

2.3. SPlVlD Implementation
The results of the profiling showed that there were large blocks of code tha t

are performed in do loops spanning all K elements. The SPMD paradigm is
ideal for paral lel SEM because there is concurrent execution operat ing on
different portions of the same arrays. KSR Fort ran contains SPMD constructs,
called parallel regions, which work well with the domain decomposit ion
strategy.

Note tha t all of the physical parameters--col locat ion point location, each
component of velocity, pressure , and local v iscos i ty- -are four dimensional
arrays. Each thread was to be assigned a fraction of the elements to work on,
consistent with the general SEM parallelization strategy. Macroelements were
equally divided among threads to ensure load balancing. A do loop tha t was
indexed in the sequential version like

do i0 iel=l,number_of_elements

would become

do i0 iel=istart(thread),istart(threadid)+ilength(threadid)-i

in the parallel version. In this manner, accidental overwriting was prevented.
The next challenge was passing variables into low level subroutines. The

solution was to have each thread pass the location of the beginning of its portion
of the arrays to low level subroutines. This location was specified in the call by
explicitly passing a pointer to the correct register:

v(l, i, i, iel) .

For example, a typical block of code performing the same instruct ion on each
element, which originally (sequentially) looked like:

call A(v, temp)
call B(v, temp)

was changed to"

call A(v(l,l,l,iel), temp(l,l,l,iel))
call B (v (l, l, l, iel) , temp(l,l,l,iel))

Writ ing the parallel region in this manne r created private copies of each
thread ' s da ta on cache. These variables were thus stored locally in each

124

processor's memory. On the KSR, references to local registers are no less than
three t imes faster than those to memory on other cells [9]. Keeping most
references local was one important part of the parallelization strategy, which is
impor tant considering the latency characteristics of the KSR.

Common ar rays were frequently used for storing temporary da ta in the
sequen t i a l version. These a r r ays were original ly declared as common
variables to increase speed. If not managed correctly, these common ar rays
would be considered common among all threads on the KSR. This means tha t
if one thread stored data in a common temporary array, it would write to the
single, global copy of tha t array, and so would the other threads. When a
th read read from this array, it would acquire the last value wr i t ten to t ha t
space, which may have come from another thread. To eliminate confusion, the
t empora ry a r rays were indexed with a fourth dimension to provide each
element with its own space.

2.4 Compartmentalizing the parallel constructs
The machine specific paral lel directives and paral lel subrout ines were

separa ted from the rest of the source code with precompilier directives. A
logical variable, set at compilation time, instructed the precompiler whether to
include the parallel code or not. Debugging was simplified by being able to set
individual portions of a paral le l code to run sequent ia l ly . Using these
directives, the parallelized code can be ported to any sequential machine and
run without making any changes. Efforts to port the parallel code onto other
shared memory architectures would require using different specific constructs
to handle the threads.

3. BENCHMARK CASES

Two sample geometries, shown in Figures 1, were created to test the code
under a variety of problems. One problem was a 48 element sudden expansion
with expansion ratio of 1:2. This geometry was useful because the grid is
ax isymmetr ic and orthogonal, which involved fewer computa t ions t h a n a
curved geometry. The inlet conditions were parabolic flow at Reynolds number
of 175; the exit length was 60 diameters. Figure l(a) shows the computational
grid with s t reamlines superimposed.

Figure 1. (a) Sudden expansion geometry with streamlines superimposed, and
(b) coronary bifurcation geometry.

125

To see how 3-D problems were handled by the parallel solver, a complex,
curved 3-D geometry was also used. This case was of more practical interest
because large, 3D problems drive the need for parallel CFD. The geometry used
was the 308 element coronary bifurcation designed by He [2], shown in Figure
l(b). The problem was decomposed into as many as 22 threads.

4. RF_~ULTS

The timing results presented below were generated from the average of
three runs per specific geometry and problem size. The s tandard deviation
between runs was on the order of one second for all runs with less than 12
processors; that when using more processors was roughly 5%. The outliers
were caused by high machine overhead from multiple users' large jobs.

Figure 2(a) shows the speedup results for the 48 element sudden expansion
model with polynomial order of 7, 10 and 12. Note tha t the number of
collocation points in each macroelement equals the square of the polynomial
order. Thus compared to the coarse grid, the intermediate grid had roughly
double the number of collocation points, a measure of computational work, and
50% more boundary nodes, a measure of communication. The finest mesh
(twelfth order polynomials) had three times as many collocation points as did
the coarse mesh.

8

n 6 3

& &2
~ 2

0 1
8 16 24 32 40 48 4 8 12 16 20
Number of Processors Number of Processors

(a) (b)

Figure 2. Speedup curves for the (a) axisymmetric sudden expansion and (b)
3D coronary bifurcation model.

The results showed that despite the doubling of computational work from
seventh to tenth order elements, the speedup increased by only 50% when
higher order elements were used. The improved speedup for the tenth order
elements was limited by the additional communication incurred by having
more boundary nodes and higher s tar tup costs related to initially copying
velocity and geometry data to threads in the parallel region. The maximum
speedup observed with the twelfth order mesh was 7.3, more than double that of
the seventh order mesh.

126

The 3-D simulation represents the maximum amount of work encountered
in a CFD problem of interest to biomedical applications. Figure 2(b) shows the
speedup curve for the 3-D coronary simulation. The maximum speedup of 3.2
was lower than the speedup of 3.7 obtained by the small sudden expansion
model of similar element order. Speedup was limited by the large amount of
data copying and communicating, despite there being many times more
computations being performed. Communications were high because the
preprocessor did not assign neighboring elements to the same thread. Altering
the preprocessor's element numbering scheme manually is very time-intensive
and thus was not performed.

5. DISCUSSION

Currently, some portions of the code are still running sequentially. The
serial fraction is 18% based on the profiling data for the coarse grid sudden
expansion simulation. Having serial execution, of course, limits speedup and
makes performance evaluation difficult; speedup of the entire execution does
not reflect the efficiency of the parallel implementation. Therefore, the speedup
and efficiency of the parallel portions of code were measured to evaluate
parallel performance. These data were produced by placing timing statements
around the parallel regions of code.

Figures 3 (a) and (b) show the speedup and efficiency of the parallel portions
of code when 10% and 82%, respectively, of the code was running in parallel.
The efficiency of the parallel code increased dramatically as the amount of
work done in parallel increased. When a small fraction of code was running in
parallel, efficiency was less than 20% with a large number of processors .
Presently, with over 80% of the code parallelized, the parallel portion is over
70% efficient for this coarse grid simulation when a large number of processors
were used.

3 2 ,

o60 o

"~ 40 :b. ... = o,, ,10% Parallel
8~- .~, J Z 1 0 % o Parallel-~, " w 2 0 -o. ...~o.=..:..:..:..:.~T i .. _

, , , , , , , , , , , , , , , , , , , , : - :

8 16 24 32 40 48 0 8 16 24 32 40 48
Number of Processors Number of P r o c e s s o r s

(a) (b)

Figure 3. Speedup curves (a) and resulting parallel efficiency (b) for portions of
code running in parallel. Shown are data from two coarse grid 2-D
simulations: with 10% of code parallel and with 82% of code in parallel.

127

The parallelization process has not yet been completed. F igures 3 showed
tha t parallel efficiency increased dramatically as the amount of paral lel ism
increased. Therefore, as more of the code is parallelized, parallel efficiencies
should be greater than 70%.

The devices and implementat ions required to parallelize this SEM code for
the KSR are compartmentalized. There are two major benefits to this style.
Firs t , the para l le l i sm is completely t r a n s p a r e n t when no para l le l i sm is
needed. For example, the parallel code can be ported to any other architecture
and run sequent ia l ly . Second, the KSR specific const ructs are easily
identifiable and replaceable. This would make porting simplified because the
KSR specific commands can easily be replaced by the new machine ' s
commands .

This style of data managemen t also simplifies port ing to other shared
memory machines because arrays, such as tha t for velocity, were t reated as if
there were only one copy. Paral lel ism was introduced by having different
threads work on separate portions of the loops which span the set of elements.
Parallel ism on other shared memory machines can also occur at the element-
loop level.

The 2-D speedup results presented here are similar to other published SEM
results for comparably-sized problems [4], despite there being sequential code
remaining. Even bet ter resul ts can be expected this shared memory SEM
paradigm because about half of the remaining sequential t ime in the parallel
code can be parallelized. Furthermore, parallelizing these smaller functions
will increase parallel efficiency by reducing the number of barriers needed in
the currently-incomplete parallel region. The speedup results show tha t the
SPMD programming style is well-suited to domain decomposition parallelism.

6. CONCLUSIONS

Parallel regions, or the generic "single-program, multiple-data" constructs
were useful for porting a spectral element code to a shared memory model.
The speedup results were comparable to those from porting a similar code onto
a hypercube, despite there being some sequential code remaining.

As more of the code becomes parallelized, the maximum speedup curve will
shift upwards. It was shown that as more parts of the code were parallelized,
the efficiency increased. Therefore, it is expected that a considerable increase
in speedup could occur when more parallelism is introduced into the code.

Modifications to the code were minimized by using a shared memory
programming approach. Only small changes should be necessary to port the
code onto other shared memory parallel architectures.

REFERENCES

~ Ku DN, et al (1985) Pulsatile flow and atherosclerosis in the human carotid
bifurcation: Positive correlation between plaque location and low and
oscillating shear stress. Arteriosclerosis 5, 293-302.

128

2. He X and Ku DN (1994) Flow in the human left coronary artery: effects of
variations in bifurcation angle. Advances in Bioengineering BED - Vol. 28,
435-436.

3. Fisher, PF (1990) Analysis and application of a parallel spectral element
method for the solution of the navier-stokes equations. Computer Methods
in Applied Mechanics and Engineering 80, 483-491.

4. Fisher, PF, et al (1988) Recent advances in parallel spectral element
simulation of unsteady incompressible flows. Computers & Structures 30,
217-231.

5. Ku HC, et al (1989) A pseudospectral matrix element method for solutioin
of three-dimensional incompressible flows and its parallel implementation.
J. of Computational Physics 83, 260-291.

6. Tan CS (1989) A multi-domain spectral computation of three-dimensional
laminal horseshoe vortex flow using incompressible Navier-Stokes
Equations. J. of Computational Physics 85, 130-158.

7. Patera AT (1984) A spectral element method for fluid dynamics: laminar
flow in a channel expansion. J. of Computational Physics 54, 468-488.

8. Fisher, PF and Patera, AT (1991) Parallel spectral element solution of the
Stokes problem. J. of Computational Physics 92, 380-421.

9. Dunigan TH (1992) Kendall Square Multiprocessor: early experiences and
performance. US Department of Energy, Engineering Physics and
Mathematics Division, Report ORNLfrM-12065.

10. Kendall Square Research (1991) KSR1 Principles of Operations. Kendall
Square Research, Waltham, MA.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

129

Para l le l C o m p u t a t i o n of Turbu len t Reac t ive F lows in Ut i l i ty Boi le r s

J. Lepper

Institute for Process Engineering and Power Plant Technology, University of Stuttgart t,
Pfaffenwaldring 23, D-70550 Stuttgart, Germany.
Email: lepper@ ivd.uni-stuttgart.de

The paper presents the parallel implementation of a simulation program for turbulent
reactive flows in utility boilers on an Intel Paragon parallel computer. The explicit
parallelization with the SPMD programming model and synchronous message passing requires
only few modifications of the existing code. The static decomposition of the structured grid
topology is done for an isothermal boiler model and a non-isothermal full-scale boiler
configuration. For both cases a domain decomposition method with two different approaches is
used to subdivide the numerical grid. If geometrical aspects are the basis for the subdivisions,
only moderate speedups with limited numbers of subdomains are achieved, whereas
decompositions regarding a better load balance result in higher speedup. With an additional
data exchange during the implicit solution of the pressure correction equation, all computed
results show a convincing numerical behavior.

1. INTRODUCTION

The numerical prediction of phenomena within utility boilers requires submodels for fluid
flow motion, turbulence, all combustion processes and the radiative heat transfer. All of these
models are strongly coupled and interact in complex ways. Due to the dimensions of utility
boilers and the time and length scales of the important phenomena an enormous amount of
memory and computational power is necessary to obtain numerical predictions with a high
level of accuracy in reasonable computing times during the design phase.

To meet the first requirement fine discretizations are essential, which can hardly be achieved
if structured Cartesian grids are used. One remedy is the usage of a domain decomposition
method for sequential applications to allow locally refined meshes in the near-burner region
[1],[2]. But even with this procedure grid-independent solutions are scarcely possible due to
memory limitations. Additionally the simulation times increase significantly with finer grids,
and more efficient numerical algorithms have to be considered.

MIMD parallel computers with distributed memory offer more memory in a scalable way
and faster turn-around times for appropriate applications. The aim is therefore to benefit from
these advantages with the parallelization of an already existing application without the need to
re-implement most parts of the code [3]. Most engineering programs have been developed over

t This research work is supported by the Deutsche Forschungsgemeinschaft (DFG) with a grant in the frame
of a "Graduiertenkolleg" at the University of Stuttgart.

130

a long period of time and a re-implementation of these large codes is generally not practical.
With some kind of a domain decomposition technique coarse grain parallelism is introduced

and a transformation into a parallel program becomes feasible. In this approach, also known as
"data distribution" [4], the number of processors and the load balance determine the number of
subdomains, whereas the geometry is the most important aspect for the other approach of the
domain decomposition method. For the design of utility boilers with complex swirl burners,
decompositions taking geometrical aspects into account are often favorable.

Besides the speedup, the scalability is one of the most important aspects for a parallel
application [5,6]. Especially for the simulation of utility boilers, a scalable parallel application
will allow finer numerical grids that are otherwise not possible due to memory limitations. On
the other hand, an acceptable speedup is necessary to make use of the scalability.

The following two sections give a brief review of the numerical solution method in the
sequential code and the parallelization strategy. After that computational results for an
isothermal boiler model and a non-isothermal full-scale boiler are presented. All calculations
have been carried out on an Intel Paragon using the NX and PVM message passing environment.

2. REVIEW OF THE SEQUENTIAL ALGORITHM

The three-dimensional simulation requires the solution of equations for the conservation of
momentum and energy, for all species of the reaction model and for the radiative heat transfer.
For the description of the fluid mechanics a time-averaged formulation of the Navier-Stokes
equations is used (1). For the sake of simplicity all overbars are omitted in the formulas.

Oxj (pUjUi) ~ bt~xj +-~i) -~jj (puiuj) --~i + pgi (1)

The standard k,a-closure is applied to model the Reynolds stress tensor in (1). The coupling
of the velocity and pressure field for these weakly compressible flows is given through a
pressure correction equation according to SIMPLEC [7].

For the discretization a cell-centered finite volume formulation on a non-staggered grid
arrangement is used. Care must be taken for the reconstruction of the convective fluxes at cell
faces from adjacent cell values. A pressure-weighted interpolation method introduced by Rhie
and Chow [8] is used as a correction term for linear interpolated convective fluxes. This
method requires two cell values on each side of a cell face and therefore a special treatment at
all boundaries. For this reason an additional overlap of intemal cells at adjacent subdomains is
provided.

The pulverized coal combustion is described with a reduced 4-step reaction scheme [9].
With a Eularian approach the nine species from this scheme can be written in the generalized
form of a transport equation (2), which is applied to all other conservative variables, too.

Oxj (p ~ j (r c p ~ j) + Sj (2)

The resulting system of algebraic equations is solved in a decoupled way. The relaxation
within the inner iterations is done with the SOR method or with an incomplete lower-upper
(ILU) decomposition solver proposed by Stone [10]. These iterations are not solved to a high

131

level of accuracy, because outer iterations for the whole system have to be performed to take
the non-linearity and the strong coupling between the variables into account.

For the radiation, which is the predominant mechanism of heat transfer in utility boilers, a
multiflux model [11] is applied. This model can be brought into a formulation according to (2),
so that no additional difficulties occur during the parallelization.

3. PARALLELIZATION STRATEGY

The explicit parallelization with the SPMD programming model and message passing
should change the existing program and data structure as little as possible. Especially the data
structure should be maintained, because this structure has been optimized for vector
processing. The treatment of connection boundaries at adjacent subdomains is therefore done
in a similar way physical boundary conditions are handled. This implementation leaves the
numerical kernel nearly unchanged, but it does not allow an implicit treatment at connection
boundaries because individual cells cannot be addressed directly. All necessary data along
these artificial boundaries are consequently updated at once after each inner iteration using
synchronous message passing subroutines.

Of course, this treatment of boundaries changes the convergence behavior of the numerical
solution algorithm in the parallel program [12]. The calculation within each subdomain
remains implicit, while the data update at connection boundaries introduces explicit values.
With an increasing number of subdomains these explicit values become more important for the
solution process and the number of outer iterations increases.

An improved coupling of adjacent subdomains requires an additional data exchange within
inner iterations. This extra communication for the pressure correction equation results in a
reasonable reduction of the number of iterations [13,14,15]. For other variables no
improvement through this stronger coupling has been found so far.

Because different types of parallel computers with distributed memory are available, it is
important to obtain a portable parallel application [16]. For this an indirect implementation of
the message passing subroutines has been proven useful to hide vendor-specific library calls.

For the static subdivisions of the numerical grid a domain decomposition method with two
different approaches is used. In the first approach, the subdivisions are performed with regard
to geometrical aspects as for sequential methods. This offers a high flexibility for geometrical
variations during the design phase of a utility boiler. However, the number of possible
subdomains for a parallel computation is limited, and hence the scalability, too.

In the second approach, the subdivisions are done in a way that should yield a better load
balance. Since no geometrical considerations are taken into account, this method is more
useful for parallel computations where the geometry is not the main subject of the simulation.
Perfectly balanced subdomains are not always possible for a given three-dimensional
discretization, especially due to the internal overlap and the ash hopper.

4. RESULTS

The parallel application is implemented on a 72-node Intel Paragon. For verification and
test purposes an isothermal boiler model with a height of 2m and a basal surface of about 0.4m

132

squared is used. A relatively fine numerical grid with about 40,000 internal computed cells is
applied for the computations to verify the results and test the numerical behavior for several
decompositions.

The scale of this model is 1:20 compared with the full-scale boiler, which has a height of
28m and a cross section of about 64m 2. These non-isothermal simulations are done on a quite
coarse grid with just about 81,000 internal computed cells. Hereby the computational gain
from the parallel application, e.g. the reduction of the execution time, was of major interest.

4.1. Isothermal boiler model
The subdivisions are first made with regard to the geometry. Each burner with the assigned

air-staging nozzles is kept within one subdomain. This results in three configurations with a
maximum of 24 subdomains, whereby none of the decomposition led to a good load balance.
For 24 subdomains the number of internal computed cells differs by a maximal factor of 2.2.

A second approach should yield a better load balance and subdivisions with up to 52
subdomains were obtained. Again no perfect load balance was possible. For the case with 52
subdomains the number of internal computed cells still differs by a maximal factor of 1.4.

Figure 1. Mixture fraction in a cross section on the top burner level for 1 and 52 domains.

In figure 1 the mixture fraction is presented as one strongly conservative quantity in a cross
section on the top burner level for a sequential computation and one with 52 subdomains.
There is neither an influence visible of the internal overlap (shown as the dashed line) nor are
pronounced differences obvious for the parallel computation.

Figure 2 shows the normalized mass residual versus the number of iterations as a measure
for the numerical stability of the iteration process. In this figure the stability for computations
with 24 and 52 subdomains is compared with the sequential run. The explicit values at the
connection boundaries of the implemented data exchange for the numerical algorithm cause
the oscillations for the parallel computations.

133

1E+00
- - sequential

'~" 24 procs; stronger coupling
- - l - - 52 procs; stronger coupling

--~ 0 52 procs

"O �9 - 1E 02
(D x_

o~
O~
t~
E

~ 1E-04-
o
c-

1 E-06

�9 �9 -- �9 - - - - r - - ' - "

I I I t I I i i I I I I I I I I I i , I

500 1000 1500 2000

Number of iterations

Figure 2. Numerical stability of two selected parallel computations.

With the stronger coupling within the solution of the pressure correction equation no
significant increase in the number of outer iterations to reach the same converged solution is
noticeable. If this coupling is omitted, the undesirable increase in the number of iterations is
visible, here exemplified for 52 subdomains. Since the reduction in communication time is
negligible compared with the tremendous loss in the numerical efficiency, only computations
with the stronger coupling are used in the following.

The measured speedup of the calculations is shown in figure 3. The chosen discretization
allowed the computation on one compute node of the Paragon to provide the reference time.

5 0 -- linear /

- - -m-- geometrical; NX
- - V - - load balance; NX

4 0 - - - - • load balance; PVM

z 30-
~ . . . I

09 2 0 - ~..--iiii

,~, ~ i i i i i ! l i i i i i I i i i i i i i i i I

10 20 30 40 50

Number of processors

Figure 3. Speedup for the boiler model.

134

As expected, the results for subdivisions regarding the load balance are better than those
regarding the geometry due to the disadvantageous load balance of the latter. The
homogeneous computing environment on the Paragon led to only slightly less effective results
with PVM.

4.2. Non-isothermal full-scale boiler
For the subdivisions, the two previously described approaches are applied again, and in

figure 4 one of the geometrical decompositions with the maximum number of useful
subdomains is shown.

Figure 4. Numerical grid for the boiler and the geometrical subdivision into 20 subdomains.

135

With this procedure each of the six swirl burners with the assigned air-staging nozzles is
again kept in one subdomain. It is obvious that the number of internal computed cells differs
significantly, for this case by a maximum factor of about 6, which is apparently not optimal.

In the second approach subdivisions for a better load balance have been carried out up to 32
subdomains. But as in the isothermal case no optimal load balance was possible; the number of
internal computed cells still differs by a factor of 1.4.

During the simulation of this boiler the burner quarl length has actually been varied, which
was supported by the geometrical decomposition. Here only the subdomains containing the
burners had to be modified and not the whole computational domain.

The performance of these computations using the NX message passing environment is
depicted in the next figure.

,10 ~

.1!
�9 .O-- sequential; DEC AXP - t
- -I1--- geometrical; NX

$
~ - 'V-- load balance; NX

p ~.~.

i i i i I i i i I I i i ~ i i
10 20 30

1.5-
ff)

(1)
E -
,_ 1.01
O
.t-.,

O Cl)
X
LU 0 . 5 -

0 . 0

\\

Number of processors

Figure 5a. Execution (wall-clock) times.

3 0 -

o. 2 0 -
"O

CO

1 0 -

!

linear /
- ~ - geometrical; NX /
--V-- load balance; NX /

j ~ J

s s V t s

, l ' s ~ " i i i i i i i i i i i I i

10 20 30

Number of processors

Figure 5b. Speedup (estimated).

For this configuration a computation with less than ten processors was not possible due to
memory limitations on single compute nodes of the Paragon. Therefore, comparisons between
a workstation (DEC 3000 Model 300X AXP) and one compute node have been done to
determine the reference time on the Paragon. It appeared that the workstation is between 2.0
and 2.4 times faster than a single node of the Paragon. All values given here are based on the
factor of 2.0. For comparison the execution time on the workstation is plotted, too.

The reduction of the execution times (figure 5a) with increasing number of subdomains/
processors is remarkable, even compared with the workstation. The subdivisions regarding the
geometry are, as expected, less effective, a fact which becomes more distinct when looking at
the speedup (figure 5b). It must be stated again that these speedups are not based on
measurements for the execution time on one node of the Paragon.

The speedup is apparently not optimal, but it is acceptable for the chosen communication

136

pattern and the data exchange. For the user the reduction in the computing times is generally
more important than the speedup, a fact which is a measure for the implementation quality of
the parallel application. On 32 processors the converged solution is reached in about 3 hours
and on 20 processors within 5 hours, compared to approximately 27 hours on the workstation.

However, for better parallel efficiencies more expensive changes of the program and data
structure will become indispensable.

5. CONCLUSIONS

The parallel version of a simulation code for turbulent reactive flows in utility boilers has
been implemented on a distributed memory parallel computer. It could be shown how an
existing application can be mapped to a parallel computing environment.

The explicit parallelization of the existing application requires only some minor
modifications of the program and data structure. An additional data exchange within some
parts of the solution algorithm leads to the same numerical stability as for sequential
calculations. The indirect implementation of the necessary message passing calls provides a
portable parallel application.

For the subdivision of the numerical grid a domain decomposition method with two
different approaches is used. For the first procedure geometrical aspects are the basis for the
decomposition, whereas a better load balance is the basis for the second approach. Both
methods show an acceptable though not optimal speedup, whereby the results of the latter
procedure are better, especially for computationally expensive cases. This method should
therefore be preferred if the geometrical flexibility of the first procedure is not necessary
during the simulation.

REFERENCES

1. R. Schneider et al., Proc. Comp. Fluid Dynamics '94, Wiley, New York, 1994, 823.
2. P.J. Coelho and M.G. Carvalho, J. Num. Methods Eng., 36 (1993) 3401.
3. S.P. Johnson and M. Cross,-Appl.. Math. Modelling,45 (1991) 394.
4. E.E van der Velde, Concurrent Scientific Computing, Springer, New York, 1994.
5. R.K. Agarwal, Comp. Methods in Applied Sciences, Elsevier, Amsterdam, 1992, 1.
6. A.K. Stagg et al., AIAA Journal, 33 (1995) 102.
7. J.P. van Doormal and G.D. Raithby, Num. Heat Transfer, 7 (1984) 147.
8. C.M. Rhie and W.L. Chow, AIAA-82-0998 (1982).
9. W. Zinser, Fortschrittsberichte Reihe 6, Nr. 171, VDI, DUsseldorf, 1985.
10. H.L. Stone, SIAM J. Num. Anal., 5 (1968) 530.
11. A.G. De Marco and EC. Lockwood, Proc. Italian Flame Days, (1975) 184.
12. D. Drikakis et al., J. Fluids Engineering, 116 (1994) 835.
13. M. Kurreck et al., Notes in Num. Fluid Mechanics 47, Vieweg, Braunschweig, 1993, 157.
14. M.E. Braaten, J. Num. Methods Fluids, 10 (1990) 889.
15. M. Peric et al., Proc. Parallel CFD '91, Elsevier, Amsterdam, 1992, 297.
16. A. Bode, Notes in Num. Fluid Mechanics 47, Vieweg, Braunschweig, 1993, 7.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

137

A Comparison of Different Levels of Approximation in Implicit Parallel Solu-
tion Algorithms for the Euler Equations on Unstructured Grids

C. W. S. Bruner a and R. W. Walters b

"~Aerodynamics and Performance Branch, Code 432100A, Mail Stop 2, Building 1403, Naval
Air Warfare Center, Aircraft Division, Patuxent River, MD 20670-5304

bprofessor, Department of Aerospace and Ocean Engineering, 215 Randolph Hall, Virginia
Polytechnic Institute and State University, Blacksburg, VA 24061

A fully implicit algorithm for the Euler equations of fluid dynamics is implemented on a
distributed-memory parallel computer. In this implementation, the computational grid is dis-
tributed across multiple processors. The Euler implicit algorithm for the solution of the gov-
erning equations gives rise to an inner matrix problem. This inner problem is solved itera-
tively using the symmetric block Gauss-Seidel algorithm. In the interface region between
domains, one must choose between four levels of approximation to the flux Jacobians: com-
plete communication of the evolving update across domains; communication of diagonal
blocks and residual across domains outside the time integration loop; approximation of diago-
nal blocks and residuals using local quantities; or neglecting the non-local Jacobians and re-
siduals completely. Also, a general method for extending one-dimensional limiters to the un-
structured case is proposed.

1. I N T R O D U C T I O N

Implicit schemes for the Euler equations of fluid dynamics give rise to an inner matrix
problem. When implementing these schemes on a distributed-memory architecture, compute
nodes must have knowledge of the current solution and residual vector in the first non-local
cell across a shared face; the converged solution is dependent only on these quantities. To
enhance (or, in some case, achieve) convergence when computing on multiple compute nodes,
several ways of dealing with the non-local blocks in the left-hand side matrix and residual
vector may be considered. Comparison of different schemes for handling these non-local
terms is the thrust of this paper.

This paper is declared a work of the U. S. Government and is not subject to copyright protection in the United
States.

138

2. FORMULATION

2.1 Description of the implicit algorithm on one processor
The computer code used for this investigation is a fully conservative upwind cell-centered
finite-volume primitive-variable Euler solver; variable extrapolation (MUSCL l) is used for
higher-order fluxes. In this investigation, Roe's approximate Riemann solver 2 is used to
compute the fluxes through a face. Euler implicit time integration gives rise to a large, sparse
matrix problem at every timestep:

[~ (~Ry]A"Q=-R" (1)
~ I +[oqQ)

Since the code solves for and stores primitive variables, A"q is computed explicitly from
bq A"q

Second-order fluxes are computed using gradient-based reconstruction 7; gradients for each
component of the solution are computed for each cell using the discrete form of the gradient
theorem3:

N faces
1 (2)

V q i -- --~ E (q i n S) j
j=l

where (qi)j is the distance-weighted average of qi in the cells adjoining face j . These gradi-

ents are then limited so that each extrapolated solution variable is on the interval [q,in ,qm,X]
p U l

for each face of the cell a .
The flux Jacobians are computed numerically using central differences. Implicit boundary

conditions are used in this investigation and are computed numerically. Only first-order spa-
tial accuracy is used on the left-hand side; second-order accuracy is still obtained for the con-
verged solution as long as the right-hand side of Eq. 1 is second-order accurate. The resulting
sparse matrix problem (Eq. 1) is solved using Block Symmetric Gauss-Seidel (SGS) 5 itera-
tion. The inner matrix problem can be solved to arbitrary accuracy or can be iterated a fixed
number of times.

2.1.1 Limiters
All popular one-dimensional limiters may be expressed in terms of the ratio of consecu-

tive differences 6,

r = ui+l - u~i (3)
U i -- Ui_ 1

Eq. 3 may be recast in the following form:

[U i -~-{(U/+I--Ui)]--Ui C = - - (4) r= [Ui"[-l(ui--Ui_l)]--Ui U

139

and we see that Eq. 3 may be interpreted as the ratio of central to one-sided differences
evaluated at i.

To extend this concept to unstructured grids, we may define the denominator as the up-
wind or upwind-biased reconstruction to a given face minus the value in the given cell:

U -- Uface -- Ucell (5)

Note that any one-sided reconstruction (k-exact reconstruction 7, for example) may be used to

evaluate U~,c e .

Similarly, the numerator may be expressed as half the difference between the values in the
two cells which share the given face:

C--!(Uneighbor--l~cell) (6)
2

This formulation reduces to Eq. 3 for a uniform one-dimensional grid.
Eqs. 4, 5, and 6, when substituted through Eq. 3 into any of the standard one-dimensional

limiter formulas, restrict the gradients in such a way that the extrapolated values at the cell
face are between the values in the adjacent cells. In most unstructured formulations, it is
customary to limit the extrapolated values at each face to lie between the minimum and
maximum values over the cell and its neighbors; Aftosmis et al. 8 have found that limiting
based solely on adjacent cell values (as in a structured grid) impedes convergence. Therefore,
define

Umi . -- U C - 1 (cell) i f U < O (7)
[�89) i f U > O -- bl cell

Note that the factor 1/2 ensures that r = 1 for a linear function on a uniform one-dimensional
grid.

In the cases run by the authors, the current extension to the modified van Albada limiter 9
gives slightly better convergence than the Venkatakrishnan limiterl~ the solution is also
somewhat smoother. The extended van Albada limiter is used throughout the rest of this in-
vestigation when a limiter is necessary to ensure convergence.

2.2 Description of the extension to multiple processors
Each compute node reads its own portion of the grid file at startup. Cells are divided

among the active compute nodes at runtime based on cell ID; only faces associated with local
cells are read. Faces on the interface surface between adjacent computational domains are
duplicated in both domains. Solution variables are communicated between domains at every
timestep. Fluxes through the faces on the interface surface are computed in both domains.
Communication of the solution across domains is all that is required for first-order spatial ac-
curacy, since qL and qR are simply the cell averages to first order. If the left and right states

are computed to higher-order, then qL and qR are shared explicitly with all adjacent domains.

The fluxes through each face are then computed in each domain to obtain the residual for each
local cell.

140

�9 �9 �9

+ I o
41,

o �9

�9 �9 III

e

o

�9 . � 9 1 4 9 IV ~

+

+

+

o

+
+

Figure 1: Closeup of domain interface
region.

der the cells for all cases run.

2.3 Cell Reordering
On the Intel Paragon, the message latency

is usually the largest part of the total communi-
cation time for the medium-sized problems
considered in this paper. Therefore, it is better
to minimize the number of messages sent than
the total number of bytes sent. Given this, a
Cuthill-McKee-type]~ reordering of the grid
should be close to optimal, since this ordering
seeks to minimize matrix bandwidth. Because
the optimal ordering (by this definition) is in-
dependent of the number of compute nodes,
the reordering may be done �9

The Gibbs-Poole-Stockmeyer variant ~t of
the Cuthill-McKee algorithm was used to re�9

2.4 Description of the domain interface region
For simplicity, consider the case of two processors, A and B. Figure 1 shows a close-up

view of the domain interface region for this case. Off-diagonal blocks in zones II and llI re-
late cells in both domains. Because A and B share solutions at every timestep, A has full
knowledge of all of the blocks in zones I, II, and HI, while B has full knowledge of the blocks
in zones II, HI, and IV. Because A and B communicate through the solution vector, it does
not affect the steady-state solution for A to neglect blocks in zones II, HI, and IV (similarly for
B); however, one might expect the convergence to be enhanced by somehow including the
effect of these blocks.

Using only the completely local blocks in the boxed-in area (zone I for A and IV for B),
and neglecting all non-local blocks, is referred to as Level I approximation in this paper.

A slightly more sophisticated way of dealing with the non-local blocks is for A to again
neglect the off-diagonal blocks in zones II, HI, and IV, but to approximate the diagonal blocks
and right-hand side of zone IV by the face-adjacent neighbor diagonal blocks from zone I and
by the face-adjacent parts of A's residual vector. Then we can solve for A"Q corresponding to
B's cells outside the inner iteration loop. This is simply one block-Jacobi iteration for the
non-local terms in A"Q. Given these terms in A"Q, we can include the approximate effects of
the off-diagonal blocks in zone II, which pass over to the right-hand side for relaxation
schemes. B would approximate zone I quantities to estimate the effect of blocks in zone HI.
This is referred to as Level II approximation.

In a similar way to Level II, we can share the diagonal blocks in zones I and IV, as well as
the corresponding residual vectors, by explicit communication between A and B. Then we
can solve for A"Q as before. This is Level III approximation.

Finally, if A communicates to B the components of A~Q which are non-local to B at every
inner iteration, and vice versa, then the parallel implementation should have convergence
similar to the serial version. If practical computational concerns did not suggest reordering
the local cells, or if a block Jacobi scheme were used for the inner problem, convergence
would be identical. However, it might be expected that the substantial increase in communi-
cations overhead associated with this scheme may more than offset any gains. Note that this

141

scheme is the only scheme which includes the whole effect (through the evolving AnQ) of all

of the blocks in the domain interface region. This scheme is Level IV approximation.

3. D E S C R I P T I O N OF T H E TEST CASES

Two test cases were used in this investigation. The two-dimensional case was run on a
grid containing wedges only. The fluxes through the faces corresponding to the out-of-plane
direction were not computed. After being initialized with a converged first-order solution,
each case was computed using second order fluxes. The inner problem was converged such
that

[lAx-bill <_ innerTol
IIb[ll

o r

IIAx -b l l , < DBL_ EPSILON

or after innerlters inner iterations, whichever occurred first.
Neither of the test cases would fit in physical memory on one compute node of the Para-

gon; the performance on one compute node was calculated from the performance on a Silicon
Graphics Indigo 2 and the ratio of CPU speeds between the SGI machine and one node of the
Paragon. This ratio was calculated from the time to converge a 2-D supersonic ramp problem
on each machine using one compute node.

Note that problem-size dependent differences in cache performance on each machine are
not accounted for. Therefore, efficiencies of more than 100% are possible.

For each case and approximation level, the CFL number used was the largest that could be
run on 32 compute nodes, but there was no "tweaking": the CFL number used was the largest
of the sequence 1, 2, 5, 10, 20, 50 that would converge. The CFL number was not
changed as the number of compute nodes varied. This makes it easier to spot trends, but is
somewhat sterile: in a practical environment, the CFL number would always be the largest
runnable for the number of compute nodes.

3.1 RAE 2822 airfoil
This is a transonic 2D case with a multiply-connected domain. Mach 0.73 flow is com-

puted over an RAE 2822 airfoil at 3.19 ~ angle of attack. A shock forms on the upper surface
of the airfoil for this case. Excellent experimental data for this case may be found in Cook, et
al. 12

This case was converged six orders from the converged first-order solution. The inner

problem was converged to 1 x 1 0 -7 , and was limited to 100 inner iterations. The grid has
11,848 cells and 17,873 active faces.

3 . 2 0 N E R A M6 wing
This ubiquitous three-dimensional test case involves transonic flow with coalescing

shocks; see Schmitt, et al. 13 for details. This case is run at Mach 0.84 and 3.06 ~ angle of at-
tack.

142

256

128

64

32

16

8

4

2

1

j " + Level I (Ignore)
/ t L ~ a r e diagonal blocks)

Level IV (Share evolving solution)

2 4 8 16 32 64 128 256
of Compute Nodes

200

128

64

32

16

8

4

2

1

././~

J ~ Level I (Ignore)
~ ~ a l ~ o c k s)

�9 / : : " . y : y , Level IV (Share ev~ s ~ 1 7 6 , , , "+ ,

2 4 8 16 32 64 128 200
of Compute Nodes

Figure 2: Speedup for the RAE 2822 air-
foil case. The data point at the far right is

for 352 nodes.

100

,,, ~ ~,., . .,

,,,~ ,.

"'' , , , ,

~.evel I (Ignore) - * -
Level III (Share diagonal blocks)

Level IV (Share evolving solution)
i i I i i i i i

2 4 8 16 32 64 128 256
of Compute Nodes

Figure 3: Speedup for the O N E R A M6
wing case.

110

100

90

8O

.~ 70

~ 60 HI

50

40

30

20

....

Level I (Ignore) - - . -
Level III (Share diagonal blocks)

Level IV (Share evolving solution)

2 4 8 16 32 64 128 200
of Compute Nodes

Figure 4: Efficiency for the RAE 2822
case.

Figure 5: Efficiency for the O N E R A M6
wing case.

Due to CPU-time constraints, the timing runs for this case were converged only two orders
of magnitude from the converged first-order solution. Also, the inner problem was only con-

verged to 1 x 10 -5 and was limited to a maximum of 50 iterations. The grid has 96,207 cells
and 196,652 faces.

4. RESULTS AND DISCUSSION

The performance of the Level II approximation was so poor compared to the other meth-
ods that results for this scheme are not presented here. The reason for the poor performance
was the very low CFL number required for convergence.

Figure 2 and Figure 3 show the relative speedup of the various schemes for each test case.
The RAE 2822 case needed no limiting; the extended van Albada limiter described above was
used for the ONERA M6 case.

Although the RAE 2822 case was run successfully on all 352 compute nodes of the Para-
gon used in this study, the M6 case could not be run on more than 200 nodes. The authors
suspect a problem with orphan cells, but are hindered in their investigation because 128 nodes
is the maximum that may be run on this Paragon without special permission.

143

1 e+06
L Level I (Ignore) --*---
[~ Level III (Share diagonal blocks)
,!~ ~ v o l v i n g solution)

100000 ill;jill
"o

10000

-6

..........
1000 "~ ,~

-o...

100 ' ' ' ' ' ' ' '
2 4 8 16 32 64 128 256

of Compute Nodes

Figure 6: Time-to-converge for the
RAE 2822 case.

105

100

95

90

~. 85
�9 -~ 8 0 o ._

w 7 5

7 0

6 5

6 0

5 5

. -~.. .. RAE 2822

i i i , , , i L
1 2 4 8 16 32 64 128 256

of Compute Nodes

Figure 8: Efficiency for both cases using
Level IV approximation (communication

of evolving inner problem solution).

le+06

100000

10000 o
y,

1000

100

Level I (Ignore) - - - -
Level II (Share diagonal blocks)

....

.........
-,~

....... ~..
..........

.....

2 4 8 16 32 64 128 200
of Compute Nodes

Figure 7: Time-to-converge for the
ONERA M6 case.

Also shown are figures displaying the clock
time required to converge to a solution as well
as the parallel efficiency of each of the
schemes as a function of the number of com-
pute nodes dedicated to the problem.

Finally, some problem-size dependency is
illustrated in Figure 8, which shows efficiency
results for both cases using Level IV approxi-
mation.

5. CONCLUSIONS

In spite of the large communications over-
head associated with Level IV approximation,
the time-to-converge is superior to all other

schemes on the Paragon. This is because the convergence behavior on any number of com-
pute nodes is almost identical to the behavior on one compute node, permitting utilization of
very large CFL numbers.

Also, due to the Paragon's high-speed backplane, the communications costs were very
low, contributing to the high efficiency of this scheme.

6. ACKNOWLEDGMENTS

This work was supported in part by a grant of High-Performance Computer (HPC) time
from the DoD HPC Major Shared Resource Center !ntel Paragon at Wright-Patterson Air
Force Base, Dayton, Ohio. This work was also supported by the Office of Naval Research
through the In-house Laboratory Independent Research (ILIR) program.

144

REFERENCES

1 van Leer, B., "Towards the Ultimate Conservative Difference Scheme. V. A Second Order
Sequel to Godunov' s Method", J. Comp. Phys., Vol. 32, 1979, pp. 101-136.

2Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes", J.
Comp. Phys., Vol. 43, pp. 357-372.

3Karamcheti, K., Principles of Ideal-Fluid Aerodynamics, Krieger, Malabar, FL, 1980, p. 131.
4van Leer, B., "Towards the Ultimate Conservative Difference Scheme. IV. A New Approach

to Numerical Convection", J. Comp. Phys., Vol. 23, 1977, pp.276-299.
5Stoer, J. and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York,

1980, pp. 536-562.
6Sweby, P. K., "High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation

Laws", SlAM J. Numer. Anal., Vol. 21, 1984, pp. 995-1011.
7Barth, T. J., and P. O. Frederickson, "Higher Order Solution of the Euler Equations on Un-

structured Grids Using Quadratic Reconstruction", 28 th AIAA Aerospace Sciences Meeting
and Exhibit, Reno, 1990. AIAA 90-0013.

8Aftosmis, M., D. Gaitonde, and T. S. Tavares, "On the Accuracy, Stability, and Monotonicity
of Various Reconstruction Algorithms for Unstructured Meshes", 32 nd AIAA Aerospace Sci-
ences Meeting and Exhibit, Reno, 1994. AIAA 94-0415.

9van Albada, G. D., B. van Leer, and W. W. Roberts, "A Comparative Study of Computa-
tional Methods in Cosmic Gas Dynamics", Astron. and Astrophys., Vol. 108, pp. 76-84.

l~ V., "On the Accuracy of Limiters and Convergence to Steady State Solu-
tions", 31 st AIAA Aerospace Sciences Meeting and Exhibit, Reno, 1993. AIAA 93-0880.

l lDuff, I. S., A. M. Erisman, and J. K. Reid, "Ordering Sparse Matrices to Special Forms",
Direct Methods for Sparse Matrices, Oxford University Press, Oxford, 1986, pp. 153-157.

12Cook, P. H., M. A. McDonald, and M. C. P. Firmin, "Aerofoil RAE 2822 m Pressure Dis-
tributions, and Boundary Layer and Wake Measurements", Experimental Data Base for
Computer Program Assessment, AGARD AR- 138, 1979.

13Schmitt, V., and F. Charpin, "Pressure Distributions on the ONERA M6-Wing at Transonic
Mach Numbers", Experimental Data Base for Computer Program Assessment, AGARD
AR-138, 1979.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

145

A n a l y s i s of Ef f ic iency of I m p l i c i t C F D M e t h o d s on M I M D C o m p u t e r s

M. Perid and E. Schreck ~

Institut fiir Schiffbau, Universitgt Hamburg,
L/~mmersieth 90, D-22305 Hamburg, Germany

The simulation of complex fluid flow problems requires huge amount of memory and
long computing times. MIMD multiprocessors promise a scaleable arithmetic perfor-
mance which can help to overcome the limitations in computing power and CPU-Memory
bandwidth.

We consider the parallelization of an implicit numerical method for the prediction of
flows in complex geometries with respect to MIMD computer architectures. During the
last 20 years very efficient numerical methods have been developped for solving such
problems on single processor machines. The major objective of our parallelization strategy
is to preserve the high numerical efficiency of these sequential methods in the parallel
implementation (i.e. to avoid performance degradation through domain decomposition)
and to reduce the communication overhead (i.e. to achieve high parallel efficiency).

One possibilty to increase the parallel efficiency of implicit methods is to perform the
communication in parallel with the calculation. Because of the hardware features of some
new parallel computers (e.g. Intel PARAGON or Parsytec GCPP), which have special
communication processors to allow overlapping of communication and computation on
one node, this is a very promising method to hide or to minimize communication time.

1. Descr ip t ion of Solut ion M e t h o d

The solution method used in this study is described in detail by Demird2id et al. [2], so
only a summary of main features will be given here. The method is of finite volume type
and uses non-orthogonal boundary-fitted grids with a colocated arrangement of variables.
The working variables are the cartesian velocity components, pressure and temperature.
The continuity equation is used to obtain a pressure-correction equation according to the
SIMPLE algorithm (Patankar and Spalding,1972). Second order discretization is used for
all terms. The part of diffusion fluxes which arises from grid non-orthogonality is treated
explicitly. The convective fluxes are treated using the so called "deferred correction"
approach: only the part which corresponds to the first order upwind discretization is
treated implicitly, while the difference between the central differencing and upwind fluxes
is treated explicitly.

Equations for the cartesian velocity components U and V, pressure correction P' and
temperature T are discretized and solved one after another. Linear algebraic equation
systems are solved iteratively using the ILU-decomposition (SIP) after Stone [5]. Inner
iterations are stopped either after reducing the absolute sum of residuals over all CVs by

146

a specified factor, or after a prescribed number of iterations has been performed. Outer
iterations are performed to take into account the non-linearity, coupling of variables and
effects of grid non-orthogonality; this is why the linear equations need not be solved
accurately.

The number of outer iterations increases linearly with the number of CVs, leading to a
quadratic increase in computing time. For this reason a multigrid method is implemented,
which keeps the number of outer iterations approximately independent of the number
of CVs. The method is based on the so called "full approximation scheme" (FAS). It
is implemented in the so called "full multigrid" (FMG) fashion. The solution is first
obtained on the coarsest grid using the method described above. This solution provides
initial fields for the calculation on the next finer grid, where the multigrid method using
V-cycles is activated. The procedure is continued until the finest grid is reached. The
coarse grids are subsets of the finest grid; each coarse grid CV is made of four CVs of
the next finer grid. The equations solved on the coarse grids within a multigrid cycle
contain an additional source term which describes the current solution and the residuals
of the next finer grid. The multigrid method used in this study is described in detail in
Hortmann et al. [3]. It should be noted that the multigrid method is applied only to
the outer iteration loop; inner iterations are performed using the above mentioned solver
irrespective of the grid fineness. This is due to the fact that the linear equations need not
be solved accurately, so only a few inner iterations are necessary.

2. Pa ra l l e l i za t i on S t r a t e g y and Efficiency

2.1. G r i d P a r t i t i o n i n g Technique
Domain decomposition technique is the basis of the parallelization strategy used in the

present study. It is analogous to the block-structuring of grid in complex geometries.
The aim is to have as many subdomains of approximately the same size as there are
processors, and assigning each subdomain to one processor. More than one block may
form a subdomain assigned to one processor. The subdomains do not overlap, i.e. each
processor calculates only variable values for CVs within its subdomain. However, each
processor uses some variable values from neighbour subdomains which are calculated by
other processors. This requires, in case of MIMD computers with distributed memory, an
overlap of storage: each processor stores data from one or more layers of CVs along its
boundary belonging to neighbour subdomains. These data must be exchanged between
processors.

In the SIMPLE algorithm, the variable values needed to calculate the coefficients and
source terms are taken from the previous iteration. Therefore, they can be calculated
in parallel. The equation system is split into subsystems, one for each subdomain, and
these smaller systems are relaxed separately. Of course, this decreases the convergence
rate, but it offers more flexibility and in most cases yields a shorter computing time than
global parallelization of the single domain solver. The boundary data is exchanged after
each inner iteration. This communication is local and can be performed in parallel. Some
global communication is also needed, e.g. to sum the residuals for convergence check. The
residual sums of all subdomains have to be collected, and the decision whether to stop or
go has to be broadcast to all processors. This is normally done after each outer iteration,

147

and - unless a fixed number of inner iterations is prescribed - after each inner iteration.
In the present algorithm, pressure is kept fixed at one node, but pressure correction is
allowed to float; therefore, the pressure correction value at the reference node has to be
subtracted from values at all other nodes. This requires broadcasting of the reference
pressure correction value, which is done once per outer iteration. Flow diagramms of the
inner and outer iterations are shown in Fig. 1, where the local (LC) and global (GC)
communications are also indicated.

2.2. Efficiency of Parallel Implementation
The effectiveness of parallel computing can be characterized by the total efficiency,

defined as the ratio of computing time on one processor using the most efficient serial
algorithm, Ts, and the n-fold computing time using the parallelized algorithm and n
processors, Tn:

EtOt Ts vat nu.~ lb = = En E~ E n (1)
nTn

Schreck and Perid [4] have shown that the total efficiency can be expressed as a product
of three factors termed parallel (E[dr) , numerical (E~ ~m) and load balancing (E~ urn) effi-
ciency. These factors describe: (i) the increase of elapsed time for a parallel computation
due to communication between processors during which computation can not take place,
(ii) the increase in the number of floating point operations per grid node required to reach
the solution of the same accuracy when the number of subdomains is increased, and (iii)
idle time of some processors due to uneven load.

The analysis by Schreck and Perid [4] shows that, especially for large processor sets and
multigrid methods, the global communication has a strong effect on parallel efficiency.
This is due to the fact that the time needed for one global communication is independent
of the grid size.

One possibility for optimizing the eff• is the hiding of communication time by
using non-blocking communication. This is a hardware feature of some newer parallel
computers and therefore a promising way.

The non-blocking local communication can be used in a quite straightforward way. In
nearly all available message-passing libraries such communication modi are available. The
effect is appreciable if there are sufficient arithmetic operations between sending and re-
ceiving of the boundary data. If grid partitions are sufficiently large, the communication
time can be hidden completely. In most cases the latency time of the non-blocking com-
munication is smaller than that of the blocking communication (on the computer used in
this study , the ratio is 1 : 2). The overlap of local communication and computation is
achieved by executing operations which require boundary data in seperate loops: between
sending and receiving the boundary data, operation in the inner region are performed.

The restructuring of the loops should be done carefully because this can influence the
caching behaviour of the data and therefore affect the processor performance.

The global communication offers an even higher saving potential because there are
several nearest neighbour communications involved in every global operation. On the
other hand it is not as easy as for the local communication to execute the global operations
concurrently with the calculation. In this study the following strategy was adopted. Each
processor spawn a communication thread which is connected to the computing thread

148

SIMPLE:

SIP:

r e p e a t
assemble coefficient matrices for velocities
solve linear equations

LC: exchange Ap
assemble coefficient matrices for pressure correction

solve linear equations

GC: broadcast reference pressure
correct velocities and pressure

L C: exchange corrected velocities
unt i l converged

assemble L and U matrices

repeat

calculate residuals in inner domain

L C: receive boundary data
calculate boundary contribution to residuals

GC: Send local part of residual for global sum
calculate corrections

correct variables on boundary

LC: send boundary data
Correct variable in inner domain

GC: receive global residual sum
unt i l converged

Figure 1. Pseudo Code for outer iterations (above) and for the SIP-solver (below) with
non-blocking communication

with a common memory region. These threads on different processors are connected in an
optimal manner for global operations (i.e. binary tree) and perform their communications
synchronously. If there is need to handle several global operations simultaneously in the
background one can replicate this strategy and spawn several communicating threads on
each processor.

An important task remains in seperating the receiving of the result of the global op-
eration as much as possible from the sending because this is the time the algorithm is
accelerated. Only for a complete overlapping of global communication and calculation
will the algorithm be scalable.

The time Tglob needed for a global operation can be estimated in the following way. In
most cases only a small amount of data has to be transferred, therefore just the setup-time
Tsetup has to be considered:

Tgtob = 2 . 2 . T~t~p. (ln(n) - 1), (2)

149

where n is the number of processors. One factor of two is due to the fact that there is a
reporting to the root of the binary tree and a broadcasting down the tree which require
the same number of communications. In each stage there are two communications. This
formula is strictly valid only in cases where a direct mapping of the tree on the processor
network is possible. However, for most modern parallel computers there is only a slight
increase in the setup time if there are additional hops needed in the communication. In
this case Eq. (2) is still a good estimate. Typically the possible gain will be proportional
to the number of arithmetic operations per CV, the number of CVs and the processor
speed. Therefore, a certain minimum size of the subdomains is necessary for efficiently
increase by using of non-blocking global operations.

The most critical part of the algorithm with respect to parallel efficiency is the solver
of the linear systems. This is because of the fine granularity of the parallel linear solvers.
Therefore we first analyze the possible gain from non-blocking communication in two
typical linear solvers. For this purpose a matrix equation, originating from a discretized
laplace-equation (which resembles the matrices in the CFD application), was solved. The
stated computing times and efficiencies are related to one solver iteration thus reflecting
the parallel efficiency. All test calculations presented in the following sections were per-
formed on a Parsytec GC/PowerPlus consisting of PowerPC 601 microprocessors, running
at 80MHz. The first solver used is a modified ILU decomposition after Stone [5]. Global
communication is necessary to calculate the residual sum for steering the iteration pro-
cess. It is possible to lag the checking of convergence one or more iterations, in which
case a typical convergence rate has to be taken into account. The pseudo code for the
ILU-solver with non-blocking communication is presented in fig. 1.

In Fig. 2 the measured computing times per solver iteration for three different grids
are shown as a function of the processor number on an log-log p lo t . The ideal case with
linear speedup should be a straight line in this plot. Especially the coarser grids show
a clear deviation from this ideal case. The main reason for this behaviour is the high
setup-time compared to the arithmetic performance (Tsetup = 1.5.10STf~op). The lower
setup-time in the non-blocking case is the main reason for the lower computing time on
the coarser grids and fewer processors. The global communication exhibits a major effect
on computing times for a higher number of processors. For too coarse grids it is not
possible to hide the time for global communication completely, so the highest saving is
obtained on the finest grid. In this case the run time with non-blocking communication
shows nearly ideal behaviour.

In Fig. 2 the parallel efficiencies are shown for two different grids. For the finer grid
and non-blocking (async.) communication the efficiency shows for non-blocking case only
a weak decrease. Therefore, we could expect a good scaling behaviour with this approach
up to a high number of processors. To verify this the load (i.e. the number of CVs) per
processor was kept constant, so the size of the complete grid increased with the number
of processors.

In Tab. 1 the measured computing times for two different loads and solvers are pre-
sented. The fact that on one processor higher computing times result for the non-blocking
version is due to the loop splitting, which affects the cache-efficiency and hence the pro-
cessor performance. However, the deterioration lais in the range of a few percent and
will be compensated through gain from the non-blocking communication. In all cases an

150

o~ ,__.,
> . ,
o r

._o
zt::: LI.!

1 O0

90

80

70

60

50

40

30

--...

512 X 512, synch
512 X 512, asynch

256 X 256, synch
256 X 256, asynch

i i I i

1 2 4 8 16 32
No. of Procs.

GO
E ,.._..,
t -
._o
.,..,

L_.

(1)

0
E

C3_

E
o
o

0.1

0.01

256 X 256, sync
256 X 256, async

128 X 128, sync
128 X 128, async

........ ~ . ~ 6 4 X 64,, sync

.. _-:.2::..

0.001
1 2 4 8 16 32

No. of Procs.

Figure 2. Efficiency (above) and computing times (below) for blocking and non-blocking version
of the ILU-solver for different grid sizes

increase of the computing time can be observed up a configuration of 4 x 4 processors.
This is due to the fact that the number of neighbours for the local communication reaches
its maximum (4 in the 2D case) for the 4 x 4 configuration and remains constant from
that point. A further doubling of the grid size and number of processors results in con-
stant computing time for the non-blocking algorithm. This is opposed to the blocking
algorithm, for which an increase in computing time is measured as a consequence of the
blocking global communication.

As a second typical linear solver, a preconditioned conjugate gradient method was ex-
amined. In this case the global operations are necessary for computimg global scalar
products. According to a proposal of Demmel et al. [1], it is possible to write the pre-
conditioning Matrix M as M = L L T. The scalar product of the residual rk and the
preconditioned residual zk = M - i r k can then be written as

(rk, zk) - (rk, L - T L - l r k) - (L - I rk , L - I r k) �9

Therefore, the partial sums of (rk, zk) can already be calculated after the forward sub-
st i tut ion so that the global sum can be overlapped with the backward substitution. In

151

addtion to that the update of the solution vector xk is delayed in order to overlap it with
the global reduction of the second scalar product (Apk, Pk), where Pk stands for the search
vector.

For this solver there are just a few floating point operations per grid node which can be
done during the overlap with the global communication (5 resp. 2 arithmetic operation
per CV). As a consequence the measured computing times (Tab. 1) do not show the ideal
behaviour as for the ILU-solver. Still there is a substantial gain for the non-blocking
algorithm, especially for a higher number of processors.

SIP ICCG
642 per proc. 1282 per proc. 1282 per proc.

Proc. block, non-block, block, non-block, block, non-block.

1 6.8 7.4 27.2 28.4 60.6 60.5
2 • 2 9.1 8.2 30.0 29.3 63.9 61.8
4 • 4 11.4 8.8 33.3 30.3 68.5 62.6
4 • 8 12.8 8.9 35.4 30.5 72.6 63.8

Table 1
Computing times per iteration for the blocking and non-blocking version of the ILU and
ICCG solver for different number of processors and different load per processor

3. Tes t C a l c u l a t i o n s and Analys i s of P e r f o r m a n c e

The lessons learnt from the solver tests presented above are used to optimize the CFD-
code. Buoyancy driven flow in an inclined cavity is used as a test case. This is one of the
benchmark test cases presented by Demird~id et al. [2]. All cavity walls are of the same
area: the horizontal walls are adiabatic and the inclined walls (angle 45 ~) are isothermal.
The temperature difference, cavity size and fluid properties are chosen such that for
Prandtl number Pr = 0.1 the Rayleigh number Ra = 106 is obtained. Calculations were
performed on 6 grid levels starting with 10 x 10 CV and up to 320 x 320 CV. In the

l a g / (i t e r .) t i m e / (s)

orig 57.0
0 46.0
1 39.8
2 38.1
3 37.6

Algorithm time/(s) TotalEff. (%)

orig. 44.8 22
Mod. 1 30.5 33
Mod. 2 27.2 37

Table 2
Computing times for the described example on 5 x 5 processors using different number of
iterations delay for the global communication in the solver (left) and different modifica-
tions to the algorithm (right)

152

original algorithm, see Fig. 1, all communication takes place in a blocking mode. In
the modified algorithm, non-blocking communication is used. In addition to overlapping
local communication with computing in the inner region, several variants of the global
communication overlapping with computation were tested, since global communication
is the limiting factor for massive parallelization. In particular, global communications
for convergence check are overlapped with iterations. In order to evaluate the effect of
non-blocking communication in the solver, the number of iterations was first fixed, so
that global communication only affect the communication time and parallel efficiency.
The effect of various delays between begin and end of global communication within inner
iterations on overall computing time is shown in Table 2. A delay of 0 iterations means
that only backward substitution and solution update are calculated during the global
communication. Table 2 shows that the major gain is due to introducing non-blocking
communication and using up to one iteration delay. With respect to computing time,
there is only a small advantage from using more than 2 iterations delay. The reason is
that on finer grids, the computing time outweighs the communication time with only very
few iterations delay.

Further tests were performed by switching the convergence check for inner iterations on.
A delay of two iterations was used and the convergence criterion for the inner iterations
was adapted according to the convergence rate to respect the fact that the residual values
two iterations old are used for checking. This is called modification 1 in Tab. 2. In the
next step (modification 2), the non-blocking mode was used for all global communications.
The gain for the last optimization is less than that for the first modification. As mentioned
earlier, this is due to the fact that the frequency of communications in the linear solver
part is much higher than for assembling of the matrices. The saving in computing time
is substantial. Total efficiencies are rather low on computer used, due to the effect of
communications on coarse grids. When the first two grids are left out, the efficiency
of modification 2 increases from 37% to 54% with 5 x 5 processors (70% with 4 x 4
processors). On transputer systems, which have a favourable ratio of communication to
computing time, blocking communication leads to efficiencies of over 90% (Schreck and
Peri(~ [4])

R E F E R E N C E S

1. Demmel, Heath and Van Der Vorst, Parallel numerical linear algebra, Acta Numerica,
1993, 111-197

2. I. Demird~iS, Z. Lilek and M. PeriS: "Fluid flow and heat transfer test problems for
non-orthogonal grids: benchmark solutions", Int. J. Num. Methods in Fluids, 15,
329-354 (1992).

3. M. Hortmann, M. Peri5 and G. Scheurer: "Finite volume multigrid prediction of
laminar natural convection: bench-mark solutions", Int. J. Numer. Methods Fluids,
11, 189-207 (1990).

4. E. Schreck and M. PeriS: "Computation of fluid flow with a parallel multi-grid solver",
Int. J. Num. Methods in Fluids, 16, 303- 327 (1993).

5. H.L. Stone: "Iterative solution of implicit approximations of multi-dimensional par-
tional differential equations", SIAM J. Numer. Anal., 5, 530-558 (1968).

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

153

Parallel Solutions of Three-Dimensional Compressible Flows Using a
Mixed Finite Element/Fini te Volume Method on Unstructured Grids

S. Lanteri a and M. Loriot b

qNRIA, 2004 Route des Lucioles, B.P. 93, 06902 Sophia-Antipolis Cedex, France

bSimulog, 1 Rue James Joule, 78286 Guyancourt, France

We are concerned here with the MIMD parallelisation of an existing industrial code,
N3S-MUSCL (a three-dimensional compressible Navier-Stokes solver, see Chargy[1]). Part
of the work described in this paper is supported by the CEC through consortium HPCN3S
of the Europort-1 project.

1. I N T R O D U C T I O N

The porting methodology of a given serial algorithm to a parallel machine generally de-
pends on the characteristics of the selected target parallel architecture, but also on some
maintenance requirements. As an example, in some of our previous works (see Fezoui et

el.[2], Farhat et al.[3]), our main goal was to achieve a maximum level of performance on
a particular machine (the Tmc CM-2/200), thus accepting to introduce significant modi-
fications to the original serial algorithm. This approach may be of interest for "simple"
demonstrations codes which generally deal with the solution of one or two-dimensional
problems. However, for industrial codes, such as the multi-purpose CFD code described
here, a strong requirement is to minimize the changes to the original serial algorithm in
order to be able to maintain and upgrade the resulting parallel version of the code.

The main characteristic of N3S-MUSCL is that it is based on finite volume schemes us-
ing finite element type grids (tetrahedra), which results in complex data structures. The
conservative form of the Navier-Stokes equations is discretised using a mixed finite ele-
ment/finite volume method on fully unstructured meshes. The parallelisation strategy
adopted in this study combines mesh partitioning techniques and a message-passing pro-
gramming model. The mesh partitioning algorithms and the generation of the correspond-
ing communication data-structures are gathered in a preprocessor in order to introduce
a minimum change in the original serial code. Two partitioning approaches have been
implemented and compared here. The first one makes use of overlapping mesh parti-
tions; it contributes to minimize the programming effort on the original serial algorithm
but is characterized by redundant arithmetic operations. This work is undertaken in the
HPCN3S project. The second strategy, developped at INRIA Sophia-Antipolis in a research
programme, uses non-overlapping mesh partitions and demands additional programming
effort.

154

2. THE FEM/FVM N A V I E R - S T O K E S SOLVER

Here, we briefly overview the spatial and temporal discretisation methods that are
detailed in Chargy[1] for the numerical solution of the full three-dimensional Navier-Stokes
equations.

2.1. Gove rn ing equa t ions
Let ~'t C IR 3 be the flow domain of interest and F be its boundary. The conservative

law form of the equations describing three-dimensional Navier-Stokes flows is given by:

Ot

o w -
+ (1)

where W - (p, pU, E)T; . i f (W) is the vector of convective fluxes while 7~(W) is the vector
of diffusive ones. In the above expressions, p is the density, U - (u, v, w) T is the velocity
vector, E is the total energy per unit of volume. Finally, Re - poUoLo/#o where P0,
U0, L0 and #0 denote the characteristic density, velocity, length, and diffusivity is the
Reynolds number.

2.2. Spatial approximation method
The flow domain • is assumed to be a polyhedral bounded region of IR 3. Let Th be a

standard tetrahedrisation of fl, and h the maximal length of the edges of Th. A vertex
of a tetrahedron T is denoted by S~, and the set of its neighbouring vertices by K(i) .
At each vertex Si, a control volume Ci is constructed as the union of the subtetrahedra
resulting from the subdivision by means of the medians of each tetrahedron of Th that is
connected to Si (see Fig. 1). The boundary of Ci is denoted by OCi, and the unit vector
of the outward normal to OCi by gi - (ui~, v'iy, ui,). The union of all these control volumes
constitutes a discretisation of domain fl:

g y

~'lh -- U C~ , N v " number of vertices of Th (2)
i = 1

Figure 1. 2D control surface (left) and contribution to a 3D control volume (right)

155

The spatial discretisation method adopted here combines a finite volume upwind ap-
proximation method for the convective fluxes and a classical Galerkin finite element cen-
tered approximation for the diffusive fluxes. The numerical convective fluxes are com-
puted using the approximate Riemann solver of Roe[5]. Second-order spatial accuracy is
achieved by using an extension to unstructured meshes of the "Monotonic Upwind Scheme
for Conservative Laws" (MUSCL) method introduced by van Leer [6]; The discrete equa-
tion obtained after integrating Eq. (1) over Ci is given by:

OWds

Ci j E K(i)ocij OCi N P~,

+ i ~ (W) . 5 i d o - - 1
Re T, SieT T OCiNPoo

(3)

where OC~j = OC~ N OCj, and N T = NT(x,y ,z) is the P1 shape function defined at the
vertex S /and associated with the tetrahedron T. We refer to [1] for a detailed description
of the computation of each of the terms of Eq. (3).

2.3. T ime I n t e g r a t i o n
Assuming that W(~, t) is constant over the control volume C~ (in other words, a mass

lumping technique is applied to the temporal term of Eq. (3)), we obtain the following
semi-discrete fluid flow equations:

dW?
vol(C~) dt + ~(W~) - 0 , i = 1 , . . . , N v (4)

where W~ = W(aT/, t n), t n = nAt n and:

f G1 Z (5) �9 (W/~) - ~ ~7(W//, Wji, ffij)+ ~-(W).gida +
jeK(i) ac~nro~ T,SicT

The time advancing procedure considered in this study relies on an implicit linearised
formulation following the work of Fezoui and Stouffiet[7]. The resulting scheme is in fact
a modified Newton method involving an approximate Jacobian :

5 w n + 1 __ w n + l _ _ W n (6)

where J (W n) denotes the approximate Jacobian matrix and 51/V '~ is the explicit part of
the linearisation of ~(Wn+l). The matrix P(W ~) is sparse and has the suitable properties
(diagonaly dominant in the scalar case) allowing the use of a relaxation procedure (Jacobi
or Gauss-Seidel) in order to solve the linear system of Eq. (6). Moreover, an efficient way
to get second order accurate steady solutions while keeping the interesting properties of
the first order upwind matrix is to use a second order elementary convective flux in the
right-hand side of Eq. (6).

156

3. P A R A L L E L I M P L E M E N T A T I O N ISSUES

The parallelisation strategy adopted in this study has been already successfully applied
in the two-dimensional case (see Fezoui et a/.[2], Farhat et a/.[4]); preliminary results for
three-dimensional applications are presented in Degrez et al.[8]. It combines mesh parti-
tioning techniques and a message-passing programming model. The underlying mesh is
assumed to be partitioned into several submeshes, each defining a subdomain. Basically
the same "old" serial code is going to be executed within every subdomain. Modifications
occured in the main time-stepping loop in order to take into account one or several assem-
bly phases of the subdomain results, depending on the order of the spatial approximation
and on the nature of the time advancing procedure (explicit/implicit). The assembly
of the subdomain results can be implemented in one or several separated modules and
optimized for a given machine. This approach maximises the portability of the resulting
code.

The reader can verify that for the mixed finite volume/finite element formulation consid-
ered herein, mesh partitions with overlapping simplify the programming of the subdomain
interfacing module. However, mesh partitions with overlapping also have a drawback:
they incur redundant floating-point operations. On the other hand, non-overlapping mesh
partitions incur little redundant floating-point operations but induce additional commu-
nication steps. While physical state variables are exchanged between the subdomains in
overlapping mesh partitions, partially gathered nodal gradients and partially gathered
fluxes are exchanged between subdomains in non-overlapping ones. In addition, special
care must be taken in the treatment of the convective fluxes in the case of non-overlapping
mesh partitions (because of the possible differences in the orientation of the interface edges
which are not part of the original mesh but are instead constructed during a preprocessing
phase of the parallel algorithm). In other words, the programming effort is maximized
when considering non-overlapping mesh partitions. In the present study we will consider
both one tetrahedron wide overlap and non-overlapping mesh partitions for second order
accurate implicit computations.

For the time integration procedures considered in this study, an automatic mesh parti-
tioner should focus primarily on creating load balanced submeshes which induce a mini-
mum amount of interprocessor communications. This can be achieved by using a two-step
procedure. First, a fast and cheap partitioning scheme is used to derive an initial can-
didate; then, an optimisation process is performed in order to realise the stated goals.
While the former step consists in a global operation (the overall mesh is concerned by
this step), the latter mainly concentrate on those mesh components that are neighbours
of the artificial submesh interfaces (local operation). Optimisation techniques that are
used in this context include (among others) simulated annealing and the Kernighan-Lin
algorithm. Here, the computational mesh is partitioned in a preprocessing step. We have
used two special purpose packages that implement several mesh partitioning algorithms :
MS3D (a Mesh Splitter for 3D applications, see Loriot[9]) for the construction of one tetra-
hedra wide overlapping mesh partitions using a recursive inertia bisection algorithm, and
TOP/DOMDEC (a software tool for mesh partitioning and parallel processing of CSM and
CFD computations [10]) to generate non-overlapping partitions using a Greedy algorithm.

157

4. P E R F O R M A N C E R E S U L T S

The test case we consider is the one of the Euler flow around an 0NERA M6 wing. The
angle of attack is set to 3.06 ~ and the free stream Mach number to 0.84; we present results
of simulations performed with a mesh containing 115,351 vertices and 643,392 tetrahedra.
Fig. 2 visualises the steady Mach lines and clearly shows the A-shock pat tern on the wing
surface.

Figure 2. Steady Mach lines on an 0NERA M6 wing : N v = 115,351 - NT = 643,392

Timing measures concern the main parallel loop. Unless stated otherwise, the reported
CPU times always refer to the maximum of the individual processor measures. In the
following tables Np is the number of involved processors (submeshes) while "Loc Comm"
and "Glb Comm" respectively denote the local (send/receive at artificial submesh bound-
aries) and global communication times. In the case of local communication operations,
the corresponding measures include the time spent in packing and unpacking message
buffers. The parallel speed-up has been approximated as:

T~ _ Np • T~om p 1
S (N p) - T~, - p p = Np • (Tp) (7)

T L , w + TLm m 1 + com m
TcPomp

where T~o,.,m and TPo, w respectively denote the computation time and the communication
time of the parallel application.

158

We first report results obtained with a simplified version of the code N3S-MUSCL which
is able to deal with overlapping as well as non-overlapping mesh partitions. The implicit
time advancing procedure is used with 36 Jacobi relaxations for the approximate solution
of the linear system resulting from (6). The pseudo-time step is computed according to
the law CFL=4 x it where it denotes the current non-linear iteration. The steady state
solution (initial normalized residual divided by 106) has been obtained after 196 non-
linear iterations. Tab. 1 compare the total CPU times for parallel solution algorithms
based on overlapping ("Size = 1") and non-overlapping ("Size = 0") mesh partitions. All
performance results reported below are for 64-bit arithmetic.

Table 1
Implicit Euler computations on the ONERA M6 : Nv = 115,351 -
Computat ions on the I n t e i Paragon : NX communication library

NT = 643,392

Np Size CPU Mflop/s Loc Comm Glb Comm S(Nv)
Min Max Min Max

64 1 4348.0 s 223 45.5 s 98.0 s 8.0 s 9.5 s 62
0 2819.0 s 344 57.0 s 126.0 s 8.0 s 10.0 s 61

128 1 2824.0 s 345 25.0 s 66.0 s 9.0 s 11.5 s 124
0 1572.0 s 619 36.0 s 103.0 s 9.5 s 12.0 s 118

Computat ions on the Cray T3D : PVN communication library
Np Size CPU Mflop/s Loc Comm Glb Comm S(Np)

Min Max Min Max

64 1 1464.0 s 664 30.0 s 85.5 s 14.5 s 17.5 s 60
0 1138.0 s 855 38.0 s 153.0 s 14.5 s 16.0 s 54

Computat ions on the Ibm SP-2 (wide nodes) : MPL communication library
Np Size CPU Mflop/s Loc Comm Glb Comm S(Nv)

Min Max Min Max
32 1 726.0 s 1340 29.0 s 43.0 s 4.0 s 5.0 s 30

0 570.0 s 1705 33.0 s 50.0 s 3.5 s 4.5 s 29
64 1 444.0 s 2190 19.0 s 35.0 s 5.5 s 6.0 s 58

0 316.0 s 3077 24.0 s 51.0 s 4.5 s 5.5 s 55

We remark that the estimated speed-up figures are always better when using overlapping
mesh partitions. This behaviour is simply explained by the fact that between computa-
tions with overlapping and non-overlapping mesh partitions the pure computat ional times
decrease while the communication times increase in such a way that the ratio between
the two figures is not favorable to an improved speed-up. Indeed, the pure computat ional
times for overlapping mesh partitions include redundant floating-point operations which
means that larger global problems are actually solved in this case. This suggests that
techniques for overlapping communication steps and purely computational ones should
be investigated in order to improve the performances of the parallel algorithm based on
non-overlapping mesh partitions. For the case Np = 64 the total communication times for
non-overlapping partitions ("Size = 0") are equal to 130.0 s on the I n t e l Paragon, 169.0
s on the Cray T3D and 56.5 s on the Ibm SP-2. These figures respectively represent 5%,

159

1570 and 18% of the corresponding total CPU times; this explains the higher speed-up
figures obtained on the I n t e l Paragon.

We now present results obtained with the industrial version of the N3S-MUSCL code
which is currently ported on various parallel platforms in the context of the HPCN3S
project. This time, we consider the multi-species (two chemical species) Euler flow around
an 0NERA M6 wing (the angle of attack is set to 3.06 ~ and the free stream Mach number
to 0.84). The underlying mesh contains 53,961 vertices and 287,962 tetrahedra. The
calculations are made on an Ibm SP-2 (equipped with thin nodes) using overlapping
mesh partitions (one tetrahedra wide). The implicit time advancing procedure is used
with 30 J acobi relaxations for the approximate solution of the linear system resulting from
(6). The pseudo-time step is computed according to the law CFL=it where it denotes
the current non-linear iteration. Tab. 2 below compares the CPU times per non-linear
iteration; C~omm denotes the percentage of the CPU times spent in local communication
operations. Here, computations have been performed using 32-bit arithmetic.

Table 2
Implicit Euler computations on the 0NERA N6 : Nv = 53,961 - NT = 287,962
Computations on the Ibm SP-2 (thin nodes) : PARMACS communication library

Np CPU/iter C~omm Mttop/s S(Np)
2 65.7 s 1.0 % 38 1.9
4 33.0 s 3.6 % 80 3.9
8 16.6 s 6.0 % 168 7.7
15 8.6 s 7.2 % 342 14.4

5. P E R F O R M A N C E M O D E L L I N G

In this section, we describe a performance model for the industrial N3S-MUSCL solver.
The model is implemented to be used inside the mesh partitioner MS3D, in order to pro-
vide the end-users with accurate prediction of the parallel code behaviour, for a given
decomposition and a given architecture.

In the following we assume that one subdomain is assigned to each processor and that,
in the parallel code, communication steps and purely computational ones do not over-
lapped. The partitioning of the mesh gives access to the following local (per subdomain)
informations : for each message, the identifications of the sender and the receiver and
the message length (number of interface vertices); the numbers of vertices and tetrahedra
characterizing the local submesh. From the local mesh parameters of the ith subdomain
and the numerical/physical parameters of the simulation (number of species, number of
relaxations per iteration, type of solver, type of numerical flux, . . .) , we can derive a local
computation time, Tdo,~ p. The communication time for sending a message is computed as
tcomm = tlatc + N �9 b where tlatr is the latency in seconds, N is the number of bytes to be
sent and b is the bandwidth in Mbytes/s. These figures are those associated to the selected
message passing library (PARMACS) instead of the ones of the targeted system, therefore
including software overheads. By adding together all the various communication times
for the ith subdomain, we get an overall local communication time, Ti~omm. The total

160

CPU time of one non-linear iteration for the ith subdomain is T i = T~omm + T~omv. We
can now compute the total CPU time and average computational time of one non-linear
iteration on Np processors from which we can deduce the average communication time
Tcomm (which actually include the idle time due to computational load imbalance) :

m ax T ~ , Tcomv = 1 ~ T~omp , T~omm - T - T~omv (8) T i

i=l,N~ Np .=

Several validation experiments have been realised using the described model. For in-
stance, the previous 0NERA M6 wing test case (2,800 vertices and 13,576 tetrahedra) was
run on 16 processors of a Meiko CS-1 system. The data taken for this system (obtained
courtesy of Pallas GmbH) were : tlatc - - 0 . 5 m s , b = 2 Mbytes/s. The results have shown
a difference of less that 3% (CPU/iter times were 7.42 s for the experiment and 7.6 s for
the prediction). For larger problem sizes and larger sys tern configurations the obtained
results all tend to indicate that the choice of the partitioning algorithm is not crucial, but
the computational load balance is.

Acknowledgment s : performance results obtained on large configurations of the Ibm
SP-2 and the I n t e l Paragon have been provided by Pr. C. Farhat (Center for Aerospace
Structures, University of Colorado at Boulder). The first author also wishes to thank Mr.
J.-M. Fieni for giving him access to the Cray T3D located at the CEA in Grenoble.

R E F E R E N C E S

1. D. Chargy, N3S-MUSCL : a 3D Compressible Navier-Stokes Solver, Edf/Simulog (1994).
2. L. Fezoui and S. Lanteri, Parallel Upwind FEM for Compressible Flows, Proceedings

of the PCFD'91 Conference, K.G. Reinsch et al. Eds., pp. 149-163, (1992).
3. C. Farhat, L. Fezoui and S. Lanteri, Two-Dimensional Viscous Flow Computations

on the CM-2: Unstructured Meshes, Upwind Schemes and Massively Parallel Com-
putations, Comp. Meth. in Appl. Mech. and Eng., Vol. 102, pp. 61-88, (1993).

4. C. Farhat and S. Lanteri, Simulation of Compressible Viscous Flows on a Variety
of MPPs: Computational Algorithms for Unstructured Dynamic Meshes and Perfor-
mance Results, Comp. Meth. in Appl. Mech. and Eng., Vol. 119, pp. 35-60, (1994).

5. P.L. Roe, Approximate Riemann Solvers, Parameters Vectors and Difference Schemes,
J. of Comp. Phys., Vol. 43, pp. 357-371, (1981).

6. B. Van Leer, Towards the Ultimate Conservative Difference Scheme V : a Second-
Order Sequel to Godunov's Method, J. of Comp. Phys., Vol. 32, pp. 361-370, (1979).

7. L. Fezoui and B. Stouffiet, A Class of Implicit Upwind Schemes for Euler Simulations
with Unstructured Meshes, J. of Comp. Phys., Vol. 84, pp. 174-206, (1989).

8. G. Degrez, L. Giraud, M. Loriot, A. Micelotta, B. Nitrosso and A. Stoessel, Parallel
Industrial CFD calculations with N3S Proceedings of the HPCN'95 Conference, B.
Hertzberger et al. Eds., Lect. Notes in Comp. Sc., Springer, Vol. 919, pp. 820-825,
(1995).

9. M. Loriot, MS3D : Mesh Splitter for 3D Applications, User's Manual, Simulog, (1992).
10. C. Farhat, S. Lanteri and H. Simon, TOP/DOMDEC : a Software Tool for Mesh Par-

titioning and Parallel Processing and Applications to CSM and CFD Computations,
Comput. Sys. in Engrg., (To Appear), (1995).

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

161

Implementation of a Fractional Step Algorithm for the Solution of Euler
Equations on Scalable Computers

A. G. Stamatis and K. D. Papailiou

Lab. of Termal Turbomachines,National Technical University of Athens ,P.O Box 64069,
157 10, Athens, Grece, Tel:(1)7722343,Fax:(1)7784582, email:stamatis@central.ntua.gr

AbstractThis paper deals with the parallel implementation of an Euler Explicit Fractional Step Solver on
different scalable computing platforms, such as the Intel's PARAGON and Parsytec's GCel.

1. Introduction

Many efforts have been made during the last decade for using parallel computers
to solve CFD problems in order to verify the effectiveness and suitability of such
architectures, in particular when large scale problems have to be faced. Although a certain
fraction of these efforts has been oriented to shared memory multiprocessors as well as to
SIMD massively parallel architectures, it is fairly recognized that future CFD demands lead
to the efficient exploitation of distributed memory scalable computers. Whether using finite
differences, finite volumes or finite elements, efficient methods for solving the time
dependent Euler equations typically involve two basic types of schemes: the explicit and
the implicit.

Implicit methods present the advantage of allowing larger time steps compared to
explicit ones, provided that an implicit treatment of the boundary conditions is
incorporated, which in turn leads to a further complexity of the code structure. On uni-
processor and vector architectures the implicit schemes have proven to be superior in many
instances, but due to inherent global spatial data dependencies these methods are hard to
parallelize. Sophisticated rearrangement of the computation steps and complex
communication patterns are required in order to maintain efficiency of the implicit schemes
on parallel system as well,[1].On the other hand, implementation of explicit algorithms on
a distributed memory environment is anticipated (and has been proven) to be both easy and
efficient because of inherently parallel nature of these algorithms.

This paper deals with the parallel implementation of an Euler Explicit Fractional
Step Solver on different scalable computing platforms, such as the Intel's PARAGON and
Parsytec's GCel.A certain advantage of using a fractional-step analysis, beyond its
simplicity is the fact that greater time-steps are allowed, since the stability criterion is less
strict compared to other explicit solvers.

2. Description of the Algorithm

Euler equations in two dimensions can be written in the following conservative

162

form

c30 . c3'~ . c3G = 0 (1)
ar a~ a~

where the unknown variable vector Q, and the flux vectors F,G one defined as usually and
~,rl are the computational domain coordinates.

The fractional-step concept implies that the finite-difference form of the discretized
equation (1) split into a sequence of multiple single-directional operators,[2]. Each operator
corresponds to a different physical component of the equation. The 1-D operators are
denoted by L and are subscribed by either ~ or ~1, depending on whether sweeps are
performed along the TI or ~=constant grid lines respectively.The time evolution of the
unknown vector array Q is obtained by applying the sequence of operators, which may be
cast in the following symbolic form

On.,.2 = Le L,I L,I Le ~" (2)

A double and inverse sequence of the one-dimensional operators leads to a second order
accuracy in time, while the calculated quantities have a physical meaning only at the
expiration of a 2At time interval (i.e. from n to n+2 iteration level,[3]).The predictor-
corrector MacCormack scheme is used to handle the hyperbolic operators, [4]. A common
time-step is used for all L operators and this is the minimum of the time steps, which result
from the stability analysis performed for each operator separately. The total time-increment
per time-step is less strict compared to that dictated by any explicit two-dimensional
stability criterion.

Extra dissipation terms are explicitly added to the solution vector Q at the end of
a complete calculation period, corresponding to Q time interval of 2At as follows

0 n+2 -- 0 n+2 +Dl['* +Bq (3)

where D~+Dn represents a blend of second and fourth order derivatives of the solution
vector following Jameson, [5], to prevent odd-even uncoupling and to accurately capture
shock waves.

Quite a few test cases have been investigated using the above algorithm with
appropriate boundary conditions.Details of the formulation and results can be found in [6-
7].

.
3.1

Parallelization of the Algorithm
Methodology

Parallelization on different distributed memory computers has been introduced by
a subdomain-partitioning strategy.The computational domain is decomposed into
subdomains assigned to different processors. In order to update grid points that lie on the
edge of its subdomain each processor needs values for the grid points which lie in an
adjacent subdomain, and this is done by exchanging data. The decomposition of the
domain can be 1-D (stripes) or 2-D (squares). Given that each decomposition has its own

163

advantages with respect to the processors utilized and the aspect ratio of computational
domain, [8], we decided to provide the code with the capability of using either
decomposition.
Thus, each processor must store the data for a number of rows depending of the stencil of
grid points on each side of its region of interest.For the fractional step algorithm in each
fractional step, data belonging to one row (or column) of a side of each subdomain has to
be exchanged with the processor that is responsible for the next subdomain along the
sweep direction. The only exception is during calculation of the artificial dissipation terms,
where two rows (or columns) have to be exchanged.

The second aspect of the parallelization strategy is the mapping of subdomains to
processors. The key feature of a suitable mapping is data locality (i.e. adjacent subdomains
to be assigned to neighbouring processors in physical topology). Assuming that the
underlying physical processor topology is a 2D mesh (Paragon XP/S, Parsytec GCel), we
may have a direct one to one mapping. The exchange of the data between neighbouring
processes is only local and can be performed in parallel on all processors. A different
communication need is present when non-neihgbouring processors have to exchange data
(wake region behind an airfoil). Communication between the processors is also necessary
for monitoring of the residual values.

Portability remains at present time one major problem of parallel computing.
Different MIMD architectures generally offer incompatible message passing and processor
control possibilities. Though some "standards" (e.g. PVM,P4) begin to be implemented on
virtually all major computers, here is generally a non negligible overhead when using these
modules instead of the local native message passing libraries. The concept of code
portability involves two requirements: a) the code should compile on different computers,
b) if the code runs efficiently on one system should also run efficiently on other systems
as well.

In order to achieve an easy and efficient portability, the flow solver is completely
separated from the library of subroutines controlling the parallel work.Communication code
consists of a main library developed in our Lab, and several communication primitive
libraries.At present communication is based on an assumed 2-D processor topology.
Mapping of the actual hardware topology to the logical 2-D processor topology is provided
through a user defined subroutine (by default the underlying hardware topology is assumed
to be 2-D mesh).With the aid of the above methodology a single source code can be
executed either sequentially or in parallel. This greatly simplifies development and
maintenance of the parallel code.

3.2 Parallel Performance Model

The issue of evaluating the performance of an application in a parallel environment
has a very complicated nature and is characterized by a large number of often contradictory
aspects. No matter how have been defined or interpretated, [9-11], various metrics of the
parallel performance (speedup, efficiency, serial fraction, etc.), may give a practical view
of the quality of the parallel implementation as well as of the usability of the parallel
environment.

Should the target be the answer, which algorithm and what parallel computer are
most appropriate for a given application, one has to consider a metric sensitive to the

164

characteristic parameters both of the algorithm and the parallel computer.We define such
a metric named effective speed-up as follows

1~lato,a'algo~'Pon~ (4)
T(plat,al&,P)

where T is the execution time, plat identifies computer platform, alg the algorithm used and
P the number of processors which are occupied by the application. The subscript ord refers
to the ordinary implementation of the application. Clearly, when plat=plato,, alg=alg~ and
p.~=l then Sef represents the traditional parallel speed-up. The use of the effective speed-up
appears certain advantages. Using the same algorithm and the same number of processors
(e.g. P=Po,d) one may have a comparison of the machines. Using a specified platform and
the same number of processors we may compare different algorithms for the same
application. But the major advantage of using the metric of effective speed-up is that the
absolute gain obtained through an implementation different from the ordinary one ,can be
evaluated.

In order to be able to investigate the expected parallel behaviour of an
implementation in a target machine before the actual implementation, time complexities or
parallel performance models are valuable tools. The parallel performance model used in
the present approach is derived through the concept of Work Units [10]. We may consider
that there are K discrete jobs of the algorithm during one iteration.Then assuming a linear
message passing communication time, in the SPMD (single program, multiple data)
paradigm adopted here, using p processors it can be derived the following approximation
for the parallel time of the application

~ ~ , a t e , ~) = ,,,,,, {Jr / /+ x : , + Jr/,} ~:5)

where

k k k

l i J -J . , i l - i ,p

(6)

and
tf=tf(pla0 : Mean time to complete one floating point operation.
t,=t,(pla0 : Setup communication time (Latency).
t~=t,(plat) : Time required to exchange 1 byte (is determined from processor to

processor bandwidth).
fij=fij(alg,p) : Number of floating point operations of computational domain during Work

Unit i.
S i = S i (a l g) " Number of times data are exchanged during Work Unit i.
Lij=Lij(alg,p) �9 Message length exchanged by processor j during Work Unit i.
n~., �9 Iterations required for convergence.

3.3 Algorithmic Alternatives

From the parallel performance model of the previous paragraph we may deduce the

165

impact of changing the algorithm in the expected speed-up. We will consider two
approaches. The first one is to double calculations in order to reduce communication time.
The expected speed-up for a given platform and number of processors is

' i,::,,+ ,:',,,+ ,::,,l s _ . nitr "

2 2 2
n . {,:,,,+ ,:; ,, + ,:;,,}

(7)

Although the algorithm changes, the number of iterations required for convergence remains
the same. Thus,given that for our implementation of the fractional step algorithm it holds
that
Ks'=K, 2, (Kf~-Kf')/(K,'-K,2)--(N/p)Ir2
in order to ensure S_>I the following condition must be fulfilled

t_, ~ ~(1r
t/

(8)

The conclusion drawn from the above selection is that the double calculation
algorithm is efficient only for computers with very high communication time to calculation
time ratio.

The second algorithmic alternative is to decrease communication time by
exchanging information not every iteration but after a certain number of iterations. In that
case Kf~=K:=Kf, K,2=K,I/n and KI2=K,Tn, where n the number of iterations required to
exchange messages. From (7) in order to obtain S>I we have the necessary condition

2
nJ~r s l +a (9)

1 1 +a/n n~ir

where

a = I +__x,t, + 1,:,t,

K l t l Kit1
(10)

Clearly, there is no apriori answer if it is worth to apply the algorithm. Only after
investigating the convergence rate in a particular machine for a given number of processors
and for various n we will be able to conclude.

3.4 Load imbalance due to boundary conditions

The boundary conditions introduce a special source of load imbalance due to the
fact that computational work to be done for boundary nodes differs from work for interior
nodes. It would be no problem at all if boundary nodes will be distributed as equal as
possible among the processors, but this is not always possible. In fact, for airfoils, using
a mesh domain partitioning, only few processors work with the boundary nodes. The
resulting impact on the parallel speedup can be investigated as follows.

166

We consider that there are four work units of the algorithm. Update of interiors
nodes, and updates for the inlet boundary, outlet boundary and wall. Assuming that there
is no communication overhead, the time to complete one iteration of the algorithm using
a mesh of p=p, x p, processors is

(11)

The number of floating point operations fi can be assumed to be analogous to number of
nodes participating in the work unit

= C t Nt (12)
P,

Assuming ,without loss of generality ,that C,.,=Co,=C,,,=(I+a)C (where C floating point
operations per interior node), and that there is an equi-node distribution along the
processors in x and y directions ,(the most overloading processors are those which contain
both inlet and outlet boundary nodes),we get

(13)

where N=Nx Ny , Nb=Nx+Ny+Nw
For P=I, we have to include work in wall and in all outlet, so we get

T l -- C~ (N+aNb) (14)

Assuming normal values for the parameters appearing in the above relations we
obtain speedup less than the theoretical (P).This proves that special care has to be given
to boundary nodes work in order to minimize parallel inefficiency.

4. Parallel Impementation and Results.

The quality of the results obtained by the serial version of the code has already
been verified in quite a few cases [6-7]. The developed parallel code has been tested both
for its integrity and effectiveness. The chosen test case tor the parallel tests was the
prediction of flow around a NACA012 airfoil. A C-type mesh (161X37) was used. First
the code was validated in order to be sure that the new machine independent parallel code
produces results identical with the serial one. Secondly, speedup and efficiency were
investigated for different machines. In the following figures results from execution of the
code on three different machines (SGI Indigo WS,PARAGON ,GCel) are shown.From
Figure 1 where the parallel efficiency is shown we can conclude that for achieved medium
grain paraUelization (up to 32 processors) the efficiency is satisfactory (more that 75%).
Obviously the reduction of the efficiency as more processors are involved is due to the size

167

1 25 PARSYTEC GIC~ 3612 -e -
l PARAGON XP/8 - i . .-

o.9 I PARAGON-KnO~ -----

I

o.e o. /

X ~
07 15

,o[//
O.5 ~

0 . 4

O.2
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

PROCESSORS PROCESSORS

Figure 1 Figure 2

1 0 0 o o o , , , .

GCel 3/512 ,Iouf!lgring,dllls locality
C1Cel 3/512 ,no buffering,den= Iocalit/
GC.,el 3/512 ,buffering,no de= Iocalily
PARAGON XP/S ,bufferin~
PARAGON XP/8 ,no bulfenng

1OOO0

v

r--

lOOO

o o

. . . I "

lO lOO lOOO
MESSAGE LENGTH IN DOUBLE PRECISION WORDS

0.9

0S

0.7

06

0.5

0.4

0.3

0.2
0

GCel 3/512 communicalion -e.--
�9 + bounds/cond|on

+ o01u Imzd unbJmce -n---

50 100 150 200 250 300 350 400
PROCESSORS

Figure 3 Figure 4

of the problem considered. A hard evidence that the traditional definition of parallel
efficiency is not always an appropriate indicator for the actual benefit obtained through
parallelization, is given in Figure 2. It can be seen that though the efficiency of the code
in Paragon when using the compiler option - Knoiee is lower than the efficiency in the
Parsytec machine, the effective speed-up is about 20 times higher.

In order to estimate the characteristic communication parameters required for the
parallel performance model we developed in section 3.2, the Communication Library
mentioned in section 3.1 has been utilized for benchmarking the used parallel platforms.
The results are shown in Figure 3. Three main conclusions are drawn from the figure. First,
necessary buffering when two and three indexed arrays have to be exchanged, has a
considerable impact on the transfer bandwidth. Second conclusion is that though the

168

bandwidth in Paragon is much higher than in Parsytec, the latency is only slightly lower.
The concequence is that the Paragon machine is not appropriate for fine grain parallelism
in small size problems, given that its computing power is much higher than in Parsytec.
The third conclusion is that data locality (efficient mapping) is crucial in GCel.In Figure
4 are illustrated the proportional losses of efficiency, obtained with the help of the parallel
performance model. It can be seen that a significant portion of the efficiency loss is due
to load imbalance imposed by the boundary conditions.

Finally, investigations regarding the impact of the loose parallel coupling
(communication in boundaries only after certain iterations) have been carried out.The
conclusion of these investigations is that there is no benefit in terms of the obtained
speedup due to the considerable decrease in the convergence rate of the algorithm.

10.

11.

REFERENCES
Johnson S L,Saad V.,Schultz M.,H.,(1987), "Alternating Direction Methods on Multiprocessors"
SIAM J. Sci. Star. Comput.,Vol. 8, pp. 686-700.
Laval, P., 1983, "Nouveaux Schtmas de Dtsinttgration pour la Rtsolution des Probl~mes
Hyperboliques et Paraboliques Non Lintaires: Application aux Equations d' Euler et de Navier-
Stokes", Recherche A#rospatiale, No 4.
Abarbanel, S. and Gottlieb, D., 1981, "Optimal Time Splitting for Two- and Three-Dimensional
Navier-Stokes Equations with Mixed Derivatives", Journal of Computational Physics 41.
MacCormack, R.W., 1988, "On the Development of Efficient Algorithms for Three-Dimensional
Fluid Flow", Recent Developments in Computational Fluid Dynamics, T.E. Tezchigar et al., ed.,
ASME AMD-Vol. 95, pp.117-138.
Jameson, A., Schmidt, W. and Turkel, E., 1981, "Numerical Solutions of the Euler Equations by
Finite Volume Methods Using Runge-Kutta Time Stepping Schemes", AIAA Paper 81-1259.
Simandirakis, G., 1992, "Numerical Solution of Navier-Stokes Equations for Transonic Flows Inside
Turbine Bladings", PhD Thesis, NTUA, Athens, February 1992.
Simantirakis g.,Giannakoglou K.,Alkalai k.,Papailiou K. D., "Development and Application of a
Fractional Step Method for the Solution of Transonic and Supersonic Flow Problems", Proe. of
Fifth International Symposium on Numerical Methods in enginnering.
Otto J. C,"Parallel Execution of A Three-Dimensional,Chemically Reacting ,Navier-Stokes Code on
Distributed-Memory Machines",AIAA-93-3307-CP, 1993.
Barton M.,Withers G.,"Computing performance as function of the speedup,quantity, and cost of the
processors" ,Proc. Supercomputing '89,1989,pp. 759-764.
Sun X., Gustafson J.,'Toward a better parallel Performance metric' ~arallel Computing 17, pp 1093-
1109, 1991.
Van Catlege F.A. "Toward a General Model for Evaluating the Relative Performance of Computer
Systems",Int. J. of Supercomputer Applications, 2, 100-108, 1989.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

169

Parallelization of a Highly Unstructured Euler-Solver Based on
Arbitrary Polygonal Control Volumes

Clemens Helf, Klaus Birken, Uwe Kfister *

The paper describes a strategy to obtain SPMD-parallelizations by using an abstract
model for distributed, dynamic data. The abstract model encapsulates the distributed
aspects of the application and provides an application-oriented interface to message pass-
ing. The strategy is applied to a self-adaptive Finite Volume scheme based on arbitrary
polyhedral control volumes. Efficiency and numerical results are presented.

1. D E S C R I P T I O N O F T H E E U L E R S O L V E R

The algorithm is a cell-centered finite volume method with higher order reconstruc-
tion [2,9,10] in two and three space dimensions with explicit integration in time.

The reconstruction is based on derivatives calculated from a locally fixed neighbourhood
and ensures positivity of the relevant unknowns density, pressure and internal energy. The
derivatives are limited so that the reconstruction does not exceed the extremal values of
the stencil. Roe's flux difference splitting with entropy fix [7] is applied to the values
reconstructed at side centers to determine flux contributions across each side of the control
volume. Boundary conditions are enforced by a layer of ghost volumes which are equipped
with appropriate state values.

2. G R I D R E P R E S E N T A T I O N

A flexible grid representation for finite volume methods is proposed. Polyhedra with
an arbitrary number of sides are used as control volumes. Those control volumes even
:nay be non-convex or multiply connected. Control volumes are described by a hierarchy
of geometric objects (nodes, edges, faces, cells) of different dimension and topological
relations between them [6].

The chosen grid representation provides a unified view of the computational domain
in two and three space dimensions. This unified view is presented as an interface to the
algorithmic part of the code and allows to integrate grid generation into the simulation
process.

*University of Stuttgart, Computing Center (RUS) Allmandring 30, D-70550 Stuttgart, Germany; EMail
helf@rus.uni-stuttgart.de

170

3. G R I D G E N E R A T I O N A N D A D A P T I V I T Y

Due to the flexibility of the chosen grid representation, the initial description of the
computational domain by its boundaries already describes an admissible, single control
volume. Hence, no initial grid must be generated and simulations may easily be started
from scratch.

In order to supply meaningful space discretizations, control volumes may be divided
along arbitrary intersection planes. Successive application of simple refinement steps (e.g.
along coordinate lines) will provide initial grids for arbitrary complex domains without
additional human effort.

In comparison to usual refinement procedures, an additional degree of freedom is avail-
able with refinement. In addition to the location of the refinement, the direction of the
intersection plane may be freely chosen. For self-adaptive refinement, usual indicator
functions [8] (e.g. pressure derivatives) may be used to determine location and direction
of the refinement.

4. P A R A L L E L I Z A T I O N S T R A T E G Y

4.1. S P M D Paral le l izat ion

On a distributed-memory parallel computer architecture, the whole grid database has to
be split up into overlapping subdomains, each of them mapped into one processor's local
memory [5]. The management of data redundancy and consistency of the distributed,
partly replicated database is a highly complex task and may easily prevent successful
parallelization. Additionally, this task is complicated by the requirements of adaptive
applications (dynamic redistribution, dynamic load balancing).

The distributed aspects of an application's database, introduced by domain decom-
position, are usually not part of the application model (SPMD paradigm). So, these
details are preferably invisible to the application and therefore may be seperated into a
distinct layer. This was achieved by using the Dynamic Distributed Data library (DDD),
developed at the Computing Center, University of Stuttgart [4].

4.2. A Mode l For D y n a m i c Dis tr ibuted Data

DDD implements an abstract data model, which defines the relationship between a
global data structure (object) and a distributed data structure, using an exact formalism.
References provide a common technique for representing connectivity relations between
objects (e.g. between triangles and nodes in an unstructured grid). Objects and references
build up an abstract graph, which describes the database (see figure 1).

Admissible graph distributions are easily constructed and serve as a means to build up
abstract interfaces, which describe local memory borders within the distributed database
(see figure 2). Interfaces are characterized by their communication strategy and are kept
consistent with all changes of the distributed graph. The lean consistency paradigm
supports the design of consistency protocols which are governed by numerical demands [3].

171

4.3. Handler Interface

In order to appropriately execute object transfers and data updates, certain procedural
information about the application database must be provided to the DDD layer. This
information is supplied by a set of handlers (call-back functions), which need to be adapted
to the application. Especially, handlers exist so that applications which are equipped with
their own memory management may successfully coexist with memory operations induced
by DDD.

Figure 1. Detail of an unstructured grid and corresponding data model.

5. P A R A L L E L I Z A T I O N OF T H E E U L E R C O D E

The parallelization of the code was relatively easy to achieve and first parallel jobs could
be started within days. The structure of the sequential application was completely left
intact. From the software engineering point of view and taking into account the complexity
of the database this proves the validity of the concept. All parts of the application (I/O,
simulation, refinement) were parallelized.

5.1. In troduc ing D D D

In a first step, a DDD data structure was inserted into the sequential application's data
hierarchy, which is straightforward in programming languages supporting user defined
data structures. The properties of this structure are part of the DDD paradigm, hence
the complete DDD functionality may be used immediately after this step.

The following calls were inserted into the sequential code:

�9 a startup/shutdown call for the DDD library (main program),

�9 a call to the DDD transfer module to distribute a locally created grid (application
startup),

�9 interface synchronization calls (timestep loop).

Figure 2 presents a distribution of the database from figure 1, where local copies of
objects in the overlap region were introduced by DDD. The right part of figure 2 shows
the interface (dotted circles), built up during data distribution. A data synchronization
call causes data transfers across the interface (arrows).

172

5.2. Hand le r Interface
In a second step, handlers were introduced, which provide application specific function-

ality to DDD:

�9 memory management handlers for malloc/free-type operations,

�9 object management handlers for object creation and removal,

�9 object transfer handlers, which implement the overlap strategy,

�9 interface synchronization handlers, specifying the data to be transferred.

After this step, an operational parallel code was available.

Figure 2. Distributed database with local copies.

5.3. Grid Ref inement
In a third step, the refinement procedures were reviewed for parallelization. From the

viewpoint of the grid database, refinement consists of substituting existing objects of the
grid by new objects. In order to keep the distributed data management up to date, the
object creation/removal interface of the database was split into a local object layer and a
distributed object layer, which contains the corresponding DDD calls.

All communication needed in the overlapping regions of the distributed grid could be
introduced by adding a few DDD transfer commands.

5.4. Conclusion
Even an extremely complex, dynamic database may easily and quickly be prepared

for use in a SPMD-type parallelization. The possibility to provide application specific
handlers allows to use DDD in a wide variety of applications. However, the introduction
and maintenance of these handlers still requires substantial care and experience.

Nearly no modifications are necessary to the applications source code. The structure
of the sequential application was completely left intact. So, further improvements in the
CFD part of the code can be realized without impact on parallelization.

As DDD itself is available for a variety of architectures (Intel Paragon, Cray T3D,
Workstation Cluster) respectively message passing systems (NX, PVM, MPI), portability
is not an issue.

It may be concluded that the DDD paradigm perfectly fits into the framework of a
dynamic application for complex databases.

173

6. RESULTS

6.1. Efficiency Measurements
The following figure 3 presents parallel efficiency measured on an Intel Paragon system.

Measurements are obtained from a supersonic doublewedge test case [1], which adaptively
develops from 256 to 1660 control volumes. Hence, higher efficiencies may be expected
for larger problems.

The lower measurement includes the total parallel overhead (i.e. load balancing, dy-
namic re-distribution, data synchronization at processor interfaces), while the second
measurement excludes data synchronization times.

Figure 3. Parallel efficiency for a self-adaptive computation.

6.2. Numerical Example: Doublewedge
Figure 5 shows a calculation of a Mach 3 duct with a doublewedge (16.7 ~ angle of

attack) on twenty processors, el. [1]. The grid contains 10294 control volumes. Local
memory borders are shown within the solution plot.

Figure 4. Grid with 10294 control volumes.

Figure 5. Pressure isolines and local memory borders.

174

7. O U T L O O K

The introduction of second-order reconstruction and Navier-Stokes equations into the
CFD code is currently going on. The grid database will be enhanced to support multi-
level grids, which will serve as a base for instationary refinement, parallel re-coarsening
and fast solution techniques.

Further performance investigations will help to improve parallel efficiency. Different
load balancing tools will be investigated and prepared for use with DDD. Tools for the
automatic creation of handlers are under consideration.

R E F E R E N C E S

1. M.J. Aftosmis and N. Kroll. A quadrilateral based second-order tvd method for
unstructured adaptive meshes. Report 91-0124, AIAA, 7-10 Jan. 1991.

2. T.J. Barth. Aspects of unstructured grids and finite-volume solvers for the Euler
and Navier-Stokes equations. In Special Course on Unstructured Grid Methods for
Advection Dominated Flows, AGARD Report R-787, Neuilly Sur Seine, France, May
1992.

3. K. Birken. An efficient programming model for parallel and adaptive CFD-algorithms.
In Proceedings of Parallel CFD Conference 199~, Kyoto, Japan, 1995. Elsevier Science.

4. K. Birken and P. Bastian. Dynamic Distributed Data (DDD) in a parallel program-
ming environment- specification and functionality. Forschungs- und Entwicklungs-
berichte RUS-22, Rechenzentrum der Universit/it Stuttgart, Germany, September
1994.

5. J. DeKeyser. Solution of the Steady Euler Equations by Means of Adaptive Unstruc-
tured Meshes, Multi-Grid Methods and Parallel Computers. PhD thesis, Catholic
University Of Leuven, Leuven, Belgium, 1994.

6. C. Helf and U. Kfister. A finite volume method with arbitrary polygonal control
volumes and high order reconstruction for the Euler equations. In S. Wagner, E.H.
Hirschel, J. P~riaux, and R. Piva, editors, Proceedings of the Second European Com-
putational Fluid Dynamics Conference, Stuttgart, Germany, 1994. Wiley & Sons.

7. C. Hirsch. Numerical Computation of Internal and External Flows- Volume 2: Com-
putational Methods for Inviscid and Viscous Flows. Wiley & Sons, 1990.

8. R. LShner. Finite element methods in CFD: Grid generation, adaptivity and paral-
lelization. In Special Course on Unstructured Grid Methods for Advection Dominated
Flows, AGARD Report R-787, Neuilly Sur Seine, France, May 1992.

9. P. Vankeirsbilck. Algorithmic Developments for the Solution of Hyperbolic Conserva-
tion Laws on Adaptive Unstructured Grids (Application to the Euler Equations). PhD
thesis, Van Karman Institute, University Of Brussels, Brussels, Belgium, 1993.

10. M. Wierse. Higher Order Upwind Schemes on Unstructured Grids for the Com-
pressible Euler Equations in Timedependent Geometries in 3D. PhD thesis, Albert-
Ludwigs-UniversitS~t, Freiburg i. Br., Germany, 1994.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

175

Performance of a Euler Solver Using a Distributed System

Renato S. Silva and Regina C. Almeida * ~

~Laboratdrio Nacional de Computa(~s Cientifica
Rua Lauro Mfiller, 455, 22290-160,
Rio de Janeiro, Brazil

Supercomputers nowadays can be used to solve large-scale problems that come from
simulation of industrial or research problems. However, those machines are usually ina-
cessible to most industries and university laboratories around the world. In this work we
present an Euler solver to be used in a collection of workstations under PVM that can
overcome the use of direct methods on a single processor.

1. I n t r o d u c t i o n

In the last years, with the advent of successful discretization methods and powerful
computer technologies, computer simulation has been seen as a valuable approach to
be combined with experimental methods to solve industrial and scientific problems. In
this work we are interested in the numerical simulation of compressible Euler flows for
which we have to deal with large, sparse and non-symmetric systems. For these types of
problems the computational cost is a major concern and so is the accuracy. Obviously,
the accuracy is related with the appropriate choice of the numerical method to solve the
Euler equations.

Ideally, the numerical method to solve the compressible Euler equations should have
good convergence properties and should be stable in the presence of shocks: in those re-
gions of the fluid flow, the variables in the system vary strongly, making the computation
very challenging. In that case, it is well known that the approximate solution obtained
by using the standard Galerkin finite element method is completely spoiled by spurious
oscillations that are spread all over the computational domain. In order to avoid those
oscillations, we shall use a very stable Petrov-Galerkin method called CAU Method (Con-
sistent Approximate Upwind Method)[4], that consistently adds to the Galerkin weighting
functions two terms. The first one acts over the generalized streamline direction which
comes from the SUPG Method (Streamline Petrov-Galerkin Method)[1] and the second
one provides the control over the derivatives in the direction of the generalized approxi-
mate gradient. This method is also very accurate since the latter perturbation vanishes
in the regions where the solution is regular. However, there still be the necessity of using
an efficient solver to reduce the computational costs when large problems are concerned.

*Visiting Scholars from TICAM - Texas Institute of Computational and Applied Mathematics, The
University of Texas at Austin. During the course of this work the authors were supported by the Brazilian
Government fellowship CNPq proc. 201387/93-0 and 200289/93-4, respectively.

176

It is well known that iterative methods perform better than direct methods for large
problems, but to determine the best iterative algorithm to solve non-symmetric systems
is still an open issue. However, many conjugate gradient like methods have been widely
used with relative success. Included in this class, the GMRES method introduced by
Saad and Schultz seems to be a good choice because it seldom breaks down and presents
monotonic convergence. But the method possesses a drawback because, in its original
version, the orthogonalization process dictates an increasing amount of computational
work with increasing iterations. This drawback can be avoided using a restarted GMRES
version (GMRES(k)) since it consumes less memory than the original one while keeping
its good properties.

A good solver means not only a choice of the best method but a combination between
the method and a fast implementation. Recently considerable attention has been focused
in heterogeneous distributed systems as a solution for high performance computations.
By definition, a heterogeneous distributed system is a collection of different computers
loosely connected by a Local Area Network (LAN) or/and a Wide Area Network (WAN).
The popularity of these systems can be explained by the increasing performance and lower
prices of high speed networks and general-purpose workstations. This means that is much
cheaper to form and to maintain these systems than a massively parallel machine (MPM)
and, in certain cases, their performances can be similar.

Unlikely MPMs, heterogeneous distributed systems can be formed with different types
of processors and with different network types. Besides, they are composed by general-
purpose enviroments, which means that it is possible to have different users running their
jobs in the machines of the system. As a consequence, the load of each machine and the
network traffic can vary at each instant and the choice of the communication pattern has
to be done carefully.

Thus, in this work, we present a distributed implementation of the GMRES(k) with
right preconditionig, for which the computational cost depends on the dimension of the
Krylov Space (k) and on the interface of the domains and we show that this algorithm
running on a collection of 16 IBM RISC 6000 workstations can get satisfactory efficiency
with a relative small number of degrees of freedom.

An outline of this paper is as follows. In section 2 the CAU method for the compress-
ible Euler equations employing entropy variables is presented. In section 3 the GMRES
method and the Additive Scharwrz method used as preconditioner are discussed. Section
4 describes our distributed implementation of methods shown on previous sections. Nu-
merical results are presented in section 5 and the conclusions of this work are drawn in
section 6.

2. Simulation of Compressible Inviscid Flows

In this work we are interested in the numerical simulation of the steady state solution
of the two-dimensional compressible Euler equations. For such non-linear problems, we
get the steady state solution from the limit solution of a time dependent problem. We
shall use a stable Petrov-Galerkin formulation, the CA U method, in order to prevent
instabilities when sharp gradients are presented in the solution [see [4,5] for details].

177

2 .1 . A p p r o x i m a t e S o l u t i o n - T h e C A U M e t h o d

We shall formulate the CAU method for the Euler equations by using the time-disconti-
nuous Galerkin method as the basis of our formulation. To this end, consider partitions
0 - to < tl... < tn < tn+l < ... of ~+ and denote by In = (tn, tn+l) the n t-h-h time
interval. The space-time integration domain is the product ‚ - ft z I~, ~ C ~d _ ~2,
with boundary F - P x In. Denote by f~ de e th element in fin, e - 1, ...(N~)~, where
(N~)~ is the total number of elements in f~. For n - 0,1, 2... , let us first introduce the
set of kinematically admissible functions

Shn - {ph;ph E (C~ h [f~eE (gk(~'~en))m;fl (P h) [~n-- g(t)}
and the space of admissible variations

~ _ {~; ~ ~ (~0 (~))~; ~ t ~ (,~ (~:))~; s ~ (~)I~= 0},

where f l and f2 are the nonlinear boundary condition transformation, g is a prescribed
boundary condition and pk is the space of polynomials of degree less or equal to k.

With these definitions, the variational formulation using the CAU method consists of:

Find V h E S h such that for n - 0, 1,2...

f~n ~'~ (AoV,~ + ~. vv) dx~t

(Ao~l h + 71. V~l h) . 7: (AoV, t + 71. V V) dxdt +
e = l en

<~ i~ ((~- ~) ~) ~ : (" o ~ + ~ ~) ~x~, +
e = l

i n P h (t +) " Ao (v h (t +) - Vh(t~)) dx - O , v Ph c ~ . (1)

m V = (Vj)j= 1 is the entropy variables vector, m is the number of variables (m = 4 for

ae is a (mxm) symmetric and positive-definite matrix; the two-dimensional case); A 0 - b-V
U t - - [p, pit1, pit2, pe] is the conservation variables vector; p is the density; ui is the velocity
in i th direction, i = 1,2; e is the total energy density. Ai - AiAo is symmetric, where
A; - ad is the Jacobian matrix, Fi is the Euler flux. Finally, V t (.) = (Im-~, Im ~

the generalized gradient operator where I,~ is the (mxm) identity matrix and ~'h is an
auxiliary (m d x m) matrix introduced by the CAU Method. The terms in this equation can
be identified in order as the standard Galerkin term, the SUPG term, the discontinuity-
capturing term provided by the CAU method and the jump term by which the information
is propagated from f~n to f~n+l. The SUPG term provides the control over the generalized
streamline direction and the (mxm) matrix of intrinsic time scale r~ is defined as in [8].

Introducing the definition for (A - >) , the CAU term can also be written as

(E n f a max{ 0 h: Iff"hiA~ -- v V h t A r e s
e = l e , IVVhlA ~ iVVhl~ ~ } VV h' [do] V V h dxdt , (2)

where h~ is the characteristic length in the generalized approximate gradient direction.

178

3. P r e c o n d i t i o n e d G M R E S (k)

The GMRES method, proposed by Sand and Schultz is a Conjugate Gradient like
method for solving general nonsymmetric systems of equations and has gained wide ac-
ceptance in solving systems coming from Computational Fluid Dynamics (CFD) problems
[8],[9],[14]. Writing the linear system of equations generated by (1) as A x = b, the GM-
RES derives an approximate solution to x, x = x0 + z, where x0 is the initial guess
and z comes from minimizing the residual l i b - A (x o + z)l I over the Krylov subspace

span Jr0, Aro, A2ro, , Akro], where k is the dimension of the space and ro - b - Axo.
r "I

The major drawback of GMRES is that increasing k the amount of memory required
per iteration increases linearly and the computational work increases quadratically . In
order to control the amount of work and the memory requirements a restarted version
(GMRES(k)) is used. This means that after k orthogonalization steps all variables will
be cleaned and the obtained solution will be taken as the initial solution for the next k
steps.

The crucial element for a successful use of this version is based on the choice of the
parameter k. If it is too small, the convergence may slow down or the method can not
converge, but with large value the work and the memory requirements would turn this
method useless.

Another important point is the choice of the preconditioner. We choose the Addive
Scharwz Method (ASM) [11] which not only can increase the convergence rate but has
a high degree of parallelism. The main idea of the ASM is that we can solve the pre-
conditiong step of the GMRES algorithm [13] zj = M - l v j , by partioning the domain

P

f~ in p overlaping subdomains f~i and then approximate A -1 by M -1 = ~ R~ Ai -1 -Ri
i=1

where Ai is the local submatrice formed by Ai - Ri A R~ with Ri and R~ the restriction
and extension matrices. It can be noticed that the preconditioning step can be solved in
parallel with each processor solving a smallest system of equations. There are two forms
to solve the local problems: a direct solver or a iterative solver, like multigrid. At this
time we decided to use a direct solve, the LU decomposition method from the Lapack
package[16].

4. D i s t r i b u t e d I m p l e m e n t a t i o n

Recently there has been much interest in using workstations to form distributed sys-
tems. With the quickly evolution of desktop workstations, they can off-load jobs from
saturated vector computers, often providing comparable term around time at a fraction
of the cost. With high-speed networks the workstations can also serve as an inexpensive
parallel computer. Another factor in favor of distributed compunting is the availability
of many lightly loaded workstations. These otherwise wasted idle cycles can be used
by a distributed computation to provide speedups and/or to solve large problems that
otherwise could not be tackled.

Similar to other Conjugate Gradient like iterative methods, the most expensive part
of the GMRES algorithm is the preconditioner. Using the ASM the preconditioner step
is reduced to a series of local sequential problems. But now the question is: how to

179

partition the data among the processors? The significant fact for this type of system is
that the common network used, Ethernet and FDDI, allows all processors to logically
communicate directly with any other processor but physically supports only one 'send'
at a time. So we chose one-dimensional partition of the domain and we associate each
one with a different processor, reducing the overhead on 'startups' in the network and
the number of neighbors. This type of partition will lead the way that the matrix-vector
products will be done.

With this distribution each processor will have a part of the initial residual vector r0
and part of the matrix-vector result, the vi vectors. Thus, the orthogonalization will
be performed in parallel, where the partial results ([[roll,l[vill,/~i+l,j) will be exchange to
complete the process.

Obviously this procedure requires a greater number of communications. That is in-
creased by the fact that an Element-by-Element structure is being used to storage the
matrix which implies that to evaluate this operation we need to do some communica-
tions between nearest-neighbors to obtain the contribution of the interface degrees of
freedom. However this choice will be better to solve large problems with adaptive proce-
dures because only fixed number of scalar variables, equal to the Krylov dimension, will
be exchanged.

Two types of communication are used on this implementation: the nearest-neighbor and
one global communication. For the first one we use simple 'sends' and 'receives' between
neighbors. In the global communications we will use the Bucket Collect algorithms [15].

Recently several tools have been developed to support distributed computing like PVM,
MPI and others [12]. The PVM, Parallel Virtual Machine is chosen because it can connect
a heterogeneous group of workstations without difficulty.

5. N u m e r i c a l Resu l t s

In this section we convey some numerical results obtained by applying the proposed
methodology on the solution of a variety of compressible Euler flow problems. All com-
putations were done using piecewise linear elements in space and constant in time. This
leads to a time-marching scheme which has low order of accuracy in time but has good
stabilitiy properties, being appropriate for solving steady problems.

5.1. Obl ique Shock P r o b l e m
This problem deals with an inviscid supersonic flow (Mach number M=2) over a wedge

at an angle with respect to the mesh. It is illustrated in Figure 1 where the dashed line
shows the position of the shock determined analytically.

The Figure 2 which contains the elapsed time of the solver for differente problem sizes is
obtained using a collection of sixteen IBM RISC 6000 workstations model 3BT connected
by FDDI network. Obviously for small degrees of freedom (dof) the performance is not
satisfactory for small numbers of processors. But when the dof increases the performance
increases too.

180

Figure 1. Oblique Shock Problem: problem statement.

Figure 2. Oblique Shock Problem: elapsed time (s), T1 = 2,244 dof,
T2 = 4,420 dof, T3 = 6,596 dof, T4 = 8,580 doff

In Table 1 we compare the new solver with a widely used direct solver , the frontal
solver, runing on a IBM RISC model 590. It can be seen that the solver introduced-here
in this paper is 1.8 times faster. It is important to remember that 8,580 dofs is still
considered a small problem for iterative methods.

8,580 dof

Serial (590) Distributed (p = 16)
Frontal A S M - GMRES(k)
31.3 min 17.3 min

Table 1. Comparison of Direct and Distributed Solver

5.2. S h o c k - R e f l e c t i o n P r o b l e m
This two dimensional steady problem consists of three flow regions separated by an

oblique shock and its reflection from a wall.

181

Figure 3. Shock-Reflextion: problem statement.

The timming results for this problem are very similar to the previous example. In Table
2 the comparation with the frontal solver is shown, and again our algorithm is faster by
a factor 1.7.

12,740 dof

Serial (590) Distributed (p = 16)
Frontal ASM - GMRES(k)
68.3 min 38.4 min

Table 2. Comparison of Direct and Distributed Solver

6. Conclus ions

In this paper we have shown a distributed solver for solving CFD problems, in partic-
ular the compressible Euler equations using a stable Petrov Galerkin method written in
entropy variables, designed using a space-time finite element formulation. The numerical
results showed that this solver is appropriate for distributed systems like a collection of
workstations connected by a token-ring or bus based network. We have shown that this
type of aproach can be efficient and it can be superior or faster than the usual solvers
even for the small size problems solved in this paper.

R E F E R E N C E S

1. A.N. Brooks and T. J. R. Hughes, Streamline Upwind Petrov-Galerkin Formulations
for Convection-Dominated Flows with Particular Emphasis on the Incompressible
Navier-Stokes Equations, Comput. Methods Appl. Mech. Engrg. 32 (1982) 199-259.

2. T. J. R. Hughes and M. Mallet, A New Finite Element Formulation for Computa-
tional Fluid Dynamics: III. The Generalized Streamline Operator for Multidimen-
sional Advective-Diffusive Systems, Comput. Methods Appl. Mech. Engrg. 58 (1986)
305-328.

182

3. C. Johnson, U. N/~vert and J. Pitkaranta, Finite Element Methods for Linear Hyper-
bolic Problems, Comput. Methods Appl. Mech. Engrg. 45 (1984) 285-312.

4. R.C. Almeida and A. C. Gales The Generalized CAU Operator for the Compress-
ible Euler and Navier-Stokes Equations, 8th International Conference on Numerical
Numerical Methods in Laminar and Turbulent Flows (1993).

5. R.C. Almeida and A. C. Galego, An Adaptive Petrov-Galerkin Formulation for the
Compressible Euler and Navier-Stokes Equations, accepted for publication in Comput.
Methods Appl. Mech. Engrg.

6. A. Harten, On the Symmetric Form of Systems of Conservation Laws with Entropy,
J. Comp. Physics 49 (1983) 151-164.

7. T . J . R . Hughes, L. P. Franca and M. Mallet, A New Finite Element Formulation for
Computational Fluid Dynamics: I. Symmetric Forms of the Compressible Euler and
Navier-Stokes Equations and the Second Law of Thermodynamics, Comput. Methods
Appl. Mech. Engrg. 54 (1986) 223-234.

8. F. Shakib, Finite Element Analysis of the Compressible Euler and Navier-Stokes Equa-
tions, Ph.D. Thesis, Stanford University (1988).

9. M. Mallet, A Finite Element Method for Computational Fluid Dynamics, Ph. D.
Thesis, Stanford University (1985).

10. R. C. Almeida and R. Silva, A Stable Petrov-Galerkin Method for Convection-
Dominated Problems, (submitted to Comput. Methods Appl. Mech. Engrg.)

11. Patrick Le Tallec, Domain Decomposition Methods in Computational Mechanics,
Computational Mechanics Advances 1 (1994).

12. Geist A., Beguelin A., Dongarra J., Jiang W., Manchek R. and Sunderam V., PVM:
Parallel Virtual Machine. A Users' Guide and Tutorial for Networked Parallel Com-
puting, The MIT Press

13. Youcef Saad, A Flexible Inner-Outer Preconditioner GMRES Algorithm, iUniversity
of Minnesota Supereomputer Institute Research Report 91/279 (1991)

14. William D. Gropp and David E. Keyes, Domain Decomposition Methods in Compu-
tational Fluid Dynamics, Inter. Journal for Numerical Methods in Fluids 14 (1992)
147-165

15. M. Barnett, R. Littlefield, D. G. Payne and Robert A. van de Geijn, On the Efficiency
of Global Combime Algorithms for 2-D Meshes With Wormhole Routing, TR-93-05,
Department of Computer Sciences, University of Texas 1993

16. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammariling, A. McKenney, S. Ostrouchov and D. Sorensen, LAPACK Users'
Guide, Second Edition, SIAN, 1995

Parallel Computational Fluid Dynamics:
hnplementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

183

I M P L E M E N T A T I O N A N D R E S U L T S O F A T I M E A C C U R A T E

F I N I T E - V O L U M E E U L E R C O D E IN T H E N W T P A R A L L E L

C O M P U T E R

L. P. Ruiz-Calavera%nd N. Hirose b*

~INTA, Aerodynamics Division, Carretera de Ajalvir Km. 4.5, SPAIN

bNAL, Computational Science Division, 7-44-1 Jindaiji-Higashi,
Chofu-shi, Tokyo 182, JAPAN

A time-accurate Euler code to calculate unsteady transonic flow about wings has been
implemented in the NWT parallel computer. Details of the parallel model employed
together with some representative results are presented, together with information on the
computer performance achieved.

1. I N T R O D U C T I O N

Aeroelastic problems appear to be of increasing importance in the design of aircraft.
The size of the structures and its elastic behavior, the aerodynamic interference of different
components, transonic effects, structural and control nonlinearities, are becoming a severe
limiting factor, specially for the future generation of very large civil aircraft. Thus there
is a strong need to apply highly sophisticated reliable aeroelastic simulation tools already
in the early design stage of a new development. To clear a configuration of aeroelastic
problems, a very large number of cases have to be run, performing parametric variations
of: Mach number, reduced frequency, elastic modes, dynamic pressure, etc. Sophisticated
time accurate CFD codes are generally considered to be too time and memory consuming
for industrial application. Potential theory is mainly used whereas the next the step of
approximation, i.e. Euler Equations with or without boundary layer coupling is only
now slowly starting to find its way in the design offices despite the better approximation
they provide. The application of high performance parallel computers to reduce the
computation time is obviously extremely interesting for this kind of applications.

The objective of the present work has been to investigate the benefits of parallelizing
an existing time-accurate Euler code used to calculate inviscid transonic flow around
oscillating 3-D wings. The philosophy has been to minimize the number of changes to the
program because of the parallelization so as to reduce the probability of introducing errors
and to minimize the time needed for the implementation, rather than the attainment of
extremely good parallel performance. This objective was achieved as the whole procedure
took less than 2 weeks. In the following a brief description of the scheme and its parallel
implementation, together with some representative results is presented.

*This work was supported by a fellowship from the SCIENCE AND TECHNOLOGY AGENCY of Japan

184

2. G O V E R N I N G E Q U A T I O N S A N D D I S C R E T I Z A T I O N

Only a general description of the scheme is given, more details can be found in [1]. The
flow is assumed to be governed by the three-dimensional time-dependent Euler equations,
which for a moving domain ~ with boundary ~ may be written in integral form as: 0()

Ot f f f u d f ~ + f f [(F,G,H)-~rr~ 'U] 'gdS - 0 (1)

where U is the vector of conservative flow variables, (F, G, H) are the three components
of the Euler Flux vector, Vr~ is the velocity of the moving boundary, and g is the unit
exterior normal vector to the domain.

This equations are solved by means of the well known finite volume algorithm formu-
lated by Jameson, Schmidt and Turkel [2]. The domain around the wing is divided into
an O-H mesh of hexahedral cells, for which the body-fitted curvilinear coordinates ~, rl, ~
respectively wrap around the wing profile (clockwise), normal and away from it, and along
the span. Individual cells are denoted by the subscripts i,j,k respectively corresponding
to each of the axis in the transformed plane ~, r/, ~.

The integral equation (1) is applied separately to each cell. Assuming that the indepen-
dent variables are known at the center of each cell, and taking the flux vector to be the
average of the values in the cells on either side of the face and the mesh velocities as the
average of the velocities of the four nodes defining the corresponding face the following
system of ordinary differential equations (one per cell) results:

d__ (~i j kUi j,k) + (Qi,j,k -- D~ j k) = 0 (2)
dt

The convective operator Qi,j,k constructed in this manner is second order accurate if the
mesh is sufficiently smooth. This formulation is inherently non-dissipative (ignoring the
effect of numerical boundary conditions), so that artificial viscosity has to be added. The
well known model by Jameson with blending of 2 nd and 4 th order dissipation terms [3] is
used. The idea of this adaptive scheme is to add 4 th order viscous terms throughout the
domain to provide a base level of dissipation sufficient to prevent non-linear instabilities,
but not sufficient to prevent oscillations in the neighborhood of shock waves. In order to
capture shock waves additional 2 nd order viscosity terms are added locally by a sensor
designed to detect discontinuities in pressure. To avoid overshoots near the shock waves
produced by the combined presence of the 2 '~d and 4 th order terms, the latter are cut off in
that area by an appropriate switch. To preserve conservation form, the dissipative terms
Di,j,k are added in the form of (18~ and 3 rd order) dissipative fluxes across each cell face.

The system of ODEs in (2) is solved by means of an explicit 5 stage Runge-Kutta
scheme with two evaluations of the dissipation terms, which is second order accurate in
time and can be shown [1] to have good diffusion and dispersion errors characteristics and
less computational cost per time step than other schemes with a lesser number of stages.

3. I M P L I C I T R E S I D U A L A V E R A G I N G

To maintain stability the explicit time-integration scheme of the preceding section has
a time-step limit (At)max that is controlled by the size of the smallest cell. Even though

185

the CFL number of the 5-stage Runge-Kutta scheme is of the order of 4, the resulting At
is usually too small for practical applications. This restriction can be relaxed by using a
technique of residual averaging [4] which gives an implicit character to the time-integration
scheme.

Before each time-step the residuals R i , j , k = Qi,j,k- Di,j,k are replaced by modified
residuals Ri*j, k which are calculated by means of an ADI method:

(1 - ei,j,k6~) (1 - r (1 - r Ri*j,k - Ri,j,k (3)

where 5~, 6 2, and 6~ are the second difference operators in the ~c, 7, and r directions and
%j,k is the smoothing parameter [5]

)2]}
1 At - 1 0 (4)

s - - max -~ Atmax~,~,k

with At denoting the desired time step, and Atmax~,~,k the locally maximum allowable
time step.

Within a linear analysis, the former technique assures unconditional stability for any
size of the time step. However, as the resulting effective Courant number becomes large
the contribution of the dissipation terms to the Fourier symbol goes to zero, and conse-
quently, the high frequencies introduced by the non-linearities are undamped [6]. Thus the
practical limit for the time step is determined principally by the high frequency damping
characteristics of the integration scheme used. As the properties of the 5-stage Runge-
Kut ta time-integration method are very good from this point of view, CFL values as
high as 240 have been successfully used, which significantly decrease the calculation time
needed for a typical case.

4. N W T C O M P U T E R

The above presented scheme was originally developed in a Cray-YMP computer and
has been implemented in the NWT (Numerical Wind Tunnel) parallel supercomputer of
the National Aerospace Laboratory [7,8]. This is a distributed memory parallel machine
with 140 vector processing elements (PE) and two Control Processors (CP) connected by
a cross-bar network.

Each PE is itself a vector supercomputer similar to Fujitsu VP400 and includes 256
Mbytes of main memory, a vector unit, a scalar unit and a data mover which communicates
with other PE's. It's peak performance is of 1.7 GFlops making it 50% faster than
the standard VP400. The CPs, each with a memory of 128 MBytes, manage NWT
and communicate with the front processor VP2600. The cross-bar network achieves 421
MByte/s x 2 x 142 between each processor. The resulting total performance of NWT is
236 GFlops and 35 GBytes.

The specific feature of NWT is that its architecture is selected with the sole intention
of obtaining maximum efficiency when running CFD applications. Each PE itself can
execute a large scale computation with few data exchange with other PE's.

186

5. P A R A L L E L C O M P U T A T I O N M O D E L

The code has been parallelized using Fujitsu NWT FORTRAN which is a FORTRAN
77 extension to perform efficiently on distributed memory type parallel computers. The
extension is realized by compiler directives. Basic execution method is the spread/barrier
method.

The present scheme has always two directions in which the computation can be per-
formed simultaneously. Accordingly we can use one direction for vectorization and the
other for parallelization. For the O-H grid used here the most natural way of parallelizing,
i.e. assigning different vertical grid planes to different processing elements has been used.
We thus divide every array evenly along the k-index and assign each part to different PEs.
The vectorization is made in i-direction which usually has the largest number of cells.

With this partition, i-derivatives and j-derivatives can be computed in each PE without
any communication. The computation of k-derivatives in PEa requires data stored in
PEa+I and PEa-1 which, in principle, would imply the need to communicate with the
neighbor P Es, thus increasing the overhead. This can be partly avoided using the concept
of overlapped partitioned arrays. This is an extremely efficient concept which allows us to
specify an array partition so that adjacent partitioned ranges automatically overlap and
have some common indices, that is, copies of selected data at the interfaces between two
PEs are stored at both local memories. In this way k-derivatives can also be computed
in each PE without any communication. At the end of each calculation cycle, data in
the overlap range of the partitioned arrays is harmonized by copying its value from the
parent PE.

The above explained procedure can be maintained throughout the code except at the
residual averaging subroutine, where the alternating directions method (ADI) employed
prevents its use as it requires a sequential calculation. The inversions in the i- and j-
directions can be done in each PE independently so that the k- parallelization can be
maintained, with the vectorization in j-direction for the i- inversion and in i-direction for
the j-inversion. As for the k-inversion, the process must be sequential in the k-direction
so that we transfer the affected data from a k-partition to a j-partition. This is made
asynchronously. Then we can compute the k-inversion on each PE with vectorization in
i-direction. At the end of the calculation the data is transferred back to a k-partition.
Figure 1 depicts the calculation flow.

6. R E S U L T S

Calculations have been performed for the LANN wing. This is a high aspect ratio
(7.92) transport-type wing with a 25 ~ quarter-chord sweep angle, a taper ratio of 0.4, and
a variable 12% supercritical airfoil section twisted from about 2.6 ~ at the root to about
-2 .0 ~ at the tip. The geometry used for the computational model is that of [9]. The
results presented here correspond to the design cruise condition: M =0.82, c~ = 0.6 ~ The
wing performs harmonical pitching oscillations about an axis at 62% root chord with an
amplitude of al = 0.25 ~ and a reduced frequency k=0.104.

The calculation proceeds as follows: first an initial steady solution is obtained and
quality controlled; then the time-accurate calculation is started and is time=marched until
the initial transitories are damped and an harmonic solution is obtained (typically three

187

lx, I "
1

1
z FLUXES vector for i

l

l

i Parallel for k
I INVERT i Vector for j

Sequential for i

l Parallel for k
I INVERT J I Vector fori

Sequential for j

1
t

Parallel for j
[INVERT k I Vect~ f~ i

Sequential for k

l
- [

Figure 1. Parallelization-Vectorization strategy

cycles of oscillation are needed); finally the results of the last cycle are Fourier analyzed
to extract the mean value and harmonics of the different aerodynamic coefficients. The
instantaneous grid is computed through deformation of the steady grid system in such
a way that the grid points near the wing surface are forced to closely follow the motion
of the wing whereas the displacements of grid points far from the wing surface gradually
decrease and vanish at the outer boundary, which remains stationary thus facilitating the
implementation of the boundary conditions.

Because of the large memory and CPU time requirements of this type of methods, very
few studies are available in the literature that assess the relative influence on the unsteady
results of the different parameters that control the calculation. To take advantage of the
benefits of parallelization to perform this task was one of the main objectives of the
present work. Many different cases and parameters have been considered. Because of
space limitations only two of them will be presented here.

6.1. Grid Size
Two different grids, namely 80x16x30 and 160x32x30, have been considered. The

smaller grid is typically used in engineering applications of this kind of methods. Re-
sults are shown in Figures 2, where the real and imaginary part of the first harmonic of
the pressure coefficients around a wing section at 17.5% semi-span are presented. It can
be seen that the influence is very dramatic corresponding to the better shock resolution
of the finer grid.

188

3DO.O

O.
0
"~20.0
(I)

n"
|

-I0.0
0.0

, l | |

--- 80x16x30
- - 160x32x30 l ~ /

. ;]

i ! I i

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

X/C

1 0 . 0 , " ' , , ,

0.0 ~

'~10.0

E
2 0 0

-30.0

- 4 0 . 0 I i I I

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 X/C
Figure 2. Effect of Grid size on First Harmonic of Pressure Coefficients around LANN
wing. 17.5% semi-span

6.2. Artif icial Viscos i ty
Calculations have been done for the 80x16x30 grid with different amounts of artificial

viscosity. Results are shown in Figures 3. Logically the main effect is on the shock
resolution which in turn influences the magnitude and positions of the corresponding
peaks in the first harmonic component.

7. C O M P U T E R P E R F O R M A N C E

In Figure 4 thespeed-up factor (ratio of CPU time in 1 PE to CPU time in n PEs)
vs. number of P Es used is presented for calculations performed for the LANN wing
with a 160x32x30 grid. The result strongly depend on whether the residual averaging
technique is used or not, because of the need to transfer data between partitions. Its
relative importance in relation to the normal data transfer workload decreases as the
number of PEs used increases and both curves tend to reach a common limit. It must
be born in mind that the 160x32x30 grid only fills about 20% of the main memory of a
single processing element (less than 1% when 32 are used), so that the granularity of the
problem is extremely low. The parallel efficiency is expected to dramatically increase for
larger grids, as has been the case with other codes [10].

An indication of the CPU times required to march in time the solution for the LANN
wing case for one period of oscillation (using a CFL of 150 for the coarse grid and 240 for
the fine one) is given in table 1:

189

10.0 i , , ,

k2=0.5 k4=1 /64

k2=1.0 k4=2 /64

5.0 k2=1,5 k4=3 /64 ~ = 1

f ~ 0.0 t,, - - - - -

-5.0 , . - I ; I

i " i
~'~10.0
E_

l i
-15.0

-20.0 f

| I I l -25.0
0.0 0.2 0.4 0.6 0.8 1.0

X / C

3 0 . 0 , , ~ i

fi
--" k2=0.5 k4=1 /64 i i

25.0 - - k2=1 .0 k4=2 /64 i l

20.0 " ' - k2=1 .5 k4=3/64 ' L~~

15.0

o7~176 i i

- 5 . 0
o

-10.0 , I I

0.0 0.2 0,4 0.6 0.8
X/C

Figure 3. Effect of artificial viscosity on First Harmonic of Pressure Coefficients around
LANN wing. 17.5% semi-span

Table 1
CPU Times

NWT NWT CRAY-YMP
1 PE 32 PE (M92) 1 PE

80x16x30 15' 2.5' 59'
160x32x30 187' 31' -

8. C O N C L U S I O N S

A time-accurate Euler code to calculate unsteady transonic flow about wings has been
executed in the NWT supercomputer. The machine has proved to be extremely user
friendly as the total procedure has taken less than two weeks. The achieved performance
shows the feasibility of using this type of computationally expensive methods in an engi-
neering environment.

R E F E R E N C E S

1. Ruiz-Calavera, L.P.; Hirose, N.; "Calculation of Unsteady Transonic Aerodynamic
Loads on Wings Using the Euler Equations"; NAL-TR (To be published)

2. Jameson, A.; Schmidt, W.; Turkel, E.; "Numerical Solution of the Euler Equations by
Finite Volume Methods using Runge-Kutta Time Stepping Schemes"; AIAA Paper
81-1259 1981

190

8 - - - - - ~ - , , , , , , ,

~ 5

oo 4 iI11~
/

I ! - - - - - N o R e s i d u a l A v e r a g i n g
W i t h R e s i d u a l A v e r a g i n g

i ,

4 ~ 1'2 ~i'6 2'o 24 2a a2
P E s

Figure 4. Speedup factor for LANN wing with 160x32x30 mesh

3. Jameson, A.; "A non-oscillatory Shock Capturing Scheme using Flux Limited Dissi-
pation". Princeton University MAE Report 1653, 1984

4. Jameson, A.; "Transonic Flow Calculations for Aircraft"; Lecture Notes in Mathe-
matics, Vol. 1127; Numerical Methods in Fluid Dynamics; Editor: F. Brezzi; Springer
Verlag; pp. 156-242; 1985

5. Batina, J.; "Unsteady Euler Airfoil Solutions Using Unstructured Dynamic Meshes";
AIAA J., Vol. 28, No. 8, pp.1381-1388; 1990

6. Radespiel, R.; Rossow, C.; "An Efficient Cell-Vertex Multigrid Scheme for the Three-
Dimensional Navier-Stokes Equations"; AIAA Paper 89-1953; 1989

7. Hirose, N.; "Numerical Wind Tunnel Project and Computational Fluid Dynamics at
National Aerospace Laboratory, Japan"; NAL TM-648T

8. Iwamiya, T.; Fukuda, M.; Nakamura, T.; Yoshida, M.; "On the Numerical Wind
Tunnel (NWT) Program"; Proceedings Parallel CFD '93.

9. "Compendium of Unsteady Aerodynamic Measurements"; AGARD-R-702, 1982
10. Miyoshi, H. et al.; "Development and Achievement of NAL Numerical Wind Tunnel

(NWT) for CFD Computations"; Proceedings of IEEE Super Computing 1994

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

191

Development and implementation of parallel high resolution schemes in
3D flows over bluff bodies

D. Drikakis*

Department of Fluid Mechanics, University of Erlangen-Nuremberg
Cauerstr. 4, D-91058 Erlangen, Germany

This paper presents a parallel upwind method for three-dimensional laminar and tur-
bulent incompressible flows. The artificial compressibility formulation is used for coupling
the continuity with the momentum equations. The discretization of the inviscid terms of
the Navier-Stokes equations is obtained by a characteristic based method. Third order
interpolation is used for the computation of the primitive variables at the cell faces. The
time integration is obtained by an explicit Runge-Kutta scheme. The algorithm is para-
lellized using shared memory and message passing models. The latter is based either on
local instructions or on PVM. The method is implemented to laminar and turbulent flows
over a sphere. For high Reynolds number computations the algebraic Baldwin-Lomax as
well as the k - ~ model have been employed.

1. I N T R O D U C T I O N

Parallel computing is becoming increasingly important in the computation of complex
flow problems. This is due to the demands, in terms of memory and computing time,
for studying three-dimensional flow fields. The performance of a parallel computational
fluid dynamics (CFD) code depends on several parameters such as: numerical methods,
hardware characteristics and parallelization strategy. Widely used methods for an in-
compressible fluid are those based on the pressure correction procedure [1] and on the
artificial compressibility formulation [2]. Explicit and implicit algorithms, on either block
structured or unstructured grids, can also be combined with the above two methods.

For large scale computations single processor vector supercomputers, as well as, parallel
computers have to be used. In this respect, parallel computing seems to offer the best
prospect. The parallelization strategy mainly depends on the computer architecture. The
most well known procedures for parallelizing an algorithm are those based on message-
passing and shared memory, respectively.

The objectives of this paper are to investigate some of the above parameters using
a three-dimensional incompressible Navier-Stokes algorithm and different parallelization
models. The investigations are performed for three-dimensional laminar and turbulent
flows over a sphere.

*current address: Department of Mechanical Engineering, University of Manchester Institute of Science
and Technology, PO Box 88, M60 1QD, United Kingdom. The financial support from the Bavarian
Science Foundation and the Bavarian Ministry of Education is greatly appreciated.

192

2. N U M E R I C A L M E T H O D

2.1. G o v e r n i n g equations
The governing equations are the three-dimensional incompressible Navier-Stokes equa-

tions and two additional equations for the k - e turbulence model. The system of equations
in matr ix form and curvilinear coordinates can be written as:

(JU)t + (E,)~ + (FI), + (GI)r -- (Ev)~ + (Fy)n + (Gv)r + S (1)

The unknown solution vector is:

U = (P/Z, u, v, w, k, e)T

where p is the pressure and u, v, w are the velocity components. The parameter /3 is the
artificial compressibility parameter, and it has to be chosen to ensure the fastest conver-
gence to steady state. The inviscid fluxes Er, FI, Gz, and the viscous fluxes, Ev, Fv, Gv,
are writ ten as:

FI - J(Eirlx -Jr- ~'irly + Girlz)

(2)
(3)
(4)

E . = J (k . ~ , + ~ + ~) (5)

Fv = J(Eyrlz + Fyrly + (Ty~Tz) (6)

C y = J(JEy(x + Fy(y + Gy(z) (7)

where the fluxes/~I,/~I, 0 i , /~v , /~v and Ov represent the corresponding Cartesian fluxes:

u v w
u 2 + p uv uw

v 2 vw (8)
EI - uwUV , [" I - vw+ p , d r - w 2 + p

uk vk wk
U6. V6_ w e

0 0 0
Tx. Tyz %x

E'v - Txy Fv -- Tyv G~v _ Tzv (9)
Tzz ' Tyz ' Tzz

Ok

Body-fitted arbitrary coordinates are used and J is the Jacobian of the transformation
from Cartesian x, y, z to generalized coordinates ~, 7, ~. The indices ~, r/, ~, x, y and z
denote partial derivatives except for the stresses Tij. The source terms S is defined as"

c e2~T (10)
S - - (0 , O, O, O, P - e_, f l C l e - k P - f2c2e k "

193

where P and #t are the production rate of turbulence energy and the turbulent dynamic
viscosity, respectively. According to the k - c model the turbulent kinematic viscosity ut

is defined as:

k 2
ut = f t ~ c , - - (11)

The coefficients fl, fu, Cl~, c2~, crk, a~, and c, can be found in Reference 3. Furthermore,
the algebraic Baldwin-Lomax model [4] has also been employed.

2.2. C h a r a c t e r i s t i c ba se d m e t h o d
A characteristic based method [5] is used for the discretization of the inviscid terms.

The method has a similar concept with the Riemann solvers used for solving the equations
of compressible flows. The characteristic based method constructs Riemann solutions on
each flow direction and the primitive variables (p, u, v, w) are finally defined as functions of
their values (pl, u~, vl, and wl) on the characteristics denoted by the subscript 1 (1 = O, 1, 2):

= R~ + ~o(~ ~ + ~) - ~ o ~ - ~ o ~ (12)

v = R $ + Vo(2 2 + 22) _ Wo2~) - Uo2~) (13)

w = R 2 + wo($ 2 + 22) - V o 2 $ - Uo22 (14)

where

1
R - 2 ~ = (p l - P~ + ~ (A l U l - A~u~) + ~(AlVl - A~v~) + ~(AlWl - A~w~))

The terms s, and k are defined as:

s - CAo 2 + / 3 , and ~ _ ~k , k = x, y, z
~/~ 2 + ~y2 + ~z 2

The pressure is computed by one of the following equations:

P -- Pl --)~1 (:~(?_t -- l t l) -11- y(V -- 721) + Z(W -- Wl)) (15)

or

p - - - + - + - (1 6)

In the above formulae 10, l l and A2 are the eigenvalues. The viscous terms are discretized
by central differences. The primitive variables at the cell face of the computational volume
are calculated either from the left or from the right side according to the following formula:

1
((1 + sig~'~(~l))V (l) 1 + (1 -- sigT~(~l))v(r)i__~l) (17) U(l'~){+~ ! - ~ i+~

where U is:

U = (pl, u~, vl, wl)T

194

The characteristic variables at the cell faces are calculated by a third order interpolation
scheme:

1 (hUi - Ui-1 + 2U~+l) (18) Uli+�89 - -~

1 (5Ui+1 - Ui+2 + 2Ui) (19) ur i+ l -- -6

The time integration of the Navier-Stokes equations is obtained by an explicit Runge-
Kut ta scheme. The local time stepping technique is also used for steady state computa-
tions.

3. P A R A L L E L I Z A T I O N ON B L O C K S T R U C T U R E D G R I D S

3.1. M u l t i b l o c k env ironment and data s tructure
The multiblock technique is used for flows in complex geometries where the grid gene-

ration on a single-block is very complicated. The geometry is subdivided into a number
of blocks and the grid is generated on each of these blocks. The boundary conditions
are stored into a layer of fictitious cells around the computational domain. Each block
face can simultaneously contain different type of boundary conditions. The definition of
several small blocks that contain homogeneous conditions on the faces is avoided. This is
followed in order to reduce the load balancing effects on parallel computers, and therefore
to achieve better performance.

3.2. Grid-part i t ion ing and paral le l izat ion
A grid-partitioning algorithm for the decomposition of the computational domain in-

to several subdomains was developed. Each block can be decomposed in one (1D-
partitioning), two (2D-partitioning) or three directions (3D-partitioning), respectively.
The partition strategy permits one or more geometrical blocks to be assigned per proces-
sor, and each geometrical block to be subdivided in several subdomains. Each processor
can also contain more than one subdomains.

In the message passing model the computational grid is subdivided into non-overlapping
subdomains, and each subdomain is assigned to one processor. Each processor stores its
own data and these are exchanged between the processors during the numerical solution.
In the shared memory model the data are stored in a common memory. Synchronization
is obtained by synchronization primitive routines. In the present method local commu-
nication between the processors is needed after each Runge-Kutta iteration for updating
the values along the subdomain boundaries. Global communication is needed for checking
the convergence at each time step.

4. R E S U L T S

The present method was used for simulating laminar and turbulent flows over a sphe-
re. Experiments for different Reynolds numbers have been performed in the past by
Achenbach [6]. Three different grids were used with 760, 3,200, and 57,600 computational
volumes, resprectively. A typical O-type grid over the sphere is shown in Figure 1. The
flow was simulated for Reynolds numbers Re = 1.62 x 105, and Re = 5 x 106. In both

195

cases the flow is not axisymmetric. The flow structure in the wake of the sphere is shown
in Figure 2 by plotting the streamlines. The pressure coefficient distributions are shown
in Figure 3. For Re = 1.62 x 105 the present results are compared with the correspon-
ding predictions of reference [7] where an unstructured finite element scheme on a grid of
224,600 nodes had been used. In the present work the algebraic Baldwin-Lomax as well
as the k - c model were used for Re = 5 x 106. The results for the pressure coefficient
distribution are shown in Figure 3. It is clearly seen that k - c model provides better
results than the algebraic model. However, finer grids are still needed in order to improve
the numerical predictions.

The above computations were performed on KSR1 and Convex SPP parallel systems.
The parallelization on KSR1 was obtained by the shared memory (SM) as well as the
message-passing model based on "local instruction" procedure (MPLI). The paralleliza-
tion on Convex SPP was obtained by the PVM model. In Table 1 the total efficiency of
the computations (En = T1/nTn, where T1 and Tn are the computing times on one and
n processors, respectively) is presented. An analysis of the total efficiency factor can be
found in reference [8]. It is seen that SM and PVM models provide much better efficiency
than the MPLI. The computing times are shown in the Table 2 for computations on eight
processors. Convex SPP provides faster solution than KSR1 due to the faster processor.
The effect of the grid refinement on the total efficiency is also shown in Table 2 for com-
putations performed on Convex SPP and KSR1 systems, respectively. The performance
of the parallel computations is significantly better on the finest grid.

5. C O N C L U S I O N S

A parallel three-dimensional upwind method was presented. The method was applied
for simulating the flow over a sphere at different Reynolds numbers. The results are
satisfactory for the laminar case, but in the higher Reynolds number case the grid used
seems to be very coarse for resolving accurately the flow field. The k - e model improves
the prediction of the pressure coefficient distribution in comparison with the algebraic
model. However, for the turbulent flow case the results are still far from the experimental
measurements. Investigation of the unsteady behaviour of the flow over the sphere using
different turbulence models is a future task. Parallelization of the method was obtained
using shared memory and message passing models. The shared memory model provides
better efficiency than the message-passing one on the KSR1 system. This is propably
due to the hardware characteristics of the KSR1 system and it cannot be generalized as
conclusion before an investigation on other parallel systems using also more processors is
performed. The PVM model on the Convex SPP system was also used. The computing
times on Convex SPP are much better than those on the KSR1. This is due to the faster
processor of the Convex system.

196

R E F E R E N C E S

1. F. H. Harlow and J. E. Welch, Physics of Fluids, 8, (1965) 2182.

2. A. J. Chorin, J. of Comp. Phys., 2, (1967) 12.

3. V. C. Patel, W. Rodi and G. Scheuerer, AIAA J., 23, (1985) 1308.

4. B. S. Baldwin and H. Lomax, AIAA Paper 78-257, (1978).

5. D. Drikakis, P. Govatsos and D. Papantonis, Int. J. Num. Meth. Fluids, 19, (1994)
667.

6. E. Achenbach, J. Fluid Mech., 54, (1972) 565.

7. W. Koschel, M. LStzerich, and A. Vornberger, AGARD Conf. Proc. No. 437, 1,
(1988) 26-1.

8. D. Drikakis, E. Schreck, and F. Durst, J. Fluids Eng., 116, (1994) 835.

Table 1
Comparison of the total efficiencies using different parallelization models

KSR1 - SM KSR1 - MPLI Convex SPP - PVM
1 proc. 100 100 100.
2 procs. 99.1 75.0 99.0
3 procs. 97.0 73.8 79.0
4 procs. 94.6 72.8 77.0
5 procs. 83.6 57.6 75.0
6 procs. 81.3 54.2 73.0
8 procs. 75.0 37.0 65.0

Table 2
Comparison of the computing time (sec./iter.) and total emciencies on eight processors
for three different grids (CV: computational volumes)

760 CV
3,200 CV
57,600 CV

KSR1 - SM KSR1 - MPLI Convex SPP - PVM
Time, (E,%) Time, (En%) Time, (En%)

5.28 (23.0) 5.1 (23.7) 0.43 (27)
10.30 (43.3) 15.0 (29.8) 0.66 (41)
43.90 (75.0) 89.0 (37.0) 2.92 (65)

197

Figure I O-type grid around the sphere.

Figure 2" Flow structure in the wake of the sphere for Re = 1.62 x 10 s (top figure) and
Re = 5 x 10 G (bot tom figure).

198

1.0

0 .5

0 .0

- 0 . 5

- I . 0

- 1 . 5

OCXX~ e x p e r i m e n t a l d a t a
p r e s e n t r e s u l t s
K o s e h e l eL al.

R e = f 6 2 0 0 0

|

1~

0.5

0.0

-0.5

-1.0

-1.5

(X)(N:X3 e x p e r i m e n t a l d a t a
B a l d w i n - L o m a x m o d e l
K - ~ m o d e l

R e = 5 0 0 0 0 0 0

�9 �9

%0

|

Figure 3: Pressure coefficient distributions for the flow over the sphere; for
R e - 1.62 x 105 (top figure) and R e - 5 x 106 (bottom figure).

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

199

High order Pad6-type approximation methods
for incompressible 3D CFD problems
on massively parallel computers

V.A. Garanzha a, I.V. Ibragimov a, I.N. Konshin a, V.N. Konshin a, and A.Yu. Yeremin b

aComputing Center of Russian Academy of Sciences,
Vavilova Str. 40, Moscow 117967, RUSSIA

bInstitute of Numerical Mathematics of Russian Academy of Sciences,
Leninskij Prosp. 32a, Moscow 117334, RUSSIA

A b s t r a c t . We report results of numerical experiments with high order upwind
Pad~-type schemes for solving 3D incompressible CFD problems on massively parallel
computers. It is shown that the high order schemes allow for the efficient massively
parallel implementation with no damage to the high accuracy of the computed CFD
solution. The results of numerical experiments with the 3D Dow Chemical stirred tank
reactor problem are presented.

1. I N T R O D U C T I O N

Further progress in solution methods for challenging industrial CFD problems is
mostly determined by the ability of efficient exploitation of massively parallel com-
puters. The principal target when designing such methods is to get a high parallel
efficiency with no damage to their mathematical properties. Any compromise between
the overall parallel efficiency (measured in MFLOPS rates) and the mathematical prop-
erties (measured in terms of convergence, of arithmetic costs, of spectral resolution, of
approximation quality and etc.) may be heavily problem dependent, hardware depen-
dent and problem size dependent. Thus why the resulting mathematical method may
lose the reliability which is one of the most important properties when dealing with
industrial applications.

Generally speaking nowadays there exist two main approaches to constructions of
mathematical methods for solving 3D CFD problems on massively parallel computers.
The first approach is based on exploitation of low order approximation schemes on un-
structured meshes. It allows for relatively simple implementations when dealing with
complex geometrical configurations and requires essentially local mesh refinements in
the regions of sharp gradients to obtain a reasonable accuracy. However, this approach
requires solution of very large sparse arbitrarily populated (unstructured) but relatively
well conditioned coefficient matrices frequently with a diagonal dominance. The sec-
ond approach is based on exploitation of high order approximation schemes on almost

200

structured meshes. In contrast to the first approach this one provides the spectral reso-
lution and the high accuracy in the whole computational domain (even using relatively
coarse grids). The second approach requires solution of linear systems with large sparse
structured but ill-conditioned coefficient matrices with a large off-diagonal dominance.

The first approach is mostly popular nowadays but potentially is less attractive since
it requires a sophisticated tuning of the unstructured mesh, a considerable improvement
in accuracy and also puts severe constraints onto the resulting parallel efficiency since
it has to deal with large sparse unstructured matrices. The second approach is less
popular due to the lack of reliable and efficient parallel iterative solution methods
for ill-conditioned linear systems and due to severe problems when constructing the
coefficient matrices. However, since it allows to deal with structured sparse matrices of
smaller sizes, provides a high accuracy and the spectral resolution and possesses enough
resources of potential parallelism we can expect an efficient implementation of high
order approximation schemes on massively parallel computers for solving challenging
industrial applications.

In this paper we report results of numerical experiments with high order Pad~-type
approximations on the massively parallel supercomputer CRAY T3D when solving the
3D incompressible stirred tank reactor problem.

2. H I G H O R D E R S C H E M E B A S E D O N U P W I N D P A D] ~ - T Y P E DIF-
F E R E N C E S

Conventional finite difference approximations to differential operators may be rep-
resented as polynomial functions of discrete shift operators while the Pad@-type or
compact schemes are based on rational functions. Generally rational approximations
give rise to more accurate and more stable but relatively simple difference schemes.
Moreover, such schemes provide a better representation of the shorter length scales
thus ensuring the so-called spectral-like resolution property.

In this paper we use new versions of the Pad~-type differences [1] which retain all
advantages of compact schemes and possess the following additional properties:

- discrete conservation;
- upwinding based on the flux splitting;
- high accuracy and reliability in the case of complex geometries based on the

geometric conservation property;
- stable incompressible d iv - grad formulation with O(h 5) stabilization terms

(for the case when the velocity and the pressure are defined at the cell centers);
- positive definiteness of resulting discrete operators.

For the system of conservation laws

0Q 0F1 0F2 0F3
+ + + = o

we construct the Pad6-type approximation in a finite volume fashion to the integral
equality

201

~-- [Qda + t / (Fin1 -~ F2n2 -t- F3n3)ds - 0, (1)
Ot ~J . J

f~k Of~k

where f~ is a curvilinear mesh cell of a st'ructured grid and n is the unit normal to 0f~k.
Values of fluxes Fi on appropriate cell faces are computed using upwind Pad(i-

type interpolation operators consistent with centered Pad(i-type operators which are
employed in computation of volume and surface integrals in (1).

In the Cartesian coordinates the formal approximation order of the upwind Pad(i-
type finite differences is equal to O(h s) for inviscid terms of the conservation laws
while in the case of curvilinear coordinates it decreases to O(h 4) ensuring the geometric
conservation property, i.e., the uniform flow is the exact solution to the resulting system
of discrete equations.

The cost of the Pad(i-type differences in right-hand sides computation, regardless of
the number of space dimensions, involves only inversions of the narrow banded (usually
tridiagonal) matrices, and hence is comparable to conventional finite differences.

For solving the resulting systems of nonlinear discrete equations we exploit fully
implicit predictor-corrector type time integration techniques or Newton-type iterative
methods. Both approaches require solution of large systems of linear algebraic equa-
tions but with positive definite coefficient matrices. The nonlocality of the Pad(i-type
approximation schemes formally leads to dense coefficient matrices (Jacobians) but al-
lows for very sparse multiplicative presentations of these dense coefficient matrices. We
develop a two stage procedure for constructing high quality preconditioners. At the
first stage dense coefficient matrices are approximated in the spectral sense by sparse
matrices which are approximated at the second stage by well suited to massively parallel
computers incomplete block triangular preconditioners described in Section 3.

Numerical experiments with model problems and mesh refinement studies [1] re-
veals that presented schemes and boundary conditions treatment provide drastic im-
provement in accuracy over conventional finite differences. Numerical evidences indicate
that this technique provides the realistic O(h 4) accuracy on curvilinear nonorthogonal
meshes and very accurate solutions can be obtained on coarse meshes.

3. M A S S I V E L Y P A R A L L E L I T E R A T I V E S O L U T I O N O F L A R G E S P A R S E

L I N E A R S Y S T E M S

When choosing the iterative solution strategy for large sparse ill-conditioned lin-
ear systems originated from high order Padh-type schemes we tried to avoid first of all
any compromise between the parallel properties of the iterative method and its serial
arithmetic complexity. To this end we consider incomplete block factorization precon-
ditioning strategies with factorized sparse approximate inverses to approximate pivot
block [2].

Let A be a n x n block matrix of the form

A = L + D + U ,

202

where D is the block diagonal part of A, D = Block Diag (D1, . . . ,Dn) , L and U are,
respectively, the block lower and upper strictly triangular parts of A. The incomplete
block factorization of A in the inverse free form is then constructed as follows.

A ~ (G -I ~- L)G(G -1 + U) = (I + LG)G-I(I + GU),

where G is a block diagonal matrix whose blocks are determined using the recurrence

relations

a i - -ai (X/--1) , i_> 1, Xl = D1,

Xi = Di - Aii-lGi-lAi-ii, i >_ 2,

and f~(X[1) denotes a sparse approximation to the inverse of X~.
To construct f~i(X/-1) we use factorized sparse approximate inverses technique. In

this case we construct sparse approximate inverses G! L) and G} U) to the exact triangular
factors of Xi = LiUi by minimizing the matrix Frobenious norms

II I LiG! L) liE and II I-G}U)ui I]F.

Here G! L) and G! U) are parametrized only by locations of nonzero entries, their con-
struction does not require any information about entries of Li and Ui and consists of
solution of many independent small size linear systems (one linear system to compute
each row of G! L) and G! U)) whose size are equal to the numbers of nonzero entries in

the corresponding rows of G! L) and G} U). Hence, computation of an incomplete block
factorization preconditioner possesses by construction a large resources of natural par-
allelism. Moreover, multiplication of an incomplete block factorization preconditioner
by a vector also possesses by construction a large resources of natural parallelism since
it requires only solutions of block triangular matrices with identity blocks on the main
diagonal and multiplications of G by a vector.

The results of numerical experiments [3] on the massively parallel computer CRAY
T3D with incomplete block factorization preconditioned GMRES method have demon-
strated the quite reasonable scalability when solving very large linear systems originated
from 3D CFD problems.

4. N U M E R I C A L E X P E R I M E N T S

In this section we present results of numerical experiments with high order Padb-
type approximations on the massively parallel supercomputer CRAY T3D. For the
comparison purposes we also present the corresponding results on 1 CPU of the vec-
tor/parallel supercomputer CRAY C90. As a sample real world problem we have chosen
the 3D laminar Dow Chemical stirred tank reactor problem [4]. We considered a sil-
icon flow in a cylindrical tank with four vertical baffles and the pitched blade turbine
(PBT) agitator. In this regime (lOOrpm, silicon) the Reynolds number computed by
the impeller radius, the velocity at the impeller tip and the silicon viscosity is about

203

150.
The sample problem was approximated on the 81 x 81 x 40 curvilinear mesh. Thus

at each Newton iteration we solved a linear system of size N = 1.049.760. Only 6 - 7
Newton iterations were sufficient to reduce the nonlinear residual up to the machine
precision.

Tables 1 and 2 contain the timing and the performance results when solving the
sample problem on T3D and C90. The only one difference in between data of Tables 1
and 2 is related to multiplications of the Jacobians by vectors. We remind that when
multiplying the Jacobian by a vector we need to solve several auxiliary block tridiagonal
linear systems to avoid the explicit generation of the exact Jacobian (and thus in a sense
"to regenerate" the problem). So in Table 1 we include these costs into the problem
generation phase while in Table 2 we include them into iterative solution phase. Tables 1
and 2 adopt the following notation: N C P U S denotes the number of multiple CPU's,
T I M E stands for the total CPU time in seconds for solving the sample stirred tank
reactor problem, P e r f denotes the sustained performance in MFLOPS, the subscripts
"g" and "s" stand for the linear system generation phase and the iterative solution
phase, respectively, and S p e e d u p denotes the actual speedup obtained using multiple
CPU's of T3D as compared with 1 CPU of C90.

Table 1
Timing and Performance Characteristics of Pad~-type Approximations on CRAY T3D

T3D C90
NCPUS 16 32 64 128 1
TIME 3220 1623 867 444 1320
TIMEg 1912 958 512 266 792
TIMEs 1308 665 355 178 528
Per~ 111 211 410 795 267
Perfs 156 304 592 1152 396
Perf 129 249 485 938 318
Speedup 0.41 0.78 1.53 2.95 1.00

Table 2
Timing and Performance Characteristics of Pad~-type Approximations on CRAY T3D

T3D C90
NCPUS 16 32 64 128 1

TIME 3220 1623 867 444 1320
TIMEg 60 33 18 10 27
TIMEs 3160 1590 849 434 1293
Perfg 111 211 410 795 267
Perfs 130 250 487 943 318
Perf 129 249 485 938 318
Speedup 0.41 0.78 1.53 2.95 1.00

204

Figure 1 shows the comparison of the computed and the experimental velocity fields
for the sample stirred tank reactor problem.

We did not try to simulate the flow around impeller, instead of that the time-
averaged experimental data at the surface surrounding the impeller were used as bound-
ary conditions. Nevertheless, reasonable agreement with experimental data is achieved.

computed
�9 = ~ = = �9

= = �9 D ~ : . . . = =

d -" i , - l , - 1 , . l l ~ . . l ~ l

, , ; 2 . . , 1 , ,

.-,'.Ill g
, ~ . ~ . . . - e ~ " g l I 1

�9 �9 ~ ~ r r ~ I [d

�9 �9 , . , . . , , , . , = �9

experimental

r ? p ~ ' / - "

r ! / / ~ ' - ' - "

I r z/~5 - 2 - = : / . zz

Figure 1. Velocity fields for the laminar stirred tank problem.

Tables 1 and 2 show that high order Padbtype approximations allow efficient im-
plementations on vector and massively parallel computers. Here we emphasize that
we ran precisely the same mathematical algorithms on 1 CPU of C90 and on multiple
CPU's of T3D.

Acknowledgments . The authors are grateful to CRAY Research, Inc. (USA) for
providing the computer resources.

R E F E R E N C E S

1. V.A. Garangha and V.N. Konshin, Highly Accurate Upwind Padbtype Approxi-
mations for the Systems of Conservation Laws. I: Application to the Incompressible
Napier-Stokes Equations on a Single-Zone Structured Meshes, Elegant Mathematics,
Inc. (USA), Research Report EM-RR-21/95.

2. L.Yu. Kolotilina and A.Yu.Yeremin, Incomplete Block Factorizations as Precondi-
tioners for Sparse SPD Matrices, Research Report EM-RR-6/92, Elegant Mathe-
matics, Inc.(USA), 1992.

205

3. I.V. Ibragimov, P.A. Kolesnikov, I.N. Konshin, N.E. Mikhailovsky, A.A~ Nikishin,
E.E. Tyrtyshnikov, and A.Yu. Yeremin, Numerical Experiments with Industrial
Iterative Solvers on Massively Parallel Computers. I: Numerical Experiments with
the A_SPARSE Solver on CRAY T3D, High Performance Computer Conference,
Phinics. Arizona, USA, pp.283-289 (1995).

4. S. Sen, C.K. Lee, and D.E. Leng, Modelling of Turbulence in Stirred Tanks with
Experimental Validation, Paper 189a, 1994 Annual AIChE Meeting, San Francisko,
Nov. 1994.

This Page Intentionally Left Blank

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

207

Parallel Computa t ions of CFD Problems Using a New Fast Poisson Solver

Masanori Obata and Nobuyuki Satofuka

Department of Mechanical and System Engineering, Kyoto Institute of Technology

Matsugasaki, Sakyo-ku, Kyoto 606, JAPAN

A fast Poisson solver based on the rotated finite difference discretization is applied for

solving two-dimensional and three dimensional problems. The method is implemented for two-

dimensional problems on a cluster of workstations using PVM, and its convergence rate is

compared with that of the conventional SOR method. The result shows 6.5 times faster

convergence speed for two-dimensional test case with the same accuracy.

1. INTRODUCTION

Many fluid dynamic problems of fundamental importance in the field of computational

fluid dynamics are governed by the elliptic partial differential equations (Poisson equation).

Especially, in the case of solving time dependent incompressible viscous flow problems, the

Poisson equation for either the stream function or the pressure have to be solved at each time

step. In such case, most part of computational time is spent in solving the Poisson equation.

Iterative methods are generally used as suitable approach to the solution of the Poisson equation.

The successive overrelaxation (SOR) method[1] is one of the most popular iterative method to

solve the Poisson equation and a number of modifications, e.g. line SOR, group SOR has been

proposed to accelerate the convergence. The group explicit iterative (GEl) method[2] is proposed

not only to improve the convergence rate but also to reduce the computational cost. The method

is easily adapted to architecture of recent advanced computers using vector and/or parallel

processing. The multigrid method[3] is used to accelerated further the convergence of those

iterative method.

In this paper, we propose a new efficient iterative method for solving the Poisson equation

based on the rotated finite difference approximation. In 2-D and 3-D problems, the convergence

history and the accuracy are compared with the SOR method with conventional finite difference

approximation. In 2-D case, the multigrid method is also applied for solving the Poisson equation.

The parallelization is can'ied out on a cluster of networked workstations. Finally, those Poisson

solvers are applied to solve 2-D driven cavity flow at Re= 100.

208

2. BASIC CONCEPT

The Poisson equation for ~0 with the source termflx, y, z) in the three-dimensional Cartesian

coordinate is written as,

02# ,92# 0"~ =
v~o=-&v+-Sy,~ +~,) f(x,y,z) (l)

We consider Eq.(1) as a model equation for applying the present methods.

2.1 Rotated finite difference approximation method

Equation (1) is discretized using the nine-point rotated finite difference approximation,

which is given by

V2~i.j.k 1 --" " ~ . 2 (~ i - l , j - l , k - I "~" 0 i + l , j - l . k - I at- Oi-l,j+l,k-I q- Oi+l,j+l,k-I
(2)

+ 0,_,.j-,.,.+, + 0;+,.j-,.,+, + O,-l.j+,.k+, + O,+,.j+,.,+, - 8r = r

where h denotes grid spacing, defined as,

h = zkr = Av = Az.

and i, j and k denote grid indices.

2.2 Successive overrelaxation method with rotated finite difference approximation

Equation (1) with the successive overrelaxation (SOR) method (RFD-SOR) is written by

using the rotated finite difference approximation, as follows,

~n+l ' ' ' 8 \ ' f f i - l , j - l . k - I "~- '? ' i+l , j - l ,k-I "+" Y' i - l , j+l .k-I "~ Y'i+l , j+l .k-I i . j .k - - " (1 - COsoR)C~Tj k + tOSOR (~,,+l r~,,+~ ~,,+~ t~,,+l
(3)

+ q~;'-Lj-,.k+, + OT+,.j-Lk+, + q;'-Lj+L*+, + O;'+,../+,.a.+, -- 4h2f.;.k)

where n denotes a number of iteration step. Since only diagonal points are used in this

discretization, the grid points are classified into four colors in 3-D. The computation on each

group of colored grid points can be carried out independently. Only a quarter of the grid points

in the computational domain are iterated until convergence. The solution of the remaining points

are obtained with seven-point two-dimensionally rotated finite difference approximation. For

example, r is obtained from x-y rotated approximation as,

1
O;.j.k+, = ~(~0;_,.j_,.,+, + #:+l.j-,.,-+~ + ~;-,.;+,.~.+, + O~,+,.j+,.,+l + 2q;.;.k + 2~Oi,j,k+2- 2h.zf.j.k). (4)

In two-dimensional case, the grid points are classified into two colors, as the same as red-

black ordering. After the solution of a group has converged, the remaining points are obtained

from conventional five-point finite difference approximation. The correction cycle algorithm is

used for the multigrid strategy.

209

2.3 Successive overrelaxation method with explicit decoupled group method

The explicit decoupled group (EDG) algorithm[4] is also introduced. We can consider eight-

points group, such as,

8 - l 0 0 0 0 0 0 -

-1 8 0 0 0 0 0 0

0 0 8 -1 0 0 0 0

0 0 -1 8 0 0 0 0

0 0 0 0 8 -1 0 0

0 0 0 0 -1 8 0 0

0 0 0 0 0 0 8 -1

0 0 0 0 0 0 -1 8

r]
r

q~i+<j+l.k [

*. ,+ , I

r j.,+, I

- - 4h2 f j k + (Oi-1 j-i k-, + ~Oi+, j -I k-I Jv r j+l k-I j- r j+' k-' j- r j -I k+l "~ r j -I L'+l j- r]+1 k+l

--4h'2f+l.j.k + Oij-l.k-, "-[- r 2, j-l,k-t + ~i. /+l,k-I -[- r 2. j+l,k-I Jr-~i.j-l,k+l "{-r

-4h2f./+,.,+, +Oi-,.j., -[-r +r +~i-l,j,k+2 + r +r +" r

- 4 h Z f + , j+, k + (O i j , , +(0i+2 j , , + (O i j + " , , + (Oi+',/+',,, + q~i+2 i k+, + (O,j+2 k+, + r j+" k+,
--4h2j;.j,k '+l + r i,k "Jv r "~- r "Jl- r :,k~' 2 Jr" ~/+1,]-'1".i+2 "[- r J1- r
- 4 h Z f j + , , +09 1/, 1-]-~+l j/~ 1 "[-r l]+2k 1 "}-r 1Jr162 1]/~+1 4- r lj+~k+l-1"-r

_ 4 2 �9 , l,k , k+2 -- h J~i+l,j,k+l +~i,]-l.k +r +r +~i,]-',k+2 +r "+'r Jl-r

From Eq.(5), we can obtain 4 decoupled system, and one of them is

(5)

[_8 _l][o;jk
8 jL$;+~,j+l.k+l]

- 4 h f.j.k + Oi-~.j-l.~--, + 0;+l.j-l,k-, + r -t- r + ~ i - l , j - l . k + l 't- r --t- t~i_l.j+l.k+l " (6)

[-4h2f+l.j+l k+l + ~;+2.j,k + ~;,j+z.k + 0;+2,j+z,k + 0<j.k+2 + 0;+2. j.L+2 +Oi,j+:,k+2 + 0i+2.j+2,~-+2

By introducing the SOR method (EDG-SOR), the iterative procedure for those points are

obtained from following equations,

,,.j.,]
7+l,j+l.k+l _]

1 - 4 h fi,j.k j- r j- r j- J- J- J- J- ~;-1.]+ = 5Vi-l.j+ l.k- 1 Wi+l,j+l,k-I ~r'i-l,j-l,k+ 1 i+l,j-l,k+l . l,k+l

63 L1 "8J -4hZf+, j+l k+l "t-r l k "4-~nl+2k ~)/'+2.j+2.k "1- ~)i+2,j,k+Z n. .] L , , .. i 2. . . , . . . + < . ~ + ~ + " +~,.,+~.,+~ +<2.~+~.k+2

[j]+ r 1 L<,,+,*+, (7)

In 2-D case, we can consider four-point group, and one of the decoupled system is solved

as,

210

[] [, 2 q~,.*.j 1 4][-2h. f. j+q~i-,.j-, +q~i+,.j-, +.ri-,.j+,
e;~,ij+, = ~ 1 4JL-2h=y;+,.j+, + e;'+=.j + r + eL...;+..

r] r] , S j_ . (8)

L , + , . , + , '

After the solution of a colored group has converged, the remaining points are obtained from

conventional five-point finite difference approximation. The correction cycle algorithm is used

for the multigrid strategy. As the standard EDG method composed even-point groups, the method

is difficult to combine with the multigrid acceleration. To avoid this difficulty, the computational

domain is divided into four blocks, as shown in Fig. 1. Only the filled points is iterated by using

the connected group. The gird points in hatched area is swept at each block computation.

Figure 1. EDG method with multigrid algorithm

3. PARALLELIZATION

A domain decomposition technique for the macro-level red-black SOR method[5] is

applied for solving incompressible viscous flows on networked engineering workstations. The

message passing is handled by PVM (Parallel Virtual Machine) software. For the parallel

computations using PVM, networked workstations of HP9000 model 720 are used. In the

parallelization strategy the domain decomposition approach is used in which the whole physical

domain is divided into a number of smaller subdomains. One line of overlapping auxiliary grids

surrounding a given subdomain is used to make available the information required in the deter-

mination of flow variables at the block boundary. Basically each subdomain is treated by a

different processor. During the numerical integration of the equations the residuals of each

subdomain is checked at each iteration step. When the residuals of entire domain drop below a

prescribed limit, the computation is stopped.

211

4. TEST PROBLEMS

At first, test cases with f(x,y)=-sinx-siny in 2-D and f(x,y,z)=-sinx-siny-sinz in 3-D are

solved. The convergence criterion is, L2- Residual < 1.0 x 10 -1~ The convergence history of L2-
Residual at the optimum overrelaxation factor for 2-D and 3-D test problems are shown in Fig.2

(a) and (b). "RFD-SOR" means the rotated finite difference method with SOR, and "EDG-

SOR", EDG with SOR. The optimum overrelaxation factor coso R is also shown. The abscissa is

the CPU time on Kubota TITAN II-400. In both cases, the EDG algorithm is the fastest one

among them for solving the Poisson equation. In the next, the multigrid method is combined

with those method to solve the Poisson equation. Figure 3 (a) and (b) shows the history of L2-

Residual. Again the EDG algorithm is the fastest.

Figure 2 History of L2-Residual for SOR Method

Figure 3. History of L2-Residual for multigrid method

212

Figure 4 (a) and (b) show the L2-Error of the those methods for 2-D and 3-D test cases,

respectively. The figures indicate that those methods have the second order accuracy in 2-D and

3-D. Finally, Figure 5 shows the speedup using PVM on the cluster of workstations. The macro-

level red-black SOR[5] is used for the parallelization of the SOR method, the RFD-SOR method

and the EDG-SOR.

Figure 4. Spatial Accuracy

Figure 5. Speedup of two-dimansional computation on 258x258 Grid

5. APPLICATION TO TWO-DIMENSIONAL DRIVEN CAVITY FLOW

5.1 Incompressible Navier-Stokes equations and numerical procedure
With the vorticity co and stream function ~, the Navier-Stokes equations are written as,

213

&0 0q~&o 0q~&0_ 1(02co ~)
--&+ o%' c?x & o%' Re 9-& ~+ ' (9)

Ox 2 F ~ =-co, (10)

where the vorticity o~ and stream function ~ are defined as

0v &4
co--q--ox o% --7, (1 1)

3~ 3~
= - v =u (12) , ~ ,

Equations (9) and (10) are solved using a method of lines approach with the conventional

second-order accurate central finite difference approximation and the second-order accurate

two-stage rational Runge-Kutta (RRK) time integration scheme[6].

5.2 N u m e r i c a l result

A driven cavity flow with Reynolds number Re= 100 is solved. The results obtained by
using the SOR method, the rotated finite difference method and the EDG method for solving
Eq. (10) are compared. Figure 6 (a) shows the vorticity contours, and Fig 6 (b), the streamline
with 130x 130 grid points. The solution of each method are in good agreement with each other.
Figure 7 shows the convergence history with 130x130 grid points. The abscissa is the CPU time
on Kubota TITAN II-400. The EDG-SOR method is the fastest among those methods. Figure 8
shows the speedup on networked workstations with 514x514 grid points. The speedup of rotated
finite difference and EDG are 2.4 and 2.0 because of high latency of the Ethernet.

6. C O N C L U S I O N S

New fast Poisson solver are proposed and applied to solve incompressible Navier-Stokes
equations. The following conclusions are drawn,
(1) In 2-D and 3-D test problems for Poisson equations, the CPU time of the RFD- and EDG-
SOR method is reduced to 37% and 15% ofthe SOR method in 2-D case, and 21% and 18% in
3-D case. The accuracy of the RFD- and EDG-SOR method is comparable to the SOR method.
(2) In 2-D test problems for Poisson equation, the speedup of the RFD- and EDG-SOR
method parallelized on network of 4 workstations using PVM is 2.4 and 2.0, respectively,
because of high latency.
(3) In computations of the 2-D driven cavity flow, the CPU time of RFD- and EDG-SOR
method is reduced to 35% and 26% of the SOR method. The speedup of the RFD- and EDG-

SOR method on network of 4 workstations is 1.76 and 1.69.

R E F E R E N C E S

1. D. Young, Iterative Methods for Solving Partial Differential Equations of Elliptic Type,
Trans. Amer. Math. Soc., Vol. 76, pp. 92-111 (1954)
2. D.J. Evans, Group Explicit lterative Methods for Solving Large Linear System, Int'l. J.
Comput. Math., Vol. 17, pp. 81-108 (1985)

214

Figure 6. Contours of two-dimensional driven cavity flow
solid;SOR, dotted;RFD-SOR, dashed;EDG-SOR

Figure 7. History of L2-Residual Figure 8. Speedup on 514x514 Grid

3. A. Brandt, Multi-Level Adaptive Solutions to Boundary-Value Problems, Math. Comput.,
Vol. 31, No. 138, pp. 333-390 (1977)
4. A. R. Abdullah, The Four Point Explicit Decoupled Group (EDG) Method: A Fast Poisson
Solver, Int'l. J. Comput. Math., Vol. 38, pp. 61-70 (1991)
5. M. Obata, N. Satofuka and T. Suzuki, Domain Decomposition Technique for 2-D
Incompressible Navier-Stokes solver on Array of Transputers, Proc. of Parallel CFD'94, to be
published.
6. A. Wambecq, Rational Runge-Kutta Methods for Solving Systems of Ordinary Differential
Equation, Computing, Vol. 20, pp. 333-342 (1978)

Parallel Computational Fluid Dynamics:
hnplementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

215

A P a r a l l e l F ree Su r f ace F l o w Solver

J. A. Cuminato ~*

~Department of Computer Sciences
University of Sgo Paulo
P.O. Box 668, 13560-970 Ss Carlos - SP

This work describes a parallel technique for solving the Navier-Stokes equations in
two dimensions with free surfaces. The parallel code is based on the GENSMAC one
(Tome L: McKee [1993-1994]) which implements the SMAC (Amsden & Harlow [1971])
method for the case of a general domain and general boundary conditions. The parallel
version presented here comprises of three main parts: The momentum equation solver,
The Possion solver and Particle movement. The momentum equation solver is based
on explicit finite difference discretization of the original equations in primitive variables,
the Possion solver is based on 5-point FD discretization of Possion's equation and the
particles generated at the inlets move according to the velocity field calculated in the
two previous steps. The parallelization is performed by splitting the computation domain
into a number of vertical strips and assigning each of these to one processor. All the
computation can then be performed using next neighbour communication only.

1. I n t r o d u c t i o n

The marker-and-cell (MAC)method, introduced by ttarlow and Welsh [1965] is
particularly suited for the modeling of fluid flows with free surfaces. One of its important
features is the use of virtual particles which move from one cell to the next as a function
of the flow velocities. If a cell contains a number of particles it is considered to contain
fluid providing the localization of the free surface. It is thus, a special feature of the MAC
method that the domain is split into a number of cells which are denoted to be either
empty, full, surface or boundary cells, and one has to keep track of these cells as time
evolves.

Amsden and Itarlow [1971] developed a simplified MAC method (SMAC) where the
calculation cycle is split into two parts: a provisional velocity field calculation followed by
a velocity update using a potential function which is the solution of Poisson's equation
and ensures mass conservation.

Tome and McKee [1994] developed this technique further by adding a number of spe-
cially designed devices to deal with general domains and multiple inlets/outlets. They
called it GENSMAC. This code has been successfully used to simulate different types of
2D free surface flows, such as: jet filling of complex shaped cavities, penstock head-gate

*This work was partially undertaken during a visit to Strathclyde University sponsored by FAPESP
under grant #93/3622-7

216

closure, jet buckling and die swell problems. However its generalization to cope with 3D
problems is not feasible on a serial computer due to the staggering amount of particles
needed to represent the 3D flow properly, let alone the difficulties in the visualization
of the fluid boundaries. Another difficulty GENSMAC faces is in coping with slow flow
of very viscous fluids because in this case stability restrictions make the time step very
small, leading to unrealistic run times.

In this work we present modifications to the original SMAC technique implemented
in GENSMAC and describe a parallel algorithm based on domain decomposition for the
implementation of the SMAC method which does not present the same difficulties. For
clarity, the presentation will be made for the 2D case only, but one should have no difficulty
in generalizing it to cope with 3D problems.

2. T h e S M A C M e t h o d

The SMAC method is based on a staggered grid finite differences discretization of the
equations arising from the following procedure used to solve the Navier-Stokes equations:

Assume that at time to the velocity field u(x, t0) is given. Calculate u(x , t) ,
t = to + At from the following:

1. Let/5(x, to) be an arbitrary pressure field satisfying the correct pressure conditions
on the free surface.

2. Calculate the intermediary velocity field fi(x, t) from

O~ Ou 2 Ouv O~ 1 1

O t = O z O y O x + -flee V 2 u + -F~r 2 g~ (1)

0 5 _ Ouv Ov 2 0 / 5 + l v 2 v + 1 (2)
Ot" - Ox Oy Oy Re -~r 2 gy

3. Solve the Poisson's equation

V2r = V . f i in f~

4. Update the velocities and pressure from:

u (x , t) = t) - r e (x , t)

p(x, t) = iS(x, t) + r t) / A t

5. Update the particles position by solving the ODE's:

dx dy
d---t- = u d---t- = v. (3)

217

A number of boundary conditions can be applied at the rigid boundaries, namely: no-slip,
free-slip, prescribed inflow, prescribed outflow and continuative flow. At the free surface
the usual free surface stress free conditions apply: 0v)

2 nxn~~xx + n x n y +-~x +[nyny - -0
P - -~e

Ou (O u O v) Ov
n~ rn y -~z + nx rn y --~y + -~z + [n v m y o g - - 0

where n - (nx, ny) is the outward unit normal vector to the surface and In - (mx, my)
is the tangential vector. For the Poisson equation the boundary conditions are of mixed
type, at the free surface a homogeneous Dirichlet boundary condition applies and at the
rigid boundary the boundary condition is of Neuman type.

The implementation of the SMAC method effected in GENSMAC constitutes then of
three main parts:

1. The velocity solver based on explicit finite differences

: n + l ? s n n __ ? s n
- - U . 1 . 1 7 2 i + } , j _ 1 1 . 1 v . 1 . 1

__ ~ , 3 + ~- ~ + 5 , 3 + ~ 1 �9 P i , j - - P i + l , j .~_ t t i + l , j i + g j Z+g ,3 - -g ~ i+

A t A x A y

n i t n - - U n . t t n [Iti+3,j - 2 u + n +Ui+l,j i _ 1 a 1. 1 n n+},j U_I,j

~'~Ax '+~'~ '-~'~ + Ree [A2x

n n]
U i , j + } - - 2U~ , j+ l -Jr- . . 1

A2y ~ g ~

~ n + l n
V i + l , j - - V i+ �89 j Pi,j -- Pi,j+l = +

A t A y A x

?.in. n n V n
1 v i_ -- u + � 8 9 i+ ,j+ ' - ~ ' , j - t - �89 1" 1 �9 1 1 1

~ ' , 3 + ~" ~" ~" ~-

E n v n n n n vi+g,j __ 2vn+g,j nt - v n 1 1 1 �9 ~,~+ v,~_�89 - v +}v,~+�89 + ~ - ~ '-~,~

Ay Ree A2x

V n 3 -- 2v~,j+l q- V n 1 1 1
i , j + ~ ~ i , j - 7 -1-

A 2 y -fi~r 2 g y

2. The Poisson Solver Based on 5-point FD

4'@i, j - - @ i + l , j - - r - - r - - r - - - h 2 D i , j

3. Particle Movement

X n + l - - X n -~- U(~t

(4)

(5)

yn+l __ y~ + vSt

218

3. Pa ra l l e l Solver

At a given time t the solution domain looks like the one in figure 1 below, where S
denotes the cells forming the free surface, B denotes the rigid boundary and F denotes
the fluid. The algorithm described in steps 1, 2 and 3 above is to be applied to the cells
marked with F only. For the S cells the free surface boundary conditions apply.

S F F F F F S /
\ S F F F F F ~
\ ~rs ~'~s s/F F F F F s / ~ S ~ /

/F F F ~ s ~ s j , ~ F F F F F ~ , s s a~ F F F\
BIF F[F F F F F F F F F F F F F F F F FIB

i F F F F F F F F F F F F F F F F B~!
F F F F F F F F F F F F F F F F F
F F F iF F F F F F F F F F F iF F F
F F F F F F F F F F F F F F F F F

B~F F F F F F F F FIF F F F F F F F

i F F F F F F F F F F F F F F F BB/

t
F F F F F F F F F F F F F F F
F F F F F F F F F F F F F F F

B~IF F F F F F F F F F F F F F F
B B B B B B B B B B B B B B B

Figure 1: Domain f~ and types of Cells in GENSMAC

The region containing the F cells is split into a number of vertical panels in such
a way that each of the panels contains approximately the same number of unknowns.
These panels are then assigned to each of the available processors, which goes on to
apply the velocity solver to its grid points, see figure 2. For the explicit finite differences
scheme this step presents no difficulties for the parallel algorithm, but as mentioned in the
introduction, for some problems, stability constraints make the time step extremely small,
so that an implicit method is in order. One of the methods we have tried is the use of
an implicit discretization for the laplacian operator in the right-hand side of (1-2). Then,
to avoid the solution of a 5 diagonal linear system an operator splitting is used to reduce
it to the solution of 2 tri-diagonal systems. The resulting scheme is the unconditionally
stable Douglas-Rachford scheme (Deville [1974]).

The implicit discrete equations equivalent to equations (3-4) are then: (Deville [1974]).

(At) , (At ~2y) uin+l/2,j_l_F(un, vn,~n) (6)
1 ReA2 x ui+1/2, j - 1 + ReA2y

At) ~n-F1 * At 2 n
1 ReA2y .ai+l/2, j -- Ui+l/2, j ReA2----- ~ ~yUi+l/2, j (7)

where

~2uij -- ui+l,j -- 2uij -t- Ui-lj

~2yUij -- ui,j+a -- 2uij + ui,j-1

219

and F(u n, vn,[/~) represents the right hand-side of equation (4) apart from the Laplacian
which is being solved implicitly.

The same discretization is used for the v momentum equation (2).
The linear system resulting from (?7) can be solved by Gaussian elimination, in each

processor separately with no communication, this is due to the fact that the domain is
split into vertical strips, producing a matrix in each processor with the first element in
the lower diagonal and the last in the upper diagonal equal to zero. This permits the
solution of these systems in each processor independently. The linear system (??) has to
be solved across processors and an iterative method is better suited for this task, because
it requires next neighbour communication only. The matrix being diagonally dominant
causes no convergence problems. Figure 2 shows the stencil for the momentum equations.

Stencil fo r the momentum equations

o

t3 v 3 �9 []

0 O 0 0
"1 �9 [~ ~ 1 -] U "1 �9 r]

0 0 0
r;l

Processor one Processor two Processor three

Figure 2

The linear system arising from the 5-point finite differences discretization of Poisson's
equation is solved by conjugate gradients. The same data partition used for the velocities
solver is used. One step of the conjugate gradient solver requires the computation of
the matrix-vector product Y - Ax , where for a grid point (i , j) the corresponding yi,j is
calculated from

Yij -- ozijxij -~- f l i jZi+l, j Jr "[i jXi-l , j -~ (Sijgi,j+l ~- gi jx i , j -1 (s)

and a, fl, 7, 6 and e are the coefficients corresponding to the center, north, south, east
and west locations, respectively. These coefficients are derived from the PDE and bound-
ary conditions.

The main difficulty in performing this matrix-vector product is associated with the
domain being irregular. This is done in such a way that only points falling inside the
region Ft will be included in the calculations. To achieve this, indirect addressing has
to be used in order to cope with the contribution of the farthest points (east and west
in our case because we are numbering the unknowns by columns). For points inside f~
with neighbours not in f~, the corresponding coefficient is set to zero. To implement the

1.0

correct boundary conditions it is necessary at this stage to modify the coefficients and/or
the right-hand side vector as appropriate. Note that the coefficients are formed only
once, and are kept fixed during the iterations of the iterative method. This arrangement
permits the use of non-uniform meshes. The next step is the solution of the resulting
linear system by an iterative method. We make use of the package PIM (Cunha & Hopkins
[1993]) for the iterative solver and global communication routines. PIM requires the user
to provide the matrix-product routines. These routines implement formulae (??) taking
into consideration the fact that our region is arbitrary. The generality of the geometry
makes the next neighbour communication pattern much more involved than the case of
a square region, because the length and positions of the vectors to be exchanged depend
now on the geometry. Figure 2 below presents the performance of the Poisson solver when
applied to a typical problem with increasing number of mesh-points.

0.8

/
0 . 6

o r

._o
,.,.-- 0 . 4
LU

0.2

0 . 0

220

~-N . �9 A~ , . J-,-, .
ov , vv i .,u 2GO

Grid Size

Figure 3 E - Ts / (pTp) , Ts is the time for the sequential code and Tp is the time for the
parallel code using PVM with 4 processors.

The parallel implementation of the particle movement is done likewise. Each processor
having upgraded the velocity and pressure fields applies the ODE (3) to find the position of
its particles at that time. Particle movement across processor boundaries will be necessary
and will only involve next neighbour communication. The position of the fluid is updated
with each processor communicating the possible particles which are to be moved across the
boundaries. At the end of a computing cycle all processors hold the correct information
for performing the next step.

221

Load Balance

The load balance presents a major difficulty for problems with free surfaces, because
the domain changes as time evolves. This is specially so for the type of problems we are
dealing with in this work, as the free surface can take arbitrary geometries and can change
shape dramatically with time. For instance, in a problem with inflow, in the initial phase
the region occupied by the fluid is small, and so is the computation involved, so that it
is not worth distributing it. As the domain grows more work needs to be performed and
it is then distributed amongst the available processors. The strategy we adopted in the
parallel version of GENSMAC is a follows:

1. We start running the code in a single processor. As the number of cells grows
sufficiently large, the domain is split into two and the work distributed accordingly.

2. After a fixed number of time steps each processor reports to the root processor its
cell count. The root processor adds up this incoming information and decides when
it is time to add a new processor and redistribute the work. This is repeated until
all processors are used up.

The above strategy works very well in balancing the work load but it inserts bottlenecks
and synchronization points into the code. It also increases the communication.

Another technique we have tried is to divide the whole domain into strips of equal width
at the beginning of the computation and assign each of these strips to one processor,
which will remain fixed throughout the computation. Processors with part of the domain
containing no fluid remain idle until fluid arrives at those parts. This simplifies the coding
substantially and also saves on communication. Despite the fact that some processors
remain idle for some time, for the problems we have been running our code on we cannot
see much difference in performance.

This work is part of an on-going project supported by FAPESP under grant #93/3622-
7. The code is implemented in FORTRAN 77 using PVM for message passing.

R E F E R E N C E S

1. Amsden, A.A.; Harlow, F.H. - The SMAC method: A numerical technique for calcu-
lating incompressible fluid flows - Los Alamos Scientific Laboratory, Report LA-4370
-[1971]

2. Cunha, R.D. - A Study of Iterative Methods for the Solution of Systems of Linear
Equations on Transputer Networks - Ph.D. Thesis - University of Kent at Canterbury
U.K.- [19921

3. Cunha, R.D.; Hopkins, T . - The parallel solution of linear equations using iterative
methods on transputer networks - Technical Report 16/92 - University of Kent at
Canterbury U.K.- [1992a]

4. Cunha, R.D.; Hopkins, T. - PIM 1.1 - The parallel iterative package for systems of
linear equation- User's guide- Technical Report- University of Kent at Canterbury
U.K.-[1993]

5. Deville, M. O. - Numerical Experiments on the MAC code for a slow flow. J. Comp.
Physics- 15, pp. 362-374 [1974]

222

6. Harlow, F.; Welsh, J . E . - Numerical calculation of time-dependent viscous incom-
pressible flow of fluid with free surfaces - Phys. Fluids 8 pp. 2182-2189 [1965]

7. Tome, M.F.; McKee, S. - GENSMAC: A computational marker and cell method for
free surface flows in general domains - J. Comp. Physics 110 pp. 171-186 [1994]

8. Tome, M. F. - GENSMAC: A Multiple Free Surface Fluid Flow Solver- Ph. D. Thesis
University of Strathc!yde- Glasgow - Scotland [1993]

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

223

A n e w d o m a i n d e c o m p o s i t i o n m e t h o d u s i n g v i r t u a l s u b - d o m a i n s

Akio Ochi, Yoshiaki Nakamura and Hiromitsu Kawazoe
Department of Aerospace Engineering, Nagoya University, Chikusa-ku,
Nagoya 464-01, Japan

The domain decomposition technique is one of key issues in parallel
computation. Especially, when we employ unstructured grid systems, it
influences the efficiency of parallel processing. In this paper, a new domain
decomposition method using virtual sub-domains and a genetic algorithm is
described. Furthermore, this new method has a capability to perform
partitioning grid in parallel processing. The new method was applied to the flow
around a cylinder to examine its performance under a workstation cluster.

1. INTRODUCTION

The unstructured grid system has been widely used in CFD, because of its
advantages over the structured grid to treat complicated geometries and to
automatically generate grids. However, its parallelization needs some extra work
compared with that in structured grids. In parallel CFD, domain decomposition
is mostly employed to distribute the work load of computation to each processor.
That is, while the domain decomposition in structured grids is simple and can be
performed automatically by a parallel compiler, it is more complicated in
unstructured grids. Because in two dimensional structured grids we can easily
divide the whole grid by grid lines with i=constant or j=constant. However, there
are no such lines in unstructured grid systems. In the present paper, a domain
decomposition method for unstructured grids is discussed.

There are several standard domain decomposition methods proposed such as
the graph bisection method, the coordinate bisection method, and the spectral
bisection method [1]. They have both pros and cons. Though the graph bisection
method and the coordinate bisection method require small computational costs,
the quality of partitioning is not good. On the other hand the spectral bisection
method shows good results, but it is expensive in computational cost. Because
we need to calculate the eigenvalues and the eigenvector of an NxN matrix,
where N is the number of grid points. Furthermore, these three methods divide a
region not into arbitrary number of sub-regions, but into halves. Because they
are based on the bisection method. The bisection method produces more than
three regions using it recursively. Hence, they are not able to make the globally
optimal decomposition.

In this study, we developed a new domain decomposition method for
unstructured grids. The outline of the new method is shown in fig. 1. Suppose
that there is an unstructured grid shown in fig. la. In the first step, the whole
mesh is divided into small sub-domains (fig. lb). We call these small sub-domains

224

virtual sub-domains. In fig. lb, there are one hundred virtual sub-domains. Then
allocate each virtual sub-domain to node processors by using the genetic
algorithm so that the high quality partitioning is obtained (fig. lc). The high
quality means both a minimum of communication cost and a good load balancing
when solving the Navier-Stokes equations or the Euler equations on parallel
machines. Finally, the grid elements in each sub-domain are allotted to each
processor (fig. ld). In the present study one hundred virtual sub-domains were
allotted to six processors.

2. VIRTUAL SUB-DOMAIN

Virtual sub-domains are small domains in the whole region, where there are
tens to hundreds sub-domains. The reason why we call such small domains the
"virtual" sub-domains is that we are not aware of these small domains after grid
partitioning is completed. The virtual sub-domains are utilized only in the
procedure of partitioning.

The way how to make virtual sub-domains is not a key issue in the new
decomposition method. In this study we employed a method shown in fig. 2, by
which we can make the virtual sub-domains quickly and with a small
computational cost. Figure 2a shows an unstructured grid to calculate the
supersonic flow around a cylinder and a rectangular frame containing the whole
grid. This frame is a starting domain. Then the longer side of this flame is
divided into halves. As a result we have two domains (fig. 2b). To make the
subsequent sub-domains, we count the number of grid cells included in each sub-
domain. Here, we suppose that the upper sub-domain has more grid cells.
Therefore the upper sub-domain is divided with regard to the longer side (fig. 2c).
In fig. 2c the lower sub-domain has the largest number of grid cells, hence this
sub-domain will be divided. Thus we have four sub-domains as shown in fig. 3d.
This procedure will be repeated until the number of sub-domains reaches a
specified number.

A major advantage of using these virtual sub-domains is in that the cost for
decomposition does not increase with the number of grid points. Because the
partitioning cost depends on the number of virtual sub-domains in our new
method, while those in other methods depend on the number of grid points. The
work load for making virtual sub-domains is proportional to the number of grid
points, though the work load for making virtual sub-domains accounts for a very
small percentage of the whole partitioning cost (approx. less than 3%).

3. GENETIC ALGORITHMS
We utilized the" genetic algorithms to distribute virtual sub-domains into

node processors. The genetic algorithms were developed in 1970s by John
Holland et al. [2] to simulate some processes in the evolution problem in nature.
They are efficient and robust algorithms to solve complex optimizing problems.
In the genetic algorithms the solution of a problem is represented by
chromosomes, where many chromosomes are initialized at random.

225

Chromosomes make their children, who in turn give birth to grandchildren of
chromosomes. After tens to hundreds generations, chromosomes will evolve to a
nearly optimal solution.

In the present study, fifty chromosomes were employed, and fifty to one
hundred generations were repeated. Generally, more chromosomes and more
generations are used in the conventional genetic algorithms. However, we could
successfully reduce them by two hybrid operators proposed in this study.

Outline of the genetic algorithms
i) Initialize a group of chromosomes.

ii) Evaluate and rank chromosomes.

iii) Crossbreed chromosomes to produce new chromosomes, where some
operators are performed to modify chromosomes.

iv) Remove lower rank chromosomes from the group to secure the space for
new chromosomes.

v) Evaluate and rank new chromosomes, and then put higher rank
chromosomes into the group.

vi) If the score is converged, the output is the best chromosome. Otherwise,
get back to step iii) and repeat it.

3.1. Evaluat ion function
The evaluation function is used to score chromosomes. The chromosome with

a higher score has a larger probability of breeding child chromosome than that
with a lower score. Since the evaluation function considerably influences both
the quality of solution and the convergence rate, we should determine the
evaluation function very carefully. Here in this study the following function (I)
was employed.

Nelement, t Ntrans, i
(I) = max (I)~, (I)~ =

i-l.~,- Al Bi

where
Nproc �9 number of processors
Nelement, i " number of grid elements assigned to the i-th processor
Ntrans, i " number of points with which the i-th processor will communicate
Ai : calculation speed of the i-th processor [element, s/sec]
Bi : communication speed of the i-th processor [points/sec]
The total evaluation function q) is a maximum of the evaluation function (l)i

at each processor. (l)i represents a time required to advance by one time step,
which consists of two terms; the first term denotes a pure calculation time, and
the second term a communication time. Hence our objective with regard to mesh
parti t ioning is to decrease the value of (I). Thus a chromosome with a smaller
value of (I) has a higher score. Since we can give different values for Ai and Bi,
the new parti t ioning method can be applied to the system of heterogeneous
parallel machines which have different types of CPU and network structure.

226

3.2. Operators
Operators were utilized to emulate mutations that are common processes in

nature to change chromosomes at crossbreeding. Actually in the present study
the following four operators were used: i)mutation operator, ii)two points
crossover operator, iii)hybrid operator #1, iv)hybrid operator #2 (see fig. 3). The
f i r s tand second operators are often used in the conventional genetic algorithms.
The third and fourth operators are developed in this study especially for the
domain decomposition.

3.3. ParaUelization of the genetic algorithms
One of the reasons why we employed the genetic algorithms was that it has a

capability to parallelize the domain decomposition. The genetic algorithms are
easy to apply to parallel processing. Because chromosomes evolve in each
processor in the same fashion as life evolves in an isolated island. At every ten
generations, the best chromosome in each processor is sent to a host processor,
and then the best chromosome among the whole chromosomes is distributed to
all the processors to accelerate the evolution. However we are afraid that this
technique might cause a local minimum solution in convergence. Therefore we
should be careful to use this technique in this respect.

4. WORKSTATION CLUSTER
A workstation cluster shown in fig. 4 was used to perform parallel

computation. Each machine has a different performance, which is connected to
each other with the Ethernet (10Mbps).

The PVM was employed to exchange data, which is a software package that
allows a heterogeneous network of parallel and serial computers to appear as a
single concurrent computational resource. The PVM was developed in 1989 at
Oak Ridge National Laboratory (ORNL), and the version of 3.3.6 is employed in
the present study.

5. RESULTS AND DISCUSSION
Figure 5 shows a typical change of decomposition, where the best

chromosomes at each generation are shown. The left hand side picture shows
virtual sub-domains allotted to six processors, and the right hand side figure
shows the quality of partitioning, where the vertical axis of the figure is an
evaluation function ~i. The distributions are given at random in the first
generation. Then, they are refined with generation. Consequently the
communication cost is reduced and the load balancing is improved.

The new method was applied to two types of grid system to examine its
performance. The first one is a supersonic flow around a cylinder (Type A), and
the second is an internal flow inside transformer (Type B). The number of grid
points is 9056 (Type A), and 36364 (Type B). Both grids are shown in fig. 6. The
results are compared with the coordinate bisection method in figs. 7 and 8,
which show partitioned grid elements and the quality of partitioning. The
coordinate bisection method can produce a good load-balanced partitioning,

227

while its communication cost is not optimized. The graph bisection method
shows the same tendency as the coordinate bisection method, and it has slightly
poor results than the coordinate bisection method, though it is not shown in this
figure. On the other hand, the new method could not produce a load balanced
partitioning. However the communication cost was reduced compared with the
coordinate bisection method. Thus, the new method shows slightly better results
than the coordinate bisection method.

As regards the partitioning speed, the new method is inferior to the
coordinate bisection method for this grid size, though parallel processing can be
applied to it. However, the difference between the new method and the
coordinate bisection method will be reduced with increasing the number of grid
points. It seems that both methods will show similar performances for nearly
100,000 grid points.

6. CONCLUSIONS
The new method proposed in this paper did not show so good a performance

as expected for sample problems described in this paper. However it is expected
that it would show a better result for a larger gird system. Furthermore it will
be possible to improve this method, particularly the operators used in the
genetic algorithms. In addition, the evaluation function is also so important that
further study is required.

processors by the genetic algorithms.
Fig. 1 Overview of the new domain decomposition method.

228

Fig. 2 Procedure of dividing the whole region into virtual sub-domains.

Fig. 3 Operators for the genetic algorithms.

229

Fig. 4 Workstation cluster.

Fig. 5 Change of decomposition with generation.

Fig. 6 Two types of grid system to verify the new method.

230

Fig. 7 Decomposition of type A grid, calculation and communication costs are shown as a
bar chart.

Fig. 8 Decomposition of type B grid, calculation and communication costs are shown as a
bar chart.

REFERENCES

[1] Barth, T.J.: Unstructured Grid Methods for Advection Dominated Flows, AGARD
Report 787, 6-1-6.61 (1991).

[2] Holland, John., Adaptation in NsturaI and Artit~cial Systems, Ann Arbor: University
of Michigan Press, (1975).

[3] Lawrence Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, (1990).

[4] A. Geist, A. Begulin, J. Dongrra, W. Jiang, R. Manchek, and V. Sunderam,-"PVM 3
User's Guide and Reference Manual", May 1993.

[5] Hirsch, C.,"Numerical Computation of Internal and External Flows", Vol.2,John wiley
and Sons, Inc, New York. (1988),pp.493-556.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

231

A commercial CFD application on a shared memory multiprocessor
using MPI

Paul F. Fischer%nd Madan Venugopal b

~Department of Applied Mathematics, Brown University, Box F
Providence, RI 02912 USA

bSupercomputing Applications, Silicon Graphics Inc., MS 580
2011 N. Shoreline Blvd., Mountain View, CA 95014 USA

The implementation of a commercial spectral element CFD code on a shared memory
parallel computer using the recently defined Message Passing Interface (MPI) standard is
discussed. The application was originally implemented in parallel using the NX message
passing library; issues regarding the implementation and performance of the MPI-based
version in a shared memory environment are discussed. In addition, recent algorithmic
improvements which reduce the solution time for unsteady flow calculations are presented.
Performance results are presented for the analyses of two and three dimensional flow prob-
lems on up to eight processors. Modifications to the parallel implementation which will
improve the computation to communication ratio through reduced latency are suggested.

1. I n t roduc t i on

Existing computational fluid dynamics applications (CFD) have been predominantly
based on vector algorithms simply because the fastest machines have been vector su-
percomputers till recently. However, with the availability of relatively inexpensive RISC
microprocessor based multiprocessor machines the definition of supercomputing is chang-
ing. In line with this trend has been the development of parallel CFD algorithms with
a view to achieving possible order of magnitude speedups using a large number of pro-
cessors. A significant advance in this regard has been the development of the parallel
spectral element algorithm [1] for incompressible flow problems.

The current paper discusses the implementation of Nekton, a parallel spectral element
application, on the Silicon Graphics(R) Power Challenge(TM) shared memory parallel com-
puter. Nekton(TM) was originally implemented using the NX message passing library. The
current implementation on the Power Challenge uses the recently defined Message Pass-
ing Interface (MPI) standard [2]. Nekton and the Power Challenge system will be briefly
described, followed by a discussion of the implementation of Nekton on a Power Chal-
lenge using MPI. The implementation of an improved pressure solver in Nekton which
reduces the computation time significantly is discussed. Finally, results are presented
from the analyses of some interesting problems in fluid dynamics using Nekton on the
Power Challenge system.

232

2. Nek ton

Nekton is a spectral element code for modelling two dimensional and three dimensional
incompressible fluid flow problems. The fluid domain is discretized into macro (spec-
tral) elements in an unstructured grid. Within each element, the solution variables and
geometry are represented as Nth-order tensor product polynomial expansions (typically
N ,,~ 4-12), which allow for locally structured (matrix-matrix product based) data accesses
during operator evaluation. Nekton employs iterative solvers based on preconditioned con-
jugate gradients which offer savings in memory requirements and processing time. The
spectral element algorithm makes use of the native parallelism existing in the problem by
mapping groups of spectral elements to separate processors according to standard SPMD
message passing paradigms. The locally-structured/globally-unstructured nature of the
spectral element method enables an efficient parallel implementation. One of the main
advantages of the spectral element algorithm is the very fast convergence rate per degree
of freedom. Solutions in moderately complex geometries can be represented with a few
elements and fast time to solution can be achieved in the modelling.

Parallelism is implemented in Nekton in a general message passing scheme. Since only
the residual updates (nearest neighbor exchanges) and inner products require communi-
cation the machine dependent part of the code restricted to a narrow region. As a result,
the same code can be used for uniprocessor machines as well as parallel machines. This
feature made the porting of the application to the SGI Power Challenge system using
the MPI message passing library relatively easy. Details of the implementation are given
below.

3. The Silicon Graphics Power Challenge Sys tem

The Silicon Graphics Power Challenge system is a shared memory parallel computer
which can have upto 18 75 MHz R8000(TM) processors. The R8000 processor is a 64-bit
superscalar superpipelined RISC microprocessor which can execute four floating point
operations per cycle to give a theoretical peak performance of 300 Mflops.

The Power Challenge architecture is shown in figure 1. The 18 processors are config-
ured on 9 boards with each processor having access to 4MB of 2-way interleaved 4-way
associative streaming cache. The cache is connected to main memory via a system bus
with a bandwidth of 1.2 GB/sec. The main memory can consist of up to 8 boards each
with a maximum of 1 GB of 2 way interleaved memory.

The IRIX(TM) 6.0 software on the Power Challenge provides a 64-bit UNIX(TM) operating
system and 64-bit compilers.

4. Message Passing Interface

The Message Passing Interface (MPI) is a standard recently defined by group of com-
puter scientists , hardware vendors and applications scientists interested in developing a
uniform interface, for message passing applications, which was relatively machine inde-
pendent. [2]. The standard was finalized quite recently (May 1994). However, there are

Power Challenge System Block Diagram

processor board (1-9)

75Mk SSRV)
primarj 'Dl caches: 16KB

direct mapped

* r o o
Shaming cache: 4 ME,

2-way interleaved,
&way associative,

C C r t 1 2 ~ ~ l s bandwidth

system bus: 1.2 GBlsec. 2 5 6 4 wide data, 4 0 4 wide address

memory board (la), each 2-way interleaved 110 board (1 4)
up to 8-way interleaving total

Figure 1

234

already several hardware implementations of MPI. The implementation used in Nekton
on the Power Challenge is mpich, which was developed at Argonne National Laboratory
[3,4], and is based on the chameleon and p4 message passing libraries [5-7].

The current Power Challenge implementation of MPI uses shared memory for commu-
nication within the system. However, it can also communicate with other machines on
a TCP/IP network using sockets. Although the underlying mechanism for the message
passing is transparent to the user, the actual implementation determines the performance
in terms of the bandwidth and latency. The number of processes can be controlled at
run time via a procgroup file. The contents of this file determine how many processes
are spawned and whether these are on the local machine or on a remote machine. If p
processes are defined and there are p or more processors on the system, the IRIX oper-
ating system maps these processes onto the processors. The processes then communicate
with each other using shared memory regions accessed via one of the protocols described
below.

The MPI implementation on the Power Challenge was relatively straightforward con-
sidering that it was one of the first 64 bit implementations of MPI. The initial implemen-
tation of MPI on the Power Challenge using UNIX System V shared memory interprocess
communication (IPC) gave a latency of about 1500 microseconds. Implementing the
shared memory communication using SGI IRIX IPC with semaphores and shared mem-
ory caused the latency to reduce to about 400 microseconds. Using spin locks instead
of the semaphores caused the latency to drop even further to about 90 microseconds.
The changes to implement these variations of shared memory access were restricted to a
narrow region of the mpich code.

The IRIX IPC and spin lock based implementation requires a shared region in memory
called an arena to be defined and initialized. This is implemented via a shared arena file
which is mapped into each process's user space. Writing in this space is controlled by
busy-wait locks for synchronization called spin locks, while all processes can read freely
from this space. Messages to be sent are queued in the shared arena buffer and messages
received are dequeued from this buffer. All processes using the same arena have access
to the same set of IPC mechanisms, resulting in a lightweight software access to the spin
locks without the need for explicit (expensive) system calls.

5. Implementation in Nekton

Since the communication routines within Nekton are based on a small set of basic
functions, the actual implementation of Nekton on Power Challenge consisted mainly
of building the appropriate interface routines for MPI as well as modifying the build
structure to incorporate the initialization, I/O and cleanup required by MPI. The NX
calls were thus replaced by the equivalent MPI calls [4].

The single processor performance was improved by hand tuning the small matrix mul-
tiply kernels in Nekton. The primary technique used was explicit loop unrolling, which
resulted in performance within 50% of assembly coded performance.

235

6. P r o j e c t i o n M e t h o d s

A recently developed projection technique [8] was implemented in order to reduce the
pressure iteration count for t ime dependent problems. The method is based on the ob-
servation that the pressure typically changes very little from one time step to the next,
implying that previous solutions form a good basis for approximating the solution at the
current step. If the approximation is not sufficiently accurate, further conjugate gradient
iterations can be taken to reduce the residual of the remaining perturbat ion to a desired
tolerance. This scheme can be implemented in an essentially black-box fashion, provided
one has calling access to the system solver and to the forward operator evaluation.

The method is developed as follows. Let Ax n - b n represent the m • m symmetric
positive definite system governing the pressure at t ime level n, with x n the vector of nodal
unknowns for pressure and b ~ the corresponding right hand side vector. Both vectors
are assumed to be distributed according to the spectral element-to-processor map. Let
Xl - {-Xl x--2 .-. x-l} be the m • l matrix having columns which are distributed in the same
fashion a s x n and which satisfy the following properties:

~i C span{xn-l ,xn-2, . . . ,x n-l} (1)

x_ "T A ~y = 6ij (2)

where 5ij is the Kronecker delta. The best fit approximation with respect to the A-norm

([Ix_[IA = (xTAx_)�89 is given as _~ -- XlXTb '~, which can be computed at the cost of l
simultaneous inner products followed by l fully parallel SAXPY operations. The entire
projection algorithm is given as

�9 compute ~_ = XlXTb n

�9 solve A~ - b" - AS: to tolerance

�9 s e t x n - i + Yc

�9 update X,+I , X," -_Xt+l = (x_-- x~XTA~_)/II~- x~XTA~I[A
Per t ime step, the algorithm requires 2 • 1 inner-products of length m, 2 • l SAXPY's, and
two applications of the sparse operator A. When 1 exceeds a prescribed value (typically
/max "~ 20), we restart the basis set with X1 = {'_Xl} satisfying (1-2).

7. Results from Analysis

Nekton implemented as above on the Power Challenge was used to model the following
two and three dimensional incompressible fluid flow problems. Results are presented in
the at tached tables.

7.1. C y l i n d e r s in a d u c t
This is a three dimensional steady Stokes flow problem in a square duct with two

transversely mounted cylinders, following [1]. In the current implementat ion it is modelled
using 32 spectral elements of order 9. Power Challenge results are presented in Table 1
along with comparisons with the Cray(R)X-MP(TM)and iPSC/2-VX/d4(TM)(16 processor)
which are derived from [1]. Since a later version of Nekton with an accelerated convergence
criterion was used for the Power Challenge runs the present results had to be scaled down
to account for the reduced number of computations.

236

Table 1
Computing times and MFLOPS for three dimensional Stokes flow problem

Machine Processors Wall Clock, seconds Efficiency Estimated Mflops
SGI Power 1 76 100% 66.2
Challenge 2 40 95% 125.8
.. 4 24 79% 209.7
.. 8 18 53% 279.6
Cray X-MP 1 - 100% 66.0
iPSC/2-VX/d4 16 130 75% 44.0
Times are wall clock times in seconds

7.2. Osci l lat ing cyl inder in a uniform flow
Flow over an oscillating cylinder in a uniform flow is simulated with 186 spectral ele-

ments of order 9. The cylinder oscillation is a harmonic function. The implementation of
a moving body in the fluid is achieved by a coordinate transformation of the governing
equations of the problem as discussed in [9]. The mesh was provided by Copeland [9] and
the problem was formulated to compare with experimental results [10]. The Reynolds
number for the simulation was 80. The times in Table 2 are for 2401 time steps and
represents a typical simulation of about fifty cycles of oscillation at vortex shedding lock-
in. Oscillation with different frequencies can require significantly more CPU time and
as such it can be very expensive to generate several sets of data with multiple frequency
components. Improvements in performance therefore directly increase the potential to
explore a larger region of the parameter space for this problem.

Table 2
Computing times for oscillating cylinder problem on the SGI Power Challenge

Number of processors Wall Clock time
1 9 : 4 1 : 4 4
8 3 : 1 0 : 0 3

Times are wall clock times in hours:minutes:seconds

With the new pressure solver, the improvement in performance for the same problem
is shown in Table 3. Times are for 100 time steps.

8. Discuss ion of results

The parallel performance and efficiency depend primarily on the single processor per-
formance, ratio of computation to communication for the problem and the latency of the
message passing library.

The single processor performance of Nekton is determined by the performance of small
matrix multiplies. The size of the matrices depends on the order of the spectral elements
chosen for the analysis; the inner product length is always equal to the order of the
expansion, plus or minus one. For the SGI Power Challenge implementation these small

237

Table 3
Projection method timings for 100 steps of the oscillating cylinder problem.

Processors Standard solver Projection solver
Time, secs Efficiency, % Time, secs Efficiency, %

1 1636 100 1338 100
2 898 91 756 88
4 538 76 372 90
8 470 44 317 53

Times are wall clock times in seconds

matrices fit into secondary cache and the product routine can be optimized to be minimize
cache misses.

The computational complexity of the spectral element method has a leading order com-
putation to communication ratio of O(N 2) in either two or three dimensions. However,
the larger granularity of 3D problems results in a relatively lower penalty for latency-
dominated communications. Inner products are an example of latency dominated com-
munications since only one word needs to be transferred from each processor (log p times)
to compute the inner product of distributed vectors. In addition, the original spectral
element formulation in Nekton was optimized for 3D problems - no attempt was made
to bundle multi-element data shared by two processors since it was assumed that the
message sizes for each element interface (N ~ words) would cover latency effects. In 2D,
messages of only size N incur a relatively high latency penalty, and we have recently
developed a bundled gather-scatter algorithm which should reduce this penalty. Results
will be reported in a future publication.

We underscore the importance of latency by noting that, with the original latency of
about 1500 microseconds, Nekton was slower on two processors than on one. With the
latency reduced to 400 microsecs we obtained a parallel efficiency of 84% on 2 processors
and 38% on 4 processors. The final figures and improved efficiencies with a latency of 90
microseconds are shown in Table I above. The iPSC efficiency of 75% on 16 processors [1]
is higher than the Power Challenge efficiency on 8 processors, although the absolute per-
formance in terms of time to solution is significantly slower than even the single processor
time on the Power Challenge. In addition to the algorithmic improvements mentioned
above, we expect a further reduction in latency will be attained when the public domain
software mpich is replaced by a native SGI implementation of MPI which is currently
under development.

9. Conclus ions

This paper presents the implementation of a parallel spectral element CFD application,
Nekton, on the SGI Power Challenge, using the newly defined Message Passing Interface
standard. This enables a smooth transition of a code designed for a distributed memory
system to a shared memory parallel computer. Results from the analysis of 2D and 3D
fluid flow problems are presented which show good parallel speedups and efficiencies with
increasing number of processors. Factors which limit the speedup and efficiency and

238

strategies to improve them are discussed.
A novel projection technique for computing approximate solutions to systems of linear

equations is implemented in Nekton to give a good initial guess to the iterative solver. The
resulting solver shows 20 to 50% improved performance on single and multiple processor
simulations of dynamic flows.

Acknowledgements

The authors wish to thank Fluent Inc. for the use of Nekton v 2.9 in running the
simulations discussed in this paper. Nekton is a product of Fluent Inc of Lebanon, NH
and Nektonics of Cambridge, MA.

Silicon Graphics is a registered trademark, and Power Challenge, IRIX and Onyx are
trademarks, of Silicon Graphics, Inc. MIPS is a registered trademark, and R8000 and
R4400 are trademarks of MIPS Technologies, Inc. Nekton is a registered trademark of
Nektonics, Inc. and the Massachusetts Institute of Technology. Nekton is distributed and
supported by Fluent Inc. Cray is a registered trademark and X-MP is a trademark of Cray
Research Corporation. Intel and iPSC are registered trademarks of Intel Corporation.

REFERENCES

1. Fischer, P.F., Ho, L-W, Karniadakis, G., Ronquist, E.M., Patera, A.T. Recent ad-
vances in parallel spectral element simulation of unsteady incompressible flows Com-
puters and Structures vol. 30, no. 1/2, pp 217-231, 1988

2. MPI: A message-passing interface standard International Journal of Supercomputing
Applications, 8(3/4), 1994

3. Gropp, W., Lusk, E., and Skjellum, A, Using MPI: Portable Parallel Programming
with the Message Passing Interface MIT Press, 1994.

4. Gropp, W., Lusk, E., Doss, N., Skjellum, A. MPICH Model MPI Implementation
Reference Manual Draft Argonne National Laboratory Report ANL-94/00, Nov. 1994.

5. Bridges, P., Doss, N., Gropp, W., Karrels, E., Lusk, E., and Skjellum, A, User's Guide
to mpich, a Portable Implementation of MPI Argonne National Laboratory Report
1994.

6. Butler, R. and Lusk, E., User's Guide to the p~ Parallel Programming System ANL
Technical Report ANL-92/17 April 1994.

7. Boyle, J., Butler, R., Disz, T., Glickfield, B., Lusk, E., Overbeek, R., Patterson. J,
Stevens, R., Portable Programs for Parallel Processors Holt Rinehart and Winston
Inc. 1987

8. Fischer, P.F., Projection techniques for iterative solution of Ax_ - b with successive
right-hand sides. ICASE Report No. 93-90, NASA CR-191571.

9. Copeland, S. and Cheng, B. A numerical investigation of vortex shedding from a
transversely oscillating cylinder 6th Intl Conference on Flow-induced vibration, April
1995

10. Venugopal, M. Damping and response prediction of flexible cylinders in a sheared
flow Ph.D thesis in Ocean Engineering, Massachusetts Institute of Technology, in
preparation.

Parallel Computational Fluid Dynamics:
hnplementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

239

Parallel C o m p u t a t i o n W i t h the Spectral E lement M e t h o d

Hong Mat

Department of Applied Science, Bldg. 490D
Brookhaven National Laboratory

Upton, NY 11973, U.S.A.

A B S T R A C T

Spectral element models for the shallow water equations and the Navier-Stokes equa-
tions have been successfully implemented on a data parallel supercomputer, the Con-
nection Machine model CM-5. The nonstaggered grid formulations for both models are
described, which are shown to be especially efficient in data parallel computing environ-
ment.

1 Introduct ion

The development of the spectral element algorithms and their applications in solving
incompressible flow problems [1, 2, 4, 5, 6] have demonstrated the enormous potential
of the p-type of finite element method in improving computational efficiency. Like the
spectral method, the spectral element method uses high-order polynomials as trial func-
tions, but like the finite element method, it decomposes the computational domain into
many elements and defines local trial functions. The hybrid character of the spectral
element method enables it to overcome the shortcomings of both the spectral method
and the finite element method but still retains their advantages. Since the trial func-
tions of the spectral element method are local, it can handle complex geometry easily.
On the other hand, it still is a high-order weighted residual method, so the exponential
convergence rate is achieved as the order of polynomials is increased. Therefore, it is
more efficient than low-order numerical methods, such as the finite difference and finite
element methods.

Another important aspect which greatly enhances the computational efficiency of the
spectral element method is the natural fit of this method to parallel computing. The
main difference between the spectral element method and the spectral multi-domain
method is that the C o and C 1 boundary conditions at the interface of the elements have
to be enforced explicitly in the latter. By contrast, the spectral element method uses
the variational principle to guarantee C o and C 1 (weakly) continuity at the interface,

tThis work received support from The U. S. Department of Energy under contract
No. DE-AC02-76CH00016, and from The National Science Foundation through grant
OCE-9312324. Most of the computation was performed on the CM-5 at ACL of Los
Alamos National Laboratory.

240

therefore, parallel algorithms can be implemented conveniently. Fischer and Patera [1]
successfully implemented their spectral element model on MIMD (Multiple Instructions,
Multiple Data) type of computers.

This paper is about the development and application of the parallel spectral element
models for the Navier-Stokes equations and the shallow water equations with nonstag-
gered grid formulations. The performance of these models on the Connection Machine
system, which is basically a SIMD (Single Instruction, Multiple Data) type of architec-
ture, is analyzed.

2 G o v e r n i n g E q u a t i o n s

In the present work, we study irrotational and rotational flows, which are governed by
the following two sets of equations, respectively:

Incompressible Navier-Stokes Equations:

0u 1
+ (u. V)u - - V p + R--~V2u (2.1)

O-T
v . . : 0 (2.2)

where u = (u, v, w) is the velocity vector (u, v, and w are the velocity components in
the x, y, and z directions, respectively); p is the pressure; R, = UL/tz is the Reynolds
number, which is based on the characteristic values of the velocity (U), the spatial scale
(L), and the viscosity parameter (#) of the fluid.

Shallow Water Equations:

Ot
Oh
Ot

1
- - + (u. V)u + w x u - - V h + ~-~V2u

- - + (u . v) (1 + h) + (1 + h) V . u = 0

(2.3)

(2.4)

where u = (u,v,0), w = (0,0, y), and h is the sea-surface elevation. The equatorial
nondimensionalization scheme [3] was used in deriving the above shallow water equations.

3 S p e c t r a l E l e m e n t D i s c r e t i z a t i o n s

The basis sets used in the present work are as follows:

r = hl(~)hm(rl) l ,m C {0, 1, ...N} 2 (2D)

r 77, r = hl(~)hm(7?)h,,(() l, m, n e {0, 1, ...N} 3

(3.1)
(3D) (3.2)

where hi(s) are the Gauss-Lobatto-Legendre polynomials.
If we use a single subscript, q (q E {1,2,..., (N + 1)d}), the mapping between a

^

macroelement, f~, and its phase domain, f~, can be expressed as:

x - Xqr162 (3.3)

Where x C f~e and ~ C ~e.

241

Let solution u at time n a t on each subdomain ~* be expanded as:

ue(x, n a t) - Uq(nAt)r (3.4)

where f ~ (t) is the value of function f at the collocation point Xq C 9t ~ at time t.
We use a semi-implicit temporal discretization scheme for the Navier-Stokes equations,

i.e., the advection terms are treated with the third-order Adams-Bathforth scheme, and
the mixing terms with the Crank-Nicolson scheme. Then, the resulting equations are:

U* - - U n 2

At = ~ a ' (u"-i" V)u~-i (3.5)
i --0

- ~ 1 V 2 u ~ + l (3 .6) U n + l U* _ - - _ _ V p n + ~ +

At R~

J V (3.7) V 2 p '~+ ~ - - �9 u*

A t

23 4 a n d t:X 2 - - 5 where a0 = - ~ , ~1 - ~, 12"
Applying the above spectral element discretization scheme to the weak forms of the

Navier-Stokes equations, we derive the following matrix formulae:

2 d
n - i [B][u*] - [B][u ~] + At ~ ~i ~ [C j][u~ -i] (3.8)

i : 0 j = l

1 [un+l] [B][u n+i] --[B][u*]- At {DT[p n+�89 -Ji- ~e [A]) (3.9)
1

[A][p~+�89 -~-~[D]. [u*] (3.10)

where [A] and [B] are the stiffness matrix and mass matrix, respectively; [C] ~] and [D]
are generalized vectors whose m ~h components, [Cj,~m] and IOta], are the advection matrix
and gradient matrix, respectively.

The boundary conditions used in the above derivations are"

u(x, t) - f(x, t) x E aQ (3.11)

p(x, t) - gl(x, t) or Vp(x, t)- n - g2(x, t) x e Off (3.12)

where 09/is the boundary of the computational domain, ft.
We chose the isoparametric spectral element discretization scheme, namely, using

nonstaggered grids, for the present numerical model. The nonstaggered formulation
avoids spurious pressure modes as staggered schemes do, and, at the same time, has
the advantage that pressure is continuous across boundaries of the spectral elements.
Only one set grids is required for both interpolation and quadrature, hence simplifying
operations. We find that the nonstaggered grid formulations do not necessarily entail
high costs for the iterative pressure solver as one might expect, and the two types of
pressure boundary conditions in (3.12) make little difference in terms of computational
efficiency.

The discretized shallow water equations have the following form:

[B][uO+l]- [B][u o]

242

{ 1 }
i=0 3 : 1

[B][h n+l] _-[B][h n]
2

+At ~ % {[Vl][un-'(1 + hn-')] + [V2l[vn-'(1 + h"-')]}
i=O

Details of deriving Eqs.(3.13) and (3.14) were given in [3].

(3.13)

(3.14)

4 Parallel Algorithm and Implementation

For a distributed-memory, massively parallel computer, which is the chosen architec-
ture for the present models, remote memory access usually is much slower than local
memory access. To efficiently implement the spectral element model on this type of
computer, we must create a data parallelism which minimizes communication among
processing nodes. This goal is achieved through a data-mapping scheme that allows for
all the information related to a given spectral element to be collected in the memory of
a single processor. On the Connection Machine model CM-5, we pursue data parallelism
by designing the layout of the arrays of the spectral element model in such a way that the
axes along the number of elements are assigned as parallel dimensions, and those along
intra-element degrees of freedom as serial ones. The following is a three-dimensional
example in CM Fortran syntax

R E A L A(N,N,N,K~,K2,K3)
C M F $ L A Y O U T A(: S E R I A L , : S E R I A L , : S E R I A L , : N E W S , : N E W S , : N E W S)

where K1, K2, Ka are numbers of elements in each spatial dimension, separately, and N
is the order of polynomials.

Basically, there are four types of algebraic computations involved in solving the dis-
cretized Navier-Stokes Equations (3.8)-(3.10), when the preconditioned conjugated gra-
dient iteration method is applied:

[r] = [A][u] (4.1)

[s] = [B][u] or [B]-l[u] (4.2)

[t] = (4 .3)

a = [u]. [v] (4.4)

Operations in (4.1)-(4.3) are all matrix-vector products, except that the matrices in
(4.2) and (4.3) are diagonal ones. The elements of [A] and [B] are constants which only
need to be calculated once; those of [C~,,j] are not, and they need to be evaluated at each
time step. (4.4) is the inner product of two vectors.

Matrices in (4.1)-(4.3) are global ones, which means that they are the results of
the direct stiffness summation. The way in which the direct stiffness summation is
performed can significantly affect the efficiency of the parallel implementation of the
model. In serial spectral element algorithms, direct stiffness summation usually is carried
out automatically by using local and global node numbering systems. However, in data

243

parallel programs we have to treat direct stiffness summation separately to avoid explicit
short messages.

We split the procedure of calculating matrix-vector products into two steps, each of
which admits concurrency. At the first step, the matrix-vector products are carried out
at the elemental level with, for example, the elemental Laplacian and mass matrices:

(N + I) d

rk(i) = ~ Ak(i,q)uk(q) i e {1,2,. . . , (N + l)d}, kC{1,2,...,K} (4.5)
q=l

sk(i) = Bk(i)uk(i) i C {1,2,..., (N + 1)d}, k E {1,2, . . . ,K} (4.6)

The array layout described at the beginning of this section defines a one-to-one cor-
respondence between the spectral elements and the virtual processors. All data related
to a given element are stored in the memory of a single processor. Therefore, there is no
communication among neighboring processors during these elemental level computations,
and they are performed concurrently across all virtual processors.

After applying tensor-product factorization, the computational complexities to eval-
uate (4.5) and (4.6) would be C1KN d+l/Q and C2KNd/Q, respectively, where Q is the
number of physical processors involved. On the Connection Machine systems, parallel
data structure allows (4.6) to be performed in an array operation, which means that thou-
sands of simultaneous multiplications are made across all the array elements. Hence, C~.
is a small number. Consequently, diagonal preconditioning (4.2) is especially efficient in
the data parallel environment: it does not require direct stiffness summation, and only
local computation is involved, which is very fast. Iteration counts can be reduced by
twenty to thirty percent with about a one percent increase in cost.

The processing nodes on the latest CM-5 model are equipped with powerful vector-
processing units that can further reduce the cost of elemental level computation. These
vector-processing units are most efficient when the order of the spectral elements is high.

The second step is to carry out direct stiffness summation, K , Ek=l in which contribu-
tions from local nodes that share the same physical coordinates are first accumulated,
and then assigned back to those local nodes. In a serial spectral element model, this
procedure can be accomplished by using global and local index systems, and is automat-
ically done as the matrix computation is made for each spectral element. In the parallel
spectral element model, however, it is more efficient to use a separate step for the direct
stiffness summation. Since each spectral element has at least one edge (two-dimensional
case) or one surface (three-dimensional case) that is shared by a neighboring element,
the direct stiffness summation can be carried out simultaneously along these edges or
surfaces enabling structured message exchange, i.e., edge-based message exchange for
two-dimensional problems, and surface-based message exchange for three-dimensional
ones. Since this kind of information exchange takes place along the linkages of the
"macro-element-skeleton", it can be easily synchronized for all elements in the entire
domain. The work per processor that is required in this procedure is C3dKNd-1/Q. The
structured message exchange mostly avoids explicit short messages, and it considerably
improves the parallel efficiency of the spectral element model [1].

With parallel prefix of the CM Fortran, MATMUL and SUM, the inner product (4.4)
is executed completely in parallel. Its computational complexity is C4KNd/Q. Due to
the high level of concurrency afforded by the parallel prefixes, C4 is a small number.

244

Eq.(3.8) only requires a direct method to solve. The computation kernel here is the
evaluation of the advection term where concurrency can be achieved at different levels of
the computation. We first evaluate the shears of velocities at all nodal points

(N+~)~ 0r 0u~~ ~ u~(~)

Oxj 8=1 Oxj
I E { 1 , 2 , . . . , (N § m, jE{1,2, . . . ,d} 2, e E { 1 , 2 , . . . , g } (4.7)

This operation is executed concurrently across all virtual processors. With the partial
summation method, the computational complexity for (4.7) is ChK(N + 1)d+~/Q. The
advection term in (3.8) also can be written as

or [
q) - Jr r176

$--1

p,q E {1, 2, ... , (N + 1)d} 2, j ,m E {1,...,d} 2 (4.8)

Therefore, once the shears of velocities are obtained, the remaining operation to eval-
uate the advection terms is the same as that of (4.6). Hence, the total computational
complexity of (4.8) is C2K(N + 1)d/Q + C~K(N + 1)d+a/Q.

We can undertake similar parallelization analysis for solving the discretized shallow
water equations (3.13) and (3.14). In this case, the computational complexity for matrix-
vector product and that for the convection term are the same as those derived for the
Navier-Stokes equations, except d = 2. Since no iterative procedures are involved, the
model for the shallow water equations is relatively inexpensive compared to a "true"
three-dimensional model.

As spectral elements are of high-order, most of the costly operations are at the elemen-
tal level, and they are executed concurrently. The spectral granularity at the elemental
level can take full advantage of the computing power that the latest processing units
provide. The structured message exchange, combined with parallel prefix, makes inter-
element communication a lower-order rather than a highe-order cost, compared to that
of elemental level computation. This communication cost should be much smaller than
that of the h-type finite element model, partially because many fewer redundant nodel
values, shared by more than one element, have to be stored.

Tables 1 and 2 show the CM-5 timing results per pressure iteration in solving the
two-dimensional and three-dimensional Navier-Stokes equations, respectively. We find
that for a fixed order of the basis functions (N), expanding the size of the problem by
increasing K (the number of the spectral elements) and, at the same time, increasing the
number of processing nodes by the same proportion, hardly changes the computational
cost in terms of CPU time per pressure iteration. Due to the high parallel efficiency, the
spectral element models can fully take advantage of the highly scalable performance of
the massively parallel architectures.

245

Table 1" CM-5 Timing Results per Pressure Iteration (2-D)
N K Num. Grid Pts. Num. Nodes* CPU (s)
7 1024 50625 32 0.062
7 4096 201601 128 0.063
15 1024 231361 32 0.317
15 4096 923521 128 0.318

* Each CM-5 node has 4 vector-processing units and a peak performance
rating of 128 MFLOPS.

Table 2 :CM-5 Timing Results per Pressure Iteration (3-D)
N K Num. Grid Pts. Num. Nodes CPU (s)
4 4096 274625 64 0.106
4 32768 2146689 512 O. 108
7 4096 1442897 64 0.473
7 32768 11390625 512 0.475

Table 3 shows the parallel performance for the spectral element model for the shallow
water equations. To compare the performance of the spectral element model on the CM-5
with that on a sequential computer, say, RISC/6000, we made Table 4 for "equivalent
performance" r/Ep which is defined as z/Ev = 2 8 M F L O P S • K • TR~sc K is the number

, , T c . h , I 5 �9

of spectral elements, TRISC is the double precision timing o n the RISC/6000 (model 560)
which has a LINPACK performance rating of 28 MFLOPS (TRisc=O.012 s per spectral
element per time step), and TCM 5 is the double-precision timing on the CM-5.

Table 3" CM-5 Timing Results (in seconds) per Time Step for the
Spectral Element Shallow Water Equation Model (N=16)

K 128 nodes 256 nodes 512 nodes
100 0.31 0.31 0.31
256 0.32 0.31 0.31

4900 0.66 0.48 0.32
10000 0.83 0.48 0.32
22500 1.71 0.97 0.66
40000 2.33 1.29 0.80
90000 - - 1.6

Table 4: Equivalent Performance for CM-5 (in MFLOPS) for the
Spectral Element Shallow-Water-Equation Model (N=16)

K 128 nodes 256 nodes 512 nodes
100 115 115 115
256 2789 2789 2879

4900 2650 3644 5466
10000 4301 7437 11156
22500 4725 8280 12170
40000 6208 10984 17850
90000 - - 20081

One advantage of the high-order domain decomposition numerical model is that it can
take better advantage of the vector-processing units than can low-order models. Table

246

5 shows that the difference between the performance of the spectral element model with
vectorization and that without vectorization increases as the order of the basis functions,
N, increases.

Table 5:CM-5 Timing Results per Time Step for the 2-D N-S Model (32 nodes)
With an Iteration Error of O(10 -6)

CPU (s)
N K With Vectorization Without Vectorization
3 576 2.2 3.2
4 i00 2.1 4.8
5 16 1.9 7.9
6 4 2.6 11.4

5 C O N C L U S I O N S

In present work, we have shown that high-order domain decomposition methods can
be efficiently applied in a data parallel programming environment. The optimized com-
putational efficiency of the parallel spectral element model comes not only from the
exponential convergence of its numerical solutions, but also from its efficient usage of the
powerful vector-processing units of the latest parallel architectures which have a highly
scalable performance. The nonstaggered grid formulation is convenient for, and shows
no disadvantage in, these parallel spectral element models.

R E F E R E N C E S
1. Fischer, P. F. and A. T. Patera, J. Comput. Phys., 92 (1991) 380.
2. Korczak, K. Z. and A. T. Patera, J. Comput. Phys., 62 (1986) 361.
3. Ma, H., J. Comput. Phys., 109 (1993) 133.
4. Maday, Y. and A. T. Patera, in State-Of-The-Art Surveys on Computational
Mechanics, A.D. Noor and J. T. Oden (eds.), New York, New York, 1989.
5. Patera, A. T., J. Comput. Phys., 54 (1984) 468.
6. Ronquist, E. M., Optimal Spectral Element Methods for the Unsteady Three
Dimensional Navier-Stokes Equations, Ph.D. Thesis, The Massachusetts Institute of
Technology (1988).

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

247

A Parallel Implementation of a Spectral Multi-domain Solver for
Incompressibile Navier-Stokes Equations

G. De Pietro a A. Pinelli b and A. Vacca c

alRSIP, CNR, Via P.Castellino, 111, 80128 Naples, Italy

bSchool of Aeronautics, Polytechnic University of Madrid, Spain.

c II University of Naples, Aversa, Italy.

1. I n t r o d u c t i o n

In the last years domain decomposition methods have gained much attention in the
CFD comunity. One of the most relevant features of such methods is concerned with
the possibility of tuning the accuracy of the numerical discretization according to the
expected behaviour of the solution in each subdomain. Consequently, subregions of flow
field containing sharp boundary layer, can be enclosed within subdomains with high res-
olution, while low resolution can be assigned to subregions where smooth solutions can

be expected.
These advantages can be fully exploited when discretizing the equations with spectral

methods which guarantee a fast decay of the error with the number of the nodes, termed
as "spectral accuracy".

On the other hand domain decomposition methods might provide a natural stabilization
strategy for the spectral discretization which is a "central one" in nature. In fact the local
cell Peeler number can be locally diminished by reducing the mesh spacing within the
critical subdomain, without the introduction of any particular stabilization procedure.

From the computational point of view, the domain decomposition techniques is well
suited for parallel computing, even if in practical case several difficulties arises whenever
good performances have to be reached [1].

In this paper, a parallel algorithm for the solution of the bidimensional incompress-
ible Navier-Stokes equations is presented. After a brief introduction of the time splitting
scheme used for the time discretization of the unsteady incompressible Navier-Stokes
equations, the attention will be mainly focused on the the spectral multidomain approach
and on its parallel features. Finally, performance results concerning the parallel imple-
mentation on two different MIMD parallel architectures will be presented.

2. N a v i e r - S t o k e s E q u a t i o n s a n d T i m e S p l i t t i n g Scheme

When the incompressible Navier-Stokes equations

oqU 1 1
o~ + -~ (g . v g + v . (g g)) - - V p + ~ A g (1)

248

v . u : o (~.)

are solved by means of a projection method [2], with the diffusive terms treated in an
implicit fashion [3], the time stepping procedure consists in a cascade of scalar elliptic
kernels, to be solved at each time step. Namely two (for the two-dimensional equations)
Helmohltz problems for the inversion of the diffusive part, and a Poisson problem for the
pressure need to be solved at each time step. It is then clear that, in order to achieve
a globally efficient algorithm, it is of fundamental importance to tackle effectively the
mentioned scalar problems.

For the sake of completeness in the following the adopted fractional step scheme (i.e.
Van Kan's pressure correction method [4])is given

f_)" - U '~ 1

At 2Re
3 Un 1 - - V p n - ~ L ; () + ~ / 2 (U n-l) (3)

01oa = u ((n + l) /xt) (4)
g n+l -- 0 iv

~xt + 2 (p"§ - p~ - o (~)
V . U "+x = 0 (6)

l (u . v u + v . (u u)) . where/2 (U) represents the advective term

In the first step, a non physical intermediate velocity field 0 is computed. In fact, 0
does not satisfy the incompressility condition. Then in the second step U is projected
onto the divergence free space to get an adeguate velocity approssimation of U n+l.

The scheme with the given boundary conditions is nothing else then a second order
Crank-Nicolson Adams-Bashforth scheme with an O (At 2) deviation in the tangent direc-
tion of the boundary. By applying the divergence operator to (6), it turns out that the
latter is equivalent to

2 zx (pO+~ + pO) - h b v . 0 (7)

Op,~+l
On 10a - 0 (8)

At (pn+l U,~+x _ O _ V V _pn) (9)

In the next section the attention will be focused on the way each scalar elliptic problem
has been tackled in the framework of a spectral multidomain discretization.

3. Space Discre t iza t ion and Pro jec t ion Decomposi t ion M e t h o d

In the present work, a Legendre spectral collocation technique coupled with a domain
decomposition method has been used for the space discretization of the differential equa-
tions. Additional references can be found in [6], [5] for the projection decomposition
method, and in [7] for the spectral approximation method.

The following problem, rappresentative of one of the elliptic scalar problems mentioned
in the previous section, is considered hereafter:

- A u + a u : f i ng , f 6 L2(f/) (10)

u = 0 on Oft (11)

249

where a is a real constant > O, and where f~ is an open connected set ~/C ~2; in particular,
- U~=l~i with f/~ is a closed rectangle having either common side or common vertex

with each neighbour; a > 0 is either identically equal to zero (i.e., for the Poisson problem
related with the pressure) or is equal to 2 / A t R e (i.e., for one of the momentum equations),
and the equivalent weak formulation of (10), (11) is"

find u E H~(ft) such that

l (u ,v) - (f,v)L2(a) V v E g~(ft) (12)

where H~(ft) is the real Hilbert space defined as follows:

H~(f'l) - {u E L2(f't) " au L2 Ou L2 , E (ft) and ~ E (9/) u l o a - 0} (13)

equipped with the scalar product"

v) - / a (S u . Sv + auv)df l Vu, v E Hl(f l) (14) l(u,

Following the classical domain decomposition technique problem (12) is decoupled into a
set of problems within each subdomain plus an additional problem at the interfaces F:

N P - (ft\f~0)\0ft with ft0 - Ui:~ft, (15)

Let H~/2(F) be the completion of the normed vector space S defined as"

S - {zE C~ �9 3 r C?(f t) such that z - r

Iizl - inf IIr (16) ,ecg~
q~F --'Z

where er is the restriction of r on P.
The linearity and continuity of the operator

r E CF(f~) ~ er (17)

into ~0 (F) and the fact that C~~ is dense in H~(gt) leads to the existence and
uniqueness of a linear and continuous operator 3' (trace operator) from H~ (~t) onto H~/~(F)
defined as

7 r er Vr E H~(f~) (18)
The y operator allows to identify two closed mutually orthogonal subspaces

K - ker(7) - {u0 E H~(ft) �9 7u0 - 0} (19)

where ker(y) is the kernel of operator 7, and its orthogonal complement K • is defined as"

K • l(~2, v 0) - 0 V v 0 E K } (20)

Therefore, the solution u C H~(f~) of problem (12) can be uniquely decomposed as

u - u 0 + ~ ; , u0E K and ~;E K • (21)

250

Since the restriction 70 of the operator "~ to K • is an isometric isomorphism between K •
and H01/2(F) it follows that

v ~ e K • 3 ! r �9 ~ - ' y o ~ r

Problem (P1): find u0 E K such that

l(uo, vo) - (f, vo)L~(a) V vo E K (24)

ul/2(F) such that Problem(P2)" find r E--o

/ (') , O I r - - (f, 7olZ)L,(a) V z E g0/2(r) (25)
Problem P1 is nothing else than the solution of N decoupled elliptic problems with ho-
mogeneous Dirichlet boundary conditions on both Oft and P.

As concern problem P2, if {~r i = 1, .., c~ is a set of linearly independent functions

which constitute a base for H0/2(F), then the discrete version of problem P2 reads as:

M

, 3'0 (j)L'(a) V j - 1 , . . , M /(7ol ~ a,~, "yol~j)- (f, -1 (26)
i=1

Typically M corresponds exactly to the number of points on the interface. To set up
an algebraic equivalent of (26) the operator 7o 1 should be explicitly formulated. In
practice, the operator yo 1 is never required if an iterative procedure is introduced to solve
problem P2. To illustrate this point, it must be remarked that ~k E K • must satisfy the
orthogonality condition:

l(~ k, v0) - 0 V v0 E K (27)

which corresponds to the solution of N elliptic problems (24) with Dirichlet boundary
conditions" homogeneous on Of/and to be iteratively determined on F.

To provide at each iteration k the condition on F for problem (27) the Green's formula

is applied to (26)

- fr --O~n (jdr Ogk - ~.s ~ n (JdF V j - 1, . .M (28)

k(i is the solution at iteration k of problem (27), where o represents where gk _ "Yol ~]M1 ai
the jump of the normal derivatives on P. R k is the residual at iteration k, from which
the updating of the boundary value gk+llr can be obtained within the chosen iterative

procedure.
The convergence rate of the iterative procedure strongly depends on the choice of the

basis {(~} [8]. Fo~ the present work the basis functions proposed by Ovtchinnikov [81 have
been used. These constitute a nearly optimal basis,in the sense that the condition number
of system (26) is bounded by a constant independent of M, where M is the dimension of

the subspace of H~/~(F)generated by span{(i} i - 1, .., M.
In view of the character of the algebraic problem (symmetric positive defined) the

conjugate gradient has been employed to solve problem (26).

Identity (21) can be reformulated as:

u = u o + " / o l r with u0E K and e E H1/2(F) (23)

Thus, problem (12) can be easily proven to be equivalent to the set of the two following

ones"

251

4. E x t e n s i o n to Nav ie r -S tokes equa t ions

If each single differential problem is tackled with the algorithm described in the previous
section, at the end of each time step the solution is equivalent to one, hypotetically
achieved by solving the whole domain at once.

The last statement requires some comments. When finite dimensional approximation
of the space where the solution is sought are considered numerical problem might arise
within the fractional step algorithm in the interface neighbouring regions. In particular
when the projection step (5) is considered, a straigh use of the results obtained with the
present multidomain method leads a discontinuous value of the divergence free velocity
field along the interfaces.

From the numerical point of view, these discontinuities, even if limited to a set of mea-
sure zero (F) might introduce an artificial "numerical boundary layer" that the whole
time integration procedure cannot damp out and that might lead to catastrophic insta-
bilities. To avoid such a drawback two solutions are possible. The first one relies upon
increasing the dimension of the approximation subspaces to reduce the jumps at the in-
terface. The second one consists in replacing the gradient of the pressure in equation (5)
with an equivalent function in L2(ft), which differs from the original one only along sets
of measure zero. In particular, the gradient Q = V(q7 ~+1- 4) '~) of the solution, achieved
by solving (7) with the previously outlined multi-domain spectral method is substituted
with the vector function (] defined as:

wj +wj

v(~,y) e a \ r
v y) c v j - 2 (29)

- - r where Prs - f~r N f~t, wj (w~) is the Gauss-Legendre quadrature weight along Prs (either
j or i) corresponding to the node (x , y) i n the subdomain ~ (~,) and Q* (Q*) is the
restriction of O in ft~ (ft~)evaluated in (x, y).

5. Paral le l i m p l e m e n t a t i o n

As concerns the parallel implementation of the given algorithm, we have used a slightly
modified version of master-slave computational model. In particular, the major difference
with respect to the classical model is that our master actively cooperates with the slaves
during the calculation phase, while in the standard version, the master is only demanded
to distribute initial data and to gather the results. In our implementation, the activities
are shared between master and slaves as follow. At the beginning of the computation, the
master process calculates the guess values for the Dirichlet problems. These values are
then trasmitted to the slave processes: each of the slaves solves the Dirichlet problems
for the assigned domains; it should be noted that, in this case, the domain decomposition
(which allow the slaves to operate in parallel) derives directly from the multi-domain
approach. After this first phase, the slaves transmit the calculated values at the domain
interfaces to the master, which calculates the new values by applying a Conjugate Gradient
algorithm, and communicates these values to the slaves for the next iteration. The main
causes of inefficiency in using parallel architectures are an uneven load-balancing and
the communication overheads. In general, the multidomain technique can generate load

252

balancing problems because the size and/or computation of blocks can widely differ;
however, in our case each domain has the same number of points. Thus, if the number of
domains is a multiple of the number of processor, we obtain an optimal load balancing.
The communication overheads is mainly related to the Conjugate Gradient algorithm: at
each time iteration, data need to be exchanged between processors containing adjacent
domain interfaces and the master processor. Because of the sequantial flow of these
activities, it is not possible to overlap computation and communication, so the time spent
for these communications can represent a not negligible part of the overall computing
time.

The parallel version of the code has been developed for message passing environments.
In particular, the code has been written in Fortran 77 plus PVM 3.3 communication
primitives. In order to meet the goal of overlapping computation and communication, non-
blocking communication primitives have been used. Note that the parallelism is exploited
only among slaves: the master and the slaves cannot operate in parallel. Anyway, as the
great part of the computation is demanded to the slaves, the obtained performances on
various homogeneous parallel systems are quite good.

6. E x p e r i m e n t a l Resu l t s

For the tests, we have used two different parallel machines. The first is a CONVEX
C210-MPP0 with a vector processor and 4 scalar processor HP 730 connected via FDDI.
The second machine is a MEIKO CS2 with 18 super-Sparc processors connected through a
switching network. Both the machine are distributed memory MIMD parallel computers.
The tests have been performed by using a number of domain multiple of the number of
processors used, so that load balancing is guaranteed. Hence, the cause for the loss of
efficiency are the time tc spent for the communication and the idle time t,~ of the slaves
waiting for the master results. Note that, while the time tw is indepenedent of the number
N of processors, the time tc increases according to N: so, for a given problem, a linear
decrease of the efficiency is expected.

12

10

8

6

4

2

I I I I I

J

I I I I 1

0.9

0.8

0.7 I I t t I
2 4 6 8 10 12 2 4 6 8 10 12

Nproc Nproc

Figure 1. 12 domains with 15x15 points: Speed-up on the left, Efficiency on the right

In figg. (1), (2) the results obtained on the Meiko machine are shown. Note that the
values of efficiency are quite good, expecially when the number of points for each domain
increases. Moreover, when the number of processor grows the efficiency linearly decrease,
as expected.

1 l I

9 • 9points �9
15 X 15points o

, . I

I I I

2 4 6 8
Nproc

0.9

0.8

0.7

I I

15 x 15 points o "~

I I I I

2 4 6 8
Nproc

Figure 2. 16 domains" Speed-up on the left, Efficiency on the right

253

Figure 3 shows a comparison of the results obtained for both the Meiko CS2 and the
Convex MPP0 machines. It should be noted that the Convex machine performs better
than Meiko when two processors are used; on contrary, by increasining the number of
processors the performances of the Meiko are better. This behaviour is essentially related
to the different characteristics of the interconnection networks; the FDDI network of the
Convex allows very fast communication between two processors at t ime (the optical fiber
is a common shared resource). On the other hand, the CS2 switching network allows to
simultaneously execute different communications, so reducing the overall communication
time (as mat ter of fact, also the presence of properly designed communication processors
which handle the communication on behalf of the sparc processor has to be taken into
account).

To further reduce the computing time, we have also used heterogeneous systems. In
fact, whenever the execution of different tasks constituting the same program is strictly
sequential, heterogeneous processing can help in enhancing performance by placing a task
on the most suitable machine for that task. To this goal, tests have been performed by
placing the master process on a vector computer for a more efficient calculation, and the
slave processes on a parallel homogeneous system with scalar processors.

4 i

Con~.~ �9

1 I 0.7
2 3 4

Nproc

1

0.9

0.8 - C o n v e x �9 -

Meiko o

I

2 3 4
Nproc

Figure 3. 8 domains with 11 x 11 points: Speed-up on the left, Efficiency on the right

However, in our case the time spent by the master is a negligible part of the total
comuputing time; so, the test performed by using an heterogeneous environment have
shown no appreciable improvments.

254

7. Conclusion

The present work has been concerned with the solution of the unsteady incompressible
Navier-Stokes equations, using a high order collocated spectral multi-domain method.
The rationale behind the choice and development of the method is given both by the
possibility of coupling the potential high accuracy of spectral methods with the flexible
framework offered by multi-domains methods, and with the natural way in which a parallel
implementation of the present algorithm can be achieved.

In particular, we have shown how the developed algorithm allows for the solution of
completely independent and balanced sub-problems leading to full exploitation of MIMD
parallel computers.

R E F E R E N C E S

1. C. de Nicola, G. De Pietro and M. Giuliani, An Advanced Parallel Multiblock Code
for the Solution of 2-D Flow-Field, Lecture Notes in Computer Science, 796, (1994),
139.

2. A.Chorin, A. and Marsden, A Mathematical Introduction to Fluid Mechanics,
Springer-Verlag, New York, 1979.

3. A. Pinelli and A. Vacca, Chebyshev Collocation Method and Multidomain Decompo-
sition for the Incompressible Navier-Stokes Equations, Int. J. Num. Meth. in Fluids,
18, (1994), 781.

4. J. Van Kan, A Second Order Accurate Pressure-Correction Scheme for Viscous In-
compressible Plow, J. Sci. Star. Comp., 7, (1986), 870.

5. V. Agoshkov and E. Ovtchinnikov, Projection Decomposition Method, CRS4 Tech.
Rep. Cagliari, Italy, 1993.

6. A. Quarteroni, Mathematical Aspects of Domain Decomposition Methods, European
Congress of Mathematics, F. Mignot (eds.), Birkhauser Boston, 1994.

7. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid
Dynamics, Springer-Verlag, New York, 1988.

8. E. Ovtchinnikov, On the Construction of a Well Conditioned Basis for the Projection
Decomposition Method, CRS4 Tech. Rep. Cagliari, Italy, 1993.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

255

A P A R A L L E L S P E C T R A L E L E M E N T M E T H O D F O R
C O M P R E S S I B L E H Y D R O D Y N A M I C S

A n i l E . D e a n e a*

aInstitute for Computational Science and Informatics,
George Mason University &
High Performance Computing Branch,
NASA Goddard Space Flight Center
d ean e@l a p l ac e. g s f c. n asa. g o v

We describe results for a Spectral Element-Flux Corrected Transport code that has been
parallelized to run on the Convex SPP-1000 Exemplar shared memory parallel computer.
The technique considers the domain to be decomposed into multiple regions within each
of which the representation is spectral in nature. The regions are patched together by the
use of interface conditions. The technique is applied to the compressible Euler equations
of hydrodynamics and is well suited for problems when discontinuities such as shocks
or contact discontinuities are present in the solution. Since the present code is one-
dimensional (a multidimensional version being underway), additional work representing
a multidimensional workload is created for the threads by increasing the (polynomial)
order of the elements, N. Good scaling for the algorithm is found only for large N on the
SPP-1000.

1. I n t r o d u c t i o n

Spectral element methods [1] combine the flexibility of finite element methods and the
spectral accuracy ("infinite-order" accuracy) of spectral methods. The physical domain
is divided into several regions in each of which the solution is represented by local basis
functions (typically Legendre or Chebyshev interpolating polynomials). These spectral el-
ements are then patched together through techniques common to finite elements to provide
a global representation of the flow. The method has found good use in complex geometry
fluid flow simulations. Changes of geometry do not lead to fundamental rethinking of
appropriate basis, coordinate mapping functions and stability/accuracy considerations.
Yet another, considerable, advantage is that since each element represents the solution by
local basis functions with patching conditions at their interfaces the method parallelizes
in a straightforward manner. Indeed parallel efficiency, scalability, and other measures of
relevance to parallel computation are excellent [2].
One deficiency in the method formulated until fairly recently is that of the limitation
of the application to incompressible flows. Spectral methods suffer from their poor rep-

*Research supported by NASA HPCCP through NAG 5-2652.

256

resentation of discontinuities (Gibbs phenomena in particular, and other phase errors
for discontinuities); hence spectral element methods, which use spectral representations
locally, inherit these disadvantages. Thus compressible flows have not received much at-
tention, although there have been recent investigations. These new studies have focused,
appropriately enough, on flux limiting type algorithms and spectral filtering techniques
[3-6].
Here we describe a germinal effort in the construction of a parallel spectral element method
for compressible flows. It relies heavily on the previously cited work. We discuss the
method in some detail, and those issues related to its parallelization. As a testbed machine
we choose to implement the algorithm on the Convex SPP-1000 computer, a relatively new
machine about which few performance studies are available and which is architecturally
interesting. The FCT method using finite differences instead of spectral elements has been
previously parallelized on several machines using a number of message passing libraries
by [7].

2. Application to hyperbolic conservation laws.

Consider the conservation law,

Ow O f
0-~ + ~x - 0, (1)

where the vector function w represents density, momentum and total energy, while f is
the flux function (giving the 1-D Euler equations), i.e.

= (p, pV , f = (pV , + p, pV e + pV). (2)

Integrating the equation once we obtain the canonical semi-discrete flux form:

Ow 1
O--t -t- -~x (F, + v 2 - F, _ V 2) - O, (3)

where it is understood that w is now a cell-averaged quantity. The quantity F is an
edge based quantity derived from the cell-averaged f; this involves a spatial averaging
procedure and hence we turn to the spatial discretization.

3. Spectral element discretization.

We will be concerned with cell-averaged quantities and edge or po in t quantities. The
cell-averaged quantities are defined on the grid j for cell-centered quantities,

xj, j = 0, N - 1 G a u s s - Chebyshev, (4)

while the edge quantities are defined over the grid i,

xi - cos ~ i = 0, N Gauss - Lobatto - Chebyshev. (5)

The i grid straddles the j grid as shown in Figure 1. Consider the spatial domain parti-

257

iiiii ! ~ iii iiiiii iii iiii iii iiill

i l ' ~ i ~ ' '

i i i i i i
i i i i i i i:

i ! i i

i.:.i ~ ~ i : i ---~
,: : : , : : : : "---I

Figure 1. The nodes for the Gauss -Chebyshev points (dashed lines), used for the cell-
averaged quant i t ies , and the G a u s s - L o b a t t o - C h e b y s h e v points (solid lines), used for edge
quant i t ies , for N = 9.

t ioned into K e lements where in each e lement , indexed by k,

N

Ck(x) -- z r hi(x).
i = 0

Averag ing over space gives,

N

~ (x) - E ~- r hi(z),
i = 0

where a un ique (Lagrange) in t e rpo la t ing funct ion hi can be found:

2 ~ ! T h,(x) = -~ cpc, p(x,)Tp(x), 0 <_ i < N,
p = 0

and cor respondingly ,

2
1 Tp(xi)Tp(x) 0 < i < N, ~ , (x) - ~ ~--~. , _ _

p=0

with cn = 1 if n -7(= 0, N and cn = 2 otherwise. Here,

1 1 [~ ,u~ (~) - ~ , _ ~ u ~ _ ~ (z)] , i > 2, 7~o = 1, ~P1 = ~ o / 1 U 1 (X) , T i - ~

and

s i n [(/ + 1) l r /2N]

a , = (i + 1)s in(Tr /2N)"

(6a)

(6b)

(7~)

(7b)

(8~)

(8b)

258

Ui(x) are Chebyshev polynomials of the second kind. The cell-averaging procedure cor-
rectly converts point values defined over N + 1 points to cell-centered average values
defined over N points. Note that hi(x) is an interpolating polynomial, while hi(x) is not.
Analogous to (6a), there exists a (Lagrange) interpolant taking cell-averaged quantities
into a continuous function,

N
Ck(x) - E r (9)

i=1

To recover the edge values from the cell-averaged quantities, the following reconstruction
is applied:

N - 1 "

r - Gj(xi)r where Gj(x) - ~ A~Up(x), (10a)
p=0 C~p

with

A~ - Tp(xj), p - N - 2 , N - l ;
�9 1

A~ - ~[Tp(xj)-Tp+2(xj)], 0 <_ p <_ N-3(10b)

Note that the reconstruction gives only N points, but the interpolating polynomial con-
structed for the collocation method requires N + 1 values. An additional constraint in
order to uniquely determine the polynomial is to require C o continuity across the interface
of the elements so that (~k+l __ q~k.

Hence,

N
ck+l(~) __ E ~k+lGJ(~) "~ c~r (11a) ~j

j=l

where

- E j = I 3 3(- 1) (l lb) 5r k - (1 - ~)T~(~) CkN N q~k.+lG
2N 2

In (l l a , l l b) we have written (~, r/, ~) as the local element coordinate system.
Figure 2a shows the a sinusoid over 32 Gauss points. By use of (6a) its cell-averaged values
~(x) are also shown. Figure 2b shows the reconstruction of the function via (11a,11b) by
plotting the error between the function and its reconstruction. As is evident, the errors
are very small.

4. F lux C o r r e c t e d T r a n s p o r t

The FCT procedure for solving (3) is as follows [8-101"
1. Form a low-order flux: L Fi+112
2. Form a high-order flux: H Fi+l/2
3. Form an anti-diffusive flux:

1 , 0 I

0.5

0.0

-0.5

- 1 . 0

1.0-1 0 -6

0

1.0.1 0 "6

2.0-10 -6

3 . 0 , 1 0 -6

2 . 0 , 1 0 " 6 , , ,

. . . . i i I , , , , I , , , , I , , , ,

-0.5 0.0 0.5 1.0 -1 .! -1.0 -0.5 0.0 0.5 1.0 1.5

259

Figure 2. (a) The function a (x) = sin 27rx and its cell average, g(x), and (b) The error in
the reconstruction from g(x) for N = 3 2 .

4. Form a l o w - o r d e r so lu t ion :

A t L
w L _ ,tun_ ~xx (f i + l / 2 - F?_l/2)

5. Limit the anti-diffusive flux to prevent spurious extrema:

c
Ai+l/2 - Ci+l /2Ai+l /2

6. Update the solution:

At c
wn+l - -W L _ --~--~z (Ai+l /2 - Fc1/2)

In the Spectral Element-FCT approach we define the cell-centered quantities to be on the
Gauss-Chebyshev points (grid j) while the fluxes are on the Gauss-Lobatto-Chebyshev
points (grid i). Step 2 above is interpreted in the Spectral Element formulation. Fluxes
are obtained via (11a,11b) from the cell-centered flux function as in (2).

5. Shock t u b e r e s u l t s

We solve a one-dimensional hydrodynamics p r o b l e m - the shock tube - - with parameters
due to Sod [11]. At time t = 0 the gas on the left of a diaphragm is at pressure p = 1, p =
0.1 while on the right it is at p = 1, p = 0.125. Following the rupture of the diaphragm at
t = 0 +, three waves propagate through the gas: an expansion fan, a contact discontinuity
and a shock wave. Figure 3 shows the results obtained with the spectral-element FCT
method with N = 21, K = 20. While not exceptional, the method does quite well. Some
small excrescences are evident.

260

pressure
1.0

0.8

0.6

0.4

0.2 I ~
0 . 0

0.0 0.5 1.0 1.5 2.0

1.0

0.8

0.6

0.4

0.2

density
. . . . , , ,

O.O , , ,

0.0 0.5 1.0 1.5 2.0

velocity .0
.8

.6

.4

.2

.0

.2
0.0 0.5 1.0 1.5 2.0

Figure 3. Shock tube results. Time is 0.263, N - 21, K - 20. Parameter are those due
to Sod.

6. Pa ra l l e l i za t i on on the SPP-1000

The Convex SPP-1000 is a fairly new machine[12,13] based on the HP PA-RISC 7100 (100
MHz) microprocessor with 1MB data and instruction caches. The machine possesses a
uniform address space. Two processors form a functional unit while 4 functional units are
closely coupled into a (hyper-)node. NASA/GSFC's machine has 2 nodes, consisting of a
total of 16 processors with 1 GB of memory. The nodes are partitioned into two partitions
of 1 and 15 processors respectively. While the machine is similar to the KSR-1 and the
T3D, it is unique in that cache coherence is maintained via a directory mechanism within
nodes and "Scalable Coherent Interface" hardware across nodes.
The SPP-1000 supports both a shared memory and a message-passing (hosted PVM)
model. The message passing primitives lay on top of the shared memory hardware
and hence are not as efficient. Therefore we have used the shared memory model in-
voked with compiler directives. These parallel directives consist of L00P_PARALLEL and
PREFER_PARALLEL. Loops over spectral elements are distributed typically via the latter
directive; however some loops that the compiler did not parallelize (due to indeterminate
dependencies) were forced via the former directive. Thus the low-order and high-order flux
evaluations, the flux limiting, and solution update are all done in parallel. The boundary
conditions and the time step determination are currently done serially. Temporary vari-
able data is declared L00P_PRIVATE. The SPP-IO00 also allows the use of THREAD_PRIVATE
and NODE_PRIVATE data types, allowing the data not to be corrupted across thread or node
boundaries. It also provides more rapid access of the data. While presently we do not
use these data types, later versions of the code will incorporate them, for instance in the
time step determination.

261

7. P e r f o r m a n c e resu l t s

Figure 4 shows the wall clock time taken for the execution of 10 steps of the code versus
number of processors for several values of N. Clearly, for small values of N, there is not
enough work for the threads and the initiation time of the threads dominates. For large
values of N the scaling is better, the curve not turning over until as many as 10 processors,
but still does not obtain utilization over the entire number of processors. Interestingly,
the 7-8 processor division which crosses the node boundary does not give any special
turn-over.
The SPP-1000 has been measured [12] to cost Tth = (9 + 34(nth -- 1)) #secs, where n t h is
the number of threads in fork-join operations. For this code there are 20 loops that are to
be distributed per half-step; and therefore for 10 complete steps 400Tth is the approximate
cost for thread initiation and termination. For 8 processors this is roughly 0.1 sec. From
Figure 4 the Nbl run is certainly affected by this cost. The turnoff for N > 51 in Figure
4 occurs at much higher execution times; hence the turnover is due to non-local memory
references and cache misses.
Another option to increase the workload of the 1D code is to increase K, the number
of elements. We have chosen to increase the workload by increasing N since the work
increases quadratically with N.

10

6

E := 4
t3)

2

-2

. / , ,

i

!
!
i
i

! 1501 I

i 1 0 0 1

. ! 5 0 1

. ; 51

. i I , ~ t q | l | | , , , , , = l

0 1 2 3 4
Ig procs

Figure 4. Time taken for 10 steps versus number of processors for different polynomial
order of the elements, N. Note that the coordinates are log 2.

262

In Figure 5a we show the Mflop rate of the code on the SPP-1000 for the various N. The
number of floating point operations in the calculation were obtained by running the code
on the Cray C90; hence the Mflop rate is a "Cray-equivalent" flop rate. Figure 5b shows
the same data on a per processor basis. For N1501 and N1001 the per node performance
increase initially; this is because these values lead to out-of-cache memory requirements.
The N501 uniprocessor value shows a maximum achieved performance of 42Mflops for
the code. For N1501 the performance degrades much more slowly than for all the other
cases.

200 50

150

0 100 _1
I.i. 3Z

50

4O
0

0
L .

~- 30

0 ..j 20
I , I .

10

. . . . t i

1501
........... 1001
. 501

i I

t 4 i
t . s. I i i

s / " _ / '1 i

i.

, , i , ~ -I--'T'- ;---,----,.

5 10 15
procs

0 0
0 0

. . . . i i

1501
, , 1001

, 501
. 51

i ...: "-,

: : ','. \
I ~ ". i ",:"..: \

i �9 t

. . . . ~-- - I - . - . r ~,

5 10 15
procs

Figure 5. (a) Total Mflop rate versus number of processors, and (b) Mflops/proc versus
number of processors, both for different polynomial order of the elements, N.

8. Conc lus ion

A parallel spectral-element code for compressible hydrodynamics has been constructed,
and tested on the Convex SPP-1000. In order to simulate 3D performance high-order
elements were chosen such that N ~ NxNyNz. Typically, for 3D applications NxNyNz
103 to 153. For large N we find that the SPP-1000 begins to have reasonable scaling. The
spawning of the threads was not found to be an issue for large N. Clearly the choice of
very large N for a one-dimensional problem is artificial and possibly misleading; with the
completion of the construction of the multidimensional code the more relevant scalings
will be explored in detail.

263

9. Acknowledgments

Many thanks to my colleagues Clark Mobarry, Daniel Saverese, and Phil Merkey for
valuable insights. This work is supported by NASA High Performance Computing and
Communications Program at Goddard Space Flight Center.

R E F E R E N C E S

.

9.
10.
11.
12.

13.

Patera, A. T., J. Comput. Phys. 54, 468 (1984).
Crawford, C., Evangelinos, C., Newman, D., and Karniadakis, G., Parallel benchmark
simulations of turbulence in complex geometries, in Parallel CFD 95, 1995.
Giannakouros, J. and Karniadakis, G., Int. J. Num. Meth. Fluids 14, 707 (1992).
Sidilkover, D. and Karniadakis, G. E., J. Comput. Phys. 107, 10 (1993).
Giannakouros, J. and Karniadakis, G., J. Comput. Phys. 115, 65 (1994).
Cai, W., Gottlieb, D., and Harten, A., Cell averaging Chebyshev methods for hy-
perbolic problems, Technical Report 90-27, ICASE, NASA Langley Research Center,
1990.
Deane, A., Zalesak, S., and Spicer, D., 3 D compressible hydrodynamics using Flux
Corrected Transport on message passing parallel computers, in High Performance
Computing, 1995, edited by Tentner, A., pages 128-133, 1995.
Boris, J. P. and Book, D. L., J. Comput. Phys. 11, 38 (1973).
Zalesak, S., J. Comput. Phys. 31,335 (1979).
Zalesak, S., J. Comput. Phys. 40, 497 (1981).
Sod, G., J. Comput. Phys. 27, 1 (1978).
Sterling, T., Saverese, D., Merkey, P., and Gardner, J., An initial evaluation of the
Convex SPP-1000 for Earth and Space Science applications, in Proceedings of the
First IEEE Symposium on High-Performance Computer Architecture, pages 176-185,
1995.
Sterling, T., Saverese, D., Merkey, P., and Olson, K., An empirical evaluation of the
Convex SPP-1000 hierarchical shared memory system, in PACT 95, 1995.

This Page Intentionally Left Blank

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

265

I A ~ G E SCALE SIMULATIONS OF FLOWS
ABOUT A SPACE PLANE USING NWT

Kisa MATSUSHIMAa and Susumu TAKANASHI b

a HPC Systems Engineering Div., M a h ~ a r i Systems Laboratory, FUJITSU Ltd.
Nakase 1-9-3, Mihama-ku, Chiba-shi, Chiba, 261, Japan

b Aircraft Aerodynamics Division, National Aerospace Laboratory,
Jindaiji-higashi-machi 7-44-1, choufu-shi, Tokyo, 182, Japan

Parallel computation of flowfield about a Space Plane has been conducted on
the NWT at the National Aerospace Laboratory (NAL) in Japan. Some of the
advantages of large scale simulation are examined from the viewpoint of practical
aerodynamic analysis for developing the Space Plane. Through a grid refinement
study, it is found that the fine grid can provide fairly improved resolution of flow
phenomena and more accurate aerodynamic characteristics. Large scale simula-
tion with fine grid distribution is worth doing for predicting precise flow physics
such as boundary layer separation and vortical phenomena.

1. INTRODUCTION

The NAL realized a high performance parallel computer system with
distributed memory called NWT in 1993 as the result of the joint research with
FUJITSU. The NWT consists of 140 processing elements (PEs). Each individual
PE is a vector computer, just the same as FUJITSU VP400, and communicates
with the other PEs through a crossbar network. The NWT can provide up to 35
GBytes of memory and up to 236 GFLOPs of computing speed [1,2]. Such high
performance has enabled us to carry out large scale Navier-Stokes simulations
with a great number of grid points. Authors are interested in the effect of fine grid
distribution from the viewpoint of application of CFD to aerodynamic analysis of
realistic aircraft, since we have been involved in CFD simulation on the project to
develop a Space Plane at the NAL.

This CFD activity started with parametric study. To estimate global aero-
dynamic forces for plotting aerodynamic characteristic curves, a lot of flows about
the Space Plane have been simulated varying the Mach number and the angles of
attack, yaw, and rotation. CL, CD and CY obtained from the computations agree
with wind tunnel experiment data in the first two digits. In addition, computational
results are visualized to do the global survey of flow. Computation mentioned
above might be sufficient for unders tanding overall aerodynamic quality and
tendency of a flowfield. However, CFD researchers are hoping to let CFD more
useful. Then we have been concerned with what causes the discrepancy in the

266

third digit of CL and CD values and interested in analysis of physical mechanism
of flow phenomena by CFD. We expect the grid size (the number of grid points) is
one of important factors and then plan to undertake large scale computation using
a great number of grid points on the NWT.

2. NUMERICAL METHOD

2.1 Algorithm to discretize equations
Basic equations to describe a flowfield are the Reynolds averaged thin-layer

Navier-Stokes equations. The numerical algorithm is a finite difference method
with implicit time integration. In space, Roe's flux difference splitting with the
third order MUSCL interpolation is adopted for the convective term and the second
order central differencing is for the diffusion term. In time, the LU-ADI method is
applied [3]. To evaluate turbulence eddy viscosity, we use the modified Baldwin-
Lomax model proposed by Degani and Shiftin their computation of vortical flow at
a high angle of attack [4].

2.2 Parallel implementation
Parallel implementation of the Navier-Stokes solver is performed by a simple

version of domain decomposition technique, which makes good use of the attribute
of replicated local variables of NWT-FORTRAN. Simulation is conducted using 1
to 16 PEs. The number of used PEs depends on the number of grid points. When
simulating with 1.1 million grid points, 2 or 4 PEs are used and when simulation
with 7.5 million points, 8 or 16 PEs are used. The CPU time it takes to calculate a
flowfield at the next time step is about 5.2 ~sec per one grid point when simulating
with the original solver on single PE, which has no parallel implementation. As for
parallel computation, it is 2.7 ~sec when 2 PEs are used, 1.4 ~sec when 4 PEs are
used and 0.36 ~tsec when 16 PEs are used. In other words, the efficiency of the
number effect of PEs is almost 100%, so far.

2.3 Grid system
Two grid systems are prepared for numerical simulations. The first grid is

prepared to investigate global aerodynamic characteristics. It contains 1.1 million
points in space around a Space Plane and requires about 280 MB of memory
storage for computation. Before the installation of the NWT, the simulation was
performed with a half grid system in order to save time and memory. The grid
system around the whole Space Plane model containing 1.1 million grid points was
bisected at the symmetrical plane of the model to be the half system. The half
system was used with the assumption that a flowfield must be symmetric.

We prepare a finer grid that contains 7.5 million points for a grid refinement
study, aiming to improve the accuracy of local and microscopic aerodynamics of
computational results. The second grid requires about 1.8 GB of memory.

The differences between these two grid systems are the distribution along
(streamwise) and ~ (normal to the Space Plane surface) directions, and the
compression rate of grid spacing inside a boundary layer. The ~ direction is aligning

with the longitudinal axis of the Space Plane model and the ~ is from the model

267

surface to the far field boundary. Along the ~ direction, almost every grid interval
of the fine grid is as half as the corresponding grid interval of the coarse one, along
the ~ direction, each grid interval of the free is about one third of that of the coarse.
Inside the boundary layer, the fine holds four times as many grid points as the
coarse has. The number of grid points of each direction is 110 x 200 x 49 (~ x ~l x ~)
in the coarse grid and 270 x 200 x 129 in the time grid. In the following sections and
figures, the first grid system is called 'coarse grid' and the second is called 'fine grid'
for convenience.

3. C O M P U T A T I O N TO ESTIMATE GLOBAL AERODYNAMICS

Simulations using the coarse grid were conducted on NWT (a vector parallel
machine) as well as VP2600 (a vector machine) [5,6]. Figure 1 shows the front
and perspective views of emerging and growing of leading edge vortices visualized
from one of the computational results for parametric study. The Space Plane is
flying at a transonic speed with the angles of attack and yaw. Because of the
angles of yaw, the flowfield is unsymmetric. The side wind is blowing from the right
side of the figure. Three dimensional traces of stream lines expose many
interactions and the development of separation vortices. Interactions between a
vortex and vortex, a vortex and side wind, a vortex and the Space Plane's surface,
and a vortex and the tail wing. Figure 1 suggests that there possibly occur
interesting interactions and complicated vortical phenomena far form the wall of
the model where grid distribution is not well considered and the grid spacing there is
sometimes too big to resolve the flow physics.

In Figure 2, CL and CD curves are presented as a function of an angle of attack
at M~=0.9 and 1.5. Dashed lines are denoting data measured by the wind tunnel
experiment at the NAL [7], and circles are presenting computational results. The
global properties such as CL and CD of computational results are in good
agreement with those of experimental results on the plotting scale of Figure 2,
while there is discrepancy between experiment and simulation in predicting
microscopic aerodynamics [5-7].

Figure i Stream Lines of Leading Edge Vortices (Moo= 0.9, a = 10 ~ ~ = 10~

268

CL
1 . 5

I cL vs. aLPHA I FMRCH = o . g o 0 0
RE NO. = 0 . 1 3 E + 0 7

EXP COMP
m

1 . 0

0 . 5

0 , 0

. j � 9

/)=

w

I)

. /

- 0 . 5

- 1 0 , O, 10,

|

20, 30 .
RLPHR

CL
2 , 0

I CL VS, ALPHA I

1 , 5

1 , 0

0 . 5

0.13

I
. /

j '

.,., ;,

- 0 . 5

- 1 0 , O.

FMRCH = 1 , 5 0 0 0
RE NO, = 0 , 4 0 E + 0 7

. , r

, . j f""

10, 20. 30, 40, 50 ,
ALPHA

CO
2 , 0

I CO V5 RLPHR I FMACH = 0.9000
. " RE NO. = 0.13E+07

C O EXP COMP
I . 5 | I . 5

1.0 1.0~

I CO V5. RLPHA I FMRCH = 1.5000
RE NO. = 0.40E+07

0.5 0.5

0 . 0 - O, 0 D

js"'

-0.5 -0.5
-I0. O. i0. 20. 30. -I0. O. I0. 20. 30. 40. 50.

ALPHA ALPHA

Figure 2 Lift and Drag Coefficients at Moo= 0.9 and Moo= 1.5.

4. COMPUTATION FOR GRID REFINEMENT STUDY

Computation with the fine grid is being carried out using 8 or 16 PEs on NWT.
In this study, we choose the free stream conditions as Moo= 1.5, and a = 15 ~ In
figures 3-5, the simulation results using both grids are compared. They show the
density contour map and the surface Cp distribution in a cross flow sectional plane
at several stations of ~ direction, x ~ means the station; x is the distance from the
nose tip of the model and the L is the whole length of it. Cp distribution measured
by the NAL's wind tunnel experiment is also plotted just for reference [7]. Circles
are denoting experimental Cp data while solid and broken lines are Cp distributions

269

predicted by computation These figures indicate tha t the present computation
using the fine grid can give an improved result in capturing vortex phenomena and
predicting pressure values.

4.1 Cross f l o w p h e n o m e n a a tx /L=0 .60
In figure 3, on the upper surface of the body, two vortices definitely appear

when the fine grid is used. They are caused by the leading edge separation some-
where on the former surface of the Space Plane. They smear out when the coarse
grid is used. On the lower side of the wing-body juncture, concentration of contour
lines lying separately from the surface is observed only in the density contour map
of the fine grid. We call it a detached boundary layer, not a separated boundary
layer, because a separated boundary layer usual ly forms a vortex and doesn't
remain to be such a shear layer as seen in the density contour map. In the narrow
region surrounded by the lower surface and the detached boundary layer, a fiat
anti-clockwise vortex is observed through other visualization. These two facts
make the computed Cp distribution using the fine grid in better agreement with
the experimental one on either surface.

Density
Contour

- I .5 - I .5

- 1 . 0

Cp
Distribution

0.0

- 1 . 0

Fine
.0 1.0

1
/
f

o EXCUPPER)
o EXCLOWER)

~ C P C U P P E R 3

;---: : :--; : ~ t . i . J

C o a r s e ALP= 15.00

Figure 3 Comparison of Computational Results (Moo= 1.5, a = 15 ~ x/L = 0.60).

4.2 Cross f l o w p h e n o m e n a at x/L=0.83
The density maps of Figure 4 indicate three distinguished differences between

two computations. One of three is a vortex located near the symmetrical line of
the bod3r, the others are detached boundary layers on the upper and lower sides of
the wing-body juncture. Flow is moving to the ~ direction circulating inside the fiat

Dens i ty
Contour

region surrounded by the Space Plane surface and detached boundary layers. On
the upper surface of Figure 4, the accuracy of predicted Cp values with the fine
grid is improved at the wing-body juncture. The improvement is explained by the
fact that the fine grid can resolve complicated phenomena of boundary layer and
vortex interaction, such as detached boundary layer in the density contour map.
Along the lower surface, Cp distribution obtained by computation disagree with
that by the experiment. The reason of the discrepancy lies on the existence of a
big sting supporting the Space Plane model for the wind tunnel experiment.

-1.0

270

-I . 5 -I . 5

-1.B

o EXCUPPER)
o EXCLOWER3

- - C P C U P P E 8)
...... CP(LOWER)

0.6 . ~ 0.0

o
o

Cp
Distr ibut ion

1.0 1.0

0

0

Fine Coarse

14~ = 1 . 5 0
ALP= 1 5 . 0 0

Figure 4 Comparison of Computational Results (Moo= 1.5, a = 15 ~ x/L = 0.83).

4.3 Cross flow phenomena at x/L=0.91
In figure 5, boundary layer behavior at two locations appears differently on two

computations using the coarse and fine grids. Only the fine grid can resolve the
detached boundary layers on both sides of the body-wing juncture. In respect of
vortical flow phenomena, there is no big difference between two computations. On
the upper surface of this cross section, both of the Cp distribution curves of two
computations show good agreement with the experimental one. The discrepancy
between experimental and computational data on the lower surface is explained by
the same reason as that at the station of x~=0.83, the sting for the experiment.
At this station, flow looks complicated with some vortices but stable. Flow doesn't
seem to critically respond to small disturbances because of the positive effect of
delta-shape main wings and v-shape tail wings.

271

Density
Contour

- 1 . 5

- 1 . 0

Cp
Distribution

0 . 0

__,.,

- 1 . 5 o EX(UPPER)

- 1 . 0

�9 0 .0

o o

1 . 0 1 . 0

o EXCLOWER)

...... CPCLOWER~

N o o - 1 . 5 0
ALP= 1 5 . 0 0

Fine Coarse

Figure 5 Comparison of Computational Results (Moo= 1.5, a = 15 ~ x/L -- 0.91).

5. CONCLUSION

Navier-Stokes simulation of flows about the Space Plane has been carried out
usingtwo grid distributions. They differ in the grid spacing in the ~ (stream wise)
and the ~ (normal to the surface) directions, and the number of grid points in a
boundary layer. The finer grid distribution improves resolution of flow physics
especially on behavior of a boundary layer and vortices, and on rotating flow in a
boundary layer. Higher resolution yields more accurate estimation of aerodynamic
characteristics of the Space Plane. However, there are still some differences from
experimental results in the present simulation.

We admit other factors that influence the computational accuracy, such as
turbulence models have to be investigated. We still dare to conclude grid spacing
has to be decided in accordance with the physical scale of a phenomenon to be
simulated Grid distribution should be finer than half of the physical scale.

This motivates us to challenge larger scale computation for predicting more
accurate flow physics using finer grid distribution of which grid spacing in q
(circumference on cross sections) direction is as half as the present grid.

R E F E R E N C E S

[1] Miyoshi, H., et al., Development and Achievement of NAL Numerical Wind

272

Ttmnel for CFD Computations, IEEE Supercomputing' 94, (1994).
[2] Iwamiya, T. and Fukuda, M., Numerical Wind Tunnel of National Aerospace

Laboratory, WBPE, (1993).
[3] Fujii, K. and Obayashi, S., Navier-Stokes Simulation of Transonic Flows over a

Practical Wing Configuration, AIAA Journal, Vol.25, No.3, 1987.
[4] Degani, D. and Schiff, L. B., Computation of Supersonic Viscous Flow Around

Pointed Bodies at Large Incidence, A A Paper, 83-0034.
[5] Matsushima, K, et al., Navier-Stokes Computations of the Supersonic Flows

about a Space Plane, A A Paper 89-3402CP, (1989).
[6] Matsushima, K. and Takanashi, S., Navier-Stokes Simulations of Transonic

Flows about a Space Plane, AIAA Paper 94-1864CP, (1994).
[7] Sato, M., et al., Aerodynamic Characteristics of a Space Plane at NAL's

Transonic/Supersonic Wind Tunnel, 19th annual Meeting of JSA~ (1988).
(In Japanese)

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

273

LARGE SCALE NAVIER-STOKES AERODYNAMIC SIMULATIONS OF COMPLETE
FIGHTER AIRCRAFT ON THE INTEL PARAGON MPP
J. Vadyak and G. D. Shrewsbury
Lockheed-Martin Skunk Works, Palmdale, California, USA

G. Montry
Southwest Software, Albuquerque, New Mexico, USA

V. Jackson, A. Bessey, G. Henry, E. Kushner, and T. Phung
Intel Scalable Systems Division, Beaverton, Oregon, USA

1.0 SCOPE
This paper describes the development of a general three dimensional multiple grid zone

Navier-Stokes flowfield simulation program (ENS3D-MPP) designed for efficient execution on
the Intel Paragon Massively Parallel Processor (MPP) supercomputer, and the subsequent
application of this method to the prediction of steady viscous flowflelds about complete modern
fighter aircraft using very large scale viscous computational grids. The present paper focuses on
porting strategies and timing results for viscous simulations ranging from roughly 0.5 million to
30 million mesh points with the number of compute nodes varying between 30 and 1024. Some
preliminary results using the lastest Paragon MP compute node are also discussed.

2.0 DESCRIPTION OF GRID GENERATION AND FLOW SIMULATION METHODS
2.1 Background of Grid Generation Methods

A family of computer analysis programs have been developed at Lockheed-Martin for
calculating steady, or unsteady, three-dimensional viscous turbulent flowfields. These programs
can compute the flowfield for individual aircraft components or complete aircraft configurations
over a large range of flow conditions. The flowfield solution for a given configuration is
determined on a structured body-fitted, three-dimensional, curvilinear computational mesh.
The computational mesh for each different configuration is determined by a separate grid
generation computer program. A variety of grid generation programs can be used in conjunction
with the flow analysis codes. Most of the existing mesh generation programs rely on numerical
grid generation techniques which are based on solving a system of coupled elliptic or parabolic
partial differential equations. Isolated component geometries are typically analyzed using a
single block grid approach. Multi-component configurations are typically analyzed using a
multi-block grid approach where the global computational grid is comprised of a series of
sub-grids which are patched together along common interface boundaries.
2.2 Background of Flow Analysis Methods

Once the computational grid is generated, the flowfield solution can be obtained using a version
of the Lockheed-developed ENS3D (Elliptical Navier-Stokes in 3-Dimensions) flowfield
simulation program by solving either the full three--dimensional Reynolds-averaged
Navier-Stokes equations, the thin-shear-layer Navier-Stokes equations, or the Euler equations.

The governing equations are cast in strong conservation-law form to admit solutions in which
shocks are captured. Second-order differencing is used in computing the metric parameters
which map the physical domain to the computational domain. A time-marching, fully-implicit,
approximate factorization scheme (Ref. 1) is used for solution of the finite-difference equations.
This produces a system of block tridiagonal equations to be solved for each time step. Either

274

steady-state or time accurate solutions can be obtained, with second-order or fourth-order
spatial accuracy and first- or second-order temporal accuracy. The convective (inviscid) terms
in the governing equations can be differenced using either central differencing or TVD upwind
differencing using an extension to three-dimensional viscous flow of Harten's method (Ref. 2).
The upwind differencing option considers the range of influence and domain of dependence at a
solution mesh point by examining the local characteristic fields. The viscous diffusion terms
employ central differencing. The algorithm includes the grid speed terms in the contravarient
velocity calculations, thereby permitting the computation of unsteady flows with a time-varying
grid. A solution adaptive grid method capability is also present.

Although the interior points are updated implicitly, an explicit boundary condition treatment is
employed which allows for the ready adaption of the program to new configurations. To aid
convergence, non-reflecting subsonic outflow boundary conditions are employed along with a
spatially varying time step for steady-flow solution cases. For the central difference option, the
algorithm can use either a constant coefficient artificial dissipation model or a variable coefficient
model where the coefficient's magnitude is based on the local pressure gradient. For the upwind
differencing option, the algorithm is naturally dissipative. Laminar viscosity is computed for
viscous cases using Sutherland's law or, for a mixture of gases, using parametric curve fits as a
function of temperature while employing Wilke's law (Ref. 3) to obtain the effective mixture
molecular viscosity. For turbulent viscous flows, the effective eddy viscosity can be computed
using either the Baldwin-Lomax two-layer algebraic turbulence model (Ref. 4), the
Johnson-King one-half equation model (Ref. 5), or the k-e two--equation transport model (Ref.
6). The k-e model requires the solution of 2 additional partial differential equations.

Versions of the ENS3D flow analysis algorithm were developed that can account for real gas
effects to permit high speed flow simulations or simulations involving gas mixtures. Three
thermochemical models were incorporated with varying degrees of complexity and computer
resource requirements.

Another version of ENS3D was developed to treat aeroelastic effects by simultaneously solving
the Navier-Stokes equations and a structural dynamics model (Ref. 12). This version,
ENS3DAE, was developed under funding from the U.S. Air Force Wright Laboratory and is in
the public domain. The ENS3DAE code is written to handle arbitrary block grid topologies and
has been recently upgraded with additional propulsion boundary conditions options, real gas
effects, turbulence model options, and convergence acceleration schemes. Aeroelastic analyses
are obtained by coupling a set of structural dynamics equations of motion to the aerodynamic
solution. This is accomplished by using pressures computed by the aerodynamic analysis as
forcing functions for the structural dynamic equations. The structural equations are solved using
an explicit predictor--corrector scheme to ultimately obtain structural deflections. A fully
coupled, time-accurate aeroelastic solution is thereby obtained.

2.3 ENS3D Execution on Supercomputers
In an effort to reduce the required computer execution time, vectorized and

vectorized/parallelized versions of ENS3D have been developed to execute on shared memory
vector/parallel supercomputers such as the Cray Y-MP, and Cray C-90. In addition, versions of
ENS3D have been developed for various Massively Parallel Processor (MPP) platforms such as
the Masspar MP-2216, the Thinking Machines Incorporated CM-5, the Kendall Square
Research KSR-1 and KSR-2, the Intel Paragon and iPSC-860. On the Cray Y-MP
vector/parallel machines, sustained processing rates of about 180 to 230 megaflops per CPU are

275

typical. ENS3D exhibits over 98% parallelism on the these platforms. At high vector lengths
with a dedicated machine sustained processing rates of about 8 to 9 gigaflops are obtained on a
Cray C-90.

3.0 PORTING TO THE INTEL PARAGON MPP

The ENS3D flow simulation code was ported to Intel distributed memory Paragon MPE
Parallelization on the MPP was obtained using extensive explicit message passing. Two main
MPP versions were developed; namely the scalable version and the superscalable version. The
Intel NX message passing library was used for the Paragon MPP coding. The Intel MPP coding
uses double precision arithmetic to produce 64 bit words. Synchronous message passing is used
currently, but a MPP version using asynchronous message passsing is also under development.

The scalable version uses a global/local time-stepping procedure where one grid zone is
processed at a time in the compute node partition on the MPP, as shown in Figure 1. When the
specified number of local iterations or time steps has been completed for the given zone, another
grid zone is mapped into the compute node partition. This is performed for all grid zones in the
global mesh, after which the next global time step is taken, and the overall procedure is repeated
for the specified number of global cycles.

To obtain the solution within a grid zone for a time step a one-dimensional domain
decomposition is employed by assigning each K or a group of K planes in the grid block (I,J,K)
space to a given processor on the MPP, as shown in Figure 2. Grid and flow property data in the I
and J directions for this grouping of K planes are contained in the memory of the assigned node.
Data in the K direction not contained with the local node's memory and needed for calculation is
passed by using a system of ghost planes. When the sweeps in the I and J directions are completed,
a data transpose technique is used to allow sweeping in the K direction. A final transpose then
ensues before the next time step.

The code allows arbitrary block grid topologies to be analyzed. Block to block interfaces may be
of like or different curvilinear grid families with arbitrary ordering and direction. Message
passing is used to produce interblock connectivity. The scalable version is limited to using a
maximum number of processors equal to the smallest interior cross plane dimension of any grid
block.

The superscalable version creates a pseudo-compute node partition for each grid zone, and
maps the entire global mesh topology onto the MPP as shown in Figure 3. A MAP library (Ref. 7),
developed at NASA-Ames, is used to communicate between the pseudo partitions. This code
version allows all the grid zones to be integrated in time concurrently. This allows for operation
on hundreds or thousands of compute nodes and greatly reduces wall clock execution time and
increases scalability. Because grid and solution data does not have to be rolled in and out of a
single compute node partition as in the scalable version, the solution time per given grid zone is
also reduced. To minimize the required I/O time, nodes within each respective zone partition are
used to perform I/O for that grid zone only. Optimum mapping occurs when one processor is used
per K-plane per grid zone.

4.0 APPLICATIONS

4.1 General Applications of ENS3D
ENS3D has been used to analyze numerous aircraft components and complete aircraft

276

configurations. Inlets, nozzles, wings, forebodies, and wing/body component configurations
have been analyzed. Also airframe viscous analyses have been performed for the YF-22, F-16,
F-15, F-117A, ARPA ASTOVL, Navy AX, SR-71, U-2, NASP, SSTO, V-22, FDL-5A, and
FDL-5B vehicles among others including many classified configurations. Some of these
applications are discussed in Refs. 8 to 13. The application in Ref. 13 is for the V-22 Osprey
tiltrotor vehicle using a multizonal global grid with the flow simulation being performed on the
Intel Paragon and is being sponsored by NASA under the Computational AeroSciences Program.

4.2 Large Scale Fighter Aircraft Simulations on the Intel Paragon MPP
Using the Intel Paragon superscalable version of the code, very large scale 3-D Navier-Stokes

viscous flow simulations have been performed. Dense mesh solutions on global grids ranging up
to nearly 30 million points were performed for the F-117A aircraft and a generic Advanced Short
Takeoff and Vertical Landing (ASTOVL) aircraft. The largest of these simulations were
performed on the 512 GP-node Intel Paragon at the Caltech Center for Advanced Computing
Research in Pasadena, California and on the 1024 MP-node Intel Paragon at the Oak Ridge
National Laboratory in Oak Ridge, Tennessee.

Navier-Stokes flow simulations were performed on semi-span and full-span global meshes
which were comprised of 4 to 8 grid zones with common interfaces being used at the zonal
boundaries. A side view of a typical block grid topology used is given in Figure 4. The mesh
consists of a series of sheared Cartesian H-H zones with grid clustering being used to resolve the
boundary layers. The H-H block grids were generated using the Complete Aircraft Mesh
Program (Ref. 12).

Figure 5 illustrates the generic ASTOVL vehicle which was simulated along with computed
particle paths showing vortex formation emanating from the leading edges of the canards and the
wings. This case corresponds to the conditions of a free-stream Mach number of 0.17 and 30
degrees angle of attack.

Three-dimensional viscous Navier-Stokes flow simulations were performed on the Intel
Paragon for the complete F-117A stealth fighter and the ASTOVL fighter for varying grid sizes.
Resulting computation times, excluding times for input and output, are presented in Tables 1
through 4. Tables 1 and 2 present timing results for the ASTOVL vehicle shown in Figure 5.
Tables 3 and 4 present timing results for the F-117A simulations at transonic Mach number at
incidence with 0 (semi-span) and nonzero (full-span) sideslip angles.

Table 1 gives computation timing results for a global mesh consisting of 5 grid zones, each zone
having 100 axial stations, 32 spanwise stations, and 32 normal stations, thereby giving a mesh of
512,000 grid points. Shown in this table are timing results for 30, 50, 75, abnd 150 compute
nodes. Wall clock times to compute a Global Time Step (GTS) and to compute the final solution
are given. The time per Global Time Step (GTS) is defined as the wall clock time needed to
advance the solution for all points in all grid zones with 5 local time steps per grid zone being
performed. The total time is the wall clock time needed to advance the soltion 200 global time
steps or 1000 effective cycles through the entire mesh. At each grid point, 5 solution variables are
computed which are comprised of the density, 3 velocity components, and the internal energy.
Table 1 shows good scalability using the Case A-1 simulation on 30 compute nodes as the base.
Actual and theoretical linear scalings are presented in the rightmost two columns.

Table 2 presents compute timings for a 8x100x62x62 grid with 3,075,200 total mesh points
being executed on 120 through 480 compute nodes. These cases were also for the ASTOVL

277

vehicle. With this larger grid size, nearly perfect linear scaling is observed with the wall clock
time for a 480 node execution being 1.508 hours.

Table 3 presents Navier-Stokes computation times for the complete F-117A vehicle on two
meshes. The first semi-span mesh had 4 zones with each zone having 100 axial stations and cross
plane grid dimensions of 102x 102. This gives a total of 4,161,600 mesh points. The second mesh
was used for full-span simulations and had 8 grid zones each being 100x 102x 102. This mesh had
8,323,200 points and is exactly twice as large as the first mesh. Computation times are presented
for 400 compute nodes for the first mesh, and for 800 and 400 nodes for the second mesh.
Doubling the mesh size and doubling the number of compute nodes produces nearly linear
scaling. Doubling the mesh size and retaining the number of nodes at 400 results in super-linear
scaling in that a 1.84 factor increase in wall clock time was observed with theoretical linear
scaling indicating that a factor of 2.0 increase would have been required.

Table 4 presents the computation times for two different sizes for additional F-117A flow
simulations. The first mesh consisted of 8 grid zones with each zone having 80 axial stations and
cross plane dimensions of 130x130, giving a total of 10,816,000 points. The second mesh is
similar except having 160 axial stations per zone, thereby having 21,632,000 mesh points. This is
exactly twice as large as the first mesh. The Case D-2 mesh solution requires the calculation of
5.33X10"'8 final solution variables per global time step. Once again, a super-linear scaling was
noted in comparing the wall clock times for Cases D-1 and D-2. The 21,632,000 mesh case
required only 1.56 times the wall clock time of the 10,816,000 mesh case instead of a linear
scaling factor of 2.0. Case D-3 presents results for a mesh with 8x220x130x130 or 29,744,000
points. In this case, a scaling ratio of 2.25 was observed using Case D-1 as the base. Linear
scaling gives a factor of 2.75.

Tables 1 through 4 presented computation timing results excluding Input/Output (I/O) times.
The only signicant I/O is performed at the beginning and end of the execution to load the grid data
and to write the resulting flow solution data, respectively. Table 5 presents elasped times for
program output for the 3,075,200 mesh point case whose comptutation times are given in Table 2.
Results are given in Table 5 using the Paragon Unix File System (UFS) and the Paragon Parallel
File System (PFS) for varying number of compute nodes. As discussed earlier, each grid zone
employs its own I/O node set. For the 120 compute node case, the Parallel File System required
only about 16% of the wall clock time required by the Unix File System to transfer the same
amount of flow solution output data.

4.3 Tuning for the MP node Paragon
Recently, a second-generation Paragon system (Paragon MP) has become available from Intel.

The primary difference between the new system and the first-generation sytem is an additional
i860 microprocessor on each node. Thus the Paragon system has 2 i860's per node (one for
computation and one for communication) while the Paragon MP system has 3 i860's per node
(two for computation and one for communication). Concurrent execution of the 2 computational
processors is achieved automatically by the Fortran and C compilers. These compilers detect
loops that can be run concurrently and activate a thread of execution on each processor that
remain active for the duration of the loop. The limitation to which a second processor can be used
is the bandwidth to memory which supports both processors and is limited to 400 MBytes/sec.

For ENS3D, the primary operation that benefits from the additional processor is the solution of
the block tridiagonal systems of linear equations. Using a small problem on a small number of

278

nodes as a test case, it was determined that this operation runs about 20% faster on two processors.
Since the block tridiagonal solver consumes about half the time, this represents a 10% reduction
in run time. Efforts are now under way to integrate this optimization into the standard version of
the code and then run the largest problems on very large partitions. All the results presented in
Tables 1 through 4 use only one of the two application processors on the Paragon MP compute
node.

Table 1. Timing Results for 32x32 Cross Plane Dimension per Zone

Case

A-1
A-2
A-3
AM

Grid Size Mesh Compute Time per Compute
Points Nodes GTS (sec) Time(hrs)

5x100x32x32 512,000 30 62.40 3.466
5x100x32x32 512,000 50 38.97 2.165
5x100x32x32 512,000 75 28.17 1.565
5x100x32x32 512,000 150 16.87 0.937

R ~ i o t o A-1
Actual Theo
1.00 1.00
0.62 0.60
0.45 0.40
0.27 0.20

Table 2. Timing Results for 62x62 Cross Plane Dimension per Zone

Case

B-1
B-2
B-3
B--4

Grid Size

8x 100x62x62
8x 100x62x62
8x 100x62x62
8x 100x62x62

Mesh Compute Time per
Points Nodes GTS (sec)
3,075,200 120 98.62
3,075,200 160 72.91
3,075,200 240 51.32
3,075,200 480 27.15

Compute R~io to B-1
Time(hrs) Actual Theo
5.478 1.00 1.00
4.050 0.74 0.75
2.851 0.52 0.50
1.508 0.27 0.25

Table 3. Timing Results for 102x102 Cross Plane Dimension per Zone

Case

C-1
C-2
C-3

Grid Size

4x 100x 102x 102
8x 100x 102x 102
8x 100x 102x 102

Mesh Compute Time per Compute
Points Nodes GTS (sec) Time (hrs)
4,161,600 400 42.74 2.374
8,323,200 800 44.21 2.456
8,323,200 400 78.55 4.363

Ratio to C-1
Actual Theo
1.00 1.00
1.03 1.00
1.84 2.00

Table 4. Timing Results for 130x 130 Cross Plane Dimension per Zone

Case

D-1
D-2
D-3

Grid Size Mesh Compute Time per
Points Nodes GTS (sec)

8x80x130x130 10,816,000 1024 55.64
8x 160x 130x 130 21,632,000 1024 86.71
8x220x130x130 29,744,000 1024 124.97

Compute Ratio to D-1
Time (hrs) Actual Theo
3.091 1.00 1.00
4.817 1.56 2.00
6.94 2.25 2.75

Table 5. Input/Output Timing Results for 8x100x64x64 Grid Case

Case

B-1
B-2
B-3
B-4

Compute Time for Output Time for Output
Nodes Using PFS (sec) Using UFS (sec)
120 75.5 470.3
160 91.1 480.0
240 103.1
480 132.1 779.5

(PHYSICAL SPACE) CYCLE THROUGH
GRID BLOCKS PER
GLOBAL STEP

(NODE SPACE)

BLOCK BLOCK }
3 1 KMAX-2

ONE }
~ COMPUTE KMAX-2

NODE
PARTITION BLOCK BLOCK

4 2

Figure 1. Scalable MPP Version Operation.

(PHYSICAL SPACE) (NODE MAP LIBRARY
SPACE) GIVES PARTITION

CONNECTIVITY

(-,q.- ~---IP- GRID } {.oo .oo i.,o
KMAX-2 PARTITION PARTITION SOLN

3 1 FILE1

�9 .~- ~---1P,- GRID
NODE NODE FILE2

PARTITION PARTITION I / /O SOLN
4 2 FILE2 §

i / o

Figure 3. Superscalable MPP Version Operation.

BLOCK BLOCK
3 1

BLOCK BLOCK
4 2

I - i owners

[
i

k

N S P g S E

Figure 2. Domain Decomposition of a Grid Zone.

Figure 4. Zonal Volume Grid Topology for Fighter Aircraft Analysis.

e 5. Generic ASTOVL Fighter Showing Vortex Formation at Mach=.17
and 30 Degrees Angle of Attack. "-..3

280

ACKNOWLEDGEMENT

Application of the ENS3D-MPP code to the V-22 vehicle flowfield analysis is being sponsored
by NASA-Ames under Contract NAS2-14095. Intel Paragon computing time was supplied by
NASA-Ames, the Caltech Center for Advanced Computing Research (CACR), the Aeronautical
Systems Center at Wright-Patterson AFB, Intel Scalable Systems Division, and the Oak Ridge
National Labratory Center for Industrial Innovation. The authors wish to express their deep
appreciation for this support.

REFERENCES

1. Vadyak, J., "Simulation of Diffuser Duct Flowfields Using a Three-Dimensional Euler/
Navier-Stokes Solver," AIAA Paper 86-4)310, 1986.
2. Yee, H.C., and A. Harten, "Implicit TVD Schemes for Hyperbolic Conservation Laws in
Curvilinear Coordinates," AIAA Journal, Vol. 25, No. 2, 1987.
3. Eckert, E.R.G., and R.M. Drake, "Analysis Of Heat And Mass Transfer," McGraw-Hill, New
York, 1972.
4. Baldwin, B.S., and H. Lomax, "Thin Layer Approximation and Algebraic Model for
Separated Turbulent Flows," AIAA Paper 78-257, 1978.
5. Johnson, D.A., and King, L.S., "A New Turbulence Closure Model for Attached and Separated
Turbulent Boundary Layers," AIAA Journal, Vol. 23, No. 11, 1985.
6. Gorski, I.J., "A New Near-Wall Formulation for the k-e Equations of Turbulence," AIAA
Paper 86-0556, 1986.
7. Fineberg, S.A., "The Design of a Flexible Group Mechanism for the Intel Paragon XP/S",
Computer Scienecs Corp., NAS, NASA-Ames Research Center, Moffett Field, CA.
8. Vadyak, J., M.J. Smith, and D.M. Schuster, "Navier-Stokes Simulations of Supersonic Fighter
Intake Flowfields," AIAA Paper 87-1752, 1987.
9. Vadyak, J., M.J. Smith, and D.M. Schuster, and R. Weed, "Simulations of External Flowfields
Using a 3-D Euler/Navier-Stokes Algorithm," AIAA Paper 87-0484, 1987.
10. Vadyak, J., M.J. Smith, and D.M. Schuster, and G. Shrewsbury, "Simulations of Aircraft
Component Flowfields Using a Three-Dimensional Navier-Stokes Algorithm," presented at the
3rd International Symposium on Science and Engineering on CRAY Supercomputers,
Minneapolis, Minn., Sept 9-11, 1987.
11. Vadyak, J. and Schuster D.M., "Navier-Stokes Simulation of Burst Vortex Flowfields for
Fighter Aircraft at High Incidence, "AIAA Journal of Aircraft, Vol. 28, No. 10, October 1991.
12. Schuster, D.M. Vadyak, J., and Atta, E.H. "Static Aeroelastic Analysis of Fighter Aircraft
Using a Three-Dimensional Navier-Stokes Algorithm, "AIAA Journal of Aircraft, Vo127, No.
9, September 1990.
13. Vadyak, J., Shrewsbury, G.D., Narramore, J., and Montry, G., "Navier-Stokes Aerodynamic
Simulation of the V-22 Opsrey on the Intel Paragon MPP", Computational AeroSciences (CAS)
Workshop held at NASA-Ames Research Center, March 7-9, 1995.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

281

Benchmarking the FLOWer code on different parallel and vector
machines, t

C.W. Oosterlee, H. Ritzdorf,

GMD-German National Research Center for Information Technology,
Inst. for Algorithms and Scient. Computing (SCAI), Sankt Augustin, Germany.

H.M. Bleecke and B. Eisfeld,

DLR-German Aerospace Research Establishment,
Inst. for Design Aerodynamics, Braunschweig, Germany.

I n t r o d u c t i o n

POPINDA is a German cooperation project between Daimler Benz Aerospace (DASA),
Daimler Benz Aerospace Airbus, DLR, GMD, IBM Scientific Center Heidelberg, and OR-
COM. A central project goal is to utilize parallel systems for aerodynamic production
codes, and in particular to parallelize 3D industrial compressible Navier-Stokes solvers
based on a communications library. At present in POPINDA two parallel Navier-Stokes
codes exist: FLOWer, a cell vertex code and NSFLEX, a cell-centered code. The DLR
code CEVCATS serves as basis for the cell vertex code, which has been further developed
with contributions by Airbus, DASA and DLR. A description of this code is given in
[2], [4]. The sequential NSFLEX code, developed at DASA is the basis for the parallel
NSFLEX code. Both sequential codes have been successfully parallelized using the high-
level GMD Communications Library CLIC ([6]). The libraryprovides subroutines for all
communications tasks occurring in 2D and 3D multiblock multigrid applications based
on vertex-or cell-centered discretizations. Furthermore, CLIC routines analyze the block
structure, classify boundary points topologically, and detect geometrical singularities. Its
portability and therefore that of the application codes is assured by an implementation
using the message passing interface PARMACS ([1]). A next version of the CLIC library
will be based on the message passing interface MPI. With CLIC the aerodynamics codes,
consisting of approximately 65000 and 25000 lines of code, have been parallelized within
one week, which is no small achievement.
In the present work wall clock times obtained with the parallel FLOWer code are com-
pared with the sequential code. We consider two problems, a 3D Euler flow around a

t This work was supported by the German Federal Ministry for Research and Education under contract
nr. IR302A7 (POPINDA Project).

282

NACA0012-wing and a flow around a wing-body configuration. Both grids are divided
into several blocks, so that the performance on a vector computer can be compared with
the performance on a parallel machine. Results are presented on the MIMD computers
IBM SP2, NEC Cenju-3 and Intel Paragon. Wall clock times are also known for some
(parallel) vector machines, such as a Cray C90 with 12 processors, a Cray J90 with 8
processors and an NEC SX3.

T h e F L O W e r code

Three-dimensional compressible Euler and Navier-Stokes flow problems in general do-
mains can be solved by the FLOWer code. The equations are discretized on block-
structured curvilinear grids with cell vertex based finite volumes. In every control volume
the equations of mass, momentum and energy are set up as a difference of fluxes ([4]).
The fluxes are computed with a second order central difference scheme and addition of
artificial dissipation. Steady flows are being solved using an unsteady algorithm based
on an explicit multistage Runge-Kutta scheme. The code employs a multigrid algorithm
to accelerate convergence. Due to the explicit character of the algorithm and the block-
structured data management FLOWer is well suited for efficient use of parallel machines.
The usual way of parallelizing this type of code is called grid partitioning ([5], [2]). The
global grid is split into blocks, each of which is logically rectangular. Blocks can be put
together almost arbitrarily, so that complicated geometries can be covered. The applica-
tion is parallelized by assigning each block to a different process. Along the interior block
boundaries the grid is stored with some overlap. Keeping the values in overlap regions
up-to-date on all multigrid levels requires communication between the nodes.

3 T h e C o m m u n i c a t i o n s Library CLIC

A portable interface can be defined at various levels of abstraction. One possibility is
to identify high-level communication patterns in a class of applications, and to design
subroutines of a central library, which handle those communication tasks. The GMD
Communications Library CLIC (Communications Library for Industrial Codes) is such a
high-level library. The target applications are PDE solvers on regular or block-structured
grids, as they result from finite difference or finite volume discretizations. In particu-
lar, the library supports parallel multigrid applications. For this class of applications it
turns out that, although the numerics differ widely, the communication sections are quite
similar in many programs, depending only on the underlying problem geometry. If a
library covers all communication requirements of an application class, the user programs
themselves do not contain any explicit message passing, and are thus independent of any
vendor-specific interface. Only the library has to be implemented on the different plat-
forms. Programming for multiblock geometries is then as easy as for a single cube, and

283

algorithmic development on an application code and CLIC development can be done si-
multaneously. The CLIC user interface provides the application program with all required
information about the problem geometry.
CLIC is based on PARMACS 6.0 and is designed for a host-node (master-slave) model.
CLIC routines in the host program read in the description of the block-structured grid,
create node processes, distribute blocks in a load-balanced way to allocated node pro-
cessors, and input parameters to node processes. Another routine reads grid coordinates
and sends them to corresponding node processes. Each node process executes the node
program, which is similar to the sequential user program. Of course, a node process re-
ceives the information and grid coordinates only for the blocks for which the node process
performs grid computations. Library routines also analyze the block structure; i.e. for
each segment edge and segment point, the adjoining blocks and the number of coinciding
grid cells are determined and the edge or point is classified topologically. If it is part of
a physical boundary, the physical boundary conditions of all adjoining blocks are deter-
mined. In addition, grid coordinates can be examined and geometrical singularities, such
as block faces which collapse to a single point, can be detected. All these data can be
interrogated and may be used in the user program; for example in the discretization of
irregular grid points or physical boundary points. These data may be important for the
user program, however, they are essential for CLIC to be able to update overlap regions
correctly (to exchange the boundary data) and to optimize the update procedure. Within
the solution process of the user program, the update of the overlap regions of all blocks
is then performed by the call of a single CLIC routine. In that call, the user specifies
the multigrid level and can choose the number of grid functions to be simultaneously ex-
changed. Finally, CLIC performs the computation of global values (for example residuals)
and writes output, which is generated by node processes to files. An important fact for
the development and management of user programs is that a sequential version of CLIC
exists. A user program can be sequentially executed with the same interfaces as in the
parallel case.

4 R e s u l t s

4 . 1 M a c h i n e s

The MIMD computers for which the test problems have been evaluated are listed below,
together with the (standard) compiler flags used.
�9 IBM PWR2 is an SP2 with thin power2 nodes at GMD, The compiler flags: -O -
q a r c h = p w r 2 - q t u n e = p w r 2 are used.
�9 IBM PWR1 is an SP2 (Software and network) with powerl processors at ANL, USA.
Compiler flags were -O -qarch=pwr -qtune=pwr -qhssngl.
�9 Intel Paragon at KFA, Jfilich, Germany was accessed with compiler flag -O.
�9 NEC Cenju-3 also at GMD with compiler flag -O. This machine is also presented in [3].

284

The codes also ran on the following (parallel) vector computers:
�9 Cray C90 a parallel vector machine with up to 12 processors. The test problems are
run with auto-tasking, where the compiler does the parallelization, and with CLIC.
�9 Cray J90 a parallel vector machine with up to 8 processors.
The test problems are likewise run with auto-tasking and CLIC. On the Crays standard
compilation options are used.
�9 NEC SX3 a one processor system at DLR in G5ttingen, Germany. This is the production
machine on which the sequential code runs (Precompiler used is fopp).

It should be noted that the FLOWer code contains a vector optimization option, whereas
no special optimization is carried out on the cache based machines, currently. However,
the vector optimization is switched off on the latter platforms, so that it does not influence
the performance there. On Intel, Cenju-3, SP2's 32-bit results are obtained, and 64-bit
results are obtained on SX3, C90 and J90.

4 .2 E u l e r w i n g f l o w p r o b l e m

A first test example is the computation of a 3D Euler flow around a NACA0012 wing. The
Mach number Moo and the angle of attack a are chosen as follows Moo = 0.6; a = 0 ~
This problem is tested with two grids consisting of approximately 40000 and 320000 cells.
For both grid sizes the time measured is the wall clock time for 100 multigrid W-cycles
with 3 multigrid levels.
The small problem. The first grid considered contains 160 • 32 • 8-grid cells, and is
partitioned into 1, 4 and 8 equally-sized blocks (the problems are named gmdlbsmall,
gmd4bsmall and gmdSbsmall). Figure 1 shows a part of a block-structured grid around
the NACA0012-wing configuration and a partitioning into 8 blocks. The results of this
small example obtained with CLIC are presented in Table 1.

Table 1: Wall clock time results obtained with message passing for the small Euler prob-
lem.

FLOWer 1.p.6.1

NEC IBM IBM Intel Cray
Example Cenju-3 PWR1 PWR2 Paragon J90 C90
gmdlbsmall 1962 1081 722 5392 364 84
gmd4bsmall 514 338 224 1444 144 41
gmdSbsmall 302 304 294 865 80 23

The communication and arithmetic overhead is visible for the IBM SP2, when the grid is
split into 8 blocks. The wall clock times for the 8 block case are worse than the times for
the 4 block case. The times for the NEC Cenju-3 machine are within the range of IBM
results. The Intel results are worst for this test case.

285

Figure 1: Grid around the NACAOO12-wing configuration and the partitioning into eight
blocks. (source: DLR)

It is now interesting to compare these results with those obtained on the vector machines
for gmdlbsmall. The production machine NEC SX3 runs the problem in 21 seconds. On
the Cray machine the compiler now takes care of the parallelization. The Cray C90 with
one processor is completed in 71 seconds, with 8 processors in 16 seconds and with 12
processors in 14 seconds. The Cray J90 is about 4.5 to 5 times slower than the C90:
one processor takes 332 seconds and 8 processors 74 seconds. For this small problem the
production machine is hard to beat. Furthermore, the difference between the message
passing and vector results is significant. One should keep in mind that the partitioned
grid (gmd4bsmall and gmdSbsmall) consists of more grid points than the single block
grid, because the interior boundary points are in at least two processors. The Cray re-
sults with auto-tasking are about 15% better than the results obtained with CLIC. This
difference is due to the fact CLIC is a pure scalar code. Also for a single block there is
communication between host and node (transfer of convergence results) and the update
on the cut is performed by CLIC.
The medium-sized problem. The second grid considered around the NACA0012 wing con-
tains 320 x 64 x 16-grid cells, and is partitioned into 1, 4, 8, 16 and 32 equMly-sized
blocks (the problems are called gmdlbmedium, ..., gmd32bmedium). The results with
message passing of this larger example are shown in Table 2. Some results are missing
for MIMD machines in Tables 2 and 3, because the problem did not fit into the memory
of the processors. Due to swapping a comparison is not valid. Furthermore, a result for
gmdl6bmedium is obtained on a Cray J90 with 16 processors. Here 17 tasks (the node
processes and the host) are running on 16 processors.
The anomalous time in the PWR1 curve for 8 blocks is caused by a different cache behavior
for different numbers of processors. The IBM SP2 and the Cray machines are the fastest
machines for this problem. The NEC machine is also an interesting new competitor in

286

Table 2: Wall clock times with message passing for the medium-sized Euler problem

FLOWer 1.p.6.1

NEC IBM IBM Intel Cray
Example Cenju-3 PWR1 PWR2 Paragon J90 C90
gmdlbmedium 2243 489
gmd4bmedium 3544 2294 1308 667 154
gmd8bmedium 1921 1858 702 5103 374 88
gmdl6bmedium 982 690 386 2553 229 -
gmd32bmedium 549 407 233 1395 - -

the parallel computing area. The vector machines perform as follows on gmdlbmedium:
The NEC SX3 runs the 100 multigrid W-cycles in 110 seconds. The Cray C90 uses 414
seconds with 1 processor, 75 seconds with 8 processors and 56 seconds with 12 processors.
The Cray J90 solves the problem in 2040 seconds on one processor and in 388 seconds on
8 processors. Also for the medium-sized problem it is hard to beat the vector results. Of
course, the differences in costs and in peak performance of these machines are significant.
For a 32 processor machine with 64 MB per processor the medium-sized problem can also
be considered as relatively small. Larger problems would fit into the memory and will
show a better comparison for the MIMD machines. It is expected that large examples
with more than 6 million grid points will be solved more efficiently on some MIMD ma-
chines. For the small to medium-sized problems evaluated here the conclusion is that the
vector machines are still hard to beat.

4 . 3 T h e w i n g - b o d y p r o b l e m

Finally, wall clock times for an Euler flow around a wing-body configuration are compared.
The problem is again a medium-sized problem, with approximately 410.000 grid points.
The grid consists of 256 x 40 x 40 grid cells. The so-called C-grid is divided into 1, 4
and 8 blocks (called gmdwbl, gmdwb4 and gmdwb8). The flow parameters considered
are: Moo = 0.75; a = 0 ~ Wall clock time is measured, 35 multigrid W-cycles with 4
multigrid levels are taken as test case. After 35 cycles the lift coeffient has converged.
The configuration, the grid and the division into 8 blocks is depicted in Figure 2. The
performance on the MIMD machines is presented in Table 3, and looks similar as for the
previous medium-sized problem. Cray results are not available with message passing.
The vector results are also known for gmdwbl. The solution process on the NEC SX3
took 50 seconds. On one Cray C90 processor with the auto-tasking option the solution
process took 189 seconds, on 8 it took 37 seconds and on 12 processors 29 seconds. On
one Cray J90 processor the time measured was 891 seconds and on 8 processors it was
162 seconds. It can be seen that the IBM SP2 results for 8 blocks are less than a factor
2 slower than a single processor CRAY C90 for this problem.

287

Figure 2: The domain for the wing body Euler test problem with the division into eight
blocks (source DLR).

Table 3: Wall clock time results obtained with message passing for the medium-sized wing
body Euler problem

FLOWer 1.p.6.1

Example NEC/Cenju-3 SP2-PWR1 SP2-PWR2 Paragon
gmdwbl
gmdwb4 1508 907 559
gmdwb8 819 734 321 2191

5 C o n c l u s i o n s a n d o u t l o o k

In the present paper some results have been presented for providing efficient parallel 3D
Navier-Stokes solvers. Existing sequential production codes have been parallelized with
a high-level communications library CLIC. For 3D test problems the performance of the
CFD code FLOWer on vector and parallel computers has been evaluated. For small and
medium-sized problems it is not easy to beat the vector machines, although the MIMD
machines already perform very satisfactorily for the problems investigated. The cache
optimization of several routines can still be improved. Of course, the peak performances of
the machines are totally different as are their costs. It is expected that for larger problems
and for more complicated grids the parallel machines will show a better comparison.
In future papers it will be shown that CLIC is able to handle 3D grids with singularities.
This means that wing-body-engine-pylon problems, where grid singularities appear, can
be solved efficiently on parallel machines. A large wing-body Navier-Stokes test example

288

with more than 6 million grid points will be solved. Up to now interior boundary points
are solved in at least two blocks, which causes an increase in calculation time when a
grid is partitioned into many blocks. In the future this could be changed by giving
certain processes update rights on interior boundary points. Next year, the library will
be extended to adaptive grids (i.e. hierarchies of block structures). This will include
routines, that create and manage adaptively refined new grid levels, perform a load-
balanced dynamic mapping and perform data re-distribution during adaptive multigrid.

Acknowledgements

The authors thank R. Vogelsang for providing the Cray results, A. Findling and Ch.
Lantwin for the NEC SX3 results. Furthermore, the use of the IBM SP machine at
the Argonne High-performance Computing Research Facility and the Intel Paragon at
the Zentralinstitut ffir Angewandte Mathematik of the Research Center in Jfilich are
greatfully acknowledged.

R e f e r e n c e s

[1]

[2]

[3]

[41

[5]

R. Calkin, R Hempel, H.C. Hoppe and P. Wypior, Portable Programming with the
PARMACS Message-Passing Library. Parallel Comp. 20, 615-632 (1994).

B. Eisfeld, H-M Bleecke, N. Kroll and H. Ritzdorf, Structured Grid Solvers II: Par-
allelization of Block Structured Flow Solvers. In: VKI Series 'Parallel computational
Fluid Dynamics', Von Karman Institute, Rhode St. Gen?~se, Belgium, May (1995).

R. Hempel, R. Calkin, R. Hess, W. Joppich, U. Keller, N. Koike, C.W. Oosterlee, H.
Ritzdorf, T. Washio, P. Wypior and W. Ziegler, Real applications on the new parallel
system NEC Cenju-3. GMD Arbeitspapier 920, GMD Sankt Augustin, Germany,
June (1995). Submitted for publication.

N. Kroll, R Radespiel and C-C. Rossow, Structured Grid Solvers I: Accurate and
efficient flow solvers for 31) applications on structured meshes In: VKI Series 'Parallel
computational Fluid Dynamics', Von Karman Institute, Rhode St. Gen?~se, Belgium,
May (1995).

J. Linden, B. Steckel and K. Stfiben, Parallel multigrid of the Navier-Stokes equations
on general 2D domains. Parallel Comp. 7, 429-439 (1988).

[6] H. Ritzdorf, -CLIC- The Communications Library for Industrial Codes.-User's Ref-
erence Manual- GMD, Sankt Augustin, Germany (1995).
(=~ http://www.gmd.de/SCAI/num/clic/clic.html)
�9 Information on POPINDA available via www:
=, http://www.gmd.de/SCAI/num/popinda/popinda.html

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

289

The Effect of the Grid Aspect Ratio on the Convergence of
Parallel CFD Algor i thms

Y. F. Hu, J. G. Carter and R. J. Blake

Daresbury Laboratory, CLRC, Warrington WA4 4AD, United Kingdom

In this paper a parallel SIMPLE based incompressible axisymmetric CFD code
is considered. It is found that the grid aspect ratio has a strong influence on the
convergence rate of the code on several processors relative to that on one processor. This
phenomenon is analysed and is attributed to the strong influence of the cell aspect ratios
to the structure of the pressure correction equation - - a Poisson-like equation. This in
turn affects the effectiveness of the parallel preconditioner for the conjugate gradient
algorithm used in solving the pressure correction equation. The problem is further
confirmed by studying the Poisson equation. A remedy is suggested and demonstrated
to improve the convergence of the parallel CFD algorithm.

1. P R O B L E M S W I T H L A R G E A S P E C T R A T I O

The code considered is one for calculating steady-state incompressible turbulent
chemical reacting pipe flow. A cell centred finite volume approach is used to discretise
the equation. The coupling between velocity and pressure is dealt with using the SIM-
PLE procedure ([1]). The discretised momentum equations are solved with line implicit
scheme (using TDMA for the resulting tridiagonal systems). The pressure correction
equations, being symmetric, are solved using the conjugate gradient algorithm with In-
complete LU (ILU) factorization as the preconditioner. A fixed number of iterations is
used, usually 2 for the momentum equation and 10 for the pressure correction equation.

The code was paraUelised using the usual domain decomposition strategy. The com-
putational domain is split into a number of subdomains and each of the subdomains
is allocated to one processor. A 'halo' region is included in the subdomains and after
some calculations on each subdomain, communication takes place to update the data
stored in the halo regions. The TDMA is parallelised by each processor sweeping over
the subdomain once, then updating the halo data. The conjugate gradient algorithm
is easily paraUelised except the preconditioner, for which a block diagonal ILU precon-
ditioner is used. The use of block diagonal preconditioner means that each processor
calculates the preconditioner based only on the local data it has, thus the operation
is fully parallel. However by doing so the parallel conjugate gradient algorithm is no
longer mathematically equivalent to the sequential algorithm.

290

It is found that for some partitionings of the grid, the parallel CFD algorithm takes
a lot more iterations to converge, compared to the code running on one processor. This
happens frequently when the cell aspect ratios of the grid are large, and in particular,
when the domain is partitioned along the radial direction (also called y-split later on) of
a long and thin pipe. In such cases the gain in going parallel is eroded by the degradation
of the convergence rate.

To give an extreme example, Table 1 shows the results of using the parallel code
on a simple pipe flow of 1 m long with a radius of 2.5 cm. The pipe lies parallel to the
z-axis. The flow comes in from one end of the pipe and out of the other end, having a
density of 1.29 and viscosity of 0.0001. The inlet velocity is 63.8 re~s, and the flow is
assumed to be laminar. The size of the mesh is 64 • 16, that is, the grid is divided into
62 equal sections in z-direction (plus two dummy cells) and 14 in y-direction (plus two
dummy cells). The domain is then split in various ways and assigned on to processors.
For example, processor configuration 2 x I stands for the partitioning (z-split) illustrated
by Figure 1.

Figure 1

From the table, it is seen that if the domain is split along the axial direction (z-
split), the number of iterations taken for the parallel algorithm to converge to a residual
of 10 -6 on several processors is almost the same as the number of iterations taken
for the algorithm on one processor. However when the domain is split along the radial
direction (y-split), or when box type partitioning is used, the number of iterations taken
for the parallel algorithm increases considerably, in most case more than 3 times the
number of iterations for the sequential case. This phenomenon is also observed for more

291

complex problems and for finer meshes, as well as when parallel TDMA is used instead
of the parallel conjugate gradient algorithm to solve the pressure correction equations.
Although for flow with turbulence, the deterioration in convergence is not as dramatic
as that seen in Table 1.

Table 1
Number of iterations taken for the CFD code with different partitionings. Dimension
of domain: l m x 2 . 5 c m .

Partitioning l x l 2 x l 4 x l 8 x l l x 2 2x2 4x2 l x 4 2x4 4x4

Iteration Number 368 373 378 386 1200 1134 1162 5704 5614 5637

In the literature, little has been reported about this problem and its cause. Keyes
([2]) reported problems with y-split or box type split, and suggested that it was due
to the physics of the particular flow problems studied. Many parallel CFD papers in
the literature that worked on long and thin pipe-like geometries with high cell aspect
ratios used the z-split only and, in doing so, avoided the problem associated with y-
split. However, from the point of view of reducing the communication cost, box-type
partitioning is usually more desirable than partitioning along one direction only. Using
massively parallel machines, the number of processors may be more than the number of
cells along any one direction. Thus, to utilise the parallel computers, a box-type split
is unavoidable. Therefore it is very important to investigate the cause of this problem
and to come up with some remedies.

2. A N A L Y S I S OF T H E E F F E C T OF CELL A S P E C T R A T I O S

In the SIMPLE procedure, it is necessary to solve a pressure correction equation.
It is instructive to analyse the pressure correction equation, since it is a more difficult
equation to solve than the momentum equation. The pressure correction equation at a
cell P is of the form

~ p ~ = ~ p ~ + ~ p ~ + ~ p k + ~ p ~ + d, (1)

where cE, c w , CN and cs are coefficients that correspond to the east, west, north and
south faces of the cell respectively, and

cp = cE + c w + CN + ca.

Assuming the mesh is very fine and equi-spaced near the control volume to be con-
sidered, it is found that the pressure correction equation (1) is approximately equivalent
to

P~{(~u)~(2p~, - pk - p ~) + (~) ~ (2 p ~ - p~ - p~)} = b, (2)
a p

with ap a coefficient of the momentum equation and Az and Ay the cell size along z
and y directions respectively. Clearly (2) has the same form as a discretised Poisson
equation.

292

If the cell aspect ratio a (= A z / A y) is large, then because of the effect of squares
in (2),

cE cw 1
- - ~ - - ~ ~ 0 ,
c p c p 2(1 + a 2)

CN CS ~2 1
~ , ~ ~ . , ~.,--.

cp cp 2(1 + a 2) 2

As a result, the coupling between north and south is very strong while that between
east and west is very weak. Assume the domain is z-split into two as in Figure 1.
If a block diagonal preconditioner is used, the coupling between the east and west
subdomains, that is, those coefficients cE and cw at the processor interface, is essentially
ignored. This coupling is very weak anyway from previous analysis, thus its omission
wiU have little adverse effect on the convergence rate. However if the y-split is used, the
north-south coupling, which is very strong, is ignored when calculating the diagonally
blocked preconditioner. As a result the preconditioner is not a very good preconditioner
to the whole system. The usual fixed number of iterations of the conjugate gradient
algorithm therefore may not solve the pressure correction equation to a satisfactory
accuracy, and the whole CFD code converges slower. This is believed to be the main
reason for the deterioration of the performance of paraUel algorithms with y-split or box
type splits experienced on a long and thin pipe. It is noted that the aspect ratio also
effects the momentum equation, however the effect is relatively small compared with
the pressure correction equation.

3. A N A L Y S I S U S I N G P O I S S O N E Q U A T I O N

Because the argument applies purely on the interface cells, it implies that if the
cell aspect ratio near the interface is not large, the parallel code should not show as
significant a deterioration in convergence rate. This is verified by numerical experiment.

Further tests with the use of parallel conjugate gradient algorithms on the solution
of Poisson equation, and subsequent eigenvalue analysis, also confirms that it is the large
aspect ratios of the interface cells between processors that degrade the performance of
the algorithms.

In one such experiment, a Poisson equation on a rectangular domain [0,XL] x
[0, YL] in the (z, y) space is considered. The length of the rectangle along z is fixed to
X L = 1 and the length along y varies between Y L = 100 to Y L = 0.001. The domain
is divided into 64 x 64 cells of equal size. The derivatives on the boundary are assumed
to be known. The fight hand side of the Poisson equation is set by assuming that the
solution is p(z , y) = z ~ + y2 + zy. The number of iterations taken for the residual
to become less than 10 -5 is reported in Table 2, together with the cell aspect ratios.
Several partitionings are tested, including splitting the domain into two equal halves
with the line z = X L / 2 (z-split) or with the line y = Y L / 2 (y-split), and box type
split with two Unes z = X L / 2 , y = Y L / 2 . The processor configuration corresponding

293

to these partitioning are 2 x 1, 1 x 2 and 2 x 2 respectively. As can be seen from the
table, with the increase of the cell aspect ratio, y-split takes more and more iterations
to converge, z-split generally takes less and less iterations, while the performance of box
type split usually follows the worst of that of the former two types of partitionings.

Table 2
The influence of changing domain size to the iteration number of parallel conjugate
gradient algorithm on the Poisson equation

XL YL Grid size Aspect ratio 1 x 1 1 x 2 2 x 1 2 x 2
1 100 64x64 0.01 67 67 226 226
1 I0 64x64 0.I 73 73 135 135

1 1 64x64 1 58 86 86 71
1 0.1 64x64 10 63 120 64 120
1 0.01 64x64 100 64 217 64 217

Table 3
The iteration number when the grid is stretched near y = 0.5. The aspect ratio shown
here is the cell aspect ratio near y = 0.5. The grid is uniform elsewhere.

XL YL Grid size Aspect ratio 1 x 1 1 x 2 2 x 1 2 x 2

1 1 64x64 0.033 64 64 62 65

1 1 64x64 0.I 81 82 92 90
1 1 64x64 1 58 86 86 71
1 1 64x64 10 73 104 86 111
1 1 64x64 30 72 139 86 147

In order to confirm that it is only the aspect ratios of the interface cells that affect
the convergence of the parallel codes, in another test the Poisson equation with XL - 1,
Y L = 1 and with mesh size of 64 x 64 is solved, but instead of using a regular mesh,
here the grid along z is still equi-spaced, but the grid lines next to the line y - 0.5 are
shifted, so as to give required aspect ratio of the cells next to the line y - 0.5. The
rest of the grid are regularly spaced. The results are listed in Table 3, where the aspect
ratios shown refer to that of the cells next to the line y = 0.5. Clearly with the increase
of the cell aspect ratios near the interface, even thought the aspect ratios of the cells
that are not next to the interface are close to unity, y-split still takes more and more
iterations compared to the sequential case. This confirms that it is the aspect ratios

of the cells next to the interface which affect the convergence of the parallel conjugate
algorithm relative to the sequential algorithm. The behavior of x-split and that of box
type split is also very easy to explain with the same argument.

4. S O M E S O L U T I O N S

The cause of the performance degradation of the parallel conjugate gradient algo-
rithm on grid with large aspect ratios readily give a possible remedy. Since it is the large

294

aspect ratios of the cells near the interface of the subdomains that affect the parallel
code, it is proposed to coarsen the grid near the interface, thus reducing the cell aspect
ratios, in order to improve the convergence.

The procedure is as follows. Denoting by a coarse grid a grid that is coarsened
near the interface where the cell aspect ratio is large. Whenever a pressure correction
equation is to be solved, the coarse grid equation is first formed and a few iterations of
the conjugate gradient algorithm are used to get a good approximation of the solution.
This is then interpolated to the original grid and a few CG iterations are applied again
to smooth out the interpolation error. The total number of CG iterations will be kept
the same as when coarsening is not used.

The coarse grid problem is formed as follows. Since the pressure correction equation
behaves like a Poisson equation, for the purpose of calculating the coefficients of the
pressure correction equation on the coarsened grid, it is assumed that the equation is
of the form

02p 02p ~(~ y). ~(~,u)-~ + ~ (~ , u) ~ = ,

After discretisation, the equation is of the form (1) with

~ s = (~) , (3,,)

c w = (~) , (3b)

(c2).A~
~ = (~u) , (z~)

(c2).A~
c s = ($y), (3d)

Now if two cells A (at (i, j)) and B (at (i, j + l)) are lumped into one cell C, then
according to (3), assuming

and

e l A A C C)~(hy) + (cl)B(hy) B = (C l) w (i y) ,

the coefficients of the discretised equation on the coarse cell can be calculated using
that on the fine cells. That is,

(CE) C : (CE) A + (CE) B,

(~w) ~ = (~w) ~ + (~w) ",

(~) o _ (~N) ' (6U)f
-- (6U)~ '

295

(s)o _
- (u)7 "

If more than one cells are lumped to form a cell, the coefficients of the coarse cell can
be calculated in a similar way.

The source terms on a coarse cell are calculated by lumping the source terms on
the fine cells which form the coarse cell.

The idea is implemented and is found to improve the convergence of the parallel
algorithms for the Poisson equations as well as the convergence of the parallel CFD code
for pipe flow.

Table 4

Iteration number and CPU time of the CFD code with various processor configurations
and with or without coarsening on problem 2

Processor configuration Iterations Total cpu time Communication time
1 x 1 5740 3243 0
1 x 2 5840 2067 309
1 x 2 coarsened 5420 1905 267

2 x l 5680 1794 182
2x2 5840 1253 335
2 x 2 coarsened 5300 1167 320

l x 4 5700 1547 519
1 • 4 coarsened 5480 1483 520

4x2 5820 988 404
4 x 2 coarsened 5240 920 382

2x4 13300 2448 1065
2 x 4 coarsened 5480 1026 457
8 x l 5700 933 358
4x4 5720 899 470
4 x 4 coarsened 5460 871 445
8x2 6100 854 419
8 x 2 coarsened 5320 765 381
16 x 1 5560 804 396

To give an example, turbulent flow in a sudden expansion pipe is considered. The
pipe is 1.0 m long and has a radius of 0.1 m. The inlet volecity is 64 m/s, density is
1.29 and viscosity 0.0001. A 64 • 32 equi-spaced grid is used. The results are listed in
Table 4.

As can be seen from the table, partitioning along the y direction tends to increase
the number of iterations needed for the algorithm to converge, although the adverse

effect is less dramatic as in the case of the laminar flow problem. Coarsening produces

some of the best iteration numbers and least CPU time.

Coarsening however has its limitation. If the cell aspect ratio is extremely large~

then lumping a few cells together will not reduce the aspect ratio by very much. How

296

to implement the coarsening procedure on irregular grid in 3D also needs further inves-
tigation.

5. C O N C L U S I O N S

The problem associated with high aspect ratios when working on parallel incom-
pressible CFD algorithms are analysed. The degradation in convergence comes only
when the domain is decomposed along a direction where the cell aspect ratios are high,
and is attributed to the strong coupling in the pressure correction equations between
subdomains.

Coarsening as a remedy to the problem has been shown to be useful.
Not reported here, the use of block correction ([3-5]) was also tested and found

to improve the convergence slightly. Overlapped block diagonal preconditioner was
suggested ([6]) to improve the pure block diagonal preconditioner, this and similar ideas
were also tried on the current problems but were found to make little improvement.

Currently the coarsening strategy is being compared with other techniques such as
the use of Schur complement type preconditioners ([7-8]).

R E F E R E N C E S

1. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, 1980.
2. D. E. Keyes, Domain decomposition methods for the parallel computation of re-

acting flows, Computer Physics Communication, 53 (1989), 181-200.
3. A. Settari and K. Aziz, A generalization of the additive correction methods for

the iterative solution of matrix equations, SIAM Journal of Numerical Analysis, 10
(1973), 506-521.

4. S. V. Patankar, A calculation procedure for two-dimensional elliptic situations,
Numerical Heat Transfer, 4 (1981), 409-425.

5. B. R. Hutchinson, P. F. Galpin and G. D. Raithby, Application of additive cor-
rection multigrid to the coupled fluid flow equations, Numerical Heat Transfer, 13
(1988), 133-147.

6. G. Radicati and Y. Robert, Parallel conjugate gradient-like algorithms for solving
sparse nonsymmetric linear systems on a vector multiproeessor, Parallel Comput-
ing, 11 (1989), 223-239.

7. T. F. Chan and T. P. Mathew, The interface probing technique in domain decom-
position, SIAM Journal of Matrix Analysis and Applications, 13 (1992), 212-238.

8. J. H. Bramble, J. E. Pasciak and A. H. Schaz, The construction of preconditioners
for elliptic problems by substructuring, Mathematics of Computation, 47 (1986),
103-134.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

297

M a s t e r - S l a v e P e r f o r m a n c e of U n s t r u c t u r e d
F l o w S o l v e r s on t h e C R A Y T 3 D

Roland RICHTER * and P~n~lope LEYLAND **
�9 CRAY Research (Switzerland) S.A., Scientific Parc (PSE)

�9 * Institut de Machines Hydrauliques et de Mdcanique des Fluides
Ecole Polytechnique Fdddrale de Lausanne, CH-1015 Lausanne, Switzerland

A b s t r a c t

Performance issues of unstructured mesh solvers with mesh adaptation, for compress-
ible flows, using different programming models and communication libraries are discussed.
The partitioning of the grid into subdomains is performed on a master (CRAY YMP),
as well as the subsequent adaptations, the solution process is executed on the slave
(CRAY T3D), with up to 128 processors. Three flow solvers of different degrees of
complexity are used to illustrate the trade-off between synchronisation and redundant
calculation necessary at subdomain interfaces. Finally, amongst the test cases presented,
a transient regime effect in optimal design is calculated, which requires a high number
of runs of complete convergence, illustrating the practical utility of parallel CFD, where
CPU time becomes e l a p s e d time and allows these series of runs to be made in a very
short period of real time.

1 I n t r o d u c t i o n

Most present day parallel implementation of CFD codes on MIMD type parallel archi-
tectures use a master-slave paradigm. The master process is responsible for reading the
initial grid, partitioning the problem, communicating with the slaves and writing the final
solution. The master can run either on an external remote front end machine, or on one
of the processing elements of the MIMD array itself, which could be dedicated to the
spawning of data.

One of the great advantages of using unstructured meshes for CFD applications is the
possibilities of solution adaptation of the meshes using local grid refinement/derefinement.
This enables a highly precise solution on a minimal number of nodes and allows the
mesh to "follow" the physical phenomena, which is particularly important for unsteady
simulation. Such techniques are also an important "optimisation" strategy for improving
initial grids of their different geometrical and physical irregularities [6, 7]. This dynamic
mesh adaptation has proved to be extremely efficient in both academic and industrial
applications [4, 6], however it remains a challenging task to perform this completely
within a parallel environment.

In its simplest form, mesh refinement takes place on the master; the new grid is then
completely repartitioned and sent to the slaves to continue the calculation. Such an ap-
proach remains efficient if the number of grid refinements is small compared to the number
of iterations required to solve the fluid problem. It also considerably simplifies any pos-
sible coupling with the CAD surface mesh generation package. However in order to use
efficiently and to progress in new parallel technology, it is necessary to advance this situa-
tion by using the master only for data management; the grid adaptation, the partitioning
and the complete computational cycle should take place on the parallel architecture itself.

298

2 Para l l e l i sa t ion of C F D Solvers on U n s t r u c t u r e d grids

Parallelisation of CFD Solvers for a distributed memory environment, such as on the
CRAY T3D, requires first a domain decomposition of the problem by some appropriate
partitioning algorithm. The computational domain is thus partitioned into a certain num-
ber of submeshes, which can be larger than the number of processors. Common nodes to
adjacent submeshes are repeated within each submesh so that every submesh keeps a con-
sistent and independent structure. The parallelisation itself is done on a subroutine level
with dynamic memory allocation to facilitate programming, but the algorithm remains
global. The choice of partitioning technique has been kept, in our case, to the simplest
one : i.e. Recursive Coordinate Bisection (RCB). This method is purely based on the
coordinates of the mesh points where the bisection is performed parallel to the x = 0,
y = 0 (and z = 0) planes, depending of eigenvector of the moment matrix of the mesh.
An example of such partitioning is shown in Figure 4, which illustrates a partial view of
an adapted mesh for a transonic flow over a NACA0012 profile. Other standard methods
are Recursive Geometric Bisection (RGB) or Recursive Spectral Bisection (RSB) which
includes some of the mesh connectivity information. Communication is finally achieved
by exchanging data between inter-domain nodes.

2.1 D o m a i n D e c o m p o s i t i o n Issues
Domain decomposition is performed usually a priori on the Master. The initial grid,
(single or multiblock), is partitioned into a certain number of subdomains, to redistribute
the information load as uniformly as possible throughout the processing elements. If
necessary several subdomains can be allocated to a same processor, (this is particularly
useful for structured grids [5]). Each subdomain acts then independently, with exchange of
information at the interfaces between the domains in order to update the solution process
[1, 5]. The way in which this communication phase is implemented depends partly upon
the type of numerical scheme involved to solve the governing equations, and upon the
precision required. The exact balance between the type of "interface overlay information"
to be exchanged within the update process of the individual subdomain solutions and
between the relative cost of those synchronisation points can vary considerably, as will be
detailed below.

2.2 N u m e r i c a l S c h e m e s on U n s t r u c t u r e d M e s h e s
In this paper we consider the simulation of compressible flow phenomena, where the
governing equations can be written in conservation form as :

+ v . 7 (w) = o
Ot

The natural discretisation of such systems of conservation laws requires the evalua-
tions of the flux balance integrals within typical control volumes. The data structure
underlining the spatial approximation within numerical schemes on unstructured meshes
can be divided roughly into three categories :

�9 Schemes where the calculation of the variables at the simplicial nodes require knowl-
edge of all neighbouring nodes values using thus direct control volumes; most weighted
residual cell vertex schemes (mixed finite element / finite volume methods) fall into
this category.

�9 Schemes for which the variables are calculated via numerical fluxes which are an
approximation of the flux integral in the normal direction nij across the interface
between computational cells, the consistent dual control volumes; these schemes are
mainly finite volume methods.

299

�9 Schemes for which all information for the calculation of the solution is derived within
each element, this is the case of the so-called compact approximation schemes; for
instance most truly finite element methods.

The scheme is then defined via a n u m e r i c a l f lux f u n c t i o n (I)F,j which evaluates
the flux integral in the normal direction nij across interface between cells (direct or dual
control volumes Ci) :

fo F(w) d~ - Ws) ~ v;j (Wi , ~ ~ i j

Ci 3

It results that any scheme can be written as the sum of an average plus a numerical
dissipation, which can be of artificial or numerical type :

1 ,
�9 ~,,(w;, %) - ~[F(w;) + F(%)] + ~ , , (w; , %)

For hyperbolic systems of conservation laws, standard finite element methods are un-
stable and need to be stabilised via upwinded test functions or via artificial viscosity for-
mulations. For the equivalent finite volume methods, either upwind solvers are adapted in
the direction nij, or consistent artificial viscosity terms are added. The sufficient precision
of the scheme is obtained by gathering information via virtual nodes Ni. and Nj. , as for
the construction of second and fourth order dissipation terms for centred schemes, or via
up and down wind elements for a higher order reconstruction in the case of approximate
Riemann solvers or upwind finite volume schemes :

N;,

NZ

Virtual points Ni, and Nj , . Up and down wind elements.

In the present paper a Lax-Wendroff scheme based on direct control volumes, and two
schemes using the dual control volumes formulation : a Jameson type centered scheme
and an Osher scheme [6, 8], will be compared.

2.3 D o m a i n D e c o m p o s i t i o n I n t e r f a c e s

There exist mainly two distinct possibilities to define the domain decomposition interface,
which are valid for structured and unstructured meshes. For the first one, the partition
interface between the subdomains follows the grid lines, so that each element (in the
present case : the triangles) belongs to a unique partition, only interface nodes have to

300

Figure 1: Zoom over domain decompositions using both interface definitions; along the grid lines
(left) and between the nodes (right).

be duplicated in the adjacent domains to obtain the consistent submeshes. The second
possibility cuts the mesh between the nodes producing thus an element layer which is
duplicated, in this case every node belongs to a single partition (see Figure 1).

Commonly these two domain decomposition interfaces are known as non-overlapping
when the partitioning is performed along the grid lines and overlapping in the other case.
Such names can be confusing, especially in the case when additional ghost cell lines are
required for the precision of the scheme or due to the type of control volume chosen. In this
paper, the terminology "direct decomposition" and "dual decomposition" will be used,
referring to the direct and dual control volume interface boundaries. Moreover, in the case
of the necessity of additional ghost cell lines, the direct decomposition will produce always
even numbers of overlapping layers and the dual decomposition only odd numbers.

This mean that schemes based on direct control volumes, such as the Lax-Wendroff
one, can evaluate the physics without overlapping layers using a direct decomposition, or
with a single layer in the dual case. Schemes using dual control volumes with second order
space accuracy require two or three overlapping layers at these internal boundaries. The
two decompositions are illustrated in Figure 2.

Figure 2: Direct (left) and Dual (right) decomposition with one layer of ghost cells.

The complete update process for schemes like the Lax-Wendroff one using direct de-
composition requires thus only flux and time step contributions to be exchanged at nodes
"0" (Figure 2-1eft), imposing two synchronisation points per time iteration. (This tech-
nique is exhaustively described in [1, 2].) For the other case, when dual decomposition is
used, only the physical values themselves have to be transferred from "1" to "2", (Figure
2-right) reducing thus the number of synchronisation points to one per iteration. How-
ever, the drawback of this second implementation is, that the flux contributions within
the overlapped elements need to be calculated redundantly on several processors.

For schemes using dual control volumes the update process is quite similar. In the first
case flux contributions are exchanged at "0" and the physical values transferred form "1"

301

to "2" (Figure 2-1eft), producing again 2 synchronisation points. In the second case, an
additional "3" to "4" transfer is performed, which can be done simultaneously transferring
"1" to "2" (Figure 2-right), resulting in once again only one synchronisation point.

In both cases, changing from direct to dual decomposition produces a reduction of the
number of synchronisation points with an increase of the redundant calculation. As it
will be shown in the next section, the choice between the strategy adopted gives varying
degrees of performance improvement depending on the complexity of the scheme, the
speed of the communication library and the hardware used.

2.4 P e r f o r m a n c e C o m p a r i s o n s on the C R A Y T 3 D
The comparison of the communication cost for both decomposition strategies is given in
Figure 3, using the three different schemes: a Jameson type centred scheme on dual control
volumes with second and fourth order artificial viscosity, a compact cell weighted residual
Lax-Wendroff scheme on direct control volumes and a complex approximate Riemann
solver using Osher's scheme on dual control volumes. The schemes are ordered here
according their computational complexity and floating point operation per time iteration.

Figure 3: Communication libraries comparisons using different decompositions on CRA Y T3D.

The test problem used correspond to a simple channel flow, presenting 25 168 nodes
and 49 932 elements, on which 1000 iterations are performed per run. The performance
analysis is expressed in terms of overheads, defined as :

overhead - Npes �9 TirneNp~s -- Timel;~
Timelp~

The basic structure of the code is kept unchanged, but the transfer of data between
submeshes is undertaken via the different message-passing libraries: the PVM library,

302

based on the Oak Ridge National Laboratory version 3, using pyre_send, (denoted in
Figure 3, as pvm), its optimised version for short messages pvm_psend (p_pvm), CRAY's
implicit data parallel model (c r a f t) and CRAY's shared memory access library (shmem).

The shmem library provides the best performance in all cases, but puts also more weight
on the programmer's side, especially when PE to PE synchronisation is necessary. Craf t
and p_pvm are also good alternatives, the first for its writing simplicity and the other for
it portability.

It results that, the simpler the scheme becomes, the more a fast communication library
is needed. For the more complex schemes, the parallel behaviour can be improved by
trading the expensive redundant calculation by further communication with additional
synchronisation points.

Direct decomposition with fast communication (shmem or p_pvm) seems to be the best
solution, for the cases studied here. However, this result should also be valid for other
schemes such as, for example, cell centred ones on structured grids, where a direct decom-
position would mean; cutting the domain along the physical values location.

To perform this comparison accurately, the code has been optimised for CRAY T3D
single PE performance, with cache alignment issues which are crucial for the small cache
of the used RISC processor, as also its instruction cache sensitivity [9].

3 The Master-Slave Paradigm with Mesh Adapta t ion
The advantage of unstructured meshes are their flexibility of dynamically adapting the
mesh during the calculation to the solution process, however such procedures are compli-
cated to parallelise efficiently. The auto-adaptive mesh algorithm is thus implemented,
in the present case, within a Master-Slave environment for distributed execution. The
domain decomposition and the mesh adaptation are performed on the Front End and the
solution process is executed on the parallels processors, as shown in the following flow
chart :

Start master)
(Spawn the slave)
(Read input file)

(Domain decomposition.)
(Send the data)

-" (Start slave)

(Receive the data)

(go57~
(Send the data)

I
(Receive the data)
(Mesh adaptation)

(Write solution)
..

As an example of this Master-Slave paradigm, a complete run with mesh adaptation
and solution cycle for a lifting airfoil, at transonic regime of Moo = 0.80 and c~ = 1.25 ~ is
given in Figures 4. The initial mesh is extremely coarse (1704 nodes and 3332 elements),
but within 5 passes of adaptation using refinement/derefinement, and geometric/physical
optimisation [6, 7], a highly optimised grid (8136 nodes, 16078 elements) has been ob-
tained, which allows a precise capturing of the weak windward side shock.

The timings for this complete run are given, in Figure 5, according to the number of
processors used on the CRAY TaD. It can be seen that the total elapsed time equivalent
here to the t o t a l T3D t • decrease well with the number of parallel processors. On the
Front End side, the grid partitioning and mesh adaptation phases remain quite constant,
as well as the data transfer time between the master and the slaves. However the part

303

Figure 4: Evolution of the C v iso-lines around a NACAO012 at M~ = 0.80, a = 1.25 ~ initial
mesh (170~ nodes/3332 elements), final mesh after 5 refinements (8136 nodes/16078 elements).

which increases with the number of processors is the preparation of the data, which means
the renumbering of the nodes and elements, so that each processor obtains a consistent
submesh with its own local numbering and the required information for the later inter-
domain exchanges. The overhead resulting out of the whole process becomes thus a linear
function of the number of processor. In the present case, the efficiency drops already to
70% on 64 processors.

Another test case over the same profile, but in supersonic regime at Moo = 0.95 and
c~ = 0.0 ~ has also been performed. This regime has the particularity of a fish tail shock
structure within the wake and an emanating normal shock. The correct position of this
shock necessitates a very high density of mesh points not only within the shocks, but also
around the profile itself in order to capture the successive expansion fans [7]. Starting
again fi'om the same coarse mesh, 5 passes of adaptat ion were necessary until the transient
effects stabilised out and the shock positions were correct (Figures 6). The final mesh
becames thus extremely fine with 54 469 nodes and 108 621 elements.

Figure 5: Timings for the complete NACAO012 at Moo = 0.80, a = 1.250 run.

304

Figure 6: Evolution of the Mach iso-lines around a NACAO012 at Moo = 0.95, c~ = 0.0 ~ initial
mesh (1704 nodes/3332 elements), after 5 refinements (54469 nodes/108621 elements).

The timings (Figures 7) looks very similar to the previous ones, even if the size of the
problem has considerably increased. The main difference is that the larger mesh points
number per subdomain, improved well the efficiency of the solver part, but the global
overhead remains the same linear function with the number of processors.

On a third test case, solving a flow over a multi element airfoil [7], where also 5
adaptat ion phases are needed for an accurate solution, the final mesh size became around
20 000 nodes and 40 000 elements, however the timings showed again the same behaviours.
The total overhead increased by 0.65 % per processor.

It results that, the total overhead for such a Master-Slave environment, with grid
partit ioning and mesh adaptat ion performed on the Front End, is a linear function of the
number of parallel processors, but i n d e p e n d e n t of the number of mesh points. In order to
go to truly parallel execution, and prepare future work on unsteady automatic dynamical
mesh adaptat ion in 3D, the above Master-Slave paradigm has to be improved. The Master
should be reduced to a master region, responsible only for initial input and final output,

Figure 7: Timings for the complete NACAO012 at Moo = 0.95, a = 0.0 ~ run.

305

the mesh adaptations need to be performed in parallel and the domain decomposition
should be replaced by a redistribution scheme to enable dynamic load balancing.

4 T r a n s i e n t D e s i g n - a T e s t C a s e f o r P a r a l l e l E x e c u t i o n

During an optimum design procedure on airfoils, the perturbation of the surfaces can
generate distinct solution branches showing an hysteresis effect in the lift/incidence polar,
when varying the angle of attack back and forth [3, 7]. The grid must be extremely
fine and regular around some parts of the airfoil, to be able to obtain these effects. It
is thus a challenging test case for mesh adaptation procedures. The freestream Mach
number is fixed at 0.78 and an initial series of computations is performed up to complete
convergence (up to 30000 time step iterations) for increasing angle of attack from -0.2 ~
to -0 .7 ~ The different lift coefficients are recorded and shown in Figure 9. Then for
the solutions around a CL of 0.6 and angle of attack around - .43 ~ a second series is
initialised by taking the solution of the previous slightly inferior angle of attack. As the
mesh adaptation is dynamically linked to the solver, the essential characteristics of the
changing solution are taken into account and each calculation is thus made on its own
specific adapted mesh (Figure 8). In all, up to 30 calculations are necessary to perform
accurately the complete lift polar. This procedure was executed on a CRAY T3D using
128 processors, each run taking approximately 800 seconds, the whole series was thus
possible to be executed on one single afternoon. This is a demonstration of the practical
utility of parallel CFD, where CPU time is now e lapsed time; often these codes are less
efficient than their serial origins in terms of single PE megaflops, but the engineer can
produce a significant quantity more calculations in the same period of office time.

Figure 8: Different Meshes (with around 22 000 nodes and 40 000 elements) and Mach values
corresponding to hysterisis effect of the lift polar, for the J-78 airfoil at Moo = 0.78, c~ = -.470

306

Figure 9: Body Mach values for the two distinct solution branches of the hysterisis effect of the
lift polar, for the J-78 airfoil at M~ = 0.78, a = -.470

5 Conc lus ions

The present work has shown that a Master-Slave environment for solving steady state
flows with auto-adaptive mesh adaptation is feasible as long as the number of refinements
is low. In 2D, there seems to be an upper limit of 128 PE's, if the efficiency of the Master-
Slave implementation using a CRAY YMP and a CRAY T3D should be at least 60 %.
The overhead is manly due to the renumbering of the nodes/elements and the setup of
the communication interfaces. It increases linearly with the number of PE's at 0.6 to 0.7
% per P E, but is independent of the number of mesh points used. Domain decomposition
and/or mesh redistribution should thus be done on the parallel machine, even when no
mesh adaptation is required.

References

[1] L. Bomholt and P. Leyland; Implementation of unstructured finite element codes on
different parallel computers. Proceeding Parallel CFD'93, 1993.

[2] C. Farhat and S. Lanteri; Simulation of compressible flows on a variety of MPP's.
INRIA Technical Report, RR-2154, 1994.

[3] A. Jameson; Airfoils Admitting Non-unique Solutions of the Euler equations. AIAA
91-1625, 1991.

[4] P. Leyland, et al.; Dynamical mesh adaptation criteria for accurate capturing of stiff
phenomena in combustion. Int. Journ. Num. Meth. in Heat and Mass Transfer, 1993.

[5] P. Leyland, J.B. Vos, V. Van Kemenade and A. Ytterstrom; NSMB: A Modular Navicr
Stokes Multiblock Code for CFD. AIAA 95-0568, 1995.

[6] R. Richter; Schdmas de capture de discontinuitgs en maillage non-structurg avec adap-
tation dynamique. PhD Thesis, EPFL, 1993.

[7] R. Richter and P.Leyland; Distributed CFD using Auto-Adaptive Finite Elements
ICASE/LaRC Workshop on Adaptive Grid Methods, Hampton Virginia, 1994.

[8] R. Richter and P. Leyland; Entropy Correcting Schemes and Non-Hierarchical Auto-
Adaptive Finite Element Type Meshes Int. Journ. for Num. Meth. in Fluids, 1995.

[9] R. Richter; Instruction Cache Sensitivity on the CRAY T3D. Technical report, 1995.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

307

Runtime Volume Visualization for Parallel CFD

Kwan-Liu Ma*

Institute for Computer Applications in Science and Engineering
Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681-0001

1o I N T R O D U C T I O N

For many scientific and engineering problems, computational fluid dynamics (CFD)
has become increasingly popular as a means to gather information for design and analysis
purposes. Massively parallel computing offers both the computing power and memory
space required to attain the desirable accuracy and turnaround time for CFD calculations.
Traditionally, monitoring of typical parallel CFD calculations is done by transmitting, at
regular times, a subset of the solutions back to a host computer. If the user just wants to
track a few numbers at some particular spatial positions, then only a small amount of data
is transferred. However, if the user needs to analyze or visualize the overall flowfield, the
amount of data transferred could be enormous, possibly ranging from several megabytes to
gigabytes. Acquiring the whole distributed domain of data involves expensive operations.
Storing and postprocessing the data on another computer could also be problematic.

A better approach is to analyze data in place on each processor at the time of the
simulation. The locally analyzed results, which is usually in a more economical form,
e.g. a two-dimensional image, are then combined and sent back to a host computer
for viewing. Scientific visualization is an effective data analysis method making use of
computer graphics techniques, and volume rendering has been recognized as one of the
most direct ways for visualizing three-dimensionM data. This paper describes the design
of a parallel volume rendering (PVR) library which renders in-place distributed data on
a rectilinear grid. There are special considerations for such design and implementation.
Due to limited space, our discussion focuses on the PVR algorithm. In [1], a thorough
discussion is given for the library design of a parallel polygon renderer.

We performed tests for runtime visualization of a three-dimensional Navier-Stokes
solver, on the Intel Paragon XP/S using from 8 to 216 processors. The interactive visual
response achieved is found to be highly desirable. The realistic pictures of the overall
flowfield help not only monitor but also understand the simulation. Performance studies
show that the parallel rendering process is scalable with the size of the simulation as well
as with the parallel computer. Although our current implementation only handles data
on a rectilinear grid, the design principles of the library can be generalized to handle un-
structured or curvilinear grids as well. A PVR algorithm developed for unstructured-grid
data is described another paper [2].

*Financial support is provided by NASA Contract NAS1-19480.

308

2. V O L U M E V I S U A L I Z A T I O N

Direct volume rendering is a powerful visualization technique. It can render the flow-
field realistically as a semi-transparent gel or smoke-like cloud. However, direct volume
rendering involves very computationally intensive calculations. Interactive rendering of
large data set can be achieved by using a massively parallel computer.

There are two approaches for direct volume rendering: projection and ray-casting. For
this work, ray-casting is used because it is easier to parallelize and implement; furthermore,
it can also render cut-planes and iso-surfaces. In the ray-casting approach, an image is
constructed in image order by casting rays from the eye, through the image plane and into
the data volume. One ray per pixel is generally sufficient, provided that the image sample
density is higher than the volume data resolution. The data volume is sampled along the
ray, usually at a rate of one to two samples per voxel (volume element). At each sample,
a color and opacity is computed by interpolating from the data values. For parallelepiped
element, there are eight vertices and trilinear interpolation is often used. The final image
value corresponding to each ray is formed by compositing, front-to-back, the color as well
as the opacity of the samples along the ray. The color/opacity compositing operation is
associative, which allows us to break a ray up into segments, process the sampling and
compositing of each segment independently, and combine the results from each segment
via a final merging step. This is the basis for our PVR algorithm [3].

3. D E S I G N C O N S I D E R A T I O N S F O R A P V R L I B R A R Y

The design and implementation of a sqftware library involves several key issues such as
the application programmer user interface (API), portability, performance and versatility.
The library should have a simple interface that does not intimidate the user. A good
library should mask differences across system software and hardware platforms through
abstraction. Good performance is essential so the user will not be tempted to write custom
code. Ideally, a library should improve performance beyond what an average user could
easily achieve without it. Finally the library should adapt to unforeseen situations, such
as low memory restrictions, and to more sophisticated application problems. Based on the
above principles, design considerations essential to implementing a PVR library include:

�9 Parallelizing direct volume rendering:
o Data distribution o Load balancings o Memory constraints
o Parallel resampling o Parallel compositing o Scalability

�9 Portability �9 Image output and display �9 Library interface
Like most other parallel applications, parallelizing direct volume rendering is a divide

and conquer process. The goal is to distribute both data and computation among available
processors. There are basically two approaches for parallelizing direct volume rendering:
one is to separate the ray-casting (i.e. resampling) process from the compositing process
[3]; the other is to overlap them [8,2]. The first approach has been selected for rendering
regular data because it is straightforward to implement and can render as efficient as the
overlapping approach in a runtime visualization setting.

Data distribution is a problem for both the application (parallel CFD) and the visu-
alization (PVR). The design principle is to allow the application programmer to focus
on the application program instead of the rendering program. Ideally, a renderer should

309

be able to process local data regardless how decomposition was done. For both parallel
CFD and PVR, it has been shown the best scalability can be achieved by decomposing
the domain in such a way as to have sizes in all dimensions as close as possible [9,6].
For example, three-dimensional decomposing (into blocks) is better than one-dimensional
(into slabs); for parallel CFD, block decomposition could reduce communication costs,
and for PVR, rendering would become less view-dependent. Currently, the renderer can
handle one-, two-, and three-dimensional decomposed data, but each data subset must
contain voxels that are spatially consecutive; this restriction can be released for irregular
data partitioning [2]

Load balancing is an important issue for achieving the maximum parallel efficiency.
According to our test results, imbalanced load generally can degrade the overall perfor-
mance by 20-40%. Dynamic load balancing, if implemented efficiently, should be able to
remove at least 50% of the degradation. A few load balancing strategies for PVR have
been proposed which require preprocessing of the data, specialized parallel architectures
or data distribution schemes [5,8,7]. For time-varying data, preprocessing is generally
impractical since the distribution of the interested part of the data can not be decided
statically. For an in-place rendering library design, implementing efficient dynamic load
balancing strategy is challenging.

The rendering process is separated into local resampling and global compositing. Con-
sequently, no communication is required during the resampling process. The parallel re-
sampling algorithm is based on the author's previous work [3] which requires replicating
voxels at boundaries. As most CFD codes use a finite-difference formulation, replication is
required anyway for a parallel implementation. Nevertheless, the replication requirement
could be removed if resampling were done differently.

Another important issue to consider is the memory constraints of a processor as most
applications are memory-intensive. It is usually not the case that the simulation and the
renderer can share the data. Additional memory space is needed to store the data to be
rendered, rendering parameters and partial images. Normally, the quantities to be visual-
ized are calculated and stored separately by the application, and passed to the renderer.
Therefore, a PVR library should have moderate and predictable memory requirements so
the application programmer can plan accordingly. The amount of memory space for the
renderer is dominated by [(nvoxr + 4.((n/p) + (n/p2/3))] in bytes, where nvoxr is the
total number of voxels, p the number of processors, n the number of pixels in the final
image; note that storage for boundary replication and rendering parameters are ignored.

After the rendering step, a partial image is produced on each processor. A parallel
image compositing process then merges all partial images, in depth order, to achieve the
complete image. This global combining process requires inter-processor communication.
A direct compositing method [6] has been selected for the library design, which pro-
ceeds independently of the way in which data was partitioned. In the direct compositing
method, the image plane is subdivided and each node is assigned a subset of the total
image pixels. Each rendered pixel is sent directly to the node assigned that portion of
the image plane. Processing nodes accumulate these partial image pixels in an array and
composite them in proper order after all rendering is completed. Neumann [6] subdivided
the image space in an interleaved fashion to ensure load balancing. Other parallel im-
age compositing algorithms such as binary-swap developed previously by the author [3],

310

though superior in performance, would require regular data partitioning and the use of
special data structures, thus less desirable for a generic PVR library design.

The scalability of the rendering phase is generally good since no communication is
required. On the other hand, the scalability of the compositing part needs to be verified
since there is some inter-processor communication involved. A performance analysis of
the parallel compositing algorithm determines the communication cost for block data
subdivision on a bidirectional torus to be [cl"p-(1/6)'n't,Tans+c2"pS/6"towTh~ad] where Cl and
c2 are positive constants smaller than 1, and ttTans is per-pixel transfer cost and tov~Thr
is per-message overhead. Our analysis, consistent with Neumann's results [6], indicates
that when message overhead is not high, the communication cost in fact decreases as the
number of processors used increases. Thus the direct compositing method is acceptable.

At the end of image compositing, subimages are sent back to a remote workstation for
storing or displaying. This results in a serial data stream, and message latencies may
become a limiting factor with large number of processors. Image compression techniques
can be used to achieve reasonable display rates. In our current implementation, direct
transfer is used because most large-scale scientific simulations do not run multiple time
steps per second, even on a massively parallel computer. In addition, when using a HiPPI
frame buffer or Parallel I/O, the above problems become less severe.

Presently, the development of the library has been done on the Intel Paragon XP/S
operated at the NASA Langley Research Center. The library has been written in C + +
and the Intel's native communication library NX. Better portability can be achieved by
moving to MPI or PVM. Finally, the library interface design includes both the API and
the interactive user interface for setting up the renderer. The API should be as simple
as possible. The application program passes the renderer the pointer to the subvolume,
a record describing the geometry of the subvolume, and the rendering specifications.
The interactive user interface should allow the user to set and change the rendering
specifications including viewing and lighting parameters, image resolution, rendering rate
and transfer functions.

4. A P A R A L L E L N A V I E R - S T O K E S S O L V E R

A parallel Navier-Stokes solver has been implemented particularly for testing the PVR
library on the Intel Paragon. It allows us to experiment with different data distribution
schemes and other design criteria. The unsteady compressible Navier-Stokes equations are
a mixed set of hyperbolic-parabolic equations in time. We chose the classical MacCormack
finite-difference method [4] for the solution of the equations. This explicit, two-step,
three-time level scheme is second-order accurate in both time and space. During each
time level, the first step (predictor) calculates a temporary "predicted" value, and the
second step (corrector) determines the final "corrected" value. Forward and backward
differencing are alternated between the predictor and corrector steps to avoid any bias
due to one-sided differencing and to achieve second-order accuracy. The MacCormack
method is used because it is easier to parallelize and implement. Later, for further testing
of our rendering library, we will acquire more sophisticated CFD codes that are capable
of simulating real-life problems.

The flow solver is implemented as a host-node model. As shown in Figure 1, the
host program reads in the model specifications as well as the rendering specifications,

311

Figure 1. A Setting for Interactive Monitoring.

and broadcasts them to every node processor. If the data domain is subdivided into
blocks, each block has six neighbors. At each time level, the solution values at the
outermost boundary layers of each block are exchanged between nearest neighbors after
each predictor and corrector step. "Prepare Data" is a routine written by the application
programmer to calculate the flow properties to be visualized and store in the appropriate
format for rendering.

5. T E S T R E S U L T S

For testing, the simulation models laminar flow entering a rectangular region. Flow at
100 meters per second enters the small square inlet at the left of the rectangular domain.
The region has one small square-inlets at one end and a fullwidth outlet at the other end.
There are no body forces and external heat assumed. Figure 2 presents direct volume
visualization of vorticity values of the overall simulated domain at selected time steps.
To see the flow structures appearing in these images, one must adjust either the color
or the opacity mapping to enhance a particular range of values of interest. For example,
in Figure 2, regions of high vorticity are enhanced by mapping high vorticity values to
red and higher opacity values, and low vorticity values to white and lower opacity values.
The symmetric structures shown in all images verify the symmetrical boundary condition
assigned. Three-dimensional volume visualization gives us a global, realistic view of the
flow simulated, and thus a better understanding of the overall flow structures.

To evaluate the performance of both the simulation and the library, tests were performed
on the Intel Paragon XP/S by using from eight to 216 compute nodes. The performance
measures shown here were obtained by first calculating the average time over 300 time
steps for three randomly picked viewing angles at each node; then the maximum time
among the nodes is picked. Time is shown in seconds.

To see the scalability of both the solver and the rendering process, Table 1 shows time
breakdown for rendering 256 •215 image on a fixed problem size of 603 data points
using various numbers of processors. Figure 3 displays the same information graphically
for revealing scalability by using log scale for both the x and y axes. As the timing results
show, the simulation scales very well and thus achieves linear speedup. The rendering

312

Figure 2. Tracking the Magnitude of Vorticity at Selected Time Steps.

313

Table 1
Time Breakdown for Using Different Number of Nodes.

node size 8 27 64 125 216
simulation (compute)
simulation (communication)
preparing data
resampling
compositing (raw compositing)
compositing (communication)

10.665 3.1435 1.3282 0.7542 0.4109
0.0453 0.0441 0 .029 0.0246 0.0199
0.3026 0.0963 0.051 0.0670 0.0433
13.01 4.21 1.877 1 . 1 0 2 0.681
0.151 0.0525 0.0501 0.0455 0.0310
0.106 0 . 0 8 0 0.0672 0.0612 0.0583

Time
(s e c)

10

0.1

0.01

/ I _

sim communicate ~ ' - ~ - - .
vis resample A

vis composite

" ' ' ' ' ' ' ' . ,"2-

I I I

8 27 64 125 216
Number of Processors

Figure 3. Timing for Both the Simulation and Runtime Visualization.

process scales well with the simulation as well as the parallel system. It also can be
predicted that when running on a parallel system with faster processors and communi-
cation network, interactive steering of the simulation is feasible. Note that the time for
image output and display is not shown here because our current display system is not
representative.

Table 2 shows the time breakdown of one time step of the flow simulation and rendering
256 x256-pixel image using 125 nodes. To show how the rendering process perform as the
problem size increases the test were repeated for three different domain sizes: 603 , 1203
and 2403 . It is easy to see that simulation time dominates for typical problem sizes.

6. C O N C L U S I O N S

If the current trend in scientific computing continues, a parallel PVR library could be
very useful to computational researchers who run their simulations on massively parallel

314

Table 2
Time Breakdown for Different Problem Sizes.
problem size 603 1203 2403
simulation (compute)
simulation (communication)
preparing data
resampling
compositing (raw compositing)
compositing (communication)

0.7542 5.6258 44.0
0.0246 0.073 0.254
0.067 0 .261 1.485
1.102 2 .054 2.845
0.0455 0.044 0.044
0.0612 0.085 0.0765

computers. Interactive visual responses reflecting simulation states and the physical phe-
nomena modeled, allow better control of the simulation, and can offer additional insights
into the physics behind the model. The parallel rendering library described in this paper
is designed for distributed memory message passing environments. It provides an interface
to handle volume data on a rectilinear grid. In CFD, rectilinear grids are still widely used
but a majority of problems of more complex geometry require the use of either curvilin-
ear or unstructured grids. This library can be extended to handle those grids using the
algorithm described in [2]. Important future work includes implementing dynamic load
balancing strategies and a graphics user interface and improving image I/O.

R E F E R E N C E S

1. Tom Crockett. Design Considerations For Parallel Graphics Libraries. Technical re-
port, Institute for Computer Applications in Science and Engineering, NASA Langley
Research Center, Hampton, VA 23681-0001, June 1994. ICASE Report No. 94-49.

2. Kwan-Liu Ma. Parallel Volume Ray-Casting for Unstructured-Grid Data on
Distributed-Memory Architectures. In Proceedings 1995 Parallel Rendering Sympo-
sium. ACM SIGGRAPH, October 1995.

3. Kwan-Liu Ma, J. Painter, C. Hansen, and M. Krogh. Parallel Volume Rendering Using
Binary-Swap Compositing. IEEE Computer Graphics and Applications, 14(4):59-68,
July 1994.

4. R.W. MacCormack. The Effect of Viscosity in Hypervelocity Impact Cratering.
American Institute of Aeronautics and Astronautics, 1969. AIAA Paper No. 69-354.

5. Paul Mackerras and Brian Corrie. Exploiting Data Coherence to Improve Parallel
Volume Rendering. IEEE Parallel ~ Distributed Technology, 2(2):8-16, 1994.

6. Ulrich Neumann. Parallel Volume-Rendering Algorithm performance on Mesh-
Connected Multicomputers. In Proceedings 1993 Parallel Rendering Symposium,
pages 97-104. ACM SIGGRAPH, October 1993.

7. Jason Nieh and Marc Levoy. Volume Rendering on Scalable Shared-Memory MIMD
Architectures. In 1992 Workshop on Volume Visualization, pages 17-24, 1992.
Boston, October 19-20.

8. Claudio T. Silva and Arie E. Kaufman. Parallel Performance Measures for Volume
Ray Casting. In Proceedings Visualization '94, pages 196-203, 1994.

9. Jianping Zhu. On the Implementation Issues of Domain Decomposition Algorithms
for Parallel Computers. In Proceedings Parallel CFD '92, pages 427-438, 1992.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

315

Integration of Particle Paths And Streamlines
in a Spatially-Decomposed Computation

David Sujudi and Robert Haimes

Department of Aeronautics and Astronautics, MIT
Cambridge, MA 02139, USA

1. Introduction

The visualization of complex 3-D vector fields is difficult. To aid investigators in this
effort, various visualization tools, such as instantaneous streamlines and particle paths, have
been developed. These techniques are modeled on the experimental visualization techniques
called streaklines and hydrogen bubbles, which have been very useful in examining boundary
layer flows. Darmofal and Haimes [1] [2] have developed algorithms for computing
streamlines and unsteady particle paths in 3-D vector fields, and implemented them in Visual3,
a visualization software package developed in MIT's Computational Fluid Dynamics Lab [3].

However, the growth, in size and speed, of unsteady CFD calculations in the past few
years demands a visualization software capable of handling huge 3-D unsteady data as well as
providing tools for interrogating that data. To meet this goal, a parallel version of Visual3,
named pV3, is under development at MIT [4]. pV3 is designed for co-processing and also
distributed computing. Co-processing allows the investigator to visualize the data as it is being
computed by the solver. Distributed computing decomposes the computational domain into 2
or more sub-domains which can be processed across a network of workstation(s) and other
types of compute engines. Thus, the processing needed by the visualization-tool algorithms
(e.g., finding iso-suffaces, integrating particles and streamlines, etc.) can be done in parallel.

In a single-domain environment such as Visual3, a particle-path or streamline calculation
stops when the integration hits the domain boundary. However, domain decomposition brings
up concerns regarding where and how a particle-path or streamline integration can continue
when the integration reaches a sub-domain boundary (also called internal boundary). This
paper presents a scheme for managing the information movement needed to continue
integrations across these internal boundaries.

In section 2, we explain how a computational domain is decomposed and the interactions
between the processes involved in the CFD computation and the visualization. In section 3,
we briefly describe the particle and streamline integration methods and discuss the issues
encountered. Section 4 describes the solution and shows how it functions in a number of
cases. Finally, the work is summarized in section 5.

316

1
Boundary I condition

l

Data [
update

pV3 routine I
pV_Update �9

/-- Client 1

typical CFD solver

Client 2 - - ~

f

I

LI L "[Server I

l
Boundary]
condition

Solver]

Data I update

1
I pV3 routine I ~ pV_Update

I
Fig. 1 Interaction between the server and clients in

a typical 2-client setup.

2. Domain Decomposition

The CFD system decomposes the computational domain into sub-domains. The
computational domain is made up of elements (such as tetrahedra, hexahedra, etc.), and the
sub-domain boundaries are formed by the facets of these elements, pV3 accepts any
combination of these elements: disjointed cells (tetrahedra, pyramids, prisms, and hexahedra),
poly-tetrahedral strips, and structured blocks. In pV3, the programmer/user can specify where
an integration should continue (to a cell in a specific sub-domain, through a specific internal
boundary in a sub-domain, or to try all sub-domains) when it reaches a sub-domain boundary.

Each sub-domain is handled by a separate process (called a client in pV3), and each
computer in the distributed environment can execute one or more client(s). The user interface
and graphic rendering are handled by a process (called the server) run on a graphics
workstation. As an illustration, the interaction between the server and the clients in a typical 2-
client setup is shown in Fig. 1. A call to a pV3 subroutine (named pV_Update) is added to a
typical CFD solver to handle the processing needed by pV3, including particle-path and
streamline integrations. To keep the processing synchronized, each client does not exit
pV_Update until the server transmits a time-frame-termination message. Only then can the
clients continue to the next time step.

3. Particle-Path and Streamline Integration

A streamline is a curve in space which is everywhere tangent to the instantaneous velocity
field. It is calculated by integrating:

d~ - ~ (~)
dx

317

where s is the position vector, K the velocity vector, and I: the pseudo-time variable. The
integration employs a fourth-order Runge Kutta method with variable pseudo-time stepping.
The pseudo-time variable is used only for integrating streamlines and is independent of the
actual computation time-step.

A particle path, on the other hand, represents the movement of a massless particle as time
progresses. The calculation amounts to integrating:

ds
- ~ (~ , t)

dt

The integration uses a fourth-order accurate (in time) backward differentiation formula.
Details about the streamline and particle path integration algorithms can be found in [1] [2].

Both types of integrations start at a user-specified seed point and end when a
computational boundary is reached. In between, the integration might pass through sub-
domain boundaries. When this occurs, information needed in continuing the integration
(referred to as a "continue-integration request" or "transfer request") must be sent to other
client(s). The information usually comprises of integration state, identification number for the
particle/streamline, rendering options, client identification, etc. The client(s) receiving the
transfer request has the option to do one of the following:
�9 accept the transfer: determines that the integration continues and ends in its sub-domain.

�9 request a re-transfer: determines that the integration should try to continue in one or more
other client(s).

�9 reject the transfer: determines that the integration does not continue in its sub-domain and
ignore the request.

The algorithm for determining whether an integration hits an internal boundary, or
whether a client accepts/rejects a transfer, or requests a re-transfer involves checking the
spatial location used in the current integration stage against the sub-domain space. The details
will not be discussed in this paper, but can be found in [1]. We will concentrate on the
problems encountered in managing transfer requests, and on how the client(s) and the server
must interact to ensure that integrations are continued, while keeping the process as efficient as
possible. The issues can be stated by the following questions:

�9 Due to the existence of a "try all sub-domain" specification, how do we avoid repeatedly
sending the same request to the same client(s)? This is an efficiency issue.

�9 How can the server know when to safely send the time-frame-termination message?
Sending this message when there is a possibility of further integration transfers could
prematurely abort the integration of some particles or streamlines. Thus, the server must
know when all transfers are complete for the current time step. Otherwise, the time-frame-
termination signal can not be sent and the clients (involving the CFD solver) will remain in
a wait state, stalling the entire calculation. This situation is clearly undesirable.

�9 How do we maximize the use of the parallel environment in integrating streamlines and
particle paths? These integrations are essentially a serial process. The integration starts at
some point at the beginning of the time step and stops at another point at the end of the
time step. In between, the process must be done serially. In pV3's parallel environment,
we are able to distribute the work of integrating streamlines/particles because each client

318

processes only the objects in its sub-domain. However, problems in optimally exploiting
the distributed environment can occur due to the need to continue integration across
internal boundaries and also the existence of other types of requests that the clients need to
handle. We can foresee cases where a mixture of transfer requests and other requests
could generate a load imbalance between the clients. This issue will be illustrated and made
clearer when we discuss the solution in the next section.

When it comes time for rendering, each client sends the server the relevant information
about all the particles (i.e., their locations) that end up in its sub-domain at the end of the
current time step. A streamline, however, is divided into segments. A new segment begins
every time a streamline integration crosses an internal boundary. To render a streamline, each
client sends the server information about the segments (e.g., the points forming the segment)
within its sub-domain. The server combines the segments, constructs a complete streamline
and then renders it.

Although, the underlying construction of a particle and a streamline are completely
different, the issues encountered in continuing their integration across an internal boundary are,
in fact, similar. For a particle, the question is where it should end up at the end of the current
time step. For a streamline, the question is where its next segment should begin at the end of
the current pseudo-time step. We will take advantage of this similarity in developing a scheme
that is usable in both cases. The evolution of this scheme will be described in the next section.

4. Solution

First, we propose the following scheme:

1. We have decided to process transfer request (TR) through the server instead of having the
clients communicate directly. Thus, to continue the integration of a particle/streamline, a
client sends a TR to the server, which then distributes it to one or more client(s),
depending on the particular internal-boundary specification. We believe this solution gives
us a simpler and cleaner system overall because all other visualization message traffic is
client-server and only one process (the server) needs to manage the transfer requests.

2. For each particle/streamline segment that requires transfer across internal boundary, the
server keeps a list of clients to which the TR have been sent. The server also assigns a
unique identification number (denoted by TID, for "transfer id") for each of these
particles/streamline segments.

3. To prevent sending the same TR to a client, the server can send a TR for a TID to a
particular client only if the client is not already in the client list. Thus, to avoid sending a
transfer request back to the originating client (i.e., the client which initially sends the
transfer request), the originating client must automatically be logged in the client list.

4. Transfer requests have higher priorities (at the client and the server) over other types of
visualization requests. Thus, if the request queue of a client or the server contains a TR,
that request will be handled first. In most situations, this procedure will help lessen load
imbalances. As an example, consider a 3-client setup where the request queue of client 2
contains R1, R2, and lastly a transfer request TR, while that of client 1 and 3 contains only
R1 and R2. R1 and R2 could be requests to calculate iso-surfaces, find swirling flow,

319

generate cut planes, etc. Let' s suppose that TR will generate a re-transfer to client 3.
Requests R1 and R2 could take much longer to process in client 2 than in client 3,
depending on the partitioning, type of request, flow conditions, etc. ff the clients handle
the requests according to queue order, client 3 might finish before client 2. Then, client 3
will have to wait until client 2 handles the transfer request before it can process the re-
transfer that will be generated by that request. On the other hand, if TR has higher priority
and is processed first by client 2, client 3 will receive the re-transfer sooner. The entire
process will take less wall-clock time than without prioritizing.

5. After a client processes a TR - whether accepting, rejecting, or re-transferring the request -
it sends a transfer- processed acknowledgement (TPA) back to the server. Since the
originating client is automatically logged in the client fist, a TPA is also automatically
associated with the originating client.

6. The transfer process for a particular TID is completed when the server receives TPAs from
all the clients to which the TID has been transferred. To simplify the algorithm for
checking transfer completion we must ensure that when a client sends a TR and then a
TPA (such as in a re-transfer request), the server receives them in the same order. Then,
the server will record the re-transfer (if any is allowed) before the TPA. This can be
accomplished by setting TPA's priority to be the same as TR' s. Now, determining transfer
completion can be done at any moment by identifying those TIDs whose client list has a
complete set of TPAs. When all TIDs have a matching set of clients and TPAs, the server
knows that no more transfers will be requested during the current time step.

To illustrate this scheme, we are going to show a 3-client example in which 3 particles
require transfers in the current time-step and 1 particle does not, as shown in Fig. 2. Note that
no transfer will be requested for the fourth particle (the one in client 3) because it stays within
client number 3. Due to the similarity in continuing particle and streamline integration, we will
show examples only for particles. Shown in a step-by-step manner, the scheme works as
follows (at each step, the particle transfer log for each TID is summarized in the corresponding
table):

sub-domain boundary --~

Client 1

computation boundary. - - ~
0

i Client2 ' Client3

TID 1 TID 3 , �9 ~" O
�9 ~ - O �9 -~O

,

o

TID 2 ,
0

�9 : ~- O

I
I a- b I sub-domain boundary specification. Indicates that integration should

try to continue in client "a" if integration approaches from the left, in
client "b" if from the right. "*" indicates all clients.

�9 particle location prior to integration
O particle location after integration

Fig. 2 Illustration for a 3-client example

320

1. The server receives two transfer requests from client 1 and one from client 2, and assigns
them TID 1, 2, and 3 as shown in Fig. 2. In the tables below, a " , / " under client number
indicates that a TR has been sent to that client (or the client is the originating client), and a
" , / " under TPA means that the server has received a TPA from the corresponding client.
Complying with the internal-boundary specification, the server transfers TID 1 and 2 to
client 2, and attempts to transfer TID 3 to client 1, 2, and 3. However, since TID 3 already
has client 2 in its transfer list, TID 3 will not be transferred there again. Note that a TPA is
automatically assigned to the originating client.

Transfer history of TID 1

~11 ~lc, 21~1c, ~1~

Transfer history of TID 1

d 'l ld l ld'l

Transfer history of TID 2

c,, I~ ~lc , ~1 ~lc, ~1 ~

Transfer history of TID 2

Transfer history of TID 3

c,, i ~ ic, ~ I ~ id , i~

Transfer history of TID 3

 ,,l lcyl lc,

Transfer history of TID 1 Transfer history of TID 2

d, lcyl,
Transfer history of TID 3

vl l=Yl>lcyl

2. Client 1 will reject TID 3 and send a TPA. Client 2 will accept TID 1 and send a TPA.
Client 2 will also request that TID 2 be re-transferred to all other clients, and then send a
TPA for TID 2. However, since client 1 and 2 are already in the client list of TID 2, TID 2
will only be transferred to client 3. Client 3 will accept TID 3 and send a TPA. At the end
of this step the transfer process for TID 1 and 3 is complete because each client in their list
is paired with a corresponding TPA.

Transfer history of TID 1 Transfer history of TID 2
el. 11 TPA Icl. 21 TPA Icl. 31 TPA
r r Ir Ir

I Transfer history of TID 2 I

Ivl>lc l>l=Yl l

Transfer history of TID 3
cl. 1

3. Client 3 accepts TID 2 and sends a TPA. At this point (and only at this point), all TID
have a complete list of TPAs (i.e., each client in the list is paired with a TPA). Thus, all
transfers are complete for this time step.

Transfer history of TID 1
c,., i ~ i c,.~l~ i~,.~ i ~
r r I'~1 "~ I I

Transfer history of TID 2 Transfer history of TID 3

c'll ld lc"l

321

Client 1

Client 2

, , . , , , ~_ sub-domain boundary
s ~x s

s ~ s ~ s S
s ~ s

Fig. 3 Integration of a particle requiring a transfer from client 1 to
client 2 and a re-transfer from 2 back to 1.

Now consider the situation illustrated in Fig. 3. Initially, client 1 transfers the particle to
client 2, then client 2 requests a re-transfer back to client 1. However, since the particle
originates from client 1, the above scheme will disallow this, and the integration stops. To take
care of cases such as this, we modify the above scheme to allow a particle (or streamline
segment) to be transferred to the same client twice. Since multiple transfers to the same client
are now allowed, there is no need to automatically include the originating client in the client
list. For the situation in Fig. 3, the process goes as follows:

1. The server receives a transfer request from client 1, and transfer the integration to client 2.
In the table, we now have 2 columns under client and TPA to reflect that the particle can
be transferred to the same client twice.

Transfer history of TID 1
Client 1 TPA [Client2 [TPA

I I r I I

2. Client 2 requests that the particle be re-transferred to client 1, and then sends a TPA.

Transfer history of TID 1
Clientl [TPA [Client2 [TPA

r I I ~ I r I

3. Client 1 accepts the transfer and sends a TPA. Now we have complete pairings of the
check mark, indicating the transfer process for the current time step is complete.

Transfer history of TID 1
Clientl I TPA [Client2 I TPA

This solution, however, is not without trade-offs and limitations. In cases where re-
transfers to the same client are not needed (such as in the first example above), unnecessary
multiple transfers to a client might be made. In some situations, a client might accept a transfer
twice, creating 2 instances of the same particle (or streamline segment). To prevent this, every
time a client receives a transfer request it checks whether it has previously accepted the object.
If it has, the request is ignored. The checking is done by comparing the global identification
number, which is unique through the duration of the visualization session, or the TID, which is
unique during each time step

This solution is also not a general one. Consider the situation shown in Fig. 4, in which
the particle needs 3 transfers to client 2. This will not be possible without increasing the
maximum number of transfers to 3, which will further reduce the efficiency of the scheme. We

322

; ' � 9 f%'. :"-, Client 1 ..-..

�9 \ ' ' ' d '~ ~176 o.....:, �9 .,. - /~ -... ' \
" . , .o': '. I' "

". ," \ , g

Client 2

�9
~149 . ,

o�9 ,.
~

. ~

"~149176

sub-domain boundary

Fig. 4 Illustration of a particle requiring 3
transfers to the client 2

can see that however large this number is set to, the solution will never be general. Thus, as a
trade-off between efficiency and more generality we limit the number of transfers to 2. We
believe setting the maximum to 2 transfers covers most cases without significantly
compromising efficiency. Should a particle-path integration require more than two visits to the
same client, the integration will abort and the particle will be "lost"�9 If it is a streamline
integration, only part of the streamline will be rendered (from the seed point to the last point
before the unsuccessful integration transfer). Fortunately, this limit is even less of a problem in
streamline integration because the algorithm uses a pseudo-time step limiter which is based on
the cell size as well as local vector field data. This limiter insures that the next requested point
in the integration is no more than the cell's size from the current position, ff the size of the
neighboring elements do not change drastically, the problems posed by this scheme will be
minimal.

5 Summary

We have presented a method for continuing integrations of streamline and particle path
across sub-domain boundaries. Although the underlying structures of streamline (a curve) and
particle (a point) are completely different, we have exploited the similarity in continuing their
integrations across internal boundaries to develop a scheme that works in both cases. The
scheme manages the flow of information between the clients, where the integrations are done,
and the server, which does the rendering, in order to minimize network traffic, avoid multiple
instances of the same object, and make efficient use of the parallel environment. It also
provides a simple test to determine whether more integration transfers will be done within the
current time-step. This knowledge enables the server to know when it can safely instruct the
clients to proceed to the next time step.

References

[11

[2]

[3]

[4]

D. Darmofal and R. Haimes, "Visualization of 3-D Vector Fields: Variations on a
Stream," AIAA Paper 92-0074, 1992.
D. Darmofal and R. Haimes, "An Analysis of 3-D Particle Path Integration Algorithms
for Unsteady Data," submitted to the AIAA CFD Conference, June, 1995.
R. Haimes and M. Giles, "Visual3: Interactive Unsteady Unstructured Visualization for
CFD," Computing Systems in Engineering, 1 (1):51-62, 1990.
Haimes, "pV3: A Distributed System for Large-Scale Unsteady CFD Visualization,"
AIAA Paper 94-0321, 1994.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

323

Interactive Volume Rendering on Clusters of Shared-Memory
Multiprocessors*
Michael E. Palmer 1'3, Stephen Taylor 1, and Brian Totty 2

1Mail Code 256-80, California Institute of Technology, Pasadena, CA 91125 USA
2Mail Stop 580, Silicon Graphics Computer Systems, Mountain View, CA 94043 USA

3mep@scp.caltech.edu, http://www.scp.caltech.edu/~mep

We describe methods for parallel partitioning and load balancing of volume rendering
on a cluster of shared-memory multiprocessors; good load balance and parallel speedup
are demonstrated. We describe a method of dynamic resolution reduction and image
refinement which typically allows a four-fold performance increase.

1. C O N T R I B U T I O N S

We present several methods to facilitate interactive volume rendering of very large
datasets (5123 to 10243 elements) at very high resolution (3200 by 2400 pixels) on several
interconnected shared-memory multiprocessors. We describe an image-based partitioning
method which is suited to dynamic load balancing; it uses measurements of the first
moment of the distribution of work to accurately balance workload. The partitioning
method is suited to division of labor between several shared-memory multiprocessors, each
rendering a portion of the screen, without communication of volume elements between
them. Our dynamic resolution reduction and image refinement method is particular useful
on very high resolution displays; the method reduces resolution on the edges of the screen
by the amount required to maintain a requested frame rate; the image is iteratively refined
to full resolution when the viewpoint is stationary.

These techniques were demonstrated at the Silicon Graphics, Inc. vendor booth at
Supercomputing '9~, in Washington D.C., November, 1994, in conjunction with the Army
High Performance Computing Research Center at the University of Minnesota. The
rendering engine was a POWER CHALLENGEarray of eight nodes, with a total of 84
RS000 processors, which send finished images over HiPPI for display by two POWER
Onyx machines, each with two Reality Engine 2 graphics boards.

2. H A R D W A R E C O N F I G U R A T I O N

In the center of Figure 1 are the two POWER Onyx nodes; each contains eight R8000
processors, 2GB of shared memory, 300GB of disk, and two Reality Engine 2 graphics

*This research is sponsored by the Department of Defense, AASERT award number N0014-93-1-0843,
under a parent grant from the Advanced Research Projects Agency, ARPA Order 8176, monitored by
the Office of Naval Research under contract N00014-91-J-1986.

324

2 x POWER Onyx The "POWER Wall"
8 procs/node I I I I I 3200 x 2400 pixels total

I POWER Challenge Array [150GB 4 backprojection TVs
8 nodes, 84 procs total] Disk

POWER
-, Onyx

I POWER ~ ~ - - ~
I HIPPI switch ~ " " ' 1 Onyx

- " ~ / 150GB
Indy Disk

Workstation I I

Figure 1. Hardware Configuration for Supercomputing '9~

boards. Each of the four Reality Engines drives a projection TV display at a resolution
of 1600 by 1200 pixels. The four TV projectors are aligned to display one large image of
3200 by 2400 pixels.

TO the left of the figure, connected by two HiPPI links to the Onyx machines, is the
POWER CHALLENGEarray; this consists of eight nodes, with 2GB of RAM per node, a
total of 84 R8000 processors, and no graphics hardware. The Challenge Array nodes are
connected to each other and to the Onyxes by HiPPI. Memory is not shared between the
nodes. An Indy workstation is used to run the graphical user interface. Control messages
are transmitted by ethernet between the machines.

3. R E L A T E D W O R K

Volume rendering is replete with parallelis m . There are two classes of parallel partition-
ing methods generally used for volume rendering. The first class, image partition [6,9,8],
assigns subregions of the inmage space to processors. Processors then interact with the
subsets of the data volume that affect their image subregions. The second partitioning
class, object partition [3,7,2,4,11], assigns subvolumes of the data to processors. Processors
compose the partial effects of their subvolumes of data back onto the image plane.

Methods of spatial subdivision can be divided into those which employ a uniform,
static subdivision [2,5], and those that divide space in an adaptive manner, either by
iterative [7,3,9], or recursive [4,11] subdivision methods. Adaptive subdivisions may re-
spond to changing conditions of workload during execution [3,7,9] to balance load among
processors.

4. P A R T I T I O N I N G O N A C L U S T E R OF S H A R E D M E M O R Y M U L T I P R O -
C E S S O R S

The image partitioning method we chose is designed to accommodate dynamic load
balancing by allowing flexible reassignment of processor power to emerging concentrations
of work load. Lines dividing the processors are shifted to reassign work.

3 2 5

The method, illustrated in Figure 2, divides the entire screen by a l o g N recursive
binary cuts, where N is the total number of processors. The cuts alternate in the X
and Y directions. The first, and subsequent odd divisions, are parallel to the Y axis;
the second, and subsequent even divisions, are parallel to the X axis, as illustrated in
Figure 2.

Ownership of areas of screen

CI AI C3

0 1

4 5

2 3

6 7

C2 C4

Ownership of volumes of image space

i I I
I

, i l ,
~, |

, ~__ ,~_
I x I %

I
" , - - a - ~ - ~ "

Figure 2. Subdivision of Screen Area and Image Space

I
I
I
I
I
I

.... i~
I x
!
I

The POWER CHALLENGEarray is our rendering engine; we do not use any special
graphics hardware for rendering. The array nodes send pieces of finished frames over
HiPPI to the Onyx machines for assembly into complete frames and display. Since, in our
hardware configuration, each of the two Onyx machines contains the graphics hardware
to display to one half of the screen, it greatly simplified communication to assign one half
of the POWER CHALLENGEarray to each Onyx, and to have each half of the Array
generate one half of the screen image. The division between the two Onyxes is along line
A1 in the figure. The drawback to this approach is that fixing line A1 is a contraint on
load balancing. (For a single display configuration we do allow this line to move.)

Designers of parallel algorithms can often trade memory costs for communication costs.
In our case, we had more than enough memory to store large (hundreds of megabytes)
datasets 2GB per node, and wanted to avoid communication of large volumes of the
dataset; we therefore replicate the entire dataset onto each array node.

5. L O A D B A L A N C I N G W I T H F I R S T M O M E N T V E C T O R S

We present a novel means to measure the distribution of work in image space using the
first moment of the workload distribution[lO]. As rays pass through the data volume, they
intersect voxels of data; we count each ray-voxel intersection as a unit of work. We find
the first moment of these points in three-space to estimate the distribution of work. The
partitioning for the next frame is based on this distribution for the current frame. The
method therefore relies on a form of temporal coherence [1] - - that the viewpoint for one

326

rendered view will be similar to the last, by virtue of smooth head motion.
Using the first moment of these intersections, instead of the common alternative of

simply counting the intersections in each area of the screen, allows a qualitatively superior
load balance: first, because a first moment measurement of a region more accurately
describes the density distribution than a simple count for that region, it allows more
accurate determination of ideal load balance for motionless data; furthermore, because
the first moment is a vector, it can be matrix-multiplied by the difference between the
last and current view matrices. This effectively anticipates to the next frame the change
in load density incurred by data movement, so that moving data can also be precisely
balanced, without a chronic time-lag.

Load balancing is achieved by the movement of the lines dividing areas of the display
screen, shown in Figure 2, appropriately for new distributions of workload. We place line
A1, the central line, on the X coordinate of the first moment of the entire dataset; we
next place lines B1 and B2 on the Y coordinates of the first moments of the data on the
left and right sides of line A1, respectively; and so on.

6. D Y N A M I C R E S O L U T I O N R E D U C T I O N

In volume rendering, there is a trade off between high resolution and high frame rate.
By a technique of dynamic resolution reduction, we can automatically choose which of
these is most important to the user. The pattern of resolution reduction is shown in
Figure 3. In the center of the screen, we maintain full resolution. Around this central
area, we place concentric bands of reduced resolution. When the user stops moving, we
refine the image in several steps until the entire screen is at full resolution, as shown from
left to right in the figure. With this technique, we obtained a typical four-fold reduction
in total number of rays cast, and a corresponding four-fold frame rate increase.

1/1 1/2 1/4 1/1 1/2

Figure 3. Dynamic Resolution Refinement for Higher Frame Rate

1/1

7. R E S U L T S

Our experiments consist of timings of a smooth head movement around a 375MB version
of the Visible Human dataset [12] at a resolution of 640x486 pixels. The head movement
consisted of an orbiting motion around the human figure in the dataset, combined with

327

an in and out zoom, as shown in the sequence of flames in Color Plate 1. In the color
plate, the white squares overlaid on the data show the areas of the screen assigned to each
of sixteen processors.

Figures 4 and 5 show several representations of the same set of experiments. The left
side of Figure 4 shows raw frame times for 1, 2, 4, 8, and 16 processors on a single array
node. The left-right symmetry of the plot is due to the symmetrical orbit and in-out
zoom of the head motion. The right side of the figure shows parallel speedup over a single
processor: two and four processors get excellent speedup. Eight and sixteen processors
get average speedups of seven and thirteen respectively.

~ 1 0
o o --~ 9
(D

8

7

5
a~

3

2

1

0

- , icp 1 _ * 2 CPUs
o 4 CPUs

- �9 8 CPUs
<> 16 CPUs

_

0 10 20 30 40 50 60 70 80 90
Frame Number

(a) Execution Time

20
~9

r

N15
0~

10

* CPIJs
o 4 CPUs
o 8 CPUs
<> 16 CPUs

10 20 30 40 50 60 70 80 90
Frame Number

(b) Speedup Over 1 CPU

Figure 4. Execution Time and Speedup of Image Partition (Test Suite 0)

Figure 5 shows load balance on 2, 4, 8, and 16 processors. The measure shown is
the frame time for the average processor divided by the time for the slowest processor,
multiplied by 100. If these times are equal, then all processors finish at the same time,
and load balance is perfect. Two and four nodes get excellent load balance; eight nodes
get between eighty and ninety percent balance. Sixteen nodes get between seventy and
eighty percent balance for much of the experiment, but between frames 80 and 90 get
only sixty percent. The poor parallel speedup for sixteen nodes between frames 80 and 90
on the right side of Figure 4 may be attributed to the load balance during these frames.

Recall that load balance for one frame depends on the nearness of the viewpoint to that
of the last frame. As the number of processors increases, the area of the screen assigned to
each processor becomes smaller; line placement is therefore more sensitive to differences
in viewpoint between the last and current frames. This experiment forced a fixed amount

I I i I

20-
10-

1'0 2'0 3'0

100-

~" 90

80

70

60

m 50

40-
o

30- o 2 CPUs
�9 4 CPUs
o 8 CPUs
�9 16 CPUs

4'0 5'0 6'0 7'0 8'0 90
Frame Number

328

Figure 5. Load Balance of Image Partition (Test Suite 0)

of head motion per frame on the processors. In practice, a machine with more processors
will run faster, while head motion demands per second would remain constant, yielding a
nearly constant amount of head motion per frame as number of processors increases, and
correspondingly better load balance.

The above results were taken on a single node of sixteen processors; using two nodes
of eight processors, we found a parallel speedup of approximately 1.75 over one node of
eight processors, when line A1 (from Figure 2) was allowed to move. On four nodes of
eight processors we found a parallel speedup of 3.0 over one node, yielding a frame rate
of between 2 and 3 Hz. As with the above experiments, this was while forcing a fixed
amount of head motion per frame on the processors. We are currently conducting further
work on multi-node arrays, which will appear in a subsequent paper.

All experiments cited were run without dynamic resolution reduction and image refine-
ment; adding this technique reduces the total number of rays cast by a factor of four,
yielding a four-fold improvement in performance.

8. C O N C L U S I O N S

We have presented several methods for interactive volume rendering on a cluster of
shared memory multiprocessors. We have described a partitioning method suited to dy-
namic load balancing, which maps on to such a hardware configuration. We have described
a method to accurately estimate workload distribution with first moment vectors, and how
to dynamically load balance using this information. We have practically demonstrated
good load balance and scaling. We also presented two related methods which are partic-
ularly relevant to rendering final images at very high resolution: a method to reduce the

329

Color Plate 1" Selected Frames fl'om Test Suite O, Visible Human dalaset

330

total number of rays cast, which maintains high resolution at the center of screen; and
a method to efficiently refine the image to full resolution when the viewpoint becomes
stationary.

9. A C K N O W L E D G E M E N T S

The authors would like to thank Steve Anderson, Tom Ruwart, and Paul Woodward of
the Army High Performance Computing Research Center at the University of Minnesota
for giving us the opportunity to contribute to the AHPCRC's POWER Wall Project.

R E F E R E N C E S

1. S. Badt, Jr. "Two Algorithms for Taking Advantage of Temporal Coherence in Ray
Tracing." The Visual Computer (1988), 3:123-131, Springer-Verlag, 1988.

2. J.G. Cleary, B.M. Wyvill, G.M. Birtwistle, R. Vatti. "Multiprocessor Ray Tracing."
Computer Graphics Forum, 5:3-12. North-Holland. 1986.

3. M. Dipp~, J. Swensen. "An Adaptive Subdivision Algorithm and Parallel Architecture
for Realistic Image Synthesis." ACM Computer Graphics 18(3):149-158, 1984.

4. H. Kobayashi, T. Nakmura, Y. Shigei. "Parallel processing of an object space for image
synthesis using ray tracing." The Visual Computer (1987), 3:13-22, Springer-Verlag
1987.

5. H. Kobayashi, S. Nishimura, K. Kubota, T. Nakamura, Y. Shigei. "Load balancing
strategies for a parallel ray-tracing system based on constant subdivision". The Visual
Computer (1988), 4:197-209, Springer-Verlag 1988.

6. M. Levoy. "Design for a real-time high-quality volume rendering workstation." Chapel
Hill Workshiop on Volume Visualization, May 1989:85-92.

7. K. Nemoto, T. Omachie. "An adaptive subdivision by sliding boundary surfaces for
fast ray tracing." In: Proc Graphics Interface '86, Canadian Information Processing
Society, pp. 43-48.

8. U. Neumann. Volume Reconstruction and Parallel Rendering Algorithms: A Compara-
tive Analysis. Ph.D. Thesis, Dept. of Computer Science, University of North Carolina,
1993.

9. J. Nieh, M. Levoy. "Volume rendering on scalable shared-memory MIMD architec-
tures." A CM SIGGRAPH 1992 Workshop on Volume Visualization, pp. 17-24.

10. M.E. Palmer. Immersing the Scientist in Data: Interactive Visualization of Unstruc-
tured Scientific Data on Concurrent Architectures. Master's Thesis, Dept. of Com-
puter Science, California Institute of Technology, Pasadena, CA. Caltech-CS-TR-94-
06. 1994.

11. T. Priol, K. Bouatouch. "Static load balancing for a parallel ray tracing on a MIMD
hypercube." The Visual Computer (1989), 5:109-119, Springer-Verlag 1989.

12. The Visible Human dataset is publicly available from Michael J. Ackerman, the Visible
Human Project, National Library of Medicine.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

331

Application of Parallel Multigrid Methods to Unsteady Flow:
A Performance Evaluation

A. T. Degani ~* and G. C. Foxt

~Northeast Parallel Architectures Center
Syracuse University
Syracuse, NY 13244, USA

A B S T R A C T

The parallel multigrid time-accurate calculation of the unsteady incompressible Navier-
Stokes equations is carried out using both explicit and implicit schemes. In the explicit
solution method, a 'lumped' scheme is employed at the coarsest multigrid levels where
all the processors solve the same problem. On the other hand, in the implicit method,
in which the equations are solved in a fully-coupled mode, a 'semi-distributive' scheme is
used where the effective number of active processors decreases logarithmically with each
coarsening of the mesh at the coarsest levels. Both 'V' and 'W' cycles are implemented
in the explicit method and the convergence rates and execution times are compared. It
is demonstrated that good speedups are obtained for the implicit scheme and the slight
degradation in parallel efficiency, relative to calculations performed on the finest grid, is
dominated by increased convergence rates.

1. I N T R O D U C T I O N

Parallel multigrid computation offers two desirable properties for the solution of large
problems: i) computational effort scales with problem size, typically of O(N log N) where
N denotes the size of the problem, and ii) implementation is scalable on coarse-grained
distributed machines; specifically, good speedups and parallel efficiencies are possible as
the number of processors p increases for Nip large and fixed. Here the parallel implemen-
tation of the multigrid method is applied to the time-accurate calculation of the unsteady
incompressible Navier-Stokes equations. The primary objective here is the evaluation of
parallel multigrid methods to unsteady flow in terms of convergence rates and parallel
efficiency as the size of the problem and number of processors is varied. As a first step,
a regular structured two-dimensional computational domain is considered; however, since
a primitive-variable formulation is adopted, an extension to three dimensions is straight-
forward. Both explicit and implicit schemes on a staggered mesh are considered, and, in
the former, the relative effectiveness of the 'V' and 'W' multigrid cycling algorithms is

*Alex G. Nason Research Fellow
t Director, Professor of Computer Science and Physics

332

evaluated.
The multigrid algorithm was first coded on a uniprocessor machine in FORTRAN 77

but designed in such a fashion so as to allow the subsequent seamless transition to the
development of a Single Program Multiple Data (SPMD) code with message passing.
The results reported here were obtained on a 32-node CM-5 installed at NPAC. The data
are distributed in a block-block layout on a two-dimensional mesh of abstract processors
and, for efficient memory utilization, the local data in each processor are mapped onto
a local one-dimensional array. The array of cells in each processor is augmented by a
buffered boundary of one cell thickness at all multigrid levels where data from neighboring
processors are stored.

The unsteady incompressible Navier-Stokes equations are given by

Ou 1
+ u . Vu-g-Vp+, V u, V . u - O , (1)

Ot

where the equations are nondimensionalized by appropriate velocity and length scales, Uo
and Lo, respectively, and the kinematic viscosity u. Re is the Reynolds number defined
as Re = UoLo/~,.

2. E X P L I C I T S C H E M E

The explicit scheme adopted here is the projection method [1] in which the momentum
equation is split according to

u* - u n 1
At + u n . V u n = gn+ReeV2un, (2)

U n + l - - U *

= - V f +~, (3)
At

where the superscript n denotes the evaluation of a quantity at time level n and u* is an
intermediate provisional value of the velocity field; this scheme is formally O(At) accurate.
Upon taking the divergence of equation 3 and using the continuity equation evaluated at
time level n + 1,

1 ~72p n+l - - ~ 7 . U * . (4)
At

The boundary condition for the above Poisson equation for the pressure is obtained by
projecting equation 3 on the boundary F of the computational domain (i.e. a dot product
of equation 3 and the normal vector N of F) and letting @+1 = u~ [1]. This yields

- 0. (5)

Note that the homogeneity of the Neumann boundary condition above is not physical
but only a numerical artifice made possible due to the use of a staggered grid [1]. In
the projection method outlined above, time-stepping is accomplished in the following
manner" (i) the provisional value of the velocity u* is obtained from equation 2, (ii) the

333

Poisson equation 4 is solved for the pressure subject to the boundary condition given
by equation 5, and, finally, (iii) the velocity field at time level n + 1 is obtained from
equation 3.

The projection method is implemented on a staggered mesh where the normal velocities
are defined at the midpoint of the cell faces and the pressure is defined at the cell center.
All spatial derivatives are evaluated using second-order central differences. Since the no-
slip condition cannot be satisfied exactly on a staggered mesh, fictitious points are defined
along the boundary of the computational domain F. Using the prescribed value of the
no-slip velocity and a fourth-order extrapolation formula, the values of the tangential
velocity at the fictitious points are evaluated, thereby ensuring second-order accuracy for
all spatial derivatives in equation 2.

The Poisson equation for the pressure subject to the homogeneous Neumann boundary
condition is solved efficiently at each time step by employing a Correction-Scheme (CS)
multigrid method which is appropriate for linear problems. At each level, the equations
are relaxed by the well-known point red-black Gauss-Seidel scheme. Note that if M
denotes the total number of multigrid levels, then at some level k, the 'W' cycle relaxes
the equations 2 M-k more often than in the 'V' cycle where k = M denotes the finest grid.
In the scheme adopted here, the governing equation for the interior of the computational
domain is relaxed twice in the forward sweep and once in the backward sweep; thus the
'V' and 'W' cycle scheme here may be denoted by V(2,1) and W(2,1), respectively.
Furthermore, following Brandt [2], it was found effective to relax the boundary cells twice
for each sweep of the interior cells.

Next, consider the idle-processor problem which occurs at a critical coarse-grid level
where the total number of cells is less than the number of processors. The simplest
approach is to have each processor solve the same problem at and below the critical level.
In this case, denoted here as the 'lumped' scheme, it may be shown that the ideal efficiency
(i.e. discounting all communication costs) is such that

- 1 , - , . , 1 - 1 , ~ _ _ (a) n >> p rlidc~t 1 + O(-) , (b) n,p >> 1 ~idc~t 1 + o(P), (6)
?l 7~

where n = N/p. It is thus hoped that this scheme will be more effective than one which
attempts to distribute the reduced extent of parallelism at the coarsest grids thus incurring
relatively large latency cost due to frequent transmission of small messages.

3. I M P LICIT S C H E M E

A spatial and temporal second-order accurate upwind-downwind discretization scheme [3]
is applied to the computation of the unsteady incompressible Navier-Stokes equations on
a staggered grid. A temporal discretization of the momentum equations at the mid-time
plane, i.e. at t + At~2, yields

u n + l - - ?.t n OU O'tt Op ~+�89 1 p 2 u 02u]
= ~ + ~ + + , (7)

/',t -g-ix oy Ox -5Yy j

V n + l - - V n OF 0?2 Op ~+ �89 1 [02v 02v --]
= ~ + v - - - - - + + (s)

At Yx Oy Oy

334

where the overbar denotes the evaluation of the quantities at the mid-t ime plane, and the
1 indicate the values of the associated variables at times t, superscripts n, n + 1 and n + 7

t + At and t + At~2 , respectively. The resulting difference equations are given by [3]

M + q = F = M_q* + G, (9)

where

q = v , G = G~ , F = F~
p ap Fp

o o o 1
M + - 0 M~_ D v , M _ - 0 M _ ~ 0 .

D u D v 0 0 0 0

The boundary conditions may also be written compactly as

A q = O , (10)

where A is the boundary operator and �9 is specified [3]. In a typical solution procedure,
equations 9 and 10 are relaxed alternately until convergence. For the implicit method,
only the 'V' cycle is considered and the FAS multigrid algorithm, appropriate for nonlinear
problems, is applied [2]. The equations are relaxed in a fully-coupled mode at each multi-
grid level by the PAR-SCGS algorithm [3], a parallel version of the Symmetrical-Coupled
Gauss-Seidel (SCGS) algorithm [4], appropriate for distr ibuted-memory machines using
message passing. In this scheme, the four velocities at the faces of each cell and the
pressure defined at the cell center are updated simultaneously in an iterative process that
traverses all the cells in the computational domain.

In the implicit calculations, an alternative approach to that adopted in the explicit
method is used for multigrid levels coarser than the critical level below which the number
of cells is less than the number of processors [3]. Below the critical level, a group of
four processors in a 2 • 2 grid coalesce their data and solve the same problem; in effect
only 1 /4 th of the processors are active. The 'adjacent ' neighbors are now a stride of 2
away in each of the coordinate directions. Similarly, at the next coarsening, a group of
16 processors solve the same problem and so on. For this algorithm, it may be shown
that [3] that

-1 1 logp). (11)
(a) n >> p 'lid~al ~ 1 + 0 (- -) , (b) n, p >> 1 7]id~a ~ 1 + O(- -n

n

Thus, the degradation in the ideal parallel efficiency is reduced to an acceptable level in
comparison with the previous method for the case where both n and p are large.

4. R E S U L T S A N D D I S C U S S I O N S

Table 1 shows the residual tolerance error that is specified for various fine grids. It is
appropriate to choose the tolerance error to be of the same order of magnitude as the

335

Table 1
Residual tolerance error for various grid sizes

Global Grid
32 x 32 64 x 64 128 x 128 256 x 256

Tol 1.0 x 10 .3 2 . 5 x 10 .4 6 .0x 10 -s 1 .5x 10 -s

discretization error which for a second-order accurate scheme is of the form K h 2 where
h denotes the mesh spacing and K ,-~ O(1). Choosing K = 1, the residual tolerance
error is then approximately set to h -2. Convergence is deemed to have occurred at each
time step when the residuals of all the equations are less than the residual tolerance. In
the context of multigrid methods, it is convenient to quantify the computat ional effort in
terms of work units (W U) [5]; a work unit is the computational effort required to relax the
equations at the finest grid. It may be shown that for a two-dimensional computational
domain, the number of W U ' s required for one cycle with M > 1 levels of multigrids is
given by

1 [1 - - 2 (p - 3) (M - 1)] 2 (~ - 3) (M - 1) - (~ - 1) WU - 1 - 2 " - 3 (//1 ~t_ I / 2) - ~ / / 1 , (1 2)

where # = 1,2 for 'V' and 'W ' cycles, respectively, and Ul,U2 denote the number of
iterations in the forward and backward sweeps, respectively. Note that in this study it is
assumed that //1 ~ 2 and u: = 1.

The results discussed here are for the classic test case of flow in a square cavity in
which the top wall is set into motion impulsively at unit speed. Consider the explicit
calculations first where Re = 10 4 and At = 10 . 4 have been chosen. Table 2 shows the
number of WU's required to obtain a converged solution at each time step as a function
of the number of multigrid levels and resolution of the finest grid; the results are obtained
by averaging the WU's over the first 10 time steps. It may be noted that the W U ' s
decrease more rapidly for the 'W' cycle as the multigrid levels increase beyond one as
compared to the 'V' cycle. However, beyond a certain level, indicated by an asterisk,
the convergence rate of the 'W' cycle plateaus and no benefit is accrued in increasing the
number of levels. On the other hand, the W U ' s decrease monotonically as the number
of levels is increased for calculations with the 'V' cycle. This trend indicates that for
comparable convergence rates, the number of multigrid levels required in the 'W ' cycle is
typically less than that required in the 'V' cycle; in the context of parallel computation,
this is significant because inefficient calculations at the coarsest levels may be avoided in
a 'W' cycle. All subsequent results reported here for 'W ' cyles use the number of levels
indicated by an asterisk in Table 2, but, for 'V' cyles, the full complement of available
multigrid levels is employed.

For the ' lumped' scheme used here for the explicit calculations, the parallel efficiency
is obtained from

tlumped
?]par - - tt-olt ~comp,dis t -JI- , trot - tcomp,dist + tlumped + tcomm, (13)

P

where tco,w,dist denotes the time for the calculations at the finer levels where the problem
is distributed among all the processors, and tt,,,~ped denotes the calculation t ime at the

336

Table 2
Work units for explicit calculations on a processor mesh of 8 x 4 (Re - 10 4, A t - 10-4).

Levels Global Grid
3 2 x 3 2 6 4 x 6 4 1 2 8 x 1 2 8 256 x 2 5 6
V W V W V W V W

1 110 110

2 39 39 259 259

3 13 10 71 45 749 471 - -

4 6 *7 21 15 206 72 1753 617

5 5 7 10 "13 56 "19 456 88

6 - - 9 13 19 19 118 *25

7 13 19 31 25

8 21 25

coarser levels where all the processors solve the same problem; these quant i t ies do not
include any communica t ion time. Rather this t ime is tcomm which denotes the overall over-
head in communicat ion. The parallel efficiency for both the 'V' and ' W ' cycles obta ined
from equat ion 13 is shown in figure 1 and compared with the efficiency for calculations
performed only on the finest grid. It may be noted tha t the degradat ion in the efficiency
of the ' W ' cycle calculations is worse than tha t of the 'V' cycle calculations. Thus for
the specific case considered here, the simpler 'V' cycle calculations are more effective; on

the other hand, as indicated by the results in Table 2, if the size of the coarsest grid is

sufficiently large, the ' W ' cycle is likely to be the appropr ia te choice [6].
Next, consider the implicit calculation which employs the FAS mul t igr id a lgor i thm

with a 'V ' cycle. Once again, the cavity flow test case is considered with Re = 104
and At = 10 -2, and the WU's shown in Table 3 are averaged over the first 10 t ime
steps. The residual tolerance errors are as indicated in Table 1. A substant ia l reduct ion
in computa t iona l effort may be noted as the number of grid levels is increased which
becomes more pronounced as the number of mesh points in the finest grid is increased.

Table 3
Work units for implicit calculations on a processor mesh of 8 x 4 (Re = 10 4, At - 1 0 - 4) .

Levels Global Grid
3 2 x 3 2 6 4 x 6 4 1 2 8 x 1 2 8 2 5 6 x 2 5 6

1 2 0 - - -

2 8 99 - -

3 5 29 391 -

4 5 14 96 -

5 - 13 24 244

6 - - 18 58

7 - - - 28

337

.,.=(

~2
ts.l 0.4

0.8 - ",.~ -,

..=
'<.;:, "-,,, ".~.

_ '""".. k'c. : ~ . . .

............ ~ ~t,~,.~ /
0.2 }-- ~ "'--..',,,

-,~

0 I I I I I
0 1 2 3 4 5

logp

single grid
v cycle
w cycle
32 x 32 r
32x32 -~--
32 x 32 -~
64x64 i
64x64 -i---
64 x 64 .+

128 x 128 []
128 x 128 -t3--
128 x 128 -El
256 x 256 •
256 x 256 -•
256 x 256 --•

Figure 1. Variation of parallel efficiency with number of processors for single-grid and
mult igrid calculations for the explicit scheme.

The parallel efficiency for the implicit calculations, which uses the 'semi-distr ibutive '
scheme at the coarsest levels, is obtained from

'7,0~- t~o~ tcornp,dist + ~= 22(M.._k_1)
M s

trot = t~omp,aist n t- ~ (t c o m p , s ~ m i) k -4- t~omm, (14)
k = l

where Ms is the number of 'semi-distr ibutive ' levels and (tcomp,s~mi)k is the computat ional
t ime at the kth 'semi-distr ibutive ' level; k = Ms is the finest 'semi-distr ibutive ' level.
Figure 2 shows the parallel efficiency of the implicit calculations where the full complement
of available mult igrid levels is employed. The parallel multigrid efficiency is also compared
to the efficiency of the calculations at the finest grid and it may be noted that the expected
degradation in efficiency of the multigrid calculations is small for relatively large problems
in comparison to calculations at the finest grid.

5. C O N C L U S I O N S

The parallel mult igrid t ime-accurate calculation of the unsteady incompressible Navier-
Stokes equations has been considered using both explicit and implicit methods. For both
solution methods, it is clearly demonst ra ted that the computat ional effort required to
obtain a converged solution at each t ime step reduces dramatical ly with increasing number
of mult igrid levels. Thus, although the parallel efficiency of the mult igrid calculations is
inferior to that possible for calculations only on the finest grid, the considerably superior

338

1

0.9

0.8

�9 ~ 0.7
~2

0.6

0.5

0.4

L , , , . , ~ , . _ - - ~ v , 4 ~ |

~ , , , ~ % -

%
- - ' t ~ -

%
%

%
%%

%
%

_ %% - -
%

%
%

"o
I I I I I

0 1 2 3 4 5
log p

single grid
v cycle
32x32 r
32x32 -~--
64x64 I
64x64 ~ - -

128 x 128 []
128 x 128 -E!--
256 x 256 •
256 x 256 -x--

Figure 2. Variation of parallel efficiency with number of processors for single-grid and
multigrid calculations for the implicit scheme.

convergence rates possible with the former dominates the degradation in parallel efficiency.

R E F E R E N C E S

1. R. Peyret and T. D. Taylor. Computational Methods for Fluid Flow. Springer-Verlag,
1983.

2. A. Brandt. Multigrid Techniques: 198# Guide with Applications to Fluid Dynamics.
Number 85 in GMD-Studien. Gesellschaft fur Mathematik und Datenverarbeitung
MBH, Bonn, 1984.

3. A . T . Degani and G. C. Fox. Parallel Computation of the Unsteady Incompressible
Navier-Stokes Equations using Multigrids. In 12th AIAA CFD Conference, AIAA
Paper 95-1696, San Diego, CA, June 19-22, 1995.

4. S.P. Vanka. Block-Implicit Multigrid Solution of Navier-Stokes Equations in Primi-
tive Variables. Journal of Computational Physics, 65:138-158, 1986.

5. A. Bran&. Multi-level Adaptive Solutions to Boundary-Value Problems. Mathemat-
ics of Computation, 31(138):333-390, 1977.

6. P. I. Crumpton and M. B. Giles. Parallel Unstructured Multigrid using OPlus. In
Parallel CFD 95, Pasadena, CA, June 26-28, 1995.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

339

Multigrid aircraft computations using the OPlus parallel library

Paul I. Crumpton and Michael B. Giles ~ *

~Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD, UK

This paper presents the OPlus library which is a flexible library for distributed memory
parallel computations on unstructured grids through the straightforward insertion of sim-
ple subroutine calls. It is based on an underlying abstraction involving sets, pointers (or
mappings) between sets, and operations performed on sets. The key restriction enabling
parallelisation is that operations on a particular set can be performed in any order.

The set partitioning, computation of halo regions, and the exchange of halo data as
required is performed automatically by the OPlus library after the user specifies the sets
and pointers. A single source OPlus application code can be compiled for execution on
either a parallel or a sequential machine, greatly easing maintainability of the code.

The capabilities of the library are demonstrated by its use within a program for the
calculation of inviscid flow over a complete aircraft using multigrid on a sequence of inde-
pendent tetrahedral grids. Good computational efficiency is achieved on an 8-processor
IBM SP1 and a 4-processor Silicon Graphics Power Challenge.

1. I N T R O D U C T I O N

Algorithms for unstructured grids are becoming increasingly popular, especially within
the CFD community where the geometrical flexibility of unstructured grids enables whole
aircraft to be modelled. The resulting calculations are often huge and so there is a need
to fully exploit modern distributed memory parallel computers. Writing an individual,
machine-specific parallel program can be time consuming, expensive and difficult to main-
tain. Therefore there is a need for tools to simplify the task and generate very efficient
parallel implementations. This paper describes the development of OPlus (Oxford Par-
allel library for unstructured solvers), a FORTRAN subroutine library which enables the

parallelisation of a large class of applications using unstructured grids, removing the par-
allelisation burden from the application programmer as far as possible [1].

In the design of the library emphasis was placed on the following aspects:

g e n e r a l i t y : OPlus uses general data structures. In a CFD application, for example, it
allows cell, edge, face and other data structures, The cells could also be of any type,
such as tetrahedra, prisms or hexahedra.

p e r f o r m a n c e : Messages are sent only when data has been modified and are concatenated
to reduce latency. Also, local renumbering is used to improve the cache performance
on RISC processors.

*Research supported by Rolls-Royce plc, EPSRC and DTI

340

single source" A single source code can be executed either sequentially (without any
message-passing of other parallel library) or in parallel, with identical treatment
of disk and terminal i/o. This greatly simplifies development and maintenance of
parallel codes.

This paper will first describe the concepts behind the OPlus framework, and then var-
ious aspects of the implementation. Finally some results are presented for an application
code modelling the inviscid flow over an aircraft using multiple tetrahedral meshes. A
companion paper discusses the use of the distributed visualisation software pV3 which
was a vital tool in this work [5].

The PARTI library developed by Das et al [7,6] has similar objectives in dealing with
parallel computations on generic sets. There are a number of detailed differences between
PARTI and OPlus but the principal difference is that with OPlus the programmer is not
aware of the message-passing required for the parallel execution. This greatly simplifies
the programmer's task. PARTI has the same long-term objective but the aim is to achieve
it through the incorporation of PARTI within an automatic parallelising compiler. At
present, the programmer must still explicitly specify the message-passing to be performed.

2. O P l u s L I B R A R Y

2.1. Top level concept
The concept behind the OPlus framework is that unstructured grid applications have

three key components.

sets Examples of sets are nodes, edges, triangular faces, quadrilateral faces, cells of a va-
riety of types, far-field boundary nodes, wall boundary faces, etc. Data is associated
with these sets, for example the grid coordinates at nodes, the volumes of cells and
the normals on faces.

po in t e r s The connectivity of the computational problem is expressed by pointers from
elements of one set to another. For example, cell to node connectivity could define
tetrahedra, and face to node connectivity would define the corresponding faces.

o p e r a t i o n s over sets All of the numerically-intensive parts of unstructured applications
can be described as operations over sets. For example, looping over the set of cells
using cell-node pointers and nodal data to calculate a residual and scatter an update
to the nodes, or looping over the nonzeros of a sparse matrix accumulating a matrix-
vector product.

The OPlus framework makes the important restriction that an operation over a set
can be applied in any order without affecting the final result. Consequently, the OPlus
routines can choose an ordering to achieve maximum parallel efficiency. This restriction
prevents the use of OPlus for certain numerical algorithms such as Gauss-Seidel iteration
or globally implicit approximate factorisation time-marching methods. However, most
numerical algorithms on unstructured grids in current use in CFD, and many other ap-
plication areas, satisfy this restriction. Specific examples include explicit time-marching
methods, multigrid calculations using explicit smoothing operators and conjugate gradient
methods using local preconditioning.

341

Another current restriction is that the sets and pointers are declared at the start of
the program execution and must then remain unaltered throughout the computation.
Therefore, dynamic grid refinement cannot be treated at present. This is an area for
future development.

2.2. Parallelisation approach
The implementation uses a standard data-parallel approach in which the computational

domain is partitioned into a number of regions and each partition is treated by a separate
process, usually on a separate processor.

The communication requirements between partitions arise because of the pointer con-
nectivity at the boundaries between partitions. An illustrative example is matrix-vector
multiplication for a symmetric sparse matrix:

Yi = E Aijxj
J

If the matrix A is symmetric, then defining an edge k to correspond to nodes ik, jk for
which Aij 7 ~ O, the product can be evaluated by the following algorithm:

For all nodesi , y i :=O

For all edges k, yi k := yi k + Akxjk
YJk := YJk + AkXik

Expressed in FORTRAN this algorithm becomes

DO I = I, NNODES

Y(I) = 0.0

ENDDU

DO K = I, NEDGES

I : P(i ,K)
J = P(2,K)
V(I) = Y(I) + A(K),X(J)
Y(J) = Y(J) + A(K)*X(I)

ENDDO

The integer array P is the pointer table defining the edge to node connectivity. Note
that operations on edges can be performed in any order and the final result will remain
the same, so this example satisfies the restriction required by the OPlus framework.

In the data parallel approach the edges and nodes are partitioned so that each individual
edge or node belongs to only one partition. There is no difficulty in performing the edge
operations when the edge and its two nodes belong to the same partition. When more
than one partition is involved the approach used is to perform the edge operation on

342

Sequential program

user's
compute
process

user's
i/o

routines

Server program

OPlus
server

process

user's
i/o

routines

Client programs
I

I
I

user's
compute
process

OPlus
client

routines

Figure 1. Sequential and parallel versions of user's program

each partition whose owned data is affected by the operation. In this case that means
performing the calculation for each partition owning one of the two nodes. To carry out
this operation, temporary copies must be obtained of the unowned data from the other
node and/or the edge belonging to a different partition; this is commonly referred to as
halo data.

2.3. Sof tware a r c h i t e c t u r e and c o m m u n i c a t i o n s
A key design goal for the OPlus framework was to allow users to write a single source

code which will execute either sequentially or in parallel depending only on the library
to which it is linked. Moreover, the sequential and parallel execution should result in
identical disk and terminal i/o. To achieve this it was necessary to adopt the program
structure shown in Figure 1 in which all disk and terminal i/o is handled via subroutines
with a specified interface.

For sequential execution the user's main program is linked to user-written subroutines
which handle all i/o. This enables the user to develop, debug and maintain their sequential
code without any parallel message passing libraries.

For parallel execution the OPlus framework creates server and client programs from the
user's single source. The server program is formed by linking the OPlus server process to
the user's i/o routines, while the client program is created by linking the user's compute
process to the OPlus client routines. When the client routines collectively need to input
an array of data from disk, a request is passed to the server process; it reads the data
from disk and passes to each client its piece of the array corresponding to its partition of
the overall problem.

The communication between the client and the server is performed using PVM 3.3 to
allow the server to be on a different type of machine from the clients. For the critical
client-client communication in the main parallel computation phase, BSP FORTRAN is
employed. This is a FORTRAN library with strong similarities to the shmem_put and
shmem_get directives for communication on the CRAY-T3D. It has been implemented on
a wide range of machines using the most efficient communication method in each case,
e.g. MPL on the IBM SP1/SP2 and shared-memory pages on the Silicon Graphics Power
Challenge [8].

343

2.4. Initialisation phase
At the beginning of the application program the user declares the sets and pointers to

be used in the application. At the beginning of the parallel execution these are then used
in the following key steps:

partitioning All sets are partitioned. Simple recursive inertial bisection is used to ini-
tially partition one or more sets. The other sets are partitioned consistently using
the connectivity information contained in the pointers; see [5] for examples of in-
herited partitioning.

construction of import/export lists The initialisation phase constructs, for each par-
tition, lists of the set members which may need to be imported during the main
execution phase. Correspondingly, each partition also has export lists of the owned
data which may need to be imported by other partitions.

local renumbering Each partition should only need to allocate sufficient memory to
store the small fraction of each set which it either owns or imports. To enable
this, it is necessary to locally renumber the set members. This local renumbering
of each set forces a consistent renumbering of all of the pointer information. The
local-global mapping is also maintained for i/o purposes.

It is important to note again that all of the above phases are performed automatically
by the OPlus library, not the application code. In all applications performed to date, the
CPU time taken for these initialisation phases has been significantly less than the time
required for the disk i/o, and so is considered to be negligible.

2.5. Computation phase
The heart of a parallel OPlus application is a DO-loop carrying out in parallel operations

on a distributed partitioned set. Continuing with the example of the sparse matrix-vector
product, using the OPlus library the FORTRAN code for the main edge loop is:

DO WHILE(OP_PAR_LOOP (EDGES,Ki ,K2))
CALL OP_ACCESS('read" ,X,I,NODES,P,2,1,1,1,2)
CALL OP_ACCESS('update',Y,i,NODES,P,2,i,I,I,2)
CALL OP_ACCESS('read" ,A, I,EDGES,O,O,I,I,O,O)

DO K = K I, K2
I = P(l,K)
J = P(2,K)

Y(I) = Y(I) + A(K)*X(J)
Y(J) = Y(J) + A(K)*X(I)

ENDDO

END WHILE

344

The purpose of the 0P_),CCESS calls is to inform the library which distributed arrays
are being used within the DO-loop, which sets they are associated with, which pointers
are being used to address those sets and the type of operation (read, write or update)
being undertaken with the data. This is the information needed by the library to decide
which data must be imported from neighbouring partitions. Full details of the arguments
of OP_ACCESS and the other OPlus routines are available [2].

The logical function 0P_PAR_L00P controls the number of times execution passes though
the interior of the D0 WHILE loop. The first argument declares that the operations are to
be performed over the set of edges, and the second and third arguments set by the function
are the start and finish indices of the inner loop. For sequential execution, there is just
one pass through the D0 WHILE loop with K1 and K2 set to I and NEDGES respectively.
For parallel execution there are a number of preliminary passes through the D0 WHILE
loop during which K1 is set to a higher value than K2 so the inner D0 loop is skipped;
these passes process the information in the 0PJ~CCESS calls and export the necessary halo
data to neighbouring partitions. Next comes a single pass through the D0 loop performing
those calculations which do not depend on halo data. There are then a number of passes
which receive the incoming imported data from neighbouring partitions but perform no
calculations, and finally there is an execution pass which performs the computations that
do depend on the halo data. In this way it is possible to overlap interior computations
with the exchange of halo data, but so far this overlapping has not yielded significant
benefits on any of the machines tested.

A point to emphasise is that the lines of FORTRAN which form the contents of the
inner D0 loop have not changed from the original sequential code. In this trivial example
the number of OPlus subroutine calls which have been added is comparable to the number
of lines of application code, but in a real application there could be a hundred lines or
more of FORTRAN inside the D0 loop and it is crucial that this does not have to be
changed.

3. M U L T I G R I D A I R C R A F T C O M P U T A T I O N

The utility and emciency of the OPlus library is illustrated here by its use for the
computation of the steady inviscid flow around a complex aircraft geometry. The CFD
algorithm uses a multigrid procedure based on a Lax-Wendroff solution algorithm [3,4].
In this application five tetrahedral grids are used. The number of cells varies from 750k
on the finest grid to 28k on the coarsest. The surface triangulation of one of the grids
is shown in Figure 2 together with the final surface pressure contours. Previous research
[3] showed that a W-cycle multigrid iteration is twice as fast as a V-cycle iteration, and
so a W-cycle iteration is used in this work. However, this presents a great challenge for
parallel efficiency because of the very large number of iterations performed on the coarsest
grids which have relatively more communication and redundant computation.

On each of the five grids there are four sets, tetrahedra, nodes, boundary faces and
boundary nodes. For each grid there are pointers from the tetrahedra, boundary faces
and boundary nodes to the regular nodes. There are also pointers between grid levels,
giving for each node the four nodes of the enclosing tetrahedra on the finer and coarser
grids. These are required for the transfer and interpolation operations within the multigrid

345

Figure 2. One of the grids used for the aircraft computation and computed contours of
surface pressure

procedure.
Calculations were performed on an 8 node distributed memory IBM SP1 and a 4 pro-

cessor shared memory SGI Power Challenge. The elapsed times, in seconds per multigrid
cycle, and the corresponding speedup over the single processor performance, S, is given
in the following table.

IBM SP1
proc Smax time S

1 1.0 1006 1.0
2 1.9 556 1.8
3 2.7 384 2.6
4 3.5 310 3.2
5 4.1 270 3.7
6 4.8 234 4.3
7 5.4 211 4.8
8 6.1 190 5.3

SGI PC
time S
419 1.0
216 1.9
149 2.8
116 3.6

The maximum achieveable speed-up, Smax, is defined as the ratio of the total sequential
work to the maximum work performed on any of the OPlus clients,

,---q'm a x - -

sequential work

max slave work"

This is the speedup which would be achieved in the complete absence of communication
costs. There are two reasons why it does not increase linearly with the number of pro-
cessors. One is that it is difficult to achieve load-balancing on the coarser grid levels;
the grid nodes may be load-balanced but the boundary faces may not be. The other
is that redundant computations are performed at the interfaces between partitions; the
proportion of these becomes larger on the coarser grids. Nevertheless, very good parallel
execution speed up has been achieved for a highly complex application which is in many
ways a worst case in that it employs the W-cycle multigrid iteration which is known to
be a challenge to efficient parallel execution. Note that the factor of two saved by the use
of W-cycle multigrid compared to V-cycle multigrid is still much greater than any loss of

346

parallel efficiency associated with the increased number of iterations on the coarse grid
levels.

4. C O N C L U S I O N S

A flexible and general library has been developed to parallelise a large class of unstruc-
tured grid applications. The programmer specifies the sets and pointers to be used in
the application and the library determines an appropriate partitioning for data-parallel
execution. The transfer of halo data is performed automatically by the library given the
programmer's specification of the data being used in operations performed on the mem-
bers of the distributed sets. The resulting single source code will execute on a sequential
machine without the need for any parallel libraries, or in parallel on a MIMD architecture.

The use of the OPlus library has been demonstrated for a multigrid computation of
the inviscid compressible flow over a complete aircraft configuration. For this realistic
industrial application good parallel efficiency has been achieved with very little effort
from the application programmer.

R E F E R E N C E S

1. D.A. Burgess, P.I. Crumpton, and M.B. Giles. A parallel framework for unstructured
grid solvers. In S. Wagner, E.H. Hirschel, J. Pfiriaux, and R. Piva, editors, Computa-
tional Fluid Dynamics '94. Proceedings of the Second European Computational Fluid
Dynamics Conference 5-8 September 199~ Stuttgart, Germany, pages 391-396. John
Wiley & Sons, 1994.

2. P. Crumpton and M. Giles. OPlus programmer's guide, rev. 1.0. 1993.
3. P. Crumpton and M.B. Giles. Aircraft computations using multigrid and an unstruc-

tured parallel library. AIAA Paper 95-0210, 1995.
4. P.I. Crumpton and M.B. Giles. Implicit time accurate solutions on unstructured

dynamic grids. AIAA Paper 95-1671, 1995.
5. P.I. Crumpton and R. Haimes. Parallel visualisation of unstructured grids. In S. Tay-

lor, A. Ecer, J. Periaux, and N. Satofuka, editors, Proceedings of Parallel CFD'95,
Pasadena, CA, USA 26-29 June, 1995.

6. R. Das, D.J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. Design and imple-
mentation of a parallel unstructured Euler solver using software primitives. AIAA
Journal, 32(3):489-496, 1994.

7. R. Das, J. Saltz, and H. Berryman. A manual for PARTI runtime primitives, revision
1. Technical report, ICASE, NASA Langley Research Centre, Hampton, USA, 1993.

8. R. Miller. A library for bulk synchronous parallel programming. In Proceedings of
the BCS Parallel Processing Special Interest Group Workshop on General Purpose
Parallel Computing, Dec 1993. http://www.comlab.ox.ac.uk/oucl/oxpara/ppsg.html.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

347

A P a r a l l e l M u l t i g r i d M e t h o d for t he P r e d i c t i o n of T u r b u l e n t F lows w i t h

R e y n o l d s S t ress C l o s u r e

B. Basara ~, F. Durst b and M. Sch/ifer b

~Department of Civil Engineering, City University,
London ECIV 0HB, United Kingdom

bDepartment of Fluid Mechanics, University of Erlangen,
Cauerstr. 4, D-91058 Erlangen, Germany

In this paper a parallel nonlinear multigrid method for the computation of turbulent
flows in complex geometries with second-order closure turbulence modeling is presented.
The numerical solution procedure is based on a collocated blockstructured finite volume
discretization, a full approximation scheme, a pressure-correction procedure for smoothing
and coupling of variables, and a grid partitioning technique for parallelization. Consid-
ering several test cases the capabilities of the considered approach are investigated with
respect to numerical and parallel efficiency. The results also include comparisons with
corresponding computations with a k-c model.

1. I N T R O D U C T I O N

Practically relevant flows in more than 95 per cent of the cases are turbulent, and thus,
since for higher Reynolds numbers large eddy simulations or direct numerical simulations
are out of reach, one is faced with the problem of adequate turbulence modeling. It is
well known that models based on the Boussinesq approximation for the Reynolds stresses
(as the k-c or k-c~ models), which are frequently in use in practice, are unsatisfactory for
a wide range of applications (e.g. Wilcox [11]). Examples, where these models fail are
flows with boundary-layer separation, buoyancy-driven flows, duct flows with secondary
motions, flows over curved surfaces, flows in rotating and stratified fluids, or flows with
sudden changes in mean strain rate. Second order closure models, which are based on
exact differential equations for the Reynolds stresses, allow for a natural capturing of
such effects. However, for this higher modeling accuracy one has to pay with a higher
complexity of the equations and an increased computational difficulty to get a numerical
solution. Thus, when dealing with such approaches it is especially important to consider
advanced solution algorithms as well as high performance computer architectures.

In the present work a numerical solution method is presented, which combines ad-
vanced second order moment closure turbulence modeling, numerically efficient multigrid
techniques, and parallel computing. To the authors knowledge this is the first time such
an approach is employed for the computation of turbulent flows. A sequential multigrid
method, which however differs from the present one in several aspects, applied for the full

348

Reynolds-stress-transport closure is presented in the work of Lien and Leschziner [6].
In the next sections we briefly discuss the employed second order moment closure model,

which follows the recent approach of Speziale, Sarkar and Gatski [9], the employed numer-
ical procedure based on a finite volume discretization for non-orthogonal blockstructured
boundary-fitted grids with a collocated arrangement of variables, and a parallel multigrid
procedure with iterative pressure-correction smoothing for the efficient solution of the
resulting coupled system of algebraic equations.

By considering two two-dimensional test cases the performance of the considered ap-
proach is investigated. The second order moment closure approach is also compared with
corresponding computations using a standard k-c model. These comparisons relate to
convergence issues of the parallel multigrid method, parallel efficiency, and the overall
efficiency of the solution procedure.

2. G O V E R N I N G E Q U A T I O N S

For steady incompressible fluid flows, to which we restrict ourselves in this paper, the
Reynolds averaged Navier-Stokes equations expressing balance of mass and momentum
are given by

0Ui
0,

Oxi
OUi 0

Uj Oxj = Oxj

(1)

__(~,OU~ 1 019 (2)
~ j u~uj) pOz~'

where Ui are the mean-velocity vector components with respect to Cartesian coordinates
xi, p is the static pressure, u is the kinematic viscosity, and ~ are the Reynolds stresses.
With a second order moment closure of the above system the Reynolds stresses are ob-
tained from transport equations of the form

O ~
Uk OXk = r + Pij + dij +eij. (3)

The terms on the right hand side of (3) correspond to the following different physical
processes" redistribution r production Pij, diffusion dij, and dissipation eij. In the
present model these quantities are defined as follows:

r = ~ \ Ozj + Ox~] '
o u j ou~

P~ j = _ (~ - -~ ~ + ~ j ~--- ~ - ~ ~) ,

0 [O-uiuj k
- L, + C s - ukul

dij - OXk l_ OXk e

eij = -25ije/3.

(4)

(5)

o~ 1' (6)
(7)

349

The major modeling aspects are: the diffusion of pressure fluctuations is neglected, the
triple fluctuating velocity correlations are modeled by the gradient transport hypothesis
of Daly and Harlow [2] for the dissipation of turbulence fluctuations, the dissipation of
turbulent energy is assumed to be isotropic, and the fluctuating pressure-strain term in
r is treated following the recent approach of Speziale, Sarkar and Gatski [9].

For the dissipation rate of turbulent kinetic energy the following equation is adopted
(this differs from the one used in the standard k-c model):

& 0 ('Ck & e OUi e 2 (s) uJ

Equations (1), (2), (3), and (8) form the system of partial differential equations which
has to be solved for Ui, p, uiuj, and e. For the boundary conditions at non-permeable
walls the standard wall function approach is employed (see e.g. Wilcox [11]). More details
about the employed model, including also the proper values for the various constants, can
be found in the work of Basara and Younis [1].

3. N U M E R I C A L M E T H O D

The numerical solution method is based on a fully conservative finite volume discretiza-
tion on blockstructured non-orthogonal boundary-fitted grids with a non-staggered ar-
rangement of variables (e.g. Durst et al. [3]), where the well known interpolation tech-
nique of Rhie and Chow [8] is employed to ensure the coupling of the solution. Second
order discretization is used for all terms (central differences, linear interpolation) together
with a defered correction approach for the convective fluxes.

The continuity equation is used to obtain a pressure-correction equation according to a
variant of the SIMPLE algorithm of Patankar and Spalding [7]. The linearized equations
for velocity components, pressure-correction, and turbulence quantities are assembled
and relaxed sequentially, where as linear system solver the ILU approach of Stone [10]
is employed. Outer iterations are performed to take into account the non-linearity, the
coupling of variables, and effects of grid non-orthogonality, which are treated explicitly
in all equations, and under-relaxation is used to ensure the convergence of the iterative
procedure.

For accelerating the rate of convergence a nonlinear multigrid method (full approxima-
tion scheme), in which the pressure-correction scheme acts as the smoother, is employed.
V-cycles are used for the movement through the grid levels and nested iteration is em-
ployed for improving the initial guesses on the finer grid levels (full multigrid). The basic
concepts of the multigrid technique are described in detail by Hortmann et al. [5]. There
are some special aspects of the multigrid approach related to the second order Reynolds
stress modeling (RSM): RSM on coarsest grid starts with a converged solution obtained
from a computation with a k-~ model, near boundary values are extrapolated from interior
grid points for the initial coarse to fine grid transfers (instead of the usual bilinear inter-
polation), the values of k obtained from restriction are kept fixed during the coarse grid
pressure-correction iterations, and values of e and UiU i are not corrected, if the corrected
values would become negative.

350

The parallelization of the method is achieved by a grid partitioning technique based on
the blockstructuring. For the determination of a suitable partitioning an automatic load
balancing procedure is implemented. According to the number of available processors a
mapping of the geometrical blockstructure to a parallel blockstructure is performed such
that the resulting subdomains can be suitably assigned to the available processors with
respect to a balanced utilization during the computation. For handling the coupling of the
blockstructured grids auxiliary control volumes containing the corresponding boundary
values of the neighbouring block are introduced along the block interfaces. The coupling
of the blocks is ensured by communicating these boundary values during the iterative
solution algorithm. A flow diagram of the parallel procedure is shown in Figure 1.

(Start)

Initializations _ .I Distribute data r 1
6 1

Update L,]

I Assemble Ui-equation I
I

Solve for Ui I. _I Exchange Ui]- -

1
I Assemble AP-equation I

I

Solve for AP I_ .I Exchange AP] r 1

Correct Ui and P
i

1 - Exchange Ui I 1 I Assemble ~i~j-~qu~tion I
I

1
I Update k

I assomb,o oqu io I
I

I Solve for e . _l Exchange e I- -I
,[Collect residuals

No

;I I Collect data I I i

(End)

Figure 1. Flow chart of the parallel pressure-correction scheme.

It should be noted that the parallel multigrid method is implemented globally, i.e. with-

351

out being affected by the grid partitioning, such that a close coupling of the subdomains
and, therefore, only a slight deterioration of the numerical efficiency compared to the cor-
responding sequential algorithm is ensured. More details of the overall parallel solution
procedure are given in the paper by Durst and Sch/ifer [4].

4. N U M E R I C A L R E S U L T S

All numerical results given in the following were obtained on a Parsytec GC/PowerPlus
parallel computer employing the communication facilities under the Parix operating sys-
tem. In all cases the pressure-correction smoother was employed with relaxation factors
0.8 for velocity components, 0.2 for pressure, and 0.9 for all turbulence quantities.

As a first example for investigating the computational efficiency of the proposed nu-
merical procedure a simple turbulent channel flow is considered. This test case allows to
concentrate on the effects related to the parallel multigrid methodology together with the
turbulence model without being effected from aspects of geometrical complexity. At the
inflow a block velocity profile (U, V) = (Urn, 0), to give a Reynolds number of R e = 107,
is specified and the inlet values for the turbulence quantities are chosen as

U l U 1 - - 1.1E,~, u 2 u 2 - 0.25Em, u 3 u a - 0.65Era, U l U 2 - - O, ~ - - 10E~ 2 (9)

with E,~ = 0.0lUg.
The problem was computed with the Reynolds stress model (RSM) given in Section 2

as well as, for comparison, with the standard k-c model (e.g. Wilcox [11]). For both
cases the multigrid procedure was used with (10,10,10)-V-cycles with a coarsest grid of
64 control volumes (CVs).

In Table 1 the computing times (seconds) and the numbers of fine grid iterations (in
brackets) are given for different numbers of CVs and processors together with the corre-
sponding single-grid results. The resulting acceleration factors (with respect to computing
time) are also indicated.

Table 1
Comparison of single-grid and full multigrid computations with different numbers of CVs
and processors for the channel flow with RSM and k-c model. Computing times (seconds),
numbers of fine grid iterations (in brackets) and corresponding acceleration factors.

4,096 CV 16,384 CV 65,536 CV
k-~ P=I P=4 P=4 P=4 P=16
Single-grid 264(248) 122(293) 1279(1045) 17501(3929) 7863(4955)
Full multigrid 114(61) 97(61) 257(81) 903(101) 699(101)
Acceleration 2.3 1.3 5.0 19.4 11.2
RSM
Single-grid 476(260) 199(297) 2406(1133) 32607(4047) 12604(4913)
Full multigrid 275(89) 189(101) 709(161) 3397(243) 2066(261)
Acceleration 1.7 1.1 3.3 9.6 6.1

352

Several conclusions can be drawn from the results. In all cases the use of the multigrid
method results in an acceleration of the computations. As usual, the acceleration factor
increases with the number of CVs, and it decreases with the number of processors because
of the higher communication effort due to the coarse grid computations. While still signif-
icant, at least for finer grids, the multigrid acceleration is lower as in comparable laminar
cases (see e.g. Durst and Sch~fer [4]). This fact seems to be related to the very steep gra-
dients occuring along walls and the wall function approach. Independently of the numbers
of CVs and processors the multigrid acceleration for the RSM computations is slightly
lower as for the corresponding k-c computations and, in general, the computational effort
is is about 2-3 times higher for the RSM computations. The parallel efficiency is similar
for the RSM and k-~ computations and the grid partitioning only slightly deteriorates
the convergence of the multigrid method due to its global implementation (compare e.g.
iteration numbers for 4,096 CVs with P = 1 and P = 4 or for 65,536 CVs with P = 4 and
P = 16, where the iteration number is even uneffected for the k-c computations). This
behaviour as well as the parallel efficiency is comparable to laminar cases (see e.g. Durst
and Sch~fer [4]).

As a second example, involving a more complex non-orthogonal geometry, the flow
around a circular cylinder in a channel is considered. Figure 2 shows the configuration to-
gether with the numerical grid, the partitioning for 16 processors, as well as the computed
distribution of the Reynolds stress -pu2u2. Again, the Reynolds number is Re = 107 and
the inflow conditions are chosen according to (9). The multigrid procedure is used with
(20,20,20)-V-cycles with a coarsest grid of 256 CVs (in Figure 2 the grid with 4,096 CVs
is shown).

Figure 2. Geometry, numerical grid, partitioning for 16 processors, and computed distri-
bution of Reynolds stress -pu2u2 for the flow around a circular cylinder.

In Table 2 the computing times (minutes) and the numbers of fine grid iterations (in
brackets) are given for computations with the RSM and the k-c model. The results are

353

given for the single-grid method with nested iteration and the full multigrid method to-
gether with the resulting acceleration factors for different numbers of CVs and processors,
where in each case the number of CVs per processor is the same. It should be noted that
without nested iteration for this problem no convergence can be obtained for the chosen
set of under-relaxation factors. Of course, convergence can be enforced by using very
small values of these factors for velocity components and turbulence quantities, but the
rate of convergence would be very poor.

Table 2
Comparison of single-grid (with nested iteration) and full multigrid computations with
different numbers of CVs and processors for the flow around a circular cylinder with RSM
and k-c model. Computing times (minutes), numbers of fine grid iterations (in brackets),
and corresponding acceleration factors.
k-c 16,384 CV, P = I 65,536 CV, P=4 262,144 CV, P=16
Single-grid (NI) 71(887) 186(2267) 510(5641)
Full multigrid 25(201) 36(241) 74(361)
Acceleration 2.8 5.2 6.9
RSM
Single-grid (NI) 135(954) 373(2622) 1026(7002)
Full multigrid 56(281) 91(401) 223(847)
Acceleration 2.4 4.1 4.6

Comparing the results in Table 2 with that for the channel flowin Table 1 one can
see that, in principle, the same conclusions as stated above for the latter are valid. A
difference can be observed in the acceleration factors, which are lower for the cylinder
flow. Of course, this mainly has to do with the better performance of the single-grid
method due to the additionally employed nested iteration, but there is also an influence
of the higher flow complexity. Looking at the results for 65,536 CVs with P = 4, which
are indicated for both cases, one can see that for the cylinder flow the number of fine grid
iterations for the full multigrid computation is significantly higher. The ratio is 1.7 for
the RSM model and it is 2.4 for the k-e model.

Another experience of the authors, which could be made during the test computations
and is worth to be noted, is that, in general, the multigrid method stabilizes the RSM as
well as the k-~ computations, which means that the method is more robust with respect
to the choice of under-relaxation factors and grid distortions.

5. C O N C L U S I O N S

Simulations of turbulent flows with second-order moment closure modeling are very
ambitious with respect to computer resources. The results in this paper indicate that
with an efficient exploitation of computing power provided by modern parallel computers
in connection with advanced numerical techniques like multigrid methods a significant
acceleration of such computations, especially for fine grids, can be achieved. Thus, em-
ploying such techniques, gives the possibility to treat such problems with high accuracy

354

(fine grids) within a reasonable amount of computing time, and also allows for a much
wider application of such improved turbulence modeling approaches for the investigation
of complicated practical turbulent flow problems. It can easily be foreseen, that due to
such improvements computations with advanced second-order closure models, for which
is a strong need in many kinds of flow situations, will significantly increase in practice.

Acknowledgemen t s

The authors would like to thank Prof. N. Stolid for his support and many helpful
discussions. The financial support by the Bayerische Forschungsstiftung in the Bavarian
Consortium of High-Performance Scientific Computing (FORTWIHR) and the Deutsche
Forschungsgemeinschaft in the priority research programme Flow Simulation with High-
Performance Computers is gratefully acknowledged.

R E F E R E N C E S

1. B. Basara and B.A. Younis. Assessment of the SSG Pressure-Strain Model in Two-
Dimensional Turbulent Separated Flows. Applied Scientific Research, 1995. To ap-
pear.

2. B.J. Daly and F.H. Harlow. Transport equations in turbulence. Physics of Fluids,
13:2634-2649, 1970.

3. F. Durst, M. Peri5, M. Sch/ifer, and E. Schreck. Parallelization of Efficient Nu-
merical Methods for Flows in Complex Geometries. In Flow Simulation with High-
Performance Computers I, volume 38 of Notes on Numerical Fluid Mechanics, pages
79-92. Vieweg Verlag, 1993.

4. F. Durst and M. Sch/ifer. A Parallel Blockstructured Multigrid Method for the Pre-
diction of Incompressible Flows. Int. J. for Num. Meth. in Fluids, 1996. To appear.

5. M. Hortmann, M. Peri5, and G. Scheuerer. Finite volume multigrid prediction of
laminar natural convection: Benchmark solutions. Int. J. Num. Meth. in Fluids,
11:189-207, 1990.

6. F.S. Lien and M.A. Leschziner. Multigrid Acceleration for Recirculating Laminar
and Turbulent Flows Computed with a Non-Orthogonal, Collocated Finte-Volume
Scheme. Computer Methods in Applied Mechanics and Engineering, 118:351-371,
1994.

7. S.V. Patankar and D.B. Spalding. A calculation procedure for heat, mass and mo-
mentum transfer in three dimesional parabolic flows. Int. J. Heat Mass Transfer,
15:1787-1806, 1972.

8. C.M. Rhie and W.L. Chow. Numerical study of the turbulent flow past an airfoil with
trailing edge separation. AIAA Journal, 21:1525-1532, 1983.

9. C.G. Speziale, S. Sarkar, and T.B. Gatski. Modelling the pressure-strain correlation
of turbulence, an invariant dynamical systems approach. Journal of Fluid Mechanics,
227:245-272, 1990.

10. H. Stone. Iterative solution of implicit approximations of multi-dimensional partial
differential equations. SIAM Journal on Numerical Analysis, 5:530-558, 1968.

11. D.C. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, 1993.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

355

C e l l - V e r t e x M u l t i g r i d So lvers in t he P A R A G R I D f r a m e w o r k

S. Sibilla ~ and M. Vitaletti b

~Aermacchi S.p.A, Air Vehicle Technology,
P.O. Box 101, 21040 Venegono Superiore, Italy

bIBM SEMEA S.p.A., ST&E- ECSEC,
P.le Giulio Pastore 6, 00144 Rome, Italy

FLO67P-2 is a parallel Euler solver based on the cell-vertex multigrid code FLO67 of A.
Jameson. The solver is implemented as a module hosted within the PARAGRID frame-
work, the latter providing multi-block management functions and automatic block-level
parallelism on distributed systems. Some topics concerning a multi-block implementation
of the multigrid algorithms are examined. The parallel efficiency of the whole code has
been assessed on the IBM SP2 parallel system.

1. I n t r o d u c t i o n

Multiblock methods combine the simplicity and efficiency of CFD algorithms based on
a single-block structured grid with the ability to handle geometrically complex regions.
The latters are mapped by regular non overlapping blocks with arbitrary topological
connections. Multiblock codes can run very efficiently in parallel mode by exploiting
block-level parallelism. A significant progress in this area is achieved by implementing
multiblock management functions usually encapsulated in a specific appl ica t ion- -
within a separate, general purpose, framework.

1.1. P A R A G R I D
PARAGRID [1] [2] is a parallel multiblock framework developed at IBM ECSEC. A

program solving a set of discretized field equations on a single-block structured grid can
be integrated as a subdomain solver, so that multiple copies of the same code - - each one
computing a different grid b l o c k - can work concurrently on different nodes of a parallel
system. An arbitrary number of field variables can be associated with the grid sites
which are defined for each elementary grid cell, namely the cell center, the cell vertices
and the cell faces. This generality is needed to support different discretization methods
while coarse grid levels can be explicitely defined to ease the implementation of multi-grid
and multi-level algorithms. The basic concept of PARAGRID is that of a halo region
surrounding the core region of each subdomain grid:

�9 The evolution of the field is computed through a sequence of update steps performed
by the hosted application module in parallel - - on all blocks.

356

�9 Updates include internal boundary nodes (cell-vertices). One difficulty comes from
the existence of as many replicas of a boundary node as there are blocks sharing
that particular site. Also, the grid around a boundary edge or corner is generally
u n s t r u c t u r e d . Computing internal boundaries by one-sided algorithms generally
causes the assignment of non identical values to the replicas of the same physical
node as computed on different, contiguous blocks.

�9 Halo data automatically reflect the new status after a field update. Consistency of
field data over all replicas of a boundary node is enforced by averaging.

This paper compares two different implementations of FLO67 within PARAGRID.
FLO67 is a CFD Euler solver based on the Jameson [31 cell-vertex multigrid method
where relaxation is achieved through an explicit 5-stage Runge-Kutta time-stepping al-
gorithm with implicit residual smoothing.

1.2. F L O 6 7 P
The first attempt to integrate the FLO67 code within PARAGRID has been described

in a previous work [2]. FLO67P the modified c o d e - achieved a maximum level of
localization, the whole multigrid cycle being performed independently within each block
with frozen halo data on all grid levels. FLO67P has minimum memory requirements
and maximum parallel efficiency. However, the one-sided evaluation of interfaces leads
to inconsistencies in the computation of the flow field on internal boundary nodes. For
large time-steps, the automatic averaging performed a posteriori by PARAGRID is not
sufficient to ensure convergence of field values for all replicas of an interface node.

2. FLO67P-2

FLO67P-2 is a new version of the code in which departures from the serial algorithm are
kept to a minimum, as they mainly originate from the adaptation of FLO67 to multi-block
grids.

The control volume of a cell-vertex lying on a block boundary edge or corner generally
consists of an unstructured collection of cells, with solid boundaries possibly inserted
between cell faces. One of the goals of FLO67P-2 was to provide an accurate computation
of the convective fluxes for control volumes of such general types.

A whole Runge-Kutta sweep of the Jameson algorithm is implemented, on a given grid
level, as a sequence of 5 parallel update steps, one for each stage. The halo region of
each block is updated with the most recent field values before starting the computation of
each new stage, thus trying to ensure that identical field values be assigned to all replicas
of a boundary vertex at the end of the whole sweep. Achieving this goal would actually
require a global serial implementation of the implicit residual smoothing which is hard to
generalize to arbitrary multi-block grids. This option would also adversely impact the
parallel efficiency of the whole code. A similar difficulty was found with the computation
of diffusive fluxes for the adaptive dissipation scheme. A full generalization to general
multi-block grids requires to adopt an unstructured version of the scheme, which is still
under investigation.

Presently, implicit residual smoothing is applied locally within each block. Also, artifi-
cial dissipation terms may be 'biased' by the computational stencil adopted in a particular

357

Figure 1. Collection of residuals to a coarser mesh.

~

1/5 ~/~ M 1 /

- --T T i

block for grid nodes belonging to 'unstructured' edges or corners. Therefore, inconsisten-
cies can still arise at internal boundaries when dealing with topologically complex grids
and/or large time-step sizes. The problem is much less critical in FLO67P-2 than in the
previous code, because the contribution of convective fluxes is fully consistent across block
boundaries. Discrepancies among the replicas of a boundary node which are due to the
'block-biased' terms, are averaged out - - o n each grid l e v e l - after each stage of the RK
sweep.

2.1. Multi-block multi-grid
Extending the multi-grid collection and interpolation procedures to a general multi-

block topology is relatively easy within the new PARAGRID. In FLO67 total residuals
are accumulated on cell vertices, and residual collection on a coarser mesh is accomplished
in two steps, as shown in figure 1. On the fine mesh, the accumulated nodal values of
the residuals are distributed to the neighboring cells. A node surrounded by N cells will
donate 1/N of its residuals to any such cells, their number being readily available from
PARAGRID. Cell residuals are then accumulated on the vertices of the coarser mesh.
No special provisions are necessary for the interpolation of coarse grid corrections. Nodal
corrections are simply transferred to the finer meshes, where interpolation is then per-
formed within each block.

2.2. Communication requirements
In order to quantify the impact of the new design on the network communication latency

and bandwidth let take the case of a problem run with W multi-grid cycles over 3 grid
levels, as illustrated in figure 2. A whole W-cycle required only 2 halo-updates in FLO67P
(both on the finest grid level) while it takes 28 halo-updates in FLO67P-2. The latency
overheads, in this example, are increased by a factor of 14, while the total amount of

358

Figure 2. W-cycle in FLO67P-2 (3 levels).

/
I

/
l*(Halo exchange)

O 5*(RK stage + Halo exchange)
l*(Residual evaluation)

l*(Halo exchange)
I 1 4*(RK stage + HalO exchange)

l*(Correction evaluation)

Restriction of residuals

Interpolation of corrections

transferred data increased by a factor of about 10 (only 6 among the 28 halo updates run
on the finest grid).

3. Numerical Experiments

The new parallel code went through a number of validation tests performed by Aer-
macchi [4]. The first test case involved the supersonic flow around a blunt body (cylinder
closed by a sphere). Different mul t ib lock splittings of a single block grid were used
and results compared with those obtained with the serial code on the unsplitted grid.
In figure 3 the flow field solution for a free-stream Mach number of 2 was obtained by
the serial FLO67 code on the unsplitted grid and by FLO67P-2 on a 4-block splitting of
the same grid. In both cases, the computation was run at a local Courant number of 6
with W multigrid cycles on 3 grid levels. The two solutions are identical. The solution
obtained with FLO67P on the 4-block grid is also in good agreement with the single-block
solution, but the residuals only decrease by 2 orders of magnitude (left of figure 4). In
the figure, the plot grid spacing horizontally measures 25 time-steps, while it corresponds
to a factor of 10 along the vertical, logarithmic scale. The convergence history includes
50 steps done on a coarse grid and 50 steps on a medium grid (multi-level initialization)
before starting the finest grid calculations. The stopping of convergence in FLO67P was
clearly caused by the loose coupling of the solutions at block interfaces. By contrast, very
similar convergence histories were obtained by the serial code and FLO67P-2 (right).

A second test case is the transonic vortical flow around a wing-body-canard configu-
ration. In this case, the grid is composed of 32-blocks (half configuration). The solution
for a free-stream Mach number of 0.85 and an angle of attack of 10 degrees is illustrated
in figure 5. The CP isolines on the upper surface of the body are illustrated on the left.
Isolines of the total pressure losses are shown on the right on a cross-flow section
to evidentiate the two strong vortices which span without distortion across inter-block
boundaries.

Figure 3. C P iso-lines with F L 0 6 7 (left) and FL067P-2(right)

Figure 4. Max. density residual hist,ory (single precision). Left: F L 0 6 7 P on a single-block
grid. Right: FL067P-2 on a 4-block splitting of the same grid.

360

Figure 5. CP isolines (left) and pressure losses (right) for a transonic vortical flow com-
puted on a 32-block grid

3.1. Para l l e l Ef f i c i ency on I B M S P 2
The parallel efficiency and scalability of FLO67P-2 was measured on IBM SP2 parallel

systems. A well-balanced computational load is the first requirement for a high parallel
speed-up. PARAGRID features both automatic and user-specified load-balancing [1]. In
the first case it is assumed that the computational cost is directly proportional to the
number of grid cells in a block, a condition which is approximately satisfied by FLO67P-
2. A direct specification can be tried by the user when blocks are of equal size and
their number is a multiple of the available processors. The automatic algorithm works
well when the number of blocks largely exceeds the number of available processors. A
preliminary, automatic splitting of the largest grid blocks can be performed in a pre-
processing stage if the previous condition is not satisfied. An automatic re-combination
of results at the end of the computation can hide the complexity of the whole process to
the end-user. A perfectly balanced test-case a 12-block grid around a sphere was
used to ease the interpretation of efficiency measurements. The grid has a total number
of 490 thousand cells. Tests were run on 1, 2, 3, 4, 6 and 12 processors, with and without
multi-grid. Multi-grid runs used Wcycles on 3 grid levels. The parallel speed-up is plotted
in figure 6 for both series of tests. It is observed that runs without multi-grid scale well up
to 12 processors, with a moderate super-linear speed-up, reasonably due to a better use
of the cached memory system achieved through a greater localization of program data.
The efficiency of multi-grid runs drops from 87% to 75% when doubling the number of
processors from 6 to 12.

The PARAGRID communications were implemented on top of the IBM MPL message
passing library, using the bi-directional (send/receive) primitive. This ensures an optimal
use of the IBM SP2 High-Performance Switch. The point-to-point bandwidth, measured
at the application level, ranges from 20 to 40 megabytes/sec, depending on the message
length.

361

Figure 6. Parallel speed-up (12-block grid, 490K grid cells)

13

12
I

ii
G)

�9 I0

9

8

7
|

6

5

4

3

2

1

Performance of FLO67P-2 on IBM SP2

i i {Ref:, l{inear Speed-~p ~ ~

............. i i i i i i l

- i i i i i i ! ~ ~ i ; > : ! i
............. ~ i ~ i i i i::..-':~ i i :~

i i i i .~ i i i i i

i i .~ i i i i i i i
i ; .~ i i i - i i i i

1 2 3 4 5 6 7 8 9 i0 ii 12
Number of SP2 processors

4. C o n c l u s i o n s

An accurate implementa t ion of explicit mult i-stage, mult i -gr id CFD algori thms poses
strong requi rements on the communica t ion latency and bandwid th of a d is t r ibuted me-
mory sys tem which cannot be met on ordinary clusters. The good per formance results
obta ined with FLO67P-2 on the IBM SP2, a d is t r ibuted parallel sys tem featuring a high-
per formance switch, suggest tha t scalability to tens of processors can be achieved, on
this type of codes, for m e d i u m and large problems. Based on the present results, each
processor should be assigned no less than 40 thousands grid cells.

R E F E R E N C E S

1. F. Dellagiacoma, S. Paolett i , F. Poggi, and M. Vitalet t i . Mul t idomain computa t ions
of compressible flows in a parallel scheduling environment . In R.B. Pelz, A. Ecer, and
J. Hauser, editors, Parallel Computational Fluid Dynamics '92, pages 111-122, New
Brunswick ,NJ ,USA, May 1992. North-Holland.

2. F. Dellagiacoma, M. Vitalet t i , A. Jameson, L. Martinelli , S. Sibilla, and L. Visintini.
Flo67p: a mult i -block version of flo67 running within paragrid. In Parallel Computa-
tional Fluid Dynamics '93, Paris,France, May 1993. North-Holland.

3. A. Jameson. A ver tex based mult igr id a lgori thm for three dimensional compressible

flow calculations. ASME Symposium on Numerical Methods, 1986.
4. S. Sibilla. Flo67p-2 euler solver for mult i-block s t ruc tured grids of general topology.

Technical report , 1994. Aermacchi Report 567-ANG-378.

This Page Intentionally Left Blank

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

363

FLUID FLOW IN AN AXISYMMETRIC, SUDDEN-EXPANSION
GEOMETRY

C.F. Bender, P.F. Buerger, M.L. Mittal, and T.J. Rozmajzl
Program for Computational Reactive Mechanics
Ohio Supercomputer Center
1224 Kinnear Road, Columbus, OH 43212, U.S.A.

This paper deals with fluid flow in a sudden expansion geometry for moderately high
Reynolds number ~ 2500. The full time dependent Navier-Stokes equations are solved
in this geometry. To resolve all the prevailing excited scales of the fluid flow, a fine
staggered grid is used. The fine mesh and small time steps necessitate computation on
scalable parallel machines. The performance of parallel implementation and computations
is discussed.

1. I n t r o d u c t i o n

Fluid flow in sudden expansion geometries, with or without solid particles, is an im-
portant technological process for many industrial and scientific applications, especially
for combustion processes. For such geometries, even with moderately high values of the
Reynolds number, the separated boundary-layer becomes unstable, and the flow exhibits
repeated vortex formation and shedding at the corner point near the sudden expansion.
The formation and persistence of large scale coherent vortex structures within turbulent
wake-like regions give rise to turbulent behavior.

The numerical simulation of such a turbulent fluid flow that includes details such as sep-
aration phenomena and reverse flows precludes the use of the Reynolds averaged Navier-
Stokes equations or modeling approaches such as mixing lengths and ~ - ~. Subgrid-scale
modeling continues to be a weak part of the large eddy simulation (LES) technique. Spec-
tral methods can deal with only simple square or cube geometries. One alternative is the
Direct Numerical Simulation (DNS), in which the full Navier-Stokes equations are solved
numerically. The DNS technique is relatively new and has been developed in the last two
decades [1,2]. DNS is amenable for parallel computing. The challenge is to devise com-
putational techniques that can exploit the latest advances in computer system software
and hardware.

A full time-dependent, Navier-Stokes analysis is used to simulate fluid flow and particle
motion in an axisymmetric sudden expansion geometry for Reynolds number (Re) =
2500. The formulation, based on global conservation of mass and momentum, is given
by Osswald et al. [3]. A vorticity stream function formulation, instead of one based on
the primitive variables, is used for this flow simulation. Even with transformation to
generalized orthogonal curvilinear coordinates, the strong-conservation form is obtained
for both the vorticity-transport equation and the elliptic stream function equation.

364

A clustered conformal coordinate procedure establishes a surface-oriented orthogonal
coordinate system with grid clustering/stretching characteristics and a novel grid-point
placement in the physical flow domain. More technical details of this formulation are in
[3] and [4]. The governing equation for vorticity is solved by an alternating-direction fully
implicit (ADI) method in time, using a forward time marching scheme. The corresponding
stream function distribution is obtained by a fully implicit solution of the elliptic stream
function equation.

The flow boundary conditions are derived from symmetry across the centerline and zero
slip at the walls. The streamwise asymptotic forms of the governing equations are solved
to provide the inflow/outflow boundary conditions; these conditions maintain consistency
between the boundary values and the interior solution. The time evolution of the flow
field is pursued long enough to achieve the quasi-steady state.

These simulations need a large number of grid points in space to resolve all the prevailing
excited scales of the fluid flow and a proper time step to ensure flow numerical diffusion. A
grid of 512 points in the axial direction and 128 points in the radial direction is used with
time step At = 4.0 x 10 .6 in the present simulation. The resulting system of equations is
solved by the GMRES iterative method to minimize the effects of roundoff errors.

The trajectories of the particles of different sizes, injected at different radial locations in
such a quasi-steady state flow, can be computed using Lagrangian equations. The particle
motion occurs due to the drag force from the local fluid velocity.

The separation point, the recirculating flow, and the large-scale vortex structure for the
fluid flow are shown and discussed. We will also discuss the roundoff errors introduced
by the large number of mesh points and the need to maintain numerical accuracy.

2. Gove rn ing equa t ions

The unsteady, incompressible Navier-Stokes equations, in terms of the vorticity vector
ca and the velocity vector V, consist of a temporally parabolic vorticity transport equation

Oca 1 (V x V x ca) (1) at + (v . = v) v -

together with the kinematic definition for vorticity

V • (2)

For the present axisymmetric flow, involving only two spatial coordinates, a stream func-
tion r is defined as

. . +

V - V r e a, (3)

which also satisfies the continuity equation

v . v = 0 (4)

The vorticity vector ca and ~ are related as

c a - V x V - V x V r e a (5)

where e -~ is the local contravariant base vector normal to the ({1, {2) coordinate surface as
shown in figure 1. Here, {1 and ~c2 represent generalized orthogonal curvilinear coordinates
for an axisymmetric geometry.

365

2.1. Coordinate transformation and the grid
A generalized curvilinear coordinate transformation T is defined to transform the flow

configuration from the physical cartesian coordinates (zl,z2, z a) to the computational
coordinates (~1 {2). Figure 1 shows the coordinate transformation T.

T:

X 1- X(~', ~2)
x 2_ r(~l, ~2) COS(~3)

x 3 - r(~', ~2)sin(~3)

I
A
e 3

Meridional Plane ~k e3.- 1

x (r

,

Z,~ ~'L... ~ ~ r - -

xl ~1

Figure 1. Generalized axisymmetric coordinate transformation T

An analytically defined clustered conforrnal coordinate procedure is used to establish
the surface-oriented orthogonal coordinates with desirable grid clustering characteristics
throughout the physical flow domain. A boundary-aligned conformation coordinate trans-
formation Tu defines the boundary. A grid clustering transformation Tc is then super-
imposed over TH for proper flow resolution. The clustered conforrnal coordinate transfor-
mation T=TH.TC maps the unit square [~1, ~2] in the computational plane onto a doubly-
infinite step configuration in the physical plane. A uniformly spaced computational mesh
is transformed into the clustered cordinate grids. The details of the grid generation and
coordinate transformation are given in [3].

3. Numer ica l solutions

For generalized axisymmetric flow,

~ - J~;, (6)

where w 3 is the contravariant component of the vorticity, and e~ is the local covariant
base vector normal to the (~1, ~2) coordinate surface. Using equations 6 and 3 in equation

366

1, we write the vorticity transport equation as

/~Ow 3 0 0

= n~ b-~ \ ~ ~-~ (9 ~) + ~-~ \ ~ o~ ~- (9 ~) (7)

The equation for r is obtained from equations 3 and 5.

 ,57V
Here, g represents the determinant of the covariant metric tensor gij, where

~=~ \ 0 ~) o~J] (9)

3.1. B o u n d a r y and initial condit ions
The centerline symmetry boundary conditions are used for r and w. Thus

r (10)

wc 3 _ wp 3 / V / ~ - finite (11)

as wpa=0 and v / ~ = 0 at the centerline.

The No-slip boundary condition on the solid wall gives:

~w =0.5 (12)

and

0 (gll 0 r o~ \ v~-5- ~ I~o. - - v ~ J Iwall (13)

subject to the constraint

1 0r
0~ 2 I wau= 0 (14)

Along the inflow and outflow boundaries at upstream and downstream infinity, the
flow becomes diffusion dominated in the normal direction. Hence, the asymptotic forms
of equations 5 and 8 are used as the inflow and outflow conditions. This procedure
maintains consistency between the boundary values and the interior solution. This gives

Ow 3 1 0 (1 0)
Ot = Rex/g22933 O~ 2 ~/g22g33 O~ 2 (g33w3) (15)

1 0 (1 0 r (16)
v/g22933 0~ 2 v/g22933 0~ 2
Initial conditions are obtained from the steady-state solution of equation 16. The initial
vorticity distribution is obtained as a solution of equation 8 with appropriate boundary
conditions. This implies a flow starting impulsively from rest. Details of this procedure
are provided in [3].

367

3.2. N u m e r i c a l m e t h o d s
A second-order accurate central finite difference scheme is used for spatial discretiza-

tion. Start ing from the initial state, the vorticity field is calculated with a forward time
marching scheme. The computat ional problem is divided into a number of small parallel
jobs by using an alternating direction implicit (ADI) method. Using ADI, we get a tridi-
agonal system of matrices for each direction that can be solved in parallel. For the present
problem, there are 128 tridiagonal matrices of size (512 • 512) for the axial direction and
512 matrices of size (128 • 128) for the normal direction. The work load for each of these
matrices is also approximately the same, which makes it easy to balance the load on the
machine. These tridiagonal matrices are solved in a sequential manner, one each on a
single processor.

Because of the large matrix size and the need to solve the equations repeatedly for
a sufficiently long time to achieve the quasi-steady state of the turbulent flow, it is im-
portant to control the roundoff errors. Direct solution methods could be more efficient
computationally, but with these methods, the residual error can also be as high as 10 -1.

The roundoff error is controlled by using the GMRES [5] with the criterion that the root
mean square of the residual error is always less than 10 -4. To accelerate the convergence,
the diagonal matrix is used as the preconditioner. The elliptic stream function equation
results in a block tridiagonal system after discretization. A parallel implementation of the
direct fully implicit solution of the block tridiagonal matrix is used to solve the stream
function equation.

We intend to use the ADI method [6,7] for the solution of the Poisson equation also
to improve the overall performance. Alternatively, we may use the algorithm of Hajj and
Skelboe [8] to parallelize the Block Tridiogonal matrix system.

4. P h y s i c a l r e s u l t s

Figures 3 and 4 give the vorticity contours of the flow at the nondimensional time t =
3.7. The flow is highly turbulent in the upstream region whereas in the downstream region
the large scale structures can be seen. As these large eddies interact, the flow becomes
turbulent. The large scale structures are shown in figure 4 at the nondimensional axial
length between 5.0 and 6.0, and figure 3 shows the vortices and turbulent character of the
flow near the sudden expansion region. The streamline contours of the flow, the separation
points, and the recirculation zones in the left corner of the geometry are shown in figures
5, 6, 7, and 8. The recirculation zone, as well as the separation length increase with time
until a quasi-steady state can be reached. At nondimensional times t = 0.04, 0.135, 0.19,
and 0.2,the lengths are ~ 0.65, 0.9, 1.12, and 1.15, respectively, as seen in the streamline
contour figures. At time t = 3.35, it is ~ 5.5, and at t = 3.75 it is 6.25. For turbulent
quasi-steady state flows, the separation length will oscillate. As a result of the separation
length increasing, the recirculation zone also increases, as can be seen in figures 5, 6, and
7.

368

5. Para l l e l i m p l e m e n t a t i o n and p e r f o r m a n c e

To measure the performance of these computations, the speedup Sp(np) and the effi-
ciency Ep(np) are defined as:

T(1) . Sp(np) T(1)
S p (n p) - T(np) ' Ep(np)= = , np np x T(np)

where np denotes the number of processors and T(np) is the computational time for np
processors.

These algorithms were first implemented on a Cray Y-MP, a multiprocessor, shared-
memory vector supercomputer. Using seven processors of the Y-MP, we achieved a
speedup of 6.55 for an efficiency of 94%.

These algorithms are now implemented on a Cray T3D, a scalable parallel supercom-
puter, using CRAFT compiler directives. Single processor element (PE) performance,
especially making effective use of the data and instruction caches, is crucial for the overall
performance of the T3D. Using several optimization techniques such as private arrays
with dimensions not multiples of 1024, loop unrolling, padding, etc. we achieve a speedup
of 17.9 for an efficiency of 56% on 32 P Es. Table 1 and figure 2 show the overall perfor-
mance of the code on the T3D for one through 32 PEs. Memory limitations prevented
our running the code on a single PE. The timings for a single PE shown in Table I and
figure 2 are extrapolated from the timings for two P Es.

With CRAFT operations we achieve approximately 2.5 - 3.0 Mflops per PE. We hope
to improve the single PE performance and achieve 10 Mflops per PE through the use of
routines from the shared-memory or MPI libraries.

Table 1
Performance on CRAY T3D with CRAFT
np Grid points/PE Time(minutes) Speedup Efficiency
1 65536 260.3 1 100%
2 32768 130.2 2 100%
4 16384 68.5 3.8 95.0%
8 8192 37.6 7.0 87.5%
16 4096 22.3 11.7 73.0%
32 2048 14.6 17.9 56.0%

Single PE performance is based on 2 PEs performance.

6. Conc lus ions

The performance of the parallel computations of the fluid flow for the present appli-
cation is very encouraging as seen from the speedup curve, although Mflops and per
processor performance is well below the optimal. With shared memory operations, we
hope this performance can be improved and Gigaflops performance can be achieved. With
this fluid flow, we can now calculate the trajectories of solid particles.

369

R E F E R E N C E S

1. R.S. Rogallo and P. Moin, Ann. Rev. Fluid Mech. 16 (1984) 99
2. W.C. Reynolds, Whither Turbulence? Turbulence at the Crossroads J.L. Lumley (ed),

Springer-Verlag, New York, 1990
3. G.A. Osswald, K. N. Ghia, and U. Ghia, Unsteady Navier-Stokes Simulation of Inter-

nal Separated Flows Over Plane and Axisymmetric Sudden Expansions. AIAA Paper
84-1584

4. M.L. Mittal and U. Ghia, Proceedings of Combustion Fundamentals and Applica-
tions, 1991 Spring Technical Meeting, Central State Section, The Combustion Insti-
tute (Nashville, Tennessee, April 22-24), 65-71

5. Z. Bai, D. Hu, and L. Reichel, IMA Journal of Numerical Analysis 14 (1994) 563
6. D.W. Peaceman and H.H. Rachford Jr., J. Soc. Indust. Appl. Math. 3 (1955) 28
7. A. Hadjidimos, Numer. Math. 13 (1969) 396
8. I.N. Hajj and S. Skelboe, Parallel Computing 15 (1990) 21

i

18

16

14

12

10

Speedup curve

J , , i , , , , i , , , , i , , , , i , , , i ,

5 10 15 20 '2'5' '3'0'
np--number of processors

Figure 2. Speedup curve for 32 processors

370

Figure 3. Vortici ty contours ups t r eam Figure 4. Vorticity contours downs t ream

Figure 5. S t reamline contours at nondimen- Figure 6. S t reamline contours at nondimen-

sional t ime t - 0.04 sional t ime t - 0.135

Figure 7. S t reamline contours at nondimen- Figure 8. S t reamline contours at nondimen-
sional t ime t - 0.19 sional t ime t - 0.20

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

371

Implicit Navier-Stokes Codes in Parallel for Aerospace Applications

K.J.Badcock and B.E.Richards ~*

~Department of Aerospace Engineering, University of Glasgow, Glasgow, G12 8QQ, U.K.

The parallel implementation of implicit codes to simulate two and three dimensional
compressible and turbulent fluid flows is discussed. The implicit methods are based on
a preconditioned conjugate gradient type solution of the large and sparse linear system
at each time step. The preconditioner is based on the alternating direction implicit
factorisation of the linear system. An efficient parallel implementation is achieved by using
data transposition to locate the data relating to complete mesh lines in each coordinate
direction onto a single processor at the appropriate time in the calculation. Results are
given to illustrate the performance achieved on the Cray T3D and a workstation cluster
for the transonic and turbulent flow over an aerofoil section and a wing.

1. I n t r o d u c t i o n

It is becoming possible to accurately simulate complex three-dimensional flows due to
advancements in both computer and algorithm power. Parallel computing can provide
supercomputing at a modest cost through workstation clusters or a potential performance
approaching gigaflops through machines such as the Cray T3D. To use these machines
effectively careful attention must be paid to how the algorithm can best exploit the dis-
tributed processing.

Implicit methods are currently preferable for the simulation of some types of fluid flow
due to better stability properties when compared with explicit methods. Unsteady viscous
flows are one example. The solution of the large sparse linear system at each implicit time
step presents a particular problem for the parallel implementation of implicit methods.
Direct methods are not well suited to parallel implementation because Gaussian elimina-
tion and back substitution are essentially sequential in nature. Iterative methods such as
conjugate gradient type algorithms are more promising since their main computational
work is based on a matrix-vector product which can be carried out efficiently in parallel.
However, effective preconditioning is required for iterative methods and this is usually
based on a direct solution of a simplified system, eg incomplete LU decomposition or
alternating direction implicit (ADI) factorisation.

The use of the ADI factorisation as a preconditioner for a conjugate gradient squared
(CGS) solution of the linear system at each implicit step of a solution of the Navier-Stokes
equations is described in [1]. A novel two factor method for three-dimensional flows is

*The workstation cluster used in this study was purchased as part of a project funded by JISC under the
New Technologies Initiative. Time on the Edinburgh Parallel Computing Centre Cray T3D was obtained
as part of the Computation of Complex Aerodynamic Flows consortium.

372

discussed in [2]. Care must be taken in the parallel implementation of these methods due
to the sequential nature of the ADI preconditioning used. However, the preconditioning
decouples between lines in the different coordinate directions during the calculation and
data transposition can be used to shuffle data around so that each processor can complete
the calculation on a mesh line independently of other processors. In this way communi-
cation is concentrated in several intensive bursts, latency is eliminated and high parallel
efficiencies are obtained.

The details of this approach are discussed in this paper. In the following section the
numerical methods are briefly described. Then the parallel implementation of the methods
for aerofoil flows and wing flows is discussed. Code timings are given for several machines
and issues such as the effectiveness of the parallel implementation are considered.

2. T h e N u m e r i c a l M e t h o d s

2.1�9 Aerofoi l Flows
The AFCGS method for steady and unsteady aerofoil flows has been presented in [1]

and [3] respectively and the reader is referred therein for full details. The motivation
behind the approach is to use conjugate gradient methods to remove factorisation error
effects from implicit methods. The Alternating Direction Implicit (ADI) approximate
factorisation, which is frequently used to provide a solution to the large linear system
which arises at each implicit time step, is used as a preconditioner for the conjugate
gradient solution of this linear system. A brief description of the method is now given.

The thin-layer Reynolds' Averaged Navier-Stokes equations in generalised curvilinear
co-ordinates (~, 7?) with r/normal to the surface can be denoted in non-dimensional con-
servative form by

Ow Of Og Os
at + 0-~ + Or/ = Or/ (1)

where w denotes the vector of conserved variables, f the convective streamwise flux, g
the convective normal flux and s the normal viscous flux.

One implicit step can be written as

OR~ n ORn n
(I + A t - ~ - w + A t - - ~ - w)Aw" - - A t (R ~ + R~) (2)

where Re and R n are terms arising from the spatial discretisation in the ~ and r/directions
respectively and

Of O (g - s)
0-~ ~ R~ Or/ ~ R~.

n w ~ w n't-1 - w n

In the present work the spatial terms are discretised using Osher's flux approximation
with MUSCL interpolation and the Von Albada limiter for the convective terms and cen-
tral differencing for the viscous fluxes. The Baldwin-Lomax turbulence model is employed
to provide a turbulent contribution to the viscosity.

373

The ADI factorisation of equation (2) is

0R~ n 0 R , n
(I + At-0-~w)(I + At-0-~w)Aw ~ = - A t (a ~ + a~). (3)

Denoting the linear system to be solved at each time step by

Ax = b (4)

we seek an approximation to A -1 ~ C -1 which yields the system C-lAx = C - l b more
amenable to conjugate gradient methods. The ADI method provides a fast way of calcu-
lating an approximate solution to equation (4) or, restating this, of forming the matrix
vector product x = C- lb . Hence, if we use the inverse of the ADI factorisation as the
preconditioner then multiplying a vector by the preconditioner can be achieved simply by
solving a linear system with the right-hand side given by the multiplicand and the left
hand side matrix given the approximate factorisation. The factors in C can be put in
triangular form once at each time step with the row operations being stored for use at
each multiplication by the preconditioner.

2.2. W i n g Flows
The extension of the method to three-dimensions is complicated by two considerations.

First, computer storage becomes a limiting factor due to the need to store large Jacobian
matrices. Secondly, the three factor ADI factorisation in three-dimensions is significantly
worse than in two-dimensions, making its use as a preconditioner less favourable. This
fact however means that there are increased gains to be made in three dimensions by the
use of an alternative to ADI.

One step of the method considered can be written as

OR~ ORy . ORz.
(I + A t ~ + A t ~) (I + A t ~) S w - R~xp (5)

where R~xp = - A t (R ~ + R u + Rz). This two factor step can be loosely described as
unfactored in each spanwise slice and approximately factored in the spanwise direction.
A stability analysis [4] has shown that the method has similar stability properties to
the two factor ADI method in two-dimensions. This represents a large improvement
on the behaviour of the three factor method in three-dimensions. The linear system
resulting from the first factor in equation 5 has a more complicated structure than the
block pentadiagonal systems which are encountered for the three factor method. However,
this sytem can be solved using a direct generalisation of the method described for two
dimensions above i.e. we solve the system C - lAx = C-ab by the CGS method where

AtOR~ ORy A - (I + ~ + A t e) , (6)

OR~. OR~
C - (I + A t ~ - w)(I + At-0-w-w) (7)

and b = - A t (R ~ + Ry + Rz). The two factor method has substantially reduced memory
requirements compared with the fully unfactored method since only the matrix for one
spanwise slice or one line in the spanwise direction need be stored at any one time.

A more detailed discussion of this method can be found in [2].

374

3. Parallel I m p l e m e n t a t i o n of Aerofoil Code

The major obstacle to an efficient parallel implementation of the AFCGS method is
the inherently sequential nature of the ADI solution. This was overcome in [5] by using a
transposition of the data to allow complete ADI sweeps to proceed independently on each
processor. We use this approach here although extra communication is required for the
present method because of the matrix-vector products required in the CGS algorithm.

The computational space is mapped onto the nodes by grouping complete mesh lines
in both the ~ (streamwise) and the ~ (normal) directions onto a single node. Care has to
be taken to make sure that r/lines on either side of the wake cut are mapped to the same
processor. The computation then falls into three phases. First, the matrix is generated
and the factors are put in upper triangular form. The next phase is the multiplication
of a vector by the matrix during the CGS solution and finally we have multiplication
of a vector by the preconditioner which reduces to back substititution on the triangular
factors of the ADI factorisation. For each phase data is held on a node for complete
lines in one direction in the mesh and the entire computation relating to that direction is
completed. The data is then communicated so that information for complete lines in the
other direction is held on a single node and the computation for that direction proceeds.

For the calculation of the matrix, the solution from the previous time step is initially
held on nodes by lines in the r / direction. The fluxes and derivatives are calculated for
each line and the contributions to the residual are formed. At this stage the factor

I + At OR"
Ow (s)

is put in upper triangular form. The solution and the residual are then transposed so
that each node holds information on complete lines in the ~ direction. No communication
of the components of the matrix OR~/Ow is made since these are stored and used on the
nodes on which they are calculated. The calculation proceeds so that we have the left
hand side of 2 stored in complete ~ and r / lines on a node and the solution at time n and
residual stored on complete ~ lines only.

Next, one step of ADI is performed to obtain a starting solution for CGS. This is
achieved by performing ADI sweeps in the ~ direction first, then transposing the solution
obtained and performing sweeps in the r I direction to yield the ADI solution. When a
multiplication by the preconditioner is required, this is performed in the same way.

The CGS solution proceeds with inner products and matrix multiplications being re-
quired. Contributions to an inner product are calculated locally on each node and are
then either transmitted to a chosen node for summing or are summed using a global sum
function. A matrix multiplication is achieved by finding the contribution from terms aris-
ing from the current storage direction direction (rl) , transposing the multiplicand and the
partial product and then adding the terms arising from the multiplication in the other
direction.

The parallel code was tested on the intel Hypercube at the SERC Daresbury Laboratory
with the native message passing fortran routines being used. The test case involved the
turbulent flow over a pitching aerofoil. The algorithm speeds using varying numbers of
nodes on the intel Hypercube are shown in table 1 and indicate that the transpositions
degrade the parallel efficiency. However, this is the case for most parallel preconditioned

375

Machine CPU time efficiency
4 nodes 1161 1.00
8 nodes 658 0.88
16 nodes 422 0.69

Table 1
Algorithm speeds in #sec/grid point/time step for an increasing number of nodes on the
Hypercube. The parallel efficiency is based on the CPU time for ~ nodes since the problem
is too large in terms of memory to fit onto one node.

conjugate gradient solvers and the efficiencies are good compared to those achieved eg
using the incomplete ILU-conjugate gradient solver of [6]. It is anticipated that the
efficiency will increase on finer meshes as the amount of computation relative to the
communication increases on each node. In addition, the storage requirements of the
algorithm have been divided amongst the processors. The breakdown of the speed up
obtained by using 8 nodes of the Hypercube compared to a Sun Sparcstation 10 Model
30 for each main phase of the calculation is shown in table 2. The net speed up achieved
by using the parallel machine is 3.2. The main computational work is involved with
calculating the Jacobian and putting the ADI factors into triangular form. It is clear
that the parallelisation is most effective for this phase of the calculation which takes up
about eighty percent of the total work. The second most intensive part of the work is the
CGS solution and this too is effectively parallelised even though the ADI preconditioning
slightly degrades the efficiency. Finally, an ADI step is relatively inefficient due to the
large communication time relative to the computational time involved.

The parallel code was also implemented on a cluster of Silicon Graphics Indy worksta-
tions at the University of Glasgow. The message passing was accomplished by using PVM
version 3.3. The comparison of algorithm speeds (time in #sec/grid point/time step) on
the Hypercube and on the workstation cluster is shown in table 3. It is clear that excellent
performance on the workstation cluster is achieved compared with the Hypercube. This
is due to the faster individual processors of the workstations. It should be noted that
comparative speed-ups for the Hypercube and the cluster are not available since the code
requires too much memory to run on one node of the Hypercube. However, the loss in
potential performance due to the parallel processing does not seem to be any greater for
the workstation cluster than on the Hypercube.

4. Para l le l I m p l e m e n t a t i o n of the W i n g Code

The three-dimensional algorithm has two distinct phases. First, there is the generation
and solution of the large linear system in equation 6 arising from each spanwise slice of
the mesh. Secondly, there is the solution of the banded linear systems arising from the
second factor in the spanwise direction.

The first phase is split between processors in two ways. First, the spanwise sections are
split into groups. Each group is then assigned to a set of processors with each spanwise

376

Part of Calculation ratio of parallel:serial execution speed
total 3.2

Jacobian calculation 3.5
ADI step 1.5

CGS solution 3.1

Table 2
Comparison of speed-ups on 8 nodes of the Hypercube compared to a Sun Sparcstation 10
model 30 for various parts of the calculation.

Machine algorithm speed efficiency
SGI cluster 1 nodes 958 1.00
SGI cluster 6 nodes 230 0.69
SGI cluster 8 nodes 194 0.62
Hypercube 8 nodes 658 NA

Table 3
algorithm speeds in #sec/grid point/time step for various parallel machines. The paral-
lel efficiency for the Hypercube is unavailable since the problem is too large in terms of
memory to fit onto one node.

slice in the group being treated in a similar way to the two dimensional algorithm described
above by those processors. The communication between the different groups of processors,
each treating a different set of spanwise slices, is simply that which would be required by
an explicit method so that the contributions to the residual (or the right-hand-side of the
linear system) from the spanwise fluxes at the interfaces between the spanwise groupings
can be evaluated. Since there is significantly less communication involved at this stage
than is required to solve a spanwise slice in parallel, it is clear that the most efficient
partition of the problem will arise when as large a number of spanwise groups as possible
is used. For a fixed number of total processors this will reduce the number of processors
which operate on a spanwise section.

The second phase of the calculation involves assigning complete spanwise lines in the
mesh to single processors. Again, a transposition of the data is used so that the calculation
involving a single line can proceed on a single processor without further communication.
Once the updates are available a second transposition is used to restore storage by span-
wise slices for the next time step.

The method has been implemented on the Hypercube under native message passing,
on the Cray T3D at the Edinburgh Parallel Computing Centre under PVM v3.3 and on
the workstation cluster described above under PVM v3.3. These codes were tested on a
steady flow over an unswept wing with a NACA64A010 aerofoil section. The grid in this
case contains 70000 points and is small for this type of application and hence the parallel

377

Machine algorithm speed efficiency
T3D 1 node 2756 1.00

T3D 32 nodes 109 0.79
T3D 64 nodes 61 0.71
T3D 128 nodes 41 0.53

iPSC Hypercube 8 nodes 1325
SGI cluster 1 node 2372 1.00
SGI cluster 6 nodes 416 0.95

Table 4
algorithm speeds in #sec/gp//ts on various machines.

efficiencies quoted should be regarded as pessimistic for any practical application of the
code.

The algorithm speeds achieved are shown in table 4. These results illustrate several
points. First, the T3D speeds are fast due to the large number of powerful nodes avail-
able. Respectable efficiencies are attained when it is taken into account that there is only
a small amount of work on each processor for the present test case compared with po-
tential applications. Careful examination of the performance of the code using the Cray
Apprentice profiler shows that the cache use is inefficient and that a speed up by a factor
of 2 is theoretically possible from reprogramming to avoid this problem. The Hypercube
performance is included for reference to show that this machine is unsuited to this type
of problem if only a small number of nodes are available.

The workstation cluster results show excellent performance and illustrate two important
points. First, the small drop in parallel performance demonstrates that the networking
combined with PVM is sufficiently fast to allow this type of cluster to perform as a powerful
parallel machine for CFD calculations. The high efficiencies achieved also illustrate an
important point about using the parallel algorithm effectively. For the cluster results
the spanwise slices were solved completely on one node, thus limiting the communication
during phase one to that of an explicit start-up. This division of the work was used due to
the small number of processors available. To utilise the larger number of processors on the
T3D it was necessary to divide each spanwise slice amongst several processors. This has
the effect of reducing the overall parallel efficiency because of the communication costs
incurred through solving each slice in parallel, although it should be remembered that the
execution time is still decreased.

5. Conc lus ions

The parallel implementation of two and three-dimensional compressible and turbulent
flow codes has been presented. Results obtained on the intel Hypercube, the Cray T3D
and a Silicon Graphics workstation cluster have shown that these codes can make effective
use of parallel computers.

There remains scope for improving the execution times of these codes. This would be

378

particularly valuable for the three-dimensional code on the T3D which will be used to
tackle very large problems of practical interest. First, an effective transposition strategy
needs to be investigated. The one used here is the simplest conceivable and does not take
account of any optimised communication strategy. Since this part of the code degrades
the parallel performance most there is significant scope for improvement here. Secondly,
reprogramming to make better use of the data cache has the potential to improve execution
times by a factor of two.

The most important conclusions of this work relate to the implications of the results
for the application of these codes. The power of the T3D is required to complete a
comprehensive study of the numerical characteristics of the three-dimensional code and
then to study realistic industrial problems. The workstation cluster is sufficiently powerful
to allow a fast enough turn around time for the study of unsteady aerofoil flows.

R E F E R E N C E S

1. K.J.Badcock, I.C.Glover, and B.E.Richards. Convergence acceleration for viscous
aerofoil flows using an unfactored method. In Second European conference on CFD,
pages 333-341. ECCOMAS, 1994.

2. K.J.Badcock and B.E.Richards. Implicit time stepping methods for the Navier-Stokes
equations. In 12th AIAA CFD conference, San Diego. AIAA, 1995.

3. K.J.Badcock and A.L.Gaitonde. An unfactored method with moving meshes for solu-
tion of the Navier-Stokes equations for flows about aerofoils, submitted for publication,
August,1994, 1994.

4. K.J.Badcock and I.C.Glover. An implicit time stepping method for three-dimensional
viscous flows, submitted for publication, August 199~, 1994.

5. T. Chyczewski, F. Marconi, R. Pelz, and E. Churchitser. Solution of the Euler and
Navier-Stokes equations on a parallel processor using a transposed/Thomas ADIalgo-
rithm. In 11th AIAA Computational Fluid Dynamics Conference. AIAA, 1993.

6. P.J. Wesson. Parallel Algorithms for Systems of Equations. PhD thesis, Oxford
University Computing Laboratory, Oxford, UK, 1992.

Parallel Computational Fluid Dynamics:
hnplementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

379

FIESTA-HD: A Parallel Finite Element Program for Hydrodynamic
Device Simulation

N. R. Aluru, K. H. Law, A. Raefsky and R. W. Dutton
Applied Electronics Laboratory, Stanford University, Stanford, CA 94305-4020.

The convective hydrodynamic transport model (HD) for semiconductor device simu-
lation is studied by employing parallel and stabilized finite element methods. The HD
model is shown to resemble the compressible Euler and Navier-Stokes equations and
Galerkin/least-squares finite element methods, originally developed for compuational fluid
dynamics equations, are extended to account for the strong nonlinear source terms present
in the HD model. The complexity of the HD model demands enormous computational
time. A parallel finite element device simulation program, FIESTA-HD, has been devel-
oped and run on distributed memory parallel computers including Intel's i860, Touchstone
Delta and the IBM's SP-1 systems.

1. In t roduc t ion

Semiconductor device simulation has been based primarily on the drift-diffusion (DD)
model for carrier transport, a simplification of the Boltzmann Transport Equation (BTE).
With the scaling of silicon devices into deep submicron region, non-stationary phenomena
such as velocity overshoot and carrier heating are ',ecoming increasingly important to de-
termine the characteristics of these devices. Due :~, the assumption of local equilibrium,
the DD model cannot capture such non-stationary phenomena accurately. Although the
direct solution of the BTE, for example via Monte Carlo method, can capture the above
phenomena, the noise in the solution and the computational cost prevent it from wide
usage for device simulation. An attractive alternative is to employ convective hydrody-
namic or HD-like models. The convective hydrodynamic model can be directly derived
from the zero. first and second moments of the BTE with a few simplifying assumptions
[1]. These equations have a direct analogy to fluid dynamic equations. The development
of stabilized and parallel finite element methods for the HD model is the subject of this
paper.

Numerical simulation of the hydrodynamic semiconductor device model involves the
solution of a coupled system of partial differential equations; namely the Poisson equa-
tion for the electrostatic potential and the electric field and the hydrodynamic equa-
tions for the electron and hole carriers describing the carrier concentration, velocities
and temperature. The transport model is discretized employing stabilized Galerkin and
Galerkin/least-squares finite element methods and the coupled equations are solved em-
ploying a fractional step solution strategy. In a fractional step solution strategy the Pois-
son, electron hydrodynamic and the hole hydrodynamic equations are solved iteratively in
a decoupled manner until all sets of equations are solved to a given tolerance. Simulation

380

of the HD transport model on the present day workstations takes anywhere from a few
minutes to several hours. The hydrodynamic device simulations are made practical by
implementing the serial finite element program on distributed memory parallel computers
such as Intel's i860, Touchstone Delta and the IBM's SP-1. The parallel finite element
program is shown to produce results within reasonable time for engineering applications.

This paper is organized as follows: The hydrodynamic transport model is reviewed in
Section 2. The development of a finite element formulation for the HD transport model is
briefly presented in Section 3. The parallel computational model is summarized in Section
4 and numerical results are presented in Section 5. Section 6 summarizes the results of
this work.

2. Hydrodynamic Model

The hydrodynamic transport model for semiconductor device simulation consists of the
Poisson equation and nonlinear conservation laws for electrons and holes. The Poisson
equation describes the conservation of charge in a semiconductor device and the nonlinear
hydrodynamic equations for the electrons and holes describe the conservation of particle
number, momentum and energy. Derived from the Maxwell's equations, the Poisaon
equation for computing the electrostatic potential and the electric field can be summarized
a s :

v �9 (0 r e) = c (~ . - ~, - N + + g 2) (1)

E = - V r (2)

where c, r 0 and E are the charge, the permittivity, the electrostatic potential and the
electric field, respectively; c~, %, N + and N.~ are the concentrations of electrons, holes,
ionized donors and ionized acceptors, respectively. The subscripts n and p denote the
electron carrier and the hole carrier, respectively. The carrier concentrations are related
to the electrostatic potential by the relations:

c~ - Coe " (' l ' - ' p ") / (k b T ") (3)

Cp - Cor162 (4)

where Co is the intrinsic carrier concentration for the silicon material, kb is the Boltzman
constant, Tn and qOp are the quasi-fermi potentials for the carriers and T~ and Tp are the
carrier temperatures.

The electron and hole hydrodynamic equations derived from the first three moments of
the Boltzman Transport equation (BTE) are given as:

Oc~

Ot + v . (~ u ~) - l ot]co, (5)

Ot

[0p~]
+ u~,(V �9 p~,)-t-(p~, * V)u~ - (- 1) J c c ~ E - V(co~,bTc~)+ L--~j~o ' (6)

381

Ow~
Ot

IOwa]
+ V �9 (u .w .) = (-1)Jec~(u~ �9 E) - V(uo~co~kbTo~) - V �9 q.~ + [Ot Jcot (7)

where us, p~, w~ and q~ are the velocity vector, momentum density vector, energy
density and heat flux vector of the carrier a. (For electron, a = n and j = 1; for
holes, a = p and j = 2.) The terms []cot represents the rate of changes in the particle
concentration, momentum and energy due to the collision of carriers; the collision terms
can be approximated by their respective relaxation times and the expressions can be
found in [1]. The hydrodynamic system as stated above contains fewer equations than
unknowns. In order to facilitate a solution, the following constitutive approximations are
introduced for the momentum and energy density:

po = rn~c~u. (8)

3 1 12 wo. - -~c~kbT~ + ~ m . c . l u . (9)

where rn~ is the mass density of the carrier and kb is the Boltzmann constant.
Similar to the HD equations, the Euler and Navier-Stokes fluid equations can be phys-

ically interpreted as the conservation of particle, momentum and energy. However, the
HD equations are not identical to either the Euler equations or the Navier-Stokes equa-
tions. While the HD equations do not contain the viscous terms, they are not the same
as the Euler equations because of the presence of the heat conduction term in the energy
equation. Furthermore, the highly nonlinear source terms in the HD model are absent
in the fluid models. It can be shown that the HD system resembles the flow of a real
compressible fluid given by the Euler equations, in the presence of electric field and with
the addition of a heat conduction term and the highly nonlinear source terms [1].

3. F in i te E l e m e n t Formulat ion

For the elliptic Poisson equation, a standard Galerkin finite element method has been
employed for the numerical solution. However, the standard Galerkin finite element
method is known to exhibit spurious oscillations for the advective-diffusive type equa-
tions like the HD equations when the physical diffusion present in the system is small.
In this work, we employ the Galerkin/Ceast Square (GLS) method [3] and enhance it to
account for the strong nonlinear source terms of the HD device equations. The tempo-
ral behavior of the HD equations is discretized using a discontinuous Galerkin method
in time [4]. The basic formulation of the space-time GLS discretization scheme can be
summarized as follows:

1. First, the weak form of the given partial differential equation (the strong form) is
obtained by multiplying the strong form with an arbitrary test function. We then
integrate the resulting system by parts. It can be shown that the strong form and
the weak form are equivalent and the solution to the weak form is also the solution
to the strong form (i.e. the governing partial differential equations).

2. A least-squares term of a residual type is introduced to the weak form of the given
partial differential equation so that the numerical stability of the system is enhanced.

382

Furthermore, a discontinuity-capturing term is added to overcome the undershoot
and overshoot phenomena. The least-squares and discontinuity capturing terms
vanish when the exact solution is substituted to the weak form, thus establishing
the consistency of the method.

3. The trial and test functions used for the nonlinear FEM equations are taken to be
a linear combination of linear basis functions.

4. The nonlinear system is solved using a Newton iterative scheme by linearizing the
nonlinear equations with respect to the unknown trial solution.

A comprehensive discussion on the development of the finite element space-time GLS
formulation of the HD semiconductor device equations is given in [1]. The Galerkin
method for the Poisson equation and the space-time Galerkin/least-squares method for
the electron and hole hydrodynamic equations are shown to be stable and consistent. In
the case of the electron and hole conservation laws, a Clausius-Duhem inequality, also
defined as the basic stability requirement for nonlinear conservation laws, is derived and
the space-time GLS method is shown to satisfy this inequality. Hence, the numerical
methods employed in this work are also known as stabilized finite element methods.

A fractional-step/staggered scheme is applied to solve the coupled systems. The Poisson
equation is first solved for the electrostatic potential and the electric field. The computed
electric field values are used in the HD equations to solve for the concentrations, velocities
and temperature. The concentrations obtained from the HD equations provide a new
source term to the Poisson equation. This staggered procedure of alternatively solving
the Poisson and HD equations is repeated until both the equations are solved to a desirable
tolerance.

4. Paral le l C o m p u t a t i o n a l Model

The single-program-multiple-data (SPMD) paradigm has emerged as a standard model
to create parallel programs for engineering applications on distributed memory parallel
computers [2]. In this approach, problems are decomposed using some well known domain
decomposition techniques. Each processor of the parallel machine solves a partitioned
domain. Data communication between domain partitions are performed among processors
through message passing.

For a large scale engineering software, besides optimizing the parallel kernels for lin-
ear algebraic and/or matrix computations, attention must be paid to the overall program
structure and the data flow among the program modules. A typical finite element program
consists of the following tasks: pre-processing, element generation, matrix formation, so-
lution of a system of linear equations and post-processing. The pre-processor supports
problem definition, grid generation, I/0 and other file management functions. Generally,
the pre-processing routines take negligible time and are inherently serial. The paral-
lelization is thus focused primarily on the numerical PDE solvers. In FIESTA-HD, the
linear equation solvers currently employed are the GMRES method for solving the non-
symmetric linear equations of the HD systems and the conjugate gradient method for the
symmetric linear equation for the Poisson system. For a finite element program with it-
erative solvers, the interprocessor communication is limited primarily to the linear solver.

383

Special care, however, is needed to set up the data structure required by each processor
and to ensure proper data flow between the pre-processor and the parallel PDE solvers.
The parallel program organization of FIESTA-HD is depicted as shown in Figure 1.

Initial development of the parallel FIESTA-HD program took place on a 32-node Intel
i860 computer. The code has since been ported to the Intel Touchstone Delta and the
IBM SP1 computers. For the Intel-based implementation, a front end workstation is used
for the pre-processing tasks. For the IBM SP1 parallel computer, the pre-processor resides
on a master node (which also serves as a slave processor for the parallel PDE solvers) and
a more efficient model is implemented, taking advantage of the memory available on the
SP1. The porting of the code from the i860 to the Delta and to the SP1 takes less than
a week. For each case, majority of the work has been to re-structure the pre-processing
module.

5. N u m e r i c a l R e s u l t s

To demonstrate the utility of FIESTA-HD, we have run simulations using increasingly
large and complex realistic device structures on the parallel computers. The results are
summarized in Figures 2-4. Figures 2 and 3 show, respectively, the simulation results
of a bipolar transistor on the Delta machine and a 2-D two carrier p-n diode on both
the i860 and the IBM SP1. The results clearly show the portability and scalability of
FIESTA-HD simulator on various parallel computers. Figure 4 shows a comparison of the
CPU times of FIESTA-HD on the IBM RS/6000 workstation, the i860 (32 processors),
and the IBM SP-1 (8 processors) for several different diodes and bipolar transistors. As
grids scaled to modest and large sizes, the parallel codes performed significantly better
than the workstation version. We routinely achieved more than an order-of-magnitude
reduction in execution time. Moreover, using these parallel machines, we have been able
to solve very large device structures for which a serial solution could not be obtained due
to resource constraints.

6. S u m m a r y

In this note, we have briefly discussed the hydrodynamic model for semiconductor device
simulation and the resemblance of the HD device equations with the Euler and Navier-
Stokes fluid equations. A space-time Galerkin/Least-Squares finite element method is
proposed for the solution of the HD equations. A SPMD programming model is used
in the parallel implementation of the device simulator, FIESTA-HD. Our experience has
clearly demonstrated the portability of FIESTA-HD on distributed memory parallel com-
puters. Numerical results are shown to demonstrate the robustness and accuracy of the
numerical schemes. Taking advantage of the advances in parallel computers with stable
numerical schemes, we are able to perform simulations with more complex and realistic
device models.

7. A c k n o w l e d g m e n t

This research was sponsored by ARPA, contract No. DAAL 03-91-C-0043.

384

R E F E R E N C E S

1. N.R. Aluru, Parallel and Stabilized Finite Element Methods for the Hydrodynamic
Transport Model of Semiconductor Devices, Ph.D Thesis, Department of Civil Engi-
neering, Stanford University, June, 1995.

2. B.P. Herndon, N.R. Aluru, A. Raefsky, R.J.G. Goossens, K.H. Law and R.W. Dutton,
"A Methodology for Parallelizing PDE Solvers: Application to Semiconductor Device
Simulation," Seventh SIAM Conference on Parallel Computing, San Francisco, CA,
1995.

3. F. Shakib, Finite Element Analysis of the Compressible Euler and Navier-Stokes
Equations, Ph.D. Thesis, Department of Mechanical Engineering, Stanford Univer-
sity, November, 1988.

4. C. Johnson, U. Navert and J. Pitkaranta, "Finite Element Methods for Linear Hyper-
bolic Problems," Computer Methods in Applied Mechanics and Engineering, 45:285-
312, 1984.

Figure 1. Program Organization of Parallel HD Device Simulator, FIESTA-HD

3 8 5

ct~

2 0 0 0 0 i i i i i i i i i

,8000 "~---~--! ', i ', , 4 i , . . . T o ~ , i
i i i i i i i Ideial - ~ - -

1 6 0 0 0]]] !]]]i]i]i]]]]]i]!]]i]i]]]]]]]]]]]]]]]]]]]]]]i]i]]]]]]]]]]]]]]]]!]]]]]]]i]]]]]-
1 4 0 0 0 -

1 2 0 0 0

~oooo i ' , i ! :: i ! i :: ! i
8 0 0 0 : ' : : : " : : : :

i 'X i i i i i i i i

6 0 0 0 i !'\,[" i i i ! ! i i t
: : x . . : . : : : : : :

4ooo ii iii_
2 0 0 0

0 - i ', ', ', i ', i i---,---,-
0 5 0 100 150 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0

No. o f P r o c e s s o r s

F i g u r e 2. T o t a l C P U t i m e o n t h e T o u c h s t o n e D e l t a m a c h i n e fo r a b i p o l a r t r a n s i s t o r

1 4 0 0 0 0

1 2 0 0 0 0

1 0 0 0 0 0

o 8 0 0 0 0

60ooo

4 0 0 0 0

2 0 0 0 0

I I

- . . - ] [. :: S P / 1 - [= 1 . = - . - - - -

", ' ' ' !!!!_i

0 5 10 15 20 25 30 35
No. o f P r o c e s s o r s

F i g u r e 3. C P U t i m e c o m p a r i s o n o n i 860 a n d S P - 1 fo r t h e 2 D p n s i l i c o n d i o d e e x a m p l e

386

r

v

73
(.)

160000

140000

120000

100000

80000

60000

40000

20000

i i i

. i - ~ B M ~ ~ - + - - ~ i - ~

. i i860. -+- - i , , J

. ! !. ! ~ . ~ . _ . ~ . . . _ . §

0 5000 10000 15000 20000 25000
Grid Size

F igure 4. Execut ion T imes of F I E S T A - H D on serial and Para l le l C o m p u t e r s

Parallel Computational Fluid Dynamics:
hnplementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

387

Parallel computat ion of a tip vortex induced by a large aircraft wing

Ryozo Ito a and Susumu Takanashi b

aSpace Systems Department, Systems Engineering Group, DAIKO DENSHI TSUSHIN
Ltd., 2-1 Ageba-cho, Shinjuku-ku, Tokyo 162, Japan
E-mail address: rito@nal.go.jp

bComputational Aerodynamics Section, National Aerospace Laboratory, 7-44-1 Jindaiji-
higashi, Chofu, Tokyo 182, Japan

Three dimensional Navier-Stokes simulations about the wing of the Boeing 747 have
been carried out using a parallel vector computor called "NWT". The main objective of
this study is to simulate the wing-tip vortex.

The governing equations are 3-D Reynolds-averaged thin-layer Navier-Stokes equations
which are discretized by finite volume method with a TVD upwind scheme. The domain
around the wing is decomposed into 24 subdomains, but the grid system is basically in C-
O topology. The method of the parallelization is to share the load of computation for each
subdomain to each PE. Computation using a grid with 11-million grid-points shows an ex-
istence of a strong tip vortex induced by the wing.

1. INTRODUCTION

The strong trailing vortices induced by a large aircraft like the Boeing 747 are threat for
the following aircrafts. Actually, many incidents caused by such vortical flows have been
reported so far[l]. In order to keep air-trafic safety, it is important to understand the
characteristics of the wake vortices by means of both the experimental and the numerical
studies.

In the present study, as a preliminary case, 3-D Navier-Stokes simulations using finite
volume method have been carded out for the wing of the Boeing 747-200. Computations
have been done by using parallel vector computor called "NWT" at the National Aerospace
Laboratory, Japan.

2. NUMERICAL METHOD

Governing equations are the Reynolds averaged thin-layer 3-D Navier-Stokes equations.
These equations are discretized by the finite volume method. The time-integration algo-
rithm of these equations is the implicit approximate factorization method with locally vary-
ing time stepping. The convective terms are formulated by Chakravarthy's 3rd order TVD
scheme[2]. Details of these processes are described in Ref.3. Turbulent eddy viscosity is

388

evaluated by the Baldwin-Lomax algebraic model[4]. Besides, this flow solver is applica-
ble for a multi-domain grid.

3. COMPUTATIONAL GRID

The simple C-O type of body-fitted grid system is used. Figure 1 shows the upper-half
region of the grid. The grid around the wing with wake is algebraically generated using
transfinite interpolation[5]. The total number of grid-points is 10,802,017(577 in stream-
wise direction, 97 in spanwise direction, and 193 in normal direction). The minimum
spacing normal to the wall is 3.0x10 5, and the far field boundary is located 7.0 root chord
length away from the root of the wing. Outflow boundary is located 4.1 root chord length
downstream from the trailing edge of the wing-tip.

The domain of the whole grid is equally decomposed into 24 subdomains. First, the
whole grid is decomposed equally into three subdomains, including the wing-surface, the
upper side of wake and the lower side of wake. Next, each of these three subdomains is
decomposed equally into eight subdomins in spanwise direction, then the total number of
the subdomains is 24. Besides, in order to estimate the dependence of the numerical solu-
tion to the grid size, the coarse grid has been made by using every second points in the
original grid.

4. PARALLEL IMPLEMENTATION

4.1. NWT
The specifications of the NWT as a parallel computor are as follows. NWT means "Nu-

merical Wind Tunnel".
�9 Parallel vector computor with distributed memory architecture.
�9 Up to 140 PEs(Processor Elements) can work parallelly.
�9 Each PE is a vector computor whose performance is about 1.7 GigaFLOPS.
�9 User's memory for each PE is about 200 MegaBytes.
�9 Each PE communicates each other through the cross-bar network.
�9 lntra-PE data transfer rate �9 6.4 GigaBytes/sec
�9 Inter-PE data transfer rate �9 0.4 GigaBytes/sec

Inter-PE data transfer rate is much less than intra-PE data transfer rate. So, minimiza-
tion of the inter-PE data transfer is important for.obtaining high performance of this com-
putor.

4.2. METHOD OF PARALLELIZATION
Parallel implementation has been done by means of sharing the load of computation for

each subdomain to each PE. Number of PEs used should be less than or equal to the
number of subdomains. This method is so straightforward that the reconstruction of the
code for the parallel implementation can be easily accomplished. However, to calculate the
values of the numerical fluxes on the cells along the edge of a subdomain, their counter-
parts of the neighboring subdomain are required. This causes inter-PE data transfer among
PEs every one iteration. Figure 2 illustrates this aspect in case that there are only two sub-
domains.

389

5. RESULTS

Computations have been done on NWT under the following flow conditions. Free
stream Mach number is 0.8, angle of attack is 6.72 degrees, and Reynolds number based
on the root chord length of the wing is 5.76x106. Number of PEs used is 24 in all cases
except for the case of testing the parallel efficiency (section 6.3.).

5.1. Validation Study
The numerical solutions obtained here have been compared with the wind tunnel test

data for the CFD code validation. The wind tunnel test was done by the Boeing Commer-
cial Airplane Company[6] using the transonic l 1-foot pressure tunnel at NASA Ames
Reseach Center. Figures 3 show the comparison of the pressure distributions on the wing
with the wind tunnel test data. The agreement between the computations and the experi-
mental data becomes better as the location of the span-station becomes closer to the wing-
tip. This tendency is considered to be consistent with the fact that the experiment was
done for the wing-body configuration but not for the wing alone. Both the result of the
fine grid and the result of the coarse grid show a good agreement with the experimental
data on the wing-tip. The number of grid-points is considered to be sufficient for comput-
ing the pressure distribution on the wing surface in either case.

5.2. Wing-tip vortex
Figures 4 show the front view of the computed stream lines shedding from the wing-tip

overlapping with the computational grids. Stream lines form a vortex with counterclock-
wise rotation in either case. The vortex captured in the coarse grid gets looth quickly,
while the result of the fine grid shows that the the size of the vortex in the cross-flow
direction is constant. From this point of view, the number of grid-points in the fine grid is
considered to be enough to capture the wing-tip vortex because the size of the vortex in the
cross flow direction does not depend on the grid-point density. Figures 5 show the top
view and the side view of the stream lines mentioned above.

5.3. Speed-up
In case of the fine grid, the computation done by each PE took about 10 hours to make

10,000 iterations. The CPU-time for inter-PE data transfer in this case is about 6 minutes,
i.e. only about 1% of the whole computation. The parallel efficiency can not be evaluated
with the fine grid because the number of grid-points is too large to execute the computation
within one PE, but the CPU-time measured here implies that the parallel efficiency is about
0.99. The CPU-time for inter-PE data transfer mentioned above means the sum of the
CPU-time for generating a packet to send and the CPU-time for sending the packet itself.
The former does not depend on the grid size, but the latter is proportional to the grid size.

Besides, in order to evaluate the parallel efficiency directly, a grid which consists of only
177,625 points has been prepared. This grid has been decomposed equally into 24 sub-
domains also. In this case, NWT using 24 PEs executes the computation 22.3 times faster
than NWT using one PE, hence the parallel efficiency is 0.93. As the number of grid-
points becomes larger, the CPU-time for the inter-PE data transfer is considered to become
relatively shorter. So, the parallel efficiency in case of the fine grid would be expected to
achieve 0.93 at least if the computation could be done within one PE. Figure 6 shows the

390

relationship between the number of PEs and the CPU-time for 200 iterations. Speed of
computing is almost exactly proportinal to the number of PEs utilized in these computa-
tions.

6. CONCLUDING REMARKS

Navier-Stokes simulations for the wing-tip vortex induced by the wing of the Boeing
747-200 have been carried out by using a parallel vector computor. The solver for the
multi-domain grid has been highly parallelized by sharing the load of computation in each
subdomain equally to each PE.

As a future work, the vortex simulation should be attempted at the flow condition of
lower speed and higher angle of attack as the aircraft is in take-off or landing.

REFERENCES

1. T. Lee and C.E. Lan, AIAA Paper, 94-1882-CP (1994).
2. S.R. Chakravarthy, AIAA Paper, 86-0243 (1986).
3. M. Tachibana and S. Takanashi, NAL SP-10, (1989) (in Japanese).
4. B.S. Baldwin and H. Lomax, AIAA Paper, 78-257 (1978).
5. L.E. Eriksson, AIAA Journal, Vol.20, No.10 (1982).
6. E.N. Tinoco, private communication, 1989.

391

Figure 1. Upper-half region of the grid.

Figure 2. lnter-PE data transfers caused by the domain decomposition.

392

Figures 3. Comparison of the Cp distributions on the wing
with the experimental data.

Figures 4. Front view of the computed stream lines shedding from the wing-tip.

393

Figures 5. Top view and side view of the computed stream lines

shedding from the wing-tip.

. i '

10
10 100

Number of PEs

Figure 6. Speedup of the computation.

This Page Intentionally Left Blank

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

395

S h a p e de s ign o p t i m i z a t i o n in 2D a e r o d y n a m i c s us ing G e n e t i c

A l g o r i t h m s on p a r a l l e l c o m p u t e r s

Raino A.E. M~tkinen ~, Jacques Periaux b and Jari Toivanen ~

~University of Jyv~iskyl~i, Department of Mathematics, P.O. Box 35, FIN-40351
Jyv~iskyl~i, Finland

bDassault Aviation, Aerodynamics and Scientific Strategy, 78 Quai Marcel Dassault,
92214 St Cloud Cedex, France

Two shape optimization problems for two-dimensional airfoil design are presented. The
first one is a reconstruction problem for an airfoil when the velocity of the flow is known
on the surface of airfoil. The second problem is to minimize the shock drag of an airfoil at
transonic regime. The flow is modeled by the full potential equations. The discretization
of the state equation is done using the finite element method and the resulting non-linear
system of equations is solved by using a multigrid method. The non-linear minimization
process corresponding to the shape optimization problems are solved by a parallel imple-
mentation of a Genetic Algorithm. Finally, numerical experiments are computed on a SP2
parallel computer. The results from the experiments are compared with those obtained
using a gradient based minimization method.

1. I n t r o d u c t i o n

Numerical shape optimization has been under extensive study during the past twenty
years [5], [6], [8]. In aerodynamics a typical problem is the shape design optimization of
two-dimensional airfoil. In these problems the a i m - usually denoted by the cost function
- can be for example to minimize the drag or to maximize the lift. Another possibility
is to consider an inverse problem. For example find an airfoil shape of airfoil such that
the drag caused by shock is minimized or find the airfoil shape when the velocity or the
pressure on the surface of airfoil are given. A inviscid flow analysis model of this kind
of problems is usually represented by the full potential or Euler equations. The finite
element method is a common approximation to discretize the state equation describing
the flow. The multigrid methods give an efficient way to solve the state equation [3].

A traditional way originating from control theory [5], [8] to solve a shape optimization
problem is to use a gradient method as a deterministic optimizer. In this case it is nec-
essary to perform a sensitivity analysis, i.e. to compute the gradient of the cost function.
The regularity requirements for gradient methods are quite strict. Usually the cost func-
tion must be at least a smooth function. Another problem encountered by conventional
optimization method is a possible encountered by conventional optimization method con-
vergence to a local minimum in the case of a multimodal cost function. Therefore global

396

optimization methods should be used when the cost function is not unimodal. Gradient
methods are basically sequential methods whose parallel implementation is not obvious.

Recently, there has been increasing interest to use evolutive optimization methods such
as Genetic Algorithms (GAs) in shape design optimization. GAs provide several advan-
tages: (i) they are global optimization methods based on fitness function evaluations only;
hence the gradient information is not needed and the cost function can be a multimodal
function. (ii) the cost function can be nonsmooth or even discontinuous. On the oth-
er hand GAs work with evolutive populations generated stochastic selection, crossover
and mutation operators. This non pointwise property render parallel implementations of
GAs quite naturally. By using a master-slave prototype, the communication requirement
of parallelized GAs is very small (reduced to design variables and cost function values)
Therefore a cluster of workstations can be efficiently used to carry out the optimization.

In the first three sections the transonic potential flow, the reconstruction problem and
the shock reduction problem are introduced briefly. Then GAs and their parallel imple-
mentation are considered. In the next section some numerical experiments are performed
in IBM SP2 parallel computer. In the end some conclusions and perspective are made.

2. Transon ic po ten t i a l flow

The transonic potential flow equation with associated boundary conditions for non-
lifting airfoil is

- V (p V ~) = 0 in ft
O(I) (1)

P-0-nn - q on 0f~,

where (I) is the normalized velocity potential and p is the density. The formula for the
density p is given for example in [3]. The half of computational domain $2 around a
symmetric airfoil is shown in Figure 1.

~cx~

S

Figure 1. Problem geometry.

The state equation (1) is discretized with the finite element method. In supersonic
region the artificial viscosity is included by replacing the density p with an artificial
density, which is obtained by adding an upwind derivative term to the density. Due to
this artificial viscosity the physical shock can be captured. Then state equation (1) is
solved by a SLOR-multigrid method [3].

397

3. Reconstruct ion problem

In the shape reconstruction problem the aim is to find the shape of a target airfoil when
the velocity is known on the surface S. This problem can be formulated as a minimization
problem

min J1 (IV(I)(a) [), (2)
aCUad

where a is the vector containing the design variables defining the shape of an airfoil and
Uad is the set of admissible designs. The cost function is

Jl(])~[) -- ([) ~ l - I/~t[) 2 dx, (3)

where At is the target velocity obtained by using the target airfoil and L denotes the chord
of the airfoil. This reconstruction problem has been considered for example in [7].

4. Shock reduction problem

The shape optimization problem corresponding to the shock drag reduction is formu-
lated as a minimization problem

min J2 (IV(I)(a)]), (4)
aCUad

where the notations are the same as in (2). The cost function is

J2(IAI)- rain --~z' 0 dx. (5)

In order to obtain a feasible design, the airfoils in the set U~e must have an area greater
than a given constant. This can be added to the optimization problem as a geometrical
constraint. This shock reduction problem have been considered for example in [2] and [7].

5. Parallel ization of Genetic Algorithm

Gradient algorithms for solving non-linear optimization problems can be efficient, but
they may have several drawbacks. Some of them are: (i) possible convergence to a local
minimum, (ii) strict regularity requirements for the cost function, (iii) need gradient
information, (iv) they are sequential algorithms. Therefore, the parallelization must be
done within one function evaluation in these pointwise gradient algorithms.

Recently, there has been increasing interest in global optimization methods based on
Genetic Algorithms (GAs). These algorithms have been developed to simulate Darwin's
principle of survival of the fittest [4]. The GAs are inherently parallel in the sense that they
work with populations. After a generation is formed, the fitness function (cost function
in the classical terminology) values corresponding to the individuals of the populations
can be computed simultaneously.

In the particular cases when the fitness function evaluations are much more costly
than the genetic mechanism, it is highly recommended for cost-efficiency to parallelize
the evaluation of fitness function within each generation. A simple way to do this is

398

to use the master-slave prototype as shown in Figure 2. In this approach an optimal
load balancing is obtained when the generation size is a multiple of the number of slave
processes and each fitness function evaluation requires the same amount of time.

For optimal shape design application considered in this paper, the genetic terminology is
the following: (a) the population is a set of airfoils, (b) the genes are the design parameters
defining the airfoil shape and (c) the fitness function is the cost function of the design.

master

GA
mechanism

design
variables

fitness

slave

fitness
function
evaluation

Figure 2. Master and one slave in parallel implementation of GAs.

6. N u m e r i c a l example s

The parametrization of the airfoil shape is defined using a Bezier curve [1] with nine
control points. The design variables are the seven y-coordinates of the inner Bezier control
points. The control points on leading and trailing edge remain fixed during the optimiza-
tion process. We have box constraints, i.e. upper and lower limits, for the search space
of the design variables.

In all numerical experiments the airfoils are operating at transonic mach number with
shocks (M~ = 0.8.) The discretization is done using 80 • 24 bilinear elements (41 nodes
on the airfoil). During the optimization process a isotopology moving mesh generator is
used, i.e. the nodal coordinates are smooth functions with respect to the design variables.

The GAs used in the experiments are founded on the simple Genetic Algorithms intro-
duced in [4]. The main difference consist of floating point coding, tournament selection
and elitism strategy. Only one crossover site is consider and the mutation done using
a special distribution promoting small mutations. The parameters of GAs are shown in
Table 1. From these parameters it is possible to come to a conclusion that it is necessary
to compute 1601 fitness function values during one optimization run using the GAs.

Table 1
The parameters in GAs.

Population size 17
Elitism 1
Generations 100
Tournament Size 3
Crossover probability 0.85
Mutation probability 0.2

399

All experiments are also performed for comparison using the sequential quadratic pro-
gramming (SQP) algorithm from the NAG Fortran library from Numerical Algorithms
Group Ltd, Oxford. This method requires the computation of gradient. The sensitivity
analysis is done according to [7]. The artificial viscosity in flow analysis solver is chosen
in such a way that we obtain a smooth artificial density. Since we use a moving mesh, the
exact gradient and a smooth artificial density the SQP algorithms should provide very
good results.

First test case: inverse problem (M~ = 0.8, c~ = 0~ We considered the reconstruction
of the NACA0012 airfoil. The initial population in the GAs is chosen randomly. The initial
design for the SQP is the parabola going through the points (0,0), (0.5,0.06) and (1,0).
The results are shown in Figures 3, 4 and 5 and in Table 2. In the figures and tables
'GAs' and 'SQP' correspond to the final results obtained using respectively the GA and
SQP methods and 'NACA' corresponds to the NACA0012.

Table 2
The cost function values in the numerical examples.

profile reconstruction shock reduction

GAs 1.58 x 10 -5 0.2581

SQP 3.14 x 10 -7 0.2506

NACA 0 3.6436

1000

100

10

0.1

0.01

Min
Ave

! .~ .. Max i":":

, v" ~--"~'" !,~ ,:., :, ;,~ "~, ~." ;~i ~ ',i ,,, ",i " ,",
llt','}; 'I} , i',ji ,'i~l',.-'IA ',:; ;., i', I",. ,r' 'r

V V ' !1 ",'

I I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100
generation

Figure 3. The evolution of population in the reconstruction problem.

400

i i i i

0.8 L ~ NACA & SQP _

0.6

0.4

0.2

' 0

-0.2

-0.4

-0.6

-0.8
0 0.2 0.4 0.6 0.8 1

X

Figure 4. The surfacic pressure coefficients in the reconstruction problem.

0.06

0.05

0.04

0.03

0.02

0.01

0 1

'NACA & SQP

I I I I

0.2 0.4 0.6 0.8
X

Figure 5. The profiles in the reconstruction problem.

Second test case: optimization problem (Moo = 0.8, a = 0 ~ constant area). In this
shock reduction problem the airfoil is constrained to have the same given area as the
NACA0012 airfoil. With the SQP the NACA0012 airfoil is the initial design. The results
are shown in Figures 6 and 7 and in Table 2. It can be observed that the initial shock
has disappeared after the optimization process.

401

! ! I !

[~ NACA
0.8 [,.::::.-.t~._ GAs
0.6 i ';;~ :" -- ' SQP

0.4 i ~ "<'Z'::~

I "'-~.....
r..~ 0.2 ,i ""%..

%.%...,..

' 0 ~ " I
.... . .~.:.

-0.2 [""'"

-0.4_0.6 , ..

-0.8
0 0.2 0.4 0.6 0.8 1

X

Figure 6. The surfacic pressure coefficients in the shock reduction problem.

0.06
[~ NACA

0.05 1- ~ ~ . , . GAs
/ / % . , , SQP

S" %%~.

0.04
f X~.

>, 0.03

0.02 l

0.01

0
0 0.2 0.4 0.6 0.8 1

X

Figure 7. The profiles in the shock reduction problem.

The efficiency of the parallelized GAs is studied in IBM SP2 parallel computer. The
message passing was done utilizing the MPI standard. The results in the shock reduction
problem are shown in Table 3. A good scalability can be observed from Table 3.

402

Table 3
The elapsed times in seconds and speedups for the shock reduction problem.

slaves time speedup

1 18588 1

2 9378 1.98

4 4758 3.91

8 2432 7.64

The SQP required 22 function and gradient evaluations in 20 iterations in the shock
reduction problem. The elapsed time was 315 seconds. Despite the parallelization of GAs
there is still an important CPU gap between the deterministic and Genetic Algorithms.
For efficiency and accuracy purposes hybridization of both approaches (the best airfoil
from GAs is used as an initial guess for SQP) is clearly the next step to be investigated.

7. Conclusions

The designs obtained using the GAs are close to the optimal designs. The speedups
of parallelized GAs are very promising. In these numerical examples the SQP was more
accurate and efficient since the problems were quite simple and well tailor made. In the
future GAs should be tested with more difficult problems such as transonic multi-point
design problems in which gradient based methods are not expected to work so well.

R E F E R E N C E S

1. R.H. Bartels, J.C. Beatty and B.A. Barsky, An Introduction to Splines for use in
Computer Graphics and Geometric Modelling, Morgan Kaufmann, Los Altos, 1987.

2. V. Danek and R. M~ikinen, Optimal design for transonic flows, International Series of
Numerical Mathematics, 99, 129-136, 1991.

3. H. Deconinck and C. Hirsch, A multigrid method for the transonic full potential
equation discretized with finite elements on an arbitrary body fitted mesh, J. Comp.
Phys., 48, 344-365, 1982.

4. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Reading, Massachusetts, 1989.

5. J. Haslinger and P. Neittaanm~iki, Finite Element Approximation for Optimal Shape
Design, John Wiley & Sons, Chichester, 1988.

6. A. Jameson, Aerodynamic design via control theory, J. Sci. Comput., 3, 233-260,
1988.

7. R.A.E. M~ikinen, Optimal shape design for transonic potential flows, Finite elements in
fluids, K. Morgan, E. Ofiate, J. Periaux, O.C. Zienkiewicz (Eds.), CIMNE/Pineridge
press, 457-466, 1993.

8. O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York,
1984.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

403

A model for performance of a block-st ructured Navier-Stokes solver on

a cluster of workstat ions

M.E.S. Vogels ~

~National Aerospace Laboratory NLR, P.O. Box 90502, 1006 BM Amsterdam, The
Netherlands, e-mail: vogels@nlr.nl

To estimate the breakdown of parallel performance of a multi-block Navier-Stokes solver
on a cluster of workstations, and to find the determining elements for this performance
result, the performance has been modelled. The performance model is specific for the lami-
nar flow over a flat plate, and uses network characteristics of a cluster of 3 IBM RISC work-
stations, interconnected through ethernet with PVM as message passing system.

The performance model predictions are in good agreement with measured performance
results on 2 and 3 workstations.

With the performance model extrapolations are made for a cluster of up to 16 worksta-
tions. Although the performance model is optimistic and deviates from reality as more
processors are considered, the breakdown of parallel performance can be observed.

1. I N T R O D U C T I O N

In the past few years, a 3D multi-block, multi-zone Navier-Stokes solver for compressible
flow has been parallelised at NLR. In this parallelisation, the sequential algorithm has
been maintained. The block subdivision is being used for distributing the work over the
parallel processors.

Performance results have been obtained on several parallel platforms. These perfor-
mance results were achieved by porting the parallel solver to the platform and executing
the flow solver for several applications. See, e.g. reference [2], where a benchmark is
reported on a cluster of 3 IBM RISC System/6000 machines, model 370, interconnected
through ethernet with PVM version 3.2 as message passing system.

In this modus operandi the parallel solver has to be ported to each platform and has
to be executed for the applications before the parallel performance is known. Further-
more, the question 'What are the elements determining this parallel performance' remains
unanswered. For this reason, the performance is being modelled. The model gives an esti-
mate of the performance and especially of the economical aspect of breakdown of parallel
performance before the porting work has been done. Furthermore, it gives a theoretical
reference for interpreting the performance results.

Below, a performance model is given for one specific application problem on a cluster
of workstations. The application is the flow over a flat plate (see section 2). The network
characteristics of the benchmarked cluster of the above described IBM workstations have
been used (section 3).

404

Farfield

(characteristics method)

Farfield (characteristics

i
I
I
I
i

Block 1 I
I

I

I

N

I

I
Symmetric

i i
I I
I I
! I
i I

Block2 Block3 | Block4 i
I I

I I

I I

Sofid@undary i
I

boundary

method)

i
I
I
I
I

Block 5 i
I

I

I

I

I

I
Symmetric

Block 6

boundary

Farfield (outflow)

Figure 1. 6 block pipe-line; boundary conditions for flat plate problem

2. T H E A P P L I C A T I O N P R O B L E M

The application problem is laminar flow over a flat plate. The application problem has
been chosen because it represents relevant applications with easy geometry. Moreover,
the application has been part of the validation of the flow solver, for comparison with the
Blasius solution of the Prandtl boundary-layer equations [1]. The used grid is extremely
fine for this application (384 intervals in x-direction ; 128 intervals in z-direction).

The grid is subdivided, in a pipe-line manner, into blocks with identical numbers of
grid points (see figure 1). A block subdivision influences the performance in two ways: by
adding calculations, and by increasing communication. See further section 4. The block
subdivision is used for distributing work over the workstations.

Since the grid (G~) is considered to be extremely fine, it is of interest to study the effect
of coarser grids on the performance results. In the grid Gb the ratio of number of grid
points in both directions has been preserved. In the third grid Go, this ratio has been
changed. The grid sizes are given in table 1.

3. T H E P A R A L L E L C O M P U T E R

The model of the parallel computer is split up into two submodels: one model for
single processor performance, and one model for the network performance. Assuming
that the single processor performance is the same as in a parallel execution, the single
processor performance has been determined experimentally for the specific application.

Table 1
Grid information

grid G~ grid Gb grid Gc

intervals Nix * NIy �9 NI~ 384"1"128 96"1"32 48"1"32
grid points NPx * NPy �9 NPz 385"2"129 97*2*33 49*2*33
grid points 99330 6402 3234

405

This assumption foremost requires that the processor performance does not depend on
the grid size.
The network performance model comprises a linear expression for the communication
time for one message:

T~o.~.~(x) = Ca + C2 * x (1)

where x is the number of bytes to be transferred. The coefficient Ca is the latency, and
the coefficient C2 is the reciproke of the bandwidth. The latency and bandwidth on the
cluster of work stations are measured for a busy network.

4. T H E A L G O R I T H M

The main algorithm of the block-structured solver consists of iterations over a mixture
of calculations and communications (see figure 2).

4.1o C a l c u l a t i o n s
It is assumed that the calculational work scales with the number of iterations neglecting

start-up and close-down of the execution:

W b (I t) = I t �9 W b (2)

where w b (I t) is the sum of the calculational work for I t iterations, b is the number of
blocks, and W b is the sum of the calculational work per iteration.

In the flow solver, the block subdivision is used to distribute the work over the work-
stations. Therefore, the calculational work W b will be distributed over b processors. In
the ideal case, on a parallel platform, the calculational work on p processors is equal to
the calculational work on a single processor, and the work W P is distributed evenly over
the p processors. The assumption that the calculational work W p is distributed evenly
over the p processors is equivalent to the assumption that the calculational work W p is
distributed evenly over the p blocks. So, ideally,

W ~ = W ~ (3)

and, when all processors have the same computation speed, the calculation time T~t~ is

s
T2alc -- I t �9 Cspee d �9 W 1 / p (4)

FOR all iterations DO
Apply conservation laws and boundary conditions (I)
Average flow on block boundaries (II)
Apply boundary conditions (HI)
Copy flow in overlap regions (IV)
Calculate convergence information (V)

ENDFOR

Figure 2. Calculat ion- Communication pat tern

406

The numbers for task II on the grids Gb and Gc are equal because the number of
grid points in normal direction are the same (see table 1). In the parallel algorithm, the
averaging is performed for each internal boundary on a processor. Therefore, if two neigh-
bouring blocks are on different processors, the averaging over their interfacing boundary
is executed twice. In such a case, the actual WII doubles. Still, the work WII takes far
less than 1% of the work We, and is neglected.

When internal block boundaries are added, task III increases because it is applied twice
in the grid points on the internal boundary. The work Will grows with about (p - 1) / N P x
in the middle blocks. In the two end blocks, some of the work WIII scales in this same way,
the remainder stays constant" the work Wlll increases at worst with about (p - 1)/NPx
in the end blocks. For the 6 block pipe line, Will is at the most a few percent of WI. And
the dependency on the number of processors is such that the percentage does not grow
when the number of processors increases. The work in task III is neglected.

The work in task IV is small as compared to task I. It is neglected.
In summary, work W 6 on a pipeline of 6 blocks is increased with respect to work W 1

in a single block. The most significant increase comes from task I and is about 1 % on
the finest grid and about 5 % on the coarsest grid.

Using W 6 as an estimate for W 1, formula (4) for the calculation time becomes"

T~a,c - It �9 C~;~ d �9 W6/p (6)

By executing the 6 block pipe-line on a single processor we see that the sustained
performance C ~ d does not depend on the various grid sizes (table 2). From this, it is
concluded that this sustained performance applies even if the grids are distributed over
several processors.

4.2. C o m m u n i c a t i o n
The communication points in the algorithm are given in figure 2. In the above model

for the computational part of the algorithm, there is one large batch of computations,
and followed by neglected small batches of calculations. The better the work for the
large batch of computations is balanced, the more synchronised all processors will start
communicating" all messages will virtually hit the network at once.

On this specific network, the messages are handled sequentially. This gives that the
time for communication is (see Eq. 1)"

T~om,~ = ~ C, + C2 * x(message) (7)
all m e s s a g e s

Messages are used to communicate average information (between tasks I-II), the flow
in the overlap regions (between tasks III-IV), convergence information (after task 10, and
synchronisation information.

The numbers of messages and total lengths of messages for a pipe-line of blocks on 3
processors has been counted (see table 3). For the separate processors, the communication
with the neighbouring blocks depends only slightly on the boundary conditions in the
blocks.

When p processors are used, there are p - 1 internal boundaries over which average
information and overlap information is communicated. Both the numbers of messages

407

Table 2
Measured work and performance

Measured
Work/iteration W~
Work/iteration W~I
(5 internal boundaries)

Work/iteration W~I I
Work/iteration W~v

20*W 6 + Start-up + Close-down
Model
Approximation W 1
Explained

Measured
Execution time on 1 processor
50W 6
5W 6

Sustained performance

unit grid Ga grid Gb grid G

MFLOPs/i t 389.7 27.92 15.74
kFLOPs/it 65.27 17.25 17.25

kFLOPs/i t 1824.2 462.98 334.42
kFLOPs/i t << 1 << 1 << 1
MFLOPs/i t 391.5 28.34 16.09
MFLOPs 8104.1 586.3 331.8

MFLOPs/i t 405.2 29.32 16.59
96 % 96 % 96 %

s - 557 317
s 769 - -
MFLOPs/s 2.63 2.63 2.62

where Cs~er d is the sustained computation speed.
Below, the assumptions underlying the model for the calculation time (Eq. 4) are verified

for a pipe-line of 6 blocks with identical numbers of grid points per block. The verification
figures are used to derive the sustained single processor computation speed Cs~e d and to
check that this is independent of the grid sizes.

The calculational work per iteration, W, is the sum of the work in the five calculational
tasks (figure 2):

W = W i + W I I -1- W i l l + W i v --~ W v (5)

When the computational flow domain is a single block, the calculational parts II-IV
completely vanish: W]I = W]I 1 -" W~v = O.

For the pipe-line of 6 blocks, the numbers of FLOPs are counted for tasks I-IV (see
table 2). With these tasks, over 96% of the total number of FLOPs are explained.

The numbers of FLOPs/iteration in the separate blocks differ less than 1% from average
on the finest grid and about 5 % on the coarsest grid. Therefore, this application problem
agrees reasonably with the ideal of 'even distribution'.

When increasing the number of blocks in the pipe line for the distribution of the work
over an increased number of blocks, internal block boundaries are added. The effect of
increased number of blocks on the calculational tasks I-IV is discussed now.

Because the algorithm is the same cell-vertex scheme as in the sequential solver, task I
is applied twice in the grid points on the internal boundary. Therefore, the work W/
increases with about (p - 1)/NPx. For the 6 block pipe line, this amounts to little over
1% on the finest grid, and over 10 % on the coarsest grid.

408

Table 3
Numbers and total length of messages

Measured
I-II
messages
bytes

III-IV
messages
bytes

V-end
messages
bytes

synchronisation
messages
bytes

Model
messages
bytes
messages
bytes

occurrences grid Ga grid Gb grid Gc
per iteration

p - 1

p - 1

p - 1

p * (p - 1)

12 12 12
10560 2880 2880

14 14 14
52352 13952 13952

4 4 4
188 188 188

1 1 1
8 8 8

p , (p - 1) 1 1 1
p , (p - 1) 0 0 0
p - 1 30 30 30
p - 1 63000 16900 16900

and the lengths of the messages are incorporated in the model for the communication
time.

All processors except one communicate their local convergence information to the des-
ignated I/O processor. The length of the messages is such that for the considered network
characteristics, their contribution to the communication time is negligible. The number
of messages is relevant, however.

Finally, a synchronisation signal is sent by each processor to each other processor. Again
the lengths of the messages give negligible contribution to the communication time.

When the number of processors increases, the numbers of messages per internal interface
for all of the communications will remain the same, as will the lengths of the messages.

5. T H E P E R F O R M A N C E M O D E L

Because of the considerations in subsection 4.2, the calculations and communications
are executed sequentially. So, the total execution time is the sum of the calculation and
communication times:

Tex~c = Tcai~ + T~omm (8)

The calculation time Tcalc for p processors is given by Equation 6. The coefficients
C~p~e d and W are given on table 2.

The total number of messages per iteration and the total amount of bytes communicated
are given in table 3. The net work characteristics of cluster of workstations are measured

409

Table 4
Estimated and measured execution times on p workstations

unit p grid G~
Estimated T~.~/It s/it

Measured Texe~/It s/it

Estimated Tco,~m/Texec

grid Gb grid Gc

1 154 11.1 6.31
2 77.3 5.76 3.34
3 52.0 4.10 2.49

1 154 11.1 6.34
2 77.4 5.76 3.37
3 53.9 4.01 2.45

1 0. 0. 0.
2 .0040 .033 .057
3 .012 .094 .16

for a busy network, giving a latency of .0045 s, and a bandwidth of .375 Mbyte/s ([3])
The estimated execution time per iteration as a function of the number of workstations

is compared with measured execution times (see table 4). Because the available network
consists of 3 workstations, the comparison is limited to 2 and 3 processors. The comparison
shows reasonably good agreement. Note that on the fine grid Ga, in fact, only calculation
times are compared. On the two coarser grids Gb and Go, the communication time is a
visible part of the execution time.

The complete breakdown of parallel performance is observed when the use of an addi-
tional processor gives decreased speed-up, i.e.

d @ / + < o (9)

The derivative dSp/dp as following from the performance model is given in figure 3 for
the three grid sizes. On the coarser grids Gb and Go, the number of usefull processors is
6, resp. 5. On the finest grid G~, the number of usefull processors is 18.

6. C O N C L U D I N G R E M A R K S

A simple performance model has been presented. The model has been validated for
performance on 2 and 3 workstations, with satisfying agreement.

For the application, the number of messages is the dominating contribution to the
communication time. An investigation whether the number of messages can be reduced,
can certainly result in better parallel performance. Because the number of messages is
far more important for the communcation time than the total length of the messages, the
pipe-line of blocks gives the best distribution of the work over the processors.

For the fine grid G~, the complete breakdown of parallel performance occurs at 18
workstations. For the coarser grids, the parallel performance breakdown occurs at 5-6
workstations.

410

1.0

0.5

0.0

i ! | !] ' !
- - d S p / d p on grid G._o

'i', ~ " ' " dSp/dp on grid G._b -
\ ', ~ ___ dSp//dp on grld G_c
\",, ~ -- " -- dSp/dp = 0

_ ~',,

- ~ 'o

- \ ',
' \ ',

_ _\. _'.
\ ", - - . . ~ . .

2O

Figure 3. dSp /dp as a function of the number of processors

Acknowledgement

The support of J.P. Geschiere in porting the program to the cluster of workstations is
gratefully acknowledged.

REFERENCES

1. D. Dijkstra, J.G.M. Kuerten, An easy test-case for a Navier-Stokes solver, Proceedings
of the First European Computational Fluid Dynamics Conference, 7-11 September
1992, Brussels, Belgium, Volume 2, pp 977-984.

2. J.P. Geschiere, P.A. van Mourik, Parallelising a large scale 3D multi-block Navier-
Stokes solver, NLR TP 94239.

3. A.R. Sukul, Design of a load balancing preprocessor, NLR TR 93463.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

411

Further Accelerat ion of an Unsteady Navier-Stokes Solver for Cascade

Flows on the N W T

Takashi Yamane a

aThermofluid Dynamics Division, National Aerospace Laboratory
7-44-1 Jindaiji-higashi, Chofu, Tokyo 182, JAPAN
E-mail �9 yamane@nal, go. jp

An unsteady Navier-Stokes solver for cascade flow problems, which was developed on the
Numerical Wind Tunnel (NWT) system, has been modified for further faster calculation speed.
The new code uses multiple processor groups for multiple calculation regions thus 70 times
faster speed has been obtained by 120 PEs consisting of five 24-PE groups.

1. INTRODUCTION

Requirements of many CFD researchers can be classified into two kinds; one is to increase
the number of grid points and the other is to calculate fast using the same size of computational
mesh. Parallel programmings are not easy works for general researches who are not necessarily
computer specialists but satisfying the first desire is not so difficult because once the program
has been developed the number of grid points can be increased as much as possible until it
reaches the limit by the hardware of the computer system. However, for those who just want a
fast calculation speed it is very hard because the mesh size usually decides the maxmum number
of processors.

The auther has developed a code for cascade flow problems of turbomachines which splits one
blade passage by multiple processor elements (PE) of the Numerical Wind Tunnel at National
Aerospace Laboratory[l]. The problem solved by this code was an unsteady interaction flow
field of impeller and diffuser of a centrifugal compressor. Each calculation region was splitted
by multiple processors in order to make a code applicable for various problems from single blade
pitch flows to unsteady interactions of rotor-stator stage, thus each calculation region have been
solved sequentially. By this code up to 16 times faster speed has been obtained using 24 PEs
but it was nearly a limit due to the number of mesh lines to be splitted. However, 24 PEs are
only 17% of total calculation power of NWT, so the calculation speed can be get much faster.

This paper reports a further acceleration of the code in solving unsteady interaction flow of
impeller/diffuser in a centrifugal compressor and introduces some numerical results including
comparisons with experiments.

2. PARALLELIZATION METHOD AND CALCULATION SPEED

The computer code in this study has been developed to solve unsteady flow phenomena of
impeller-diffuser interaction in centrifugal compressors. The numerical method of the original
three dimensional Navier-Stokes solver is based upon Chakravarthy-Osher's TVD scheme and

412

Figure 1. Computational Grid for Centrifugal Compressor

Figure 2. Decomposition Pattern inside One Region

differentiable flux limiter is employed in stead of the "minmod" function. LU-ADI approximate
factorization method is applied for the time integration and Baldwin-Lomax algebraic turbulence
model is also used.

As shown in Figure 1, at least 2 pitches for impeller and 3 for diffuser are required for fully
unsteady simulations. An economical way to obtain stage performances is to average along the
rotor/stator interface circumferentially which requires only 1 impeller and 1 diffuser pitch.

In programming on the NWT, users should be aware that it is a cluster of vector processors.
As shown in Figure 1, the spanwise mesh lines are 48 which are divided by 24 PEs at maximum
and the streamwise and pitchwise DO-loops can be calculated fastly by the vector processors
(Figure 2). For spanwise DO-loops the region is re-splitted pitchwisely to avoid short vectored
loops. Some delay may occur due to the data transfer between two types of splitting but the
calculation speed in one region thus becomes fast. The splitting here is one dimensional and

413

w

Inside Each Region
(ImpellerRegion11) I I I I L ~ is parallel ized

Region2 ~
(Impeller 2)

Region3 ~
(Diffuser 1)

f

Region4 [1 ~
(Diffuser 2)

T (a) P r e v i o u s C o d e

Region5 ~
(Diffuser 3)

Region1 Region2 Region3 Region4 Region5

(b) N e w C o d e

Figure 3. Concept of Multiple PE Group Calculation

120

~,- . , / , "'" 96
- - (~ 1 Region ' ~ I

O ' "
- -~- - 2 Regions ~ ' f 72 - o - , R.~,o~ ~ . . . : :

"~ ' 1:3" ..-ZX
~" ~ in8- = :24 . ..ZX- - I~.'
r .Ix- 03

I I m 24

o o
0 24 48 0 24 4 8 " 72

Number of PE ----.----------------ltru-r~ber of PE . L

- - O - " 1 Region J
--Z~r-- 2 Regions

: , . - I - I - 5 Regions

_ " " "--.. ,.~,

!- - o _

i I i i I [i I i i I i , l
96 120

Figure 4. Speed Ratio

three dimensional decomposition of one calculation region may increase the number of usable
PEs, however, it will result in many short DO-loops which become a disadvantage for vectorized
calculations.

In the previous program, this calculation process in one region has been executed sequen-
tially for 5 regions consisting from 2 impeller pitches and 3 diffuser pitches by single PE group
(Figure 3(a)). The calculation speed was satisfactory but only 24 PEs out of available 140 have
been used, so there were capability for faster calculation with much more PEs. The algorithm is
quite simple: calculate all regions simultaneously using multiple processor groups (Figure 3(b)).
However the actual program has turned out to be a quite complicated one.

414

In Figure 4, the speed ratios compared with the calculation time by 1 PE have been plotted
against the number of PEs. Steady stage results by 2 PE groups and fully unsteady results by
5 PE groups are compared with speed done by 1 PE group. As the number of PEs in a group
increases the performance becomes worse for all cases, but 2 group speed is about 1.9 times of
1 group and 5 group is 4.4 times generally, thus approximately 70 times faster speed than one
PE speed has been obtained using 120 PEs.

3. RESULTS

3.1. Time Averaged Experimental and Computational Results
Figure 5 shows the performance map of the model centrifugal compressor which is obtained

from experiments, unsteady calculations, and steady stage calculations. The exit total pressure
has been measured at the exhaust duct and at just after diffuser vane, so the differences in pres-
sure ratio are due to losses at the scroll and duct. At large volume flow rate conditions, the flow
at the diffuser exit becomes transonic and quite unsteady, thus the curves show slight oscilations
at lower ends.

Most experimental observations and numerical simulations are performed for the operating
point along the performance line of 70000 rpm. Due to the high revolutional speed, instanta-
neous measurements are very difficult, thus the experimental results are steady or time averaged.
Numerical simulations have been performed for unsteady and steady stage cases under the same
exit static pressure values, whence the exit total pressures have been calculated by averaging at
the diffuser exit boundary.

In terms of pressure ratios, numerical values and experiments show a good correlation except
some differences between unsteady and steady calculations. However, numerical mass flow
rates show larger values by approximately 10% which may be explained by the existance of 3 m

.o 3

n-.
L

~ 2 L _ 13.

_ ~ ~ :at ! 'D~us~r~i~~il 1 " '!'' "!'~J'~' | ~. at Exhaust Ductll
- ~ 0 . 6 o ~ m ~ '~, ~, u~..

-S~o0br~m~ ~ i ~ : : : . i / : : i ,

0.6 0.8 1.0 1.2 1.0 1.2
Mass Flow Rate (kg/s)

Unsteady
Experiment Calculation

ii iii s4iii
' i ~
-~ ~ ::s2-

: : : : :

_ . . i i i i i . . _
. : i 70000rpm

.
�9 .
: :

_ . . ~ ~

�9 .

. . . . i

- " ! ! ! i ! -
. . . .

: : : : :
_ . . ! ! ! ! ! . . -

.
: : : : :

- . . ! ! ! ! ! . . -

1.0 1.2

Steady
Calculation

Figure 5. Performance Map of Model Centrifugal Compressor

415

Figure 6. Schlieren Pictures

long inlet duct that has not been taken into account in simulations.
Schlieren pictures by experiments around the diffuser inlet region taken at condition E2 and

E3 are shown in Figure 6(a). These are of conditions where volume flow rate is very large, so the
flow at the diffuser vane throat tends to be choked and transonic. In order to compare with these
pictures, the time averaged results of unsteady calculations have been processed and drawn in
Figure 6(b) so that they look like schlieren photographs. (Dark shadows indicate the locations
of large density gradients.) At the condition E2, an arch shape is observed, which can be also
seen at the same location in the computation U 1, but a branch extending toward the diffuser exit
from the arch (marked with a white arrow in the figure) is not clear in the computation due to
the time averaging. The numerical schlieren figure shows additional complex shadows : the one
along the impeller blade which indicates the boundary of jet and wake and an expansion wave
from the diffuser leading edge toward the pressure surface of neighboring vane. As the exit
pressure rises, the arch shape shock wave moves towards upstream (E3) and then disappears.
At the calculation condition U2, the flow is not always choked at the diffuser throat, thus the

shock wave has already disappeared.
Static pressure distributions on the shroud wall of the diffuser inlet region were measured

along the performance line of 70000 rpm (Figure 7(a)). At operating condition E2 where volume
flow rate is the largest, distorted contours due to choke can be recognized around the throat of
diffuser vanes. As the exit pressure goes higher, volume flow rate becomes smaller and contours
show a smooth increase towards the diffuser exit (condition E4, E5). These pressure contours

416

can be compared with time averaged numerical results of Figure 7(b). At condition U I the arch
shape shock mentioned before is clearly observed where in figure of E2 is not. It is obvious from
the schlieren picture (Figure 6) that there is a shock wave, so that the reason of this discrepancy
must be a lack of the numbers of pressure taps in the experiment. Figures at condition U2, U3,
and U4 show similar pressure pattern changes with experimental condition E3, E4, and E5.

3.2. Unsteady Numerical Results
Fully unsteady impeller/diffuser-vane interaction calculations have been executed at five op-

erating conditions shown in Figure 5. The time step has been fixed so that the impeller revolves
for its one pitch angle after 6000 step calculations. 10 out of 48 spanwise grid points on the
impeller blade tip, which correspond to 2 % of blade height, have been treated such that flow
can go through the blade thickness in order to represent tip clearance effect.

Figures 8 show instantaneous density contours on the midspan plane at operating condition
U 1. Each picture is drawn by every 1000 time step interval during which the impeller rotates
for 1/6 of blade pitch angle. The flow is choked at the diffuser vane throat because of a large
volume flow rate and a shock structure appears downstream of the throat. An existance of the
branch which has been observed in the experimental schlieren picture (Figure 6) slightly appears
in some time phases.

The wake region which looks nearly steady expands along each impeller suction surface, and
dense contour lines extending from the impeller trailing edge can be seen which is the boundary
of jet and wake. Inside the wake, the velocity relative to the impeller is nealy equal zero but it
exceeds the speed of sound when observed from the stationally axis. This boundary line flows
into diffuser vanes like a traveling wave and the incidence at the vane leading edge is fluctuating
due to this wave but it is dissipated quickly before it reaches diffuser vane throat.

4. CONCLUSION

A parallelized unsteady Navier-Stokes solver for cascade flow problems has been modified
for faster calculation speed. The new code yielded 70 times faster speed by using 120 PEs for
unsteady simulations of a centrifugal compressor stage with 5 calculation regions. Numerical
results revealed unsteady flow phenomena at various operating conditions and comparisons with
experiments showed very good correlations.

REFERENCES

1. Yamane,T., "The Transplantation of an Unsteady Navier-Stokes Solver for Cascade Flows
onto the NWT System", Proceedings of Parallel CFD '94

417

Figure 7. Static Pressure Contours on Shroud Wall

418

Figure 8. Instantaneous Density Contours on Midspan Plane (Condition U l)

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

419

Load Balancing Strategy for Parallel Vortex Methods with Distributed
Adaptive Data Structure

Y. L. Shieh and J. K. Lee a, J. H. Tsai and C. A. Lin b *

Department of Computer Science, National Tsing Hua University,
Hsinchu, TAIWAN 30043

b Department of-Power Mechanical Engineering, National Tsing Hua University,
Hsinchu, TAIWAN 30043

This paper addresses the implementation of vortex filament methods with adaptive data
structures on parallel machines with distributed memory to simulate three-dimensionally
evolving jet. The implementation is conducted to experiment with idea with parallelism,
data distribution of filament-segments, the dynamical growth of segments in the runtime
and load-balancing schemes.

1. I N T R O D U C T I O N

Jet flow which contains abundant flow motions, Kelvin-Helmholtz instability, roll-up,
pairing, and breakdown[l], can be found in various industrial applications. Concomitant
with the development of jet propulsion in past decades, these phenomena, which affect
mixing and also generate noises, have received considerable investigations. The evolution
of three-dimensionally periodical jet undergone different perturbations is often employed
to study these effects. Due to the nature of the vorticity induced flow problem, the
vortex filament method[2][3] which approximates the vorticity field by numerous vortex
filaments with an assumed vorticity distribution around the filament centreline, is adopted~
When the vortex filament is severely stretched, due to the Kelvin-Helmholtz instability
excitation, to the extent that the segment is unable to resolve the curvature of the filament,
the segment is bisected into two segments. Therefore, the number of segments in a filament
is adaptive and is dynamically growing according to the requirement of numerical accuracy
in order to simulate the physical environment.

This adaptive data structure poses load imbalance in simulating the flow on Parallel
machines if static data-partition method is employed. Present parallelization of the vortex
filament method is designed on the native SPMD C environment and this paper presents
an experimental report with various techniques in filament-segment data distribution
using packet-oriented data structure within computations to achieve good performance

*The work documented herein was supported by National Science Council of Taiwan under grant
NSC-83-0401-E-007-011 which the authors gratefully acknowledge. Gratitude is also expressed to the
National Centre for High Performance Computing, Taiwan, for providing access to its 8-node Dec Alpha
workstation cluster and 32-node IBM-SP2 machines.

420

for this problem.

2. M A T H E M A T I C A L M O D E L

The flow motion for incompressible inviscid fluid can be described as :

Ot
- - + (v . v) a = (a . v) y (1)

where f~ and V represent vorticity and velocity, respectively.
Vortex filament method approximates the vorticity field by numerous vortex filaments

with an assumed vorticity distribution around the filament centrelines. The velocity,
based on the Biot-Savart law, is calculated by filaments of finite core radius, as suggested
by Leonard[2], as

N Mi
v r,K (x - (2)

i--1 j = l

1 x x)
K ~ (X) - 47rlX13f() - x 3 0 xa , f (r)

X 2 - - X a 0

where c~ is a numerical parameter depending on the vorticity distribution of vortex core.
In this paper, the vorticity distribution is assumed to be constant and Gaussian and c~ is
selected to be 0.41314].

Spatial curve integral is performed by cutting every filament into many line segments
short enough to express the curvatures of these filaments. The length of every segments
is represented by ~li,j = IXi,j+l - X i , j l , where Xi,j indicates the adjoint point between
segments. Trajectories of each adjoint points can be obtained by integrating,

dXi,j = V (X i j, t) (3)
dt

with time. In the present methodology, second-order time scheme is used to move the
adjoint points. When the vortex filament is severely stretched to the extent that the
segment is unable to resolve the curvature of the filament, the segment is bisected into
two segments. Here, we followed the algorithm by Kino & Ghoniem[5], where the segment
is bisected equally when this segment is longer than the longest segment at initial time.

3. P A R A L L E L A L G O R I T H M

The data structures are composed by a group of rings distributed among three dimen-
sional spaces, with each ring consisting of a collection of filament segments. The number
of segments in a ring is adaptive and is dynamically growing according to the the require-
ment of numerical accuracy in order to simulate the physical environment. Figure 1 shows
an instance of the data structure of our problem requires at a given time. It represents
an irregular aggregate structure with non-rectangular index sets. The number of rows of
the structure is corresponding to the number of rings in the physical domain. The length
of each row is related to the number of segments in a ring.

421

Figure 1. Irregular aggregate structures
with non-rectangular index sets.

Figure 2. A Packet-Oriented Load-
Balancing Data Structures.

The traditional approach[6] uses simple "BLOCK" style partitioning scheme. In that
approach, the whole data structure is partitioned into an set of abstract structures called
"fragment". A fragment is made up by a set of subrings. Each subring is a set of
contiguous segments in a ring. The group of rings are partitioned into fragments and
distributed among processors. There are two problems with "BLOCK" style partitioning
scheme in HPF to support the structure in our problem. First, the number of segments in
our structure increase dynamically, and data are needed to be inserted into the array. The
block-styled array implementation requires all the data following the insertion point to
be moved back. Second, and the most importantly, the irregularity of the particle growth
results in load un-balancing so that the performance of parallel programs deteriorate. To
solve the above problems, we propose a novel technique called "packet-oriented" data
structure which can work well with dynamically growing data structures.

3.1. Adaptive Data Structure with Load-Balancing Schemes
A packet-oriented parallel data structure, shown in Figure 2, is proposed by us to

support dynamically growing structures with non-rectangular index sets. In the scheme,
the array is divided into a set of packets which are then distributed among processors
and the balance of the computation is controlled by the number of the packets in every
process. When data are inserted into an array, they are actually inserted into the packet.
The number of elements of a packet grows with the data and, in our construction, the
packet is automatically split if the number of elements in the packet is over a preset bound.
Packets are moved around different processors to keep the balances of computational
loads among processors. Figure 3 shows that in the global view each processor possesses
a portion of rings. The structure is very much like a distributed array[7] except that
it allows the size of the distributed to be grown and works comparable with a set of
load-balancing algorithms.

Arrays are distributed among processors by dividing into packets. When the imbalance
begins, the work load is rebalanced by dividing packets equally among processors at
runtime. To support this kind of abstract data structure, a set of operations for packets is

422

Figure 3. Global View of Packet-Oriented
Par t i t ion ing Scheme.

Figure 4. Segment number dis t r ibut ion on
different ring

cons t ruc ted and is listed in Table 1. The AddPack and DelPack control the caching of the
remote data. SendPack and RecvPack transfer the packets between different processors.
I sPackStar t and IsPackEnd are used to control the beginning and ending of a packet.

4. R E S U L T S A N D D I S C U S S I O N S

A circular, inviscid, spatially periodical jet flow subjected to axial pe r tu rba t ions forms
the basis of the computat ions . The pr imary vortical s t ructure of the jet is observed[3] to
be domina ted by inviscidity and spatial periodicity further simplifies the calculations of
the jet development . Radius of the jet is taken to be R=5 and a constant fi lament radius
of cr =0 .1R is adopted. Initial axial per turbat ion is s imulated by a sinusoidal variations

Table 1
Pack Relat ive Function

Get Pack (Array X ,In dex)
IsPackEnd(ArrayX,Index)
IsPackStart(ArrayX,Index)
SendPack(ArrayX,Index)
RecvPack(ArrayX,Index)
A d d Pack (Ar r ayX, PackY)
DelPack (ArrayX,PackY)

Return the address of the packet contained the element of the index.
Given an index and decide if it is the end element of a packet.
Given an index and decide if it is the starting element of a packet.
Given an index and send the packet to the processor who needs it.
Given an index and receive the packet from the processor.
Given a packet and add it to the ring..
Remove a packet from a ring.

423

Segment
x 10 ~

1 .10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10
, F - - 0.00

I

0.00 20.00

/

U l
UIO

t/ ~'J
, L"4
/ t:5'
/

1' 12"?)
,'

/

/ '
/

//,. /
/ , , , /'

/
/ , / / ._j/.,(.,/"

,_ : : : : , , ' . _ , " -" / . - - - - - -~

/
!

40.00 60100 80t.O~O
Iterations

Segment

600.00

L'~IO 550.00 ,'~ vs

500.00 ~
U5

450.00 v~
L'7"

400.00

350.00 /
/~,

300.00 /./, .7

250.00 14),

200.00 ~ I "

150.00

100.00

50.00 ' ~ - -
- - - - ~ m m m m~

0.00 20.00 40.00 60.00 80.00
Iterations

Figure 5. Number of segments in 8-node
machine with static partition scheme

Figure 6. Number of segments in 8-node
machine with run-time load-balancing
scheme

of circulation, the undisturbed circulation is P0=5.0,

F - F0(1 + eSIN(27rz/A))

where A is the axial wavelength, chosen as 27r and e=0.05, is the perturbation strength.
Mathematically, the computation should be applied on infinite periods. However, pre-

liminary computations indicated that negligible variations of the velocity profiles were
observed provided at least three upstream and downstream images are included. There-
fore, we approximated the infinite periods with three upstream and downstream periods,
and discretized the axial wavelength into 10 filaments, each of which initially contained
40 segments.

Due to the Kelvin-Helmholtz instability excitation, the vortex filament is severely
stretched and in order to preserve accuracy, the lengthened segment is consecutively
bisected into two segments. This phenomenon can be clearly seen from Figure 4 which
shows the segments number on each ring indicating the irregular segment growth pattern.

Since the computational loading is proportional to the distributed segments number on
the individual processor, it is essential to maintain the number of segments on separate
processor equal. While the runs with run-time load balancing, shown in Figures 6 and 8,
demonstrate the superiority of the method to achieve load balance, Figures 5 and 7
indicate the extent of loading unbalance on different processor for the eight and sixteen
processor runs with static data partition.

Attention is now directed to the CPU time performance on different machines. Table 2
shows the normalised accumulated cpu time on the Dec Alpha workstation clusters, IBM

Segment
xlO

1.20

Iterations

1.00

0.80

0.60

0.40

0.20

0.00

uff

i ~
UI2

UI3

LTI'4
U15

U7

/ ~
U4'

t $ '

," ,] i ,ii
. tS,i /

/~*/" / /

" . :'--~2~'''" " ' ; t ' ' ~ 1
; :-::.y-- ./:-

I I I | ~,

0.00 20.00 40.00 60.00 80.00- 20~00 40~00 60~00 80~00
Iterations

Segment

700.00

600.00

500.00

400.00

300.00

200.00

100.00
m

o.oo ~
o.oo

424

UI'

1222

UI3

UT'4

UI_5
L"Z
L-"3'

U'4'

L'o'

L'TT

IL~'

Figure 7. Number of segments in 16-node
machine with static partition scheme

Figure 8. Number of segments in 16-node
machine with run-time load-balancing
scheme

SP2 and nCUBE2 upto fifty iterations. The superiority of the load balancing can be
further affirmed by the results, as shown in table 3 which indicates the ratio of the
execution time of the unbalance and balance runs. It should be pointed out that the
Dec Alpha workstation clusteres and IBM SP2 are not dedicated machines, therefore the
advantage of run-time load balancing on these machines, though favourable, is obscured
by the nondedicated environment.

Maximum speedup of 2.6 was achieved using the nCUBE2 machine which is a dedicated
environment. The difference of the speed up can be attributed to how evenly the filament's
segments were distributed among the processors. This might be due to the fact that the
newly generated segments, due to the stretching of the vortex filament, can not be divided
evenly among the processors in the form of packets which had finite number of segments
in it.

In order to examine the scalability of the present scheme, focus is directed to the CPU
time history of the nCUBE2 machine runs, a dedicated machine, shown in Figures 9
and 10. The advantages of load-balancing can be demonstrated on the cpu time history
which again indicates the superior performance of load-balancing scheme over static block-
cyclic scheme. As was indicated by the evenly distributed segments, Figures 6 and 8, good
scalability of the scheme is achieved.

425

Table 2
The normalised execution time with and without load-balancing scheme at 50 iteration

T l T a Iterations-- 50

4 Processors

$ Processors

16 Processors

DEC 30001500

Unbalance

0.131

0.138

Balance

0.085

0.089

SP2 9076

UnBalance

0.172

0.121

Balance

0.095

0.093

0.039

nCUBE2

UnBanace

1.220

0.094 0.484

Balance

0.734

0.377

0.210

T a is t ime spent of the program on 8 processors

without balance

Table 3
The execution time ratio with and without load-balancing scheme at 50 iteration

Tu / Tb Iterations -- 50

4 Processors

8 Processors

16 Processors

DEC 3000/500

Tu/Tb

1.534

1.547

SP2 9076

Tu/Tb

1.792

1.311

2.379

nCUBE2

Tu/Tb

1.664

2.647

2.307

5. C o n c l u s i o n s

The implementation of vortex methods with adaptive data structure on parallel ma-
chines is accomplished through a packet-oriented data structure to support dynamically
growing data structure, the increase of filament's segments due to vortex stretching, with
non-rectangular index-sets. The number of elements of a packet grows with the data and,
in our construction, the packet is automatically split if the number of elements in the
packet is over a preset bound. Packets are moved around different processors to keep
the balances of computational loads among processors. Experiments were performed on
nCUBE2, DEC Alpha work-station clusters and IBM SP2 machine. Computational re-
suits indicate that the load-balancing scheme performs much better than the static data
partition scheme. It is concluded that the run-time load-balancing scheme is essential in
the computations where the computational load is changing dynamically.

426

Time Spent
On Different Processors 4 Processors Time Spent 4 Processors

Number 8" ~-e~['s On Different Processors 8- Pt:ocessors
Sec Number SeCx 103 on nCUBE2 machine "f~'lPi:'~mrs x 103 .i~]~.rocessors

t J 5.00 t on uCUBE2 machine /
6.00 4.50

5400 4"0~ t /
3.50

2.00 /_.pJ . :/"
1.50 /

1.00 ,,"

o. o /.I.LI ? i

�9 ::::::::::::::::::::::: 0.00 ~
000 1000 2000 3000 4000 5000 O. 10.00 20.00 30.00 40.00 50.00

Iterations Iterations

Figure 9. CPU time on nCUBE2-static
data partition

Figure 10. CPU time on nCUBE2-run-
time load balancing

R E F E R E N C E S

1. Batchelor, G.K. & Gill, A.E. 1962 Analysis of the Stability of Axisymmetric Jets J.
Fluid Mech. 14, 529.

2. Leonard, A. 1985 Computing Three-Dimensional Incompressible Flows with Vortex
Elements Ann. Rev. Fluid Mech. 17, 523.

3. Martin, J.E. & Meiburg, E. 1991 Numerical Investigation of Three-Dimensionally
Evolving Jets Subject to Axisymmetric and Azimuthal Perturbations J. Fluid Mech.
230, 271.

4. Ashurst, W.T, & Meiburg, E. 1988 Three-dimensional Shear Layers via Vortex Dy-
namics J. Fluid Mech. 189, 87.

5. Kino, O.M & Ghoniem, A.F. 1990 Numerical Study of a Three-dimensional Vortex
Method J. Comp. Phys. 86, 75.

6. Y. L. Shieh, J. K. Lee, J. H. Tsai and C. A. Lin, 1994, Computations of Three-
Dimensionally Evolving Jets with Vortex Methods on Parallel Machine with Dis-
tributed Memory Parallel CFD'94, May, Kyoto, Japan.

7. Jenq Kuen Lee and Dennis Gannon. Object-Oriented Parallel Programming: Experi-
ments and Results, Proceedings of Supercomputing '91, New Mexico, November, 1991.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

427

Portable Parallelization of the Navier-Stokes Code NSFLEX

Roland K. HSld a and Hubert Ritzdorf b

aDaimler-Benz Aerospace AG, Dep. Aerodynamics, LME12,
D-81663 Mfinchen, Germany

bGMD - German National Research Center for Information Technology,
Institute for Scientific Computing and Algorithm (SCALNUM),
D-53734 St. Augustin, Germany

The paper introduces a portable parallelization of the Navier-Stokes solver NSFLEX.
The solver NSFLEX has been developed by Daimler-Benz Aerospace Munich (Dasa-LM)
and has been validated for many generic bodies and complex geometries in the range
from subsonic to hypersonic flow field conditions. The portable parallelization is part
of the German program POPINDA (Portable Parallelization of Industrial Aerodynamic
Applications).

Goal of the program POPINDA is the definition and development of a communications
library (CLIC) for 3-D finite-volume blockstructured CFD solvers and the parallelization
of industrial applied Navier-Stokes codes. The concept of the communications library
aims for a high level of portability to make parallel platforms ranging from workstation-
clusters up to massively parallelized systems available for production codes. Two mas-
tercodes (NSFLEX and FLOWer) as typical representants of production codes based on
cell-centered and vertex-oriented schemes have been parallelized using the communica-
tions library CLIC in the project. The parallel codes being developed are based on highly
efficient numerical algorithms (multigrid), which will allow more accurate simulations and
meet increased economic, ecological and technical requirements.

This paper discusses the parallelization of the cell-centered Navier-Stokes code NS-
FLEX. The concept of the communications library and its major tasks will be described.
Algorithmic investigations will show the influence of massively domain decomposited grids
on the convergence behavior of the solver. Results for speedup on different parallel systems
are presented showing superlinear scaling on cached platforms.

1. The P O P I N D A projec t

The purpose of the german POPINDA project, funded by the German Federal Ministry
for Education, Science and Technology (BMBF), is the portable parallelization of aerody-
namic production codes based on regular and blockstructured grids. Vertex-oriented as
well as cell-centered schemes are supported to provide utilization of highly parallel systems
and workstation clusters. POPINDA is a joint undertaking by Dasa Airbus (Bremen),
Dasa-LM (Mfinchen), DLR (Braunschweig), IBM (Heidelberg), GMD (St. Augustin) and

428

ORCOM (Freiberg).
The concept of parallelization is depicted in fig.1. Based on the existing Navier-Stokes

codes (CEVCATS, IKARUS, MELINA and NSFLEX), two mastercodes named FLOWer
and NSFLEX have been developed and parallelized within POPINDA. FLOWer is based
on vertex-oriented schemes while NSFLEX uses cell-centered formulation. The paral-
lelization of FLOWer is reviewed in [1] whereas the parallelization of NSFLEX is the
subject of this paper. All of the communication tasks required to manage the parallel
execution of the mastercodes and to exchange data information between processes are
handled by the communications library CLIC. Therefore, the definition and development
of the CLIC is a milestone within POPINDA.

2. The Nav ie r -S tokes solver N S F L E X

The Navier-Stokes method parallelized is the finite-volume solver NSFLEX developed
at Dasa-LM. It solves both the full and the thin-layer Navier-Stokes equations as well
as the Euler equations [2-4].

l eEve. ATsll IKARUS I I MELIN, II I
t t t J

Parallel mastercodes

F L O W e r [N S F L E X

l l
] communications library C L I C I

I PARMACS (pVM) / MPl I
/ 1 1 1 \

I I1 II '~ II I! I

o o o o o o o o o o o o

o .;ro.;T;roF;!;";"o!;! o

o ! o i . i . i . i . i . i . �9 �9 r o-! o
o ~o i . 1. i . I . I . I . �9 �9 Io! o
o i o �9 �9 �9 �9 �9 �9 �9 �9 o ; o �9 I I l [l l [E
o i o l . l . l . l . / . I . �9 . 1 o ! o
o=o ~o ~o ~o ~o/o ~0. olioto ~o g,id
o "o'-o-o'"o"o['o"~o" 0" o" !o" o coordinates

........ 2 ~ [- : 7 ' : [.-
flow field i 'o"";.i.";To""o] o Io'";"'0""'o"o'"'o'"
variables o r-o-t--o--p;o---o r -o--~o--[-o--[-o--l-o--[-o--i~ o : ~

o : o [o I io
o ~ ; - l . I o--i o
<> F o I - I ; i <>
olo �9 �9 �9 �9 �9 �9 �9 �9 oio

. . . . ,

o : o ! o l o i o i o i o i o i o i o i o i o
: �9 �9 �9, �9 _, _, �9 _,,

o o o o o o o o o o o o
.

Figure 1.

POPINDA
Concept of parallelization in project Figure 2. Multiblock technique

of NSFLEX

The multiblock technique (fig. 2) used in the code NSFLEX is as follows: the grid is
defined by the physical grid (solid grid lines) plus one dummy cell row (dashed lines).
Within the physical grid the flow field variables are stored in the center of the volumes
(solid dots). Two dummy cell rows containing flow field data (circles) are stored to handle
block overlapping and physical boundary conditions. The exchange of grid coordinates
and flow field data is provided by the communications library for all overlap regions of
the blocks.

The governing equations of the solver are the Reynolds-averaged compressible Navier-
Stokes equations in conservative form. To reach the steady state solution the equations are
solved in time-dependent form. For the time integration an implicit relaxation procedure
for the unfactored equations is employed which allows for large time steps [5]. A Newton

429

method is used, constructed by linearizing the fluxes about the known time level. The
system of equations resulting from the discretization is solved approximately at every
time step with a Jacobi or Gauss-Seidel relaxation. The time step is calculated with
the maximum of the eigenvalues of the inviscid Jacobians. The CFL number used for
calculations is typically in the order of 100. Three relaxation steps are performed at every
time step to solve the linearized problem.

To evaluate the inviscid fluxes a linear, locally one-dimensional Riemann problem is
solved at each volume face, whereby spatial discretization up to third-order accurate is
used. A hybrid local characteristic and Steger-Warming type scheme is employed, which
allows the code to work for a wide range of Mach numbers [6]. Van Albada type sensors are
used to detect discontinuities in the solution. To calculate the local characteristic fluxes,
the conservative variables on both sides of each volume face are extrapolated up to third
order in space (MUSCL type extrapolation). This scheme guarantees the homogeneous
property of the Euler fluxes, hence simplifying the evaluation of the true Jacobians of the
fluxes for use on the left-hand side [2].

Because this local characteristic flux is not diffusive enough to guarantee stability for
hypersonic flow cases, especially in the transient phase where shocks are moving, a hyper-
diffusive flux formulation is used locally in regions with high gradients. This is a modified
Steger-Warming type (flux vector splitting) flux which provides good conservation of the
total enthalpy. Diffusive fluxes at the cell faces are calculated with central differences [5].

For acceleration of the solver an indirect multigrid method based on a Full Approxima-
tion Storage (FAS) concept as described in [7] is implemented. Different types of multigrid
cycles are supported including a Full Multigrid Technique (FMG).

A simple approach to account for equilibrium real gas effects is incorporated which
allows the Riemann solver and the left-hand side of the flow solver to remain unchanged.
For more information about the equilibrium real gas modelling see [3,4,6,8,9].

At the farfield boundaries non-reflecting boundary conditions are inherent in the code
since the code extracts only that information from the boundary which is allowed by the
characteristic theory. At outflow boundaries, as long as the flow is supersonic, the code
does not need information from downstream. In the part of the viscous regime where the
flow is subsonic, the solution vector is extrapolated constantly. No upstream effect of this
extrapolation has been observed to date.

At solid bodies the no-slip condition holds. Several temperature and heat flux boundary
conditions are incorporated: adiabatic wall, given wall heat flux, fixed wall temperature
and different levels of radiation modelling at solid surfaces [10].

3. The C o m m u n i c a t i o n s L ib ra ry CLIC

A portability interface can be defined at various levels of abstraction. One possibility
is to identify high-level communication patterns in a class of applications, and to design
subroutines for a central library which handle those communication tasks. An example
would be a complete data exchange at subdomain boundaries in a PDE solver, rather
than a single send/receive operation between two processes. If the library handles all
communication requirements of the application class, the user programs themselves need
not contain any explicit message passing, and are thus independent of any vendor-specific

430

interface. Only the library would need to be implemented for the different platforms.
At GMD this approach has been followed with the creation of the GMD Communica-

tions Library CLIC ("Communications Library for Industrial Codes", former versions are
known as the GMD Comlib). The target applications are PDE solvers on regular and
blockstructured grids, as they result from finite difference or finite volume discretizations.
In particular, the library supports parallel multigrid applications. For this class of appli-
cations it turned out that, while the numerics differ widely, the communication sections
are quite similar in many programs, depending only on the underlying problem geometry.
As a consequence of the high level abstraction, the CLIC library is useful only for the
application class for which it was designed.

The use of the CLIC library does not only make the applications portable among all ma-
chines on which the library is implemented. The use drastically reduces the programming
effort, increases reliability and accelerates the parallelization of existing codes.

The development of the CLIC library started at GMD in 1986 with the definition and
implementation of routines for 2-D and 3-D logically rectangular grids. It followed the
implementation of routines for 2-D blockstructured grids. The routines for 3-D block-
structured grids are currently being developed in the project POPINDA. The routines
support vertex-oriented as well as cell-centered discretization schemes.

The aim in the development of CLIC is to make programming for complex geometries
as easy as for a single cube and to provide high level library routines for all communica-
tion tasks. The CLIC user interface provides the application program with all required
information about the problem geometry.

The CLIC library is based on PARMACS 6.0 and, thus, is designed for a host-node
(master-slave) model as shown in fig. 3. Because PARMACS is available for many parallel
platforms the parallelized mastercodes can run on most platforms without vendor-specific
changes. A MPI based version of the CLIC is in progress.

A host process starts the distributed application, performs input and output, and data
transfers with the node processes. The host process doesn't participate in the grid com-
putations. This is performed by the node processes. Consequently, the user application
is separated in a host program and a node program. In the host program of a 3-D block-
structured application, the same input parameters are read as in the sequential versions
of the mastercodes. Then, CLIC routines read in the description of the blockstructured
grid, create the node processes, distribute the blocks in a load-balanced way to the allo-
cated node processors, and finally, distribute the input parameters to the node processes.
Another routine reads the grid coordinates and sends them to the corresponding node
processes. After the data is distributed to the node processes, the host program calls a
CLIC routine which waits for output generated by the node processes and writes that
output to the corresponding output units.

Each node process executes the node program which is very similar to the original
sequential program without reading the input data. The input data is transferred by CLIC
routines, which receive data containing the essential block information of blocks, together
with global information passed by the host program. The grid coordinates are also received
by a library routine. It should be noted that a node process receives information and grid
coordinates only for those blocks for which the node process performs grid computations.

Library routines also analyze the blockstructure, i.e. for each segment edge and segment

431

point, the adjoining blocks and the number of coinciding grid cells are determined and the
edge or point is topologically classified. If the segment edge or point is part of physical
boundary, the physical boundary conditions of all adjoining blocks are also determined.
In addition, the grid coordinates can be examined and geometrical singularities such as
block faces, which collapse to a single point, can be detected.

I I

,.~ HC ST
/

, /
I "oo "oo I

--- data distribution and collection
. data exchange between nodes
. ~ transfer of input and output data

Figure 3. Host-node concept

0 �9 �9 / 41r -0

0 0 0 0 0

t
o o o o o

o �9 �9 @ o

0 �9 �9 �9 0

0 �9 �9 �9 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 �9 �9 �9 0 0 �9 �9 �9 0

Ist step - / -d i rec t i on
0 �9 �9 �9 - 0 �9 �9 �9 0

1
i
i o o o 0 o
i
i

' I i , 2nd s t e p - J-dir.
I
i

0 0 0 0

0 �9 �9 �9 0

0 �9 �9 �9 0

0 �9 �9 �9 0

0 0 0 0 0

Figure 4. Updating the overlap region in a 2-D
regular case

Though this data may be important for the mastercode, it is essential to the CLIC
library to correctly update the overlap regions (to exchange the boundary data) of neigh-
bouring blocks and to optimize this update procedure. An optimization of this update
procedure is significant for parallel efficiency, since the corresponding CLIC routine is
called most often and is the most crucial routine especially for coarse grids of multigrid
algorithms. An example, for such an optimization of the update procedure is the update
of regular corners of 8 blocks. The simplest technique for updating all overlap regions is
to send and receive messages over all faces, edges and corners of a block; thus, 26 (6 faces,
12 edges, 8 corners) messages are sent and received per block. However, in such regular
cases, the updating of all overlap regions (including the corners of the overlap regions)
can be handled by just 6 messages using the following technique (fig. 4): in the first
step, all blocks exchange their data with neighbour blocks in/-direction (1 message per
block face); in the second and third steps, all blocks exchange their data with neighbour
blocks in J- and//-direction, respectively, but now including the already updated overlap
regions.

The results of the analysis of blockstructure is used to optimize the update of the overlap
regions. Since it is too expensive to optimize this update sequence and to determine the
areas which have to be sent to neighbouring blocks within in each update, these tasks
are performed only once by CLIC routines in an initialization routine of the mastercode.

432

During the solution process of the mastercode, the update of the overlap regions of all
blocks is then performed by calling a single CLIC routine. In that call, the user specifies
the number of the multigrid levels and can choose the number of grid functions to be
simultaneously exchanged.

Among other tasks, the CLIC library also performs the computation of global values
(for example, global residuals), the output to files, and standard output which is generated
by the node processes. In the next year, the library will be extended to adaptive block-
structures (i.e. hierarchies of blockstructures). This will include routines which create
and manage adaptively refined new grid levels, which perform a load-balanced dynamic
mapping and which perform all data redistribution required during adaptive multigrid
algorithms.

An important fact for the development and management of the mastercodes is that
there is also a sequential version of the 3-D blockstructured CLIC library. Thus, the
mastercode can be sequentially executed with the same interfaces as in the parallel case.

4. Testcase definit ion

As a testcase for algorith-
mic investigations and bench-
marking of the parallel code a
fine grid and a coarse grid for a
NACA0012 wing has been defined
(fig. 5). The fine grid consists of
256 x 16 x 64 (262 144 volumes)
in i x j x k direction, with j as the
spanwise direction. The coarse
grid is given by 1 2 8 x 8 x 3 2
(32 768 volumes). The algorith-
mic investigations presented and
the benchmark tests are EULER
calculations for Mach = .63 and
c~=2. ~

blocking in i-dir.

Figure 5. NACA0012 wing testcase

5. Algor i thmic invest igat ions

Different algorithmic investigations have been performed in the project POPINDA to
provide information about the characteristic behavior of the mastercodes with respect to
parallel applications.

To investigate the influence of massive domain decomposition on the convergence be-
havior of the solver the fine grid of fig. 5 has been split in i- and k-direction into 2x2=4,
4x4=16, 8x8=64 and 16x16=256 blocks. The results appear in figs. 6 and 7.

All calculations are based on a point Gauss-Seidel relaxation. Full multigrid has been
applied using 3 grid levels up to 64 blocks and 2 grid levels for the 256 blocks testcase. To
avoid divergence during iteration the relaxation parameter (r=.5) had to be reduced for the
256 blocks testcase (r=.4). This reduction of the relaxation parameter is due to stability

433

~ I
I- o " Ib-.3,.;:.5- I I I~ Ib. 3~ 5
If . 4 b. a,. ~--.5 I[i o 4 b. 3,. ~--.5

II ~ 1B b, a~ 5 \ I / I~ 16 b, al 5
7 ~ , . ~4 b, a, 5 ~ b I " B4 b, 31 5

~ i , ~ ~ , . ~5Gb= 4 , i ~ I_.//2513b, 21 4 l
?

_ _ _

i
9

5~o ~ob ~5~ ~o~o o 5~o l ~ b 15b 2~o

Figure 6. Influence of domain decom-
position on maximum of residuum

Figure 7. Influence of domain decom-
positon on lift coefl]cient

issues with the Gauss-Seidel relaxation (domain decomposition irritates the transport of
information of the Gauss-Seidel scheme). Up to 64 blocks, the domain decomposition
has almost no effect on convergence behavior. The 256 blocks testcase shows slower
convergence due to the decreased relaxation parameter and reduced grid levels. These
results indicate that the Gauss-Seidel relaxation is applicable also for massively domain
decomposited grids, especially for realistic 3-D applications with many more grid points
compared to the testcase.

Further algorithmic investigations with a division of the NACA0012 wing into 2048
blocks (blocksize: 2 x 4 volumes) have been performed. The most important information
resulting from these investigations was to make sure an overall consistent formulation of
all values at the blockfaces. Perturbations caused by inconsistent formulations at block
faces reduce the accuracy of solutions for massively domain decomposited grids.

6. Speedup m e a s u r e m e n t s

To test the efficiency of the parallelization of NSFLEX speedup measurements have
been carried out on different parallel platforms using different communication interfaces.
Measurements are available for an IBM SP2 (thin nodes) with 1, 2, 4 and 8 node processes
and a NEC-Cenju 3 with 2, 4, 8, 16 and 32 node processes. The benchmark testcases
have been performed at the GMD (St. Augustin) for rea l , 4 floating point calculations.
The compiler options used are "-O -qhssngl -qarch=pwr2 -qtune=pwr2" on the IBM SP2
and "-O" on the NEC-Cenju 3.

434

Two different iteration schemes for the fine grid and the coarse grid of the NACA0012
testcase have been considered. The iteration schemes tested are a simple relaxation pro-
cedure with 100 iterations and a full multigrid scheme (FMG) using 3 grid levels with an
overall number of 300 iterations.

The speedup as a criterion for the parallel performance is defined as

speedup :=
wall clock time (N - 1, 2)

wall clock time (N = n)

in the following. N is the number of node processes (one block per node). All speedup
measurements on the IMB SP2 are related to a monoblock sequential calculation (N=I)
whereas the measurements on NEC-Cenju 3 are related to a two block parallel calculation
(N=2). A monoblock calculation on the NEC-Cenju 3 could not be executed for the given
testcase due to the main memory available.

The results for the speedup measured on IBM SP2 are given in figs. 8 and 9. The
difference of the results are related to the different communication interfaces used. In
fig. 9 the POE communication with the high performance switch (HPS) shows linear
and superlinear speedup, whereas the results of fig. 8 based on PVM and the Ethernet
interface show the influence of a "slow" communication. The increasing communication
effort of the coarse grid calculation compared to the fine grid calculation is demonstrated
especially in fig. 8 where the communication tasks are time consuming. This is also true
for the FMG scheme compared to the relaxation technique.

Speedup on IBM SP2 / Thin (PVM Ethernet)
Wall clock time

speed u p

Speedup on IBM SP2 / Thin (POE HPS)
Wall clock time

," linear t
i

, ' " / A fine grid Relax

. J ~ _....4. coarse grid Relax
coarse grid FMG

i

,)" ~ n~ grid (2S6x Z6x 64 ~ol,, me~)
c o ~ e grid (128 ~ 8 x 32 ~oaume~)

node processes

speedup

fine grid Relax
�9 ~ fine grid FMG

/ - , - l inear
/ . ~ " coarse grid FMG

coarse grid Relax

- ? fine grid (256x 16x 64 volu mes)
coarse grid (128 x 8 x 32 volumes)

0 0
o o ~ ,i ~

node processes

Figure 8. Speedup on IBM SP2, thin
nodes - PVM, Ethernet

Figure 9. Speedup on IBM SP2, thin
nodes - POE, HPS

The superlinear speedup of the fine grid calculations in fig. 9 is caused by cache effects.
Especially the speedup for the 4 and 8 blocks testcase in fig. 9 demonstrates that the
parallel implementation of the NSFLEX solver is a very efficient one. Only the 2 blocks
testcase shows low speedup due to a cache problem. This cache problem also appears

435

in sequential reference calculations on thin and thick nodes. Fig. 10 shows the scaled
efficiency (= 1./wall-clock-time; based on 1 block testcase, thin node) of the different
testcases and different types of nodes. In contrast to the thin node, the thick node makes
use of more cache and an additional 1MB second level cache. There is a great difference
between the performance of the thick node and the performance of the thin node for the
2 blocks testcase only. The reasons are cache problems of the 2 blocks testcases that are
reduced using the larger cache and the second level cache.

Scaled efficiency (IBM SP2)
fine grid (256 x 16 x 64 volumes)

1.0-

0.5

0.0 1 block 2 blocks 4 blocks 8 blocks
[-I Thin node �9 Thick node

Figure 10. Scaled efficiency
on IBM SP2, thin node versus
thick node

speedup

Speedup on NEC-Cenju 3
Wall clock time

zxfine grid Relax

~ fine grid FMG

/ linear / ,-
-I / , '~_ coarse grid Relax
/. n~ _ .'~_.~ ~ coarse grid FMG

i J fine grid (256 x 16 x 64. volumes)
- ~ coarse grid (128 x 8 x 32 volumes)

0 ~ ~ 5;61014{812
node processes

Figure 11. Speedup on NEC-Cenju 3

The results of the speedup measurements for the NEC-Cenju 3 are given in fig. 11. The
coarse grid shows very good performance up to 32 blocks. The fine grid even indicates
superlinear speedup that is related to the large cache available on this platform (32KB
plus 1MB second level cache per node).

7. Resu l t s

The goal of the POPINDA project to develop a high level communications library that
ensures easy and economical parallelization of industrial applied codes has been reached.
The concept of parallelization ensures comfortable handling of the mastercodes. The
parallel I/O, supported by the CLIC, results in a very simple host-program because there
is no need to simulate the call sequence of the node-program on the host process. A
parallel and a sequential version of the communications library combined with one single
source of the mastercode enables easy manageable code development. A high degree
of portability of the parallelized code is ensured by PARMACS calls and MPI based
implementations of the communications library.

436

The algorithmic investigations for massively domain decomposited grids showed good
convergence behavior of the Gauss-Seidel solver and indicated that fully consistent for-
mulation of the algorithm at blockfaces is essential for accurate solutions. Benchmark
testcases performed on IBM SP2 and NEC Cenju-3 demonstrate very good speedup. Us-
ing fast communication interfaces, superlinear speedup has been shown for gridsizes that
are relevant for 3-D applications. The results also demonstrate that cache size can play
an important role for speedup. The measurements for the PVM/Ethernet based calcula-
tions allow the conclusion, that the parallel NSFLEX implementation is also suitable for
industrial applications on classical workstation clusters.

R E F E R E N C E S

1. Eisfeld, B.; Bleecke, H.-M.; Kroll, N. and Ritzdorf, H. : Parallelization of Block
Structured Flow Solvers. VKI special course on Parallel Computing in CFD, yon
Karman Institute for Fluid Dynamics, Rhode-Saint-Gen~se, 1995.

2. Schmatz, M. A. : NSFLEX- an implicit relaxation method for the Navier-Stokes
equations for a wide range of mach numbers. In Wesseling, P., editor, Numerical
Treatment of the Navier-Stokes Equations, pp. 109-123, Kiel, 1989. Vieweg. Proc.
of the 5 th GAMM-Seminar, NNFM Vol. 30.

3. Schmatz, M. A. : Hypersonic three-dimensional Navier-Stokes calculations for equi-
librium air. AIAA-paper 89-2183, 1989.

4. Schmatz, M. A.; HSld, R. K.; Monnoyer, F.; Mundt, Ch. and Wanie, K. M. : Numer-
ical methods for aerodynamic design II. Space Course Aachen, paper no. 62, 1991.
Also MBB-FE211-S-PUB-442.

5. Schmatz, M. A. : Three-dimensional viscous flow simulations using an implicit relax-
ation scheme. In Kordulla, W., editor, Numerical simulation of compressible viscous-
flow aerodynamics, pp. 226-242. Vieweg, 1988. Notes on Numerical Fluid Mechanics,
Vol. 22.

6. Eberle, A. : Characteristic flux averaging approach to the solution of Euler's equa-
tions. In VKI lecture series 1987-04, 1987.

7. Hgnel, D.; Meinke, M. and SchrSder, W. : Application of the Multigrid Method in
Solutions of the Compressible Navier-Stokes Equations. In Proc. of the fourth copper
mountain conference on multigrid methods, pp. 234-249, siam, Copper Mountain,
Colorado, 1989.

8. Mundt, Ch.; Keraus, R. and Fischer, J. : New, accurate, vectorized approximations
of state surfaces for the thermodynamic and transport properties of equilibrium air.
ZfW 15, pp. 179-184, 1991.

9. Mundt, Ch.; Monnoyer, F. and HSld, R. K. : Computational Simulation of the
Aerothermodynamik Characteristics for the Reentry of HERMES. AIAA-paper 93-
5069, 1993. Also DASA-LME211-S-PUB-528.

10. HSld, R. K. and Fornasier, L. : Investigation of Thermal Loads on Hypersonic Vehi-
cles with Emphasis on Surface Radiation Effects. ICAS-paper 9~-~.~.1, 1994. Also
D AS A-LME 12-S-P U B-543.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

437

Towards an I n t e g r a t e d CFD S y s t e m in a Para l l e l E n v i r o n m e n t
M. Shih*,

M. Stokes+,
D. Huddleston !,

B. Soni @

ABSTRACT

This paper describes the strategies applied in parallelization of CFD solvers in a parallel dis-
tributed memory environment using a message passing paradigm. To monitor the simulation pro-
cess, indirect rendering via the OpenGL graphics API is investigated and shown to exihibit excellent
performance. A customized, integrated CFD simulation system, TIGER, tailored for turbomachinery
configurations, executable in a distributed environment is developed, computational examples dem-
onstrating the successful parallelization of the NPARC code with rea l - t ime visualization and the TI-
GER system are presented. Future expansion to this environment is discussed.

1. INTRODUCTION
The primary objective of the National Science Foundation's Engineering Research Center

(ERC) at Mississippi State University is to reduce the man/machine resource required to perform
Computational Field Simulation(CFS). The approach to reducing the machine resource is two-fold:
1) design of specialized hardware such as mult i -computers with very low latency communications,
and 2) the design of distributed computing environments to take advantage of heterogeneous collec-
tions of personal computers, workstations, and supercomputers if available. The approach to reduc-
ing the manpower resource is primarily through the development of advanced software tools which
efficiently generate and edit grids, and visualize the solution field.

Classically, the process of CFS is thought of as a pre-processing phase of grid generation, the
solution phase, and a post-processing phase comprised of visualization. However, examination of
this process in a production environment illustrates these phases are not separate at all, and typically
exist in at least binary pairs. For example, grid generation requires visualization of the grids during
the construction process to be effective. Grid generation requires one or more iterations of the field
solution to adequately capture viscous phenomena and shocks. The solution process also requires vi-
sualization to determine the accuracy of boundary and r u n - t i m e parameters. For more complicated
problems, the solution phase may require an integrated grid generation capability to provide solution
adaptivity.

To address this problem, the ERC formed the Integration Thrust to investigate the concept of
integrated environments for the CFS process. Conceptually, an integrated environment would reduce
or simplify the logistics of moving between phases and therefore reduce wall-clock time as well as

*. Post Doctorate, NSF Engineering Research Center for
Computational Field Simulation
+. Research Faculty, NSF Engineering Research Center
for Computational Field Simulation
!. Associate Professor, Civil Engineering, Mississippi
State University
@ Professor, Aerospace Engineering, Mississippi State
University

438

reduce the expertise required to perform simulations. Early testbeds for integrated systems revealed
that simple-minded integration of existing grid generation, solver, and visualization tools were im-
practical, and would have limited longevity due the volatile nature of current day tools. These
testbeds resulted in two conclusions which coincide with n e a r - t e r m and f a r - t e rm goals, respective-
ly:

1. The solver set-up/execution phase and rea l - t ime visualization can be integrated in a distributed
environment using off-the-shelf technology.

2. Grid generation codes must be redesigned to support distributed memory environments and sup-
port object-oriented concepts and therefore are not currently mature enough for integration.

Concentration in this paper is placed upon the solver set-up/executation phase and the rea l -
time visualization.

The casual observer may wonder why visualization must be distributed and why it should be
real- t ime. The anwer to the first question is that current trends in CFS point to using a distributed
memory parallel environment for large scale applications[1.]. With simulations routinely contain-
ing more than a million nodes, memory requirements for graphic workstations would overwhelm
even the most current hardware, thus the distributed architecture is required to mass enough
memory to contain the problem. The rea l - t ime features are required to monitor early or transient
phases of the solution to minimize loss of computing resource due to incorrect boundary or r u n - t i m e
parameters. Note that what is needed here is not publication quality graphics, but rather graphics
which illustrate faults in the solution process.

The progress realized in the development of the aforestated integrated environments for the
CFS process is presented in this paper. In particular, the development associated with following issues
are described:

i. Parallelizing the widely utilized off- t h e - shelf CFD system. The NPARC code[2.] was chosen
for this research effort due to it's availability to US research and academic communities, and
that it is heavily used in US Federal Labs and industry. Though the NPARC code has been
parallelized by private companies such as Boeing[3.], no parallel version was available for
general distribution as of the time of this writting. The NPARC code was a natural choose
for parallelization because of its mult i-block structured design. This aspect is discussed in
detail in the following section.

ii. Real- t ime visualization in a a distributed environment. Here, an architecture for indirect
rendering using OpenGL graphics library is described

iii. Customized integrated CFD simulation process for a class of configurations. An integrated
system, TIGER, customized for turbomachinery application is described.

2. THE NPARC SOLVER
The NPARC solver started life as a derivative of the ARC[7] suite of codes from NASA Ames,

but gained popularity after being heavily modified by Cooper[2] at Arnold Engineering Development
Center(AEDC) in Tullahoma, TN. under the name PARC, or Propulsion ARC code. The NPARC code,
a close derivative of PARC, solves either the Reynolds-averaged Navier- Stokes equations or the Eul-
er equations, subject to user specification. NPARC uses a standard central difference algorithm in
flux calculations, with Jameson[9] style artificial dissipation applied to maintain stability. NPARC
has two- t ime integration algorithms available including Pulliam's[7] diagonalized Beam and Warm-
ing approximate factorization algorithm or a mult i -s tage Runge-Kut ta integration. The diagonal-
ized algorithm was applied herein. Among other characteristics, NPARC utilizes conservative metric
differencing, offers local t ime-s tep options, and provides a generalized boundary treatment. The
code can be applied in either a single or mult i-block mode. This results in a code which is quite gener-
al and easy to apply to complex configurations. The NPARC multi-block code supports only one grid
block in memory at a time, caching the other blocks to disk. The main loop would write out the current

439

block (if not the first time), read in and process the second block, and the cycle would repeat. Similari-
ly, boundary conditions were handled by files which were subsequently read by adjacent blocks once
in memory. This design made it quite simple to produce a parallel code from this original design.

The PANARC, or Parallel National ARC code, as coined at the ERC, took the original design
and actuall simplified it. Block caching was eliminated such that each process only operated on one
block, and the boundary condition routines replaced the previous I/O calls with PVM[10] send/receive
calls. Boundary and r u n - t i m e conditions are defined in a FORTRAN namelist file and were not al-
tered from the original format. However, each process only reads what is pertinent for each respective
block.

To simplify the r u n - t i m e logistics, PANARC assumes each process can access the same set of
input files, which under the UNIX Operating System, is accomplished by NFS. PVM was choosen for
the interprocess communication library, over the then immature MPI[l l] libary because MPI lacks
support for dynamic process management. However, it is apparent that from commercial industry
support among a large class of workstation and supercomputer vendors, MPI will be the preferred
choice for the message passing interface of the future. Features lacking now are expected to be in-
cluded in future versions of MPI.

Memory in the NPARC code is allocated in the main program as a single work array. The only
change to support indirect rendering was to replace the DIMENSION statement with a C language
call that allocates shared memory (see Figure 1). This change allows any other process (with proper
permissions) to access the main memory used by the solver. It is through this mechanism that the
visualization module gains access to the field variables.

3. ARCHITECTURE FOR INDIRECT RENDERING USING OPENGL
The premise for the design for this system is the concept of domain decomposition, which relies

on the solution domain being broken down into (for this case) equal size domains, each domain being
mapped to a remote computer. To minimize data transfer during the visualization phase, the render-
ing calls are issued on local data rather than transfering the data to the display host (which was not
an option since the graphics workstation did not have enough memory to store the data in the first
place). This concept relies on the Method of Extracts[12] which suggests that what is being visualized
is a subset or extraction dimensionally lower than that of the original data. In terms of solution moni-
toring, this is almost always the case.

A design contraint was for the visualization scheme be as unobtrusive as possible to the simula-
tion process as well as minimize code modification to the solver. In addition, the visualization capabil-
ity must be attachable/detachable at any time during the simulation. The process toplogy that evolved
is shown in Figure 1.

In this topology, visualization is facilitated as a separate process on each host. Communication
between the solver and visualization process on each processor is through shared memory. Optional
features in this topology(shown in dashed lines) are (1) the existence of a solver process on the display
host (not recommended for large scale visualization), and (2) enabled message passing between a visu-
alization client on the display host and the solver clients. The latter option may be convenient, but
generally is not recommended in that it violates the requirement that the solver and visualization pro-
cesses be independent.

In the current model, the visualization client running on the display host has the responsibity
of creating the shared window, acting on mouse and button events(which are not shared), clearing the
various buffers before rendering begins, setting the projection matrix, and synchronizing the swap-
ping of the back display buffer. It may also have the responsibility of rendering information for a do-
main if the user has elected to use the display host as an active node in the simulation. The visualiza-
tion clients on the remote processors render to the shared window on the display host through the
mul t i - th readed X l l Server, not the visualization client running on the display host. This greatly
simplifies the programming aspects of distributed applications.

Communications between the visualization clients are primarily one-way, that is flowing to-
ward the display hosts. The OpenGL[] calls are tokenized on the remote clients and sent to the Xl 1
Server running on the display host using the GLX extension provided by Silicon Graphics. Thus, the

440

Figure 1. Process Topology of Indirect Rendering

programmer can think of indirect rendering simply as providing addition input streams into the ge-
ometry engines on the display host. Since this operation is often performed unsynchonized, the scan
conversion may not be unique since these tokens may arrive unordered to the server. This is not gen-
erally a problem, because most operations are not dependent on the ordering. However, if alpha buff-
ering(for example) is enabled with background blending, then the ordering of the operations are im-
portant and care must be taken.

It is often necessary to communicate information from the display host to the remote clients.
Three different methods are described herein with the choice of methods dependent on the needs of
the application. If the information is global in nature, then X Windows provides the mechanism
known as properties, which are shared among local and remote processes sharing a common window.
If any client attempts to change a global property, then a PropertyChangeEvent is sent to all clients,
which respond with a request to read the new property and thus synchronize the data. If p o i n t - t o -
point communication is required, then a simple method is to post a window (such as Motif or Xt win-
dow) on the display processor where the user can use graphical techniques such as buttons or sliders
to convey information. A third technique is to use client defined XSendEvents that support the pass-
ing of arbitrary information between local or remote processes. Care must be exercised when ex-
changing data between heterogenous machines, as data incompatibilities may arise. This problem
can be avoided if the data is encoded/decoded using the publicly available XDR routines.

When double buffered graphics are required on the display host, it is the responsibility of the
owner of the window(the visualization process on the display host) to actually swap the display buffers
after the remote clients have completed their rendering operations. To perform this operation, the
local client must have two pieces of information: (1) the number of remote clients sharing the window,
and (2) notification when all clients have completed their operation. To satisfy (1), the visualization
clients simply send a ClientMessage telling the client on the display host that a new remote client is
registering itself. The local client simply keeps track of the number of registered clients. This in-
formation coupled with the XSynchronization Extension to X Windows allows the client on the dis-
play host to maintain a synchronized window.

4. TIGER SYSTEM
The development of TIGER has evolved from a grid generation system into an integrated sys-

tem specialized in applications in rotating turbo-machinery. The integrated system is comprised of
6 modules: (i) grid generation module, (ii) visualization module, (iii) network module, (iv) flow solu-
tion module, (v) simulation module, and (vi) toolbox module. Each module may be accessed indepen-

441

dently to perform different tasks. These modules are linked together with a common graphical user
interface (GUI).

Figure 2. Graphical User Interface of TIGER

TIGER's GUI, as shown in Figure 2, was developed using the FORMS Library[14]. The inter-
face contains a global panel window, an image display window, and various sub-panels and auxiliary
panels. The global panel, where the logo, message browser, image controls widgets, and other global
function buttons reside, is the main panel of the entire GUI. The image display window sits in the
left- hand upper corner of the global panel and is the window that allows the user to view the grid and
the solution. Sub-panels such as the "GVU" panel, pop up on the right hand portion of the global
panel as the algorithm requests user inputs. These panels provide the necessary widgets for a particu-
lar group of user inputs. Auxiliary panels, such as the "Animation Tools" and "Flow Property" pan-
els, pop up only upon the user's request for parameter customization. A help window, available upon
request, consists of a large browser window to display the contents of the help files, and several but-
tons for the user to select topics.

The simulation capability in TIGER system is comprised of the network module, visualization
module, and the flow solution module. As shown in Figure 3, the setup of this module is to use the
network module as the data bridge that conveys user's commands and the flow solution between the
local graphics workstation and a remote super computer. It consists of two sub-modules: the c l i e n t -
server sub-module, which resides in TIGER as a function, and the s e r v e r - c l i e n t sub-module which
is a set of routines that reside independently on the remote mainframe. The network setup in the sys-
tem allows two-way communication between the local workstation and the remote supercomputer,
which allows the flow data to be sent back to local machine for the update. Figure 3 represents the
setup of the network module. The setup of the simulation module is illustrated in Figure 4.

The flow solver that resides on the super computer may be any appropriate software. Current-
ly, a mult i-stage unsteady turbomachinery code (MSUTC)[15] is adopted as the flow solution mod-
ule. This code applies the thin- layer approximation with a Baldwin-Lomax turbulence model to
solve the Reynolds-averaged Navier-Stokes equations. It is an implicit finite volume scheme with
flux Jacobians evaluated by flux-vector-spli t t ing and residual flux by Roe's flux-difference-split-
ting. A modified two-pass matrix solver based on the Gauss- Siedel iteration was used to replace the
standard LU factorization to enhance the code's stability. This code, uses localized grid distortion
technique [15-16] to the buffer zone between the blade rows to achieve time-accurate solution for
compressible flow. It performs flow calculation on the supercomputer, and outputs the flow solution
every interval, whose length is specified by the user. The evolving solution is automatically updated
on the screen graphically through the execution of visualization module. The visualization module
is designed to allow scientific visualization for both the grid and flow solutions with basic rendering

442

methods, such as wireframe and Gouraud shading, contour and vector field. T ime-dependent grid
and/or solution can be animated dynamically.

F i g u r e 3. T i g e r N e t w o r k T o p o l o g y F i g u r e 4. S i m u l a t i o n M o d u l e S e t u p

5. COMPUTATIONAL EXAMPLES
To test the design of the integration of the distributed parallel environment with distributed

visualization, a four block 3D test case was performed using a four block 16mb SGI Indigo Elans
workstations on a 10 mb Ethernet network(Figure 5 shows the block configuration on the vertical
symmetry plane). The test case is an internal engine configuration with blades removed. Figure 6
is a six frame sequence of pressure on a vertical symmetry plane as captured directly from the screen.

For the given test cases, the latency created by network traffic is almost negligible. To further
minimize thie effect, the X server on the display host is capable of caching display lists created on ei-
ther the remote or local clients. The impact of caching is that objects that have not changed are not
retransferred across the network, thus local redraws even for complex objects are very fast.

For the given test cases, the latency created by network traffic is almost negligible. To further
minimize this effect, the X server on the display host is capable of caching display lists created on ei-
ther the remote or local clients. The impact of this caching is that objects that have not changed are
not retransfered across the network, thus local redraws even for complex objects are very fast.

Hami l ton- Standard's single rotation propfan S R - 7 is presented as an example simulation ap-
plication. This geometry is modeled using a C- type domain with a grid size of 31x16x9, as illustrated
in Figure 7. This geometry has 8 blades and the blade stagger angle is set to be 54.97 degrees, with
an advance ratio J=3 .07 (rpm= 1840) and a f r ee - s t r eam Mach number 0.78. Each iteration of an
Euler solution will take about 5 seconds on the aforementioned SGI Challenge machine. Density con-
tours of the 2000th iteration is shown in Figure 8.

6. FUTURE WORK
The current effort clearly illustrates the need for an integrated desktop tool for the execution

and field monitoring of CFS. This desktop, while generally not adding any new capability, aids the
user by either automating functions, or simplifying the use of the tools by bringing them together in
a common Graphical User Interface(GUI). A few of these tools are listed below.

Graphical based input/run parameters-
Currently, NPARC reads a FORTRAN namelist input file for information regarding the
r u n - t i m e and boundary conditions. A valuable aid to the user would be to allow these pa-
rameters to be edited graphically, and then have the GUI regenerate the namelist input files

443

F i g u r e 7. Gr id for S R - 7 F i g u r e 8. D e n s i t y c o n t o u r for
i t e r a t i o n 2000

for the user. The GUI would allow the user to indicate boundary conditions b y p o i n t - a n d -
clip thereby combining the editing process with graphical validation of the input.

An automatic mesh decomposi t ion t o o l -
This feature, given a set of rules customizable by the user, would automatically decompose
an arbitrary set of structured grid blocks into the number of equal sized grid blocks comen-
surate with the number of available processors in the distributed environment. This tool,
given the connectivity information of the blocks, would be capable of breaking structured
grids into sub-grids, including those that cross existing grid boundaries assuming the grid
interfaces are point matched. This tool would also be capable of automatically calculating
the boundary conditions on sub-grids.

Visualization monitor ing t o o l -
This would allow the user to graphically monitor the state of a running simulation using the
standard graphical features available in other post-processing packages such as line or ga-
round shaded field properties, iso-surfaces, vector plots[5], streamlines, and particle
paths[4.] to name a few. The interface would provide feature detection such as monitoring
of flow angles on slip surfaces, or massive defects in total temperature or pressure, to name
two. The ability to monitor global as well as local grid convergence at a glance would provide
instant information on the health of the simulation.

Performance monitor ing of the distributed parallel s y s t e m -
This feature would allow the user to monitor the performance of the distributed system.
Many of these packages already exist[5. ,6.], and would therefore only require merging into
the integrated system.

As we look forward into the future of CFS as defined by the requirements for mul t i - disciplin-
ary optimization and analysis(MDO&A), one can define requirements that must be present in grid
generation systems to provide adequate functionality in an integrated system. These include

1. Ability to self-adapt to changes in either geometry or topology. Most current grid pro-
grams either don't support editing, or do it very poorly.

Closely related to 1, grid components must remember and maintain design constraints dur-
ing the editing process. Without default editing methods, 1 would be undefined.

The inputs in the editing process must not be required to have intimate knowledge of the
editing process itself. For example, if the location of a bezier control point attached to a line
is altered and that line is connected to the edge of a surface, the procedure that requests the
point to move need not be required to specify the series of steps necessary to reconstruct the
surface. That information should be associated with the surface itself.

444

4. The editing process must not be linked uniquely to the GUI. Anyone or any process should
be able to execute an edit, not just the indivual with the mouse.

5. Edits should occur in parallel.

6. Grids should be constructed in a collaborative environment. Many individuals should be
able to work on components of a complicated grid simultaneously.

7. Grids components should be constructed relative to arbitrary defined sub-ordinate coordi-
nate systems which are free to relocate in 3 space. This construct would be an extension of
a grouping operator in which the geometic operators of translation, scaling, and rotation
are defined.

8. REFERENCES

[1] Taylor, Steve, and Wang, Johnson, "Large-scale Simulation of the Delta II Launch Vehicle,"
proceedings of Parallel CFD 95, California Institute of Technology, June 26-28, 1995.

[2] Cooper, G.K., and Sirbough, J.R., "PARC Code: Theory and Usage," AEDC-TR-89.15, Ar-
nold Engineering Development Center, Arnold AFB, 1989.

[3] Lewis, Jeffrey, "Domain-Decomposition Parallelization of the PARC Navier-Stokes Code,"
proceedings of Parallel CFD 95, California Institute of Technology, June 26-28, 1995.

[4] SHIH, M.H., "TIGER: Turbomachinery Interactive Grid genERation," Master's Thesis, Mis-
sissippi State University, December 1989.

[5] SHIH, M.H., "Towards a Comprehensive Computational Simulation System for Turboma-
chinery," Ph.D. Dissertation, Mississippi State University, May 1994.

[6] SHIH, M.H., YU, T-Y, and SONI, B.K., "Interactive Grid Generation and NURBS Applica-
tions", Accepted for print on Journal of Applied Mathematics and Computations, vol.
65:1-2, pp. 345-354, 1994.

[7] Pulliam, J.H., "Euler and Thin Layer Vanier-Stokes Codes: ARC2D, ARC3D", Notes for
Computational Fluid Dynamics User's Workshop, The University of Tennessee Space Insti-
tute, Tullahoma, TN, UTSI Publication E02-4005-023-84, p. 151, March 1984.

[8] Cooper, G.R. and Sirbaugh, J.R., "The PARC Distinction: A Practical Flow Simulator",
AIAA-90-2002, AIAA/ASME/SAE/ASEE 26th Joint Propulsion Conference, Orlando, FL,
July 1990.

[9] Jameson, A., Schmidt, N. and Turkel, E., "Numerical Solutions of the Euler Equations by
Finite Volume Methods Using Runge-Kutta Time-Stepping Schemer", AIAA-81-1259,
AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto, CA, 1981.

[10] PVM reference: http://www.netlib.org/pvm3/

[11] MPI reference: http://www.mcs.anl.gov/mpi/

[12] STOKES, M.L., HUDDLESTON, D.H., and REMOTIQUE, M.G., "A Proactical Model for
Multidisciplinary Analysis Data and Algorithm," 6th SIAM Conference on Parallel Proces-
sing for Scientific Computing, Norfolk, VA, March 1993.

[13] SONI, B.K., THOMPSON, J. F., STOKES, M.L., and SHIH, M. H., "GENIE ++ EAGLEVIWE
and TIGER: General Purpose and Special Purpose Graphically Interactive Grid Systems,"
AIAA-92-0071, AIAA 30th Aerospace Sciences Meeting, Reno, NV,, January 1992.

[14] OVERMARS, M.H., "Forms Library: A Graphical User Interface Toolkit for Silicon Graphics
Workstations," Version 2.1, Utrecht, Netherland, November 1992.

445

[15] CHEN, J.P. and WHITFIELD, D.L., "Navier-Stokes Calculations for The Unsteady Flowfiled
of Turbomachinery," AIAA-93-0676, AIAA 31st Aerospace Sciences Meeting, Reno, NV,,
January 1993.

[16] JANUS, J.M., "Advanced 3-D CFD Algorithm for Turbomachinery," Ph.D. Dissertation, Mis-
sissippi State University, Mississippi, May 1989.

This Page Intentionally Left Blank

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

447

Para l le l mu l t i -b lock computa t ion of incompress ib le f lows for
appl icat ions

O. Byrde a, D. Cobut b, J.-D. Reymond a, M.L. Sawley a

aInstitut de Machines Hydrauliques et de M6canique des Fluides,
Ecole Polytechnique Fdd6rale de Lausanne, CH-1015 Lausanne, Switzerland

bDEpartement de MEcanique,
Universit6 Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

indust r ia l

Numerical flow simulation for industrial applications necessitates considerable computational
resources, not only for the resolution of the flow equations but also for the pre- and post-
processing phases. We present the results of a study of the use of high-performance parallel
computing to facilitate such numerical simulations. This study is being undertaken using a 256
processor Cray T3D system, within the framework of the joint Cray Research-EPFL Parallel
Application Technology Program.

1. F L O W SOLVER

The parallel code used in this study is based on a multi-block code developed within
IMHEF-EPFL for the numerical simulation of unsteady, turbulent, incompressible flows. This
code solves the Reynolds-averaged Navier-Stokes equations on 3D structured and block-
structured computational meshes.

1.1. Numerical scheme
The numerical method employs a cell-centered finite volume discretization with an artificial

compressibility method to couple the pressure and velocity fields. A high-order upwind spatial
discretization scheme based on the approximate Riemann solver of Roe is employed for the
advection terms, while the diffusion terms are discretized using a central approximation. The
time integration of the unsteady Navier-Stokes equations is performed using an implicit two-
stage Runge-Kutta scheme. At each time step, a non-linear system resembling the equations for
stationary flow is solved using the ADI method.

1 . 2 . Paral le l izat ion
To date, only a subset of the original code has been parallelized, the parallel code can

presently be used to compute steady, laminar, 3D incompressible flows. Two-dimensional
flows are computed by replication in the third degenerate dimension. Parallelism is achieved by
dividing the computational domain into a number of blocks (sub-domains), with the flow
equations being resolved in all blocks in parallel by assigning one block to each processor.
Communication between processors is necessary to exchange data at the edges of neighbouring
blocks. The communication overhead is minimized by data localization using two layers of
"ghost cells" surrounding each block. Data are exchanged between blocks using message
passing (via the PVM library).

448

1.3. Optimization
The original code was written and optimized for vector supercomputers. To obtain optimal

performance on the cache-based processors used in the parallel systems considered, most of the
code has been re-written and hand optimized. While the Cray T3D offers a number of different
parallel programming models (data parallel, message passing, work sharing, data sharing),
message passing was chosen for the present code since a preliminary study [1] showed that it
provides a good compromise between performance and portability for parallel multi-block flow
solvers.

2. PERFORMANCE ANALYSIS

Studies have been undertaken to investigate the performance of the parallel code on the Cray
T3D and, for comparison, on a cluster of 30 Hewlett Packard 9000/720 workstations
interconnected via Ethernet. As a test case, inviscid flow between the blades of the "Durham
low speed turbine cascade" [2] has been considered. Computations have been performed for
both 2D and 3D flows using meshes containing 120x52x2 and 120x52x64 cells, respectively.

2 . 1 . Comparison between the Cray T3D and a workstation cluster
Figure 1 shows the time required to perform a fixed number of iterations (4000) and the

relative importance of the connectivity overhead (i.e. the time spent in communication and
synchronization between blocks relative to the total time).

100000

10o0

9_
F--

1 0 0

- - -V - - - c o m p u t a t i o n

. . . . �9 ~ c o n n e c t i v i t y

- - o - - t o t a l t ime

- - - r ~ , - connec t i v i t y [%]

..... --...,,...speedup "~,.~,.

"/~ ~ . . .

- [,~- 4:3 L3 ~.3""
I I
1 10

Number of processors

100 100000

80
C) 10000
o

o

60 -~- ,~ .

~ 1000
E o . -

4 0

3
o

lOO

2 0

- - - v - - - c o m p u t a t i o n

. . . . �9 ~ c o n n e c t i v i t y

- - - - - - on total t i m e P
/

- - t ~ - - c o n n e c t i v i t y " [%]

"-., "~ t , i At"

.... -, " '~ ,": ~ , ,

.... -,... "'"'~f ; "V

I n e a r ""',,...,,. /
speedup "".,,... :

�9,. j

,,,

O -r_A D" ~"

0 I I 0

1 10

N u m b e r o f p r o c e s s o r s

8 0
O
O

O
O

60 _<. ,..4.

o

4 0
_,~.

3

2 0

Figure 1. Wall clock time (left scale) and connectivity overhead expressed as a percentage (right
scale) for computations performed on the Cray T3D (left) and workstation cluster (right).

Figure 1 shows that due to the very fast communication network of the Cray T3D, almost
linear speedup is obtained. On the contrary, the performance of the workstation cluster
decreases rapidly as the number of processors is increased, due to the low bandwidth of the
Ethemet network. For example, using 16 workstations the connectivity overhead is about 58%
of the total computation time, resulting in a time to solution longer than that necessary using 8
workstations!

449

2 . 2 . Time to solution using a large number of processors
The present code uses an implicit numerical scheme to resolve the flow equations within each

block combined with an explicit updating of the boundary values. It is therefore relevant to
question if, due to convergence degradation, such a scheme is scalable to the large number of
processors available on the Cray T3D system. Figure 2 presents the convergence history and
time to solution (i.e. the wall clock time required to obtain a residual of 10 -e) as a function of
the number of blocks employed.

Figure 2. Convergence history (left) and time to solution (right) for 3D computations on the Cray
T3D.

Figure 2 shows that the convergence degradation for the present test case is not significant,
resulting in a nearly linear speedup with increasing number of processors. The observation that
the slowest convergence is obtained using 16 blocks is presumably due to the fact that the
convergence rate is determined not only by the number of blocks, but also by the transient
solutions within each block. Figure 2 also shows that communication between processors of the
Cray T3D is not significant for this test case even when a large number of processors is
employed.

3. PRE- AND POST-PROCESSING

It is well recognized that for the numerical simulation of complex 3D industrial flows that
involve an enormous quantity of data, the pre- and post-processing phases of the simulation
procedure can necessitate a time (for data file manipulation and processing, I/O, etc.) often
substantially longer than the cpu time required by the flow solver. This potential problem is
further exacerbated if the flow solution is obtained using an efficient solver on a high-
performance parallel system. For this reason, it is essential to incorporate the pre- and post-
processing phases into the parallel environment.

450

3 . 1 . Mesh generation
The construction of a suitable block structured mesh for complex 3D geometries comprises

three stages: surface definition (generally employing CAD techniques); block boundary
determination; and mesh generation within each block.

Block structured meshes, while being structured within each block, are generally irregular at
the block level. The task of generating the block boundaries is therefore equivalent to
determining an appropriate unstructured mesh. While the block boundary mesh is currently
determined manually, it is desirable that its construction be performed using "automatic"
unstructured hexahedral mesh techniques; such an approach is presently under investigation.
Once the block structure is determined, the mesh generation within each block is undertaken in
parallel, with the use of communication between processors to perform any necessary mesh
smoothing across block boundaries.

The use of parallel mesh generation - even in the above-described limited form - has been
shown to provide a substantial reduction in mesh generation time. In addition, since only the
block boundary information is imported into the parallel system a significant reduction in I/O
time is also obtained.

3.2. On-line visualization
Due to the enormous quantity of data generated by an unsteady 3D flow solver each time

step, it is not practical to store these data on disk for later "off-line" processing and
visualization. To overcome this problem, two "on-line" visualization procedures have been
considered. The first is based on the PORTAL library [3] to interface to the AVS visualization
software, while the second uses the IPC library to interface to the commercial TECPLOT
visualization package (see Fig. 3). Both of these procedures use UNIX sockets (rather than
message passing) for data transfer. Due to the significantly greater capabilities of TECPLOT,
only the second approach has been retained.

Figure 3. Schematic diagram of the on-line visualization procedure.

4. INDUSTRIAL APPLICATIONS

The parallel flow solver described above has been employed to compute a number of
different large-scale 3D flows; two specific examples, of interest to the turbomachinery and
automotive industries, are briefly presented in the following sections.

4 . 1 . Water turbine
Water turbines of the Francis type are widely used for hydroelectric power generation. The

numerical simulation of the flow in a Francis turbine is conventionally undertaken by computing
the flow separately in each component of the turbine: spiral casing; distributor; runner and draft
tube (see Fig. 4). The coupling of the flow in these components is complicated both by the

451

rotation of the runner relative to the other components and by the different periodicities of the
distributor (24 blades for the present case) and the runner (13 blades).

Figure 4. Exploded view of a Francis turbine

Most numerical simulations of the flow in the runner assume that the flow is periodic; this
allows only one inter-blade channel to be computed rather than the whole runner. Using the
computational power of the Cray T3D, the flow in the entire runner can be computed in a
reasonable time, allowing an initial assessment of the flow coupling between the runner and the
distributor. Figure 5 presents the results of a computation performed on 13 processors of the
Cray T3D. For this computation, the periodicity of the flow at the exit of the distributor has
been imposed as an input condition for the runner, resulting in non-periodic flow in the runner.

Figure 5. Surface pressure and streamlines for flow in the runner of a Francis turbine.

452

4 . 2 . Formula 1 racing car
Due to the complex geometry and flowfield, it is currently not possible to simulate the flow

around an entire Formula 1 racing car. The aerodynamic properties of the car are however
principally determined by certain critical regions, such as the air inlet, undertray, wheels and
front and rear wings. While the flow in these regions is coupled, it is nevertheless useful to
study each region separately to obtain a detailed understanding of the flow. The present study
has concentrated on a rear wing consisting of a series of multi-element airfoils (see Fig. 6).
Four different configurations have been computed, corresponding to the three angles of the
central element shown in Fig. 6 (denoted by c 1-c3) plus the removal of this element (denoted by
cO).

Figure 6. Geometry of the rear wing of a Formula 1 racing car.

The primary role of the rear wing is to produce downforce. Although significant drag also
results, this is smaller than that produced by, for example, the wheels. Assuming that the flow
is attached on the rear surface of each of the wing elements, inviscid computations should
provide reasonable estimates of the downforce. It is also noted that even at maximum car speeds
(up to 330 km/h), the flow can be considered to be incompressible.

Figure 7. Surface pressure and streamlines for flow around the rear wing (configuration c2).

453

The numerical flow simulations performed to date have assumed zero angle of yaw;
symmetry along the central vertical plane enables only half of the rear wing to be considered.
For 3D flow computations, a mesh comprised of 121 blocks with a total of 3.8 million cells has
been employed. Such computations required approximately 4 hours on 121 processors of the
Cray T3D. The flow solution obtained for one of the rear wing configurations is presented in
Fig. 7. These results clearly show the presence of outboard trailing vortices near the top of the
side plates, as is observed on the race track.

Since the flow over a large portion of the wing elements is seen to be essentially two
dimensional, computations have also been performed using a 2D mesh with 32 blocks. It
should be noted that since there is not the same number of mesh cells in each block, load
imbalance occurs, as shown in Fig. 8. This problem can be alleviated by computing more than
one block per processor, as has been undertaken on the workstation cluster (see Fig. 8). Since
the number of processors assigned to a job on the Cray T3D must be a power of two, the load
balancing problem is less severe for the present flow case (as, in any case, some processors
will be idle if the required number of processors is not a power of two). Nevertheless, it is
planned to modify the parallel code to allow this procedure to be employed for more general
computational meshes.

Figure 8. Wall clock time required for 2D flow computations of the flow around the rear wing.

Figure 9. Component and total lift coefficient for the four different rear wing configurations
considered.

454

A number of 2D flow simulations have been undertaken to investigate the characteristics of
each wing configuration (in the symmetry plane). Computation of the pressure coefficient has
allowed the contribution to the total wing downforce due to each element to be determined. The
computed lift coefficients (normalized to the chord length of the largest element) are presented in
Fig. 9 for each of the configurations considered. Figure 9 shows that a modification of the
central element results in a change of the lift coefficient for each of the other elements, indicating
that the flow around each component element is strongly coupled. For each configuration,
approximately half of the total downforce is provided by the largest element.

5. CONCLUSION

The present study has shown that an existing 3D multi-block flow solver can be adapted to
employ the enhanced capabilities of high-performance parallel computer systems. The use of the
PVM message passing library has been seen to provide low communication overhead on the
Cray T3D, as well as a high level of portability.

While workstation clusters can be considered as an alternative to supercomputers for small
and medium size applications, the present study has demonstrated that large-scale applications
can only be performed on massively parallel systems with the necessary memory requirements
and computational power. The use of the Cray T3D system has enabled flow computations to
be performed that are inaccessible to mono-processor computer systems.

The present study has reinforced the fact that to solve certain industrial problems, the
computation time required by the flow solver is not the limiting factor, since the pre- and post-
processing phases generally require significantly more time. It has been shown that the
integration of the pre- and post-processing phases into the parallel environment can produce a
significant reduction in the overall time to solution.

ACKNOWLEDGEMENTS

The authors wish to thank Y. Marx for the numerous discussions regarding the original
code and S.A. Williams for his aid with visualization. The geometry of the rear wing of the
Formula 1 racing car was provided by PP Sauber AG. Financial support was provided by the
Cray Research-EPFL Parallel Application Technology Program. One of the authors (D.C.)
received additional support via the European Project ERASMUS.

REFERENCES

1. M.L. Sawley and J.K. Tegn6r, A comparison of parallel programming models for multi-
blockflow computations, accepted for publication in Journal of Computational Physics.

2. D.G. Gregory-Smith, Test case 3: Durham low speed turbine cascade, ERCOFFAC
seminar and workshop on 3D turbomachinery flow prediction II (Val d'Is~re, January
1994) Part III, pp. 96-109.

3. J.S. Rowlan and B.T. Wightman, PORTAL: a communication library for run-time
visualization of distributed, asynchronous data, Proceedings of the Scalable High-
Performance Computing Conference (Knoxville, May 1994) pp. 350-356.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

455

P a r a l l e l B e n c h m a r k s of T u r b u l e n c e

in C o m p l e x G e o m e t r i e s

Catherine H. Crawford, Constantinos Evangelinos
David Newman and George Em Karniadakis*

Center for Fluid Mechanics, Division of Applied Mathematics
Brown University
Providence, RI 02912

In this paper we present benchmark results from the parallel implementation of the 3-D
Navier-Stokes solver Prism on different parallel platforms of current interest: IBM SP2
(all three types of processors), SGI Power Challenge XL, and the Cray J90/C90. The
numerical method is based on mixed spectral element-Fourier expansions in (x - y) and
z-directions, respectively. Each (or a group) of Fourier modes can be computed on a
separate processor as the linear contributions in Navier-Stokes equations are completely
uncoupled. Coupling is obtained via the nonlinear contributions (advection terms) and
requires a global transpose of the data and 1-D multiple-point FFTs. We define 3-D
benchmark flow problems in prototype complex geometries, and measure parallel scal-
ability and performance using different message passing libraries. Our results provide
a measure of the sustained performance of individual processors in a parallel run, and
indicate the limitations of the current communications software for typical problems in
computational mechanics based on spectral or finite element discretizations.

1. I N T R O D U C T I O N

Direct Numerical Simulation (DNS) of turbulent flows refers to the method of com-
puting flow fields resolving all scales from first principles without any ad hoc modeling
assumptions. Since the first DNS of homogeneous turbulence in the early seventies com-
puted on the CDC 7600, the field of turbulence simulation has developed in two directions
[1]. First, realistic turbulence simulations are now regularly performed in simple geome-
tries at wind-tunnel Reynolds numbers [2], [3]. While these simulations are now performed
on parallel computers [4], [5], [6], vector supercomputing on the different Cray models has
been primarily utilized in performing turbulence simulations in simple geometries [7], [8].
Second, simulations of turbulent flows in prototype complex geometries are now emerging;
they are closely associated with the advances in parallel distributed memory computing
[9]. Our interest lies in simulating flows of the second category.

In this paper we define two benchmark 3-D flow problems, representing both wall-
bounded flows with rough surface as well as external flows past bluff bodies. These

*Author for correspondence

456

two flow problems represent a broad class of flows of physical interest and they provide
an appropriate testbed for discretizations and parallel algorithms for complex geometry
problems. Our discretization is based on mixed spectral element-Fourier expansions for
geometries Where one direction (z) is homogeneous, e.g. 3-D flow over a long circular
cylinder. Fourier expansions are employed in the homogeneous direction while spectral
element discretizations [10] are used on planes (x - y) normal to the homogeneous direc-
tion. This choice allows a Fourier decomposition of the Navier-Stokes equations, where
all linear work associated with each Fourier mode is totally decoupled and as such it can
be done in parallel; coupling comes through the nonlinear terms.

The overall algorithm, implemented in the code Prism [11], consists of two passes: The
first pass treats the nonlinear terms by performing 1-D FFTs along the z-direction as-
suming that data is available as "pencils" on each processor. To proceed with the second
pass, a global exchange of data must be performed so that data is available as "sheets",
i.e. (x - y) planes, on each processor. We then solve for the 2-D Fourier coefficients
on each plane associated with the corresponding Fourier mode. In this method, each
processor will handle several pencils in the first pass and one (or more, memory permit-
ting) Fourier modes in the second pass. For arbitrarily complex geometries, hexahedral
or tetrahedral spectral elements should be employed in the discretization [12], [13] and
different techniques, as described in [14], [15] can be used to distribute spectral elements
among the processors.

We present 3-D results obtained on multiple processors following the aforementioned
parallel algorithm. Moreover, we compare performance on the IBM SP2 [16] using the
portable PVMe and MPI-F message passing libraries [17], [18], and we contrast these
results with results obtained on a single node for the 2-D problem. Our main concern
here is scaled parallel efficiency, which measures scalability of the parallel system as both
the number of processors and the problem size grow proportionally. We also present
results from turbulence simulations where additional flow statistics are calculated as part
of "run-time" processing. In these simulations, we concern ourselves with the added
computational and communications cost from added analysis which is needed for the
understanding of complex turbulent flows.

The paper is organized as follows: In section 2, we describe the spectral element-Fourier
method used in Prism as well as discuss the parallel nature and the communications
involved in the algorithms. Benchmark results for 3-D code are given in section 3.1,
where we also include a performance comparison for various message passing libraries
on the IBM SP-2. Results from the benchmark turbulence simulations, with turbulence
statistics routines added in to the base code, are described in section 3.2. Finally, we
summarize our findings in section 4.

2. N U M E R I C A L M E T H O D O L O G Y

The details of the implementation of the spectral element-Fourier method used in Prism
can be found in [11]; here we review parts of the method to demonstrate the parallel nature
of the algorithm. Later in this section we describe computational issues associated with
the high-order polynomial discretization; for now we concentrate on the Fourier aspects of
the method, as this is the key to making the algorithm parallel. Within a domain f~, the

457

fluid velocity u and the pressure p can be described by the incompressible Navier Stokes
equations,

o u _ - V p + u L (u) + N(u) in a
o t - (1)

V . u - 0 J
where

L(u) = V2u (2a)
1

N(u) = 2 V (u ' u) + u x V x u " (2b)

The non-linear operator N(u) has been written in rotational form to minimize the number
of derivative evaluations.

If we assume that the problem is periodic in the z-direction, we may use a Fourier
expansion to describe the velocity and the pressure, e.g. for the velocity,

M - 1

u(x,y,z, t)- um(x,y,t) (3)
m ' - O

where ~ is the z-direction wave number defined as/~ = 2~r/Lz, and Lz is the length of the
computational domain in the z-direction. We now take the Fourier transform of equation
(1) to get the coefficient equation for each mode m of the expansion,

Oum = -Vpm + uLm(um) + ggTm[N(u)] in f~m m -- 0 . . . M - 1 (4)
Ot

where FFTm is the m th component of the Fourier transform of the non-linear terms and,

0 0

- (h b) Lm(um) - (~-/x 2 + ~y2

The computational domain ~tm is an x-y slice of the domain ~t, implying that all ~,~
are identical copies. From equation (4) we see that the only coupling between modes is
through the non-linear terms. Therefore the computation of each mode rn can be done
independently of one another. The obvious parallelization is to compute mode rn on
processor m for m = 0 . . . M - 1, so that the 3-D computation essentially becomes a set
of M 2-D problems computed in parallel. The coupling of the non-linear term (Pass I)
involves five steps:

1. Global transpose of velocities and vorticities.

2. Nxy 1-D inverse FFTs for each velocity and vorticity component,
(where N~y is the number of points in one x-y plane divided by the number of
processors).

3. Computation of N(u) .

4. Nxy 1-D FFTs for each non-linear term.

5. Global transpose of non-linear terms.

458

3. R E S U L T S

3.1. T h r e e - D i m e n s i o n a l B e n c h m a r k s

3 .1 .1 . S c a l a b i l i t y
For the 3-D benchmarks we chose to test the absolute performance as well as measure

the scalability of Prism 3D. We performed simulations using a mesh of K elements, with
spectral order N and Nz = 2M resolution in the z-direction on P processors. In Figure
1 we present results for the first 3-D benchmark problem, ie. cylinder flow at Re = 200
(with history point output for 10 points at every 10 timesteps). The problem size per
processor (i.e., Fourier modes per processor) is kept constant by scaling the problem with
the number of processors. Here N = 9 and direct solvers are used for both the pressure
and the viscous step.

6

[]
i l
I2

5 i
A

�9
~ 4

3

0
o

SGI 'powdr Cfialledg~ ~dlLMPI [] ' '

SGI Power Chal lenge MPICH . .

SGI Power Challenge s h m e m / : '

SP2 Thin Node PVMe /'/

SP2 Wide Node PVMe .':')::

SP2 Thin Node MPI-F /" �9 : :
. . ' " "

SP2 Wide Node MPI-F .).." ..-~

Cray C90 :: " : : . . . - / ~ "
. . ..~{.~.

........... ~ ::::}~::~:

A

�9
I t i I i i i i I

10

(2 n) number of opus, NZ / 2

t l ! ! i i

.-~
. .

i ! , | ,

1 0 0

Figure 1. Prism 3D scalability. A 32 processor 66MHz Meiko CS-2 took 10.2s per timestep
with a projected 5.6s per timestep for a 142MHz HyperSparc CS-2. The PVMe results
were obtained using the fast memcpy with css_interrupts off for maximum performance.

For the simulations in Figure 1 the MPI and PVM version of Prism 3D were used
along with a Cray macrotasking version [19], and a TCGMSG version using IRIX shared
memory (SHMEM) specific calls for the message passing.

We make the following observations:

�9 The IBM SP2 Wide Node is the fastest, except for the Cray C90 which doesn't scale
above 16 processors.

459

�9 Mflops performance on the SGI Power Challenge XL degrades significantly going
from 8 to 16 processors. This is probably due to contention problems on the shared
memory bus. It is possible that an SGI Power Array of multiple 4 or 8 processor
Power Challenges connected via HIPPI would alleviate this problem, once special-
ized communication software reduces the very high latency of the HIPPI intercon-
nect.

�9 The (still under development) SGI vesrion of MPI achieves, at least for a small
number of processors, the same performance as the TCGMSG/SHMEM version.

�9 The IBM SP2 (especially the Wide Node) offers very good scalability. The relatively
large increase of more than 0.5 seconds (30%) going from 16 to 32 processors is
due to a few abnormally long timesteps that appeared in our simulations, thereby
increasing the average.

3.1.2. C o m m u n i c a t i o n s
The basic difference between the two- and 3-D simulations comes from added com-

munication among processors. The largest message sizes for Prism 3D come from the
global exchanges in the non-linear step which scale as (--~) (If--~-). The smallest mes-

sage sizes come from history point analysis (described in more detail in the next section),
in which the messages scale as (--~). Lastly, the messages in the global addition operation
(which can be efficiently implemented in a binary-tree form) during the outflow pressure
boundary conditions (in cylinder flow simulations) scale in size as (N x P).

Given that the global exchange is the most important data communication in the code
it is instructive to look at it in more detail: A straightforward implementation of a global
exchange involves (P - 1) send-receive pairs per processor for a total of P (P - 1) pairs.
This is the way our PVM version of Prism 3D was implemented in the absence of a PVM
function that performs this communication. Assuming that in the best case there is no
contention, the communication cost for each global exchange for a "flat" topology is:

(-N~KN2
tg~ - (P - 1) , tlatency -~- p2, Bandwidth]' (6)

where Bandwidth refers to the bidirectional (pair-exchange) bandwidth and tlatency is the
latency associated with a send-receive pair-exchange. Equation 6 shows that for constant
problem size per processor (ie. NzKN 2 -constant) tg~ will become latency dominated, P
scaling at best linearly with the number of processors.

3.1.3. Message Passing Libraries
The analysis above suggests that it is very important to choose an efficient message

passing library that fully exploits the communication hardware features. Figure 2 shows
comparisons between two message passing libraries in the IBM SP2 Wide Nodes, MPI-F
and PVMe, for simulations of the K = 320 element N = 11 cylinder mesh. Both of these
libraries use the optimized protocol for communication over the High-Performance Switch
(HPS) as opposed to IP communications over the HPS or ethernet. In particular, two
curves for PVMe are shown on each figure corresponding to standard PVMe and PVMe
with a fast memory copy and switch css_interrupt turned off for maximum performance.

460

As can be seen from these plots, PVMe performs worse than MPI-F for all of the message
sizes of interest (P > 4). PVMe performs relatively worse compared to MPI-F for the
small messages that are used in the analysis and pressure steps. In fact, as the message
size for the non-linear terms decreases as a function of P, the high latency that PVMe
suffers from becomes more apparent.

3 .5

0.22
0 .21

0 .2

0 . 1 9

0 . 1 8

0 . 1 7

0 . 1 6

0 . 1 5

0 . 1 4

i SP2 ' Widd N o d e ~Vlv le l (f ' a s t) ' 1 ' ' ' tJ
ZX S P 2 Wide N o d e PVMe A~
�9 S P 2 Wide N o d e M P I - F ..' / ' "" /"

....................... i;iiiiii
�9 z~" A ])::: i::~ ::

............. : j
A". 1
+"" s I : J l I , , , t , , , 1

4 8 12 16
(2") n u m b e r of c p u s , NZ / 2

1.5
SP2 ' Widd N o d e P V l ~ f e l (f a s t) ' I ' ' ' ~

A S P 2 Wide N o d e PVMe ." ...
�9 S P 2 Wide N o d e M P I - F

...
... ..

.... ,~
....- ...--

...-. .. .
/ ...-- .

ix" A

.......-" ..~...-

�9 ii::~::::: A

f ..:::.........:::..:: , i I , , , I , , , I , , , I

4 8 12 16
(2") n u m b e r o f e p u s , NZ / 2

SP2 ' Widd N o d e PVl~feL(fas t) ' ' ' '.AJ 0 " 6 2 j ~, SP2 ' Widd N o d e PVlVIel (f ' as t) ' I ' ' ' I
A S P 2 Wide N o d e PVMe /" |

- � 9 S P 2 Wide N o d e M P I - F f - � 9 S P 2 Wide N o d e M P I - F -
J A S P 2 Wide N o d e PVMe A

- ~ / ..~
. : ,tk "

........ ~ 0 ~ ~ ~ ~-

I .." .'"" �9

/X..........."2~ I /N'" -"

iiii ii 00 ;. iiii ii
- , ~ - -I

.,hi"" | """ '

!

..... /

............ i I
~::C..- �9 �9 x"�9 * ~.!

, , I J , , I , , , t , , , 0 . 5 8 ' s I , t , I , , , i , , , I
4 8 12 16 4 8 12 6

(2") n u m b e r of c p u s , NZ / 2 (2") n u m b e r of c p u s , NZ / 2

Figure 2. Results from the PVMe/MPI-F comparison done on the IBM SP2 Wide Nodes
for K = 320 and N = 11. Clockwise from the top left is the t ime in seconds per t imestep
spent in the whole timestep, the non-linear step, the pressure step and the analysis step
plotted versus the number of processors P. Medium size messages (of the order of tens
of Kb) are used in the non-linear step, while small (of the order of tens and hundreds of
bytes respectively) size messages are used in the analysis and pressure steps.

3 . 2 . T u r b u l e n c e S i m u l a t i o n s

Direct Numerical Simulation is a useful tool for the study of turbulence from first
principles. It can provide a wealth of information about the flow, from velocity time

461

traces, to forces on walls, to high-order vorticity statistics. Obtaining this information
requires added computations, and for most parallel codes, added communication. We
refer to this added computat ion and communication as runtime parallel data processing.

An example of added communication in collecting statistics without the added cost of
communication is the Reynolds stress (Tn~) analysis. Using Reynolds decomposition, we
describe the total flow u and a mean g = U plus a per turbat ion u ~. The Reynolds stress
is equal to an average of the product of velocity perturbations,

rR~ = - u ' v ' = - (w ~ - U V) (7)

where u is the streamwise velocity and v is the normal velocity. To compute ~-n~ the
velocity products are computed in physical space (in parallel) during the non-linear step,
where the velocities have already been transformed. A running sum of the appropriate
quantities over the duration of simulation is kept.

Quadrant analysis, a type of statistical analysis of the velocity and vorticity, is one way
to study turbulence structures. The analysis itself is done in post-processing, however,
t ime histories in the flow must be obtained throughout the simulation. In Prism 3D,
collecting t ime histories involves a series of small message sizes (of O (N z / P)) sent amongst
the processors during the "Analyze" step in the code. Fourier coefficients are collected
from all the processors for the given (x,y) gridpoint for all z-planes. Processor 0 executes
a real FFT to get a "pencil" of physical space data and then searches this data set for the
appropriate z coordinate. Statistics, which are even more difficult to efficiently compute
in parallel, are velocity space correlation functions where the computat ions may be easily
done in physical space, but the communication among processors to find the data of the
two gridpoints in question can require extensive message passing time.

In order to see how code performance was affected by collecting various turbulence
statistics, we chose two prototype complex geometry flows for benchmarking. The first
was a continuation of our Prism 3D benchmark ing - the K = 320 element cylinder mesh,
this t ime using N = 11, Nz = 32, (P = 16), and Re = 500. The second benchmark run
was a turbulent channel with its lower wall mounted with riblets. The mesh used K = 240
elements. Runs were done using N = 11, Nz = 64, (P = 32), at Re = 3280 (based on
channel half-height and equivalent centerline laminar velocity). All results shown are from
simulations on the IBM SP2 Thin Nodes using MPI-F.

In Table 1 we show the results for the cylinder benchmark with the added routines for
turbulence data (Wakes 3D) as compared to Prism 31). The statistics that were collected
were as follows,

1. 10 velocity and pressure history points (4 fields),

2. kinetic energy per Fourier mode,

3. forces (lift and drag) on the cylinder,

4. velocity, vorticity, and The statistics.

Collecting the turbulent statistics added 0.73 seconds per t imestep for the cylinder runs.
In fact, 90% of this added cost is from the calculation of the velocity, vorticity, and TRe

462

Step P r i s m 3D (sec/At) Wakes 3 D (see / A t)

Non-Linear 1.41 2.08
Pressure 1.39 1.37
Linear 3.36 3.40

Analysis 0.30 0.35
Total 6.47 7.20

Table 1
Timing data for the turbulent cylinder benchmarks at Re = 500. Times shown are wall
clock times.

Step P r i s m 3D (sec/At) Rib 3D(sec/At)

Non-Linear 1.05 1.69
Pressure 1.08 1.11
Linear 2.29 2.34

Analysis 0.23 0.95
Total 4.60 6.08

Table 2
Timing data for the turbulent riblet channel benchmarks at Re = 3280. Times shown are
wall clock times.

statistics, 6% is from the added communication in the history point analysis, and 4% is
from the forces and kinetic energy computation.

The results from the riblet channel simulations from the turbulent statistics code, Rib
3D, as compared to Prism 3D are shown in table 2. For these simulations, the following
statistics were computed:

1. 16 history points of velocity, vorticity, and pressure history points (7 fields),

2. 5 vorticity flux history points,

3. kinetic energy per Fourier mode,

4. drag force on the walls,

5. velocity, vorticity, velocity-vorticity transport, and rn~ statistics.

In these simulations, the addition of turbulence statistics to the code have added 1.48 sec-
onds per timestep, over 30% of the original total time per timestep. Unlike the cylinder
runs where the added time was mostly from the added computation of the velocity, etc.
statistics, the added time to the riblet runs is evenly distibuted between added compu-
tation in the statistics (43%) and the added communication in the history point analysis

463

(30%). The vorticiy flux analysis, which requires both added computation and commu-
nication, is responsible for 21.5% of the added time. The kinetic energy computation
represents 5% of the additional time while the drag calculations are less than 1% of the
turbulence statistics cost.

4. S U M M A R Y A N D C O N C L U S I O N S

We have used a hybrid spectral element-Fourier code to simulate 3-D prototype flows
in non-trivial computational domains. The computational complexity of this algorithm is
typical of a broader class of algorithms used in computational fluid dynamics and general
computational mechanics. Based on our results we can make the following observations:

In the benchmarks we performed on the parallel systems using the 3-D Navier-Stokes
solver Prism 3D we evaluated absolute performance and scalability and their dependence
on the choice of message passing library. In particular, we found that there is significant
memory bus contention in shared memory systems for a number of processors more than
about 10 (e.g. P=8 for the SGI Power Challenge XL). Scalability as measured by the
scaled parallel efficiency is high for distributed memory systems. The selection of message
passing libraries is important both for portability as well as for achieving high absolute
performance. For example, in comparing PVM versus MPI on the IBM SP2 we found a
significant deterioration of performance for PVM if a large number of small messages is
involved across many processors. In general, the newer generation of RISC-based systems
achieve comparable performance with vector parallel system but at lower cost, as we have
seen with direct comparisosns with the parallel Cray C90.

Finally, production computing and in particular turbulence simulation, involves runtime
global data processing for computing statistics, correlations, time-histories, etc. These
operations typically involve several hundreds of very small messages among processors
which may not be nearest neighbors as the computational algorithm requires. It is our
experience that this may add significantly to the wall clock per time step. This added
cost is usually overlooked but it is perhaps one of the most significant components as
parallel simulations of turbulence become the prevailing mode of analysing turbulence
numerically.

Acknowledgements
These benchmarks were performed on the Intel Paragon at the San Diego Supercomputer
center, the IBM SP2 at the Maui High Performance Computing Center and the Cornell
Theory Center, the SGI Power Challenge XL at the National Center for Supercomputing
Applications and at SGI's Hudson offices, and the CRAY Y/MP C-90 at the Pittsburgh
Supercomputing Center and at CRI's headquarters. We are greatful to the consultants at
all of the centers for their help and expertise. We are also greatful to Ronald D. Henderson
of Caltech for help in the original parallel port of these codes, Torgny Faxen of Silicon
Graphics for TCGMSG/SHMEM port to the Power Challenge and his results using the
SGI produced MPI library, David Daniel and Larry Watts of Meiko for their results on
the CS-2, Paul Hastings of Cray Research for his parallel port of Prism to the Cray C-90
using macrotasking and Suga Sugavanam, Raj Panda, Fred Gustavson and Prasad Palkar
of IBM for their help with IBM's ESSL mathematical subroutine library and the runs on
the SP2 Thin Node 2.

464

This work is supported by DOE, AFOSR, ONR and NSF.

R E F E R E N C E S

1. Karniadakis G.E. and Orszag S.A. Modes, nodes, and flow codes. Physics Today,
page 35, March 1993.

2. She Z.S., Jackson E., and Orszag S.A. Intermittent vortex structures in homogeneous
isotropic turbulence. Nature, 344:226, 1990.

3. Tanaka M. and Kida S. Characterization of vortex tubes and sheets. Physics of
Fluids, 5 (9):2079, 1993.

4. Pelz R.B. The parallel Fourier pseudospectral method. J. Comp. Phys., 92 (2):296,
1991.

5. Jackson E., She Z.S., and Orszag S.A. A case study in parallel computing: I. Homo-
geneous turbulence on a hypercube. J. Sci. Comp., 6 (1):27, 1991.

6. Wray A.A. and Rogallo R.S. Simulation of turbulence on the Intel Gamma and Delta.
Technical Report NASA Technical Memorandum, Nasa Ames Research Center, Moffet
Field, California, 94035, 1992.

7. Kerr R. M. Higher order derivative correlation and the alignment of small-scale struc-
tures in isotropic numerical turbulence. Journal of Fluid Mechanics, 153:31-58, 1985.

8. Kim J., Moin P., and Moser R. Turbulence statistics in fully developed channel flow
at low Reynolds number. Journal of Fluid Mechanics, 177:133, 1987.

9. Chu D., Henderson R.D., and G.E. Karniadakis. Parallel spectral element-fourier
simulations of turbulent flow over riblet mounted surfaces. Theor. Comput. Fluid
Dynamics, 3:219-229, 1992.

10. Patera A.T. A spectral element method for Fluid Dynamics; Laminar flow in a channel
expansion. Journal of Computational Physics, 54:468-488, 1984.

11. Henderson R.D. and Karniadakis G.E. Unstructured spectral element methods for
simulation of turbulent flows. Journal of Computational Physics, to appear, 1995.

12. Maday Y. and Patera A.T. Spectral element methods for the incompressible Navier-
Stokes equations. ASME, State-Of-The-Art Surveys, Chapter 3, Book No. H00410:71,
1989.

13. Sherwin S.J and Karniadakis G.E. Tetrahedral hp finite elements: Algorithms and
flow simulations. Journal of Computational Physics, to appear, 1995.

14. Fischer P.F. and Patera A.T. Parallel simulation of viscous incompressible flows.
Ann. Rev. of Fluid Mech., 26:483-527, 1994.

15. Ma H. Parallel computation with the spectral element method. In Parallel CFD '95,
Caltech, June 26-28, 1995.

16. IBM Systems Journal, 34(2), 1995.
17. Franke H., Wu E.C., Riviere M., Pattnaik P., and Snir M. MPI Programming envi-

ronment for IBM SP1/SP2. Technical report, IBM T. J. Watson Research Center,
P.O. 218, Yorktown Heights, NY 10598, 1995.

18. IBM, http://ibm.tc.cornell.edu/ibm/pps/doc/pvme.html. Parallel Virtual Machine
enhanced for the IBM SP2.

19. Hastings Paul. Porting Prism 3D to the Cray C90. Technical report, Cray Research,
Inc., 1994.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

465

Parallel Computation of 3-D Small-Scale Turbulence Via Additive
Turbulent Decomposition

S. Mukerji and J. M. McDonough*

Department of Mechanical Engineering
University of Kentucky, Lexington, KY 40506-0108, USA

Implementation and parallelization of additive turbulent decomposition is described
for the small-scale incompressible Navier-Stokes equations in 3-D generalized coordinates
applied to the problem of turbulent jet flow. It is shown that the method is capable of
producing high-resolution local results, and that it exhibits a high degree of paralleliz-
ability. Results are presented for both distributed- and shared-memory architectures, and
speedups are essentially linear with number of processors in both cases.

1. I N T R O D U C T I O N

Turbulent flows have been investigated both theoretically and experimentally for over
a century, but in recent years the wide availability of supercomputers has spurred interest
in numerical techniques. However most of the currently used computational methods
have deficiencies and limitations. The drawbacks of modeling approaches like mixing
length and ~c-c are well known, see for example [3]. Subgrid-scale modeling continues to
be a weak part of the large eddy simulation (LES) technique (el. Ferziger[1]), even when
dynamic subgrid-scale models (Germano et al. [2]) are used. Direct numerical simulation
(DNS) of turbulent flows is restricted to flows with low Reynolds numbers (Re) because
of limitations of computing hardware; thus simulation of flow problems of engineering
interest (Re > 106) is not presently feasible (see Reynolds [9]). Moreover, DNS has a
limited scope for parallelization which means that it cannot fully utilize the opportunities
offered by massively parallel processors (MPPs) which present the only hope of solving
realistic turbulent flow problems in the near future.

The technique used for turbulent flow calculations in the present research is the additive
turbulent decomposition (ATD) first proposed by McDonough et al. [7] and developed by
McDonough and Bywater [4,5] in the context of Burgers' equation, and by Yang and
McDonough [10] for the 2-D Navier-Stokes (N.-S.) equations. The algorithmic structure
of ATD is similar to LES; but it uses unaveraged equations, and hence there is no closure
problem. Like DNS, it maintains full consistency with the N.-S. equations. Moreover,
ATD is designed to fully exploit the architecture of the MPPs and offers the possibility of
both fine- and coarse-grained parallelization. The work presented here represents the first
study of ATD in three space dimensions, and parallelization thereof. The results indicate

*This research is supported by the Department of Energy under Grant No. DE-FG22-93PC93210.

466

that theoretical speedups predicted in McDonough and Wang [6] and verified there with
one-dimensional calculations are, in fact, achievable in three dimensions. In particular, it
is shown in [6] that if linear speedups can be achieved on the three main parallelization
levels of ATD (see Figure 2), then effective run times in turbulence simulations can be
reduced to at most O(ReVa) from the usual O(Rea); our preliminary results indicate that
required linear speedups are possible.

2. A D D I T I V E T U R B U L E N T D E C O M P O S I T I O N

2.1. P r o c e d u r e
To demonstrate the details of the ATD algorithm it will be applied to the viscous,

incompressible N.-S. equations which are given in vector form as:

V . U - 0 , (1)

1 A Ut + U . V U - - V P + Re U. (2)

The above equations are non-dimensional where U is the velocity vector scaled with
respect to U0, a characteristic velocity scale, and P is pressure non-dimensionalized by
pU~ (p is density). Re is Reynolds number defined as UoL/v where L is a length scale,
and v is kinematic viscosity. The gradient operator and the Laplacian are denoted by V
and A respectively. The subscript t denotes the time derivative in the transport equation.

The dependent variables are split into a large-scale (U ,P) and a small-scale (U*, P*)
as follows"

U - g J + U * and P - P + P * .

The large-scale quantities can be viewed as the first few modes in a Fourier representation
of the total quantity, and the small-scale quantities are the series remainders consisting of
high mode numbers. The split quantities are then substituted into the governing equations
which take the form:

V . (U + U *) = 0 , (3)

, 1 A (O + U* . (Ut + Ut) + (U + U*). V (U + U*) - - V (/ ~ + P*) + Ree) (4)

The governing equations are now additively decomposed (in a manner analogous to
operator splitting schemes) into large-scale and small-scale equations:

V - U = 0 ,

+ (u + u*) . v O - - v P + IAO,
(large-scale) (5)

V . U * - 0 ,
, 1

Ut + (O + U*) . VU* - - V P * + ~ A U *
(small-scale) (6)

It is clear from equations (5-6) that there are enough equations for the number of un-
knowns; that is, there is no closure problem. The decomposition is not unique, but the

467

Figure 1. Domain decomposition employed in ATD

given form retains the structure of the N.-S. equations except for the additional cross-

terms, e.g. (U . VU*), which arises from decomposition of the nonlinear term of the
original equation. The cross-terms also maintain coupling between the scales. Although
at present the ATD algorithm is implemented with this two-level splitting, it could con-
ceivably involve multi-level decomposition.

It should be noted that the consistency of the split equations with the N.-S. equations
implies Galilean invariance. Also, realizability is automatically achieved because turbulent
fluctuating quantities are calculated directly. The splitting also imparts the flexibility
of using different numerical methods on each scale. Typically, finite difference (or finite
volume) schemes are used for the large-scale which usually does not require high resolution,
and Galerkin/spectral methods are used on the small-scale.

2.2. Paral le l izabi l i ty of ATD
Figure 1 shows a typical small-scale subdomain around a large-scale grid point. The

small-scale equations are solved locally within this subdomain. The wide scope for par-
allelization in ATD is inherent in this spatial domain decomposition. Since there is a
small-scale subdomain corresponding to each large-scale grid point, the small-scale solves
can be parallelized easily.

Using a spectral method on the small scale converts the partial differential equations
(PDEs) into a system of l~t-order ordinary differential equations (ODEs). The evaluation
of the right-hand side (RHS) of these ODEs at a given time level depends only on data
from a previous time level. Hence within each small-scale solve the evaluation of the
Galerkin ODE RHSs can be parallelized at each time step. Parallelization can be further
implemented within each RHS evaluation to calculate the nonlinear convolutions and the
cross-terms. Figure 2 shows these different levels of parallelization possible in ATD.

468

LARGE- SCALE

I ,11 nl
t PARALLELIZATION OF

SMALL-SCALE SOLVES

PARALLELIZATION OF
I RIGHT HAND SIDES

I PARALLELIZATION AT
- - SUBROUTINE LEVEL

I (CONVOLUTIONS etc.)

Figure 2. Levels of parallelization in ATD

3. P R E S E N T R E S E A R C H

At present the solution of only the small-scale equations is being attempted using
parameterized inputs from the large-scale. This is a three-dimensional calculation in
generalized coordinates. The large-scale is computed via a commercial CFD code.

The small-scale equations are solved using the Fourier-Galerkin spectral method de-
scribed by Orszag [8]. In this technique the dependent variables are expressed as truncated
triple Fourier series using complex exponential basis functions as

N
u*(~, t) - Z a~(t) exp(i~. ~), (7)

1

where U* is now the small-scale contravariant velocity vector, l is the vector of mode
indices, N represents the maximum number of Fourier modes in each direction, t~ is
the position vector in generalized coordinates with origin at the large-scale grid point,
al(t) is the vector of time-dependent complex Fourier coefficients and c~ l is the vector of
wavenumbers which are scaled based on the large-scale grid spacing.

The Fourier representations of the dependent variables are then substituted into the
governing equations, and the necessary operations are performed. Taking Galerkin inner
products gives the spectral projection of the equations which are now a system of lSt-order
ODEs in the time-dependent Fourier coefficients:

da I
dt

= f(a~, u) . (8)

469

The function f is a notation to denote a rather complicated right-hand side vector. It
should be noted that the Fourier coefficients of the small-scale solution depend explicitly
on the large-scale solution U. This system of ODE initial value problems in the Fourier
coefficients is integrated forward in time using Heun's method, an explicit 2hal-order Runge-
Kut ta scheme. Once the Fourier coefficients are known at a given time, the dependent
variables can always be calculated using the Fourier series representation of equation (7).

4. RESULTS & D I S C U S S I O N

4.1. Flow specifics & problem parameters
The particular flow problem under consideration is a three-dimensional turbulent jet.

The flow is incompressible and the fluid has constant properties close to those of air:
p = 1.0 kg /m 3 and # = 1 x 10 -6 Ns/m 2. The jet diameter of 10 mm. is the reference
length, and the total axial length of the domain is 760 mm. The jet velocity at the inlet
is 5.0 m/s giving an inlet Re = 5 x 10 4. The large-scale solution is obtained from a finite
volume commercial CFD code on a rather coarse 13 x 14 x 81 grid.

Figure 3 displays an instantaneous spatial slice of the large-scale solution (velocity
vectors and pressure) and the location of the small-scale subdomain. The subdomain has
a small radial offset, and its axial position is halfway between the inlet and outlet. This
gives a non-dimensional axial location of 38, which is well beyond the potential flow core
and in the region of fully-developed turbulence. Adequate resolution on the small-scale
was obtained by N = (7, 7, 7) Fourier modes. The choice of the small-scale time step was
dictated by the stiffness of the problem and the explicit nature of the solution method; it
was set to 2 x 10 -6 sec. to maintain stability.

4.2. Turbulence calculations
The main motivation for the present research is to obtain highly resolved small-scale

turbulent solutions. For this purpose the code was allowed to perform time integrations
for relatively long times corresponding, approximately, to the large-scale time scale. Fig-
ure 4 shows the time series of the circumferential component of small-scale velocity at a

Figure 3. Large-scale flowfield and location of small-scale domain

4e-04

3e-04
oO

2e-04
ID

] e-04

~Oe+O0
(/)

~- 1 e-04

-2e-04

-3e-04
0 2 4 6 8 10 12 14 16 18 20

Time, ms.

470

Figure 4. Time series of small-scale velocity

location in the center of the small-scale subdomain. The time series shows strong residual
periodicity with a time scale of about 2 ms. This is probably to be expected in a region
where the jet profile is self-similar. Moreover, these fluctuations are truly small scale
having magnitudes of order 10 -4 compared with O(1) for the large-scale velocity. This
demonstrates the high degree of spatial and temporal resolution achievable with ATD.

4.3 . P a r a l l e l i z a t i o n r e s u l t s
A broad, coarse-grained parallelization of the ODE right-hand side evaluations was

implemented. The code was allowed to integrate the solution forward in time for fifty
small-scale time steps. Figure 5 shows the speedups obtained on a distributed-memory
Convex-HP MetaSystem consisting of 8 processors running PVM. Parallelization was
also implemented using compiler directives on a 24 processor shared-memory Convex-HP
Exemplar SPP-1000. The corresponding speedup results are shown in Figure 6.

The data partitioning used to divide the computational load among different processors
is very effective for both machines. This is evident from the balanced CPU load on the
parallel threads as shown in Figure 7. The CPU time required to solve the problem using
8 processors was about 300 sec. on the MetaSystem and about 120 sec. on the Exemplar.
Thus the code runs much faster under the shared-memory paradigm, and this is despite
the fact that the processors on the Exemplar currently have a slightly lower clock speed.

It can be seen that the speedups achieved with multiple processors scale essentially
linearly with the number of processors. It should be recalled from Figure 2 that par-
allelization can be implemented at levels both above and below the present one. This
implies that with the availability of true MPPs (O(103) processors, or more) the ATD
algorithm can perform full three-dimensional turbulence simulations in physically realistic
situations involving generalized coordinates, at Re at least as high as 105 .

471

8.0

7.0

6.0

:= 5.0 "(3

c, 4-.0
o3

3.0

2.0

1.0~
1

I I I I I I

2 3 4 5 6 7 8
Number of Processors

15.0

13.0

11.0
Q .

�9 -~ 9 . 0

7.0
oO

5.0

3.0

1.0

S

1 I I I I I

2 4 6 8 10 12
Number of Processors

, , , [

Yt
Y

i

14 16

Figure 5. Parallelization speedup on
Convex-HP MetaSystem

Figure 6. Parallelization speedup on
Convex-HP Exemplar

Figure 7. CPU load balance on parallel threads (Profile generated for 8 processors on
Convex-HP Exemplar)

5. S U M M A R Y &: C O N C L U S I O N S

This is the first implementation of the ATD algorithm in three space dimensions. The
two main (theoretically expected) features of ATD are its parallelizability and its ability
to produce highly resolved solutions; both are demonstrated in the present results.

472

Parallelization in ATD can be implemented at several different levels which can be
nested. Parallelization speedups scale essentially linearly with number of processors for
an intermediate (and thus more dimcult to parallelize) level. This implies that high Re
three-dimensional turbulence simulations are possible on MPPs.

The present code parallelizes well under both shared-memory and distributed-memory
paradigms. Programming is much easier under shared memory using a few compiler direc-
tives than under distributed memory which requires learning a message passing language.
The execution times are also much less under shared memory, even with somewhat slower
processors. We conclude from this that, despite a rather widespread early fear of shared-
memory architectures, they can perform at least as well as distributed-memory machines.
We believe this makes them the obvious choice for future MPP architectures due to their
ease of use.

R E F E R E N C E S

1. J.H. Ferziger, "Higher-level Simulations of Turbulent Flows," in Computational Meth-
ods for Turbulent, Transonic and Viscous Flows, Essers (ed.), Hemisphere Pub. Corp.,
Washington DC, 1983.

2. M. Germano, K. Piomelli, P. Moin and W. H. Cabot, "A Dynamic Subgrid-scale Eddy
Viscosity Model," Phys. Fluids A3, 1760, 1991.

3. J. M. McDonough, "On the effects of modeling errors in turbulence closures for the
Reynolds-averaged Navier-Stokes equations," Report CFD-03-93, Department of Me-
chanical Engineering, University of Kentucky, 1993.

4. J. M. McDonough and R. J. Bywater, "Large-Scale Effects on Small-Scale Chaotic
Solutions to Burgers' Equation," AIAA J. 24, 1924, 1986.

5. J. M. McDonough and R. J. Bywater, "Turbulent Solutions from an Unaveraged,
Additive Decomposition of Burgers' Equation," in Forum on Turbulent Flows-1989,
Bower & Morris (eds.), FED Vol. 76, ASME, NY, 1989.

6. J .M. McDonough and D. Wang, "Additive turbulent decomposition: A highly par-
allelizable turbulence simulation technique," Report CFD-02-94, Department of Me-
chanical Engineering, University of Kentucky, 1994. Submitted to Int. Y. Supercomput.
Appl. High Perform. Comput..

7. J. M. McDonough, J. C. Buell and R. J. Bywater, "An Investigation of Strange
Attractor Theory and Small-Scale Turbulence," AIAA Paper 8~-167~, 1984.

8. S.A. Orszag, "Numerical Methods for the Simulation of Turbulence," Phys. Fluids,
Supplement II, 12, 250, 1969.

9. W. C. Reynolds, "The Potential and Limitations of Direct and Large Eddy Simula-
tion," in Whither Turbulence? Turbulence at the Crossroads, Lumley (ed.), Springer-
Verlag, Berlin, 313, 1990.

10. Y. Yang and J. M. McDonough, "Bifurcation Studies of the Navier-Stokes Equations
Via Additive Turbulent Decomposition," in Bifurcation Phenomena and Chaos in
Thermal Convection, Bau et al. (eds.), HTD Vol. 214, ASME, NY, 1992.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

473

A message-passing, distributed memory parallel algorithm for direct nu-
merical simulation of turbulence with particle tracking

P.K. Yeung and Catherine A. Moseley

School of Aerospace Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, U.S.A.

An efficient distributed-memory parallel pseudo-spectral algorithm for the direct nu-
merical simulation of turbulence is presented. Timing studies illustrate the effects of
various parameters on parallel performance with and without tracking fluid particles.

1. I N T R O D U C T I O N

In the last two decades, Direct Numerical Simulations (DNS, see Reynolds 1990 for
a recent review)--in which the exact Navier-Stokes equations are solved numerically--
have revealed much of the fundamental physics of turbulence, the most common state
of fluid motion in applications. However, because of the need to resolve unsteady,
three-dimensional fluctuations over a wide range of scales (which increase rapidly with
Reynolds number), these simulations are extremely computationally intensive. Conse-
quently, most known DNS results have been limited to modest Reynolds number, which
has sometimes limited their significance for turbulence at the high Reynolds numbers
typically encountered in practice. To achieve significantly higher Reynolds numbers re-
quires faster calculations and the use of more grid points. It is clear that massively
parallel computing on distributed-memory (as opposed to shared memory) architectures
meets both requirements well, and therefore provides great opportunities for significant
progress.

The present objective is to devise an efficient parallel implementation of a pseudo-
spectral algorithm for DNS of homogeneous turbulence (Rogallo 1981). Whereas other
parallel DNS algorithms are known (e.g. Pelz 1991, Chen & Shan 1992), a distinctive
element in our work is a parallelized capabihty for tracking fluid particles and hence
extracting Lagrangian statistics (Yeung & Pope 1988, 1989) from the Eulerian velocity
field. The most CPU-intensive operations are Fast Fourier Transforms (FFTs) used to
solve the Eulerian equations of motion, and fourth-order accurate cubic-spline interpo-
lation which is used to obtain Lagrangian fluid particle velocities. The data partition
between the parallel nodes (processors) is designed to facihtate these operations.

474

In the next section we describe the new parallel algorithm, and its implementation on
a 512-node IBM SP2 at the Cornell Theory Center. Performance data are presented and
analyzed for an FFT code, and the DNS code with and without particle tracking. Finally
we briefly present representative results at 2563 resolution showing the attainment of
the well-known inertial range energy spectrum for high Reynolds number turbulence.
Detailed results for multi-species mixing (Yeung & Moseley 1995) and fluid-particle
dispersion (Yeung 1994) will be reported separately in the future.

2. P A R A L L E L A L G O R I T H M

We use a single program, multiple data (SPMD) approach. Because each node has a
finite memory capacity (at 128 Mb for most of the nodes we use), the use of distributed-
memory parallelism with a suitable data partition scheme is crucial to meeting the goal
of tackling bigger problems--with up to 5123 grid points or more. For inter-processor
communication on the SP2 we use the Message Passing Library (MPL), which includes
"collective" communication routines used to facilitate operations such as simultaneous
data exchange and reduction across all nodes. For efficient parallel performance the
workload on each node should, of course, be as balanced as possible. Furthermore, it is
desired to minimize the time consumed by communication calls.

The data structure for the Eulerian simulation can be understood by considering how
three-dimensional FFT's may be accomplished. In most cases the solution domain is a
periodic cube, as shown in Fig. 1. We divide the data into a number of slabs, equating
the number of nodes. Fourier transforms in the y direction are taken (using the IBM-
optimized ESSL library) when the data are stored as x - y slabs (which consists of a
number of x - y planes), whereas transforms in x and z are taken when the data are
in x - z slabs. Transposing between x - y and x - z slabs (and vice-versa) requires
each node to exchange a message (a "pencil" of data) with another, and is achieved
by a single collective communication call that also forces automatic synchronization.
Other communications calls are used in collecting global statistics such as spectra and
probability density functions by combining information from all slabs.

Besides directly controlling the communication costs, the data structure also strongly
affects CPU and memory requirements. Since the arrays are smaller than in the serial
code, a reduction in vector strides yields significant savings in computation time. On
the other hand, data residing in non-contiguous arrays must be packed into contiguous
buffers before they can be sent as messages, and must be similarly unpacked afterwards.
The additional memory needed for these buffers can cause memory paging penalties if
the total requirement is close to that available on each node, or even render a calculation
beyond the memory capacity of the system.

In the Lagrangian part of the code, to evaluate each fluid particle velocity component
from an N 3 grid we form a three-dimensional tensor product spline, in the form

g(x,y,z)= ~ ~ ~ b,(x)cj(y)dk(z)e,jk, (1)
k=0 j = 0 i=0

where {b,}, {c,} and {dk} are sets of Nb = g + 3 one-dimensional basis functions
determined solely by the particle position coordinates (x,y,z), and {eijk} are three-
dimensional basis function coefficients which depend on the grid point values of the

475

--:--:::-i:

Fig. 1. Schematic showing the partition-
ing of solution domain into slabs for three-
dimensionaJ Fourier traz~sforms. Both z -
It mad z - , slabs, indicated by dashed
Lines, consist of an equL1 number of data
p l i e s . The intersection between two slabs
of d.hfferent orientations forms a "pencil".

2.4

20

1.6

1.2

8
.~.

c

C C

4 8 16 32 64
no of node.~

Fig 2(b) Same as Fig. 2(a), but for
transforms of 9 variables.

To 3

2

0----r

4 e '~ 37 6L :28 256

no of nodes

Fig. 3. Total transform time (To) in 10 -~
seconds (over all nodes) per variable per
grid point, vs. number of thin nodes.
FFTs are taken over 643 (/k), 1283 (O),
2563 (0) and 5123 (o)grid points.

32 I

2.,~ i

1.6

8i
0

A

4 8 16 32 6~

no of nodes

Fig. 2(a). Performance parameters vs.
number of thin nodes running 3D FFT
code at 128 s and 5 variables: parallel ef-
ficiency (7, A) in relation to the param-
eter~ ~ (�9 ~/(~ + 1) (a) ~ d ~ (o).
(See. Eq. 2.)

Table 1. Comparison of performance be-
tween thin nodes and wide nodes, for 1283
transforms with 16 nodes. Timings listed
are serial time (t~ total computation
(tr and communication (t~) times over
all nodes, and wall time per node (tp).

node type thin wide thin wide"
N v 5 5 9 9
t, 22.5 8.4 51.1 28.4
tr 10.24 7.84 33.8 29.3
t~ 7.36 5.92 13.0 9.80
tp 1.10 0.86 2.92 2.44
a = t , / tc 2.20 1.07 1.51 0.97

= tc / t~ 1.39 1.32 2.60 2.99
;3/(d + 1) 0.582 0.569 0.722 0.749
"r 128% 61% 109% 71%

Table 2. Comparison of total wall time
(over all nodes) per Fourier transform pair
per variable per grid point, between cur-
rent data structure and modified scheme
with reduced memory overhead.

Memory overhead Current Reduced

N o , = 5
5123 , 128 nodes 3.86 3.15
Nv = 9
1283 , 16 nodes 2.43 2.01
1283 , 32 nodes 2.56 2.19
2563 , 32 nodes 3.29 2.46
2563 , 64 nodes 2.45 2.83
5123 , 256 nodes 3.80 4.02

476

velocity field. Although the summation above formally ranges over N~ elements, in
practice for each given particle position only 43 = 64 basis function values are nonzero,
representing information from the four nearest grid planes in each direction. The gener-
ation of cubic spline coefficients is accomplished by solving a special system of simulta-
neous equations (Ahlberg et al. 1967), with CPU time scaling as N 3, whereas time for
the summation above scales linearly with the number of particles, M.

Two different schemes for data partitioning in cubic spline interpolation have been
considered. The first is for each node to carry different (sub)sets of fluid particles, but
to access the same full N~ array of spline coefficients. However this is very inefficient
because large messages need to be passed around, and for large N this causes a severe
limitation in the memory required per node. On the other hand, given that M will
generally be much less than N 3 in most calculations, it is much more efficient to let
each node carry all particles, but only a slab of the spline coefficients. To generate these
coefficients, we first form splines in z and z directions with the Eulerian data in z - z
slabs, swap the partially formed results into z - y slabs, and then complete the splines
in y. Because Nb is not an integer multiple of the number of nodes (whereas N is),
the workload is slightly uneven: some nodes are assigned one plane of spline data more
than the others. Finally, for the summation in Eq. 1, since the four z-planes closest to
each particle location may span two adjacent z - y slabs, partially-formed interpolated
results are combined from all nodes.

3. P A R A L L E L P E R F O R M A N C E

All timings quoted in this paper pertain to SP2 hardware at Cornell, as of July 1995.
SP2 nodes are characterized as thin or wide (Agerwala et al. 1995): most thin nodes
have 128 Mb memory, and all have 64 Kb data caches, whereas wide nodes have at
least 256 Mb memory, and 256 Kb data caches. Because of the difference in cache size,
thin nodes display a great sensitivity to long vector strides, and so are generally slower.
Furthermore, since the majority of nodes are thin, most production runs will be made
on thin nodes, although some wide-node timings are included for comparison.

We introduce appropriate measures of parallel performance here. A conventional
measure is the parallel efficiency ('),), given by the speedup relative to the serial code
and divided by the number of nodes. Because of vector stride considerations as discussed,
the ratio of the serial CPU time (t,) to the total computation time (to) over all parallel
nodes, which we denote by the "computational enhancement factor" (a), is greater than
unity. Also of obvious importance is the ratio (/3) of computation to communication
(tin, including pack/unpack operations) times. These parameters are related by

7 = a f l / (f l + 1). (2)

That is, a high computational enhancement factor can lead to effective parallel efficien-
cies above 100%, largely as a side-benefit of the distributed-memory scheme.

3.1 FFT timings
Since FFTs and the associated communication operations are found to take up to

85% of the elapsed wall time in the Eulerian simulation, a detailed timing analysis with

477

a simple FFT code yields valuable insights into different factors affecting parallel perfor-
mance. The FFT timings are also good indicators of the feasibility of 5123 simulations
to be performed. To mimic the DNS data structure we consider transform times for 5
variables (Nu = 5, corresponding to DNS with hydrodynamic field only) and 9 variables
(Nv = 9, for DNS with three passive scalars added).

Figure 2(a) and (b) show thin node performance for a pair of FFTs at Nv = 5 and 9
respectively, for 1283 grid points on 8, 16 and 32 nodes, via the quantities a, 3, 7 - -and
3/(/3 + 1), which would be equal to 7 if serial and parallel computation times were the
same. Parallel efficiencies greater than 100% are achieved, mainly as a result of high
computational enhancement factors as explained above. As expected, 7 decreases when
a relatively large number of nodes is used, mainly due to increased total communication
time incurred by all nodes sending and receiving a larger number of smaller messages.
The net effect of an increase in Nu on the data structure is a larger vector stride, in
both serial and parallel codes (for the latter, especially if the number of nodes is small).
This tends to increase the computation time substantially wmore than in proportion to
Nu, whereas the communication time is proportional to Nu. Consequently, for higher
Nu we find lower computational enhancement factors and, despite higher computation-
to-communication ratios, lower parallel efficiencies.

To compare their performance, we show detailed 16-node 1283 timings for both thin
and wide nodes in Table 1. The computational enhancement factor is seen to be espe-
cially significant for thin nodes, giving very high apparent parallel efficiencies. However,
the ratio to~tin varies little between the two types of nodes, suggesting that wide nodes
both compute and communicate faster and by about the same factor. The parallel
efficiency of wide nodes is mainly determined by this ratio, increasing with Nt:.

Whereas speedup and parallel efficiency measure performance relative to a serial
code, absolute performance in terms of elapsed time for a given problem size is also
important, and would also provide the basis for comparisons between different algorithms
and hardware platforms. In Fig. 3 we show the total transform time (sum of wall time
over all nodes) per variable per grid point, denoted by To, for thin nodes as N varies from
64 to 512. Because the computation operation count scales as N 3 ln2 N, To is expected
to increase with N (approximately as ln2 V). For a given N, the variation of To with
number of nodes depends on two factors. If too few nodes are used (e.g., 5123 with
less than 128 nodes), large memory requirements per node may make the computation
impossible, or degrade the performance as a result of memory paging and/or an acutely
adverse impact of long vector strides. On the other hand, using more nodes causes
an increase in communication time which tends to reduce the parallel efficiency. This
effect accounts for the rapid rise of To observed for 64 a and 128 a at large number of
nodes. For operational purposes, for each given problem size (N), an optimum choice
for the number of nodes, increasing with N, can be made when all performance measures
(including To and 7) are considered.

A limitation of the current parallel FFT code (which forms the basis of DNS codes in
use) is a significant memory overhead (see Sec. 2). This memory overhead is relatively
large because lines of data for all flow variables are stored next to each other, and is partly
responsible for the large To observed for 512 a FFTs in Fig. 3. To reduce the memory
requirements, we have tested a modified data structure in which different flow variables

478

are stored in entirely segregated memory areas on each node. Selected timings for the
two data structures are compared in Table 2. The modified data structure gives shorter
vector strides that are independent of Nv, but carries higher communication costs.
Consequently, the new scheme is efficient when computation costs are high compared to
communication (e.g, 5123 with 128 nodes), whereas the current scheme is still favored
when the memory overhead is not limiting (e.g., 5123 with 256 nodes).

3.2 P e r f o r m a n c e of DNS codes
As already mentioned, there is a very close relationship between the performance

of the FFT and DNS codes. In particular, since a pair of Fourier transforms is taken
for each of two Runge-Kutta steps in the time advance scheme, the communication
time per time step is just twice that measured in the FFT code. On the other hand, the
computation time now includes additional contributions from other algebraic operations,
such as forming products in physical space for the nonlinear terms of the equations of
motion. Since the latter operations essentially have stride one, the DNS code overall
displays a less marked dependency on vector stride. Consequently, the performance
difference between thin and wide nodes is expected to be less than in the FFT code.

Figure 4 shows 1283 timing information for the Eulerian parallel DNS code without
scalars, corresponding to Fig. 2(a) for the FFT code. The computation enhancement
factor (c~) is less than for the FFT code, because of lesser sensitivity to long vector strides
as discussed above. However the ratio to~tin is higher, since now more computations are
performed. Yet, the overall effect is a reduced (but still high) observed parallel efficiency.

Of greater interest, of course, is the performance of the DNS code at high numerical
resolution, such as with 2563 grid points. In Fig. 5 we show the observed parallel
efficiency for several 1283 and 2563 cases. Data points linked by the solid lines indicate
that wide nodes give lower efficiency (because of less computational enhancement), and
that efficiency increases with the number of scalars (because of more computation relative
to communication). However, because wide nodes are limited in number and serial codes
on thin nodes are limited to 128 Mb memory, truly unambiguous parallel efficiencies are
not available for high-resolution cases with large number of nodes. In such cases, we
resort to comparing parallel times on thin nodes with serial times on wide nodes. In
doing so, the performance of the code is somewhat understated. Nevertheless, using 64
thin nodes the wall time for 2563 is only about 7.5 seconds per time step (increasing
to 15 if three scalars are included), which is comparable to (serial) CPU times for 643
simulations on many workstations in use today. If enough wide nodes were available we
estimate a wall time reduction in the range 10-30%.

To assess the performance of our parallefized particle-tracking algorithm, we consider
the effect of a large number of particles (98304, the number used in Yeung 1994) on
the parallel efficiency. Parallel times on thin nodes are compared with serial times on
wide nodes in Fig. 6. It is seen that, relative to the Eulerian code without particles,
the parallel efficiency is increased when the number of grid points and number of nodes
are both small, but reduced for high-resolution simulations with large number of nodes.
This suggests that the parallel Lagrangian algorithm does not scale very well with in-
creasing number of nodes, which is largely a result of the communication time involved
in combining partially interpolated results from all nodes. However, the wall time per

479

node is still sufficiently low to make the computations feasible.

4. N U M E R I C A L R E S U L T S

We show only very brief results here. A primary motivation for performing high-
resolution simulations is to reach Reynolds numbers high enough to show inertial-range
scaling behavior. Figure 7 shows the energy spectrum in wavenumber (k) space, for
stationary isotropic turbulence at Taylor-scale Reynolds number (R~) 160, on a 2563 grid
(using 64 nodes). The spectrum is scaled by the Kolmogorov variables, such that a flat
plateau signifies well-known k -5/3 scaling at intermediate wavenumbers, and its height
yields a Kolmogorov constant at about 2.0. Both the Reynolds number and the number
of grid points are similar to a previous simulation by Vincent & Meneguzzi (1991) on
a traditional vector supercomputer. However, with high parallel speedups such results
can now be obtained in significantly reduced wall times. The value of R~ we reached is
higher than that in typical laboratory wind-tunnel experiments.

5. C L O S U R E

We have implemented a distributed-memory parallel code for direct numerical sim-
ulation of turbulence with particle tracking, with parallel efficiency at more than 50%
in many cases. Detailed analyses of computation and communication time have been
made, especially for a Fourier transform code used to investigate the feasibility of simu-
lations up to 5123. Such high-resolution simulations on the IBM SP2 will greatly extend
current work on multi-species scalar transport (Yeung & Pope 1993, Yeung & Moseley
1995) and fluid-particle dispersion (Yeung 1994).

We gratefully acknowledge support from the National Science Foundation, Grants
CTS-9307973 and CTS-9411690, and the U.S. Environmental Protection Agency, Agree-
ment No. R 821340-01. The second author is also supported by an NSF Graduate Fel-
lowship Award. Supercomputing resources were provided by the Cornell Theory Center,
which receives major funding from NSF and New York State. We also thank our assigned
consultant at Cornell, Dr. John A. Zollweg, for his extremely valuable assistance.

R E F E R E N C E S

AGERWALA, T., MARTIN, J.L., MIRZA, J.H., SADLER, D.C., DIAS, D.M. & SNIR,
M. (1995) IBM Sys. J. 34, 152-184.

AHLBERG, J.H., WILSON, E.N. & WALSH, J.L. (1967) The Theory of Splines and
Their Applications, Academic Press, New York.

CHEN, S. ~ SHAN, X. (1992) Comput. Phys. 6, 643-646.

PELZ, R.B. (1991) J. Comp. Phys. 92,296-312.

REYNOLDS, W.C. (1990) The potential and limitations of direct and large eddy
simulations. In Whither Turbulence? Turbulence at the Crossroads, edited by J.L.
Lumley, Springer-Verlag, New York.

480

ROGALLO, R.S. (1981) NASA TM 81315.
VINCENT, A. & ME.~EGUZZl, M. (1991) J. Flu,d Mech. 225, 1-20.
YEUNG, P.K. (1994) Phys. Flu~ds 6, 3416-3428.
YEUS6, P.K. & MOSELEY, C.A. (1995) AIAA Paper 95-0866.
YECSG, P.K. & POPE, S.B. (1988) J. Comp. Phys. 79, 373-416.
YEUNG, P.K. & POPE, S.B. (1989) J. Flu~d Mech. 207, 531-586.
YEU~G, P.K. & POPE, S.B. (1993) Phys. Fluzds A 5, 2467-2478.

2.C

1.2

.8

.4

4--...._

0
4 & 1'5 3'2 5

no of nodes

Fig 4. Same ~s Fig 2(a), but for p~dlel
EuleriLn DNS code with 128 s grid points
aad hydrodynamic field only

100

~'80

~, 60
&,

~" 40
r

20

[3

4 8 16 32 64
no. of nodes

Fig 6. Observed parallel efficiency vs.
number of thin nodes (compared with se-
rill wide node) for parallel DN$ code with
98,304 fluid pLrticles: for 643 (Z~), 1283
(O), and 2563 (~) grid points. Dashed
lines show timing data without p~licles,
for compLrison.

120 -

100

,.- 80

60
._
~ 4o

2O

0
2

a..

--....

i

no of nodes

Fig. 5. Observed parallel efficiency vs.
number ofnodes for parallel Eulerian DNS
code: 1283, no scalars, thin nodes (A);
1283, no scalars, wide nodes (O); 128z, 3
scalars, wide nodes (rq); 1283, 3 scalars,
thin nodes (.); 2563, no scalars, thin nodes
(El); 2563, 3 scalars, thin nodes (,,). The
closed symbols and dashed lines denote
parallel thin nodes versus serial wide nodes.

10 ~

10 0
I

e,,

-~ 10 -~

b e

J

1C -~ 10 -2 1C -~ 1C ~ 10"

Fig. 7. KoLmogorov-scaled energy spec-
t r u m at R~ t60 obtained from 2563 sim-
nlation, with time averaging. Wavenum-
ber is normalized by the Kolmogorov scale
(r/), and the dimensionless spectra have
been multiplied by k s/3. Dashed line shows
similar data for 128 z at R~ 90.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

481

Simulation Of Stratified Turbulent Channel Flows
On The Intel Paragon Parallel Supercomputer

Rajat P. Garg, Joel H. Ferziger and Stephen G. Monismith ~

~Environmental Fluid Mechanics Laboratory,
Department of Civil Engineering, Stanford University, Stanford, CA 94305

Implementation of a hybrid spectral finite-difference algorithm for computation of vari-
able density turbulent flows on distributed memory message-passing computers is pre-
sented. A single-program multiple data abstraction is used in conjunction with static uni-
partitioning scheme. Speedup analysis of a model problem for three different partitioning
schemes, namely, uni-partition, multi-partition and transpose-partition is presented and it
is shown that uni-partitioning scheme is best suited for this algorithm. Unscaled speedup
efficiencies of up to 91% on doubling the number of processors and up to 60% on an
eight-fold increase in the number of processors were obtained for several different grids
on iPSC/860. Absolute performance up to 15-17% of theoretical peak performance was
obtained on Paragon. Comparisons between the two machines are presented.

1. I n t r o d u c t i o n

The majority of flows in nature (oceanic and atmospheric flows) are turbulent and
density-stratified. Stratification has a pronounced effect, making stratified turbulent flows
markedly different from unstratified flows. One of the most important effects of strat-
ification is on mixing and entrainment. These processes play an important role in the
energy balance of the oceanic upper mixed layer and the energy exchange between the
atmosphere and the ocean. Consequently, a better understanding of this phenomenon is
essential for accurate modeling of the oceanic mixed layer. The aim of this work is to
study the effects of stratification on turbulent channel flow via Direct Numerical Simula-
tion (DNS) and Large Eddy Simulation (LES) based on the incompressible Navier-Stokes
and scalar transport equations.

In this paper we present the parallel implementation (on iPSC/860 and Paragon) of
a spectral-finite difference method for solution of Navier-Stokes equations for a channel
flow. The spatial differencing requires distributed two dimensional FFT's as well as par-
allel stencil type operations, which require very different communication patterns. The
solution algorithm also leads to different types of data dependencies at various stages and
requires different (and mutually conflicting) implementation strategies. The choice of ap-
propriate partitioning scheme is thus crucial in obtaining optimal performance for all the
stages of the algorithm. A performance model is developed for a model problem which
is computationally representative of the requirements of the solution algorithm for the
channel flow problem. The performance model is then used to evaluate the suitability of

482

different partitioning schemes applied to this problem. We begin by briefly presenting the
numerical method and parallel implementation in section 2 followed by partitioning anal-
ysis in section 3. Timing results are presented in section 4 and finally, some conclusions
are drawn in section 5.

2. Numer ica l implementa t ion

In this section we briefly describe the numerical method used to solve the equations
of motion for an incompressible Boussinesq fluid, namely the Navier-Stokes and scalar
transport equations for a plane channel,

Oui
= 0 (1)

Oxi
Ou; 0 Op 1 02ui
0--Y + = Ox; OxjOxj (2)

- Rig(p, - Pb)(%3
Op, 0 1 02p,
O--T + ~ (p, uj) = RePr cOxjOxj' (3)

where Re, Pr and Rig are the Reynolds, Prandtl and bulk Richardson numbers, respec-
tively.

The spatial discretization is based on Fourier spectral methods in the horizontal direc-
tions and second order finite differences in the vertical direction. The mesh is cartesian
and is non-uniform in the vertical and uniform in the horizontal directions. The time-
advancement scheme is of mixed type: Crank-Nicolson for the vertical viscous terms and
RK3 (Runge-Kutta) for the nonlinear and horizontal viscous terms. Aliasing errors in the

2 rule. The solution pseudospectral treatment of nonlinear terms are removed using the 5
technique is based on the fractional step method (see [1]). Mathematically this algorithm
can be broken into three stages; the first stage is the calculation of the explicit right hand
side,

1
r, - - R K 3 [H (v n, p,n)] + ~en~(vn); (4)

the second stage is the velocity step (solution of intermediate velocity),

1 - ~R--TeL" At = r . , (5)

and the third stage is the solution of pressure Poisson equation followed by pressure
correction,

D T G(pAt) - DT(v*), (6)

V n + l - - V * - - -e(pAt). (7)

Here G, D T and L. are the discrete gradient, divergence and vertical second derivative
operators, respectively. H represents the nonlinear and the horizontal viscous terms.
The boundary conditions have already been incorporated in the discrete matrix opera-
tors. Note, these three stages have to be repeated for each sub-step of the R K 3 time-
advancement scheme.

483

The scalar equation is also solved in two stages,

1
rp. = -RK3[Hp.(V~,p.n)] + ReprLv(p.~), (8)

and,

At) p,n+l _ p,n
1 2ReP----------~Lv At = rp,. (9)

For parallel implementation the programming model is based on a node-only single
program multiple data (SPMD) abstraction [2]. A static 2D uni-partitioning scheme [3] is
used for data decomposition i.e. the three-dimensional computational domain is divided
into P (total number of processors) non-overlapping subdomains (with equal numbers
of points), each of which resides in a separate processor. The number P is factored
into Px x Pz, the numbers of processors used in the partitioning in the x (streamwise)
and z (vertical) directions, respectively. The processors exchange information at domain
boundaries via message passing. 1D data partitioning (either the vertical or the stream-
wise direction distributed) can be implemented simply by setting the partition size in one
of the directions to unity.

Parallel 2D FFT's required in the explicit stage of the algorithm for the 2D uni-
partitioning scheme are performed using the transpose method. In this method the FFT's
are only performed on memory-resident data; data in the distributed direction are brought
into the local memory of a processor by performing a distributed matrix transpose (we use
the multiphase complete exchange algorithm; presented in [4]). The tridiagonal system
of equations arising in both the second and third steps are solved using the pipelined
Thomas algorithm ([3]). Unscaled speedup efficiencies up to 81% on doubling the number
of processors (keeping problem size fixed) were obtained on iPSC/860 using this algorithm
(see [51).

The accuracy of the code was verified by computing the instantaneous growth rate
and phase speeds of small amplitude disturbances in an unstratified flow, and comparing
with the linear theory. We also performed a large-eddy simulation of turbulent channel
flow with passive scalar at Reynolds number 180 (based on friction velocity and channel
half-width) and Prandtl number 0.71, on a 64 • 64 x 65 grid (x, y, z respectively) and 32
processors. The results (first and second order turbulence statistics) are in good agreement
with the DNS results of [6] and [7]. The code is now being used for simulations of stably
stratified channel flows.

3. Speedup analysis of model problem

In order to evaluate the optimal partitioning scheme for this problem, speedup analysis
of a simpler model problem, namely the scalar transport equation (equation 3) was per-
formed. For a given velocity field, this equation is solved in two stages (equations 8 and
9). The computational characteristics of these stages are identical to the first two stages
(equations 4 and 5) of the fractional step algorithm. For the present spatial discretiza-
tion method, the solution of pressure Poisson equation (stage 3, equation 6) is the least
expensive step for the serial (and parallel) implementation, and the total computational
cost is dominated by the first two stages of the fractional step algorithm. This stage

484

requires inverting a tridiagonal system of equations for each wavenumber pair to obtain
the Fourier coefficients of pressure, which can then be used to enforce discrete incom-
pressibility directly in the wavenumber space (equation 7). So pressure is not required to
be computed in the real space except for the purposes of computing statistical quantities
involving pressure (in turbulent flow simulations). Thus the performance analysis of the
scalar transport equation is representative of and relevant to the choice of the partitioning
scheme for the fractional step algorithm.

We analysed three different schemes, namely uni-partitioning, multi-partitioning and
the transpose-partitioning (see figure 1) applied to the model problem. The distributed
FFT's required in the uni & multi-partition schemes are assumed to be performed using
the transpose method. The distributed tridiagonal system of equations arising in the uni-
partition scheme (in the implicit stage) is assumed to be solved using pipelined Thomas
algorithm. For the multi-partition scheme the Thomas algorithm can be applied in a
straight-forward fashion without any load-imbalance. In the transpose-partition both the
stages are performed in-place and a global data transpose is used in-between the stages
to bring all the data required in each stage, in the local memory of the processor.

The speedups and the speedup efficiencies for the different schemes on a hypercube
architecture 1 can be expressed as

1
Sp = 1 (10) p + O ~

~-, (11)

where 0~ - N ~ , represents the parallelization overhead for each data-mapping scheme. Den

The Num~ and Den are given below:

~-~ (I~ N=Nyb/~ + 5] Num~i - 8(P~- 1)[][A + p 2 2 (P~- 1)

12NxNy
+ (N=NYp=l~ + P~ + 8)A + (p= + 4Pzl~)b/3 + 8Nzl~t~ (12)

N~Ny (log:P)P
Numm~t - 8 (P - 1) N ~ [A + p2 b / 3 + 5 2 (P _ l)]

+ 6 (P - 1)A + 1 2 (P - 1)lvp/vy b/3 (13)

(log2P)P N~NyNzbfl + 5] Numt~p - 2 (P - 1)[A + p-------7~ 2 (P - 1)

+ 8(A + N~Nyb/3) (14)

Den : N~NyNz [40 + 6(log2N ~ + log2Ny)]t ~. (15)
P

Here N~, Ny and Nz are the number of grid-points in the x, y and z directions, re-
spectively, l~ represents the number of line-solves per message in the pipelined Thomas

1A hypercube architecture is assumed to perform the complexity analysis of the global exchange algorithm
for distributed matrix transpose. Analysis for other network topologies, such as the mesh network can
be done in a similar fashion.

485

algorithm (see [3] and [5]). The different machine parameters are t~ - the computation
cost per floating point operation, A - the message-passing latency, b - number of bytes
per word of data, / 3 - the message transfer time in sec/bytes and 5 - distance impact
in sec/dirnension on the hypercube (see [4]). P = P~P~ is the total number of proces-
sors. The subscripts uni, mul and trp denote the uni, multi and transpose partitionings,
respectively.

The S, predictions for the model problem using the machine parameter values for
iPSC/860 are shown in figure 2. The smaller grid is the typical grid used in large-eddy
simulations and the larger grid is typical of the ones used in direct-simulations. The
results clearly indicate that multi-partitioning leads to very low efficiencies compared to
uni and transpose schemes. The reason for this is that while multi-partition eliminates
the data-dependency in the solution of tridiagonal system of equations, it significantly
increases the amount and the stages of communication required to perform the FFT's.
Furthermore, it serializes the inherent parallelism in the FFT's that is exposed by the
1D vertical uni-partition or transpose schemes (groups of horizontal planes reside in each
processor and in-place FFT's can be performed in each such processor independently).

For the two grids considered in figure 2, the memory requirements of the Navier-Stokes
code are such that a minimum of 4 processors are required for the smaller grid and a
minimum of 64 processors are required for the larger grid (for 16 Mbytes/node computers).
So we compare the two schemes for greater than this minimum number in order for the
predictions to be applicable to the channel flow code. For the smaller grid, the uni-
partitioning shows a higher efficiency because a 1D-z partition is used and the FFT's
are performed locally with communication and data-dependency delay occurring only
in the vertical operations. The transpose partition on the other hand requires global
communication in the transpose phase.

In the case of the larger grid a 2D uni-partitioning 2 has to be used in order to improve
the efficiency of the tridiagonal solver. Thus distributed FFT's are required in the stage 1,
leading to increased communication overhead. However, in the uni-partition scheme the
matrix transpose (for FFT's) is performed only across P~ processors, whereas in the
transpose scheme it is performed across P processors. Thus for the uni-partitioning
scheme the cost of FFT's is fixed with increasing P (P~ fixed) and the nearly linear
decrease in S~ is occurring due to increased overhead in tridiagonal solver.

So for the transpose partition the total number of stages (P - 1 on a Hypercube) as
well as the data to be communicated is higher in the global exchange algorithm than
the uni-partition scheme, resulting in a poorer scalability for P greater than 64 (figure 2.
Furthermore, on a 2D mesh (i.e. on Paragon) the global exchange would suffer greater
contention & require more stages than on a Hypercube. Thus based on these consid-
erations, over the range of problem and processor sizes that are of interest to us for
stratified turbulent channel flow simulations, the uni-partitioning scheme is superior than
the transpose partitioning scheme, and was used in the parallel implementation.

2p. = 4 gave the best results.

486

4. R e s u l t s

In this section the results of timing measurements of the parallel implementation are
presented. These measurements were made on a 32 node iPSC/860 Hypercube computer
at Stanford and the 400 node Paragon XP/S at San Diego Supercomputer Center (SDSC).
The results were obtained by advancing the solution for 50 time-steps (for each run) to
obtain averaged execution times. The velocity field was initialized as low-amplitude (5%
of mean) divergence-free random perturbations superposed on laminar flow profile.

The measured relative speedup efficiency S~ vs. number of processors P is shown in
figure 3 (on iPSC/8603) for different grids and for 1D-z partitioning. S, is defined as
Zmin T~, x - ~ where P~in is the minimum number of nodes on which a given problem size fits,
Tmi~ is the CPU time for Pmi~ processors and Tp is the measured time for P processors.
An estimate of single processor time can be made using the procedure outlined in [8] but
it requires accurate measurements of the communication, computation, and idle time of
each processor. This is a complicated and error-prone task for the algorithm considered
here. The relative speedup efficiency is easier to compute and gives an accurate indication
of the scalability of the algorithm. As expected, the efficiency increases with grid size
and eventually reaches a plateau on which the CPU time increases in proportion to the
number of grid points. Unscaled speedup efficiency of up to 91% on doubling the number
of processors and up to 60% on an eight-fold increase in the number of processors, was
obtained for the 1D vertical decomposition.

The absolute performance of the code was evaluated by computing the speed of execu-
tion based on the operation count of the algorithm 4 and the measured CPU times. The
percent of peak theoretical performance (for 64-bit arithmetic) is shown as a function
of number of processors for several different grids in figure 4; absolute performances up
to 15-17% of theoretical maximum were obtained. Comparisons between Paragon and
iPSC/860 for several grids showed that Paragon (for OSF 1.2) is on an average 30-50%
faster than iPSC/860 with the higher end improvements observed mostly for problems
where 2D partitioning was used. This is an expected result because the communication
requirement for 2D partitioning is significantly higher (due to distributed FFT's) than the
1 D - z partitioning and Paragon primarily is superior than iPSC/860 in communication
performance.

5. Conclusions

A scalable parallel algorithm for spectral-finite difference simulation of turbulent strat-
ified flows was implemented and its performance was evaluated. The performance was
found to depend strongly on the problem size and the type of data decomposition. Three
types of partitioning schemes were investigated for a model problem and the analysis
showed that multi-partition schemes are ill-suited for this algorithm. Uni-partitioning
schemes (1D and 2D) were found to be optimal for this problem and unscaled speedup
efficiencies of up to 91% were obtained for several different grids. On the Paragon single

3Similar results were obtained on Paragon under OSF 1.2
4a conservative estimate of 786 + 84(21og2Nx +41og2Ny) floating point operations per grid-point was used
for the 3 stage RK3-CN step.

487

node execution speeds between 6-12 Mflops (out of 75 Mflops peak) were obtained for
the overall algorithm. The comparison between iPSC/860 and Paragon showed 30-50%
faster timings on Paragon.

A c k n o w l e d g m e n t s
The authors extend thanks to Prof. R.W. Dutton for providing access to the iPSC/860

Hypercube operated by his group, to Dan Yergeau for his help with getting us started on
the iPSC/860, to Dr. J.P. Singh of Stanford Computer Science department and Mr. Ken
Steube of SDSC for many helpful discussions on parallel implementation. The support of
SDSC for providing computer time on Paragon is also greatfully acknowledged. Financial
support was provided by ONR under grant No. N00014-92-J-1611.

R E F E R E N C E S

1. J. Kim & P. Moin, Jour. of Comp. Physics, 59 (1985), p. 308.
2. F. Darema, D.A. George, V.A. Norton & G.F. Pfister, Parallel Computing, Vol. 7,

(1988) p. 11.
3. N.H. Naik, V.K. Naik L: M. Nicoules, Intl. Jour. of High Speed Computing. Vol. 5,

No. 1 (1993), p. 1.
4. S.H. Bokhari, NASA Contractor Report No. 187499 (1991), ICASE, NASA Langley

Research Center.
5. Garg, R.P., Ferziger, J.H. & Monismith, S.G., In Proceedings of VII SIAM Conf. on

Parallel Processing for Scientific Computing, San Francisco, CA, February 1995.
6. Kim, J., Moin, P. & Moser, R.D., Jour. of Fluid. Mech. vol. 177, p. 133.
7. J. Kim & P. Moin, In Turbulent shear flows 6, ed. by J.C. Andrfi, J. Cousteix, F. Durst,

B.E. Launder, F.W. Schmidt & J.H. Whitelaw, Springer Verlag (1989), p. 86.
8. Gustafson, J.L., Montry, G.R. & Benner, R.E., SIAM Jour. of Sci. Stat. Computing,

Vol. 9, (1988), p. 609.

P' t P~ t " / 1

t_P2_iP3__! PO { P1 t ' " " / i-;;-F;-r-;;-f-;;-L/
Uni-Partition Mul t i -Par t i t i on Transpose-Partition

Figure 1. Uni, multi and transpose partition schemes.

488

0.8

0.6
.,..t
(.2

0.4

0.2

64*64*64 grid
+ Uni
.., . . Transpose
- ~ Multi

0.

"It,

q

a,,

i 1; i4 3'2

1.0

0.8

0.6

0.4

0.0
0 40 320

128'256'256 grid
Uni

�9 ..A... Transpose
t. - ~ Multi Ii.

IL..
'ik.

. ~
"A..

.

0 . 2 ~ _ . . . , , , ~

I ~ ' ~ " ~ -e,-" ; 0.0
0 64 128 192 2i6

Np (# 0f Proc.) Np (# 0f Pr0c.)

Figure 2. S~ predictions for the model problem on iPSC/860 for coarse and fine grids

1.2

1.0

0.8

cO 0.6

0.4

0.2

' ' ' ' I ' ' ' ' I ' ' ' ~ I ~ ' ' '

I

~ ~ , I ~ t , , I , , , , I , , , ,

10 20 30 40

P (# of Proc.)
Figure 3. Speedup efficiency S~ v s . number of processors for iPSC/860 Hypercube, 1D-z
partitioning; ~ " 64 x 64 x 64 grid; �9 64 x 32 x 128 grid; 32 x 32 x 144 grid;

�9 64 x 64 x 128 grid.

2O

-~ "A

g lo ' .

P a r a g o n X P / S (O S F 1 .2)

A A

Grid S i z e
v 6 4 * 6 4 * 6 5

- - ~ - 6 4 " 6 4 " 1 9 3
�9 . .~ . . 1 2 8 " 6 4 " 1 9 3
- ~ - - . 1 2 8 " 1 2 8 " 1 9 3
. . .~ . . 1 2 8 " 2 5 6 " 1 9 3

0 3'2 6'4 9'6 1�89 1 ~iO 192 2�89 256

N p (# o f P roc .)

Figure 4. Theoretical peak performance (for 64-bit arithmetic) on Paragon XP/S for
different grids.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

489

Parallel implementation of an adaptive scheme for 3D unstructured
grids on a shared-memory multiprocessor

R. Biswas a* and L. Dagum b

aResearch Institute for Advanced Computer Science,
Mail Stop T27A-1, NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.

bSupercomputer Applications, Silicon Graphics Inc.,
Mail Stop 580, 2011 N Shoreline Blvd., Mountain View, CA 94043, U.S.A.

Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady
flows that require local grid modifications in order to efficiently resolve solution features.
For such flows, the coarsening/refinement step must be completed every few time steps, so
its efficiency must be comparable to that of the flow solver. For this work, we consider an
edge-based adaption scheme that has shown good single processor performance on a Cray
Y-MP and C90. We report on our experience porting this code to an SGI Power Challenge
system and parallelizing it for shared-memory symmetric multiprocessor architectures.

1. I N T R O D U C T I O N

Unstructured grids for solving CFD problems have two major advantages over struc-
tured grids. First, unstructured meshes enable efficient grid generation around highly com-
plex geometries. Second, appropriate unstructured-grid data structures facilitate rapid
insertion and deletion of mesh points to allow the computational mesh to locally adapt
to the flowfield solution.

Two types of solution-adaptive grid strategies are commonly used with unstructured-
grid methods. Grid regeneration schemes generate a new grid with a higher or lower
concentration of points in regions that are targeted by some error indicator. A major
disadvantage of such schemes is that they are computationally expensive. This is a serious
drawback for unsteady problems where the mesh must be frequently adapted. However,
resulting grids are usually well-formed with smooth transitions between regions of coarse
and fine mesh spacing.

Local mesh adaption, on the other hand, involves adding points to the existing grid
in regions where the error indicator is high, and removing points from regions where
the indicator is low. The advantage of such strategies is that relatively few mesh points
need to be added or deleted at each refinement/coarsening step for unsteady problems.
However, complicated logic and data structures are required to keep track of the points
that are added and removed.

*Work supported by NASA under Contract Number NAS 2-13721 with the Universities Space Research
Association.

490

For problems that evolve with time, local mesh adaption procedures have proved to
be robust, reliable, and efficient. By redistributing the available mesh points to capture
flowfield phenomena of interest, such procedures make standard computational methods
more cost effective. Highly localized regions of mesh refinement are required in order to
accurately capture shock waves, contact discontinuities, and shear layers. This provides
scientists the opportunity to obtain solutions on adapted meshes that are comparable to
those obtained on globally-refined grids but at a much lower cost.

Advances in adaptive software and methodology notwithstanding, parallel computa-
tional strategies will be an essential ingredient in solving complex real-life problems.
However, the success of parallel computing relies on the efficient implementation of such
adaptive procedures on commercially-available multiprocessor machines. Parallel perfor-
mance not only depends on the design strategies, but also on the choice of efficient data
structures which must be amenable to simple manipulation without significant memory
contention (for shared-memory architectures) or communication overhead (for message-
passing architectures).

In this work, we consider the dynamic mesh adaption procedure of Biswas and Strawn [1]
which has shown good sequential performance. A description of this scheme is given in
Section 2. The Euler flow solver used in the calculations is briefly described in Section 3.
At this juncture, we have successfully ported the code to an SGI Power Challenge shared-
memory multiprocessor with encouraging results. The algorithmic and data structure
modifications that were required for the parallelization are described in Section 4. Finally,
computational and parallel performance results are presented in Section 5.

2. M E S H A D A P T I O N P R O C E D U R E

We give a brief description of the basic tetrahedral mesh adaption scheme [1] that
is used in this work for the sake of completeness and to highlight the modifications that
were made for the shared-memory implementation. The code, called 3D_TAG, has its data
structures based on edges that connect the vertices of a tetrahedral mesh. This means that
each tetrahedral element is defined by its six edges rather than by its four vertices. These
edge-based data structures make the mesh adaption procedure capable of performing
anisotropic refinement and coarsening. A successful data structure must contain just the
right amount of information in order to rapidly reconstruct the mesh connectivity when
vertices are added or deleted but also have a reasonable memory requirement.

At each mesh adaption step, individual edges are marked for coarsening, refinement,
or no change. Only three subdivision types are allowed for each tetrahedral element and
these are shown in Fig. 1. The 1:8 isotropic subdivision is implemented by adding a
new vertex at the mid-point of each of the six edges. The 1:4 and 1:2 subdivisions can
result either because the edges of a parent tetrahedron are targeted anisotropically or
because they are required to form a valid connectivity for the new mesh. When an edge is
bisected, the solution vector is linearly interpolated at the mid-point from the two points
that constitute the original edge.

Mesh refinement is performed by first setting a bit flag to one for each edge that is
targeted for subdivision. The edge markings for each element are then combined to form
a binary pattern as shown in Fig. 2 where the edges marked with an R are the ones to be

491

bisected. Once this edge-marking is completed, each element is independently subdivided
based on its binary pattern. Special data structures are used in order to ensure that this
process is computationally efficient.

6
3

5

1:8 1:4 1:2 1

6 5 4 3 2 1 E d g e #

0 0 1 0 1 1 Pattern = 11

Figure 1. Three types of subdivision are per- Figure 2. Sample edge-marking pattern
mitted for a tetrahedral element, for element subdivision.

Mesh coarsening also uses the edge-marking patterns. If a child element has any edge
marked for coarsening, this element and its siblings are removed and their parent element
is reinstated. The parent edges and elements are retained at each refinement step so they
do not have to be reconstructed. Reinstated parent elements have their edge-marking
patterns adjusted to reflect that some edges have been coarsened. The mesh refinement
procedure is then invoked to generate a valid mesh.

A significant feature in 3D_TAG is the concept of "sublists." A data structure is
maintained where each vertex has a sublist of all the edges that are incident upon it.
Also, each edge has a sublist of all the elements that share it. These sublists eliminate
extensive searches and are crucial to the efficiency of the overall adaption scheme.

Figure 3 is a schematic of the data structures used in the sequential code. For simplicity,
we only show the data structures corresponding to the edges of the mesh; however, similar
pertinent information is also maintained for the vertices, elements, and boundary faces.
For each edge we store its two end vertices, some solver-specific geometry information,
a pointer to the parent edge (if any), pointers to the two children edges (if any), color,
and a pointer to the first element in the sublist of elements that share this edge. Note
that tedge marks the first free location in all the edge arrays. The element list, however,
uses two pointers, c_edg_elm and t_edg_elm. These mark the first "hole" and the start
of completely fi'ee space, respectively. Holes in the element list result from coarsening; if
no coarsening has taken place, c_edg_elm and t_edg_elm point to the same location. As
elements are created by refinement, they are first added to the holes in the element list
until those are completely filled.

An important component of any mesh adaption procedure is the choice of an error
indicator. Since we are interested in computing acoustic pressure signals, we have chosen
pressure differences across edges of the mesh to indicate flowfield regions that require mesh
adaption. However, this error indicator does not adequately target the far-field acoustic
wave for refinement because the strength of a noise signal attenuates beyond the rotor
blade tip. To ensure that the relative error in the acoustic signal is evenly distributed
everywhere, this error indicator must be more heavily weighted away from the rotor blade.
A more detailed description of the manner in which this is accomplished is given in [2].

492

Figure 3. Edge data structures for the sequential code.

3. E U L E R F L O W S O L V E R

The Euler flow solver, developed by Barth [3], is a finite-volume upwind code that
solves for the unknowns at the vertices of the mesh and satisfies the integral conservation
laws on nonoverlapping polyhedral control volumes surrounding these vertices. Improved
accuracy is achieved by using a piecewise linear reconstruction of the solution in each
control volume. The solution is advanced in time using conventional explicit procedures.

In the rotary-wing version [4], the equations have been rewritten in an inertial frame so
that the rotor blade and grid move through stationary air at the specified rotational and
translational speeds. Fluxes across each control volume were computed using the relative
velocities between the moving grid and the stationary far field. For a rotor in hover, the
grid encompasses an appropriate fraction of the rotor azimuth. Periodicity is enforced by
forming control volumes that include information from opposite sides of the grid domain.

The code uses an edge-based data structure that makes it particularly compatible with
the mesh adaption procedure. Furthermore, since the number of edges in a mesh is
significantly smaller than the number of faces, cell-vertex edge schemes are inherently more
efficient than cell-centered element methods [3]. Finally, an edge-based data structure
does not limit the user to a particular type of volume element. Even though tetrahedral
elements are used in this paper, any arbitrary combination of polyhedra can be used [5].

4. S H A R E D - M E M O R Y I M P L E M E N T A T I O N

The SGI Power Challenge XL contains a maximum of 18 64-bit 90 MHz R8000 super-
scalar processors, each containing 4MB of data streaming cache, and provide up to 6.48

493

Gflops of peak parallel performance. The shared physical memory is expandable from
64MB to 16GB with 1-, 2-, 4-, or 8-way interleaving. The memory bus can sustain a peak
bandwidth of 1.2GB/sec. Details of the architecture can be found in [6].

Figure 4. Edge data structures modified for the parallel code.

Figure 4 is a schematic of the modified data structures used for the parallel code. For
simplicity, only the vertex and the element sublist arrays from Fig. 3 are shown. Note that
tedge is now an array, rather than a scalar variable. For the parallel implementation, each
processor • has an independent pointer my_tedge[• to its first free location in the edge
arrays. Similarly, c_edg_elm and t_edg_elm are also converted to arrays my_c_edg_elm [•
and my_t_edg_elm[i], respectively, with an independent pointer for each processor •
This modification allows the processors to independently add edges and elements to the
grid. These local variables are initialized as follows:

my_tedge[i] = tedge + i

my_t_edg_elm[i] -- t_edg_elm + i

my_c_edg_elm[i]--my_t_edg_elm[i] ~ nprocs

where nprocs is the total number of processors. Each processor increments its local vari-
ables by nprocs after every insertion. The my_c_edg_elm[i] variables are initialized the
way they are in order to guarantee that they match the corresponding my_t_edg_elm[i]
variables when all the holes are completely filled.

The main kernel of the refinement and coarsening procedures consists of looping over
the list of tetrahedral elements. In a parallel implementation, this work is split among
all the processors. However, it is necessary to guarantee that multiple processors will not
modify the same location in the data structures. This is accomplished by coloring all the
elements such that elements of the same color do not share a vertex (and consequently
neither an edge). We could also have used a partitioning of the grid; however, it was
simpler to enforce independence through element coloring. The advantage of a shared-
memory paradigm is that it affords this flexibility in the implementation.

494

Coloring also has the nice additional feature of requiring only local operations on the
grid. In other words, once all the elements of the initial mesh have been colored, it is
necessary to color only ' those elements that are created from a refinement or a coarsening
step, thereby greatly reducing the operation count. In the current implementation, the
element coloring has not been given much attention, the focus being on obtaining parallel
coarsening and refinement steps. Nonetheless, it is worthwhile briefly describing what
was actually implemented.

For refinement, an element is colored by visiting each of its four vertices and then
looking at all the neighbor elements of every edge incident on the vertex. The element
is then assigned a color that is not used by any neighbor element. A color count array
is maintained to ensure that the colors are balanced across elements. For coarsening, the
procedure is slightly different in that we must also consider the parent edges sharing the
vertex. This is necessary because coarsened elements are created from the parent edges
and thus have a different neighbor list than is obtained through the children edges.

Once all the elements are properly colored, the parallel code sequentially loops through
elements of the same color in parallel, carrying out parallel coarsening or refinement
steps using independent pointers to the available openings in the data structures. The
loops are dynamically scheduled with an arbitrary "chunk" size of 1000, such that each
processor executes independent chunks of 1000 loop iterations. This is extremely useful
for load balancing. The work associated with a single loop iteration depends on whether
an element is to be coarsened/refined or not. A simple uniform splitting of the loop count
across the processors typically results in a poor load balance. This is because the elements
that need to be adapted tend to be concentrated in localized regions of the grid, so that
some processors will have many more elements to process than others. By using a dynamic
scheduling, we can get a much more balanced allocation of work to the processors.

5. R E S U L T S

The 3D_TAG code has been combined with the Euler flow solver to simulate the acous-
tics experiment of Purcell [7] where a 1/7th scale model of a UH-1H rotor blade was tested
over a range of hover-tip Mach numbers, Mtip, from 0.85 to 0.95. These rotor speeds pro-
duce strong aerodynamic shocks at the blade tips and an annoying pattern of high-speed
impulsive noise. Numerical results as well as a detailed report of the simulation are given
in [2]. This paper reports only on the performance of the parallel version of 3D_TAG.

Timings for the parallel code were obtained from running only the first refinement
and the first coarsening steps reported in [2]. Table 1 presents the progression of grid
sizes through these two adaption steps. The code was compiled and executed with the
latest released IRIX 6.1 system software on 1, 2, 4, and 8 90 MHz R8000 CPU's. The
timings presented are wall clock times averaged over 10 runs on a lightly-loaded system.
The original sequential code was also run on a Cray C90 and a SGI Power Challenge for
comparison purposes.

Table 2 presents the timings for the various portions of the refinement and coarsening
steps. The first set of results is for the first refinement that consists of marking the edges
that need to be refined and then actually refining the grid. Both these times are shown
separately. The second set of results is for the coarsening step. Coarsening consists of

495

Table 1
Progression of grid sizes through refinement and coarsening

Vertices Elements Edges
Initial mesh 13,967 60,968 78,343
Mesh after refinement 35,231 179,424 220,160
Mesh after coarsening 28,987 144,719 178,645

marking edges for coarsening, cleaning up all the data structures by removing those edges
and their associated vertices and tetrahedral elements, and finally invoking the refinement
routine to generate a valid mesh from the vertices left after the coarsening.

Table 2
Wall clock times in seconds for the refinement and coarsening steps

C90 SGI-seq. SGI-1 SGI-2 SGI-4 SGI-8
mark_to_refine() 2.96 1.83 1.72 1.06 0.72 0.65
r e f i n e () 9.11 5.04 6.90 5.04 3.66 3.08
mark_to_coarsen() 2.99 2.02 2.08 1.57 1.28 1.20
cleanup_arrays() 4.29 2.30 3.35 2.21 1.45 1.05
r e f ine () 6.74 3.51 6.80 4.35 2.81 2.20

On the original sequential code, we observe that the Power Challenge performs better
than the C90 both for refinement and for coarsening. This is not unexpected. By nature,
mesh adaption does not readily vectorize or software pipeline; therefore, both systems
essentially demonstrate their scalar performance. Furthermore, most of the work is in
accessing and modifying integer arrays. Because the C90 employs 64-bit integers, the
amount of data motion required is about double that of the Power Challenge which uses
32-bit integers. This result serves to highlight the superior scalar performance of the
Power Challenge.

The SGI parallel results, though still somewhat preliminary, are very promising. For
pure refinement, both mark_to_refine() and r e f i n e () show linear speedup up to 4
processors. There is some drop-off for 8 processors, which is to be expected because of
critical sections present in the code. The slow down for r e f i n e () in going from sequential
to 1-CPU parallel execution is due to repeatedly looping over the elements for each color.
A total of 43 element colors are required for the initial grid. This overhead could be
avoided by sorting the elements by color; however, this has not yet been implemented.

We observe similar behavior for the coarsening step. Speedup is fairly linear up to 4
processors after which there is some drop-off. This can again be attributed to the critical
sections in the code, some of which may be eventually eliminated. Because 76 element
colors are required for the coarsening stage, the penalty in going from sequential to parallel
execution is greater than that observed in the refinement case.

The time to color elements has not been included in Table 2 above but is a significant
overhead for parallel execution and will need to be addressed. Using the highly inefficient
and redundant coloring algorithm described in the previous section, coloring elements for

496

refinement required 9.84 seconds, and for coarsening required 7.65 seconds. These times
would improve simply by saving the element coloring between executions so that only new
elements have to be colored. Some simple modifications of the coloring algorithm itself
would also yield improved performance.

6. S U M M A R Y

Fast and efficient dynamic mesh adaption is an important feature of unstructured grids
that make them especially attractive for unsteady flows. For such flows, the coarsen-
ing/refinement step must be completed every few time steps, so its efficiency must be
comparable to that of the flow solver. For this work, the edge-based adaption scheme of
Biswas and Strawn [1] is parallelized for shared-memory architectures.

Only minor modifications to the data structures are required for a shared-memory
parallel implementation. However, some scheme for ensuring independence of elements
is also necessary for parallel execution. For this work, we implemented a simple element
coloring scheme. A partitioning of the grid could also have been used; however, coloring
was much simpler to implement. A nice feature of the shared-memory paradigm is that
either scheme can be used, whereas on a distributed-memory system only grid partitioning
will work.

Results are presented that compare the original sequential code on both a Cray C90
and a SGI Power Challenge and the parallel version running on a 1-,2-,4-, and 8-CPU
SGI Power Challenge. For the sequential code, the Power Challenge performs about
1.8 times better than the C90. This is due in part to the Power Challenge using 32-
bit integers compared to the C90 using 64-bit integers and also to the Power Challenge
exhibiting better scalar performance than the C90 (given that the code neither vectorizes
or software pipelines very well).

The parallel performance is promising although the observed speedups are still fairly
modest. Speedups of 2.0X and 2.2X were observed on 4 processors. These tailed off to
2.3X and 2.7X on 8 processors. The parallel code still includes several critical sections
that need to be removed for better performance. Also, there is a significant penalty when
executing the parallel code on a single processor because the refinement and coarsening
loops are executed once for every element color. Finally, these speedups do not include
the time to color elements. Element coloring will be addressed in subsequent work.

R E F E R E N C E S

1. R. Biswas and R.C. Strawn, Appl. Numer. Math. 13 (1994) 437.
2. R.C. Strawn, M. Garceau, and R. Biswas, AIAA 15th Aeroacoustics Conf. (1993)

Paper 93-4359.
3. T.J. Barth, AIAA 10th Comp. Fluid Dynamics Conf. (1991) Paper 91-1548.
4. R.C. Strawn and T.J. Barth, J. AHS 38 (1993) 61.
5. R. Biswas and R.C. Strawn, 3rd US Natl. Cong. Comp. Mech. (1995) 234.
6. Power Challenge Technical Report, Silicon Graphics Inc., 1994.
7. T.W. Purcell, 14th European Rotorcraft Forum (1988) Paper 2.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

497

A Parallel Adaptive Navier-Stokes Method and Partitioner for Hybrid
Prismatic/Tetrahedral Grids

T. Minyard* and Y. Kallinderis t

Dept. of Aerospace Engineering and Engineering Mechanics
The University of Texas at Austin, Austin, TX 78712

A parallel finite-volume method for solution of the Navier-Stokes equations with adap-
tive hybrid prismatic / tetrahedral grids is presented and evaluated in terms of parallel
performance. The solver is a central type differencing scheme with Lax-Wendroff march-
ing in time. The grid adapter combines directional with isotropic local refinement of the
prisms and tetrahedra. The hybrid solver, as well as the grid adapter, are implemented
on the Intel Paragon MIMD architecture. Reduction in execution time with increasing
number of processors is nearly linear. Partitioning of the mesh is accomplished through
recursive division of the octree corresponding to the hybrid unstructured mesh. Subdi-
viding the octree generates partitions that have a lower percentage of elements on the
boundary than if standard recursive bisection were used for the hybrid grid. Results for
partitioning, solving on, and adapting a hybrid grid around an aircraft configuration are
presented and discussed.

1. I n t r o d u c t i o n

The development of unstructured grid methods has aided in the simulation of flow fields
around complex geometries. These methods have mostly been limited to tetrahedral grids.
Tetrahedra provide flexibility in 3-D grid generation since they can cover complicated
topologies easier than hexahedral meshes [1]. However, employment of tetrahedral cells
for boundary layers is quite expensive. In these regions strong solution gradients usually
occur in the direction normal to the surface, which requires cells of very large aspect
ratio. Structured grids are superior in capturing the directionality of the flow field in
these viscous regions. A compromise between the two different types of meshes is the use
of prismatic grids [2].

Prismatic meshes consist of triangular faces that cover the body surface, while quadri-
lateral faces extend in the direction normal to the surface. The cells can have very high
aspect ratio, while providing geometric flexibility in the lateral directions. The mem-
ory requirement of the prismatic grid is much less than that of a tetrahedral grid due
to its semi-structured nature. Additionally, the semi-structured nature of the prismatic
grid allows simple implementation of algebraic turbulence models and directional multi-
grid convergence acceleration algorithms [3]. While prismatic meshes are effective in

*Graduate Research Assistant
tAssociate Professor

498

capturing viscous effects in the boundary layers, they cannot cover domains that are
multiply-connected. Tetrahedral elements appear to be appropriate to fill the irregular
gaps in between the prismatic regions. Their triangular faces can match the corresponding
triangular faces of the prisms [4,5].

The initial meshes used for simulation of viscous flows may not always result in the
desired accuracy so improvement of the mesh may be necessary. Adaptive grid methods
have evolved as an efficient tool to obtain numerical solutions without a priori knowledge
of the nature and resolution of the grid necessary to efficiently capture the flow features.
These algorithms detect the regions that have prominent flow features and increase the
grid resolution locally in such areas [3,6].

One of the main issues for implementing a Navier-Stokes solver on a parallel com-
puter is partitioning of the complex 3-D computational domain in such a way that the
load is balanced among the processors. This task is by no means trivial because the
partitioning should result in subdomains that have a balanced load while minimizing the
amount of communication required between processors. Many approaches for partitioning
of complex computational domains have been developed [7-10]. Two of the more popular
techniques are orthogonal recursive bisection and eigenvalue recursive bisection. Orthog-
onal recursive bisection uses cutting planes to partition the grid based on the centroidal
coordinates of the cells. This approach is very inexpensive but the number of elements
on the partition interfaces can be large. Eigenvalue recursive bisection requires solution
of eigenvalue problems and is quite expensive but this technique reduces the number of
elements on partition interfaces [9,10]. One of the more popular eigenvalue techniques is
recursive spectral bisection (RSB) [10]. This technique has been used for partitioning of
unstructured meshes to obtain near-optimal subdomains.

The current work presents a parallel Navier-Stokes solver and grid adapter along with
a new partitioning scheme in which the orthogonal recursive bisection approach is applied
to the octree of a hybrid mesh instead of the cells. The resulting subdomains based on
the octree have fewer elements on the partition interfaces than if bisection of the cells
were performed. The use of the octree also requires less computational time to partition
a mesh because the number of octants is significantly smaller than the number of grid
cells.

2. Adaptive Numerical Method

The solver employs a finite volume method using the conservative Navier-Stokes equa-
tions in integral form. The evaluation of the finite volume integrals is performed on
the edges in the mesh to reduce computational time and memory requirements. A Lax-
Wendroff approach is applied to march the solution in time [3].

Three-dimensional Navier-Stokes computations usually require a large amount of mem-
ory. In the present work, the structure of the prismatic grid in one of the directions is
exploited in order to reduce storage to the amount required for a two-dimensional Navier-
Stokes solver with triangles. All pointers that are employed refer to the triangular faces
of the first prisms on the body surface (base faces), with all prisms above the same base
face forming a stack. A simple index (typical of structured grids indexing) is sufficient to
refer to any prism cell belonging to the same stack. The base faces pointers connect the

499

faces to their corresponding edges and nodes. A complete explanation of the solver and
its parallel implementation can be found in references [3] and [11].

A special type of adaptive refinement of prisms is applied in the present work in order
to preserve the structure of the mesh along the normal-to-surface direction. If there is
appreciable local flow variation parallel to the surface, then all prisms in the local stacks
are directionally divided along the lateral directions. In other words, the triangular faces
are divided while the quadrilateral faces are not. In this way, grid interfaces within the
prisms region are avoided and the structure of the grid along the normal-to-the-surface
direction is preserved. Therefore, adaptation of the prisms reduces to adaptation of the
triangular grid on the surface resulting in a simpler and less expensive algorithm in terms
of storage and CPU time compared to a 3-D adaptation algorithm.

Two types of division are applied. The first divides the triangular faces of the prisms
into four smaller triangles, while the second type divides them into two. If two edges of
the triangle are flagged for refinement, the third is also flagged automatically to avoid
stretching. Edges are chosen for refinement by determining the flow gradients along
an edge and if the gradient is above a user-defined threshold, the edge is flagged for
refinement. In order to avoid stretched meshes created due to several refinements of the
same cells, the following rules are implemented: (i) only one level of refinement/coarsening
is allowed during each adaptation, (ii) if the parent cell is refined according to one-edge
division, then it is divided according to the three-edge division at the next refinement, and
(iii) if the maximum adaptation level difference of neighboring surface triangles around a
node is more than one, the coarsest triangles will be refined according to the three-edge
division.

The adaptation procedure for tetrahedra is very similar to that for prisms. The feature
detector flags edges to be refined. The method of tetrahedral cell adaptation employed
in the present work is discussed in detail in [6]. The following three types of tetrahedral
cell division are considered: (i) one edge is refined, (ii) three edges on the same face are
refined, and (iii) all six edges are refined.

After all edges for refinement are flagged, each tetrahedral cell is visited and the flagged
edges are counted. Then, the cell is chosen for division according to the above three types.
In all cases that are different from the three cases above, the cell is divided according to
the third type of division. If two edges on the same face are flagged, the third edge of
that face is also marked. In order to avoid a stretched mesh, the previous rules applied to
prisms adaptation are employed. A more detailed description of the hybrid grid adaptation
algorithm is given in [3].

3. Octree-Based Partitioning of Hybrid Grids

Partitioning of an unstructured mesh is accomplished by using its corresponding octree.
The octree is automatically generated by recursive subdivision of a master hexahedron
(octant) enclosing the entire domain into successively smaller octants. A sweep over
the cells in the domain is performed and the cell is placed in the octant in which its
centroid lies. When the number of cells in an octant exceeds a user-specified amount,
the octant is refined into eight smaller octants and the cells that were in the parent
octant are placed in the appropriate child octant. This process continues until all cells in

500

the domain are placed in their respective octants. The resulting octree has significantly
fewer octants than the total number of cells. The octree also results in a structure that
follows the geometry of interest. The computational cells are usually clustered around
the body therefore the octants are refined more in this region while the octants near
the far field remain relatively large. The computational grid is divided into as many
subgrids as processors by a partitioning algorithm. The main steps of the process are
(i) coordinate-based grouping of octants and (ii) smoothing of partition boundaries.

3.1. Coordinate-based Grouping of Octants
The grid is partitioned by dividing up the corresponding octree and assigning the cells in

an octant to the appropriate subdomain. The octants are divided into groups based upon
their centroidal coordinates by cutting planes that are provided as input. By suitably
setting the orientation of the cutting planes, several different partitionings of the grid
can be realized. The coordinate-based cutting planes are better suited for division of an
octree than for partitioning of the computational cells. Division of the computational
cells can result in long and slender partitions that have a large percentage of faces, edges,
and nodes on the partition interfaces. Since the octree is biased by the size and number of
computational cells in a region, the partitions generated by dividing the octants are not
as long and slender and they have a lower percentage of grid elements on the partition
interfaces.

One feature of the present partitioning method is that a stack of prisms is not split
among partitions. The normal-to-the-surface structure of the prismatic region is exploited
so that all cells within each prism-stack are assigned to the same partition. In this way,
all data structure operations for partitioning refer to the triangular surface mesh. This
results in savings in both memory and execution time.

3.2. Smoothing of Interpartition Boundaries
Because of the unstructured nature of the grid, interpartition boundaries may be jagged

with a high number of edges on partition interfaces. These boundaries can be improved by
applying a smoothing technique to the cells on the partition interfaces. The process begins
by determining which cells in the computational domain are candidates for smoothing.
A cell is flagged for smoothing if all of its nodes are shared between two neighboring
partitions. Thus, if the cell were moved from its present subdomain to the neighboring
one, then the number of grid elements on the interface boundary would be reduced. The
flagged cells are then moved among the neighboring subdomains so that the number of
grid elements on the interface is reduced while maintaining a load balance among the
partitions. This process repeats iteratively until almost all of the flagged cells on the
interfaces have been smoothed. This smoothing has proven to reduce the percentage of
grid elements on the partition interfaces and the process usually completes in less than
ten iterations.

4. Results for an Aircraft Configuration

The performances of the coordinate-based octant grouping scheme, parallel solver, and
parallel grid adapter are now examined for simulation of flow about a high speed civil
transport (HSCT) aircraft configuration. The initial mesh consists of approximately 176K

501

prisms and 170K tetrahedra. The corresponding octree for this mesh contains just over
15K octants. Figure 1 shows the signature of the partitions on the surface of the HSCT
after smoothing of the interpartition boundaries for a case with sixteen prism partitions.
The partition interfaces are smooth with approximately ten percent fewer edges on the
boundaries than if smoothing were not applied. The partitioning of the corresponding
octree for the same case with sixteen tetrahedral partitions is shown in Figure 2a. The
figure shows the footprint of the partitions on the symmetry plane of the domain. The
octree biases the partitioning around the aircraft geometry. The footprint of the resulting
tetrahedral subdomains on the symmetry plane after smoothing of partition boundaries
is shown in Figure 2b.

Figure 1. Signature of the partitions on the surface of the HSCT aircraft after smoothing
of the interpartition boundaries for a case with sixteen prism partitions.

Figures 3a and 3b compare the maximum local percentage of edges on partition in-
terfaces for the current octree partitioning and a partitioning generated using RSB. The
octree technique yielded a slightly higher percentage of edges on the boundaries than the
RSB method. The same trend was observed for the average local percentage of edges on
partition interfaces with the RSB performing only slightly better than the octree method.
It should be emphasized, however, that the execution time for the present partitioning
technique is much less than the amount of time required by RSB to partition the same
grid.

502

Figure 2. Partitioning of the octree corresponding to the HSCT tetrahedral mesh using
coordinate-based cutting planes results in subdomains that are biased by the geometry.
Signatures of the sixteen partitions are-shown on the symmetry plane for both (a) the
octree and (-b) the tetrahedral mesh after smoothing of partition boundaries.

40 40

35
" o
t.-

o 30 m
t -
o

25 q}
(D
o }

" o
LU 20
c-
O
.o 15 Q

n
•

10

35

30 m

~, 25

LU 20

,o 15
t

5

I I

sSSSsssssss Sp'SS -

10 20 30 40 50 60 70
Number of partitions

0 70

I I I I I I

/ /

h' I I I I I I

0 10 20 30 40 50 60
Number of partitions

(b)

Figure 3. Comparison of the maximum local percentage of edges on partition interfaces
obtained using the coordinate-based octree method and RSB for the (a) prismatic and
(b) tetrahedral regions around the HSCT.
-0- using octree-based partitioning, -+- using recursive spectral bisection (RSB).

503

Several of the partitions obtained using the octree method were run using the solver
and then adapted on an Intel Paragon. Figure 4a presents the scalability results for
parallel execution of the solver for the HSCT. The scale on the axes is logarithmic with
base 2. The execution times per time step for increasing number of processors exhibit a
linear reduction with only a slight deviation from the ideal linear reduction in time. It
is noted that the communication times for the solver were less than one percent of the
total run time for all cases considered. The scalability results for parallel execution of
the grid adapter for the same grid are shown in Figure 4b. A dynamic load balancer
used in conjunction with the presented parallel grid adapter to rebalance the loads among
processors after adaptation is given in reference [12].

,+ . ,

i f)

E
I -

o
(/ 1

v

(1,)
E .m

c-
O

0 ~)
x
mlm

64 16

32

16

o

if}
v

E
t-
O

O
O
X

UJ

I I I

=

" x x , , -

4 I , 0.5 , I I I
16 32 64 128 8 16 32 64 128

Number of processors Number of processors

(b)

Figure 4. Scalability results for parallel execution of the (a) solver and (b) grid adapter on
the Intel Paragon for the HSCT aircraft configuration. Case of hybrid grid with 176,480
prisms and 170,300 tetrahedra.
-<>- actual time, ideal linear reduction in time.

i

Acknowledgmen t s

The authors would like to thank Horst Simon for providing us with the RSB partitioning
code Version 2.2 written by Steve Barnard and Horst Simon. This work was supported by
ARPA Grant DABT 63-92-0042, the Texas Advanced Technology Program (ATP) Grant
003658-413, and the NSF Grant ASC-9357677 (NYI program). Parallel computing
time on the Intel Paragon was provided by the NAS Division of the NASA Ames Research
Center.

504

R E F E R E N C E S

1. T.J. Baker, "Developments and Trends in Three Dimensional Mesh Generation," Ap-
plied Numerical Mathematics, Vol. 5, pp. 275-304, 1989.

2. Y. Kallinderis and S. Ward, "Prismatic Grid Generation for 3-D Complex Geome-
tries," AIAA Journal, Vol. 31, No. 10, pp. 1850-1856, October 1993.

3. V. Parthasarathy, Y. Kallinderis, and K. Nakajima, "Hybrid Adaptation Method and
Directional Viscous Multigrid with Prismatic / Tetrahedral Meshes," AIAA Paper
95-0670, Reno, NV, January 1995.

4. Y. Kallinderis, A. Khawaja, and H. McMorris, "Hybrid Prismatic / Tetrahedral Grid
Generation for Complex Geometries," AIAA Paper 95-0211, Reno, NV, January 1995.

5. A. Khawaja, H. McMorris, and Y. Kallinderis, "Hybrid Grids for Viscous Flows
around Complex 3-D Geometries including Multiple Bodies," AIAA Paper 95-1685-
CP, San Diego, CA, June 1995.

6. Y. Kallinderis and P. Vijayan, "An Adaptive Refinement Coarsening Scheme for 3-D
" / Unstructured Meshes, A AA Journal, Vol 31, No.8, pp 1440-1447, August 1993.

7. C. Farhat and M. Lesoinne, "Automatic Partitioning of Unstructured Meshes for the
Parallel Solution of Problems in Computational Mechanics," International Journal
for Numerical Methods in Engineering, Vol. 36, pp. 745-764.

8. R. Lohner, R. Ramamurti, and D. Martin, "A Parallelizable Load Balancing Algo-
rithm," AIAA Paper 93-0061, Reno, NV, January 1993.

9. E.R. Barnes, "An Algorithm for Partitioning the Nodes of a Graph," SIAM Journal
of Alg. Disc. Methods, Vol. 3, p. 541, March 1982.

10. A. Pothen, H. D. Simon, and K.-P. Liou, "Partitioning Sparse Matrices with Eigen-
vectors of Graphs," SIAM Journal of Matrix Anal. Applications, Vol. 11, No. 3, pp.
430-452, July 1990.

11. T. Minyard and Y. Kallinderis, "A Parallel Navier-Stokes Method and Grid Adapter
with Hybrid Prismatic/Tetrahedral Grids," AIAA Paper 95-0222, Reno, NV, January
1995.

12. T. Minyard and Y. Kallinderis, "Partitioning and Dynamic Load Balancing of Adap-
tive Hybrid Grids," AIAA Paper 96-0295, Reno, NV, January 1996.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

505

Parallel Adaptive hp Finite Element
Approximations For Stokesian Flows: Adaptive

Strategies, Load Balancing and Domain
Decomposi t ion Solvers

Abani Patra*and J. T. Oden t
Texas Ins t i tu te For Compu ta t iona l and Applied Ma thema t i c s

Universi ty of Texas at Aust in
Aust in,TX-78712

Abstract

This paper summarizes the development of a new class of algorithms using parallel
adaptive hp finite elements for the analysis of Stokesian flows. Adaptive strategies, mesh
partitioning algorithms and a domain decomposition solver for such problems are discussed.

1 I n t r o d u c t i o n

In this paper, we describe some new algorithms and early experiences with them, in combin-
ing adaptive hp finite element methods with parallel computing for the analysis of Stokesian
flows. Adaptive hp finite element methods, in which grid size and local polynomial order of
approximation are both independently adapted, are capable of delivering super-algebraic and
even exponential rates of convergence, as seen in the work of Babuska, Oden, Demkowicz and
others [1, 2]. With parallel computing, these methods have the potential to dramatically reduce
computational costs associated with realistic finite element approximations.

The development of several good a posteriori estimators [3, 4] has removed one of the
principal difficulties in implementing hp adaptive methods. However many other difficulties
must be surmounted before such performance can be achieved for real simulations. Major
difficulties in doing so are: non-conventional adaptive strategies that produce good hp meshes
must be developed; the linear systems arising out of non-uniform hp meshes are difficult to
partition into load balanced sub-domains and are very poorly conditioned for efficient parallel
iterative solution. The subsequent sections describe algorithms designed to overcome each of
these difficulties. Section 2 introduces the Stokes problem its' finite element formulation and

*NSF Post-doctoral Fellow, TICAM
t Cockrell Family Regents Chair no. 2 in Engineering

506

the appropriate function spaces necessary for a description of the various algorthms used in the
solution process. Section 3 describes a simple adaptive strategy for producing good hp meshes.
We also discuss here a construction of compatible approximation spaces for the velocity and
pressure spaces. Section 4 reviews a recursive load based bisection type mesh partitioning
strategy. Section 5 discusses a domain decomposition type solver for such problems.

2 The Stokes Prob lem

The mixed finite element approximation of the Stokes problem is classically given by:

Find u h E Yh, Ph C Wh such that

a(uh,v) + b(v, Ph) = L(v) w, c vh (1)

t,(~h, qh) = -b(~, qh) Vqh C Who (2)

where U h -t- U is the approximate velocity field and Ph is the approximate pressure field of an
incompressible viscous fluid flowing through a given domain ft C Rd with imposed velocity ~ at
the boundary Oft of ft. The domain ft is partitioned into sub-domains fti and finite elements
wK. It is assumed that sub-domain boundaries coincide with element boundaries. The finite
element spaces Vh and Who are conforming finite dimensional approximations of (Hl (f t)) 2 and

Lo~(a).
vh = {vh c v hp, v h l ~ e vp(~K), vI(, vh = 0 on 0n}

Wh = {qh e L2(ft),qhl~,~ e Wp(wi<),VI(},

Who -- {qh E Wh, f qhdx - 0} Jf~

Vp(wK) and Wp(wg) are tensor product polynomial spaces whose precise construction is de-
scribed in the next section.

3 3 Step Adapt ive Strategy

This type of adaptive strategy was first proposed in Oden and Patra [6]. We briefly review
the underlying ideas. Most conventional adaptive strategies propose an incremental type of
refinement whereby a certain heuristically determined fraction of the mesh is refined/enriched
to the next level. While this strategy ultimately leads to a good mesh, it causes a large number
intermediate solution steps on non-optimal meshes. The cost of these intermediate solutions
might negate all advantages of adaptivity. Clearly a good adaptive strategy must deliver a mesh
for a desired level of error in one or two iterations. Moreover, in the context of hp adaptivity,
we also need a way of choosing between h and p adaptivity.

507

3.1 B a s i c P r i n c i p l e s a n d S t r a t e g y

We now describe the basic ideas underlying the adaptive strategy.

�9 Optimal meshes equidistribute error over the whole domain.

�9 Asymptotic a priori error bounds are treated as equalities e.g.

N ~ N

IV1 hK * [[e[[1,a - C ~ hK [[Ullr,a K - -2v-ltli
K--1 "-

where u is the exact solution, e is the error, h and p are mesh parameters.

�9 Use of a good a posteriori error estimate to compute the constants AK (mesh parameter
independent) in the above a priori error estimate from a coarse mesh solution. Conver-
gence rates p and u, if unknown, can be estimated from two coarse mesh solutions.

�9 Mesh parameters h and p, required for a desired error, are estimated locally from the a
priori estimate and the need to equidistribute the error.

�9 Orthogonality of error to finite element space leads to a good approximation of the norm
of the exact solution norm i.e. Ilull~,a ~ Iluhpll~,a + [lelll2 a

The adaptive strategy comprises of 3 steps: 1) selecting an intermediate error level be-
tween the initial mesh error and the final target mesh, and estimating different parameters
using a coarse mesh solution, 2) keeping polynomial orders PK constant adapting the grid size
(change hi~-) to achieve the intermediate error while equidistributing the error, 3) keeping grid
size constant and changing the local polynomial orders p/~- to achieve the target error while
equidistributing the error.

3 .2 C o m p a t i b l e a p p r o x i m a t i o n s o f v e l o c i t y a n d p r e s s u r e

We will now specify the exact polynomial spaces Vp(COK) and Wp(OJK) that avoid the commonly
known phenomena of "mesh locking" while preserving approximation properties in an adaptive
hp mesh. In mathematical terms, these spaces satisfy the requirement that the LBB constant
is bounded away from zero. Our ideas here are motivated by the work of Stenberg and Suri [5]
on the p version.

Let Ui(x)= f~l Li(t)dt, where Li(x) is the Legendre polynomial of degree i and let Pp(S)
denote a polynomial of degree totaling p defined on the unit square S = [-1 , 1] 2. Now the
approximation over each element wi~: may be defined by the sum of internal functions J;(S)
and external functions Ep(S) defined as

Jp(X) - {v[v - Ep, j l l aijUi(x)Uj(y),aij C ~ p >_ 2}

E;(S) -- Pl(]z)Pp(iy) U Pp(]z)Pl(iy)

508

I i - - i

i ___1
|

_ _ t _ _ _ _ r -!
__

r - F ~ , , F ~ ! . . " - q
1 ~ i I I ,....~ I
L ! n F,.J L O .._.~ _i L__~I L]
- Ix ,-; -,

I i :
i : i ! z

i
i i.. - i "-.

..." . @

Figure 1: Basic space filling curves.

where Ix and Iy are the unit intervals [-1 , 1]. Thus in two dimensions Ep is made up of four
sets of polynomials associated with the four edges of S. In an adaptive hp mesh these may all
be different. Now let Pm -- maz{pl,P2,P3, P4}. Compatible spaces Vp(S) and Wp(S) can be
defined as

Wp(S) - - E p l - l (') ' l) 0 Ep2-1(")'2) �9 Ep3-1(")'3) �9 Ep4-1(";'4) �9 Jp,.n-l(,-, q)

Vp(S) - - Epl(') ' l) �9 Ep2('T2) �9 Ep3('~3) �9 Ep4('T4) �9 Jpm.-kl(S).

where 71,72 etc. denote the sides of S The standard finite element mapping process can be

4 R L B B O - M e s h P a r t i t i o n i n g A l g o r i t h m

An essential part of applying parallel computat ion to these problems is the part i t ioning of
the mesh into load balanced pieces with minimal interfaces. Partit ioning adaptive hp meshes,
however, poses special difficulties since i)the load distribution is irregular and localized ii) a
good choice of an a priori measure of computational load is difficult.

We use a recursive bisection of an ordering of the elements created using a space filling
curve (see Fig. 1 for an illustration) passing through the element centroids. The curve is
bisected using a composite load measure comprising of the load estimates on each element in
a parti t ion and the engendered interface. As a load measure we use the degrees of freedom
in each element, the error in a coarser mesh and the degrees of freedom on interfaces. Such
algorithms are discussed in Pa t ra and Oden [7].

509

5 D o m a i n D e c o m p o s i t i o n Solver

The solver described here is an extension of the domain decomposit ion solver proposed for

adaptive hp methods for elliptic problems in Oden, Pa t r a and Feng [8]. The p r imary concerns
with this type of solver are: 1) is the preconditioner good enough to guarantee convergence
with increasing p, and 2) is the solver efficient for parallel computing. The solution process for
Stokesian flows poses two addi t ional difficulties: 1) obtaining solution in divergence free space,

2) the solution of indefinite linear systems. The basic solution procedure for elliptic problems
covered by the following scheme:

Apply partial orthogonalization first at the element level to eliminate the interior functions and
then at the sub-domain level to obtain reduced system on the interface Sfi - F , where S - ~)-~ND Si
and Si = ~ M TKiMi and F = ~ F i = ~ MT fi

�9 R ~ = F , p0 = 0

�9 Iteration in n

- Precondition G ~ = C - l • n

- Compute direction of descent

p n _ G n + < Rn, Gn > pn-X
< R n - l , G n - l >

- Compute

ND ~ R n ' G n >
= x-'__,q~p~, a~ = Z ~

< Z ~, p~ >
i=1

un+ 1 = u n + a n P n , R n+l = R n _ a n Z n--

e n d
1 * loop on n

0 Add correction term to interior unknowns ui - u i + MTfi

5.1 S o l u t i o n i n d i v e r g e n c e f r e e s p a c e

It is clear fron the above a lgor i thm tha t to construct divergence free velocities by the above
procedure, one must ensure tha t each of the search direction pn is a divergence free vector.

This is accomplished by modifying the preconditioning step C G ~ = R n to

C G n + B T p _ g

B G n - 0

where

V h . l d Q i - ~r vh.ndF
i

510

and iO is a vector of average pressure per sub-domain. This computation reduces to one coarse
solveper iteration of a problem of dimension equal to the number of sub-domains, and the initial
cost of setting up and f ac to r ing /)C -1 B r.

5.2 S o l u t i o n o f I n d e f i n i t e S y s t e m s

If the pressures are discontinuous across inter-element boundaries: then they may be eliminated
at the element level using one more step of partial orthogonalization as shown below. Consider
the element matr ix

[K~] P - Bpe 0 Bpb
Ub Kbe Bbp Kbb Ub

Apply partial orthogonalization

[AA l{ } - . . % s o

Ub 0 0 Kbb Ub

where S = -BpbK~ 1Bpb.

Following up with one more level of partial orthogonalization

_ ~

{ ~ K ~ O 0
- 0

Ub 0 0 Kbb

15
Ub

Element average pressures iff~ can be recovered by postprocessing the original equations
with the velocities. Thus the final pressure is formed as P = igi -t- iff~ + P.

5 .3 C h o i c e o f P r e c o n d i t i o n e r

As described in Oden, Patra , and Feng [8] matrix S is naturally blocked into a small port ion
(N N) corresponding to the linear on the interface and the larger portion corresponding to the
unknowns associated with the higher order polynomials(EE) and their interactions N E and
E N . As a preconditioner C, we explore two choices, denoted HPP1 and HPP2, respectively:
1) the N N block and the diagonals of E E 2) the N N block and the block diagonals of E E
corresponding to a particular edge. For these choices of preconditioner, Letallec and Pa t ra
[9] have established firm theoretical bounds on the conditioning of the system, guranteeing
convergence in a reasonable number of iterations.

511

6 N u m e r i c a l R e s u l t s

Example 1. The well known problem of driven cavity flow is used as the first numerical example.
The domain, boundary conditions and mesh are shown in Fig. 2. Figure 3 shows performance
of the domain decomposition solver with respect to increasing polynomial order and problem
size. Convergence with respect to both appears to be robust and correspond to the theoretical
bounds. Page limitations prevent inclusion of further results here.

Figure 2. a)Driven cavity flow - boundary conditions and domain b)Sample adaptive hp mesh

Figure 3.a)Convergence of iterative solver with HPP1 preconditioner for different element
orders. Mesh of 64 elements with H/h=4. Numbers in parentheses are the total number of
unknowns, b)Scalability of iterative solver with HPP1 preconditioner for different element
orders. Effect of problem size keeping number of elements per processor constant for different
element orders.

A c k n o w l e d g e m e n t s

The support of this work by ARPA under contract no. DABT63-92-C-O0~2 is gratefully
acknowledged.

R e f e r e n c e s

[1] I. Babuska and M. Suri, "The p and h-p versions of the finite element method, Basic
Principles and Properties", SIAM Review, Vol. 36, Number 4, December 1994.

512

[2] J. T. Oden and L. Demkowicz, " h-p adaptive finte element methods in computational
fluid dynamics", Computer Methods in Applied Mechanics and Engineering, Vol. 89, 1991.

[3] M. Ainsworth, J. T. Oden, "A Unified Approach to a-posteriori Error Estimation Using
Element Residual Methods " ,Numerische Mathematik, vol. 65 (1993) pp.23-50.

[4] R. E. Bank, R. K. Smith, "A posteriori Error estimates based on hierarchical bases",
SIAM Journal on Numerical Analysis, vol 30 no. 4, pp. 921-935.

[5] R. Stenberg and M. Suri, "Mixed hp finite element methods for problems in elasticity and
Stokes flow", preprint, February 1994.

[6] J.T. Oden and Abani Patra, "A Parallel Adaptive Strategy For hp Finite Elements" ,in
Comp. Meth. in App. Mech. and Engg., vol 121, March 1995, pp. 449-470.

[7] Abani Patra and J. T. Oden "Problem Decomposition Strategies for Adaptive hp Finite
Element Methods", to appear in Computing Systems in Engineering.

[8] J. T. Oden, Abani Patra, Y. S. Feng, ""Domain Decomposition for Adaptive hp Finite El-
ements", in J. Xu and D. Keyes ed. Procedings of VII th In te rna t iona l Conference
on Domain Decomposi t ion Methods , State College, Pennsylvania.

[9] P. Letallec and A. K. Patra, "Non-overlapping Domain decomposition Methods for Stokes
Problems with Discontinuous pressure fields", TICAM Report (in press).

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

513

Pa ra l l e l P r o c e s s i n g for S o l u t i o n - A d a p t i v e C o m p u t a t i o n of F l u i d F l o w *

T. L. Tysinger, D. Banerjee, M. Missaghi and J. Y. Murthy

Fluent Inc.
10 Cavendish Court
Lebanon, NH 03766
USA

This paper describes the parallel implementation of a solution-adaption algorithm for
the computation of fluid flow on unstructured grids. Comparison to the serial implemen-
tation is demonstrated and the performance of the overall parallel adaption procedure is
presented.

1. I N T R O D U C T I O N

Fluid flow problems involving regions of sharp gradients, multiple scales, or moving
fronts are common in a number of engineering application areas such as phase change in
casting and molding, pollutant dispersal, ground water transport, combustion, in-cylinder
flows in the automotive industry and in countless other applications. In mold-filling, for
example, a molten fluid is poured into a mold. The melt free surface moves through the
mold cavity with time, displacing the air; as it moves, it may also change phase as the
cold mold walls cause multiple freeze fronts to move inwards. Such problems generally
involve complex three-dimensional geometries, are time-dependent, and consequently, ex-
tremely computer-intensive. Parallel processing offers an effective option for solving these
problems in a timely manner.

Moreover, virtually all problems of industrial interest involve complex geometries, and
much of the user's time is consumed in geometry and mesh generation. In recent years,
unstructured mesh methodologies have been developed which offer great flexibility in dis-
cretizing complex domains, and in dynamically adapting the mesh to the evolving solution.
Unstructured solution-adaptive meshes allow optimal use of computational resources be-
cause grid nodes may be concentrated dynamically in areas of high gradients, without the
topological constraints imposed by line or block mesh structure.

The overall objective of our efforts is to develop efficient and accurate computational
methods for solving moving front problems on unstructured meshes, utilizing solution
adaption to capture the moving front and parallel processing to achieve computational
speed. This paper presents our progress to date in developing the necessary procedures for

*This material is based upon work supported by the National Science Foundation under award number
DMI-9360521. Any opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the National Science Foundation.

514

parallel solution adaption, partitioning, and load balancing in the context of unstructured
meshes.

2. A P P R O A C H

2.1. Numer i ca l Scheme
The flow solver is based on a finite volume scheme wherein the physical domain is sub-

divided into small volumes, or cells, and the integral equations are applied to each cell.
A central difference scheme is used to compute convective and diffusive fluxes. Artificial
dissipation is therefore required to stabilize the solution. Several options are available for
computing this, including a blend of second and fourth differences of conserved variables
similar to that suggested by Jameson et al [1]. Alternatively, an upwinded flux evaluation
scheme, such as the Roe flux function [2], may be employed that does not require any
additional dissipation. Instead of using the cell-average values of the conserved variables
as the left and right states for computing the face fluxes, a multidimensional linear re-
construction approach similar to that suggested by Barth and Jespersen [3] is used to
increase the spatial accuracy of the discretization. The basic time stepping mechanism
is a user-configurable explicit multi-stage Runge-Kutta scheme, with either a global time
step for time-accurate solutions or local time stepping for faster convergence to steady
state solutions. To enhance convergence rates, a novel multigrid scheme [4] that employs a
sequence of nested coarse meshes made up of faces of the fine mesh is used. The multigrid
scheme can be coupled with a dual-time stepping method [5] for the solution of unsteady
flows. Preconditioning algorithms are used to overcome time-step restrictions encountered
for low Mach number or incompressible flows [6].

The parallel implementation of this solver is described in [7]. It is based on a domain
decomposition strategy in which the spatial domain for a problem is separated into smaller
sub-domains or partitions and a separate instance of the solver is invoked to simulate the
flow within each partition.

2.2. Solut ion Adap t ion
The parallel adaption strategy is an extension of the serial algorithm developed by Smith

and demonstrated in [8]. As with the serial implementation, initial cells are identified and
marked for adaption based on a general user-selectable criterion (for example, pressure
gradient). Once marked, an instance of the serial adaption algorithm is run within each
partition (i.e. processor), and message-passing is performed when necessary (e.g. when
cells along an interface boundary are refined or coarsened) to perform remote updates
and make remote requests.

The refinement algorithm selects a marked cell and splits it along its longest edge. In
order to maintain good grid quality for the solver, the algorithm cannot create small cells
adjacent to large ones. To satisfy this requirement, the algorithm will search for the cell
with the longest edge in the neighborhood of the marked cell and split that edge, thereby
reducing the size of neighboring cells. This continues recursively until the initial marked
cell is split.

In the parallel implementation each partition will select a marked cell for splitting, if one
exists, and apply the above procedure. If the recursive search "falls off" the processor's
partition, it is re-started in the neighboring partition. The processor suspends refinement

515

of the original cell until the neighboring processor splits all large cells of the neighborhood
which lie in its partition. In addition, when a cell adjoining an interface is split, the
changes must be propagated to all neighboring processors which share a face of the split
cell. Since message-passing overhead depends largely on the number of messages sent,
several small instruction messages are cached and sent as a single message.

The serial coarsening algorithm determines that a node is to be deleted if all cells
adjoining the node are marked for coarsening. The node is deleted and a cavity is con-
structed from cell faces that form the boundary around marked cells. Next, the cavity is
re-triangulated and thereby filled with new and fewer cells. In the parallel implementa-
tion, each processor searches for such nodes that can be deleted, and re-triangulates the
bounding cavities. Complications arise if the cavity is distributed across more than one
processor. In such a case, all cells are migrated to a designated processor which performs
the coarsening.

2.3. Load Balancing
Load balancing is important whenever the work (i.e. elapsed wall clock time) required to

compute the flow field in any given partition differs significantly from the mean. Without
load balancing, those processors which finish "early" will sit idle at synchronous communi-
cation points, waiting for the remaining processors to finish their computation. The load
balancing procedure is divided into two phases. In the first phase, all cells are assigned
a partition destination. The criteria for deciding the cell's destination form the basis for
parallel partitioning. In the second phase, cells marked with a new partition destination
are sent to that partition. This phase, referred to as cell migration, is a general algorithm
which allows the migration of any cell to any partition.

2.3.1. Parallel Partitioning
As with the serial algorithms, parallel partitioners attempt to create a number of sub-

domains (equal to the number of available processors) of approximately equal size with
small interface boundaries. The major complication with the parallel algorithms is that
the grid geometry and connectivity are distributed among all processors. In this work,
for a "proof-of-concept", we have not concentrated on developing or implementing algo-
rithms which produce the "best" interface boundaries, but rather have selected two simple
schemes which produce a balanced load with reasonable, but not optimal, interface size.

Global Partitioning

The first partitioning algorithm considered is coordinate strip bisection. Each processor
contributes to a global array the centroid location of each cell in its partition. The global
array is then sorted from smallest to largest value and sub-divided into the number of
processors. Those cells in the first sub-division are assigned a destination of the first
processor, the second sub-division are assigned a destination of the second processor, etc.
Cells are then migrated to their destination processor if necessary. Global partitioning
schemes are often criticized because global reordering and migration of data is required
(see for example [9]). However, global reordering can be done efficiently with parallel
sorting techniques, and after destinations have been assigned, only one migration pass is
needed.

516

Local Partit ioning

Another approach to partitioning is to compute an imbalance between partitions, and
exchange cells locally with neighboring partitions. This process continues iteratively until
a balanced load is achieved. The process is very similar to solving Laplace's equation
for heat diffusion using finite-differences. Here, each partition can be thought of as one
node of the computational grid. Nodal temperatures are replaced by the average load in
each partition, and differences in the partition loads are computed. Cells are exchanged
across interface boundaries in proportion and direction of the gradient. Several local
cell migration passes are usually necessary before the load reaches equilibrium. Similar
approaches are described by LShner et al. [9].

2.3.2. Cell Migration
The underlying tool used to load balance is cell migration, where cells are sent to their

marked partition. The data structure of the code consists of faces, cells, and nodes. A
face contains only pointers to those cells and nodes it adjoins. Copies of faces along
an interface boundary reside in both adjacent partitions. Cells, which contain the flow
variables, cannot be shared within a partition; however, any residing in an exterior cell
layer are duplicates of those in the neighboring part i t ion. Nodes contain geometrical
coordinate information, and may be shared by faces within a partition. As with faces,
nodes along an interface boundary will be duplicated in the adjacent partitions. Unlike
faces, nodes can adjoin more than two partitions.

Cell migration involves four steps:

1. cell transfer: send contents - id and flow variables - o f all marked cells to new
destination, unless they already exist there; receive incoming cells and add to local
list of immigrant cells.

2. node transfer: mark all nodes of marked cells for migration; send contents - id and
coordinate geometry- to new destination, unless they already exist there; receive
incoming nodes and add to local list Of immigrant nodes.

3. face transfer: mark all faces adjacent to the marked cells for migration; send contents
- ids of adjacent cells and nodes - to new destination, unless they already exist there;
receive incoming faces and add to local list of immigrant faces.

4. rebuild grid: remove all emigrant cells, nodes, and faces from partition if no longer
needed; build new section of partition from contents of local immigrant lists.

Before the final step, large parts of the domain may be duplicated on the immigrant lists.
To reduce this memory overhead, the migration procedure is executed in several passes,
limiting the total number of migration cells to a fixed number in each pass. The memory
savings are not free since this requires more communication and computation.

3. Resu l t s

3.1. Flow Over NACA-0012 Airfoil
To demonstrate the implementation we have devised a problem of supersonic flow over

a NACA-0012 airfoil at free stream at Mach number 2. A bow shock develops near the

517

leading edge together with a shock emanating from the trailing edge. Associated with the
shocks are large pressure gradients.

Figure 1. Adapted shocks about NACA 0012 airfoil at M=2

The initial grid shown in Figure l(a) contains 1436 cells but is too coarse to satisfactorily
capture the shocks. To resolve the pressure gradients the grid is refined in areas where
they are high. A solution is then computed on the newly adapted grid and the process
is repeated until the gradients are sufficiently resolved. Figure l(b) shows the grid after
5 cycles of this adaption process using the serial implementation. The grid at the same
number of adaption cycles using the parallel implementation is shown in Figure l(c).
The slight differences between the two grids are due to algorithmic asymmetries in the
adaption splitting procedure. Qualitatively there are no differences between the two grids,
and the solutions are found to be in agreement. The grid after 10 parallel adaption cycles
is shown in Figure l(d). The grid contains 10623 cells, about 10 times that of the initial
grid. To obtain similar resolution on a uniform unstretched grid would have required

518

more than 2 million cells.
Another important part of the adaption procedure is load balancing. After the grid is

adapted, the amount of cells in each partition may vary substantially. For example if the
shock happened to reside mostly within one partition, most newly created cells would also
reside in that partition. Since the overall speed of the computation is limited by the slowest
processor it is desirable that each processor has an equal number of cells. Therefore after
each adaption, the grid is re-partitioned in parallel to equally distribute the cells. The
grid in Figure l(c) for example contains 5541 cells. Immediately after it is adapted the
number of cells in each partition varies from 921 to 1433. After global repartition, four of
the processors contain 1108 cells, and the other 1109 cells. Not considering communication
costs, the unbalanced case would require nearly 25% more time to complete.

3.2. Incompressible Flow in a Triangular Driven Cavity
In this study, two-dimensional, steady laminar motion of a fluid within a lid-driven

cavity is considered. It is generally agreed that there is a dominant recirculation whose
center is closer to the moving wall. As the Reynolds number is increased, this center
is accompanied with small counter-recirculating vortices at the stagnant corners at the
bottom of the cavity as shown for example by Bozeman and Dalton [10]. Some workers
have further reported yet smaller recirculating vortices at the stagnant corners, a fact
which is supported by similarity solutions of Moffatt [11] and experimental observations
(see Van Dyke [12]). Recently, Calvin et al. [13] confirmed these observations by numerical
solution of the vorticity-stream function using Newton's method.

To demonstrate the significance of the developments in the present work, we have
solved this problem on an extremely fine adapted grid and have shown the existence of
quaternary vortices, as in the 10 ~ corner in Figure 2. Table 1 shows that the radius
and maximum velocity ratios computed are in close agreement to Moffatt's analysis:

Vn+
~" = 1.27, �89 =-354.24.

rn+ 1 Vn+

Vortex Number" n Radius Ratio: ~n Maximum Velocity Ratio" , -
rn+l

1 1.26 -322.7
2 1.27 -338.8
3 1.27 -361.0
4 1.29 -560.5

Table 1
Flow in 10 ~ corner

Performance measurements were made with a square cavity at Re = 100 on an Intel
iPSC/860 machine, and are summarized in Table 2. The calculation was started with
a uniform grid of 4096 triangular cells. The grid was adapted near both corners at the
bottom of the cavity to capture secondary and tertiary recirculations. The final adapted
grid contained 18094 cells. Six adaption cycles were performed with .500 iterations per
cycle. The grid was adapted to spatial regions in the vicinity of the stagnant corners at

519

Figure 2. Vortices in triangular driven cavity at Re = 0.436

the end of every adaption cycle. After each adaption, the grid was load balanced using
the global repartitioning strategy described earlier.

The columns in the table are the number of processors. The first row indicates the over-
all wall clock, or elapsed, time for six complete adaption cycles. The detailed breakup
of the elapsed time includes iteration, adaption and load balance times. Speedups and
parallel efficiencies are presented for both elapsed time and iteration time. All calcula-
tions presented in the table were load balanced with the exception of the last column
(8*). Without load balancing, approximately 40% more time was required using eight
processors. The elapsed time speedups are close to those calculated from iteration times,
indicating that for problems such as this, where several iterations are performed between
adaptions, reasonable parallel efficiencies are achievable.

R E F E R E N C E S

A. Jameson, W. Schmidt, and E. Turkel. Numerical solution of the Euler eqllations
by finite volume methods using Runge-Kutta time-stepping schemes. AIAA 91-1259,

520

.... I I 1
Elapsed Time (s) 31212.3

, , ,

Iteration Time (s) 31075.9
Adaption Time (s) 136.4
Adaption Overhead (%) .44
Load Balance Time (s) 0
Load Balance Overhead (%) 0

Elapsed Time Speedup II1
Elapsed Time Efficiency (%) 10.0

Iteration Time Speedup Ill
Iteration Time Efficiency(%) 100

12 14 18 118"
16417.3 8804.4 5374.6 7411.7
16266.4 8565.5 5077.5 7239.2
129.8 178.1 218 .8 172.4
.79 2.02 4.07 2.33
21.1 60.8 78.3 0
.13 .69 1.46 0
1.90
95.1
1.91
95.5

3.54 [5.80]1 4.21 II
88.6 172.6 ll52.6 jj

90.70 76.5 53.7
Table 2
Performance of parallel algorithm

June 1981.
2. Roe, P. L. Approximate Riemann solvers, parameter vectors, and difference schemes.

Journal of Computational Physics, 43:357-372, 1981.
3. T.J . Barth and D. C. Jespersen. The design and application of upwind schemes on

unstructured meshes. AIAA 89-0366, January 1989.
4. W. Smith. Multigrid solution of transonic flows on unstructured grids. Presented at

the ASME Winter Annual Meeting, Dallas, Texas, November 1990.
5. J .M. Weiss and W. A. Smith. Solution of unsteady, low Mach number flow using a

preconditioned, multi-stage scheme on an unstructured mesh. AIAA Paper 93-3392,
l l th AIAA CFD Conference, Orlando, Florida, July 1993.

6. J. M. Weiss and W. A. Smith. Preconditioning applied to variable and constant
density time-accurate flows on unstructured meshes. AIAA Paper 94-2209, 25th AIAA
Fluid Dynamics Conference, Colorado Springs, Colorado, June 20-23, 1994.

7. Tysinger, T. L. and Smith, W. A. "An Unstructured Multigrid Algorithm for Parallel
Simulation of Fluid Flow". In A. Ecer, J. Periaux and N. Satofuka, editor, Proceedings
of Parallel CFD'94, Kyoto, Japan, May 1994.

8. Spragle, G.S., Smith, W.A., and Yadlin, Y. "Application of an Unstructured Flow
Solver to Planes, Trains and Automobiles". AIAA Paper 93-0889, 31th Aerospace
Sciences Meeting, Reno, Nevada, January 11-14, 1993.

9. R. LShner, R. Ramamurti, and D. Martin. A parallelizable load balancing algorithm.
AIAA-93-0061, 1993.

10. J.D. Bozeman and C. Dalton. Numerical study of viscous flow in a cavity. Journal of
Computational Physics, 12:348-363, 1973.

11. H.K. Motfatt. Viscous and resistive eddies near a sharp corner. Journal of Fluid
Mechanics, 18:1-18, 1964.

12. M. Van Dyke. An Album of Fluid Motion. The Parabolic Press, Stanford, California,
1982.

13. C.J. Ribbens, L.T. Watson, and C.Y. Wang. Steady viscous flow in a triangular
cavity. Journal of Computational Physics, 112:173-181, 1994.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

521

D i s t r i b u t e d C F D on C l u s t e r of W o r k s t a t i o n s i n v o l v i n g P a r a l l e l U n s t r u c t u r e d M e s h

A d a p t i 0 n , F i n i t e - V o l u m e - G a l e r k i n A p p r o a c h a n d F i n i t e - E l e m e n t s

p. Le Tallec, B. Mohammadi, Th. Sabourin, E. Saltel
INRIA
Domaine de Voluceau, 78153 Le Chenay, France.

1. I n t r o d u c t i o n

Mesh generation and partitioning is a crucial bottleneck in all complex calculations. Generating an
unstructured adapted mesh of more than one million of points and partitioning it in equilibrated compact
subdomains is still a big challenge.

Our idea to overcome this bottleneck is to include the mesh generation step within the parallel calcu-
lation loop. The global strategy is organised as follows:

�9 generation of a global coarse mesh describing the flow geometry,

�9 automatic mesh partitioning at coarse level,

�9 adaptive correcting loop :

1. parallel adaptive unstructured subdomain remeshing,

2. subdomain by subdomain parallel solution of turbulent Navier-Stokes equations with explicit
interface coupling.

In this paper, we present a two-dimensional parallel adaptive mesh generator integrated in the above
loop. In this process, the specific points to be adressed are first the definition and meshing of proper
interfaces between the subdomains and second the definition of adequate input and output data structures
for each subdomain mesh generator. With these new tools, each subdomain is then treated in parallel,
that is we use in parallel the same automatic adaptive mesh generator on each subdomain, and then
solve separately on each domain. The adaptive mesh generator to be used locally is the present INRIA
Delaunay Voronoi mesh generator which equidistributes mesh points using a residual based local metric.
We use a metric based on the second derivative of the pressure for Euier computations and of the entropy
for viscous computations but more general metric definition is available in the contexte of systems of
PDE [1].

2. T h e o r e t i c a l and Numer ica l F r a m e w o r k

Our model problem is the compressible Navier-Stokes equations :

0W
+ V . F (W) = 0 on [2,

0r

with suitable boundary conditions. Here, the unknown W correspond to the conservation variables:

W - pu - conservation variables
t~ 2

p(~ +7)
and the total flux F is splitted into a convective and a diffusive part as

F (W) = Fco,~v + Fdi// = total flux

522

with

Fcon, = pu | u + pld , Fdi// = - - ~ (# , Vu)
t~ 2

(p(e + 7) + p)u -o'v . u + q

These equations are discretized by a Finite volume- Finite element scheme. First, the domain ~ of the
flow is discretized using node centered cells 6 ' / for the convective part and P1 finite elements for diffusion,
both being defined on a common unstructured grid.

After discretisation, the equations at time step n and node i, are given by

f w; TM - w? _ o ~ f (wn ' l - 1) i +
At

j i) C,NOCj

C,noa

Above, the convective flux Fco,~v(W~+l)ij .hi on each interface is computed

�9 either by the FDS Roe or Osher or by the FVS kinetic or hybrid strategies, with second order
MUSCL approximation of interface variables (this approach will be denoted (F V G)) ,

�9 or treated as the diffusive flux with the usual local modification of shape function ~'/ (this approach
will be denoted (S U P G)) .

The resulting algebraic system can be solved by an explicit Runge-Kutta scheme:
Loop on n until steady state (n ,~ 1000 - 10 000), then loop on Runge-Kutta substeps p (p = 1,2 or 3)

j c WF+I'p -t- VF(Wn+I'p-1)i O.
w?

, O~p,-~ti

This algorithm is implemented as a succession of different loops, which are called at each time step n:

1. Loop on Elements :

�9 gather nodal values of W,

�9 compute diffusive fluxes fE Fdi//(W).V(I}Vi) and gradients V W (for MUSCL reconstruction),

�9 scatter (send and add) results to nodal residuals and gradients.

2. Loop on Edges (not for S U P G) :

�9 gather nodal values of W and VW,

�9 compute convective fluxes foc,nocj Fc~ "ni,

�9 scatter results to nodal residuals.

3. Loop on Nodes : update nodal values as predicted by algebraic solver

W~ +I'p = W~ - ~p,St iVF(W"+l'P-~)~.

The fluid solver used here is called NSC2KE and is in free access at Bijan.Mohammadi@inrza.fr.

523

3. P a r a l l e l I m p l e m e n t a t i o n

The parallel implementat ion is achieved by PARALLEL REGIONS. In other words, the physical do-
main is first shared into nonoverlapping subdomains. The same CFD code is then run in parallel on each
region. Compared to a monodomain approach, this requires the addition of two new tasks:

1. automatic mesh parti t ioning into subdomains having small interfaces and a balanced number of
elements,

2. explicit communication step between regions for sending and adding information to interface nodes
of neigboring subdomains at each scattering step (one or two communications per time step).

This strategy is very attractive, and has been tested and implemented by different teams for two and
three dimensional configurations [2], [3].

3.1. P a r a l l e l m e s h g e n e r a t i o n a n d so lve r
The integration of local parallel remeshing capabilities in a standard parallel Navier-Stokes solver can

be done within the new algorithm structure that we propose below:

A) Sequential Initialisation

�9 initial calculation of the flow on a coarse mesh,

�9 construction of a local metric (absolute value of inverse Hessian of pressure or entropy field) to
weight the regions of interest,

�9 if desired, coarse remeshing of the flow domain equireparting elements areas following the available
local metric,

�9 automatic parti t ion of the coarse mesh into a given number of compact subdomains with same
weighted number of elements (weight = initial/final volume),

�9 geometric definition of the interfaces in this partition. The corresponding subdomains will then be
defined by their list of interfaces.

B) Parallel correction loop (one processor per subdomain)

�9 parallel adaptive fine meshing of the interfaces on a central processor,

�9 send interfaces to relevant subdomain processors,

�9 local fine adaptive mesh of each subdomain (equidistributed for the given local metric),

�9 independent subdomain solve of Navier-Stokes (with synchronous scatter at each time step),

�9 local error estimates and calculation of a new local metric.

The realisation and implementat ion of such a parallel loop requires additional specific tools which are
listed below.

1. parallel programming environment : PVM is the s tandard choice and is the one which was used in
the examples presented below. Friendly new versions of such communication libraries will be even
better.

2. mesh parti t ioner : when dealing with large, complex structures, the partitioning of the original
structure in many subdomains cannot be done by hand. Automatic tools are then needed which
must achieve three goals:

- the number of interface nodes must be as small as possible in order to reduce the size of the
interface problem or the number of communications and synchronizations,

524

- the amount of work necessary for solving each subdomain should be well-balanced in order for
them to be solved efficiently in parallel on different processors,

- the shape of the different subdomains should be regular in order to have extensions maps with
small energies when using global implicit solvers.

Different partitioners are now avalaible in the research community. The simplest is probably the
greedy algorithm. In this strategy, all subdomains are built by a frontal technique. The front is
initialized by taking the most isolated boundary node, and is advanced by adding recursively all
neigboring nodes until the subdomain preassigned size has been reached. Another popular technique
is the recursive dissection algorithm in which the original mesh is recursively cut into halves. In the
simplest case, at each dissection step, the new interface is perpendicular to the maximal diameter
of the considered domain, or to one of its principal axis of inertia. In a more elaborate and
expensive strategy, the interface is taken as the surface of zero values of the second eigenvector of
a Laplace operator defined on the global mesh. It can be shown that the corresponding solution
approximately minimizes the interface size, and leads to rather regular shapes. We have used a
more recent approach, based on the "K means" techniques used in automatic data classification.
This algorithm, iteratively improves preexisting partitions by first computing the barycenters of
the different sub domains, and by affecting then any element to the subdomain with the closest
barycenter (measured by an adequate weighted norm).

3. Interface Data Structure : a specific data structure has to be created for the description of the
different interfaces. Each interface is defined independently at two levels. The first level refers to
its geometric definition. In our implementation, it is characterised by an ordered list of vertices and
normals. This list is unchanged during the mesh adaption process and is the result of the automatic
partitioning of a global coarse mesh of the domain under study. Between these nodes, the interface
is defined by piecewise Hermite cubic interpolation. The second level defines the current discreti-
sation of the interface, and is constantly updated during the adaption process. Body surfaces or
artificial internal boundaries are treated by the same technique. The accuracy of the generated
interface geometry is simply controlled by the number of points used at the geometric level. Ad-
ditional pointers enable an easy exchange of information between subdomains and interfaces. As
a consequence, information exchange between neighboring subdomains will be achieved by sharing
information on their common interface. The selected data stuctures have three main advantages:
they are perfectly local, they can handle any type of geometry and partitioning structure, and the
adaption criteria is summarized in a unique metric tensor defined locally at each node.

4. Interface and subdomain mesh generators : we need here to adapt the existing mesh generators
in order for them to be compatible with the selected data structure and to handle general local
metrics. This point is described in detail in the next section.

5. Better error estimation and calculation of local metrics are now available [1].

R e m a r k 1 The P VM ~mplementation requires message passing between neighboring subdomains durzng
the solution phase. Moreover, it activates at each time step a decision maker processor. This processor
receives the local residuals from each subdomain. It then computes the global residual and decides either
on lhe continualion of the solution loop, or on the execution of a remeshing step, or on the end of the
global job.

When remeshing is decided, each processor recezves the order of computing its local metr*c. Interface
metrics are then collected on a single interface processor which uses them to mesh interfaces. Afterwards,
each processor proceeds to generate its internal subdomain mesh and restarts lhe execution loop.

4. T w o - d i m e n s i o n a l A d a p t i v e R e m e s h i n g

We detail in this section the adaptive control strategy that we have used locally for generating interface
or subdomain meshes. We have used a Delaunay-Voronoi unstructured mesh generator and anisotropic
control variables to specify both the sides and the stretching of the generated elements.

Standard isotropic control strategies operating on bounded connected domains ft use a local refinement
measure r defined on f~ with values in R + which determines at each position the desired size of the

525

generated triangle. The mesh generator then at tempts to generate equilateral triangles whose side will
be of length r(x) if the triangle is centered at x.

Anisotropic control strategies are usually more efficient and flexible [4]. For such strategies, each node
is associated to a metric tensor (,~1 > 0,~2 > 0, a) in which to measure the characteristic length of
the mesh. An adapted mesh is then a uniform mesh with respect to the metric locally defined by these
tensors. To be more specific, let us first recall that an euclidian metric on a vector space X is a positive
mapping m measuring a distance m(x, y) between two points x and y of X and such that Vx, y, z E X:

m(~, y) = re(y , .)

m(~,v) < ~(~,z) + m(~,z)

�9 m(x , y) = O ~ x = y .

Among all possible metrics, we will only consider those generated by an underlying'scalar product
m(x,y) =< x - y ,x- y >1/2 where

< x, y > = x~My.
Here, M(u) is a symmetric definite matrix depending on the position u in f~. Any given stretched triangle
can actually be associated to such a scalar product. More precisely, for any triangle h', there exists a
unique scalar product M in which K is equilateral. Therefore, defining the size, shape and orientation
of the local triangles is equivalent to the definition of M. In R 2, the matrix M is given by its spectral
decomposition

M - (ab b -R(a) ()~lO. A20")R_i(o~)

where A1 > 0 and ,~2 > 0 are its eigenvalues and where

(oso - ino)
s i n ~ COS C~

is a rotation matrix of angle c~. Unit equilateral triangles in this metric are of length 1/x/~l in the
direction c~ and 1/v/~2 in the orthogonal direction.

The local values of 11 > 0, ,~2 > 0 and c~ are the final control variables characterizing locally our
ideal adapted mesh. In this framework, the adaption strategy simply consists in constructing these local
values. Our choice then at tempts to realize an equirepartition of the interpolation error of a given field u

II u - ~hu I L~(K)~ c h~-IulH~(K)

along each given direction. Therefore, the spacing hl along direction e~ should satisfy

h(x)~.D~(~rhu)l- c Vl.

Working along the principal directions Xl and x2 of the Hessian matrix of u, and denoting by A1 and
,~2 the absolute values of the associated eigenvalues, we deduce :

The final metric is then characterized by hi, h2 and the angle c~ the first eigenvector of this Hessian
matrix. In practice, the Hessian matrix is obtained from the pointwise knowledge of the field u through
the formula

f O~h u O~
0 2 7r h 11 (S k) _ -- Jgt () x j O x j

i)xii)xi /a ~

with ~, the finite element shape function with value 1 at node Sk and 0 everywhere else. The only
remaining choice is then to specify the physical field u used in such a construction. Pressure or entropy
are good candidates.

526

Once this metric is defined, each interface is first discretised. This is done looping on the different
interfaces. For each interface, we equidistribute the boundary nodes on the interface following the local
metric defined at each vertex. The spacing of two successive nodes for this metric is taken to be constant.
The intermediate nodes which are added are projected on the piecewise cubic defined by Hermite or linear
interpolation on the vertices given at the geometric level.

Then, we proceed to the local independent fine adaptive mesh generation of the different sub domains.
The program iteratively generates internal nodes in addition to the boundary nodes previously created
along the interfaces. These new nodes are equidistributed with respect to the local metric and are
connected in a triangular mesh by using a Delaunay type algorithm.

5. N u m e r i c a l R e s u l t s

We are particularly interested by testing the ability of our algorithm in managing a correct interface
resolution between subdomains as no overlaping has been operated and that the points on interfaces
move.

We present results for a supersonic Euler flow over a bi-naca and a Navier-Stokes computation over
a cylinder at Mach 0.4 and Reynolds 80. Four subdomains have been used for these cases. The non-
overlaping strategy works quite well and introduces no perturbation in the solution. We can see that the
load of the different subdomains are completely unballanced at the end of the adaption loop.

6. C o n c l u s i o n

We have presented here the results of our adaptive parallel mesh generator and the integration of this
mesh generator within a parallel solution of the Navier Stokes equations.

The present strategy does not reequilibrate the different subdomains after remeshing. Therefore, it is
important to generate from the beginning a partition which stays balanced after remeshing. This can
only be achieved if the partitioner knows the result of a coarse initial calculation from which it can derive
an approximation of the final metrics to be locally used inside each subdomain. Otherwise, dynamic
balancing must be implemented, but this is by large an open problem. So, at this time no particular care
has been taken to correct a bad load balancing and this is probably the major weakness of this technique.

R E F E R E N C E S

1. M. Castro, F. Hecht, B. Mohammadi, New Progress in Anisotropic Mesh Generation, Application to
Viscous and Inviside Flows, Proceedings of the 4th International Meshing Roundtable, 1995.

2. S. Lanteri, Simulation d'dcoulements Adrodynamiques Instationnaires sur une architecture S.I.M.D.
Massivement parall~le, Th~se de l'universit~ de Nice Sophia-Antipolis, (1991).

3. Th. Sabourin,Simulation d'Ecoulements 3D sur supercalculateurs parall~les, Th~se d'Universit~ Paris
Dauphine, 1994.

4. M.G. Vallet, Gdndration de Maillages Eldments Finis Anisotropes et Adaptatifs, Th~se de doctorat de
l'universit~ de Paris VI (1992).

527

B i n a c a : E u l e r c o m p u t a t i o n a t M a c h 1.1 on foul" s u b d o m a i n s
F i n a l m e s h a n d i s o - d e n s i t y l ines

528

Flow over cyl inder: Subsonic Navier-Stokes c o m p u t a t i o n
at Mach 0.4 and Reynolds 80 on four subdomains

Final mesh and iso-densi ty lines

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

529

S e m i - L a g r a n g i a n S h a l l o w W a t e r M o d e l i n g o n t h e C M - 5

B. T. Nadiga a, L. G. Margolin a, and P. K. Smolarkiewicz b

aLos Alamos National Lab., MS-B258, Los Alamos, NM 87545

bNational Center for Atmosperic Research, Boulder, CO 80307

We discuss the parallel implementation of a semi-Lagrangian shallow-water model on
the massively parallel Connection Machine CM-5. The four important issues we address
in this article are (i) two alternative formulations of the elliptic problem and their relative
efficiencies, (ii) the performance of two successive orders of a generalized conjugate residual
elliptic solver, (iii) the time spent in unstructured communicat ionuan unavoidable feature
of semi-Lagrangian schemes, and (iv) the scalability of the algorithm.

1. T h e Phys ica l P r o b l e m : A S u b T r o p i c a l - S u b P o l a r G y r e S y s t e m

We model the wind-driven circulation in a closed rectangular midlatitude ocean basin.
The model consists of a dynamically active shallow surface layer overlying an infinitely
deep lower layer and the chosen wind forcing, acting on the surface layer, results in the
formation of a double gyre. The vertically-averaged circulation of the surface layer can
then be modelled using the hydrostatic shallow water equations [1]:

077
+ V . (n u) = 0, (la)

Ot

Ou Ap
+ u . V u - - 9 V,? + f~ • u + ix(y)2. (lb)

Ot p

where 7? is the fluid thickness and u is the horizontal velocity vector. The domain size is
1000 kms in the east-west direction and 2000 kms in the north-south direction; the initial
undisturbed depth of the upper layer is 500 meters. The reduced gravity parameter,
gAp~p(=- g'), where Ap is the difference in densities between the upper and lower layers,
is 0.031, the wind stress profile a ~ (y) = - A cos(27ry/D), where .4 corresponds to a wind
stress amplitude of 0.1 N/m 2. The simulations are carried out on a beta plane, i.e.,
f = f0 +/3y, with f0 = 5 10 -S s -1 and /3 = 2 10 -la m-~s -~. The model ocean is
started from rest and the performance comparisons of the various implementations are
done during the spin up period consisting of the first 30 days (at the end of which all
implementations give identical results).

2. The Semi-Lagrangian Scheme

To better illustrate the issues encountered in our parallel implementation, we briefly
describe the semi-Lagrangian technique. Equations 1 have two different types of terms:
advective or streaming terms, and the remaining terms which represent forces acting on
Lagrangian fluid particles. To better treat the different natures of the two types of terms,
the semi-Lagrangian technique employs separate discretizations for themmintegrating
the forces along a parcel trajectory (the Lagrangian aspect) and evaluating the advection
terms along a residual contour [2]. This differential treatment is in contrast to the single

530

form of discretization for any term, regardless of its physical nature, employed in an
Eulerian scheme.

Equations 1 may be rewritten symbolically in the form

de
= R, (2)

dt

where r = r a fluid variable (q or u), R - R (x , t) i s the corresponding force
expressible in terms of r and its derivatives, and d/dt = O/c)t + u .V is the material time
derivative. Integration of (2) in time leads to

r t) - r t0) + f~ a dt, (3)

where T is the parcel trajectory connecting the arrival point (x, t), assumed to coincide
with a grid point, to (Xo, to), the corresponding departure point, not necessarily a grid
point. We compute the departure point Xo corresponding to the arrival point x to second-
order accuracy by two iterations of

Jtl ~'~ X o - x + u(x,t)dt. (4)

Since the departure point will not in general coincide with a grid point, an interpolation
procedure has to be invoked in order to determine the discrete field value @(Xo, to)in (3).
This interpolation is equivalent to solving a constant coefficient advection problem locally
at the departure point, with the constant coefficient being proportional to the separation
of the departure point Xo from its nearest grid point x, [2J. Thus (3) may be rewritten as

r t) + 0(,4) - A (r t0), To) + J(T Rdt , (5)

where ,4 is a constant coefficient Eulerian advection operator, 0(,4) is the truncation error
associated with ,4, and T = (x , - x o) / A x is the nondimensional separation of the departure
point xo from its nearest grid point x,, and represents the Courant number for the advec-
tion problem. In view of the constancy of the advective velocity, the multi-dimensional
advection operator can be replaced exactly by a combination of one-dimensional advection
operators (i.e., there are no splitting errors) and ,4 can be chosen to be a one-dimensional
constant coefficient Eulerian advection operator. Thus, the entire semi-Lagrangian flow
model can be built upon a one-dimensional Eulerian advection scheme, while retaining the
formal accuracy of its constant-coefficient limit. We use the second-order flux-corrected
Lax-Wen&off scheme for ,4 (e.g., see [2] and references therein).

Semi-Lagrangian techniques are usually found to be more accurate than Eulerian
techniques, but are not formulated in terms of a detailed balance of fluxes and so are not
exactly conservative. Another recognized advantage of the semi-Lagrangian technique
is the relaxation of the Courant-Friedrichs-Lewy (CFL) stability criterion (based on the
velocity) to a less restrictive condition based on the spatial derivatives of velocity.

3. Semi -Lagrang ian Discre t iza t ion of the Shallow W a t e r Equa t ions

After adding provision to absorb waves at the boundaries without reflection (restoring
boundaries), (i~) m~y be rewritten ~s

dq q - ~a
d--/= - , V . u T(x) " (6)

531

A discretization of (6) centered on the midpoint of T leads to

T] -- 7]o
At

i i { -~ (~oV.U + ~[V.U]o}- ~ 7/ - q,,
T

7? - q: } + . (7)
7"

o

where we have used harmonic averaging in the midpoint evaluation of the first term on the
right hand side of (6) to linearize the equation in the as yet unknown values of the fluid
variables at the arrival point. r is a short-hand notation for r to), and is estimated
using the second-order procedure A (r to), To) of (5). The momentum equation is,
again with provision for restoring boundaries,

du u - Ua
dt -- - g ' V q + f~, x u + ox(y)~: - - , 7 . (8)

and a similar discretization of it leads to

U - - U o

At

1 1
2g' (Vq + [Vq]o) + ~ (f~ x u + [.f~ x U]o)

1 1 (u - u . [u - u a ~ +
+ ~ (~,~(y) + [~ (y)] o) ~ - ~ ~ o)

(9)

Equations (7) and (9) (with centered differencing for V), form the basis of our spatially
and temporally second-order accurate, two-time level, semi-Lagrangian model of (1).

3a. Impl ic i t Free Surface" Veloci ty Formula t ion

Equation (7) can be solved explicitly for the depth field at the arrival point 7/in terms
of the divergence of the velocity field as

r /= a - / ~ V . u , (10)

a - q - -~-T (' l - Ua) + ~-r'l,~ {1 + At/2([V.U]o + l /T)} -i ,
o

/3 =-~r/o {1 + A, /2 ([V.U]o + l / r) } -~ .

Further, (9) can be simplified to express u in terms of Vq as follows:

At
Au = fi - p g ' V r] ,

2

Q At At)
A - 1 + ~ - f - r At

f -~ I + T ;

f i = u + - ~ - - g ' V q + f ~ x u + c r x (y) s

u - u o)] /x~(u.)
o + T o-~(v)~ + T �9

(i i)

We insert (10) into (11) to obtain a variable-coefficient linear elliptic equation for u:

At C(u) - z x t g ' v (/ ~ V . u) - A u - - a - ~ j ' v o - fi, (i2)

where the right-hand-side and the coefficients A and/3 are all known.

532

Equations (12) and (10) constitute our implicit free surface semi-Lagrangian shallow
water model formulated in terms of an elliptic equation for the velocity field. This for-
mulation is particularly useful when dispersion is introduced at the next higher level of
approximation (e.g., the Green-Naghdi equations [3]) of the shallow fluid equations. Here
the introduction of singular dispersive terms in the velocity equations necessitates an im-
plicit treatment of those terms in order to allow an affordably large time step. We will
discuss these higher-order formulations elsewhere.

3b. Impl ic i t Free Surface: D e p t h Formula t ion

Alternately, (11) may be solved analytically for the velocity u in terms of Vr/:

u = A -1 f i - - - ~ g V ~ . (13)

Then, inserting (13) in (10), we again obtain a variable-coefficient linear elliptic equation,
but now for 7~:

At
- - - - (1 4)

Equations (14) and (11) constitute our semi-Lagrangian shallow water model, formulated
now in terms of an elliptic equation for the depth field. We note that this formulation does
not extend to the next higher level of approximation of the shallow fluid equations since
the higher-order dispersive terms that would then appear in the momentum equation do
not allow an explicit solution of u in terms of Vr/, as we have done here in (13).

4. I m p l e m e n t a t i o n

We have implemented both formulations (Eqs. (12) & (10) and Eqs. (14) & (11)) on the
massively parallel Connection Machine CM-5 at Los Alamos National Laboratory. Each
node of the CM-5 has four vector units and we use the data parallel mode of computation,
programming in CM Fortran. The problem size is fixed at 256 grid points in both the
latitude and longitude directions unless otherwise specified and we use partitions of three
different sizes--either 32 or 64 or 128 nodes. In all implementations, we use the default
array layout with both the latitude and longitude axes declared parallel. (Performance
was severely degraded by declaring one of the axes serial.) We base our computations
at the arrival point to avoid difficulties of balancing the load. All computations are
performed in single precision 32 bit mode. We have verified the sufficiency of single
precision calculations by comparisons with double precision computations in steady flow
cases. Care was taken in the coding to make the parallel code blocks as long as possible
by separating out the statements that required communications from those that did not.
We did not use the optimization flag on the compiler.

Table 1 shows where the program spends most of the time. The timings are given for
the implementation UC4 discussed later. All times reported in this article were obtained
using the '-cmprofile' option of the CM Fortran compiler and analysed using 'prism'. In
addition to the total time spent by the procedures on the nodes, we have considered the
usage of four different resources on the CM-5 to characterise performance.

1. Node CPUmthe time the program spent in processing on any of the nodes.
2. NEWSmthe time spent in structured grid communication (e.g., cshift).
3. Send/Get- - the time spent in router communication (e.g., indirect addressing).
4. Reduct ion~the time spent in data reductions (e.g., global sum/maximum/minimum).

533

Procedure

Total

A(r T0)

n

Node Total

275.3

149.7

109.1

Node CPU

169.8

100.8

56.8

NEWS

63.7

17.2

42.2

Communication

Send/Get

31.7

31.7

0.0

Reduction

10.1

0.0

10.1

Table 1: The time spent (in seconds) in the advection of various quantities and the solution
of the elliptic equation for a 30 day run on 32 nodes.

There are seven calls to the advection routine and one call to the elliptic solver. The
program spends about 50% of the time in advection or interpolation of various quantities
and about 40% of the time in the solution of the elliptic equation. Below, we consider
in detail the performance aspects of the different implementations. Unless otherwise
specified, all performance data presented in this article are time spent in seconds on a 32
node partition for a 30 day run using a 256 • 256 mesh.

4a. U n s t r u c t u r e d C o m m u n i c a t i o n

The time step in our semi-Lagrangian simulations is determined by restricting [[au
At (where the norm used is the Loo norm) to be less than 0.5. This condition is much
less restrictive than the CFL condition characteristic of Eulerian schemes and allows
much larger time steps. The price to be paid for this is unstructured communication
or in other words indirect addressing. Owing to architecture of the CM-5, unstructured
communication is much slower than the regular shift type of communication. The cost
of unstructured communication is reflected in the Send/Get measure. We consider four
different ways of implementing the unstructured communication:

UC1

UC2

UC3

Node Total

338.4

321.6

396.6

275.5 UC4

Node CPU

168.9

162.1
,

162.3

169.9

Communication

NEWS

63.1

64.1
....

65.1

63.6

Send/Get

96.6

85.6
,..

159.5

31.8

Reduction

9.7

9.8

9.8

10.1

1. UC1 uses the forall construct of CM Fortran and is the closest to the usual Fortran77.
2. UC2 computes a trace for the unstructured communication pattern once the depar-

ture point calculations are done and then repeatedly uses the trace until the departure
point changes.

3. UC3 is similar to UC2, but differs by computing the trace in a manner such that all
get operations are performed using send operations.

4. UC4 computes a trace as in UC2 and in addition, whenever unstructured commu-
nication is to be done, packs four single precision real fields into one double precision

Table 2: Usage of different resources by the four implementations of unstructured com-
munication.

534

complex field. This packing (and consequent unpacking) requires no copying or move-
ment of data, and is achieved by maintaining two different front end array descriptors
describing the same parallel memory area.

Methods UC2, UC3, and UC4 make use of CMSSL communication routines. In the
model implementations using the four methods above, we formulate the elliptic equation
in terms of velocity and solve the elliptic equation using GCR(2) (see later).

The only significant difference in the performance data for these four cases is in the
time spent in unstructured communication. Among the first three implementations, UC2
takes the least time and hence it was the method of choice for U C4. (We note that the
method of packing of UC4 could have been used in conjunction with any of the first three
methods.) The reduction in the unstructured communication time in UC4 is related to
the nature of the semi-Lagrangian scheme. As indicated in section 2, the heart of a semi-
Lagrangian scheme is a 1D Eulerian advection operator. For our 2D problem, this results
in three 1D advections in one direction followed by a combining 1D advection in the other
direction, With a nine-point stencil and arrival point based computation, there are thus
three sets of data movement, with each set of movement consisting of three field values.
In UC4, the movement of three field values has been compressed into one movement by
packing three single-precision reals into one double-precision complex and this is reflected
in a (close to a) factor of three reduction in the time spent in unstructured communication
between UC2 and UC4. (In fact four single precision reals can be compressed into
one double precision complex, and so 25% of the data movement is wasted.) Since in
U C4, unstructured communication is no more a bottleneck and takes only about 50%
of the time spent in grid communications, we consider the UC4 method of unstructured
communication satisfactory and only use that in all future comparisons. We note that
if the computations were to be done in double precision, there would only be a 33%
reduction in the Send/Get time in using UC4 instead of UC2. Thus, by packing shorter
data types into longer ones and computing a trace which gets used repeatedly till the
pattern of communication changes, we effectively minimize time spent in unstructured
communications.

4b. Velocity Formula t ion vs. Dep th Formulat ion

Iters. Node Total

VF 10 -3 8 228.9

DF 10 -3 5 220.3

VF 10 -5 14 275.5

DF 10 -s 9 255.8

Elliptic Solver

Total CPU NEWS

62.5 32.4 24.5

51.3 25.0 23.0

109.0 56.8 42.9

86.8 42.5 38.5

Reduction

5.7

3.3

9.8

5.9

Table 3" A comparison of the relative efficiencies of formulating the elliptic problem in
terms of depth and in terms of the velocity field.

In Table 3, we show the relative performance of the velocity formulation VF (Eqs. (12)
and (10)) and the depth formulation DF (Eqs. (14) and (11)) for two cases--first to reduce
the residual in the elliptic equation by a factor of 10 -3 and next to reduce the residual
by a factor of 10 -s. It is clear that the depth formulation is consistently more efficient
but then, only by about 4-8%. Thus by formulating the elliptic problem in terms of

535

velocity, while the extra overhead is not large, the formulation readily generalizes to the
higher level (dispersive) approximations of the shallow water model. In addition, there is
a scope for designing better elliptic solvers with the extra degree of freedom in the velocity
formulation.

4c. The Ell iptic Solver

We briefly outline the generalized conjugate residual algorithm (e.9., see [4]) we use to
solve the elliptic equation s 1 6 2 = 7~. For any initial guess r set p0 = r 0 = s162 _ 7~,
and then iterate as follows"

For n - 1 to convergence do

for u - 0 , . . , k - 1 do

< r~L:(p ~) >
/ 3 = -

< L:(p ~)L;(p ~') >

r = #,- + #p" ; r"+ ' = ,:" + #Z:(p ")
exit if II ~"+' IE< ~ It ~o II

< L:(r "+l)/2(pt) >
< s 1 6 3

pv+l __ rV+l + ~ oqpl; ~(p~+')= ~(r~+l)+ ~ oq~(p 1)
1=0 1=0

end do

reset [r r, p, /2(p)] k to [r r, p, s

end do

G C R (k)

Table 4. shows the relative performances of G C R (2) and G C R (3) . Though G C R (3)
performs exceedingly well in terms of the number of iterations to reduce the residual by
a factor e compared to G C R (2) , there is no speedup either in terms of CPU time or

e Iters. Node Total

communication time.

G C R (2) 10 -3 5 220.3

G C R (3) 10 -3 2 225.7

9 255.8 GCR(2) 10 -s

GCR(3) 10 -s 3 265.6

Elliptic Solver

Total CPU NEWS

51.3 25.0 23.0

55.5 27.7 23.9

86.8 42.5 38.5

95.2 48.1 39.8

Reduction

3.3

5.7

5.9

7.3

Table 4: Comparison of the CPU and communication times for G C R (2) and GCR(3) .

4d. Scalabil i ty

We consider the scalability of the algorithm both when the problem size is held con-
stant and the number of processors varied and when the problem size is scaled with the

536

number of processors. From entries 1 and 4 in Table 5, it is clear that the algorithm
and its implementation scale perfectly in the latter case, so that all individual times--the
CPU time and the times involved in the different types of communication--remain almost
exactly the same.

For the case of scaling when the problem size is held constant, if the subgrid length
(i.e., the number of grid points per vector unit) is over 512, the CPU part of the algo-
rithm scales perfectly with number of processors, and the unstructured communication
does almost so. However, regular grid communications and global reduction operations
continue to speedup as the subgrid length increases. In view of this, for our algorithm to
make good use of the resources on the CM-5, a subgrid length of 512 or higher is required.

Nodes

32

32

64

128

Grid Size

256x256

512x512

512x512

512x512

Node Total

275.3

963.7

504.7

Node CPU

169.8

709.7

352.0

Communication

NEWS Send/Get

63.7

118.0

31.7

112.4

58.8

32.0 289.1 175.2

77.9

69.2

Reduction

10.1

23.6

16.0

12.8

Table 5: Scaling data for the VF algorithm using the UC4 communication strategy.

In summary, we have designed an efficient semi-Lagrangian algorithm for shallow
fluid flows representative of geophysical motions and shown that its implementation on
the Connection Machine is almost fully scalable. Familiarity with the available software
utilities on the CM-5 allowed us to significantly improve the computational efficiency of
the model.

Acknowledgements
We would like to thank the Advanced Computing Laboratory at the Los Alamos

National Laboratory for time and system support on the CM-5. This work was supported
in part by the U.S. Department of Energy's CHAMMP program.

References

1. Jiang, S., Jin F-F, and Ghil, M., 1995: Multiple equilibria, periodic, and aperiodic
solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Ocean., 25,
764-786.

2. Smolarkiewicz, P. K., and Pudykiewicz, J. A., 1992: A class of semi-Lagrangian ap-
proximations for fluids. J. Atmos. Sci., 49, 2082-2096.

3. Green, A. E., and Naghdi, P. M., 1976: A derivation of equations for wave propagation
in water of variable depth. J. Fluid Mech., 78, 237-246.

4. Smolarkiewicz, P. K., and Margolin, L. G., 1994: Variational solver for elliptic prob-
lems in atmospheric flows. Appl. Math. and Comp. Sci., 4, 101-125.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

537

A Reduced Grid Model For Shallow Flows on the Sphere

J.M. Reisner a and L.G. Margolin ~

aLos Alamos National Laboratory, Los Alamos, New Mexico

P.K. Smolarkiewicz b

b National Center for Atmospheric Research, Boulder, Colorado

We describe a numerical model for simulating shallow water flows on a rotating
sphere. The model is augmented by a reduced grid capability that increases the allowable
time step based on stability requirements, and leads to significant improvements in
computational efficiency. The model is based on finite difference techniques, and in
particular on the nonoscillatory forward-in-time advection scheme MPDATA. We have
implemented the model on the massively parallel CM-5, and have used it to simulate
shallow water flows representative of global atmospheric motions. Here we present
simulations of two flows, the Rossby-Haurwitz wave of period four, a nearly steady pattern
with a complex balance of large and small scale motions, and also a zonal flow perturbed
by an obstacle. We compare the accuracy and efficiency of using the reduced grid option
with that of the original model. We also present simulations at several levels of resolution
to show how the efficiency of the model scales with problem size.

1. Introduction

We describe a numerical model for simulating shallow water flows on a rotating
sphere. The model is based on Eulerian spatial differencing and nonoscillatory forward-in-
time (NFT) temporal differencing. Finite difference methods have advantages over spectral
methods when implemented on massively parallel computers with distributed memory
because the computations are localized in space. However finite difference methods
have more restrictive time step constraints and so computational efficiency becomes an
important issue. Our model is explicit in time, and its computational time step is limited
by the largest Courant number on the mesh. Since the fastest wave speed is that of gravity
waves, and is uniform over the mesh, the largest Courant number is associated with the
smallest cell dimensions. In the typical latitude-longitude mesh, these smallest dimensions
are found in the cells nearest the poles.

There are several strategies available to increase the time step and thus improve the
computational efficiency of a finite difference model. For example, we have developed a
semi-implicit version of our model (Nadiga et al. 1996 and Smolarkiewicz and Margolin
1994) in which the gravity waves are treated implicitly, but the advective velocities (which
are much slower) are treated explicitly. In typical atmospheric applications, semi-implicit
methods may allow a four-fold increase in time step. However the semi-implicit formulation
leads to an elliptic problem, whose solution involves inverting a matrix on the mesh.
Furthermore, the matrix operator is not symmetric due to the presence of Coriolis forces.
This means that standard conjugate gradient methods may not converge and less optimal
methods must be explored. Another alternative to allow larger time steps is filtering the
velocities at the high latitudes. Filtering, however, requires global communication, making
application on a massively parallel computer with distributed memory very inefficient.

Yet another alternative is the reduced grid. Here the logical structure of the regular
latitude-longitude mesh is modified by removing some of the cells near the poles, effectively
making the remaining cells larger. For example, if every other cell is removed from the
regions within 30 ~ of the poles, then the time step can be increased by a factor of two.
The reduced grid also requires some nonlocal communication, but its impact on efficiency
is much smaller than that of filtering. In addition, in our experiments we have found that
the reduced grid reduces the accuracy less than either filtering or using implicit techniques.

538

In the following sections, we will briefly describe the model and the the reduced grid.
We will then show results for two problems from the suite of test problems described by
Williamson et al. 1992; these are the Rossby-Haurwitz wave and the steady-state zonal
flow on the sphere. The use of larger time-steps reduces the numerical diffusion associated
with truncation error. In the first case this is the dominant source of error, so that the
reduced grid model yields more accurate results than the nonreduced grid. In the second
case the interpolation errors dominate the diffusion errors and the reduced grid model
is less accurate than the nonreduced model. We will provide error estimates for the two
cases, as well as timing statistics for both the reduced and nonreduced grid in section 4.
We summarize our results in section 5.

2. Shallow Water Model

The equations expressing conservation of mass and momentum for a shallow fluid on a
rotating sphere are as follows:

OGr
+ v �9 (v r o, (~a)

Ot

OGQ.
Ot

+ v �9 (vQ~)= GR~, (~b)

OGQy
Ot + V �9 (v Q y) - aRy, (lc)

where G = hzhy, and hx and hy represent the metric coefficients of the general orthogonal
coordinate system, (~ = H - Ho is the thickness of the fluid with H and Ho denoting the
height of the free surface and the height of the bottom, v is the horizontal velocity vector,
and Q = ((~uh~, (~vhy) is the momentum vector. The right-hand-side forcings are

g 0((~ + Ho)
Rx - -=--- '~

nx Ox
1 (cOhy Ohx~

+ fQY + - ~ QY-~x -Q*-~-y] Qy (2a)

g O ((I) + H o) _ f Q + Q - Q Q~, (2b)

where g is the acceleration of gravity and f is the Coriolis parameter.

The integration in time of the discretized approximations to (1) is described in
Smolarkiewicz and Margolin (1993). The basic element of our nonoscillatory forward-in-
time (NFT) algorithm is the sign-preserving advection scheme MPDATA (Smolarkiewicz
1984). The use of two-time-level integration schemes is a departure for Eulerian global
atmospheric models where three-time-level or leapfrog schemes are traditionally used.
However two-time-level schemes are widely preferred in most other fields of computational
fluid dynamics. Some of the advantages of NFT schemes include a larger computational
time step, reduced memory usage, and less numerical dispersion. In addition, the
nonoscillatory property is crucial for preserving the sign of the layer thickness and of the
thermodynamic scalars, and further controls the nonlinear stability of the computations.
The model is implemented on a rotating sphere, and allows for arbitrary bottom
topography as well as a free surface on top of the layer.

We have ported the model to the CM-5. It runs in data parallel mode, with the
horizontal dimensions being spread across processors. In a typical problem, the speed

539

(measured in Megaflops) depends on problem size. For 32 nodes, a problem with a 64x128
mesh yields performance equivalent to 0.5 CRAY YMP processors, whereas a problem with
256x512 nodes runs at a speed equivalent to 1.5 CRAY YMP processors.

The reduced grid that we have implemented is adapted from the work of Rasch (1994).
We use a sequence of nonoverlapping domains, where the number of grid points along
circles of lati tude decreases as one approaches the poles. The number of points from one
domain to the next decreases by multiples of two, both for accuracy of interpolation as
well as efficiency on the CM-5 architecture. One difference from Rasch (1994) is that the
minimum number of grid points at a given latitude that is allowed for the top domains
was fixed at 32 and not 4. This choice results both in increased accuracy and efficiency.
Initially the lati tude at which the reduction occurred was chosen as suggested by Rasch
(1994); however sensitivity tests have revealed that the most accurate results occur
when the reductions occur only in the vicinity of the pole--with only a slight increase
in CPU time (with 2.8 ~ resolution about 1 s for 7 days)--of a simulation being noted
with this strategy. For example, in a simulation with resolution of 2.8 ~ resolution at
the equator three grids of 128• 64x4• and 32•215 are used to cover the globe
(see Fig. 1 for a visual representation of the reduced grid). The ghost points at the
top and bot tom of each domain are simply interpolated values from other domains to
be used in the calculations of north-south derivatives within a given domain. We use
our NFT advection scheme for this interpolation, thus maintaining the positivity of the
height and thermodynamic fields (Smolarkiewicz and Grell, 1992) and preserving the
overall second-order accuracy of the model. This interpolation does require some nonlocal
communication. At present, no temporal interpolation is used between the meshes of the
reduced grid. The ratio between the time step required for the regular grid versus the
reduced grid ranges from 4 with 2.8 ~ resolution to 50 with 0.35 ~ resolution. Note that
as the resolution is increased in the nonreduced grid, the velocity field becomes more
finely resolved, and locally may exceed the maximum values found in the less resolved
solution. To ensure stability in such cases, the time step must be reduced by more than
a factor of 4 as we increase the nonreduced grid's resolution from 0.7 ~ to 0.35~ Rasch
(1994). We will demonstrate in section 4 that the nonlocal communication associated with
interpolation does not allow for a corresponding ratio of CPU time between the reduced
versus nonreduced grid on the CM5.

+
Fig. 1 Upper left portion of reduced grid.

540

3. Shallow Water Test Problems and Model Setup

Shallow water is a useful testbed for evaluating and comparing numerical methods
that can be extended to fully three-dimensional global circulation models (GCMs). Also,
shallow water layers can be stacked, and with the addition of a hydrostatic equation and
slight recoding of (1)-(2), can be extended to model fully three-dimensional flows (cf. Bleck
1984). Such models are termed isentropic in meteorology. As part of DOE's CHAMMP
program, Williamson et al. (1992) have published a suite of seven test problems for shallow
water. One of these, the Rossby Haurwitz (RH) wave is particularly challenging, since it
represents an almost steady state flow that is a delicate balance of large and small spatial
scales. (When the free surface is replaced by a rigid lid, the solution is an exact steady
state.) The RH wave is also interesting because it represents the advection of a wave which
may be significantly damped if low-order forward-in-time methods are used (Smolarkiewicz
and Margolin, 1993). Thus, the use of a larger time step reduces the numerical dissipation
so that the reduced grid may perform as well or better than the regular grid.

Another test of the robustness of the reduced grid is a zonal flow over the pole. We
have modified Williamson's standard test by the inclusion of a 6 km tall mountain in an
approximately 8 km depth fluid. The mountain is located on the north pole. Although the
mountain introduces an unsteady component into the problem, the flow is still relatively
balanced and little change of position of the height contours is noted during a simulation.
Unlike the RH wave in which dissipation errors dominate interpolation errors, interpolation
errors dominate this flow situation. Thus the total error in the reduced grid formulation
is found to be larger than in the nonreduced grid. Another source of error in the reduced
grid formulation is that the topography on the coarser meshes found near the pole is not
as well-resolved as in the nonreduced grid, potentially leading to additional differences
between the two solutions. Because analytic solutions are not known for either the RH
wave or the perturbed zonal-flow case, we have run high resolution simulations as a
standard for comparing the results from the nonreduced and reduced grid. Except for
timing statistics, all results are from simulations with 2.8 ~ resolution at the equator. The
simulations were run for a period of 7 days with a time step of 160/40 s being used for the
reduced/nonreduced grid.

4. Results

4.1. Rossby-Haurwitz wave

Since visual differences between the reduced grid and nonreduced grid are not
discernible, and the solutions have been published elsewhere (Smolarkiewicz and Margolin
1993, Fig. 2), we show only the L2 and L~o error measures (see Fig. 2a) with respect
to the height of the shallow fluid as a function of time for the reduced and nonreduced
grids. These are the measures of error recommended by Williamson et al. (1992). Even
in the error comparisons, very tittle difference is apparent-- the errors associated with the
reduced grid are only slightly smaller than those of the nonreduced grid. A further test was
conducted in which the reduced grid's time step was halved (160s to 80s) to determine the
sensitivity of the solution to numerical dissipation. As expected, the errors fall in between
those of the nonreduced grid and of the reduced grid that used a twice-larger time step.

Our original motivation for introducing the reduced grid was to improve
computational efficiency. Table 1 demonstrates that with 2.8 ~ resolution the total CPU
time (total time is for one hour of simulated time) for the nonreduced grid (denoted by 2.8

541

in Table 1) and for the reduced grid (denoted by 2.8r in Table 1) are nearly equal. The
ratio increases to about 35 with 0.35 ~ resolution. Hence, at least on the CM5, the bigger
gains in efficiency occur for the higher resolution grids. The main cause for the increasing
ratio with grid resolution is directly related to the ratio of time steps required for each
approach, which increases with decreasing resolution (see discussion at the end of section
2). Breaking down the total CPU time into four components, node CPU time, NEWS
or parallel communication (e.g., cshifts), Send/Get or nonparallel communication (e.g.,
interpolation), and other (e.g., communication between nodes and and program manager,
global sums, ect...) we observe that for the nonreduced grid the primary component is
NEWS; whereas for the reduced grid the primary component is Send/Get for the smaller
domains and on node calculations for the larger domains. In addition, the reduced grid
contains fewer grid points than the nonreduced grid, so that the amount of memory used
in the larger grids of the reduced mesh is somewhat less than that of the nonreduced mesh
(about 100 mb for a grid with 0.35 ~ resolution).

Table 1

Resolution ~ Node CPU NEWS Send/Get Other Total

2.8 0.864 2.955 0.000 0.009 3.828
2.8r 0.984 1.807 2.552 0.216 5.559
1.4 8.684 26.504 0.000 0.052 35.240
1.4r 4.152 5.076 7.800 1.932 18.960
0.7 119.504 325.216 0.000 0.336 445.056
0.7r 18.224 15.248 20.880 7.056 61.408
0.35 2860.100 6914.200 0.000 4.300 9778.600
0.35r 116.944 54.764 51.326 50.060 273.094

4.2. Zonal Flow

Unlike the RH wave, visual differences are apparent between the solutions produced
by the reduced and nonreduced meshes for the perturbed zonal flow. Figs. 3a, 3b, and
3c, show the numerical solutions for the reduced mesh, the nonreduced mesh, and a
high resolution simulation. Again we quantify the differences of these three solutions in
terms of the L2 and L ~ error measures (see Fig. 2b) of the thickness of the fluid. In
comparison with the errors of the RH wave, the absolute error levels for this case with
respect to the highly resolved simulation are smaller--the L2 error is about an order
of magnitude smaller. Hence, as was noted in Smolarkiewicz and Margolin (1993) the
smaller error measures for this case suggest a less dissipative flow regime (due to numerical
discretization). The fact that the error measures for the reduced grid are greater than
the nonreduced grid also suggest that the main cause of these differences is due to errors
associated with the interpolation in the reduced grid.

As noted in section 2 a shallow-water model can be easily extended to include the
effects of baroclinicity in the atmosphere. To investigate whether adding additional layers,
and hence requiring additional interpolation will degrade the quality of the solution we
ran the zonal flow problem with 8 layers for both the reduced grid and the nonreduced
grid. Our analysis of the results of these runs indicate that adding additional layers to the
reduced grid model does not further degrade the solution with respect to the nonreduced
grid. In addition, the timing statistics suggest that as the number of levels in the vertical
increases, the efficiency of the reduced grid also increases, so that with 2.8 ~ resolution and
64 layers the reduced grid is about 1.25 times faster than the nonreduced grid.

542

6 . 0 e - 0 2

5.0P02

4.0e-02

~j 3.0e-02

2.0e-02

1.0e.02 !

O . O e + O 0

1.0

L2 reduced grid
[3- -- E] Loo reduced grid

C 0 Ll nonredueed grid
A-- - - ~ Loo nonreduced grid

l i

i...-

i ; i l ' l

I" . d t ' /

. # i l

~ y

. t , . . !

3.0 5.0
Day

(a)

. .-j#q~

.... :....--

i

7.0

I,.,

1.5e-02

1.0e.02

5.00.03

O.Oe+O0 "

1.0

|

0 0 L2 reduced~id
13- - [] L ~ r,=luced grid
0 0 Ll nonreduced grid
~ - - --~ L~ nonreduced grid

.113
/

~-.L i i " "

,I ~/
/i I

,/~/
//

/
/

/
/

/ i
/ i

I - - i

//2"

, i , I

3.0 5.0 7.0
Day

Fig. 2 Time evolution of the error measures for the model configuration with 2.8 ~
resolution for the (a) Rossby-Haurwitz wave and for (b) Zonal Flow.

543

1,

, , - ' 7 '

\

�9 ..:...,):,..."

(~)

I', .,111
I.,:. i . ! .1

i i',,, ,:5-

�9 i

(b)

I " I 't
,' / ,- ~176
�9 ,../

!, i .!

(c)
. , ~ l , ~ ' ' l ' ' ~ ' ' l ' ' ' l ' ' ~ ' '
t t ~, \ i / ~ ~ ! I i I] I I 1 1 t I ~ , , , , , , ~ ~ ~ I

�9 ~ 1 " - - ~ . . - , . . . - - . . , . s ~ , . . ' , .

�9 ' i " " " (" " : " ' : % " X ~ ~ / " ! " " : ' " " "

..,-'" ' . . , ~ ~ " ' " " ! / . , " 7 : : : : : : : ~,:",:",I " 1 " ' i / / . ; ::: ~, , . ' - / ' / ' / ' - '~ 'r:" i-/- -.--'.

.i .j .}-i ,.' .I .! :,..'=..:. ,.: ~ ~i ~i-!. ',. :.
. ,: .'....'.....'_/./ ~. '.,, :.

�9 �9 # s ~1 i i l i L i i ~ �9 ,, ,, . # i i t ,~ ~.1-. - ..J - .

Fig. 3 Geopotential perturbation and the flow vectors for the global nonlinear zonal
geostrophic flow test problem with a tall mountain at the pole" (a) the reduced mesh; (b)
the nonreduced mesh; and (c) the resolved solution.

544

5. Conclusions

We have described a numerical model for shallow flows on the sphere. We have
developed a reduced grid model to circumvent the time step constraints, and consequent
lack of efficiency associated with the convergence of meridians at the poles. At low
resolution we have shown that the use of the reduced grid is as accurate as the nonreduced
grid with about the same computational efficiency. The principal computational advantage
of the reduced grid is realized at higher resolutions, with the reduced grid being up
to 35 times faster than the nonreduced grid at a resolution of 0.35 ~ Due to faster
communication on machines like the Cray T90 or T3D we believe that the reduced grid
will lead to greater efficiency on these machines. Thus we conclude that the reduced grid
framework is a useful modification for general circulation models of the atmosphere and
ocean based on finite difference approximations.

6. Acknowledgements

The authors appreciate continuing discussions with Phil Rasch, and the help of the
system programmers of the Los Alamos Advanced Computing Laboratory. This work was
supported by in part by the CHAMMP program of the U.S. Department of Energy.

REFERENCES

Bleck, R., 1984: An isentropic model suitable for lee cyclogenesis simulation. Riv. Meteor.
Aeronaut., 43, 189-194.

Nagida, B.T., L.G. Margolin, and P.K. Smolarkiewicz, 1995: Semi-Lagrangian Shallow
Water Modeling on the CM5. submitted to special issue of Elsevier Science Publishers
for Proceedings of Parallel CFD'95.

Rasch, P.J., 1994: Conservative shape-preserving two-dimensional transport on a spherical
reduced grid. Mon. Wea. Rev., 122, 1337-1350.

Smolarkiewicz, P.K., 1984: A fully multidimensional positive definite advection transport
algorithm with small implicit diffusion. J. Comp. Phys., 54, 323-362.

Smolarkiewicz, P.K. and G.A. Grell, 1992: A class of monotone interpolation schemes. J.
Comp. Phys., 101,431-440.

Smolarkiewicz, P.K. and L.G. Margolin, 1993: On forward-in-time differencing for fluids:
extension to a curvilinear framework. Mon. Wea. Rev., 121, 1847-1859.

Smolarkiewicz, P. K., and L. G. Margolin, 1994: Forward-in-time differencing for global
dynamics. In Preprint Vol. Fifth Symposium on Glabal Change Studies, 23-28 January,
Nashville, Tennesse, American Meteorological Society, 99.

Williamson, D.L., J.B. Drake, J.J. Hack, R. Jakob, and P.N. Swarztrauber, 1992: A
standard test set for numerical approximations to the shallow water equations on the
sphere. J. Comp. Phys., 102,211-224.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

545

Appl ica t ion of a Paral lel Navier-Stokes Model to Ocean Circula t ion

Chris Hill and John Marshall

Depar tment of Earth, Atmospheric and Planetary Sciences,
Massachusetts Insti tute of Technology

A b s t r a c t

A prognostic ocean circulation model based on the incompressible Navier-Stokes equations is
described. The model is designed for the study of both non-hydrostatic and hydrostatic scales;
it employs the "pressure method" and finite volume techniques. To find the pressure in the
non-hydrostatic limit, a three-dimensional Poisson equation must be inverted. We employ a
single-pass, two-grid method where the thin three-dimensional domain of the ocean is first
projected on to a two-dimensional grid using vertical integration as a smoother. The two-grid
method exploits the anisotropic aspect ratio of the computational domain and dramatically
reduces the computational effort required to invert the three-dimensional elliptic problem. The
resulting model is competitive with hydrostatic models in that limit and scales efficiently on
parallel computers.

I n t r o d u c t i o n

The ocean is a stratified fluid on a rotating body driven from its upper surface by
patterns of momentum and buoyancy flux. The detailed dynamics are very accurately
described by the Navier-Stokes equations. These equations admit, and the ocean con-
tains, a wide variety of phenomenon on a plethora of space and time scales. Modeling of
the ocean is thus a formidable challenge; it is a turbulent fluid containing energetically
active scales ranging from the global down to order 1 - 10 km horizontally and some
10's of meters vert ical ly- see Fig.1. Important scale interactions occur over the entire
spectrum.

Numerical models of the ocean circulation, and the ocean models used in climate
research, employ approximate forms of the Navier-Stokes equations. Most are based on
the "hydrostatic primitive equations" (H P E) in which the vertical momentum equation
is reduced to a s tatement of hydrostatic balance and the "traditional approximation" is
made in which the Coriolis force is t reated approximately and the shallow atmosphere
approximation is made. On the large-scale the terms omitted in the H P E are generally
thought to be small, but on small scales the scaling assumptions implicit in them become
increasingly problematic.

In this paper we report on an ocean model firmly rooted in the incompressible
Navier-Stokes (INS) equations. The novelty of our approach is that it is sensitive to
the transition from non-hydrostatic to hydrostatic behavior and performs competitively
with hydrostatic models in that l i m i t - more details can be found in Marshall et.al. [10],
[9] and arvind et.al [1].

546

Figure 1: A schematic diagram showing the range of scales in the ocean. Global/basin
scale phenomenon are fundamentally hydrostatic, convective processes on the kilometer
scale fundamentally non-hydrostatic. Somewhere between l Okra and lkm the hydrostatic
approximation breaks down - the gray area in the figure. H P E schemes are designed
to study large-scale processes but are commonly used at resolutions encroaching on the
"gray area" - the left-pointing arrow. INS is valid across the whole range of scales. We
show in this paper that the computational overhead of INS is slight in the hydrostatic
limit and so INS can also be used with economy for study of the large-scale - the right-
pointing arrow.

Our algorithm solves INS on the sphere building on ideas developed in the com-
putational fluids community. Finite volume methods are used which makes possible a
novel treatment of the boundary in which volumes abutting the bottom or coast may
take on irregular shapes and so be "sculptured" to fit the boundary. The numerical
challenge is to ensure that the evolving velocity field remains non-divergent. Most pro-
cedures, including the one employed here, are variants on a theme set out by Harlow and
Welch [6], in which a pressure correction to the velocity field is used to guarantee non-
divergence. The correction step is equivalent to, and is solved as, a three-dimensional
Poisson problem for the pressure field with Neumann boundary conditions. A "brute
force", unthinking approach to the Poisson inversion requires prohibitive amounts of
computer time, and would render an INS model which, even in its hydrostatic limit,
is uncompetitive with HPE. The inversion demands "global" connectivity between all
points in the computational domain, presenting a challenge in mapping the model to
a parallel computer because the connectivity requires communication right across the
grid to the boundary. A major objective of our study, therefore, has been to design a
Poisson solver that was efficient and could map well to parallel architectures, thereby
making INS a powerful tool applicable to all scales of interest in oceanography.

547

In our approach the pressure field is separated in to surface, hydrostatic and non-
hydrostatic components and the elliptic problem is solved in two stages. First, as in
hydrostatic models, a two-dimensional elliptic equation is inverted for the surface pres-
sure. Then, making use of the surface pressure field thus obtained, the non-hydrostatic
pressure is found through inversion of a three-dimensional problem. Preconditioned
conjugate gradient iteration is used to invert the symmetric elliptic operators in both
two and three dimensions. Our method exploits the fact that as the horizontal scale
of the motion becomes very much larger than the vertical scale, the motion becomes
more and more hydrostatic and the three-dimensional elliptic operator becomes increas-
ingly anisotropic and dominated by the vertical axis. Accordingly a preconditioner for
the three-dimensional problem is used which, in the hydrostatic limit, is an exact inte-
gral of the elliptic operator, and so leads to a single algorithm that seamlessly moves
from non-hydrostatic to hydrostatic limits. Thus, in the hydrostatic limit, the model
is "fast", competitive with the fastest ocean climate models in use today based on the
hydrostatic primitive equations. But as the resolution is increased the model dynam-
ics asymptote smoothly to the Navier-Stokes equations and so can be used to address
small-scale processes.

The numerical strategy

2 .1 T i m e S t e p p i n g

We write the Boussinesq incompressible Navier Stokes equations describing our ocean
model in semi-discrete form to second order in the time At, in which only time is dis-
cretized"

vh+ln __ U_~ __ G__G__vn: ~ __ V h { P s + Phy + q P n h }n+ ~ (1)
At

W n + l - - W n " n + i ('JPnh
= a,~ ~ (2)

At Oz

O,w n-F I

Oz
-~-Vh.V~ +1 --0 (3)

Equations (1)-(3) describe the time evolution of the flow; v_ - (V_h, w) is the velocity
in the horizontal and the vertical, and the __G terms incorporate inertial, Coriolis, metric,
gravitational, and forcing/dissipation terms.

In oceanographic applications equations (1)-(3) are solved in the irregular geometry
of ocean basins in a rotating reference frame using a spherical polar coordinate system.
The velocity normal to all solid boundaries is zero, and, in order to filter rapidly prop-
agating surface gravity waves, we place a rigid lid is placed at the upper surface. (For
brevity we have not written down equations for temperature and salinity which must
also be stepped forward to find, by making use of an equation of state, the density p).

548

In (1) the pressure has been separated into surface, hydrostatic and non-hydrostatic
components thus:

p(A, r - p,(A, r + phu(A, r + qp,.,h(A, r (4)

where (A, r z) are the latitude, longitude and depth respectively. The first term, p,, is
the surface pressure (the pressure exerted by the fluid under the rigid lid); it is only a
function of horizontal position. The second term, Phu, is the hydrostatic pressure defined
in terms of the weight of water in a vertical column above the depth z,

OqphY g,
Oz ~ - o (5)

where g' is the "reduced gravity" g~p.el, and 6p is the departure of the density from a
reference profile, and Pr,I is a constant reference density. The third term is the non-
hydrostatic pressure, Pnh. Note that in (1) and (4) we employ a "tracer " parameter
q which takes the value zero in H P E and the value unity in INS. In INS w is found
using (2), from which large and balancing terms involving the hydrostatic pressure and
gravity (5) have been canceled (and the remaining terms represented by G,~) to ensure
that it is well conditioned for prognostic integration. In HPE, (2) is not used; rather
w is diagnosed from the continuity relation (3). In the hydrostatic limit only Phv and
ps are required in (4). Equation (5) is used to find Phv and p~ is found by solving
a two-dimensional elliptic problem for the surface pressure that ensures non-divergent
depth-integrated flow:

V h . H V h p s - Vh.G~, ''+�89
~ H

-H Vh.VhPh~ (6)

(- - H indicates the vertical integral over the local depth, H, of the ocean and the
subscript h denotes horizontal).

In INS q is set equal to unity and Pnh must be determined. It is found by inverting
a three-dimensional elliptic equation ensuring that the local divergence vanishes:

v ~ p ~ - v . ~ * ~ - v~,(p, + phi). (7)

where V 2 is a full three-dimensional Laplacian operator.

3 F i n d i n g t h e p r e s s u r e

In addition to the two-dimensional inversion required in H P E (for example in Dukowicz
[5] or Bryan [4]) INS requires a three-dimensional elliptic problem to be solved; this is
the overhead of INS relative to H P E .

549

A

J D , ' q e

qe D 2 qe
qe.D3.qe.

. .

. m .

qe
qe

, ~
. ~

o,

�9 ~ . . .

. . . . i i:"iii;iii - . .

�9 , . , " . .

- ~

�9 . ,
~

�9 . .

. .

. , .

qe
~

~

.~
,.

..~

�9 o �9 o

�9 ~ . .

, ~ " �9 ~

D'
~ - NxN

Figure 2: The structure of the three-dimensional Laplace matrix A

3.1 The t h r e e - d i m e n s i o n a l e l l ipt ic prob lem.

Equation (7) can be written in discrete form as a set of simultaneous equations using
matrix-vector notation:

A p - f (8)

A is a symmetric, positive-definite matrix representing the discrete form of V 2 in three-
dimensions. It is a sparse seven-diagonal operator with coefficients that depend on the
geometry of the ocean basin.

We use a preconditioned conjugate gradient scheme (PCG) to solve (8). Figure 2
shows the form of A. Each block, D, in the figure is a tri-diagonal matrix representing

0 2
0z2 while e represents the off-diagonal terms from the discretized V~ operator. If the
vertical scale is much smaller than the horizontal scale then A is dominated by the D

~z2 smaller than elements of D blocks along its central diagonals; the elements e are ~
Moreover, the tracer parameter q from (1) and (4) always appears as a multiplier of e;
thus when q is set to zero (corresponding to the hydrostatic limit), A is comprised only
of the blocks D and so can readily be inverted. Accordingly we use a preconditioner
during the inversion of A which is the exact inverse of the blocks, D, and which is thus
an exact inverse of A in the hydrostatic limit. Rather than store the block inverses, the
preconditioner uses LU decomposition.

4 Numerica l implementat ion

The algorithm outlined in the previous sections was developed and implemented on a
128-node CM5, a massively-parallel distributed-memory machine in the Laboratory for
Computer Science (LCS) at MIT. The code was written in CMFortran, a data-parallel
FORTRAN, closely related to High Performance Fortran (HPF). The algorithm was
also coded in the implicitly parallel language Id, permitting a multithreaded implemen-
tation on MIT's data flow machine MONSOON. The programming issues are developed

550

more fully in Arvind et.al.[1], where implicitly parallel multi threaded and data parallel
implementations are compared.

In deciding how to distribute the model domain over the available processors on a
distributed memory machine, we had to bear in mind that the most costly task in our
algorithm is finding the pressure field. Our PCG procedure entails nearest-neighbor
communication between adjacent grid points in the horizontal and communication over
all points in the vertical. Accordingly we decompose the domain in to vertical columns
that reach from the top to the bottom of the ocean. In this way the computational
domain and workload are distributed across processors laterally in equally sized rectan-
gles.

4 . 1 M o d e l P e r f o r m a n c e

In the hydrostatic limit our scheme performs comparably with conventional second-order
finite difference H P E codes. In typical applications the model has many vertical levels
and most of the computer time is spent evaluating terms in the explicit time-stepping
formulae; the work required to invert the two-dimensional elliptic problem does not
dominate. In INS, however, the computational load can be significantly increased by
the three-dimensional inversion required. One iteration of the three-dimensional elliptic
solver is equivalent to 6% of the total arithmetic operation count of the explicit t ime
stepping routines. Therefore, if the three-dimensional inversion is not to dominate the
prognostic integration, the PCG procedure must converge in less than fifteen iterations.

Solving for the pressure terms in (4) separately, rather than all at once, dramatically
improves the performance of INS. We illustrate this here in the case of a high resolution
simulation of convective overturning (reported in detail in Marshall et.al. [10]). The
aspect ratio of the grid cells is of order 0.2, thus allowing significant non-hydrostatic
effects. However, A is still dominated by the blocks along its diagonal. To demonstrate
the benefit of splitting the pressure terms we took the right hand side from a single time
step of the model and solved (7) for Pnh using increasingly accurate Ps solutions from
(6). The results are summarized ill figure 3.

Fig. 3 shows, as a surface, the number of iterations, I3a, required by our PCG
solver for (8) to reach a given accuracy of solution, r3a. The surface is a measure of the
convergence rate of the three-dimensional solver; its shape shows how the convergence
rate depends on the accuracy of the solution for ps from (6). To generate fig. 3 we
varied the accuracy, r2a, to which we solved (6), and recorded the resulting iteration
count to reach a given n3a.

In the physical scenario studied values of r3a < 10 -7 are required to keep the flow
field sufficiently non-divergent and maintain numerical stability. From fig. 3 we see
that if p, is found inaccurately or not at all (log r2d -- 0; we normalize the residual so
that r2a = 1 at the first iteration) then solving (8) to r3a ~ 10 -7 will require some 350
three-dimensional inverter iterations, a t e v e r y t i m e s t e p . In contrast, if p, is found
accurately (i.e. r2a < 10-6, in the flat "valley" of the figure) then the number of three-
dimensional inverter iterations drops to < 10 and the overhead of INS relative to H P E
is not prohibitive. Note, the change in the slope of the I3a surface indicates that the
drop in iteration count is due to accelerated convergence and is not a consequence of an

551

f . . -

- - 1 0 - - 9 - - 8 ~ ~ ~ _. - - - - 1 0
- - 7 - - 6 - - 5 - - 4

log (r 3 2

�9 " 0

Figure 3" Variation in convergence rate of our three-dimensional PCG solver as a func-
tion of the accuracy of the p8 term on the right hand side of equation (7). The conver-
gence rate improves drastically when p8 is found accurately.

improved initial guess.

5 C o n c l u s i o n s

On a 512 node CM5 our code achieves a sustained floating-point throughput of 10
GFlop/sec. With 100+ GFlop/sec computational capability available in the near future
we will be able to model the ocean at increasingly fine resolutions.The model discussed
here scales efficiently, and will be able to exploit such parallel machines as they become
available. Because the dynamics is rooted in INS and the algorithm is designed to
handle small scales, it is well suited to simulations of the ocean at very high spatial
resolution. A major objective of our study has been to make models based on INS
efficient and therefore usable. The "split solver" methodology developed renders INS a
feasible approach and could be applied to many three-dimensional CFD problems which
are spatially anisotropic with a "preferred" dimension.

The possible applications of such a model are myriad. In the hydrostatic limit
it can be used in a conventional way to study the general circulation of the ocean in
complex geometries. But because the algorithm is rooted in INS, it can also address (for
example) (i) small-scale processes in the ocean such as convection in the mixed layer (ii)
the scale at which the hydrostatic approximation breaks down (iii) questions concerning
the posedness of the hydrostatic approximation raised by, for example, Browning et.al.[2]
and Mahadevan et.al.[7],[8]. Finally it is interesting to note tha t - as described in Brugge
et.al.[3] - the incompressible Navier Stokes equations developed here are the basis of
the pressure-coordinate, quasi-hydrostatic atmospheric convection models developed by
Miller[12],[11]. Thus the ocean model described here is isomorphic to atmospheric forms
suggesting that it could be developed, and coupled to, a sibling atmospheric model based
on the same numerical formulation.

552

6 A c k n o w l e d g m e n t s

This research was supported by ARPA and TEPCO. The MIT CM5 is part of the
SCOUT initiative led by Tom Green and A1 Vezza. Advice and encouragement on
computer science issues was given by Arvind of LCS. J. White of the Department of
Electrical Engineering and Computer Science at MIT advised on the solution of elliptic
problems. A. White of the UK Meteorological Office consulted on the formulation of
the model.

R e f e r e n c e s

[1] Arvind, K-C Cho, C. Hill, R. P. Johnson, J. C. Marshall, and A. Shaw. A comparison
of implicitly parallel multithreaded and data parallel implementations of an ocean model
based on the Navier-Stokes equations. Technical Report CSG Memo 364, MIT LCS, 1995.

[2] G.L. Browning, W.R. Holloand, H-O Kreiss, and S.J. Worley. An accurate hyperbolic
system for approximately hydrostatic and incompressible flows. Dyn. Atmos. Oceans,
pages 303-332, 1990.

[3] R. Brugge, H.L. Jones, and J.C. Marshall. Non-hydrostatic ocean modelling for studies
of open-ocean deep convection. In Proceedings of the Workshop on Deep convection and
deep water formation in the ocean, pages 325-340. Elsevier Science Publishers, Holland,
1991.

[4] K. Bryan and M.D. Cox. A nonlinear model of an ocean driven by wind and differental
heating: Parts i and ii. J. Atmos. Sci., 25:945-978, 1968.

[5] J. Dukowicz, R. Smith, and R.C. Malone. A reformulation and implementation of the
Bryan-Cox-Semptner ocean model on the Connection Machine. J. Ocean. Atmos. Tech.,
10(2):195-208, 1993.

[6] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incom-
pressible flow. Phys. Fluids, 8:2182, 1965.

[7] A. Mahadevan, J. Oliger, and R. Street et.al. A non-hydrostatic mesoscale ocean basin
model I: well-posedness and scaling, submitted J. Phys. Oceanogr., 1995.

[8] A. Mahadevan, J. Oliger, and R. Street et.al. A non-hydrostatic mesoscale ocean basin
model II: numerical implementation, submitted J. Phys. Oceanogr., 1995.

[9]

[10]

[11]

[12]

J. C. Marshall, A. Adcroft, C. Hill, and L. Perelman. A finite-volume, incompressible
Navier-Stokes model for studies of the ocean on parallel computers, submitted J. Geophys
Res., 1995.

J. C. Marshall, C. Hill, L. Perelman, and A. Adcroft. Hydrostatic, quasi-hydrostatic and
non-hydrostatic ocean modeling, submitted ./. Geophys Res., 1995.

M.J. Miller. On the use of pressure as vertical co-ordinate in modelling. Quart. J. R.
Meteorol. Soc., 100:155-162, 1974.

M.J. Miller and R.P. Pearce. A three-dimensional primitive equation model of cumu-
lonimbus convection. Quart. J. R. Meteorol. Soc., 100:133-154, 1974.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

553

A Portable and Efficient Parallel Code for Astrophysical Fluid
Dynamics *

A. Malagoli, A. Dubey, F. Cattaneo ~ and D. Levine b

~EFI/LASR, University of Chicago
933 E.56 th, Chicago, IL 60637, USA

bArgonne National Laboratory 9700 S. Cass. Ave, Argonne, IL 60439

We have developed an application code for scalably parallel architectures to solve the
equations of compressible hydrodynamics for a gas in which the thermal conductivity
changes as a function of temperature. The code has been developed to study the highly
turbulent convective envelopes of stars like the sun, but simple modifications make it
suitable for a much wider class of problems in astrophysical fluid dynamics. The algo-
rithm consists of two components: (a) a finite difference higher-order Godunov method
for compressible hydrodynamics, and (b) a Crank-Nicholson method based on nonlinear
multigrid method to treat the nonlinear thermal diffusion operator. These are combined
together using a time splitting formulation to solve the full set of equations. The code
has been developed using the PETSc library (Gropp ~: Smith 1994) to insure portability
across architectures without loss of efficiency. Performance and scalability measurements
on the IBM SP-2 will be presented.

1. I n t r o d u c t i o n

We have developed an application code for scalably parallel, distributed memory archi-
tectures using new development tools to insure optimal performance without sacrificing
portability. The code solves the equations of compressible hydrodynamics for a gas in
which the thermal conductivity changes as a function of temperature.

The scientific motivation for such development is related to the study of the highly
turbulent convective layers of late type stars like the Sun, in which turbulent mixing
plays a fundamental role in the redistribution of many physical ingredients of the star,
such as angular momentum, chemical contaminants, and magnetic fields. Although the
simulation of solar conditions is well beyond conceivable computing resources for some
time to come, given that the Reynolds number Re is in excess of 1012 , our past research (see
e.g. Cattaneo et al. 1991) has shown that increase in the dynamical range of turbulence,
by means of increasing the number of computationally available degrees of freedom, leads
to develop better intuition for the real situation. This in turn requires that the code be
capable of Gflops, and possibly Tflops performance.

*This work was supported by a NASA/ESS Grand Challenge HPCC grant.

554

The core of the computational algorithm consists of two independent components: (a)
a finite difference higher-order Godunov method for compressible hydrodynamics, and (b)
a Crank-Nicholson method based on nonlinear multigrid method to treat the nonlinear
thermal diffusion operator. The two algorithms are combined together using a time-
splitting technique. Both algorithms have a reasonably modular structure, which makes
them easily reusable in a much wider range of CFD applications than the specific one we
are interested in.

The algorithms have been designed and implemented in standard f77 and C, and us-
ing callable functions and subroutines from the PETSc (Portable Extensible Toolkit for
Scientific computing) libraries of W.Gropp and B.Smith (1994). The PETSc library is a
collection of higher level tools for the solution of partial differential equations on sequen-
tial and parallel machines. The PETSc library version we have used employs the portable
lightweight Chameleon message-passing interface, now being replaced by the MPI stan-
dard, and parallelism is handled transparently to the user by setting appropriate data
structures. For example, we have used extensively the BlockComm subset of PETSc, a
collection of subroutines for solving finite difference equations on regular domain decom-
posed grids. BlockComm automatically generates the data exchange pattern to update
the boundary grid zones as the solution is computed, saving the programmer the task of
writing low-level message passing code.

Most of the architecture-specific implementations are handled within P ETSc, and
therefore our application code easily compiles and runs on various architectures, including
so far the Intel Delta, Intel Paragon, IBM SP, and clusters of workstations. Because the
Chameleon interface provides an extremely low overhead to the native (and most efficient)
message-passing libraries, portability does not imply loss of performance.

The following sections are organizes as follows. In section 2 we present the physical
model and the corresponding equations; in section 3 we describe the discretization method;
in section 4 we describe the parallelization method; and finally in section 5 we summarize
experiments of code performance and scalability on the IBM SP-2 at the Maui High
Performance Computing Center.

2. P r o b l e m Descr ipt ion

The physical motivation for this work originates from the study of turbulent convection
and mixing in highly stratified, compressible plasmas in stars (see e.g. Cattaneo et al.
1991, Bogdan et al. 1993). The outer layers of stars like the sun are in a state of vigorous
convection. Turbulent motions within the deep convective envelope transport nearly all
of the energy produced in the stable radiative interior outward to the tenuous regions
of the stellar photosphere. Furthermore, penetrative motions from the convection zone
extend some distance downward into the stably-stratified radiative interior, influencing
the distribution of chemical composition and other physical properties throughout the
star. The transition from the stably-stratified interior to the convectively unstable region
is caused by a change in the radiative opacity with the density and temperature of the
plasma, so that radiative diffusion eventually becomes inefficient and convection sets in
to transport the energy.

Our concern is to study the properties of multi-dimensional, convective turbulence

555

in a strongly stratified medium, where motions can span multiple scale heights and the
fluid viscosity is so small that a turbulent state develops. In order to make the problem
tractable, several simplifications are introduced and an idealized model is considered. A
plane-parallel layer of gas is confined vertically by two impenetrable, stress -free walls,
and is stratified under the influence of a constant gravitational force g. The gas is heated
from the lower wall, and the temperature at the upper wall is kept constant. This model
represents a generalization of the classical Rayleigh-Benard convection cell in laboratory
fluids. The gas is given initially a hydrostatic configuration in such a way that the upper
half is convectively unstable and the lower part is stably stratified. This can be achieved
by choosing and appropriate functional form for the coefficient of thermal conductivity.
The initial condition is then perturbed, and eventually the upper part of the layer begins
convecting. The equations governing the behavior of fluid are :

O p + V . p u = 0 (1)

Otpu + V . puu = - V P + gpz + qvi,c (2)
1

OfT + u . V T + (7 - 1) T V . u = pC--~[V. (a (p ,T)VT)] + H,,i,,c (3)

where p, u and T are respectively the density, velocity and temperature of the gas; 7 is
the ratio of specific heats and Cv is the heat capacity at constant volume. Q.i,~ and Hvisc
represent the rates of viscous momentum dissipation and viscous heating. The coefficient
of thermal conductivity is x(p, T), and in general it can be a function of p and T.

Results and animations from numerical simulations of this model can be found in our
URL "http: //astro.uchicago.edu/Computing".

3. The N u m e r i c a l Scheme

We give here a description of the two-dimensional scheme, the extension to three-
dimensions being straightforward. The fluid equations without the right-hand side of
the energy equation (3) (the thermal conduction parabolic operator) form a system of
hyperbolic equations, which we solve using the Piecewise Parabolic Method (PPM) of
Colella and Woodward (1994) (see section 3.1)

In order to solve the full energy equation, we adopt a time-split formulation as follows:

�9 Solve the hydrodynamic equations (1), (2) and (3 without the rhs.) using a higher-
rpn+�89

order Godunov scheme to get ~ hud,.o"

Mn-t- 21-
�9 Solve for the temperature diffusion with the intermediate temperature 7~yar o treated

as a source term.

The time advance of the full energy equation 3 is therefore formulated with second-order
accuracy in time in the form:

T~+I _ T ~

At
-- Tn+~~hua~o q- ~l ~CkV'p [K'(Tn+I) vTn+I "-}" Ir vTn] (4)

556

Here, the thermal conduction term is treated implicitly with a Crank-Nicholson method
to avoid overly restrictive stability constraints on the time step.

The spatial discretization for the entire scheme is done using a cell-centered formulation,
where all the physical variables are defined at the cell centers, and the physical boundaries
of the domain are along the cell edges (see figure 1). Godunov methods are intrinsically
cell-centered schemes, since they are based on the conservation form of the hydrodynamic
equations (1), (2) and (3) (see section 3.1). The nonlinear thermal conduction operator
on the right-hand side of equation (4) is discretized as a standard, second-order accurate
approximation that results in a finite difference operator with a 5 point stencil:

1
V . a (T)VT ~ 2Ax2[(tr j -4- tci j) (T i+ l j - Ti j) - (tci j -4- I~i--1 j) (T i j -- T/-1 j)] (5)

1

where xi = t~(Ti).
The solution of the implicit scheme resulting from (4) and (5) requires the inversion

of a nonlinear parabolic operator, for which we use a multigrid technique. Because the
Crank-Nicholson scheme in (4) is unconditionally stable, the CFL condition required
for the stability of the Godunov scheme is the only limiting factor in the choice of the
integration step for the equations. Additional constraints may be imposed by accuracy
considerations in cases in which the coefficient of thermal conduction tr is very large.

We now give a description of the higher-order Godunov method and of the nonlinear
multigrid implementation.

3.1. H i g h e r - o r d e r G o d u n o v m e t h o d
Higher-order Godunov methods have been used successfully for many years to solve

problems in compressible fluid dynamics. The best representative of this class of schemes
is certainly the Piecewise Parabolic Method (PPM) of Colella and Woodward (1984).
These methods are typically second order accurate in space and time, and they remain
robust even in the presence of discontinuities in the solution, such as shocks or con-
tact discontinuities. This property makes PPM and related methods ideally suited to
study problems involving compressible gases, as is the case in astrophysical plasmas. The
method uses a cell-centered representation of the physical variables (density, tempera-
ture and velocity)on an Eulerian grid, and equations (1), (2), and (3) are cast in a
system of conservation laws for the variables U = (mass, momentum, total energy). The
method uses a symmetrized sequence of one-dimensional steps to update the variables on
a multi-dimensional grid.

The basic one-dimensional time advancing step of the variables Ui at grid location i
can be written in conservation form as

At (F (rrn+�89

TTn+ 1 where "i+�89 = R(Ui-3, ..., Vi, ..., Ui+4) is the solution of the Riemann problem between a

1 In P PM these states are constructed left (UL) and a right (Un) state at the cell edge i + 7"

557

by interpolation using information from 4 neighboring zones on each side of the cell edge
1 (See Colella and Woodward 1984 for details). Therefore, the final time advance i + 7

operator produced by PPM can be thought of as an operator with a 17-point stencil
in two-dimensions, and a 25-points stencil in three dimensions, and the computational
domain must include four zones of ghost points along each boundary. The integration
time step At must be chosen to satisfy the Courant-Lewy-Friedrichs (CFL) condition
At = Crnm Ax/maxlu + c~[where c~ is the sound speed. A Courant number Crnm of
up to 0.9 can be chosen for the scheme to remain stable and robust.

The shock capturing properties that make Godunov methods robust come at the cost
of great computational cost, as measured by the large number of operations required to
update one grid zone (3000Flop). This property, combined with the locality of the data
exchange patterns, implies that such algorithms scale very well on parallel machines, and
that performance is ultimately limited by single node performance.

3.2. Nonlinear Multigrid Scheme
Multigrid methods were first introduced by Brandt (1977) to solve efficiently elliptic

finite difference equations with typically O(N) operations on a grid with N zones. The
basic idea is to accelerate the convergence speed of the basic relaxation iteration (e.g.
a Jacoby or Gauss-Seidel iteration) by computing corrections to the solution on coarser
grids (see e.g. Press et al. 1992 for a concise introduction to multigrid methods). The
idea is that the low frequency components of the errors can be smoothed out more rapidly
on the coarser grids.

In the V-cycle we use, one starts from the original grid where the problem is defined, or
the finest grid. A few relaxation iterations are carried out on the finest grid to smooth the
high frequency errors (smoothing), then the residual errors are injected into a coarser grid,
typically with half grid points and twice the spacing (injection). This process of smoothing
and injection continues down to a lowest grid, the coarsest grid, which can contain as few
as one or four points. Here the correction to the solution can be found rapidly and can be
interpolated back up to the finest grid through a succession of intermediate smoothing and
prolongation steps. In figure 1 we show the fine and coarse grids that we use at each level.
Injection and prolongation are obtained simply by bilinear interpolation. The particular
choice for the distribution of points in the coarse grid is such that each grid maintains a
cell-centered configuration with the physical boundaries being always located along the
cell edges (i.e. staggered with respect to the grid points).

For the nonlinear scheme (4) and (5) the Full Approximation Storage (FAS) algorithm
(see Press et al. 1992) is used. The relaxation step is accomplished using a time-lagged
Gauss-Seidel iteration, whereby the nonlinear part of the operator (5), the ~ coefficient,
is evaluated at the the beginning of the iteration, time time step n.

4. Parallel Implementation" Domain Decomposition

We integrate the equations on rectangular domains. Therefore, data can be decomposed
uniformly by assigning rectangular subdomains to each processor. Each subdomain must
be augmented with a number of boundary cells (ghost points) necessary to compute the
finite difference operators.

In general, finite difference operators can be thought of as having a stencil which deter-

558

X X X X X X
0 0 0 0 0 0 0 0 0 0

!
0 o ' o �9 �9 �9 �9 �9 �9

..... -/s + -, i , �9 ~-
o o ! o �9 �9 �9 �9 o l o

. ! ~ I " ~- = =

o " i " �9 �9 " " " ~ "
. - ~ " - ~ i ~ ~c-

o o ! o l o l o ~ o l o o ! o
..... ! ~ ~ i ~ �9 �9

o o ! o . �9 �9 �9 o . ~ . o
. . . . - ~ " ~' i t -

o o l o �9 �9 �9 �9 o l o
...... i " " " " ; 4

o o l o �9 �9 �9 �9 o l o ~ �9= �9= ~~
o o ! o ! o ! o ! o ! o ! o ! o

o o o o o o o o o o
X X X X X X

0
X

0

0
X

0

0
X

0

0
X

0

I
0 0 0 0 0 1 0 0 0 0 0
o o o o o l o o o o o
o o o o o l o o o o o
o o o o o l o o o o o
o o o o o l o o o o o

o o o o o l o o o o o
o o o o o l o o o o o
o o o o o l o o o o o
0 0 0 0 0 1 0 0 0 0 0

0

0 0 0 0 0 0
o o o o o o
o o o o o o
o o o l o o o
o o o o o o
0 0 0 0 0 0

0 0 0 0 0 0
O O O O 0 0
O O O O O O
O e ~ O 0 0
O O O O 0 0
0 0 0 0 0 0

0 0 0 0 0 0
O O O O 0 0
O O O O 0 0
O 0 ~ O e O
O O O O 0 0
0 0 0 0 0 0

0 0 0 0 0 0

O O 0 0 0 0

O O O O 0 0

O o ~ e e O

O O O O O O

0 0 0 0 0 0

Figure 1. Grid hierarchy:
• coarse grid.

�9 fine grid. Figure 2. Domain decomposit ion on four
processors.

mines the domain of dependency of one grid point from its nearest neighbors. The number
of nearest neighbor points required depends on order of accuracy of the scheme, and it
is 4 points in each direction for the P PM scheme and 1 point for the Crank-Nicholson
scheme. Thus, the arrays on a N x • Ny grid have (Nz + 29) • (Ny + 29) points, where 9
is the number of points in the computat ional stencil along each direction. Figure 2 shows
an example of domain decomposition for our scheme. Because we use a cell-centered for-
mulat ion, no interior points are duplicated across processors. However, quantit ies defined
at the cell boundaries, like the fluxes in equation 6, are computed redundant ly on neigh-
boring processors to avoid the higher cost incurred in exchanging lots of da ta between
processors. Obviously, this technique is likely to produce minimal degradation of parallel
efficiency as long as the ratio Nip of grid po in t s /number of processors is large.

The practical implementat ion of data decomposition and data exchange pat terns be-
tween processors has been achieved using the tools available in the Blockcomm subset of

PETSc.
The Godunov method, is ideally suited for parallel machines with med ium grain par-

allelism. The algorithm involves extensive computat ions in each t ime step. Internode
communicat ion takes place in two forms. One is the local nearest neighbor exchange to
update the ghost point. And the second is a global m a x i m u m to determine the CFL con-
dition for the t ime step. Because the scheme uses the directional splitting, ghost points
need to be updated twice in every t ime step, once after sweeping in the x direction and

then after sweeping the y direction.
The mult igrid algorithm has two different sections. The first section is similar to the

Godunov algorithm. The physical grid is decomposed into subdomains, which are then
mapped onto the processors. Each subdomain has its own grid hierarchy associated with
it, down to a coarsest (but still distr ibuted) grid that has only 2 points per direction on
the processor. The ghost points in this algorithm need to be updated for each relaxation
step, at all levels of the grid. As a result, the domain decomposition information must be

559

maintained for each grid level.
The second section begins when the coarsest mesh on the processor is reached. At

this point, the communication cost for updating of ghost points becomes very expensive
relative to the computation at each node. Besides, grid levels below this one would contain
fewer than one point per processor, and one would then have to maintain considerable
bookkeeping to keep track of grids distributed over a subset of processors. We have
adopted the much simpler solution to collect all the subdomains of the coarsest grid
globally onto each processor. Hence we continue with the process of injecting into coarser
grids until we have a small enough grid to be solved exactly. The entire process of injecting,
relaxing and projecting back is performed locally, and redundantly, on all processors. The
redundancy in computations is offset by not having to broadcast the low-level corrections
back to all processors.

The multigrid algorithm has a much lower computation to communication ratio com-
pared to an explicit finite difference scheme because the amount of computation reduces
much faster for each coarser grid than the amount of data exchanged, yet its data ex-
change patterns retain a large portion of locality. The only global data exchange required
is performed on a small grid, and therefore the amount of data to be transmitted is small.
Is is easy to see that this strategy will cause little parallel efficiency degradation as long
as the ratio Nip is sufficiently large.

5. E x p e r i m e n t a l Resul t s

In order to determine the scalability and performance properties of the code, we have
performed extensive measurements and detailed performance analysis. Here we report
the results the IBM SP-2 at the Maui Center for High Performance Computing. Similar
experiments on the Intel Delta at Caltech and the IBM SP-1 at Argonne National Labo-
ratory have brought essentially similar results. We have run a fixed number of time steps
for problems with different grid sizes, and for each grid size we have varied the number of
allocated processors.

The code has been instrumented with monitoring tools available within the Chameleon
system. These tools allow a trace file for each run to be collected for post-mortem anal-
ysis. The analysis has been carried out using the MEDEA (REF) system, a tool which
analyzes and summarizes information from the trace files. From the analysis we could de-
termine, for example, the communication patterns of the algorithms, the length, duration,
and distribution of the exchanged messages, and the amount of synchronization among
processors. The complete performance analysis will be presented elsewhere (Tessera et al.
1995). In Fig. 3 we show the execution time curves.

As it can be expected, for each grid size the performance scales almost linearly until
the local problem size on each processor becomes too small, in which case communica-
tions dominate over computations. At this point, an increase in the number of allocated
processors does not produce a decrease in the execution times (in fact, it produces an
increase), because of limits in bandwidth and latency. The effect is particularly strong in
the multigrid part of the scheme, where the communication activities are most frequent.

However, this is not a real problem for us, since we are interested in studying problems
on very large grids (in the range of 5123), where close-to-linear scalability persists up

550

1 0 0 0

c

1 O 0
w

Convection Code: Sp2
i i i i I i I

. I ~ . +ID'~

.

.

I I I I I l I
1 2 4 8 16 32 64 128

Number of processors

Figure 3. Execution time curve. The solid lines connect runs with the same global problem
size. The dashed lines connect runs with the same local size on each processor.

to large numbers of allocated processors. In this regime, the code performance is mostly
limited by the sustained computational performance on each node, and this is in turn
limited by the large number of divides and sqrt() operations required in the Godunov
algorithm. We estimate that the code achieves approximately 2.8 Gflops sustained per-
formance on 64 IBM SP-2 processors (by comparison, the code runs at an average of 180
Mfiops/erocessor on a Cray YMP).

R E F E R E N C E S

1. Bogdan,T.J., Cattaneo, F., & Malagoli, A. 1993, Apj, 407, 316
2. Brandt, A. 1977, Math. Comput., 31,333
3. Cattaneo, F., Brummell, N. H., Toomre, J., Malagoli, A., & Hurlburt, N.E. 1991,

ApJ, 370, 282
4. Colella, P., & Woodward, P. 1984, JCP, 54, 174
5. Gropp, W. D., and Smith, B. 1993, "Users Manual for the Chameleon Parallel

Programming Tools," Technical Report ANL-93/23, Argonne National Laboratory
6. W. Gropp and B. Smith, "Scalable, extensible, and portable numerical libraries, Pro-

ceedings of the Scalable Parallel Libraries Conference," IEEE 1994, pp. 87-93.
7. Press, W. H., Flannery, B.P., Teukolsky, S.A., &: Vetterling, W.T. 1987, "Numerical

Recipes", Ed. Cambridge University Press (Cambridge, UK)
8. Tessera, D., Malagoli, A., & Calzarossa, M. 1995, in preparation.
9. Calzarossa, M., Massari, L., Mer]o, A., Pantano, M., & Tessera, D. 1995, IEEE

Parallel and Distributed Technology, vol. 2, n. 4

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

561

Towards Modular CFD using the CERFACS Parallel Utilities

R~mi CHOQUET and Fabio GUERINONI a
Michael RUDGYARD b

aIRISA/INRIA Campus de Beaulieu
35042 Rennes CEDEX, FRANCE

bCERFACS, 52 Av. Gustave Coriolis
31057 Toulouse CEDEX, FRANCE

We describe a modular, parallel computational fluid dynamics code. This is tested
on dedicated workstations and scalable multiprocessors. Performances and comparisons
for 2D and large 3D problems are given. We also present a preliminary description of a
parallel implicit library.

1. In t roduc t ion : The C E R F A C S P a r a l l e l U t i l i t i e s L i b r a r y (CPULib)

The purpose of this paper is to report on recent progress in the development of a
complex code for "modular" parallel fluid dynamics. The project was funded by the
European Commission and involved several research centers, coordinated by CERFACS
in Toulouse, France.

The starting point for the project was a large computational fluid dynamics code and its
generic parallel library which has been called the CERFACS Parallel Utilities (CPULib)
[9,8].

In current CFD terminology, it can be described as a parallel unstructured/structured,
two and three dimensional Navier-Stokes solver. Its supporting parallel routines (CPULib)
consist of message-passing implementations of generic utilities that are required by many
numerical schemes in computational fluid dynamics. The library is built upon the IPM
macros [5], which allow us to use message passing software such as PVM, PARMACS and
MPI. Recent work has been oriented toward the achievement of two main goals:

The first goal was to test the performance of parallel code, not only on networked
multiprocessing (with several hosts running the same code), but also on truly scalable
distributed memory multiprocessors like the Intel Paragon. The message passing library
of choice in this case has been PVM. Although PVM was conceived for parallel processing
on networks of heterogeneous workstations, there are few large-scale codes which run and
perform well on true scalable multiprocessors.

The second goal was the definition of a suitable approach for the implementation of
implicit methods within the farmework of CPULib. We describe below the methods and
routines already incorporated.

The paper is organized as follows. Following this introduction, we give a detailed

562

Figure 1. Paragon node (left) and message passing layers (right)

description of the multiprocessor on which part of the code was tested. The following
sections cover the numerical schemes and the presentation of test problems. To close, we
sketch the structure of the implicit library and its interaction with CPULib.

2. The Intel Paragon Multiprocessor

In the previous section we have seen how CPULib is completely independent of the
message passing system used by the underlying processors of our parallel machine. Due
to its popularity and flexibility, results shown in this paper are computed using PVM. Al-
though this is not the native language of the Intel Paragon, we shall see that an acceptable
performance is obtained.

2.1. Hardware description
At IRISA, we have a small scale Paragon, Model XP/S A with a total of 56 user nodes,

3 for service, and 2 for I/O. Each nodes has two i860 XP with 16Mb of memory. They
are rated at 75Mhz, 75MFLOPs (peak d.p.) and include a small 16Kb cache.

The grid network with no wraparound has a theoretical speed of 200Mb/s (for reference,
the bandwidth of the cache-memory is 400Mb/s). Although the network has been rated
at 165Mb/s under the SUNMOS operating system, the bandwidth for a Model XP/S A4E
with nodes of 16Mb, and running OSF/1, has been rated at only 48Mb/s for FORTRAN
code using NX [7] we expect this to be even less under PVM.

2.2. P V M on multiprocessors
The PVM (Parallel Virtual Machine) system was developed to permit an heteregeneous

cluster of workstations to work together in the solution of some scientific problem. More-
over, tasks assigned to each processor can be made according to the capability of each
host.

In view of limitations associated with shared memory processors, the need to develop
a multiprocessor (MP) version of PVM was evident. Such capabilities were incorporated

563

for the first t ime in its version 3.2 in late 1993 [6,4].
In spite of the success of PVM in a multihost environment, it has, until recently, been

generally ackowledged that PVM on a MP is still relatively fragile. Indeed, a number of
restriction apply on the Paragon:

�9 One task per node we must have at least as many computational nodes as there
are tasks, and must prevent forking on a node.

�9 Only one pvrnd (daemon), which must be constantly probing the MP tasks (Fig-
ure 1). Inter-host communications can be very slow.

�9 No stderr/stdout from the nodes since there is n o / t m p / p v m d l . u s e r which exist on
normal hosts.

3. E x p l i c i t S c h e m e s

The convective part of the code is based on a cell-vertex finite volume discretization,
and as such can also be viewed as finite difference schemes [9]. The explicit schemes are
normally very robust and will be described first, together with results.

3.1. T h e N u m e r i c a l S c h e m e

We solve the 3-D Navier-Stokes equations in conservation form:

ut + V . 9 r = 0 (1)

where 9 c involves convection and diffusive parts. The explicit step of our algorithm is
fundamental , since it is also used as the predictor step in the implicit formulation. We
use a (cell-vertex) finite volume version of the Lax-Wendroff scheme. In one dimension,
this can be writ ten

At 2 A ~ A ~ - -Atr~ + -~ (r~)~ (2)

It is well-known that such a scheme is second order in time and space and is stable if the
Courant number (CFL) is less than one; this poses a fundamental restriction, as with
any explicit scheme. It is also well-known that when presented with discontinuous initial
values, the scheme produces spurious oscillations. At the expense of more computat ion,
implicit schemes try to improve upon explicit schemes in both senses.

3 . 2 . P e r f o r m a n c e o n N e t w o r k e d W o r k s t a t i o n s

For preliminary tests, we have chosen two test cases using small meshes and whose
characteristics are described in Table 1.

The original unstructured meshes are decomposed (by routines incorporated in CPULib)
into blocks, each of which is assigned to a specific host (or node, in the case of a multipro-
cessor). Computat ions are performed globally using message passing routines for sending
information across blocks. A detailed discussion is given in [8].

The meshes represent standard supersonic NACA 0012 problems, with no viscosity.
Since explicit methods do not involve the use of iterative methods for solving any linear

564

Table 1
Test Meshes
Name Partitions Nodes Cells Bound. Nodes Shared Nodes
lbl 1 2104 4047 165 0
4bl 4 2303 4047 175 402
8bl 8 2399 4047 175 612

Figure 2. CPU utilization with perfmeter (left) and space-time diagram with xpvm

systems, the present tests do not assess any global elementary operations such as norms,
scalar products, and matrix vector products.

Basically, all meshes are the same except for the number of blocks. The last two
columns indicate the number of nodes on the physical boundary, and nodes which are at
the interface of blocks.

All computations were evaluated on up to 9 dedicated SPARC Sun workstations. In
preliminary computations we obtained low efficiencies (for example a speed-up of only 3.65
with 8 processors). Due to the nature of the code, which is nearly all parallel, this poor
performance could not be explained in terms of communication overhead alone. However,
using tools like xpvm and SUN perfmeter, it was easy to discover that one of the hosts
ran at a peak of less than lOMflops (host canari in Figure 3.2) while the others had peaks
of 21M flops (SPECfp92) at least. By removing the bottleneck we obtain efficiencies of
nearly 0.82.

3.3. P e r f o r m a n c e on the P a r a g o n
We repeated the tests made for the networked suns with 2, 5, and 9 nodes of the

Paragon. The master is not active in the computation and this must sit on a node by
itself with no other process. As explained earlier, this is an intrinsic restriction of PVM

565

Table 2
Peformance on Networked Workstation
Mesh SUN4 Proc* Time/iteration Wall-time Speed-up
lbl 2 7.96 3184 1.0
4bl 5 2.06 824 3.86
8bl 9 1.22 488 6.52

on a multiprocessor.
In the worst case (9 nodes) the efficiency was nearly 0.95, with a run-t ime improvement

of about 12 times that of the corresponding computations on network Sun's at 22Mflops.
This is much better than what could be explained in terms of raw processor power. Space
limitations prevent us from saying more about such computations, and we turn instead
to more realistic problems.

Three-dimensional Computations
Table 3 describes two tetrahedral meshes for an ONERA M6 wing. The problem is

a transonic Euler computation at M = 0.84, c~ = 3.06~ Partitioning of the meshes
was done automatically using CPULib routines. The right part of the table indicate the
minimum and maximum number of nodes of the resulting blocks.

Table 3
Three Dimensional Meshes and Block Sizes
Mesh Nodes Cells Partit. Max Size Min Size
m6_co 10,812 57,564 1 10,812 10,812

2 6,126 6,089
4 3,548 3,207
8 2,065 1,790

15 1,322 988
m6_fi 57,041 306,843 1 57,041 57,041

2 31,949 31,063
4 17,586 16,067
8 9,484 8,031

15 5,616 4,497

The computations shown in the table are for the fine mesh rn6_fi with more than
300,000 cells. Note that there are two columns: S.upl and S.up2. The first gives the
conventional speed-up - the relative speed when compared to the execution with only one
processor. This leads to values much larger than the number of processors.

This effect is clearly due to swapping overheads, since for less than four processors,
the partitions (blocks) are two small to fit comfortably on the 16Mb of real memory, and
virtual memory mechanisms start working, resulting in inflated execution times. For this
reason we use the second figure S.up2 speed-up with respect to 8 procesors. Even so,
the calculation with 15 blocks still gives anomalous speed-ups. This is likely to be due to

566

cache and page misses because of indirect addressing.
Finally, results are shown for the same problems with dedicated SUNs. Notice that

swapping is still considerable on a Paragon node (16Mb) using 4 blocks, so that the
slower but larger (32Mb-48Mb) SUN's take the lead. With more memory on the nodes,
we expect the Paragon to be faster by at least the factor by which its processor is more
powerful than that of the SPARC's.

Table 4
Three Dimensional Meshes and Partition Sizes
Partit. Time/iteration S.upl S.up2 Time/It. SUN
1 240.5 1.0
2 175.2 1.37
4 74.8 3.215
8 8.2 29.329
15 2.8 85.89

1.0
2.92

61.8
33.6

4. Toward an impl ic i t l ib ra ry for C P U L i b

The step size of the time integration of (2) is limited by stability. As a result, we
would like to consider implicit schemes, even though the solution of such schemes on
unstructured meshes is non-trivial. The goal of this part of the work is to define the
structure of an easy-to-use library of algorithmic modules for parallel processing. Since
this structure must be applicable to several different application codes, it must keep all
algorithmic and problem specific data separate. As stated before, the framework for this
analysis is a fluid dynamics code and its generic parallel library CPULib.

4.1. The Impl ic i t Equa t ions
We choose to implement an extension of the Lax-Wendroff scheme due to Lerat[2]. We

first consider linear implicit schemes. In one dimension these take the form:

Aw At2 A~) 2
2 [((Aw)x]x- AwCxpt (3)

where w~pt is the predictor term and is defined by (2). For the nonlinear version one
solves

Aw /kt2 An+I 2 At2 - - -~[() (Aw)~]~ -- - A t F n + --~(A~+IFn)~ (4)

Both implicit schemes are linearly stable for any time step, are second order accurate in
time and do not require artificial viscosity. Furthermore, the second method has proven
useful for unsteady flows with shocks[3].

4.2. The impl ic i t l ib ra ry
In the context of CPUlib, the definition of a modular framework should allow several

application codes to make use of the library. The structure of the library should also

567

imply minimal work for the user. As a result, we have precluded the use of common
blocks between library modules and the user's own routines. This constraint implies the
creation of low-level routines which can be used within the high-level communication
routines of the implicit library.

Typically, the library consists of three components:

�9 a 'black-box' module which makes use of
CPUlib's data-structure, as well as low-level
parallel routines ;

�9 an interface routine, required by the library
although supplied by the user, that links
the modules and problem specific routines
(PSR) ;

�9 problem specific routines (optional).

In the diagram exemplifying the use of the library,
modules are denoted by rectangles, PSR by tri-
angles and interfaces by ovals. As an example,
consider one time step of the linear implicit Lerat
scheme, illustrated on the right. Once we have
defined the Lax-Wendroff residual Aw,xp, the so-
lution of (3) involves the following three compo-
nents:

�9 We call the GMRES module to solve the lin-
ear problem (3) ;

�9 the GMRES routine calls the interface rou-
tine matvec ;

�9 the routine matvec calls the Lerat residual.

Time
Scheme

GMRES

For the non linear scheme (4), one additional level is necessary. In this case, the Newton
module calls an interface module which calls the module GMRES. Here GMRES involves
Jacobian vector products and matrix-free techniques.

5. Final R e m a r k s

The basic tenet of the original code, which is its capability to adapt to different message
passing parallel systems, has been demonstrated. We have considered a very powerful class
of machines, (which in theory may consist of thousands of processors) using the popular
message-passing software PVM. The combination of portable software as well as these
powerful machines should open the way for large-scale parallel computations for fluid
dynamics problems.

568

There are, however, stumbling blocks. Implicit computations using unstructured meshes
have as yet proven difficult to implement due to the complexities in treating the boundaries
implicitly, even in the steady case. Simple experiments have shown that such boundary
conditions should not be treated as natural extensions of the explicit scheme, since this
can result in spurious solutions, and bad (or no) convergence.

R E F E R E N C E S

1. Paragon Fortran Compiler's User's Guide. Intel Corporation, on: 312491-002 edition,
March 1994.

2. A. Lerat and J. Sides. - Efficient solution for the steady Euler equations with a
centered implicit method . - In K.W. Morton and M.J. Baines, editors, Numerical
Fluid Dynamics III, pages 65-86, Oxford, 1988. ONERA, Clarenton Press.

3. Anne-Sophie Sens . - Calcul d'~coulements transsoniques instationnaires par r~so-
lution implicit centr~e des ~quations d'Euler sans viscosit~ artificielle.- Technical
Report 1990-8, ONERA, 1990.- Th~se doctorat, Univ. Paris VI.

4. A.T. Beguelin, J.J. Dongarra, and et al. P VM version 3.3 (Readme.mp). U. of
Tennessee, ORNL, Emory U., edition, Nov 1994.

5. The FunParTools Co. IPM2.2 User's Guide and Reference Manual. CERFACS,
edition, September 1994.

6. A. Geist and A. et al Beguelin. P VM: Parallel Virtual Machine. Volume of Scientific
and Engineering Computation, The MIT Press, edition, 1994.

7. Ph. Michallon. Etude des Perfomances du Paragon de I'IRISA. , IRISA, 1994.
8. M. Rudgyard and T. SchSnfeld. CPULib - a software library for parallel applications

on arbitrary meshes. 1995. To be presented at CFD'95, Pasadena,CA.
9. M. Rudgyard, T. SchSnfeld, R. Struijs, and G. Audemar. A modular approach for

computational fluid dynamics. In Proceedings of the 2nd ECCOMAS-Conference,
Stuttgart, September 1994.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

569

A fully implicit parallel solver for viscous flows; numerical tests on high
performance machines

E. BucchignanP and F. Stella b

~C.I.R.A., Capua (CE), Italy

bDip. di Meccanica ed Aeronautica, Univ. di Roma "La Sapienza", Italy

In this work a, parallel fully implicit flow solver for incompressible Navier-Stokes equations,
written in terms of vorticity and velocity, is presented ~nd tested on different architectures.
Governing equations are discretized by using a finite difference approach. Linear systems
arising from discretization are solved by a parallel implementation of Bi-CGSTAB algo-
rithm used in conjunction with a Block Incomplete LU factorization as preconditioner.
Results are given for the simulation of a 3D flow in a rectangular box heated from below.
Emphasis is given in the analysis of transition from steady to non periodic regime.

1. I N T R O D U C T I O N

The continuous progress in the development of solution codes for unsteady, three dimen-
sional fluid dynamics problems is unthinkable without the substantial increase of com-
putational speed and storage capacity of high performance computers. A change from
vector supercomputers to parallel systems is currently taking place, therefore the need of
parallel software that is portable, load balanced and scalable to hundreds of processors is
often felt.
Most. of the CFD packages used in practical applications are based on Domain Decom-
position techniques [1,2], that allow to obtain very high parMlel performances. However,
they are not suitable if an unsteady flow has to be studied. In this case it is necessary
to use a flllly implicit approach, usually preferred over the explicit, one also for steady
state calculations, because of its good numerical stability, especially when used with large
time steps. Due to the large amount of inter-process communication required from the
implicit methods, it is very hard to obtain a parallel speed-up on distributed parallel
machines. Nevertheless, the parallelization of these methods is a current research area
and has been investigated by many authors [3-7] and obtained results are encouraging.
In this paper we present numerical results related to a parallel implicit solver for viscous
flows, based on the vorticity velocity formulation [8] of Navier-Stokes equations. A fully
implicit, approach has been adopted in order to tackle this problem, leading to a, large
sparse linear system per each time step. Bi-CGSTAB [9] has been proved to be very
cost-effective for the solution of this type of problems. Performances, in terms of parallel
speed-up, are strongly affected by the choice of a,n effective parallel preconditioner. As
a good compromise between the efficiency of ILU and the facility of implementation of

570

Diagonal scaling, a Block Incomplete LU factorization (BILU) has been chosen.
The application considered is a three-dimensional flow in a rectangular box, bounded
by rigid impermeable walls and heated from below (i.e. Rayleigh - Benard problem).
Vertical walls are adiabatic, while horizontal surfaces are assumed to be isothermal and
held at different values of temperature. Numerical results are presented for several values
of the characteristic parameters and compared with those obtained in the sequential case.
Parallel performances are presented in terms of elapsed time and parallel speed-up as a
function of the number of processors.
Parallel code has been developed by using PVM 3.3 environment, as message passin 9
software. It was implemented in double precision on different machines, such as Convex
Metaseries, Convex Exemplar, Cra,y T3D and IBM-SP2.

2. T H E M A T H E M A T I C A L M O D E L

The vorticity velocity form of the non-dimensional equations governing three-dimensional
natural convection in a Newtonian fluid, assuming the Boussinesq approximation to be
valid, is:

1 0~.,

Pr Ot + P r . (u ~) - V 2 w - R a V x 0 g (1)

V 2 u = - V x ~ (2)

00
+ (u . V) 0 = v ~ 0 . (3) 0t

The standard conservative form is adopted for the convective terms in the vorticity trans-
port equation in order to conserve exactly the mean vorticity a,s prescribed by Stokes
theorem. Tile non-dimensional scheme adopted is defined in [10] as Cond~zction eq. con-
vection. It uses the non dimensional parameters Ra = g~ATI3/,~:p and Pr = ~/~:.
The mathematical formulation is completed by proper boundary conditions, that are sim-
ple to enforce and implement [11].
The governing differential equations are discretized on a regular mesh by using the finite
difference technique. Spatial derivatives are discretized using second order central differ-
ences, while time derivatives are discretized using a three point second order backward
difference. Discretization gives rise to a linear system of equations of type Az = b for
each time step.

3. D E S C R I P T I O N O F A L G O R I T H M

3.1. I t e r a t i v e m e t h o d

As discussed in the previous section, a large sparse linear system has to be solved to
advance the solution in time at each time step. In this work a parallel implementation
of Bi-CGSTAB algorithm (iterative method of the Conjugate Gradient class) has been
used; it has been proved to be very efficient and stable, even if coefficient matrix A is
non symmetric. Bi-CGSTAB is widely described in [9] and is not reported here for seek
of brevity. On the contrary, it is useful to describe here some details used in order to

571

obtain an etIicient implementation of the method. Let n be the number of equations and
n p r o c the number of processors used. Basic operations of the method are: vector update,
matrix-vector products and inner products.
Vector update can be executed in a. easy way simply splitting the vector components
among processors. Communications are not required and a, linear speed-up is expected
for this kind of operation.
Matrix-vector product (At) is executed by splitting the matrix into horizontal bands and
mapping them among processors. Some components of ~ vector have to be transferred
among processors; a very effective procedure has been adopted, by transferring to each
processor only the components really needed. If non-zero elements of A are enclosed in a
narrow band, only neighbour communications are required, so communication time does
not increase for increasing values of r~proc.

Inner product requires global communicatioIls for assembly the sum and for distribution
of l;he assembled sum over tile processors. Implementation of irlner products represents
a very tough problem because of the small granularity of each computational task. As
matter of fact, it limits the number of processors for which the maximum efficiency is
obtainable. Global time for execution of inner product is given by:

'rz

T = t~.,,l,~: + t = K ~ . ~ , > - - + K �9 r~proc (4)
r tp roc

where IC-~,,z~- and K are constant quantities depending on the characteristics of the
machine under test, but it, is clear that r~pr'oc cannot be too large.

a .2 . P r e c o n d i t i o n e r
In order to fulfill stability and convergence of the iterative solver, the use of a, precondi-
tioning technique is essential. It consists of finding a real matrix (7 such that the new
linear system

('-IA:~: = C-lb (5)

has (by design) better convergence and stability characteristics than the original system.
Several preconditioners have been developed: Diagonal Scaling and IL[~ fa.ctoriza, tion
are two of the most widely used. In tile first case C is diagonal, whose elements are
tile same as the main diagonal of A. In tile second case C is defined as the product
L [; of a lower (L) and an upper (U) triangular matrix, generated by a. variant of the
Crout factorization algorithm: only the elements of A that are originally non-zero are
factorized and stored. In this way the sparsity structure of A is completely preserved.
As matter of fact, parallelization of diagonal scaling is straightforward, but it does not
allow us to significantly reduce the iteration number required for convergence; on the
other hand. ILI~ preconditioner is very good on sequential computers, but it cannot be
etticiently implemented on a distributed memory machine. In order to overcome these
problems, the BIL[~ preconditioner has been proposed in [12]. This preconditioner is
based on a block decomposition of matrix A, with no overlapping among the diagonal
1)locks: each processor performs a,n ILII factorization only on a square block centered on
the rnaill dia,goIlal. This t)recoxlditioner does not affect the final result obtained by using
Bi-CGSTAB, even if it could a.ffect the llllml)er of iterations required (see Tables ill [12]).

572

4. T H E P H Y S I C A L P R O B L E M

The numerical code described above has been used to study a three-dimensional flow in a
rectangular box, bounded by rigid impermeable walls and heated from below (Rayleigh -
Benard problem). Vertical walls are adiabatic, while horizontal surfaces are assumed to be
isothermal and held at different values of temperature. The Rayleigh-Benard problem has
been studied over the past century by a large number of researchers, because it has many
practical applications, as well as theoretical interests (transition to turbulent regime) [13-
16]. Gollub L;, Benson experimentally showed that there are several routes that conduct to
turbulent convection (in small boxes). The general trend reported was that an increase in
the Rayleigh number leads to more and more complex behaviour, via, discrete transitions.
In the present work a system characterized by 2.4 * 1 * 1.2 geometry, filled with water
at 33~ (Pr = 5.) is adopted as study case. The Rayleigh number has been varied from
40000 to 180000, in order to investigate the behaviour of the system from steady state
to non periodic regime. A mesh with 25 �9 21 �9 25 points and a t ime step A/, = 10 .4
have been used for numerical discretization, that revealed themselves accurate enough for
our purposes. Only to evaluate parallel performances, another test case has also been
considered: it involves a computational domain with 1.5 �9 1 �9 4.5 dimensions, assuming
Pr = 400 and Ra = 70000 and adopting two meshes: 16 �9 21 �9 46 and 32 �9 21 �9 46.

5. P A R A L L E L E N V I R O N M E N T D E S C R I P T I O N

The numerical simulations have been executed on tile the following machines:
- CONVEX METASERIES, installed at CIRA, is a cluster of 8 HP PA-735 workstations,
connected by FDDI ring. The peak performance of each processor is 200 MFLOPS at 64
bit and each node has 64 MB of local memory.
- CONVEX EXEMPLAR, installed at CIRA, is comprised of 2 hypernodes, each of which
has 8 HP PA-RISC 7100 chips, an I/O port, and up to 2 gigabytes of physical memory
on a non-blocking crossbar sustaining a bandwidth of 1.25 gigabytes/second. Hypern-
odes are interconnected with 4 rings, each with raw bandwidth of 2.4 gigabytes/second.
Sustainable bandwidth between any pair of nodes is 160 megabytes/second in each direc-
tion, up to 8 pairs active simultaneously. Exemplar can be programmed as a distributed
memory message-passing machine (by using PVM or MPI) or as a conventional shared
memory machine; in fact both the C and Fortran compilers can automatically parallelize
data-independent loops. In this work we have programmed it as a distributed memory
machine.
- CRAY T3D, installed at CINECA (Bologna,, Italy), is a distributed memory parallel
system with 64 processing nodes. The processing nodes are DEC Alpha, processors and
are connected by a 3D bidirectional torus network. Each switch of the network is shared
by two nodes. The memory is physically distributed, but globally addressable, so that
both SIMD and MIMD programming models are supported. A Cray C90 vector processor
is used as host system for the T3D architecture.
- IBM SP2, installed at CASPIJR (Roma, Italy), is a distributed memory system with 8
"thin nodes" (based on POWER2 processor). The nodes are interconnected by a 'High-
Performance Switch'. The switch is a multistage omega, network that performs wormhole
routing. An optimized version of PVM (named PVMe) is available.

573

6. RESULTS

6.1. Parallel results
The numerical code has been developed by using PVM 3.3 environment , as message
passin 9 software. Numerical tests have been executed on the meshes 25,21 �9 25, 1 6 , 2 1 , 4 6
and 31 �9 21 ,46 , leading respectively to systems with 104104, 123046 and 231616 equations
(test cases A, B, C). Parallel performances are presented in terms of elapsed t ime (seconds)
and parallel speed-up as a function of the number of processors. Tab. 1, 2 and 3 show
performances obtained on the various architectures. Besides, test cases A and B have
been executed on a IBM RISC 355, on Convex 34 and Convex 38 (these last two have
respectively 2 and 6 vectorial shared memory processors). Tab. 4 shows performances
obtained on these machines, in terms of Cputime.

Table 1
Performances related to the the test case A (104104 eq.). Pr = 5, R.a = 60000, two t ime
steps.

I Metaseries] Exemplar I I T3D I sP2
n. pr . t ime sp.-up t ime sp.-up time sp.-up t ime sp.-up

1 183 1.00 244 1.00 391 1.00 77 1.00

2 108 1.69 126 1.94 244 1.60 40 1.92
4 75 2.44 79 3.08 156 2.51 26 2.96
6 60 3.05 63 3.87 112 3.49 21 3.66
8 48 3.81 57 4.28 95 4.11 - -

Table 2
Performances related to the the test case B (123046 eq.). Pr = 400, /~a = 70000, two
time steps.

I Metaseries I Exemplar I I T3D 1 SP2
n. pr . t ime sp.-up t ime sp.-up t ime sp.-up t ime sp.-up
1 401 1.00 545 1.00 840 1.00 161 1.00
2 245 1.63 309 1.76 490 1.71 87 1.85
4 133 3.01 156 3.49 269 3.12 55 2.92
6 107 3.74 119 4.58 198 4.23 45 3.58
8 97 4.13 106 5.14 176 4.77 - -

These results show a good behaviour of the method, being a,n efficiency of about 67% on
8 processors for the heaviest case. The inevitable loss of efficiency is especially due to
the less effectiveness of the preconditioner BILU as tile number of processors is increased.
Besides. the inter-processor communication t ime is not negligible, although a suitable

strategy has been adopted. The load unbalancement has also to be taken into account:
in fact, especially for a coarse grid, it could cause a loss of efficiency of about 10% on 8

processors.

6.2. Fluid dynamics results
Numerical simulations have highlighted that for /~a = 40000 tile flow is steady and orga-

nized as two symmetr ic counter-rotat ing rolls (Fig. 1 and 2). At Ra = 50700 tile system

574

Table 3
Performances related to the tile test case C (231616 eq.). Pr = 400, Ra = 70000, one

t ime step.

1 Metaser ies 1 E x e m p l a r I T a D SP2
n. p r . t ime sp.-up t ime sp.-up t ime sp.-up t ime sp.-up

1 360 1.OO 474 1.00 805 1.00 333 1.00

2 223 1.61 258 1.84 435 1.85 168 1.98

4 125 2.88 144 3.29 234 3.43 99 3.36

6 99 3.63 llO 4.31 178 4.51 67 4.97

8 79 4.55 82 5.64 148 5.42 - -

12 - - 64 7.40 110 7.:32 - -

16 - - 53 8.94 92 8.75 - -

Table 4

Performances of the sequential version of the code.

I B M RISC Convex 34 Convex 38
Case A 284 366 170

Case B 540 658 382

undergoes a first bifurcation to periodic regime, and at Ra = 60000 a F F T executed on
the U,: velocity componen t t ransient history in a fixed point shows tha t tile flow is periodic
with a main frequency of 29.29 (and its harmonics)(Fig . 3-a). An increase of /ga up to l0 s

causes the the t ransi t ion to quasi-periodic regime. In fact the power spec t rum reveals the

existence of two fundamenta l frequencies (39.06 and 80.56) and several harmonics given
by linear combinat ions of the fundamenta l ones (Fig. 3-b).
At Ra = 1.4,105, a phase: locking phenomenon happens: the two fundamenta l frequencies
are modified in such a way tha t their ratio is a rat ional number (2, in this case); the flow
is periodic, again (Fig. 3-c). At Ra = 1.8 �9 10 ~ a non periodic behaviour was found: the
power spec t rum is not regllla.r at all and main frequencies are not appreciable. However,
a deeper analysis of this flow seems to be necessary in order to unders tand tile difficult

problem of t ransi t ion to chaos.

7. C O N C L U S I O N S

The aim of this s tudy was to look at tile feasibility of implement ing a fully implicit solver

for Navier-Stokes equations on dis t r ibuted memory MIMD architectures. Performances

obta ined are encouraging: in fact we are able to investigate a toug)i problem, such a,s the

tra, nsitiorl to uns teady regime in a. reasonable computa t iona l t ime.
It has been shown tha t the code can be ported to a range of parallel hardware, being a good

parallel efficiency and sca, la,bility on all tile machines considered. Worse performances in

te rms of elapsed t ime have been obta, irle(l o)l C, ra,y T3D. This is mainly dlle to the less

computa t iona l power of the node I)ro(:essor of this SUl)ercomputer.

Acknowledgements
l'11c a111 I~ors ~ v o ~ ~ l c t like t,o t ha111i:
- i ~ ~ g . F . l~ lag l ig l i a~~i of ('0NVk:X l'T!lI,I.L\ mi la^^) for. the help si~l)l~lietl i r ~ the c x r c ~ ~ t , i o r ~
of 111111rc.ric.al t,r~sl,s.
- ('ASPI'K (c / o I :~~ ivers i ty of Roll~c,) for pro\litli~lg c :o rn~)~~t ,a t , io~~a l rrsorlrc-c,s i l l t.hc execu-
t i o ~ ~ s 01' I I I I I I ~ (' ~ ~ (. ~ ~ tcst,s.

REFERENCES

1. Schiar~o P.. l , lat ,ror~e ;\.. Pro(.. IJa~.allel (:FL) '!):I, I'aris, May 10-12, 1!)!1;I.
2 . ~ l - r o ~ ~ ~ r ~ ~ r - t) c ~ r v o t I).. I < O I I X I?.. llroc. Parallc~l ('PI) '93. Paris. >lay 10-12, 1!)!):3.
: \\.i~l<c. H. . Egolf T.. A l , \ A . Io l~r~ la l . 2 9 (l j , pp. 58-67. 1!)!)1.

1 . I2ol~g I... ~ I I ~ I I 11.. Sl1ar1) 11.. ,ll,L\!l . J o \ ~ r r ~ i ~ l . 2 9 (5) . pp. 657-666, l!)!ll.
i. (' a l ~ i r r ~ I) . . .Ica11~1el [I.. 1111 . .I. NIIIII. M e t l ~ . l?l~li(ts 1 2 , 1) ~) . !120-!14~i. I !)!]I .

(i. Tsai hi. . Pro(, . F'arallt>l (IF11 '!):I. Paris. hll:iy 10-12. 1993.
7. S<.l~rc.c.l< I;.. Pr.~.ic. M.. 111 t . . J . K I I I I I . Met , l~. Fl~litls 16. p1). :IO:i-:I27. L!)!):I.
X. (: I I ~ (:.. Stclla F.. .I. (' o l i~p . P1-~ysic.s. 1 0 6 (2) PJ). 286-298; 1993.
I . \'all (1 ~ x 1 . \"ol.st H . . SIf\1\'1 .J. Sri. S ta t . (:olr~pl~t , . 13. 11. 2. 111). li:iI-643. 1!192.
10. t l r \'all1 [)a\.is (:.. Mrat 7T~.ar~sfrr 1!)8(i. 1. 111). I O L I O !) . I-iell~isphcrr f'11h1. ('or[).. Miash-

ir~gi 011. l!Mfi.
i 1 . St(,lln I:.. H~~c .c . l~ ig r~ar~ i I.:.. "A 1'11Ily i~rlplic.it vort,ic-ity-vr1oc.it.y 111ct,l1ocl r ~ s i r ~ g ~)rc,c:or~di-

t iot~r(l Hi-('(iS'l.'\H.'. s ~ ~ t) i n i t t c ~ (I t,o 111t. .J . S I I I~ I . Ml~t,h. l:l~~icls. 1!)!15.
12. St(>Iln I,. .. ~ ' I ~ I I . I . ~) I I ~ > 11.. H I I (, (. ~ I ~ ~ I I ~ ~ I ~ E.. l'r.o(.. Parallel ('FD '$13. Piiris. May 10-12>

I !)!):{.
I:{. I)avis S.. .I. 1:111i(l Mlecl~.. 30(: I) . 111). 165-478, 1967.
I I . ('lrvc,~, li .\'I.. 1311ssc. F.H.. .I. Flrlitl Ylt~.11. 6 5 . pp. 625-615. 1973.
l i. (:ollllt) .l.P.. Hrr~son S.V.. .I.Flnicl M r c t ~ . 100 . 111). 449-170, I!)80.
I f i . Strlla L:.. (i11.j (:.. I,c~or~ardi E.. .1.121~~itl Mec.11. 254. 111). 375-400. 1!)!):1.

~- - -

, - - f ~ - - \<,
'. \ I , , ,, ', I, ', '8 1 ', ,,?/I ,) , , , , ' , , ' , / / \,

A -.
_'- - - - - - - , . I , l / i \ ', ' , $ ' \ "

\ -3 ---:- ?,,~&!:.z:--& k,
7 . <-- . . - e.,\ --;-- - . .:-
'a- - - > -

..- - .
JL-

.. - .- , , . ~ . . -&-%-I ' ,,, ' ~ , ; /d>, \s\\ I

, . &!,:, , \. :. , >, ; L.%&; ;

l:igl~rc, I . (' O I I ~ ~ L I I . plot of t (. n ~ l) c . r i ~ t ~ ~ ~ ~ ~ i l l t 1 1 c - F i g ~ ~ r e 2. ('ontonr plot. of \'-vrloc-iiv i r ~
l) l c i ~ ~ t t : = 0.fi a1 = 10000. t l l ~ 1)laile = 0.5 a t Krc = t0000.

576

- 4 2
-42.5

-47
-47.5

3.76 3.78 3.8 3.82 3.84 3.86 3.88
t

(~)

le + 06

100000

10000

A I000

100

10

1

A
m m m m m m
m . m m m m m
m m m m ~ t m m m m
k l f a /) l i i " i L S , i l i m / ~ .

0 20 40 60 80100120140160180200
f

- 5 4

- 5 5

-56

-57

-58

-59

-60

-61

(b)

i |]

. iii i i l l / t i ' " ~ l l l t l i J :

/ / / t l / I v i l

4.9 4.95 5 5.05 5.1 5.15 5.2 5.25 5.3 5.35
t

le +06

100000

10000
A

1000

100

10

m m ! ! m m m
N U H | N D N
mlm~Im|m

0 20 40 60 80 100120140160180200
f

550

~ ~ 1 7 6 i i iA ii
450[f f] / f]] t t t l I i l
4~176 I] [t t [I] t] i] i
aS~ t i l t t / l t l) l ' t l
300] 1 / f / 1I 1111/
~o i tj / lj J uJ kf y t, 1/J I/I/ 200
150

6.3 6.35 6.4 6.45 6.5 6.55 6.6
(c) t

le +06

100000

10000

1000

1 O0 ..,I /,,,..1,1

10

j ' \ /
"--" ',,_ A

y

0 20 40 60 80 100 120 140 160 180 200
f

Figure 3. U-velocity as a function of time and power spectrum for: (a) Ra - 60000;
(b) R a - 100000; (c) R a - 140000.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

577

S p a c e - a n d T i m e - P a r a l l e l N a v i e r - S t o k e s Solver for 3D B l o c k - A d a p t i v e

C a r t e s i a n G r i d s

V. Seidl, M. Perid ~ and S. Schmidt b

~Institut fiir Schittbau, Universit/it Hamburg, L/immersieth 90, D-22305 Hamburg,
Germany; e-mail: seidl@schiffbau.uni-hamburg.de

bHermann-FSttinger-Institut, Technische Universit/it Berlin,
Strafie des 17. Juni 135, 10623 Berlin, Germany

We introduce a parallelization strategy for implicit solution methods for the Navier-
Stokes equations based on domain decomposition in time and space and discuss in par-
ticular the use of parallel preconditioned conjugate gradient solvers. A fully conservative
second order finite volume discretization scheme with non-matching block interfaces in
a block-structured grid is described. The parallelization method is applied to a direct
numerical simulation of turbulent channel flow over a square rib at Reynolds number
Re = 3.7- 103, based on the mean velocity above the obstacle and the step height. Re-
sults are compared with data from literature and the efficiency of the method is analyzed.

1. Ove rv i ew and Out l ine of N u m e r i c a l M e t h o d

The discretization of the Navier-Stokes equations is based on a fully implicit, second
order, three time levels scheme in time and a fully conservative, second order finite volume
method in space using collocated variable arrangement and central differencing.

The equations are solved by a segregated iterative approach (SIMPLE method) with
non-linearities and inter-equation coupling being resolved in a predictor-corrector scheme
within outer iterations [1]. In the predictor step linearized momentum equations with
pressure and mass fluxes of the previous outer iteration are used to determine interme-
diate velocities. To fulfill the constraint of continuity, a Poisson-type pressure-correction
equation has to be solved in the corrector step. This sequence is repeated within each
time step until all equations are satisfied (about ten outer iterations per time step in the
present study). All linear systems are relaxed by ILU-based methods (inner iterations),
which are accelerated by the conjugate gradient (CG) method in case of the symmetric
pressure-correction equation.

Domain decomposition in space and time is introduced in the next section. The follow-
ing section presents a parallel preconditioned conjugate gradient method and its numerical
efficiency. The implementation of block structured grids with non-matching block inter-
faces in a parallel environment is described in the fourth section. Finally, the method is
applied to a direct numerical simulation of low Reynolds number turbulent channel flow
over a wall mounted rib.

578

2. D o m a i n Decompos i t i on in Space and T ime

The concurrent algorithm is based on data parallelism in both space and time and has
been implemented under the SPMD paradigm using message passing�9

For space parallelism the solution domain is decomposed into non-overlapping subdo-
mains, each subdomain being assigned to one processor [1]. A memory overlap of one
control volume wide layer along interfaces has to be updated within inner iterations by
a local communication between neighbour subdomains. In the SIMPLE method, the as-
sembley of the coefficient matrices and source terms in outer iterations can be performed
in parallel with no modification of the serial algorithm, as only variable values from the
previous outer iteration are required�9 Therefore, with regard to decomposition in space,
only the linear solver needs to be considered, which will be the subject of the next section.

For time dependent problems, the iterative nature of the presented implicit time scheme
allows parallelism in time. This is useful for problems of moderate size, where domain
decomposition in space gets less efficient with increasing number of subdomains [2]. In
case of a three time levels scheme the linearized transport equation for variable r at the
n th time step can be written as

A n c n + B r n-1 + c c n - 2 - q n , (1)

where A ~ denotes the coefficient matrix resulting from spatial discretization and lin-
earization whereas B and C are determined by the time discretization scheme. In serial
processing of successive time steps the solution of previous time steps are known and
simply contribute to the source term q~.

Within the time parallel approach, however, the variable values of k successive time
steps are considered simultaneously as unknowns, which leads to an enlarged system of
equations:

An ~gn ._~__ B ~) n-1 _.F_ C r n-2

An-1 cn-1 + B ~)n-2 _.~ C (~n-3

An-k ~)n-k nt - B ~9 n-k-1

An-k-1 ~n-k-1

- - q ~

_ _ qn-1

= qn-k _ Cr

= qn-k-~ _ B r _ C on-k-3

(2)

In the last two equations, contributions from time steps with already fixed solutions
has been brought to the right hand side.

The simplest domain decomposition in time is to solve for each time step concurrently,
using available estimates of solutions of previous time steps (one outer iteration lagged).
Thus, in contrast to space parallelism, domain decomposition in time only affects the
assembley of source terms in outer iterations. The update of intermediate contributions
to the source term requires large volume local communication of one-dimensional topology.

The efficiency of parallelized algorithms is assessed by analyzing the numerical, paral-
lel and load-balancing efficiency, for details see [1]�9 In order to compare the numerical
efficiencies for different parallelization strategies, the qubic lid-driven cavity flow with an

579

Mode
Processors Numerical

space x time efficiency (%)
serial 1 x 1 100

space parallel
4 x 1 97
16x 1 88

time parallel
1 x 4 100
1 x 8 90

1 x 12 72
combined 4 x 4 97

Table 1
Numerical efficiencies for different
parallelization strategies. Note
the high efficiency for 16 pro-
cessors with combined space and
time parallelism compared to the
pure space parallel case.

oscillating lid (Rernaz = 104) has been simulated on a 323 grid using up to 16 processors.
In the serial run, approximately ten outer iterations per time step are necessary to reduce
the sum of absolute residuals for all transport equations by six orders of magnitude. If
the number of concurrent time levels exceeds the number of outer iterations per time step
in a serial run, the numerical efficiency drops sharply, i.e. the number of outer iterations
increases. This can be seen from the drop in the numerical efficiency between eight and
twelve time parallel processors in Table 1. However, below that critical number of time
parallel levels the numerical efficiency is high.

The benefit of time parallelism becomes clear by comparing the numerical efficiencies
obtained using 16 processors: 88% for parallelism in space alone and 97% for the com-
bined space and time parallel approach. Although not scalable, time parallelism can be
efficiently combined with space parallelism for problem sizes too small to be efficiently
decomposed in space using large number of processors. A more detailed description of
numerical results (including multigrid application) is given in [3].

As long as the number of control volumes does not change in time the load between
time parallel processors is automatically balanced, what can help to reduce the complexity
involved in load balancing in space.

Because decomposition in space leads to fine-grain communication patterns, the set-up
time to initialise communication (latency) appears to be the crucial hardware parameter
with regard to parallel efficiency [1]. The coarse-grain communication of time parallelism,
in contrast, requires high transfer bandwidths. However, the communication to update the
time contribution to source terms can be overlapped with the assembley of the coefficient
matrix. It will therefore depend on the hardware features whether one can benefit from
time parallelism to obtain high total efficiencies. The possibilities to increase the parallel
efficiency by overlapping computing and communication are analyzed in [4].

3. Pa ra l l e l P r e c o n d i t i o n e d C o n j u g a t e G r a d i e n t M e t h o d

The relaxation of sparse linear systems is crucial to the whole application because it
consumes a major part of the computing time and determines the numerical efficiency
of the space parallel approach. Here we consider Conjugate Gradient (CG) methods
preconditioned by incomplete lower upper (ILU) decomposition schemes, like Incomplete
Cholesky (IC).

The basic iterative ILU scheme is parallelized by local decomposition of the global

580

0.9

0.8

0.7

0.6

0.5

| | , | | i

"~" i . .

" ~ 4~ ,,o.
........................ ,~ . .

.

. ::.~$.. .-:.-: :.: r : ..:..: :.: ..: r....: . .:_. . . t '

1=1 -.* coupled IC
1=2 .-* convergence cr i ter ion = 0.01
1=3 --*

0 . 4 i i i i I !

0 10 20 30 40 50 60
number of processors

Figure 1. Numerical ef-
ficiency for IC precondi-
tioned CG method. As
convergence criterion the
scaled sum of absolute
residual has been used.

coefficient matrix A, according to the domain decomposition in space. A is thus split into
a local part Al and a coupling part Ac:

A - Al + A c , (3)

where A1 has block diagonal structure for domainwise numbering of unknowns. Full
concurrency is now forced by incomplete factorization of A1 instead of A, with the coupling
part being explicitly calculated using the storage overlap between subdomains which is
updated after each inner iteration.

Global communication due to global reductions of inner products constitutes a bot-
tleneck of CG methods, especially on hardware platforms with long set-up times like
workstation clusters. Therefore, restructured variants of the standard CG methods are
used, which require less global communication events at the expense of additional inner
products [5,3]. In addition, multiple basic iterations are combined with one CG accel-
eration. The resulting algorithms are known as/-step basic iterative preconditioned CG
methods, where l denotes the number of basic iterations per CG sweep [6].

Figure 1 shows the numerical efficiency of an IC-preconditioned CG method for various
values of 1 and numbers of (space) parallel processors. A Poisson equation with Neumann
boundary conditions and low frequency harmonic source terms, which models the pressure-
correction equation of the SIMPLE algorithm, has been relaxed on a non-uniform 643 grid.

Clearly, 1 = 2 is the optimum choice with regard to numerical efficiency. Note also
that this variant seems to be the most robust with increasing number of processors, as
its efficiency drops only by 10% over the given range of processors. The others drop by
more than 15% and start from a lower level, since 1 = 2 is the optimum choice also for
a single processor. Even for 512 processors, 1 = 2 still yields a numerical efficiency of
79%, whereas 1 = 1 drops down to 31%. The same trends have been observed for the
preconditioned CGstab method for non-symmetric matrices [3].

Apart from its easy implementation, the described approach to parallize preconditioned
CG methods therefore preserves the numerical efficiency while reducing global communi-
cation.

581

Block II

BI Ific i

�9 - - - , , - - 6 - - - , - I

An CII

AI

B~

Block I

Figure 2. Illustration of dis-
cretization scheme at non-
matching block interface.

4. B lock -Adap t ive Gr ids

Block-structured grids are a compromise between fully structured and fully unstruc-
tured grids. In that sense they combine efficiency based on regularity with flexibility.
Apart from this, the block structure serves as a natural basis for domain decomposition
in space.

In order to exploit the full capacity of the block-structured approach, one must allow
for non-matching interfaces between grid blocks, which enables local grid refinement in
regions where high variations of gradients are expected. This kind of grid will be referred
to as block-adaptive grid.

Figure 2 illustrates the discretization scheme for a two dimensional grid at a non-
matching block interface. We define each interface segment common to two control vol-
umes belonging to block 1 and 2 respectively as a block cell face. The fluxes through
the block cell faces can be calculated in the same way as for any interior cell face by
introducing auxiliary nodes C/ and CI/ on either side. The value of any variable r at
these nodes is expressed through the neighbour nodes using linear interpolation:

r = fd. r + fB. r (4)

where fA and fB a r e geometrical weights (with fA + fB __ 1) calculated by the preproces-
sor. Thus, the discretization scheme remains second order accurate and fully conservative.

However, control volumes along interfaces now have more than four (in 2D or six in
3D) cell faces, which in an implicit solution method leads to enlarged computational
molecules. The global coefficient matrix therefore becomes irregular. Choosing, however,
non-matching interfaces to be subdomain boundaries of a domain decomposition preserves
the regularity of iteration matrices as contributions from neighbour domains are treated
explicitly. In conjunction with communication routines for arbitrary domain topologies,
the above described strategy helps clustering grid points around obstacles without wasting
them elsewhere. The following section will give an example (see Figure 4).

582

Figure 3. Physical config-
uration for the flow over a
wall mounted rib in a chan-
nel. The streamwise length
of the computational do-
main was 31h. At walls
the no-slip condition is im-
posed and periodic bound-
ary conditions are applied in
streamwise and spanwise di-
rections with a fixed stream-
wise pressure drop.

Figure 4. Section of the computa-
tional grid. The entire grid con-
sists of 1.13.106 CV with 64 CV
uniformly spaced in the spanwise
direction. The centers of CV ad-
jacent to horizontal channel walls
are located at Ay = 4 .7 . 10 -3
and Ay = 2 .2 . 10 -3 from the
top of the obstacle. On vertical
walls the first grid points are at
Ax = 2 .5 .10 -3 from the left wall
and Ax = 3.8.10 -3 from the right
wall.

5. D i r e c t N u m e r i c a l S i m u l a t i o n of T u r b u l e n t C h a n n e l F low over a S q u a r e R i b

Figure 3 shows the physical configuration with a description of boundary conditions.
Details of the computational grid are described in the context of Figure 4 . The sim-
ulation has been performed on the Cray T3D SC 192 at the Konrad-Zuse-Zentrum fiir
Informationstechnik in Berlin with 32 processors parallel in space and one or two time
parallel levels depending on the scheduling of the machine. The FORTRAN code achieves
approximately 10 Mflops on a single processor and scales to ~ 550 Mflops on 64 processors.

The developed flow has a Reynolds number of Re = 3.7.103 based on the mean velocity
Um above the obstacle and the step height h. The simulation covers ~ 87 characteristic
time units Tc = h/Um with a 2D solution as initial field and ~ 54 time steps per To.
Results are averaged in the homogeneous direction and in time over the last 37 T~. "fang

583

Figure 5. Instantaneous contours of streamwise velocity component u in a vertical cross-
section. Velocities have been scaled with Urn.

and Ferziger [7] have simulated the same configuration with Re = 3.21.103, which allows
to some extent the comparison of the results.

A snapshot of the instantaneous contours of the streamwise velocity component u is
given in Figure 5 . The flow develops several seperation and reattachment zones near the
obstacle, which are illustrated in Figure 6 by the schematic contours of U = 0 (where U
denotes the averaged streamwise velocity component). The corresponding seperation and
reat tachment lengths are also listed. Both the zone pattern and the principal reat tachment
lengths are consistent with results presented in [7].

Figure 7 shows profiles of the mean streamwise velocity U and its fluctuations u '2 one
step height behind the obstacle. Again, the results compare well with those from [7].

6. S u m m a r y

The solution method using block-adaptive cartesian grids presented here is suitable
for simulation of flows in rectangular geometries. The parallelization strategy is simple
and, through the combination of domain decomposition in both space and time and an

Flow

I ' XR

Figure 6. Seperation and reattachment zones (all lengths are given in step heights):
_R = 6.4, XR = 1.3, YR = 0.41, Xr = 4 .6 .10 .2 , Y~ = 6 .5 .10 .2 , XF = 1.2, YF = 0.50,
X / = 4 .4 .10 .2 , Yf = 7.5 .10 .2 .

584

2

1.75

1.5

r ~

~o 1.25

= 0.75

0.5 I * ~

0.25 Seidl/Peric �9

0 | v ! i i i I

-0.25 0 0.25 0.5 0.75 1 1.25 1.5
U in characteristic units

r ~

e~O

..=

1.75

1.5

1.25

I ~.'~ Yang/Ferziger *.S~eidl/Pe~ic

J l S
o ,

0 0.025 0.05 0.075 0.1 0.125
squared u-fluctuations in characteristic units

0.75

0.5

0.25

Figure 7. Mean streamwise velocity U and squared velocity fluctuations u '2 profiles one
step height behind the obstacle. Velocities have been scaled with Urn.

optimized linear equation solver also efficient. Results of a direct numerical simulation
of flow over a wall mounted rib in a channel compare well with other simulations from
literature.

R E F E R E N C E S

1. E. Schreck and M. Perid, Computation of Fluid Flow with a Parallel Multigrid Solver,
Int. Journal for Num. Methods in Fluids, Vol. 16, 303-327 (1993)

2. J. Burmeister and G. Horton, Time-Parallel Multigrid Solution of the Navier-Stokes
Equations, International Series of Numerical Mathematics, Vol. 98 (1991)

3. V. Seidl and M. Perid, Internal Report, Institut fiir Schiffbau, Universits Hamburg
(can be mailed on request)

4. E. Schreck and M. Perid, Analysis of Efficiency of Implicit CFD Methods on MIMD
Computers, this Volume

5. G. Meurant, Domain Decomposition Methods for Solving Large Sparse Linear Sys-
terns, NATO ASI Series F, Vol. 77, 185-206 (1991)

6. L. Adams, m-Step Preconditioned Conjugate Gradient Methods, SIAM J. Sci. Stat.
Comput., Vol. 6, No. 2 (1985)

7. K. Yang and J. Ferziger, Large-Eddy Simulation of Turbulent Obstacle Flow Using a
Dynamic Subgrid-Scale Model, AIAA Journal, Vol. 31, No. 8 (1993)

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

585

A Newton-GMRES Method for the Parallel Navier-Stokes Equations

J.H/iuser a, R.D. Williams b, H.-G. Paap c, M. Spel d, J. Muylaert d and R. Winkelmann a

aCenter of Logistics and Expert Systems, Salzgitter, Germany
bCalifomia Institute of Technology, Pasadena, California
CGenias GmbH., Regensburg, Germany
dESTEC, Noordwijk, The Netherlands

1. INTRODUCTION

CFD is becoming increasingly sophisticated: grids define highly complex geome-
tries, and flows are solved involving very different length and time scales. The solu-
tion of the Navier-Stokes equations has to be performed on parallel systems, both for
reasons of overall computing power and cost effectiveness.

Complex geometries can either be gridded by completely unstructured grids or by
structured multiblock grids. In the past, unstructured grid methods almost exclu-
sively used tetrahedral elements. As has been pointed out in [1] and recently in[2] this
approach has severe disadvantages with regard to program complexity, computing
time, and solution accuracy as compared to hexahedral finite volume grids. Multi-
block grids that are unstructured on the block level, but structured within a block pro-
vide the geometrical flexibility and retain the computational efficiency of finite
difference methods.

In order to have the flow solution independent of the block topology, grids are
slope continuous, and in the case of the N-S solutions an overlap of two points in each
coordinate direction is provided, with a consequent memory overhead: if N is the
number of internal points in each direction for a given block, this overhead is the fac-
tor (N+4)3/N 3. The overhead is caused by geometrical complexity, i.e. to generate a
block topology that aligns the flow with the grid as much as possible [3].

Since grid topology is determined by both the geometry and the flow physics,
blocks are disparate in size, and hence load balancing is achieved by mapping a group
of blocks to a single processor. The message passing algorithm has to be able to handle
efficiently the communication between blocks that reside on the same processor, that
is, there is only one copy operation involved. Message passing (PVM or MPI) is
restricted to a handful of functions that are encapsulated, and thus full portability is
achieved. In addition, the code is written in ANSI-C, which guarantees portability
and provides significant advantages over Fortran (see for example [4]). A serial
machine is treated as a I processor parallel machine without message passing. There-
fore the code, Parnss [5], will run on any kind of architecture. Grids generated by Grid-
Pro [7] or Grid*[1] (Plot3D format) can be directly used.

Available parallelism (the maximum number of processors that can be used for a
given problem) is determined by the number of points in the grid, but a tool is avail-

586

able to split large blocks if necessary.
Regarding the solution algorithm for the Navier-Stokes equations, an explicit algo-

rithm is easiest, but is not as efficient as relaxation schemes in calculating the steady
state. Often relaxation schemes are used, but it should be remarked that even these
methods may not converge for highly stretched grids with large aspect ratios (106), as
needed in most viscous flows.

Thus we shall use implicit methods for these grids, with a linear solver chosen from
the Krylov family. To make good use of these techniques, we need an effective and
efficient preconditioner, and this paper is about the convergence properties of the
Navier-Stokes code for different preconditioners used on parallel architectures.

2. Solving the N-S Equations

An implicit step of the discretized N-S equations can be cast in the form of a set of
nonlinear equations for the flow variables, whose numerical solution is by a Newton
scheme. The computational kernel is a linear solve with the matrix being the Jacobian
of the equations. There are numerous schemes for such solves, such as Jacobi relax-
ation or lower-upper triangular split (Gauss-Seidel). As mentioned above, these
schemes are slow to converge for a stiff system, caused by widely varying temporal
and spatial scales.

The numerical solution proceeds in five major stages. In this work, stage 4 will be
described in some detail.
1. Topology: Perform domain decomposition of the solution domain.
2. Grid generation: Create a high-quality grid within each domain. Spatial discretiza-

tion reduces the N-S equations to a set of ODE's.
3. Explicit Solution: Advance explicitly in time by using a two step Runge-Kutta

scheme.
4. Implicit Solution: Advance the solution implicitly in time with the backward Euler

scheme, thus requiring solution of nonlinear equations, which can be solved by a
Newton or quasi-Newton algorithm, which in turn requires solving sets of linear
equations: we use preconditioned GMRES for these.

5. Root Polishing: For steady state solution, use a Newton iteration to derive the
steady state, which is equivalent to an implicit step with infinite time step.

Investigations are underway to determine if it is possible to relax the accuracy with
which the nonlinear equations in (4) are solved, yet still obtain robust and accurate
convergence through stage (5).

2.1. Krylov Subspace Methods
In the following the CG method is described, because it is the basis for the General-

ized Minimal Residual (GMRES) technique, as used in this paper, and for example, in
[10]. However, the CG method will be presented mainly from a geometrical point of
view to provide the motivation and insight in the workings of the method.

2.2. Conjugate Gradient
We have a system of linear equations, Ax = b, derived from an implicit step of the

N-S equations, together with an initial solution vector x ~ This initial vector may be
obtained by an explicit step, or may be simply the flow field from the previous step.

587

We can write this linear system as the result of minimizing the quadratic function

1 f(x) = ~xWAx-xTb

where the gradient of f is Ax- b. In the CG method a succession of search directions
pm is employed -- how these directions are constructed is of no concern at the moment
-- and a parameter 0~ m is computed such that f(x m - O~mp m) is minimized along the pm
direction. Upon setting x m+l equal to x m- 0r m, the new search direction has to be
found.

Ax m+l

xm+l
~ m

Ax m

X m

X*

Figure 1. The CG method: one-dimensional minimization. Let x* denote the
exact (unknown) solution, x m an approximate solution, and ax rn = x m - x*.
Given any search direction prn, the minimal distance from the line to x* is
found by constructing Axm+l perpendicular to pro. Since the exact solution is
(of course) unknown, we make the residual perpendicular to pm. Regardless
how the new search direction is chosen, the norm of the residual is not
increasing.

The construction of the search directions can be directly seen from Fig. 2.
In two dimensions, the contours f(x)=const form a set of concentric ellipses whose

common center is the min imum of f(x). It can be shown that the residual vectors r m
form an orthogonal system and that the search vectors pm are mutual ly A-orthogonal.
The CG method has the major advantage that only short recurrences are needed, that
�9 m l m is, the new vector x m depends only on x - and search direction p . In other words,
storage requirements are low.

The number of iterations of CG needed to achieve a prescribed accuracy is propor-
tional to the square root of the condition number 1(of the matrix, which is defined as the
ratio of the highest to the lowest eigenvalue. Note that for second-order elliptic prob-
lems, ~c increases by a factor of four when the grid-spacing is halved.

2.3. G M R E S

Since the matrix obtained from the N-S equations is neither symmetric nor positive
definite, the term (pm, Apm) is not guaranteed to be positive, and also the search vec-
tors fail to be mutually orthogonal. It should be remembered that pm+l = rm+ (~mpm
and that the 0~ m are determined such that the second orthogonality condition holds.

588

pm

X m

r m

Figure 2. The CG method: Search directions. The next search direction pm+l is
A-orthogonal, or conjugate, to pro, and it is a linear combination of r m and pro.
This determines pm+l. In two dimensions, this second search direction goes
through the midpoint of the ellipse, giving an exact solve at the second stage.
Note that simply setting pm+l = _fin, the method of steepest descent, would
not result in the most efficient search direction.

This is no longer possible for the N-S equations. However, this feature is mandatory to
generate a basis of the solution space. Hence, this basis must be explicitly constructed.
The extension of the CG method, termed GMRES (Generalized Minimized Residual),
minimizes the norm of the residual in a subspace spanned by the set of vectors r ~ Ar ~
A2r ~ ..., Amqr ~ where vector r ~ is the initial residual, and the m-th approximation to
the solution is chosen from this space. The above mentioned subspace, a Krylov space,
is made orthogonal by the well known Gram-Schmidt procedure, known as an Arnoldi
process when applied to a Krylov subspace.

When a new vector is added to the space (multiplying by A), it is projected onto all
other basis vectors and made orthogonal with the others. Normalizing it and storing
its norm in entry hm,m_ 1, a matrix H m is formed with nonzero entries on and above the
main diagonal as well as in the subdiagonal. Inserting the ansatz for x m into the resid-
ual equation, and after performing some modifications, a linear system of equations
for the unknown coefficients ~i m involving matrix H m is obtained. H m is called an
upper Hessenberg matrix. To annihilate the subdiagonal elements, a 2D rotation (Giv-
ens rotation) is performed for each column of H m until hm,m_ 1 = 0. A Givens rotation is
a simple 2x2 rotation matrix. An upper triangular matrix R m remains, that can be
solved by backsubstitution.

3. Preconditioners

In order to reduce the condition number of A, the system is premultiplied by a so
called preconditioning matrix P that is an approximation to A-*, but is easy to com-
pute. Instead of solving the sparse linear system Ax=b, the equivalent system
(PA)x=Pb is solved. The choice of an effective (less iterations) and an efficient (less
computer time) preconditioner is crucial to success of GMRES.

For the preconditioning to be effective, P should be a good approximation of A -1, so
that the iterative methods will converge fast. For efficiency, the memory overhead and
the additional cost per iteration should be small.

589

Any kind of iterative scheme can be used as a preconditioner, for instance, Jacobi or
Gauss-Seidel relaxation, Successive Overrelaxation, Symmetric Successive Overrelax-
ation (SSOR), Red-Black or Line Gauss-Seidel Relaxation, Incomplete Lower-Upper
Factorization (ILU). Thus the linear solver is a two-part process, with an inner loop of
a simple iterative scheme, serving as the preconditioner for an outer loop of GMRES.

3.1. Preconditioners in Parnss

First we recall that the condition number, and hence the number of sweeps to con-
vergence, of a grid increases dramatically as the grid is made finer, so we expect a
good strategy is to use multiple grids at different resolutions, the coarser acting as a
preconditioner for the finer.

In the following, however, we describe the various preconditioning matrices that
have been constructed and implemented for use with the Parnss code on a fixed grid.
In each case the preconditioner is made by repeating a simple iteration derived from a
splitting of A:

X k § 6--- B -1 [(B - A) xk + b]

The various forms of matrix B that have been implemented are based on splitting A
into diagonal, lower-triangular and upper-triangular parts, D, L and U, respectively.
They may be written:
�9 Diagonal: B = D
�9 Gauss-Seidel: B = D - L
�9 Successive Overrelaxation: B = D/c0- L
�9 Symmetric Successive Overrelaxation: B 1 = D/co- L alternating with B 2 = D/0)- U

In contrast to the CG method, GMRES does not generate short recurrences, but
needs the full set of basis vectors, thereby incurring a substantial memory overhead.
Second, the computational cost increases linearly with the number of basis vectors.
Since the code is written in ANSI-C, memory is allocated and freed dynamically.
Moreover, only one block at a time is computed per processor, so that only this block
has to be stored. In principal, the Krylov basis could be made as large as the available
memory allows, dynamically adding new basis vectors. However, because of the com-
putational overhead and the effects of rounding error in the orthogonalization, the
algorithm should be restarted: we have chosen to do this after 20 iterations.

3.2. Experimental Results

We conclude this section with some measurements of the effectiveness of the vari-
ous preconditioners. Figure 3 shows the fall of the norm of the residual for a sample
calculation, against wall-clock time. The block-diagonal preconditioning is a variant
of diagonal, where 5x5 diagonal blocks of the matrix are inverted, and red-black pre-
conditioning is a Gauss-Seidel process where the grid points have been ordered in a
particular way. It is clear that the SSOR is the most efficient.

4. Results for NASA -ES A Huygens Space Probe

Parnss was used to perform several testcase computations for the Huygens space
probe. This space probe is part of a joint NASA-ESA project and will be launched in

590

-2

-4

-6

-8

10

12

14

16

None

SOR
Red-Black

SSOR

computing time, seconds

DiagonaF"" -~
Bloc-k-Diagonal

Figure 3: Effect of preconditioning. The example computed is for a 24 block
3D grid for the Huygens space probe. The plot shows the log magnitude of
the residual versus computing time within one nonlinear iteration step.

1996. After a 6 year flight, Huygens will have reached Titan, the largest moon of Sat-
urn, and upon completing the entry phase will descend by parachute (Mach 0.1) to
measure the composition of Titan's atmosphere (mainly nitrogen). The concern is that
sensors (lasers, mass spectrometer) located on the windward side of the probe may
become inoperational if the local flow field is such that dust particles may be con-
vected onto the optical surfaces of these sensors. So far, all computations have been
for inviscid flow, but high cell aspect ratios were already used. In addition to the
incompressible case, a Mach 3.1 computation has been performed. Computations
were stopped when the residual had dropped to 5x10 -6. The computation for Ma 3.1 is
not a realistic case, since the aerobraking shield was not modeled. For both low and
high Mach numbers, the SSOR performed best.

5. Towards an Efficient Parallel Solut ion Strategy

In this paper we have briefly described a combined solution strategy for the N-S
equations. Solutions for steady state as well for transient flow can be computed, cov-
ering the range from incompressible to hypersonic flows. The numerical solution
technique is based on a Krylov subspace method. In particular, for very large and stiff
problems the condition number will also be large, and preconditioning is essential.
For these problems, conventional relaxation schemes converge very slowly or may
not converge at all. A large number of preconditioners have been tested, and symmet-
ric SOR has been found to work best. An excellent discussion of preconditioners for
2D test cases is given in [11].

From theoretical models [12] and computational experience [5] it can be concluded
that load balancing for complex geometries and parallel efficiency up to several hun-
dred processors do not pose a problem for the N-S simulations for the strategy out-
lined in this paper.

591

However, there is a need to investigate the convergence rate of these implicit solu-
tion schemes on serial and parallel architectures. The time-dependent N-S equations
used to obtain the steady state are hyperbolic, that is, there is a finite propagation
speed. A full numerical coupling of all linear equations is therefore unphysical, and
actually reduces the convergence rate for steady state problems as large scale compu-
tations have shown. The 384 block Huygens space probe that was presented in Section
4 can also be modeled using a 6 block grid. For exactly the same problem, a much
slower convergence to the steady state has been observed, exhibiting the same trend
as in the 2D testcases [5]. Since the exact numbers have not been firmly established at

592

the time of this writing, they will not be presented here.

6. REFERENCES

1. J. H/iuser, J. Muylaert, H.-G. Paap, M. Spel, and P.R. Eiseman, Grid Generation for
Spaceplanes, 3rd Space Course, University of Stuttgart, Germany, 1995, 66 pp.

2. D.J. Mavriplis and V. Venkatakrishnan, A Unified Multigrid Solver for the Navier-
Stokes Equations on Mixed Element Meshes, AIAA-95-1666.

3. D.A. Kontinos, McRae, Rotated Upwind Algorithms for Solution of the Two- and
Three-Dimensional Euler and Navier-Stokes Equations, AIAA 94-2291

4. J. H/iuser, M. Spel. J. Muylaert and R. D. Williams, Parnss: An Efficient Parallel
Navier-Stokes Solver for Complex Geometries, AIAA 94-2263.

5. J. H/iuser, J. Muylaert, M. Spel, R. D. Williams and H.-G. Paap, Results for the
Navier-Stokes Solver Parnss on Workstation Clusters and IBM SP1 Using PVM, in
Computational Fluid Dynamics, Eds. S. Wagner et al., Wiley, pp. 432-442.

6. M.J. Bockelie and P.R. Eiseman, A Time Accurate Adaptive Grid Method for the
Numerical Simulation of a Shock-Vortex Interaction, NASA-2998, 1990.

7. P.R. Eiseman, et al., GridPro/az 3000, Users's Guide and Reference Manual, 111
pp., Program Development Corporation of Scarsdale, NY.

8. D. Whitfield, Newton-Relaxation Schemes for Nonlinear Hyperbolic Systems,
Mississippi State University Preprint MSSU-EIRS-ASE-90-3, 1990.

9. K.J. Vanden, Direct and Iterative Algorithms for the Three-Dimensional Euler-
Equations, Dissertation Thesis, Mississippi State University, December 1992.

10. G. Golub, G., J.M. Ortega, Scientific Computing, Academic Press, 1993.
11. K. Ajmani, W. F. Ng, M. S. Liou, Preconditioned Conjugate-Gradient Methods for

the Navier-Stokes Equations, J. of Comp. Phys., 110 (1994) 68-81.
12. J. H/iuser, and R. D. Williams, Strategies for Parallelizing a Navier-Stokes Code on

the Intel Touchstone Machines, Int. J. Num. Meth. Fluids, 15 (1992) 51-58.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

593

A Parallel, Globally-Implicit Navier-Stokes Solver for Design

Zhen Zhao and Richard B. Pelz*
Mechanical and Aerospace Engineering,
Rutgers University, Piscataway, NJ 08855-0909, U.S.A.

Shape design puts severe new constraints on parallel flow solvers. With this in mind,
we have developed a general, parallel, Euler and Navier-Stokes solver which uses a high-
order upwind finite volume scheme, a global implicit iterative method coupled to a local
implicit preconditioner, new flux limiters and a new remeshing scheme for changing body
shapes. The code runs without change on single processor workstations and on multipro-
cessors such as the nCUBE and IBM SP2. All communication, scheduling, and boundary
conditions are handled by an input logic file.

1. Introduction

The goal of our work is to produce a general multi-domain code that rapidly and re-
peatedly solves the steady or unsteady Euler or Navier-Stokes equations for changing
configurations. It is to be used for design and optimization of shapes as part of a greater
effort in multidisciphnary design and optimization. [2] The problem of finding the flow
around numerous body shapes during one design cycle requires very large computational
resources, i.e. parallel computers. While some parallelization may be found in the opti-
mization method, it is clear that the flow solver must be executable in parallel.

An implicit method was chosen in order to effectively solve for viscous flows on fine
meshes. I terative schemes similar to the Conjugate-Gradient method can effectively solve
the linear non-symmetric operator coming from an implicit t reatment of the linearized
Navier-Stokes equations. [3] We employ one of these, the Bi-CGSTAB [10] iterative
method. To ensure rapid convergence, it is not only implicit within a block or subdomain,
but is globally implicit, allowing the multiprocessor and single processor convergence rates
to be the same. A local preconditioner based on an approximate factorization scheme [4]
is used to speed convergence of the linear problem. The flow code is described in Section
2.

Because topologically different configurations for different design problems will be ex-
amined, the code must handle general configurations and run without change on a single
processor as well as on a host of multiprocessors. We have isolated the logic that handles
an arbitrary geometry, decomposition, boundary condition, communication and compu-
tation scheduling, removed it from the code and moved it to an instruction logic file. By
simply interchanging the logic files, a different problem can be solved. The logic file and
parallelization are discussed in Section 3.

*This work is supported by a grant from NASA Langley Research Center, NAG-l-1559

594

To prevent oscillation of the second or third order accurate flow solutions around shocks,
a modification of a standard limiter [1] is developed. The modification isolates the limiter
to shock regions only. To prevent limit cycles from occurring, the limiter is smoothed.
One way to do this is to integrate implicitly the time-dependent heat equation with the
dependent variable being the limiter switch. When executing this on multiprocessors,
care should be taken to ensure that the smoothing is not dependent on the subdomain
size. A globally implicit smoother for the limiter is developed and presented in Section 4.

In the design procedure, the flow field for one configuration is solved, the shape is
changed, and the flow field is again required. Obviously, using the old flow field as the
initial condition will speed convergence of the second solve if the shape change is small.
What is less obvious is how to modify the grid to reflect the shape change while keeping
a smooth variation in mesh aspect ratio and other qualities of the original grid. The
grid could be regenerated for each shape change, but that would be wasteful since the
shape change is, in general, local and a global adjustment is unnecessary. To avoid serial
bottlenecks, the grid modification should also be automated and done in parallel. We
present such a parallel method to realign the grid with the new body shape based on
elasticity theory in Section 5.

2. Description of Solver

We solve the Navier-Stokes and Euler equations for the two-dimensional compressible
calorically perfect fluid flow. The equations are in conservation form for a generalized
curvilinear coordinate system, but due to space limitations we omit their presentation.
We use the Crank-Nicolson scheme in time with the linearization of the flux Jacobian
matrices about time level n to give the equation

A " A Q " = R n (1)

where AQ" is the change in the state vector from n to n + 1, A = [I / A t + 1/2 (inviscid
and viscous flux Jacobians)] and R n is the residual.

For space differencing, a conservative upwind finite volume scheme (_< 3rd order) based
on the flux-vector splitting scheme of Thomas and Walters [9] along with the Roe-split
[7] version of the convective fluxes are employed. Central differences are used to handle
the viscous terms.

Such a discretization leads to a sparse, block, banded, nonsymmetric linear system of
rank n x " n v . A global, implicit, iterative scheme and a local implicit preconditioner are
used to solve the system.

There are many CG-like iterative schemes to solve nonsymmetric linear systems. A
comparison of many of these methods can be found in Barrett et al. [3] One that main-
rains the three-term recurrence relation, which minimizes the memory requirements, and
relaxes the residual-minimization property is Bi-CGSTAB. [10] It requires 2 matrix vector
multiplications and 4 inner products per iteration.

We use a local, implicit, approximately factored scheme [4] as a preconditioner for
Bi-CGSTAB. By local, we mean that the preconditioner is applied to each subdomMn
separately, assuming that variables located outside the subdomain do not change. This
allows the preconditioner to be executed without communication. While there are many

595

preconditioners (see for instance [5]), we choose this one because of the availability of the
AF code and the ease of portability.

3. Paral le l izat ion and Logic File

The parallelization is based on the decomposition of the computational domain into
non-overlapping subdomains. Each processor is assigned to one or more subdomains.
Assuming that the computational domain is divided equally into N subdomains, the
number of processors will be between 1 and N. In order for the residual calculation to
proceed in each subdomain independently, data the width of the stencil must be provided
on the edges of each subdomain. This data comes from boundary conditions or from data
transferred from neighboring subdomains.

The program can automatically switch between workstations, nCUBE-2 and IBM SP2
multiprocessors. No change in the solver is required when changing configurations, domain
connectivity, number of subdomains, number of processors, etc. An interblock logic file
provides all the necessary information for mapping, scheduling, boundary conditions and
communications. It contains :

�9 subdomain and processor number:
Each subdomain has a unique index number and a corresponding processor number.
The mappings are found through a stochastic optimization procedure [2] to minimize
the distance of the communicated processors and reduce the communication time.

�9 type of communication or boundary condition:
write to buffer & send, receive & read from buffer, body, wake, inflow, outflow and
corner boundary conditions,

�9 grid points involved in boundary conditions or communication,

�9 local subdomain number and processor number to which data are sent,

�9 reversed n-coordinate, m-coordinate, axes for grids that are not co-aligned.

This file is used to set the scheduling of boundary conditions and communication. Each
grid decomposition and topology change requires a different logic file. This results in the
flow code being frozen while new geometries can be run by constructing a new logic file.

There are three basic linear algebra operations in Bi-CGSTAB: matrix-vector products,
inner products and scalar-vector products. In the parallel environment, computation of
the inner products requires inter-processor communication since the local inner products
have to be accumulated among all the processors. This can be done using log2P com-
munication of length one. The scalar-vector products can be performed without any
communication. For the matrix-vector products, a five-point stencil (i.e. l-layer halo
communication) is used to assemble the coefficient matrix A (assuming first order differ-
encing). The inter-processor communication of the components of the multiplying vector
between neighbor processors is required, and the schedule is made by the logic file.

The implicit scheme is very robust, remaining stable for any CFL number and any
configuration. The local preconditioner significantly reduces the number of iterations per

596

70

60

<~ so

o a ,to
b5
.c_

.~ 3 0

. With preconditioner
20 - - Without preconditioner

,o I_
o , - : ' , ' - , -~ : - " , - : - , - , - : - , " , - , - , - : : - - ; - - , - - - , - ' - : - . - , - - . - '=~. '~ . " , - " := ' ;

100 200 300 400 500 600 700
Timesteps

,3[
16 processors

12 I I~ 64 processors

._.R lO

.~ 9

8

7
b . 20 40 60 80 1 oo

Timestep

Figure 1. The number of iterations per timestep needed to reduce the linear residual
by 2 orders versus the number of timesteps to reduce the nonlinear residual 8 orders.
(64x64 mesh, subcritical flow, single element). Figure a: A comparison between the
unpreconditioned and preconditioned Bi-CGSTAB algorithms for CFL=3. Figure b: A
comparison between 16 and 64 processors for CFL=10.

timestep (see a. of figure 1). The expense of the preconditioner is about one residual
time unit (RU) per iteration. The minimum CPU time to convergence (8 orders) occurs
at about CFL=20 (see figure 2). It is not clear whether the spitting or the linearization
error is limiting this CFL number to 20. Other preconditioners are currently being tested
to answer this question.

Incomplete convergence at each timestep is also studied. The nonlinear convergence
rate remains unaffected if the linear residual is reduced by two orders of magnitude or
more. Since the preconditioner is local, its approximation to the original operator gets
worse with decreasing granularity. We have, however, found this effect to be mild. The
average number of iterations increases from 8 to 10 per timestep when the number of
processors is increased from 16 to 64 for typical problems (see b. of figure 1).

4. Parallel F lux Limiter

As was discussed in the introduction, a limiter is used to prevent spurious oscillations
around the shock when using a numerical method with accuracy greater than first order.
We introduce a field variable r which when equal to one allows a high order upwind
differencing to be used, while when equal to zero, reduces the accuracy to first order to
obey the Godunov theorem of monotone schemes.

Applying the van Albada limiter [1] on the pressure, the condition used to set the field
variable to zero is

2 A I n pi+1/2 " A In Pi-1/2

(A lnpi+l/2) 2 + (A lnpi-1/2) 2
(2)

where r - .8. While r throughout the field is set to one, at the point (i, j) at which the

597

250

8 200
o

IE 150 ._
i -

100

7

~ T imes teps / , ~ , "

10 20 50 60

700

600

o

500

8
400 ---

300

30 40 70

CFL numbe r

Figure 2. Timesteps and total time to convergence (8 orders) versus CFL number for a
subcritical single element (64x64 mesh)

condition is true, r as well as r + 1,j) and r are set to zero. This operation
is done independently on each processor

The spatial extent of the limiter should be small to prevent too much of the space being
of low order. However, if the limiter is not wide enough or smooth enough ("enough" being
problem dependent) the shock and limiter region may enter into a limit cycle preventing
convergence. With this standard form of the limiter, gradients at the leading and trailing
edges of a subcritical undisturbed flow were large enough to activate the limiter thus
reducing those regions to first order. In some cases, the subsonic to supersonic line also
became first order.

To alleviate the problem of the limiter being activated in nonshock regions, we developed
the following modifications to the limiter.

max(ai_l,ai, ai+l) > 1 and Alnp~ .g > 0 (3)

where a is the speed of sound. The first constraint ensures that only supercritical regions
are activated. The second one allows only those regions with pressure drop in the same
direction as the flow velocity to be first order.

To prevent the limit cycles from occurring, we smooth r by taking one backward Euler
step of the heat equation for the limiter [6]

r _r _ ~ z x r (4)

where the Laplace operator is in the computational plane and ~ = 0.1. This smooths the
limiter in space. Since a 5 point stencil of r is used to form the nonlinear residual, r on
the body must also be set. Homogeneous Neumann conditions on the body are used for
the smoothing. To solve this linear system such that the subdomain boundaries do not

598

Figure 3. Contour plots of r for transonic flow. Figure a. shows the smoothed unmodified
limiter; the leading and trailing edge regions are first order. Figure b. shows the smoothed
modified limiter.

affect the smoothness of r a globally iterative scheme is used. The operator is symmetric,
so CG could have been used; however, the Bi-CGSTAB algorithm is used instead. The
communication pattern is identical to that of the flow solver so the same logic file and
schedule is used. Several iterations brought this linear residual down a few orders of
magnitude. Convergence difficulties were not found.

In figure 3 we show contour plots of the flux limiter r for a transonic single-element
case. The left figure (a.) shows the smoothed unmodified limiter. Regions around the
leading and trailing edges are first order. The right figure (b.) shows the smoothed
modified limiter. Only the region (width 3-4 points) around the shock is first order. No
problems were encountered in convergence to machine zero with the modified, smoothed
limiter.

5. Parallel Grid Adjustment

In our projects of shape design, we use Simulated Annealing as an optimization method
[2]. Here the set of design parameters which define the body shape are set, the flow and
objective function are found. The SA algorithm selects a new set of parameters randomly
(but within a neighborhood). The flow is solved, the objective function is found and
compared to the previous one. The new body is accepted if the objective function is
lower (for minimization problems), or if a hill-climbing criterion is met. These steps are
then repeated as long as desired, perhaps hundreds of times.

The problem is to update the grid to go smoothly around the new body and to do it
in parallel without much overhead. We first assume that the grid can be modeled as an
elastic solid which is in equilibrium with the original body shape. The body shape change
acts as a deformation of the boundary of the elastic solid. The subsequent change in the
grid can be thought of as the relaxation of the elastic solid to a new equilibrium state
with the new body shape. The equilibrium equation for the deformation ~7 is

(5)

599

25

2o
IBM CFL = 10
. Residual Calc

== Jacobian Calc
'- 15 Precondit ion Calc

Total

D
t 0

5

.

.

o a .
0 5 10 15

Processor #

0 . 0 6

-.,=

0,04
D
_~

0.02

/ / \ \ \ / r ' x . \ . / ~ \ / /
/ . / , t \ ,

1, i , i~ \ i \ / .,,. ,
/ \ i / , . / ~ \\ I \ i / ,. / r \,,, I / '. / ~ I ,, , \ !

/ - - -~ .' '., , ~ ~ / , /

"i"'. /! / """' i .,""".,. ,.,"/ /' ''""'"
\., / ~ / ' \ / IBM CFL = 10

V \,.' "v ! Shuffle Comm
. Shuff le Idle
. Bicgstab Comm

Bicgstab Idle

. 2 2 ~

b . 0 . 0 0 , , , i i L
0 5 10 15 Processor#

Figure 4. Times reported for each processor on the SP2, CFL - 10, P=16, local mesh
16x16. Figure a. shows incremental calculation times, and figure b. shows communica-
tions times.

Assuming only solenoidal deformations simplifies this to Laplace's equation with Dirichlet
conditions on the boundary. The displacement is ~ - s -- ~old with the displacement
initially nonzero only at the boundary. The system can also be easily solved implicitly in
parallel using the iterative solver of the code. The same logic file is used.

6. R e s u l t s and C o n c l u d i n g R e m a r k s

In figure 4 we show a breakdown of computation (a.) and communication (b.) times for
a 16 processor run on the SP2 at NASA Langley, CFL=10. The results are incremental,
i.e., the vertical height between lines reflects the time of the specific operation referenced
by the upper line. The times are not averaged; each processor reports its own timings,
which gives an indication of the load balancing. Note that the bulk of the CPU time
occurs in the iterative solver; however, total CPU time to convergence is still less than
with an explicit scheme. In the right plot of figure 4, the times are normalized by the
total time per iteration. We see that total communication times for this relatively fine
grain problem are less than 10%. The communication time in the iterative solver makes
up the bulk of the total communication time.

We have described a general parallel Navier-Stokes solver with a global iterative /
local preconditioned implicit scheme that runs on single and multiple processors. When
changing geometries or machines, changes in a logic file, read at execution is all that
is required. Flux limiter smoothing and grid adjustment also make use of the implicit
scheme. An analogy of the mesh deformation and return to equilibrium of an elastic solid
provides a parallel method for mesh regridding needed because of shape changes in a
design and optimization loop.

Finally, we show the pressure contours of a converged solution for a two-element airfoil.
The grid was severely skewed with mesh aspect ratios ranging 8 orders. The nCUBE-2
was used.

600

1.0 , , , , , ~ ,~ , ;

0.5

0.0

-0.5

P ressu re

-0.5 0.0 0.5 1.0 ' ' ' 115 2.0

Figure 5. Pressure Contours around an airfoil with flap. M=.5, Re=1000, 32 subdomains
and processors, nCUBE2, 16x16 local grids

R E F E R E N C E S

1. G.D. van Albada, B. van Leer and W.W. Roberts, Jr. "A comparative study of
computational methods in cosmic gas dynamics." Astronom. and Astropyhs. 108:76-
84, 1982.

2. S. Aly, F. Marconi, M. Ogot, R. Pelz and M. Siclari "Stochastic optimization applied
to CFD shape design." 12th AIAA Computational Fluid Dynamics 11-20, June, 1995.

3. R. Barrett, M. Berry, T.F. Char, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine and H. van de Vorst Templates for the solution of linear systems:
building blocks for iterative methods. SIAM, Philadelphia, 1994.

4. R.M. Beam and R. F. Warming "An implicit factored scheme for the compressible
Navier-Stokes equations." AIAA Journal, 16(4):393-402, 1978.

5. M.D. Kremenetsky, J. L. Richardson and I-I.D. Simon "Parallel Preconditioning for
CFD Problems on the CM-5." Parallel CFD Ecer, ttaeuser, Leca and Periaux, eds.
North Holland, Amsterdam 1995.

6. F. Marconi private communication.
7. P.L. Roe "Discrete models for the numerical analysis of time-dependent multidimen-

sional gas dynamics." Journal of Computational Physics, 63:458-476, 1986.
8. Y. Saad and M. Schultz "GMRES: A generalized minimal residual algorithm for

solving nonsymmetric linear systems." SIAM Journal on Scientific and Statistical
Computing, 7:856-869, 1986.

9. J.L. Thomas and R.W. Waiters "Upwind Relaxation Algorithms for the Navier-Stokes
Equations," AIAA J. 25(4):527-534, 1987.

10. H. A. Van der Vorst "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems." SIAM Journal on Scientific and
Statistical Computing, 13(2):631-644, 1992.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

601

P a r a l l e l so lu t ion of viscous incompres s ib l e flow on m u l t i - b l o c k s t ruc-
t u r e d gr ids u s i n g MPI

R a m e s h P a n k a j a k s h a n a a n d W. Roger Br i ley b

a C o m p u t a t i o n a l E n g i n e e r i n g , b Mechan i ca l E n g i n e e r i n g
N S F E n g i n e e r i n g R e s e a r c h C e n t e r for C o m p u t a t i o n a l F ie ld S imu la -
t ion, Miss i s s ipp i S t a t e Univers i ty , P.O. Box 6176, Miss i s s ipp i S ta te ,
MS 39762

1. ABSTRACT
A parallel code based on an existing unsteady three-dimensional incompressible
viscous flow solver has been developed for simulation of flows past complex
configurations using multi-block structured grids and using MPI for message
passing. The linearized implicit solution algorithm used is modified for execution
in parallel using a block-decoupled subiterative strategy, and a heuristic
performance estimate is developed to guide the parallel problem definition. This
performance estimate couples the parallel domain decomposition and grid
generation with the software and hardware characteristics of the targeted computer
system. The performance estimates obtained here for the IBM SP-2 generally agree
with actual run times and seem useful for an a priori problem definition. Extensive
evaluations of both algorithmic and parallel performance are given for a test
problem consisting of axisymmetric flow past an unappended submarine hull with
a Reynolds number of 12 million. Other results are given for three-dimensional
appended submarine cases having 0.6M and 3.3M grid points. The decoupled
subiteration algorithm used here allows the convergence rate of the sequential
algorithm to be recovered at reasonable cost by using a sufficient number of
subiterations, and allows decompositions having multiple subdivisions across
boundary layers. The parallel algorithm is also insensitive to various orderings of
the sweep directions during subiteration. Finally, the present approach has given
reasonable parallel performance for large scale steady flow simulations wherein the
grid and decomposition were appropriately sized for the targeted computer
architecture.

2. INTRODUCTION
A primary objective of the present study is to develop an efficient parallel flow solver
for large scale viscous incompressible flow simulations. The present study considers
two- and three-dimensional steady flows, but the approach is also suitable for
unsteady flows. A second objective is to implement and test this parallel flow solver
for three-dimensional flow past submarine geometries. In view of this focus on is-
sues arising in complex flow problems, the present parallel implementation is based
on an evolving sequential code being developed and applied to a number of complex
submarine flows, in the Computational Fluid Dynamics Lab at the ERC [1-4]. The

602

present study considers steady flow past submarine configurations (see Figure 1)
including hull, sail with and without sail planes, and stern appendages. A future
objective is to develop this code to predict trajectories of fully-configured
maneuvering submarines including propulsors, based on hydrodynamic predictions
of unsteady forces and moments.

The present approach exploits coarse-grained parallelism and message passing.
The parallel implementation uses the Message Passing Interface (MPI) [5] for
message passing. MPI was chosen for this study because of its portability, features
which simplify the development of applications code, and its evolving status as an
informal open standard with widespread support.

3. SOLUTION METHODOLOGY

3.1. Sequential Algorithm
In the sequential approach used for complex simulations (Taylor & Whitfield,
[1-4]), a multi-zone grid with blocks of arbitrary size is first generated to fit the
geometry and to provide adequate resolution of the flow structures of interest. The
flow solver then uses an artificial compressibility formulation to solve the
three-dimensional unsteady incompressible t ime-averaged Navier-Stokes
equations for the flow within each of the grid blocks in a predetermined sequential
order. The flow solver includes linearized subiterations and optional Newton
iterations (for unsteady flows) at each time step. Typically for steady flows, the
subiterations are completed before continuing to the next grid block in the sequence.

The time linearized approximations are solved by a subiteration at each time step.
The subiteration procedure is a symmetric Gauss-Seidel relaxation (SGS)
procedure [4], which can also be formulated as a lower-upper/approximate
factorization (LU/AF) algorithm [6]. For steady flows, a local time step (or CFL
number) is used to accelerate convergence to the steady solution. Other key
elements of the solution methodology include high accuracy flux-based upwind
finite-volume approximations in transformed coordinates. The spatial
approximation combines Roe's approximate Riemann solver [7] and van Leer's
MUSCL scheme [8,9]. The linearized flux Jacobians required by the implicit
algorithm are computed by a numerical evaluation, as suggested in [2,4], and then
stored and updated infrequently.

3.2. Parallel Algorithm
The SGS subiterations in the sequential algorithm are associated with good
stability and convergence properties but are not easily parallelized. The approach
followed here is to implement this algorithm on spatially decomposed grid blocks
assigned to separate processes in a context such that the subiterations are
effectively decoupled, so that each block can be done in parallel. This decoupling
tends to give good parallel performance, but the decoupling of subiterations in
blocks can degrade the algorithmic performance of this otherwise implicit
algorithm.

One objective in studying this parallel algorithm is to identify a procedure that
keeps the total number of arithmetic operations required for a converged solution
as close as possible to that for the sequential algorithm. It will be demonstrated that
the convergence rate of the sequential algorithm can be recovered at reasonable cost
by using a sufficient number of (inexpensive) subiterations.

The parallel implementation employs an overlapping spatial domain decomposition
of the grid into blocks which are assigned to separate processes. During each SGS

603

or LU/AF subiteration, the solution increments are exchanged for two rows (or
surfaces) of points adjacent to each block interface. The decoupling is accomplished
by start ing each sweep of the subiteration within each block using boundary
conditions from the previous subiteration sweep instead of waiting for values from
the current subiteration. This algorithm uses Gauss-Seidel relaxation sweeps
within each process but is effectively explicit across block boundaries, allowing for
parallel solution for all blocks. The solution increments are updated by message
passing following completion of the forward sweep of the subiteration and then
again following the backward sweep. In addition, an algebraic eddy viscosity
turbulence model is used (Baldwin & Lomax [10]) which requires global line
searches that traverse block boundaries. The turbulence model is updated before
each time step. Fur ther discussion of the MPI implementation are given as an
example application in [11].

Figure 1. Pressure contours for subma-
rine with sail and stern appendages

Figure 2. Approach for flow simu-
lation on parallel machines

3.3. P r o b l e m Def in i t ion and Paral le l Ef f ic iency
Another objective of this study is to identify a spatial domain decomposition that
leads to good parallel efficiency on the available computing platform. This is done
by choosing a minimum number of processors having sufficient global memory for
the case to be run, and arranging for a grid block structure with small surface to
volume ratio to reduce communication, and with equal block sizes for load balance
on homogeneous processors.
This procedure is illustrated in Figure 2. Once the CFD problem to be solved is
defined, the problem size determines the global memory required, and this memory
determines the minimum number of processors required on the available computing
platform. The runtime is then estimated using a heuristic performance estimate
(Section 4) based on both solution algorithm and architectural parameters. Commu-
nication/computation ratios are reduced by keeping the granulari ty as coarse as
available memory allows (to give a large volume of data for the CPU), and by choos-
ing a decomposition with small surface to volume ratio to reduce the size of mes-
sages. If the estimated runtime is too large, it can be reduced by changing the num-
ber of processors P with guidance from the performance estimate. The final step is
to generate a grid having P blocks.
In effect, the parallel decomposition and load balancing issues are introduced as
constraints in the grid generation process. These constraints are easily dealt with
by experienced grid generators with good grid generation programs, and at some

604

point, the constrained grid generation may be automated. If an existing grid must
be used, it can often be reblocked according to these guidelines. This constrained
grid generation process yields a multi-block grid with blocks sized appropriately for
the flow solver and computer configuration. A uniform grid block size provides static
load balancing. The approach is well suited for problems that can be addressed by
multi-block dynamic grids generated at the start of the flow calculation. The use
of adaptive grids which require reblocking during the flow calculation has not been
considered in this study.

4. PARALLEL PERFORMANCE ESTIMATE
A heuristic means of estimating the parallel performance, given key parameters for
the solution algorithm and parallel computing platform, is outlined below.

4.1. S t o r a g e a n d C P U R e q u i r e m e n t s

Assuming an (n 1 x n 2 • n3) grid with N finite volume cells, the storage required for
large arrays is approximately 248 N 64-bit words. Thus, a 50,000 point grid needs
109Mb.
The floating point operations required by the solution algorithm during one step
include three basic components of the calculation: (a) Residual evaluation, (b) LU
subiteration sweeps, and (c) Numerical flux Jacobian linearizations. These were
determined by a sequence of calibration runs on a Cray YMP and are summarized
here in M F L O P (million floating point operations) as (a) Residual:
1230 x 10 -6 N MFLOP, (b) Subiteration: 330.5 x 10 -6 N M F L O P , (c) Jacobian:
5284.3 x l0 -6 N MFLOP. If Isdenotes the number ofLU subiterations, if the flux
Jacobian linearizations are updated every Ij time steps, and if RCp U is the effective
processor speed in Mflops, then the total CPU time in seconds for an average step
is given by

[CPU (seconds) = Residual + I s x Subiteration + Jacobian Ij / Rcp U (4.1)

4.2. C o m m u n i c a t i o n R e q u i r e m e n t s

Three basic components of the interprocessor communication requirement are
considered: (a) exchange of data adjacent to block interfaces during subiteration, (b)
global operations required by the algebraic eddy viscosity turbulence model, and (c)
loading and unloading of buffer arrays used in message passing (a slightly different
MPI implementation with user-defined datatypes would avoid this explicit buffer
loading, but has not yet been implemented).
The communications estimate is expressed in terms of the following parameters:
Number of Processors, P ; Number of Block Interfaces Exchanging Messages, Nm ;
Message Length for a Single Data Surface (Mb), Lm ; MPI Software Latency (s),
o ; M P I Software Bandwidth (Mb/s), ~. During each of the I s subiterations, the
solution time increment A Q must be exchanged twice (once for the forward sweep
and once for the backward sweep) for each of the Nm block interfaces on each process.
The overlapping domain decomposition is such that data is duplicated and
exchanged for two surfaces of points adjacent to each block interface. In addition,
the block decoupled solution algorithm is synchronized such that all messages are
sent at approximately the same time. Consequently, an estimate for bisection width
is needed to account for self contention in message passing. A factor of]-P is a
suitable estimate and is exact for a two-dimensional mesh. The estimated total time
required for message passing is given by

605

tcomm "- 2 IS Nm [~ + 2Lm] [
fl + 2 q a +] fl v/-fi + 2 I s Nm t 9. 71

Point- to-point Global Buffering

where q is such that P > 2 q-1.

For the architectural parameters, the effective processor speed RCp U w a s calibrated
for an IBM SP-2 processor as approximately 49 Mflops, the MPI software latency
and bandwidth were obtained from [12] for an IBM SP-2 as a = 62 its and
fl = 34 Mb/s (the asymptotic rate for large messages).

5. RESULTS
A two-dimensional flow case was used for extensive evaluation of both parallel and
algorithmic performance. First, a study was done to determine algorithmic
parameters tha t minimize the global operation count for a converged solution using
the sequential algorithm. Next, results were obtained to identify guidelines for
selecting the number of subiterations for the decoupled parallel algorithm to
maintain the convergence rate of the sequential algorithm. Finally, the
performance estimate is used to evaluate the problem definition and parallel
efficiency for this same small test case and for much larger three-dimensional cases
for appended submarine configurations.

5.1. Early Development
The portability of the MPI implementation was useful in tha t the initial
development was done on a network of SUN workstations for grids of order 14,000
points. A much larger multi-block case (0.6M points) for turbulent flow past a
submarine hull with sail and stern appendages was run on a twelve-processor SGI
Challenge, and on both IBM SP-1 and SP-2 systems. For the 12 block, 0.6M grid
case, 500 iterations required 6 hours on the twelve-processor SGI Challenge, with
92 percent of the runt ime devoted to floating point calculations. The 12 node runs
on the Challenge and the SP1 gave sustained performances of 84 MFLOPS and 120
MFLOPS respectively. Apart from using the highest compiler optimization level
available, no effort has yet been made to tune the code.

5.2. Algorithmic Performance
The two-dimensional test case is flow past an axisymmetric submarine hull
configuration known as S U B O F F . A (131 • 51 • 2) grid was used, which is highly
stretched to resolve the very thin shear layer occuring at the high Reynolds number
(12M based on hull length) for this case. For this grid, the ratio of maximum to
minimum mesh spacing is 1.6M for the radial direction and 90 for the
circumferential direction. The maximum cell aspect ratio is 12,778. The pressure
and wall friction coefficients from the converged solutions for one, four, eight and
twelve processors were compared and are in good agreement both with each other
and with experimental data.

The most important algorithm parameters are the nondimensional time step (CFL
number, defined in [6]) and the number of subiterations (I s). The frequency of
updating flux Jacobian linearizations was found to have only a weak influence on
stability and iterative convergence rate. The number of iterations required to
reduce the maximum residual by a factor of l0 -3 are plotted in Figure 3 as a

606

function of CFL and I s . The results in Figure 3 are re-plotted in Figure 4 to convert
the number of iterations to arithmetic complexity using the CPU requirements from
the performance estimate given in Section 4 for this solution algorithm. Note that
the minimum arithmetic complexity occurs for Isof3 to 5 and CFL of about 40 to 50,
indicating that further subiteration is less efficient in CPU time even though fewer
time step iterations are required. The optimal CFL number is expected to vary
somewhat for other flow problems.

1000 , , .

SINGLE PROCESSOR

"
z

9
UBITERATIONS = n.

a.

! -

0 2o 40 6o

TIME STEP (CFL)

Figure 3. Iterations for 0(3) Residual
Reduction

SINGLE PROCESSOR

1.0

i SUBITERATIONS =

o ~

~ 10

0.1

5

0 20 40 60 80
TIME STEP (CFL)

Figure 4. Complexity for 0(3) Residual
Reduction

-1 .0

-5 .0

-7.0

r
-9 .0

-13.0

-lS.O

Single block " ~

I, = M a x , , 5) - 1
Nb

o I, = Max(T,5)
0.0 200.0 400.0 600.0 800.0 1000.0

ITERATIONS

Figure 5. Effect of subiterations on
convergence

1~
~ . , l Linear Speedup

I "~'~'. ' Actual Run Time (51)

1~176 I ~ ~ - . Subdivide (51)

--- Subdivide (131)

1
10 100 1000

PROCESSORS

Figure 6. Run- t ime for 500 steps of
SUBOFF on 4/8 nodes of the IBM SP2

Figure 5 gives results which suggest guidelines for selecting the number of
subiterations for the decoupled parallel algorithm to maintain the convergence rate
of the sequential algorithm. In a series of cases with different numbers of processors
and subiterations and with one- and two-dimensional decompositions, it appears
that the sequential convergence rate is maintained provided there is one
subiteration for every two grid blocks in the direction of the longest block
decomposition. This implies that 'a balanced higher dimensional decomposition will
show the least amount of algorithmic degradation. It is significant that the

607

additional subiterations required are inexpensive for this algorithm because flux
Jacobians are saved and reused.

5.3 . P a r a l l e l P e r f o r m a n c e

The parallel performance estimates of Section 4 are compared in Figure 6 with
actual run times for these one, four and eight processor cases on an IBM SP-2, and
in general, the runtime estimates are in reasonable agreement with the actual
trend. The reason for dividing the shorter direction (having 51 points) is that this
direction cuts across the turbulent boundary layer. This demonstrates the ability
of this particular algorithm to handle arbitrary domain decompositions.

. , , , ,

~N. I " " " Estimated Run Time I
 inear I

~ ~,~ Calibrated
~ i" ~,,,,~,,,.~,,,Run Time (2D)

~, ~z x ~ 1D

. , , , ,

10 iO0 1000 1 10 100 1000

PROCESSORS PROCESSORS

Figure 7. Run time for 500 steps of Figure 8. Run- t ime for 500 steps of
0.6M case on 12 nodes of the IBM SP2 3.3M case on 32 nodes of the IBM SP2

In Figs. [7-8], estimated and actual/calibrated runtimes are compared for much
larger cases for flow past a submarine hull with sail and stern appendages, having
grids of 12 blocks of (49x41x25) (i.e., 0.6M points) and for 32 blocks of (49x65x33)
(i.e., 3.3M points), with two-dimensional decompositions. Est imated times are
given for both one- and two-dimensional decompositions. Calibrated timings are
obtained by scaling 5 step runs. It can be seen from Figs. [7-8] that reasonable
parallel performance can be obtained for these larger problems provided the grid
and decomposition are appropriately sized for the targeted computer architecture.
The 12 block and 32 block cases ran at effective speeds of 480Mflops and 1.25Gflops
respectively.

6. CONCLUSIONS
(1) The decoupled subiteration algorithm used here allows the convergence rate of
the sequential algorithm to be recovered at reasonable cost by using a sufficient
number of subiterations, for the coarse-grained domain decomposition considered.
As the problem size increases, algorithmic degradation can be avoided by resorting
to balanced higher dimensional decompositions. The parallel algorithm also allows
decompositions that are subdivided across boundary layers and is insensitive to
various orderings of the sweep directions during subiteration.
(2) The parallel performance estimates obtained here for the IBM SP-2 are in
reasonable agreement with actual run times for the test problem considered, in part
because an accurate estimate of processor speed for the actual problem was
obtained. These performance estimates seem generally useful for a pr ior i problem
definition even with approximate processor speeds.

-- Estimated Run Time
Linear Speedup

,,,,, R?n Time (2D)

2D

10,0

608

(3) The present approach has given reasonable parallel performance for the larger
scale steady flow simulations wherein the grid and decomposition were
appropriately sized for the targeted computer architecture. Further work is needed
to evaluate the scalability of this algorithm.

ACKNOWLEDGEMENTS
This research was supported by the Office of Naval Research (ONR) under grants
N00039-92-C-0100 and N00014-92-J-1060, with J. A. Fein as the technical
monitor. This work is part of a cooperative effort with Applied Research Laboratory
at Pennsylvania State University. The authors also wish to express their sincere
appreciation to Drs. L. K. Taylor, C. Sheng, A. Arabshahi and D. L. Whitfield for
assistance with the submarine flow cases; to Dr. M.-Y. Jiang for generating the
grids used in this work; to Dr. A. Skjellum and N. Doss for assistance in using MPI;
and to H. Franke for help with MPI-F. The authors also gratefully acknowledge use
of facilities at the Maui High-Performance Computing Center, the Mississippi
Center for Supercomputing Research and the Argonne High-Performance
Computing Research Facility.

REFERENCES
1. L.K. Taylor and D. L. Whitfield: Unsteady Three-Dimensional Incompressible

Euler and Navier-Stokes Solver for Stationary and Dynamic Grids, AIAA Paper
No. 91-1650, (1991).

2. D. L. Whitfield and L. K. Taylor: Discretized Newton-Relaxation Solution of
High Resolution Flux-Difference Split Schemes, AIAA Paper No. 91-1539,
(1991).

3. L. K. Taylor, A. Arabshahi and D. L. Whitfield: Unsteady Three-Dimensional
Incompressible Navier-Stokes Computations for a Prolate Spheroid Undergoing
Time-Dependent Maneuvers, AIAA Paper No. 95-0313, (1995).

4. C. Sheng, L. K. Taylor and D. L. Whitfield: Multiblock Multigrid Solution of
Three-Dimensional Incompressible Turbulent Flows About Appended
Submarine Configurations, AIAA Paper No. 95-0203, (1995).

5. MPI: A Message-Passing Interface Standard, Comp. Sci. Dept. Tech. Report
CS-94-230, University of Tennessee, Knoxville, Tennessee, (1994).

6. W. R. Briley, S. S. Neerarambam and D. L. Whitfield: Implicit Lower-Upper/
Approximate-Factorization Algorithms for Viscous Incompressible Flows,
AIAA Paper No. 95-1742-CP, (1995).

7. P.L. Roe, J. Computational Physics, 43 (1981) 357.

8. B. van Leer, J. Computational Physics, 32 (1979) 101.

9. W. K. Anderson, J. T. Thomas and B. van Leer: A/AA Journal, 24 (1986) 1453.

10. B.S. Baldwin, and H. Lomax: Thin-Layer Approximation and Algebraic Model
for Separated Turbulent Flows, AIAA Paper No. 78-0257, (1978).

11. W. Gropp, E. Lusk and A. Skjellum: Using MPI, MIT Press, (1994) 185-188.

12.B. Saphir and S. Fineberg: http://lovelace.nas.nasa.gov/Parallel/SP2/MPIPerf/
report.html.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

609

C o m p a r i n g t h e p e r f o r m a n c e o f m u l t i g r i d a n d

c o n j u g a t e g r a d i e n t a l g o r i t h m s o n t h e C r a y T 3 D

Y. F. Hu, D. R. Emerson and R. J. Blake

Daresbury Laboratory, CLRC, Warrington WA4 4AD, United Kingdom

On many distributed memory systems, such as the Intel iPSC/860, the multigrid
algorithm suffers from extensive communication requirements, particularly on the coarse
grid level, and is thus not very competitive in comparison to the conjugate gradient
algorithm. These two algorithms are compared on the new Cray T3D MPP system for
solving very large systems of linear equations (resulting from grids of the order 2563
cells). It is found that the T3D has very fast communication and, most importantly,
a low latency. As a result, the multigrid algorithm is found to be competitive with
the conjugate gradient algorithm on the Cray T3D for solving very large linear systems
from direct numerical simulation (DNS) of combustion. Results are compared to those
obtained on the Intel iPSC/860.

1. I N T R O D U C T I O N

Two of the most popular iterative solvers involved in the solution of large scale linear
systems are the conjugate gradient algorithm and the multigrid algorithm (combined
with an appropriate smoothing method).

The multigrid algorithm is typically used with a stationary-type solver and is fre-
quently the method of choice for sequential machines. In this approach, the computa-
tional grid is divided into a number of levels. For practical engineering problems the
flow field is turbulent and this necessitates that the calculation will start on the finest
grid. The residual, which indicates the extent to which a problem has converged, will
reduce quite rapidly at first as the high frequency errors are damped out. However,
to further reduce the residual by a given factor requires an increasing number of iter-
ations. By transferring the problem to a coarser mesh, the low frequency errors that
were present on the finer mesh now appear as high frequency errors and can, therefore,
be readily reduced. Although a significant number of iterations may be required on the
coarse meshes, each iteration only involves a relatively small amount of computation in
comparison to the fine mesh and, for sequential problems, the overa~ workload can be
substantially reduced. An alternative approach is to employ a nonstationary algorithm,
such as the conjugate gradient algorithm. In this approach, the system of equations are
written in the form Ax - b and a global search algorithm, which gives the conjugate
directions, is sought. A critical element in the success of conjugate gradient algorithms
is forming an appropriate preconditioner.

610

To a large extent, these issues are well known and understood for sequential ap-
plications. However, their parallel implementation introduces some problematic areas
and it is not always the case that the "best" sequential algorithm is the "best" parallel
algorithm. This paper will therefore discuss the issues involved in developing efficient
parallel versions of these algorithms and compare the performance of the two algorithms.

2. B A C K G R O U N D A N D M O T I V A T I O N

The target application for the present study is the Direct Numerical Simulation
(DNS) of turbulent combustion. This problem involves the solution of the three di-
mensional Navier-Stokes equations and a scalar transport equation that represents the
reaction progress variable [1]. In all, there are six partial differential equations to be
solved. A low Mach number approximation is made to allow the pressure to be decou-
pled from the density. However, this approximation fails to satisfy continuity and it
is necessary to solve a resulting Poisson equation to enforce a divergence free solution.
This equation set can be written as:

V2P = ~rV-u (1)

where tr is a constant which depends on the time step and grid size and P and u represent
the pressure and velocity field, respectively. At present, the problem is limited to a
back-to-back flame in a cube in space. The boundary conditions are therefore periodic.

The matrix resulting from the solution to equation (1) is large, sparse and, for
this particular case, symmetric. For this problem, the matrix has a regular structure
and, with the periodic boundary conditions, it is also singular. The solution of the
Poisson equation is the most time consuming part of the computation. Indeed, for very
large problems (.~ 3003 -4003) , the solution takes 98% of the computational time.
In an ideal situation a direct solver would be used. However, parallel direct solvers
are not practicable for this size of problem as the fill-in required would increase the
storage significantly. Another possibility would be to employ a Fast Fourier Transform
(FFT) based algorithm. However, this would impose restrictions on the partitioning
strategy and on implementing, in future, more complicated geometry and non-periodic
boundary conditions. Iterative schemes are therefore the preferred method for solving
such systems because of their low storage requirement. As previously described, the
optimal solvers currently available are multigrid and conjugate gradient methods.

The parallel code was initially developed to run on a 64 node Intel iPSC/860 hy-
percube at Daresbury Laboratory. A standard grid partitioning strategy was employed
which utilised the Single Process Multiple Data (SPMD) style of programming. The
code was subsequently modified to run on the Gray T3D. This machine has 320 DEC
Alpha 21064 processors but, as it is only possible to use partitions employing 2 '~ pro-
cessors, the maximum configuration available is 256. The DEC Alpha chip operates at
150 MHz and therefore has a peak performance of 38.4 Gflop/s on 256 processors. The
floating point performance of the machine has been discussed elsewhere ([1]) and, whilst
this is a critical factor, it is necessary to establish the communication performance of
the Cray T3D. For both conjugate gradient and multigrid to be efficient it is necessary
to have a low latency and a high bandwidth. These figures were obtained by perform-
ing a ping-pong test whereby processor A sends a message to processor B and, once

611

the message has been received, processor B returns the message to A. This process is
repeated for many times and the average time taken to do a send is then determined. It
should be noted at this stage that the Gray T3D offers a wide range of message passing
options involving PVM at the highest level, PVMFPSEND/PVMFPRECV at the next
level, and the low level Gray routines SHMEM_PUT/GET. All of these routines were
tested and the results on latency (t0) and bandwidth (too) are given in Table 1. The
results in brackets for PVM and PVMFPSEND are for messages larger than 4096 Bytes.
As can be seen from the table, the latency varies considerably with the message passing
scheme being employed. Previous calculations on the Intel have shown that the multi-
grid algorithm was not as effective as the conjugate gradient algorithm because of the
relatively high latency of the machine (70 #s [2]) and its low bandwidth (2.4 MBytes/s
[2])

Table 1
Communication performance of the Cray T3D

Uni-directional Bi-directional
Routine to (/zs) too (MBytes/s) t0 (/~s) too (MBytes/s)

P V M 138 (265) 26 (26) -
P V M F P S E N D 32 (222) 34 (26) 19 (148) 52 (48)
S H M E M _ P U T 6 120 6 140
S H M E M _ G E T 6 60 - -

The balance between the speed of communication and computation is also looked
at. It is found that compared with the Intel i860, the Gray T3D is much more balanced.
In fact because of the small cache and the lack of secondary cache, the computational
speed is relatively slow compared with communication speed for large vectors. Thus for
example when doing halo data transfer of large vectors, more time is spent in packing
and unpacking than in communication itself. For smaJl messages the communication is
still slower compared with the computation because of the startup cost.

3. T H E C O N J U G A T E G R A D I E N T A N D M U L T I G R I D A L G O R I T H M S

As previously described, the matrix to be solved is symmetric, positive and semi-
definite. This, therefore, makes it amenable to being solved by a standard conjugate
gradient solver. The grid partitioning strategy allocates an N x N x N grid into N~ x
Nv x Nz cells, where N~ - N/p~ etc. and p~ represents the number of processors in the
x-direction. The total number of processors employed is therefore p = p~ x p~ x pz. The
computational grid employed is staggered with the pressure being located at the cell
centre and the velocities stored at the interfaces. The basic communication structure is
illustrated in Figure 1 for a simple 2D slice. It should be noted that the staggered grid
necessitates the transfer of data across the diagonal as indicated.

3.1 The conjugate gradient algorithm
The pseudo-code for the conjugate gradient algorithm can be written as follows:

612

X o = p _ 1 = f l - 1 = 0 ; r o = b
solve Mwo = ro

;,o : (,'o,,,,o) (t)
For i = 0 ,1 ,2 , 3, ...

qi = Api
pi

a' -- (Pi, qi) (~)
z , i + ~ = = i + a i p i (f)
, ' i + ~ = , ' i - , ~ i q i (t)

if ll,'~+xll= < a ~ i t (t)
wi+ ~ = M - ~ ri+ 1
m + , = (" ' + , , " i + ,) (t)
#i = P i+ l

Pi

where (,) represents the inner dot product of the vectors, ~ is a specified tolerance and
M a preconditioner.

n~
._o
nC~
.o

tl_

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o e o e o e e o o e e o e e e o
o o o o o o o o ~ o o o o o o o

. . . . ~ o o o o o o ~ ~ o o o o o o o ~ : ~

6 o o o o o o ~ o o o o o o o o
o o o o o o o o o o o o o o o o
o �9 o . o �9 �9 o o o �9 �9 o . o o o o o
O 0 .00 0 0 0 0 ~"

0 0 0 0 O0 O0
0 0 Q O Q Q O 0 0 0 0 �9 00
O Q Q Q O Q Q O O 0 0 0 0 Q O 0
0 O 0 0 0 O 0 0 ~ 0 0 0 0 0 O 0
O O Q O Q 0 0 0 0 0 Q Q Q 0 0 0
O Q Q Q O O Q O O Q Q O O Q O 0
O O 0 0 Q O 0 0 0 Q 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 H a l o ce l ls
O A c t i v e ce l ls

Figure 1 Basic communication strategy

There are several features within the pseudo-code that are worth noting: (i) The
majority of the code can be written in Level 1 BLAS (e.g., the dot products can be
written as sdot) and these routines have been indicated with the symbol (t); (ii) To
evaluate a dot product requires the global summation of scalars. During the early phase
of this project, the Cray T3D did not have an intrinsic routine to perform this operation

613

(unlike the Intel with G D S U M) . The hand coded algorithm used to perform this
operation was based on a hypercube summation pattern and all results quoted herein
are using that algorithm. Subsequent tests with the Cray T3D's intrinsic summation
routine have shown them to perform similarly for short vector lengths; (iii) The matrix-
vector product (qi -- Api) is performed with standard FORTRAN 77 and, due to the
finite-difference stencil, it is necessary to transfer the halo (or ghost) cells. Another
communication factor to be considered is the periodic boundary condition. This requires
the transfer of data between processors that are not near neighbors. The matrix vector
operation also accesses data that is not contiguous in memory and therefore places
demands on the cache. To improve the performance of this section of the code, loop
unrolling was performed on the Cray T3D. However, this was not found to be beneficial
on the Intel. This requires the transfer of data between processors that are not near
neighbours; (iv) The preconditioner employed was based on the Modified ILU (MILU)
algorithm proposed by Chan and Kuo [3]. It is only performed on data local to the
processor. This does incur a slight penalty whereby the number of iterations required
to achieve a converged solution increase with the number of processors. However, for
this problem, the increase is minimal and typically less than 5%. The preconditioning
step also places significant demands on the cache. It should noted at this stage that the
Cray T3D has no secondary cache and this clearly affects the performance of the matrix-
vector product and the preconditioner. These issues, and the BLAS vs FORTRAN
performance, are discussed in more detail by Emerson and Cant [1].

3.2 The multigrid algorithm
The are several variations based upon the multigrid algorithm. For the present

investigation, the flow is turbulent and, as previously stated, it is necessary to begin
on the finest grid. The method used for the present case is based upon that proposed
by Hutchinson and Raithby [4). In this approach, the coarse grid correction is formed
using the block correction method and this has been chosen because of its flexibility.
The pseudo-code for a 2-grid algorithm can be written as follows:

Iterate on the fine grid equation A fx -- b y to get ~f
Compute fine grid residual r $ -- b y - Afx f
Compute coarse grid residual r e - I~r f
Form coarse grid equation Aea~ -- r c
Iterate on A ez -- re to get zc
Correct the fine grid solution a~ $:-- ~$ + Ie'fa~ c
Repeat the above process until converged

In the algorithm illustrated above I~ is the restriction operator to transfer from

the fine to the coarse grid and I~ is the prolongation operator from the coarse to the
fine grid.

With the block correction approach, the equations on the coarse grid cells are
formed essentially by adding the equations for the fine grid cells. This make it easy to
lump an arbitrary number of cells along any direction into a coarse grid cell, which is
useful when the equation is anisotropic along certain direction. It also allows to cope
with subdomains whose number of cells along a certain coordinate direction is not even,

614

which could happen when solving in parallel on a mesh that has been partitioned into
many subdomains.

For each level of the grids, a few iterations are carried out on the grid using an
appropriate parallel stationary iterative algorithm. Several algorithms have been imple-
mented, including the Jacobi, the Gauss-Seidel (GS) and the ADI algorithms. It was
found that, in general, multigrid coupled with GS takes less time to converge than with
ADI, even though the latter may take less iterations. After each iteration, halo data are
transferred and the residual is assessed (which incurs a global summation of scalars) to
decide whether to continue solving on the current level, to solve for a correction on a
coarser level (if the norm is not reducing faster than a given factor ~, we used ~ = 0.5),
or whether the current level has converged (if the residual is less than a times the initial
residual, we used 1.0 -6 for the first level and a = 0.1 for all the other levels). If the
given tolerance has been satisfied, the correction can be added to the finer level. It
was found that on the coarsest grid, as the residual has to go down by the factor a,
it was faster to solve the problem using the conjugate gradient algorithm with MILU
preconditioner, rather than using the GS algorithm.

Multigrid algorithms tend to iterate the most on the coarsest grid. However, even
though multigrid algorithms may need a large number of iterations to converge over
all levels, the equivalent number of iterations on the finest grid is usually quite low
because one coarse grid iteration only incurs a fraction of the computational cost of
one finest grid iteration. Therefore, on a sequential machine, multigrid algorithms are
very competitive with nonstationary iterative algorithms such as the conjugate gradient
algorithm. However, on distributed memory machines, the large number of iterations on
the coarse grids incur a large amount of communications with a short message length.
As a result, multigrid algorithms were found to suffer significantly on many distributed
memory parallel computers, such as the Intel iPSC/860, due to the high latency involved
in sending small messages. With the much lower latency of the Cray T3D, the situation
is improved, as will be seen from the next section.

4. N U M E R I C A L R E S U L T S

The conjugate gradient algorithm and the multigrid algorithm is used to solve the
linear systems from DNS. The results of solving such a system associated with a mesh
of size 643, using the conjugate gradient algorithm (CG) and the multigrid with Gauss-
Siedel algorithm with g levels of grids (MGSg), on both Intel i860 and the Cray T3D, are
compared in Table 2. The number of iterations, total elapsed time (tel~paCa, in seconds),
time for halo data transfer (tt~,~a, in seconds) and time for global summation (to,,,~, in
seconds) are given. The computational domains are partioned into g • 2 x 2 subdomains.
On the Cray T3D, SHMEM_PUT routine is used for faster communication.

As can be seen from Table 2, even with only 16 processors, a lot of time is spent
in the communication on the Intel iPSC/860, particularly for the multigrid algorithm.
This is because there are a large number iterations on the coarse grid. Hence there are
a lot of global summations and halo data transfers, and most with short message sizes.
Since the Intel has a relatively high latency, this results in a very high communication
overhead. Subsequently, the multigrid algorithm is slower than the conjugate gradient
algorithm on the Intel, while on the Cray T3D the multigrid is faster.

615

Table 2
Solving a 643 problem on 16 processors: comparing the Cray T3D and the Intel i860

machine algorithm iterations relapsed titans tsum
Cray T3D CG 144 11.3 0.4 0.01
Intel i860 CG 144 30.7 3.6 0.7
Cray T3D MGS4 129.1 8.3 1.5 0.6
Intel i860 MGS4 129.1 42.0 15.7 9.2

The two algorithms are then used to solve a large problem associated with a grid
size of 2563 on the Cray T3D. The results are given in Table 3 and 4. The grids are
partitioned into 8 x 4 x 4 (for 128 processors) and 8 • 8 x 4 (for 256 processors) subdo-
mains respectively. Results using both PVMFPSEND (PVMFPRECV) and SHMEM
are presented.

Table 3
Solving a 2563 problem on 128 processors

machine algorithm iterations t,z~p~a tt~,~ t,=m
SHMEM CG 474 243.5 5.9 0.2
SHMEM MGS4 193.5 98.5 12.1 6.0
SHMEM MGS5 173.0 91.4 14.4 9.5
PVM CG 474 246.3 8.3 0.6
PVM MGS4 193.5 122.2 21.2 20.4
PVM MGS5 173.0 126.8 26.8 32.4

Table 4
Solving a 2563 problem on 256 processors

machine algorithm iterations t~apsed tt~a,~s ts~,m
SHMEM CG 443 116.3 3.4 0.2
SHMEM MGS4 213.8 57.9 9.8 7.2
SHMEM MGS5 193.0 61.0 13.2 12.6
PVM CG 443 118.6 5.2 0.7
PVM MGS4 213.8 82.5 17.6 23.9
PVM MGS5 193.0 103.8 25.9 54.2

As can be seen from the tables, for this large linear system, the conjugate gradient
algorithm takes a lot more iterations than when used for the 64 a problem. In terms of
the ratio between communication time and computation time, for the conjugate gradient
algorithm the communication takes a very small percentage of the total time. This is
because for the size of the problem solved, the subdomain on each processor is quite
large (of size at least 34 x 34 x 64), so the three global summations and one halo data
transfer per iteration for the conjugate gradient algorithm do not take a significant
percentage of the time. For the multigrid algorithm, because of the large amount of
communication on the coarse grid, even though the T3D has very fast communication,
the time spent in the global summation and halo data transfer are still very significant.

616

It is seen that sometimes it is beneficial to use less levels of grids to reduce the
communication overhead associated with the coarse grids. For example, on 256 proces-
sors, MGS4 is faster than MGS5 due to the smaller communication times, even though
the former takes more iterations and more computing than the latter.

5. C O N C L U S I O N

Because of the good communication performance of the Cray T3D, the multigrid
algorithm is found quite competitive against the conjugate gradient algorithm, even
though the former has a communication overhead of over 30% on 256 processors. To
improve the communication time for the multigrid, it is necessary to reduce the startup
time of the communication (a main limiting factor for the global scalar summation) as
well as to improve the packing / unpacking speed (a limiting factor for the transfer of
halo data).

It is noted that to reduce the communication cost of the multigrid algorithm, it
may be useful to solve the coarse grid problem on only one processor and distributed the
result to the others (see, e.g., [5]). The preconditioning part of the conjugate gradient
algorithm can also be improved by employing an approach suggested by Eisenstat [6].

Incidentally, during our numerical tests it was interesting to found that although
multigrid was suggested to overcome the inability of the stationary type iterative algo-
rithms in reducing the low frequency errors, in practice, the combination of multigrid
with the preconditioned conjugate gradient algorithm on very large problems frequently
converges faster than the preconditioned conjugate gradient algorithm itself, or the com-
bination of the multigrid and a stationary iterative algorithm.

R E F E R E N C E S

1. D. R. Emerson and R. S. Cant, Direct simulation of turbulent combustion on
the Cray T3D - initial thoughts and impressions from an engineering perspective,
submitted to Parallel Computing.

2. J. Helin and R. Berrendorf, Analysing the performance of message passing
hypercubes: a study with the Intel iPSC/860, 1991 ACM International Conference
on Supercomputing, Cologne, Germany.

3. T. F. Chan and C.-C. J. Kuo, Parallel elliptic preconditioners: fourier analysis and
performance on the Connection Machine, Computer Physics Communications, 53
(1989) 237-252.

4. B. R. Hutchinson and G. D. Raithby, A multigrid method based on additive
correction strategy, Numerical Heat Transfer, 9 (1986) 511-537.

5. M. Alef, Concepts for efficient multigrid implementation on SUPRENUM-like
architectures, Parallel Computing, 17 (1991) 1-16.

6. S. C. Eisenstat, Efficient implementation of a class of preconditioned conjugate
gradient methods, SIAM Journal of Scientific and Statistical Computing, 2 (1981)
1-4.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

617

Domain Decomposition/Fictitious Domain Methods

with Nonmatching Grids

for the Navier-Stokes Equations

Parallel Implementation on a KSR1 Machine

Roland Glowinski ~'b, Tsorng-Whay Pan ~ and Jacques Periaux ~

~Department of Mathematics, University of Houston, Houston, Texas 77204 USA

bUniversit~ P. et M. Curie, Paris, France

~Dassault Aviation, 92214 Saint-Cloud, France

In this paper we simulate incompressible viscous flow modelled by Navier-Stokes
Equations on parallel MIMD machines with nonmatching grids. The method of choice
is the one shot method based on the combination of fictitious domain and domain
decomposition methods. A fine mesh is used in the neighborhood of the obstacle in
order to capture the small scale phenomena taking place there and sufficiently far from
the obstacle a coarse mesh can be used. However the interface compatibility conditions
for nonmatching meshes has been imposed by well chosen Lagrange multipliers via a
weak formulation. These methods have been applied to solve incompressible viscous
flow problems at moderate Reynolds numbers around a d i s k . Numerical results and
performances obtained on a KSR machine are presented.

1. I N T R O D U C T I O N

Fictitious domain methods for partial differential equations are showing interesting
possibilities for solving complicated problems motivated by applications from science
and engineering (see, for example, [1] and I2] for some impressive illustrations of the
above statement). The main reason for the popularity of fictitious domain methods
(sometimes called domain embedding methods; cf. [3]) is that they allow the use of
fairly structured meshes on a simple shape auxiliary domain containing the actual one,
therefore allowing the use of fast solvers.

In this article which follows I4-8], we consider the fictitious domain solution of the
Navier-Stokes equations modelling the unsteady incompressible Newtonian viscous flu-
ids on parallel MIMD machines with nonmatching grids. The method of choice is the
one shot method based on the combination of fictitious domain and domain decompo-
sition methods. A fine mesh is used in the neighborhood of the obstacle in order to
capture the small scale phenomena taking place there. Sufficiently far from the obsta-
cle a coarse mesh can be used and in order to avoid the use of a unique mesh with
rapidly varying step size we prefer to introduce different regular meshes nonmatching at
the interfaces. However the interface compatibility conditions can be imposed by well

618

chosen Lagrange multipliers via a weak formulation. The partit ion of domain and the
implementation of method with nonmatching grids are straightforward.

Another advantage here is the fact that incompressibility, matching at the interfaces
and boundary conditions are all t reated by Lagrange multipliers whose set can be t reated
as a unique one. This approach is a much better method for parallel implementation
than the nested iteration loop where the hierarchy is imposed to the multipliers as
described in [4]. It also relies on the splitting methods described in, e.g., [9-11]; with
these methods one can decouple the numerical t reatments of the incompressibility and
of the advection, and take advantage of this fact to use the embedding approach in the
(linear) incompressibility step only, the advection being treated in the larger domain
without concern -in some sense- for the actual boundary.

The content of this article is as follows: In Section 2 we consider fictitious domain
methods for incompressible Navier-Stokes equations; then in Section 3 we discuss the
iterative solution of the quasi-Stokes problems obtained by operator splitting methods.
In Section 4 the above method is applied to simulate external incompressible viscous flow
past a disc modelled by Navier-Stokes equations. Numerical results and performances
obtained on a KSR machine are presented.

2. F O R M U L A T I O N S

F0

F0

7

F0

F1

Figure 1.

Using the notation of Fig. 1, we consider the following problem

0u
O---t- - u A u + (u - V) u + Vp - f in ~ \ ~, (1)

V . u - 0 \ (2)

u(x, 0) - - u 0 (x) , x e ~ \ ~ , (w i t h V - u 0 - 0) , (3)

0u
u - g0(t) on Fo, u -- g2(t) on 7, u - ~ n n p - gl(t) on F1. (4)

In (1)-(4), f~ is bounded domains in]Rd(d >_ 2), w could be a moving rigid body in
lt~d(d _> 2) (see Fig. 1), F (resp., 7) is the boundary of Ft (resp., w) with F - F0 m F1,

-f U " ! ' i - d is F0 A r t - 0, and f r l dF > 0, n is the outer normal unit vector at F1, u - t ,J i=l
the flow velocity, p is the pressure, f is a density of external forces, u(> 0) is a viscosity

j = d O W l
parameter , and (v- V)w - {~-]~j=l vj ~ }~-d.

To obtain the equivalent fictitious domain formulation for the Navier-Stokes equations
(see, e.g., [4,5]), we embed ~ \ ~ in ~ and define Vg 0 - {vlv e (H1(~2)) d, v - go on F0},

619

V0 = {vlv E (H1(91)) d, v = 0 on Po}, and A = (L2(7)) d. We observe that if U0 is an
extension of u0 with V- U0 = 0 in 91, and if t" is an extension of f, we have equivalence
between (1)-(4) and the following problem:

For t > O, f i n d U(t) E Vg0, P(t) E L2(91),)~(t) E h such that

:o. :. /. :o �9 v d x + u V U - V v d x + (U . V) U - v d x - P V . v d x
at (5)

-f vdx+fl g~.vdr+f~.vdz, Vv e Vo, a.e.t>O,

V - V (t) = 0 in 91, C(x , 0) = C0(x), x E 91, (with V - U 0 = 0), (6)

U(t) = g2(t) on ~/, (7)

in the sense that UI~\~ - u, P[~\= - p. Above, we have used the notation r for

the function x --+ r t).
Concerning the multiplier)~, its interpretation is simple since it is equal to the jump

of u (0 U / 0 n) - n P at ~/. Closely related approaches are discussed in [12, 13]. We observe
that the effect of the actual geometry is concentrated on f~ A-v d'y in the right-hand-side

of (5), and on (7).
To solve (5)-(7), we shall consider a time discretization by an operator splitting

method, like the ones discussed in, e.g., [9-111 . With these methods we are able to
decouple the nonlinearity and the incompressibility in the Navier-Stokes/fictitious do-
main problems (5)-(7). Applying the O-scheme (cf. [11]) to (5)-(7), we obtain two quasi-
Stokes/ficti t ious domain subproblems and a nonlinear advection-diffusion subproblems
at each time step (e.g., see [4, 5]). In Section 3, an one shot method for the quasi-
Stokes/FD subproblems shall be discussed. Due to the fictitious domain method and the
operator splitting method, advection-diffusion subproblems may be solved in a least-
squares formulation by a conjugate gradient alogrithm [11] in a simple shape auxiliary
domain 91 without concern for the constraint u = g at 7- Thus, advection-diffusion
subproblems can be solved with domain decomposition methods.

3. Q U A S I - S T O K E S P R O B L E M A N D I T S I T E R A T I V E S O L U T I O N S

The quasi-Stokes/fictitious domain problem is the following

F i n d U E Vg o, P E L2(91), A E A such that

a/U.vdx+,fvU.Vvdx-s (S)

-ff.vdx+f .vd.y+f , gl -vdF , Vv E Vo,

V . U = 0 in 9t, U = g2 on 7, (9)

where, in (8), a (> 0) is the reciprocal of a partial t ime step. In (8)-(9), P (resp.,)~)
appears to be a Lagrange multiplier associated with V - U = 0 (resp., U = g2 on 7).

We can solve the above saddle-point system (8)-(9) by a conjugate gradient algorithm
called the one shot method (see, e.g., I5]) driven by the pressure P and the multiplier
)~, simultaneously.

620

3.1. Domain decomposit ion approach

F10

FlO

F2o

F3o

712

f22
723

f~3

F 10

r20

F3o

r3o

Figure 2.

To capture the small scale phenomena taking place in the neighborhood of the ob-
stacle and avoid the use of a unique mesh with rapidly varying step size, we prefer to
introduce different regular meshes through domain decomposition so that we can use fine
mesh near obstacle and a coarser mesh sufficiently far from the obstacle�9 The compati-
bility conditions for these nonmatching meshes at the interfaces can be imposed by well
chosen Lagrange multipliers via a weak formulation. For simplicity, let Ft = Ftl U f~2 U~3
and F0 - 0[2 (see Fig. 2) We define spaces K i - {vlv e (Hl(f~i)) d v - go on Fi0},

�9 g o '

V~ = {v[v C (Hl(Ft i))d,v = 0 on r/0}, for i =1, 2, 3; V = V~0 x Vg20 • Vg30,

- Vo 1 • Vo 2 • V 3, hp - {(P1,P2,P3)[Pi e L2(~ti), i - 1,2,3, E3=1/_ Pi dx - 0} and
t , i

V0
d.~t i

A~ = (L2(7))d• (L2(712))d x (L2(723)) d. Problem (8)-(9)is equivalent to the following
system:

Find (U1, U2, U3) C V, (/91, P2, P3) C hp, (Ab, A12, A23) C hA such that
3 3

E / n (o L U i . v i + v V U i . V v i - P , V . v i) d x - E / n f . v i d x (10)
i=1 i i=1 i

+ ~ ~ �9 v~ ~ + /~1~ �9 (v~ - v,) ~ ,~ + / ~ �9 (v~ - v~) ~ , . . , , ~ . ~ ~(Vl, v~, v~)~ Vo,

V . U i - O in f~i for i - 1 , 2 , 3 ,

~ ~b �9 (V2 - g 2) d 7 - 0 V#b e (L2(7)) d

~ #12" (V 2 - U1)d712 :-- 0 V#12 e (L2(712)) d
1 2

~ #23" (V3 - U2)d723 - 0 V,23 e (L2(723)) d
2 3

(11)

(12)

(13)

(14)

621

We have equivalence in the sense that if relations (10)-(14) hold then U~ - Ulna,
for i = 1, 2, 3, where U is solution of (8)-(9), and conversely. There are three Lagrange
multipliers in (10)-(14): (1) Ab is the one associated with the boundary condition V = go
on 7; (2) A12 (resp., 723) is the one associated with the interface boundary condition
U1 = U2 (resp., U2 = U3) on 712 (resp., 723); (3) pressure (P1, P2, P3) is the one
associated with (11).

We can also solve the above saddle-point system (10)-(14) by a conjugate gradient
algorithm driven by three Lagrange multipliers, pressure (P1, P2, P3), multipliers Ab and
(A12, A12), simultaneously as follows:

(po, Ao } _ {(po, po, po), (Ao, Ao2, A2o3) } C Ap • A~ given; (15)

solve the following elliptic problem:

F i n d U ~ (U ~ ~ ~ c V , such that
3 3 3

~/n.: i (c ~ U ~ 1 7 6 ~ f .vidx+~/n.: i P i V . v i d x (16)

+ ~ ~: v~ ~ + f~o~. (v~ _ v,).~,~ + f~o~ (v~ _ v~) ~ . ~ , ~ . ~. ~(Vl, v~, v~) ~ Vo,

set

r o _ (r o , o , r ~ ~ ~ ~ (17) P,1 Fp,2

g) _ (g ~ g~,~ o , , g~ ,~) - ((U ~ - g2)l~,, (U ~ - U~ (U ~ - U 2 ~ (18)

and define gO _ (gO, g~,) where gO _ (gO,,, gO,2, gO3) is as follows:

o _ ~r + ur o f o r / - 1 2, 3, (19)
g P, i P, i ,

with r for i - 1,2,3, the solution of

- A r 1 7 6 - r ~ i n ~ i P,i

0r (20)
On = 0 on Fio; r _ 0 on Fil,

where Fll = 712, F21 ---- 712 U 723 and F31 = 723- We take
, W 0 , W 0 0 w ~ (w ~ ~, ~ , ~) (w ~ w ~ w ~

- - 2, , ,)~,2, ,x23)} (21)
_ _ {(gO, l , gO 0
- - p,2, gp,3), (g~,b, g~,,2, g~23) }"

Then for n > O, assuming that P'~ A '~ U '~ r '~ w '~ gn are known, compute pn+l
An+l, U~+I, r~+l, w~+l, g~+l as follows:

solve the intermediate elliptic problem:

Find Un _ (lJ~, 13~, lJ~) C Vo, such that

~12" (v2 - vl)d712 + x23
12 23

(22)

622

- -- -- -- - - - v c ~ v . u ~) , set ~'~ (r . ,1 , r . ,~ , r~,3) (V . U1 , �9 ,

~] - (g~, g]~, g ~) - (C ~ l ~ , (c ~ - u ?) l ~ , (u~ - V ~) l ~) ,

and define ~n _ (~,~, g,~) where ~'~ - ({0~.1,0~,:, 0"p,3) is as follows:

_

0~,, - c~r + u ~ , , , for i - 1, 2, 3,

(23)

(24)

(25)

with r for i = 1,2,3, the solution of

- A r -- ~'~ in f~i, P,i

On = 0 on r io; r - 0 on r i l ,

where F l l - 712, F21 - 712 u 723 and F31 - 723. We compute then

(26)

3 3

i = 1 i "= i

and set n U n + l U,~ p ~ + l _ p ~ _ p,~w~,)~n+l = A,~ _ p,~w~, = - p,~I5 '~, (27)

r~+l _ r ~ _ p ,~n , g~+l _ g~ _ p~g~, g] + l _ g] _ p~g] . (28)

I f (E 3 = 1 / ~ - ~ + ~ + ~ d x + IIg$+~ll 2) / o o 2) , "p,~ yp,~ / (~ = 1 rp,~gp,~ dx + IIg~ II < e, take A=A =+~
i i

p _ p,~+l and U - U '~+1. I f not, compute

3 3

- - (E , t ~ l . L rn+lgn+l dx-~- I]g~Tlll2)/(E /~ r n gn d x + I I g ~ l l 2)
P , i P , i P , i P , i '

i--1 i i--1 i

w,~+l 1 (29) and set = g'~+ + 7 n w '~.

Do n - n + 1 and go back to (22).

In (15)-(29), < g~, w), > = f~/gab "wab d7 + f'n2 g)~12 "WA12 d7 -]- L23 gA23" w,k23 d7
and [Igal 2 - < g~, g~ > for g~, w~ E Aa. The elliptic problems (16), (20), (22) and (26)
in the one shot m e t h o d (15)-(29) can be solved s imul taneously on M I M D machines.

4. N u m e r i c a l e x p e r i m e n t s

In the test problem, Ft = (-0 .75 , 0.75) • (- 0 . 5 , 0.5) and w is a disk of radius 0.05
centered at the origin (see Fig. 3). The b o u n d a r y condi t ions in (4) are go = ((1 -
e-Ct), 0) on F0, g2 = 0 on 7 and g l = 0 on F1. Ft is divided into five subdomains ,
{~ 5 }i=1, (see Fig. 3) and 7ij denotes the interface be tween Fti and Ftj. For finite
d imens ional subspaces on Fti, we choose

VJ H i i i i i g0,h -- {Vh]Vh C gi,h • Hg],h }, V~, h -- {Vh]Vh C H6, h • H6,h) ,

H i. - - { r 1 7 6 r V T C T ~ , C h - - g J o o n Fi0}, g~,h ' '

gio,h -- {r C C ~ Chi t C P1, VT C Th ~, Ch -- 0 on r io},

623

where T~ is a triangulation of Ft~ (see, e.g, Figure 3), P1 being the space of the poly-
nomials in xl, x2 of degree < 1. Finite dimensional subspace for pressure is g~h =

{r e C~ ChIT �9 P1, VT �9 7"~h } where T2/h is a triangulation twice coarser than
7"t~. The finite dimensional subspace Ah of each multiplier space (L2(~/)) 2 (here "7 is
either Ow or interface 7ij) is

A h - {#hl#h C (L~(~/))2, #h is constant on the segment joining

2 consecutive mesh points on 7},

Figure 3. Mesh points marked by "." on 7 and the triangulation of Ft -
Ui 5-1Fti with meshsizes h - 1/20 and h - 1/40.

Figure 4. Example of mesh on interface between subdomains with nonmatch-
ing grids. Mesh points on interface are marked by "l"

In numerical simulation, the meshsize for velocity (resp., pressure) is hv = 1/100
(resp., hp = 1/50) for coarse grid in subdomains except the middle one. For fine grid in
the middle subdomain, the meshsize for velocity (resp., pressure) is hv = 1/200 (resp.,
hp = 1/100). Time step is At = 0.0015 and u = 0.001; thus Reynolds number is 100
(taking the diameter of disk as characteristic length). For the stopping criterion in
(18)-(29) e is 10 -12. As running in KSR1 with 3 processors, the speedup is 1.66. The
one shot method appears to be well suited to parallel computation. We would like now
to simulate incompressible viscous flow modelled by Navier-Stokes equations on other
parallel architectures and develop efficient preconditioners for it.

624

A C K N O W L E D G E M E N T

We would like to acknowledge the helpful comments and suggestions of E. J. Dean,
J.W. He, and J. Singer and the support of the following corporations and institu-
tions: AWARE, Dassault Aviation, TCAMC, University of Houston, Universit6 P. et M.
Curie. We also benefited from the support of DARPA (Contracts AFOSR F49620-89-
C-0125 and AFOSR-90-0334), DRET (GRANT 89424),NSF (GRANTS INT 8612680,
DMS 8822522 and DMS 9112847) and the Texas Board of Higher Education (Grant
003652156ARP and 003652146ATP).

R E F E R E N C E S

10.

11.

12.

13.

1. J. E. Bussoletti, F. T. Johnson, S. S. Samanth, D. P. Young, R. H. Burkhart,
EM-TRANAIR: Steps toward solution of general 3D Maxwell's equations, in Com-
puter Methods in Applied Sciences and Engineering, R. Glowinski, ed., Nova Sci-
ence, Commack, NY (1991) 49.

2. D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samanth, J. E.
Bussoletti, A locally refined finite rectangular grid finite element method. Applica-
tion to Computational Physics, J. Comp. Physics, 92 (1991) 1.

3. B. L. Buzbee, F. W. Dorr, J. A. George, G. H. Golub, The direct solution of the
discrete Poisson equation on irregular regions, SIAM J. Num. Anal., 8 (1971) 722.

4. R. Glowinski, T. W. Pan, J. Periaux, A fictitious domain method for external in-
compressible viscous flow modeled by Navier-Stokes equations, Comp. Meth. Appl.
Mech. Eng., 112 (1994) 133.

5. R. Glowinski, T. W. Pan, J. Periaux, A Lagrange multiplier/fictitious domain
method for the Dirichlet problem. Generalization to some flow problems, Japan
J. of Industrial and Applied Mathematics, 12 (1995) 87.

6. R. Glowinski, A. J. Kearsley, T. W. Pan, J. Periaux, Fictitious domain methods for
viscous flow simulation, CFD Review (1995) (to appear).

7. R. Glowinski, T. W. Pan, J. Periaux, A one shot domain decomposition/fictitious
domain method for the solution of elliptic equations, in Parallel C.F.D.: New Trends
and Advances, A. Ecer, J. Hauser, P. Leca and J. Periaux eds., North-Holland,
Amsterdam (1995) 317.

8. R. Glowinski, T. W. Pan, J. Periaux, One shot fictitious domain/domain decompo-
sition methods for three-dimensional elliptic problems. Parallel implementation on
a KSR1 machine, in the proceeding of Parallel CFD'94 (to appear).

9. R. Glowinski, Viscous flow simulation by finite element methods and related numer-
ical techniques, Progress and Supercomputing in Computational Fluid Dynamics,
E. M. Murman and S. S. Abarbanel eds., Birkhauser, Boston (1985) 173.
M.O. Bristeau, R. Glowinski and J. Periaux, Numerical methods for the Navier-
Stokes equations, Comp. Phys. Rep., 6 (1987) 73.
R. Glowinski, Finite element methods for the numerical simulation of incompressible
viscous flow. Introduction to the control of the Navier-Stokes equations, Lectures in
Applied Mathematics,, AMS, Providence, RI, 28 (1991) 219.
C. Borgers, Domain embedding methods for the Stokes equations, Num. Math., 57
(1990) 435.
F. Bertrand, P.A. Tanguy, F. Thibault, A three-dimensional fictitious domain method
for incompressible flow problems in enclosures containing moving parts (to appear).

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

625

A Parallel Implicit Time Accurate Navier-Stokes Solver

Carl B. Jenssen and Karstein Scrli ~

~SINTEF Industrial Mathematics, N-7034 Trondheim, Norway

An implicit multiblock method is used to obtain the solution of the time dependent
Navier-Stokes equations�9 Approximate Newton iterations are used at each time step to
invert the implicit operator�9 To ensure global coupling and fast converge in a multiblock
framework, a global coarse grid correction scheme is applied together with explicit block
interface conditions.

1. I N T R O D U C T I O N

Time accuracy complicates the use of an implicit scheme in a multiblock framework�9
Whereas only the accuracy of the converged solution is of interest for steady state cal-
culations, and violation of the block interface conditions can be permitted during the
transient phase, global accuracy must be ensured at each time step for time dependent
computations�9 In the same way as convergence to steady state might slow down as the
number of blocks is increased, the work needed per time step for a given level of accuracy
might increase for time dependent problems�9

In this paper we will investigate the use of a Coarse Grid Correction Scheme (CGCS)
for obtaining time accurate solutions to the Navier-Stokes equations�9 This method has
proven to be highly efficient for steady state computations [3], and is here extended to
time dependent problems on moving meshes�9

The flow solver is written for a general three-dimensional structured multiblock mesh,
allowing for both complex geometries and parallel computations [1,2]. The compress-
ible Navier-Stokes equations are solved using a second order Total Variation Diminishing
(TVD) scheme for the inviscid flux.

2. G O V E R N I N G E Q U A T I O N S

We consider a system of conservation laws written in integral form for a moving and
deforming control volume:

d d~ ioUdV -4- i.o (F- Ur-+) �9 ~ '. - 0 (1)

Here U is the conserved variable, F the flux vector and 77 the outwards pointing normal to
the surface cgfl enclosing an arbitrary volume fl, and ~+ the velocity of the point ~' on 0fl.
We assume that the flux vector can be split into one inviscid and one viscous part, where
the Jacobian of inviscid flux with respect to U has real eigenvalues and a complete set of
eigenvectors, and that the viscous flux depends linearly on VU as for a Newtonian fluid.

626

In addition we make the assumptions that the fluid is a perfect gas with 7 - 1.4, that
the viscosity is constant, that Stokes hypothesis is valid, and that thermal conductivity
is proportional to the viscosity.

3. S P A C E D I S C R E T I Z A T I O N

The convective part of fluxes are discretized with a TVD scheme based on Roe's scheme
with second order Monotone Upwind Schemes for Conservation Laws (MUSCL) extrap-
olation [4]. Considering a system of non-linear hyperbolic equations in one dimension,
this scheme is briefly reviewed here. The extension to two or three dimensions is straight
forward by applying the one-dimensional scheme independently in each coordinate direc-
tion.

For ease of notation we write F(U) - (F (U) - Ur-). ~ and let Fi+l/2 denote the flux
trough the surface Si+1/2. By Roe's scheme, the numerical flux is then given by

Fi + 1 (F(U/+I) -k- F(U/;�89 I (A;1 - Ai-+l)(U/;�89 -- U~; 1) (2)

Here g~q_l/2 and Ui++1/2 are extrapolated values of the conserved variable at the left and

:~ the velocity of the surface, and A • right side of the surface, ri+ �89 i+1/2 are given by

A~+�89 - Ri+�89189 �89 (3)

where Riq_l/2 is the right eigenvector matrix of Ai+1/2 which is the Jacobian of F(U) with
respect to U taken at Ui+l/2. The state Ui+l/2 is given by Roe's approximate Riemann +
solver. The diagonal matrices Ai+l/2 are the split eigenvalue matrices corresponding to
Ri+l/2. To avoid entropy violating solutions, the eigenvalues are split according to:

1 (A l 4- ~/A~ + e 2) (4)

where e is a small parameter.
The first order version of Roe's scheme is obtained by simply setting U~+I/2 - Ui and

+ Ui+l/2 - Ui+I. Schemes of higher order are obtained by defining U~+I/2 and + Ui+l/2 by
higher order extrapolation. The scheme used here is based on a second order "minmod"
limited extrapolation of the characteristic variables resulting in a scheme that is fully
upwind.

For the resulting time integration to be conservative for a moving mesh, we must have
conservation of volume [5]. Here, this is fulfilled by using the following expression for the 2,
mesh velocity ri+ �89 at the surface Si+ �89

. S +lAt - zxv ; (5)

where Si+l/2 is the surface vector and AV/+I is the volume of the hexahedron defined by

having the surface Si+ �89 at the two time levels n and n + 1 as opposite sides.
The viscous fluxes are calculated using central differencing.

627

4. T I M E I N T E G R A T I O N

Implicit and second order accurate time stepping is achieved by a three point A-stable
linear multistep method [6]"

3 g?_t_lyin+l At gnvi n 2 2-~'1 g?_l n-1 ~n+l Yin+l .qt_ V/ - (g? +1) (6)
2At

Here R (U~ +1 V/TM) is the sum of the flux contributions, Vi the volume of the grid cell i,
At the time step, and the superscript n refers to the time level.

Equation 6 is solved by an approximate Newton iteration. Using 1 as the iteration
index, it is customary to introduce a modified residual

/ i~* (U) - 3 g?+e 2 1 U?_I n-1 - ~ Yi n-t- x - //~ t un Yi n -~ - ~ Y i (7)

that is to be driven to zero at each time step by the iterative procedure:

(oR/ou + 2 v o+1) A v + R*(v - 0 (8)

updating at each iteration U t+l - U t + AU. The Newton procedure is approximate
because the the flux vectors are approximately linearized based on the first order version
of Roe's scheme.

The resulting linear system that has to be solved for each iteration of the Newton
procedure is septa-diagonal in each block. Ignoring the block interface conditions, this
system is solved concurrently in each block using a either a line Jacobi procedure [2] or
Lower Upper Symmetric Gauss-Seidel (LU-SGS). A coarse grid correction scheme [3] is
used to compensate for ignoring the block interface conditions by adding global influence
to the solution. The coarse mesh is obtained by dividing the fine mesh into a suitable
number of cells by removing grid lines. The size of the coarse grid system is chosen as
the maximum that can be solved efficiently with a parallel solver.

Using the subscript h to denote the fine mesh and H for the coarse mesh, the method
is described in the following. In matrix form, we can write the linear system of equations
that we wish to solve at each Newton iteration as

AhAUh = Rh (9)

However, by ignoring the coupling between blocks, we actually solve a different system
that we symbolically can write"

AhAUh - Rh (10)

Defining the error obtained by not solving the correct system as Ch - - A V h - mUh we
have

Aheh = R h - AhAUh (11)

In a classic multigrid fashion we now formulate a coarse grid representation of Equation 11
based on a restriction operator I H. Thus we define

A N - I~AhI~ (12)

RH - IY (R h - Ah'A'--Uh) (13)

628

and solve for the correction to AUh"

A H A U H - RH (14)

The solution to Equation 14 is transformed to the fine grid by means of the prolongation
operator I/~, and finally the fine grid solution is updated by:

A---Uh - AUh + I } A U . (15)

As restriction operator we use summation and as prolongation operator injection [7].
To solve the coarse grid system, any suitable parallel sparse matrix solver can be applied.

We have used a Jacobi type iterative solver that at each iteration inverts only the diagonal
coefficients in the coarse grid system.

5. V O R T E X S H E D D I N G F R O M A C I R C U L A R C Y L I N D E R

The first test case is the flow around a circular cylinder at vortex shedding from a
circular cylinder at Reynolds numbers from 100 to 200 for which the flow is unsteady,
laminar, and at least in the lower range of Reynolds numbers, truly two dimensional. The
Mach number in these calculations was set to 0.3 to simulate nearly incompressible flow.
A mesh consisting of 128 x 128 cells divided into 32 blocks was used. The reduced time
step was 0.1 which corresponds to a CFL number of about 3000 and about 50 time steps
per shedding cycle.

Figure 1. Calculated instantaneous entropy field behind a circular cylinder.

The results, in terms of the non-dimensionalized frequency, or Strouhal number, of the
lift is shown in Figure 2 and compared to experimental data [8] and calculations by other

629

authors [9]. A typical convergence history for the approximate Newton iterations using the
CGCS is shown in Figure 3 and compared to the convergence history using a block Jacobi
approach. The CPU time refers to 32 nodes on an Intel Paragon using LU-SGS to invert
the linear system of equations. We can clearly see the improvement obtained by using
CGCS, and the need for a globally coupled solution procedure. Especially after about a
two decades reduction of the residual the difference is noticeable, which is almost certainly
due to inferior damping of error modes with long wavelengths with the basic block Jacobi
procedure without the CGCS. Based on results from steady state computations, we expect
the difference between the two methods to be larger as the number of blocks is increased.

0.20

0.18

0.16

0.14

0.12
0.0

Strouhal number
Cylinder

i �9 w �9 i �9 | �9

/ V Belov, Martinelli, jameson
Williamson (experiments)

i i i , ,

50.0 100.0 150.0 200.0 250.0
Re

0.0

-1.0

-2.0

-3.0

-4.0
0.0 60.0

Convergence History
Cylinder Dt=0.1

�9 |

i

20.0 40.0

CPU Sec.

Figure 2. Calculated Strouhal number.
Figure 3. Typical convergence history for
the Newton iterations.

6. F L O W O V E R S U S P E N S I O N B R I D G E D E C K S

As an example of an industrial relevant test case, we have included some some simula-
tions of the flow over a suspension bridge deck. In a typical analysis of the aerodynamics
of a large span bridge, the first step is to calculate the lift, drag, and torque coefficients of a
cross section of the bridge span for wind at different angles of attack. In Figure 4 we show
the time average of the calculated the lift, drag, and torque coefficients for the cross sec-
tion of the AskOy suspension bridge. These calculations were based on the Navier-Stokes
equations without any form for turbulence modeling. In spite of this obvious deficiency,
the results agree reasonably well with experiments [10].

The results were obtained using a reduced time step of 0.02 based on the width of the
cross section and the free stream velocity. The calculations were carried out for a Mach
number of 0.3, resulting in a maximum CFL number of approximately 1000.

Of increased complexity is the calculation of the dynamic behavior of the bridge for a
given wind condition, requiring the CFD code to handle moving boundaries and thereby

630

Askoey bridge

I:P

O

C)

1.0
0.8
0.6
0.4
0.2
0.0

1.0

0.5

0.0

-0.5

-1.0

0.2

0.1

0.0

-0.1

-0.2
-10.0

O - - 0 Experiments
Navier-Stokes

i i i I i

i

-. Q - C~

�9 , , ,

l l l i

-5.0 0.0 5.0
Attack Angle (deg.)

" k J

10.0

Figure 4. Calculated forces on the cross section of the Askcy suspension bridge.

also a moving computational mesh. In addition, the CFD code must be coupled to a
Computational Structure Dynamics (CSD) code for predicting the dynamic response of
the structure. An example of such an aeroelastic calculation is shown in Figure 5, where
we have calculated the pivoting motion of a cross section suspended on an axis with a
given torsional elasticity. In this two-dimensional case, the CSD code was replaced by a
simple second order ordinary differential equation.

631

Figure 5. Velocity field around bridge cross section oscillating as a result of vortex shed

ding.

632

7. C O N C L U S I O N

We have seen that the Coarse Grid Correction scheme for implicit multiblock compu-
tations can be extended to time accurate Navier-Stokes calculations. Using 32 blocks,
the CPU time required for a given level of accuracy is reduced by at least a factor of
two compared to using explicit coupling between the blocks, emphasising the need for a
globally coupled solution procedure.

The use of an A-stable implicit method for time dependent computations allows the
time step to chosen according to the physics of the flow, instead of on the basis numerical
stability. Thus CFL numbers higher than 1000 have been used in this work.

As an example of realistic flow problem, we have calculated the fluid-structure-interaction
of a pitching cross-section of a suspension bridge.

Future work will include preconditioning to increase the efficiency for low Mach num-
bers, as well as Large Eddy Simulations to more accurately predict time dependent flows
of industrial relevance.

R E F E R E N C E S

1. C.B. Jenssen. A parallel block-Jacobi Euler and Navier-Stokes solver. In Parallel
Computational Fluid Dynamics: New Trends and Advances, Proceedings of the Paral-
lel CFD'93 Conference, pages 307-314. Elsevier, Amsterdam, The Netherlands, 1995.

2. C.B. Jenssen. Implicit multi block Euler and Navier-Stokes calculations. AIAA Jour-
nal, 32(9):1808-1814, 1994. First published as AIAA Paper 94-0521.

3. C.B. Jenssen and P.A. Weinerfelt. A coarse grid correction scheme for implicit multi
block Euler calculations. Presented as AIAA Paper 95-0225, Jan. 1995. Accepted for
publication in the AIAA Journal.

4. S.R. Chakravarthy. High resolution upwind formulations for the Navier-Stokes equa-
tions. In Proceedings from the VKI Lecture Series 1988-05. Von Karman Institute of
Fluid Dynamics, Brussels, Belgium, March 1989.

5. J. Batina. Unsteady Euler algorithm with unstructured dynamic mesh for complex-
aircraft aerodynamic analysis. AIAA Journal, 29(3):327-333, 1991.

6. J.D. Lambert. Computational Methods in Ordinary Differential Equations. John
Wiley and Sons, New York, 1973.

7. P. Wesseling. An Introduction to Multigrid Methods. John Wiley and Sons, New York,
New York, 1992.

8. C.H.K. Williamson. Defining a universal and continious Strouhal-Reynolds number
relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids,
31:2742-2744, 1988.

9. A. Belov, L. Martinelli, and A. Jameson. A new implicit algorithm with multigrid for
unsteady incompressible flow calculations. AIAA Paper 95-0049, Jan. 1995.

10. E. Hjort-Hansen. Askcy bridge wind tunnel tests of time-average wind loads for box-
girder bridge decks. Technical Report STF71 A87037, SINTEF, 7034 Trondheim,
Norway, 1987.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

633

Parallel implementa t ion of Newton ' s me thod for 3-D Navier -Stokes equat ions

X. Xu and B. E. Richards

Department of Aerospace Engineering, University of Glasgow, Glasgow G 12 8QQ, U.K.

Newton's method, an extreme candidate against the explicit method for solving discretized

NS equations, is investigated on parallel computing environments. For a 3-D flow field, with a

structured mesh, domain decomposition technique is used in two indices. Cell ordering is in the

global field, and a Jacobian, which has 25-point block diagonal stencil, from Newton's method

is also corresponding to the global field without any simplification. Generation of the

preconditioner is imposed on an approximated Jacobian, which increases the ability to

parallelise, and is based on the structure of the matrix. The technique that arranges the matrix

elements, which keeps the most important information, to the position near the diagonal of

Jacobian, is also used to enhance the efficiency of a block ILU preconditioner. Generation and

storage of non-zero elements of Jacobian are fully parallel implemented. Cell centred finite

volume method and Osher upwind scheme with third order MUSCL interpolation are used. The

test physical flow is a supersonic flow around Ogive cylinder with angles of attack.

1. INTRODUCTION

The existence of flow interaction phenomena in hypersonic viscous flows requires the use

of a high resolution scheme in the discretization of the Navier-Stokes (NS) equations for an

accurate numerical simulation. However, high resolution scheme usually involve more

complicated formulation and thus longer computation time per iteration as compared to the

simpler central differencing scheme. Therefore, an important issue is to develop a fast

convergent algorithm for the discretized NS equations.

For a steady state flow governed by locally conical NS (LCNS) or parabolized NS (PNS)

equations, Newton's method has been proved as a robust and fast algorithm in solving the non-

linear algebraic system from the discretized NS equations [1,2]. Parallel techniques were used

to both accelerate calculation and store the Jacobian matrix. The most important issue was the

development of a very efficient preconditioner, which made the algorithm not only simple for

implementation but also very robust and fast convergent.

634

This paper communicate development of the Newton's method to the 3-D flow case, with

the techniques developed for the LCNS and PNS solvers. The physical problem discussed is a

steady state hypersonic viscous flow around Ogive cylinder with angle of attack.

2 . D I S C R E T I Z A T I O N S

Using a numerical method to solve a system of differential equations often includes the

discretizations of the equations and the domain where the equations are defined.

2.1. Spatial discretization and domain decomposition

The flow field is discretized by a structured grid illustrated in figure 1. A domain

decomposition technique is used in two directions J and K, which are corresponding to

circumferential and axial directions of the cylinder respectively. The cell ordering is according

to (i,j,k), where i is the inner index and k is the outer index, in the global grid.

K

,.7

Fig. 1 3-D grid with domain decomposition

IN, JNTO, and KNTO are the all number of global grid points in i, j, and k directions

respectively. Therefore, the global cells in the above directions, in which the unknown are set,

are from 2 to IN, 2 to JNTO, and 2 to KNTO. In each subdomain, IN, JN, KN denote the

number of grid points in i, j, and k directions respectively, and the cells, in which the unknown

are set, are from 2 to IN, 2 to JN, and 2 to KN.

2.2. Discretized NS equations

The cell centred finite volume and finite difference formulation are used for the convective

and diffusive interface flux calculations respectively. The Osher flux difference splitting scheme

is used with MUSCL high order interpolation.

On a cell (i,j,k) the discretized equation is

635

Rcell(i,j,k) (V) = 0 (1)

where R is the residual and V is physical variables.

The extent of V in the calculation of R in cell (i,j,k) is illustrated in figure 2, which

includes 25 cells. The update of R in cell (i,j,k) can be called with local properties.

Fig. 2 Extent of variables V

Consolidating all the discretized NS equations in every cell we have a non-linear algebraic

equation as follows:

R (V) = 0 (2)

3 . N E W T O N ' S F O R M U L A T I O N

For Eq. 2, the general Newton's method is

(3R(V)/bV) k A k V = - R (V k)

V k+l = V k 4- A k V

(3)

For Eq. 1, we have the Newton's formulation in each cell (i,j,k) as follows:

(3Rcell(i,j,k)(V)/c)V) k A k v =_ acell(i,j,k)(V k) (4)

For any Vcell(1,m,n), ~acell(i,j,k)(V) \ ~Vcell(1,m,n) is a 5 x 5 submatrix, and will be zero for the

cell (1,m,n) out of the 25 cells in the Figure 2. Therefore the Jacobian of Eq. 2 is a 25-point

block diagonal matrix, and each block here is a 5 x 5 submatrix. A numerical Jacobian can be

generated by using a difference quotient instead of the above differential formulation.

The Jacobian elements can be further grouped and written as a 5 block diagonal matrix as

in figure 3. In the figure each element from left to right in a row corresponds to the residual

636

vector within constant k section and the variables vector has perturbations within constant k-2,

k-1, k, k+ 1, or k+2 section respectively.

pl A2 A 2 A~ 2

A~ 1 A3 A~ 1 A~ p2
4 '~ 4 " , 4 Ap' A p~

"..
m2 ml A~_2 AP2n_ 2 Akn_ 2 Akn_ 2 Akn-2

A~n2_l A~_nl_ 1 Akn-1 APkln_l AI~_I

pl A~2 4 '2 A~ l A3 A 3
4 '~ 4 " * 4 AP' ,,P:

"..

m2 ml pl p2
Akn_ 2 Akn_ 2 Akn-2 Akn_2 Akn_2

Am2 .ml kn_l ~kn_l Akn-1APln_I

A~ 2 A~n 1 Akn__

Fig. 3 Jacobian of the Newton's method

We denote the linear system in Eq. 5 by

A x = b (5)

4 . LINEAR SOLVERS

4.1. Linear system

For the equation 5, a preconditioning technique can be used. Let L-1 and U-1 be left and

right preconditioners, the equation will be as follows:

L -1 A U -1 y = L - l b

U-] x = y

(6)

Therefore the procedure for solving Eq. 5 is divided into three steps.

Step 1: Set new right hand side vector

B = k- lb

Step 2: Obtain y

Step 3: Obtain solution of Eq. 5 by

U x = y

637

Step 1 and 3 correspond to solving the lower and upper linear equations respectively. For

solving y in step 2 we use the GMRES linear solver in which the new matrix, (3 = [-z A U -1,

and vector manipulation can be implemented by (1) solving an upper linear equation, (2) matrix

vector manipulation and (3) solving a lower linear equation.

4.2. Preeondit ioner

The ILU factorization of the Jacobian is a usual and efficient method for generating the

preconditioner. However, some important things needing to be considered in the generation of

preconditioner are (1) keeping the most important information of the Jacobian in the lower and

upper matrics, (2) avoiding fill-in, to simplify the procedure and save storage, (3) making the

procedure of generating the preconditioner and solving the linear system, more parallelizable,

and (4) using a structure of the Jacobian to save computation time.

From the tests for LCNS and PNS equations, we know that these block elements of the

25-points block diagonal Jacobian, that correspond to the cells along the direction from solid

boundary to the far field (i.e. i direction in grid), involve the most important information of the

Jacobian. Therefore, we should arrange the i direction as the inner index in the Jacobian

elements ordering. In this case, these block elements are concentrated to positions near the

diagonal of the Jacobian, and ILU factorization can keep them better. By using this technique,

the preconditioner is robust even without any fill-in.

Since the Jacobian has a structure, block ILU is used according to this structure. The block

ILU can be generated from the Jacobian itself directly, but more sequential bottle-necks are

involved. One way to tackle this problem is that block ILU will be generated from an

approximated Jacobian as figure 4.

A2 A pl A~ 2

A q 11 A3 A~ pl A~ p2

p 1 AP2 A~ 2 A~ 1 A4 A 4
. .

m2 ml
Akn_ 2 Akn. 2 Akn-2 AI~_2 AP2n_2

A~n21A~m[1Akn- 1APln_ 1

A~.n 2 A~n 1 Akn

A2 A~ 1 A~ 2

A~ 11 A 3 A~ 1 A p2

p I AP2 A~ 2 A~ 1 A4 a 4
-..

A~n2 2"-" ml . .pl 02
Akn_ 2 Akn-2 Akn_2 Akn_2

m2 ml Akn- 1 Akn. 1Akn- 1 APln_ 1
m2 ml

Akn Akn Akn __

Fig. 4 Approximation of the Jacobian

638

Therefore, the lower and upper matrics will have the form as in figures 5 and 6. From the

numerical tests of this paper, we can see that the method has very good efficiency and ability of

parallelise. Another more parallelisable method is that the block ILU will be generated from an

approximated Jacobian just with the diagonal block in figure 3, however practical calculation

shows that it will lose efficiency.

The linear solver used is GMRES solver [3]. The CGS [4] solver has also been tested, but

no convergence result was obtained for this linear solver.

L2

L~n I L3

L~2 I-~ 1 L4
"..

I-1~22 l-~nl_2 Lkn-2

L~"d, G!I Lkn 1
I-~d I-~n I I-kn

L2

L~ 2 L~ il L4

L1~22 Ll%! 2 Lkn-2
L~n21 ml Lkn- I Lkn- 1

I~2 l-~n 1 I-kn__

Fig. 5 Lower factorization of the approximate Jacobian

~ ~1 u~2 ~
pl p2

U3 U 3 U 3
pl p2

U4 U4 U4
"..

Ukn-2 UPln_2UP2n_ 2

Ukn-lUPln_l
Ukn

pl uP2
U2 U 2

pl uP2
U3 U 3

p 1 uP2
U4 U 4

"..

U~n-,O~ln_,
Ukn

Fig. 6 Upper factorization of the approximate Jacobian

639

5 . N U M E R I C A L R E S U L T S

The foregoing numerical tests have been carried out to solve the 3-D NS equation for

compressible flow. The case is the flow around an Ogive cylinder at Mach 2.5 and an angle of

attack of 14 ~ The test case produces a flow which has a large separated flow region with an

embedded shock wave in the leeward side of the object and strong gradients in the thin

boundary layer on the windward side, more details of the physical phenomena involved in these

flows can be found in [5,6]. The parallel computer used is CRAY T-3D of the Edinburgh

Parallel Computing Centre.

Fig. 7 shows the convergence results for the global grid size 33x33x17, where IN,

JNTO, and KNTO are 33, 33, and 17. The grid in the j direction is decomposed into 8 parts,

and in the k direction are decomposed into 1, 2, or 4 parts respectively. Fig. 8 shows the

parallel efficiency achieved for the decompositions in the k direction.

0 -,~:, - Explicit method, 8x 1 nodes
\ \. - , ~- Newton's method, 8xl nodes

-2 \ '~ ~ Explicit method, 8x2 nodes
Newton's method, 8x2 nodes

~, -4 Explicit method, 8x4 nodes
Newton's method, 8x4 nodes

" ~ ' - 6

-8

- I0 . , . , . ,

0 1000 2000 3000

CPU (see) in each single node on Cray T3D

!

32

28

24

20

Fig. 7 Convergence histories for grid 33x33x17 case

8 12 16 20 24 28 32

Ideal result
Explicit method
Newton's method
Overall method

N u m b e r of nodes

Fig. 8 Parallel efficiency

640

Fig. 9 and 10 show the convergence results for 33x65x17 and 33x33x33 grid cases.

-2

-4

-6

-8

-10

Explicit method 0

~, Newton's method t

-2

~a -4

~ID -6

-8

. . . . 10

0 1000 2000 3000

CPU (see)

- , , Explicit method

, ~- Newton's method
k

' I ' I ' I '

1000 2000 3000

CPU (see)

Fig. 9 33x65x17 grid, 16x4 processors Fig. 10 33x33x33 grid, 8x4 processors

6 . C O N C L U S I O N

Newton's method is still robust for solving 3-D NS equations with the grid sizes used in

this paper, and high parallel efficiency has been achieved. The preconditioner used is robust,

inexpensive, and very parallelise well. However, it is difficult to solve the linear system when

the rank of the global Jacobian is increased. Quadratic convergence was not achieved by the

Newton's method since it is very expensive for the linear solver to converge sufficiently well.

R E F E R E N C E

1. X. Xu, N. Qin and B.E. Richards, Parallelising Explicit and Fully Implicit Navier-Stokes

Solutions for Compressible Flows, Parallel Computational Fluid Dynamics '92,

R.B. Pelz (ed.), Elsevier, (1993).

2. X. Xu and B.E. Richards, Numerical Advances in Newton Solvers for the Navier-Stokes

Equations, Computational Fluid Dynamics '94, S. Wagner, J. Periaux, and E.H. Hirschel

(eds.), Wiley, (1994).

3. Y. Saad and M.H. Schultz, SIAM J. Stat, Comp., Vol. 7, No. 3, 856, (1986).

4. P. Sonneweld, P. Wesseling, and P.M. de Zeeuw, Multigrid Methods for Integral and

Differential Equations, D.J. Paddon and M. Holstein (eds.), Claredon Press, 117, (1985).

5. N. Qin, X. Xu and B.E. Richards, SFDN-~-GMRES and SQN-o~-GMRES Methods for

Fast High Resolution NS Simulations, ICFD Conference on Numerical Methods for Fluid

Dynamics, K.W. Morton (ed.), Oxford University Press, (1992).

6. X.S. Jin, A Three Dimensional Parabolized Navier-Stokes Equations Solver with

Turbulence Modelling, Glasgow University Aero Report 9315, (1993).

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

641

Dynamic load balancing in a 2D parallel Delaunay mesh generator

N.A. Verhoeven*, N.P. Weatherill and K. Morgan

Department of Civil Engineering, University of Wales Swansea, Singleton Park, Swansea
SA2 8PP, UK.

The rise of multi-processor computers has brought about a need for flexible parallel
codes. A parallel mesh generator can make efficient use of such machines and deal with
large problems. The parallelisation of the input data while using the original sequential
mesh generator on different processors simultaneously is applied in a manager/worker
structure. Sending a single task to a workstation can result in an imbalance. Dynamic
load balancing is called upon to avoid this.

1. I N T R O D U C T I O N

Very fast mesh generators have always been at the heart of pre-processing for the finite
element method. For the current generation of super computers the mesh generator is
not considered a large consumer of processor time. There is however a need to solve
problems where mesh sizes are extremely large and have to be generated several times
over. Parallelisation can offer a solution for large grids.

A further incentive has been the arrival of low-cost parallel machines: parallel codes
make more efficient use of multi-processor architectures. Other advantages are the access
to large numbers of processors and large amounts of computer memory.

This paper presents an interim report on the parallelisation of a Delaunay-based mesh
generator of Weatherill [1]. The code used is that for two-dimensional meshes. The
parallelisation follows a manager/worker structure in which the workers execute the mesh
generator subroutines. The input data for the mesh generator are the boundary nodes of
the domain and their connectivity.

Hodgson et al. [2] use a coarsening of the boundary data to create an initial mesh.
Recursive spectral bisection with weighted correction provides different sub-domains for
parallel mesh generation. Topping et al. [3] apply a neural network and genetic algorithm.
Both methods show good load-balancing and require minimal communication; they can
be classified as graph-based.

The method presented in this paper is geometry-based: the geometrical data of the
boundary is used to create artificial inter-zonal boundaries. Poor load balance is a possible
disadvantage but can be corrected by a dynamic load-balancing scheme. Communication
overhead is not considered.

Only distributed computing is discussed, though genuine parallel computers can be
used as well.

* E-mail: N.Verhoeven@swansea.ac.uk EPSRC UK funded research

642

2. M A N A G E R / W O R K E R M O D E L

Figure 1 demonstrates the structure of the manager/worker model. The first block
represents the reading of the input data. The input is subsequently divided into different
workloads for the available workstations. Worker programs on the workstations do the
actual mesh generation. A workstation which runs both the manager and a single worker
code is referred to as the working manager. The results from the different workers are
combined to give a single mesh (option 1). This model has been implemented by Weath-
erill and Gaither [5]" The computer memory of the working manager limits the size of the
combined mesh.

worker

I receive data

I generate mesh 1

I send result mesh)
. to master j

r

', result mesh
'
I

ilparallel flow solver'~

manager

I input data 1

I wor oa
worker

~ - I sendaworldoad~ -(receive data
to a slave J------~

2 \

enerate mes 1

-(receive result)<)

I combine result I

send result mesh]
to master

load balancing , I resultmesh]

communication _Iparallel flow solver 1

option I

option 2

Figure 1. Structure of manager/worker code. Option 1: The sub-domain meshes are
combined to a single mesh. Option 2: After load balancing a parallel flow solver is
employed.

If the sub-domain meshes are processed separately the memory of the workstations can
be used to the full extent (option 2). Load-balancing and minimal communication require
a correction of the number of elements and the inter-zonal boundaries. This enables the
effective use of a parallel flow solver. An example of post-processing load-balancing will
be given in section 5.

3. D O M A I N B I S E C T I O N

To send data to a worker program the initial workload has to be divided. In the
geometrical approach, the initial workload is the boundary data (see figure 2). A De-
launay mesh (see figure 3) - connecting all the boundary nodes - is used for domain

643

bisectioning. A greedy-like algorithm [4] and area criterion gives a number of equally-
sized sub-domains. The boundaries of the sub-domains are the workloads for the worker
programs. These must have node distributions related to their end-points and surround-
ings, as demonstrated in figure 4. The enlargement shows the node distribution on the
inter-zonal boundaries. For the airfoil-to-airfoil boundary the surrounding has to be taken
into account.

Figure 2. Boundary data of an airfoil
Figure 3. Initial mesh connecting the
boundary nodes by using Delaunay

Figure 4. The introduction of artificial boundaries in domain bisectioning

4. D Y N A M I C LOAD B A L A N C I N G

So far, the manager/worker code divides the domain into a number equal to that of
the available processors. Figure 5 shows that sub-domains can have different workloads
of variable complexity. Executing this problem on a workstation cluster of N identical
machines means that the process is delayed by the workstation with the largest workload.
This is demonstrated in figure 6 for a two workstation/sub-domain example: the dark
bars represent active computing and the white the waiting time. Restructuring the code
to execute the workloads in sequence on the same workstation makes better use of the

644

hardware, as demonstrated in figure 7. This method of dynamic loading, is possible
because there is no communication between the worker programs, i.e. each sub-domain
is generated independently.

Figure 5. Two sub-domain mesh with a total of 13479 elements

Figure 6. Execution and waiting times of a working manager (alpha) and worker (beta)
workstation

Figure 7. Execution and waiting times of a working manager (alpha) and worker (beta)
workstation with dynamic loading of four sub-domains

The following listing, in pseudo-Fortran, shows how the manager code has to be struc-
tured to include dynamic loading.

program manager
initialisation(find number_of_processors)
split_input_in (number_of_workloads)
do k=l ,number_of_processors
send_ a_workload_to_ an_idle_processor

645

end do
do i=number_of_processors+l,number_of_workloads
receive_a_finished_result_from_a_processor
send_a_new_workload_to_this_processor

end do
do k=l,number_of_processors
receive_a_finished_result_from_a_processor
send_stop_signal_to_this_processor

end do
final_combination_of_result
end

The code first initiates a search for the number of workstations available and subse-
quently splits up the input data. Next, a do-loop sends the different workloads to the
worker programs. The final do-loop receives the data from the worker programs. Static
loading applies if 'number_of_processors' is 'number_of_workloads'. Dynamic loading takes
place when larger numbers of workloads are involved, in which case the second do-loop is
executed. Dynamic load-balancing comes into play if the sub-domain boundaries are sent
to the worker programs in descending order of their estimated workloads. The number of
boundary nodes provides a reasonable estimation. For a parallel virtual machine network
the individual speed of workstations should be taken into account.

5. P O S T P R O C E S S I N G

The sub-domain meshes are recombined to a single large mesh by the working manager,
though they can be left on the individual workstations if so required. The combination of
sub-domains on a single workstation is shown in figures 8 and 9. Dynamic load balancing
and mesh combination results in meshes with near equal element numbers on each work-
station. The 'old' inter-zonal boundaries in the 'new' sub-domains are smoothed with a
Gaussian correction scheme.

Figure S. Four sub-domain meshes (left) recombined to two meshes (right) of near-equal
element numbers (6312 and 6679)

646

" ic- - -~:" \ - :~ ' : ,"-~"~-~ .1 C" \ '~ "" -"
- ~ - : % - , ~ : , - . - -

.... ;- ~-~$<7:- , . ~ - ..~

�9 ~\)~'~ \
..I~., -~- .~,../,.., ~-~-~.,~., / ~-~= ,\ ,, ~ ~,- , ,.

--'g . / ~ ~ . : - -~ j (. . i ' - ~ , ~, "1 --" "" ~ i - ~ , / , ' . / -. ~ �9 ! -, , - . - , , �9 - x - . . ' ~ / ~ . . , ~ - ~ I \ ' - - -) ~ -
, " - - ~ < ~ , - ~ , - - < - . J ~ ~ " r - ~ ~ ' ~ ~-.. " ' :'q~ ~ D ~ (- D ~ ' ~ - ~ " ~, - " ' " " ~", -V,~ --"~'~-:~--A':- ,_,~-~.,.~,~.,, ,-.,,~_:~;~ ~~~+<~-.~_~__,=~, ..~-

' " , , t - ' ~. -., --~- ,;~ ~. ~ x < - ~ ~ . , ~ r ~_ .. ; ~ : . , . , . I ~< ~ ; . ~ , ~ , , ~ , , ~ ' ~ . ~ - ~ _ ~ ~ ~--~, ~ ~ . ,-~~, ~ . . - , ~.~..~ ~ . ~ . , =~ .~ ~ - ~.~ ..< ~ .~_~-~ . :~ . . ~ - ..~.., .~-~ ; ~ ~ ~-~...~,~-~.

Figure 9. Six sub-domain meshes (left) recombined to two meshes (right) of near-equal
element numbers (7287 and 7404)

6. M E S S A G E P A S S I N G

The message passing libraries used are PVM (Parallel Virtual Machine) [6] and MPI
(Message Passing Interface) [7]. The parallel mesh generator code is structured in terms
of a single program multiple data (SPMD). As a result, switching between PVM and MPI
is relatively straightforward [8]. The basic subroutines in table 1 are sufficient for the
parallel mesh generator code.

Table 1
message passing fortran subroutines

pvm3.3 mpichl.0
pvmfmytid MPI_Init
pvmfexit MPI__Finalize
pvmfspawn . . .
pvmfparent MPI_Comm_rank
pvmfpsend MPI_Send
pvmfprecv MPI_Recv

Start a message passing session
Stop the message passing session
Spawn child session
Determine the process identifier
Send a message
Receive a message

7. S P E E D U P A N D E F F I C I E N C Y

Speedup and efficiency measurements are carried out on a homogeneous network of up
to a maximum 5 workstations. In general, the speedup is defined as the ratio of the times
in which a sequential code and its parallel equivalent finish computing. Here, speedup is
defined as the time used by the parallel code to mesh an M sub-domain problem on a single
workstation, divided by the time required on N workstations. This definition takes into

647

account the different numbers of elements generated for domains with different sets of sub-
domains (see [9]). Figure 10 shows the speedup for different numbers of workstations. The
dotted lines represent the maximum achievable speedup if 30% of the code is sequential.

3.0 1.0 -
(3 0 ~ s e q u e n t i a l) - e l - 2 processors

- e - 3 processors
-A- - 4 processors
- 4 - - 5 processors

.._5 pr. r ea l ...
_ 4 pr. r ea l ... ~ _ _ _ -]

I I I I I I I

2 4 6 8 10 12 14 16

2 . 5 - -

23
"O
�9 2.0- a)
CL

1.5-

1.0

t a s k s

Figure 10. Speedup of a two, three, four
and five workstation parallel code with
30% sequential part

0.8-
> ,
0 c 0 . 6 -
G) =...
U

0 . 4 -
tl)

0 . 2 -

i i i ~ i v - - - - i . . / I V ~ . . . - . i v ' V] ii
/.~... �9 ,,, --, -t" ~

i _ _ _ _ _ _ i / " ' ,, .,,.,,,,l

-i

1 - - 2 processors
....... 5 processors
....... 4 processors
- + - 5 processors

0.0 - --7 l [[[T - - T - -
2 4 6 8 10 12 14 16

t a s k s

Figure 11. Efficiency of the parallel part
of the code a function of the number of
tasks

The main idea behind dynamic load balancing is to improve the use of the workstations.
Efficiency is therefore defined as the total time that N workstations are active in parallel,
divided by the product of N and the parallel time of the slowest workstation. Figure
11 shows the efficiency as a function of the number of tasks (i.e. sub-domains). The
Roman numerals at the measurement points represent the number of tasks executed on
the slowest workstation.

8. D I S C U S S I O N

Dynamic load balancing can improve the efficiency of workstation use. For an N work-
station configuration it is recommended to generate i times N tasks (i is an integer). This
avoids any imbalance due to tasks representing similar or near similar workloads. The
method also gives the opportunity to generate meshes larger than the size of computer
memory. The sequential part of the code is still considerable and further research is
recommended.

R E F E R E N C E S

1. N.P. Weatherill. A method for generating irregular computational grids in multiply
connected planar domains. International Journal for Numerical Methods in Fluids,
8:181-197, 1988.

2. D. Hodgson, P. Jimack, P. Selwood, and M. Berzins. Scalable Parallel Generation of
Partitioned, Unstructured Meshes In Parallel CFD'95 Conference Abstracts, Session
19-1, Caltech, Pasadena, USA.

648

3. B. H. V. Topping, A. I. Kahn and J. K Wilson Parallel Dynamic Relaxation and
Domain Decomposition. In Advances in Parallel and Vector Processing for Structural
Mechanics, 215-232, B. H. V. Topping, and M. Papadrakais (Editors), 1994

4. C. Farhat. A Simple and Efficient Automatic FEM Domain Decomposer. Computer
and Structures, Vol. 28, No. 2, 579-602, 1988.

5. N.P. Weatherill and A. J. Gaither. Paper presented at Super Computing '94.
6. A1 Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek and

Viady Sunderam. PVM3 User's Guide and Reference Manual. Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, May 1994.

7. William Gropp, Edwing Lusk and Anthony Skjellum. Using MPI: Portable Paral-
lel Programming with the Message Passing Interface. The MIT Press. Cambridge,
Massachusetts. London, England. 1994.

8. N.A. Verhoeven, J. Jones, N. P. Weatherill, and K. Morgan. PVM and MPI applied
to a master/slave parallel mesh generator. In PPECC Workshop '95 Distributed vs
Parallel?, 99-105 Editor: Brian Henderson. Parallel L: Distributed Systems Group,
DRAL, Chilton, UK. 1995

9. N.A. Verhoeven, N. P. Weatherill, and K. Morgan. Interim stage in the development
of a parallel mesh generator. In 3rd ACME Conference Computational Mechanics in
the UK, 51-54. UCINA, Oxford University Computing Laboratory, January 1995.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

649

Parallel Visualisation of Unstructured Grids

P. I. Crumpton a * and R. Haimes b

aOxford University Computing Laboratory, Wolfson Building, Oxford, OX1 3QD

b Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, Cambridge, MA 02139

This paper demonstrates the visualisation package pV3, which is a significant aide to
the development and debugging of parallel code. By using a straightforward FORTRAN
interface, a user can receive invaluable visual information concerning a calculation on an
unstructured 3D grid which is distributed over a number of processors.

To demonstrate this visualisation facility the OPlus library was used to parallelise some
complex algorithms which use unstructured grids, such as multigrid.

I N T R O D U C T I O N

Over the last decade much time and effort has been invested in parallelising state-of-
the-art CFD algorithms. These proceedings demonstrate the fruits of this effort which
include the successful parallel implementation of: 3D Euler and Navier-Stokes Multiblock
codes, 3D unstructured multigrid methods, adaptive grid methods with dynamic load
balancing and numerous other examples. Many of the underlying "parallel" ideas in
these codes are straightforward; splitting the grid into several parts, then distributing
the parts onto different processors. However, the implementation of these ideas is known
to be "difficult", especially when the CFD application programmer is coding with low
level message passing libraries such as MPI and PVM. If the application programmer
is responsible for the parallel visualisation, parallel algorithm implementation as well as
algorithm development, then these machines are not an attractive prospect.

One alternative is to develop a high level parallel language where the parallelism can be
easily extracted by an efficient compiler. This is a long term goal that has not yet been
realised. The approach taken here is to develop a library which enables certain tasks to
be performed with little parallel input from the user. That is pV3 [6] for visualisation
of data that is distributed across several processors, and OPlus [1] which enables the
straightforward parallelisation of a class of unstructured grid algorithms.

It is not intended that this paper be in any way a user guide for pV3 or OPlus, and
it is not possible to show how easy either are to use. Further details of OPlus and pV3
are available in these proceedings, [7] [4]. Here, a brief summary of the objectives and
capabilities are outlined, followed by a number of examples of where these tools where
used for debugging and production calculations.

*Supported by Rolls-Royce plc, DTI(uk)

650

distributed CFD computation

J I I 1

Clients

iso-surface
cutting plane

streamline

pV3

clients

f

J
J

pV3 server

J
J

J
J

Server

rotation
rendering

user input

Figure 1. The pV3 client-server model

1. T H E pV3 L I B R A R Y

Although it may appear clear that interactively visualising the computation, while it
is running on the MIMD machine is an attractive prospect, there is little evidence of
"realistic" problems being treated this way in the literature.

The pV3 software determines surface information from each process running on the
parallel machine, and communicates this to a graphics workstation which renders and
displays the image. The first important point is the graphics workstation does not need
to hold all the grid information, consequently the memory burden for visualisation is on
the distributed memory machine; which is easily met.

Another key feature is the ability to interrupt the parallel execution, visualise the
current flow data, then stop the visualisation, while the parallel execution continues.
Thus pV3 gives the use the ability to "see" any data any time within the execution of
the program.

1.1. D i s t r i b u t e d Visua l i sa t ion
The pV3 visualisation system uses a client/server model, see Fig. 1. The clients are

executing the application programmer's code on some parallel machine. The server is a
graphics workstation, where the rendered image will be displayed. The following simple
flow table outlines how the client and server interact.

1. The server takes interactive keyboard input describing the attributes of the surfaces
required by the user and sends requests to the clients.

2. Each client receives this and collects all the 2D surface information within the
current partition that is needed for the required display on the server, and then

651

sends it to the server. This may involve calculation of an iso-surface or cutting
plane within the client's partition.

3. The server receives all the surface information and assembles it on the screen.

4. goto 1

The key points to note are that only 2D information is communicated, thus the sever
need only store a collection of 2D messages and so will not have a high memory require-
ment, even though the distributed data set can be huge. In addition, the size of the
messages are kept to a minimum, so hopefully a communications bottleneck will not ex-
ist. It is worth noting that only server-client communication is required, not client-client.
All communication is done using PVM.

1.2. pV3 in te r face

"Read Data" 1

Application initt~isatton

[call pVinit(......)]

Figure 2. A typical flow diagram for a CFD code

Figure 2 is a schematic of the control flow of a "typical" CFD code, and is given by
way of example to show how pV3 could be used in this case. The box with read data is
in quotes since when the code is executing in parallel, this involves receiving the portion
of the grid the current processor has been assigned to work on; similarly for the write
data box. This will be discussed in more detail in the OPlus section. In this simple
example two pV3 calls are marked, pV_init (. . . .) which is called before any iterative
flow solver has begun, the arguments of this routine provide the pV3 library with the
following information:

�9 the cell types used (i.e. tetrahedra, hexahedra, prisms, pyramids or any mixture);

652

�9 the type of the grid movement; dynamic (e.g. an adaptive mesh or multigrid appli-
cation where the connectivity changes), or fixed throughout the calculation;

�9 the type of data to be viewed, dynamic (changing between each iteration) or fixed;

�9 the mesh co-ordinates type which also may be dynamic or fixed;

�9 the number boundary surfaces, e.g. (1) solid wall, (2) free-stream, (3) inlet, and etc.

This information will be known before the calculation proceeds, and in general does
not require anything additional to be introduced into the code. From the above list it is
also evident that a wide variety of grids (including multiblock, hybrid and adaptive) and
applications (including steady and unsteady) can be accommodated.

The second pV3 call in Figure 2 is to pV_update, which has one argument (the simu-
lation time for the current iteration), and is the entry point for the visualisation. Within
this library routine, a number of programmer supplied routines may be called, typical
pV3 call-backs are:

pVGrid returns the current grid co-ordinates;

pVCell returns the current cell connectivity;

pVSurface returns boundary surface connectivity;

pVScal returns scalar data associated with the grid co-ordinates.

Once the above routines have been written and calls to pV_init(. . . .) and pV_update
have been inserted into the application code, interactive visualisation of distributed data
is accomplished. Further work is required by the programmer to enable streamlines to
pass between partitions.

2. T H E O P l u s L I B R A R Y

All of the parallel solvers described in this paper use the OPlus library [2], (Oxford Par-
allel Library for Unstructured Solvers). This takes the majority of the parallelising burden
away from the application programmer. The key aspects of the library are summarised
below:

�9 The library enables the straightforward parallelisation of a general class of unstruc-
tured grid applications, this includes any grid type (tets, hexas, and etc.) and many
data structures (cell-based, edge-based, and face-based).

�9 The library enables an application programmer to develop and maintain parallel
code, this is a single-source FORTRAN code, even though the parallel execution
uses a master-slave arrangement [4].

�9 The resulting parallel code has no sends and receives, instead a high level loop
syntax is used, where the library performs all the message passing.

653

�9 The OPlus philosophy insists on consistent parallel-sequential execution, that is the
resulting output data from a parallel or sequential run will be identical to within
machine precision. The verification of this correct parallel execution by comparison
with sequential execution, is a straightforward and mechanical task.

�9 One item overlooked by many parallel strategies is input/output, here a consistent
parallel-sequential i/o in enforced, i.e., the input and output files from a parallel and
sequential execution are identical. Consequently it is trivial to change the number
of processors to be used.

�9 The library automatically partitions, performs local renumbering and schedules com-
munication, without any user interaction.

All the application programmer need do is adopt the OPlus loop syntax and channel the
i/o through specific subroutine calls. It is hoped that by using the OPlus system, the effort
required to parallelise an application should be similar to that required for vectorisation.
A consequence of this is the parallel machine is utilised at an early stage of the code
development. That is when the code uses Oplus' loop syntax and input/output structure,
it is parallelised. Thus the initial testing of the code on simple problems, which may be
very time consuming, can be executed on the parallel machine.

Interfacing pV3 with OPlus is a straightforward task, and once complete the pV3
software enables the interruption of any executing code, and the results to be displayed
as the computation proceeds. Since pV3 is interacting with the executing code, not just
conserved variables can be displayed, since many other useful quantities are available,
such are residuals, limiter values, and etc.

3. E X A M P L E S

When this paper was presented at the conference, a short movie was shown, this best
exemplified the output and power of pV3. In this paper a short summary of the three
examples shown in the movie is given.

3.1. D e b u g g i n g Aide
One example of the debugging uses of pV3 can be seen during some initial testing of

a flow solver on a 3D tetrahedral Ni bump grid, see Fig. 4. The Euler flow solver is an
edge based MUSCL scheme with a Roe-type Riemann solver, combined with Runge-Kutta
time stepping. The convergence history displayed the residuals decaying by two orders of
magnitude then levelling out. When the parallel execution of this was interrupted and in-
terrogated by the pV3 server, contours of residuals of density revealed disturbances being
advected from the leading and trailing edge of the bump, see Fig. 4. It was subsequently
easy to identify a limit cycle caused by the limiter used in the CFD code. This is just one
example of how parallel machines can be used in a development environment.

3.2. Multigrid
A multigrid algorithm is used to accelerate the convergence of a cell-based Lax-Wendroff

Euler flow solver [5], for an aircraft configuration, see Fig. 3. A sequence of non-nested
tetrahedral grids is used, the finest of which has 6.7 million tetrahedra, 1 million nodes. All

654

of the grids need to be partitioned consistently; geometric locality between grids is thought
to be an important performance consideration. Consequently the strategy adopted is for
the coarse grids to "inherit" the partition of the fine grid. The finest grid is partitioned
using inertial geometric bisection. All partitioning was performed automatically by the
OPlus library.

This calculation needed 1 Gbyte of storage which in this case was distributed over 8
(IBM) SP1 nodes. The visualisation was performed on an SGI INDIGO (R4400) work-
station. This application clearly demonstrates the power and flexibility of pV3.

An example of a fine mesh partition around the Nacelle/pylon/wing region, and the
subsequent inherited coarse partition can be seen in Fig. 3. It is clear to see how the data
is kept local between the grids.

3.3. Unsteady flow
The aforementioned multigrid strategy has been used as in implicit solver for some time

accurate calculations [3]. Here the aerodynamic response has been calculated from the
periodic pitching of an aircraft. This was modeled using moving meshes, which is an extra
degree of complexity which pV3 can accommodate.

4. C O N C L U S I O N S

Interactive visualisation of distributed data using pV3 is a powerful tool for the debug-
ging and development of parallel code, as well as an invaluable aide to the interrogation
of large 3D data sets. This can be achieved with minimal programming, using the pV3
library interface.

R E F E R E N C E S

1. D.A. Burgess, P. I. Crumpton, and M. B. Giles. A parallel framework for unstructured
mesh solvers, proceedings of ECCOMAS conference on CFD, 1994.

2. D.A. Burgess, P. I. Crumpton, and M. B. Giles. A parallel framework for unstructured
mesh solvers. IFIP WG10.3 Working Conference on Programming Environments for
Massively Parallel Disributed Systems, 1994.

3. P. I. Crumpton and M. B. Giles. Implicit time accurate solutionson unstructured
dynamic grids. AIAA Paper 95-1671, 1995.

4. P.I. Crumpton and M. B. Giles. Oplus: A parallel framework for unstructured solvers.
Parallel CFD 95, This procedings.

5. P.I. Crumpton and M.B. Giles. Aircraft computations using multigrid and an un-
structured parallel library. AIAA Paper 95-0210, 1995.

6. R. Haimes. pV3: A distributed system for large scale unsteady CFD visualisation.
AIAA Paper 9~-0321, 1994.

7. R. Haimes. Concurrent distributed visualization and solution steering. Parallel CFD
95, This procedings.

655

]<'igur(' 3.

656

]<'igur(' 3.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

657

A Dynamic Load Balancing Technique

for Solving Transonic and Supersonic Flows on Networked Worksta t ions

Nobuyuki Satofuka, Masanori Obata and Toshihiro Suzuki

Kyoto Institute of Technology,

Matsugasaki, Sakyo-ku, Kyoto 606, Japan

A Numerical method for solving the Euler equations based on the method of lines has

been implemented on networked engineering workstations and multi Transputer system using

domain decomposition approach. The message passing is handled by PVM (Parallel Virtual

Machine) software. For dynamic load balancing and reduction of computational work a strategy

of selective solutions of subdomains based on local residuals has been employed. For steady
supersonic and hypersonic flow problems, a reduction of 40--50% computational work and

20-30% of CPU time has been achieved.

1. INTRODUCTION

Today, the use of a network of workstations is considered as an interesting alternative to

dedicated parallel computers to enter the world of parallel computing. Since workstations are

available with the most modern generation of processor chips, memory is rather cheep and

therefore of reasonable size, The cost performance is usually better for workstations than for

special parallel computers. For workstations' networks, the speed and the bandwidth of

communication are usually significantly inferior to the corresponding value of parallel computers.

This implies that much more effort is needed in the construction of algorithms to reduce the

amount of communications as far as possible.

During the past years we have been developing a new explicit method for solving the

Euler and Navier-Stokes equations on vector computers[1-3]. The approach falls in the category

of the method of lines. The governing equations are spatially discretized by appropriate finite-

difference approximations. 7 he rational Runge-Kutta scheme[4] is used for the time stepping

scheme. The scheme is fully e~plicit as well as robust even for the stiff problems of high Reynolds

number flows. A remarkable Jmprovement of the efficiency is achieved by a combination of the

rational Runge-Kutta sche~ae with several convergence acceleration techniques[3]. The

convergence rate to a steady state solution obtained with the scheme may be competitive with

658

those of implicit approximate factorization schemes for inviscid and viscous flow equations.

In this paper we will present an implementation of our explicit method on networked

workstations via domain decomposition. For dynamic load balancing and reduction of

computational works, a strategy of selective solution of subdomains based on local residuals has

been employed. The performance of the present approach in solving the 2-D Euler equations for

supersonic and hypersonic test problems are investigated.

2. EULER EQUATIONS

The two-dimensional Euler equations subject to general coordinate transformation can be

written in dimensionless, conservation-law form as

3q+ + =0 (1)

where the conservation variables ~ and the flux vectors /~ and p are

Zl : jq , E:J(~xE+r F':J(rl , E+q,.F) (2)

and

I'] I,vl
P" : [P "2 + p l P"

- , E I p . v /' F-/pv2+P/ (3) qL J L(e + p)uJ L(e + p)vJ
Here p is the density, u and v are the Cartesian velocity components, p is the pressure, and e is

the total energy per unit volume which is defined for the perfect gas, by

e = p +-~p(u2+v 2) (4)
y-I

The geometrical factors (metrics) ~,., ~,. and so on, are obtained from the derivatives of the

Cartesian coordinates of the grid points as

~., = J-'Yo' ~y = - J - ' x , , rl.,. =-J- 'yr rl,, = j-lxr (5)

The transformation Jacobian J is defined by

J = xCy,7- xoy r (6)

Hereafter for simplicity, the symbol ^, which denotes the quantity subject to general coordinate

transformation, may be omitted without any confusion, unless the specific note is provided.

3. NUMERICAL PROCEDURE

In our method of lines approach[1-5], the spatial derivatives of the Euler equations (1) are

first discretized by the conventional central finite-difference approximation. Then the Navier-

Stokes equations become a system of ordinary differential equations"

d Ei+l.j- Ei_,.j Fi.j+,- Fi..i_,
d t q~'j = 2A~ - 2At/ ' (7)

659

where subscript i and j denote the grid indexes such as q i j - q(iA~, jar /). The central finite-

difference approximation may produce an oscillatory solution, when the resolution of a

computational grid is poor. In such a case, dissipative terms are added in the right hand side of

Eq.(7) to eliminate the spurious oscillation. Two types of dissipative models, the scalar dissipation

model[5] and the upwind TVD dissipation model[6] are used here.

The dissipative term for ~- direction can be written as

b~ - 4+,/~ j - 4 - , n j-

The dissipative flux of the scalar dissipation model is given by the following form,

Here A t is the forward difference operator and Ate is the critical time step which ensures the

prescribed local Courant number for C-direction. The precise definition of this time step will be

mentioned later. The coefficients e ~2~ and e ~4~ ,+,n.i ,+,hi are defined as

- _ _),
Oz'i + l/2. j

where cO 2~ and cO 4~ are adaptive coefficients and v,.j is obtained from the second difference of the

pressure as"

_ [t)i+,..J- 2P,,j + P,-1.Jl
Vi , j - -

Pi+l,j + 2 p i . j + Pi- l , j

The discretized Euler equations, Eq. (7), can be rewritten in vector form simply as'

J0 = 0(0). (8)
dt

For the integration of this system of ordinary differential equations, any one of conventional
time integration schemes can be used. In this paper, we adopt the 2-stage rational Runge-Kutta
(RRK) scheme introduced by Wambecq[4]. When applied to Eq. (8), the scheme may be written
in the following form.

; , , : A,0(r ~,~ - A,0(~" + c:,~,),. ~; : h,;,, + h 2 ~ ,

r : r + [2;,,(;,,,;,~)- ;,3(~,,,;,,)]/(;,,,~,),
where superscript n. denotes the index of time steps and (~,,~j) denotes the scalar product of two

vectors s and ~j. The coefficients b~, b:, and c: must satisfy the relations,

b, + b 2 = 1, b2c 2 < - 0 . 5

An efficient second order scheme is given by the coefficients

b 1 - 2 , b 2 - - 1, C 2 - - 0 . 5 .

The time step At is determined locally, so that the local Courant number becomes a constant for

each grid point. The critical time step for each coordinate direction is obtained in the one

dimensional manner as,

_ 1

660

4. PARALLELIZATION

4.1 Parallelization strategy

The numerical scheme described in the previous chapter is implemented and applied for

solving transonic and supersonic flows on networked engineering workstations of HP9000

model 720 and multi Transputer system. The message passing is handled by PVM (Parallel

Virtual Machine) software. As a parallelization strategy the domain decomposition approach is

used in which the whole physical domain is divided into a number of smaller subdomains called

blocks. Two lines of overlapping auxiliary grids surrounding a given block is used to make

available the information required in the determination of flow variables at the block boundary.

Basically each block is treated by a different processor.

4.2 Speedup on two parallel systems

A two-dimensional supersonic duct flow is solved to evaluate the performance of the

present approach and to measure the scalability of the parallel systems.

Figure 1 shows the computational domain and the flow conditions. The inlet Mach number is

2.0. The computations are carried out by using two ways of domain decomposition. One uses

the computational grid decomposed in ~-direction, as shown in Fig. 2 (a), and the other uses the

computational grid decomposed in 0-direction, as shown in Fig.2 (b). The number of grid points

is 121x41.

Figure l Geometry of two-dimensional duct flow

Figure 2 Computational grid for two-dimensional duct flow

661

Figure 3 (a) and (b) show the measured speedup on the network of four workstations and

the multi Transputer system with 16 PEs.

Because of high latency and slow communication speed in the networked workstations,

the speedup with 4 PEs obtained by using decomposition in ~-direction is 2.8, as shown in Fig.

3 (a). Since the amount of data to be transfelxed in r/-direction is lager than that for ~-direction,

the speedup for decomposition in r/-direction is 2.2. The speedup on the multi Transputer

system is almost linear owing to their fast independent serial links.

Figure 3 Measured speedup for two-dimensional duct flow

5. REDUCTION OF COMPUTATIONAL WORK BASED ON LOCAL RESIDUAL

5.1 Basic concept
In the present paper, we propose a strategy to reduce the computational work by selective

solutions of subdomains based on local residuals. During the numerical integration of the Euler

equations the residuals of each subdomain are periodically checked. When residuals of a certain

subdomain drop below a prescribed limit, computation of the subdomain is stopped. When a

large number of subdomains become inactive, the loads are redistributed among the available
processors.

5.2 Application to two-dimensional supersonic duct flow

As a first test case for evaluating the present approach, computation is carried out for two-

dimensional supersonic duct flow mentioned in the previous section. The computational grid is

divided into lxl, 8x2 and 12x4 subdomains for ~- and r/-direction, shown in Fig. 4 (a) and (b).

As a measure to check the efficacy of the present approach for the reduction of computational

work, the work unit is defined as,

[Work unit] = ~ [No. of Grid Points Computed]
[Toal No. of Grid Points]

Figure 5 (a) and (b) shows the measured number of work units and CPU time to convergence,

662

respectively. It is observed that the larger number of subdomains, the less the total amount of

work units to convergence. The CPU time for 12x4 subdomains is increased, in comparison

with that of 8x2 subdomains, due to the computational overhead of the present approach.

Figure 4. Computational domain divided in ~- and r/-direction

1500- m

1466

I" 1000

O

500-
Z

0

817 760

6000-

4000-
~

~ 2000-
r,,)

_

I

5981

I

3982

l x l 8x2 12x4 lx l 8x2
No. of Subdomains No. of Subdomains

(a) Work units (a) CPU time (s)

4225

12x4

Figure 5. Reduction of work units and CPU time by present method

5.3 Application to Hypersonic flow past double

ellipse

As the next example, we apply the present method

to a hypersonic flow past a double ellipse at the Mach

number M=8.15 and the angle of attack a=30 ~ Figure 6

shows the computational grid divided into 8x3

subdomains with 257x97 grid points. Table 1 shows the

comparison of the work units and CPU time between

l xl and 8x3 subdomains. In the present approach, it is

observed that the total work units for 8x3 subdomains is

reduced to 54% of that of lx l and the CPU time is

reduced to 81%.
Figure 6 Computational Grid

divided into 8x3 subdomains

663

Table 1. Comparison of work units and CPU time

Domain Work CPU Time (s)

lxl 4018 16915

8x3 2156 13705

6. DYNAMIC LOAD BALANCING

Finally, we will apply the same technique mentioned in the previous chapter to dynamic

load balancing for networked workstations. For simplicity, we will explain the technique for re-

partitioning of the subdomains based on local residuals in the case of two processing elements.

Figure 7 shows the procedure. Firstly, the entire computational domain is divided into a larger

number of subdomains than the number of PEs. The subdomains are distributed equally to PEs,

and each PE begins the flow computation for a steady flow problem. When the temporary

convergence criterion is satisfied on a certain number of subdomains, the remaining

subdomains are re-partitioned equally to PEs. After the temporary convergence criterion is

satisfied on every subdomain, the next temporary convergence criterion is set, and this is

repeated until steady state.

Table 2 shows the comparison of CPU time and speedup between the present dynamic

load balancing technique and the static load balancing technique in which equal number of grid

points is partitioned to each processor at all time. The CPU time of the present approach is less

than that of static load balancing, but speedup is 2.54 due to the overhead in the present dynamic

load balancing technique.

Figure 7. Re-distributed subdomains

664

Table 2. Comparison of CPU time and speedup

No. of Dynamic Load Balancing Static Load Balancing

PEs CPU Time(s) Speedup CPU Time(s) Speedup

1 4225 1.00 5043 1.00

2 2412 1.75 2725 1.85

4 1663 2.54 1681 3.00

7. CONCLUSIONS

A Numerical method based on the method of lines has been implemented on workstation

network and multi Transputer system using domain decomposition approach. For dynamic local

balancing and reduction of computational work a strategy of selective solutions of subdomains
based on local residuals has been employed. For steady supersonic and hypersonic flow prob-

lems, a reduction of 40%-50% computational work and 20%-30% CPU time has been achieved.

For transonic case, virtually no reduction is observed by the present approach.

REFERENCES

1. N. Satofuka, K. Morinishi and Y. Nishida, "Numerical Solution of Two-Dimensional

Compressible Navier-Stokes Equations Using Rational Runge-Kutta Method.", Numerical Fluid

Mechanics 18, pp. 200-218 (1987)
2. N. Satofuka and K. Morinishi, "Solution of Compressible Euler Flows Using Rational Runge-
Kutta Time Stepping Scheme", Numerical Fluid Mechanics 26, pp. 309-330 (1989)

3. K. Morinishi and N. Satofuka, "Convergence Acceleration of the Rational Runge-Kutta Scheme
for the Euler and Navier-Stokes Equations", Computers and Fluids Vol. 19 No.3/4, pp.305-313

(1991), Technical Papers ISCFD Nagoya, pp. 131-136 (1989)

4. A. Wambecq, "Rational Runge-Kutta Methods for Solving System of Ordinary Differential
Equations", Computing 20, pp. 333-342 (1978)

5. A. Jameson and T.J. Baker, "Solutions of the Euler Equations for Complex Configurations",

AIAA Paper 83-1929 (1983)

6. H.C. Yee, "Upwind and Symmetric Shock-Capturing Schemes", NASA TM89464 (1987)

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

665

Scalable Parallel Generation of Partitioned, Unstructured Meshes

D.C. Hodgson, P.K. Jimack, P. Selwood and M. Berzins

School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK

In this paper we are concerned with the parallel generation of unstructured meshes for
use in the finite element solution of computational fluid dynamics problems on parallel dis-
tributed memory computers. The use of unstructured meshes allows the straightforward
representation of geometrically complicated domains and is ideally suited for adaptive
solution techniques provided the meshes are sensibly distributed across the processors.
We describe an algorithm which generates well-partitioned unstructured grids in parallel
and then discuss the quality of this mesh and its partition, and how this quality can be
maintained as the mesh is modified adaptively.

1. I N T R O D U C T I O N

The usual approach to solving finite element (or finite volume) problems in parallel on a
distributed memory machine is to decompose the mesh into a number of subdomains and
to allocate each of these subdomains to a processor. This decomposition of the elements of
the mesh should have two main features. Each subdomain should contain approximately
the same number of node points (or elements for cell-centered finite volumes), so as to
achieve "load-balancing". Also, the number of node points (or edges for cell centered
finite volumes) which lie on the boundary between different subdomains (we will refer to
such points as "interpartition boundary vertices/edges") should be kept to a minimum
since the amount of interprocessor communication will depend upon this number.

There has been a considerable amount of research into the problem of partitioning an
existing mesh across distributed memory in a manner compatible with the above (see for
example {4,9] and references therein). However these methods assume that the mesh is
not held in a distributed manner across a multi-processor machine but is stored in one
place. This is clearly prohibitive since the size of the mesh is constrained by the memory
available on the single processor on which it is stored. In addition, if we wish to solve very
large problems in parallel we do not want the mesh generation and partitioning to be a
serial bottleneck. For these reasons the main contribution of this paper is to illustrate a
technique for generating an automatically partitioned mesh in parallel. This technique is
outlined in the next section and its performance is analyzed and discussed in section 3.

In section 4, a number of extensions of the work are considered, including its ap-
plication to time-dependent problems using adaptivity through local h-refinement and
derefinement. Here being able to generate a well-partitioned initial mesh in parallel is not
sufficient since the refinement process will destroy the load-balance as time progresses.
The issue of dynamically modifying the existing partition is therefore addressed.

666

2. THE PARALLEL MESH G E N E R A T O R

In order to create a mesh in parallel, the domain must be split up into subregions
which can then be meshed simultaneously and independently. Our method does this by
producing in serial an initial coarse, or background, triangulation (tetrahedralization in
3-d) of the domain, using a Delaunay algorithm as described in [14], and then distributing
this background grid across the processors in an intelligent manner before meshing begins.

This distribution of the background grid is performed so as to ensure that each processor
will generate a mesh of about the same size and the number of interpartition boundary
vertices will be very low. In order to achieve this, a weighted dual graph of the background
grid is first produced, as shown in figure 1. Here, the weight of each graph vertex is equal to
the number of nodes that it is estimated will be generated within the background element
to which that vertex corresponds (Wv(e) say), and the weight of each graph edge is equal
to the number of nodes that it is estimated will be generated along each background
edge (face in 3-d) to which that graph edge corresponds (W~(n,m) say). This weighted
dual graph is then partitioned using a recursive spectral bisection algorithm, such as
described in ([3,9]). Spectral algorithms seek to partition the graph so that the number of
boundary vertices is minimized subject to the constraint of maintaining load-balance. This
means that, provided our estimates, Wv(0 and W~(n,m), are reliable, the partition of the
background grid should be very well-suited for the parallel generation of our unstructured
mesh.

G

dk "1~]

)dj

Figure 1. An example of a coarse background grid in 2-d along with its weighted dual
graph (with vertex weights Wv(.) and edge weights W~(.,.)). Also shown are some typical
point distribution values (di, dj and dk).

The mesh generation itself also uses the same Delaunay algorithm [14], this time in
parallel on each processor. Two options are available: either each processor can Delaunay
mesh the union of those background elements which it has been allocated, or it can mesh

667

each of its background elements separatelyl In either case, the density of the generated
mesh is governed locally through the use of point distribution values at each coarse grid
vertex. These allow different target mesh spacings to be specified throughout the domain,
as described in [14]. An additional, and equally important, use for these point distribu-
tion values is to allow the estimates Wv(e) and We(n,m) to be formed very cheaply using
straightforward geometric formulae. For example, in two dimensions, the simple estimate

Area of Element g
Wv(e) =

3

proves to be surprisingly reliable, where the point distribution values, di, dj and dk, are
shown in figure 1 (see [5] for further details).

This mesh generation procedure appears to be both well load-balanced and highly
scalable. The load balance comes from the fact that each processor is generating a mesh
contribution of about the same size, even on a highly irregular mesh, whilst the scalability
comes from the fact that the only sequential steps are applied to the coarse background
grid rather than the final mesh itself. Moreover, once the background grid has been
pa,rtitioned there is no need for any inter-processor communication to take place (providing
consistent algorithms are used to mesh subdomain boundaries so as to ensure that they
match-up on neighbouring processors). In contrast with this, the methods described in
[1] and [6] both farm out subregions to processors for meshing, without distributing them
in a considered manner. This means that the generated mesh may not be very well
balanced across the processors and that there is no guarantee that subregions sharing a
processor will be connected. It is therefore always necessary to repartition these meshes
once they have been generated in parallel. On the other hand, the parallel generator
suggested in [7] is designed to produced meshes that are already well partitioned, using a
"wavefront" approach to split up a background grid. However, no attention is explicitly
paid to keeping the number of interpartition boundary vertices low, so the quality of the
partitions produced is likely to be affected by this.

3. P E R F O R M A N C E

The algorithm described in the previous section has been implemented using MPI ([8])
so as to ensure portability. It has been run successfully on a variety of platforms, including
a distributed memory computer (a 64 node Intel hypercube), a shared memory computer
(an 8 processor SGI Power Challenge) and also on a cluster of 16 SGI Indy workstations.

The outcomes of some typical computations are shown in Figure 2 and Table 1. Here,
an unstructured mesh has been generated around a NACA0012 aerofoil using a point
distribution function which is suitable for a supersonic flow (free stream Mach number =
2.0) with a moderate Reynolds number (R e = 500). The coarse background grid contains
1239 elements and the mesh that is generated contains almost half a million elements.
The generation times for this mesh were 62.2 seconds on the Intel i860 (using 8 processors)
and 40.2 seconds on a cluster of 8 Indy workstations. As can be seen, the mesh density
varies enormously throughout the domain, yet each partition is of a very similar size.
Demonstrating that the number of interpartition boundary vertices is also low is quite
hard to do quantitatively for an example of this size, however one can see from the shaded
coarse mesh in Figure 2 that the subdomains are all connected and have compact shapes.

668

Figure 2. The coarse background mesh (with shading to illustrate how it has been parti
tioned into 8 subregions) and the final mesh generated around a NACA0012 aerofoil.

669

Table 1
Details of the parallel generation of a 447 403 element unstructured mesh around a
NACA0012 aerofoil.

Subdomain Vts. %age diff. i860 Indys
1 28639 +0.6 62.2 40.2
2 28061 -1.4 51.1 31.3
3 28928 +1.6 62.1 35.2
4 27925 -1.9 51.7 29.1
5 28552 +0.3 47.2 21.4
6 28215 -0.9 52.8 27.7
7 28763 +1.1 50.6 25.3
8 28613 +0.5 50.2 22.1

Experiments with larger meshes have shown that as the number of processors and the
mesh size increase the generator can be shown to scale reasonably well. For example,
using 16 nodes on the Intel i860 to generate a mesh in excess of a million elements takes
little over 100 seconds. Also, the maximum difference in the size of each subregion always
appears to be between -5% and +5% of the average size.

The generation of separate Delaunay meshes within each element of the background
grid means that the final mesh is only locally Delaunay. This does not appear to affect
the quality of this mesh adversely however since the number of coarse elements is always
far smaller than the number of elements actually generated.

It is important to stress that, even though the number of vertices generated by each
processor is about the same, the time taken by each processor varies more greatly. This is
entirely due to the fact that the mesh being generated is of such a variable density, which
causes some processors to be allocated many fewer background elements than others. It
is these processors which are the last to finish since the sequential generation algorithm
used, [14], is slower at generating a few large meshes than a large number of moderate
meshes. Ideally therefore, the density of the coarse mesh should be made to reflect the
required final mesh density everywhere. When this is done, the variation in meshing times
between processors falls of drastically (thus leading to greater efficiency).

Another improvement that can be made to the algorithm as it is described above, is to
at tempt to reduce further the small (5%) variations in the mesh sizes on each processor.
Such variations can still lead to a noticeable drop in the efficiency of a parallel solver, and
so a small amount of post-processing of the partition may be worthwhile. One solution is
to move a background element (and its sub-mesh) from one processor to another which
contains fewer nodes, while keeping the total number of interpartion boundary vertices
as low as possible.

4. E X T E N S I O N TO A D A P T I V E S O L U T I O N M E T H O D S

Generation of the initial fine mesh is only one part of the solution process. The use of
adaptive methods means that the initial mesh will have to be both refined and coarsened

670

~ ' " - ~ v - - - - - - - ' - - - ~ - ~ I - -_._

\ V ~ . \ ' . \ \ \

- % . \ \

\ ~ , - . . ' q ~ a ' 5 " , ' < , . . _ , ~ \ ' - ~ xx \ \ \ \ \ \ - ' 7

1-- ~ = ~ ~ <_ _ _ _ l - ~ . , j ~ - . ~ - ~ -..
�9 - - ' - ' - , - - " - - -N~ ' - ~ - " ' ~ - - " - ' " - - I ~ _ _ - - - . - - - ~ \ . - . - - . - - - - - \ X . _ - - - " ~ - " - ~ i - " - , .

i....~______---~ 7___~====~,..___~~ ~ ,--_r---,~_,___----, ~ ~ __------1- "N, _ . / I - - " " N _----"---'-

Figure 3. An unstructured 3-d mesh which accurately represents a steep front which is
about to be advected from left to right.

in different areas on the basis of computed error estimates. This problem of dynamic load
balancing during the adaptive solution of time-dependent problems has been considered
by a number of authors, such as [2,11,12]. This problem is essentially the same as that
already described above: where an existing partition has a low number of interpartition
boundary vertices but a less than perfect load balance.

The problem is illustrated by Figure 3 which shows a three dimensional tetrahedral
mesh, generated using the code of [10], that is used to represent a simple function with a
shock. This is used as initial data for the linear advection equation, with the shock be-
ing advected to the right. In [10] an unstructured mesh adaption algorithm is described
which is suitable for just this class of problem. As the front advects, the mesh is refined
immediately ahead of it and coarsened immediately behind it. A key issue for any parallel
solver is therefore to ensure that as the mesh changes, each processor maintains a roughly
equal share of the elements and unknowns. One way to achieve this would be to generate
an entirely new mesh every few time-steps, using the technique of Section 2. Alterna-
tively, one could use conventional hierarchical refinement and derefinement but form a
new partition of the mesh whenever adaptivity has occurred. Both of these approaches
seem inefficient however, as they fail to make the best use of the existing partition.

The approach here is to make use of hierarchical refinement and derefinement of a
coarse background grid, and to only consider altering the partition of this background
grid after each adaptive step has occurred. As with the original mesh generation, this has
the advantage that the partitioning problems considered are always much smaller than
if one were to attempt to directly partition the mesh at its finest level. Moreover, it is
possible to use repartioning techniques such as those provided by the software package
JOSTLE ([13]), to ensure that the partition before refinement is used as the basis for the

671

Total number of % Imbalance
Adaptivity cycles Timesteps Before Repartitioning After Repartitioning

0 0 - 2.22
5 15 25.67 2.9
10 30 10.97 0.84
15 45 19.56 2.69
20 60 15.98 1.46

Table 2
Partition imbalance for a mesh adapting to follow a shock

partition after refinement whenever possible. This has the further advantage that most
of the background elements (and therefore the data for the sub-meshes within them) will
remain on the same processor as they were before the adaptive step.

As an example of this, the mesh shown in Figure 3, which contains two levels of re-
finement beneath the background grid, is partitioned equally across 4 processors. As the
solution evolves, the load balance of the initial partition is lost, as some of the coarse
elements (to the right) refine further, whilst others derefine. Table 2 shows how the im-
balance in the partitioning occurs as the solution evolves. Note that by using JOSTLE
to repartition the weighted dual graph of the background grid, we can regain the bal-
ance, and hence the efficiency, of the partition. Moreover, the vast majority of the coarse
elements (and their sub-mesh data) remain in the same memory locations as before the
repartitioning.

This simple three-dimensional example again demonstrates that the approach of work-
ing mainly with the weighted dual graph of a background grid appears to have significant
potential. There are still a number of issues associated with this which should be ad-
dressed, but the underlying approach seems to be both efficient and effective.

There are two main difficulties which are currently being investigated further. Firstly,
after a very large number of adaptive steps it may be necessary to discard the present
partition altogether and repartition the problem from scratch. This is most likely to
occur if the background grid is excessively coarse or if extremely high levels of refinement
are being used in small, localized regions. The other issue is that of whether the local
repartitioning of the coarse background mesh can itself be efficiently implemented in
parallel which is desirable from a scalability point of view.

A C K N O W L E D G E M E N T S

We would like to thank Philip Capon, Peter Dew, Bill Speares, Nasir Touheed and
Chris Walshaw whose contributions and suggestions have all been most valuable. We are
also grateful to Shell Research for funding and supporting the development of the a-d
adaptive code. The work of the first and third authors is funded by the EPSRC (under
a postgraduate studentship and grant GR/J84919 respectively), and those calculations
performed on the Intel i860 made use of the machine and support provided by Daresbury

672

Laboratory, UK (under EPSRC grant GR/J27066).

R E F E R E N C E S

1. T. Arthur, M.J. Bockelie. A Comparison of Using APPL and P VM for a Parallel
Implementation of an Unstructured Grid Generation Program. Tech. Report 191425,
NASA Computer Sciences Corporation, Hampton, Virginia, 1993.

2. P. Diniz, S. Plimpton, B. Hendrickson, R. Leland Parallel Algorithms for Dynamically
Partitioning Unstructured Grids. In Proc. of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing, ed. D.H. Bailey et al (SIAM), pp. 615 - 620, 1995.

3. B. Hendrickson, R. Leland. An Improved Spectral Graph Partitioning Algorithm for
Mapping Parallel Computations. SIAM Jour. on Sci. Comp., Vol. 16, No. 2, pp 452-
469, 1993

4. D.C. Hodgson, P.K. Jimack. Efficient Mesh Partitioning for Parallel P.D.E. Solvers
on Distributed Memory Machines. In Proc. of the Sixth SIAM Conference on Parallel
Processing for Scientific Computing, ed. R.F. Sincovec et al (SIAM), pp. 962 - 970,
1993.

5. D.C. Hodgson, P.K. Jimack. Parallel Generation of Partitioned, Unstructured Meshes.
In Advances in Parallel and Vector Processing for Structural Mechanics, ed. B.H.V.
Topping and M. Papadrakakis (Civil-Comp Press), pp. 147-157, 1994.

6. A.I. Khan, B.H.V. Topping. Parallel Adaptive Mesh Generation. Computing Systems
in Engineering, Vol. 2, No. 1, pp. 75-101, 1991.

7. R. LShner, J. Camberos, M. Merriam. Parallel Unstructured Grid Generation. Com-
puter Methods in Apl. Mech. Eng., 95, pp. 343-357, 1992.

8. Message Passing Interface Forum. MPI: A Message Passing Interface standard. Int.
J. of Supercomputer Applications, 8, 1994.

9. H.D. Simon. Partitioning of Unstructured Problems for Parallel Processing. Comput-
ing Systems in Engineering, Vol. 2, No. 2/3, pp. 135-148, 1991.

10. W. Speares, M. Berzins. A Fast 3-D Unstructured Mesh Adaption Algorithm with
Time-Dependent Upwind Euler Shock Diffraction Calculations. In Proceedings of the
6th International Symposium on Computational Fluid Dynamics, pp 1191-1188, 1995.

11. A. Vidwans, Y. Kallinderis, V. Venkatakrishnan. Parallel Dynamic Load-Balancing
Algorithm for Three-Dimensional Adaptive Unstructured Grids. AIAA Journal, Vol.
32, No. 3, pp. 497-505, 1994.

12. C.H. Walshaw, M. Berzins. Dynamic Load-Balancing for PDE Solvers on Adaptive
Unstructured Meshes. Concurrency; Practice & Experience

13. C.H. Walshaw, M. Cross, S. Johnson, M.G. Everett. JOSTLE: Partitioning of Un-
structured Meshes for Massively Parallel Machines. To appear in Proceedings of Par-
allel CFD '94, Kyoto.

14. N.P. Weatherill, O. Hassan. Compressible Flowfield Solutions with Unstructured Grids
Generated by Delauney Triangulation. AIAA Journal, Vol. 33 No. 7, pp 1196-1204,
1995.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

673

E v a l u a t i o n of the J O S T L E mesh p a r t i t i o n i n g code for p rac t i ca l

mu l t i phys i c s app l i ca t ions

K. McManus*, C. Walshaw*, M. Cross, P. Leggett, and S. Johnson

Parallel Processing Group, Centre for Numerical Modelling & Process Analysis,
University of Greenwich, London, SE18 6PF.
email: [k.mcmanus, ..]~gre.ac.uk ; URL: http://www.gre.ac.uk/-[k.mcmanus, ..]

The use of unstructured mesh codes on parallel machines is one of the most effective
ways to solve large computational mechanics problems. Completely general geometries
and complex behaviour can be modelled and, in principle, the inherent sparsity of many
such problems can be exploited to obtain excellent parallel efficiences. However, unlike
their structured counterparts, the problem of distributing the mesh across the memory
of the machine, whilst minimising the amount of interprocessor communication, must be
carefully addressed. This process is an overhead that is not incurred by a serial code, but
is shown to be rapidly computable at run time and tailored for the machine being used.

1. I N T R O D U C T I O N

Multiphysics simulations integrate the solution of interacting physical processes to solve
complex inhomogeneous models, such as, metals casting and aeroelasticity. The University
of Greenwich is developing a three dimensional unstructured mesh code, PHYSICA [3],
which brings together into one toolkit the modelling of many processes such as:

turbulent multiphase fluid flow
phase changes (i.e. melting/solidification)
free surface flows
fluid-structure interaction
magnetohydrodynamics
elasto-viscoplasticity
structural dynamics
contact analysis

This code is being parallelised for Distributed Memory Multi Instruction Multi Data (DM
MIMD) architectures using explicit message passing in Fortran77 [5].

Partitioning of an unstructured mesh into P partitions that are mapped to P processors
is well known to be NP complete. Many methods have been developed that partition a
graph corresponding to the communication requirements of the mesh. A new method for
solving this graph-partitioning problem has been devised at the University of Greenwich
and encapsulated in a software tool, JOSTLE [7]. It employs a combination of techniques

*Sponsored by the Engineering and Physical Science Research Council.

674

to give a rapid initial partition together with a clustering technique to further speed up
the process. The resulting partitioning method is designed to work efficiently in parallel as
well as sequentially and can be applied to both static and dynamically refined meshes. In
this paper we present results obtained by the JOSTLE procedure for parallel multiphysics
applications on unstructured meshes.

2. T H E J O S T L E M E S H - P A R T I T I O N I N G C O D E

The underlying strategy of the JOSTLE code is based on the continuing trends of
research issues and computing resources. As mesh and machine sizes grow, the need
for parallel load-balancing becomes increasingly acute. For small meshes (N nodes) and
small machines (P processors), an order N overhead for the mesh partitioning may be
considered reasonable. However, for large N and P, this order of overhead will rapidly
become unacceptable if the solver is running at O(N/P).

In addition, it is often the case that the mesh is already distributed across the memory
of the parallel machine. For example, parallel mesh generation codes or solvers which use
parallel adaptive refinement give rise to such distributed meshes, and in these cases it is
extremely expensive to transfer the whole mesh back to a single processor for sequential
load-balancing, if indeed the memory of that processor allows it.

To tackle these issues efficiently, the strategy developed here is to derive a partition
as quickly and cheaply as possible, distribute the mesh and then optimise the partition
in parallel. If the mesh is already distributed then the existing partition is used and
optimisation can commence immediately. Experiments, on graphs with up to a million
nodes, indicate that the JOSTLE procedure is up to an order of magnitude faster than
existing state-of-the-art techniques such as Multilevel Recursive Spectral Bisection [1].

2.1. Topology mapping
A pertinent but often ignored factor in parallel processing is the underlying topology of

the machine's interconnection network. Even on machines with small numbers of proces-
sors, it is possible to detect variations between the latencies of processors which are closely
linked and those which are 'far apart'. Although most machines now have facilities for
passing messages between two non-adjacent processors without interrupting intermediate
processors, high contention of the interprocessor links can result if adjacent partitions are
mapped to, say, opposite corners of a processor array. As the trend towards massively
parallel machines continues, these effects are likely to be exacerbated and machine topolo-
gies will have an increasingly important effect on the parallel overhead arising from any
given partition. Most of the current generation of mesh partitioning algorithms, however,
take no account of the machine topology. The mapping to the machine is either treated as
a post-processing step, applied after the data has been partitioned, or even ignored. For
machines with small numbers of processors this may be a legitimate simplification, but as
machine sizes increase it is likely that a poor mapping will cause significant performance
degradation.

We use an undirected graph G(N, E), of N nodes & E edges, to represent the data
dependencies arising from the unstructured mesh. Any partition of G produces a graph S
describing sub-domain connectivity and loosely the mapping problem can be thought of as
the placing of this S onto the processor topology such that the communication overhead

675

is minimised. Figure 1 shows three possible partitions of a mesh along with the resulting
sub-domain graphs S. We concentrate here on mapping onto a grid topology where we
assume that the processors are connected as a 1D, 2D or 3D array. This is a realistic
restriction as grids can be found in some of the current range of parallel machines such
as the Intel Paragon (2D) or Cray T3D (3D).

Figure 1. Partitions of a 2D mesh into (a) 1D, (b) 2D and (c) uniform topologies with
the corresponding sub-domain connectivity graphs.

2.2. The initial partit ion
The aim of the initial partitioning is to divide up the graph as rapidly as possible

prior to optimisation, where most of the work takes place. We use two different initial
partitioning algorithms; the Greedy Algorithm ignores the processor topology completely,
whilst the other, Geometric sorting, does a very crude mapping onto a processor grid.

The Greedy algorithm used here is a simple variant of that originally proposed by Farhat
and fully described in [4]. This is clearly seen to be the fastest graph-based method as it
only visits each graph edge once. However, it takes no account of the processor topology.
The variant employed here differs from that proposed by Farhat in that it works solely
with a graph rather than the nodes and elements of a finite element mesh.

Geometric sorting is a simple and intuitive algorithm which partitions solely on the

676

geometric coordinates of the nodes. Thus, to map a graph onto an p x q processor grid
(where p _> q) the nodes are first sorted by x-coordinate, say, and split into p sets each
of weight Nip. The nodes of each of these sets are then sorted by y-coordinate and split
into sets of N/pq. Of course, neglecting connectivity information may result in a very
poor quality partition and/or mapping. However if nodes which are adjacent in the graph
are also adjacent geometrically, as is frequently the case in graphs arising from finite
element/finite volume discretisations, it can be very successful.

2.3. Optimisation methods
The two optimisation methods outlined here have different aims; uniform optimisation

treats the processor topology as uniform and tries to minimise the number of interpro-
cessor cut-edges. Grid optimisation, on the other hand, treats the processor topology as
a grid and attempts to optimise the mapping by eliminating non-local communications.

The uniform optimisation algorithm is fully described in [6] where it is seen that a
key part of the technique is the way in which each sub-domain tries to minimise its own
surface energy. In the physical 2D or 3D world the object with the smallest surface to
volume ratio is the circle or sphere. Thus the idea behind the sub-domain heuristic is to
determine the centre of each sub-domain (in some graph sense) and to then measure the
radial distance from the centre to the edges and attempt to minimise this by migrating
nodes which are furthest from the centre. The code finally decides which nodes to migrate
based on a combination of radial distance, load-imbalance and the change in cut-edges.

The grid optimisation algorithm is based very much on the uniform optimisation algo-
rithm with some minor changes and a more appropriate method for minimising the surface
energy. After some experimentation it was found that using the radial distance as a basis
for migrating nodes which are far from the sub-domain centre was simply not appropriate
for achieving a grid mapping, as nodes which are relatively far away from the centre of
the sub-domain may be well placed for the topology mapping. To see this, consider a
partition for a 1D processor array as in Figure l(a) where the partition preserving the
topology is just a series of strips. Migrating nodes which are far away from the centre of
the sub-domain (i.e. at the extremes of each strip) does not preserve the partition as a 1D
array. If however, we attempt to minimise the width of each strip, rather than the radial
distance, we do find that the partition can preserve the machine topology. Thus, instead
of measuring the radial distance of the sub-domain, we measure (in a graph sense) the
distance between the borders with processor on the left and the processor on the right.
This technique can be extended to higher dimensional arrays by each processor classifying
the other processors as lying, in the 2D case, to either the north, south, east or west, with
processors lying on a diagonal falling into two sets [6].

2.4. M a p p i n g strategies
Table 1 describes the four mapping strategies tested. The unmapped partition com-

pletely ignores the processor topology to give a near optimal partition for a uniform
topology as in Figure 1 (c). The postmapped partition is the unmapped partition remapped
to the processors with a processor allocation algorithm applied post-partitioning. This
algorithm continually swaps sub-domains between processors until no further improve-
ment in the map cost is possible. The premapped partitioning method works the other
way round; the graph is initially mapped, albeit crudely, onto the processor grid and then

677

Table 1
Mapping strategies
Strategy Initial partition Optimisation Processor allocation
Unmapped Greedy Uniform No
Postmapped Greedy Uniform Yes
Premapped Geometric sort Uniform No
Mapped Geometric sort Grid No

optimised to minimise the number of interprocessor cut-edges. Because the final parti-
tion does not deviate far from the initial partition the resulting sub-domain graph still
'fits' reasonably well onto the processor grid. Indeed, although processor allocation was
not used for these results, in tests it was very rare that it could find better allocations.
Finally the partition mapping strategy acknowledges the processor topology throughout
as in Figure l(b).

3. P A R A L L E L P H Y S I C A

Research into multiphysics modelling by the Greenwich group has led to the specifi-
cation and development of PHYSICA, a modelling software framework for multiphysics
phenomena. The core component of PHYSICA is a code structure which provides a three
dimensional unstructured mesh framework for the solution of any set of coupled partial
differential equations up to second order.

For Finite Volume (FV) procedures the evaluation of fluxes across cell/element faces,
volume sources, and coefficients of the linear solvers in the iterative procedures is generic,
being essentially based upon mesh geometry and material properties within a cell. As
such, the code can be structured so that nodes, FV cell faces and cell volumes can all be
calculated automatically and considered as software objects. Since, nodes, cell faces and
volumes are all considered as objects the mesh can be conceived of as simply the tool for
providing information on the connectivity of nodes, cell faces and volumes; its description
may be structured as such in a memory management system which has been designed so
that it makes no presuppositions on the geometric structure of the cells. Given that the
representation of the mesh connectivity is described by a memory management system,
it is straightforward to extend it to include a database system for the storage of all the
run time information as well as for model results of any given run. All equation solvers
are generic and constructed so that they may be called interchangeably by the user with
consistent data structures.

PHYSICA provides a SIMPLE based solution procedure for the fully compressible
Navier-Stokes equations with all variables co-located at cell centres using a modified Rhie-
Chow method to estimate velocities at cell faces, plus a number of differencing methods
to specify the convection terms. A range of turbulence models including k-e, RNG k-

and other length scale techniques together with enthalpy based solidification/melting
procedures are coupled with the fluid flow solver. Cell centred elastoviscoplastic solid
mechanics with contact analysis are coupled within the false time stepping.

The JOSTLE code is integrated into a PHYSICA prototype to provide at run time a

678

partition of the mesh elements. Face-based and a node-based partitions are derived from
the element partition to fully decompose the mesh into sub-domains. Each sub-domain
is extended with a surface of elements, faces and nodes overlapping the neighbouring
sub-domains. These overlaps carry variables required for the solution of the variables
within the sub-domain. Variables in the overlaps are updated from the the processors
on which the variable is calculated [5]. A consequence of this sub-domain extension is
to increase the sub-domain connectivity. Sub-domains that were not connected in the
original partition may become connected through the overlaps. Consider the sub-domain
graph in Figure l(b), here the maximum node degree is four. After applying overlaps to
the sub domains the maximum node degree increases to five.

4. R E S U L T S

The test case used is a solidification problem solving flow, heat and stress over a 60,000
element mesh. This problem was run on the University's Transtech Paramid machine.
This machine has 28 i860XP based processing nodes, each of which is equipped with
32 or 16Mbyte of fast DRAM and a TS00 communication co-processor. The processor
nodes are hard connected in pairs with Inmos C004 multi-stage crossbar switches providing
interconnection between the node pairs. This configuration allows great versatility in node
interconnection topology. An obvious and simple arrangement for the Paramid topology
is a p x2 grid which is the arrangement used for these results. A virtual channel router
resident on each node allows message passing between all of the nodes on the machine as
though the machine were a fully connected network.

In the following two graphs the solid lines refer to partitions reflecting a px 2 processor
topology and the dashed line indicates a partition reflecting a 1D pipeline or p x I topology.

3000 , | | i ! .-,t-

o unmapped .+..
2500 �9 premapped . .

+ mapped ..."

�9 - I - :
2000 " . . '

�9 §

" 0 1500

0

1000

500

0 I I I I I

0 5 10 15 20 25
no. processors

Figure 2. Number of cut edges for a range of partitions.

30

679

16 I | i | !

.... +

44

42

40

Xa
if}

6

4 y x postmapped
/ �9 premapped

2 + mapped

I I

0 ,0 2'0
no. processors

Figure 3. Speedup for a range of partitions on an i860 based Transtech Paramid.

The lowest number of cut edges is given by the unmapped (postmapped) partition
but this does not give the best speedup performance. The unmapped and postmapped
partitions are actually the same; however the postmapped has in addition an optimised
mapping of partitions to processors applied to it. Where the two partitions give a similar
speedup this reflects an unintentionally fortuitous mapping of the unmapped partition. It
is possible that the unmapped and postmapped partitions may by chance be identical, it
is however highly unlikely that the unmapped partition would ever give a better speedup
than the postmapped partition. The best overall speedup performance is given by the
mapped partitions, despite the cut edge count being higher than the other partitions.
This confirms our proposition that partitioning in accordance with the machine topology
will result in improved performance. Using a 1D partition leads to a significantly higher
number of cut edges and consequently the message length is far greater, however fewer
messages are required. In this case only two latencies are required for each overlap update
which explains the unexpectedly good speedup results for the pipeline partition. Given
that the imbalance of elements between the the sub-domains is less than 0.25% it is
apparent from this result that the machine performance with this code is latency bound.

Start-up latency on the Paramid has been measured as 33#s with a peak bandwidth
of 1.TMbytes per second. This bandwidth is not sustained with virtual channel routing
and degrades to around 1.3 for near neighbour communication and can get as low as 0.9
for non local messages. This can deteriorate further to around 0.3Mbytes per second if
the communication channels are saturated. While this bandwidth is low in comparison
with other parallel machines [2] the latency is reasonably good. Similar performance may
therefore be expected from other platforms.

Partitioning onto a p x q processor array where q > 2 has yet to be tested, but is not
expected to improve performance on the Paramid because of the latency bound. Whilst

680

a q = 2 mapped partition is likely to incur five latencies, a q > 2 mapped partition can
incur eight latencies, but will not significantly reduce the number of cut edges until P
increases considerably.

5. M A C H I N E T O P O L O G Y P R O F I L E

In spite of what parallel machine manufacturers may claim there will always be a dis-
tance related communication cost. This cost becomes more significant as the number
of processors increases. To quantify the variations in latency and bandwidth we have
developed a code which measures the communication performance of a parallel machine.
Latency is measured by the simple method of sending a short message between each
processor on the parallel machine. Similarly bandwidth is measured by sending a large
message between each processor. These measurements are initially carried out with only
one message being passed at any one time, and then with every node communicating
simultaneously. This provides a peak and a saturated performance measure that may be
expressed as a weighted graph (matrix) that describes the communication performance
between each pair of processors. What is immediately apparent is the non-uniform per-
formance described by the graph. Such a weighted graph can be obtained quickly, at
run time, and then used by the partitioning code to ensure that the mesh partition pro-
duced is appropriate for the measured machine communication profile as opposed to a
notional topology that may not be reflected in actual communication performance. It is
anticipated that this scheme will provide improved performance across a range of parallel
machines without the need to understand or specify the architecture of the machine.

R E F E R E N C E S

1. S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recursive
Spectral Bisection for Partitioning Unstructured Problems. Concurrency: Practice
Experience, 6(2):101-117, 1994.

2. J. Dongarra and T. Dunigan. Message passing performance of various computers.
Tr, Oak Ridge National Laboratory, University of Tenessee and Oak Ridge National
Laboratory, 1995.

3. M. Cross et al. Towards an integrated control volume unstructured mesh code for the
simulation of all of the macroscopic processes involved in shape casting. Num. Meth.
Industrial Forming Processes (NUMIFORM 92), pages 787-792, 1992.

4. C. Farhat. A Simple and Efficient Automatic FEM Domain Decomposer. Comp.
Struct., 28:579-602, 1988.

5. K. McManus, M. Cross, and S. Johnson. Integrated Flow and Stress using an Unstruc-
tured Mesh on Distributed Memory Parallel Systems. In Parallel CFD'9~. Elsevier,
1995. (in press).

6. C. Walshaw, M. Cross, and M. Everett. A Localised Algorithm for Optimising Un-
structured Mesh Partitions. Int. J. Supercomputer Applications, 1995. (in press).

7. C. Walshaw, M. Cross, S. Johnson, and M. Everett. JOSTLE: Partitioning of Un-
structured Meshes for Massively Parallel Machines. In Parallel CFD'9~. Elsevier,
1995. (in press).

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
1995 Elsevier Science B.V.

681

P A R A L L E L C O M P U T A T I O N
OF U N S T E A D Y S U P E R S O N I C - I N L E T F L O W S

Suresh C. Khandelwal a, Gary Cole b, and Joongkee Chung c

aNYMA Inc., NASA Lewis Research Center group, Brook Park, OH 44142

bNASA Lewis Research Center, Cleveland, OH 44135

clCOMP, NASA Lewis Research Center, Cleveland, OH 44135

1. ABSTRACT

One of the goals of controls/computational fluid dynamics (CFD) interdisciplinary
research at NASA Lewis is to develop time-accurate CFD codes which can provide faster
turnaround times within an integrated analysis/design system. Since parallel execution can
provide faster turnaround times, a two-fold objective was pursued: (1) the conversion of
an existing serial code, NPARC-3D (version 2.0), into a coarse grain parallel code based
on block functionality, and (2) the use of this parallel NPARC code to investigate the
unsteady inviscid flowfield characteristics of a Mach 2.5, variable diameter centerbody
(VDC) inlet. The parallel code was tested on both a network of workstations and on the
Cray T3D. The speedup relative to a single processor was 14 to 14.5 on 16 networked
RS6000-590 workstations and 14.5 to 15 on the Cray T3D. The turnaround time for the
complete solution of an unsteady flow problem using the parallel code was six times faster
when executing in parallel on the 16 RS6000-590 workstations as compared with the
execution serially on the Cray Y-MP8. Full details of the code's performance and a
discussion of the unsteady flowfield results are presented in this paper.

2. INTRODUCTION

As part of the High Performance Computing and Communication Program (HPCCP),
NASA Lewis is conducting a controls/CFD interdisciplinary research program [1]. The
objective of this program is to enable controls engineers to use CFD simulations as
numerical test beds for obtaining high-fidelity system models for control system design,
testing, and validation. Because of their long execution times, CFD simulations have been
impractical for application to control problems. Therefore, a primary goal of this program
is to develop faster, optimized time-accurate CFD codes. The research is initially being
used to investigate control problems for inlets tytpical of the NASA High Speed Research
(HSR) program.

682

A Euler/Navier-Stokes CFD code, NPARC [2,3], was used to perform a simulation
involving an unsteady inviscid inlet flow. The specific simulation, a VDC inlet, has a
rather complex geometry which NPARC can handle by defining the overall geometry as
a series of blocks. Parallel or distributed computing in a networked environment allows
the blocks to be processed independently in parallel. If the code is efficiently parallelized,
such a technique can significantly reduce the turnaround time of an application and allow
for the computation of complex applications in a reasonable amount of time. The parallel
code's performance and the results for the unsteady flow calculations are discussed in this
paper.

3. HARDWARE

The code was run on three different platformsma Cray YMP 8E/8128, a Cray T3D,
and the Lewis Advanced Cluster Environment (LACE). The Cray YMP 8E/8128 has 8
processors with 128 Mwords of shared memory running under UNICOS 8.0.2.3.
Execution time on single Cray YMP processor was used as a benchmark for comparison.
The Cray T3D has 64 processors running under UNICOS-MAX 1.0.2. Each processing
element has a local memory of 8 Mwords. All I/O is performed through the attached Cray
Y-MP8. The LACE consists of 32 networked IBM RS6000 workstationsml6 Model 590
and 16 Model 560. The network has two modes of communication: Ethernet and an IBM
ALLNODE switch which runs under two modes~Internet Protocol (IP) and Low Latency
Peripheral Interface (LLPI). The Ethernet mode of communication is basically a single,
serial connection which must be shared by all workstations. The ALLNODE switch allows
multiple, simultaneous connections to exist between workstations. All 590 models are
connected via one ALLNODE switch, and all 560 models via another ALLNODE switch.
All RS6000 units run under AIX 3.2.5 and have at minimum 128 Mbytes of memory. In
addition to having a local file system on each processor, an NFS file server available on
LACE can be accessed by all 32 processors.

4. CFD CODE

The NPARC serial code allows for the simulation of steady-state and transient flows,
using either viscous or inviscid flowfield calculations. For this study, a number of
modifications were made to NPARC (version 2.0) to enhance and facilitate time-accurate
calculations including: (a) specification of uniform time step size over all blocks [4], (b)
specification of upstream (free-stream) and downstream (exit) boundary conditions as
functions of time, and (c) the ability to output variables in "real" (as opposed to
normalized) time. In addition, a new exit boundary condition [5] was added to accurately
represent the interface to an engine (compressor-face) corrected air-flow demand.

Execution of the code can be broadly divided into three steps: initialization, solution,
and output. During initialization, all the gradients, conservation variables (density,
momentum, and energy), and block-interface data are calculated and stored. The solution

683

step is an iterative process performed using two loops. The outer loop counts the number
of iterations until convergence conditions are met. The inner loop counts the number of
blocks as defined in the input data, reads block data for each iteration, and performs
calculations before writing the block data back to the same file. All block-interface data
are also written to a file. After the iterative process is complete, flowfield output is also
written to a file. Except for common interfaces, the blocks are independent of each other,
and this independence was exploited to parallelize the code. As initialization and output
are performed only once, the solution step is the main time-consuming element of this
algorithm because it executes all the blocks sequentially during each iteration. For a
typical CFD problem, thousands of iterations are carried out to arrive at the final solution.

The parallel algorithm implemented is based on the single program multiple data
(SPMD) paradigm where one block of data is executed by one process created under the
Unix environment with all processes synchronized at the end of each iteration. The block-
interface data are handled either via message-passing on an available network or
reading/writing to a common file on an NFS file system (file I/O). To get reproducible
data, it was necessary to open a file for each process at the start of an iteration and then
close it at the end. The sequential I/O on an NFS file system was obtained by allowing
only one process to read/write at a time.

Under the multitasking Unix environment on LACE, the parallel code can be executed
using any number of processors ranging from a single processor to one for every block
defined in the problem. When computing problems with a number of different block sizes,
load balance on the system is achieved by manually assigning more than one process to
a processor. However, in computing a problem outside a multitasking environment, as
with the Cray T3D, the number of processors must equal the number of blocks.

5. MESSAGE-PASSING LIBRARIES

5.1 Application Parallel Portable Library
The Application Parallel Portable Library (APPL) [6] was designed to use a portable

message-passing paradigm which allows an application to be developed once and then
ported to a variety of parallel platforms. The parallel NPARC code was run under the
APPL software environment on the LACE cluster.

5.2 Parallel Virtual Machine (PVM)
PVM [7] was used to run the code on the Cray T3D. The PVM routines support the

communication calls. Interface software developed at NASA Lewis was used to provide
an APPL-compatible interface to the Cray PVM calls.

684

6. ENGINE INLET APPLICATION

The geometry chosen for this study is based on a bicone mixed-compression supersonic
inlet designated as the VDC [8]. Two three-dimensional grids were generated, one a "fine"
grid of 50,950 points and the other a "coarse" grid of 25,104 points. Both grids are
divided into 16 blocks, each having nearly the same number of points. The average
number of grid points per block is 3,184 for the fine grid and 1,569 for the coarse grid.
Both grids have 18 block interfaces. (See Figure 1.) The inlet has three supporting struts
(120 degrees apart) blocking the passage in the diffuser. Since calculations were made for
a zero-degree angle of attack, only a 60-degree section was needed for the computation.
Only inviscid flowfield calculations were made.

7. RESULTS

7.1 Benchmark Runs
The serial code was run on a variety of hardware to obtain baseline performance and

to determine relative speeds. It can be executed by keeping all block data either in the
memory or on a file. The elapsed time was obtained when all block data were memory
resident. When simulating the fine grid geometry, the serial code on the Cray Y-MP8 ran
two-and-a-half times faster than the Model 590, five times faster than the Model 560, and
about nine times faster than a single processor of the Cray T3D. When simulating the
coarse grid geometry, the serial code ran about twice as fast on the Cray Y-MP8 than the
Model 590, four times faster than the Model 560, and about eight times faster than a single
processor of the Cray T3D (Figure 2).

Timing data were collected over 1,000 iterations to obtain the parallel code speedup.
A speedup is defined as the ratio of the elapsed time in serial execution to the elapsed time
in parallel execution. For speedup calculations, only the time elapsed during the execution
of the solution algorithm is used.

On 16 RS6000 processors with ALLNODE in IP mode, the elapsed time (in sec.) with
the fine grid data was 115.7 for the Model 590 and 376.2 for the Model 560, compared
to 1,673 for the Model 590 and 3,078 for the Model 560 with the serial code. This
corresponds to a speedup of 14.5 on the Model 590 and 8.2 on the Model 560 with
ALLNODE. The elapsed time (in sec.) on 8 RS6000 processors was 205.7 with a speedup
of 8.1 on the Model 590 and 610.0 with a speedup of 5.1 on the Model 560 (Figure 2).
The greater than expected speedup of 8.1 could possibly be attributed to memory caching.
With the coarse grid, on 16 RS6000 processors, elapsed time (in see.) was 51.7 with a
speedup of 14.1 on the Model 590 and 149.3 with a speedup of 8.8 on the Model 560.
Elapsed time with the serial code was 726.9 and 1,312.6 for both the Models 590 and 560,
respectively. The elapsed time (in sec.) on 8 RS6000 processors was 94.6 with a speedup
of 7.7 on the Model 590 and 197.5 with a speedup of 6.7 on the Model 560 (Figure 2).
Use of 8 processors provided better efficiency for both the fine and coarse grids, most
probably due to less communication overhead.

685

On the Cray T3D, elapsed time with the parallel code in sec. was 382.0 for fine grid
and 182.4 for coarse grid data; for the serial code it was 5,703.0 and 2,741.7, respectively.
This corresponds to a speedup of 14.9 for the fine grid and 15.0 for the coarse grid.

I/O on the Cray T3D is not efficient because it is handled by the system-load
dependent Cray Y-MP8. The effect of I/O is more visible when the serial code is executed
on one processor, keeping the block data on a file where it is read and later written to the
same file for each iteration, than when all block data are stored in memory. For example,
for the coarse grid, the serial code required 5,703.0 see. to complete 100 iterations using
file I/O compared to 277 see. for the memory-resident case.

When ALLNODE and Ethernet network performance was compared on LACE,
ALLNODE provided the better performance, about four times as fast as Ethernet when
simulating the coarse grid and about twice as fast when simulating the fine grid.
Performance was slightly better in IP than LLPI mode (Figure 3).

The availability of a fast network on a workstation cluster helps to obtain satisfactory
speedups only for a well-balanced problem where all the blocks are the same size. When
all the blocks are not the same size, parallel execution via file I/O (where all inter-block
data were handled via an NFS file system) compares favorably with the message-passing
option because, in this case, execution is controlled by the process with the biggest block.
Slower/faster network communication is masked under waiting time by the processes as
they are synchronized at the end of each iteration. For a well-balanced problem, the file
I/O option is much slower than the message-passing option.

7.2 Time-accurate Flow Perturbation Studies
The parallel code performance was also investigated by running practical cases that are

typical of those of interest to controls analysts. In order to design a control system, the
engineer needs to know the time response between various input/output variables. For this
study static-pressure responses in the subsonic portion of the VDC inlet duct were obtained
for a step change in either free-stream temperature or exit (compressor-face) Mach number.
The time-accurate calculations were performed in three steps: (1) the steady state solution
was obtained by using time steps of 2.0E-06 sec. for the fine grid and 4.0E-06 sec. for the
coarse grid with Mach numbers of 2.5 for the free stream and 0.33 for the compressor-
face; (2) after achieving steady state, the code was executed for 0.01 sec. without changes
in input data; and (3) the code was executed for another 0.06 sec. after a perturbation was
made---either a 3% reduction in compressor-face Mach number or a 4% increase in the
free stream temperature. In both cases the effect on the static pressure due to the
perturbation from the steady state condition was calculated. The Runga-Kutta 3-stage
solver was used for these calculations.

7.3 Convergence and Perturbation Studies
The residual values are obtained to check the output compatibility of the parallel code

relative to the serial code and agree very well for both the coarse and fine grids (Figures
4 and 5). To reach steady state, 20,000 and 35,000 iterations were needed for the coarse
and fine grids, respectively. Convergence of residual values took the longest time in
blocks 10 to 13 (see Figures 4 and 5 for coarse and fine grid convergence patterns). At

686

steady state, the axial location of the terminal shock was at 3.387 (ratio of distance from
centerbody tip to cowl-lip radius) for the coarse grid and at 3.440 for the fine grid
densities. A difference in shock location is expected due to the difference in grid densities.

The transient behavior of the static pressure due to perturbation in the compressor-face
Mach number or free stream temperature was evaluated for both grids. Comparisons of
results obtained in block 10 at axial locations 3.945 for the coarse grid and at 3.947 for
the fine grid are shown in Figure 6. The transient pressure results obtained with the
parallel code agreed with the serial code results from the Cray Y-MP8. Results obtained
with the fine grid are considered to be more accurate and agreed much better with the
results from the 2D code [5] than did the coarse-grid results. This is unfortunate since the
fine grid calculations take approximately four times longer than the coarse grid, and
emphasizes the need for further increase in speedup. Some possibilities for increasing
speedup include: increasing the number of blocks and processors (although the
communication overhead may increase); changes to the CFD (NPARC) solver algorithm
[5]; and expected future increases in processor speed.

7.4 Comparison of CPU and Turnaround Times
For a total of 70,000 iterations on the dedicated LACE cluster, the CPU time and

elapsed time for the fine grid geometry were 1:55:54 (HR:MIN:SEC) and 2:06:28,
respectively, using 16 Model 590 processors with ALLNODE in IP mode. Running the
serial code on the Cray Y-MP8 (not dedicated), CPU and elapsed times were 13:04:58 and
49:44:25, respectively. Since elapsed time on the Cray Y-MP8 is a function of the system
load, CPU time can be used as the best estimate of elapsed time as on a dedicated system.
Results can be obtained six times faster with parallel code on LACE than with serial code
on Cray.

Similar results were obtained with the coarse grid for a total of 37,500 iterations on
the dedicated LACE cluster. The CPU and elapsed times using the parallel code were
0:27:47 and 0:32:39, respectively. On the Cray Y-MP8 with the serial code these times
were 3:39:34 and 5:43:42. A comparison of elapsed time on LACE and CPU time on the
Cray Y-MP8 shows that the turnaround time on LACE is at least six times faster.

8. CONCLUDING REMARKS

The serial NPARC code was successfully parallelized to run in SPMD mode using the
APPL library. This parallel NPARC code performed well in a network environment, is
compatible with the serial code, and can provide faster turnaround time under a distributed
computing environment. Speedups achieved with the parallel code are encouraging and
routine use of CFD simulations for controls/CFD interdisciplinary studies is coming closer
to reality. Achieving even faster turnaround times is required. This can possibly be
achieved by a combination of more blocks and processors, a faster time-accurate solver in
NPARC, and faster processors.

687

REFERENCES

1. Cole, G., et. al., "Computational Methods for HSCT-Inlet Controls/CFD
Interdisciplinary Research," AIAA 94-3209, June 1994.

2. Sirbaugh, J., et al., A USER'S GUIDE TO NPARC VERSION 2.0, November 1, 1994.

0 Cooper, G.K., and J.R. Sirbaugh, "PARC Code: Theory and Usage," AEDC-TR-89-
15, 1989.

0 Chung, J., "Numerical Simulation of a Mixed-Compression Supersonic Inlet Flow,"
AIAA 94-0583, Jan. 1994.

0 Chung, J., and G. Cole, "Comparison of Compressor Face Boundary Conditions for
Unsteady CFD Simulations of Supersonic Inlets," AIAA 95-2627, July 1995.

~ Quealy, A., G. Cole, and R. Blech, "Portable Programming on Parallel/Networked
Computers Using the Application Portable Parallel Library (APPL)," NASA
Technical Memorandum 106238, 1993.

0 Sunderam, V., "PVM: A Framework for Parallel Distributed
Concurrency: Practice & Experience, Vol. 2, No. 4, December 1990.

Computing,"

0 Saunders, J.D., et. al., "VDC Inlet Experimental Results, First NASA/Industry High
Speed Research Propulsion/Airframe Integration Workshop," October 1993.

O0
O0

Figure 1. Grids used for a VDC engine inlet study

25O0
o

2000

 5oo

1000

500 P1

Cray Y-MP8 Cray T3D

P1

RS6000-590

(a) Coarse gr id

P1 ... 1 Processor

P8 ... 8 Processors

P16 ... 16 Processors

P1

RS6000-560

5000
o

4000

E 3000

2000

1000

P1

P1

Cray Y-MP8 Cray T3D RS6000-590

(b) Fine gr id

Figure 2. Relative performance of serial and parallel codes

P1 ..o 1 Processor

P8 ... 8 Processors

P16 ... 16 Processors

P1

RS6000-560

)0

o (l)
r

(D
E

, , ~ , ,

"0

m

JJ

300

700

300

500

400

300

200

100

ALLNODE

IP L L P I
rnode mode

 111111][I
1 16 16

Number of Processors
(a) Coarse grid

Ethernet

16

o
(i) r

E
, m .

"0

m

1500

1000

500

Figure 3. Network performance on LACE (RS6000-590)

ALLNODE Ethernet

IP L L P I
mode mode

Illlllllll
1 16 16 16

Number of Processors

(b) Fine grid

1 0 0 L , I ' ' I ' I '

lo.~ ~ BLOCK 10
L [- - ~ - P--~al~l code

~ ,o" i! / ~,~ .~/v'v: L ~ S e r i a l C ~
"~ Ii i ' " ' , ~ Coarseg r id

�9 ~ 1~ Pi/ \ \
d

10 "1~ - - - - !

100

10 - 2

104

:3
.10 "6

r r
1 0 .8

1 0 "10
0 10000 20000 30000 40000 0

Number of Iterations

j ,4'~
' , ' ~ .

BLOCK 11
Parallel Code

. Serial Code

- \
\ ,

Coarse grid

I , I , I
10000 20000 30000

Number of Iterations
40000

>

~

r r

10 ~

10"2 t

lO ~ !~ ~'V\

10 -6

1 0 .8

10 -lo

I I i I i

BLOCK 12
Parallel Code

............ Serial Code

"x.,

"\
"\

Coarse grid

100

10 .2
:3

,. , . , . .

- ~ 04 > I

1 0 .6

r r
1 0 .8

1 0 "10 J I ~ I , I ,

0 10000 20000 30000 40000 0
Number of Iterations

k ' 1

~k'~\-'\ry
'~

' I ' I
B L O C K 13
Parallel Code

............ Serial Code

\ .

Coarse grid

1 , l , l

10000 20000 30000
Number of Iterations

i

40000

Figure 4. A plot of residual value versus number of iterations using parallel and serial codes

10 0

(D 10"2 t 1

/",,_:,
> lO ~ ,\ / \:,

~ 10 4

T' lO.S ~ i/..

B L O C K 10

- - - - - Parallel Code
........... Serial Code

\-\..~. Fine grid

" ~ .

lO "1~ I , I J I

10000 20000 30000
N u m b e r of I t e r a t i o n s

r

100 ' I

(D 10"2 t

~ I '/ _.> 10 .4 ,\

"0 10 4
, . . .

if) (D
rr' lO.S

[0 "10

I ' I

B L O C K 11

Parallel Code
.......... Serial Code

Fine grid

I L I ~ I

10000 2 0 0 0 0 30000
N u m b e r of I t e r a t i o n s

40000

10 ~

10 .2 r

C~
> 10 "4

10 4
CD

10-8

10 "1o

' I ' I ' I ' I0 ~ I ' I ' I

BLOCK 12

- - - - - Parallel Code
,\.~/ \~,~,~, .;, .\ Serial Code

Fine grid

10 .2

c~
> 10 "4

10 4
r
(D

10-8

10 "l~ I l , I , 10'
) 10000 2 0 0 0 0 30000 4 0 0 0 0 0

N u m b e r of I terat ions

B L O C K 13
~. Paral lel C o d e

\~, \ Ser ial C o d e
- " ~ , : , - . \ , ~ j \ : ,

"-, Fine grid

~ ~ _ . , . ~ . . ~ ,

10000 2 0 0 0 0 30000
N u m b e r of I t e r a t i o n s

Figure 5. A plot of residual value versus number of iterations using parallel and serial codes

40000

13.5 i 12.8 i

~4..== c -
~

a .
13.0

.4...m

Q.

12.5
0.00

Coarse grid
............ Fine grid

@ x = 3.945

@ x = 3.947
.

. ,

,

Compressor - face Mach

p e r t u r b a t i o n by - 3 %

12.6

~===
r

~

12.4
a3

=l==m

co

12.2

Coarse grid
............ Fine grid

T e m p e r a t u r e p e r t u r b a t i o n

b y + 4 %

@ x = 3.945

' , j " , ,

............. @ x = 3.947
.

. . . . I , , , 1 2 0 . , , , I ,

0.04 0.08 0.00 0.04

Time (sec) Time (sec)

(a) (b)
Figu re 6. Effect on p ressu re due to (a) decrease in compressor - face M a c h n u m b e r by 3 % and (b) increase

in f ree s t r eam t e m p e r a t u r e by 4 %

0 . 0 8

L ~

This Page Intentionally Left Blank

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

695

Parallel, Axisymmetric, Aerodynamic Simulation of a Jet Engine

Kim Ciula a and Mark E. M. Stewart b

aSterling Software, 21000 Brookpark Road MS 142-5, Cleveland, OH 44135, USA
bNYMA, 2001 Aerospace Parkway, Brook Park, OH 44142, USA

1. A B S T R A C T

A parallel, axisymmetric jet engine aerodynamic simulation is presented. The code
solves the axisymmetric form of the fluid flow equations which include equation terms for
the effects of blades, combustion and other aerodynamic components and effects. These
equations are closed by reference to component simulations and solved for the engine
system to capture steady component interactions. The code is demonstrated with a sim-
ulation of the Energy Efficient Engine. The cost advantage of clustered workstations and
parallel computers over conventional supercomputers is forcing a shift in engineering and
scientific computing which motivates this work. Further, a parallel computer is a natural
environment for running and referencing the heterogeneous component codes which close
the axisymmetric engine equations. This paper briefly discusses the full engine simulation
and analyzes the code's performance, particularly near the communication bound perfor-
mance limit experienced in workstation clusters.

2. I N T R O D U C T I O N

A jet engine can be characterized by a number of different components working together
very efficiently at a range of demanding operating conditions. Several of these engine
components are sensitive to interactions with neighboring components. For example, the
efficiency of the compressor is very sensitive to steady inlet and outlet conditions, and
a supersonic inlet is dependent on outlet pressure because fluctuations can unstart the
inlet and expel the shock, substantially increasing drag and reducing engine performance.
Consequently, during the design process it is important to consider not only isolated
components but the engine as a system of components which influence each other.

Historically, the design process has started with a study of the complete proposed
engine using performance maps and one-dimensional analysis. Then individual engine
components are simulated and designed in detail by component design teams. Some en-
gine components are designed by the airframe manufacturer. These results improve the
performance maps and one-dimensional analysis, which helps address component interac-
tions. These components are experimentally tested in isolation, progressively integrated,
and adjusted to finalize the engine design.

696

Component design teams depend on analysis techniques to achieve the best perfor-
mance. Streamline curvature methods (Smith,1966) continue to be extensively used to
analyze multistage turbomachinery. Recently, the trend has been to apply advanced nu-
merical techniques to engine components to understand the details of their operation
in isolation. These applications range from quasi-three-dimensional blade calculations
(Chima, 1986) which predict the behavior of a transonic blade to multistage compressor
calculations (Adamczyk, 1985) which simulate the behavior of transonic compressors to
simulation of nacelles and combustor chemistry.

These advanced analysis techniques do not account for engine component influences
which are important when components are sensitive. The current work attempts to use
advanced numerical techniques to capture these intercomponent influences through an
engine system simulation.

It is believed in the jet engine analysis community that the geometrical and physical
complexities of a jet engine are so great that it is necessary to depend on component
analysis codes to complete an engine simulation. Using these codes takes advantage of
their specialized expertise, careful verification and testing, the large investments in their
development, and may help to avoid proprietary issues. In the current work, the results
of these codes are used to close the axisymmetric formulation of the fluid flow equations
for the full engine.

The current parallel implementation of the engine simulation was motivated by two
factors. One is to examine the cost efficiency of using clustered workstations and parallel
supercomputers. The other is to provide an environment where component analysis codes
can execute and interact. Although the engine simulation currently references compo-
nent code results using files, the eventual environment must involve communication with
message passing.

To this end, the axisymmetric formulation of the equations is presented in the next
section, followed by details of the numerical method, grid scheme, and the parallel imple-
mentation. Finally, solution and performance results are presented and discussed.

3. A X I S Y M M E T R I C E N G I N E F O R M U L A T I O N

Engine aerodynamics can be described with an axisymmetric formulation. The equa-
tions may be derived from engine geometry and the three-dimensional fluid flow equations
in a rotating cylindrical coordinate system by taking an average about the annulus (Jen-
nions and Stow, 1985), (Stewart, 1995). In the relative frame, the equations relating the
conservation of mass, momentum, and energy are

w b d V - -
Ot r

(F, G).n bdA - / r (~ b+ k~ + k.~ b+ k---~ b+ ks + k+ b+ kb~ b)dV

. - . _ . .

_

G- -~W~2 +-~

FIW~.

(la)

697

m
k a - k. , --

0
o

 (wo +

0

0
--Ob

- _ ~
kB -- - - p ~

0

0

- - ~ /

0

__ ~ f b x
k f - --fb~ kb~ --

--fbo
0

-~ - z (~, T)-~ R ~ , T (~).

k~ - m3(~Wr)
~ 4 (-~ Wo)

Pbc

Pbc'I

0
- L

- J ~
-J~0

0

(lb)

There is also a torque equation for each spool of the engine. The overbar and tilde
are used to denote circumferential and circumferential-mass averages, respectively. This
circumferential averaging is not unlike the Reynolds average in time of the Navier-Stokes
equation and also gives product of perturbation terms which are included in lb.

These equations (1) contain additional terms for combustion heating kc, the effect of
the mixer k~, entropy increases k~, blockage effects kB, the isentropic components of
blade forces kf, and bleed and cooling kbc. These terms are not closed or determined
directly from these equations. Instead, the terms are calculated from the results of com-
ponent simulations (Stewart,1995). In this way, the expertise of and investment in the
codes which simulate diverse engine components may be used.

4. N U M E R I C A L M E T H O D

A steady-state approximation of these axisymmetric equations is found with an explicit,
multi-stage Runge Kutta scheme (Jameson, 1981), where for each stage i

- - W ---0 -1 t- (7" i / ~ t (@ (W-'/-1) -n t- D (w - m i n (i - l ' l)) -t- ~ (~ - i - 1)) i - 1 " 5 . (2)

Q(w) is the boundary integral on the RHS of (la), E(W) is the volume integral on the
RHS of (la), and D (w) is an additional stabilizing dissipation.

The equations (1) are solved with this scheme in the engine's meridional plane. The
complex geometry of this axisymmetric plane is discretized with a multiblock grid which
covers the domain with topologically rectangular regional grids as shown in figure 1. These
regional grids meet at interfaces without overlapping and coordinate lines are continuous
across interfaces. The numerical treatment of the interfaces is to continue the solution up
to two cell rows beyond the grid edge and copy solution variables from the adjacent block
into these "halo cells". If solution data is passed from blocks to the halo cells of adjacent
blocks at each stage of (2), then the interface is transparent to the explicit numerical
scheme. The implementation of this scheme (2) on a multiblock grid is shown for a serial
code in the left column of figure 2.

698

Figure 1: Inner region of the multiblock grid for the Energy Efficient Engine simulation.
For clarity, only every other point is shown. The complete grid contains 114,080 cells.

Serial C o d e

[2.s]

for each iteration
for each block

calculate At
endfor-block
update halo cells for At
for each stage i = 1 : 5

for each block

if i < 3 calculate D(W)
calculate Q(w)
calculate E(W)
w ~ = w ~ + a~At(Q + D + E)
wall boundary conditions
update halo cells for W /

endfor-block
endfor-stage

[20.1
[30.]
[15.1
[13.]
[10.]

[3.]

[1.4]

calculate other boundary conditions
update halo cells for W 5
evaluate thrust, torque, convergence

endfor-iteration

Parallel C o d e on Each P E

for each block on PE
calculate A t
send A t to halo cells

endfor-block
for each iteration

for each stage i = 1 : 5
for each block on PE

if i = 1 receive halo A t
receive halo W/-1
if i < 3 calculate D(W)
calculate Q(w)
calculate E(W)
w i = w ~ + criAt(Q + D + E)
send ~ i to halo cells
wall boundary conditions

endfor-block
endfor-stage
for each block on PE

calculate A t
send A t to halo cells

endfor-block
calculate other boundary conditions

evaluate thrust, torque, convergence
endfor-iteration

Figure 2: Optimized serial and parallel codes for the numerically intensive part of the
simulation; the initialization and postprocessing are excluded. The percentage of serial
program CPU time spent in each routine is given in brackets. A copy of the parallel code
resides on each P E, and messages correspond to sending halo cells. Italics highlight code
differences.

699

5. P A R A L L E L I M P L E M E N T A T I O N

The multiblock grid was originally used to discretize the complex geometry; however,
this decomposition strategy facilitates the parallel implementation. The grid blocks are
distributed among the processing elements (PEs), possibly with multiple blocks per PE,
to give a coarse-grained parallelism. The halo cells at block interfaces are updated with
adjacent block solution data in PVM 3.3 (Geist, 1993) messages when the adjacent blocks
span PEs or with memory copies for adjacent blocks on a single PE. If the halo cells are
updated at each stage of (2), the interface is again transparent to the numerical scheme.

This parallel numerical scheme is shown in the right column of figure 2. To ensure that
identical results are produced by the serial and parallel codes, a suite of six test cases were
run and the serial and parallel results were compared in terms of convergence quantities
and solution results. The results were identical.

6. A N A L Y S I S A N D R E S U L T S

To estimate the performance of the numerically intensive part of the parallel code
(figure 2), a test case and performance model were devised. This testcase is an annular
duct which is subdivided along one axis, and the model is

Cv
twall - - ~computations + tcommunications - - N At- 6d . (3)

Here t is the t ime for one iteration, C is the number of cells in the problem, v is the program
speed per cell per iteration, N is the number of P Es, and d is the average message t ime for
each of the six messages passed in each iteration. A further limit on performance is that
the required bandwidth must not exceed the measured network bandwidth. For shared
networks (Ethernet) and point-to-point networks the required bandwidth is est imated as

a b N ab
Bshared - - d MB/s .Bpoint_to_poin t = -~- MB/s. (4a, b)

Here B is the bandwidth, b is the number of cells of data which is sent in each message
(here b = 128), and c~ is a conversion constant from cells to megabytes (c~ = 4.8x10-5).

The parallel code development environment consisted of sixteen IBM RS/6000 model
590 workstations, each with at least 128 MB of memory. These PEs were networked with
both an Ethernet shared network (Bide~l = 1.25MB/s, Bme~sured = 1.MB/s) and an Asyn-
chronous Transfer Mode (ATM)swi tch (Bidr = 12.hMB/s, Bme~sured = 5.MB/s) from
FORE systems. Benchmark tests were conducted on a dedicated cluster and indicated
that d = 9.x10 -3 seconds (A T M) a n d v = 5.xl0 -5 seconds/cell / i teration on each PE.
For comparison, on a single processor Cray YMP 8E/8128, serial code tests indicate that
v = 9.x10 -6 seconds/cell/ i teration.

Comparison of benchmark tests and the model (3, 4) indicate that the model is opti-
mistic about speedup. Even with more detailed models than (3, 4), the communications
cost is significant at four times fewer PEs than predicted. To reduce communications
cost, several techniques are used to overlap communications and computations and re-
duce delays due to communications. First, blocks were assigned to processors such that

700

one block's communications could overlap the computations and communications of the
other blocks on that PE. Code tests indicate that overlapping blocks doubles performance
on 8 PEs as shown in figure 3. Second, code segments were reordered to further overlap
communications and computations, further improving performance (figure 3).

Figure 4 shows how the latter three stages of the numerical method require fewer
computations than the first two, and consequently require a shorter message time-of-
flight to avoid delays. The code was modified so messages are not sent or received in
stage four. With this treatment, the interfaces are no longer transparent to the numerical
scheme. However, this conservative change improves performance 20% on 8 P Es as shown
in figure 3.

Figure 3: Speedup for a 32,768 cell an-
nular duct grid for cumulative code opti-
mizations.

Figure 4: AIMS processor and message
activity graph for the 32,768 cell annular
duct grid with eight blocks on four PEs.

To emphasize the sensitivity of the code to the computation to communication ratio,
the optimized code was run with a higher resolution annular duct grid (262,144 cells).
Speedup results are shown in figure 5.

The experience of this testcase and optimizations was applied to a simulation of the En-
ergy Efficient Engine (EEE) which was designed and tested by General Electric for NASA
in the 1980's. It is representative of modern commercial jet engines and is a forerunner
of the GE90 high-bypass turbofan engine. The engine geometry and computational grid
(144,080 cells) are shown in figure 1. Figure 7 shows the computed Mach contours at the
cruise design point (M=0.8, 35,000 ft). The grid was blocked to contain 40 blocks which
were distributed on the P Es to give a load balance, ~vs PE cells of 0.96 to 0.90 on 8 P Es.

m a x P E cells

Figure 6 shows the speedup for the Energy Efficient Engine simulation.

701

7.0 4.0

6.0
!

3.0 I
5.0

4.0

"~ 2.0

(t) 3.o if)

2.0 1.0 [] ' [] EEE Engine i

1.0

!

0.0 0.0]
0.0 2.0 4.0 6.0 8.0 0.0 2.0 4.0 6.0 8.0

Number of Processors, N Number of Processors, N

Figure 5" Speedup for a 262,144 cell an-
nular duct grid.

Figure 6: Speedup for the 114,080 cell grid
of the Energy Efficient Engine simulation.

0 . 8

)
0 ~ ~

Figure 7: Computed Mach contours for the Energy Efficient Engine at the cruise design
point: Mach 0.8, 35,000 ft.

702

7. C O N C L U S I O N S

A system for full engine simulation has been developed and parallelized on a work-
station cluster using PVM. The relatively small grids involved and the demands that
the numerical algorithm place on the network result in a communication-bound problem,
limiting speedup. Testing with the faster networks of the Cray T3D and IBM SP2 is in
progress. However, economic necessities have spurred the move to relatively inexpensive
workstation clusters. The code is now being directly integrated with component codes
to create a system of heterogeneous intercommunicating codes to improve the process of
engine design and analysis.

8. A C K N O W L E D G E M E N T S

This work was completed at the NASA Lewis Research Center and was supported by the
Computational Sciences group under contract NAS3-27121 with Jay Horowitz as monitor
and by the Numerical Propulsion System Simulation project under contract NAS3-27186
with Austin Evans and Russell Claus as monitors. Scott Townsend has generously shared
his experience with parallel computing. Udayan Gumaste wrote a heuristic load balanc-
ing algorithm for the EEE engine grid. The authors would also like to thank Ehtesham
Hayder, Angela Quealy, Melisa Schmidt, and Jerry Yan for their assistance in this work.

R E F E R E N C E S

Adamczyk, J. J., 1985, "Model Equation for Simulating Flows in Multistage Turbomachinery," ASME
Paper 85-GT-226.

Chima, R. V., 1986, "Development of an Explicit Multigrid Algorithm for Quasi-Three-Dimensional Vis-
cous Flows in Turbomachinery," NASA TM-87128.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V., 1993, "PVM 3 User's
Guide and Reference Manual," Oak Ridge National Laboratory.

Jameson, A., Schmidt, W., Turkel, E., 1981, "Numerical Solution of the Euler Equations by Finite Vol-
ume Methods Using Runge-Kutta Time Stepping Schemes," AIAA Paper 81-1259, pp. 327-356.

Jennions, I. K., Stow, P., 1985, "A Quasi-Three-Dimensional Turbomachinery Blade Design System: Part
1 - Throughflow Analysis," ASME Journal of Engineering for Gas Turbines and Power, Vol. 107, pp.
301-307.

Smith, L. H., 1966, "The Radial-Equilibrium Equation of Turbomachinery," ASME Journal of Engineer-
ing for Power, pp. 1-12.

Stewart, M. E. M., 1995, "Axisymmetric Aerodynamic Numerical Analysis of a Turbofan Engine," ASME
Paper 95-GT-338.

Yan, J., Hontalas, P., Listgarten, S., "The Automated Instrumentation and Monitoring System (AIMS)
Reference Manual," NASA TM-108795.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

703

A n inves t iga t ion o f load ba lanc ing s t rategies for C F D appl ica t ions on

paral le l c o m p u t e r s

N. Gopalaswamy a, Y.P. Chien a, A. Ecer a, H.U. Akay ~, R.A. Blech b and G.L. Cole b

apurdue School of Engineering and Technology, IUPUI, Indianapolis, Indiana

bComputational Technologies Branch, NASA Lewis Research Center, Cleveland, Ohio

1. INTRODUCTION

As the use of parallel computers is becoming more popular, more attention is given to
manage such systems more efficiently. In this paper, several issues related to the problem
of load balancing for the solution of parallel CFD problems are discussed. The load
balancing problem is stated in a general fashion for a network of heterogeneous, multi-
user computers without defining a specific system. The CFD problem is defined in a
multi-block fashion where each of the data blocks can be of a different size and the
blocks are connected to each other in any arbitrary form. A process is attached to each
block where different algorithms may be employed for different blocks. These blocks
may be marching in time at different speeds and communicating with each other at
different instances. When the problem is defined in such general terms, the need for
dynamic load balancing becomes apparent. Especially, if the CFD problem is a large
one, to be solved on many processors over a period of many hours, the load balancing can
aid to solve some of the following problems:
�9 load of each processor of a system can change dynamically on a multi-user system;

one would like to use all the processors on the system whenever available.
�9 an unbalanced load distribution may cause the calculations for certain blocks to take

much longer than others, since the slowest block decides the elapsed time for the
entire problem. This may occur during different instances of the execution if the
algorithm is dynamic, i.e., solution parameters change with the solution.

Based on the above considerations, the load balancing problem was treated by
dynamically adjusting the distribution of the blocks among available processors during
the program execution, based on the loading of the system. The details of the load
balancing algorithm was presented previously [1,2]. Here, only the basic steps of the
dynamic load balancing process are listed as follows:
�9 Obtain reliable computational cost information during the execution of the code.
�9 Obtain reliable communication cost information during the execution of the code.
�9 Determine the total cost in terms of computation and communication costs of the

existing block distribution on the given system.
�9 Periodically, re-distribute the blocks to processors to achieve load balancing by

optimizing the cost function.

704

In the present paper, an Euler and Navier-Stokes code, PARC2D, is employed to
demonstrate the basic concepts of dynamic load balancing. This code solves unsteady
flow equations using conservation variables and provides different order Runge-Kutta
time-stepping schemes [3]. Parallel implementation of the explicit time-integration
algorithm involves the following steps:
�9 Division of the computational grid into a greater number of blocks than the number of

available processors with one layer of elements overlapped at inter-block boundaries.
�9 Introduction of the block and interface information into the data base management

program, GPAR [4].
�9 Distribution of the blocks and associating interfaces among the available processors

by using GPAR.
�9 Definition of PARC2D as a block-solver for the solution of the equations inside each

block either for Euler or Navier-Stokes equations.
�9 Preparation of an interface solver to communicate with its parent block and its twin

interface. As can be seen from Figure 1, each block automatically sends information
to its interfaces after each iteration step. The interfaces will then send information to
their twins whenever necessary for the twin to update its parent block. The task
assigned to each block may not be identical, due to factors such as: size of the block,
choice of either Euler vs. Navier-Stokes equations for a particular block, size of the
time-step for solving each block and the time-step for communicating between the
interfaces. Thus, controlling communications and computations in such a truly
heterogeneous environment becomes even more critical.

These issues are discussed below in detail, for a sample problem.

Figure 1. Communication between two neighboring blocks and related interfaces (g2 A and
g2 B are blocks, I"AB and FBA are interfaces).

2. INVESTIGATION OF DYNAMIC LOAD BALA~NCING STRATEGIES

Numerical experiments were chosen to demonstrate some strategies in dynamic load
balancing for managing computer systems and algorithms. The chosen test problem is a
two-dimensional grid for an inlet with 161,600 grid points as shown in Figure 2. The
flow region is divided into 17 blocks as shown in Figure 3, each with approximately
10,000 grid points.

705

Figure 2. Computational Grid for the Inlet (161,600 nodes).

J

Figure 3. Division of the flow-field into Blocks for the Inlet Grid (number of grid points
in each block are shown in parentheses).

2.1. Load Balancing for Variations in the System Loading
One type of load balancing strategy involves controlling the computer system. It may be

a heterogeneous and multi-user system. It is also dynamic in a sense that it changes over
a long run. The test problem was run on four processors over a period of approximately
twelve hours. Communication and computation costs for each process were recorded and
a load balancing was performed after approximately every thirty minutes. Figure 4
summarizes the results of this computation for a controlled environment. As shown in
Figure 4a, the loading of certain machines was increased by adding extraneous processes,
while on other machines no other jobs are running. The response of the load balancer is
summarized in Figure 4b. Over 24 load balance cycles, the elapsed time for each
iteration varies between !.5 to 4 seconds. The load balancer recorded the communication
and computation cost data over a cycle and predicted the elapsed time for a suggested
load balanced distribution. As can be seen from this figure, the prediction is quite
accurate and reduced the elapsed time by removing the bottlenecks. Figure 5 illustrates
the same problem run on an uncontrolled environment. Four heavily used processors
were chosen during the daytime operation. The load balancer responded in a similar
fashion to a rather irregular loading pattern of the system. It is interesting to note that in

706

this case, the total elapsed time was not excessive in comparison with the elapsed time for
the dedicated machine.

= 4.5 O "-~ I I I I I I J
4

I t._.

3.5 1 3
2.5

2
~" i.5

- I t 1 Measured Time ~ -
O

Predicted Time 0.5
I I 1 ! I �9 0 < 5 10 15 20 25 30

Number of Balance Cycles

Figure 4a. Load balancing in a controlled
environment.

~ / i i i i
tal Extra Load -

"~ 14

10

2
0

5 10 15 20 25 30
Number of Balance Cycles

Figure 4b. Extra load variation on the
system for the controlled environment.

2
O

1.8

1.6
[...
o 1.4
,,,,,

1.2
O

= 1 t._
O

<

: ' i ~ "': /...]

J

ti t
Measured T i m e ~

Predicted Time
1 ! I ! !

0 5 10 15 20 25 30
Number of Balance Cycles

Figure 5a. Load balancing in a multi-user
environment.

11
I 0

2 9

0

a. 6 Total E Load - - _

5
u

r,s..l 4 r - - -) . - , . ,
3 I . o ,,~" , ~ ""
2 ~ i ,~ ' , . . .~ - . , - ' - .~ . , -

r ' r J" f ! i 1
5 10 15 20 25 30
Number of Balance Cycles

Figure 5b. Extra load variation on the
system for the multi-user environment.

2.2. L o a d B a l a n c i n g for H e t e r o g e n e o u s A l g o r i t h m s in P a r a l l e l C o m p u t i n g
The second type of load balancing strategy involves optimizing the algorithm on a

parallel system and dynamically load balancing the problem as the algorithm adapts to
the solution. When running the PARC2D code. one can specify a time step for each
block from the CFL condition as defined below:

E 21 A t = C F L / M a x (Igjl+alX/I)§ IX/]
i

(1)

where Uj are the contravariant velocities, a is the speed of sound, Re is the Reynolds

number, g is the viscosity, p is the density, and K/ is the Jacobian matrix. This time

707

step is calculated for all the grid points inside a block, depending on the local flow
conditions and grid size; the minimum value of all such time steps is chosen as the time
step for that particular block. Since, the flow conditions are changing, the time step for
each block changes over the history of a complete run [5].

Variable time-stepping with variable communications is illustrated in Figure 6a for two
neighboring blocks on two different processors. In this case, Atmi n is a global reference
time step for all the blocks. The first block at this instant is operating with a time step of
3Attain, while the second block is running with 2Atmi n. The arrows indicate the instances
at which an interface of a block sends a message to its neighbor. Figure 6b shows a non-
optimum solution. Here, while the computations are performed for each block solver
with its own time step, each block is sending information to its neighbor at every global
time step.

T

A

3 A I ,,,i,,] -

t

7 Mess.'lges |
1 ,,

W

2AI ,,,in
�9 , __E_.

I r 1 B l o c k 2

Figure 6a. Communication occurs when
necessary

14 Messages

m

T

3AI ,,,h,

3 _

~ -

�9 ~ -

-I~- -

,,

T
- 2A1 ,,,i,,

Block 1 l l l o c k 2

Figure 6b. Communication occurs at the
global time step.

Figure 7 provides a summary of the computations with fixed and variable time-
stepping. The reference case is case 1, where the time step is the same for all the blocks.

300

2 5 0

2oo

._ 150
r

m i00

5 0

.'., Case 1 : ~
-.~.

".x
�9 . , Case 2:

_ -.%
-.~

Case 3 : - - - .~
-.%

"-~ s~
- ..,~_ �9 %

..

-

0 I I I I I I I I

0 2 4 6 8 10 12 14 16 18

Number of Machines

Figure 7. Parallel efficiency vs. number of machines.

708

The equations are solved for each block at each time step and the blocks communicate
with each other after each time step. As can be seen from this figure, the parallel
efficiency falls below 50% after 8 processors for the sample problem. Case 2 indicates
the importance of variable time-stepping that is local to each block. In this case, each
block chooses its own time step for solving the equations for that block, however
communicates with its neighbors based on the global time step, as described in Figure 6b.
As can be seen from Figure 7, after 6 processors, communication cost becomes the
dominant factor for this case. Case 3 illustrates the need for intelligent communication as
suggested by Figure 6a. In this case, a block sends a message to its neighbor only when
necessary since each block is solved only when necessary. In this case, the parallel
efficiency can be maintained at a higher level even when the communication cost
becomes dominant. For example, around the leading edge of an airfoil with very fine
grids, one can choose time steps of different order than other blocks and save
computation time. Also, these blocks may not need to talk to their neighbors after each
solution time step. The computational savings, discussed above, are purely due to the
refinements in the use of the algorithm. When performing parallel computing, one can
localize the algorithm according to the flow conditions and grids, especially for the
solution of large problems with complex grids. It should be remembered that all of the
above cases were load balanced to determine the most efficient distribution under given
conditions. These experiments were possible only after a reliable load balancing
procedure was developed.

The second example involves the solution of Euler and Navier-Stokes solutions at
different blocks. The time step restriction for viscous computations is more restrictive
than Euler computations as can be observed from Equation 1. Figure 8 illustrates a case
when the computations were started by an Euler computation for blocks 12-17 and
Navier-Stokes solution for blocks 1-11.

.... 4 .5

I::I o 4

"~" 3.5 I::I
0

,-, 2 .5 8.
.~ 2
t.-,

1.5

,~ 0.5 i-q

) .

< 0

I I I I I I

Euler+NS (Variable time stepping)

Measured Time -
Predicted Time _

. :

I

12

, f f - - - -a
- I

I I I I I

0 2 4 6 8 10
Number of Balance Cycles

Figure 8. Load balancing due to change in solution algorithm.

14

709

The numerical integration took approximately 2.1 seconds per time-step. Local time-
stepping was employed for all blocks. The distribution of the 17 blocks among 4
machines is also shown in the figure. Afterwards, blocks 12-17 were switched to a
Navier-Stokes solver and global fixed time-stepping was employed for all blocks. As can
be seen again from this figure, the load balancer provided a new distribution which
eliminated the bottleneck by removing several processes from machine 2 and loading
machines 1 and 3. Again in this case, it is shown that an algorithm can be defined and
executed locally on a flow region for improving efficiency. By defining the parallel
computing in a heterogeneous environment, one can employ an algorithm in a most
efficient manner whenever necessary.

The third example relates to the development of algorithms which communicate in a
selective manner. The cost of communication is still the dominant factor in parallel
computing. It only makes sense to develop intelligent interfaces to communicate between
the blocks-processes. Figure 9 shows two blocks in a one-dimensional flow field which
are sending messages to each other at different speeds.

max(O,a-u)

u + a

Figure 9. Communication in subsonic and supersonic flows.

Also by remembering the grid requirements for the grid points on an interface, send and
receives between the two neighboring blocks can be executed at different time intervals.
The test case is a specific one where most of the flow is supersonic except for blocks 8-
11 which are located inside the inlet. In this case for all supersonic interfaces, one can
send messages only in one direction. Figure 10 demonstrates such a case. The time-
integration started where each block was communicating with its neighbors as discussed
above. The distribution of the blocks among the processors is also shown in the figure.
The solution scheme was then modified where the supersonic flow regions the messages
were sent only in one direction. The load distribution was also modified as shown in this
figure which reduced the elapsed time per iteration from 2.5 to 1.8 seconds. This figure
also shows a change in the loading of the system after the 13th balance cycle which was
corrected by the load balance: a block was moved from machine 3 to machine 4.

The above examples illustrate the advantages of parallel computing defined in a general
fashion. Concepts such as heterogeneity and asynchronous computations in terms of both
algorithms and computer systems can help to improve efficiency of parallel computing.

710

~ 3
0

- _ ~

~ 2 . 5

~ 2

~ 1.5

~ 1

o 0 . 5

> 0 <

i i I
:

. . . .

�9 .

r " - "

_ �9 .

:

!

Measurexl Time
Predicted Time -

0 5 lZO 15 210 25
Number of Balance Cycles

Figure 10. Load balancing in subsonic and supersonic flows.

A C I ~ N O W L E D G M E N T S

This research was supported by the NASA Lewis Research Center under NAG3-1577.
Computer access provided by NASA and IBM is gratefully acknowledged. The authors
thank S. Secer of IUPUI's CFD Laboratory for his assistance on the implementation of
the load balancing algorithm.

R E F E R E N C E S

1. Y.P. Chien, A. Ecer, H.U. Akay, F. Carpenter and R.A. Blech, "Dynamic Load
Balancing on a Network of Workstations for Solving Computational Fluid Dynamics
Problems," Computer Methods in Applied Mechanics and Engineering, vol. 119, pp.
17-33, 1994.

2. Y.P. Chien, A. Ecer, H.U. Akay and R.A. Blech, "Environment Requirements for
Using Dynamic Load Balancing in Parallel Computations," Proceedings of Parallel
CFD '94, Edited by A. Ecer et al., Elsevier, Amsterdam, 1995.

3. G.K. Cooper and J.R. Sirbaugh, "The PARC Code: Theory and Usage," Arnold
Engineering Development Center, TR-89-15, 1989.

4. H.U. Akay, R.A. Blech, A. Ecer, D. Ercoskun, B. Kemle, A. Quealy and A. Williams,
"A Database Management System for Parallel Processing of CFD Algorithms,"
Parallel CFD '92, Edited by R.B. Pelz, et al., Elsevier, Amsterdam, pp. 9-23, 1993.

5. H.U. Akay and A. Ecer, "Efficiency Considerations for Explicit CFD Solvers on
Parallel Computers," Proceedings of the International Workshop on Solution
Techniques for Large-Scale CFD Problems, Montreal, Quebec, Canada, pp. 289 -
314. September 26-28,1994.

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

711

C P U L i b

M e s h e s *

A Software Library for Parallel Applications on Arbitrary

Michael Rudgyard t and Thilo SchSnfeld a

aCERFACS, 42 av. Gustave Coriolis, 31057 Toulouse, France.

We present work on the development of the CERFACS Parallel Utilities library. This
prototype software tool aims to simplify the task of parallelising large 2d and 3d calcu-
lations on grids of arbitrary elements using a variety of numerical algorithms. Although
simple to use, it is designed to be highly efficient.

1. I n t r o d u c t i o n

Although parallel computing has become a subject in its own right, most users of high
performance computing do not wish to become involved in the details of parallelisation.
Parallel libraries are therefore becoming increasingly popular. Notable examples in the
field of numerical simulation are PARTI [21 and OPLUS [1]. Such libraries free the non-
specialist user from the need to consider data partitioning, message passing, parallel I /O
and the data-structures that are required to implement these. Because the user interacts
with the library through simple subroutine calls, it is possible to optimise inter-processor
communications as well as computationally intensive parts of the library independently.
This increases the portability of the resulting application code whilst retaining efficiency
on particular hardware platforms.

The CERFACS Parallel Utilities library, or C P U L i b , is similar in concept to OPLUS.
Both are written in FORTRAN 77, are applicable to arbitrary grids in two and three
dimensions, use a data parallel strategy, and include integrated partitioning algorithms.
They also impose similar restrictions on the types of algorithms that may be implemented
within the context of the library. In general, CPULib is aimed at a slightly more experi-
enced user. Unlike OPLUS, which uses a single parallel strategy of owned and unowned
sets, CPULib permits the user to choose between various accumulation and data copy al-
gorithms, with owned and unowned variants; arbitrary overlapping of interface sets is also
permitted. This is included at the expense of some minor additional complexity, since the
user must be aware of the rudiments of parallel computing. However, he is not required
to deal with message-passing at a low level, nor does he need to store or calculate any of
his own pointers for treating inter-parti t ion communications.

CPULib is built upon the IPM macros developed at CERFACS [3]. These enable us
to choose between the message-passing libraries M4, PVM, PARMACS and MPI (as

*Work partly funded within the EC HCM programme, Contract No. CHRXCT920042
tPresently: Smith Research Fellow, Oxford University Computing Laboratory, The Wolfson Building,
Parks Road, Oxford OX1 3QD, England

712

well as manufacturers' optimised libraries) by using the standard preprocessor M4. The
software has been ported to a range of parallel machines including workstation clusters,
the MEIKO CS2, the IBM SP1 and SP2, the CRAY T3D, and the INTEL PARAGON.

2. I m p l e m e n t a t i o n Overv iew

The prototype version of CPULib is based on a master-slave or client-server implemen-
tation. The user writes the code that corresponds to the slave processes and communicates
with a generic master process, as well as other slaves, using subroutines from the library.
The master process first spawns copies of the application code, which in turn starts the
library session, thereby initialising all relevant data structures. The user must then pro-
vide CPULib information that enables grid connectivity pointers to be defined, as well as
the pre-defined sets over which data is to be stored. On receiving this information, the
master process reads a set of user-specified grid files in a standard format, creates the
required pointers, and then partitions these along with the grid coordinates; the relevant
information is then made available to the individual slave applications.

Once this initialisation phase has been completed, the master enters a control loop and
awaits any further messages that contain specific directives from the slaves these arise
when the user wishes to input or output data, end the CPULib session, or abort the
parallel application. Simple routines for inter-processor communications allow the user
to update the elements of distributed arrays that correspond to data stored on or near
partition interfaces. Other routines exist for calculating global operations on these arrays,
whilst basic support for some standard iterative methods is also provided. An example
of a typical application programme is given in Fig 1.

Although the master-slave paradigm is suitable for several popular parallel computers,
an SPMD implementation is arguably more appropriate for many newer machines that
support batch-queueing and single-user modes. Whilst this is not available at present,
the standard subroutine interface allows us the freedom to implement an SPMD version
of CPULib in a simple manner (eg. by allowing the root node to effectively act as both
the master and a slave). This is also true if a truly scalar code is required. In either case,
the user would not have to change his application programme at all.

3. P a r t i t i o n i n g and Interface T r e a t m e n t s

Several partitioning techniques are available within the library and once the appropriate
choice has been made by the user, CPULib begins by subdividing the mesh into non-
overlapping subsets of elements, suitably load-balanced. Such an approach is compatible
with the concept of multi-block structured meshes (the library is able to deal with such
meshes, although it treats them as unstructured sets of hexahedra within each block;
however, support for fully structured blocks is planned). By definition, distributed data
over nodes, edges or faces includes copies of interface values in all partitions adjacent
to the interface. However, these copies are distinguished as being owned or unowned by
appropriate processors so that all sets are effectively partitioned; a simple heuristic is used
to load-balance these. The subsets that lie on the original interface are thus distinguished
as shared/owned and shared/unowned. CPULib takes this distinction one step further in
its internal representation, since a communication patch between two given processors

713

I/O
....._
....--

CPU Master
Process

i'Start C P U

::.Sp.awn.slaves
. - .

i Read &
:. Partition Mesh

!Read &
::Partition Data .

:.

::.Write N o r m .

...W.r.i.t..e...D..a.t..a.
.

! 'End C P U
. . .

J

J

Application Slave
Processes

.S.tag.S!.a.v.e.
~'iSeiia~ge/i ::

i I n p u t D a t a ::

! i

D o I t e r a t i o n s

i I n t e r f a c e
!...E.x..c.h..a.~g.e~

.

O u t p u t N o r m

. . .

E n d d o

. . .

O u t p u t D a t a

. ,

E n d S l a v e
.

i
. _

|

|

J

|

i

* I

Figure 1. A typical Master-Slave Application using CPULib

differentiates between subsets that are owned by the present processor, owned by the
neighbour or owned by neither this enables the library to update owned or unowned
values on neighbouring processors without any unnecessary data being exchanged.

CPULib also supports two types of overlapping partitions. The first, partial overlapping,
defines new layers of elements around owned interface values. Copies of distributed arrays
may then be stored here, as well as at the new nodes, edges or faces that have been created.
If full overlapping is required, new layers of elements are built around the original partition
interface, and not only owned subsets. In both cases, CPULib automatically sets up the
communication pointers that are required to update any new values within distributed
arrays. The situation is represented graphically in Figure 2.

It is useful to describe the need for these different interface treatments by considering a
specific example. Let as assume that during the course of an iteration within a typically
CFD application, the user wishes to construct residual values at nodes by using a double
loop over elements the first loop could correspond to the construction of artificial
viscosity terms, or nodal gradients that are to be used in a MUSCL-type scheme; the
second loop may then complete the construction of the residual. If the data itself is
stored over nodes, indirect addressing via the element-to-node pointer is required, and
each loop uses appropriate gather and scatter operations to accumulate the nodal values.

Within the framework of CPULib, several different parallel algorithms may be used to
implement this double loop, and only some of these will be discussed here. If the residual

714

Figure 2. Partition Interfaces with overlapping

is only required at owned nodes within each partition, the user may choose to employ one
layer of partial overlapping and a data-copy algorithm. In this case, data at all unowned
nodes is copied before executing a loop over both owned and unowned elements; at the end
of each scatter phase, the required subset of nodal values is then correct. Alternatively,
and if no overlapping is desired, values may be accumulated at the complete shared
interface by calling the appropriate CPULib routines following each of the cell loops; this
results in up-to-date values at both owned and unowned nodes (a simple owned-node
variant is also possible, although this requires two communication phases for each loop).
A technique that uses a single communication phase for the complete double loop is also
possible. In this case full overlapping is chosen - - the first loop considers both owned and
unowned elements and results in correct nodal values for the original non-overlapping
partition; following the second loop that is executed over owned elements only, the result
is accumulated at all nodes using an inter-processor exchange.

The choice as to which of these algorithms is suitable for a given numerical scheme
and/or a given hardware platform may be complicated. If most of the computations are
based on elements, and the inter-processor communications are reasonably efficient, then
the non-overlapping accumulation algorithm is likely to be preferable since it avoids any
redundant element calculations. If message-passing is slow due to high latencies, then
a single communications phase may be optimal, and the fully-overlapping accumulation
algorithm may work best. However, if a complex iterative method is used (where the
nodal operations may be much more expensive than those based on elements), and the
communications bandwidth of the machine is high, then the data-copy algorithm may

715

prove to be the most valuable. Note that other details of the algorithm may also be
important: eg. if the first of the cell loops described above serves to calculate a solution
gradient, then it may be wise to avoid exchanging these values at interfaces rather than the
solution itself (which will have fewer components, and hence messages will be shorter...).

4. Specific Functionality

4.1. Initialisation and Control Routines
Several CPULib initialisation and control routines exist, many of which must be called

before the user may begin any calculations. These include:

-+ Routines to begin and end the client-server session.

-+ Declaration routines to inform CPULib of the pre-defined sets over which
distributed data is to be stored. These include elements, faces, edges and
nodes, as well as boundary nodes and faces.

-+ Routines that inform CPULib which connectivity pointers are needed by the
user's application. By default, a file containing the element to node connec-
tivity is read (where the elements may be triangles, quadrilaterals, tetrahe-
dra, prisms, pyramids or hexahedra), as well as boundary information. Since
CPULib is able to read in multiblock structured meshes or meshes that have
already been partitioned, a list of interface nodes may also be read in. If other
pointers are required (for example, the edge-to-node pointer), these are cre-
ated and partitioned by the CPULib master. However, only a limited number
of such pointers are available in the present implementation.

-+ A subroutine that tells the CPULib master to partition the pointers declared
by the user. At present, Recursive Inertial and Graph Bisection algorithms
are available. Overlapping sets are created if required, and an optional Re-
verse Cuthill McKee algorithm may also be used to reduce the connectivity
bandwidth within partitions.

-+ A subroutine that aborts the parallel application.

4.2. Inter-Part i t ion Communicat ion
Communication between processors is controlled by a few simple routines:

-+ Routines for calculating sums, norms, vector products and global reduction
operations these make use of CPULib's distinction of owned and unowned
subsets to avoid redundant calculations.

--+ Routines for initialising data exchanges: each array that is to be updated via
message passing at interfaces is first declared by a call to an initialisation
routine. Information provided by the user indicates the set over which the
data is distributed, as well as the type of exchange appropriate to the array in
question. Messages between a given pair of processors may be concatenated
by calling this subroutine for each array in question before proceeding with
either of the procedures given below.

716

--+ Routines for updating interfaces: after initialising the message-passing phase,
data from distributed arrays may be exchanged using a single CPULib com-
mand. Overlapping of communication and computation is possible by re-
placing this single call by references to subroutines that perform 'send' and
'receive'-like operations. However, the user is responsible for ensuring that
any calculations that make take place between these calls does not depend on
the result of the exchange.

4.3. I t e r a t i v e Techniques
CPULib offers an obvious framework in which to implement well-known iterative meth-

ods based on distributed data. The user provides residual evaluations when required and
the solution is updated accordingly. Some simple techniques are presently being intro-
duced in collaboration with other European partners. These include:

Runge-Kutta methods for integrating discrete PDE's.

--+ Krylov methods such as Conjugate Gradient, GMRES and BiCGStab. These
may be combined with Newton techniques for non-linear problems (see [4]).

4.4. I / O Routines
Several I /O routines resembling standard FORTRAN commands are provided:

-+ Formatted or unformatted files that are to be accessed in parallel may be
opened and closed by the user's application. CPULib controls and queues
requests to open different files that are assigned identical channels by distinct
slaves, although it provides free channels by default.

--+ Arrays that are to be distributed may be read as single or ready-partitioned
data-sets; these are partitioned if necessary and the relevant parts are auto-
matically sent to the appropriate processor. Such data may also be written
into a single file in corresponding forms. Data not associated with any defined
set may be broadcast to all partitions; on writing, such data corresponds to
that of the root process.

-+ Indirection lists that point into a known set may be read and distributed, as
well as data defined on the elements of this list.

-+ Each slave may also write and read independently- this is useful for debugging
purposes, or for advanced users.

4.5. Supporting Routines
Several other supporting routines are included in the C P U library. These include:

-+ Interfaces with the C functions malloc, ralloc and free, for allocating, reallo-
cating and deallocating blocks of memory. A comprehensive set of memory
management tools are also provided. Dynamic array dimensioning may be
achieved within Fortran 77 using the POINTER extension. The use of dy-
namic memory is crucial on parallel machines, since the number of partitions
and hence the size of arrays on each processor is not known apriori.

-+ Routines for calculating clock times, cpu times and system times

717

5. Resu l t s

In order to demonstrate the effectiveness of CPULib, as well as the use of the different
algorithms described in section three, we consider the application of an unstructured ex-
plicit Euler code to a three dimensional M6-wing. Since only a relatively small number
of processors is used for our tests, a small tetrahedral grid of only 58000 elements is em-
ployed; the ratio of partition to interface size is then representative of that which we may
expect when solving much larger problems on massively parallel machines. In Table 1, we
show the number of cells and nodes that result from partitioning this mesh into N subsets
using different overlapping strategies. Although the partitioning algorithm may not be
'optimal', we see that the size of the various sets can increase dramatically. In Table
2 we show the parallel efficiency obtained for the same test cases using different hard-
ware platforms (despite the existence of more efficient message-passing software, we have
used PVM version 3.3 in all cases). The speed-ups obtained for the different algorithms
imply that the redundant computations on cells are far more important than commu-
nication costs, at least for this simple explicit algorithm. The table also demonstrates
that overlapping communications and computations can improve the performance of our
algorithms on some machines. Space limitations preclude a more detailed examination of
the pros and cons of the different approaches. In the present paper, our aim is merely to
demonstrate the versatility of the interface treatments within the CPU Library.

As an example of a large-scale CFD application, Figure 3 shows calculated pressure
contours and the partitioned surface of an aircraft grid containing 850,000 tetrahedral cells
and 156,000 nodes. A Recursive Inertial Bisection algorithm was used for mapping the
problem onto eight processors. We note that the automatic partitioning and preprocessing
of this mesh takes CPULib less than one minute of real time on the host node of an SP2.

6. Final R e m a r k s

We have demonstrated how it is possible to create a FORTRAN library that abstracts
the parallel data-structure from the user's application programme. We believe that such
an approach is crucial if parallel computers are to be used effectively in the future. We
do, however, consider this library to be a prototype of a much more complete software
tool. This would offer a more comprehensive set of partitioning algorithms, indirection
pointers, and iterative methods. It would also have the ability to deal with coupled
physical problems on independent grids.

R E F E R E N C E S

1. P.I. Crumpton and M. B. Giles. Oplus: A parallel framework for unstructured solvers.
Parallel CFD 95, This procedings.

2. R. Das, J. Saltz, and H. Berryman. A Manual for PARTI Runtirne Primitives, Revi-
sion 1. ICASE, NASA Langley Research Centre, Hampton, USA, May 1993.

3. L. Giraud, P. Noyret, E. Sevault, and V. Van Kemenade. IPM 2.0 User's Guide and
Reference Manual. CERFACS, Toulouse, France, 1994.

4. F. Guerinino R. Choquet and M. Rudgyard. Towards modular cfd using the cerfacs
parallel utilities. Parallel CFD 95, This procedings.

718

RIB
RIB p/o
RIB f/o

57564/10812
57564/10812
57564/10812

57564/11596
61420/12245
65906/13075

57564/12871
67813/14648
79853/16897

57564/14299
74240/17296
95269/21418

16,11
57564/15816
81144/20170

113489/26796

Table 1
Total no. of cells/nodes (p/o = partial overlap, f/o = full overlap); M6 wing

[! N

SGI Power
Challenge

Convex Meta
Series

IBM SP1

n/o
c/o
g/o

c/o + g/o
n/o
c/o
g/o

c/o + g/o
n/o
g/o

1] 2[4 I 8) 16l[
1.0 1.96 3.22
1.0 1.95 3.88
1.0 1.91 3.36
1.0 1.93 3.39
1.0 1 .72 3.21 5.33
1.0 1.75 3.23 5.77
1.0 1.69 3.04 5.09
1.0 1.70 3.01 5.13
1.0 2.04 3.96 7.51 12.87
1.0 1.97 3.65 5.37

Table 2
Speed-up using PVM 3.3 (n/o = no overlap, c/o = communication/computation overlap,
g/o = full grid overlap); M6 wing

Figure 3. Partitioned grid and pressure contours for the Dassault Falcon

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

719

Hos t -node client-server software architecture for computat ional fluid dynamics

on M P P computers

Sukumar R. Chakravarthy

Metacomp Technologies, Inc.,
5540 Wembly Avenue, Agoura, California 91301, USA

1. INTRODUCTION

In effectively adapting full-fledged Computational Fluid Dynamics (CFD) codes designed
for conventional workstations and supercomputers to Massively Parallel Processor (MPP)
computers and in designing new CFD software for them, the host-node and client-server
programming paradigms play beneficial roles. They permit the various tasks to be
encapsulated in an object-oriented fashion and result in the synergistic use of all available
computational resources including high performance MPP computers and workstations with
graphics and X-window capabilities, etc. These aspects are discussed below.

1.1. The Typical Hardware Configuration
A typical computing environment today would comprise an MPP computer and

workstations linked by a network. They could be in the same building or the MPP computer
may reside in a facility removed from the workstations. The MPP computer is assumed to be
based on a MIMD (each CPU can execute different instruction streams) distributed memory
message-passing architecture. The workstation network would have a common disk farm
(accessed via NFS). The MPP computer may or may not have its own massive disk system
and its own direct ethernet-type networking capability. At least some of the workstations
would have powerful hardware-based graphics rendering and manipulating capability. A
"framegrabber" may be attached to the MPP computer directly. The network may also include
X-stations as separate from graphics workstations. The graphics workstations would include
X-windowing capability. It would be best to develop applications software that can make use
of special hardware when they are available but which can effectively cope when not all of the
types of computer resources mentioned above are available.

The minimum configuration to be considered for the purposes of this paper comprises the
following: one MPP computer, one or more graphics workstation with X-windows, and disks
on the the workstation (direct or NFS). We will assume that the amount of main memory
available on the MPP computer far exceeds the maximum possible on an individual
workstation.

720

1.2. The Host-Node Approach
Many MPP computers are accessed via a "host" computer (some of them can be accessed

via many hosts) which may be a workstation or even an non-MPP supercomputer. Some MPP
computers are configured such that one of their "nodes" acts as the host. In the host-node
programming model, programs run concurrently on the host as well as on a chosen set of
nodes. The programs can communicate with each other by passing messages.

1.3. The Client-Server Perspective
Each type of computer is particularly effective in certain roles, e.g. "number crunching",

graphics, disk I/O (input/output), external network communications, etc. In a networked
"cooperative" environment, each computer should perform its most effective role as a
"service" to the other computers which are not best suited to that role. The resources offering
the services are the "server" in a "client-server" perspective. The services are utilized by
"clients". For number crunching, the MPP computer is the server in our typical environment.
For disk I/0, in the minimum configuration outlined above, the workstation would be the "file
server". For an MPP computer without direct ethernet capability, the workstation will also be
the network communications server. The workstation will also be the graphics server. When
the MPP computer has its own disk farm it can actually be an extremely powerful "NFS
server" if configured with appropriate software to perform I/O services. In the client-server
perspective applied to the host-node model, the host and the nodes support each other in ways
detailed below.

2. THE USER'S VIEWPOINT

To the user, the computational environment that includes an MPP computer should be no
different than and no worse than one based only on conventional computers. In fact, it should
be better. Resources available should be cost effective. This can best be achieved by avoiding
unnecessary duplication of hardware resources. This implies that the memory requirement on
the workstation that acts as the host does not have to be same as the memory requirement on
the MPP system that is attached to it as a "compute server". Conversely, when large disk
farms are available on the host's network, this does not have to be duplicated on the MPP
computer. However, this compromises I/O throughput for a job running on the MPP computer
because all file I/O will have be channeled through the host (usually sequentially, node by
node).

CFD involves problem setup, obtaining the solution and analysing the solution. These
three stages can be concurrent and iterative. Problem setup and postprocessing should be
performed from an individual user's desk if possible. On-demand visualization, solution
analysis, solution tracking and control would also be highly desirable. Algorithm "faults"
should be "trappable" so that graceful exit from the computer run is possible. This is
particularly important on MPP computers because, otherwise when a floating-point exception
occurs on one node (CPU), the entire program may "hang".

2.1. Benefits of host-node model
Software based on the host-node model can distribute the overall work involved with

problem setup, solving and anlaysing the results in a transparent way between the host and the

721

nodes without unduly taxing each type of resource and with minimum effort involved in
rewriting existing software. All existing user-interface modules can continue to run on the
host. All error-checking on user inputs can be performed by the host. Results can be
displayed by the host. The user interface for the analysis software can query the user for his
instructions, send messages to the MPP computer, obtain that subset of data that is required for
the specific postprocessing need, process this data for visualization or other purpose.

The nodes can communicate information time-step by time-step to the host for display in a
window or for being recorded in a disk file. The host program can react to user inputs and
interrupts and communicate them to the nodes for proper action. Any single node CPU that
encounters a signal as a result of a trapped error can signal the host which, in turn, can send
messages/interrupt to all nodes to terminate the entire job.

3. THE APPLICATION DOMAIN

The application domain can range from CFD as as a single discipline through
multidisciplinary simulations (e.g. aerodynamics and rigid body dynamics (store separation),
aerodynamics and structural dynamics (aeroelasticity), aerodynamics and electromagnetics
(design optimization)).

The computational method may use structured grids (single or multiple blocks),
unstructured grids (single or multiple blocks), or a hybrid. For multiple blocks, there may exist
relative motion between blocks.

The physics being modeled in a CFD computation may describe inviscid flow (Euler
equations), viscous flow (Navier-Stokes equations) that may be laminar, turbulent or
transitional. The aerothermochemistry may include choices including perfect and real gases,
chemical and thermal equilibrium and nonequilibrium. A given simulation will employ some
combination of disciplines, gridding approach and physics.

3.1. Benefits of host-node model
The problem definition step involves setting up the geometry, "painting" the boundary

conditions and specifying the initial conditions. These can be performed with full user
interactivity by programs running on the host. The mesh generation can either be performed
on the host or on the nodes depending on the chosen algorithm. Grid generation methods
based on solving partial differential equations can easily be mapped to MPP computers.
Interzonal connectivities that are not automatically identified by the grid generation process
can be computed by preprocessor software on the host. The connectivity and boundary
condition information can be communicated to the large scale simulation running on the
nodes. Thus, preprocessing and postprocessing software need not be rewritten for the nodes.

When some blocks move with respect to other blocks, the movement may be governed by
rigid body dynamics applied to one or more objects in these blocks. The six-degree-of-
freedom computations can be performed on the host or on dedicated nodes or on the nodes that
are engaged with the numerical flow simulation. The grid redefinitions can be performed on
the host along with recomputation of the zonal interconnectivities, etc. and this information
can be transferred back to the appropriate nodes.

If the host program is responsible for first reading in user inputs, it can exploit this
knowledge to optimize the availability of nodal resources. For example, if the host program

722

determines that the particular run corresponds to inviscid flow, it only needs to load the nodes
with the Euler solver part of a more general software. While this could be done manually by a
user, the intelligence can be automatically built into the host software to make it easier for
users.

4. GEOMETRIC DOMAIN DECOMPOSITION AND SYNTHESIS

Geometric domain decomposition involves breaking up the computational domain of
interest into subdomains, each one of which is assigned to an individual CPU node of the MPP
computer. The solution is updated for each subdomain in its assigned CPU and edge
information is transferred between subdomains (therefore nodes) via messages. Synthesis
involves putting the domains back together.

4.1. Benefits of host-node model
Host-resident software can be easily written to act as on-demand file I/O servers for the

nodes. The host-resident files can contain grid and solution restart information that can be
transferred to the nodes at the beginning of a computationally intensive run and synthesized
back by the host program at the end of the run or whenever a "checkpointing" is desired.
Conversely, if the MPP computer is more richly endowed with disk space, the I/O service can
be provided by the nodes for pre and postprocessing software on the host.

An intelligent host-resident software module can analyze the problem sizes by scanning the
header portions of disk files and choose the appropriate number of MPP nodes. This is
achieved in a fashion that achieves the desired turnaround time while minimizing internodal
communications. Large problem sizes in each mode reduce communication overheads but
increase turnaround time for a given size of the total job. Such host software can also be part
of a smart job-queueing system that balances the needs of different users and jobs.

5. FUNCTIONAL DOMAIN DECOMPOSITION AND SYNTHESIS

While geometry-based domain decomposition is the most commonly employed approach,
one can exploit other decomposition methods to split the overall problems into pieces, each of
which fits a CPU node of an MPP computer. Functional domain decomposition maps the
problem space to the domain of functional modules and then maps different modules to
corresponding sets of CPU nodes. As an example, for turbulent flow CFD applications,
turbulent eddy diffusivities can be computed by nodes assigned for that purpose concurrent
with the evaluation of inviscid fluxes by other nodes. As another example nodes could be
dedicated for on-demand graphics. Functional domain decomposition, in turn, can use
geometric domain decomposition. Synthesis involves putting together the functionally
decomposed information content.

5.1. Benefits of host-node model
The host can serve as the functional decomposition controller and based on the user's inputs

choose the appropriate division of labor (e.g., physics or turbulence modeling options, etc.).
More intelligent software can be built in this way. By allocating the appropriate MPP nodal

723

resources for the various functional parts of the entire job, faster turnaround can be achieved
while maintaining a high level of parallel processing efficiency.

6. APPLICATION DOMAIN DECOMPOSITION AND SYNTHESIS

For multidisciplinary applications, the various application domains can be provided
dedicated sets of CPU nodes. This application domain decomposition can exploit functional
domain and geometric domain decompositions. Synthesis involves coupling appropriate
pieces of information from each domain.

6.1 Benefits of host-node model
For multidisciplinary problems, often the coupling between the disciplines involves far less

information transfer than the information transfer between node sets that are computing
solutions in the individual disciplines. In this case, the coupling of the disciplines can be
performed by the host very effectively without creating load imbalances on the nodes.

7. O T H E R BENEFITS OF HOST-NODE M O D E L

The host-node model permits users to share a set of nodes between different processes.
Therefore space sharing uses of an MPP computer and time sharing are both enabled.

This Page Intentionally Left Blank

Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel Computers
A. Ecer, J. Periaux, N. Satofuka and S. Taylor (Editors)
�9 1995 Elsevier Science B.V. All rights reserved.

725

Software Tools for Paral le l C F D on Compos i t e Grids *

Peter Olsson, Jarmo Rantakokko, and Michael Thunfi ~

~Department of Scientific Computing
P.O. Box 120
S-751 04 Uppsala, Sweden

A library of software tools has been developed for parallel PDE solvers on composite
structured grids. The tools have an object-oriented design. As a test case, the tools have
been used for the implementation of a realistic problem, giving code that is portable on a
large set of serial and parallel computers. This solver has been compared to a code written
in plain Fortran 77. The results show that the tools are comparable with plain Fortran
code and that they scale very well on a parallel computer with distributed memory.

1. I N T R O D U C T I O N

We present COGITO, a set of software tools for composite-grid methods. Code contain-
ing calls to the Cogito routines will be portable over a wide range of computers, serial and
parallel. Platforms supported are at the moment the software package PVM (cluster of
workstations), Intel's NX message passing library (iPSC/2, iPSC/860, and Paragon), and
IBM's MPL message passing library (IBM SP1 and SP2). The current implementation
of Cogito is in Fortran 77. New parts of Cogito are being coded in Fortran 90.

The tools raise the level of abstraction in the code considerably. Moreover, they make it
fairly straightforward to write a composite-grid code which can be executed for example
on a multicomputer. This means that the user of Cogito can focus on the numerical
method and the mathematical problem instead of on low-level details. Production code
is written in a serial fashion, all parallelization aspects are hidden inside the tools. We
can develop and debug the code on a single workstation and then move it unmodified to
a multicomputer.

Two of the goals for the Cogito project are: (1) to abstract away from computer
dependencies, for portability, and (2) to abstract away from low-level representations
of the data structures. There are two motivations for (2). One is that advanced data
structures, such as composite grids, are not supported in existing programming languages.
The other motivation is that we should not need to rewrite the PDE solver if the low-level
representation of data is changed.

As a typical application, we consider a 2D compressible Navier-Stokes solver. We com-
pute airflow in an expanding and contracting tube that could be interpreted as a muffler on
an exhaustion pipe of a car. The equations are written in general curvilinear coordinates

*The research presented in this paper was supported by the Swedish National Board for Industrial and
Technical Development

726

and the computational domain is covered by a composite grid consisting of five structured
rectangular grids. The equations are solved with a Runge-Kutta method and explicit fi-
nite differences. We compare code written in plain Fortran 77 with a rewritten version
with our tools of the solver and give execution results from different multicomputers.
The conclusions are that the code based on our tools is comparable in performance with
hard-coded solvers, and scales well on parallel computers of MIMD type with distributed
memory.

Cogito has an object-oriented design. This has several advantages. In the present
context, information-hiding- leading to portable and easily maintainable code - should
be mentioned. Moreover, this kind of design tends to yield a good modularization, and
fairly small software parts (operations on classes) that can be combined in a flexible way.
Finally, object-oriented software focuses on concepts in the application domain. This
increases the readability of the code.

In comparison to recent related work, [5] and [12], we aim at a higher level of abstraction.
The work in [3] focus on another class of problems, but their approach is similar to ours.
Finally, a research group at LANL is currently implementing classes in C + + for composite-
grid methods. Their work is related to ours, and cooperation is being discussed.

2. A L I B R A R Y OF S O F T W A R E T O O L S

The tasks that are handled by Cogito are of two types. One set of tools are on a pro-
grammer's level, another set on the numerical analysis level. The tools on the program-
mer's level concern message passing, management of communication topologies, dynamic
arrays, and automatic partitioning and distribution of arrays. The tools on the numerical
analyst's level concern grids and grid functions.

Cogito is structured into two layers: one subsystem for the computer related classes
(Cogito/Parallel) and one for the grid and grid function classes (Cogito/Grid). Roughly
speaking, Cogito/Parallel is intended for the programmer and Cogito/Grid is for the
numerical analyst. The classes in the layer Cogito/Grid are based on Cogito/Parallel.

2.1. Para l le l tools
Cogito/Parallel handles message passing, data distribution, and management of trees

of arrays in distributed memory.
To handle message passing, we have introduced classes Message and Communication

Topology. The class Message was developed several years ago, but has not been previ-
ously published. The ideas are similar to those of the Message Passing Interface (MPI). A
message is created as an object. There are operations for packing data into the message,
sending data in various modes, receiving and unpacking data. The class Communica-
tion Topology [6] handles different communication topologies which are embedded in the
physical communication topology of the multicomputer. If it is possible, the neighbors
in the logical communication topology are also neighbors in the physical communication
topology. At present we have ring, grid, and tree topologies. There are operations for
translating between node indices in the embedded topology and physical node identities.
There are operations for finding the neighbors and the number of neighbors of a node. A
node can also find out if it is in an extreme position of the communication network. For
example, the node can be first or last in a ring topology, at the west, east, north, or south

727

end of a 2D grid, and the root or leaf in a tree topology.
To handle data distribution we have the class Distribution which describes how data

are to be distributed over the nodes [4]. At present we support the partition shapes slices,
rectangles, and boxes which partition across one, two, and three dimensions, respectively.
The class Distribution has constructor operations for automatic partitioning for each of
these shapes. Moreover, there is an option for automatic choice of the best shape. To be
able to make this choice, there are additional classes Work Map, Computer Model, and
Communication Pattern. A communication topology is also made automatically and is
associated to the distribution. If, for example, a slice partitioning has been made the
associated communication topology will be a ring, and if the partitioning is made with
rectangles the associated topology will be a 2D grid etc.

The partitioning is based on a strategy, which is analyzed in [9], [10]. It is shown to
be adequate in many situations. An improved composite-grid partitioning algorithm is
proposed in [11], but has not yet been incorporated into the class Distribution.

To handle the management of trees of arrays in distributed memory we have classes
Array, Distributed Array, and Directory Tree. An array is created as an object and there
are operations for retrieving the number of dimensions and the size in each dimension.
A distributed array is associated to a distribution object. The distributed array object
is stored in one of the directories of a directory tree. Each node stores the complete
directory structure, but only its own partitions of each array. The class Distributed Array
inherits from the the class Array.

In summary, the classes in Cogito/Parallel give tools for writing low-level multicomputer
code. Portability is mainly achieved by providing different implementations of the class
Message. Currently, we support the platforms: IBM SP1 and SP2 with MPL, Intel parallel
computers with NX, and networks of workstations with PVM.

2.2. Gr id tools
Cogito/Grid deals with the management of composite structured grids and grid func-

tions. The task in focus is how to use an existing grid. A grid is a discretization of the
computational domain. A composite structured grid is a union of logically rectangular
grids patching or overlapping each other. Grid functions are defined on the grids and are
used, e.g., to represent the solution of the PDE on the discrete domain.

The classes in this layer are implemented on top of the Cogito/Parallel tools, and the
code will thus be portable over the same platforms. Cogito/Grid uses an SPMD pro-
gramming style, hiding all message passing in the defined operations. The same program
can then, without modification, be executed both on a serial computer and a parallel
computer of MIMD type with distributed memory.

In the following short code sequences are included to indicate the style of a Fortran pro-
gram using Cogito. The operations on the classes are implemented as subroutines, having
a reference to the object as an argument. The name of the subroutine is a concatenation
of the operator and an abbreviation of the class name.

The code sequence below creates a composite-grid object by reading its structure from
file, then decides how to partition the grid, and finally reads the grid data distributing it
to the owner processors.

728

Create and distribute the grid
call Create_CG(cg, 'myFile')
call Distribute_CG(cg, 'normal ')
call Read_CG(cg, 'myFile')

Grid functions are defined on the grids and thus inherit the same structure and parti-
tioning. To define a grid function u, with four components per grid point, on the entire
composite grid created above, the following is sufficient:

Create grid functions
call Create_GF(u, 'solution' ,4,cg)

The user who wants to write a PDE solver on the Cogito/Grid level of abstraction will
mainly operate on grid functions. Currently, only explicit difference methods are sup-
ported. A set of arithmetic operations are defined for the class. In particular, there are
methods for applying difference operators to the grid functions.

Differentiate u
call DiffOp_GF (u, du, il, Jr, w)

The parameters il and ir define the operator widths and w the difference weights. If
the grid is partitioned the operation will be done in parallel. First, partition boundary
data are sent to neighbor nodes. While waiting for the data to arrive, inner points are
differentiated in order to overlap computations and communication. Finally, the partition
boundaries are differentiated.

Grid functions defined on a composite grid must be interpolated between the compo-
nent grids. Interpolation is performed through the operation Interpolate. Assume that
the grid function u is to be interpolated from grid G1 to grid G2. The interpolation
consists of two phases. In the first phase, the processors owning relevant partitions of
G1 compute interpolation values. These values are gathered using a table (defined in
Create_CG and initiated in Distribute_CG) and sent to the processors who have the cor-
responding partitions of G2. The second phase consists in the latter processors receiving
the interpolation values, and updating u on G2. The operation Interpolate has a mode
parameter, which makes it possible to execute each phase in a separate call. With mode =
pre the first phase is executed, with mode = post the second one. This allows for overlap
of communication and computation:

Interpolate u
call Int erpolat e_GF (u, pre)
...computations not needing interpolation data...
call Interpolate_GF (u,post)

729

Also boundary conditions are implemented by using the arithmetic operators in the class
Grid Function. A subdomain of the grid can be defined and an identifier of this subdomain
is passed as an argument to the arithmetic operators. The operators are performed only
on the specified subdomain.

In [7] the tools on the Cogito/Grid level are described more in detail.

3. E V A L U A T I O N OF T H E T O O L S

Three issues are of interest for the evaluation of the tools:

�9 Portability

�9 Single node performance

�9 Parallel performance

To show portability we have used three different computers, SUN Sparc 10, IBM SP2, and
Intel Paragon XP. The SUN Sparc 10 is a serial workstation, the IBM SP2 is a cluster of
workstations connected with a cross-bar switch, and the Intel Paragon XP is a dedicated
parallel computer with the nodes in a 2D mesh.

For the second issue, serial execution speed, we have compared serial code written in
plain Fortran 77 with code using the grid tools. We have implemented a two-dimensional
compressible Navier-Stokes solver on a multi-block grid with five blocks. The solver uses
centered, second order accurate differences in space and Runge-Kutta time-marching.
This program was originally written for a one-processor machine [2]. We have rewritten
the code making use of the Cogito/Grid tools. In our experiments, the solver was executed
on a single node on the three different platforms, see Figures 1 to 3. All grids are quadratic
and of the same size. Neither of the codes was tuned for optimal performance on any
specific computer and only standard compiler optimizations were used.

The results in Figures 1 to 3 show no clear tendency in difference between the Cogito
and the plain Fortran 77 version. Other experiments with a similar solver [7] indicate
the same results. However, the results for the three cases show that improvements are
possible. Memory management and processor utilization are two important factors af-
fecting the performance. Information about processor type, cache memory, etc could
be included in the class Computer Model, which is part of the Cogito/Parallel subsys-
tem. The Cogito/Grid tools could then be modified so that they adapt to these details
(by loop-unrolling, vector-length adjustment, loop-ordering, addressing modes, etc). A
source of differences in performance between the two codes is the programming style. The
object-oriented approach tends to yield many calls to relatively small operations in the
classes. By adding compound operations to the class Grid Function the performance of
the Cogito based code could be improved.

For an evaluation of the parallel performance of the tools, issue three, the performance
of the Cogito based Navier-Stokes solver was studied. (The corresponding hard-coded
version was not parallelized.) As a measure of parallel performance, we used sizeup
[8]. This means increasing the problem size, to maintain fixed execution time when the
number of processors grows. Sizeup is defined as parallel work divided by serial work. As
the problem size per processor is approximatively kept constant, sizeup is less dependent

730

_9~ LL

-..<2)/

f /

/
/

S U N s p a r c 1 0

�9 Q # "\ / "Q"
.~ - , . .

I I \ . / " ~ . I ~
, / "~ . I "

! ! \ - " " o i

1 ! 1 I \ �9

I j I .l \

I J l I \

~i " ~ / . . ~ ~ _ ~ _ _ _ ~ ~ - i ~ ! - - ~ - . ~ . -
"l ! \ .I

0

Q.

/ ~ .
/'

/
/

/
/

/

o - p l a i n F o r t r a n

* - C o g i t o v e r s i o n

G r i d s i d e

Figure 1. Performance, SUN sparc 10

of the single node performance and hence of the node architecture and of different compiler
optimizations. In our experiments, the one-processor problem size is 50,50 points in each
block. The results, see figure 4, show that the Cogito-based code scales very well.

4. S U M M A R Y A N D C O N C L U S I O N S

We have presented a software package for construction of portable, parallel PDE solvers.
The package decouples different program components and gives support for complex data
structures such as composite grids. Moreover, we have described an implementation
showing that the tools can be used for realistic problems and that the object-oriented
design raise the level of abstraction which increases the readability of the code. Execution
timings show that the tools are comparable in performance with hard-coded solvers and
that they scale very well on parallel computers of MIMD type with distributed memory.

Cogito is still under development. The single node performance of the routines needs
to be improved. Moreover, classes for I/O management and out-of-core data storage need
to be added. Finally, a third level of abstraction, Cogito/Solver, is under development.
These tools will separate the numerical method from the boundary conditions and the
mathematical problem.

R E F E R E N C E S

1. G. Chesshire, W. D. Henshaw, Composite meshes for the solution of partial differential
equations, J. Comp. Phys., 90 (1990), pp. 1-64.

2. R. Enander, Grid patching and residual smoothing for computations of steady state
solutions of first order hyperbolic systems, Thesis, Dept. of Scientific Computing, Up-
psala University, Uppsala, 1991.

731

3 5

3 0 ~

2 5

2 O

E
u..

15

, o

\.
\

\

\

\
\

. /

/
(

_

5 -

I B M S P 2

o - p la in F o r t r a n

* - C o g i t o v e r s i o n

\
\

/ !

, \ o e ~ o -

~ / \ / . /

~. I \ . i -
(~ \. / 0 - - ~ . /

c b "

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
G r i d s i d e

Figure 2. Single node performance, IBM SP2

3. W. Gropp, B. Smith, Scalable, extensible, and portable numerical libraries, in Pro-
ceedings of the Scalable Parallel Libraries Conference, pp. 87-93, IEEE, 1994.

4. K. HSgstrSm, M. Thun~, Portability and data structures in scientific computing
object-oriented design of utility routines in Fortran, in Parallel Computing: From
Theory to Sound Practice (W. Joosen and E. Milgrom, Eds.), pp. 585-588, lOS Press,
Amsterdam, 1992.

5. M. Lemke, D. Quinlan, P-t--t-, a parallel C-t--t- array class library for archi-tecture-
independent development of structured grid applications, ACM SIGPLAN Notes, 28
(1993), pp. 21-23.

6. P. Olsson, Object-oriented design of Fortran routines for the management of commu-
nication topologies on a hypercube, Institute of Technology, Report UPTEC 91 130E,
Uppsala University, 1991.

7. J. Rantakokko, Object-oriented software tools for composite-grid methods on parallel
computers, Report 165, Dept. of Scientific Computing, Uppsala University, Uppsala,
1995.

8. X. Sun, J.L. Gustafson, Towards a better parallel performance metric, Parallel Com-
puting, 17 (1991), pp. 1093-1109.

9. M. Thun(~, A partitioning strategy for explicit difference methods, Parallel Computing,
15 (1990), pp. 147-154.

10. M. Thun~, Straightforward partitioning of composite grids for explicit difference meth-
ods, Parallel Computing, 17 (1991), pp. 665-672.

11. M. Thun~, A partitioning algorithm for composite grids, Parallel Algorithms and Ap-
plications, 1 (1993), pp. 69-81.

12. R. D. Williams, DIME++: A language for parallel PDE solvers, CCSF, Report CCSF-
29-92, Caltech, Pasadena, 1993.

732

3 .5 (

2 . 5

) g2
u _

1 .5

0 .5

I n t e l Pa ragon XP

I

(

~ - - - - __

f

. o, o---o o-
k /

k. /
\ /

o - p l a i n Fo r t r an

* -- C0g i t 0 ve r s i on

. _ o -
. ~ .~

? - _

x
x
x
x

x X

x
x
x
%
x
x
x

0 0 0 100 120 140 1 0 180 200
G r i d s i de

Figure 3. Single node per formance , Intel Paragon XP

IBM SP2
25 , , , 25

20

15

.~___.

10

o

10 20 30
Nodes

20

15 - -

~L~ .N

10 - -

5

I n t e l Pa ragon XP
,

.

10 20 30
Nodes

Figure 4. Paral le l Per formance , Sizeup

